
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Optimizing ILP-based Joint Scheduling
and Routing for Time-Aware Shaping in

Factory Automation Networks

Lucas Haug

Course of Study: Informatik

Examiner: Prof. Dr. rer. nat. Kurt Rothermel

Supervisor: M.Sc. David Hellmanns

Commenced: April 28, 2020

Completed: October 28, 2020

Abstract

With the rise of Industry 4.0 and Internet of Things (IoT), the need for deterministic real-time
communication is higher than ever before. In the past, fieldbus systems have dominated the field of
time-critical applications. However, they are incompatible among each other and are not able to
transmit time-sensitive and non-time-sensitive traffic over the same medium. The widespread usage
of IEEE Ethernet Networks and the growing need for real-time communication lead to the IEEE
Time-sensitive Networking (TSN) Standards. These TSN Standards extend IEEE Ethernet networks
with real-time capabilities. They provide multiple priority levels and a Time Division Multiple
Access (TDMA)-based gating mechanism for each switch. However, they do not define how to
calculate the TDMA schedules. There are already different approaches, which solve the Scheduling-
or the Joint Routing and Scheduling (JRaS) problem for TSN. These approaches are either complete
and suffer from a high runtime or they are heuristic and do not guarantee to find a feasible solution.
In this work, we improve upon an already existing Integer Linear Programming (ILP)-based JRaS
approach. For this, we develop different optimizations of different categories, which reduce the
complexity of the problem or make use of an ILP-solver’s specific capabilities. We evaluate our
different optimizations individually and in combination in order to find the best combination for two
different switching types. These switching types are known as Store-and-Forward switching, which
is the default switching type provided in the IEEE Ethernet standards and Cut-Through switching,
which is an optimization commonly used in industrial networks. Additionally, we benchmark our
optimized ILP-based approach against other schedulers. With our best optimization combination,
we are able to reduce the runtime by about 80 % compared to the base ILP-model.

Kurzfassung

Mit dem Aufschwung von Industrie 4.0 und Internet of Things (IoT) ist der Bedarf an determin-
istischer Echtzeitkommunikation höher als je zuvor. In der Vergangenheit haben Feldbussysteme
den Bereich der zeitkritischen Anwendungen weitgehend geprägt. Sie sind jedoch untereinander
inkompatibel und nicht in der Lage, zeitkritischen und nicht zeitkritischen Verkehr über dasselbe
Medium zu übertragen. Die weit verbreitete Verwendung von IEEE-Ethernet-Netzwerken und der
wachsende Bedarf an Echtzeit-Kommunikation führten zu den IEEE Time-sensitive Networking
(TSN) Standards. Diese TSN Standards erweitern IEEE-Ethernet-Netzwerke um Echtzeitfähigkeiten.
Sie bieten mehrere Prioritätsstufen und einen auf Zeitmultiplexing (engl. Time Division Multiple
Access, TDMA) basierenden Gating-Mechanismus für jeden Switch. Sie definieren jedoch nicht, wie
die TDMA-Schedules zu berechnen sind. Es gibt bereits verschiedene Ansätze, die das Scheduling-
oder das Joint Routing and Scheduling (JRaS) Problem für TSN lösen. Diese Ansätze sind entweder
vollständig und leiden unter einer hohen Laufzeit oder sie sind heuristisch und garantieren nicht,
eine gültige Lösung zu finden. In dieser Arbeit verbessern wir einen bereits bestehenden Integer
Linear Programming (ILP)-basierten JRaS-Ansatz. Dazu entwickeln wir verschiedene Arten von
Optimierungen, die die Komplexität des Problems reduzieren oder die spezifischen Fähigkeiten
eines ILP-Lösers nutzen. Wir evaluieren unsere verschiedenen Optimierungen einzeln und in
Kombination, um die beste Kombination für zwei verschiedene Switching-Typen zu finden. Diese
Switching-Typen sind bekannt als Store-and-Forward, der Standard-Switching-Typ, der in den
IEEE-Ethernet-Standards vorgesehen ist, und als Cut-Through-Switching, eine Optimierung, die

3

häufig in industriellen Netzwerken verwendet wird. Zusätzlich vergleichen wir unseren optimierten
ILP-basierten Ansatz mit anderen Schedulern. Mit unserer besten Optimierungskombination sind
wir in der Lage, die Laufzeit um etwa 80 % im Vergleich zum ILP-Basismodell zu reduzieren.

4

Contents

1 Introduction 15

2 Background 17
2.1 IEEE Ethernet . 17
2.2 TSN . 22
2.3 ILP . 24
2.4 Graph Algorithms . 25

3 Related Work 29
3.1 Complete Approaches . 29
3.2 Heuristic approaches . 32

4 System Model 35
4.1 Network Model . 35
4.2 Ethernet Model . 37
4.3 ILP-model . 37

5 Problem Statement 41

6 Design 43
6.1 ILP Enhancements . 43
6.2 Topology Model Optimizations . 46
6.3 ILP Generation Optimizations . 53
6.4 Gurobi Optimizations . 56

7 Evaluation 61
7.1 Optimization Evaluation . 61
7.2 Benchmarking . 73

8 Conclusion 77

Bibliography 79

5

List of Figures

2.1 Ethernet Frame and VLAN tag [IEE18a; IEE18b]. 18
2.2 Simplified model of the forwarding process in an IEEE Ethernet compliant switch

[IEE18b]. 19
2.3 Visualization of different delay types. 21
2.4 Transmission Selection Algorithm (TSA), Gates, Gate Control List (GCL) and

Transmission Selection (TS) [HDHK18; IEE18b]. 23
2.5 Example for Time Division Multiple Access (TDMA) [Fre13] with two timeslots

per period. 24
2.6 Comparing directed and undirected graphs. 26

4.1 Definition of all delays, start variables and end variables for Store-and-Forward
switching. 38

5.1 Scheduling capability and runtimes of the base ILP-model. 42

6.1 Problematic topology, which might lead to invalid schedules. 44
6.2 Definition of all delays, start variables and end variables for Cut-Through switching. 45
6.3 Example of a factory automation network [HDHK18]. 47
6.4 This figure shows, how the topology reduction algorithm removes inaccessible

vertices and edges. 47
6.5 Visualization of our Edge Mapper algorithm for an example topology. 50
6.6 An example topology, where we are able to reduce the number of conflict constraint

based on a common merged path, e.g. the red path. 52
6.7 Two different possibilities of a no-wait schedule for streams of unequal size. . . . 52

7.1 Solution count and runtime comparison between optimization approaches and the
base model for Store-and-Forward and Cut-Through respectively. For the base
model, we show the number of solved and unsolved streamsets. 64

7.2 Runtime comparison of different optimization approaches for Store-and-Forward
(left) and Cut-Through (right). 65

7.3 Number of usages per parameter and value by the Parameter Tuning Tool (PTT). . 67
7.4 MIPFocus runtime evaluation. Each dot represents a testcase and its color the

MIPFocus with the lowest runtime. 67
7.5 Direct comparison between the best result of the single optimization evaluation and

the best combinations (Legend in Figure 7.1c). 69
7.6 Runtime comparison between the best combined optimization approaches. There

are more outliers above the respective runtime border, we cut them off to allow a
more detailed comparison between the average runtimes. 70

7.7 Scheduling Capability and runtimes of the base ILP-models and our optimized
ILP-models using the best combinations. 71

7

7.8 Process of Schneefuss et al.’s benchmarking framework [SWHD20]. 74
7.9 Store-and-Forward benchmarking results for our optimized ILP-based approach,

Dürr et al.’s Job Shop Scheduling Problem (JSSP) scheduler and Glavackij’s tracing-
based scheduler. 76

8

List of Tables

7.1 Hardware for parameter evaluation. 62
7.2 Abbreviation for optimization combinations. 63
7.3 Average runtime comparison of the best evaluated combinations. Only contains the

best 15 combinations. 72
7.4 Hardware for benchmarking. 75

9

List of Algorithms

2.1 Depth-first Search . 27
2.2 Dijkstra (One-to-All) . 28
6.1 Edge Merger . 49
6.2 Bound Calculator . 55
6.3 Trivial Scheduler . 59

11

Acronyms

CBS Credit-Based Shaper. 23

CRC Cyclic redundancy check. 18

CSP Constraint Satisfaction Problem. 29

DEI Drop Eligible Indicator. 19

DFS Depth-First search. 26

ETS Enhanced Transmission Selection. 23

FBS Filtered Beam Search. 32

FCS Frame Check Sequence. 18

GCL Gate Control List. 7, 23, 24, 41

ILP Integer Linear Programming. 3, 15, 17, 24

IoT Internet of Things. 3, 15

IRS Iterative Resource Scheduling. 32

JRaS Joint Routing and Scheduling. 3, 15, 29, 37, 41, 77

JSSP Job Shop Scheduling Problem. 8, 29

LCS Longest Common Subsequence. 53

lhs left-hand side. 25

MCTS Monte Carlo Tree Search. 33

PCP Priority Code Point. 18

PTP Precision Time Protocol. 22

PTT Parameter Tuning Tool. 7, 59

rhs right-hand side. 25

SMT Satisfiability Modulo Theory. 30

TAS Time-Aware Shaping. 22, 24

TCI Tag Control Information. 18

TDMA Time Division Multiple Access. 3, 7, 24

TG Task Group. 15, 22

13

Acronyms

TPID Tag Protocol Identifier. 18

TS Transmission Selection. 7, 20, 22, 23, 24

TSA Transmission Selection Algorithm. 7, 22, 23

TSN Time-sensitive Networking. 3, 15, 17, 22, 77

VID VLAN Identifier. 19

VLAN Virtual Local Area Network. 18

14

1 Introduction

Deterministic real-time communication is a key-requirement for safety in industrial networks. The
need for such real-time networks is growing rapidly with the Internet of Things (IoT) and Industry
4.0. Many real-time networks process sensor data to trigger actions with effects to the physical world,
thus they require small latencies and a guarantee that specific packets are always fully transmitted
within a specified time window. This includes applications such as industrial automation networks,
where malfunction due to late messages could lead to a high economical damage and expose human
beings to dangerous situations. Another example is in-car communication, where real-time data
transfer is crucial for the safety of humans.

Many systems have evolved in the past to satisfy the needs of time-critical applications. Different
fieldbuses, such as CANbus, have been used for a long time now and are still the most commonly
used systems in the automotive field. With the growth of Ethernet networks, multiple Ethernet-based
solutions, such as PROFINET and TTEthernet [SAE16] were used. One advantage of those Ethernet-
based solutions is the possibility to transmit time-sensitive and non-time-sensitive traffic over the
same medium. Despite the use of the same transmission medium, different Ethernet-based solutions
are incompatible among each other, but intercompatibility is mandatory for many applications such
as IoT networks.

The growing need of real-time networks and widespread usage of existing IEEE Ethernet networks
lead to the foundation of the IEEE Time-sensitive Networking (TSN) Task Group (TG), to extend
IEEE Ethernet with real-time capabilities. The TSN standards define different priority levels for
Time Division Multiple Access (TDMA), which is implemented as a gating mechanism in each
TSN-capable device in the network. To use TSN’s real-time capability, routes and schedules, which
are used to set up the gates of switches, need to be calculated for each frame. Calculating the routes
and schedules for a specific network topology and a set of streams means, that each frame’s route
and the exact time at each switch needs to be precalculated to ensure, they meet their respective
real-time requirements. Solving this scheduling problem is NP-hard [Ste10] and therefore requires
an efficient and optimized approach to provide a solution within a reasonable amount of time.

There is already work on solving the Joint Routing and Scheduling (JRaS) problem for TSNs.
However, most of these approaches do not reduce the problem’s complexity beforehand. We use an
already existing approach based on Integer Linear Programming (ILP) as the basis of our work. The
goal of our work is to develop and explore different optimization approaches to reduce the runtime
of ILP-based schedulers. In this work, we present approaches of three different categories. The first
category reduces the ILP by reducing the underlying network topology model. Approaches of the
second category provide changes to the ILP generation procedure. These approaches either remove
unnecessary variables or restrict the values of variables to a specific interval. The last category
makes use of additional functionalities of the Gurobi ILP-solver.

15

1 Introduction

In the following Chapter 2, we first give a brief overview of the technical background and technologies
used in this work. Following that, we discuss approaches of already existing work with their
respective advantages and disadvantages in Chapter 3. Our System model in Chapter 4 provides
the formal representation for our network and streams based on graphs. In our System Model, we
also introduce assumptions on the configuration of our network and provide a description of the
base ILP-model by Hellmanns et al. [HDHK18]. Chapter 5 contains our problem statement, which
formalizes the problem we aim to solve with our optimized ILP-based approach. In the main part in
Chapter 6, we then present our approaches and methods with which we aim to achieve our goal of
reducing the runtime of ILP-based schedulers for Time-sensitive Networks. We then analyze the
capabilities of these optimization approaches and compare them to other schedulers in Chapter 7.
Finally, we conclude our work in Chapter 8.

16

2 Background

In this chapter, we give an overview over the underlying technologies used in this work. This chapter
consists of four technical sections. The first section deals with general Ethernet technologies, with
the main focus on the forwarding process. In the second section, we extend the first block with
Time-sensitive Networking (TSN) specific technology. Thereafter, we describe the concept and
parts of Integer Linear Programming (ILP). Finally, in the last block, we define our graph definition
and discuss two different graph algorithms.

2.1 IEEE Ethernet

In this section, we cover IEEE Ethernet related background, as it contains basic knowledge about
networks and its devices. This knowledge is required in order to understand TSN-specific topics.
The main focus of this section is the forwarding process of an Ethernet switch. One prerequisite to
understand the forwarding process is to know the different parts of an Ethernet frame, hence we
start this chapter with the explanation of an Ethernet frame’s structure. Following that, we introduce
the forwarding steps in an Ethernet switch. We then explain two different switching types, which
define, when a switch starts to forward a frame. Finally, based on the above steps, we define the
different delay types of Ethernet switching.

2.1.1 Ethernet Frames

In this section, we discuss the parts of an Ethernet frame based on Figure 2.1, with a main focus on
the IEEE 802.1Q header extension. The following description of the Ethernet frame is based on the
IEEE 802.3 Standard [IEE18a]:

Source/Destionation MAC The header starts with a Destination MAC field containing the MAC
address of the receiver. This destination MAC address can either be the MAC address of a
single receiver or a multi-/broadcast MAC address. Similarly, the Source MAC field holds the
MAC address of a frame’s sender.

EtherType Following the source address is an EtherType field, which normally specifies the type of
protocol inside the Payload field. This field can also be used to announce the length of the
following payload.

Payload The payload contains the main message by the sender. It has a maximum size of 1,500 B

17

2 Background

Destination
MAC

Source
MAC

Ether
Type

Frame Check
SequencePayload

6 Byte 6 Byte 2 Byte 4 Byte64 to 1500 Byte

802.1Q Tag
optional

4 Byte

Tag Protocol Identifier
(TPID) PCP VLAN Identifier

(VID)

16 bit

DEI

16 bit
Tag Control Information

Figure 2.1: Ethernet Frame and VLAN tag [IEE18a; IEE18b].

Frame Check Sequence (FCS) The last value of an Ethernet frame is a 4 B Frame Check Sequence
(FCS), which contains a checksum to identify corrupt frames. The FCS is located at the end
of a frame, because it uses Cyclic redundancy check (CRC), which enables the switch to
calculate the checksum while receiving the frame and compare it to the received checksum in
the end [Wil93].

VLAN tag

The IEEE 802.1Q tag, also known the Virtual Local Area Network (VLAN) tag is an extension
to the base IEEE 802.3 Ethernet frame and has a size of 4 B. It is defined in the IEEE 802.1Q
Standard [IEE18b]. The VLAN tag consists of two main parts with a size of 16 bit each. The first
part is the Tag Protocol Identifier (TPID) and the second part is the Tag Control Information (TCI),
which contains three different control values. We discuss these parts in the following. We call
frames containing a VLAN tag tagged frames, whereas we refer to frames without the VLAN tag
as untagged.

Tag Protocol Identifier (TPID) The first 16 bit of the VLAN tag are reserved for the TPID, which is
a fixed HEX value of 0x8100. In a tagged frame the TPID takes the position of the EtherType
field of an untagged frame. This is why the fixed HEX value 0x8100 is a reserved EtherType
value signaling an inserted VLAN tag.

Priority Code Point (PCP) The TCI starts with a 3 bit Priority Code Point (PCP) field, which allows
the sender to specify the priority of the frame based on eight different priority classes. A
higher PCP value normally means, the frame has a higher priority.

18

2.1 IEEE Ethernet

Ingress Port

Egress Port

Filtering

Queueing

Queue 0 Queue 7

Queues

Transmission Selection

...

Filtering Databse

Queue Management Queue Management

Figure 2.2: Simplified model of the forwarding process in an IEEE Ethernet compliant switch
[IEE18b].

Drop Eligible Indicator (DEI) The next TCI bit is the Drop Eligible Indicator (DEI). Setting this
value to 1 allows a switch to drop the frame in case of congestion.

VLAN Identifier (VID) The last 12 bit field is the VLAN Identifier (VID). This field defines to what
VLAN the frame belongs to.

2.1.2 Forwarding Process

Based on the frame header, we can now discuss the forwarding process of IEEE compliant switches.
The forwarding process (Figure 2.2) specifies the steps executed by a switch for each frame from
its arrival at the ingress port until the outgoing transmission at the egress port. These steps are a
simplified model of the forwarding process model specified in the IEEE 802.1Q standard [IEE18b].

Filtering

Each frame received at the ingress port of the switch first passes through the filtering step. In
this filtering step, the switch needs to make a forwarding decision for each incoming frame. This
decision is based on different parameters such as the frame’s VLAN Identifier (VID) and destination
MAC address. The filtering database contains entries mapping these parameters to a set of egress
ports [IEE18b].

19

2 Background

Some switches may support Flow Filtering which allows streams to be distinguished by a flow hash
value in the Flow Filtering Tag (not further discussed in this work). Another possible option is
to assign a multicast MAC address to each stream, with only the receiver(s) of this stream in the
corresponding multicast group.

