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Abstract

Sorting networks are usually bound at a depth of O(log2 n), since a perfect halver is

of at least depth O(log n). However, the AKS Sorting Network, by Ajtai, Komlós and

Szemerédi, can sort data with depth O(log n) by using so-called ε-halvers, which are

of constant depth. Such ε-halvers are allowed to have some errors and will eventually

be corrected by sending elements to a level above. In this thesis, a CPU and CUDA

version are implemented following a paper by Vas̆ek Chvátal [5] and the original paper

by Ajtai et al. [1]. Experiments are run on these versions to observe and improve

parameters.



1 Introduction

When trying to sort data in parallel with sorting networks, the factor bounding the

run-time is the depth of the networks. For most algorithms, the depth is at best of

O(log2 n), like seen in Bitonic sort or Odd-even mergesort, but in 1983 M. Ajtai, J.

Komlós and E. Szemerédi [1] came up with a sorting network of depth O(log n) called

the AKS Sorting Network. The reduced depth is achieved by the usage of special

halvers which are allowed to sort a specfied percentage of their elements wrong. Those

wrong sorted elements are then ensured to be sorted into their right positions again in

later steps. Although the network is of logarithmic depth, it has a big hidden constant,

which makes it not usable for practical applications.

This thesis covers the implementation and the during this process arisen modifica-

tions and improvements of the AKS Sorting Network on CPU using C++ and on GPU

using CUDA.
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2 Sorting Networks

Sorting networks are a special category of sorting algorithms of fixed size where the

elements are distributed on so-called wires. These wires go through several compar-

isons with other wires to achieve a sorted sequence of the elements at the end. Sorting

networks can be visualized with lines, symbolizing wires, and connections between

them, acting as comparisons, as seen in figure 2.1. In the example from the figure

each comparison ensures that elements get switched if the upper of the two wires is

holding the greater element. This results in the greatest elements to move towards the

bottom wires, while the smallest elements move upwards, to create an ascendingly

sorted order at the end.

To test if such network of size n sorts correctly in every case it would be necessary

to check all n! input variations. To reduce the amount of checks, one can utilize the

zero-one principle [7, p. 223]. This theorem states, that “if a network with n input lines
sorts all 2n sequences of 0s and 1s into nondecreasing order, it will sort any arbitrary sequence
of n numbers into nondecreasing order”.

This arrangement of comparisons can now be divided into parts where every wire

is involved in a maximum of one comparison. Since now there are no dependencies

inside a single part, they can be run in parallel. Using this parallelization, the amount

of time taken to run a sorting network is bound to the maximum comparisons any

element has to go through. This bound is also known as depth, and since this thesis

concentrates on parallel sorting with sorting networks it is desirable to keep it as small

as possible.

There are also other variants of such networks [2]. Balancing networks for example

Figure 2.1: Partitioned sorting network for 4 elements
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are a different class of sorting networks where instead of comparators balancers are

used. The resulting networks can for instance balance the input onto the output wires,

assuming that it is possible to have multiple elements on a single wire.

2.1 AKS Sorting Network

The goal of the AKS Sorting Network, created by M. Ajtai, J. Komlós and E. Szemerédi

[1] in 1983, is to reduce the typical depth of O(log2 n) for sorting networks to O(log n).
An example of a sorting network of depth O(log2 n) is a perfect halver of size n

which routes its output elements to two perfect halvers of size n
2 each. These perfect

halvers route their output elements to four further perfect halvers of size n
4 and this

repeats until after perfect halvers of size two. Since the minimum depth of a perfect

halver is of O(log n) the total depth will result in O(log2 n) [5].

The AKS Sorting Network ”eliminates” the depth of the halvers by using so-called

ε-halvers, which are allowed to have wrong sorted elements of factor ε. To account for

wrong sorted elements in ε-halvers, a fraction of the elements get occasionally sent to

an upper level where they get sorted into their right partition. These ε-halvers are of

constant depth, which results in a total depth of O(log n), however, this constant is of

a few thousands.

2.1.1 Construction

First off, the size of elements to be sorted has to be of 2d, where d ≥ 8 and d is a

multiple of four. The body of the AKS Sorting Network consists of so-called separators

which are distributed over multiple steps on several levels. As an example, the whole

sorting construction for 4096 elements can be seen in table 2.1. For this size it consists

of 17 steps and the result will be at step t = 16 on level i = 6.

Over the course of the first d− 4 steps the upper bound α for the levels, meaning

the smallest i, is alternating between 0 and 1. After that, beginning with step d− 4,

the upper levels only send elements upwards every fourth step which results in a

steadily decreasing upper bound. On the other side, the lower bound, and therefore

highest i, is denoted with ω and keeps sending all elements upwards every third step

throughout the whole sorting process (except in step t = 0). These functions are

realized in equations 2.1, 2.2 and 2.3 from Chvátals paper [5].

On each level i there are 2i separators sorting a elements. After they are done, the π
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presumably wrong sorted elements that are located on the left and right borders are

sent a level upwards while the remaining χ elements get sent downwards. These a,

π and χ values can be derived from table 2.2 and are also displayed in the example

construction in figure 2.1.

