
Institute of Software Technology

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Experimental investigation of
the consequences of expected
source code understandability

Lasse Merz

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Stefan Wagner

Supervisor: Marvin Wyrich, M.Sc.

Commenced: March 2, 2020

Completed: October 27, 2020

Abstract

Understanding program code represents an essential part of most developers’ work. Any
maintenance task requires the comprehension of the corresponding code as a first step.
For that reason, software companies pay close attention to the quality of their codebase.
It has become a standard to incorporate static analysis tools in the software process in
order to automatically identify code smells and help developers to improve their code.
However, the majority of metrics that are used in static analysis tools lack empirical
evidence. We do not know how these unvalidated metrics influence the cognitive process
of developers in regard to program comprehension.

In this work, we investigate the consequences of presenting different understandability
values to developers prior to them inspecting a code snippet. We analyze to what extent
this understandability metric impacts the expectations, motivation, and affective states of
programmers. To this end, we conduct an experiment through an online survey with 81
developers randomly assigned to one of three treatment groups with different presented
understandability values. Before and after the task of judging the understandability of a
code snippet, participants have to report their expectations, motivation, and affective
state with regard to understanding the code snippet. In addition, two code snippets
are used to evaluate differences in perception, motivation, affect, and understandability
judgment as a result of the actual difficulty of the code snippets.

Our findings show no significant effect for expectations, motivation nor affective states
as a consequence of the presented understandability value. However, we observe a signif-
icant positive linear relationship with expectations explaining 18.3% of the variance of
motivation at an alpha level of 0.0056 with a large effect. Similarly, differences between
expectations of understanding the code snippet before seeing it and the perception of
understanding it afterwards demonstrate the same significant positive relationship with
motivation difference. Our results show an even larger correlation between expectation
to perception difference with a happiness difference of participants, indicating that
being positively surprised by understanding a code snippet corresponds with increased
motivation and happiness. Lastly, presenting programmers’ different understandability
values does not influence the assessment of the code snippet.

Generalization of these results is limited by the use of small code snippets of 20 to
30 lines of code. Furthermore, expectation and motivation are measured through a
self-created and therefore unvalidated instrument.

The results showcase the importance of managing expectations in order to increase moti-
vation and affect of developers. Additionally, contrasting to prior work understandability
metrics seem to not pose a threat of biasing programmers in their expectations towards
and assessment of source code.

iii

Contents

1 Introduction 1
1.1 Research Objectives . 2
1.2 Methodological Approach and Contributions 3
1.3 Thesis Structure . 4

2 Background and Theoretical Foundations 5
2.1 Source Code Understandability . 5
2.2 Anchoring Effect . 12
2.3 Expectancy . 13
2.4 Motivation . 17
2.5 Affective States . 20

3 Related Work 25
3.1 Cognitive Effects in Software Engineering 25
3.2 Static Analysis Tools and Metrics . 27
3.3 Influence of Expectations . 29
3.4 Motivation and Expectancy . 31
3.5 Affective States and Software Developers 32

4 Methodology 35
4.1 Research Questions . 35
4.2 Experiment Design . 36
4.3 Participants . 37
4.4 Materials . 38
4.5 Survey Procedure . 44
4.6 Mitigating Threats to Validity . 46
4.7 Hypotheses, Parameters, and Variables 49
4.8 Analysis Procedure . 53

v

5 Results 57
5.1 Descriptive Statistics . 57
5.2 Hypothesis Testing . 59

6 Discussion 69
6.1 Findings . 69
6.2 Limitations . 77
6.3 Implications . 82

7 Conclusion 85

Bibliography 89

vi

List of Figures

2.1 The different methods used to measure code understandability 8
2.2 Framework illustrating the context and the processes involved in the

placebo effect . 16
2.3 The Self-Assessment Manikin measuring affective states through valence,

arousal, and dominance . 24

4.1 Experiment design using three randomly assigned groups with different
scenarios of suggested understandability 36

4.2 Expectation scales used to measure expectations before and after the task
of understanding a code snippet . 40

4.3 Motivation scales used to measure motivation before and after the task of
understanding a code snippet . 41

5.1 Scatter plot of the relationship between expectation and motivation . . . 61
5.2 Boxplots of understandability assessment of the easy code snippet

depending on the treatment group . 65
5.3 Boxplots of understandability assessment of the hard code snippet

depending on the treatment group . 66

vii

List of Tables

5.1 Experiment results split up into the three treatment groups 59
5.2 Correlation results between the pre-task expectations and the three affect

dimensions valence, arousal, and dominance 62
5.3 Correlation results between expectation to perception difference with the

differences in motivation and affective states 63
5.4 Differences in expectation, motivation, and affective states split into six

groups based on treatment group and code snippet seen 64

ix

List of Listings

4.1 The "easy to understand" code snippet 43
4.2 The "hard to understand" code snippet 44

xi

Chapter 1

Introduction

Maintenance efforts comprise the main part of software development. Up to 70%
of the costs in the life-cycle of a software product are spend on maintenance [BB01;
Erl00]. It is important to preserve a clean and understandable codebase. Any mainte-
nance task requires the comprehension of the artifact as a first step [Ray91; Rug00].
Therefore, understandability of source code is essential for all software maintenance
activities [TN14]. Software developers have to understand the code in order to enhance
performance, add new features, fix bugs, or perform refactorings [VVH97]. For that
reason, understanding source code is an integral part of the work of most software
developers. Professional programmers spend between 58% and 80% of their time on
activities related to comprehending code [MML15; Tia11; XBL+18].

As a result, there exists a need for tools that help developers in this endeavor. Static
analysis tools use rules, heuristics, and software metrics in order to identify potential
problems, code smells, and bugs in the source code. Therefore, they serve to help devel-
opers in improving their code. They are an established part of integrated development
environments in many software projects and big tech companies [SAE+18; VPP+19].
However, studies continuously show various problems with the metrics used in static
analysis tools. These metrics are oftentimes based on flawed models, lack empirical
validation, and are used beyond their intended context [SI94], produce many false
positives [WAB09], and do not represent underlying software quality characteristics as
they are understood by developers [PLB18]. Overall, static analysis tools only support
few verified metrics and instead provide results based on an overwhelming amount
of unvalidated metrics [NAG19]. Especially for code understandability, no empirical
evidence exists for the validity of almost all proposed metrics [CSLB19; SBV+17].

Distinct cognitive processes are involved in program understanding which activates areas
of working memory, attention, and language comprehension [PSA+20]. Therefore, we
are interested in the extent to which unvalidated understandability metrics influence
the cognitive processes of software developers. Many cognitive biases are recognized in

1

1 Introduction

different areas of software engineering and shown to negatively impact programmers’
performance [CNA+20; MST+18]. To our knowledge, only one prior experiment specifi-
cally investigated the impact of understandability metrics in this context. It showed, that
presenting different understandability metrics to developers about an upcoming code
snippet significantly impacts their subsequent subjective understandability assessment
of this code snippet [Pre20]. Hence, we aim to further explore more fundamental
mechanisms involved in developers’ interaction with code understandability metrics.

Research concerned with the placebo effect showcases the impact suggestions can have
on the outcomes of people in terms of pain relief and many other clinical conditions
[PFB08] as well as cognitive performance [TBG+18]. With regard to the underlying
mechanisms, researchers identified expectations elicited through verbal suggestions and
social information as part of the treatment to be an important factor in the explana-
tion of placebo effects [SP04; SPB16; WA15]. These expectations then influence the
motivation and affective states - emotions and moods - of people which in the end
impacts their physiology, behavior, and reported experiences [WA15]. We believe, that
values from understandability metrics act as suggestions for the comprehensibility of the
corresponding code. Therefore, we analyze the expectations evoked through different
code understandability values and how they subsequently influence motivation and
affective states of developers in regard to understanding code.

As a result, we intend to gain a deeper understanding of the effects understandability
metrics have on programmers. Thereby identifying factors to potentially improve such
tools and acquiring new knowledge about the cognitive process involved in understand-
ing source code.

1.1 Research Objectives

This work aims to investigate and explore the consequences of understandability metrics
in regard to influencing the cognitive processes of software developers. To this end,
we evaluate how the presentation of different values for an understandability metric
impacts developers’ expectations about understanding a code snippet. In the next
step, we examine the relationship between expectations of comprehending code and
motivation to engage with that code. Furthermore, we analyze the effects different
expectations have on affective states. Additionally, we explore how differences between
expectations about understanding a code snippet and the perception after inspecting the
corresponding code snippet influence motivation and affective states. Lastly, we further
investigate the cognitive bias that displaying an understandability metric has on the
subjective comprehensibility assessment of programmers.

2

1.2 Methodological Approach and Contributions

These objectives are addressed through an experiment in the context of a typical software
engineering task of understanding a code snippet. In order to analyze and explain the
results, we incorporate established theories from psychology and sociology about the
concepts of expectancy, motivation, and affect with previous research in the software
engineering domain.

1.2 Methodological Approach and Contributions

We conduct an experiment through an online survey with 81 participants that consist
of a mix of students and IT professionals. As task, participants have to judge the
understandability of a presented code snippet. Before and after this task, they are
asked to answer questions about their expectations, motivation, and affective states.
Participants are randomly assigned to one of three treatment groups to analyze the effect
of different suggested understandability values: a control group, a group with a low
understandability value, and a group with a high understandability value. Furthermore,
we employ two code snippets that have different difficulty levels to inspect variations of
reported perception, motivation, and affect as a result of the code snippet participants
see. As a result, the contributions of this work are as follows:

• Different presented understandability metric values have no impact on the ex-
pectations of developers about understanding small code snippets. Therefore,
understandability metrics do not compromise programmers’ cognitive process with
regard to expectancy.

• Expectations about understanding code positively influence the motivation to
engage with that code. Our findings show a significant strong linear relationship
between the two which should encourage anyone assigning programming tasks to
ensure appropriate success expectations in the assignee.

• Code comprehension expectations based on small code snippets have no significant
impact on affective states.

• Differences between expectations and perceptions regarding the understandability
of code have a large influence on the motivation and happiness of developers. For
that reason, it is important to guarantee the fulfillment of expectations.

• Understandability metrics do not affect the subjective understandability assessment
of code in case of implausible metric values in combination with experienced devel-
opers as well as equal comprehension expectations. As a result, understandability
metrics do not induce a cognitive bias under these conditions.

3

1 Introduction

1.3 Thesis Structure

This work is structured in the following way:

Chapter 2 – Background and Theoretical Foundations: This chapter provides back-
ground information on source code understandability and corresponding metrics.
In addition, it presents the theoretical foundations of expectancy, motivation, and
affective states.

Chapter 3 – Related Work: We describe previous work about cognitive biases in soft-
ware engineering, the influence of expectations, the relationship between expecta-
tions and motivation, and the impact of affective states on software developers in
this chapter.

Chapter 4 – Methodology: The research questions, experiment design, used materials,
and survey procedure is outlined in this chapter. Furthermore, we define our
hypotheses and analysis approach.

Chapter 5 – Results: In this chapter, we present the results of our experiment which
includes testing our hypotheses.

Chapter 6 – Discussion: We examine the results and discuss limitations as well as
implications of our research in this chapter.

Chapter 7 – Conclusion: This chapter summarizes the work and outlines directions for
future research.

4

Chapter 2

Background and Theoretical Foundations

This chapter highlights context and background information about the topics at hand.
First, we provide an overview of code understandability. This section discusses defini-
tions of code understandability and reports on the challenges of finding an adequate
measurement for code understandability. Afterwards, the anchoring effect is explained
since it is relevant for letting developers judge the understandability of a code snippet
after we already presented them an understandability value for it. Then, we illustrate
the theoretical foundations of expectancy, motivation, and affect theory. We present
relevant psychological theories of these three concepts and how they correlate as well as
information on how to measure them in an experimental setting.

2.1 Source Code Understandability

Understandability has been an important factor to evaluate the maintainability of
software for a long time. As an essential part of maintenance, refactoring efforts
aim, among other things, to improve the understandability of the software [Fow18].
Here, Fowler believes, that "understandability is next to godliness" [Fow18, p. 251]. As a
result, it found its way into several software quality models as a key factor describing a
prerequisite for any maintenance task since developers need to understand the software
they work with before they can maintain it [ASC; BBL76; CAS+16; TN14]. For that
reason, understandability and maintainability are closely related. In such context,
understandability is considered on the whole software product level, combining source
code with other documentation. In the most recent standard quality model, which is
described in ISO 25010 [ISO11], understandability is not a specified quality attribute of
maintainability. Instead, the most closely related existing quality attributes analysability
and modifiability only describe aspects that are impacted by understandability.

5

2 Background and Theoretical Foundations

While understandability is an important factor on the software product level, in this
work we focus on the level of individual code snippets and how developers are impacted
by associated understandability metrics.

2.1.1 Definition

Source code understandability still lacks a precise, widely used definition that encapsu-
lates all its aspects. As a result, most authors shy away from using a specific definition
and instead describe understandability through its function and importance or through
the metrics they use to measure it. For this work, we use the original definition by Boehm,
Brown, and Lipow [BBL76, p. 605]:

Definition 2.1.1 (Understandability)
Code possesses the characteristic of understandability to the extent that its purpose is clear
to the inspector.

Furthermore, comprehensibility and comprehension are used as synonyms for under-
standability and understanding in this work. These synonyms are used with the same
meaning in the literature, describing the process of understanding code written by
oneself or others [AWF18; RW97]. Closely related to understandability are readability
and complexity which are often defined with the same purpose [CSLB19]. Specifically
readability needs to be differentiated from understandability. Scalabrino et al. [SBV+19]
emphasize that certain code can be highly readable, while still being hard to under-
stand as a result of missing knowledge. In their original quality model Boehm, Brown,
and Lipow [BBL76] describe legibility, the quality of being clear enough to read, as a
prerequisite for understandability. In the same vein, Borstler and Paech express that
"readability is required for comprehensibility, but readability does not necessarily imply
comprehensibility" [BP16, p. 887] which makes it complicated to measure them indepen-
dently. As such, they view readability as a property of the code, while understandability
is a characteristic of the reader. Similarly, Posnett, Hindle, and Devanbu consider read-
ability as a syntactic aspect of code and understandability as a semantic aspect of code,
where "readability is a perceived barrier to understanding that the programmer feels
the need to overcome before working with a body of code" [PHD11, p. 73]. Other
authors do not differentiate between readability and understandability, which furthers
the unclear definitions in this area of research. Buse and Weimer define readability "as a
human judgment of how easy a text is to understand" [BW10, p. 1] conflating the two
into one construct.

Another concept which is part of readability and related to understandability is clean
code [Edw00]. Proposed by Robert C. Martin, clean code describes a set of rules

6

2.1 Source Code Understandability

and principles that are meant to create elegant, simple, and direct code that can be
understood by someone other than the original author [Mar09]. As such, clean code
is very similar to the notion of readability since clean code is supposed to be easy to
read. Therefore, the concept of clean code follows the same relationship as readability
in regards to understandability.

The second related concept, complexity, is often used as a proxy for understandability.
Complexity is thought of as an attribute which makes code hard to understand [AWF18].
However, similar to readability, complexity does not imply understandability, where an
uncomplex code snippet can still be hard to understand as a result of other factors.

2.1.2 Measuring Understandability

It is very difficult to measure source code understandability because of the multitude
of factors that play a role in its assessment. Depending on the instruments that are
used to measure comprehensibility, the results can be highly influenced by the aspects
developers consider for understandability. While some researchers opt for more objective
measurements like time used to understand code [AVZ15; Kol16], comprehension ques-
tions [KW13], or bug fixing tasks [FALK11] others rely on subjective understandability
assessments from the participants [BW10; SBV+17]. This subjectivity includes personal
taste as a result of the readability aspects of understandability, as well as prior knowledge
of the developer regarding the source codes language constructs and application domain
[SBV+17]. In the end, it is not clear which instrument or combination of instruments
capture understandability the best.

Over the years, many different methods of measuring the understandability of source
code have been tried. Siegmund [Sie16] describes three approaches that are used
historically, namely think-aloud protocols, memorization, and comprehension tasks.
Think-aloud protocols are used to observe the cognitive processes during understand-
ability tasks. The participants in corresponding studies are asked to describe out loud
what they are doing and why. In studies using memorization methods to measure
comprehension, developers have to recall source code they saw before. Lastly, through
comprehension tasks, programmers are asked to show their understanding of code by
answering questions about it or filling out blanks in the code.

In a systematic literature review, Muñoz Barón [Muñ19] analyzed 57 papers measuring
understandability. The tasks used to evaluate comprehension in these studies are
visualized in Figure 2.1. Asking specific comprehension questions is used most often to
investigate whether developers did understand the code. These questions compromise of
asking about the output of the code or letting the programmers describe the functionality
of the code. A different way to measure understandability is to let developers subjectively

7

2 Background and Theoretical Foundations

Figure 2.1: The different methods used to measure code understandability sorted by
their occurrence in a systematic literature review [Muñ19].

rate the code on a scale from easy to understand to hard to understand, like a Likert
scale [Lik32]. Other methods include tasks of locating and fixing a bug in the code.
A small number of studies utilize more advanced modifying tasks like refactoring or
extending parts of the code. Rarely, forms of cloze tests are used, in which participants
need to fill out blank parts of a program. Lastly, asking developers to recall elements
of a code snippet that they previously were shown for some time, is used in very few
studies.

The ultimate goal of measuring understandability is to find a metric that can be opera-
tionalized. Such a metric could be used to automatically assess the understandability of
source code. As a result, static analysis tools could show this metric to programmers in
their development environments to indicate parts of the code that could be improved
with a clear description of how to improve it [Sto05].

Software Metrics

The easiest way to operationalize an automatic understandability measurement would
be through software metrics since they can be calculated fast and efficiently. While many
metrics were tried to represent understandability, for almost all of them there currently
exists no strong empirical evidence to actually measure understandability [CSLB19;
SBV+17].

One prominent approach to measure understandability is through code complexity.
The idea being, that more complex code is harder to understand. For this, McCabe’s

8

2.1 Source Code Understandability

cyclomatic complexity (MCC) [McC76] is still, to this day, a widespread metric used for
complexity. It measures the number of independent paths in the code and was originally
developed as a testing-complexity metric [AWF18]. However, this metric received a
lot of criticism. This includes the lack of theoretical foundation [She88], the nesting
problem of not differentiating between loops of different iterations [SSA13], and that
MCC does not reflect code complexity as it is experienced by humans [JF14]. Therefore,
more recent approaches try to incorporate other aspects into complexity which lead
to better metrics for understandability. Jbara and Feitelson [JF14] argue that code
regularity, where you use the same structures repeatedly, leads to better comprehension
while compensating for MCC and lines of code (LOC). Another method by Chhabra,
Aggarwal, and Singh [CAS03] introduces spatial complexity of code and data, which is
the distance between modules and variables to their different uses in the code, to better
explain the cognitive effort needed to understand software.

Researchers have attempted to find many more metrics that represent code understand-
ability with varying success. While analyzing student’s exam results, the software metrics
MCC, nested block depth, and two dynamic metrics based on executed statements were
correlated with the difficulty of the code tracing tasks from the exam [KW13]. On the
other side, Feigenspan et al. [FALK11] found no difference in program understanding
while varying complexity, LOC, concern attributes, and concern operations between two
software implementations. Additionally, clean code has been empirically shown to not
immediately improve the understandability of the code [AVZ15; Kol16]. Ammerlaan,
Veninga, and Zaidman [AVZ15] investigated legacy code in an industrial environment,
to see whether refactored clean code would improve code understandability. They
generated clean code versions of program code in three stages, namely small, medium,
and large. Furthermore, they designed corresponding coding tasks and measure the
time it takes to complete them. In two out of three of the small tasks and in the large
task, the problems were solved faster in the group without refactored code. However,
the developers in the group with clean code versions created better solutions, fixing the
root cause of the problem. Similarly, Koller [Kol16] conducted an experiment with two
groups solving three small coding tasks on either a legacy code or a refactored clean
code. Two out of the three tasks are solved faster by the group with legacy code, which
corroborates the result that clean code does not necessarily improve code understand-
ability. Like Ammerlaan, Veninga, and Zaidman, Koller notes that developers working
with clean code write higher quality code.

In an effort to explore correlations with understandability Scalabrino et al. [SBV+17]
analyzed 121 different metrics. They considered three different types of metrics: code-
related metrics, documentation-related metrics, and developer-related metrics. The 105
code-related metrics included typical metrics like MCC and LOC as well as readability
metrics. They used 11 documentation-related metrics, which describe the availability of
documentation for a given code snippet. Lastly, the five developer-related metrics as-

9

2 Background and Theoretical Foundations

sesses to what extend developer experience and background impact code comprehension.
In a study with 46 participants trying to understand eight code snippets, they found no
significant correlation between any of the metrics and the understandability of the code
snippets. In a reanalysis of the data from Scalabrino et al., Trockman et al. [TCM+18]
tried to capture understandability through a combination of multiple features. They
used different statistical models and found a small but significant correlation between
understandability and a combination of syntactic structure and documentation met-
rics. Additionally, they were able to create a classifier which can differentiate between
hard to understand code and easy to understand code with small discriminating power.
Trockman et al. suggest that it might be possible to find a useful understandability
metric with more data. Following this attempt, Scalabrino et al. [SBV+19] reported
a second analysis of their study with an increased sample size of 63 developers. The
result remained the same, namely that there is no correlation between the 121 metrics
and code understandability. Combining multiple metrics resulted in models with some
discriminatory power and with higher correlation. However, Scalabrino et al. remark
that these models are still far from being usable in practice.

One promising understandability metric, which was not part of the analysis by Scalabrino
et al., is Cognitive Complexity. Cognitive Complexity was introduced in the SonarSource1

environment by Campbell [Cam18a] as a measurement that reflects understandability
more closely to programmers’ intuition about the cognitive effort required to understand
the code. Similar to MCC, Cognitive Complexity assesses code based on its structure,
while overcoming many of the shortcomings of MCC. It ignores shorthanded versions
of multiple statements, increments for every break in the linear code flow, and incre-
ments based on the nesting depth. Campbell [Cam18b] analyzed the acceptance of this
new metric in 22 projects which used Cognitive Complexity through their SonarCloud2

tool. She found an acceptance rate of 77% based on the projects that fixed problems
associated with Cognitive Complexity. In a recent meta-analysis, Muñoz Barón, Wyrich,
and Wagner [MWW20] validated Cognitive Complexity as the first code-based metric
measuring understandability. They conducted a systematic literature search to find open
data sets of understandability studies, resulting in a data set of 24,000 understand-
ability evaluations from 427 code snippets. With this data Muñoz Barón, Wyrich, and
Wagner calculated correlations between Cognitive Complexity and measurements of
understandability. They found empirical support for a correlation with time, subjective
ratings, and composite variables. While the results were mixed regarding correctness
and physiological measures, they conclude that Cognitive Complexity is able to represent
at least some aspects of code understandability.

1The SonarSource world: https://www.sonarsource.com includes plugins, software, and cloud resources
to improve code quality in 27 different programming languages.

2https://www.sonarqube.org

10

https://www.sonarsource.com
https://www.sonarqube.org

2.1 Source Code Understandability

Physiological Measures

A new approach to measure understandability are physiological instruments. Instead
of focusing on the code, they focus on the human who has to understand the code. As
a result, we can gain a better understanding of how code comprehension impacts the
cognitive effort of developers. This can lead to improved tooling possibilities as well as
recognizing understandability problems during the comprehension process instead of
after they occur.

Siegmund et al. [SKA+14] used functional magnetic resonance imaging (fMRI), which
measures the blood-oxygen levels that change as a result of brain activity, during code
comprehension tasks. They found activation of areas relating to working memory,
attention, and language comprehension. As one result of this gained knowledge, they
theorize that increasing the number of variables beyond the capacity of the working
memory should impair code comprehension [PSA+20]. Using wearable Near Infra-
red Spectroscopy (NIRS) devices, which measure cerebral blood flow, Nakagawa et al.
[NKU+14] were able to show that they can identify developers working on hard code
through higher blood flow measurements. Similarly, Fritz et al. [FBM+14] created a
nominal code predictor (easy/difficult) which can predict whether a new participant will
perceive their task as difficult with a precision of over 70%. To achieve this, they utilized
an eye-tracker, an electrodermal activity sensor, and an electroencephalography sensor.
Müller and Fritz [MF16] showed that biometrics outperform more traditional metrics,
like code complexity, in predicting the difficulty a developer perceives while working on
code. Additionally, they found that difficult code elements result in more quality concerns
raised during peer code reviews. By using an eye-tracker and a minimally invasive brain
imaging technique called functional Near-Infrared Spectroscopy (fNIRS), Fakhoury et al.
[FMAA18] analyzed the effects of source code lexicon and readability on developers’
cognitive load. Their results show that linguistic antipatterns significantly increase
the cognitive load during program comprehension tasks. Additionally, a combination
of structural and linguistic antipatterns leads to 60% of participants being unable to
successfully complete the given task.

2.1.3 Cognitive Models

In order to investigate the human aspects of code understanding, we need to know
how developers go about comprehending a piece of program code. Cognitive models
try to explain how programmers understand given source code by step-wise building a
mental model of the code they are inspecting. Understanding program code involves
using existing knowledge of the programming language, programming principles, the
programming environment as well as typical algorithms and solution approaches to

11

2 Background and Theoretical Foundations

gain new knowledge about the code [MV95]. Generally, there exist two approaches to
build this mental model, bottom-up and top-down [Sie16]. In the top-down approach,
programmers reconstruct knowledge about the software domain they know about and
map it to the current source code [Bro83]. This process is guided through building a
hierarchy of hypotheses that start with a top, high-level one which is supported by the
subsidiary hypotheses. Using their domain knowledge developers confirm and refine
their hypotheses while understanding the current source code. Especially experts follow
this approach when the program follows a plan they know and expect [SE84].

Bottom-up comprehension considers developers creating a control flow abstraction first
which includes the sequence of operations in the code they are trying to understand
[Pen87]. In this process, they read individual program statements and chunk or group
them together into higher-level abstractions [SM79]. After this so-called program model
is fully built, developers create a situation model that contains data-flow and functional
abstractions [Pen87]. With this approach, programmers build their mental model from
individual statements up to a complete understanding of the code they are inspecting.

For this work, we consider the bottom-up comprehension model. We are using small,
domain independent code snippets that can be understood without prior knowledge
except for existing knowledge about the Java programming language.

2.2 Anchoring Effect

The anchoring effect as we understand it today was described by Tversky and Kahneman
[TK74] and is defined as "the disproportionate influence on decision makers to make
judgments that are biased toward an initially presented value" [FB11, p. 35]. It is one of
the most pervasive and robust cognitive effects [FB11; MES04]. The anchoring effect
has been shown to take place in many different areas. It occurs when the anchor values
are clearly uninformative for the estimate like when they are generated by chance.
Furthermore, it appears to be independent of participant motivation including monetary
rewards for better estimations. In addition, the expertise of the participant plays at most
a mitigating role in the effect. This means, even experienced judges in a particular field
are influenced by an anchor. In the same vein, people with higher cognitive abilities
are not as susceptible to the anchoring effect, but it is still sizable and significant. The
effect can also persist over fairly long periods of time of up to one week. Strikingly, the
anchoring effect influences participants even when they were warned beforehand about
its potential distortion. In regard to implausible or extreme anchors, there exist mixed
research results about their influence on the anchoring effect [FB11]. Some results
suggest that extreme anchors create bigger anchoring effects, while others show the
opposite. Furthermore, emotions as well as personality traits can affect the anchoring

12

2.3 Expectancy

effect. For one, being in a sad mood results in being more susceptible to the anchoring
bias. Additionally, people with different personality traits including high agreeableness
and low extraversion as well as openness to experience are more vulnerable in regards
to the anchoring effect.

This effect can be shown through different experiments where the anchor is provided
by the experimenter, self-generated, or provided in an unrelated task [MES04]. The
classical anchor experiment set-up consists of first asking the participants a comparative
question in regards to the anchor and then an absolute anchoring question. Tversky and
Kahneman [TK74] asked participants to estimate the percentage of African countries
in the UN. The anchor was created through spinning a wheel of fortune between 0
and 100 in the participants’ presence. Afterwards, they first asked the subjects to guess
whether or not the percentage of African countries in the UN is higher than the anchor,
which is the comparative judgment. Then the participants had to estimate the absolute
percentage. The authors found a clear difference between groups, where the group with
an anchor of 10 estimated a percentage of 25 on average, and a group with an anchor
of 65 estimated a percentage of 45 on average.

Explanations of the anchoring effect in the literature differ [FB11]. Tversky and Kahne-
man [TK74] proposed that people make insufficient adjustments upwards or downwards
based on the anchor values. Therefore, different starting points yield different estimates.
However, this view does not incorporate anchoring effects based on plausible numbers,
because there would be no need to adjust from them. Instead, Mussweiler, Englich,
and Strack [MES04] suggest a model of selective accessibility. This model postulates
that comparing the judgment to the given anchor value changes the accessibility of
knowledge about the target. Specifically, anchor-consistent information is selectively
more accessible. The final judgment is then heavily influenced by the accessible knowl-
edge. A second explanatory theory is confirmatory hypothesis testing [FB11]. Similarly,
this theory suggests, that the anchoring effect activates anchor-consistent information.
However, it proposes that the subjects consider the anchor value as the correct answer
and test out this hypothesis. Furnham and Boo [FB11] conclude that both, selective
accessibility and confirmatory search contribute to the mechanism of the anchoring
effect, while they see the confirmatory search approach as the dominant view.

2.3 Expectancy

Expectations are an integral part of peoples everyday life guiding their behavior [ORZ96].
Acting for the most part as unconsciously held background assumptions they serve
humans as heuristics providing input into their judgments. As a result, individuals try to

13

2 Background and Theoretical Foundations

validate their held expectations. This can influence people’s experiences since they want
to see what they expect to see.

Expectations are built experience by experience [ORZ96]. Initially, they are narrow
and specific, but as people accumulate experiences they extract generalizations that
summarize events across stimuli, time, and situations. As a result, these expectations
become more general and broader before they finally settle in the middle balancing
breadth and death of specific events to general assumptions. Afterwards, peoples
expectancies guide their behavior in a self-perpetuating manner. If an individual found
expectancies useful in the past then their cognitive system is rather cautious about
altering or replacing them. Specialized processes exist to handle unexpected events and
integrate them into their model to improve expectancies. In the end, these expectancies
are subservient to humans primary goal of effective behavior, which means that they are
changed when more useful information is experienced [ORZ96].

