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Abstract

The amount of functionality provided by software in technical products is rising
continuously, not only for programs in personal computers or mobile devices,
but also for that embedded in other machines, such as household appliances,
cars or spacecraft.

However, with a rising amount of functionality comes more code, which impli-
cates, in most cases, more complexity. This is also true for spacecraft, which
makes the development of spacecraft on-board software or flight software (FSW)
a challenging endeavour.

This thesis sets the objective to improve design and development of FSW by
applying techniques found in the discipline of software engineering. As most
of these techniques do not aim at embedded software, but rather on general
purpose software or Internet applications, existing techniques are surveyed for
their applicability to the domain of flight software design.

As a result, this survey highlights the possibility to create a component frame-
work, which supports the development of FSW for various variants of space
missions. To determine the common needs of spacecraft software, a domain
analysis is performed, which identifies requirements or features not for a single,
specific satellite, but spacecraft software in general. These generic features cover
component management, system management, operations, and autonomy.

With a set of tools at hands and the required features identified, a space-
craft software framework can be designed. This was done at the University
of Stuttgart and the resulting framework is called the Flight Software Frame-
work (FSFW). This thesis contributes to the FSFW and describes its overall
design in the view of the identified software engineering techniques.

The FSFW architecture defines a FSW application as a set of interacting com-
ponents, which offer and invoke functionality of other components. The func-
tionality is defined by a small number of interface definitions, e. g. for com-
ponent mode handling or action invocation. Establishing communication and
executing components, as well as providing access to computing resources and
hardware interfaces, is the task of the FSFW-Core, which is the central element
of the framework.

To support the implementation of components, the FSFW offers a set of compo-
nent templates, which serve as prototypes for e. g. device handling or controller
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Abstract

components. These templates are complemented by sub-frameworks to com-
mand the spacecraft using a common space link protocol, the packet utilization
standard (PUS), as well as elements to implement on-board failure detection,
isolation and recovery (FDIR).

To ensure the practicality of the complete component framework, the FSFW
serves as basis for the software of Flying Laptop, a small satellite also developed,
built, and currently operated by the University of Stuttgart. This allowed
to iteratively find a good design, which proved itself useful in a real-world
deployment. Also, it serves as an example to illustrate the various concepts
and features of the FSFW within this thesis.

A brief evaluation shows that applying selected software engineering techniques
can improve flight software development. This happens by enhancing separation
of concerns by encapsulation of functionality in components. Also, the FSFW
enables reuse of both the unchanged FSFW-Core and entire components in
various space missions.
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Kurzfassung

In technischen Produkten steigt der Anteil der Funktionalität, die von Software
bereitgestellt wird, kontinuierlich an. Das ist nicht nur bei Programmen in
Computern und Mobilgeräten der Fall, sondern auch bei Software, die in andere
technische Geräte eingebettet ist, etwa in Haushaltsgeräte, in Automobile, oder
eben in Raumfahrzeuge.

Allerdings erfordert das Mehr an Funktionalität auch ein Mehr an Quellcode,
was meistens auch einen Zuwachs an Komplexität mit sich bringt. Die Software
von Satelliten und anderen Raumfahrtsystemen ist von diesem Trend nicht
ausgenommen, was die Entwicklung von Onboard-Software oder Flugsoftware
zu einer herausfordernden Unternehmung macht.

Das Ziel dieser Arbeit ist es, zu überprüfen, durch welche Techniken aus der
Disziplin des Software Engineerings der Entwurf und die Entwicklung von Flug-
software verbessert werden kann. Da diese Techniken typischerweise nicht für
eingebettete Software, sondern für Desktop- und Internetanwendungen entwick-
elt wurden, ist zunächst eine Überprüfung auf Eignung für Flugsoftware er-
forderlich.

Als Ergebnis zeigt diese Untersuchung die Möglichkeit auf, ein komponenten-
basiertes Rahmenwerk für die allgemeine Entwicklung von Satellitensoftware zu
entwickeln, ein sogenanntes Komponentenframework. Dafür ist eine Übersicht
der Eigenschaften von und Anforderungen an Flugsoftware im Allgemeinen er-
forderlich, die im Verlauf dieser Arbeit erstellt wurde. Diese Domänenanalyse
identifiziert Funktionalitäten in den Kategorien: Komponentenverwaltung, Sys-
temverwaltung, Satellitenbetrieb und Autonomie.

Die gefundenen Entwicklungstechniken und Anforderungen ermöglichen den
Entwurf eines Komponentenframeworks für Raumfahrtsysteme. Ein solches,
das sogennante Flight Software Framework (FSFW), wurde an der Univer-
sität Stuttgart entwickelt. Die vorliegende Arbeit legt dafür den theoretischen
Rahmen, und erläutert das Framework im Licht der genannten Softwaretech-
niken.