Queueing

Each switch may have up to eight different queues. If the switch has exactly eight queues, there is a
one-to-one mapping with one queue for each priority specified in the previously mentioned PCP field.
Otherwise, there is a many-to-one mapping which maps multiple PCP values to a queue [IEE18b].
After filtering, the switch queues the forwarded frame in exactly one queue for transmission at the
egress port.

Each queue has its own Queue Management. It is mainly responsible for removing frames after a
transmission requests [IEE18b]. Finally, the Transmission Selection (TS) selects the currently trans-
mitting queue(s) based on a given metric. We discuss the Transmission Selection in Section 2.2.

2.1.3 Switching Types

There are two different switching types, which define, when a switch starts to forward a frame. We
discuss these two methods, namely Store-and-Forward and Cut-Through Switching [Cis08], in this
section.

A Store-And-Forward switch first fully receives a frame at the ingress port. It then processes and
forwards this package to the correct egress port step by step based on the pipeline described in
Section 2.1.2.

In contrast, Cut-Through switches are able to forward an Ethernet frame before fully receiving
it. They are able to start the filtering step, and thus the forwarding pipeline, immediately after
receiving all relevant data for this step (e.g. the destination MAC address). When using Cut-Through
switching, intermediate switches are not able to determine and discard corrupted packages before
forwarding them, as the checksum is located at the end of an Ethernet frame, and thus the switch
already started the internal forwarding proceess before receiving the checksum.

2.1.4 Delays

To calculate correct schedules for the streams in our network, we need to take different delay types
into account. We define these delay types in this chapter using Figure 2.3, similar to the definition
provided in the IEEE 802.1Q standard [IEE18b].

Propagation Delay is the time that passes until a signal change initiated by the sender reaches the
receiver. This delay is independent of the frame’s size and only depends on the transmission
medium and the distance between the sender and receiver.

20

2.1 IEEE Ethernet

(a) Delay types for Store-and-Forward switching.

(b) Delay types for Cut-Through switching.

Figure 2.3: Visualization of different delay types.

Transmission Delay is defined as the timespan between the sender starting and finishing the
transmission of a frame. This delay only depends on the frame’s size B (in bit) and the speed
of the connecting link 1 (in bit

s). Based on these two values, the transmission delay 3trans can
be calculated using the formula 3trans =

B
1
.

Processing Delay The definition of the Processing Delay depends on the switching mode as
described in Section 2.1.3.

For Store-And-Forward switching, our definition is similar to the Store-and-forward delay
in the IEEE Std. 802.1Q [IEE18b]. It holds the amount of time a switch needs to process
a frame through all forwarding steps as described in Section 2.1.2 under the assumption of
empty queues. Figure 2.3a shows this behavior.

For Cut-Through switching, we have a similar definition. We define the processing delay as
the time from receiving the first bit at the ingress port until sending the first bit at the outgress
port (Figure 2.3b). Again, under die assumption of empty queues.

The processing delay highly depends on the implementation of the switch, and we assume it
to be independent of the size of a frame.

21

2 Background

Queuing Delay We define the Queuing Delay as the time that passes between queuing a frame and
selecting this frame for transmission. Our queuing delay definition is similar to definition of
the interference delay in the IEEE 802.1Q standard. This delay depends on the network’s
utilization and can only be calculated if the Transmission Selection (TS) as well as all
interfering frames are known beforehand.

2.2 Time-sensitive Networking (TSN)

This section is about TSN specific technology and extends the Ethernet description from Section 2.1.
We start with an introduction to the different TSN standards relevant for this work. Following that,
we discuss the basic concepts of these standards. Finally, we explain the concept of schedules and
the Time-Aware Shaping (TAS).

2.2.1 TSN Standards

The TSN standards are a set of standards developed by the Time-sensitive Networking (TSN) Task
Group (TG) [IEEb], which is part of the IEEE 802.1 working group [IEEa]. The purpose of the
TSN standards is to extend standard Ethernet networks with time-sensitive functionality such as
bounded latencies and guaranteed packet delivery. Most TSN standards were amendments to the
IEEE 802.1Q standard [IEE18b] as discussed in Section 2.1, which have already been merged into
it. The most important amendment used in this work is the IEEE 802.1Qbv amendment [IEE16],
which introduces “Enhancements for Scheduled Traffic”, such as Time-Aware Shaping (TAS) as
described in Section 2.2.2.

To enable traffic scheduling in real-time networks, all devices need a synchronized global time,
which normally is not part of the Ethernet specification. The IEEE 802.1AS-2020 amendment
[IEE20b] contains changes to the IEEE 1588 [IEE20a] Precision Time Protocol (PTP), which
allows to synchronize the clock of TSN capable devices.

There are more TSN amendments, which we do not further discuss, as they are not relevant for our
specific use-case.

2.2.2 TSN concepts

One key-feature of the TSN standards is the extension of the queues in each switch as presented in
Section 2.1.2. In the following, we give an overview of the main concepts, namely each queue’s
Transmission Selection Algorithm (TSA) and gate and the final Transmission Selection (TS). We
discuss these concepts based on Figure 2.4, starting with each queue’s TSA.

22

2.2 TSN

Figure 2.4: Transmission Selection Algorithm (TSA), Gates, Gate Control List (GCL) and Trans-
mission Selection (TS) [HDHK18; IEE18b].

Transmission Selection Algorithm (TSA)

The Transmission Selection Algorithm (TSA) is a part of each queue in a TSN capable switch. Main
purpose of each queue’s TSA is to announce if a frame inside the queue is eligible for transmission
at the egress port. This announcement is later used in the Transmission Selection (TS) step. The
IEEE 802.1Q [IEE18b] standard already defines different TSAs. The following list gives a brief
overview over these predefined TSAs, but vendor specific TSAs are also possible.

Strict Priority The most basic and trivial TSA is the Strict Priority TSA. It always announces a
frame ready for transmission if the corresponding queue is not empty.

Credit-Based Shaper (CBS) The Credit-Based Shaper (CBS) is another TSA, which was added by
the IEEE 802.1Qav amendment [IEE10]. Credit-based shaping uses credits which increase
when the queue is not transmitting and decrease when the queue is transmitting frames. It
only announces a frame eligible for transmission, if the amount of credits is a non-negative
value.

Enhanced Transmission Selection (ETS) The third provided TSA is the Enhanced Transmission
Selection (ETS). It allows to select frames based on an allocation of bandwidth for different
traffic classes.

Gates & Scheduling

After the TSA, each queue has a so-called gate, which holds exactly one of these states at a time
[IEE18b]:

• Open: Queued frames are announced for transmission, in accordance with the definition of
the Transmission Selection Algorithm associated with the queue.

• Closed: Queued frames are not announced for transmission.

23

2 Background

time t

cycle time cycle time

PCP=7 PCP=7PCP=0..6 PCP=0..6

t1 t1t2 t2

PCP=7

Figure 2.5: Example for Time Division Multiple Access (TDMA) [Fre13] with two timeslots per
period.

A Gate Control List (GCL) controls these states of a gate on a time-based cycle. An entry in the
GCL is a tuple, which specifies the current state (either Open or Closed) for each gate. Starting
with the first entry, the GCL selects the next entry after a specified time interval) . When the end of
the GCL is reached, it returns to the first element. The time for a full iteration of the GCL is called
cycle time and can be calculated by multiplying) with the number of entries in the GCL.

The main purpose of the GCL is to enable Time-Aware Shaping (TAS). This allows us to specify,
when a queue is allowed to transmit frames based on an absolute timescale. Time-Aware Shaping is
a Time Division Multiple Access (TDMA) based approach. TDMA [Fre13] is a technique to split
a transmission channel (an Ethernet cable in our case) into multiple repeating timeslots. In each
timeslot, only the corresponding queues (one or multiple) are allowed to send. Figure 2.5 shows
an TDMA example with two timeslots per period. One period for frames of the highest priority
(PCP=7) and one for all other priorities.

Transmission Selection (TS)

The last step in the pipeline is the Transmission Selection (TS). The TS is responsible for the final
decision, which frame is transmitted next at the egress port. To achieve this, the TS needs to execute
the following steps [IEE18b]:

1. Check each queue’s TSA if a transmission-eligible frame is announced.

2. For each of these queues only consider those with an open gate.

3. Filter out queues, if the announced frame’s size exceeds the size which can be transmitted in
the remaining time the gate stays open (Guard Band).

4. Chose the queue with the highest priority from all remaining queues.

2.3 Integer Linear Programming (ILP)

Solving the Routing and Scheduling problem for a specific network topology and streamset is
NP-hard [Ste10], and thus we need an efficient algorithm to solve this problem.

24

2.4 Graph Algorithms

One possibility, which we use in this work, is to represent the scheduling and routing conditions
and optional goals as constraints and objectives of an Integer Linear Program (ILP). ILPs are a
specific type of linear programs, with the only difference, that all variables have to be integers.

An ILP usually consists of multiple parts [Sch86]:

Variables The variables of an ILP can take any integer value and are the part an ILP solver tries to
find valid values for.

Constraints add relations between variables and fixed constants. A constraint is either a linear
equation (e.g. 0 + 21 = 2) or a linear inequality (e.g. 0 ≤ 21). Constraints can be split into
three parts, a left-hand side (lhs) (0 + 21 or 0 in the examples above), a sense (either <, ≤, =,
≥ or >) and a right-hand side (rhs) (2 or 21 above).

Bounds are an optional possibility to restrict the value range of a variable, e.g. 0 ∈ {G ∈ Z |
−100 < G < 100}.

Objective An objective can be used to specify an optimization goal, which is used by the solver
to find the best solution regarding this objective. For example, max 0 can be used to find
the solution with the biggest valid value for 0. Some ILP-solvers offer the functionality to
add multiple objectives with weights. However, this is a linear interpolation between these
objectives and mathematically equivalent to one single objective.

While small ILPs are rather easy to solve, bigger ILPs need to be solved by specialized tools,
so-called ILP-solvers. In this work we mainly focus on a well-known and established ILPs-solver,
namely Gurobi Optimizer [Gur].

2.4 Graph Algorithms

A possible way to model a network topology is to use a graph. Based on this graph, one can execute
different graph algorithms, for example to calculate the shortest path between two devices. In this
section, we cover the definition of graphs and two graph algorithms, which we later use in this
work. We start by defining a graph and its parts, such as vertices and edges. Then, we introduce the
depth-first graph search to find vertices and corresponding paths in a graph. Finally, we explain the
Dijkstra algorithm to find the shortest paths from one vertex to a single or multiple other vertices.

2.4.1 Graph

A graph always consists of a set of verticesV. One possibility to represent a vertex is to represent
it as a node. Figure 2.6 shows an example with five vertices.

We model connections between vertices by a set of edges E. Each edge is an ordered or unordered
pair of vertices (e.g. (E1, E2) or {E1, E2}). There are two different basic types of graphs, directed and
undirected graphs (Figure 2.6b). In a directed graph, each edge is an ordered pair of vertices, also
known as 2-tuples, whereas in an undirected graph they are modeled as unordered pairs, also known
as 2-sets. For example, in a directed graph E = {(E1, E2)} means E1 is connected to E2, but E2 is
not connected to E1. In contrast, undirected graphs use unordered pairs, so {E1, E2} is equivalent to

25

2 Background

(a) Example of a directed graph. (b) Example of an undirected graph.

Figure 2.6: Comparing directed and undirected graphs.

{E2, E1}. This means, that if E1 is connected to E2, E2 is also connected to E1. Directed edges are
represented by arrows connecting nodes (Figure 2.6a), whereas undirected edges are represented as
lines (Figure 2.6b).

One can also analyze a graph by different metrics. The only metric we use in this work is the
diameter of a graph. The diameter of a graph defines the greatest distance between any two pairs of
vertices. This means, that one needs to calculate the shortest path between any two vertices. The
greatest of those values is the graph diameter.

2.4.2 Depth-First search (DFS)

The Depth-First search (DFS) [Tar71] is a graph search algorithm, which is used to traverse graphs.
Algorithm 2.1 shows a possible iterative implementation, but recursive implementations are also
possible. The algorithm works by maintaining a visited list and a stack, which initially contains a
given start vertex. It then pops element by element from the stack and checks if the popped vertex
is on the visited list. If not, the algorithm adds this vertex to the visited list and adds all neighbors
to the stack. When there are no more elements left on the stack, the algorithm terminates. By using
a stack and immediately pushing neighbors onto it, we ensure the algorithm traverses the graph in a
depth-first manner.

Depending on the use-case, we make different modifications to the base algorithm, to achieve a
different behavior.

• If we only need to find one target vertex, the algorithm can terminate in Line 6, if the current
value is the searched target goal.

• To not only find vertices, but also keep track of the paths to these vertices, we introduce a
dictionary. The algorithm fills this dictionary with the previous node for each node when
visiting it.

• Sometimes, we need the algorithm to return all paths to a given vertex instead of only one
path. It is possible to modify the DFS algorithm to support this behavior. In this work we rely
on an external tool named graph-tool [Pei14], which already implements this functionality.
Thus, we do not discuss this modification in detail.

26

2.4 Graph Algorithms

Algorithm 2.1 Depth-first Search
1: procedure DFS(g: Graph, current: Vertex)
2: stack: Stack← emptyStack()
3: stack.push(source)
4: visited: Set← emptySet()
5: while not stack.isEmpty() do
6: current← stack.pop()
7: if current not in visited then
8: visited.add(current)
9: for each edge in g.outEdgesOf(current) do

10: stack.push(edge.target())
11: end for
12: end if
13: end while
14: end procedure

2.4.3 Dijkstra

The Dijkstra algorithm [Dij59] is a graph algorithm either used to calculate the shortest path between
a given source vertex and a target vertex (one-to-one Dijkstra) or to calculate the shortest path
between a given source vertex and all other vertices (one-to-all Dijkstra).

Algorithm 2.2 shows a possible one-to-all implementation using a priority queue. In the beginning,
the algorithm initializes the 38BC dictionary with 0 for the source vertex and∞ for all other vertices.
It then adds the source vertex to the queue, which orders all contained elements by the currently
stored respective value in the 38BC dictionary. The algorithm now dequeues vertex by vertex, until
the queue is empty. It then iterates over all neighbors of that vertex and calculates a temporary
distance from the start node via the dequeued vertex to the current vertex. If this temporary distance
is higher than the currently stored distance, the algorithm already knows a shorter path to that vertex
and continues with the next neighbor. Otherwise, the algorithm stores the temporary distance in the
38BC dictionary and saves the dequeued vertex in the ?A4E dictionary. Lastly, it queues the current
node in the queue.

When the queue is empty, the algorithm returns two dictionaries containing the distance and the
previous vertex for each vertex. One can now determine the shortest path to a specific vertex, by
reverse searching based on the prev dictionary. We can also modify the algorithm to a one-to-one
Dijkstra. In order to achieve this, the algorithm returns, when the dequeued vertex in Line 12
matches the target vertex.

27

2 Background

Algorithm 2.2 Dijkstra (One-to-All)
1: procedure dijkstra(g: Graph, source: Vertex, weight: Dict[Edge, Number])
2: dist: Dict[Vertex, Number]
3: prev: Dict[Vertex, Vertex]
4: queue: PriorityQueue[Vertex] (Ordered by corresponding dist value)
5: for each vertex in g.vertices() do
6: dist[vertex]←∞
7: prev[vertex]← ?
8: end for
9: dist[source]← 0

10: queue.enqueue(source)
11: while not queue.isEmpty() do
12: current← queue.dequeue()
13: for each next in g.neighborsOf(current) do
14: nextDist← dist[current] + weight[(current, next)]
15: if nextDist < dist[next] then
16: dist[next]← nextDist
17: prev[next]← current
18: queue.enqueue(next)
19: end if
20: end for
21: end while
22: return dist, prev
23: end procedure

28

3 Related Work

Scheduling is a well-researched topic for real-time networks as well as for other use-cases. The
Job Shop Scheduling Problem (JSSP) is one of the earliest researched scheduling problems, e.g. by
Graham in 1966 [Gra66]. The main parts of a JSSP are jobs, which consist of a series of operations,
and machines, which are able to execute specific operations one at a time. Solving a JSSP, means to
calculate a schedule in which machines execute the operations. While the JSSP does not schedule
packets in a real-time network, it is still similar to TSN and other real-time network standards, so
some approaches for real-time networks are based on the JSSP.

There are also scheduling approaches for real-time networks, before the introduction of TSN. For
example, there is work on the scheduling problem for TTEthernet [SAE16] or PROFINET [PRO14],
which both extend Ethernet by real-time capabilities. Even though these real-time standards differ
from TSN, they are still Ethernet-based and similar to TSN, and thus also relevant for this work.

This chapter gives an overview over some of these already existing approaches. We divide the
different approaches into two parts. In the first part, we introduce complete approaches, which either
solve the scheduling or the Joint Routing and Scheduling (JRaS) problem. As this work aims to
optimize complete approaches, we mainly focus on those. The second part contains a brief overview
over heuristic-based and heuristic-enhanced methods.

3.1 Complete Approaches

There are cases, where one needs to ensure the scheduler finds a solution, if there is any valid
solution, and otherwise terminates without a solution. In these cases only complete scheduling
algorithms are applicable.

We distinguish between two types of complete approaches. The first type contains algorithms, which
calculate schedules for streams based on a given route. The second type are so-called Joint Routing
and Scheduling (JRaS) approaches, which calculate schedules and routes in the same step. In the
following sections, we describe approaches of both types and discuss there respective advantages
and disadvantages.

3.1.1 Separate Routing and Scheduling

We start by discussing scheduling approaches, which calculate schedules based on fixed route. This
route is either an input to the scheduler or calculated in a previous step. There are multiple ways, to
solve the scheduling problem for a given topology and streamset. For example, one can express the
scheduling problem as a Constraint Satisfaction Problem (CSP). A possible way to solve a CSP, is

29

3 Related Work

to use a specific, well-defined format, such as Satisfiability Modulo Theory (SMT) or Integer Linear
Programming (ILP), as described in Section 2.3, and then use already existing solvers to solve the
given constraints of the respective format.