When people make predictions, like how well they will understand a code snippet, they
tend to bring information to mind that is consistent with their prediction [ORZ96]. This
can result in overconfidence. At the same time, believing in one’s own future success
facilitates this success. Expecting to succeed affects behavior in a way of increasing
confidence [Fea66] and task persistence [CBS79]. Additionally, specifically thinking
about such expectations fosters intentions that guide ongoing behavior in regards to
the underlying matter [ORZ96]. Furthermore, optimistic expectations produce positive
affect, which is generally motivating and energizing.

While evaluating new events in correspondence to their expectations people aim for pro-
cessing fluency [ORZ96]. This concept describes the extent to which pattern matching
flows smoothly in contrast to being interrupted by expectancy disconfirmations. Here,
processing fluency is the first point where the cognitive system registers a confirmed
or disconfirmed expectancy resulting in related cognitive consequences. During this
continuing evaluation of expectations to perception, affective responses act as signals
regarding goal progress. Positive affect signals sufficient progress while negative af-
fect signals insufficient progress. This progress is evaluated through a small or large
discrepancy between expectation and current status. Therefore, when an expectancy
is disconfirmed people tend to have a response of negative affect. Any perceived bad
outcome results in negative affect, but when it is unexpected it is even more extremely
dissatisfying. In the same vein, positive outcomes feel all the sweeter when it is a
surprise to the perceiver [ORZ96].

These findings were adapted into their own theory called expectancy-confirmation
theory [Bha01] which finds most of its use in marketing. This theory posits that
individuals first develop an expectation with respect to a product or service or software
artifact. After using the specified product a perceived performance is established. Then,
the expectation is compared to the perceived performance which either confirms or

14

2.3 Expectancy

disconfirms the expectation. As a result, the level of disconfirmation determines the
individual’s satisfaction and therefore influences the affective state [Bha01].

Since expectations are an essential part of humans, they are also an important factor
in many psychological effects [SPB16]. These effects can have a significant impact on
behavior and are able to create a lasting influence on cognitive operations. One relevant
effect is explained in the subsection below.

2.3.1 Placebo Effect

"A placebo effect is a genuine psychological or physiological effect, in a human or another
animal, which is attributable to receiving a substance or undergoing a procedure, but
is not due to the inherent powers of that substance or procedure" [SP04, p. 326]. The
placebo, in this instance, is the corresponding substance or procedure which elicits the
placebo effect. Many different types of placebo responses have been identified, that
are driven by varying mechanisms depending on the context [PFB08]. The placebo
effect is mostly known from clinical research into drugs, pain, depression, anxiety, and
other treatments. However, nowadays it is recognized, that the placebo effect can be
shown in plenty of other contexts. Researches have demonstrated, that the placebo
effect can enhance sports performance [HSS+19], cognitive performance [TBG+18] as
well as creativity [RMI+17]. Therefore, at its core, the placebo effect explains how the
context of beliefs and values induce brain processes that have an effect on perception
and emotion resulting in mental and physical outcomes [Ben05].

One prominent explanation of the placebo effect is expectancy theory [PFB08]. Ac-
cording to this theory, the "placebo produces an effect because the recipient expects it
to" [SP04, p. 328]. Therefore, the placebo effect is a subcategory of expectancy effects.
This does not exclude other co-founding factors like the relationship with the placebo
administrator, or sociocultural aspects. However, they are all influencing through the
expectations of the recipient. There exists a large body of literature investigating the
profound impact of expectations in the placebo environment [SPB16]. One simple
example is the difference between open and hidden administration of medication. When
a patient is unaware of a treatment, it is less effective and takes longer in contrast to the
treatment being openly communicated [CLLB04]. Here, the expectations raised in the
patient for the treatment outcome and through the patient-doctor relationship play an
integral role in this difference. Furthermore, in pain relief studies it was confirmed, that
expectancy but not the desire for relief was responsible for a difference in the placebo
pain relief [PMK+99]. Additionally, further research into placebo pain mechanisms
revealed, that expectations are not influenced by personality traits and can predict the
placebo response independently [CC17]. Nowadays our understanding of the placebo

15

2 Background and Theoretical Foundations

Context

Cues
Place context
Pre-cognitive
social cues

Verbal
suggestions
Social
information

Expectations
Appraisals
Memories

Emotion
Motivation
Affective
state

Sensations
Action
tendencies
Autonomic
responses
Hormones

Reported
experiences
(symptoms)

BehaviourPathophysiology
(signs)

'Decision bias'

C
on

ce
pt

ua
l p

ro
ce

ss
es

Pr
e-

co
gn

iti
ve

 a
ss

oc
ia

tio
ns

Figure 2.2: Framework illustrating the context and the processes involved in the placebo
effect [WA15].

effect is, that some placebo mechanisms work mostly through expectancy, some mostly
through classical conditioning, and others through a combination of both [PFB08; SP04;
WA15].

Wager and Atlas [WA15] conclude that all placebo effects are created in a context of
social and physical cues as well as verbal suggestions and history. This context integrates
diverse psychological elements, including learned associations, past experiences, and
expectations elicited through verbal suggestions and social interactions. Using this
information Wager and Atlas present a framework of three types of psychological factors
that induce placebo effects, namely pre-cognitive associations, conceptual processes,
and affective or motivational states. This framework is shown in Figure 2.2. Pre-
cognitive associations are independent of what a person believes or expects and elicited
through conditioned cues. They influence physiological processes outside conscious
control, which can impact emotion, motivation, and affective states. On the other side,
conceptual processes are dependent on thoughts, expectations, and memories. They
are evoked by verbal suggestions and background beliefs and influence emotional and

16

2.4 Motivation

motivational states. In the end, these processes differentially affect outcomes of reported
experiences, behaviour, and physiology.

2.3.2 Measuring Expectations

Expectations are typically measured by asking the subjects about them before any kind
of treatment. Oftentimes this is done relatively informally through questions where the
participants have to select their outcome expectations on a simple scale [BSSS13; CC17;
PMK+99].

However, there exist many empirically validated expectancy scales for different contexts.
Most of them are centered around the topics of medical treatments or education. For
medical treatments, there are whole purpose scales that ask about beliefs and fears
regarding upcoming treatments with multiple items [DB00; YGHM12]. Furthermore,
scales for specific therapies exist like acupuncture [MAFB07; MXB10]. On the other
side, scales regarding education focus on students expectations concerning their success
in school classes or topics [KHBG14], test-taking in general [STB00], or education
training activities [ZFT+11]. In these last three instances expectancy is used as a proxy
for motivation, based on different motivation theories, which are further discussed in
Section 2.4.

These scales are validated through oftentimes multiple studies with hundreds of partici-
pants. They focus on internal reliability, validity, and retest accuracy. One factor, such as
expectancy, is measured through multiple items where the individual scores are added
up to one factor score. Each item consists of a statement, which is measured by subjects
indicating their agreeableness on a Likert scale. The goal is to create a scale, that is
easily and fast administrable, while still having enough items to be internally reliable.

2.4 Motivation

"Motivation is the psychological processes that cause the arousal, direction, and persis-
tence of behavior" [Mit82, p. 81]. It is an individual as well as intentional process that
guides behavior. Here, motivation theories are concerned with internal and external
factors that influence the choice of action of individuals. A manifold of different theories
exist that are applied depending on the context and research domain. While some
researchers attempt to create integrated [SK06] or general [Bau15] motivation theories,
currently the individual ones are used in practice.

17

2 Background and Theoretical Foundations

Independent of other motivation factors, researchers found that setting specific and
challenging goals linked to feedback on results leads to the most effective performance
[Lun11b]. This goal-setting theory of motivation [LL02] postulates that goals represent
something humans are consciously trying to do, which creates a desire to get involved
in corresponding actions. Furthermore, having a challenging goal leads to higher effort
and persistence. As a result, reaching set goal creates satisfaction and further motivation
while the opposite causes frustration and lower motivation. Additionally, a learning goal
orientation, where a person wants to acquire new knowledge by mastering challenging
situations, leads to a higher performance than a performance goal orientation in which
one demonstrates their abilities [Lun11b].

Another relevant group of theories are expectancy theories of motivation. Many dif-
ferent versions of this correlation have been developed over the years [BH14]. One
early attempt by Vroom [Vro64] describes motivation as the combination of valence,
instrumentality, and expectancy (VIE). Here, valence is defined as the attractiveness
of an outcome. Instrumentality describes the belief that putting in some degree of
effort into the activity will lead to the desired outcome. Lastly, expectancy expresses the
subjective probability that this effort will result in the outcome. Vroom suggests that
these three factors are in a multiplied dependence to motivation [Lun11a]. This means
the highest motivation is achieved when all three are high, while the motivation can be
zero if one of the three is perceived to be zero. A more recent theory of motivation is the
expectancy-value theory by Eccles et al. [EAF+83]. This model proposes that motivation
consists of two key factors: expectancy and value. It postulates that to be fully motivated
one has to believe they can do a task and see value to want to do the task. Therefore,
expectancy in this context describes the success belief of a person in regards to a goal. It
is thought of in two dimensions, the belief in ones current and future ability to succeed.
However, in studies, they found these dimensions to be indistinguishable and therefore
suggest to handle expectancy as one individual factor [EW95]. The second factor, value,
reflects to what extent a person thinks some task is beneficial. Its dimensions distinguish
between positive and negative influences. Positive influences are intrinsic value (inher-
ently enjoyable), utility value (helping in the achievement of goals), and attainment
value (affirms valued aspect of a person’s identity). On the other side, potential costs in
regards to alternative activities, effort, and time as well as negative psychological states
are considered negative influences. Therefore, Barron and Hulleman [BH14] argue
that cost should be its one category with the described sub-components resulting in an
expectancy-value-cost model.

Furthermore, self-determination theory (SDT) has been applied in a lot of motivation
research. Introduced by Deci [Dec86] SDT describes varied intrinsic and extrinsic
factors of motivation. It is built upon the belief that to foster motivation three innate
psychological needs have to be satisfied, namely competence, autonomy, and relatedness.
Competence relates to the need to be effective in one’s environment [GVB00]. Secondly,

18

2.4 Motivation

autonomy describes freedom of pressure and the ability to choose one’s actions. Lastly,
relatedness describes interpersonal attachments between individuals referencing the
fundamental strive of contact with others. When these needs are met intrinsic motivation,
which is the strive to seek out activities that elicit pleasure and satisfaction inherent
in the activity, flourishes [Dec86]. In contrast, extrinsic motivation describes various
aspects that influence behavior beyond those inherent in the activity like a feeling of
obligation or seeing it as a means to an end. SDT postulates that extrinsic motivation
exists on a self-determination continuum from high to low external regulation [RD00].
On one extreme of this continuum is amotivation, a state of lacking any intention to
act. Continuing, the next is extrinsic motivation with four sub-categories: external
regulation, introjection, identification, and integration. They describe to what extent
external factors are congruent with one’s internal value system. Lastly, on the other
extreme is intrinsic motivation, which is not regulated by external influences. Research
shows, that people with more intrinsic motivation have more interest, excitement, and
confidence resulting in enhanced performance, persistence, creativity, self-esteem, and
general well-being [RD00].

2.4.1 Measuring Motivation

Motivation is measured in different ways, including observable cognitive, affective,
behavioral, and physiological responses as well as through self-reports [TF14]. Addi-
tionally, motivation can be measured in a relative sense, compared to previous levels
of motivation or compared to a different context. One way to measure motivation is
through the degree of goal-related concepts that are accessible in memory. Since goals
are an important part of targeted motivation, they activate goal-relevant information.
As a result, this information is easier recognized, noticed, and remembered. This extents
to the idea of measuring people’s evaluation of objects that either further or hinder the
goal, which evaluates goal congruent behavior. Another prominent approach involves
measuring persistence through perceived choice. This consists of an experimenter leav-
ing participants alone for some time and observing, whether the participants continue
to work on the experimental task or do something else. Additionally, performance mea-
sures are used for motivation including accuracy, amount, highest level of achievement,
and speed. However, especially the last one can have multiple interpretations. Slow
speed could mean that the person has low motivation to engage with a task, or that
they might savor the task because they like it so much, or that it is very important for
them to do it right, or they might be just tired. With these measures, it is important to
keep non-motivational factors constant across conditions, since as experimenters we
do not know the exact cause of possible motivation depletion, whether it is because of
motivational or physiological reasons [TF14].

19

2 Background and Theoretical Foundations

In a lot of cases, researchers rely on self-reports to measure motivation. These are
adminstrated through validated motivation scales based on the theories discussed before.
Many scales exist covering different areas of motivation. Most notably, researchers in the
area of education try to analyze ways to motivate students. Here, scales exist for general
student motivation [Mar01], towards specific topics like science [TCS05], or physical
education [DSC13]. Furthermore, achievement motivation [LF06] and task motivation
[MCF01], as well as situational motivation [DVMK17], are evaluated in regard to how
they impact students learning and success. However, motivation is assessed in many
more areas like participation in fantasy football [DK11].

Additionally, many scales are based specifically on self-determination theory. In accor-
dance with this theory, the intrinsic motivation inventory (IMI) [DR20] has been devel-
oped over multiple years and iterations. This scale analyzes intrinsic motivation through
seven sub-scales: interest/enjoyment, perceived competence, effort, value/usefulness,
felt pressure and tension, perceived choice, and relatedness. However, relatedness only
applies in situations with multiple people and is therefore the least validated sub-scale.
The interest/enjoyment subscale is the only one that assesses intrinsic motivation per se,
while the others assess predictors of intrinsic motivation. The psychometric properties
of this scale are validated in many studies and contexts [LWBM10; MDT89; MMP15].
Furthermore, scales based on SDT and specifically the IMI are adapted to be used
for situational motivation [GVB00], academic motivation [FHFB05; VPB+92], leisure
activity motivation [WB95], sport motivation [MKN+07], and motivation in spatial
training through virtual reality [CS17].

As with expectancy scales, motivation scales are validated through multiple studies with
hundreds of participants focusing on construct and discriminant validity, internal consis-
tency, and temporal stability. Similarly, they consist of statements that are evaluated by
participants through Likert scales. Each factor of a specific motivation scale is usually
assessed through multiple items in order to improve internal consistency. As a result,
motivation scales almost always consist of more than 10, oftentimes over 20 items.

2.5 Affective States

Humans encounter the world through emotions and moods. In every moment emotions
play a part, mostly unconsciously, but sometimes they become very present as a result
of an event. Everyone has an innate understanding of particular emotion concepts like
fear, anger, sadness, and how they feel as well as what they entail [Rus03]. These innate
concepts are partly inherited and partly learned through other humans and culture.
However, these concepts vary depending on the context. Being afraid of an actual bear
in the wilderness is quite different from feeling fear watching a horror movie or being

20

2.5 Affective States

afraid to miss the airplane. Furthermore, specific emotions can differ substantially in
other cultures and languages [Rus91]. As such it is a challenging task for scientific
researchers to define emotions in a way that encompasses all these possibilities. As
a result, there does not exist an agreed upon definition of emotion and correlating
concepts like mood, affect, and feeling [KK81; Rus03]. Most researchers agree, that
emotion is a multifaceted phenomenon, but they differ on the specific components that
are important and necessary [KK81; Moo09]. These components include a cognitive
one, a feeling one, an emotional experience, a motivational one, action tendencies or
action readiness (e.g. to flee), a somatic component, and a motor component (e.g. facial
and vocal expression in accordance to fleeing) [Moo09].

Theories of emotion can be generally divided into two frameworks, the discrete and
the dimensional framework [GWA15b]. In the discrete framework, theorists believe
that a certain collection of basic emotions exist, which can be uniquely identified. Izard
[Iza13] proposes the differential emotions theory, which is based on ten (interest, joy,
surprise, distress, anger, disgust, contempt, fear, shame, and guilt) basic emotions. They
are assumed to have innate neural substrates, a unique and universally recognized facial
expression, behavioral consequences, and a unique feeling. Similarly, Ekman [Ekm92]
beliefs that each emotion has unique aspects of signal, physiology, and antecedent
events and that a set of basic emotions can be evaluated based on nine characteristics.
Furthermore, Plutchik [Plu82] proposes a model of eight bipolar basic emotions, namely:
joy and sadness, anger and fear, trust and disgust, surprise and anticipation. Mixing these
basic emotions creates all other possible, so-called secondary emotions. Additionally,
emotions can vary in intensity and persistence. According to Plutchik, the primary
emotions are selected and based on basic adaptive behavior patterns that serve our
survival instincts.

In the dimensional framework, researchers believe that emotions can be categorized
across major dimensions. One such distinction is between the dimensions of positive and
negative affect [WT85]. Watson and Tellegen [WT85] found positive and negative affect
to consistently emerge as the primary and relatively independent dimensions in many
affect studies and in major lines of mood research. They suggest, that these dimensions
can be differentiated based on emotion terms serving as pure markers of either positive
affect or negative affect [WCT88]. A different approach to emotion dimensions is based
on the Pleasure-Arousal-Dominance (PAD) model. Here, studies indicate, that emotional
states can best be described along the three independent and bipolar dimensions of
pleasure-displeasure, degree of arousal, and dominance-submissiveness [RM77]. The
pleasure dimension (also called valence) describes the range of pleasant to unpleasant
emotion [LCD99]. Arousal is defined as the intensity of emotional activation. Lastly,
dominance refers to feeling between total lack of control to feeling influential and in
control [RM77]. In this theory, a person is viewed to be in an emotional state at every
moment in the three-dimensional space of PAD. Additionally, bipolar means that each

21

2 Background and Theoretical Foundations

dimension is a continuum where a person can not experience high arousal and low
arousal at the same time. The pleasure and arousal dimensions are seen as primary,
while the third, dominance, is sometimes omitted [LCD99]. As such, any affect word
can be defined as a combination of the pleasure and arousal component [Rus80].

In order to create a unifying theory of emotion, combining both frameworks as well
as other theories, Russell proposes the concept of core affect [Rus03; Rus09]. Core
affect is defined as "a neurophysiological state that is consciously accessible as a simple,
nonreflective feeling that is an integral blend of hedonic (pleasure–displeasure) and
arousal (sleepy–activated) values" [Rus03, p. 147]. Therefore, every person is in a
state of core affect at any time, which is a combination of a pleasure and arousal
value. Core affect is thought of as the most atomic unit which can be felt without
any obvious stimulus, label, or attribution. Here, the feeling is an assessment of one’s
current condition. Other concepts, like emotion and mood, are then built upon this idea.
Accordingly, mood is defined as a prolonged core affect with no object. Changes in core
affect result from combinations of events. Sometimes, these changes can be attributed
rather obviously, but at other times a change can be undergone without knowledge
about why. A person attempts attributions and interpretations of their core affect all
the time. However, since people do not have direct access to these causal connections,
misattributions happen. When a causal link between events is perceived to be responsible
for a change in core affect it is called attributed affect. It is defined by three necessary
features: a change in core affect, an object, and an attribution of the core affect to the
object. Attributed affects happen commonly in everyday life, like being happy about a
good grade, or being afraid of a wasp. This concept is oftentimes the start of an emotional
episode. In Russel’s theory, emotional episodes such as fear and anger compromise a set
of complex inter-correlated components that happen in prototypical cases. However, he
recognizes that less prototypical cases are more common in everyday life. In essence,
Russel suggests, that "emotional life consists of the continuous fluctuations in core
affect, in pervasive perception of affective qualities, and in the frequent attribution of
core affect to a single Object, all interacting with perceptual, cognitive, and behavior
processes" [Rus03, p. 152]. As a result, the theory of core affect unifies previous emotion
theories, while maintaining compatibility with the majority of the existing measurement
instruments, regardless of them being about moods or emotions [GWA15b].

In the end, core affect guides cognitive processing and therefore influences humans
memory [Rus03]. Furthermore, it impacts behavior from reflexes to complex decision
making. Thereby, affect significantly shapes how people see the world, how they view
themselves, how they remember past experiences, and what they do.

Therefore, we follow Graziotin, Wang, and Abrahamsson’s suggestion for psychoem-
pirical software engineering to use Russell’s concept of affective states (affects) as our
underlying theory of emotion [GWA15b]. As such, we understand affect to be the

22

2.5 Affective States

fundamental concept of the state of mind of developers. Accordingly, emotions can be
seen as affect raised by a stimulus [Gra16].

2.5.1 Measuring Affective States

Following the various aspects of affects, measurements differ in their application between
analyzing experiential, physiological, and behavioral responses [MR09]. Researchers
suggest to use multiple assessment strategies, if possible, in order to understand affective
states [KDL13; MR09]. Oftentimes its is complicated to evaluate to what degree a
particular indicator is reflective of an emotion [KDL13].

However, most often self-report measurements of affects are used [KDL13]. One notable
instrument is the Positive and Negative Affect Schedule (PANAS) [WCT88]. PANAS
assesses the dimensions of positive and negative affect each with 10 items of corre-
sponding affect terms. Therefore, it uses discrete emotions to measure two dimensions.
However, it has been criticized to omit important emotions like joy while including
terms that are not considered emotions like strong and active [DWT+09b]. Further-
more, several redundant items have been identified [Tho07]. As a result, more recent
scales of positive and negative affect have been proposed, with fewer but meaningful
items. Diener et al. [DWT+09b] introduce the Scale of Positive and Negative Experience
(SPANE) [DWT+09a]. This scale evaluates the two dimensions through six items each.
Participants are asked to indicate the frequency they felt a specified affect in the last four
weeks which serves as a useful assessment of pre-existing affect. In the original study
as well as follow-up research it has shown good psychometric properties [DWT+09b;
LBW13].

In accordance to the PAD model of emotions, a pictorial assessment method has been
developed to measure valence (pleasure), arousal, and dominance of a person’s affective
reaction to an object or stimulus [BL94]. The Self-Assessment Manikin (SAM) [BL94;
LBC+97] consists of a set of figures for each dimension visualizing the potential affective
states a person could feel. SAM is shown in Figure 2.3. The first row represents the
valence dimension, which ranges from a frown to a smile. On the second row, the
figures range from a calm, peaceful face to an exciting, explosive face indicating the
difference in arousal. Lastly, the third row showcases the range of a small, submissive
figure to a big, ubiquitous figure. This represents the dominance dimension. Each row
functions as a 5-point scale for participants to indicate their current affective state. SAM
eliminates the problems of finding the best affect terms as well as possible cross-cultural
problems while still being quick and easy to use [BF17]. Its psychometric properties
have been evaluated across a variety of settings demonstrating a reliable measurement
[BF17; BL94; MWGK02]. Furthermore, SAM is consistently developed to be applicable

23

2 Background and Theoretical Foundations

Figure 2.3: The Self-Assessment Manikin, which is used to measure valence (top-row),
arousal (middle-row), and dominance (bottom-row) as affect dimensions
[GWA15b].

in more contexts, like modernizing it into an affective slider [BV16], transforming it into
emoticons for children [HPMB16], or into a tactile version for blind or visually impaired
people [IM19].

24

Chapter 3

Related Work

In this chapter we present previous research, to place our work in the context of
existing literature, and to compare our results with their findings. First, we review
work regarding cognitive biases in the domain of software engineering. Afterwards, we
highlight the problems of static analysis tools and the metrics that are used in them
which was one factor that led to the current work. Then, we discuss the importance
of measuring expectations and their influence on motivation. Lastly, we report on
influential progress that has been made investigating the impact of affective states on
developers’ performance.

3.1 Cognitive Effects in Software Engineering

Our current work builds directly upon previous research by Preikschat [Pre20]. His
goal was to understand how a manipulated understandability metric influences the
performance of programmers. The aim was to investigate whether such a manipulated
metric can have a placebo-like effect in developers working with source code. Therefore,
he conducted a controlled, double-blind experiment with 45 participants split into two
groups of developers that each had to solve the same three programming tasks. One
group was told and shown during the task, that a new validated understandability
metric based on machine learning assesses the code snippets to be easy to understand
(4 on a scale from 0 to 10), while the other group was told they are hard to understand
(8 on the same scale). The tasks involved calculating the correct output of the code
snippets based on the code as well as based on the documentation since some errors
were induced in the code. Furthermore, the time to complete the tasks was measured.
Additionally, each participant subjectively judged the understandability of the three code
snippets on the same scale that was used by the machine learning method. Preikschat
analyzed whether this subjective judgment was influenced by the previous shown easy

25

3 Related Work

to understand or hard to understand metric and found a significant (p < 0.001) and
large effect (Cohen’s d = 1.376). He attributes this result to the anchoring effect,
which we reviewed in Section 2.2, and proposes to consider this effect in any further
experiments where metrics are involved. Furthermore, an analysis of performance in
terms of correctness and time used between the groups showed no significant difference.
Therefore, the experiment did not demonstrate a placebo effect in terms of performance.
However, the author beliefs, that a different calculation for code understanding or a
different manipulation could produce other results. In another step, Preikschat evaluated
personality traits and whether they influence the previous results. In order to evaluate
these aspects, he used SPANE for negative and positive affect, the Life-Orientation-Test
for optimism and pessimism, and the Big Five personality test. The author discovered
that lower anxiety and negative affect result in more deviation from the presented metric
value. Theses results are in contrast to other literature that found different personality
traits to be important. Therefore, Preikschat suggests to further explore the topic of
personality traits in the software engineering context.

In a systematic mapping study Mohanani et al. [MST+18] analyzed the literature on
cognitive biases in software engineering. Cognitive biases are defined as "systematic
deviations from optimal reasoning" [MST+18, p. 1]. They reviewed 65 articles that
investigate 37 cognitive biases organized into eight categories. The most investigated
categories are interest (e.g. confirmation bias) and stability (e.g. anchoring bias)
biases while social and decision biases are investigated the least. As a result, individual
biases that are analyzed the most are the anchoring effect (26), confirmation bias (23),
and overconfidence bias (16). However, the authors used the broadened definition
of anchoring effect that includes the fixation on any kind of initial information, not
only numbers. For software engineering, the anchoring effect is prominently found in
estimation efforts of time or cost. Furthermore, the authors investigated to what extent
possible debiasing techniques are proposed and evaluated. They found techniques only
for 6 out of the 37 cognitive biases while none provided strong empirical evidence for
their effectiveness. As a result, Mohanani et al. suggest to improve the research in four
ways: conducting more qualitative and multimethodological research, investigating
neglected areas, better integrating results across studies, and addressing confusion
[MST+18, p. 13]. Additionally, they conclude that fundamental psychological and
sociological mechanisms that affect these cognitive biases are poorly understood.

Corroborating these results, Chattopadhyay et al. [CNA+20] conducted a field study
with ten developers to analyze which cognitive biases appear in the real world and how
they impact developers. They observed 28 cognitive biases out of the 37 which are
reported by Mohanani et al. [MST+18]. Chattopadhyay et al. categorized these biases
into ten categories, from which the fixation category, which includes anchoring and
adjustment biases, appeared most often. Analyzing the actions of developers they found,
that reversal actions, which are actions that need to be undone, redone, or discarded

26

3.2 Static Analysis Tools and Metrics

later, were significantly more likely to occur with a bias. This is evidenced by 70% of
actions that end up being reversed being associated with at least one cognitive bias.
Furthermore, these biased actions had negative outcomes in terms of lost developer
time. Out of the reversal actions, fixation played a role in more than half of them.
Following the consequences of the observed biases, Chattopadhyay et al. recognize four
categories of consequences: inadequate exploration, reduced sense-making, context
loss, and misplaced attention. In addition, through follow-up interviews with more
developers, they revealed, that these developers lack tool support to identify and prevent
these biases.

Our work aims to extend the research by Preikschat [Pre20] and explore more funda-
mental consequences of understandability metrics. First, we want to investigate whether
we can reproduce the anchoring effect that Preikschat found in the subjective assessment
of code understandability. Beyond that, we follow the suggestion of Mohanani et al.
[MST+18] and analyze the underlying psychological and sociological mechanisms of
expectation, motivation, and emotion to see what role they play in developers handling
of code understandability metrics.

3.2 Static Analysis Tools and Metrics

Static analysis tools are regularly integrated in various software projects [VPP+19]
and have become a staple in big tech companies [SAE+18] in order to help developers
find problems, bugs, and other areas that might be worth improving. These tools use
rules, heuristics, and software metrics to calculate and display their results. However,
researchers have raised concerns about the validity of the used metrics [NAG19] and their
representativeness of underlying software quality characteristics as they are understood
by developers [PLB18].

Already in earlier days, Shepperd and Ince [SI94] investigated the validity of three
popular metrics at the time, including McCabe’s cyclomatic complexity [McC76]. They
found multiple problems with the fundamental model behind as well as technical
problems within all three metrics. Furthermore, the metrics are used beyond their
original context and lack clear empirical validation. Still, at least two out of the three
metrics are used as software metrics and in static analysis tools until today [SBV+17].
Shepperd and Ince critique the poor understanding and omission of sufficient models
underlying the investigated metrics. In their eyes, many of the problems are a result
of substandard foundation and methodology. Therefore, they conclude, that "metrics
based on flawed models are worse than valueless: they are potentially misleading" [SI94,
p. 206]. Wedyan, Alrmuny, and Bieman [WAB09] analyzed the repositories of two open
source projects (OSS), extracted fault fixes and refactorings, and compared them to

27

3 Related Work

reports of three static analysis tools. Their results show, that the analysis tools detected
less than 3% of faults but at least up to 71% of refactoring concerns. Therefore, the
inspected tools proved to be not effective and developers need to examine many false
positives in order to find anything substantive. Furthermore, Nilson, Antinyan, and
Gren [NAG19] investigated whether the metrics used in current static analysis tools
are validated empirically. They evaluated metrics present in the literature and found
30 empirically validated metrics. From these only metrics that correspond to external
quality attributes were selected which results in a final list of 12 metrics. Furthermore,
Nilson, Antinyan, and Gren analyzed 130 analysis tools from which only six satisfied their
selection criteria. They found, that the validated metrics are poorly represented in the
selected analysis tools with no tool supporting more than half of these metrics. Instead,
the analysis tools provide an overwhelming amount of metrics (∼96%) which are not
empirically verified and therefore have an unclear purpose. The authors conclude, that
this might confuse developers. Additionally, it raises a question about what all the other
metrics are supposed to represent.