Die Architektur des FSFW definiert eine Flugsoftware als eine Kombination
aus interagierenden Komponenten, die Funktionalitäten anbieten oder von an-
deren Komponenten nutzen. Diese Funktionalitäten werden von einer limi-
tierten Zahl von Schnittstellendefinitionen festgelegt, etwa zur Zustandsverwal-
tung von Komponenten oder um Aktivitäten zu starten. Ein zentrales Element
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Kurzfassung

des FSFW ist der sogenannte FSFW-Core, der die Interaktion zwischen Kom-
ponenten ermöglicht, deren Ausführung regelt, sowie den Zugriff auf Rechen-
ressourcen und Hardwareschnittstellen gewährleistet.

Um die Implementierung von Komponenten zu unterstützen, bietet das FSFW
Komponentenvorlagen an, die als Prototyp für spezifische Komponenten etwa
zur Geräteverwaltung oder für Kontrollalgorithmen dienen können. Diese wer-
den ergänzt durch zusätzliche Frameworks, um die Steuerung über ein typ-
isches Kommunikationsprotokoll, dem Packet Utilization Standard (PUS), zu
ermöglichen und um Funktionalitäten für die Fehlerbehandlung an Bord des
Satelliten bereit zu stellen.

Um die praktische Nutzbarkeit des Frameworks sicherzustellen, wurde es als Ba-
sis für die Entwicklung der Flugsoftware von Flying Laptop verwendet. Dieser
aktive Kleinsatellit wurde ebenfalls an der Universität Stuttgart entworfen und
gebaut. Das ermöglichte es, iterativ ein passendes Design zu finden, welches
seine Nützlichkeit direkt in einem echten Umfeld unter Beweis stellen muss. In
dieser Arbeit dient die Software von Flying Laptop zur Illustration der Konzepte
und Funktionalitäten des FSFW.

Eine kurze Evaluation zeigt, dass ausgewählte Techniken des Software Engineer-
ings die Entwicklung von Flugsoftware verbessern kann, indem Zuständigkeiten
durch die Kapselung in Komponenten besser getrennt werden. Außerdem kön-
nen sowohl der FSFW-Core, als auch vollständige Komponenten unverändert
in verschiedenen Missionen verwendet werden können.
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Preface

Somehow, I’ve always been attracted by difficult challenges. So I barely hesi-
tated when I was offered a Ph.D. position to develop the flight software for a
“small" University satellite of more than 100 kg, that was already three years
behind schedule.

Fortunately, some foundations were already laid for the software, including
the faint idea to write some kind of reusable software framework instead of a
one-shot solution by Claas Ziemke. Also, the satellite hardware development
was making progress thanks to experienced industry support, including my
supervisor Jens Eickhoff, and the outstanding Flying Laptop team (sorry, guys,
can’t name you all).

So I started, with little knowledge in what I engaged, and might have resigned
immediately if someone would have told me that the endeavour would take
about six years. With me alone, the software would never have finished. But
fortunately, I got assistance in the form of Ulrich Mohr, and it was the dis-
cussions and disputes we held over good and not-so-good software design that
widened our horizon and shaped the Flight Software Framework as well as the
flight software for Flying Laptop. While many of the smarter ideas of the FSFW
stem from Uli’s pen, its design was a collaborative effort, not only by Uli and
me, and it’s hard to tell who invented which part of the system.

And then, thanks to the unbelievable effort of the team and the infinite trust
and commitment of our boss, Sabine Klinkner, we could finally see this crazy
machine in action. While this was the closing of one chapter, it’s not the end
of the story, with many new, smart minds working on utilizing Flying Laptop
or building its successors.

A warning to the following text: Real software development, under schedule
pressure and with changing requirements, never happens as organized as this
thesis might suggest. The truth is that the framework evolved in parallel with
the Flying Laptop software, and both evolved with our own experience. The
process was highly iterative, and neither did we have all the theory of software
engineering available at the start, nor was a domain analysis performed until
recently. This doesn’t mean our work wasn’t structured, but the design just
wasn’t created on the drawing board, but rather evolved from our hope that
abstraction makes it easier to finish the Flying Laptop software.
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Still, just like the Flying Laptop software in later development phases and in
orbit miraculously “just worked”, I’m glad that most of the theory and the
FSFW fit together without too much friction.

Thus, as no one would like to read a book that contradicts itself multiple times
and has various dead and open endings, this thesis describes a well defined top-
down research and development process. So, enjoy reading (if you like books
about software), and take the stringent structure with a grain of salt.
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1. Introduction

Since its first practical use to solve problems, software has penetrated deeper
and deeper into everyday life. First, executable algorithms became indispens-
able in research and certain economic sectors, such as meteorology and bank-
ing. Then, with the advent of personal computers and end-user software, soft-
ware found applications in the majority of households. The Internet paved the
way for truly personal and portable computing and brought software to every-
one, e. g. in the form of information access and entertainment by smartphone.
However, while these products are immediately recognizable as computers, the
importance of software also grew as an element embedded in non-computer
products, such as children toys, kitchen equipment and cars.