α(t)

0, if 0 ≤ t ≤ d− 5 and t is even

1, if 0 ≤ t ≤ d− 5 and t is odd
(2.1)

α(t)



(t− d + 5)/2, if t ≥ d− 6 and t ≡ 1 mod 4

(t− d + 6)/2, if t ≥ d− 6 and t ≡ 2 mod 4

(t− d + 7)/2, if t ≥ d− 6 and t ≡ 3 mod 4

(t− d + 8)/2, if t ≥ d− 6 and t ≡ 0 mod 4

(2.2)

ω(t)


(t + 2)/3, if t ≥ 1 and t ≡ 1 mod 3

(t + 4)/3, if t ≥ 1 and t ≡ 2 mod 3

(t + 6)/3, if t ≥ 1 and t ≡ 0 mod 3

(2.3)

2.1.2 Expander Graphs

At the lowest level of the AKS Sorting Network the elements that are compared with

each other are chosen using (n, d, µ)-expander graphs. Such expander graphs are

basically normal graphs with certain conditions on the amount of connections each

vertex has to other vertices. For this environment these conditions depend on the

three parameters n, d and µ as follows:

• The expander graph consists of two equally sized partitions with each of them

holding n vertices.

• Edges only exist between those two partitions, meaning that there is no edge

connecting two vertices of the same partition.

• The total edge set consists of d matchings where each matching consists of pair-

wise distinct edges between the two partitions.

• Every nonempty set S of vertices in one partition satisfies

|NG(S)| > min{µ|S|, n − |S|}, where NG(S) are the neighbors of set S defined

like NG(S) = {u : u is adjacent to at least one vertex in S}.
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Table 2.1: Sorting construction for 4096 elements [5].

Conditions on i a(i, t) π(i, t) χ(i, t)

i = α(t) and α(t + 1) = i + 1 c(i, t) 0 1
2 α(i, t)

i = α(t) and α(t + 1) = i− 1 c(i, t) 1
16 α(i, t) 15

32 α(i, t)

α(t) < i < ω(t) and i ≡ t mod 2 63
64 c(i, t) 1

21 α(i, t) 10
21 α(i, t)

i = ω(t) and t ≡ 1 mod 3 63
64 c(i, t) 1

21 α(i, t) 10
21 α(i, t)

i = ω(t) and t ≡ 2 mod 3 15
64 c(i, t) 1

5 α(i, t) 2
5 α(i, t)

i = ω(t) and t ≡ 0 mod 3 3
64 c(i, t) α(i, t) 0

Table 2.2: a, π and χ values for steps 2 ≤ t ≤ 3d− 21 [5].
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Figure 2.2: Example of an expander graph with n = 6 and d = 3, each matching is of a
different color

Chvátal states that there exists an expander graph with above conditions for every

positive integer n, if d and µ are positive integers satisfying equation 2.4.

(µ + 1)eµ+2(
µ

µ + 1
)d <

1
3

(2.4)

When creating a expander graph it can be very time consuming to check for its va-

lidity since every possible combination for a set in one partition has to be checked for

their neighbors. For n vertices in a single partition there are 2n sets. Even when as-

suming that it is possible to check 1 ∗ 1012 sets per second (a typical personal computer

has at most about 4 ∗ 109 cycles per second), it would take about 213 days to check a

graph with n = 64 and 4.2 ∗ 10134 years for n = 512, assuming that it takes the same

time for every set to check all of its neighbors.

Therefore, it is better to generate a random expander graph or use expander graph

constructions, which have not been used or tested in this thesis. The above mentioned

equation 2.4 already calculates a greater depth d to account for bad random graphs.

2.1.3 Halver

One level higher, there are (2n, ε)-halvers which use an expander graph to actually

compare and swap elements with each other. This is done by mapping the input wires

of the halver to its underlying expander graph vertices. Then, for every matching of

the expander graph, each vertex of the left partition is compared with the vertex it is

connected to in the right partition. If the value from the left-hand vertex is greater than

the value from the right-hand vertex they will be swapped, similar to a sorting net-

work. Since all edges inside a matching are pairwise distinct, they can be performed
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simultaneously.

The µ value used in the underlying expander graph for a halver is calculated using

1/(µ + 1) < ε [5] and the output wires are split into two blocks BL and BR consisting

of n wires each. The BL and BR block will hold for every k = 1, 2, ..., n at most εk of the

k largest and smallest elements respectively.

2.1.4 Separator

Another level above are the (a, f , εB, εF)-separators, which are used in the body of the

AKS Sorting Network. A separator consists of at least one halver or more depending

if elements will be sent upwards. The parameter values a and f are for the amount

of wires that are input and sent upwards respectively. The output, like the halver,

consists out of two equally sized blocks BL and BR. On the left and right edge of the

output lie the blocks FL and FR respectively. These two blocks are inside the BL and BR

blocks and hold the smallest or rather greatest elements which will be sent upwards.

The εB parameter ensures the same criteria on wrong sorted elements of the blocks

BL and BR like ε does for the halvers. Furthermore, the εF value ensures, that for every

k = 1, 2, ..., f
2 at most εFk of the k smallest and largest elements are placed outside of

block FL and FR respectively.

All halvers in a separator use the same ε value, which is calculated as ε = min{εB, εF
r+1}

using a r value that is the smallest nonnegative integer such that 2rδ ≥ 1. The δ value

used for that, on the other hand, needs to satisfy inequation 2.5. Additionally to the ε

value, all halvers use the same depth since it is dependent on the ε value.