With a different approach, researchers have recently evaluated the validity of metrics by
comparing commits in software projects to changes in metrics that are supposed to mea-
sure the intention of the commit [AMOK19; FRHA19; PLB18]. The idea involves mining
commits in open software projects that mention certain quality aspects and analyze
whether the mentioned aspect is measurable through prominent corresponding metrics
from the literature. Through this method, researchers want to investigate whether
metrics are able to represent software qualities as they are perceived by developers.
The first one to apply this approach was Pantiuchina, Lanza, and Bavota [PLB18], who
analyzed qualities regarding refactorings, namely cohesion, coupling, code readability,
and code complexity. They mined 1282 commits in which a clear intention to improve
one of the four qualities was made and compared it to multiple proposed metrics for the
corresponding quality. They found, that in most cases the metrics designed to reflect cer-
tain quality aspects were not able to capture quality improvements as seen by developers.
Following this attempt, AlOmar et al. [AMOK19] investigated eight quality attributes
with the same method. They classified 1245 commits according to the claimed quality
improvement and evaluated 27 metrics that are assumed to measure these effects. The
authors identified metrics for five out of the eight quality attributes that can capture
developers’ intentions of quality improvement. Fakhoury et al. [FRHA19] specifically
inspected code readability improvements. Comparing 548 commits of readability im-
provements to three state of the art readability models, they found that all three models
fail to capture readability improvements. However, in examining additional metrics they
identify candidates that are successful in detecting readability improvements, which
should be considered for future models.

On the other side, research has continuously investigated how developers view and
interact with static analysis tools. Consistently the biggest problem of users is the high

28

3.3 Influence of Expectations

number of false positive results and the difficulty in understanding the warnings of static
analysis tools [IRFW19; JSMB13]. To this end, Johnson et al. [JSMB13] interviewed
20 experienced developers about their use of static analysis tools. Most unsatisfactory
for them were the high amount of warnings and uninformative presentation of these
warnings leaving them with questions about what the problem is and how to fix it.
Coming to the same results, Imtiaz et al. [IRFW19] evaluated Stack Overflow questions
regarding static analysis tools. Most questions relate to how to ignore or filter alerts
(23.9%), asking for validation of false positives (22.9%), and how to actually fix a
certain warning (19.6%).

We believe that these problems developers have with static analysis tools are in part
a result of the above outlined widespread use of unvalidated metrics in analysis tools.
Combining these aspects shows a concerning view of static analysis tools and the metrics
used to facilitate their results. Furthermore, it indicates potential problems for developers
who use them. As such, in this work, we want to provide a different perspective on
the relationship between metrics and developers. This is why we investigate to what
extent these possibly inaccurate metrics have an effect on expectations, motivation,
and affective states. Since these aspects affect performance, persistence, and general
well-being it is important to understand their interplay in this context.

3.3 Influence of Expectations

Expectations are not recognized as part of 55 concepts related to human aspects of
software engineering that were found in a literature review on Behavioral Software
Engineering [LFW15]. Correspondingly, only limited research exists about expectations
in the area of software engineering. This research is centered around either managing
expectations in requirements engineering [JS04] or handling them in regards to software
users [Pet08].

Jørgensen and Sjøberg [JS04] analyzed the impact of customer expectations on software
development effort estimates. They conducted a controlled experiment with 38 students
and 12 professionals, that had to estimate the effort needed to develop a specified
software system. The authors split the participants into three groups, a control group, a
high customer expectation group (HIGH), and a low customer expectation group (LOW).
The control group received no further information besides details about the software
to be built. In contrast, the HIGH group was given specific customer expectations
of 1000 work-hours, while the LOW group received 50 work-hours as an estimate.
Both groups were explicitly told to not let these customer expectations impact their
estimate. Nevertheless, the results showed, that the HIGH group estimated the necessary
work-hours significantly higher (404 for students, 632 for professionals) than the LOW

29

3 Related Work

group (77 for students and professionals) and the control group (224 for students, 176
for professionals). Furthermore, the authors evaluated the awareness of this effect
and found it to be low. They attribute the impact of the customer expectations to the
anchoring effect and warn practitioners to be aware of the problems of using customer
effort estimations which potentially contribute to the oftentimes underestimation in
industrial software projects.

In regards to user satisfaction of information systems research is concerned with the im-
portance of managing user expectations [Pet08]. Inappropriate expectations can have a
downstream effect on satisfaction as well as the usage of users. Hence, researchers apply
expectation-confirmation theory to explain the outcomes of improper user expectations.
As a result, different strategies to manage expectations already early on in development
were proposed to minimize expectation disconfirmation events.

Going outside the field of software engineering, Boot et al. [BSSS13] showed the
importance of measuring expectations to properly distinguish between a control group
and treatment groups in placebo research. They believe, that "this failure to control for
expectations is not a minor omission — it is a fundamental design flaw that potentially
undermines any causal inference" [BSSS13, p. 445]. To demonstrate this, the authors
analyzed interventions through video games that claim to improve cognition. Studies in
this research area compare groups playing action games with a control group playing
slower-paced, non-action games and measure their perceptual or cognitive abilities
afterwards. In contrast, Boot et al. explicitly measured the expectations of both groups
before a possible intervention through two survey studies with 200 participants each.
The participants first watched a video of the game they will play (action or control
game). Then they learned about the tasks used as outcome measures and had to specify
if they believe that their performance would improve in the task as a result of playing the
game they watched earlier. The authors found, that participants expected improvement
in outcome measures specific to the game they saw. Therefore, participants precisely
expected the improvements that are shown in video game intervention research. These
results were obtained after only 30 seconds of exposure to a video of the game and
independent of prior knowledge of the benefits of game training. Accordingly, Boot et al.
believe, that the current research designs do not permit causal conclusions about the
effectiveness of game training. Furthermore, the authors found similar patterns in other
research such as the benefits of brain-fitness programs, memory exercises, and daily
writing. They conclude by highlighting the importance of measuring expectations in
research design when comparing different groups.

Since expectations are an integral part of everyday life guiding effective behavior,
we believe in accordance with Boot et al. [BSSS13], that it is important to explicitly
measure expectations. This allows a better understanding of why experimental groups
differ. In our survey, we use a similar design to Jørgensen and Sjøberg [JS04] with

30

3.4 Motivation and Expectancy

three groups to compare the impact of an understandability metric: a control group,
a group with suggested low understandability score, and a group with a suggested
high understandability score. However, we explicitly measure expectations before the
outcome of a subjective code understandability assessment. As a result, we obtain more
explanatory power of potential differences which allows us to correlate expectations
with motivation and affect. Furthermore, following expectation-confirmation theory
we additionally measure expectations after the task to analyze the consequences of
differences between expectations before and perceived outcomes after.

3.4 Motivation and Expectancy

Motivation research in the domain of software engineering has been primarily focused
on job retention and secondly on motivation in teams as well as in more recent years
motivation in open source software (OSS) projects [BBH+08; FGS+11]. Both systematic
literature reviews report on the important influences of motivation regarding productivity,
software quality, and overall project success [BBH+08; FGS+11]. Expectancy theory was
among the least used classical theories in motivation research in software engineering
[HBB+09] while self-determination theory is gaining traction as a result of studying OSS
projects [FGS+11]. Still, expectancy theory has been successfully employed in various
studies to explain the impact of developers’ belief for motivation [FGS+11; HBB+09].
In terms of motivating factors, researchers found identification with a task through
clear goals, a purpose, and a personal interest [BBH+08] as well as good self-image
and learning aspects through self-development [FGS+11] to be important. However,
we are not aware of research regarding the motivation of developers towards specific
software engineering activities or tasks like bug fixing, refactoring, understanding code,
and what role belief in one’s abilities plays in such context. Therefore, we present work
studying the relationship between expectations and motivation in related activities of
problem-solving and learning programming.

Eseryel et al. [ELI+14] investigated problem-solving outcomes of game-based learning
as a result of motivation in high school students. For one year, students played an
informational massive multiplayer online game (MMOG) and the researchers assessed
motivation as well as problem-solving skills before and afterwards. The authors found,
that self-efficacy positively predicts the engagement of students indicated by an increase
in effort and persistence. Self-efficacy is one’s belief in their ability to succeed at some
specified goal and therefore very similar to our use of success expectations regarding the
understanding of code. In addition, Eseryel et al. showcased the link between motivation,
engagement, and problem-solving competencies where motivation determines engage-
ment which in turn determines problem-solving competence. Interestingly, they found a

31

3 Related Work

negative relationship between interest and competence with engagement which they
tracked to students’ unfulfilled expectations after they saw that the game was not as fun
as traditional MMOPGs. This represents another example of the expectancy-confirmation
theory highlighting the importance of managing expectations.

In an effort to examine motivation towards learning programming skills, Law, Lee,
and Yu [LLY10] conducted a study with 365 undergraduate students taking computer
programming courses. The results of their questionnaire show, that the intrinsic factor
‘individual attitude and expectation’ is strongly motivating and strongly correlates with
efficacy. Therefore, students who believe to be successful in learning programming are
also more motivated to engage in corresponding actions and more confident in their
abilities.

Continuously, research shows the importance of motivation in software engineer-
ing [BBH+08; FGS+11]. Nevertheless, the understanding of how developers are
motivated appears to advance rather slowly [FGS+11]. Therefore, we aim to contribute
to this process by investigating how expectations about understanding a code snippet
relate to motivation of engaging with that code snippet. In addition, similarly to Es-
eryel et al. [ELI+14], we analyze how motivation changes before and after a task of
understanding code and what impact expectations have in this instance.

3.5 Affective States and Software Developers

It has long been recognized, that affective states influence cognitive processing and
therefore performance in humans [BG07]. Developing software is an intellectual,
problem-solving as well as creative process [GWA15a]. Therefore, researchers called
for a deeper understanding of the human aspect of affect in regards to developers by
employing empirical methods and validated measurements [FTAS08; GWA15b]. As a
result, this topic has gained attention in academia and industry in recent years [NS19].
The theoretical foundation of affect and explanations of measurement instruments, that
are used in the research described below, are defined in Section 2.5.

In an effort to develop a theory of affect regarding developers’ performance Graziotin
[Gra16], with the help of various colleagues, conducted multiple studies, surveys,
interviews, and experiments to analyze the influence of affect on developers’ performance
in different contexts. Graziotin, Wang, and Abrahamsson [GWA14b] explored the
relationship of affective states, creativity, and problem-solving performance of developers
through a study with 42 participants. Each participant completed the Scale of Positive
and Negative Experience (SPANE) before a creativity task, which involved creating
captions for six pictures. Furthermore, the participants had to answer the SPANE

32

3.5 Affective States and Software Developers

questionnaire again, before solving a version of the Tower of London task measuring
problem-solving skills. As result, the authors found, that the happiest programmers
are more productive in regards to problem-solving performance. In terms of creativity,
Graziotin, Wang, and Abrahamsson found no significant results. As part of an analysis of
factors that influence the performance in solving coding challenges, Wyrich, Graziotin,
and Wagner [WGW19] showed, that sad developers as measured by SPANE perform
significantly worse. These results indicate the positive influence of positive affective
states on performance, as well as the negative influence of negative affective states.
However, Wyrich, Graziotin, and Wagner only found a weak relationship between
positive affective state and increased performance, which could be a result of the unique
circumstances of coding challenges in contrast to typical software development.

To evaluate correlations between affect dimensions and self-assessed productivity (sPR)
Graziotin, Wang, and Abrahamsson [GWA14a] conducted a real-world experiment with
eight developers. The authors studied the participants for 90 minutes while they worked
on individual projects. They measured the affective state of the developers in terms of
valence, arousal, and dominance through the Self-Assessment Manikin (SAM) as well as
their sPR every ten minutes. As a result, Graziotin, Wang, and Abrahamsson developed a
model that can express 38% of the deviance of sPR based on the differences in affective
state. Furthermore, they showed, that valence and dominance are positively correlated
with sPR.

Graziotin, Wang, and Abrahamsson [GWA15a] developed their explanatory theory of
the impact of affects on programming performance by observing and interviewing
two developers during development. The authors studied the two developers over a
semester-long real-world project. With the results, they build a model compromising
the concepts of events, affects, attractors, and focus which relate to the corresponding
programming performance. Events can be work- or non-work-related, public or private,
and trigger affective responses. If events become important and a priority for developers
they are called attractors, which then encompass the cognitive system of the developer
as the driving force for their behavior. Affects and attractors influence the focus of
programmers relating to the code and further task or project goals. This focus then
impacts the programming performance in the end. The authors found that positive affect
leads to increased performance, while negative affect shows the opposite relationship.

In a series of analyses, Graziotin et al. [GFWA17] evaluated a large-scale survey with
1318 participants to explore the causes and effects of happiness and unhappiness of
developers on their work. The survey included demographic questions, SPANE for
affective states, and two open-ended questions about how affect influences the work
of developers in positive and negative ways. The authors discovered that software
developers are a slightly happy population in general, happier than all comparable
populations they found in the literature. In terms of causes for negative affect, the

33

3 Related Work

results suggest that external causes are more prevalent, more precisely they are reported
up to four times as much as internal causes. For internal causes, most important are
being stuck at problem-solving, feelings of inadequate skills or knowledge, and personal
issues. On the other side, external causes are dominated by bad code quality and
coding practices, under-performance of colleagues, imposed constraints on development,
and time pressure. As for the consequences of negative affective states, the authors
observed low cognitive performance, mental unease or disorder, low motivation, and
work withdrawal to be the most expressed ones [GFWA18]. Furthermore, participants
reported low productivity, delays, and broken flow as external consequences. In contrast,
happy developers show high cognitive performance, high motivation, perceived positive
atmosphere, higher self-accomplishment, high work engagement and perseverance,
higher creativity, and higher self-confidence. For external consequences of happiness, the
authors found high productivity is the most frequently listed one, followed by expedition,
sustained flow, increased collaboration, and increased process adherence as well as high
code quality as a consequence for the software artifact under development.

This research shows the importance of studying affect in relation to software developers.
It highlights the influence of affect on performance, code quality, and self-image as well
as related concepts such as motivation. Following these results, we evaluate whether
understandability metrics and expectations elicited as a result of them impact affective
states. We use SAM similarly to Graziotin, Wang, and Abrahamsson [GWA14a] to
measure affect before and after a code understandability task. Furthermore, we explore
the consequences of unfulfilled expectations on affective states.

34

Chapter 4

Methodology

This chapter outlines the method and steps we took to develop the research design. We
report the research questions and the experiment design, participants, materials, and
experiment procedure to answer them. Furthermore, we describe our efforts to mitigate
threats to validity. At the end, we define our variables and hypotheses as well as the
procedure we use for the analysis of the results. We follow the guidelines of reporting
experiments in software engineering [JCP08] but utilize their advice to change the order
and combine sections if it fits better.

4.1 Research Questions

This work aims to analyze how an understandability metric influences expectations
about understanding a code snippet and consequently impacts motivation and affective
states in regards to the task of understanding the code snippet. Therefore, we answer
the following research questions:

RQ1 How does a metric value of code understandability affect expectations about
understanding the code?

RQ2 How do source code understandability expectations influence motivation to engage
with the code?

RQ3 How do source code understandability expectations influence affective states?

RQ4 How do the differences between expectations and perception of source code
understandability influence motivation and affective states?

RQ5 Does the value of a presented code understandability metric influence the subjec-
tive assessment of code understandability?

35

4 Methodology

Treatment Group 1

Treatment Group 2

Code Snippet Pre-Task
Questionnaire

Post-Task
Questionnair Final Survey

Control Group

ScenarioParticipants

Easy

Hard

Figure 4.1: Experiment design using three randomly assigned groups with different
scenarios of suggested understandability and two code snippets [Fla].

4.2 Experiment Design

In order to answer the research questions, we conduct an experiment through an online
survey. Before the experiment starts, we inform participants about the upcoming task
of judging the understandability of a presented code snippet with additional questions
about expectations, motivation, and affective states before and after this task.

The experiment design can be seen in Figure 4.1. It is a between-subjects design and
consists of three groups to which participants are randomly assigned to. The scenario
description in the beginning starts with a rough outline of the upcoming code snippet in
terms of expected lines of code and functionality implemented. Additionally, one group
is told, that the upcoming code snippet will be easy to understand, which is denoted
as a 3 out of 10 on a scale from 1 to 10 where 1 is very easy to understand and 10
is very hard to understand. The other group receives the same scenario description
but is told that the upcoming code snippet will be hard to understand, denoted as an
8 out of 10 on the same scale. Both groups are presented with the same story of an
expert system that rated the upcoming code snippet based on multiple metrics as an
explanation for this judgment. Lastly, the third group acts as the control group receiving
no assessment of the upcoming code snippet. Based on the scenario description all
participants answer the same questionnaire about expectations, motivation, and affective
state. Afterwards, a task description about the upcoming code snippet and expected
assessment by the participants follows. For the two treatment groups, we repeat the
judgment from the expert system at this point in terms of 3 out of 10 and 8 out of
10 respectively. Then participants are randomly assigned to one of two code snippets
where the task is to judge the understandability on the same scale the expert system
uses from 1 (easy to understand) to 10 (hard to understand). After participants assessed
the code snippet, they answer the almost same questionnaire involving expectations,

36

4.3 Participants

motivation, and affective state. At the end, a short survey with demographic questions
and a segment about the personal opinion of the participants regarding the influence of
understandability metrics finishes the survey.

With this design, we explore differences in measured expectations between the groups
based on the initial scenario description involving two different understandability metrics
or no metric. The scenario description specifies some rough information about the code
snippet with the purpose that participants are able to answer the expectation, motivation,
and affective state questions. This is especially required for the control group because
otherwise, participants in this group would have nothing to base their answers on. For
the other two groups, we use 3 and 8 respectively for the expert systems judgment
of the upcoming code snippet as opposites on the 10 point scale to have a significant
difference between the groups while still being potentially accurate when seeing the
code snippets. Based on this information from the first questionnaires, the expectations
can then be correlated with the measured motivation and affective state. Furthermore,
we use two code snippets to create differences between the expectations as a result of
the presented scenario and the perception of the actual code to answer RQ4. Therefore,
one code snippet is rather easy to understand, while the other is considerably harder
to understand. As a result, we can analyze how participants to which we suggest that
they will see a hard code snippet react to looking at an easy code snippet and the other
way around. In addition, we can evaluate the differences in subjective understandability
judgments between the three groups for two code snippets that vary in difficulty.

4.3 Participants

To gather participants we invite potential suspects through E-Mail, modern messenger
services, and social media in a convenience sampling strategy. Part of the participants
are software students which are mostly in masters degree courses. Furthermore, we use
contacts with multiple software companies to additionally invite IT professionals. We
message each contact by their preferred service and encourage them to further distribute
the survey with colleagues and others who are eligible to participate. Additionally,
we post the survey on our private Facebook page and on /r/SampleSize1, a subreddit
dedicated to posting and participating in surveys for academic or casual purposes.

The only requirement for participation is a basic understanding of the Java programming
language since the code snippets we use are in Java. We encourage participation
with the low amount of time commitment of 10 to 15 minutes for the whole survey.

1https://www.reddit.com/r/SampleSize/

37

https://www.reddit.com/r/SampleSize/

4 Methodology

Furthermore, the author pledges to donate 5C to a good cause for every participant that
completes the survey. The subjects can choose between three charity projects involving
different topics or they have the option to evenly split the donation between the three
projects. Additionally, following the goal-setting theory of motivation [LL02] we invite
participants with a clear goal of judging the understandability of a given code snippet.
Setting such a specific and challenging goal can lead to higher effort and persistence,
which is desirable for survey completion. Therefore, we hope to gain the interest of
developers that want to show off their ability to understand code.

Participants’ consent to the data and privacy policy is obtained on the landing page of
the survey including an explanation of the anonymous nature of the survey to ensure
participants that no recognizable data is required.

4.4 Materials

For our experiment participants have to complete an online survey. We use LimeSurvey2

to create and provide our survey. LimeSurvey grants a free to use community edition
of its complete software, which can be installed and run on any server. Furthermore,
it supports all necessary functionality including various question types, the grouping
of questions, randomization, conditioned paths through the survey, anonymous data
collection, timing statistics, and easy results exports. Additionally, LimeSurvey provides
the option to create individual question types and insert any customization of themes,
icons, and functionality. Therefore, we set up our survey in LimeSurvey, host it on a
university internal server, and adapt it to our needs.

The final survey consists of eight pages. They are split up into three sections of pre-task,
task, and post-task. The pre-task section covers two pages displaying the scenario
description and the pre-task scales of expectation, motivation, and affective state.
Afterwards, the task description is on a separate page before the code snippet and the
corresponding scale to judge its understandability are presented. Identical to the pre-task
section, the post-task section is split over two pages displaying the adapted versions
of the same scales as before. Afterwards, participants have to answer demographic
questions in terms of age, gender, current occupation, programming experience, and
the frequency of understanding code being part of their job as well as the frequency of
use of static analysis tools. We measure programming experience threefold, following
Siegmund et al. [SKL+13] who evaluated programming experience questions and built
a model through a controlled experiment. Their analysis showed, that self-estimated

2https://www.limesurvey.org

38

https://www.limesurvey.org

4.4 Materials

programming experience is a good indicator. Therefore, we use their proposed 1 to 10
scale regarding general programming experience, a comparison with 10 year experts on
a 5-point Likert scale, and experience in OO-programming (Java) on a 5-point Likert
scale to measure experience. In the original paper, the comparison to experts involved
experts with 20 years of programming experience. However, the authors do not provide
a reason for the choice of 20 years. We use 10 years instead because we believe it
creates a more evenly and meaningful distribution since the amount of developers who
think they are (way) better than 20 years experts is rather low. On the last page, we
reveal the intention of our survey and ask the subjects to provide their personal opinion
on the topic of understandability metrics potentially influencing their motivation and
emotions3. To this end, we ask our participants to envision a scenario of working with a
static analysis tool providing an understandability metric. Then, they have to indicate
how a bad (good) score would impact their motivation and emotions. Lastly, we ask
them whether they believe that code understandability metrics are accurate.

4.4.1 Expectation Scales

In order to answer research questions RQ1-4, we need to measure participants’ expecta-
tions about understanding the code snippet. First, we require the expectations before
seeing any code snippet based only on the scenario description. Additionally, for RQ4
we have to gather the perception of the code after seeing it to be able to measure the
difference between pre-task and post-task.

This is typically achieved through dedicated expectation scales. Since there does not
exist a validated expectation scale in regard to understanding code as far as we know,
we have to develop our own scale. We study the scales mentioned in Section 2.3.2 to
learn how such scales are constructed, how to phrase them, and how to measure them in
the end. Expectation scales consist of multiple items that are rated on a Likert scale and
are then combined in the end towards on expectation value. To create multiple items
reflecting the expectation of understanding code we adopt the methods researchers
use to measure code understandability. These methods are presented in Figure 2.1
and consist of comprehension questions, subjective rating, locate bug, modifying task,
cloze test, fix bug, and recall. Since researchers use these methods as measurement
instruments, we believe they best represent how developers could think about whether
they understand a code snippet. From this list, we use the ones which someone can
reasonably answer without actually seeing any code based only on a rough description.

3In our survey, we always use the word emotion instead of affective state, because it is typically used in
everyday contexts, shares a widespread understanding, and does not need a theoretical introduction
beforehand.

39

4 Methodology

 I am confident that I will understand the code snippet.

I think I could fix a bug in the code snippet.

 I believe that I could refactor the code snippet afterwards.

I know I can learn how the code snippet is functioning.

 I am certain that I could locate a bug in the code snippet.

How much do you agree with each of the following statements?

 I did understand this code snippet.

I could fix a bug in a slightly altered version of the code snippet.

 I would be able to refactor the code snippet.

I could answer questions about the functionality of the code snippet.

 I could locate a bug in a slightly altered version of the code snippet.

a) Pre-Task Expectations b) Post-Task Expectations

Figure 4.2: Expectation scales used to measure expectations before the task of under-
standing a code snippet (left side) and after the task (right side).

The results can be seen in Figure 4.2. The expectation scale consists of five statements,
where each statement is rated on a 5-point Likert scale ranging from strongly disagree
to strongly agree. On the left side, noted with a), the statements refer to the upcoming
code snippet, while on the right side, noted with b), the statements are phrased in the
past tense regarding the code snippet participants saw before. Furthermore, we use the
phrase "in a slightly altered version" to signal participants to imagine the same code
snippet with a possible bug inserted.

4.4.2 Motivation Scales

In a similar manner to expectations, we want to capture the motivation participants
have in regards to understanding the code snippet. As we reviewed in Section 2.4.1
different methods exist to measure motivation. However, since we use an online survey
only some apply to our case. Therefore, we choose the most prominent and easily
administrable one in a motivation scale. We discussed but ultimately rejected the idea
of employing a second instrument for motivation using the time participants spend on
understanding the code snippet. The options included utilizing a free choice variation
where we would set a predetermined amount of time available for understanding the
code and participants can choose to increase the time after it expired. However, we
could not be sure if we could attribute differences in time used between participants to
motivation or other factors. Furthermore, time limits could induce stress and anxiety
which would impact our measurements for affective states.

We use a motivation scale in line with our expectation scale discussed above. Screening
the literature, we are not able to find a validated scale applicable to our context.
Most often these scales can not be administered only concerning one specific task and
especially not two times in a short amount of time, like before and after the task. Even
though many scales in different contexts exist, they usually measure motivation in a
broader sense like motivation to study science or math. Therefore we develop our own

40

4.4 Materials

 I am interested in understanding the code snippet.

 I would feel pleased fixing a bug in the code snippet.

 It would be satisfying to refactor the code snippet.

I will try very hard to understand the code snippet.

It would be enjoyable to locate a bug in the code snippet.

How much do you agree with each of the following statements?

 It was interesting trying to understand this code snippet.

I would feel pleased fixing a bug in a slightly
 altered version of the code snippet.

 It would be satisfying to refactor the code snippet.

I tried very hard to understand the code snippet.

 It would be enjoyable to locate a bug in a slightly
 altered version of the code snippet.

a) Pre-Task Motivation b) Post-Task Motivation

I would enjoy explaining the code snippet afterwards. I would enjoy explaining this code snippet.

Figure 4.3: Motivation scales used to measure motivation before the task of understand-
ing a code snippet (left side) and after the task (right side).

motivation scale using the same concepts of understandability measures we use in the
expectation scale. We focus on intrinsic motivation since any extrinsic motivation factors
are impacted by or do not work as a result of an anonymous survey. Furthermore, we
are more interested in intrinsic motivation since it determines whether a developer
enjoys engaging with the code instead of doing it as a requirement of their job. The
main inspiration for our scale is the Intrinsic Motivation Inventory (IMI) [DR20] and
other scales based on it. Through inspecting them we gather phrases and typical verbs
used to describe motivation towards an activity. We mainly adopt statements from
the interest and enjoyment category of the IMI since it is the most direct measure of
intrinsic motivation. In addition, the other categories are impacted by our survey setting.
The resulting motivation scale is presented in Figure 4.3. We use the same statements
before the task, displayed on the left in a), and alter them accordingly for after the task,
presented on the right in b). Again, each statement is answered on a 5-point Likert scale
ranging from strongly disagree to strongly agree.

4.4.3 Affect Measurement

For the measurement of affective states, we use the pictorial method of the Self-
Assessment Manikin (SAM) [BL94]. It is widely employed and validated in the literature
and has been successfully used previously in related work in the domain of software
engineering to measure affective states. Additionally, this instrument can be adminis-
trated multiple times which is necessary for our pre-task to post-task comparison. SAM
is depicted in Figure 2.3. Through SAM we gather affective states in the dimensions
of valence, arousal, and dominance. Valence characterizes how happy or unhappy an
individual is. Arousal represents the activation of a person in terms of being calm or
excited. Lastly, dominance describes the level of autonomy or self-control one feels.

41

4 Methodology

Combining them provides us a picture of the affective state an individual currently is
in.

We adapt a 5-point selection question in LimeSurvey to display the five SAM figures for
each dimension where every participant is asked to select the figure that best represents
them. Furthermore, we supply the instructions for each dimension as help text from
the technical manual [LBC+97] underneath each set of figures. We slightly adapt the
instruction texts to reflect the ordering of the figures we use from left to right and the
setting of the figures in terms of them being in a row. Furthermore, we only use the parts
of the instructions which are necessary to understand the figures. This helps participants
to understand the figures while not being too long. In a preliminary run of the survey,
we find that this help text was especially necessary for the dominance dimension since it
is not as intuitive as the other two.

4.4.4 Code Snippets

For the experiment, we use two different code snippets. We want code snippets that can
be understood without domain knowledge and without any complicated or unknown
language constructs. Furthermore, they should be not too long in order to fit on the
survey but still challenging to make it worthwhile to try to understand and judge them.
As a result, we make the survey accessible to a wide range of developers because they
only need a basic level understanding. Additionally, it fits into our goal of a compact,
not too long, survey that is still fun to participate in.

For our experiment design, one code snippet has to be easy to understand while the
other is hard to understand. In the following, we abbreviate these two into easy code
snippet and hard code snippet. Since every programmer has a slightly different idea
of how understandable code looks like and since there does not exist an objective
measurement of understandability there is no clear way on how to select these code
snippets. Therefore, we pre-select code snippets based on Cognitive Complexity and
conduct a preliminary survey run with eight developers to gather their assessment of
the code snippets. Matching our code snippet criteria we follow previous researchers
[FMAA18; Pre20] and select code snippets from the Apache commons-lang StringUtils4

project. These methods manipulate Strings and therefore use basic Java constructs and
do not require domain knowledge.

In a first step, we select two code snippets fitting the easy to understand and hard
to understand type based on a difference in Cognitive Complexity and the author’s

4https://github.com/apache/commons-lang/blob/master/src/main/java/org/apache/commons/
lang3/StringUtils.java

42

https://github.com/apache/commons-lang/blob/master/src/main/java/org/apache/commons/lang3/StringUtils.java
https://github.com/apache/commons-lang/blob/master/src/main/java/org/apache/commons/lang3/StringUtils.java

4.4 Materials

subjective assessment. The preliminary study results in accepting the easy code snippet
and rejecting the hard code snippet since it was not perceived as difficult enough.
Therefore, we conduct a second round with five programmers that had to select the most
difficult to understand code snippet amongst four choices. In addition to three code
snippets with a high Cognitive Complexity from the StringUtils project, we provide one
difficult string challenge solution found on the internet. Four out of five programmers
agree on the same code snippet to be the most difficult which is the one we use in our
survey. The final selected code snippets are displayed in Listing 4.1 which is the easy
code snippet and Listing 4.2 which is the hard code snippet.