This process is likely to continue in the future. Many of the buzz topics cur-
rently discussed in research and media are based on more software embedded
in more products. Smart homes, Industry 4.0 and autonomous driving are
prominent examples. These developments have in common that they are not
only about adding small pieces of code here and there, but also to have larger
software in charge of performing and controlling complex activities, such as
driving a car. Software for such tasks has totally different requirements than
that for, say, a stand-alone washing machine. Thus, future embedded software
will grow in size and complexity.

Spacecraft FSW is no exception to that rule: There are indications that code
size, and therefore complexity rises continuously since the day of the Apollo
program [36]. And indeed, for many space mission today, complex control
software is an enabling technology, be it to land rovers on Mars or rocket stages
on Earth.

Thus, improving flight software (FSW) design and development is a key element
for the success of future space endeavours, as complexity rises the same time as
budgets are under pressure. Better FSW enables more complex mission while
reducing cost by:

• directly reducing FSW development cost and time,

• reducing AIT efforts by allowing tests with partial systems,

• reducing ground observability demands by improving autonomy, and

• simplifying operator training.

1



1. Introduction

Fortunately, the discipline of software engineering and software architecture has
produced significant results in the last decades and keyed phrases like frame-
works, software components or design patterns. Many of these techniques form
the basis of the tremendous success of today’s software industry1.

However, it is not obvious which design concepts are applicable and useful
for embedded software in general and spacecraft flight software in particular.
Research in that specific topic has been rather sparse, according to [89], p.17
this is a “self-perpetuating" situation due to the backwardness of embedded
software. Another reason might be that the required complexity and therefore
pressure has not been large enough yet to improve software design.

So, the questions that are tackled in this thesis are: Which software engineering
techniques improve FSW design, and how to apply these techniques to have a
practical benefit? Or, reformulated as a research hypothesis:

Selected software engineering techniques improve development of
complex embedded software in general, and spacecraft flight software
in particular.

To find some evidence for this hypothesis, this work is structured as following:

• At first, Chapter 2 gives a brief summary of software engineering meth-
ods and techniques, together with an evaluation of their applicability to
embedded systems.

• Following, a so-called domain analysis is performed in Chapter 3, which
aims to capture typical functionality any FSW has to provide.

• Chapter 4 presents the Flight Software Framework (FSFW) as the main
work of this thesis. It uses selected software engineering techniques to
provide a framework for the implementation of any FSW, following the
feature list identified in the domain analysis.

• A brief evaluation of the FSFW is given in Chapter 5, which also covers
possible improvements.

• The thesis concludes with a summary in Chapter 6.

Due to the malleable nature of software, it often happens that abstract software
design concepts fail to keep their promises when facing real-world challenges.
To avoid this pitfall, the flight software of Flying Laptop, a small satellite for
Earth observation developed at the University of Stuttgart, was implemented
on the grounds of the FSFW.

1As of 2015, four of the ten most valuable companies worldwide are mainly regarded as
software companies [31].
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1.1. The Nature of Complexity

1.1. The Nature of Complexity

An important property that arose in the above introduction is complexity. In
a famous essay called “No Silver Bullet" [9], Frederick P. Brooks evaluates the
term in relation to software.

First, he argues that there are two flavors of complexity for software engi-
neering: Essential complexity, which is inherent to the problem to solve, and
accidental or incidental complexity, which happens when solving the problem
with a specific set of tools.

In natural science, essential complexity is managed by constructing and test-
ing abstract models of the original problem, which works because these models
still capture the fundamental principles which are supposed to exist in the
laws of nature. However, “no such faith comforts the software engineer”, as
software controls and interfaces other human-built machines with arbitrary re-
quirements. Even worse, as no two parts in software are the same2, complexity
increases “much more than linearly” with size.

Incidental complexity comes into play when a plan to solve the essential issue
is put into practice, and includes the translation in a programming language,
the challenges of handling hardware elements, and the difficulties of testing
a program. According to [9], many original issues of incidental complexity
are already resolved by high-level languages and good accessibility of testing
environments, so incidental complexity is not the main challenge for software
engineering.

To handle essential complexity, Robert D. Rasmussen argues in [91], that com-
plexity is a matter of perspective, i. e. how well a problem is really understood.
So, by introducing an overall, recurring structure, to help orienting in a complex
system, layering, to build on understood foundations, as well as separation of
concerns, to allow focusing on a part of the whole, essential complexity becomes
more manageable, and therefore decreases ([91], p. 8).

However, as none of these principles is an intrinsic property of software, it
requires effort to introduce and maintain them. This effort is not necessarily
essential to the problem, so there is a risk that too much of the above ingredients
cause an increase in incidental complexity, jeopardizing the original idea.

To conclude, the challenge of software engineering is to manage the extraordi-
nary essential complexity of the task without accidentally introducing incidental
complexity.