δa ≤ f ≤ a (2.5)

The separator consists of t + 1 layers, with t being the smallest nonnegative integer

such that 2t f ≥ a. On the first layer (i = 0) a single (a, ε)-halver is ran which can be

seen in figure 2.3. The layers below the first layer only exist if there are wires to be sent

up, meaning f > 0. The second layer (i = 1) consists out of two (a− 2t−1 f , ε)-halvers

taking the outer wires of the previous halver as input. The next and all following

layers i consist of two (2t−i f , ε)-halvers that take the left or rather right output wires

of the previous halver on their side. If there are not enough wires in one of the blocks

of the previous halver the missing wires are taken from the output of the first halver

that has not been used in the second layer as seen in figure 2.3 with the long arrows

going from layer zero to layer two.
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(a, ε)-halver

(a-2t-1f, ε)-halver (a-2t-1f, ε)-halver

(2t-if, ε)-halver (2t-if, ε)-halver

... ...

layer i = 0

layer i = 1

layer i = 2

Figure 2.3: Overview of the separator layers

The only missing requirements are the εB and εF values. These two values are

calculated using inequations 2.6 and 2.7 and used for all separators in the sorting

construction. These values are preferably as big as possible to reduce the depth of

halvers in cost of a little higher but acceptable error rate.

εB ≤
1

128
− d

2
(1 +

1
1− 64δ2 ) (2.6)

εF ≤ 2δ(1− 16δ) (2.7)
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3 AKS Sorting Network Implementation

The AKS Sorting Network has been implemented on the CPU and GPU. For the CPU

version C++ was used along with classes and functions from its standard library, and

the version for the GPU is written in CUDA with C/C++. In the CPU implementation

it is also possible to replace the expander graph used in halvers by implementing the

abstract ISorter class while the graph in the GPU version is not that easily replaceable

since more adjustments need to be made. The CPU version can be compiled with make,

its benchmark version with make benchmark and the GPU version with make cuda.

3.1 CPU Implementation

The data used for testing the CPU implementation is generated with a C++ ran-

dom number generator and the input data is padded with the maximum value of

its datatype. The padding ensures a input length of 2d with d being at least 8 and a

multiple of four.

Additionally, a list of lists for a mapping from a separator to its wires and from

the wires to the corresponding data element is created (wireMapping). This way it is

possible to easily know which wires are in which separator and move wires to other

separators.

When sorting there are several levels which can be run in parallel. This paralleliza-

tion is implemented using C++ threads and the amount of threads used on each level

can be adjusted with the threadSplit constant. This is not only needed because a

too high thread count could affect performance due to their overhead but it also could

reach the thread limit on linux systems which is mostly above fifty thousand but can

still be reached quite quickly in nested thread calls.

The underlying expander graph can be switched out with other ones by implement-

ing the ISorter interface and passing its type to the templated sort function.
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3.1.1 Construction

Besides the data and its size there are also a εB and εF value needed when sorting using

the AKS Sorting Network. These values are set by default to well tested constants but

can also be passed into the sort function. If only one of those two values is passed,

the best possible value for the other one has to be calculated. This is done in the

testAndCalculateEpsilonValues function by finding the best δ value and then the

best possible other ε value using the inequations 2.6 and 2.7.

Since it is desirable for the other ε value to be as big as possible, only the cases

where those inequation are equal need to be looked at. This results in the rearranged

equations 3.1 and 3.2, however the second equation is an approximation because the

calculation would be too time consuming and the function is in the needed interval

almost linear. Now it is possible to calculate the missing ε value with the obtained δ

value by using it in above inequations 2.6 or 2.7 with equal signs instead of less or

equal.

δ =
1
32

(1±
√

1− 32εF) (3.1)

δ = 0.007797− 0.007797 ∗ 128εB (3.2)

Each separator in the body gets its own index, calculated with 2i+ its index inside
this level, since there are 2i separators on level i. The main part of this implementation

is a for loop over each step 1 < t < 3 ∗ d− 20. Each iteration the separators for every

second level are run with their currently assigned wires from the wireMapping. After

all computations for separators of a step have been ran, the wires of every separator

need to be moved upwards or downwards. This is implemented in the moveWires

function where upwards/2 wires are taken from each border and sent to the separator

a level above while the rest will distributed on the two corresponding separators in

the level below.

When all steps have finished, the now mixed distribution of wires onto separators

needs to be reordered by using the mapping. Then each 64 sized wire block that has

been assigned to a separator needs to be sorted itself using a fixed sorting network of

size 64.

Now there is still a possibility of wrong sorted elements since we rely on randomly

generated expander graphs. Therefore, a loop over each border between those 64
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sized blocks is ran and it is checked that elements left to the border are smaller than

elements to the right of it. If there are wrong sorted elements, they will be swapped

with elements of the other block.

For debugging purposes the data can be written to files before and after the AKS

Sorting Network and also before and after the fixed sorting network near the end of

the program.

3.1.2 Separator

First the variables needed for the arrangement and the calls of the separators are

calculated. In the inequation 2.5 it is desired to get the greatest δ value, since it is used

in the derivation of r, which needs to be as small as possible. This is, because it is used

in ε = min{εB, εF
r+1}, which should be a greater value to be able to use more inaccurate

halvers. Looking closer at the calculation of the t value, one can see that it is basically

the same calculation as the r value when striving for the smallest value. The depth

value d0 for the halvers can also already be calculated, since the same value is used

in every halver and can be retrieved using the implemented calculateDepth function

from the used expander graph class.