/**
* Checks if the String contains mixed casing of both uppercase and lowercase characters.

*
* @param str the String to check, may be null

* @return true if the String contains both uppercase and lowercase characters

*/
public static boolean isMixedCase(final String str) {

if (isEmpty(str) || str .length() == 1) {
return false;

}
boolean containsUppercase = false;
boolean containsLowercase = false;
final int sz = str.length();
for (int i = 0; i < sz; i++) {

if (containsUppercase && containsLowercase) {
return true;

} else if (Character.isUpperCase(str.charAt(i))) {
containsUppercase = true;

} else if (Character.isLowerCase(str.charAt(i))) {
containsLowercase = true;

}
}
return containsUppercase && containsLowercase;

}

Listing 4.1: Code snippet we use in our experiment as the "easy to understand" variation
[Apa].

For the easy code snippet, we change the CharSequence in the original code to a String
because it does not alter the functionality but makes it more accessible to inexperienced
developers. Furthermore, we adapt the method comment to only reflect the necessary
information.

The hard code snippet originally prints the result in the end which we change to a return
statement matching the easy code snippet. Additionally, we add the method comment
which does not exist in the original version.

43

4 Methodology

/**
* Find the longest palindromic substring within a string .

* A palindrom is a word that reads the same backwards as forwards, e.g. madam.

*
* @param str1 the String to search in

* @return the longest palindromic substring

*/
public static String longPalSubstr(String str1) {

int n = str1.length();
boolean table[][] = new boolean[n][n];
int mLength = 1;
for (int i = 0; i < n; ++i)

table[i][i] = true;
int strt = 0;
for (int i = 0; i < n − 1; ++i) {

if (str1 .charAt(i) == str1.charAt(i + 1)) {
table[i][i + 1] = true;
strt = i;
mLength = 2;

}
}
for (int k = 3; k <= n; ++k) {

for (int i = 0; i < n − k + 1; ++i) {
int j = i + k − 1;
if (table[i + 1][j − 1] && str1.charAt(i) == str1.charAt(j)) {

table[i][j] = true;

if (k > mLength) {
strt = i;
mLength = k;

}
}

}
}
return str1 .substring(strt , strt + mLength);

}

Listing 4.2: Code snippet we use in our experiment as the "hard to understand" variation
[w3r].

4.5 Survey Procedure

On the landing page of the survey, participants have to consent to the data and privacy
policy. They are informed about the different sections of the survey, the handling of

44

4.5 Survey Procedure

the data, and the intent to publish the results. Furthermore, they are given the option
to stop and end the survey at any time without drawbacks and automatic deletion of
previous answers. In order to ensure the privacy of the data, the survey is hosted on a
university intern server. Furthermore, the survey is fully anonymous. We do not collect
any IP address, timestamp, or other information that could recognize an individual
participant.

After consenting to the data and privacy policy, participants are presented with the
following scenario description depending on the group they are randomly assigned to:

"You will look at a Java code snippet in a bit. The only information that we
provide you about the snippet is the following: The code snippet is between
20 and 30 lines long and tests a String, a sequence of characters, for a
criterion.

(We developed an expert system to rate the understandability of code based
on multiple metrics. This system rated the code snippet you will look at in a
few moments as an (3/8) out of 10. The system uses a scale from 1 to 10,
where 1 is very easy and 10 is very hard to understand.)

In the following questions, you will be asked about your expectations. Answer
based on only the information we provided you."

Participants in the control group are shown everything except the part in brackets while
the other two groups additionally see the part in the brackets and a 3 and 8 respectively
for the metric. Afterwards, participants answer the expectation scale, motivation scale,
and SAM which are presented in the sections before. The scenario description is repeated
on the second page which presents the SAM figures. Here, participants are asked to
select the figure that best represents them on each dimension regarding their feeling
about the upcoming task of understanding the code snippet. On the next page the
instructions about the upcoming code snippet are shown as follows:

"Next, you will look at the Java code snippet. Your only task is to judge its
understandability on a scale from 1 to 10, where 1 is very easy to understand
and 10 is very hard to understand. The code is fully functioning and bug-free.

(You will rate the code snippet on the same scale that is used by our expert
system, which rated it as an (3/8) out of 10. We are interested in what you
think.)

You will have unlimited time to look at the code snippet. Feel free to rate the
code snippet whenever you think you have an adequate impression to judge
its understandability."

45

4 Methodology

Again, the control group sees the text without the part in brackets while the other two
groups additionally see the bracketed part in accordance with their scenario. Following
this, the participants see one of the two code snippets to inspect its understandability
and are asked to rate the understandability on the provided scale. Afterwards, the
subjects complete SAM again as well as the post-task versions of the expectation scale
and motivation scale. This time the description asks them "how they felt about trying to
understand the code snippet" for SAM and how they see the expectation and motivation
statements now after seeing the code snippet. The next page consists of the demographic
questions which are described in Section 4.4. On the last page, we reveal our intentions
with this survey in terms of "investigating the influence of metrics on the motivation
and emotions of software developers". We explain that participants were presented
with different scenarios in the beginning and ask them about their personal opinion
concerning the topic of the survey. This last page additionally includes a section
where participants can select which donation project they want to support and an
open text segment for further comments. At the end, participants are thanked for their
participation as well as encouraged to further distribute the survey.

4.6 Mitigating Threats to Validity

This section describes our efforts in mitigating potential threats to validity. We consider
concerns based on the book of Wohlin et al. [WRH+12] about experimentation in
software engineering and the catalog of 39 confounding parameters in regards to
program comprehension experiments [SS14]. Since there exists considerable overlap
between the two we report the terminology used by Wohlin et al. in that case.

Independent of specific threats, we conduct a preliminary survey with eight developers to
test our design and find potential problems in the descriptions, measurement instruments,
and experiment flow. As a result, we adapt the scenario description to create a more
even starting position for all three groups to secure that differences are a result of the
treatments. Furthermore, we change a code snippet to better reflect our intentions of a
hard code snippet. In the end, we conclude, that the design works for the goal of our
experiment and the chosen instruments can be easily understood by participants and
measure the desired constructs.

4.6.1 Mitigating Threats to Conclusion Validity

These threats are concerned with issues of drawing the correct conclusions from the
treatments and observed outcomes. For this category, most issues relate to the use of the

46

4.6 Mitigating Threats to Validity

right statistical methods which is discussed in Section 4.8. Additionally, we use validated
measurement instruments wherever possible and otherwise construct instruments based
on validated ones to ensure the reliability of measures [WRH+12]. Furthermore, the use
of an online survey guarantees that each participant receives exactly the same treatment
(reliability of treatment implementation [WRH+12]).

4.6.2 Mitigating Threats to Internal Validity

Internal validity relates to the causality of the independent variables regarding the
outcome. To ensure the validity of our treatments we use a control group which
mitigates most concerns with group designs [WRH+12]. Additionally, all groups go
through the same survey with identical instruments. The only differences occur in the
scenario and task description as presented in Section 4.5. Therefore, we establish that
potential discrepancies are a result of the different treatments.

Participants have to answer the expectation scale and motivation scale two times:
before and after the task. Therefore, to mitigate unintended learning and encourage
participants to engage with and read the statements again the second time around,
the ordering of the statements for both scales at both times are randomized (testing
[WRH+12]).

We design our survey to be relatively short in terms of time in order to mitigate problems
of tiredness or boredom (maturation [WRH+12]). Furthermore, there are no time
restrictions on the survey nor the task of rating the understandability of the code snippet
to circumvent the induction of stress or time pressure. Additionally, the use of an online
survey mitigates social threats in terms of participants learning about the treatment
or compensation of another group through social interaction which influences their
performance [WRH+12]. However, our survey is distributed by other people than the
authors through the encouragement of sharing it which could introduce problems where
people share too much information after they participated themselves. To mitigate this
threat, we provide an example invitation and highlight the information which can be
shared beforehand. Furthermore, as a result of the anonymity of the survey, we can not
control the truthfulness with which participation occurs and subjects could participate
multiple times. In addition, we use a small donation incentive for participation. We
do not believe, that this encourages participation in mischievous ways since there is no
personal benefit to them. However, to further mitigate these potential problems, we
conduct an internal review of the survey responses based on timing statistics to exclude
participants that use unreasonably low amounts of time to answer the survey.

47

4 Methodology

For the survey, we use an established software tool in LimeSurvey to automatically
collect, store, and provide the results of all measurements as well as timing statistics
which ensures no manual errors in data collection (instrumentation [WRH+12]).

4.6.3 Mitigating Threats to Construct Validity

Construct validity is concerned with the theories behind the experiment and its design.
We use proper theory of other scientific fields for the involved concepts in expectancy,
motivation, and affect in order to ensure the validity of the constructs in use. In addition,
two treatments and two code snippets are used to more extensively represent the
constructs under analysis (mono-operation bias [WRH+12]).

Furthermore, participants are randomly assigned to the different groups. The subjects
do not know of the existence of different groups. Additionally, to cover the intentions
of the experiment we use an appropriate story of participants having to judge the
understandability of a code snippet (hypothesis guessing [WRH+12]). This story is
reinforced by the scenario description. Moreover, for the two treatment groups, the
introduction of the expert system might lead them to think that we want to validate
or compare their judgment to this system. Therefore, the stated goal relates to the
experiment but does not reveal the full picture.

With the use of an online survey for our experiment we automatically circumvent most
social threats to construct validity [WRH+12]. These include influences an experimenter
can have on participants through their expectations regarding the experiment which
are called experimenter bias and demand characteristics [KDL+12] where participants
guess how to act in order to be a "good" subject based on how the experimenter
reacts. Furthermore, the anonymous nature of the survey mitigates potential evaluation
problems, where participants act and answer differently as a result of feeling observed
(evaluation apprehension [WRH+12]).

4.6.4 Mitigating Threats to External Validity

Threats to external validity relate to the generalizability of the results. We invite both
students and IT professionals to gather a balanced account of software developers
(interaction of selection and treatment [WRH+12]).

Furthermore, we use a realistic setting for our experiment (interaction of setting and
treatment [WRH+12]). Our scenario description includes general information about
the length and functionality of the code snippet. The understandability metric in the
treatments describes the relative understandability of the code snippet. This is similar

48

4.7 Hypotheses, Parameters, and Variables

to a warning of a static analysis tool that typically involves a level of seriousness of
the potential problem. In addition, developers usually have at least a rough idea of
the corresponding part of code. Furthermore, we use real code snippets instead of
creating them ourselves. This includes a method comment describing the functionality
of the code snippet. Moreover, it ensures that typical variable names are used as well
as a standard implementation of the function. Additionally, we mitigate confounding
factors of individual knowledge which include ability, domain knowledge, education,
and familiarity with tools by working with code snippets that do not require any domain
knowledge as well as ones that only use basic language types and constructs [SS14].
The code snippets are presented in a separate box with common indentation and
highlighting which eliminates potential bias through a specific development environment.
No restrictions exist to use the web if participants do not know or understand something
which reflects real life.

4.7 Hypotheses, Parameters, and Variables

For the experiment, we use three different groups: a control group (C), a group to
which we suggest an understandability metric value of 3 (M3), and a group to which
we suggest the metric value of 8 (M8). Additionally, we work with two code snippets of
different understandability difficulty which we call easy and hard respectively. These are
the independent variables of our experiment.

In order to answer our research questions, we measure expectations through five
statements which are measured on a 5-point scale. The individual answers to these
statements are first added up and then divided by the number of statements. The result
is an expectation_sum which is measured pre-task and post-task and ranges from 1 to 5.
Similarly, the motivation scale we use consists of six statements that are first combined
into one value and then divided by six which results in a motivation_sum for pre-task
and post-task with the same range of 1 to 5. For affective states, we use SAM which is
measured on a 5-point scale for the dimensions valence (V), arousal (A), and dominance
(D). Again, SAM is administrated pre-task and post-task. Furthermore, participants
subjectively judge the understandability (sU) of the code snippet on a scale from 1 to
10. Additionally, in order to answer research question RQ4, we measure the difference
between expectations pre-task and post-task by calculating: expectation_difference =
post-task_expectation_sum − pre-task_expectation_sum. We apply the same concept to
the motivation_sum and the SAM dimensions V, A, and D. Therefore, the results are
positive when the values are higher after seeing the code snippet and negative when
they are lower in the post-task section. These parameters comprise our dependent
variables.

49

4 Methodology

In regards to our five research questions we establish the following hypotheses:

Hypotheses for RQ1 For research question RQ1 we use the pre-task_expectation_sum
and propose the following hypotheses:

H001 There exists no significant difference between the pre-task_expectation_sum of the
control group, M3, and M8.

H011 There exists a significant difference between the pre-task_expectation_sum of the
three groups in terms of M3 > C > M8.

When a static analysis tool displays a metric indicating how understandable a
certain part of code is, it produces expectations about that code in a developer.
As discussed in Section 2.3 these expectations are built through past experiences
with understandability metrics and how easily understandable code looks like in
contrast to hard to understand code. Therefore, we expect that participants that
are suggested to see an easy to understand code snippet to have higher success
expectations in terms of understanding the code snippet than participants in the
control group and the group we suggest that they will see a hard to understand
code snippet.

Hypotheses for RQ2 To answer research question RQ2 we correlate the pre-
task_expectation_sum with the pre-task_motivation_sum and present the following
hypotheses:

H002 The pre-task_expectation_sum does not significantly correlate with the pre-
task_motivation_sum.

H012 The pre-task_expectation_sum significantly correlates positively with the pre-
task_motivation_sum.

If individuals have high success expectations in regards to a task or goal it gener-
ally motivates them to achieve it. Multiple motivation theories are built on this
connection (see Section 2.4). These theories show, that the belief of an individual
in their own abilities is an important part of motivation. As a result, we expect
participants with high expectations to also express high motivation in regards to
engaging with the code snippet.

Hypotheses for RQ3 For research question RQ3 we correlate the pre-task_expectation_sum
with the pre-task results of SAM in terms of valence, arousal, and dominance and intro-
duce the following hypotheses for the three dimensions:

H003 There exists no significant correlation between the pre-task_expectation_sum and
the pre-task affective state measurement of valence.

50

4.7 Hypotheses, Parameters, and Variables

H013 There exists a significant positive correlation between the pre-task_expectation_sum
and the pre-task affective state measurement of valence.

The expectancy and placebo research discussed in Section 2.3 suggest, that ex-
pectations influence the affective state of individuals. Optimistic expectations can
produce positive affect. Therefore, we expect a positive correlation between expec-
tations and valence. Furthermore, Graziotin, Wang, and Abrahamsson [GWA14a]
showed a positive correlation between valence and dominance and self-assessed
productivity. This could indicate a similar correlation for expected performance.

H103 There exists no significant correlation between the pre-task_expectation_sum and
the pre-task affective state measurement of arousal.

H113 There exists a significant correlation between the pre-task_expectation_sum and
the pre-task affective state measurement of arousal.

On the other side, arousal did play no role in the correlation of the results from
Graziotin, Wang, and Abrahamsson. Therefore, we abstain from any directional
hypothesis for arousal.

H203 There exists no significant correlation between the pre-task_expectation_sum and
the pre-task affective state measurement of dominance.

H213 There exists a significant correlation between the pre-task_expectation_sum and
the pre-task affective state measurement of dominance.

Graziotin, Wang, and Abrahamsson showcased the influence of dominance in their
experiment. However, we lack additional research that supports these results. We
suspect a potential positive correlation but we believe the possibility for a negative
relationship exists which is why this alternative hypothesis remains directionless.

Hypotheses for RQ4 In regards to RQ4 we analyze correlations between the expecta-
tion_difference and the motivation_difference as well as V/A/D_difference and declare
the following hypotheses:

H004 There exists no significant correlation between expectation_difference and motiva-
tion_difference.

H014 There exists a significant correlation between expectation_difference and motiva-
tion_difference.

H104 The expectation_difference does not significantly correlate with the va-
lence_difference.

H114 The expectation_difference does significantly correlate with the valence_difference.

H204 No significant correlation exists between expectation_difference and arousal_difference.

51

4 Methodology

H214 A significant correlation exists between expectation_difference and arousal_difference.

H304 Expectation_difference and dominance_difference do not significantly correlate.

H314 Expectation_difference and dominance_difference do significantly correlate.

Following expectancy theory and expectancy-confirmation theory, expectations
that are not fulfilled can have an increased effect on affective states and future
motivation (see Section 2.3). Any perceived event is evaluated in contrast to the
expectations an individual held beforehand. As a result, unexpected events lead to
more extreme consequences. Correspondingly, we expect to find that differences
in expectations and perception from pre-task to post-task lead to differences in
motivation and affective states. Furthermore, we expect to observe differences
between the combinations of treatment groups and code snippets. Therefore, in
addition to these hypotheses, we inspect specifically how participants react that
receive the opposite types of scenario and code snippet, for example, M3 and the
hard code snippet in comparison to participants that receive what they expected.

Hypotheses for RQ5 To answer research question RQ5 we inspect how the three
groups differ in their subjective understandability assessment of the two code snippets
and submit the following hypotheses:

H005 There exists no significant difference between the three groups (C, M3, M8) and
their sU of the easy code snippet.

H015 The three groups (C, M3, M8) significantly differ in their sU of the easy code
snippet.

H105 There exists no significant difference between the three groups (C, M3, M8) and
their sU of the hard code snippet.

H115 The three groups (C, M3, M8) significantly differ in their sU of the hard code
snippet.

In a controlled experiment Preikschat [Pre20] showed, that manipulating an
understandability metric significantly and strongly impacts the subjective under-
standability assessment of participants. According to anchoring research (see
Section 2.2) this effect is very robust. Even experts in the field and implausible
anchors only mitigate the anchoring effect. Therefore, we expect to be able to
replicate the results of Preikschat and find significant differences for our two code
snippets between the three groups.

52

4.8 Analysis Procedure

4.8 Analysis Procedure

We export the results from LimeSurvey in an excel format to analyze the data in Python.
The 5-point Likert scale data is automatically converted into the corresponding numbers
of 1 to 5 and the necessary variables to test our hypotheses are computed including sums
and differences. For the statistical analysis and hypothesis testing, we use the standard
Python libraries including scpy.stats5, scikit-learn6, and statsmodels7.

There exists lengthy discussion about how to treat Likert scale data in regards to
statistical analysis [Ber07; Jam04]. The argument covers the problem of Likert scale
data representing ordinal data or interval data. While the controversy continues for
single Likert items, which is one statement of a scale, there is no problem treating Likert
scales which combine multiple items into one scale as interval data [CP08; Nor10].
Therefore, we consider our expectation and motivation scale to be interval data for
statistical analysis. As for SAM, which measures each affect dimension on a 5-point
scale, we follow previous researchers and treat it as interval data reporting means and
standard deviations [BL94; GWA14a; GWA15b].

In order to evaluate the research questions we follow the typical statistical analysis pro-
cedure in verifying assumptions for statistical tests and as a result, using the appropriate
parametric or non-parametric test [MB16]. For research question RQ1 and RQ5, we
analyze differences between the three treatment groups. Therefore, we use one-way
ANOVA if the assumptions of normally distributed residuals and homogeneity of variance
are met. Residuals are the difference between the observed value of the dependant
variable and the predicted value of the model. A normal distribution is determined
through the Shapiro-Wilk test as well as inspection of the Q-Q plot and histogram of
the residuals while homogeneity of variance is examined through Levene’s test. If the
assumptions are not verified we use the non-parametric alternative of the Kruskal-Wallis
test. We are aware of the robustness of the one-way ANOVA test especially in regards
to normality which we consider if the assumption tests only fail slightly [Nor10]. For
the case that the statistical test shows significant results, we apply post-hoc testing to
find the groups that differ significantly using the Tukey Honestly Significant Difference
(HSD) for ANOVA and pair-wise Mann-Whitney U tests for Kruskal-Wallis.

For research question RQ2, RQ3, and RQ4 we try to find significant correlations between
two variables. Therefore, we use Pearson’s correlation coefficient when the assump-
tions of normally distributed variables, linearly related variables, and homogeneity of

5https://docs.scipy.org/doc/scipy/reference/stats.html
6https://scikit-learn.org/stable/
7https://www.statsmodels.org/stable/index.html

53

https://docs.scipy.org/doc/scipy/reference/stats.html
https://scikit-learn.org/stable/
https://www.statsmodels.org/stable/index.html

4 Methodology

variance are met [SBS18]. Furthermore, for RQ2 and RQ3 we employ simple linear
regression if a significant correlation exists and the assumptions for linear regression
are fulfilled: linearity between variables, mean of residuals is near zero, normality as
well as homogeneity of variance of residuals, and no autocorrelation of the residuals
[CF14; EA17]. Linearity is assessed through the inspection of scatter plots. Normality
is verified through the Shapiro-Wilk test, an inspection of Q-Q plots, and histograms.
Homogeneity of variance is measured using Levene’s test for correlation and through the
Breusch-Pagan test and the Goldfeld-Quandt test as well as the scatter plot of residuals
for linear regression. Lastly, autocorrelation is assessed with the Durbin-Watson test. In
the case of non-normality for one variable, we employ logarithmic and square root data
transformations to check for possible improvements, which are suggested as possible
fixes for non-normality [Vet17]. Otherwise, we use Kendall’s τ correlation coefficient
as the non-parametric alternative. It is more robust and efficient than Spearman’s
rank correlation [CD10] but the found correlations are significantly smaller than from
Spearman’s [FN07].

Additionally, we provide the appropriate effect sizes for each test to describe the mean-
ingfulness of results. The strength of these effect sizes are described based on the
extended version of Cohen’s guidelines in regards to Cohen’s d: d(.01) = very small,
d(.2) = small, d(.5) = medium, d(.8) = large, d(1.2) = very large, and d(2.0) = huge
[Coh88; Saw09]. Since they are widely known, we convert other effect size measures
such as Kendall’s τ and η2 into Cohen’s d according to Lenhard [Len16] and Walker
[Wal03].

A few of our hypotheses like H011 and H012 would warrant one-tailed hypothesis tests.
However, the Python libraries we use only support two-tailed tests. One common ap-
proach to obtain the one-tailed values from a two-tailed test is to half the corresponding
p-value. However, this is only appropriate for symmetrical distributions. Since there is
no reason to expect symmetrical distributions for our data, we present the results based
on the two-tailed tests for all hypotheses. As a result, they are more conservative but we
leave the option open to inspect unexpected results in the opposite direction.

We use the standard significance level of α = 0.05 for the hypothesis tests. Using multiple
statistical tests on one data set increases the likelihood of rejecting the null hypothesis
when it is actually true (Type 1 error) [CFY17]. This requires proper adjustment of the
significance level. Therefore, we employ Bonferroni correction [Abd07] to control for the
familywise error rate. There exists no uniform interpretation of what constitutes a family
ranging from every experiment in a life-time to every single test being a family [Ros96].
Therefore, we view all tests that involve the same variable in expectation as one family
and as a result adjust the significance level for the nine hypothesis tests of RQ1-RQ4 to
α⋆ = 0.05/9 = 0.0056. Similarly, in RQ5 we use the same test to analyze the difference of
understandability assessment of two code snippets and therefore use α′ = 0.05/2 = 0.025

54

4.8 Analysis Procedure

for RQ5. Furthermore, if additional pairwise comparisons are necessary as a result of a
significant ANOVA or Kruskal-Wallis test this level is adjusted accordingly. Bonferroni
adjustment is recognized as a rather conservative method potentially missing significant
results [CFY17]. We apply the more conservative approaches for our analysis because we
use an online survey instead of a controlled environment for the experiment. Therefore,
we have little control over the participants but compensate with a more strict analysis
approach. Additionally, we utilize two non-validated measurement instruments which
warrants a precise analysis.

For that reason, we analyze the internal consistency of our expectation and motivation
scales through Cronbach’s Alpha8. This tests the relatedness of the single items of the
scale by calculating pairwise correlations between the items. As a result, Cronbach’s
Alpha provides an evaluation of whether the individual items measure the same latent
construct. In general, a value above 0.7 is considered acceptable, while 0.7-0.8 is
respectable, 0.8-0.9 good, 0.9-0.94 excellent, and above that, there might be unnecessary
redundancies [Tab17].

8We use the implementation of the pingouin library: https://pingouin-stats.org/generated/pingouin.
cronbach_alpha.html

55

https://pingouin-stats.org/generated/pingouin.cronbach_alpha.html
https://pingouin-stats.org/generated/pingouin.cronbach_alpha.html

Chapter 5

Results

In this chapter, we present the results of our experiment and the survey it was embedded
in. We cover descriptive statistics about the participant sample and show the overall
outcome of the experiment.

82 people completed the survey. One participant is excluded as part of our internal
review of timing statistics since they only spend seven seconds reading, understanding,
and judging the code snippet. We believe that seven seconds is unreasonably low to
complete this task and to provide an informed assessment about the understandability
of the code snippet. Therefore, the sample for our analysis consists of 81 participants.

5.1 Descriptive Statistics

From the 81 participants, 68 identify as male, 7 as female, 1 as non-binary, and 5
preferred to not disclose this information. In terms of age the average is 32 years old
with a standard deviation (SD) of 10.73. As their main occupation 43 (53%) work as IT
professionals, 31 (38%) stated to be students, 6 (7%) are researchers, and 1 (1%) said
they are an engineer outside of software development. For self-estimated experience on
a 10-point scale, the average is 6.90 (SD = 1.95). In comparison to a 10 year expert,
participants rate themselves on a 5-point scale on average as 2.37 (SD = 1.12). In
regards to Java as an OO-programming language, the participants rate themselves as
4.01 (SD = 0.83) on average on a 5-point scale. Furthermore, we ask our subjects to
rate the frequency of understanding code being part of their job on a 5-point scale from
never (1) to always (5). The average is 3.95 (SD = 0.86) with option 4 (often) being
chosen 43 times. Applying the same scale participants rate their frequency of using
static analysis tools for understandability as a 2.16 (SD = 1.28) on average with option
1 (never) being selected most often namely 33 times.

57

5 Results

5.1.1 Survey Data

Regarding the survey, it took participants on average 12:13 minutes (SD = 6:12 minutes)
to finish the survey from which on average 3:07 minutes (SD = 2:24 minutes) was spent
on the task of judging the code snippet. In terms of the code snippets, 35 participants
saw the easy code snippet while 46 saw the hard code snippet. They rate the code
snippets on a 10-point scale where 1 is easy to understand and 10 is hard to understand.
The easy code snippet received an average rating of 2.40 (SD = 2.14) while the hard
code snippet was rated as 5.87 (SD = 2.38) on average. Additionally, participants used
more time to inspect the hard code snippet with an average of 3:56 minutes (SD = 2:21
Minutes) than to look at the easy code snippet with an average of 2:04 minutes (SD =
1:27 minutes).

At the end of the survey, we ask participants to imagine working with a static analytic
tool displaying an understandability metric and let them answer statements regarding
their motivation and emotions on a 5-point Likert scale from strongly disagree (1)
to strongly agree (5). The participants say, that a bad understandability score would
motivate them to improve their code with an average of 3.96 (SD = 0.73). Furthermore,
a good score would lead to them not considering the code for refactoring with an average
score of 3.16 (SD = 1.09). This indicates a wider spread, which is showcased by 36
participants choosing option 4 or 5 while 25 choose options 1 or 2. In terms of emotions,
participants mostly agree, that bad understandability scores would feel bad with an
average of 3.86 (SD = 0.85). The same is seen for good understandability scores and
feeling satisfied with oneself with an average of 4.06 (SD = 0.66). Lastly, we ask the
participants whether they think understandability metrics are accurate. The results show
an average of 3.04 (SD = 0.77) where 43 participants choose option 3 neither agree
nor disagree and almost equal amounts choose option 4 (18 times) and option 2 (17
times).

5.1.2 Treatment Groups

The participants were randomly split into the three treatment groups in rates of 31
participants being placed into the control group (C), 23 participants got suggested that
the code snippet will be easy to understand (M3), and 27 participants got suggested that
the code snippet will be hard to understand (M8).

These groups can be further split up into whether they saw the easy code snippet or
the hard code snippet. From the control group, 17 participants saw the easy code
snippet (C_easy) and 14 participants looked at the hard code snippet (C_hard). In
M3 12 participants saw the easy code snippet (M3_easy) and 11 the hard code snippet

58

5.2 Hypothesis Testing

Group Pre-Task
Task

(Code Score)
Post-Task

Expec Motiv V A D Easy Hard Expec Motiv V A D
C 3.95 3.68 3.61 2.35 3.23 3.12 5.86 4.10 3.38 3.42 2.45 3.06
M3 3.97 3.78 3.48 2.48 3.09 1.92 5.27 4.13 3.70 3.61 2.39 3.13
M8 3.91 3.81 3.85 2.56 3.48 1.33 6.19 3.93 3.40 3.22 2.41 3.52

Table 5.1: Experiment results in terms of averages in the sequence of the experiment
design and split up into the three treatment groups.

(M3_hard). The last group, M8, is split up into 6 participants inspecting the easy code
snippet (M8_easy) and 21 participants looking at the hard code snippet (M8_hard).

We present the overall results of our experiment in terms of averages in Table 5.1. The
results are split into the three treatment groups and displayed in order of the research
design. Regarding the values, the expectation_sum and motivation_sum are divided by
the number of statements of the corresponding scales. Therefore, they range from 1 to 5.
Likewise, valence (V), arousal (A) as well as dominance (D) range from 1 to 5. Only the
code scores are on a 10-point scale. The individual values and differences are described
in more detail and used for testing our hypotheses in the section below.

5.2 Hypothesis Testing

We follow the procedure described in Section 4.8 to analyze our five research questions.
The necessary information for the results of the hypothesis tests is reported according to
the guidelines by Harris [Har08].

5.2.1 Research Question RQ1

In RQ1 we analyze differences in the expectations depending on the treatment group.
Therefore, we look at the pre-task expectation_sum of the three groups. As presented in
Table 5.1 they follow our hypothesis H011 in terms of their averages in M3 = 3.97 > C =
3.95 > M8 = 3.91. However, to inspect whether these are significant we employ the one-
way ANOVA test. The assumption of normality for the residuals is fulfilled as assessed
by the Shapiro-Wilk test (p = 0.115) and the inspection of the corresponding histogram
and Q-Q plot. Similarly, homogeneity of variance is confirmed through Levene’s test
(P = 0.899). The analysis of the one-way ANOVA test is not statistically significant

59

5 Results

F(2,78) = 0.072, p = 0.930, η2 = 0.002, ω2 = 0.023 which is an estimated Cohen’s d of
0.086 indicating a very small effect.