2Identical code parts are factored out to a common subroutine.
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1. Introduction

1.2. Diagrams and Code Examples

It is always challenging to illustrate the inner workings of software. In this
thesis, to display certain software features, diagrams of the Unified Modeling
Language (UML) are used where applicable. The syntax of these diagrams
adheres to the UML 2 specification [88]. Code examples in the diagrams are
put in comments, and are typically in the form of simple, C++ style pseudo
code.

In addition, the thesis contains some examples in the form of source code,
mainly in the Appendix. These are written in C++. Default include files (such
as <iostream>) are only added to the listings if relevant, otherwise they are
omitted for brevity.
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2. Software Engineering Tools and Methods

The discipline of software engineering is quite young, especially if compared to
other engineering topics, such as construction engineering with 4000 years of
heritage. Even though the first program is often assigned to Ada Lovelace as
early as 1842 [58], only with the advent of usable computers after World War
2 did software become a relevant scientific topic.

From that time on, software development was under the constant pressure of
exponentially growing computing performance [33]. This led to the develop-
ment of assembler and later procedural languages to provide a human-readable
abstraction from machine code and enhance programming efficiency. Follow-
ing, advanced concepts such as object-oriented programming (OOP) were in-
troduced. As OOP is fundamental for many concepts used in this thesis, the
first Section 2.1 of this chapter gives a short introduction to those paradigms.
Readers familiar with OOP may skip the section.

From the late 1970s on there were only few new trends in language design itself,
which led to the statement that nothing of relevance was invented in computer
science since then (e. g. [89], p. 1). In the author’s opinion, this is misleading:
Computer science matured from an intellectual art pondering over fundamental
concepts to an engineering discipline devising practical applications. In other
words, there was a transition from computer science, to software engineering.

The term software engineering has many definitions (e. g. [72]). The main
question this discipline poses, is “How to manage, design, build and maintain
software systems?”. Since its establishment in the 70s [87], a vast amount of
time and money was spent to find an answer. This thesis will closer investigate
the following software engineering subtopics:

• Development methods, dealing with the organization of the software
development process, i. e. making sure the right problem is solved cor-
rectly.

• Design and implementation techniques, dealing with the application
of programming languages and paradigms to efficiently solve a certain
problem.

The last thirty years showed a lot of innovation in both aspects. The evolution
of the first point can roughly be described by the struggle between classical
plan-driven methods, and more recent agile methods. Some background to
this struggle and an introduction to selected methods is found in Section 2.2.

5



2. Software Engineering Tools and Methods

However, for this thesis, the main focus is on the second point: The objective
is to identify techniques to allow better1 development of more complex soft-
ware systems. To achieve this, the discipline of software engineering devised
techniques to apply fundamental design principles like decomposition and ab-
straction, as well as methods to allow code reuse and to improve productivity
of the programmer. Section 2.3 evaluates relevant concepts.

Even though these improvements are widely applied to the development of
application software, they are rarely used neither in flight software, nor in
embedded software in general [66]. Section 2.4 tries to explain the reservations
of embedded programmers and outlines under which conditions abstraction and
architecture are beneficial for embedded programming.

2.1. Object-Oriented Programming

The basic idea of object-orientation is to merge data structures and functions
operating on them into a single logical unit, which is called an “object”. This
idea led to object-oriented programming (OOP) as a programming paradigm
and various theoretical and practical concepts associated with it. OOP is a
very general concept, i. e. it allows many different design and implementation
techniques. In addition, different object-oriented programming languages apply
different subsets of the concepts in variable forms. Following, some typical
features relevant for this work are described in the terminology of the C++
programming language.

2.1.1. Classes and Objects

A class is the definition of a certain type of object. It includes the definition of
data, called attributes and functions, called methods, associated to the class. An
object is a concrete instantiation of a given class definition. This implies that
there may be multiple instantiations of a given class. To instantiate multiple
classes with different attribute settings, classes can have parametrized construc-
tors, which are called on object creation to perform basic initialization. If no
specific constructor is given, a default constructor is generated. An example of
class creation and instantiation can be found in listing A.1.

This definition, however, says nothing about what classes and objects actually
are in a given project. One approach is the “everything is an object” strategy,
which means that any data structure, interaction and algorithm can somehow
be implemented as an object. Still, there is a distinction between such ad-hoc
objects and those that form the basis of a software design. For this essential

1I. e. cheaper and faster, but even more so higher quality software development.
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2.1. Object-Oriented Programming

part, it is good practice to create objects that have a meaning to the clients
using the software ([9], p. 221).

For example, an object-oriented (OO) embedded controller may consist of the
following main objects:

• Sensor objects, representing input sensors

• Controller objects, representing control algorithms

• Actuator objects, representing actuators of the system

There are more details on principles and best practices for class design in the
literature, such as the SOLID principle2 [81].

2.1.2. Encapsulation

A central concept of object orientation is encapsulation of data and functional-
ity. It postulates the simplification of complex software systems by hiding de-
tails of logically independent groups of data and function in dedicated software
objects. Direct external access to encapsulated information and functionality
is not permitted [84].