After calculating all needed values, the first layer is ran in form of a single (a, d0)-

halver. Then the t additional layers below are executed like mentioned in section 2.1.4.

3.1.3 Halver

Inside the halver it is checked if a generated expander graph has been passed. When

none was passed, a local std::vector of size n named vertices is created that holds

the index of the vertex it would be connected to in each position. For each depth of

the halver this list is shuffled to simulate a random expander graph.

Then the sortingOperation function is ran for each vertex for each depth. Inside

this function, the corresponding data elements are resolved using the wireMapping

with the provided value from either the vertices or the getCompareVertex function

if a sorter has been passed.

In order to take care of the correct wires, like shown in section 2.1.4 and figure 2.3 a

direction is passed to show from which side to take wires from and a outerSize that

is half the size of the halver on layer i = 1. When a halver needs more than outerSize

vertices it takes the missing one after index 2∗outerSize. This index will be correct

since this case can only occur in layer i = 2.
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3.1.4 Expander Graphs

For expander graphs, there is a ISorter class with an unimplemented method

getCompareVertex to get the connected vertex index for a given index and depth.

To save storage when there exist multiple graphs of the same size, there is another

unimplemented method extendDepth to extend the depth to its parameter. This way

the same graph can be used for various depths by just accessing the depths that are

needed.

The ISorter objects used in the sort function are generated before the first step.

First all needed graphs are counted by basically simulating a whole sorting procedure

and then sorting them by their usage amount. After that, they will be generated by

calling their constructor, beginning with the most used graph. While doing that the

needed memory to generate them is also calculated and checked if it would exceed

the specified memory threshold (maxGenerationKB). If a graph would overstep this

memory threshold, or if it is only needed once, its generation is skipped and its vertices

will be generated locally later on, like described in section 3.1.3.

For the expander graphs, there is already a RandomExpanderGraph class imple-

mented, which extends ISorter. This class holds an adjacency matrix adjMatrix with

a list of connected vertices for each depth in form of two nested std::vector, where

the outer one indexes the vertex and the inner one the depth with the corresponding

connected vertex index as value. Therefore, getCompareVertex just returns the value

in adjMatrix for the vertex index at the specified depth and extendDepth resizes the

adjMatrix and adds missing depth values.

3.1.5 Improvements

One obvious big speed up for this sorting network is the usage of threads. In this

implementation, the standard C++ threads std::thread have been used in several

places. Looking at the construction of the network it is clear that all separators inside

a step can be run in parallel, since they all operate on their own wires and do not

depend on any other separator inside the current step. This means, that it is possible

to create threads that take care of single or multiple separators simultaneously, while

the main thread waits for all to finish in order to continue with the movement of wires

and precede to the next step.

When looking a level lower at a separator, it is visible that each layer can also be

run in parallel, since the left and right side use their own set of wires. To prevent
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unnecessary thread overhead for small halvers, layers only run in parallel for layer

sizes of at least 100. Going another level deeper to the halvers, it is apparent that

even more threads can be used for the comparison operations. All comparisons for a

matching of the expander graph could be run in parallel, but since one comparison

per thread would create too much threads, resulting in a too big overhead, each thread

does multiple comparisons. To prevent errors with the random number generator

when multiple threads want to change it at the same time, each thread holds its own

generator.

For every amount of input there will be eventually separators towards the end that

are quite small. These separators, however, still execute halvers with expander graphs

having depths of several thousands when using the proposed depth calculations in [5]

or [1]. Therefore, tests have been made to find better depths that will be used instead.

During this process, which is described more precisely in section 4.3 it was discovered

that a depth of 1000 is enough for all separator sizes to be within the error tolerance.

More accurately, the depth will be set to 250 if the size is below 100 and to 800 up to a

size of µ. Otherwise, a depth of 500 will be used.

Another possibility for improvement found during the depth tests is the usage of

an alternative sorting method for separators that allow no errors. Hence, a perfect

halver has been implemented, which basically just compares each element with every

element from the other halve. When the perfect halver is used instead of ε-halvers

that are not allowed to have errors, it is possible to reduce the depths of the other

regularly computed separators, because the perfect halver does not introduce any

errors. This leads to a very small depth of 30 for the other separators when using

perfect halvers. Therefore, it will reduce overall run-time and also sometimes the run-

time of separators since those cases where no errors are allowed will only appear at

small sizes, where the quadratic run-time of a perfect halver is less than the constant

one of an ε-halver. More information to the perfect halver usage can be found in

section 4.4.

3.1.6 Benchmark

For the CPU implementation there is also a benchmark variant, which runs the AKS

Sorting Network multiple times for different sizes based on the passed parameters.

It is required to pass a starting (-f <amount>) and ending (-t <amount>) exponent,

which results in the program running every fourth exponent in this interval. For each
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of those exponents the sorting network is run several times based on the passed value

(-r <amount>, default = 1) with new randomly generated data each time. Informa-

tion and statistics for the batch of runs for each size is written to console and into

the dbg benchmark.txt file. By enabling the createStatistics constant, a csv file

dbg statistics.txt is created with data of the SortOutput struct for each run.