Steiner presents such an SMT-based approach to address the scheduling problem for TTEthernet
networks [Ste10]. In this work, Steiner represents the constraints of the scheduling problem as
an Satisfiability Modulo Theory (SMT) formulation and solves this problem instance using the
YICES SMT-solver [Dut14]. Based on the SMT formulation, he evaluates the performance of
the schedules, based on different metrics, such as the runtime and maximum utilization of links.
Steiner’s approach is capable of scheduling a few hundred streamsets within half an hour with the
out-of-the-box YICES configuration and up to multiple ten-thounsand streams for a customized
YICES back-end. His approach is also capable of validating existing schedules and can be used to
debug those.

Craciunas et al. also present an SMT-based scheduling approach for TTEthernet networks [CO14;
CO15]. In addition to Steiner’s work, they present a combined tt-task and tt-network scheduling
approach to cover the whole scheduling solution space and introduce a demand-based scheduling
algorithm. In contrast to the one-shot approach, which solves all constraints at once, the demand-
based algorithm adds constraints on-demand in order to reduce the runtime. In [CO15], they
furthermore introduce an ILP-based approach also for the combined tt-task and tt-network scheduling
problem. They compare the performance of the SMT-based and ILP-based approach using YICES
[Dut14] and Gurobi [Gur]. Their evaluation states, that the demand-based SMT approach performs
better in most cases.

In a later work [COCS16], Craciunas and Steiner et al. adapt their SMT model for IEEE TSN
networks. They evaluate this approach on relatively small network typologies with up to seven hosts
connected by five switches. Instead, they use a large number of up to 100 streams. The algorithm is
capable of scheduling these 100 streams on the given topology within a runtime of 4 hours.

Hanzálek et al. [HBŠ10] developed an ILP-model for another real-time capable Ethernet-based
technology called PROFINET. In their work, they present an approach for schedule calculation
in controller applications. They take real-time traffic from an IO controller to an IO device and
vice-versa into account, but there is no real-time traffic between other IO devices. Hanzálek et al.’s
approach is capable of calculating an optimal solution for up to one hundred streams on 20 hosts.
Additionally, they introduce a heuristic approach Section 3.2 and a rescheduling mechanism, which
allows adding messages and hosts to an already calculated schedule.

In [DN16], Dürr et al. propose a no-wait scheduling approach for IEEE TSN-based Ethernet
networks. The proposed approach maps the no-wait packet scheduling problem to a no-wait Job
Shop Scheduling Problem (JSSP). They provide an ILP for the no-wait JSSP and based on that an
ILP for the no-wait packet scheduling problem. To reduce the number of gate opening events in
TSN schedules, they also introduce a schedule compression algorithm, which removes gaps between
two frames. They achieve this behavior by delaying the first of two frames, so the gap between
both transmissions disappears. Delaying frames leads to a relaxation of the no-wait constraint, but
their approach does not affect the flowspan and reduces the number of gate-opening events by 24%.
Additionally, they reduce the runtime by extending their algorithm with a tabu-search heuristic
approach (see Section 3.2).

30

3.1 Complete Approaches

The scheduling-only approaches mentioned above may be superior in networks with low utilization,
due to a shorter solving time compared to JRaS approaches. However, in higher utilized networks,
there are cases, where solving the scheduling problem for a given route is impossible, though
solutions might exist for different routes. One possibility to circumvent this problem is to execute
the scheduler multiple times with different predefined routes, until it finds a solution, assuming there
is a solution for a specific set of routes. Another possibility is to use an approach, which solves the
routing and scheduling problem at once, so-called Joint Routing and Scheduling (JRaS) approaches.
We discuss those in the following section.

3.1.2 Joint Routing and Scheduling (JRaS)

In contrast to scheduling-only algorithms, Joint Routing and Scheduling (JRaS) approaches calculate
routes and schedules in the same step. As the JRaS problem is an extension of the scheduling
problem, similar approaches, such as ILP-based methods, can be used. In the following section, we
introduce already existing work on the JRaS problem.

In [SDT+17], Schweissguth et al. present an ILP-based JRaS approach. They also introduce methods
to modify this ILP to schedule streams along fixed routes using Shortest Path Routing or Load
Balanced Routing. Their shortest path routing implementation always uses one of the shortest paths,
and if there are multiple paths of equal length, they select them based on a round-robin scheme.
The load balanced routing is suitable, if there is a low maximum link utilization. This approach
leads to the lowest possible link utilization. Finally, they compare the JRaS approach against both
fixed-path scheduling approaches. Regarding schedulability, they find out, that the load balanced
routing and JRaS are similar, but shortest path routing is only able to schedule 1

3 of the streams. In
contrast, shortest path routing and JRaS are nearly equal regarding latencies, while load balanced
routing leads up to 61.8% higher latencies. They also find out, that these better solutions result in
longer runtimes.

In a later work, Schweissguth et al. propose another ILP-based apporach, which additionally supports
multicast streams [STP+20]. They also provide possible optimizations for this ILP. One of these
optimizations is to bound the timeslot on a link, by forcing the latency compared to the first link to be
a positive value. They further optimize the runtime, by replacing some constraints in specific cases,
e.g. when there is no possible routing decision. Furthermore, they test four different objectives, which
include minimizing the cumulative flow latencies (with and without optimality gap), minimizing
the path length with a second focus on latencies and having no objective, which means the solver
terminates, after finding the first feasible solution. Their evaluation shows, that replacing constraints,
when there is no routing decision gives the best performance boost. With this approach, they are
able to schedule up to 35 streams within a runtime of 5 s, when using no optimization goal.

Hellmanns et al. aim to reduce the runtime of the Joint Routing and Scheduling (JRaS) problem
without sacrificing valid solutions in [HDHK18]. Their approach is also ILP-based, thus, most of
the optimizations focus on reducing the ILP’s variables and constraints. The ILP by Hellmanns et
al. contains two main parts, namely the routing and the scheduling part. They propose an approach
for optimizing the routing and scheduling part. First, they optimize the routing part, by using an
algorithm called topology reduction. Based on its outcome, they also reduce the scheduling part.
The topology reduction algorithm calculates all loopless paths from the source host to the destination
host and creates a reduced topology only containing those paths. This reduction algorithm removes

31

3 Related Work

all edges in the opposite direction. In some cases, it also removes nodes and their corresponding
edges, when a node is not accessible without entering a loop. Based on the topology reduction,
they are also able to remove all scheduling variables and constraints for the removed edges, which
results in a decimated ILP-model. They find out, that the topology reduction reduces the runtime by
a factor of up to 100.

There is not only work on creating and optimizing JRaS approaches, but also work, which explores
the impact of different factors regarding the runtime. One example is Falk et al., who evaluate an
ILP-based approach on different parameters, to explore the practical limitations of the JRaS problem
[FDR18]. They vary parameters, such as the number of flows and the topology size and type (e.g.
line, ring and random topologies). Their main finding are, that the runtime is heavily dependent on
the number of streams and less influenced by the topology size. They also find out, that the runtime
increases, if there are links with a high utilization. Lastly, they state, that the topology type also
strongly influences the runtime. Especially topologies with a large amount of links between nodes,
result in longer runtimes.

While Joint Routing and Scheduling approaches are able to find feasible solutions more often than
separated approaches, they suffer from a higher runtime. As previously mentioned, Falk et al.
[FDR18] already analyzed, which factors have a huge impact on the runtime of ILP-solvers. In this
work we use these results to reduce the runtime of our ILP-based Joint Routing and Scheduling
approach.

3.2 Heuristic approaches

Solving the scheduling problem using a complete or optimal algorithm is reasonable in many cases.
But especially in large network environments or networks with a large number of streams, complete
approaches may be too slow due to the previously mentioned NP-hardness of scheduling problem
(Section 2.3). One possibility to circumvent this problem, is to forego optimality, in favor of a
shorter runtime, by using heuristic approaches. Heuristics can also be used to enhance complete
approaches. In the following section, we discuss different heuristic-based and heuristic-enhanced
scheduling approaches.

In Section 3.1.1, we already discussed Dürr et al.’s no-wait JSSP-based scheduling approach for
TSN networks [DN16]. To further enhance this approach, they adapt a tabu-search heuristic for
the no-wait JSSP [MMR99] to the no-wait packet scheduling problem. The tabu-search works by
finding an initial solution and improves by exploring its neighborhood taking specific tabu criteria
into account. The quality difference of the calculated schedules between these two approaches is
negligible, but they are able to schedule up to 1500 streams instead of 30 to 50 streams, with this
heuristic-enhanced approach.

For Profinet networks, Hanzálek et al. propose two different heuristic-based scheduling approach,
namely Filtered Beam Search (FBS) and Iterative Resource Scheduling (IRS) [HBŠ10]. They find
out, that the FBS heuristic is only able to solve small problem statements, and thus does not provide
a noteworthy improvement over their optimal ILP approach (Section 3.1.1). The IRS heuristic is
able to find a near optimal solution within a much shorter runtime and for larger topologies. In
scenarios with a high link utilization however, the IRS heuristic is not able to always find a feasible
solution.

32

3.2 Heuristic approaches

Glavackij presents different scheduling-only tracing-based approaches for TSN networks in [Gla20].
Tracing-based approaches use a lightweight network simulator and calculate schedules for streams
from the simulation results. However, trivial tracing-based approaches fail, if a single stream
violates its deadline requirements. In his work, Glavackij explores different possibilities to handle
these violations. The base of all approaches is the same: They first identify all streams that violate
their deadline (late streams), and then delay conflicting streams in order to allow late streams to be
scheduled before. His first Naive approach delays all streams that have a common edge with a late
stream. The Link Time Remaining Time and Link Time Late Streams approach advances this method
by redefining what a “conflicting stream” is. More precisely, they do not consider a stream as
conflicting, if it is already fully transmitted on arrival of the late stream or if it is queued after the late
stream. Additionally, the Link Time approaches calculate an overlap-time for each conflicting stream
and use this overlap-time to delay streams. The difference between these approaches is the heuristic,
which defines how to explore the search tree. Glavackij improves the Link Time approaches further
by using a Monte Carlo Tree Search (MCTS). He refers to this approach as the Link Time MCTS
approach. The evaluation shows, that this Link Time MCTS has the best scheduling capabilities.

In [PRGS18], Pop et al. present a heuristic scheduling approach for TSN-based fog computing
environments. In contrast to other scheduling approaches, Pop et al.’s approach is capable of
reconfiguring the schedule at runtime. To reduce the rescheduling runtime, their heuristic algorithm
first tries to fit the new streams into the old schedule. If this fails, they recalculate the complete
schedule. As a second fallback option, they rely on different design-time approaches, meanwhile,
they continue using the old schedule until these approaches finish their calculation. They compare
their approach to optimal approaches on low- and medium-utilized networks. While their heuristic
algorithm is runtime-superior in these scenarios, they note, that their heuristic scheduler does not
guarantee to find a feasible solution in all cases.

As earlier mentioned, the advantage of heuristic-based approaches is their reduced runtime compared
to complete scheduling approaches. However, they are not necessarily complete, and thus there is
no guarantee, they always find a feasible solution.

33

4 System Model

Before we are able to explain our optimization approach, we first need to formalize different parts
of our problem, such as the network topology and streams. We also need to make assumptions
regarding the configuration of our network and its devices. We start this chapter by introducing
our network model, which formalizes network topologies and streams. Furthermore, we define
helper functions to access attributes of these network parts. In the next section, we explain our
assumptions and configuration of network devices. Finally, we introduce a basic ILP-model based
on the work by Hellmanns et al. [HDHK18].

4.1 Network Model

For our ILP-model, we need a formal description of our network. In this section, we first give an
overview over our network topology model, which contains the hosts, switches and links. Thereafter,
we introduce our stream model. Finally, we define some helper functions for frequently used
calculations.

4.1.1 Topology

This section contains a description of our network topology model. We start by introducing our
representation of the different parts of the network. After that, we explain, how we represent
attributes of those network parts.

Our network consists of three main components: hosts, switches and links. As hosts and switches
are connected by links, we can model both of them as a set of vertices V. Combined with the
representation of links as a set of edges E, they make a graph G = (V, E). Even though links in
an Ethernet network are full-duplex, we use a directed graph and represent a full-duplex link as
two opposing edges connecting the participating vertices. This allows us to remove edges in one
direction if needed and to schedule streams in both directions independently of each other.

This graph defined above models the structure of our network, but it does not include details such as
the device type of vertices or the link speed of edges. Thus, we use global functions, which return
those values. This is a list of all global functions regarding a vertex E ∈ V or an edge 4 ∈ E:

• is_switch : E ↦→
{

1 if vertex is a switch
0 otherwise (if vertex is a host)

• in_edges : V → P(E) gives a set of all incoming links of a vertex E.

• out_edges : V → P(E) give a set of all outgoing links of a vertex E.

35

4 System Model

• processing_delay : V → N gives the processing delay, if E is a switch in ns.

• propagation_delay : E → N gives the propagation delay of a link in ns.

• link_speed : E → N gives the link speed of a link in bit
s .

4.1.2 Streams

We model all streams, which are relevant for scheduling, as a set S ⊂ (V × V × N) of streams.
Each stream object (Esrc, Edst, id) ∈ S has three properties, which describe the source vertex, target
vertex, and the id of a stream. Each stream id is unique and may only belong to exactly one element
in S. In some cases, we only need the source and target vertex of a stream. In these cases, we leave
out the id and use (Esrc, Edst, _) ∈ S as a simplified notation.

Similar to our network topology, we access attributes of the streams by using global functions. The
following list contains functions which map a stream B = (Esrc, Edst, id) ∈ S to a given attribute of
the stream:

• stream_size : S → N gives the size of a stream in Bytes.

• e2e_delay : S → N gives the maximum end-to-end delay in ns.

• stream_vertices : S → P(V) gives all vertices in the reduced topology of a stream (see
Section 6.2.1).

• stream_edges : S → P(E) gives all edges in the reduced topology of a stream (see Sec-
tion 6.2.1).

4.1.3 Helper Functions

There are repeating calculations using streams B ∈ S, vertices E ∈ V and edges 4 ∈ E in this work.
To allow an easy usage of these values, we define functions to express those values:

• transmission_delay(B, 4) = 8·stream_size(B)
link_speed(4) · 109 calculates the transmission delay of a stream

B on edge 4 in ns.

• lower_bound(B, 4) : S × V → N gives the lower bound of a stream B on edge 4 in ns (see
Section 6.3.2) .

• upper_bound(B, 4) : S ×V → N gives the upper bound of a stream B on edge 4 in ns (see
Section 6.3.2).

36

4.2 Ethernet Model

4.2 Ethernet Model

In order to correctly calculate schedules and convert them to a Gate Control List (GCL), we need
a model of our Ethernet network. The Ethernet model in this section contains assumptions and
configurations on different parts of the network and its devices.

We distinguish between time-critcial and best-effort traffic. We only calculate schedules for time-
critical streams, and assume that they always use the highest priority, which means, they have a
Priority Code Point (PCP) value of 7. As we do not take best-effort traffic into account, all other PCP
values are available for this traffic class. We only distinguish between time-critical and best-effort
frames using this PCP value. Thus, we do not use other values of the VLAN tag, such as the VLAN
Identifier (VID). As time-critical frames may never be discarded in our case, the Drop Eligible
Indicator (DEI) is always 0 for time-critical frames.

In our work, we do not take multicast streams into account. This means, a stream always has exactly
one sender and exactly one receiver. Still, a host may be the sender and/or receiver of multiple
streams. That means, we are not able to distinguish streams based on the MAC address of its sender
or receiver. As mentioned in Section 2.1.2, a switch may forward a frame based on the destination
MAC address or a Flow Filtering tag. For the sake of simplicity and generality, we do not rely on
the flow-based approach in this work. Instead, we assign a multicast MAC address to each stream,
which only contains the single receiver of this stream in the corresponding multicast group.

While the TSN standards define the general behavior of a TSN-capable switch, the implementation
and supported functionality of the forwarding process differs between various devices. Nevertheless,
we have to ensure our schedules are applicable to these switches. Therefore, we demand that all
switches have at least two different queues, while one queue only contains our time-critical frames
with PCP = 7. Furthermore, we assume that the processing delay of a switch is constant and
especially independent of a frame’s size. To fulfill our demand of a No-wait schedule, we need to
ensure all switches are able to immediately forward a frame without a queuing delay. Thus, we
configure all switches to use the Strict Priority Transmission Selection Algorithm. Lastly, we require
all switches in our network to use the same switching type. This can be either Store-and-Forward or
Cut-Through, as explained in Section 2.1.3.

4.3 ILP-model

As mentioned in Section 3.1.2, different approaches to model the Joint Routing and Scheduling
(JRaS) as an ILP already exist. Therefore, we decided to improve upon an already existing ILP
formulation. We use the ILP-model by Hellmanns et al. [HDHK18] in this work, as it is directly
based on the networks topology and streamset, and hence allows us to directly project changes of
the network topology and streamset to the ILP formulation.

In this section, we describe Hellmanns et al.’s basic ILP formulation in detail. We separate the
constraints of the ILP-model into three different groups, namely the Routing, Scheduling and Conflict
group. The following sections define the variables and constraints of each group.

37

4 System Model

Figure 4.1: Definition of all delays, start variables and end variables for Store-and-Forward switch-
ing.

4.3.1 Routing Constraints

To represent a routing decision, which defines, whether a stream B ∈ S uses an edge 4 ∈ E,
Hellmanns et al. introduce a binary decision variable GB,4 which is 1 if the stream B uses the edge 4

and 0 otherwise.

Using these variables, they are able to define all constraints relevant for the routing decision.
Constraint (4.1) and Constraint (4.2) limit the number of outgoing used edges of the source node
and incoming used edges of the destination node to one. These constraints enforce, that each stream
has to start at its given start vertex and stop at its given end vertex. To ensure, that streams cannot
have any other start or end point, Constraint (4.3) enforces, that the number of used incoming and
used outgoing edges of each vertex has to be equal. In combination, all three routing constraints
provide a continuous flow from the start vertex to the end vertex.