Answer to RQ1: Since the expectations between the three treatments do not signifi-
cantly differ (p = 0.930), we do not reject the null hypothesis H001. Therefore, presenting
an understandability metric value has no significant impact on the expectations about
understanding the corresponding code snippet.

5.2.2 Research Question RQ2

For RQ2 we evaluate the correlation between expectations and motivation in our sample.
Correspondingly, we inspect if there exists a significant relationship between the pre-
task_expectation_sum and the pre-task_motivation_sum. While the motivation_sum
displays a normal distribution as assessed by the Shapiro-Wilk test (p = 0.351), the
expectation_sum does not. The Shapiro-Wilk test for the expectation_sum is significant
(p = 0.028) and we therefore reject the assumption of normal distribution. This result
is confirmed through a non-bell-shaped histogram and a Q-Q plot with numerous data
points outside the reference diagonal line. Furthermore, applying logarithmic and
square root data transformations to the expectation_sum does not improve normality
as assessed by the Shapiro-Wilk test (logarithmic p = 0.005, square root p = 0.018).
Therefore, we apply Kendall’s τ to evaluate the relationship. The alpha level α⋆ = 0.0056
is used. Analysis of the data shows a significant positive correlation between pre-task
expectation_sum and pre-task motivation_sum, τ(81) = 0.253 (95% CI [0.110, 0.385])1,
p = 0.002. Converting the τ statistic into Cohen’s d results in an estimate of d = 0.839
which indicates a large effect.

These results demonstrate a strong relationship, which warrants a preciser evaluation.
Therefore, we analyze a possible linear relationship of expectations predicting motivation.
The relationship is showcased in Figure 5.1. In addition to the linearity shown in this
scatter plot, the data meet the assumptions for linear regression in terms of a mean for
the residuals near zero and a normal distribution for the residuals determined by the
Shapiro-Wilk test (p = 0.579) as well as by the corresponding histogram and Q-Q plot.
Furthermore, the homogeneity of variance of the residuals is fulfilled as assessed by the
Breusch-Pagan test (p = 0.516), the Goldfeld-Quandt test (p = 0.250), and the scatter
plot of the residuals. Additionally, no significant autocorrelation of the error terms is
found as evaluated through the Durbin-Watson test (d = 1.799). The simple linear
regression reveals, that expectations explain a small but significant proportion of the

1Confidence intervals are calculated using the implementation of XiangwenWang: https://github.com/
XiangwenWang/correlation

60

https://github.com/XiangwenWang/correlation
https://github.com/XiangwenWang/correlation

5.2 Hypothesis Testing

Figure 5.1: Scatter plot of the relationship between expectation and motivation with
the corresponding regression line.

variance in motivation, R2 = 0.183, adjusted R2 = 0.173, F(1,79) = 17.73, p < 0.001.
The relationship is expressed by the formula: motivation = 1.957 + 0.456 ∗ expectation.
The intercept 1.957 (97,5% CI [1.098, 2.816]) has a standard error of 0.432, t-statistic
of 4.535, and p-value < 0.001. Similarly, the slope of 0.456 (97,5% CI [0.240, 0.671])
is significant through a standard error of 0.108, t-statistic of 4.210, and p-value <
0.001. The decently large F-statistic with p < 0.001 showcases the significance of the
relationship while the relatively large t-statistics in combination with negligible p-values
demonstrates the significance of the parameters. As a result of the intercept and slope
values, we would expect the motivation to be on average 1.957 if the expectation would
be 0, and for every increase of 1 in expectation, the motivation increases by 0.456.
Additionally, a R2 value of 0.183 suggests, that expectation can explain 18.3% of the
variance in motivation.

Answer to RQ2: Expectation and motivation express a significant correlation with each
other (p = 0.002) which shows a large effect (τ = 0.253). More specifically, expectation
explains 18.3% of the variance in motivation through a significant (p < 0.001) linear
relationship expressed by: motivation = 1.957+0.456∗expectation. Therefore, we reject
the null hypothesis H002 in favor of H012. This indicates, that success expectations of
understanding a code snippet significantly improve motivation in regards to engaging
with the code snippet.

61

5 Results

Affect
Dimension

Shapiro-Wilk Kendall’s Tau
p τ p 95% CI Cohen’s d

Valence <0,001 0.238 0.011 [0.095, 0.372] 0.785
Arousal <0,001 -0.006 0.945 [-0.153, 0.141] -0.020
Dominance <0,001 0.137 0.134 [-0.010, 0.275] 0.437

Table 5.2: Correlation results between the pre-task expectations and the three affect
dimensions valence, arousal, and dominance.

5.2.3 Research Question RQ3

To answer RQ3, we analyze the correlations between the pre-task_expectation_sum and
the affect dimensions valence, arousal, and dominance. The results are presented in
Table 5.2. All three dimensions fail the Shapiro-Wilk test and are therefore considered to
be not normally distributed. As a result, we use Kendall’s τ to measure the correlation
between the pre-task expectation_sum and the three affect dimensions. Comparing the
outcomes to our alpha level α⋆ = 0.0056 shows no significant result for any of the three
correlations. The correlation between pre-task_expectation_sum and pre-task_valence
comes close to being significant with τ(81) = 0.238 (95% CI [0.095, 0.372]), p = 0.011
and estimated Cohen’s d = 0.785 indicating a medium effect.

Answer to RQ3: There exists no significantly correlation between the expectations and
the three affect dimensions valence (p = 0.011), arousal (p = 0.945), and dominance
(p = 0.134). Therefore, we do not reject the null hypotheses H003, H103, and H203. This
means, that expectations about understanding a code snippet have no significant impact
on affective states.

5.2.4 Research Question RQ4

In regards to RQ4, we inspect how differences in expectations about understanding
the code snippet from pre-task to perception about how participants’ understood the
code snippet post-task influence the pre-task to post-task differences in motivation and
affective states. Therefore, we analyze correlations between the expectation_difference
and motivation_difference as well as valence_difference, arousal_difference, and domi-
nance_difference. Overall the perception about understanding the code snippet after
the task is greater than the expectations beforehand with an average difference of
0.11 (SD = 0.78). For all differences, the values can range from -4 to 4. For expec-
tation_difference, the minimum value is -2 and the maximum 1.60. In contrast, the
motivation lowered after the task with an average difference of -0.28 (SD = 0.63) as
well as a minimum value of -2.33 and a maximum value of 1.17. In terms of the affect

62

5.2 Hypothesis Testing

Correlation Shapiro-Wilk Kendall’s Tau
Variable p τ p 95% CI Cohen’s d
Motivation 0.005 0.258 0.001 [0.116, 0.390] 0.857
Valence <0,001 0.394 <0.001 [0.262, 0.511] 1.422
Arousal <0,001 -0.059 0.505 [-0.203, 0.089] 0.185
Dominance <0,001 0.172 0.054 [0.026, 0.311] 0.555

Table 5.3: Correlation results between the difference of expectations pre-task and the
perception after the task with the differences in motivation and the three
affect dimensions valence, arousal, and dominance.

dimensions valence is lower afterwards with an average difference of -0.25 (SD = 0.93).
For arousal, almost no difference exists with an average of -0.04 (SD = 0.83). The
same is true for dominance with an average of -0.04 (SD = 0.73). Furthermore, there
exists a clear separation between participants that see the easy code snippet having an
expectation_difference average of 0.59 (SD = 0.51) and the participants that see the
hard code snippet with an average of -0.26 (SD = 0.74). This is mirrored across the
other variables, except for arousal where participants are slightly more aroused after
seeing the hard code snippet with an average of 0.02 (SD = 0.86) in contrast to seeing
the easy code snippet with an average of -0.01 (SD = 0.80).

Results of the correlations between expectation_difference and motivation_difference as
well as valence_difference, arousal_difference, and dominance_difference are presented
in Table 5.3. Since neither expectation_difference is normally distributed as assessed by
Shapiro-Wilk (p =0.045) nor any of the four correlation variables, we use Kendall’s τ

to evaluate the correlations. Two significant results emerge when we compare them to
the alpha level α⋆ = 0.0056. Expectation_difference is significantly positively correlated
with the motivation_difference τ(81) = 0.258 (95% CI [0.116, 0.390]), p = 0.001
and estimated Cohen’s d = 0.857 indicating a large effect. Furthermore, there exists
an even stronger significant positive correlation between expectation_difference and
valence_difference τ(81) = 0.395 (95% CI [0.262, 0.511]), p < 0.001 and estimated
Cohen’s d = 1.422 indicating a very large effect.

Given these results, we more closely analyze the differences between our treatment
groups. The comparisons between our groups depending on the initial scenario and
the code snippet participants’ saw are displayed in Table 5.4. The first row after the
treatment groups presents the number of participants for each group. In terms of
expectation_difference the group that got suggested they will see a hard code snippet
but ultimately saw the easy code snippet (M8_easy) showcases the largest positive
change with an average of 0.77 (SD = 0.53). Regarding motivation_difference the
only positive change can be seen in M3_easy who inspected the easy code snippet

63

5 Results

Treatment # Pre-Task to Post-Task Differences
Group Expectation Motivation Valence Arousal Dominance
C_easy 17 0.64 -0.06 0.18 -0.06 -0.12
C_hard 14 -0.43 -0.61 -0.64 0.29 -0.21
M3_easy 12 0.45 0.07 0.50 -0.17 0.17
M3_hard 11 -0.16 -0.26 -0.27 0.00 -0.09
M8_easy 6 0.77 -0.25 -0.50 -0.17 0.67
M8_hard 21 -0.20 -0.47 -0.67 -0.14 -0.14

Table 5.4: Pre-task to post-task differences in expectation, motivation, valence, arousal,
and dominance for the six treatment groups based on initial scenario and
code snippet seen.

they expected to see with an average difference of 0.07 (SD = 0.64) while the largest
demotivation change is showcased by C_hard with an average of -0.47 (SD = 0.73).
The biggest positive change in valence is demonstrated by M3_easy with an average of
0.50 (SD = 0.67) and the most significant negative change is displayed by C_hard with
an average of -0.64 (SD = 0.93) and M8_hard with an average of -0.67 (SD = 0.86). In
contrast, the most notable result for the other two affect dimensions is seen in M8_easy
with an average increase of dominance of 0.67 (SD = 0.82).

Answer to RQ4: Differences in expectations before seeing the code snippet and the
perception afterwards significantly correlate with differences in motivation (p = 0.001)
with a large effect (τ = 0.258) and with differences in valence (p < 0.001) with a very
large effect (τ = 0.394). As a result, we do not reject the null hypotheses H204 and
H304 but do reject H004 and H104 in favor of the corresponding alternative hypotheses.
Additionally, these differences heavily depend on the difficulty of the code snippet seen
with either the easy code snippet or the hard code snippet (expectation difference of
0.59 and -0.26, motivation difference of -0.05 and -0.46, valence difference of 0.17 and
-0.57). Therefore, developers who are more confident that they understood the code
snippet after inspecting it than expecting to understand it beforehand are also more
motivated and happier afterwards.

5.2.5 Research Question RQ5

For RQ5, we analyze the differences in subjective understandability assessment of the
participants for both code snippets depending on the treatment group. The results
are presented as boxplots of the three treatment groups for the easy code snippet in
Figure 5.3 and for the hard code snippet in Figure 5.2. They showcase the influence

64

5.2 Hypothesis Testing

Figure 5.2: Boxplots of understandability assessment of the easy code snippet depending
on the treatment group indicating the median (orange line), and the mean
(blue triangle).

of outliers in the case of the easy code snippet and the similarities of the groups in
the case of the hard code snippet. For the easy code snippet, the participants judge its
understandability with an average score of 3.12 (SD = 2.55) for the control group, 1.92
(Sd = 1.68) for M3, and 1.33 (SD = 0.82) for M8. On the other side, the average score
for the hard code snippet is 5.86 (SD = 2.51) for the control group, 5.27 (SD = 2.10) for
M3, and 6.19 (SD = 2.48) for M8. To analyze whether these differences are significant,
we employ the Kruskal-Wallis test since the data does not fulfill the assumptions for
one-way ANOVA in terms of normality of residuals as assessed by the Shapiro-Wilk test
(easy code snippet p < 0.001, hard code snippet p = 0.016) as well as by inspecting the
histograms and Q-Q plots.

We use the alpha level α′ = 0.025 for these tests. For the easy code snippet, the Kruskal-
Wallis test shows no significant difference in code understandability assessment between
the three groups, H(2) = 6.303, p = 0.043, ϵ2 = 0.185, η2 = 0.134 which is an estimated
Cohen’s d of 0.788 indicating a medium effect. Similarly, the three groups demonstrate

65

5 Results

Figure 5.3: Boxplots of understandability assessment of the hard code snippet depend-
ing on the treatment group indicating the median (orange line), and the
mean (blue triangle).

no significant difference for the hard code snippet, H(2) = 1.362, p = 0.506, ϵ2 = 0.030,
η2 = 0.015 which is an estimated Cohen’s d of 0.245 indicating a small effect.

In order to better compare these results with the work of Preikschat [Pre20], we
additionally provide the results of the Mann-Whitney-U test for the difference between
M3 and M8. According to the Bonferroni correction, we would need to divide the α′ level
by an additional 2 for the secondary tests, but they are insignificant nonetheless. For the
easy code snippet, the Mann-Whitney-U test shows no significant difference, U(12, 6) =
26, p = .152, η2 = 0.049 which is an estimated Cohen’s d of 0.453 indicating a small
effect. The same holds true for the hard code snippet with U(11, 21) = 86.5, p = .127,
η2 = 0.041 which is an estimated Cohen’s d of 0.415 indicating a small effect.

66

5.2 Hypothesis Testing

Answer to RQ5: The three treatment groups do not significantly differ in their sub-
jective understandability assessment of neither the easy code snippet (p = 0.043) nor
the hard code snippet (p = 0.506). Additionally, excluding the control group shows the
same result (easy code snippet p = 0.152, hard code snippet p = 0.127). Therefore, we
do not reject the null hypotheses H005 and H105. As a result, suggesting different under-
standability metrics to developers before seeing a code snippet does not significantly
impact their subjective assessment of the code snippet.

5.2.6 Internal Consistency of Expectation and Motivation Scales

We measure the internal consistency of our two non-validated measurement instru-
ments through Cronbach’s Alpha. The pre-task expectation scale, which is presented
in Figure 4.2, has an alpha of 0.857 (95% CI [0.801, 0.901]). Similarly, the post-task
expectation scale demonstrates an alpha of 0.893 (95% CI [0.851, 0.926]).

The motivation scales are displayed in Figure 4.3. In this case, the pre-task motiva-
tion scale has an alpha of 0.810 (95% CI [0.737, 0.867]). In addition, the post-task
motivation scale exhibits an alpha of 0.793 (95% CI [0.715, 0.856]).

These results show good internal consistency for all four scales. Even considering the
confidence internals, no scale would fall under the acceptable level of alpha = 0.7.

67

Chapter 6

Discussion

In this chapter, we outline and interpret the results of our experiment. Furthermore, we
describe limitations regarding the applicability of our results and provide implications
for the practice of software development.

6.1 Findings

When we ask the participants about their thoughts in regards to understandability metrics
influencing their motivation and emotions, they report clear and strong impacts. With
an average of 3.96 out of 5 participants belief, that a bad understandability score would
motivate them to improve their code. On the other side, the handling of code with a
good understandability score is not as unambiguous with participants disagreeing about
whether such code should be ignored for refactorings or not. This might be a result of the
use of refactoring as the indicator for motivation since software developers often learn
that any code might be improved by a refactoring in the right situation. Furthermore,
participants widely agree on the affective impact different code understandability scores
have where good scores lead to satisfying feelings and bad scores lead to bad feelings.
However, these opinions of our participants are not supported by the results of the
experiment.

We split the participants into three groups with different scenarios of suggested code
understandability scores and measure the concepts of expectations, motivation, and
affective states. The groups do not differ significantly in any of these three categories.
Whether we suggest a good understandability score in terms of 3 out of 10 or a bad
score in terms of 8 out of 10 appears to have no effect on expectations, motivation nor
the affective states. For motivation in regards to understanding and improving the code
snippet, both groups are nearly identical. Furthermore, with respect to affective states,

69

6 Discussion

the group to which we suggested a hard to understand code snippet (M8) appears to be
happier, more excited, and feel more dominant than the other two groups. However,
we ask about their affective state in regards to understanding the code snippet in this
instance and not about how the understandability score made them feel. Additionally, we
do not measure the initial affective state of our groups at the start of the experiment and
can therefore not exclude the possibility that the groups differ as a result of dissimilar
initial affective states. Still, we see the polar opposite of what participants described in
the survey. Interestingly, even the control group feels happier and more in control about
understanding the code snippet than the group to which we imply an upcoming simple
code snippet (M3). Apart from initial differences, one possible explanation might be, that
participants with a suggested hard code snippet are more excited and feel challenged to
show off their knowledge in understanding the code snippet.

For the interpretation of the results with regard to our research questions, we use
α⋆ = 0.0056 as the significance level for RQ1-RQ4 and α′ = 0.025 for RQ5 as a result
of the Bonferroni correction we utilize in our analysis. Additionally, all measurements
range from 1 to 5 except for the understandability assessment of the code snippet which
is rated on a 10-point scale.

Interpretation of RQ1 We thought, that implying different code understandability
scores would impact expectations about understanding the corresponding code snippet.
It would make sense for developers to be more sure about comprehending a suggested
simple code snippet than a suggested difficult code snippet. However, this turns out to
be not true for our experiment. The expectations we measure through five statements
of typical comprehension tasks result in almost the same expectation_sum for all three
groups (C = 3.95, M3 = 3.97, M8 = 3.91). In fact, these differences are not significant
at all with a p-value of 0.93 and a negligible effect size. Therefore, we are not able to
reject our null hypothesis H001 in this case.

We believe this is for the most part a result of our rather simple scenario. In the
beginning, we describe the upcoming code snippet as being between 20-30 lines long
and testing a String for a criterion. Since expectations are based on previous experiences
in similar situations people tend to bring information to mind that is consistent with
their prediction [ORZ96]. In this case, we assume that participants have experiences
with tasks using similar descriptions and were able to solve them. This is probable for
our sample because participants are experienced in general programming indicated
by a 6.90 average on a 10-point scale and a 4.01 average out of 5 in regards to Java
programming. As a result, participants rely more on their past experiences than on the
metric value we suggest. We received feedback from a few participants who confirmed
this idea. They told us that they were certain to be able to understand the code snippet
with that description regardless of what the understandability metric said.

70

6.1 Findings

Furthermore, we might have not promoted the understandability metric enough to
create an impact. The participants do not hold any strong opinions about the accuracy
of understandability metrics with the majority of 43 choosing the neutral option in the
corresponding survey question. Therefore, it could have required more effort to convince
them of the correctness of the presented metric value. In his experiment, Preikschat
[Pre20] provides a more elaborate story of a machine learning algorithm creating the
understandability score. Furthermore, he shows the accuracy of the metric by presenting
example code snippets with corresponding understandability scores. This is an option
for the future to further cement the correctness of the presented understandability score.
However, it would increase the required time for the survey and impact the subjective
understandability assessment of the code snippet. If participants are presented with an
example having an understandability score it would be used for comparison when the
participants have to rate their code snippet.

Interpretation of RQ2 For the relationship between expectations and motivation, we
expected to see a positive correlation. This is confirmed in the hypothesis test showcasing
a significant positive correlation with p = 0.002 and τ = 0.253 (95% CI [0.110, 0.385])
indicating a large effect. Considering the confidence interval on the low end, the results
demonstrate a small effect while on the high end they would be very large. Since we
employ a Bonferroni correction and an in general more strict analysis procedure, we can
be sure with a high probability that these results are not random and relevant for our
sample. Furthermore, we demonstrate the linearity of this relationship through linear
regression where expectations explain 18.3% of the variance in motivation with p <
0.001. As a result of this regression, we would expect motivation to increase by 0.456
for every increase of 1 in expectation. Therefore, we accept the alternative hypothesis
H012 in this case.

These results are in line with multiple motivation theories predicting the impact of
expectations on motivation. Both in the expectancy theory by Vroom [Vro64] and
the expectancy-value theory by Eccles et al. [EAF+83] expectancies about the success
regarding a goal directly influence the motivation of achieving that goal. Therefore,
if someone beliefs in their ability to accomplish a goal then they are motivated to
engage in actions that bring them closer to reaching their goal. This has been shown
in multiple previous studies, for example in the context of problem-solving [ELI+14]
and learning to program [LLY10]. Likewise, our results show, that this relationship
applies to expectations about understanding a code snippet and motivation in terms
of engaging with the code snippet. However, we only partially inspect the second part
of these motivation theories which Eccles et al. call value. Value describes the belief
in the attractiveness or benefit of an action in achieving a goal. With the very narrow
goal of understanding one specific code snippet, there does not exist much room for
different evaluations of activities. Furthermore, any results would be hard to generalize
since there is a clear distinction between an arbitrary code snippet in an experiment or

71

6 Discussion

survey and a developer’s own code in terms of value. One option to further investigate
value would be to present different activities one could engage with to understand
the code snippet and measure the goal congruency [TF14]. In this work, we focus on
aspects of intrinsic motivation, which represents one part of value, to show that success
expectations about understanding code lead to increases in expected enjoyment from
engaging with that code. As a result of this link, we can predict enhanced performance,
persistence, and creativity for developers that expect to understand a code snippet
[RD00].

Interpretation of RQ3 Similar to motivation, we believed that expectations could
have an effect on affective states in terms of the three measured affect dimensions
in valence, arousal, and dominance. The results show no significant correlation for
expectation with any of the three dimensions (valence p = 0.011, arousal p = 0.945,
dominance p = 0.134). Therefore, we do not reject the corresponding null hypotheses
H003, H103, and H203. For valence the correlation comes very close to being significant
with τ = 0.238 (95% CI [0.095, 0.372]). This represents a similar effect size and
confidence interval like the correlation between expectations and motivation. Currently,
there is an open debate about the meaningfulness and problems of p-values and alpha
levels in hypothesis testing [Cum13]. Simply using more participants or even repeating
the same experiment with a different sample has a good chance to suddenly produce
significant results. Having almost the same effect size and confidence interval for
the correlation between expectations and motivation and the correlation between
expectations and valence indicates that the correlation between expectations and valence
has a considerable likelihood to be significant when replicating the experiment [Cum13].
Additionally, the at least medium effect size gives credence to the potential relevance of
this correlation.

In the end, our analysis reveals no significant correlations between expectations and
affective states. Generally, optimistic expectations produce positive affect [ORZ96] which
is why it might be interesting to further explore this link. Research shows the influence
of positive affect on developers in terms of performance, motivation, productivity, code
quality, and self-image [GFWA17; GFWA18; GWA14a; GWA14b]. In all these categories
happy developers perform better. As a result, it is worth to study this effect in future
work to see whether one can induce positive affect through success expectations. In
their study, Graziotin, Wang, and Abrahamsson [GWA14a] found a positive correlation
between valence and dominance with self-assessed productivity (sPR) which explains
38% of the variance in sPR. Similarly, our results reveal the most potential for valence
and to some degree dominance to be positively related to expectations. On the other
side, as with Graziotin, Wang, and Abrahamsson’s study, the affect dimension of arousal,
which is the intensity of emotional activation, appears to be a non-factor. Arousal in
general was unimportant in our experiment since it was very similar for all groups
and did not change much pre-task to post-task. This is interesting because valence

72

6.1 Findings

and arousal are the two main dimensions of core affect theory [Rus03] as well as the
pleasure-arousal-dominance model [RM77] which is the basis for SAM.

We believe that the simple scenario we use might not be enough to create a significant
affect response. The lower arousal values across the board indicate that no strong
affect was felt by the participants. Measurable changes in affect are typically a result
of an event with an attributed affect which can lead to an emotional episode [Rus03].
Especially when people can attribute their affect change to an object, corresponding
cognitive processes of emotional response are activated. The same is displayed in the
theory of the impact of affects on programming performance by Graziotin, Wang, and
Abrahamsson [GWA15a], where events are the starting point that trigger affects and
as a result influence performance. Being told, that an arbitrary code snippet you are
not familiar with will be hard or easy to understand is perhaps not sufficient to trigger
an affective response. In practice, statistical analysis tools provide an evaluation for
a developer’s own code which typically encompasses the whole project. Therefore,
developers see whether their code fulfills the quality requirements oftentimes through
a color schema from red to green which could induce stronger affect responses. As a
result, it might be interesting to observe this effect in a real practical environment to
investigate whether static analysis tools trigger events that influence affective states.

Interpretation of RQ4 In terms of variance between pre-task to post-task measures,
we expected to see multiple differences. As a result of using three different treatment
groups in combination with two code snippets of distinct difficulty, we believed that
there would be significant differences in the perception of participants that got sug-
gested one difficulty of code snippet but saw the opposite code snippet. Our results
reveal a significant positive correlation with a large effect between the difference of
expectations before seeing the code snippet and perception of understanding the code
snippet afterwards with pre-task to post-task motivation difference (p = 0.001, τ =
0.258). We measure an even stronger effect for the correlation between the expectation
difference and the valence difference with p < 0.001 and τ = 0.394 indicating a very
large effect. Similar to previous results, arousal is truly insignificant (p = 0.505) while
dominance shows some potential (p = 0.054). Therefore, we reject the null hypotheses
H004 and H104 in favor of the corresponding alternative hypotheses but do not reject the
null hypotheses H204 and H304.

Inspecting the pre-task to post-task differences demonstrates that motivation is generally
lower after seeing the code snippet (avg = -0.28) as well as valence (avg = -0.25) while
arousal and dominance remain the same (avg for both = -0.04). Differences heavily rely
on the code snippet seen, where the easy code snippet increases expectations (avg =
0.59), slightly decreases motivation (avg = -0.05) and increases valence (avg = 0.17).
Inspecting the hard code snippet significantly decreases all three on average (expectation
-0.26, motivation -0.46, valence -0.57). For the different groups, we thought that the

73

6 Discussion

group to which we imply a difficult code snippet but ultimately sees the easy code
snippet would be much happier while the opposite would be true for the mirrored group
M3_hard. However, the results show, that M8_easy was not happier (avg = -0.50) and
M3_hard was only slightly unhappy (avg = -0.27) but still way happier than all other
groups that saw the hard code snippet.

These results further strengthen the positive relationship between expectations and
motivation. We did not investigate the causal link between the two. However, it seems
reasonable to argue in accordance with results for RQ1 that developers experiencing that
they understand a code snippet much better than they expected increases motivation
to engage with the code snippet. In the same vein, being positively surprised by one’s
ability to understand a code snippet correlates with being happier after inspecting the
code snippet. We see a very large effect for this relationship which is in accordance with
expectancy research [ORZ96] as well as expectation-confirmation theory [Bha01]. Both
explain that expectancies that are exceeded and expectancies that remain unfulfilled
have an increased effect on affective states.

Furthermore, the effect of different code snippets is a result in and of itself. Even
though we did not analyze this effect with statistical methods it is clear, that harder
to understand code lowers motivation, valence, and dominance. This is the one case
where arousal actually slightly increases for the hard code snippet (avg = 0.02) but not
for the easy code snippet (avg = -0.11). Participants probably feel either more stressed
or challenged by the hard code snippet which increased their arousal. However, the
decrease in motivation and valence is more important since this confirms the outcomes of
bad code quality. In their large scale survey, Graziotin et al. [GFWA17] found developers
to report external qualities as reasons for negative affect four times as much as internal
causes. These external causes are dominated by bad code quality which leads to lower
motivation and lowers cognitive performance. Our results speak to the potential truth
of the more exploratory claims of Graziotin et al. which warrants additional research
investigating the link between bad code quality and decreased motivation as well as
unhappiness. As discussed already decreases in motivation and affect can have an
effect on people for longer amounts of time and beyond the current task influencing
persistence, general well-being, up to work withdrawal [GFWA17; RD00].

Lastly, the unexpected differences between the groups have to be considered with
the lower amount of participants for each group in mind. M8_easy only consists of 6
participants while M3_hard consists of 11 people. Therefore, these results are not as
representative as the rest. Nevertheless, we are surprised by the lack of increased valence
in M8_easy. Maybe they expected to inspect a challenging puzzle of a code and were
disappointed after seeing the easy code snippet. Interestingly, this group reported a large
increase in dominance (avg = 0.67) which could mean that they feel more in control of
the situation after being sure they understand the code snippet. On the other side, we

74

6.1 Findings

thought that people in M3_hard might be frustrated seeing a more difficult code snippet
than implied in the beginning. The difference turns out to be small which could indicate
that participants in this group perceive the hard code snippet to not be as difficult as
the other groups as a result of the initial scenario telling them it will be simple. This is
supported by the lowest pre-task to post-task expectation difference afterwards (avg =
-0.16) for this group in the category of inspecting the hard code snippet. Interestingly,
the control group reports the biggest overall negative difference for motivation (avg
= -0.61) and dominance (avg = -0.21) as well as the most increase in arousal (avg =
0.29) for the group that saw the hard code snippet (C_hard). They did not have the
added challenge of comparing themselves with a provided understandability score and
therefore might question the purpose of the experiment after already having inspected
the code snippet. As a result, they might feel annoyed or frustrated with having to
answer the same set of questions again in addition to seeing a hard to understand code
snippet. In the end, our results show that expecting simple code and seeing an easy code
snippet increases motivation and valence while seeing a hard code snippet decreases
motivation and valence. However, for the other case where participants expect to see a
difficult code snippet both scenarios of either looking at an easy code snippet or a hard
code snippet decreases motivation and valence.

Interpretation of RQ5 We expected to observe significant differences in the subjective
understandability assessment based on the three initial treatment groups. The analysis
shows no significant difference for both code snippets. In the case of the easy code
snippet, the understandability score differs between the three groups (C = 3.12, M3

= 1.68, M8 = 1.33), but not significantly with p = 0.043 and η2 = 0.134 indicating a
possible medium effect. We could employ the same reasoning as we did in interpreting
RQ3 for a potential significant p-value in a different sample for the easy code snippet.
However, in this case, one group consists of only six participants which makes it un-
reasonable to predict the outcomes for larger or different samples. For the hard code
snippet, we see the same result with an average assessment difference between the
groups (C = 5.86, M3 = 5.27, M8 = 6.19) and no significance (p = 0.506, η2 = 0.030).
Excluding the control group and only analyzing M3 and M8 produces the unchanging
insignificant results with p = 0.152 for the easy code snippet and p = 0.127 for the hard
code snippet with small effects for both. Therefore, we do not reject the corresponding
null hypotheses H005 and H105 for this research question.