3.2 GPU Implementation

In comparison to the CPU implementation, the GPU implementation is less config-

urable. It uses a RandomExpanderGraph from above as underlying expander graph for

sorting. A simplified overview of the program flow can be seen in figure 3.1. There

it is noticeable, that in each step of the sorting construction, all levels are executed in

parallel while also preparations for the wire movements are done. For each level, a

kernel is launched that takes care of all separators on its level. Since all separators on

the same level are of the same size, and therefore are also equally constructed, they

are perfectly suitable to run together in a single kernel and benefit from the CUDA

core speed improvement when executing similar operations.

In the code for this implementation all variables allocated on GPU (also known as

device) side carry the prefix d , while all variables on CPU (also known as host) side

use the prefix h . Data on device side is currently never stored in shared memory,

since it is never used enough to be of sufficient advantage to account for transfer

times to and from shared memory. Additionally, it is limited at 48 KB per block and

also 48 KB per streaming multiprocessor, which is reached quickly with greater input

quantities.

To run the kernels and memory transfers in parallel, several CUDA streams are

created. The single stream generalStream is used for data transfers and the array of

streams levelStreams is reserved for separator kernel launches, where each level gets

its own CUDA stream. This allows the memory transfer and all separator kernels to

be run simultaneously. Operations, like the movement of wires, are executed in the

default stream, which is inherently synchronous to the other streams.

3.2.1 Wires

One main area, that is handled differently in this version, is the management of wires.

There are two arrays d separatorMapping and d dataMapping that belong together.
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Figure 3.1: Simplified flowchart of the CUDA implementation (dashed processes are
run on the GPU)

The d separatorMapping array maps separator indices from the sorting construction

to an array index i in d dataMapping. Beginning at i in d dataMapping are the wires

used in this separator, with the data at index i + k being the element behind wire k.

Movement of wires upwards or downwards is done in a separate kernel on the GPU.

Since these moving operations all happen in parallel, it is not possible for threads to

know where to place wires by themselves without atomic operations or locks. There-

fore, it was decided to precalculate the space all wires will need on the CPU in the

corresponding arrays h separatorMapping and h dataMapping. Afterwards, those off-

sets are copied over so the threads only need to read out their offset.

Since data needs to be read from the mapping arrays, while also new wire mappings

are written, it is necessary to have two arrays for each mapping. These mappings are

referenced by two pointers pointing to the currently used array and the array used in

the next step. During a step, the moved wires are put into d newSeparatorMapping

and d newDataMapping, and before the next step, their pointers will be swapped with

the other two device arrays to make the new mappings the current mappings.
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3.2.2 Construction

The general construction of the whole sorting body is similar to the CPU implemen-

tation with the invocations of separators, but now the movement of wires needs to be

prepared by calculating the distribution of all wires onto the separators. After that,

these offsets need to be copied to the GPU, and all this happens parallel to the execu-

tion of separators. To achieve this parallel execution of several separators, CPU calcula-

tions and data movement to the GPU, an array of CUDA streams is used. In this array

each level has its own stream which is used in the invocation of the separatorKernel.

Seeing that these kernels take care of all separators on a single level, it is clear that

all levels will run in parallel, while the CPU continues its execution and prepares the

wire movement.

3.2.3 Separator

Separators are executed by running the invokeSeparator function, which takes amongst

other things, the CUDA stream for the current level, the vertex array, both mapping

arrays and the current level index, to calculate how many separator need to be run.

Inside the function, first the needed values are calculated, just like in the CPU imple-

mentation. Then a separatorKernel is invoked, in which each thread block takes care

of one separator. Inside the kernel, pointers of needed data to the correct offset for its

separator index are created and elements in the passed vertices array are initialized.

The vertices array also lies in global memory, because shared memory is limited and

would only be sufficient for small separators. After these operations are done, the

device function halverSorting is called which simulates a halver for the first layer of

the separator. The lower layers are also run in the same kernel, however, the first halve

of threads inside a block takes care of the left side halvers, while the second halve

computes the right side halvers.

3.2.4 Halver

The halverSorting and halverSortingOperation functions are almost identical to

its CPU variants. The two major differences are, that graphs are always generated

locally and that the used shuffle function is the device function shuffleParallel,

which shuffles the vertices array using the whole thread block. The parallel algorithm

used for this is the MergeShuffle by Axel Bacher et al. [3], unfortunately, it was not

possible to make it work in time and therefore, a Fisher-Yates shuffle is currently run
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on a single thread. Since the vertices are stored in global memory, each thread needs

to know at which offset the vertices for its current separator are located. Seeing that

a separator needs as much vertices as wires, it is beneficial to use the same mapping

that is used for wires for vertices and conveniently this mapping is already available

inside a halver.

3.2.5 Expander Graphs

The graphs used in the CUDA implementation are always locally created and behave

like a RandomExpanderGraph. For shuffling of vertices, random numbers are required,

which are provided by the cuRAND library included in the CUDA Toolkit [9]. For the

generation, each thread needs a curandState t, which is initialized before the sorting

procedure and holds the current state of the underlying XORWOW generator used

by default. It was chosen to not generate graphs beforehand, because GPUs typically

have less memory capacities than the CPU. Additionally, part of the storage is already

needed for sorting data along with other helper arrays, like wire mappings, so the

graphs would consume the remaining memory very quickly.

3.2.6 Improvements

A small and barely noticeable improvement is the usage of pinned host memory

allocated with cudaMallocHost. This type of memory allows the CUDA driver to

directly access the pinned memory instead of having to transfer memory from the

default pageable memory to pinned memory when using it for cudaMemcpy opera-

tions. Furthermore, pinned memory also allows memory transfers to be executed in

parallel to kernel executions. This is useful to already transfer data needed for the

moveWiresKernel while the separators kernels are sorting data.