∀B = (Esrc, Edst, _) ∈ S :

∑
4∈out_edges(Esrc)

GB,4 = 1 (4.1)

∑
4∈in_edges(Edst)

GB,4 = 1 (4.2)

∀E ∈ V \ {Esrc, Edst} :
∑

4∈in_edges(E)
GB,4 =

∑
4∈out_edges(E)

GB,4 (4.3)

38

4.3 ILP-model

4.3.2 Scheduling Constraints

The main task of the scheduling constraints is to provide a schedule for each stream. Hellmanns et
al. use two variables per Edge 4 and Stream B to define the start and end time. The BC0ACB,4 variable,
defines the start time of Stream B on Edge 4 and 4=3B,4 holds the end time of B on 4, as Figure 4.1
shows.

To ensure, that a stream does not exceed the cycle time, Hellmanns et al. provide a constraint for
each stream, which limits all end variables to the cycle time. By multiplying the cycle time with the
decision variable GB,4, they also achieve that the time for each unused edge is set to zero.

∀B ∈ S,∀4 ∈ E : 4=3B,4 ≤ GB,4 · cycle_time (4.4)

The end variable 4=3B,4 only depends on the start variable BC0ACB,4 and the transmission delay of
the same edge. Constraint (4.5) represents this dependency between the start and end time of each
stream and edge. When Edge 4 is used, Constraint (4.5) calculates the end time 4=3B,4 by adding
the transmission delay to the corresponding variable BC0ACB,4. If 4 is unused, this constraint in
combination with Constraint (4.4) ensures, that both variables are set to zero.

∀B ∈ S,∀4 ∈ E : 4=3B,4 = BC0ACB,4 + GB,4 · transmission_delay(B, 4) (4.5)

To schedule streams continuously in a No-wait manner, Hellmanns et al. provide another scheduling
constraint. On the rhs, Constraint (4.6) sums the end times of all incoming edges and adds the
propagation and processing delay based on the routing variable GB,4. On the lhs, it sums the start
time of all outgoing edges. By requiring both sides to be equal, this constraint fulfills the needs to
generate a continuous No-wait schedule.

∀B = (Esrc, Edst, _) ∈ S,∀E ∈ V \ {Esrc, Edst} :

∑
4∈out_edges(E)

BC0ACB,4

=
∑

4∈in_edges(E)
4=3B,4 + GB,4 · (propagation_delay(4) + processing_delay(E))

(4.6)

4.3.3 Conflict Constraints

To prohibit the collision of two streams B and B′ on an edge 4, a constraint to disallow streams to
overlap on an edge is needed. Therefore, Hellmanns et al. introduce a new Variable 1B,B′,4 for each
pair of distinct streams (B, B′) on each edge. 1B,B′,4 intuitively reads as “stream B is scheduled before
stream B′ on edge 4”.

To be able to model this behavior in an ILP, we need to use big " constraints. A big " variable
holds a value bigger than the maximum value any other variable in this constraint can normally take.
By multiplying the binary decision variable 1B,B′,4 with " , Hellmanns et al. are able to define a set
of two constraints, which model either the time for B before B′ or B′ before B based on the decision
variable 1:

39

4 System Model

∀((B, B′), 4) ∈ (S × S) × E (with B ≠ B′) :
4=3B,4 ≤ BC0ACB′,4 + (1 − 1B,B′,4) · "
4=3B′,4 ≤ BC0ACB,4 + 1B,B′,4 · "

(4.7)

Choosing too big values for " may lead to numerical issues [Gur], but we can simply choose " as
the cycle time, as the end time of a stream can never exceed the cycle time.

40

5 Problem Statement

To ensure time-sensitive frames arrive within their specified time limit, they need to be separated from
non-time-critical (best-effort) traffic. We can achieve this, by distributing the available bandwidth
between both traffic classes in such a way, that all time-critical frames arrive within their time limit.
To do this, we need to generate a so-called Schedule, which contains an exact time-allocation for
each link on a frame’s route. This is also known as the Scheduling process. Based on a schedule,
one can calculate entries for the Gate Control List (GCL), as explained in Section 2.2.2. Calculating
minimum-sized timeslots for real-time traffic requires knowledge about all delays in the network,
including the transmission delay, and thus we need to know the size of all time-sensitive frames.
The calculation of timeslots with knowledge of each frame’s size is proven to be NP-hard [Ull75].

Scheduling-only algorithms require a given route, which is either an input to the scheduler or
calculated in an earlier preprocessing step. Using a fixed route normally reduces the algorithm’s
complexity and runtime, but also excludes possible solutions in advance. An extension of the
scheduling problem, which circumvents this downside, is the so-called Joint Routing and Scheduling
(JRaS) problem. JRaS approaches calculate routes and schedules in the same step, and thus cover
the whole solution space. Another modification of scheduling and JRaS approaches are so-called
No-Wait Schedules. These type of schedules prohibit intermediate switches to keep frames in
the queue. This means, each switch immediately redirects a frame, after finishing the internal
processing pipeline (see Section 2.1.2). Furthermore, this implies, that frames may never pass other
time-critical frames inside a switch.

We already introduced Hellmanns et al.’s base ILP-model for the No-wait Joint Routing and
Scheduling (JRaS) problem in Section 4.3. Figure 5.1 visualizes the scheduling capability of this
approach for test cases with up to 150 streams. We can see, it is not able to provide a valid schedule
for all test cases within a runtime limit of 900 s per test case, and due to the earlier mentioned
NP-hardness it does not scale for a larger numbers of streams. Thus, our goals are to improve
the scheduling capabilities and to reduce the runtime of this approach. In Figure 5.1, these goals
corresponds to a larger percentage of solved streamsets and to a steeper increase of the cumulative
curve.

The complexity of the problem lies in the number of variables and constraints of our ILP-model.
Thus, optimizing the ILP-model means to generate less variables and constraints. As the ILP-
model is directly based on the topology model and streams, we can either do this by modifying the
underlying topology model or by altering our ILP generation process. Additionally, we are able to
make use of the ILP-solver specific functionalities. In the next Chapter 6 we present our approaches
with which we aim to reach our goals.

41

5 Problem Statement

0 100 200 300 400 500 600 700 800 900
Runtime in s

0.0

0.2

0.4

0.6

0.8

Pe
rc

en
ta

ge
 o

f S
ol

ve
d

St
re

am
se

ts

Figure 5.1: Scheduling capability and runtimes of the base ILP-model.

42

6 Design

As we already discussed in Chapter 3, there are many approaches which address the Scheduling
Problem or the Joint Routing and Scheduling (JRaS) Problem. In this work, we aim to improve and
optimize an already existing ILP-based JRaS approach and explore the influence of those optimiza-
tions. As a first step in this chapter, we extend the base ILP-model with additional functionality.
This includes support for Cut-Through switching and stream-specific end-to-end delays.

In Chapter 5, we already mentioned, that the scalability of our approach depends on the ILP-model
size, and thus on the number of variables and constraints in the ILP. Furthermore, the three major
components of the base ILP (routing, scheduling and conflict constraints) are directly based on
the model of the underlying topology. Thus, one possibility to optimize the size of the ILP is to
assess each of these components by reducing our topology model. In the first optimization part of
this chapter, we analyze different possibilities to reduce our topology model and then introduce
optimization approaches based on our findings.

Instead of modifying the underlying topology model, we are also able to change the way we generate
the ILP from our topology model. In the second optimization part, we analyze our ILP model
generation process. We find out, that we are able to remove some unnecessary auxiliary variables
and that we are also able to limit the solution space by providing additional variable bounds.

Finally, we aim to reduce the runtime of the ILP-solver without modifying the structure of the ILP
itself. For this, we explore specific functionalities of the Gurobi ILP-solver. For example, we make
use of different constraint types, but also provide solution hints for the variables in our ILP. We also
introduce an approach to reduce the runtime by modifying parameters, which influence the solving
process itself.

6.1 ILP Enhancements

In this first section, we provide multiple ILP-enhancements. We found out, that under certain
conditions, the base ILP can lead to incorrect results. In a first step, we fix this by adding a new
constraint, which prohibits loops. After that, we present two extensions for our ILP. In our first
addition, we modify scheduling constraints in order to support Cut-Through switching. Our second
contribution is a new constraint, which allows stream-specific End-to-End deadlines.

6.1.1 Prohibit Loops

While verifying the results of our scheduler, we noticed a scenario similar to the scenario shown
in Figure 6.1. In this scenario our scheduler generated the following schedule on the green path
(1→ 2→ 3→ 5→ 4→ 5→ 7→ 8):

43

6 Design

1 2

3

4

5 7

6

8

Figure 6.1: Problematic topology, which might lead to invalid schedules.

BC0ACB, (1,2) = 0; 4=3B, (1,2) = 1,000
BC0ACB, (2,3) = 3,000; 4=3B, (2,3) = 4,000
BC0ACB, (3,5) = 6,000; 4=3B, (3,5) = 7,000
BC0ACB, (5,4) = 0; 4=3B, (5,4) = 1,000
BC0ACB, (4,5) = 3,000; 4=3B, (4,5) = 4,000
BC0ACB, (5,7) = 15,000;4=3B, (5,7) = 16,000
BC0ACB, (7,8) = 18,000;4=3B, (7,8) = 19,000

In this scenario, all delays had a constant value of 1,000 ns (processing_delay = propagation_delay =

transmission_delay = 1,000 ns). We found out, that this schedule is incorrect. This trivial to show,
as the values for BC0ACB, (5,4) and BC0ACB, (4,5) are invalid in a real network, as the stream’s source
is Vertex 1, thus the stream cannot start from Vertex 4 at time 0. But based on the scheduling
Constraint (4.6), which defines the start time on consecutive edges, the calculated schedule is valid.
We show this for the critical Vertices 4 and 5:

For Vertex 4:∑
4∈out_edges(4)

BC0ACB,4 = BC0ACB, (4,5)

= 3,000
= 1,000 + 1 · (1,000 + 1,000)
= 4=3B, (5,4) + 1 · (propagation_delay((5, 4)) + processing_delay(4))
=

∑
4∈in_edges(4)

4=3B,4 + GB,4 · (propagation_delay(4) + processing_delay(4))

44

6.1 ILP Enhancements

Figure 6.2: Definition of all delays, start variables and end variables for Cut-Through switching.

For Vertex 5:∑
4∈out_edges(5)

BC0ACB,4 = BC0ACB, (5,4) + BC0ACB, (5,7)

= 0 + 15,000
= 15,000
= 7,000 + 1 · (1,000 + 1,000) + 4000 + 1 · (1,000 + 1,000)
= 4=3B, (3,5) + 1 · (propagation_delay((3, 5)) + processing_delay(5))
+ 4=3B, (4,5) + 1 · (propagation_delay((4, 5)) + processing_delay(5))
=

∑
4∈in_edges(5)

4=3B,4 + GB,4 · (propagation_delay(4) + processing_delay(5))

Figure 6.1 shows, that the main problem is, that the stream passes Vertex 5 two times. To prevent
this, we introduce a new constraint which disallows to route streams two times over the same vertex.
In other words, a stream may only use a maximum of one incoming edge for each vertex:

∀B ∈ S,∀E ∈ V :
∑

4∈in_edges(E)
GB,4 ≤ 1 (6.1)

6.1.2 Support of Cut-Through Switching

Hellmanns et al.’s ILP formulation solely supports Store-and-Forward switching. As a first con-
tribution, we present a modification to this ILP, which allows us to schedule streams in a network
with Cut-Through switches. Similar to the scheduling definition in Section 4.3.2, we first define a
start variable BC0ACB,4 and an end variable 4=3B,4 for each Stream B on Edge 4. Figure 6.2 shows a
visualization of our definition. For Store-and-Forward switching, the start time on the next edge
depends on the end time of the previous edge. In Cut-Through switching however, start variables
of outgoing edges only depend on the start variables of incoming edges. To this end, we need to

45

6 Design

replace the end variable 4=3B,4 on the rhs of Constraint (4.6) with the start variable BC0ACB,4. As
Constraint (6.2) shows, neither the end variable, nor the transmission delay is needed to schedule
streams.

∀B = (Esrc, Edst, _) ∈ S,∀E ∈ V \ {Esrc, Edst} :

∑
4∈out_edges(E)

BC0ACB,4

=
∑

4∈in_edges(E)
BC0ACB,4 + GB,4 · (propagation_delay(4) + processing_delay(E))

(6.2)

6.1.3 Stream-specific End-to-end Limit

In some cases, one needs different end-to-end limitations for different streams. We provide a new
Constraint (6.3), which optionally provides this functionality. This constraint subtracts the departure
time BC0ACB,4 at the source vertex from the arrival time 4=3B,4 at the target vertex and requires the
difference to be lower than the provided end-to-end limit. Constraint (4.1) and Constraint (4.2)
require, that there is exactly one outgoing edge at the source and one incoming edge at the target.
Thus, we define a new constraint, which subtracts the start time on the first edge from the end time
on the last edge and requires this difference to be smaller than the given end-to-end limit:

∀B = (EBA2 , E3BC , _) ∈ S∑
4∈out_edges(EBA2)

BC0ACB,4 −
∑

4∈in_edges(E3BC)
4=3B,4 ≤ e2e_delay(B) (6.3)

We only provide this constraint as an optional addition. It is not part of our default ILP-model.

6.2 Topology Model Optimizations

As mentioned before, one way to reduce the size of the ILP-model is to reduce the underlying
topology model. In this work, we mainly consider hierarchical factory automation networks (e.g.
Figure 6.3). These topologies consist of interconnected line and ring subtopologies. The base ILP
would generate routing, scheduling and conflict constraints for each vertex, edge and stream in this
model. When analyzing these factory automation networks however, we noticed, that we do not
need each of these constraints for each stream. As an example, there are edges and vertices, which a
stream may never pass without entering a loop. We can also see, that there are no routing decisions
in line topologies and only two routing decisions for ring topologies per stream. This leads us to
the finding, that we are able to reduce our model by discarding constraints if we omit or replace
vertices and edges in a stream-specific network topology model.

In this section we present two different types of optimization approaches, which both reduce the
toplogy model on a per-stream basis. First, we focus on reducing the ILP model by discarding
edges and vertices which are with a high probability not part of a solution. Therefore, we analyze

46

6.2 Topology Model Optimizations

Figure 6.3: Example of a factory automation network [HDHK18].

source 1 target

2

(a) Graph before executing the topology reduction
algorithm.

source 1 target

(b) Graph after executing the topology reduction al-
gorithm.

Figure 6.4: This figure shows, how the topology reduction algorithm removes inaccessible vertices
and edges.

the structure of typical factory automation networks and explain why discarding certain edges and
vertices does not limit the solvability. After that, we further analyze routing possibilities in these
networks, and based on that we provide further optimizations by merging vertices and edges on
paths without routing decisions.

6.2.1 Remove Vertices on Invalid Paths

In Figure 6.4a, we can see an example topology and a given source and target vertex for a stream. As
earlier mentioned, only loopless paths from the source to the target vertex are allowed. We refer to
these paths as valid paths. This means, the only valid path in this example is source→ 1→ target,
and thus all other paths are invalid. That implies, the given stream may never pass vertex 2 and
edges including vertex 2. Also, it may never use edges in the opposite direction ((1, source) and
(target, 1)). These findings allow us to remove all variables and constraints of vertices and edges,
which are only part of invalid paths.

47

6 Design

Hellmanns et al. already introduced a Topology Reduction algorithm, which identifies vertices
and corresponding edges of invalid paths. This algorithm calculates all loopless paths for each
stream’s source-target combination using the depth-first search algorithm (Section 2.4.2). It then
generates a new, stream-specific topology model, which contains all vertices and edges used in any of
those paths, and makes them accessible via our global functions stream_vertices and stream_edges
(Section 4.1). Figure 6.4a shows an example graph and Figure 6.4b shows the same graph processed
by the topology reduction algorithm.

All of our previously introduced constraints are either generated for each edge or generate a sum
using the in- or out-edges of a vertex. For the sake of simplicity we now assume, that we only use
edges 4 ∈ stream_edges(B) to generate these constraints.

6.2.2 Cutoff in Path Calculation

In Section 2.4.1, we already introduced the diameter metric of a graph, which describes the longest
distance between any two vertices. This especially means, that there exists at least one path between
any two vertices, which does not exceed the size of the diameter. As the calculation of the diameter is
inefficient, graph tool uses an approximation to calculate the so-called pseudo-diameter. Using this
pseudo-diameter as a cutoff in the DFS reduces the runtime of the graph search, but still gurantees
to find a path between the source and the target vertex. In some cases, using the cutoff may also
discard paths, but as they are longer than the graph diameter, they are most likely not part of a valid
solution. This means, we now have a smaller amount of edges in stream_edges. It is possible to
prohibit discarding longer paths by adding a margin to the diameter.

Again, for the sake of simplicity, we assume constraints are only generated, if stream_edges contains
the respective edge.

6.2.3 Merge Edges

Our previous optimizations already reduced stream-specific topologies. We already mentioned,
that there is only one routing possibility in line subtopologies and two routing possibilities for
ring subtopologies in our example factory automation network (Figure 6.3). We now introduce a
smaller example topology in Figure 6.5a. In this example, Vertex 2, Vertex 3 and Vertex 4 do not
contain routing choices. As an example, the Routing Constraint (4.3) of Vertex 4 looks like this:
GB, (source,4) = GB, (4,target) . This means, if a stream uses the only in edge of Vertex 4, it also has to
use its only out edge. Thus, we are able to discard this vertex from the stream-specific topology
model and merge its in and out edge for our routing decision. In a first step, we use these merged
edges in order to reduce the number of routing constraints. Based on this, we then analyze if and
how we are able to utilize merged edges for the reduction of scheduling and conflict constraints.