In accordance with the anchoring effect, we would expect the participants to rely on
the provided understandability value and choose scores more closely to it. We can see
slight differences for the hard code snippet with M3 rating it on average as a 5.27 and
M8 rating it as a 6.19. Therefore both groups lean a little towards the understandability
score presented to them. Interestingly, for the easy code snippet, M8 even has the lowest
average score among all three groups with 1.33. However, these results showcase that

75

6 Discussion

the participants were not significantly influenced in their code assessment as a result of
the understandability metric presented in the beginning.

Preikschat [Pre20] discovered a significant difference in subjective understandability
assessment in his experiment using a similar set-up with two groups who got suggested
different difficulties of upcoming code snippets. His participants appear to be highly
influenced by the provided understandability metric which results in a significant differ-
ence with a p-value < 0.001 and a large effect (Cohen’s d = 1.376). Similarly, Jørgensen
and Sjøberg [JS04] showed, that providing an initial customer estimation value for the
effort of a software project significantly influences the effort estimation of both students
and professionals. Therefore, it is quite surprising to not be able to replicate these results
with both of our code snippets. Especially, since anchoring effects are thought of as
being one of the most persuasive and robust cognitive effects [FB11; MES04]. The effect
has been shown to work with clearly uninformative values, with experienced judges,
highly cognitive people, and over longer periods of time.

In his work, Preikschat promoted the presented understandability metric to a greater
extent than we did. Furthermore, he showed the metric directly next to the code snippets
while participants tried to understand them. In contrast, we only depict the metric
in the scenario description and the code instruction on the page before participants
see the code. Therefore, the metric was more present in the mind of Preikschat’s
participants. Still, the anchoring effect is shown to last up to a week which means that
20 seconds between seeing it in the code instructions and then looking at the code
should not impact the effect. Furnham and Boo [FB11] report mixed results for the use
of implausible anchors where they sometimes work more effectively but other times
they are less effective. In our case, the latter appears to be true since five out of the six
people selected the lowest number in 1 as the understandability score for the easy code
snippet even though they were told it will be an 8 out of 10. We inspected, whether
programming experience was another mitigating factor for this group, but this group
has an average of 6.5 out of 10 in general programming experience and 4.2 out of 5
in Java experience in contrast to the whole sample with an average of 6.90 and 4.01
respectively. It seems like when the provided understandability score does not fit at
all to the code snippet, developers are able to ignore this anchor and judge the code
independently. Additionally, one participant in the opposite group of M3_easy choose
7 for the understandability score which severely skews the results of this group. We
received feedback from two participants that they might have misunderstood the scale
to have said that the score of 10 would be very easy to understand. Since the survey
is anonymous we can not be sure that the participant with a 7 is one of them, but it is
very likely since they represent a lonely outlier. However, even excluding this participant
would not change the results. For the hard code snippet, both anchors of 3 and 8 appear
to be plausible scores since the code snippet was rated as a 5.86 on average by the

76

6.2 Limitations

control group. We are not sure, why the anchors only worked very slightly in this case.
Perhaps a more difficult code snippet would cause clearer results.

The most important factors in interpreting these results are the small and uneven
groups. For the easy code snippet, we have M3_easy with 12 participants and M8_easy
with 6. A similar difference emerges for the hard code snippet with M3_hard having
11 participants and M8_hard consisting of 21. This severely limits the power of our
ranked-based hypothesis test.

We propose another possibility for the results. Similar to Boot et al.’s discovery, that
expectations of participants can predict the outcomes of video game interventions
that claim to improve cognition [BSSS13], we believe that expectations could predict
anchoring effects. According to explanatory theories of the anchoring effect, anchors
lead to selective accessibility of anchor-consistent information which influences the final
judgment of a subject [FB11; MES04]. This accessibility of anchor-consistent information
could be measured by expectations in regards to the upcoming judgment. As a result,
different anchors create different expectations about the object to be judged which could
explain the difference in outcomes. In their literature reviews both Furnham and Boo
[FB11] as well as Mussweiler, Englich, and Strack [MES04] do not mention the influence
of expectations at all which reveals a possibility for further research. This approach
would explain our results. Since we did not measure any difference in expectations
as a result of the anchors, participants were not significantly influenced by it in their
judgment.

6.2 Limitations

In Section 4.6.1 we already discussed our efforts to mitigate potential threats to validity
through our research design. Therefore, this section describes the remaining limitations
for our experiment which should be considered when interpreting the results.

6.2.1 Participant Sample

As always, more participants would increase the reliability of our results. Especially
considering the combination of three treatment groups with two code snippets which
creates small samples for the resulting six groups. Therefore, the comparisons between
these groups for research question RQ4 and RQ5 should be considered with the necessary
carefulness. They might look different for a bigger sample or a different population.

77

6 Discussion

Overall, our sample showcases a wide variety of developers. In regards to age, partici-
pants are on average 32 years old but with a standard deviation of 10.73 years. Similarly,
we have a good mix of 53% IT professionals, 38% students, and 7% researchers. In terms
of gender, only seven participants identify as female and one as non-binary which makes
it hard to generalize for these populations if differences exist. Research shows some
differences between genders and comprehending code which could result in different un-
derstandability scores [SS14]. Furthermore, our participants are generally experienced
programmers as indicated by an average score of 6.90 out of 10 on the scale of general
programming. Therefore, we can not make statements about how inexperienced devel-
opers would perform in the experiment. In past experiments of code comprehension,
researchers present non-linear differences for programming experience [AWF18]. While
professionals with varying levels of experience exhibit only slight differences, there are
significant differences between novices and professionals. In addition, the interpretation
of affective states can differ substantially in other cultures or languages [Rus91] which
should be considered when generalizing beyond English speaking developers.

In the end, we believe that our sample of 81 developers with a mix of students and
professionals provides a good representation of the general developer population.

6.2.2 Use of an Online Survey

Using an online survey instead of a controlled experiment has strengths and weaknesses.
On the one hand, we do not have control of the environment the participants are in.
They might get distracted by other people, noise, or what else is happening on their
screen. Additionally, participants might not read everything and answer with the most
due diligence, because they do not feel observed. Furthermore, we can not answer
questions or help with problems that occur during the experiment. On the other hand,
this environment more closely represents the real world.

This trade-off between control and generalizability is typical for any experiment [Sto05].
In the software engineering community, there is no consensus on the importance of
internal versus external validity and when to focus on which one [SSA15]. We choose
generalizability since it is more interesting, in our opinion, to inspect constructs that are
closer to reality. Furthermore, these days online surveys are easier to administer and
provide the potential for more participants.

6.2.3 Measurement Instruments

We use two unvalidated scales in order to measure expectations and motivation pre-task
as well as post-task. This is a result of not finding any applicable validated scales that

78

6.2 Limitations

fit our experiment setting. Especially our requirement of administrating the scales two
times, before and after a task turned out to be challenging. Most scales, we identified in
the literature deal with broader topics of expectations and motivation, not single tasks.
Therefore, we constructed our own scales based on validated ones from the literature.
Analysis of the Cronbach alpha values shows good internal consistency for all four of
our scales. However, to actually validate these scales many more participants would be
necessary with a dedicated experiment evaluating construct and discriminant validity,
internal consistency, and retest accuracy. Especially, whether our scales actually measure
the intended constructs of expectation and motivation would be important to know.
Furthermore, the two scales are quite similar in the activities they describe. We believe,
that "I think I could fix a bug in the code snippet" and "I would feel pleased fixing a
bug in the code snippet" should yield different answers. However, we can not exclude
the possibility that participants interpret them as being similar as a result of using the
same activity in the sentence. In addition, since we use a similar version of these scales
pre-task and post-task which only differentiate by the tense used, participants could be
inclined to provide the same answers they gave before. Our results show that this is
generally not true, because we see significant differences in answers between pre-task
to post-task.

Different methods exist to measure motivation [TF14] as well as affective states [MR09].
Researchers suggest to use multiple instruments to compare them to each other if possible
[KDL13; MR09]. We only use self-report measurements because they are the simplest to
administer in an online survey. In addition, other instruments either rely on observing
participants directly or are harder to interpret. For example time measurements, which
are often employed to measure motivation, are difficult to interpret since we can never
be sure that differences can be attributed to motivation instead of other factors such as
tiredness [TF14]. Furthermore, we limit the instruments we use since we do not want to
increase the required time for the survey and potentially annoy our participants. After
all, the intention of the survey was described as judging the understandability of a code
snippet and not filling out many questionnaires about one’s feelings. Therefore, different
measurement instruments could lead to divergent results.

Furthermore, the use of other code snippets could certainly produce different results.
Our code snippets achieve the intended effect of being perceived as easier to understand
and harder to understand respectively. An even more difficult to understand code snippet
for the hard code snippet could reveal more differences than we saw. However, our
code snippets are rather small and therefore easier to understand in general. With
only 20 to 30 lines of code and the topic of String manipulation they represent an easy
challenge for developers. In practice, projects and methods are way bigger and require
domain knowledge to understand. Additionally, working with one’s own code probably
influences motivation and affect response differently as a result of understandability
scores then working with an example in an online survey. Therefore, we are cautious

79

6 Discussion

to generalize the results beyond the limited scope of small and independent code
snippets.

As mentioned before, we received feedback from two participants believing they might
have misused the understandability scale. More specifically, they thought that a 10 on
the scale from 1 to 10 would indicate an easy to understand code. However, in reality, it
is the opposite where 1 is easy to understand and 10 is hard to understand. We explicitly
describe this scale in the scenario description as well as directly in the question where
participants have to rate the understandability of the code snippet. Still, it appears that
for some people their internal perception of how the scale should look like overrides
the actual description or they did not read the description. Since we use an anonymous
survey, there is no way to reliably exclude these participants. Furthermore, we do not
know if more than two participants had this problem. We believe, that our sample of 81
participants alleviates these problems for the most part. However, the understandability
score is most important for research question RQ5 where we split our participants into
six groups for comparison which increases the impact individual participants have on
the results. Accordingly, these influences should be considered for the results of RQ5.

6.2.4 Confounding Factors

The research of placebos and nocebos has a long history of studying personality traits
that impact these effects [KKWB20]. Evidence suggests that traits such as optimism,
empathy, extraversion, ego resilience, altruism, forwardness, and low hostility relate
to greater placebo response [DBC14]. Researchers acknowledge that this response is
likely a combination of personality and the context of the treatment [GKH+07]. Similar
research is conducted in the area of software engineering, but the amount is small and
the evidence weak or inconclusive [CSM+11]. In their experiment, Wyrich, Graziotin,
and Wagner [WGW19] found conscientious to be a predictor of worse performance in
coding challenges. Furthermore, Preikschat [Pre20] observed anxiety to correlate with
the deviation from the understandability metric. We do not measure personality traits
for our participants. As discussed before, we are very happy with the scope and required
time of our survey. As a result, differences in personality traits between the groups
could impact their expectations, motivation, and affect reaction. The demographic data
including programming experience we collect shows balanced values between the three
treatment groups. However, we can not exclude that other factors we do not control for
might impact participants’ performance in the experiment.

For affective states, we do not measure an initial value at the start of the survey.
Therefore, participants in the three groups could differ in their starting valence, arousal,
and dominance. This can affect their performance in the experiment in regards to

80

6.2 Limitations

comprehending the code snippet [GFWA17; GFWA18; GWA14b; WGW19]. Furthermore,
variation in the affective states would impact our results in terms of comparing the
different groups in research question RQ4. One option would be to administer SPANE
[DWT+09b] at the beginning of the survey to gather the overall status of positive and
negative affect of the participants. However, as before we were inclined to not include
more instruments in our survey.

Similar arguments can be used for considering the motivation of participants as a
confounding factor. People that volunteer to participate in a survey are generally more
motivated than the whole population [WRH+12]. In addition, we use an incentive of a
5C donation which could influence motivation. However, research shows little evidence
for negative effects of survey incentives and instead incentive respondents might actually
produce better data quality [CSW15].

Another factor for the assessment of the code snippets might be diverse understandings of
what constitutes comprehensible code between the participants. We internally discussed
providing a definition of understandability at the beginning of the survey. However,
since there exists neither an agreement in the literature (see Section 2.1.1) nor does it
seem realistic that developers all share the same view on understandability we decided
against it. Therefore, it might be possible that participants in one group share similar
views on what constitutes understandable code, while participants in other groups differ.
Furthermore, developers from another population could interpret the code snippets
completely differently as a result of their view on understandable code.

6.2.5 Reliability of Results

In regards to research question RQ2, where we evaluate the relationship between
expectations and motivation, it is important to note, that we only have high values for
both corresponding scales. We use the original sums of the expectation and motivation
scales without dividing them by the number of statements for this argumentation because
it is easier to follow with these values. As a result, we measure an average of 19.72
out of 25 for expectation and only seven participants report a value below 16 as well
as an average of 22.53 out of 30 for motivation and only seven participants below
18. For this reason, our results are only reliable for higher values. Even though the
correlation and linear regression would predict increases in motivation as a result of
increases in expectation for small values, the sample data does not provide corresponding
measurements.

The same is true for our other research questions where expectations are involved,
namely all expect for RQ5. For research question RQ4 the difference values for pre-task
expectation to post-task perception only range from 8 to -10 from a potential of 20 to -20

81

6 Discussion

and the difference values for motivation range from 7 to -14 in light of potential values
from 25 to -25. As a result, the predictions of our correlations and linear regression are
less reliable for values outside these ranges.

6.3 Implications

As it stands, our results show that understandability metrics do not induce placebo
effects or contribute to a cognitive bias. At least for small code snippets in combination
with decently experienced developers they should not impact their expectations about
understanding the code. Therefore, no direct link to influencing motivation or affective
states, which are known to impact performance, exists as a result of presenting different
understandability metrics. Even though static analysis tools oftentimes utilize unvali-
dated metrics, this should not pose a threat to the performance of developers under the
discussed limitations.

Independently of understandability metrics we see a clear relationship between ex-
pectations and motivation where expectations influence motivation. It is important to
ensure for developers, that they believe in their ability to complete any task they are
presented with. Even for more challenging assignments, it seems valuable to present
them in a way that the programmer feels confident in their success. As a result, one can
expect increased motivation in solving the task which improves performance, persistence,
creativity, self-esteem, and general well-being. Similar effects could be true for positive
affect as a consequence of success expectations, but this link needs further research. In
the end, we encourage anyone assigning tasks to ask about as well as track expectations
of the assigned person and help them with developing expectations of completing the
task.

Furthermore, differences between expectation and perception in regards to understand-
ing code impact motivation and affective states. Therefore, the expectancy-confirmation
theory holds true for the context of comprehending code snippets. While it is beneficial
to induce success expectations, it is similarly important to manage them in a way where
these expectations are confirmed in the end. Otherwise, intensified negative effects of
demotivation and negative affect could occur. On the other side, lower expectations in
the beginning can result in enhanced motivation and positive affect if they are exceeded.
A balancing act is needed where expectations are positive but remain reasonable. Addi-
tionally, this result showcases another reason for static analysis tools to improve their
false positive rate. When warnings of static analysis tools elicit expectations about
the code which are then not fulfilled actually looking at the code snippet, developers’
motivation and affective state diminishes. As a result, they might ignore warnings in the

82

6.3 Implications

future or get annoyed by them, since their expectations about the usefulness of warnings
change through these experiences.

In regards to the anchoring effect, we observe no such effect for both of our code
snippets. Here, it would be interesting to further evaluate in which situations anchoring
is mitigated. We offer explanations in terms of an implausible anchor in combination
with experience as well as the potential of expectations predicting anchoring effects.
In their current form, our results reveal no anchoring effect as a result of a presented
understandability metric. However, these results should be applied cautiously while
taking the limitations of small sample sizes into account.

For future research, we believe that incorporating more expectation measurements in
experiment designs could provide interesting information. While outcome measures
oftentimes explain what happened expectations could support insights into why it
happened. Researchers frequently believe that a certain treatment would have an
expected effect on their participants and then go on to measuring the outcome. However,
it might be beneficial to ask the participants about the expected effect and measure if this
effect actually occurs. As a result, expectations should be considered as a confounding
factor in experiments where treatments could induce different expectations in different
treatment groups.

83

Chapter 7

Conclusion

The comprehension of program code is a highly cognitive task and takes up most
of the working time of software developers. As a result, the use of static analysis
tools has become stable in many software projects in order to improve code towards
understandability. Especially for maintenance tasks, it is important to preserve an
understandable codebase since developers have to comprehend the code first before
incorporating changes. However, most of the used metrics in static analysis tools are not
empirically validated.

Therefore, we investigated the consequences of these unvalidated metrics on the cog-
nitive processes of software developers. We reported on an experiment evaluating
the effects of presenting different understandability metric values to programmers. 81
developers consisting of students and IT professionals participated in our online survey
that incorporated a code snippet assessment task with questionnaires before and after.
Both times, these questionnaires asked participants about their expectations, motivation,
and affective states with regard to understanding the code snippet. In an initial scenario
description, we presented different understandability values for the upcoming code
snippet depending on the treatment group. Participants were randomly assigned to
one of three treatment groups: a control group, a group to which we imply a simple
upcoming code snippet, and a group to which we imply a difficult code snippet. Addi-
tionally, we used two code snippets with contrasting difficulty to analyze the reactions
of participants. Furthermore, we asked participants how they think understandability
metrics would impact their motivation and affective state.

Our results show clear differences between the personal opinion of participants and their
performance in the experiment. While participants think that they would be motivated
by a bad understandability score and satisfied by a good score, the results do not
support this thesis. Instead, our findings show no significant difference for expectations,
motivation, and affective state as a result of presenting different understandability
scores. However, we discover a strong positive linear relationship between expectations

85

7 Conclusion

of understanding code and motivation to engage with that code where expectations
explain 18.3% of the variance of motivation. With regard to a relationship between
expectations and affective states, we do not find significant results. Inspecting the
difference between expectations of understanding the code snippet before seeing it
and the perception of understanding it afterwards reveals multiple results. For one,
differences in expectation to perception demonstrate a strong positive correlation with
differences of motivation from pre-task to post-task. Therefore, developers who are
positively surprised by the easiness of understanding the code snippet are also more
motivated to further engage with that code snippet. We find an even stronger positive
correlation between differences in expectation and differences in valence. This means,
positively surprised developers are additionally a lot happier after inspecting the code
snippet. Lastly, we investigate to what extent the understandability values presented at
the start of the experiment influence the subjective understandability assessment of the
code snippet. Contrasting to prior work, our results show no significant impact on the
assessment of the developers for both code snippets.

In the end, these results showcase a surprisingly insignificant and minimal impact of
presenting different understandability values to developers. For the combination of
experienced programmers and smaller code snippets, understandability metrics do not
influence expectations about understanding the code nor the assessment of the code.
On the other side, our findings exemplify the importance of believing in one’s ability
of understanding code. In both scenarios, before seeing the code snippet and after
inspecting the code snippet expectations strongly impact the motivation and in the
latter part additionally the happiness of developers. Therefore, we encourage anyone
assigning programming tasks to manage success expectations in a way to establish them
beforehand and ensure that they are fulfilled afterwards. In addition, static analysis tools
should improve their false positive rate in order to mitigate expectancy disconfirmation
events that decrease motivation and happiness of programmers which impacts their
engagement with the corresponding code in the future. Lastly, our results highlight the
benefit of specifically measuring expectations in different treatment groups to explain
outcomes which should be considered in future experiments as a potential confounding
factor.

Future Work

To combat the limitation of having a majority of experienced developers in our sample,
we plan to replicate the experiment with a different sample of only software engineering
students. As a result, we can investigate potential differences based on experience level.
Additionally, combining both samples could reveal new results. Furthermore, replicating

86

the experiment with a more difficult scenario and code snippets would be interesting to
see the corresponding effect on the results.

Regarding expectancy, we believe future research can benefit from incorporating expec-
tation measurements in order to investigate treatment effects. Furthermore, we propose
to analyze whether anchoring effects can be predicted by the expectations of people.

For motivation, the intrinsic motivation inventory [DR20] offers more categories of mo-
tivation than we used in our experiment which could reveal further insights. Especially,
if the influence of understandability metrics would be observed in a practical setting
with developers working on their own code and live interacting with static analysis tools
using metrics.

This approach could additionally uncover more realistic effects of metrics on affective
states. Another method would be to investigate distinct emotions that arise as a result
of different expectations and specifically expectancy disconfirmation events. Pekrun
et al. [PVMS16] developed and validated a scale for epistemic emotions that emerge
based on knowledge-generating tasks which consist of the emotions surprised, curious,
excited, confused, anxious, frustrated, and bored. This could be applied to the context
of developers trying to understand program code.

Furthermore, our results revealed vast differences in perception, motivation, and valence
based on the difficulty of the inspected code snippet which warrants further experimental
investigation of the impact different quality code has on developers with regard to these
concepts.

87

Chapter 7

Bibliography

[Abd07] H. Abdi. “Bonferroni and Šidák corrections for multiple comparisons.” In:
Encyclopedia of measurement and statistics 3 (2007), pp. 103–107 (cit. on
p. 54).

[AMOK19] E. A. AlOmar, M. W. Mkaouer, A. Ouni, M. Kessentini. “On the Impact
of Refactoring on the Relationship between Quality Attributes and De-
sign Metrics.” In: 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, Sept. 2019. DOI:
10.1109/esem.2019.8870177 (cit. on p. 28).

[Apa] Apache. Code snippet retrieved from https://github.com/apache/commons-
lang/blob/master/src/main/java/org/apache/commons/lang3/StringUtils.
java#L3609. The code snippet was slightly changed. It is licensed under the
Apache License Version 2.0. (Cit. on p. 43).

[ASC] K. Aggarwal, Y. Singh, J. Chhabra. “An integrated measure of software
maintainability.” In: Annual Reliability and Maintainability Symposium.
2002 Proceedings (Cat. No.02CH37318). IEEE. DOI: 10.1109/rams.2002.
981648 (cit. on p. 5).

[AVZ15] E. Ammerlaan, W. Veninga, A. Zaidman. “Old habits die hard: Why
refactoring for understandability does not give immediate benefits.” In:
2015 IEEE 22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER). IEEE, Mar. 2015. DOI: 10.1109/saner.2015.
7081865 (cit. on pp. 7, 9).

[AWF18] S. Ajami, Y. Woodbridge, D. G. Feitelson. “Syntax, predicates, idioms —
what really affects code complexity?” In: Empirical Software Engineering
24.1 (June 2018), pp. 287–328. DOI: 10.1007/s10664-018-9628-3
(cit. on pp. 6, 7, 9, 78).

89

https://doi.org/10.1109/esem.2019.8870177
http://www.apache.org/licenses/LICENSE-2.0
https://doi.org/10.1109/rams.2002.981648
https://doi.org/10.1109/rams.2002.981648
https://doi.org/10.1109/saner.2015.7081865
https://doi.org/10.1109/saner.2015.7081865
https://doi.org/10.1007/s10664-018-9628-3

Bibliography

[Bau15] R. F. Baumeister. “Toward a general theory of motivation: Problems, chal-
lenges, opportunities, and the big picture.” In: Motivation and Emotion
40.1 (Oct. 2015), pp. 1–10. DOI: 10.1007/s11031-015-9521-y (cit. on
p. 17).

[BB01] B. Boehm, V. Basili. “Top 10 list [software development].” In: Computer
34.1 (2001), pp. 135–137. DOI: 10.1109/2.962984 (cit. on p. 1).

[BBH+08] S. Beecham, N. Baddoo, T. Hall, H. Robinson, H. Sharp. “Motivation in
Software Engineering: A systematic literature review.” In: Information
and Software Technology 50.9-10 (Aug. 2008), pp. 860–878. DOI: 10.
1016/j.infsof.2007.09.004 (cit. on pp. 31, 32).

[BBL76] B. W. Boehm, J. R. Brown, M. Lipow. “Quantitative evaluation of software
quality.” In: Proceedings of the 2nd international conference on Software
engineering. IEEE Computer Society Press. 1976, pp. 592–605 (cit. on
pp. 5, 6).

[Ben05] F. Benedetti. “Neurobiological Mechanisms of the Placebo Effect.” In:
Journal of Neuroscience 25.45 (Nov. 2005), pp. 10390–10402. DOI: 10.
1523/jneurosci.3458-05.2005 (cit. on p. 15).

[Ber07] D. Bertram. “Likert scales.” In: Retrieved November 2 (2007), p. 2013
(cit. on p. 53).

[BF17] T.-M. Bynion, M. T. Feldner. “Self-assessment manikin.” In: Encyclopedia
of personality and individual differences (2017), pp. 1–3 (cit. on p. 23).

[BG07] S. G. Barsade, D. E. Gibson. “Why Does Affect Matter in Organizations?”
In: Academy of Management Perspectives 21.1 (Feb. 2007), pp. 36–59. DOI:
10.5465/amp.2007.24286163 (cit. on p. 32).

[BH14] K. E. Barron, C. Hulleman. “Expectancy-Value-Cost Model of Motivation.”
In: Jan. 2014, pp. 503–509 (Vol. 8). DOI: 10.1016/B978-0-08-097086-
8.26099-6 (cit. on p. 18).

[Bha01] A. Bhattacherjee. “Understanding Information Systems Continuance: An
Expectation-Confirmation Model.” In: MIS Quarterly 25.3 (Sept. 2001),
p. 351. DOI: 10.2307/3250921 (cit. on pp. 14, 15, 74).

[BL94] M. M. Bradley, P. J. Lang. “Measuring emotion: the self-assessment
manikin and the semantic differential.” In: Journal of behavior therapy
and experimental psychiatry 25.1 (1994), pp. 49–59 (cit. on pp. 23, 41,
53).

[BP16] J. Borstler, B. Paech. “The Role of Method Chains and Comments in
Software Readability and Comprehension—An Experiment.” In: IEEE
Transactions on Software Engineering 42.9 (Sept. 2016), pp. 886–898.
DOI: 10.1109/tse.2016.2527791 (cit. on p. 6).

90

https://doi.org/10.1007/s11031-015-9521-y
https://doi.org/10.1109/2.962984
https://doi.org/10.1016/j.infsof.2007.09.004
https://doi.org/10.1016/j.infsof.2007.09.004
https://doi.org/10.1523/jneurosci.3458-05.2005
https://doi.org/10.1523/jneurosci.3458-05.2005
https://doi.org/10.5465/amp.2007.24286163
https://doi.org/10.1016/B978-0-08-097086-8.26099-6
https://doi.org/10.1016/B978-0-08-097086-8.26099-6
https://doi.org/10.2307/3250921
https://doi.org/10.1109/tse.2016.2527791

Bibliography

[Bro83] R. Brooks. “Towards a theory of the comprehension of computer pro-
grams.” In: International Journal of Man-Machine Studies 18.6 (June
1983), pp. 543–554. DOI: 10.1016/s0020-7373(83)80031-5 (cit. on
p. 12).

[BSSS13] W. R. Boot, D. J. Simons, C. Stothart, C. Stutts. “The Pervasive Problem
With Placebos in Psychology.” In: Perspectives on Psychological Science 8.4
(July 2013), pp. 445–454. DOI: 10.1177/1745691613491271 (cit. on
pp. 17, 30, 77).

[BV16] A. Betella, P. F. M. J. Verschure. “The Affective Slider: A Digital Self-
Assessment Scale for the Measurement of Human Emotions.” In: PLOS
ONE 11.2 (Feb. 2016). Ed. by U. S. Tran, e0148037. DOI: 10.1371/journal.
pone.0148037 (cit. on p. 24).

[BW10] R. P. L. Buse, W. R. Weimer. “Learning a Metric for Code Readability.” In:
IEEE Transactions on Software Engineering 36.4 (July 2010), pp. 546–558.
DOI: 10.1109/tse.2009.70 (cit. on pp. 6, 7).

[Cam18a] G. A. Campbell. “Cognitive Complexity-A new way of measuring under-
standability.” In: SonarSource SA (2018) (cit. on p. 10).

[Cam18b] G. A. Campbell. “Cognitive complexity.” In: Proceedings of the 2018 Inter-
national Conference on Technical Debt - TechDebt ’18. ACM Press, 2018.
DOI: 10.1145/3194164.3194186 (cit. on p. 10).

[CAS+16] C. Chen, R. Alfayez, K. Srisopha, L. Shi, B. Boehm. “Evaluating Human-
Assessed Software Maintainability Metrics.” In: Communications in Com-
puter and Information Science. Springer Singapore, 2016, pp. 120–132.
DOI: 10.1007/978-981-10-3482-4_9 (cit. on p. 5).

[CAS03] J. K. Chhabra, K. Aggarwal, Y. Singh. “Code and data spatial complexity:
two important software understandability measures.” In: Information and
Software Technology 45.8 (June 2003), pp. 539–546. DOI: 10.1016/s0950-
5849(03)00033-8 (cit. on p. 9).

[CBS79] C. S. Carver, P. H. Blaney, M. F. Scheier. “Reassertion and giving up: The
interactive role of self-directed attention and outcome expectancy.” In:
Journal of Personality and Social Psychology 37.10 (1979), pp. 1859–1870.
DOI: 10.1037/0022-3514.37.10.1859 (cit. on p. 14).

[CC17] N. Corsi, L. Colloca. “Placebo and Nocebo Effects: The Advantage of Mea-
suring Expectations and Psychological Factors.” In: Frontiers in Psychology
8 (Mar. 2017). DOI: 10.3389/fpsyg.2017.00308 (cit. on pp. 15, 17).

[CD10] C. Croux, C. Dehon. “Influence functions of the Spearman and Kendall
correlation measures.” In: Statistical Methods & Applications 19.4 (May
2010), pp. 497–515. DOI: 10.1007/s10260-010-0142-z (cit. on p. 54).