This concept enables the separation of private and public elements of a class.
Restricting access to public elements reduces coupling of classes, which increases
maintainability, as changes of private methods or attributes do not propagate
beyond class boundaries. Also, encapsulation eliminates an error source as
unwanted access to the “inner workings” of classes is inhibited.

Moreover, encapsulation naturally helps structuring data, as, by design, all
data belongs to a certain class instance. In addition, class definitions form
namespaces, i. e. the full name of an attribute counter of class A is A::counter.
This reduces the risk of naming conflicts.

In listing A.1, it is not possible to change the private attribute value from
outside the class by accident. Doing so will cause a compile-time error.

2.1.3. Inheritance and Object Composition

Another main feature of OOP is inheritance, which allows to establish a Is-A
relationship between classes. A sub- or child class B inherits from a base (or
parent or super-)class A. B reuses all attributes and methods of A, and may also
extend the class and refine its methods by overriding (a feature which requires
dynamic dispatch, see section Section 2.1.4 below).

2single responsibility, open-closed, Liskov substitution, interface segregation and depen-
dency inversion
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This is a main driver for code reuse within a project, as it allows the extraction
of recurring control flow in similar classes to form a common base class. As
an example, a concrete class to handle a specific Pt-1000 temperature sensor,
e. g. Pt1000Sensor, may inherit from a common base class, e. g. Temperature-
SensorBase, which is reused by other temperature sensor classes.

Another possibility to reuse code is object composition, which forms a Has-A
relationship between classes. A reference or an instance of a class C may be
included in another class B.

An example for both inheritance and object composition is found in listing
A.2.

2.1.4. Dynamic Dispatch and Interfaces

Dynamic dispatch is a technique that allows an object to select the code of a
method at run-time. This is especially relevant in conjunction with inheritance:
If a child class overrides a method of the parent class, it must be ensured that
an external caller actually executes the child class code even if it has a reference
of the parent’s class type only.

Interfaces make use of dynamic dispatch by declaring the syntax of a given
method call and requiring concrete classes to implement the method. The
terminology for the example in listing A.2 is: Class B implements interface
PrintIF.

In C++ there is no explicit interface construct, but interfaces are effectively
implemented using abstract classes with pure virtual functions. Just as all
parameter types and the return type defines the signature of a function, the
signature of all methods of an interface define the interface’s signature. To
explicitly distinguish classes and interfaces, all interface names in this thesis
end with the letters IF.

Interfaces are a more powerful technique for code decoupling than simple en-
capsulation. First, an object implementing different interfaces provides specific
views to different callers, only exposing relevant information for each. In ad-
dition, a caller can access different objects with the same interface uniformly,
without need to care for details. However, C++ interfaces only ensure syntac-
tical correctness, semantical correctness is not ensured. It must be maintained
by other means, e. g. concise documentation of the interface.

As an example, a flight software’s device handling class may implement a
HasHealthIF and a HasParameterIF interface, which allow external access to
the health state and to internal parameters. The implementation must ensure
that e. g. health state access actually works as expected.
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2.2. Development Methods

Software development strategies can roughly be divided into two categories: So-
called agile approaches and plan-driven methods. While plan-driven techniques
rely on a well defined design before beginning the actual coding and on strict
rules concerning progress reports and milestones, the agile approach provides
more freedom to programmers and allows the design to evolve during coding,
often starting with only a minimum idea of how the end-product will look like.
Both agile and plan-driven methods have certain strengths and weaknesses,
which make them particular useful in specific environments, or home grounds
[7].

This section gives a short insight to both methods and discusses ideas to avoid
getting stuck in one of the two extreme ends when choosing a method.

2.2.1. Plan-Driven Processes

Plan-driven methods are a result of the advent of software engineering as a dis-
cipline: When software became both important and complex, e. g. in airplanes
or power plants, there was a growing need to manage quality and budgets of
software.

Requriements
analysis

Implementation

System
testing

High level
design

Detailed
design

Integration
testing

Unit
testing

Figure 2.1.: Main concept of a V-model process (after [10])

Main concept is the application of hardware engineering processes to software
development, typically in the form of a waterfall or V-model (see Figure 2.1).
Software development is characterized as phases of requirements definition and
detailing, designing, implementation, integration and test, which in principle
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follow one after the other and are accompanied by documentation and verifi-
cation activities. A customer reviews the project after each phase, mainly by
checking the produced documents.

There are a number of standards emphasizing or supporting such approaches,
such as US military or IEEE standards. For example, the ECSS standard
”Space Engineering - Software” [42] describes the processes and plans for space
software projects.

Home Grounds and Deficiencies

Plan-driven methods allow a very good division of responsibility and labour.
Given all steps are thoroughly documented, requirements elicitation, design
and implementation are independent tasks. As the program is decomposed
into smaller units with defined and documented interfaces, many people can
implement in parallel. Thus, these methods scale well for larger projects. Also,
additional or new staff becomes acquainted to a project quickly by consulting
the documentation, as long as they are trained on the process. There is a strong
focus on formal software quality and traceability, which is assured by extensive
reviews of code and documentation after each step.