In Algorithm 6.1, we present our Edge Merger algorithm, which merges edges on paths without
routing choices. Our algorithm starts with the source vertex of a stream and then recursively
continues with all following edges. For each edge, it checks if the source vertex of this edge is
redundant. We define a vertex as redundant, if it has exactly one outgoing and exactly one incoming
edge, and thus is not part of any routing decision. In this case, we remove the redundant vertex and
merge the incoming and the outgoing edge. This means, that two edges, e.g. (0, 1) and (1, 2) with
the redundant vertex 1 become a new edge (0, 2). We then remove the redundant vertex and both

48

6.2 Topology Model Optimizations

Algorithm 6.1 Edge Merger
1: global connects: Dict[Edge, List[Vertex]]
2: global g: Graph
3: global visitied: Set[Edge]← emptySet()
4:
5: function init(stream: Stream)
6: g← new Graph(stream.vertices, stream.edges) // See Sections 6.2.1 and 6.2.2
7: for each edge in g.edges do
8: connects[edge]← [4364.src, 4364.tgt] // Initialize connects list
9: end for

10: mergeRecursive(stream.src) // Start recursive algorithm with source of stream
11: end function
12:
13: function mergeRecursive(curr: Edge)
14: if curr not in visited then
15: return // Edge already processed
16: end if
17: visited.add(curr)
18: if curr.src.inDegree = 1 and curr.src.outDegree = 1 then //We are able to merge
19: prevEdge← curr.src.inEdge // There is only one inEdge
20: newEdge← g.addEdge(prevEdge.src, curr.tgt) // newEdge “skips” curr.src vertex
21: contains[newEdge]← contains[prevEdge] + curr.tgt // Update mapping
22: g.removeEdge(curr) // Remove redundant edge from curr.src
23: g.removeEdge(prevEdge) // Remove redundant edge to curr.src
24: g.removeVertex(curr.src) // Remove redundant vertex
25: end if
26: for each edge in curr.tgt.outEdges do
27: mergeRecursive(edge) // Recursive call for all following edges
28: end for
29: end function

edges and replace them by the new merged edge. Figure 6.5 visualizes our Edge Merger. For our
following optimizations, we also keep track of which edge “contains” which vertices. We always
update this mapping, when we merge two edges. Figure 6.5b shows this for an example topology.
It is important to note, that our Edge Merger works on a temporary topology per stream and also
generates the contains-mapping for each single stream, as we need to access both of them in our
further optimizations.

6.2.4 Routing Optimization

We already mentioned above, that we can use the merged edges to reduce the of routing constraints.
Instead of generating a routing constraint for each edge 4 ∈ stream_edges, we now only generate a
routing variable for each edge in our temporary topology generated by our Edge Merger. This means,
we now only have routing variables, when there is a real routing decision. To differentiate between
two merged edges connecting the same two nodes, we introduce a new notation: 0 → 1 → 2 is

49

6 Design

1source target

4

2 3

(a) Graph before merging edges.

contains = [1, 2, 3, target]

contains = [1, 4, target]

1source target

(b) Graph after merging edges including the contains
mapping.

Figure 6.5: Visualization of our Edge Mapper algorithm for an example topology.

the edge (0, 2), which was created by merging edge (0, 1) and (1, 2). This notation can hold an
arbitrary amount of in-between vertices, e.g. 0 → 1 → 2 → 3 but also 0 → 1. We generate this
notation based on the contains-mapping. For our example topology in Figure 6.5, we would create
these three routing variables: GB,B>DA24→1, GB,1→2→3→target and GB,1→4→target. We also only create
routing constraints for these variables. If we need to access the routing variable for any in-between
removed edge, we always fall back to the routing variable of our merged edge. For example, this
means accessing a routing variable for (1, 2), (2, 3) or (3, C0A64C) always uses the routing variable
GB,1→2→3→target. This is an optional optimization, which the user may enable or disable.

6.2.5 Scheduling Optimization

We already showed, that our Edge Merger allows us to reduce the number of routing constraints.
Previously, we generated scheduling variables for each edge in the remaining network topology. If
we now take a look at Figure 6.5a, we can see the scheduling variable BC0ACB,1→2 and the routing
variable GB,1→2→3→target directly define the start variable for all following edges, such as BC0ACB,2→3
and BC0ACB,3→target, as there is no intermediate routing decision. This means, schedules only depend
on the first edge of this path, and thus we only need to create a scheduling variable for the first edge
on a mergeable path. For all other edges, we create a pseudo-var, which is a linear expression of
the first start var and the corresponding delays. In every constraint, where we access a scheduling
variable, we check, whether it is a real or a pseudo-variable and insert it respectively. If a constraint
only contains pseudo-vars, we are able to omit it. This is the case for all intermediate nodes on a
merged path. For our example in Figure 6.5a, we would create the following variables and linear
expressions on the upper path. We only show this exemplary for the start variables, as it works
similar for the end variables:

1. Variable: BC0ACB,1→2

2. PseudoVariable: BC0ACB,2→3

For Store-and-Forward Switching:

BC0ACB,2→3 = BC0ACB,1→2 + GB,1→2→3→target·(transmission_delay(B, 1→2)
+ propagation_delay(1→2)
+ processing_delay(2))

50

6.2 Topology Model Optimizations

For Cut-Through Switching:

BC0ACB,2→3 = BC0ACB,1→2 + GB,1→2→3→target·(propagation_delay(1→2)
+ processing_delay(2))

3. PseudoVariable: BC0ACB,3→target

For Store-and-Forward Switching:

BC0ACB,3→target = BC0ACB,2→3 + GB,1→2→3→target·(transmission_delay(B, 2→3)
+ propagation_delay(2→3)
+ processing_delay(3))

= BC0ACB,1→2 + GB,1→2→3→target·(transmission_delay(B, 1→2)
+ propagation_delay(1→2)
+ processing_delay(2))

+ GB,1→2→3→target·(transmission_delay(B, 2→3)
+ propagation_delay(2→3)
+ processing_delay(3))

For Cut-Through Switching:

BC0ACB,3→target = BC0ACB,2→3 + GB,1→2→3→target·(propagation_delay(2→3)
+ processing_delay(3))

= BC0ACB,1→2 + GB,1→2→3→target·(propagation_delay(1→2)
+ processing_delay(2))

+ GB,1→2→3→target·(propagation_delay(2→3)
+ processing_delay(3))

This optional optimization can only be used, if the routing optimization is also enabled.

6.2.6 Conflict Optimization

Our previous Edge-Merger-based approaches optimize variables and constraints for each stream
individually. For our conflict constraints however, we always need to take two streams into account.
Figure 6.6 shows, that two streams may share a common mergeable path (red edges). Our goal
is to reduce the number of conflict variables and constraints in these cases. If we take a look at
Figure 6.7, we can see, that there are exactly two cases on this path. In the first one, we schedule the
smaller stream (green) first, and in the second one, we schedule the large stream (blue) first. This
means, we only need one conflict variable for these streams on the red path, and thus two constraints.
The base ILP, however, generates a variable and constraints for each edge on the red path, and thus 2
variables and 4 constraints. We aim to change this behavior, so that we only generate the minimum
number of variables and constraints for a common merged path.

51

6 Design

1

srcsm tgtsm

4

2 3

srclg tgtlg

5

6

Figure 6.6: An example topology, where we are able to reduce the number of conflict constraint
based on a common merged path, e.g. the red path.

(a) Scenario, which schedules the small stream first. (b) Scenario, which schedules the large stream first.

Figure 6.7: Two different possibilities of a no-wait schedule for streams of unequal size.

In the following, we present two different approaches for this optimization. But first, we need to take
a closer look at the two different scenarios for streams of unequal size. We visualize our explanation
using the red path of the example topology in Figure 6.6 and the two schedules in Figure 6.7. First,
we differentiate the streams based on their stream size and refer to them as the small stream Bsm and
the large stream Blg. Figure 6.7a shows a scenario, where the small stream is scheduled first. The
small stream always has a shorter transmission delay than the large stream. This means, that the gap
between the small and the large stream increases after each switch. On the other hand this means,
that if we schedule the large stream first (Figure 6.7b), the gap between those stream decreases. Both
scenarios only apply for Store-and-Forward switching, as Cut-Through switching is independent of
the transmission delay in our model. Using this knowledge, we are now able to present our two
different conflict optimization approaches.

Conflict Optimization for Common Merged Edges

Our first optimization approach only works, if the merged edges of a stream are exactly the same.
For our example topology in Figure 6.6, we are only able to optimize our conflict constraints for the
merged edge 1→4→5, but not for 1→2→3, as B;6 has the merged edge 1→2→3→5.

52

6.3 ILP Generation Optimizations

To reduce the number of conflict constraints, we do not create them for each edge. Instead, we
only create the conflict constraints once per common merged edge. For all other edges (those who
are not part of a common merged edge), we create conflict constraints as before. Based on the
previously described fact, that the gap between the schedule of two streams depends on the size
of two streams, we generate our conflict constraints for common merged edges as follows: First,
we identify, which is the small stream Bsm and which is the large stream Blg. Secondly, we identify,
which is the first edge 4first and which is the last edge 4last of the common merged edge 4comm. For
our example (Figure 6.6) this means: 4first = (1, 4) and 4last = (4, 5). We now create the conflict
variable 1Bsm,Blg,4comm . Based on this, we are able to create the conflict constraints similar to the
Constraint (4.7). In contrast, we only create the first one (Bsm before Blg) for 4first and vice versa for
the second constraint (Blg before Bsm on 4last) .

4=3Bsm,4first ≤ BC0ACBlg,4first + (1 − 1Bsm,Blg,4comm) · "
4=3Blg,4last ≤ BC0ACBsm,4last + 1Bsm,Blg,4comm · "

(6.4)

This optional optimization is only available, if the routing optimization is also enabled.

Conflict Optimization for Partly-Common Merged Edges

In some cases, merged edges are only partly-common, thus our previous optimization approach
does not take them into account. For example, this is the case in Figure 6.6 for the path 1→2→3.
This path is common to the merged edge 1→2→3 of Bsm but only partly-common to the merged
edge 1→2→3→5 of Blg.

We optimize these cases using the following steps: We first get all edges, on which Bsm and Blg might
conflict. For each edge 4conf of these edges, we get the merged edge for both streams, which contain
this edge. In our example, 4conf might be (1, 2), so we get 1→2→3 for Bsm and 1→2→3→5 for Blg.
We then search for the Longest Common Subsequence (LCS) of both edges. The LCS is 1→2→3 in
our example. For all edges with a LCS, we then perform the same steps as in our previous approach
for common merged edges. We do this only once per LCS by remembering for which LCSs we
have already created the constraints. For all other edges, we perform the basic steps as in Constraint
(4.7). Again, this optimization is only available, if the routing optimization is also enabled.

6.3 ILP Generation Optimizations

In the previous section, we already introduced different optimizations, which reduce the number
of variables and constraints by reducing the underlying topology model. As already mentioned in
Chapter 5, another possibility to reach our goals is to modify the ILP generation procedure itself. In
this section, we first analyze our generation procedure and based on that, we provide two different
optimization approaches. Our first finding is, that our ILP generates unnecessary auxiliary variables,
which we may discard. Based on this finding, our first ILP generation optimization is the removal
of end-variables from our ILP. The second finding is, that we are able to bound the variables of
our ILP more tightly. Thus, we provide an optimization approach, which additionally bounds some
variables of our ILP.

53

6 Design

6.3.1 Remove End Variables

If we take a look at Constraint (4.5), we see, that all end variables of a stream solely depend on the
start variable of the respective edge. In our current Store-And-Forward ILP, we still need them to
correctly schedule streams on following edges (Constraint (4.6)) and to resolve conflicts between
streams (Constraint (4.7)). However, we do not need the end variables to schedule streams in our
Cut-Through ILP (Constraint (6.2)) at all. This finding allows us to eliminate end variables from our
ILP, by replacing them with their respective definition of Constraint (4.5). Discarding end variables
also allows us to discard the corresponding Constraint (4.5). We show the process of replacing the
end variable exemplary for Constraint (4.6), but it works similar for all other constraints:

∑
4∈out_edges(E)

BC0ACB,4 =
∑

4∈in_edges(E)
4=3B,4

+ GB,4 · (propagation_delay(4) + processing_delay(E))
+ GB,4 · (transmission_delay(B, 4))

=
∑

4∈in_edges(E)
4=3B,4

+ GB,4 · (propagation_delay(4) + processing_delay(E)
+ transmission_delay(B, 4))

This optimization is independent of all other optimizations we introduced yet, and can be switched
on and off as desired.

6.3.2 Variable Bounds

Our current ILP-model initially allows every scheduling variable to take any integer value. Only
Constraint (4.4) and optionally Constraint (6.3) limit the maximum value to the cycle time or end-
to-end limit respectively. In a valid schedule, however, the effective integer range is much smaller.
As an example, the earliest departure of a stream is at C0 = 0 ns. Thus, a stream may never depart
at the second edge at 0 ns. The same applies for the latest departure of a stream, as it may never
exceed the cycle time. Thus, a stream must depart at the second last switch before the cycle time
ends. This applies similar to all scheduling variables in our network. We use this knowledge to
restrict our ILP-solver to a number range for each variable, and thus reduce our ILP’s complexity by
reducing the search-space.

In order to create these number ranges, we need to calculate a lower and an upper bound for each
edge and stream in our network. Algorithm 6.2 shows our Dijkstra-based Bound Calculator. In this
algorithm, we use the delays of edges and vertices as weights. This means, the “distance” between
two vertices matches the delays between them, including the processing delay of the target vertex.
We now execute the Dijkstra algorithm to calculate the length of the shortest path to each vertex
using the weights. The length of the shortest path from a stream’s source to a vertex now equals the
earliest departure time on that vertex. This value directly corresponds to the earliest departure on
each outgoing edge of that vertex, and thus to the lower bound of its start variable.

54

6.3 ILP Generation Optimizations

Algorithm 6.2 Bound Calculator
1: function boundCalculator(stream: Stream)
2: g← new Graph(stream.vertices, stream.edges)
3: weights: Dict[Edge, Number]
4: for each edge in g.edges do
5: weights[edge]← generateWeigth(stream, edge)
6: end for
7: lowerDist, _← dijkstra(g, stream.source, weights)
8: g← g.reverse()
9: upperDist, _← dijkstra(g, stream.target, weights)

10:
11: lowerBounds: Dict[Edge, Number]
12: upperBounds: Dict[Edge, Number]
13: for each edge in g.edges do
14: lowerBounds[edge]← lowerDist[edge.source]
15: tempUpper← stream.cycleTime
16: tempUpper← tempUpper − upperDist[edge.source]
17: tempUpper← tempUpper + processingDelay(edge.source)
18: upperBounds[edge]← tempUpper
19: end forreturn lowerBounds, upperBounds
20: end function
21:
22: function generateWeight(stream: Stream, edge: Edge)
23: delaySum: Number← 0
24: delaySum← delaySum + transmissionDelay(stream, edge)
25: delaySum← delaySum + propagationDelay(edge)
26: delaySum← delaySum + processingDelay(edge.target)
27: return delaySum
28: end function

We use a similar approach to calculate the latest departure on edges. First, we invert all edges in
the graph, but keep the weights of them. As in the first approach, we now execute the Dijkstra
algorithm, but starting from the target vertex of the stream. We cannot directly use this value as an
upper bound for the edges. Instead, we need to subtract it from the cycle time in order to gain the
upper bound. But as we did not change our weights, we now have to re-add the processing delay for
the source node, as we have also subtracted it from the cycle time.

For each start variable, we can directly set the lower and upper bounds based on the calculation of
our Bound Calculator. We do not increase the lower bound of end variables, as e.g. Constraint (4.5)
requires, that they are equal, if an edge is unused. Still, we have to increase the upper bound of end
variables by the transmission delay.

Creating a lower bound for scheduling variables creates another issue. Our basic ILP-model relies
on scheduling variables being zero if they are unused. For example, Constraint (4.4) sets the end
variable of an Edge 4 to zero if it is unused. This applies for nearly all scheduling and conflict
constraints, e.g. Constraint (4.6) sums up all start variables with the assumption, that only one of
these variables holds a non-zero value. Thus, we need to introduce some changes to our ILP.

55

6 Design

First, we need to ensure, variables of unused edges always contain the lower bound of this variable.
Thus, we replace Constraint (4.4):

∀B ∈ S,∀4 ∈ E : 4=3B,4 ≤ BC0ACB,4 + GB,4 · transmission_delay(B, 4) + lower_bound(B, 4) (6.5)

Second, we need to ensure we correctly calculate the start time for subsequent edges. Thus, we have
to subtract the lower bound for each unused edge on Constraint (4.6) with Constraint (6.3.2) This
works similar for the end to end Constraint (6.3)

∀B = (Esrc, Edst, _) ∈ S,∀E ∈ V \ {Esrc, Edst} :

∑
4∈out_edges(E)

BC0ACB,4 −
∑

4∈out_edges(E)
(1 − GB,4) · lower_bound(B, 4)

=
∑

4∈in_edges(E)
4=3B,4 + GB,4 · (propagation_delay(4) + processing_delay(E))

−
∑

4∈in_edges(E)
(1 − GB,4) · lower_bound(B, 4)

(6.6)

Lastly, we have to fix the conflict constraints. We show this exemplary for Constraint (4.7), but it
works equivalent for Constraint (6.4):

4=3B,4 − (1 − GB,4) · lower_bound(B, 4)
≤BC0ACB′,4 − (1 − GB′,4) · lower_bound(B′, 4) + (1 − 1B,B′,4) · "

4=3B′,4 − (1 − GB′,4) · lower_bound(B′, 4)
≤BC0ACB,4 − (1 − GB,4) · lower_bound(B, 4) + (1B,B′,4) · "

(6.7)

This optimization is fully compatible to all other optimizations we explained above. It can also be
used independently to all other optimizations.

6.4 Gurobi Optimizations

While all previous optimizations aim to improve the runtime by modifying the ILP itself, it may also
be possible to improve the runtime by using ILP-solver specific functionality. As we only use the
Gurobi ILP-solver, we make use of Gurobi-specific modifications and additions in this section. Our
first optimization approach makes use of Gurobi’s indicator constraints. After that, we analyze the
influence of our different ILP components (routing, scheduling and conflict). We use our findings
to provide some constraints with Gurobi’s lazy-attribute. Gurobi also enables us to specify hints
for a possible solution to reduce the runtime of the solver. We use this opportunity to introduce an
approach which creates hints for routing variables and based on that also for scheduling and conflict
variables. Lastly, we notice, that it is possible to modify Gurobi’s solving process by tweaking
different parameters of Gurobi.