91

https://doi.org/10.1016/s0020-7373(83)80031-5
https://doi.org/10.1177/1745691613491271
https://doi.org/10.1371/journal.pone.0148037
https://doi.org/10.1371/journal.pone.0148037
https://doi.org/10.1109/tse.2009.70
https://doi.org/10.1145/3194164.3194186
https://doi.org/10.1007/978-981-10-3482-4_9
https://doi.org/10.1016/s0950-5849(03)00033-8
https://doi.org/10.1016/s0950-5849(03)00033-8
https://doi.org/10.1037/0022-3514.37.10.1859
https://doi.org/10.3389/fpsyg.2017.00308
https://doi.org/10.1007/s10260-010-0142-z

Bibliography

[CF14] R. J. Casson, L. D. Farmer. “Understanding and checking the assumptions
of linear regression: a primer for medical researchers.” In: Clinical &
Experimental Ophthalmology 42.6 (June 2014), pp. 590–596. DOI: 10.
1111/ceo.12358 (cit. on p. 54).

[CFY17] S.-Y. Chen, Z. Feng, X. Yi. “A general introduction to adjustment for
multiple comparisons.” In: Journal of Thoracic Disease 9.6 (June 2017),
pp. 1725–1729. DOI: 10.21037/jtd.2017.05.34 (cit. on pp. 54, 55).

[CLLB04] L. Colloca, L. Lopiano, M. Lanotte, F. Benedetti. “Overt versus covert
treatment for pain, anxiety, and Parkinson’s disease.” In: The Lancet
Neurology 3.11 (Nov. 2004), pp. 679–684. DOI: 10.1016/s1474-4422(04)
00908-1 (cit. on p. 15).

[CNA+20] S. Chattopadhyay, N. Nelson, A. Au, N. Morales, C. Sanchez, R. Pandita,
A. Sarma. “A Tale from the Trenches: Cognitive Biases and Software
Development.” In: ACM/IEEE 42nd International Conference on Software
Engineering (ICSE). 2020 (cit. on pp. 2, 26, 27).

[Coh88] J. Cohen. “Statistical power analysis for the behavioral sciences New
York.” In: NY: Academic (1988) (cit. on p. 54).

[CP08] J. Carifio, R. Perla. “Resolving the 50-year debate around using and
misusing Likert scales.” In: Medical education 42.12 (2008), pp. 1150–
1152 (cit. on p. 53).

[CS17] C. Carbonell-Carrera, J. L. Saorın. “Geospatial Google Street View with
Virtual Reality: A Motivational Approach for Spatial Training Education.”
In: ISPRS International Journal of Geo-Information 6.9 (Aug. 2017), p. 261.
DOI: 10.3390/ijgi6090261 (cit. on p. 20).

[CSLB19] C. Chen, M. Shoga, B. Li, B. Boehm. “Assessing Software Understandabil-
ity in Systems by Leveraging Fuzzy Method and Linguistic Analysis.” In:
Procedia Computer Science 153 (2019), pp. 17–26. DOI: 10.1016/j.procs.
2019.05.051 (cit. on pp. 1, 6, 8).

[CSM+11] S. Cruz, F. da Silva, C. Monteiro, C. Santos, M. dos Santos. “Personality
in software engineering: preliminary findings from a systematic literature
review.” In: 15th Annual Conference on Evaluation & Assessment in Soft-
ware Engineering (EASE 2011). IET, 2011. DOI: 10.1049/ic.2011.0001
(cit. on p. 80).

[CSW15] J. S. Cole, S. A. Sarraf, X. Wang. “Does use of survey incentives degrade
data quality?” In: Association for Institutional Research Annual Forum.
2015 (cit. on p. 81).

[Cum13] G. Cumming. “The New Statistics.” In: Psychological Science 25.1 (Nov.
2013), pp. 7–29. DOI: 10.1177/0956797613504966 (cit. on p. 72).

92

https://doi.org/10.1111/ceo.12358
https://doi.org/10.1111/ceo.12358
https://doi.org/10.21037/jtd.2017.05.34
https://doi.org/10.1016/s1474-4422(04)00908-1
https://doi.org/10.1016/s1474-4422(04)00908-1
https://doi.org/10.3390/ijgi6090261
https://doi.org/10.1016/j.procs.2019.05.051
https://doi.org/10.1016/j.procs.2019.05.051
https://doi.org/10.1049/ic.2011.0001
https://doi.org/10.1177/0956797613504966

Bibliography

[DB00] G. J. Devilly, T. D. Borkovec. “Psychometric properties of the credibility/-
expectancy questionnaire.” In: Journal of Behavior Therapy and Experi-
mental Psychiatry 31.2 (June 2000), pp. 73–86. DOI: 10.1016/s0005-
7916(00)00012-4 (cit. on p. 17).

[DBC14] M. Darragh, R. J. Booth, N. S. Consedine. “Investigating the ‘placebo
personality’ outside the pain paradigm.” In: Journal of Psychosomatic
Research 76.5 (May 2014), pp. 414–421. DOI: 10.1016/j.jpsychores.2014.
02.011 (cit. on p. 80).

[Dec86] E. L. Deci. “Ryan. RM (1985). Intrinsic motivation and self-determination
in human behavior.” In: New York and London: Plenum (86) (cit. on
pp. 18, 19).

[DK11] B. Dwyer, Y. Kim. “For Love or Money: Developing and Validating a
Motivational Scale for Fantasy Football Participation.” In: Journal of Sport
Management 25.1 (Jan. 2011), pp. 70–83. DOI: 10.1123/jsm.25.1.70
(cit. on p. 20).

[DR20] E. L. Deci, R. M. Ryan. “Intrinsic motivation inventory (IMI).” In: Retrieved
from https://selfdeterminationtheory.org/intrinsic-motivation-inventory
(April of 2020) (cit. on pp. 20, 41, 87).

[DSC13] H. Ding, H. Sun, A. Chen. “Impact of Expectancy-Value and Situational
Interest Motivation Specificity on Physical Education Outcomes.” In:
Journal of Teaching in Physical Education 32.3 (July 2013), pp. 253–269.
DOI: 10.1123/jtpe.32.3.253 (cit. on p. 20).

[DVMK17] J. Dietrich, J. Viljaranta, J. Moeller, B. Kracke. “Situational expectancies
and task values: Associations with students’ effort.” In: Learning and
Instruction 47 (Feb. 2017), pp. 53–64. DOI: 10.1016/j.learninstruc.2016.
10.009 (cit. on p. 20).

[DWT+09a] E. Diener, D. Wirtz, W. Tov, C. Kim-Prieto, D. Choi, S. Oishi, R. Biswas-
Diener. “Scale of Positive and Negative Experience (SPANE).” In: Ed
Diener personal Website (2009) (cit. on p. 23).

[DWT+09b] E. Diener, D. Wirtz, W. Tov, C. Kim-Prieto, D.-w. Choi, S. Oishi, R. Biswas-
Diener. “New Well-being Measures: Short Scales to Assess Flourishing
and Positive and Negative Feelings.” In: Social Indicators Research 97.2
(May 2009), pp. 143–156. DOI: 10.1007/s11205-009-9493-y (cit. on
pp. 23, 81).

[EA17] A. F. Ernst, C. J. Albers. “Regression assumptions in clinical psychology
research practice—a systematic review of common misconceptions.” In:
PeerJ 5 (May 2017), e3323. DOI: 10.7717/peerj.3323 (cit. on p. 54).

93

https://doi.org/10.1016/s0005-7916(00)00012-4
https://doi.org/10.1016/s0005-7916(00)00012-4
https://doi.org/10.1016/j.jpsychores.2014.02.011
https://doi.org/10.1016/j.jpsychores.2014.02.011
https://doi.org/10.1123/jsm.25.1.70
https://selfdeterminationtheory.org/intrinsic-motivation-inventory
https://doi.org/10.1123/jtpe.32.3.253
https://doi.org/10.1016/j.learninstruc.2016.10.009
https://doi.org/10.1016/j.learninstruc.2016.10.009
https://doi.org/10.1007/s11205-009-9493-y
https://doi.org/10.7717/peerj.3323

Bibliography

[EAF+83] J. S. Eccles, T. F. Adler, R. Futterman, S. Goff, C. Kaczala, J. Meece,
C. Midgley, J. Spence. “Achievement and achievement motivation.” In:
Expectancies, values and academic behaviors (1983), pp. 75–146 (cit. on
pp. 18, 71).

[Edw00] K. Edwards. “When beggers become choosers.” In: First Monday 5.10
(2000) (cit. on p. 6).

[Ekm92] P. Ekman. “An argument for basic emotions.” In: Cognition and Emotion
6.3-4 (May 1992), pp. 169–200. DOI: 10.1080/02699939208411068
(cit. on p. 21).

[ELI+14] D. Eseryel, V. Law, D. Ifenthaler, X. Ge, R. Miller. “An investigation of
the interrelationships between motivation, engagement, and complex
problem solving in game-based learning.” In: Educational technology &
society 17.1 (2014), pp. 42–53 (cit. on pp. 31, 32, 71).

[Erl00] L. Erlikh. “Leveraging legacy system dollars for e-business.” In: IT Pro-
fessional 2.3 (2000), pp. 17–23. DOI: 10.1109/6294.846201 (cit. on
p. 1).

[EW95] J. S. Eccles, A. Wigfield. “In the Mind of the Actor: The Structure of
Adolescents’ Achievement Task Values and Expectancy-Related Beliefs.”
In: Personality and Social Psychology Bulletin 21.3 (Mar. 1995), pp. 215–
225. DOI: 10.1177/0146167295213003 (cit. on p. 18).

[FALK11] J. Feigenspan, S. Apel, J. Liebig, C. Kastner. “Exploring Software Measures
to Assess Program Comprehension.” In: 2011 International Symposium
on Empirical Software Engineering and Measurement. IEEE, Sept. 2011.
DOI: 10.1109/esem.2011.21 (cit. on pp. 7, 9).

[FB11] A. Furnham, H. C. Boo. “A literature review of the anchoring effect.”
In: The Journal of Socio-Economics 40.1 (Feb. 2011), pp. 35–42. DOI:
10.1016/j.socec.2010.10.008 (cit. on pp. 12, 13, 76, 77).

[FBM+14] T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, M. Züger. “Using psycho-
physiological measures to assess task difficulty in software development.”
In: Proceedings of the 36th International Conference on Software Engineer-
ing - ICSE 2014. ACM Press, 2014. DOI: 10.1145/2568225.2568266
(cit. on p. 11).

[Fea66] N. T. Feather. “Effects of prior success and failure on expectations of
success and subsequent performance.” In: Journal of Personality and
Social Psychology 3.3 (1966), pp. 287–298. DOI: 10.1037/h0022965
(cit. on p. 14).

94

https://doi.org/10.1080/02699939208411068
https://doi.org/10.1109/6294.846201
https://doi.org/10.1177/0146167295213003
https://doi.org/10.1109/esem.2011.21
https://doi.org/10.1016/j.socec.2010.10.008
https://doi.org/10.1145/2568225.2568266
https://doi.org/10.1037/h0022965

Bibliography

[FGS+11] A. Franca, T. Gouveia, P. Santos, C. Santana, F. da Silva. “Motivation
in software engineering: a systematic review update.” In: 15th Annual
Conference on Evaluation & Assessment in Software Engineering (EASE
2011). IET, 2011. DOI: 10.1049/ic.2011.0019 (cit. on pp. 31, 32).

[FHFB05] A. J. Fairchild, S. J. Horst, S. J. Finney, K. E. Barron. “Evaluating existing
and new validity evidence for the Academic Motivation Scale.” In: Con-
temporary Educational Psychology 30.3 (July 2005), pp. 331–358. DOI:
10.1016/j.cedpsych.2004.11.001 (cit. on p. 20).

[Fla] Flaticon. Icons provided by www.flaticon.com. Icons made by Freepik (peo-
ples, questionnaires, easy code snippet), Vectors Market (3 and 8), and
prettycons (hard code snippet). (Cit. on p. 36).

[FMAA18] S. Fakhoury, Y. Ma, V. Arnaoudova, O. Adesope. “The Effect of Poor
Source Code Lexicon and Readability on Developers’ Cognitive Load.” In:
2018 IEEE/ACM 26th International Conference on Program Comprehension
(ICPC). 2018, pp. 286–28610 (cit. on pp. 11, 42).

[FN07] G. A. Fredricks, R. B. Nelsen. “On the relationship between Spearman’s
rho and Kendall’s tau for pairs of continuous random variables.” In:
Journal of Statistical Planning and Inference 137.7 (July 2007), pp. 2143–
2150. DOI: 10.1016/j.jspi.2006.06.045 (cit. on p. 54).

[Fow18] M. Fowler. Refactoring: improving the design of existing code. Addison-
Wesley Professional, 2018 (cit. on p. 5).

[FRHA19] S. Fakhoury, D. Roy, A. Hassan, V. Arnaoudova. “Improving Source Code
Readability: Theory and Practice.” In: 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC). IEEE, May 2019. DOI:
10.1109/icpc.2019.00014 (cit. on p. 28).

[FTAS08] R. Feldt, R. Torkar, L. Angelis, M. Samuelsson. “Towards individualized
software engineering.” In: Proceedings of the 2008 international workshop
on Cooperative and human aspects of software engineering - CHASE ’08.
ACM Press, 2008. DOI: 10.1145/1370114.1370127 (cit. on p. 32).

[GFWA17] D. Graziotin, F. Fagerholm, X. Wang, P. Abrahamsson. “On the Unhappi-
ness of Software Developers.” In: Proceedings of the 21st International Con-
ference on Evaluation and Assessment in Software Engineering - EASE’17.
ACM Press, 2017. DOI: 10.1145/3084226.3084242 (cit. on pp. 33, 72,
74, 81).

[GFWA18] D. Graziotin, F. Fagerholm, X. Wang, P. Abrahamsson. “What happens
when software developers are (un)happy.” In: Journal of Systems and
Software 140 (June 2018), pp. 32–47. DOI: 10.1016/j.jss.2018.02.041
(cit. on pp. 34, 72, 81).

95

https://doi.org/10.1049/ic.2011.0019
https://doi.org/10.1016/j.cedpsych.2004.11.001
www.flaticon.com
https://doi.org/10.1016/j.jspi.2006.06.045
https://doi.org/10.1109/icpc.2019.00014
https://doi.org/10.1145/1370114.1370127
https://doi.org/10.1145/3084226.3084242
https://doi.org/10.1016/j.jss.2018.02.041

Bibliography

[GKH+07] A. L. Geers, K. Kosbab, S. G. Helfer, P. E. Weiland, J. A. Wellman. “Further
evidence for individual differences in placebo responding: An interaction-
ist perspective.” In: Journal of Psychosomatic Research 62.5 (May 2007),
pp. 563–570. DOI: 10.1016/j.jpsychores.2006.12.005 (cit. on p. 80).

[Gra16] D. Graziotin. “Towards a Theory of Affect and Software Developers’
Performance.” In: (Jan. 2016) (cit. on pp. 23, 32).

[GVB00] F. Guay, R. J. Vallerand, C. Blanchard. “On the assessment of situa-
tional intrinsic and extrinsic motivation: The Situational Motivation Scale
(SIMS).” In: Motivation and Emotion 24.3 (2000), pp. 175–213. DOI:
10.1023/a:1005614228250 (cit. on pp. 18, 20).

[GWA14a] D. Graziotin, X. Wang, P. Abrahamsson. “Do feelings matter? On the
correlation of affects and the self-assessed productivity in software engi-
neering.” In: Journal of Software: Evolution and Process 27.7 (Aug. 2014),
pp. 467–487. DOI: 10.1002/smr.1673 (cit. on pp. 33, 34, 51, 53, 72).

[GWA14b] D. Graziotin, X. Wang, P. Abrahamsson. “Happy software developers
solve problems better: psychological measurements in empirical software
engineering.” In: PeerJ 2 (Mar. 2014), e289. DOI: 10.7717/peerj.289
(cit. on pp. 32, 33, 72, 81).

[GWA15a] D. Graziotin, X. Wang, P. Abrahamsson. “How do you feel, developer?
An explanatory theory of the impact of affects on programming perfor-
mance.” In: PeerJ Computer Science 1 (Aug. 2015), e18. DOI: 10.7717/
peerj-cs.18 (cit. on pp. 32, 33, 73).

[GWA15b] D. Graziotin, X. Wang, P. Abrahamsson. “Understanding the affect of
developers: theoretical background and guidelines for psychoempirical
software engineering.” In: Proceedings of the 7th International Workshop
on Social Software Engineering - SSE 2015. ACM Press, 2015. DOI: 10.
1145/2804381.2804386 (cit. on pp. 21, 22, 24, 32, 53).

[Har08] P. Harris. Designing and reporting experiments in psychology. McGraw-Hill
Education (UK), 2008 (cit. on p. 59).

[HBB+09] T. Hall, N. Baddoo, S. Beecham, H. Robinson, H. Sharp. “A systematic
review of theory use in studies investigating the motivations of software
engineers.” In: ACM Transactions on Software Engineering and Methodol-
ogy 18.3 (May 2009), pp. 1–29. DOI: 10.1145/1525880.1525883 (cit. on
p. 31).

96

https://doi.org/10.1016/j.jpsychores.2006.12.005
https://doi.org/10.1023/a:1005614228250
https://doi.org/10.1002/smr.1673
https://doi.org/10.7717/peerj.289
https://doi.org/10.7717/peerj-cs.18
https://doi.org/10.7717/peerj-cs.18
https://doi.org/10.1145/2804381.2804386
https://doi.org/10.1145/2804381.2804386
https://doi.org/10.1145/1525880.1525883

Bibliography

[HPMB16] E. C. S. Hayashi, J. E. G. Posada, V. R. M. L. Maike, M. C. C. Baranauskas.
“Exploring new formats of the Self-Assessment Manikin in the design
with children.” In: Proceedings of the 15th Brazilian Symposium on Human
Factors in Computer Systems - IHC ’16. ACM Press, 2016. DOI: 10.1145/
3033701.3033728 (cit. on p. 24).

[HSS+19] P. Hurst, L. Schipof-Godart, A. Szabo, J. Raglin, F. Hettinga, B. Roelands,
A. Lane, A. Foad, D. Coleman, C. Beedie. “The Placebo and Nocebo effect
on sports performance: A systematic review.” In: European Journal of
Sport Science (Aug. 2019), pp. 1–14. DOI: 10.1080/17461391.2019.
1655098 (cit. on p. 15).

[IM19] G. Iturregui-Gallardo, J. L. Méndez-Ulrich. “Towards the Creation of a
Tactile Version of the Self-Assessment Manikin (T-SAM) for the Emotional
Assessment of Visually Impaired People.” In: International Journal of
Disability, Development and Education (June 2019), pp. 1–18. DOI: 10.
1080/1034912x.2019.1626007 (cit. on p. 24).

[IRFW19] N. Imtiaz, A. Rahman, E. Farhana, L. Williams. “Challenges with Respond-
ing to Static Analysis Tool Alerts.” In: 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, May 2019. DOI:
10.1109/msr.2019.00049 (cit. on p. 29).

[ISO11] ISO/IEC 25010. Systems and software engineering — Systems and software
Quality Requirements and Evaluation (SQuaRE) — System and software
quality models. 2011 (cit. on p. 5).

[Iza13] C. E. Izard. Human emotions. Springer Science & Business Media, 2013
(cit. on p. 21).

[Jam04] S. Jamieson. “Likert scales: how to (ab)use them.” In: Medical Education
38.12 (Dec. 2004), pp. 1217–1218. DOI: 10.1111/j.1365-2929.2004.
02012.x (cit. on p. 53).

[JCP08] A. Jedlitschka, M. Ciolkowski, D. Pfahl. “Reporting Experiments in Soft-
ware Engineering.” In: Guide to Advanced Empirical Software Engineering.
Springer London, 2008, pp. 201–228. DOI: 10.1007/978-1-84800-044-
5_8 (cit. on p. 35).

[JF14] A. Jbara, D. G. Feitelson. “On the effect of code regularity on comprehen-
sion.” In: Proceedings of the 22nd International Conference on Program
Comprehension - ICPC 2014. ACM Press, 2014. DOI: 10.1145/2597008.
2597140 (cit. on p. 9).

97

https://doi.org/10.1145/3033701.3033728
https://doi.org/10.1145/3033701.3033728
https://doi.org/10.1080/17461391.2019.1655098
https://doi.org/10.1080/17461391.2019.1655098
https://doi.org/10.1080/1034912x.2019.1626007
https://doi.org/10.1080/1034912x.2019.1626007
https://doi.org/10.1109/msr.2019.00049
https://doi.org/10.1111/j.1365-2929.2004.02012.x
https://doi.org/10.1111/j.1365-2929.2004.02012.x
https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1145/2597008.2597140
https://doi.org/10.1145/2597008.2597140

Bibliography

[JS04] M. Jørgensen, D. I. Sjøberg. “The impact of customer expectation on soft-
ware development effort estimates.” In: International Journal of Project
Management 22.4 (May 2004), pp. 317–325. DOI: 10 . 1016 / s0263 -
7863(03)00085-1 (cit. on pp. 29, 30, 76).

[JSMB13] B. Johnson, Y. Song, E. Murphy-Hill, R. Bowdidge. “Why don’t software
developers use static analysis tools to find bugs?” In: 2013 35th Interna-
tional Conference on Software Engineering (ICSE). IEEE, May 2013. DOI:
10.1109/icse.2013.6606613 (cit. on p. 29).

[KDL+12] O. Klein, S. Doyen, C. Leys, P. A. M. de Saldanha da Gama, S. Miller,
L. Questienne, A. Cleeremans. “Low Hopes, High Expectations.” In: Per-
spectives on Psychological Science 7.6 (Nov. 2012), pp. 572–584. DOI:
10.1177/1745691612463704 (cit. on p. 48).

[KDL13] S. Kaplan, R. Dalal, J. Luchman. “Measurement of emotions.” In: Jan.
2013, pp. 61–75 (cit. on pp. 23, 79).

[KHBG14] J. J. Kosovich, C. S. Hulleman, K. E. Barron, S. Getty. “A Practical Measure
of Student Motivation.” In: The Journal of Early Adolescence 35.5-6 (Nov.
2014), pp. 790–816. DOI: 10.1177/0272431614556890 (cit. on p. 17).

[KK81] P. R. Kleinginna, A. M. Kleinginna. “A categorized list of emotion def-
initions, with suggestions for a consensual definition.” In: Motivation
and Emotion 5.4 (Dec. 1981), pp. 345–379. DOI: 10.1007/bf00992553
(cit. on p. 21).

[KKWB20] A. Kern, C. Kramm, C. M. Witt, J. Barth. “The influence of personality
traits on the placebo/nocebo response.” In: Journal of Psychosomatic
Research 128 (Jan. 2020), p. 109866. DOI: 10.1016/j.jpsychores.2019.
109866 (cit. on p. 80).

[Kol16] H. G. Koller. “Effects of Clean Code on Understandability: An Experiment
and Analysis.” MA thesis. 2016 (cit. on pp. 7, 9).

[KW13] N. Kasto, J. Whalley. “Measuring the difficulty of code comprehension
tasks using software metrics.” In: Proceedings of the Fifteenth Australasian
Computing Education Conference-Volume 136. 2013, pp. 59–65 (cit. on
pp. 7, 9).

[LBC+97] P. J. Lang, M. M. Bradley, B. N. Cuthbert, et al. “International affective
picture system (IAPS): Technical manual and affective ratings.” In: NIMH
Center for the Study of Emotion and Attention 1 (1997), pp. 39–58 (cit. on
pp. 23, 42).

98

https://doi.org/10.1016/s0263-7863(03)00085-1
https://doi.org/10.1016/s0263-7863(03)00085-1
https://doi.org/10.1109/icse.2013.6606613
https://doi.org/10.1177/1745691612463704
https://doi.org/10.1177/0272431614556890
https://doi.org/10.1007/bf00992553
https://doi.org/10.1016/j.jpsychores.2019.109866
https://doi.org/10.1016/j.jpsychores.2019.109866

Bibliography

[LBW13] F. Li, X. Bai, Y. Wang. “The Scale of Positive and Negative Experience
(SPANE): Psychometric Properties and Normative Data in a Large Chinese
Sample.” In: PLoS ONE 8.4 (Apr. 2013). Ed. by F. Krueger, e61137. DOI:
10.1371/journal.pone.0061137 (cit. on p. 23).

[LCD99] R. D. Lane, P. M.-L. Chua, R. J. Dolan. “Common effects of emotional va-
lence, arousal and attention on neural activation during visual processing
of pictures.” In: Neuropsychologia 37.9 (Aug. 1999), pp. 989–997. DOI:
10.1016/s0028-3932(99)00017-2 (cit. on pp. 21, 22).

[Len16] A. Lenhard W. Lenhard. Calculation of Effect Sizes. 2016. DOI: 10.13140/
RG.2.2.17823.92329. URL: https://www.psychometrica.de/effect_size.
html (cit. on p. 54).

[LF06] J. W. Lang, S. Fries. “A Revised 10-Item Version of the Achievement
Motives Scale.” In: European Journal of Psychological Assessment 22.3
(Jan. 2006), pp. 216–224. DOI: 10.1027/1015-5759.22.3.216 (cit. on
p. 20).

[LFW15] P. Lenberg, R. Feldt, L. G. Wallgren. “Behavioral software engineering: A
definition and systematic literature review.” In: Journal of Systems and
Software 107 (Sept. 2015), pp. 15–37. DOI: 10.1016/j.jss.2015.04.084
(cit. on p. 29).

[Lik32] R. Likert. “A technique for the measurement of attitudes.” In: Archives of
psychology (1932) (cit. on p. 8).

[LL02] E. A. Locke, G. P. Latham. “Building a practically useful theory of goal
setting and task motivation: A 35-year odyssey.” In: American Psychologist
57.9 (Sept. 2002), pp. 705–717. DOI: 10.1037/0003-066x.57.9.705
(cit. on pp. 18, 38).

[LLY10] K. M. Law, V. C. Lee, Y. Yu. “Learning motivation in e-learning facilitated
computer programming courses.” In: Computers & Education 55.1 (Aug.
2010), pp. 218–228. DOI: 10.1016/j.compedu.2010.01.007 (cit. on
pp. 32, 71).

[Lun11a] F. C. Lunenburg. “Expectancy Theory of Motivation: Motivating by Alter-
ing Expectations Sam Houston State University.” In: International Journal
Of Management, Business, And Dministration 15.1 (2011) (cit. on p. 18).

[Lun11b] F. C. Lunenburg. “Goal-setting theory of motivation.” In: International
journal of management, business, and administration 15.1 (2011), pp. 1–6
(cit. on p. 18).

99

https://doi.org/10.1371/journal.pone.0061137
https://doi.org/10.1016/s0028-3932(99)00017-2
https://doi.org/10.13140/RG.2.2.17823.92329
https://doi.org/10.13140/RG.2.2.17823.92329
https://www.psychometrica.de/effect_size.html
https://www.psychometrica.de/effect_size.html
https://doi.org/10.1027/1015-5759.22.3.216
https://doi.org/10.1016/j.jss.2015.04.084
https://doi.org/10.1037/0003-066x.57.9.705
https://doi.org/10.1016/j.compedu.2010.01.007

Bibliography

[LWBM10] E. Y. Leng, W. Z. bte Wan Ali, R. Baki, R. Mahmud. “Stability of the
Intrinsic Motivation Inventory (IMI) For the Use of Malaysian Form One
Students in ICT Literacy Class.” In: EURASIA Journal of Mathematics,
Science and Technology Education 6.3 (Dec. 2010). DOI: 10.12973/ejmste/
75241 (cit. on p. 20).

[MAFB07] J. J. Mao, K. Armstrong, J. T. Farrar, M. A. Bowman. “Acupuncture Ex-
pectancy Scale: Development and Preliminary Validation in China.” In:
EXPLORE 3.4 (July 2007), pp. 372–377. DOI: 10.1016/j.explore.2006.12.
003 (cit. on p. 17).

[Mar01] A. J. Martin. “The Student Motivation Scale: A Tool for Measuring and
Enhancing Motivation.” In: Journal of Psychologists and Counsellors in
Schools 11 (Nov. 2001), pp. 1–20. DOI: 10.1017/s1037291100004301
(cit. on p. 20).

[Mar09] R. C. Martin. Clean code: a handbook of agile software craftsmanship.
Pearson Education, 2009 (cit. on pp. 6, 7).

[MB16] E. Marshall, E. Boggis. “The statistics tutor’s quick guide to commonly
used statistical tests.” In: Statstutor Community Project (2016), pp. 1–57
(cit. on p. 53).

[McC76] T. McCabe. “A Complexity Measure.” In: IEEE Transactions on Software
Engineering SE-2.4 (Dec. 1976), pp. 308–320. DOI: 10.1109/tse.1976.
233837 (cit. on pp. 9, 27).

[MCF01] G. Matthews, S. E. Campbell, S. Falconer. “Assessment of Motivational
States in Performance Environments.” In: Proceedings of the Human Fac-
tors and Ergonomics Society Annual Meeting 45.13 (Oct. 2001), pp. 906–
910. DOI: 10.1177/154193120104501302 (cit. on p. 20).

[MDT89] E. McAuley, T. Duncan, V. V. Tammen. “Psychometric Properties of the
Intrinsic Motivation Inventory in a Competitive Sport Setting: A Confir-
matory Factor Analysis.” In: Research Quarterly for Exercise and Sport 60.1
(Mar. 1989), pp. 48–58. DOI: 10.1080/02701367.1989.10607413 (cit. on
p. 20).

[MES04] T. Mussweiler, B. Englich, F. Strack. “10 Anchoring effect.” In: Cognitive
illusions: A handbook on fallacies and biases in thinking, judgement and
memory (2004), p. 183 (cit. on pp. 12, 13, 76, 77).

[MF16] S. C. Müller, T. Fritz. “Using (bio)metrics to predict code quality online.”
In: Proceedings of the 38th International Conference on Software Engineer-
ing - ICSE ’16. ACM Press, 2016. DOI: 10.1145/2884781.2884803 (cit. on
p. 11).

100

https://doi.org/10.12973/ejmste/75241
https://doi.org/10.12973/ejmste/75241
https://doi.org/10.1016/j.explore.2006.12.003
https://doi.org/10.1016/j.explore.2006.12.003
https://doi.org/10.1017/s1037291100004301
https://doi.org/10.1109/tse.1976.233837
https://doi.org/10.1109/tse.1976.233837
https://doi.org/10.1177/154193120104501302
https://doi.org/10.1080/02701367.1989.10607413
https://doi.org/10.1145/2884781.2884803

Bibliography

[Mit82] T. R. Mitchell. “Motivation: New Directions for Theory, Research, and
Practice.” In: Academy of Management Review 7.1 (Jan. 1982), pp. 80–88.
DOI: 10.5465/amr.1982.4285467 (cit. on p. 17).