Moreover it is possible to enable the usage of perfect halvers, instead of regular ε-

halvers, by changing the usePerfectHalver constant. These halvers are implemented

as device functions just like in the CPU version and are also called the same way.
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4 Analysis

The following sections cover different optimizations and changes for the implementa-

tions, along with tests showing their impact. Testing for the CPU implementation has

been done on a Ubuntu 20.04 system with an Intel i5-9500 (6 cores @ 3.00 GHz) and 60

GB random access memory. The default constants chosen for the tests are as follows:

constexpr bool usePerfec tHalver = false ;
constexpr uint32_t maxGenerationKB = 10000000 ;
constexpr bool regenerateGraphs = false ;
constexpr bool useThreads = true ;
constexpr uint32_t t h r e a d S p l i t = 4 ;
constexpr uint32_t generationThreads = 5 0 ;
constexpr uint32_t halverThreshold = 10000 ;
constexpr uint32_t separatorThreshold = 1000 ;
constexpr uint32_t mergeShuffleThreshold = 10000000 ;

Additionally, tests have only been run on integers, using the std::minstd rand

random number generator, compiled with the -O2 optimization flag and up to a size

of 224 (16777216), since sizes greater than that take too much time to finish.

A first good way to verify that the sorting construction is correct and each wrong

sorted element gets eventually placed into its right partition, is to intentionally intro-

duce errors. This can be done in the CPU version by enabling the disabled block inside

the separator function. This block uses a simple, but not optimized, perfect halver and

places elements outside their intended partition afterwards. Without changing any

values, this code already introduces as many errors possible and when executing the

program it is observable that still all elements are correctly sorted at the end.

4.1 Sorting Time

In figure 4.1 the sorting times for different data types can be seen. For structs the

TestStruct in benchmark.cpp is used, which holds a integer (key) for comparisons

between structs and two additional integers without use. There is barely a difference
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size 256 4096 65536 1048576
integer -O3 1.017 ms 57.022 ms 1.284 s 51.063 s

integer 1.004 ms 55.044 ms 1.277 s 51.386 s
long 1.039 ms 57.813 ms 1.331 s 56.679 s

struct 1.811 ms 63.989 ms 1.450 s 62.776 s

Table 4.1: Average sorting times
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Figure 4.1: Sorting times for different data types

between the numerical data, besides towards the right side, where the 32 bit data types

are slightly faster. Structs are, as expected, slower in general and then there is also a

graph for integer sorting with the -O3 optimization flag. This flag improves the sorting

speed a little and does not seem to introduce errors.

Overall, the sorting times in this area of sizes are a lot higher than usual sorting

algorithms like std::sort or Bitonic sort, since the AKS sorting network relies on a

huge constant. Eventually, its sorting time will fall below, but this will not happen until

sizes of more than 211000 elements which is physically impossible to test. However, it

is possible to do simulations and calculate how many operations would be needed,

which is done in section 4.7.

4.2 Expander Graph Generation

In these two implementations of the AKS sorting network a lot of time is spent on

generating expander graphs. This is, because a permutation of n elements needs to

be computed for each matching in a graph with 2n vertices. Since it is desirable to

perform this shuffle in-place, the Fisher-Yates shuffle with run-time O(n), which is

also used in std::shuffle, seems to be the best option.
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It was also tried to use linear congruential generators in combination with the Hull-

Dobell theorem [6]. This theorem sets requirements on the parameters of the generator,

resulting in the output being a permutation of a gapless sequence of numbers. How-

ever, it would be hard to find hundreds of unique parameter sets that would match

the requirements, and the quality of the permutations is also questionable.

For a parallel execution, the MergeShuffle by Axel Bacher et al. [3] was chosen.

This algorithm basically shuffles partitions of the data in parallel and then merges

them together. The CPU implementation uses the normal Fisher-Yates shuffle inside

ε-halvers up to a threshold of ten million. This threshold was decided as best after

doing a few test, but could not be fully tested because it is in a number range where

testing takes a lot of time.

Additionally to the shuffle algorithm, the underlying random number generator

also plays a huge role. Here, three generators have been compared with each other:

std::mt19937, std::minstd rand and xoroshiro64** from [4].

Regarding the influence on sorting time, std::mt19937 takes the most time, while

std::minstd rand and xoroshiro64** are tied as seen in figure 4.3. This is, because

the period of the Marsenne Twister is way higher than the other two, with 219937

against 232 (std::minstd rand) and 264 (xoroshiro64**). Looking at the quality of

their random numbers by running separators and counting the amount of valid (sat-

isfying the ε values) runs, the results in figure 4.4 can be seen. Compared to a default

run from figure 4.5 using std::minstd rand, there is almost no difference between

the generators. There are small deviations between them, but these vary between tests

and are rather the same overall.

When expander graphs are needed multiple times it is desirable to generate them

once and reuse them numerous times. To see how impactful this can be, the used

memory created by expander graphs, along with its proportion that is reused, has

been pictured in figure 4.2. There it is visible that about an eighth is reused at least

ten times, and about every 32nd graph is used at least one hundred times. Therefore,

graphs are generated before the start of the sorting network, by filling the amount of

memory defined in maxGenerationKB with graphs, starting with the most used ones.