56

6.4 Gurobi Optimizations

6.4.1 Indicator Constraints

As an alternative to big " constraints, Gurobi provides so-called Indicator Constraints. They allow
us to provide a binary indicator variable. Only if this variable holds the value 1, Gurobi checks the
following constraint. We aim to reduce the runtime of our solver by replacing our current conflict
constraints with new indicator constraints.

We notate indicator constraints as follows: i → c. This notation reads as: “If indicator 8 is 1,
the following constraint 2 needs to be satisfied.” Based on this notation, we provide our conflict
constraints as indicator constraints:

1B,B′,4 → 4=3B,4 ≤ BC0ACB′,4

(1 − 1B,B′,4) → 4=3B′,4 ≤ BC0ACB,4
(6.8)

This optimization is optional and fully compatible to all other previous optimizations. In order to
use it without end variables or with bounds, we perform the same steps as provided in the respective
sections.

6.4.2 Lazy Constraints

There are scenarios, in which conflicts on edges are unlikely to occur. For example, this is the case
in networks with a low link utilization or when edges are part of an unlikely path of a stream. In
these cases, the ILP-solver often has to unnecessarily verify, whether the conflict constraints are
satisfied. To prevent this, Gurobi allows us to use so-called Lazy Constraints. When our model
contains lazy constraints, the ILP-solver first tries to find a feasible solution without considering
any lazy constraints. If the solver finds a solution, it checks if the solution also satisfies all lazy
constraints. If not, it converts all unsatisfied lazy constraints to normal constraints and repeats this
process.

As earlier mentioned, there are cases, in which conflict constraints are likely to be satisfied by
default. Thus, we aim to gain a performance boost by converting all of our conflict constraints to
lazy constraints. This works by setting a flag on each conflict constraint which marks it as lazy.

This optimization is not compatible with our indicator constraint optimization. Apart from that, it
works with all other previous optimizations and it is optional.

6.4.3 Variable Hints

As mentioned earlier, the scheduling problem is an NP-hard problem. However, it is easier to find
an “almost working” schedule. If we have such an almost working solution, Gurobi enables us to
provide them as hints for our variables, and thus reduce the runtime. We provide two optimizations
build upon each other, which make use of variable hints. Our first optimization provides hints for
routing constraints. The second optimization uses them for scheduling and conflict constraints
based on the route hints.

57

6 Design

Route Hints

All streamsets we use already contain a possible route from the stream’s source to the stream’s
target. Otherwise, calculating a path or the shortest path between the stream’s source and target is
also efficiently possible by using the DFS or Dijkstra algorithm (Sections 2.4.2 and 2.4.3). We can
simply use the given or calculated path and convert it to a hint for our routing variables. First, we
set the hint of all routing variables GB,4 to 0. We then walk along the path from the source to the
target and set the hint for all routing variables on this path to 1.

This optimization is compatible with all previous optimizations. It may be be used independently of
all other optimizations and is optional.

Schedule & Conflict Hints

In our previous optimization, we create hints for the routing variables of our ILP. Similarly, we can
also create hints for scheduling variables, and hence also for conflict variables. We create those
schedules for the given or calculated route of our previous approach. As we aim to keep the runtime
of all preprocessing steps low, our Trivial Scheduler (Algorithm 6.3) does not optimize schedules
in any form, but schedules them stream after stream. Especially, our Trivial Scheduler does not
guarantee, that all streams are scheduled within the cycle time.

Our Trivial Scheduler works as follows: First, we sort our streamset by the size of the streams in
ascending order. We do this in order to schedule as many streams as possible within the cycle time.
After that, we iterate over all streams and schedule them one after the other. Per stream, we first
generate a schedule which starts at time 0 on the first edge. This is trivial, as we know all delays
and can simply sum those up along the path. In the next step, we push this schedule to the back
until it is behind all previously scheduled streams on each utilized edge. For this, we need to get
the latest utilization on each edge along the stream’s route and then move our schedule, so that it
directly starts after this utilization.

With the created schedule, we are able to set the variable hints for scheduling variables. For all
streams within the provided cycle time, we directly use the generated schedule as a hint value for the
scheduling variables. In order to generate hints for the conflict variable, we check which conflicting
stream is scheduled first. As previously mentioned, there may be streams, which utilize edges after
the end of a cycle. We aim to minimize this number by sorting the streams before scheduling them.
For all streams with an invalid schedule, we do not set any scheduling hints. As our Trivial Scheduler
mostly generates a lot of spacing between streams, we expect Gurobi to schedule the remaining
streams between those streams with a correct scheduling hint.

This optimization depends on routing hints, and thus is only available if routing hints are also enabled.
Furthermore, this optimization is incompatible with the End-to-End constraint of Section 6.1.3,
Apart from that, it is optional and compatible with all other optimizations.

58

6.4 Gurobi Optimizations

Algorithm 6.3 Trivial Scheduler
1: type Schedule = Dict[Edge, Tuple(Number, Number)]
2:
3: function trivialScheduler(streams: List[Stream])
4: schedules: Dict[Stream, Schedule]
5: streams← streams.sortBySize()
6: for each stream in streams do
7: schedule← createScheduleAtZero(stream)
8: for each edge, (start, end) in schedule do
9: last← getLastUtilizationOnEdge(schedules, edge)

10: if last < start then
11: schedule← moveWholeSchedule(schedule, last − end)
12: end if
13: end for
14: schedules[stream]← schedule
15: return schedules
16: end for
17: end function
18:
19: function createScheduleAtZero(stream: Stream)
20: // This function creates a schedule starting at time 0 on the edges of stream.route.
21: // This is trivial by summing up the delays edge by edge.
22: return schedule
23: end function

6.4.4 Parameter Tuning

All previous optimizations aim to reduce the number of variables and constraints or providing
them with additional attributes. However, Gurobi allows to modify the solving process by adjusting
various parameters. In our last optimization approach, we aim to tweak these Gurobi parameters in
order to achieve a shorter runtime.

Gurobi provides about 50 different parameters for MIP and ILP, which we may change in order to
influence its behavior and thus its runtime. As an example, we are able to define the number of
Presolve Passes but also more sophisticated parameters, such as the BranchDir parameter, which
allows us to specify the direction of the internal branch-and-cut search. Due to the large amount
of available parameters, we are not able to test all different parameters, especially not all possible
combinations, on a large number of topologies and streamsets. Instead, we use another approach
based on Gurobi’s Parameter Tuning Tool (PTT). The PTT takes an ILP-model and aims to find sets
of parameters, which result in a lower runtime than the default parameter set. It then outputs those
parameter sets. As the structure of our ILP-model is the same for all topologies and streamsets,
we assume there may be parameters which result in a lower runtime in the majority of our models.
Thus, we run the PTT for different topologies and streamsets in order to find these parameters, if
they exist. We present these results in Chapter 7.

59

7 Evaluation

In Chapter 6, we introduced different optimization approaches for our ILP-model. So far we do
not know which of these ILP adjustments actually provide a runtime boost. In this chapter, we first
evaluate our different optimization approaches individually and combined for Store-and-Forward
and Cut-Through switching. Based on the results, we select the best optimization combination
for both switching types. We then use our selected optimization-set to benchmark our optimized
ILP-approach against other approaches of Chapter 3. In both sections, we first present our evaluation
setup followed by the evaluation results.

7.1 Optimization Evaluation

Before we are able to compare our ILP-based JRaS approach to other schedulers, we first need
to compare our own optimization approaches and combinations of them. In this section, we first
portray our evaluation setup. This includes the evaluation hardware as well as the topology and
streamset generation. After that, we first evaluate individual optimization approaches, which we
then combine to select the best combination. We also make use of Gurobi’s Parameter Tuning Tool
(PTT) to find a parameter combination, that reduces the runtime for the majority of our test cases.

7.1.1 Evaluation Setup

This section contains the setup we use for evaluating our different optimization approaches. We
first introduce the hardware on which we run our test cases. After that, we explain our evaluation
procedure, which contains our approach to generate topologies and streamsets and the Gurobi
execution itself. Lastly, we present abbreviations for our different optimizations to distinguish
between them in our evaluation.

Hardware

For our optimization evaluation we use a cluster of identical nodes. Table 7.1 shows the hardware
of each node in our cluster. We only run one Gurobi instance per node at a time. This instance
may utilize the all server resources, but to reduce the impact of OS-specific processes, we limit the
number threads to 11 instead of 12.

61

7 Evaluation

OS CentOS Linux 7 (Core)
Kernel Linux 5.7.0-1.el7.elrepo.x86_64
CPU Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz (6 Cores, 12 Threads)
Memory 4 × 4 GB RDIMM DDR4 Synchronous 2,133 MHz

Table 7.1: Hardware for parameter evaluation.

Evaluation Procedure

To evaluate our different optimization approaches, we first need to generate topologies and streamsets.
As we developed some of our optimizations with a factory-backbone topology in mind, we generate
random factory-backbone topologies with a random number of vertices between 100 and 400. All
switches have a constant and equal processing delay of 2,000 ns and all links have a constant and
equal propagation delay of 200 ns and link speed of 1 Gbit

s . For each topology, we create a streamset
with a random number of streams between 40 and 150. Each stream has a random start and end
vertex, while both of them are hosts. Further, all streams use a cycle time of 1,000,000 ns and a
random payload size between 64 B and 300 B. As both, topologies and streamsets are random, we
cannot guarantee there is a feasible solution, even though this is unlikely due to the high cycle
time.

After generating topologies and streamsets, we are able to execute our scheduler on the created test
cases. To get comparable results within a reasonable amount of time, we always limit the runtime of
Gurobi to 900 s per test case. If Gurobi hits this time limit, we mark the execution as unsuccessful,
which means, the tested approach did not find a solution withing the given time limit. Depending
on the presentation of our results, we either show unsuccessful runs separately or treat them like a
900 s execution.

Naming and Abbreviations of Optimizations

In Chapter 6 we introduced different optimizations, which we may use in any combination fulfilling
the given dependencies. The following Section 7.1.2 contains results using different combinations
of these results. In order to distinguish between different optimization sets without using their full
names, we introduce an optimization abbreviation dictionary in Table 7.2. For example, ilp-cut-
red+conf+adv-bounds means we use a Cut-Through ILP-model with extra bounds and with merged
edges for routing and conflict constraints (advanced method).

In some cases, we may use even shorter abbreviations. -red+all instead of +red+sched+conf+adv
and -allhint instead of -routehint+schedulehint

7.1.2 Evaluation Results

The following sections contain the results of our optimization evaluation. We first present results
for the evaluation of single optimizations and combinations for optimizations, which cannot be
used individually. After that, we analyze the influence of different Gurobi parameters based on

62

7.1 Optimization Evaluation

Abbreviation Description

ilp We always use this prefix to indicate we use our ILP-model.

-cut We use our Cut-Through model. If this parameter is missing,
we use a Store-and-Forward model.

-e2e We limit streams to their maximum end-to-end delay.

-red We use reduce the topology size, by merging edges and use
this reduction for the routing part of the ILP.

+sched We also use merged-edges for the scheduling part.

+conf We also use merged-edges for the conflict part (basic
method).

+adv We use the advanced method for the conflict part for partly-
common edges. (Requires +conf).

-noend We remove end variables from our ILP.

-bounds We add extra bounds to our scheduling variables.

-ind We use indicator constraints instead of big-M constraints.

-lazy We use lazy conflict constraints.

-routehint We add hints for routing variables.

+ schedulehint We also add hints for scheduling and conflict variables.

Table 7.2: Abbreviation for optimization combinations.

Gurobi’s Parameter Tuning Tool (PTT). Based on these results, we evaluate combinations of different
optimizations. Finally, we select the best optimization combination for Store-and-Forward and
Cut-Through.

Single Optimization Evaluation

Our first evaluation results contain a comparison between the base model and single optimizations
for Store-and-Forward and Cut-Through respectively. This evaluation also contains optimizations,
which depend on other optimizations. We first compare the runtime of optimizations for each
single stream to compare them to our base model. After that, we present the runtime distribution of
different approaches.

Figure 7.1 shows the runtime comparison between the optimization approaches and the base
model for Store-and-Forward respectively. As we can see, our topology optimizations (ilp-red+*)
perform better in nearly all cases for both, Store-and-Forward and Cut-Through switching. Some
optimizations, when using them individually, do not decrease the runtime of the ILP-solver in
general. For example, the removal of end variables and our additional bounds performs slightly
worse for our Store-and-Forward model when compared to the base ILP. However, this does not
apply for Cut-Through switching. In our Cut-Through model, we can see a slight performance boost
when removing end variables and adding bounds. We assume the different scheduling constraints

63

7 Evaluation

ilp
ilp-

red

ilp-
red

+sch
ed

ilp-
red

+con
f

ilp-
red

+con
f+ad

v

ilp-
red

+sch
ed

+con
f+ad

v

ilp-
no

en
d

ilp-
bo

un
ds

ilp-
ind

ilp-
laz

yco
nf

ilp-
rou

teh
int

ilp-
rou

teh
int

-sc
he

du
leh

int
0

25

50

75

100

125

150

175

200
Nu

m
be

r o
f S

tre
am

se
ts

(a) Comparison for Store-and-Forward.

ilp-
cut

ilp-
cut

-re
d

ilp-
cut

-re
d+

sch
ed

ilp-
cut

-re
d+

con
f

ilp-
cut

-re
d+

con
f+ad

v

ilp-
cut

-re
d+

sch
ed

+con
f+ad

v

ilp-
cut

-no
en

d

ilp-
cut

-bo
un

ds

ilp-
cut

-in
d

ilp-
cut

-la
zyc

on
f

ilp-
cut

-ro
ute

hin
t

ilp-
cut

-ro
ute

hin
t-s

che
du

leh
int

0

25

50

75

100

125

150

175

200

Nu
m

be
r o

f S
tre

am
se

ts

(b) Comparison for Cut-Through.

Missing Solution
Worse
Both no Solution
Better
Additional solution

(c) Graph legend. Optimization approaches always compares to the respective base model (first bar).

Figure 7.1: Solution count and runtime comparison between optimization approaches and the base
model for Store-and-Forward and Cut-Through respectively. For the base model, we
show the number of solved and unsolved streamsets.

64

7.1 Optimization Evaluation

ilp
ilp-

red

ilp-
red

+sch
ed

ilp-
red

+con
f

ilp-
red

+con
f+ad

v

ilp-
red

+sch
ed

+con
f+ad

v
0

200

400

600

800

Ru
nt

im
e

in
 s

(a) Runtime comparison for Store-and-Forward topol-
ogy optimizations.

ilp-
cut

ilp-
cut

-re
d

ilp-
cut

-re
d+

sch
ed

ilp-
cut

-re
d+

con
f

ilp-
cut

-re
d+

con
f+ad

v

ilp-
cut

-re
d+

sch
ed

+con
f+ad

v
0

200

400

600

800

Ru
nt

im
e

in
 s

(b) Runtime comparison for Cut-Through topology
optimizations.

ilp

ilp-
no

en
d

ilp-
bo

un
ds

0

200

400

600

800

Ru
nt

im
e

in
 s

(c) Runtime comparison for Store-and-Forward ILP
optimizations.

ilp-
cut

ilp-
cut

-no
en

d

ilp-
cut

-bo
un

ds
0

200

400

600

800
Ru

nt
im

e
in

 s

(d) Runtime comparison for Cut-Through ILP opti-
mizations.

ilp
ilp-

ind

ilp-
laz

yco
nf

ilp-
rou

teh
int

ilp-
rou

teh
int

-sc
he

du
leh

int
0

200

400

600

800

Ru
nt

im
e

in
 s

(e) Runtime comparison for Store-and-Forward
Gurobi optimizations.

ilp-
cut

ilp-
cut

-in
d

ilp-
cut

-la
zyc

on
f

ilp-
cut

-ro
ute

hin
t

ilp-
cut

-ro
ute

hin
t-s

che
du

leh
int

0

200

400

600

800

Ru
nt

im
e

in
 s

(f) Runtime comparison for Cut-Through Gurobi op-
timizations.

Figure 7.2: Runtime comparison of different optimization approaches for Store-and-Forward (left)
and Cut-Through (right).

65

7 Evaluation

cause this difference. In Store-and-Forward switching, we need the end variables to schedule streams
on the next edges in Constraint (4.6). This is different in our Cut-Through model. We do not need
the end variables to schedule our streams in Constraint (6.2). So, in Store-and-Forward switching,
removing end variables increases the complexity of the scheduling constraints. In our Cut-Through
model however, the complexity does not increase. We also find out, that using lazy constraints
increases the runtime in most of the cases. This most likely comes from the fact, that the ILP-solver
needs to regenerate solutions if the initial solution violates some conflict constraints.

While Figure 7.1 might suggest, our routehint optimization approach performs worse than the
original ILP, Figure 7.2 shows, that the runtime is comparable between both approaches. This
is explainable by the fact, that in some cases our route hint is correct and leads to a remarkably
improved runtime, but in many other cases our hint might be wrong and the runtime is slightly
higher. On average, indicator constraints perform almost the same as our default ILP-model. This
most likely comes from the fact, that Gurobi maps indicator constraints to normal constraints [Gur]
and thus, they perform similar.

Overall we can say, that our topology optimizations result in the best improvements. For Store-
and-Forward, most other improvements result in a similar or slightly worse runtime when used
individually. For Cut-Through, removing end variables and adding bounds improves the runtime a
bit further.

Parameter Tuning

Our next step is to analyze the influence of different Gurobi parameters on the runtime of different
test cases. We aim to find parameters, which decrease the runtime in nearly all cases. In order to
do this, we run Gurobi’s PTT on another testset with 200 random streamsets and topologies using
our best evaluated Store-and-Forward optimization combination. We then count how many times
Gurobi sets specific values for these parameters. Figure 7.3 shows these results.

We can see, there is only one parameter which tunes more than half of our test cases. All other
parameters do not qualify as a general improvement for our ILP. Still, the most used parameter
(MIPFocus) uses three different values, thus we cannot simply set a specific value for this parameter
to optimize the runtime for the majority of our streamsets. Thus, we aim to find a correlation
between the value of the MIPFocus parameter and the topology size and number of streams. For
this, we generate another testset with 500 different topologies and streamsets. We calculate the
runtime for each possible MIPFocus ∈ {None, 1, 2, 3}.