[MKN+07] C. Mallett, M. Kawabata, P. Newcombe, A. Otero-Forero, S. Jackson.
“Sport motivation scale-6 (SMS-6): A revised six-factor sport motivation
scale.” In: Psychology of Sport and Exercise 8.5 (Sept. 2007), pp. 600–614.
DOI: 10.1016/j.psychsport.2006.12.005 (cit. on p. 20).

[MML15] R. Minelli, A. Mocci, M. Lanza. “I Know What You Did Last Summer - An
Investigation of How Developers Spend Their Time.” In: 2015 IEEE 23rd
International Conference on Program Comprehension. IEEE, May 2015.
DOI: 10.1109/icpc.2015.12 (cit. on p. 1).

[MMP15] V. Monteiro, L. Mata, F. Peixoto. “Intrinsic Motivation Inventory: Psy-
chometric Properties in the Context of First Language and Mathematics
Learning.” In: Psicologia: Reflexão e Crıtica 28.3 (Sept. 2015), pp. 434–
443. DOI: 10.1590/1678-7153.201528302 (cit. on p. 20).

[Moo09] A. Moors. “Theories of emotion causation: A review.” In: Cognition & Emo-
tion 23.4 (June 2009), pp. 625–662. DOI: 10.1080/02699930802645739
(cit. on p. 21).

[MR09] I. B. Mauss, M. D. Robinson. “Measures of emotion: A review.” In: Cog-
nition & Emotion 23.2 (Feb. 2009), pp. 209–237. DOI: 10 . 1080 /
02699930802204677 (cit. on pp. 23, 79).

[MST+18] R. Mohanani, I. Salman, B. Turhan, P. Rodriguez, P. Ralph. “Cognitive
Biases in Software Engineering: A Systematic Mapping Study.” In: IEEE
Transactions on Software Engineering (2018), pp. 1–1. DOI: 10.1109/tse.
2018.2877759 (cit. on pp. 2, 26, 27).

[Muñ19] M. Muñoz Barón. A Validation of Cognitive Complexity as a Measure of
Source Code Understandability. en. 2019. DOI: 10.18419/OPUS-10663
(cit. on pp. 7, 8).

[MV95] A. V. Mayrhauser, A. Vans. “Program comprehension during software
maintenance and evolution.” In: Computer 28.8 (1995), pp. 44–55. DOI:
10.1109/2.402076 (cit. on p. 12).

[MWGK02] J. D. Morris, C. Woo, J. A. Geason, J. Kim. “The Power of Affect: Predicting
Intention.” In: Journal of Advertising Research 42.3 (May 2002), pp. 7–17.
DOI: 10.2501/jar-42-3-7-17 (cit. on p. 23).

[MWW20] M. Muñoz Barón, M. Wyrich, S. Wagner. “An Empirical Validation of
Cognitive Complexity as a Measure of Source Code Understandability.”
In: arXiv preprint arXiv:2007.12520 (2020) (cit. on p. 10).

101

https://doi.org/10.5465/amr.1982.4285467
https://doi.org/10.1016/j.psychsport.2006.12.005
https://doi.org/10.1109/icpc.2015.12
https://doi.org/10.1590/1678-7153.201528302
https://doi.org/10.1080/02699930802645739
https://doi.org/10.1080/02699930802204677
https://doi.org/10.1080/02699930802204677
https://doi.org/10.1109/tse.2018.2877759
https://doi.org/10.1109/tse.2018.2877759
https://doi.org/10.18419/OPUS-10663
https://doi.org/10.1109/2.402076
https://doi.org/10.2501/jar-42-3-7-17

Bibliography

[MXB10] J. J. Mao, S. X. Xie, M. A. Bowman. “Uncovering the expectancy effect: the
validation of the acupuncture expectancy scale.” In: Alternative therapies
in health and medicine 16 (6 2010), pp. 22–27. ISSN: 1078-6791. ppublish
(cit. on p. 17).

[NAG19] M. Nilson, V. Antinyan, L. Gren. “Do Internal Software Quality Tools
Measure Validated Metrics?” In: Product-Focused Software Process Im-
provement. Springer International Publishing, 2019, pp. 637–648. DOI:
10.1007/978-3-030-35333-9_50 (cit. on pp. 1, 27, 28).

[NKU+14] T. Nakagawa, Y. Kamei, H. Uwano, A. Monden, K. Matsumoto, D. M. Ger-
man. “Quantifying programmers’ mental workload during program com-
prehension based on cerebral blood flow measurement: a controlled
experiment.” In: Companion Proceedings of the 36th International Confer-
ence on Software Engineering - ICSE Companion 2014. ACM Press, 2014.
DOI: 10.1145/2591062.2591098 (cit. on p. 11).

[Nor10] G. Norman. “Likert scales, levels of measurement and the “laws” of
statistics.” In: Advances in Health Sciences Education 15.5 (Feb. 2010),
pp. 625–632. DOI: 10.1007/s10459-010-9222-y (cit. on p. 53).

[NS19] N. Novielli, A. Serebrenik. “Sentiment and Emotion in Software Engineer-
ing.” In: IEEE Software 36.5 (Sept. 2019), pp. 6–23. DOI: 10.1109/ms.
2019.2924013 (cit. on p. 32).

[ORZ96] J. Olson, N. Roese, M. Zanna. “Expectancies.” In: (1996). Ed. by
E. T. H. A. W. Kruglanski, pp. 211–238 (cit. on pp. 13, 14, 70, 72, 74).

[Pen87] N. Pennington. “Stimulus structures and mental representations in expert
comprehension of computer programs.” In: Cognitive Psychology 19.3
(July 1987), pp. 295–341. DOI: 10.1016/0010-0285(87)90007-7 (cit. on
p. 12).

[Pet08] S. Petter. “Managing user expectations on software projects: Lessons from
the trenches.” In: International Journal of Project Management 26.7 (Oct.
2008), pp. 700–712. DOI: 10.1016/j.ijproman.2008.05.014 (cit. on
pp. 29, 30).

[PFB08] D. D. Price, D. G. Finniss, F. Benedetti. “A Comprehensive Review of the
Placebo Effect: Recent Advances and Current Thought.” In: Annual Review
of Psychology 59.1 (Jan. 2008), pp. 565–590. DOI: 10.1146/annurev.
psych.59.113006.095941 (cit. on pp. 2, 15, 16).

[PHD11] D. Posnett, A. Hindle, P. Devanbu. “A simpler model of software read-
ability.” In: Proceeding of the 8th working conference on Mining software
repositories - MSR ’11. ACM Press, 2011. DOI: 10.1145/1985441.1985454
(cit. on p. 6).

102

https://doi.org/10.1007/978-3-030-35333-9_50
https://doi.org/10.1145/2591062.2591098
https://doi.org/10.1007/s10459-010-9222-y
https://doi.org/10.1109/ms.2019.2924013
https://doi.org/10.1109/ms.2019.2924013
https://doi.org/10.1016/0010-0285(87)90007-7
https://doi.org/10.1016/j.ijproman.2008.05.014
https://doi.org/10.1146/annurev.psych.59.113006.095941
https://doi.org/10.1146/annurev.psych.59.113006.095941
https://doi.org/10.1145/1985441.1985454

Bibliography

[PLB18] J. Pantiuchina, M. Lanza, G. Bavota. “Improving Code: The (Mis) Per-
ception of Quality Metrics.” In: 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, Sept. 2018. DOI:
10.1109/icsme.2018.00017 (cit. on pp. 1, 27, 28).

[Plu82] R. Plutchik. “A psychoevolutionary theory of emotions.” In: Social Sci-
ence Information 21.4-5 (July 1982), pp. 529–553. DOI: 10 . 1177 /
053901882021004003 (cit. on p. 21).

[PMK+99] D. D. Price, L. S. Milling, I. Kirsch, A. Duff, G. H. Montgomery,
S. S. Nicholls. “An analysis of factors that contribute to the magnitude
of placebo analgesia in an experimental paradigm.” In: Pain 83.2 (Nov.
1999), pp. 147–156. DOI: 10.1016/s0304-3959(99)00081-0 (cit. on
pp. 15, 17).

[Pre20] A. D. Preikschat. “Experimentelle Untersuchung des Placeboeffekts beim
Verstehen von Quellcode.” MA thesis. 2020. DOI: http://dx.doi.org/10.
18419/opus-10963 (cit. on pp. 2, 25–27, 42, 52, 66, 71, 76, 80).

[PSA+20] N. Peitek, J. Siegmund, S. Apel, C. Kastner, C. Parnin, A. Bethmann,
T. Leich, G. Saake, A. Brechmann. “A Look into Programmers’ Heads.” In:
IEEE Transactions on Software Engineering 46.4 (Apr. 2020), pp. 442–462.
DOI: 10.1109/tse.2018.2863303 (cit. on pp. 1, 11).

[PVMS16] R. Pekrun, E. Vogl, K. R. Muis, G. M. Sinatra. “Measuring emotions dur-
ing epistemic activities: the Epistemically-Related Emotion Scales.” In:
Cognition and Emotion 31.6 (July 2016), pp. 1268–1276. DOI: 10.1080/
02699931.2016.1204989 (cit. on p. 87).

[Ray91] D. R. Raymond. “Reading source code.” In: Proceedings of the 1991 con-
ference of the Centre for Advanced Studies on Collaborative research. 1991,
pp. 3–16 (cit. on p. 1).

[RD00] R. M. Ryan, E. L. Deci. “Self-determination theory and the facilitation of
intrinsic motivation, social development, and well-being.” In: American
Psychologist 55.1 (2000), pp. 68–78. DOI: 10.1037/0003-066x.55.1.68
(cit. on pp. 19, 72, 74).

[RM77] J. A. Russell, A. Mehrabian. “Evidence for a three-factor theory of emo-
tions.” In: Journal of Research in Personality 11.3 (Sept. 1977), pp. 273–
294. DOI: 10.1016/0092-6566(77)90037-x (cit. on pp. 21, 73).

[RMI+17] L. Rozenkrantz, A. E. Mayo, T. Ilan, Y. Hart, L. Noy, U. Alon. “Placebo can
enhance creativity.” In: PLOS ONE 12.9 (Sept. 2017). Ed. by E. Manalo,
e0182466. DOI: 10.1371/journal.pone.0182466 (cit. on p. 15).

103

https://doi.org/10.1109/icsme.2018.00017
https://doi.org/10.1177/053901882021004003
https://doi.org/10.1177/053901882021004003
https://doi.org/10.1016/s0304-3959(99)00081-0
https://doi.org/http://dx.doi.org/10.18419/opus-10963
https://doi.org/http://dx.doi.org/10.18419/opus-10963
https://doi.org/10.1109/tse.2018.2863303
https://doi.org/10.1080/02699931.2016.1204989
https://doi.org/10.1080/02699931.2016.1204989
https://doi.org/10.1037/0003-066x.55.1.68
https://doi.org/10.1016/0092-6566(77)90037-x
https://doi.org/10.1371/journal.pone.0182466

Bibliography

[Ros96] W. F. Rosenberger. “Dealing with multiplicities in pharmacoepidemiologic
studies.” In: Pharmacoepidemiology and drug safety 5.2 (1996), pp. 95–
100 (cit. on p. 54).

[Rug00] S. Rugaber. In: Annals of Software Engineering 9.1/4 (2000), pp. 143–192.
DOI: 10.1023/a:1018976708691 (cit. on p. 1).

[Rus03] J. A. Russell. “Core affect and the psychological construction of emotion.”
In: Psychological Review 110.1 (2003), pp. 145–172. DOI: 10.1037/0033-
295x.110.1.145 (cit. on pp. 20–22, 73).

[Rus09] J. A. Russell. “Emotion, core affect, and psychological construction.” In:
Cognition & Emotion 23.7 (Nov. 2009), pp. 1259–1283. DOI: 10.1080/
02699930902809375 (cit. on p. 22).

[Rus80] J. A. Russell. “A circumplex model of affect.” In: Journal of Personality and
Social Psychology 39.6 (1980), pp. 1161–1178. DOI: 10.1037/h0077714
(cit. on p. 22).

[Rus91] J. A. Russell. “Culture and the categorization of emotions.” In: Psychologi-
cal Bulletin 110.3 (1991), pp. 426–450. DOI: 10.1037/0033-2909.110.3.
426 (cit. on pp. 21, 78).

[RW97] V. Ramalingam, S. Wiedenbeck. “An empirical study of novice program
comprehension in the imperative and object-oriented styles.” In: Papers
presented at the seventh workshop on Empirical studies of programmers -
ESP ’97. ACM Press, 1997. DOI: 10.1145/266399.266411 (cit. on p. 6).

[SAE+18] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, C. Jaspan.
“Lessons from building static analysis tools at Google.” In: Communi-
cations of the ACM 61.4 (Mar. 2018), pp. 58–66. DOI: 10.1145/3188720
(cit. on pp. 1, 27).

[Saw09] S. S. Sawilowsky. “New Effect Size Rules of Thumb.” In: Journal of Modern
Applied Statistical Methods 8.2 (Nov. 2009), pp. 597–599. DOI: 10.22237/
jmasm/1257035100 (cit. on p. 54).

[SBS18] P. Schober, C. Boer, L. A. Schwarte. “Correlation Coefficients.” In: Anes-
thesia & Analgesia 126.5 (May 2018), pp. 1763–1768. DOI: 10.1213/ane.
0000000000002864 (cit. on p. 54).

[SBV+17] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vasquez, D. Poshyvanyk,
R. Oliveto. “Automatically assessing code understandability: How far are
we?” In: 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, Oct. 2017. DOI: 10.1109/ase.2017.
8115654 (cit. on pp. 1, 7–10, 27).

104

https://doi.org/10.1023/a:1018976708691
https://doi.org/10.1037/0033-295x.110.1.145
https://doi.org/10.1037/0033-295x.110.1.145
https://doi.org/10.1080/02699930902809375
https://doi.org/10.1080/02699930902809375
https://doi.org/10.1037/h0077714
https://doi.org/10.1037/0033-2909.110.3.426
https://doi.org/10.1037/0033-2909.110.3.426
https://doi.org/10.1145/266399.266411
https://doi.org/10.1145/3188720
https://doi.org/10.22237/jmasm/1257035100
https://doi.org/10.22237/jmasm/1257035100
https://doi.org/10.1213/ane.0000000000002864
https://doi.org/10.1213/ane.0000000000002864
https://doi.org/10.1109/ase.2017.8115654
https://doi.org/10.1109/ase.2017.8115654

Bibliography

[SBV+19] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vasquez, D. Poshyvanyk,
R. Oliveto. “Automatically Assessing Code Understandability.” In: IEEE
Transactions on Software Engineering (2019), pp. 1–1. DOI: 10.1109/tse.
2019.2901468 (cit. on pp. 6, 10).

[SE84] E. Soloway, K. Ehrlich. “Empirical Studies of Programming Knowledge.”
In: IEEE Transactions on Software Engineering SE-10.5 (Sept. 1984),
pp. 595–609. DOI: 10.1109/tse.1984.5010283 (cit. on p. 12).

[She88] M. Shepperd. “A critique of cyclomatic complexity as a software metric.”
In: Software Engineering Journal 3.2 (1988), p. 30. DOI: 10.1049/sej.
1988.0003 (cit. on p. 9).

[SI94] M. Shepperd, D. Ince. “A critique of three metrics.” In: Journal of Systems
and Software 26.3 (Sept. 1994), pp. 197–210. DOI: 10 .1016/0164 -
1212(94)90011-6 (cit. on pp. 1, 27).

[Sie16] J. Siegmund. “Program Comprehension: Past, Present, and Future.” In:
2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER). IEEE, Mar. 2016. DOI: 10.1109/saner.2016.
35 (cit. on pp. 7, 12).

[SK06] P. Steel, C. J. König. “Integrating Theories of Motivation.” In: Academy of
Management Review 31.4 (Oct. 2006), pp. 889–913. DOI: 10.5465/amr.
2006.22527462 (cit. on p. 17).

[SKA+14] J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich,
G. Saake, A. Brechmann. “Understanding understanding source code
with functional magnetic resonance imaging.” In: Proceedings of the 36th
International Conference on Software Engineering - ICSE 2014. ACM Press,
2014. DOI: 10.1145/2568225.2568252 (cit. on p. 11).

[SKL+13] J. Siegmund, C. Kästner, J. Liebig, S. Apel, S. Hanenberg. “Measuring and
modeling programming experience.” In: Empirical Software Engineering
19.5 (Dec. 2013), pp. 1299–1334. DOI: 10.1007/s10664-013-9286-4
(cit. on p. 38).

[SM79] B. Shneiderman, R. Mayer. “Syntactic/semantic interactions in program-
mer behavior: A model and experimental results.” In: International Jour-
nal of Computer & Information Sciences 8.3 (June 1979), pp. 219–238.
DOI: 10.1007/bf00977789 (cit. on p. 12).

[SP04] S. Stewart-Williams, J. Podd. “The Placebo Effect: Dissolving the Ex-
pectancy Versus Conditioning Debate.” In: Psychological Bulletin 130.2
(2004), pp. 324–340. DOI: 10.1037/0033-2909.130.2.324 (cit. on pp. 2,
15, 16).

105

https://doi.org/10.1109/tse.2019.2901468
https://doi.org/10.1109/tse.2019.2901468
https://doi.org/10.1109/tse.1984.5010283
https://doi.org/10.1049/sej.1988.0003
https://doi.org/10.1049/sej.1988.0003
https://doi.org/10.1016/0164-1212(94)90011-6
https://doi.org/10.1016/0164-1212(94)90011-6
https://doi.org/10.1109/saner.2016.35
https://doi.org/10.1109/saner.2016.35
https://doi.org/10.5465/amr.2006.22527462
https://doi.org/10.5465/amr.2006.22527462
https://doi.org/10.1145/2568225.2568252
https://doi.org/10.1007/s10664-013-9286-4
https://doi.org/10.1007/bf00977789
https://doi.org/10.1037/0033-2909.130.2.324

Bibliography

[SPB16] K. A. Schwarz, R. Pfister, C. Büchel. “Rethinking Explicit Expectations:
Connecting Placebos, Social Cognition, and Contextual Perception.” In:
Trends in Cognitive Sciences 20.6 (June 2016), pp. 469–480. DOI: 10.
1016/j.tics.2016.04.001 (cit. on pp. 2, 15).

[SS14] J. Siegmund, J. Schumann. “Confounding parameters on program com-
prehension: a literature survey.” In: Empirical Software Engineering 20.4
(May 2014), pp. 1159–1192. DOI: 10.1007/s10664-014-9318-8 (cit. on
pp. 46, 49, 78).

[SSA13] M. M. S. Sarwar, S. Shahzad, I. Ahmad. “Cyclomatic complexity: The nest-
ing problem.” In: Eighth International Conference on Digital Information
Management (ICDIM 2013). IEEE, Sept. 2013. DOI: 10.1109/icdim.2013.
6693981 (cit. on p. 9).

[SSA15] J. Siegmund, N. Siegmund, S. Apel. “Views on Internal and External
Validity in Empirical Software Engineering.” In: 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering. IEEE, May 2015.
DOI: 10.1109/icse.2015.24 (cit. on p. 78).

[STB00] R. J. Sanchez, D. M. Truxillo, T. N. Bauer. “Development and examination
of an expectancy-based measure of test-taking motivation.” In: Journal
of Applied Psychology 85.5 (2000), pp. 739–750. DOI: 10.1037/0021-
9010.85.5.739 (cit. on p. 17).

[Sto05] M.-A. Storey. “Theories, methods and tools in program comprehension:
past, present and future.” In: 13th International Workshop on Program
Comprehension (IWPC’05). IEEE, 2005. DOI: 10 .1109/wpc.2005.38
(cit. on pp. 8, 78).

[Tab17] K. S. Taber. “The Use of Cronbach’s Alpha When Developing and Report-
ing Research Instruments in Science Education.” In: Research in Science
Education 48.6 (June 2017), pp. 1273–1296. DOI: 10.1007/s11165-016-
9602-2 (cit. on p. 55).

[TBG+18] Z. Turi, E. Bjørkedal, L. Gunkel, A. Antal, W. Paulus, M. Mittner. “Evidence
for Cognitive Placebo and Nocebo Effects in Healthy Individuals.” In:
Scientific Reports 8.1 (Nov. 2018). DOI: 10.1038/s41598-018-35124-w
(cit. on pp. 2, 15).

[TCM+18] A. Trockman, K. Cates, M. Mozina, T. Nguyen, C. Kästner, B. Vasilescu. “"
Automatically assessing code understandability" reanalyzed: combined
metrics matter.” In: 2018 IEEE/ACM 15th International Conference on
Mining Software Repositories (MSR). IEEE. 2018, pp. 314–318 (cit. on
p. 10).

106

https://doi.org/10.1016/j.tics.2016.04.001
https://doi.org/10.1016/j.tics.2016.04.001
https://doi.org/10.1007/s10664-014-9318-8
https://doi.org/10.1109/icdim.2013.6693981
https://doi.org/10.1109/icdim.2013.6693981
https://doi.org/10.1109/icse.2015.24
https://doi.org/10.1037/0021-9010.85.5.739
https://doi.org/10.1037/0021-9010.85.5.739
https://doi.org/10.1109/wpc.2005.38
https://doi.org/10.1007/s11165-016-9602-2
https://doi.org/10.1007/s11165-016-9602-2
https://doi.org/10.1038/s41598-018-35124-w

Bibliography

[TCS05] H.-L. Tuan, C.-C. Chin, S.-H. Shieh. “The development of a questionnaire
to measure students’ motivation towards science learning.” In: Interna-
tional Journal of Science Education 27.6 (Jan. 2005), pp. 639–654. DOI:
10.1080/0950069042000323737 (cit. on p. 20).

[TF14] M. Touré-Tillery, A. Fishbach. “How to Measure Motivation: A Guide for
the Experimental Social Psychologist.” In: Social and Personality Psychol-
ogy Compass 8.7 (July 2014), pp. 328–341. DOI: 10.1111/spc3.12110
(cit. on pp. 19, 72, 79).

[Tho07] E. R. Thompson. “Development and Validation of an Internationally Reli-
able Short-Form of the Positive and Negative Affect Schedule (PANAS).”
In: Journal of Cross-Cultural Psychology 38.2 (Mar. 2007), pp. 227–242.
DOI: 10.1177/0022022106297301 (cit. on p. 23).

[Tia11] R. Tiarks. “What maintenance programmers really do: An observational
study.” In: Workshop on Software Reengineering. Citeseer. 2011, pp. 36–37
(cit. on p. 1).

[TK74] A. Tversky, D. Kahneman. “Judgment under Uncertainty: Heuristics and
Biases.” In: Science 185.4157 (Sept. 1974), pp. 1124–1131. DOI: 10.
1126/science.185.4157.1124 (cit. on pp. 12, 13).

[TN14] P. Tripathy, K. Naik. Software Evolution and Maintenance. John Wiley &
Sons, Inc., Nov. 2014. DOI: 10.1002/9781118964637 (cit. on pp. 1, 5).

[Vet17] T. R. Vetter. “Fundamentals of Research Data and Variables.” In: Anesthe-
sia & Analgesia 125.4 (Oct. 2017), pp. 1375–1380. DOI: 10.1213/ane.
0000000000002370 (cit. on p. 54).

[VPB+92] R. J. Vallerand, L. G. Pelletier, M. R. Blais, N. M. Briere, C. Senecal, E. F. Val-
lieres. “The Academic Motivation Scale: A Measure of Intrinsic, Ex-
trinsic, and Amotivation in Education.” In: Educational and Psycholog-
ical Measurement 52.4 (Dec. 1992), pp. 1003–1017. DOI: 10 . 1177 /
0013164492052004025 (cit. on p. 20).

[VPP+19] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, A. Zaidman.
“How developers engage with static analysis tools in different contexts.”
In: Empirical Software Engineering 25.2 (Nov. 2019), pp. 1419–1457. DOI:
10.1007/s10664-019-09750-5 (cit. on pp. 1, 27).

[Vro64] V. H. Vroom. “Work and motivation.” In: (1964) (cit. on pp. 18, 71).

[VVH97] A. Von Mayrhauser, A. M. Vans, A. E. Howe. “Program understanding
behaviour during enhancement of large-scale software.” In: Journal of
Software Maintenance: Research and Practice 9.5 (1997), pp. 299–327
(cit. on p. 1).

107

https://doi.org/10.1080/0950069042000323737
https://doi.org/10.1111/spc3.12110
https://doi.org/10.1177/0022022106297301
https://doi.org/10.1126/science.185.4157.1124
https://doi.org/10.1126/science.185.4157.1124
https://doi.org/10.1002/9781118964637
https://doi.org/10.1213/ane.0000000000002370
https://doi.org/10.1213/ane.0000000000002370
https://doi.org/10.1177/0013164492052004025
https://doi.org/10.1177/0013164492052004025
https://doi.org/10.1007/s10664-019-09750-5

Bibliography

[w3r] w3resource. Code snippet retrieved from https://www.w3resource.com/java-
exercises/string/java-string-exercise-32.php under the title "Java String Ex-
ercises: Find longest Palindromic Substring within a string." The code snippet
was slightly changed. It is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License. (Cit. on p. 44).

[WA15] T. D. Wager, L. Y. Atlas. “The neuroscience of placebo effects: connecting
context, learning and health.” In: Nature Reviews Neuroscience 16.7 (June
2015), pp. 403–418. DOI: 10.1038/nrn3976 (cit. on pp. 2, 16).

[WAB09] F. Wedyan, D. Alrmuny, J. M. Bieman. “The Effectiveness of Automated
Static Analysis Tools for Fault Detection and Refactoring Prediction.”
In: 2009 International Conference on Software Testing Verification and
Validation. IEEE, Apr. 2009. DOI: 10.1109/icst.2009.21 (cit. on pp. 1,
27).

[Wal03] D. A. Walker. “JMASM9: Converting Kendall’s Tau For Correlational Or
Meta-Analytic Analyses.” In: Journal of Modern Applied Statistical Methods
2.2 (Nov. 2003), pp. 525–530. DOI: 10.22237/jmasm/1067646360 (cit.
on p. 54).

[WB95] E. Weissinger, D. L. Bandalos. “Development, Reliability and Validity of a
Scale to Measure Intrinsic Motivation in Leisure.” In: Journal of Leisure
Research 27.4 (Dec. 1995), pp. 379–400. DOI: 10.1080/00222216.1995.
11949756 (cit. on p. 20).

[WCT88] D. Watson, L. A. Clark, A. Tellegen. “Development and validation of brief
measures of positive and negative affect: the PANAS scales.” In: Journal
of personality and social psychology 54.6 (1988), p. 1063 (cit. on pp. 21,
23).

[WGW19] M. Wyrich, D. Graziotin, S. Wagner. “A theory on individual characteris-
tics of successful coding challenge solvers.” In: PeerJ Computer Science 5
(Feb. 2019), e173. DOI: 10.7717/peerj-cs.173 (cit. on pp. 33, 80, 81).

[WRH+12] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén.
Experimentation in Software Engineering. Springer Berlin Heidelberg,
2012. DOI: 10.1007/978-3-642-29044-2 (cit. on pp. 46–48, 81).

[WT85] D. Watson, A. Tellegen. “Toward a consensual structure of mood.” In:
Psychological Bulletin 98.2 (1985), pp. 219–235. DOI: 10.1037/0033-
2909.98.2.219 (cit. on p. 21).

[XBL+18] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, S. Li. “Measuring Program
Comprehension: A Large-Scale Field Study with Professionals.” In: IEEE
Transactions on Software Engineering 44.10 (Oct. 2018), pp. 951–976.
DOI: 10.1109/tse.2017.2734091 (cit. on p. 1).

108

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
https://doi.org/10.1038/nrn3976
https://doi.org/10.1109/icst.2009.21
https://doi.org/10.22237/jmasm/1067646360
https://doi.org/10.1080/00222216.1995.11949756
https://doi.org/10.1080/00222216.1995.11949756
https://doi.org/10.7717/peerj-cs.173
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1037/0033-2909.98.2.219
https://doi.org/10.1037/0033-2909.98.2.219
https://doi.org/10.1109/tse.2017.2734091

[YGHM12] J. Younger, V. Gandhi, E. Hubbard, S. Mackey. “Development of the
Stanford Expectations of Treatment Scale (SETS): A tool for measuring
patient outcome expectancy in clinical trials.” In: Clinical Trials: Journal
of the Society for Clinical Trials 9.6 (Nov. 2012), pp. 767–776. DOI: 10.
1177/1740774512465064 (cit. on p. 17).

[ZFT+11] S. Zaniboni, F. Fraccaroli, D. M. Truxillo, M. Bertolino, T. N. Bauer. “Train-
ing valence, instrumentality, and expectancy scale (T-VIES-it).” In: Journal
of Workplace Learning 23.2 (Feb. 2011), pp. 133–151. DOI: 10.1108/
13665621111108792 (cit. on p. 17).

All links were last followed on October 26, 2020.

https://doi.org/10.1177/1740774512465064
https://doi.org/10.1177/1740774512465064
https://doi.org/10.1108/13665621111108792
https://doi.org/10.1108/13665621111108792

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

Böblingen, 27.10.2020,

	1 Introduction
	1.1 Research Objectives
	1.2 Methodological Approach and Contributions
	1.3 Thesis Structure

	2 Background and Theoretical Foundations
	2.1 Source Code Understandability
	2.2 Anchoring Effect
	2.3 Expectancy
	2.4 Motivation
	2.5 Affective States

	3 Related Work
	3.1 Cognitive Effects in Software Engineering
	3.2 Static Analysis Tools and Metrics
	3.3 Influence of Expectations
	3.4 Motivation and Expectancy
	3.5 Affective States and Software Developers

	4 Methodology
	4.1 Research Questions
	4.2 Experiment Design
	4.3 Participants
	4.4 Materials
	4.5 Survey Procedure
	4.6 Mitigating Threats to Validity
	4.7 Hypotheses, Parameters, and Variables
	4.8 Analysis Procedure

	5 Results
	5.1 Descriptive Statistics
	5.2 Hypothesis Testing

	6 Discussion
	6.1 Findings
	6.2 Limitations
	6.3 Implications

	7 Conclusion
	Bibliography