Single use graphs are never generated beforehand, since they do not benefit from

reusage and, additionally, would suffer from the higher access times of random access

memory.

Another feature that has been implemented is the regeneration of graphs as soon as

memory is available again, which can be enabled with regenerateGraphs. Since the
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usage amount is attached to the graphs, it can be decremented each time it is accessed

and if it hits zero the memory is deleted to make space for new graphs or other things,

because it has to be deleted eventually anyway. This regeneration can improve sorting

speed a little. A run with, for example, 1048576 elements and a memory limit of 10MB

takes normally 74 seconds while it takes only 68 seconds with graph regeneration

enabled.

4.3 Expander Graph Depth

The proposed formula for the depth of random expander graphs in Chvátals paper [5]

results in relatively high values. Typical µ values inside separators are around 400 to

600, which will be calculated to depths of 150000 to 350000, even for separator sizes of

24. Using the formula of the original AKS paper [1] depths will be a bit smaller, but

still high, at around 5000 to 10000.
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Figure 4.5: Percentages of invalid separator runs for several depths

Therefore, tests for separators have been made in which invalid runs are counted

for different depths. A run is valid if it satisfies the constraints of the εB and εF values

on separators. The corresponding testing code is in aks.cpp and a test, for example,

with a size of 4096 elements and 10 runs is started using ./cpuAks 4096 -t -r 10.

The results of those tests with εB = 0.00243 for the four different situations of upward

wire proportions can be seen in figure 4.5.

In the four diagrams it is observable that most runs are valid with a depth of at

least 500. A exception to that are separators of size 256, which need a depth of at least

around 800 to be mostly valid. This is, probably, because until around 1
εB

elements,

which becomes to 412, a separator is not allowed to have a single error, and therefore,

is more likely to lead to invalid runs the closer the size gets to this value. Additionally,

separators of sizes below 100 tend to be good enough with a depth of around 250. With

this information, the depth calculation of random expander graphs can be adjusted to

250 if the size lies below 100, to 800 if with sizes up to and including µ and 500 else.

The µ value is chosen here, because it will be at least 1
εB

or greater depending on εF

and the amount of upward wires.
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4.4 Separator Optimizations

Since there are problems in the section above with separators that are not allowed to

have errors, an alternative perfect halver has been implemented to replace the ε-halver

in exactly these cases. This perfect halver works by simply comparing each element of

one halve with every element of the other halve. This results in ( n
2 )

2 operations and

a depth of n
2 . The perfect halver will be used for the first layer, if the separator is not

allowed to have errors regarding εB, and for all layers below the first layer, if there

cannot be errors regarding εF. This results in the improved times seen in table 4.2. As

already mentioned in the CPU implementation, this allows the graph depths of the

normal ε-halvers to be of 30. Looking at this, it seems plausible that the reduced depth

comes from the perfect halver doing more than just halving and partly sorting the

data. However, this is does not affect the amount of wrong sorted elements, which can

be seen by enabling the randomization of the halves after a perfect halver execution in

perfectHalver.hpp.

4.5 Epsilon Values

Two parameters that can have a big influence on run-time are the ε values. These

values affect how many errors inside a separator are allowed, and therefore, also the

depth of ε-halvers which can, when chosen badly, result in a multiple of the usual

sorting time.

To test which ε values are the best, a simulation of the AKS sorting network has been

written in python. This program calls the same separators the algorithm would, but

does not actually sort data and just calculates the operations executed when a halver

would have been ran. Additionally, the depth, meaning the most operations needed

to execute a halver in parallel, are accumulated. The resulting graphs for εB at sizes

220 and 280 can be seen in figure 4.6.

The lowest points for the graphs are almost similar in both diagrams with 0.00243

being the best εB value regarding operation count and 0.00181 the depth count. While

the best value for depth is especially useful for executions with many threads like on

a graphics card, the value for minimum operations is preferred for the CPU imple-

mentation. This can be seen when comparing CPU runs with different ε values: 224

elements are sorted in 2334 seconds with εB = 0.00243, 2344 seconds with εB = 0.00207

and 2343 seconds with εB = 0.00181. Therefore a εB value of 0.00243 is chosen as de-
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Figure 4.6: Tests for best ε values with 220 and 280 elements
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Figure 4.7: Tests for different thread configurations

fault for the CPU implementation. For the GPU it seems that this value is also the best

for executable sizes.

4.6 Parallelization

The threadSplit constant decides onto how many threads work is distributed in the

body and halvers. This results in maximum 2 + d−6
6 ∗ 2 ∗ threadSplit ∗ threadSplit

threads running simultaneously, because in a construction can be at most 2 + d−6
6

active levels per step, since until d− 6 every third step the construction is expanded

by one level downwards, and each separator calls at most two halvers concurrently. In

figure 4.7, different thread configurations have been tested and it is observable, that in

general more threads are better. In this case, the tests have been run on six cores, and

therefore, it is best to use a threadSplit of six or more, if the user is allowed to run

the resulting maximum simultaneous threads, which was not the case for the testing

system.
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Figure 4.8: Tests for halver and separator multithread thresholds

In the ε-halvers implementation for the CPU it is possible to distribute comparisons

onto threads. Since this would be slower at small sizes, a threshold (halverThreshold)

needs to be set at which threads are used. Possible values for it have been tested in

figure 4.8 and the originally chosen 100 thousand are together with 500 thousand the

fastest.