Figure 7.4 shows the results of our MIPFocus parameter evaluation. A colored dot represents a
specific test case and the color corresponds to the MIPFocus value with the shortest runtime for
this test case. Using this approach, we are not able to cluster specific colors using the topology size
and/or the number of streams. Thus, we could not find a correlation between the number of streams
and nodes and a specific MIPFocus value. In general, we are not able to find a specific parameter
set that improves the runtime for a majority of the test cases.

66

7.1 Optimization Evaluation

MIPF
ocu

s
Cuts

Pre
Dua

l

Gom
ory

Pa
sse

s

CutP
ass

es

VarB
ran

ch

Meth
od

Pre
sol

ve
Agg

Fill

Str
on

gC
GCuts

Pu
mpP

ass
es

Sta
rtN

od
eLi

mit

Flo
wCov

erC
uts

Norm
Adju

st

Pre
Pa

sse
s

Deg
en

Mov
es

Zero
ObjN

od
es

Num
eri

cFo
cusOthe

r
0

20

40

60

80

100

120

Nu
m

be
r o

f O
cc

ur
re

nc
es

0
1
2
3
15
Other

Figure 7.3: Number of usages per parameter and value by the PTT.

25 50 75 100 125 150 175 200
Number of Streams

100

150

200

250

300

350

400

Nu
m

be
r o

f N
od

es

Default
MIPFocus=1
MIPFocus=2
MIPFocus=3
No solution

Figure 7.4: MIPFocus runtime evaluation. Each dot represents a testcase and its color the MIPFocus
with the lowest runtime.

67

7 Evaluation

Combined Optimization Eval

In the last sections, we already presented results for single optimization approaches and the influence
of different Gurobi parameters. However, we did not yet combine different kind of optimizations
to further reduce the runtime. Due to the large amount of possible optimization combinations, we
are unable to evaluate all of them on a large testset. Thus, create promising combinations to find
the best-possible optimization set. In order to do this, we use the results from the last sections. We
generate a lager number of combinations with optimizations, which perform good individually (e.g.
our topology optimizations) and a low number of combinations with less promising ones (e.g. lazy
constraints). As we were not able to find Gurobi parameters with a general improvement, we only
evaluate combinations using our own optimization approaches. We run these combinations on the
same testset as our single optimization evaluation. This allows us to compare the results to our
original ILP and to single optimizations.

Our total evaluation contains about 35 different combinations, thus we are unable to show results
for all of them. Instead, we only present the best combinations. This includes combinations,
which provided solutions in all test cases and combinations with the lowest average runtime. As
our best combinations differ between Store-and-Forward and Cut-Through, we do not present all
combinations for both approaches.

In Figure 7.5, we can see, that nearly all of our best combinations perform better than our best
single optimization approach (including those, who depend on other optimizations). Figure 7.6
confirms this, as the average runtime as well as upper quartile is lower in most cases. To find the best
approach out of these combinations, we need to take a more detailed look at the average runtimes in
the next section.

Best Optimization Combination

Based on our previous results, we are now able to select the best parameter combination for Store-
and-Forward and Cut-Through switching respectively. For this, we use two different metrics:

1. Number of solved ILPs: For each optimization combination analyzed in the sections above,
we calculate the percentage of solved ILPs out of our total number of 200.

2. Average runtime: We calculate the average runtime for each optimization combination. This
only includes test cases, which were solved within the runtime limit.

In Table 7.3 we present an overview of the best 15 optimization combinations sorted by their
runtime for Store-and-Forward and Cut-Through respectively. For Cut-Through switching, the best
combination is clearly ilp-cut-noend-red+conf+adv-bounds-routehint. However, for Store-and-
Forward switching, we have to choose between ilp-red+conf+adv-bounds-routehint, which has the
lowest average runtime and ilp-noend-red+conf+adv-bounds, which has a slightly higher runtime
but solves 100 % of our testset. In most cases, their performance is similar, so we could use both of
them. For all following evaluations we use the first one (ilp-red+conf+adv-bounds-routehint).

Now, that we have selected our best optimization combinations for both, Store-and-Forward and Cut-
Through switching respectively, we check whether these approaches meet our goals from Chapter 5.
Figure 7.7 shows, that our optimized approach is able to schedule more test cases than the base

68

7.1 Optimization Evaluation

ilp-
red

+all

ilp-
no

en
d-r

ed
+all

ilp-
no

en
d-r

ed
+con

f+ad
v-i

nd
-bo

un
ds

ilp-
no

en
d-r

ed
+con

f+ad
v-b

ou
nd

s

ilp-
red

+con
f+ad

v-b
ou

nd
s-r

ou
teh

int

ilp-
red

+con
f+ad

v-b
ou

nd
s

ilp-
no

en
d-r

ed
+con

f+ad
v-b

ou
nd

s-a
llhi

nt

ilp-
red

+con
f+ad

v-b
ou

nd
s-a

llhi
nt

ilp-
no

en
d-r

ed
+con

f+ad
v-b

ou
nd

s-r
ou

teh
int

ilp-
no

en
d-r

ed
+all-

bo
un

ds-
rou

teh
int

0

50

100

150

200

Nu
m

be
r o

f S
tre

am
se

ts

(a) Comparison for Store-and-Forward.

ilp-
cut

-re
d+

all

ilp-
cut

-no
en

d-r
ed

+all

ilp-
cut

-no
en

d-r
ed

+all-
bo

un
ds

ilp-
cut

-no
en

d-r
ed

+con
f+ad

v-b
ou

nd
s

ilp-
cut

-re
d+

con
f+ad

v-b
ou

nd
s

ilp-
cut

-no
en

d-r
ed

+all-
bo

un
ds-

rou
teh

int

ilp-
cut

-re
d+

con
f+ad

v-b
ou

nd
s-a

llhi
nt

ilp-
cut

-no
en

d-r
ed

+con
f+ad

v-b
ou

nd
s-a

llhi
nt

ilp-
cut

-no
en

d-r
ed

+con
f+ad

v-i
nd

-bo
un

ds

ilp-
cut

-no
en

d-r
ed

+con
f+ad

v-b
ou

nd
s-r

ou
teh

int
0

50

100

150

200

Nu
m

be
r o

f S
tre

am
se

ts

(b) Comparison for Cut-Through.

Figure 7.5: Direct comparison between the best result of the single optimization evaluation and the
best combinations (Legend in Figure 7.1c).

69

7 Evaluation

ilp-
red

+all

ilp-
no

en
d-r

ed
+all

ilp-
no

en
d-r

ed
+con

f+ad
v-i

nd
-bo

un
ds

ilp-
no

en
d-r

ed
+con

f+ad
v-b

ou
nd

s

ilp-
red

+con
f+ad

v-b
ou

nd
s-r

ou
teh

int

ilp-
red

+con
f+ad

v-b
ou

nd
s

ilp-
no

en
d-r

ed
+con

f+ad
v-b

ou
nd

s-a
llhi

nt

ilp-
red

+con
f+ad

v-b
ou

nd
s-a

llhi
nt

ilp-
no

en
d-r

ed
+con

f+ad
v-b

ou
nd

s-r
ou

teh
int

ilp-
no

en
d-r

ed
+all-

bo
un

ds-
rou

teh
int

0

100

200

300

400

Ru
nt

im
e

in
 s

(a) Comparison for Store-and-Forward.

ilp-
cut

-re
d+

all

ilp-
cut

-no
en

d-r
ed

+all

ilp-
cut

-no
en

d-r
ed

+all-
bo

un
ds

ilp-
cut

-no
en

d-r
ed

+con
f+ad

v-b
ou

nd
s

ilp-
cut

-re
d+

con
f+ad

v-b
ou

nd
s

ilp-
cut

-no
en

d-r
ed

+all-
bo

un
ds-

rou
teh

int

ilp-
cut

-re
d+

con
f+ad

v-b
ou

nd
s-a

llhi
nt

ilp-
cut

-no
en

d-r
ed

+con
f+ad

v-b
ou

nd
s-a

llhi
nt

ilp-
cut

-no
en

d-r
ed

+con
f+ad

v-i
nd

-bo
un

ds

ilp-
cut

-no
en

d-r
ed

+con
f+ad

v-b
ou

nd
s-r

ou
teh

int

0

50

100

150

200

Ru
nt

im
e

in
 s

(b) Comparison for Cut-Through.

Figure 7.6: Runtime comparison between the best combined optimization approaches. There are
more outliers above the respective runtime border, we cut them off to allow a more
detailed comparison between the average runtimes.

70

7.1 Optimization Evaluation

0 100 200 300 400 500 600 700 800 900
Runtime in s

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f S
ol

ve
d

St
re

am
se

ts

Base Store-and-Forward
Base Cut-Through
Optimized Store-and-Forward
Optimized Cut-Through

Figure 7.7: Scheduling Capability and runtimes of the base ILP-models and our optimized ILP-
models using the best combinations.

ILP-model within the time limit of 900 s per test case. We can also see that it is able to solve these
test cases within a shorter runtime. Thus, our best optimization combination for Store-and-Forward
as well as for Cut-Through is able to improve the base ILP-model.

If we count executions reaching the runtime limit as executions with a runtime of 900 s, our base
models for Store-and-Forward and Cut-Through have an average runtime of about 283 s and 185 s.
For our best optimization combinations, the average runtimes are 55 s and 35 s respectively. This
means, our optimized approaches improve the runtime by about 80.6 % for Store-and-Forward and
81.1 % for Cut-Through switching.

71

7 Evaluation

Selected Optimizations Solved Avg. Runtime
ilp-red+conf+adv-bounds-routehint 99.50 % 50.75 s
ilp-red+conf+adv-bounds 99.50 % 54.74 s
ilp-noend-red+conf+adv-bounds 100.00 % 55.72 s
ilp-noend-red+conf+adv-bounds-routehint 100.00 % 57.50 s
ilp-noend-red+sched+conf+adv-bounds-routehint 99.50 % 57.79 s
ilp-noend-red+conf+adv-bounds-routehint-schedulehint 99.50 % 62.02 s
ilp-red+conf+adv-bounds-routehint-schedulehint 98.50 % 62.46 s
ilp-noend-red+conf+adv-ind-bounds 98.00 % 76.10 s
ilp-noend-red+sched+conf+adv 100.00 % 76.78 s
ilp-noend-red+conf+adv 99.50 % 81.50 s
ilp-noend-red+sched+conf+adv-bounds 100.00 % 84.70 s
ilp-red+sched+conf+adv 99.50 % 91.55 s
ilp-red+conf+adv 100.00 % 92.00 s
ilp-red+conf+adv-bounds-lazyconf 100.00 % 99.71 s
ilp-red+sched+conf+adv-bounds 98.50 % 103.02 s

(a) Results for Store-and-Forward.
Selected Optimizations Solved Avg. Runtime
ilp-cut-noend-red+conf+adv-bounds-routehint 100.00 % 34.79 s
ilp-cut-noend-red+conf+adv-bounds 100.00 % 36.03 s
ilp-cut-noend-red+sched+conf+adv 100.00 % 38.18 s
ilp-cut-noend-red+conf+adv-bounds-routehint-schedulehint 100.00 % 39.04 s
ilp-cut-noend-red+sched+conf+adv-bounds-routehint 100.00 % 44.20 s
ilp-cut-noend-red+sched+conf+adv-bounds 100.00 % 44.99 s
ilp-cut-red+conf+adv-bounds-routehint-schedulehint 100.00 % 45.23 s
ilp-cut-noend-red+conf+adv-ind-bounds 99.00 % 46.95 s
ilp-cut-red+conf+adv-bounds 100.00 % 47.97 s
ilp-cut-red+conf+adv-bounds-routehint 100.00 % 48.67 s
ilp-cut-red+sched+conf+adv 100.00 % 51.21 s
ilp-cut-red+conf+adv-bounds-lazyconf 100.00 % 69.42 s
ilp-cut-red+sched+conf+adv-bounds 100.00 % 69.44 s
ilp-cut-noend-red+conf+adv 100.00 % 75.94 s
ilp-cut-noend-bounds 99.50 % 76.12 s

(b) Results for Cut-Through.

Table 7.3: Average runtime comparison of the best evaluated combinations. Only contains the best
15 combinations.

72

7.2 Benchmarking

7.2 Benchmarking

In order to identify the capabilities of our optimized ILP-based scheduler, we compare it to other
schedulers from Chapter 3. For this, we use a benchmarking framework by Schneefuss et al.
[SWHD20]. This benchmarking framework automates the topology and streamset generation and
splits the scheduler execution between different nodes. In this section, we first present the bench-
marking setup, including the benchmarking hardware and a detailed description of the benchmarking
framework. Thereafter, we present the benchmarking results in the second section.

7.2.1 Benchmarking Setup

In a first step of the benchmarking section, we explain our evaluation setup. We start with an
explanation of Schneefuss et al.’s benchmarking framework including their topology and streamset
generation. After that, we give a brief introduction to the other schedulers, to which we compare
our optimized ILP-based approach. Lastly, we present our benchmarking hardware.

Benchmarking Framework

The benchmarking framework by Schneefuss et al. [SWHD20] allows an easy comparison between
different TSN schedulers. It automates the whole evaluation process. Figure 7.8 shows the activity
diagram of this process. The process contains two main parts, namely the testset generation and the
scheduler execution.

In the first part, the benchmarking framework generates a testset with multiple testcases.
For this, the benchmarking framework first generates multiple random topologies. Those
are not necessarily factory automation networks. All generated topologies in our testset
have the following number of switches (first tuple value) and nodes (second tuple value):
{(10, 20); (20, 40); (30, 60); (1, 10); (1, 20); (1, 30); (50, 100); (100, 200)}. All other topology de-
tails are equal to our previous testset. This means, all switches have a constant and equal processing
delay of 2,000 ns and all links have a constant and equal propagation delay of 200 ns and link speed
of 1 Gbit

s . The framework then generates multiple streamsets for each topology with the number of
streams being 10, 50, 100, 250 or 500. While the cycle time is still 1,000,000 ns, streams in this
testset also contain a maximum end-to-end delay.

The second part is the scheduler execution itself. Each scheduler instance runs in a docker container
on one of the machines in the benchmarking cluster. The benchmarking framework automatically
distributes all test cases to the scheduler instances of a scheduler. It then saves the schedulers output
and runtime combined with the id of the test case in a database. In order to gain the benchmarking
results, we access the data in this database.

73

7 Evaluation

Benchmarking Framework
Benchmarking Testset Generation

Topology Generation Streamset Generation

Benchmarking Testset Generation

Scheduler Instance 1

Scheduler Instance n

Scheduler Instance 2...
Topology Generation Streamset Generation

Scheduler Instance n

Scheduler Instance 2

Figure 7.8: Process of Schneefuss et al.’s benchmarking framework [SWHD20].

Schedulers

In the benchmarking part, we compare our ILP-based scheduler to two other schedulers. These
are Dürr et al.’s JSSP-based scheduler and Glavackij’s tracing-based scheduler. We already intro-
duced their functionality in Chapter 3. In the following, we provide a more detailed view on their
functionality.

As already described, Dürr et al. map the no-wait JSSP problem to the no-wait packet scheduling
problem. To further improve the runtime, they adapt a tabu-search heurisitc to the packet scheduling
problem. In our benchmark, we only use the heuristic-enhanced approach. Dürr et al.’s approach is
a scheduling-only approach, thus it needs a fixed route to calculate schedules for. It is capable of
calculating the shortest route on its own or to use a given route. We use the possibility to provide a
precalculated route. This is the same route that we also use for our routing variable hints. The JSSP
scheduler does not take stream-specific end-to-end limitations into account and thus qualifies a
schedule as valid if all streams are fully scheduled within the cycle time. As the JSSP scheduler is a
single-threaded approach, it is only able to utilize one core per instance. We only use this scheduler
to benchmark Store-and-Forward test cases, as it does not support Cut-Through.

The tracing-based scheduler by Glavackij also is a scheduling-only approach, thus we again provide
the precalculated path. We use Glavackij’s Monte Carlo Tree Search (MCTS)-based approach (Link
Time MCTS), as it has the best scheduling capabilities. As the tracing-based scheduler allows to
limit the runtime, we limit it to 30 min = 1,800 s, as this is a reasonable amount of time for schedule
calculation in our opinion. Glavackij’s tracing-based scheduler is also single-threaded, and thus
also only utilizes one core.

Our ILP-based scheduler is a JRaS approach, thus we do not necessarily need precalculated routes.
But as described in Section 6.4.3, we use them to calculate schedule hints. We use our best
optimization combination for Store-and-Forward and Cut-Through respectively. These are ilp-
cut-noend-red+conf+adv-bounds-routehint and ilp-red+conf+adv-bounds-routehint, as described
in Section 7.1.2. We also limit our runtime to 1,800 s. Our optimization calculations are also
single-threaded, but we allow Gurobi to utilize all cores of its node.

74

7.2 Benchmarking

OS Ubuntu 18.04.5 LTS
Kernel Linux 4.15.0-118-generic
CPU Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz (8 Cores, 16 Threads)
Memory 4 × 8 GB DIMM DDR4 Synchronous 2666 MHz

Table 7.4: Hardware for benchmarking.

Hardware

We run the scheduler instances of the benchmarking framework on a cluster of identical nodes.
Each node only executes exactly one instance of a scheduler at a time. This especially means, that
each scheduler may utilize all resources of its node at any time. Table 7.4 shows the specification of
each identical benchmarking node in the cluster.

7.2.2 Benchmarking Results

In this section, we now present the benchmarking results for the three different schedulers. Figure 7.9
contains two examplary benchmarking results. In Figure 7.9a we show the results for all test cases
with 100 streams. We can see, that our scheduler is able to solve these test cases in only a few seconds.
Dürr et al.’s JSSP-based solver solves about 35 % of the testcases within the first 100 seconds and
then approaches 100 % between 200 s and 750 s. The tracing-based scheduler by Glavackij reaches
about 30 % within the first few seconds, but then only increases slowly and reaches about 35 % at
the runtime limit. For test-cases with a smaller number of streams, the graph looks similar. In these
cases, the JSSP-based scheduler reaches 100 % faster and the tracing-based scheduler is able to
solve a greater number of test cases.