However, this formalism is bought dearly with overhead of management and
paperwork. This is in itself an issue for small projects. First, there is not
enough staff to extensively elaborate on plans and documents. Moreover, the
only addressee of a given document might be the one who wrote it. In addition,
the elusive nature of software makes it sensitive to changes during a project. In
order to avoid confusion between developers and reviewers, these changes need
to propagate into every related document. Thus, documentation overhead will
consume a significant percentage of workforce of every developer throughout
the whole project duration.

Plan-driven methods also have the implicit assumption that all relevant require-
ments are caught and the planned architecture is good. Sometimes, that is not
even remotely true, dooming a software project before a single line of code was
written. Also, written specifications are a source of misunderstanding and mis-
interpretation. Even worse, such methods may hinder innovative projects: As
it is difficult to perform a detailed planning up-front, disruptive technologies
are often dismissed as unrealistic or too expensive.

Thus, these methods are especially well-suited for large projects with staff well
trained on the process. Also, they fit fine if some formalism is required any-
way, e. g. due to certification requirements. In such projects, high quality and
complete documentation are valued higher than early delivery and testing.
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2.2.2. Agile Methods

Watching many plan-driven software projects fail, a group of software devel-
opers known as the Agile Alliance decided to promote an entirely different ap-
proach to software development. In their Agile Manifesto [5], they emphasized
to rely on human interaction and motivated programmers instead of piles of
documentation to develop good programs. The customer-supplier relationship
is seen as a collaborative activity for a common goal. Software development is
seen as an iterative and incremental process, growing versions of the product
are delivered repeatedly (see Figure 2.2). To maintain good quality, there is
often a strong focus on software tests, which are developed in parallel with the
project.

Demo
release

System
testing

Client’s
feedback

Plan
sprint

Acceptance

Project
Start Release

Integrate and
test

Develop new
functionality

No Yes

Figure 2.2.: Main concept of an agile process

From these ideas evolved a number of managing and programming techniques,
such as Extreme Programming (XP) [4] or Scrum [94]. Scrum, as an example
for agile methods, is a light-weight management technique for software teams.
There is a Scrum leader, who maintains an open collection of the requirements
in a product backlog and organizes meetings in fixed and short intervals, where
the backlog is checked and features are selected for the next software revision.
In addition, the process requires the team to hold short, daily informal meetings
to coordinate its work.

Home Grounds and Deficiencies

One explicit goal of agile development methods is the reduction of overhead.
Therefore, they lack the risk of drowning programmers in planning and doc-
umentation work. Instead, they are allowed to do what they typically prefer:
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To create code. The incremental approach makes an immediate project start
possible, even if requirements are not perfectly defined and verified. Also, these
methods allow early testing of features to gain user feedback, which is proba-
bly more significant than written requirements. The risk of misunderstanding
is reduced by frequent informal face-to-face meetings amongst developers and,
less frequent, between developers and customers.

Agile methods always rely on tacit knowledge which is distributed through the
team by meetings or techniques such as pair programming [4]. This approach
is infeasible for large teams, a typical limit is somewhere between ten and
twenty people [7]. So projects which require larger teams due to sheer size
are not suitable for agile methods. Also, assigning new staff is difficult, as
explicit personal training is required. Moreover, loosing key personnel and its
knowledge may doom a project.

In some cases, the advocated reduction of planning is a severe downside as well:
Especially in complex cases, fundamental issues may arise in an oversimplified
architecture late in the project, requiring a fundamental redesign. In fact, the
fear of such expensive late defects is a main driver for plan-driven methods.

As a very short summary, agile methods are most useful for projects with a
small team size, where an early testable version is more useful than explicit
documentation.

2.2.3. Finding the Right Balance

So, which side to choose? The authors of [7] argue that agile and plan-driven
development is not necessarily mutual exclusive, but complementary. They
propose to balance the risks of introducing a certain method and discuss five
elements that give an orientation whether a project should use more agility or
planning. These are:

• Project Size: The number of personnel involved in developing the pro-
gram. It is safer to apply agile methods to small teams.

• Criticality: Determines how important it is to have bug-free software. If
people’s health may be affected, plan-driven methods should be preferred.

• Dynamism: How much change of requirements is expected during project
lifetime. Agile methods perform better in dynamic environments.

• Personnel: This is a factor to determine how experienced the project
members are. The dependency on people is higher in agile projects, there-
fore more skilled people are required there.

• Culture: A factor to measure if people feel more safe in a chaotic or a
well ordered environment.
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With these factors, a polar graph for a given project can be drawn to identify its
home grounds. A small area indicates that agile methods should be preferred
and vice versa. This is an indication for the selection of a specific development
method. In many cases, it is best to find some middle ground, e. g. doing a
classical requirements detailing and design approach and then implementing
the design in an agile manner. The right solution depends on the problem at
hand.