For separators a similar threshold exists (separatorThreshold), which is also tested

in figure 4.8. This threshold does not result in a great variety of sorting times, but

looking closely, a value of 100 is the fastest of them and will therefore be used in the

final version.

4.7 Complexity

To examine the sorting network further than 224 elements, a simulation in python

has been written which calls the same separators the usual algorithm would do, but

accumulates the operation count needed instead of actually performing them. This

simulation was also used for the ε values in section 4.5, and has been added to the

provided files (simulation.py) for those interested. The results of this for sizes up

to 2800 can be seen in figure 4.9. The left diagram shows the operations per element,

where normal uses the depth calculation from the original paper [1], custom depths the

default depths for this implementations defined in section 4.3 and perfect halver the

alternative halvers, if no errors are allowed. Two reference graphs have been added to

show approximations for custom depths and perfect halver, which show that the default

depths follow roughly 210.75 ∗ log n and the perfect halver usage 26.8 ∗ log n operations

per element. The sorting network with perfect halver usage already falls below the

Bitonic sorts operations at about 2110, however, these are only sequential results.
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Figure 4.9: Complexity simulations of operations and depth

size 256 4096 65536
CUDA 62 ms 1.179 s 24.271 s
CPU 1.0038 ms 55.044 ms 1.277 s

CUDA with perfect halver <1 ms 92 ms 1.768 s
CPU with perfect halver 0.0014 ms 8.235 ms 0.166 s

Table 4.2: Comparison between CPU and CUDA for integer data

The right-hand diagram shows the respective depths, which would be the run-time

for a parallel execution. Here the Bitonic sort will be beaten at 22048 elements by the

sorting network with perfect halver usage and at 211585 with the custom depths.

4.8 CUDA Optimizations

There have also been added perfect halvers to the CUDA version, and the results

can be seen in table 4.2. Unfortunately, these do not go beyond 65536, because the

implementation has bugs and therefore the other test results could also include errors.

4.9 Small Optimizations and Changes

For the CPU version, there has also been added a small part towards the end, which

fixes wrong sorted elements after the 64-sized sorting networks are done. It basically

looks at each border between those 64-sized blocks for elements that should be on the

other side of the border. However, this only resolves wrong sorted elements as long

as they were placed into a adjacent block, which is mostly the case unless there have

been a lot of errors during sorting.
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4.10 Doubtful or Unsuccessful Optimizations

One strategy that was tried without success is the reusage of graph matchings inside

the same graph. This means, that there are for example only 100 matchings generated

for a graph that actually needs 500 matching, and thus, just keeps reusing the gener-

ated matchings to save space and generation time. When testing halvers where only a

halve or a fifth of the matchings have been generated, the results in figure 4.10 can be

observed. It seems, that there are double the amount of errors when generating only a

half of the matchings, resulting in twice the depth required to sort inside the allowed

error tolerance, and about five times the depth for a fifth of generated matchings.

This is therefore not an improvement in terms of run-time, but could be an option, if

generating random data is very expensive and storage limited.

It was also tried to replace the perfect halver, that can be enabled to speed up

separators, with a bitonic sorting network. The plan was to run the Bitonic sort until

the data is halved and thus not execute the whole sorting process, which would result

in a better run-time than the currently implemented perfect halver. However, the

standard Bitonic sort is only applicable on sizes of a power of two and in the chosen

alternative from [8], which is a modified version that sorts any size of elements, there

is no point during sorting at which the data is halved. This means, that the Bitonic sort

had to be run completely which would lead to the AKS sorting network being mostly

only a composition of Bitonic sorters. The almost working, adapted implementation

of this sorter has been put into bitonicSort.hpp for interested readers.
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5 Potential Improvements and Conclusion

This chapter is about improvements that could be made to the implementations if bet-

ter algorithms or methods are found. One of those is the usage of different expander

graphs. The currently used expander graph relies on many operations to a random

number generator and also is of a relatively great depth to account for bad random

graphs. Expander graph constructions, for example, could be used to generate better

graphs that ideally also have a smaller depth to reduce the amount of comparisons

during the sorting.

The RandomExpanderGraph could also be improved by using better shuffle algo-

rithms. It would be, for example, ideal if every element in a permutation could be

determined deterministically, so there are no extra arrays needed to store vertices, and

therefore, they would also not needed to be generated beforehand.

Another approach to expander graph generation is to precalculate some of them and

store them within the code. These graphs can be well tested for errors, and therefore,

also have a smaller depth. A further method is to use fixed seeds for the random

number generators. These fixed seeds, ideally, create good expander graphs and are

found by testing different seeds until a graph created with it is good enough. However,

these approaches are not really useful for small graphs if there are already alternative

halvers used for separators that are faster, like the perfect halver.

It could also be worth to look closer at the proofs regarding the whole sorting con-

struction. If the sorting construction is designed to hold a higher amount of elements

below the nodes in the last step, it would be feasible to use higher ε values. This allows

the halvers to make more errors, and therefore, also be of a lesser depth, which could

decrease the total sorting time.

To conclude, the AKS Sorting Network is not useful for practical applications,

nonetheless, run-time can be improved a bit. These enhancements can be achieved

by adjusting the used depths for random expander graphs, changing random number

generators or using alternative methods for certain cases. Additionally, ε values and

thresholds, at which threads are used, can be tweaked.
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