Even though we limited the runtime of our approach and Glavackij’s tracing-based scheduler to
1,800 s, we provide the evaluation for 250 streams up to a timescale of 20,000 s, as it allows us to
include the JSSP-based scheduler. The tracing-based scheduler is again able to solve some test
cases within the first few seconds, but is unable to improve the number of solved test cases within
the remaining runtime. Our approach reaches a threshold of about 70 % within the first 100 s, but
we are unable to improve this value within the remaining runtime. The JSSP-based scheduler has
a hugely higher runtime, however it is able to steadily increase the number of solved test-cases.
For greater numbers of streams, the behavior is again similar: The percentage of solved test cases
decreases for our as well as for the tracing-based scheduler and the runtime for our solved test cases
increases further. The runtime of the JSSP-based scheduler increases further, but it is still able to
solve these test-cases after a large amount of time.

These evaluation results show, that our optimized approach is capable of scheduling a large number
of problem instances within a reasonable amount of time and can compete with different other
scheduling approaches. Further, we assume it is a benefit to use Joint Routing and Scheduling
(JRaS) approaches, as they are able to chose between different possible routes, and thus are more
flexible in resolving conflict streams.

75

7 Evaluation

0 250 500 750 1000 1250 1500 1750
Runtime in s

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

ta
ge

 o
f S

ol
ve

d
St

re
am

se
ts

Store-and-Forward, Streams: 100

JSSP
Tracing
ILP

(a) Benchmarking results for 100 streams.

0 5000 10000 15000 20000 25000
Runtime in s

0.0

0.2

0.4

0.6

0.8

Pe
rc

en
ta

ge
 o

f S
ol

ve
d

St
re

am
se

ts

Store-and-Forward, Streams: 250

JSSP
Tracing
ILP

(b) Benchmarking results for 250 streams.

Figure 7.9: Store-and-Forward benchmarking results for our optimized ILP-based approach, Dürr
et al.’s JSSP scheduler and Glavackij’s tracing-based scheduler.

76

8 Conclusion

In this work, we optimized the ILP-based Joint Routing and Scheduling (JRaS) problem for Time-
sensitive Networking (TSN). We mainly focused on improving an already existing No-wait JRaS
ILP-model by Hellmanns et al. Therefore, we defined two objectives to measure the improvement of
our approaches. These two objectives are the scheduling capability and the runtime. We provided
optimization approaches of different categories to improve upon these objectives, and enhanced
the model with additional functionality. Lastly, we evaluated our optimization approaches and
benchmarked our best combination against other schedulers.

The main contribution of our work is an ILP-model with additional features, an increased scheduling
capability and on average a reduced runtime. The additional features of the ILP include the support
for Cut-Through switching and stream-specific end-to-end limitations. We reached our goal of an
increased scheduling capability and reduced runtimes by providing optimization approaches in three
different categories. The first category includes the reduction of our ILP-model by reducing the
underlying topology model, e.g. by removing vertices on paths, which are only accessible with loops
and by merging edges without routing decisions on intermediate vertices. In the second category, we
presented two different approaches, which modify our ILP generation process. Our first approach in
this category removes unnecessary auxiliary variables and the second approach provides additional
bounds for variables to limit the search space of the ILP-solver. Optimization approaches of the last
category make use of Gurobi-specific functionalities, such as different constraint types, solution
hints and solving-process specific parameters.

The evaluation of our approaches shows, that there are huge differences in the results between the
three optimization categories, when using them individually. Optimizations of the first category
result in a shorter runtime and an increased scheduling capability in nearly all cases. In contrast,
approaches of the last category often result in higher runtimes and a reduced scheduling capability.
However, when combining multiple approaches of different categories, we are able to find combina-
tions for Store-and-Forward and Cut-Through switching respectively, which reduce the runtime by
about 80 % and also result in an increased scheduling capability. The benchmarking confirms, that
our optimized ILP-based approach is able to compete with other schedulers.

Outlook

While we already developed and presented optimizations for ILP-based scheduling approaches,
there are multiple possibilities to improve upon them in a future work. In this last section of our
work, we present possible improvements.

77

8 Conclusion

In our evaluation, we already analyzed the scheduling capabilities and runtimes of different optimiza-
tions individually and in combination. Future work might take a deeper look, how the performance
of these optimizations depends on different metrics. Examples for such metrics are the topology type
and size, the degree of intermeshing in those topologies and the number and size of streams among
others. It might be possible, that the best optimization combination depends on these metrics.

We already investigated the influence of some of these metrics (topology size and number of
streams) on the MIPFocus parameter, but we were not able to find correlations. However, with more
sophisticated metrics, it might be possible to find a correlation between one or multiple of these
metrics and to find the optimal value for the MIPFocus parameter or other parameters.

In its current state, our ILP-model always calculates routes and schedules from scratch. However,
changes in a network are common, and thus one might need to add a new stream to an already
existing schedule. Future work might extend our ILP-based approach to support a rescheduling
mechanism, which adapts to changes in the network topology and/or streamset without the need of
calculating a new schedule from scratch.

78

Bibliography

[Cis08] Cisco. Cut-Through and Store-and-Forward Ethernet Switching for Low-Latency
Environments. 2008. url: https://www.cisco.com/c/en/us/products/collateral/
switches/nexus-5020-switch/white_paper_c11-465436.html (visited on 09/26/2020)
(cit. on p. 20).

[CO14] S. S. Craciunas, R. S. Oliver. “SMT-Based Task- and Network-Level Static Schedule
Generation for Time-Triggered Networked Systems”. In: Proceedings of the 22nd Inter-
national Conference on Real-Time Networks and Systems. RTNS ’14. Versaille, France:
Association for Computing Machinery, 2014, pp. 45–54. isbn: 9781450327275. doi:
10.1145/2659787.2659812. url: https://doi.org/10.1145/2659787.2659812 (cit. on
p. 30).

[CO15] S. S. Craciunas, R. S. Oliver. “Combined task- and network-level scheduling for distrib-
uted time-triggered systems”. In: Real-Time Systems 52.2 (Oct. 2015), pp. 161–200.
doi: 10.1007/s11241-015-9244-x (cit. on p. 30).

[COCS16] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, W. Steiner. “Scheduling Real-Time Commu-
nication in IEEE 802.1Qbv Time Sensitive Networks”. In: Proceedings of the 24th In-
ternational Conference on Real-Time Networks and Systems. RTNS ’16. Brest, France:
Association for Computing Machinery, 2016, pp. 183–192. isbn: 9781450347877.
doi: 10.1145/2997465.2997470. url: https://doi.org/10.1145/2997465.2997470
(cit. on p. 30).

[Dij59] E. W. Dijkstra. “A note on two problems in connexion with graphs”. In: Numerische
mathematik 1.1 (1959), pp. 269–271 (cit. on p. 27).

[DN16] F. Dürr, N. G. Nayak. “No-Wait Packet Scheduling for IEEE Time-Sensitive Networks
(TSN)”. In: Proceedings of the 24th International Conference on Real-Time Networks
and Systems. RTNS ’16. Brest, France: Association for Computing Machinery, 2016,
pp. 203–212. isbn: 9781450347877. doi: 10.1145/2997465.2997494. url: https:
//doi.org/10.1145/2997465.2997494 (cit. on pp. 30, 32).

[Dut14] B. Dutertre. “Yices 2.2”. In: Computer-Aided Verification (CAV’2014). Ed. by A. Biere,
R. Bloem. Vol. 8559. Lecture Notes in Computer Science. Springer, July 2014,
pp. 737–744 (cit. on p. 30).

[FDR18] J. Falk, F. Dürr, K. Rothermel. “Exploring Practical Limitations of Joint Routing
and Scheduling for TSN with ILP”. In: 2018 IEEE 24th International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA). 2018,
pp. 136–146 (cit. on p. 32).

79

https://www.cisco.com/c/en/us/products/collateral/switches/nexus-5020-switch/white_paper_c11-465436.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-5020-switch/white_paper_c11-465436.html
https://doi.org/10.1145/2659787.2659812
https://doi.org/10.1145/2659787.2659812
https://doi.org/10.1007/s11241-015-9244-x
https://doi.org/10.1145/2997465.2997470
https://doi.org/10.1145/2997465.2997470
https://doi.org/10.1145/2997465.2997494
https://doi.org/10.1145/2997465.2997494
https://doi.org/10.1145/2997465.2997494

Bibliography

[Fre13] L. Frenzel. Fundamentals of Communications Access Technologies: FDMA, TDMA,
CDMA, OFDMA, AND SDMA. Jan. 22, 2013. url: https://www.electronicde
sign.com/technologies/communications/article/21802209/fundamentals-of-

communications-access-technologies-fdma-tdma-cdma-ofdma-and-sdma (visited on
08/25/2020) (cit. on p. 24).

[Gla20] A. Glavackij. “Tracing-based Scheduling of Isochronous Traffic in Time-Sensitive
Networks”. Bachelor’s Thesis. Aug. 19, 2020 (cit. on p. 33).

[Gra66] R. L. Graham. “Bounds for certain multiprocessing anomalies”. In: The Bell System
Technical Journal 45.9 (June 11, 1966), pp. 1563–1581 (cit. on p. 29).

[Gur] Gurobi. Gurobi Optimizer. Gurobi Optimization. url: https://www.gurobi.com/
(visited on 06/09/2020) (cit. on pp. 25, 30, 40, 66).

[HBŠ10] Z. Hanzálek, P. Burget, P. Šůcha. “Profinet IO IRT Message Scheduling With Temporal
Constraints”. In: IEEE Transactions on Industrial Informatics 6.3 (2010), pp. 369–380
(cit. on pp. 30, 32).

[HDHK18] D. Hellmanns, F. Dürr, R. Hummen, S. Kehrer. In: Reducing Runtime of Schedule
and Route Synthesis in TSN without Sacrificing Valid Solutions. 2018. doi: 10.4230/
LIPIcs.ECRTS.2018.YY (cit. on pp. 16, 23, 31, 35, 37, 47).

[IEEa] IEEE. IEEE 802.1 Working Group. url: https : / / 1 . ieee802 . org/ (visited on
08/25/2020) (cit. on p. 22).

[IEEb] IEEE. Time-Sensitive Networking (TSN) Task Group. url: https://1.ieee802.org/
tsn/ (visited on 08/25/2020) (cit. on p. 22).

[IEE10] IEEE. “IEEE Standard for Local and metropolitan area networks– Virtual Bridged
Local Area Networks Amendment 12: Forwarding and Queuing Enhancements for
Time-Sensitive Streams”. In: IEEE Std 802.1Qav-2009 (Amendment to IEEE Std
802.1Q-2005) (2010), pp. 1–72 (cit. on p. 23).

[IEE16] IEEE. “IEEE Standard for Local and metropolitan area networks – Bridges and
Bridged Networks - Amendment 25: Enhancements for Scheduled Traffic”. In: IEEE
Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-2014 as amended by IEEE Std
802.1Qca-2015, IEEE Std 802.1Qcd-2015, and IEEE Std 802.1Q-2014/Cor 1-2015)
(2016), pp. 1–57 (cit. on p. 22).

[IEE18a] IEEE. “IEEE Standard for Ethernet”. In: IEEE Std 802.3-2018 (Revision of IEEE Std
802.3-2015) (2018), pp. 1–5600 (cit. on pp. 17, 18).

[IEE18b] IEEE. “IEEE Standard for Local and Metropolitan Area Network–Bridges and Bridged
Networks”. In: IEEE Std 802.1Q-2018 (Revision of IEEE Std 802.1Q-2014) (2018),
pp. 1–1993 (cit. on pp. 18–24).

[IEE20a] IEEE. “IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems”. In: IEEE Std 1588-2019 (Revision ofIEEE Std
1588-2008) (2020), pp. 1–499 (cit. on p. 22).

[IEE20b] IEEE. “IEEE Standard for Local and Metropolitan Area Networks–Timing and Syn-
chronization for Time-Sensitive Applications”. In: IEEE Std 802.1AS-2020 (Revision
of IEEE Std 802.1AS-2011) (2020), pp. 1–421 (cit. on p. 22).

80

https://www.electronicdesign.com/technologies/communications/article/21802209/fundamentals-of-communications-access-technologies-fdma-tdma-cdma-ofdma-and-sdma
https://www.electronicdesign.com/technologies/communications/article/21802209/fundamentals-of-communications-access-technologies-fdma-tdma-cdma-ofdma-and-sdma
https://www.electronicdesign.com/technologies/communications/article/21802209/fundamentals-of-communications-access-technologies-fdma-tdma-cdma-ofdma-and-sdma
https://www.gurobi.com/
https://doi.org/10.4230/LIPIcs.ECRTS.2018.YY
https://doi.org/10.4230/LIPIcs.ECRTS.2018.YY
https://1.ieee802.org/
https://1.ieee802.org/tsn/
https://1.ieee802.org/tsn/

Bibliography

[MMR99] R. Macchiaroli, S. Mole, S. Riemma. “Modelling and optimization of industrial man-
ufacturing processes subject to no-wait constraints”. In: International Journal of Pro-
duction Research 37.11 (July 1999), pp. 2585–2607. doi: 10.1080/002075499190671
(cit. on p. 32).

[Pei14] T. P. Peixoto. “The graph-tool python library”. In: figshare (2014). doi: 10.6084/
m9.figshare.1164194. url: http://figshare.com/articles/graph_tool/1164194
(visited on 09/10/2014) (cit. on p. 26).

[PRGS18] P. Pop, M. L. Raagaard, M. Gutierrez, W. Steiner. “Enabling Fog Computing for
Industrial Automation Through Time-Sensitive Networking (TSN)”. In: IEEE Com-
munications Standards Magazine 2.2 (2018), pp. 55–61 (cit. on p. 33).

[PRO14] PROFIBUS Nutzerorganisation e. V. “PROFINET System Description”. In: (2014)
(cit. on p. 29).

[SAE16] SAE International. Time-Triggered Ethernet. Nov. 9, 2016. doi: 10.4271/as6802
(cit. on pp. 15, 29).

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. USA: John Wiley Sons,
Inc., 1986. isbn: 0471908541 (cit. on p. 25).

[SDT+17] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, G. Mühl. “ILP-Based
Joint Routing and Scheduling for Time-Triggered Networks”. In: Proceedings of
the 25th International Conference on Real-Time Networks and Systems. RTNS ’17.
Grenoble, France: Association for Computing Machinery, 2017, pp. 8–17. isbn:
9781450352864. doi: 10.1145/3139258.3139289. url: https://doi.org/10.1145/
3139258.3139289 (cit. on p. 31).

[Ste10] W. Steiner. “An Evaluation of SMT-Based Schedule Synthesis for Time-Triggered
Multi-hop Networks”. In: 2010 31st IEEE Real-Time Systems Symposium. 2010,
pp. 375–384 (cit. on pp. 15, 24, 30).

[STP+20] E. Schweissguth, D. Timmermann, H. Parzyjegla, P. Danielis, G. Mühl. “ILP-Based
Routing and Scheduling of Multicast Realtime Traffic in Time-Sensitive Networks”.
In: 2020 IEEE 26th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). 2020, pp. 1–11 (cit. on p. 31).

[SWHD20] P. Schneefuss, M. Weitbrecht, D. Hellmanns, F. Dürr. “Benchmarking TSN Sched-
ulers”. In: (2020) (cit. on pp. 73, 74).

[Tar71] R. Tarjan. “Depth-first search and linear graph algorithms”. In: 12th Annual Sympo-
sium on Switching and Automata Theory (swat 1971). 1971, pp. 114–121 (cit. on
p. 26).

[Ull75] J. D. Ullman. “NP-Complete Scheduling Problems”. In: J. Comput. Syst. Sci. 10.3
(June 1975), pp. 384–393. issn: 0022-0000. doi: 10.1016/S0022-0000(75)80008-0.
url: https://doi.org/10.1016/S0022-0000(75)80008-0 (cit. on p. 41).

[Wil93] R. N. Williams. “A Painless Guide to CRC Error Detection Algorithms V3.00”. In:
(Aug. 19, 1993) (cit. on p. 18).

All links were last followed on October 28, 2020.

81

https://doi.org/10.1080/002075499190671
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
http://figshare.com/articles/graph_tool/1164194
https://doi.org/10.4271/as6802
https://doi.org/10.1145/3139258.3139289
https://doi.org/10.1145/3139258.3139289
https://doi.org/10.1145/3139258.3139289
https://doi.org/10.1016/S0022-0000(75)80008-0
https://doi.org/10.1016/S0022-0000(75)80008-0

Bibliography

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

place, date, signature

83

	1 Introduction
	2 Background
	2.1 IEEE Ethernet
	2.2 tsn
	2.3 ilp
	2.4 Graph Algorithms

	3 Related Work
	3.1 Complete Approaches
	3.2 Heuristic approaches

	4 System Model
	4.1 Network Model
	4.2 Ethernet Model
	4.3 ILP-model

	5 Problem Statement
	6 Design
	6.1 ILP Enhancements
	6.2 Topology Model Optimizations
	6.3 ILP Generation Optimizations
	6.4 Gurobi Optimizations

	7 Evaluation
	7.1 Optimization Evaluation
	7.2 Benchmarking

	8 Conclusion
	Bibliography

 HistoryItem_V1
 TrimAndShift

 Bereich: aktuelle Seite
 Beschneiden: keine
 Versatz: unten um 4.25 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20201021102559
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 319
 373
 Fixed
 Down
 4.2520
 0.0000

 Both
 2
 CurrentPage
 79

 CurrentAVDoc

 None
 28.3465
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 0
 83
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Bereich: aktuelle Seite
 Beschneiden: keine
 Versatz: rechts um 1.98 Punkte verschieben
 Normen (erweiterte Option): 'Original'

 32

 D:20201021102559
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 No
 319
 373

 Fixed
 Right
 1.9843
 0.0000

 Both
 2
 CurrentPage
 79

 CurrentAVDoc

 None
 28.3465
 Right

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 0
 83
 0
 1

 1

 HistoryList_V1
 qi2base