Home Grounds for a University Small Satellite Software

As an example, consider the flight software development of a small University
satellite mission, for which such an analysis was performed in [14].

The amount of personnel in such a team is typically small, and seldom higher
than five people. As a satellite’s on-board software is developed, the criticality
of the project is rather high. On the other hand, no people will be endangered,
so there is no safety-of-live criticality.

Figure 2.3.: Home grounds of a small University flight software project.

Evaluating dynamism is not as easy: In theory, most elements of a satellite
are fixed at project start, therefore requirements should not change rapidly.
In University reality, however, the exact set of sensors and actuators is often
not fixed, not speaking of the maturity of payloads. Therefore, dynamism is
considered high. Even though culture is another vague term, it is safe to assess

13



2. Software Engineering Tools and Methods

that young University attendants feel more comfortable with many degrees of
freedom in development than in a fixed well-ordered environments.

The qualification of personnel depends on the specific situation. Still, in a
University environment, the actual developers are most likely Ph.D. students,
so their experience is intermediate at best.

The resulting graph in Figure 2.3 shows that the home grounds of such a project
lies in a region were agile development methods are more appropriate than plan-
driven ones. However, the graph also identifies two main risks: The FSW’s
criticality for mission success, and the dependence on key development person-
nel.

2.2.4. Outlook on Development Methods

Selecting the right development method is affected by the advancements in
programming tools and implementation techniques. Many aspects driving the
discussion above are quite persistent over time, as the 1975 essays in The Myth-
ical Man-Month [9] show.

However, improved auto-documenting and testing facilities may allow concise
documentation of software developed in an agile manner, thus conquering some
home ground of plan-driven methods. Also, better implementation techniques,
such as integrated development environments (IDEs) or domain-specific frame-
works, constantly extend the project size (in terms of complexity) which a small
team can handle. For example, the 3 million-source-line-of-code (MSLOC) soft-
ware for the Mars Science Laboratory, including the sky crane lander and the
Curiosity rover, was done by about 35 developers [68].

On the other hand, improved software or system modelling environments may
support plan-driven techniques. In principle, software models, if regarded as
independent from code, are sensitive to the same problems as documentation,
i. e. the maintenance effort to keep them in sync with code is often higher than
the gain. However, improved modelling techniques and additional libraries may
lead to systems where model and implementation are merged, thus providing a
format that is both human and machine readable. So by creating a concise plan
of the software system, large parts of the implementation are already done.

2.3. Design and Implementation Techniques

The evolution of implementation techniques is twofold: First, there are pro-
gramming languages and language features which are intended to improve effi-
ciency and code reuse. In many cases, it took some time until useful techniques
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were widely accepted, e. g. the use of high-level languages as opposed to assem-
bler [9] or the concept of structured programming [32]. Except for the appli-
cability of object-oriented programming (OOP) in embedded systems, which is
explicitly addressed in Section 2.4, language features are not considered here.

OOP techniques, however, form the basis of the second evolutionary path:
Techniques to construct large software from existing, “standardized” parts. In
mechanical engineering, this concept is ubiquitous, given the vast catalog of
standardized screws, bolts, bearings, etc. However, as many software textbooks
(e. g. [30]) point out, the concept was first invented and applied in the second
quarter of the 19th century for rifle manufacturing. From that early success, it
still was a long way to go to buying a normed M5 screw in any do-it-yourself
store.

The idea to copy the “interchangeable component” approach to software engi-
neering was first introduced in [87]. Implementations of this idea are summa-
rized under the term component-oriented programming. Some of its flavors are
outlined in Section 2.3.1 below.

In parallel, it was noticed that reusability does not happen automatically when
using OO techniques. Instead, classes and objects must be designed for reuse,
which leads to software frameworks [73]. These are further described in Sec-
tion 2.3.2.

Components and frameworks do not exclude each other. Indeed, as pointed out
in [105], “there is no such thing as a component”. This means that any software
component by itself is worth nothing without a dedicated framework supporting
this component, just like an integrated circuit (a default analogy for software
components) is useless without the definitions of the pin positions, voltage
levels, etc. plus their implementation on a (typically non-generic) printed-circuit
board. Therefore, Section 2.3.3 will separately discuss the concept of component
frameworks.

Service-oriented architecture (SOA) is an extension of the component frame-
work concept, which introduces services, as an interface definition between com-
ponents, to allow independently developed components to interact and form one
larger application. SOA is introduced in Section 2.3.4.

In addition, several design and implementation techniques were devised to allow
the construction of a software product family, by making use of the techniques
introduced above. These techniques are summarized as software product lines
or generative programming (after [30]) and are described in Section 2.3.5.

Another concept is that of design patterns [60]. Instead of reusing components,
the goal is to identify abstract design ideas and collect them for reuse. The anal-
ogy to mechanical engineering is that of generic concepts, such as the general
construction of a gearing mechanism or a tongue-and-groove joint, which are
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similarly applicable to a multitude of construction problems. An explanation
of what a pattern is - and what not - is given in Section 2.3.6.

Most of these concepts are common standard for desktop and mobile, but less
so for embedded applications. Therefore, each of the following sections will
investigate the applicability of the technique to embedded systems design.

2.3.1. Components

Components somehow are the “running gag” of software engineering: Envi-
sioned in a talk of M.D. McIlroy in 1968 [87], and hyped in the 1990s as the
“next big thing” it seems as if their practical breakthrough is still waiting to
come. Still, the idea behind components is intriguing: Instead of implementing
certain features over and over again, a company with domain expertise sells a
ready-to-use piece of software. Developers assemble a number of such pieces to
form applications, which are supposed to be built faster and more reliable, as
components are already checked and tested.

component 1 component 2 component 3

middleware

Figure 2.4.: Basic concept of a component-based software. A number of fairly
independent components is connected by a dedicated middleware.

In the 1990s, quite some effort was put in the standardization and market-
ing of component technologies, which, among others, resulted in the Common
Object Request Broker Architecture (CORBA) developed by OMG and Mi-
crosoft’s component object model (COM) technology [98]. Their intention was
to provide a middleware to manage interaction between any kind of component
(see Figure 2.4). These concepts did not really succeed for several reasons:
First, there are general issues regarding broken interfaces or contracts between
independently developed components. Also, the 90s attempts aimed at a maxi-
mum of generality, e. g. CORBA is a standard for inter-language, inter-machine
remote procedure calls (RPCs). Adhering to those standards did not reduce
workload for developers, but increased incidental complexity.

However, viewing components as a failed technology may be a misconception.
The problem is that there are many different opinions on what a component is,
it is more a “natural concept" ([30], p.9) than an artificial one. For example,
components as described in [98] are supposed to have a size between simple
library functions and full applications. This may be a bad choice of granularity.
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When broadening the scope (of size and concept), some remarkable success
stories can be found:

• Modern libraries, either as part of or extensions to a given language,
include a lot of reusable components in function or class form, e. g. the
C++ Standard Template Library (STL) or math libraries3.

• A lot of applications, such as web browsers, IDEs or media players, sup-
port third-party plug-ins, which are components for the given environ-
ment.

• Modern applications often have more in common with components than
with traditional software packages. For example, web servers often use
the Linux, Apache, MySQL, PHP (LAMP) stack to provide typical web
services.

• Similarly, many smartphone apps show tight interaction, e. g. when using
a navigation app to display geospatial information received in a messenger
app.

Components of all the above examples require a certain environment for exe-
cution, be it an entire operating system (OS) or a plug-in-capable application.
This environment may be viewed as a framework for component execution. Af-
ter introducing frameworks in the next section, the relation of components and
frameworks is further studied in Section 2.3.3.

Component technology has not had much influence on embedded software de-
velopment yet. There are some general research efforts (e. g. [1]) as well as
some related to space missions [74], but the most remarkable use of component
technology is Automotive Open System Architecture (AUTOSAR) [2], which
is outlined in Section 2.3.3.

2.3.2. Frameworks

The idea of frameworks arose when larger systems were designed with object-
oriented (OO) languages. The term was coined in [73]. The authors point
out that using OOP alone is no guarantee for extensible or reusable code, but
that certain techniques need to be applied to reap the benefits of OO design.
The approach is to elicit the common interfaces (called protocols in [73]) and
algorithms of a given program, and create “good abstractions”, which form a
framework to develop similar applications. This has the important implication
that frameworks are always intended for a certain domain (see Section 2.3.5),
they are not general-purpose4.
3Math libraries typically provide implementations of the sine function, a prominent com-

ponent example in [87].
4In a way, programming languages are general-purpose frameworks.

17



2. Software Engineering Tools and Methods

The authors argue that frameworks typically evolve in the following steps:

• First, the abstraction of one or more concrete implementations is found
and refactored into framework code.

• The next “natural stage” is a white-box framework. It can be used to de-
velop similar applications, but requires a deep understanding of the inner
workings of the framework. Technically, this is because the framework is
mainly specialized by subclassing.

• A black-box framework, as a final stage, hides the inner workings of the
framework from the application developer. One variant to do so is by
plugging software elements or plug-ins, into existing framework contain-
ers. Thus, the programmer only needs to know the required plug-in in-
terfaces to create a customized software.

These evolutionary steps emphasize the bottom-up approach recommended for
framework development, as “an abstraction is usually discovered by generalizing
from a number of concrete examples” [73]. An illustration of white- and black-
box frameworks is show in Figure 2.5.

white box framework

user code

variation points

user code

black-box framework container

variation points
methods interfaces

subclass plug-in

base class

Figure 2.5.: Illustration of a white-box (left) and a black-box (right) framework
implementation.

Frameworks are highly successful in application software development. The
Eclipse programming environment, for example, is a framework for integrated
development environments (IDEs). Via plug-ins, the same framework allows
software development in a multitude of languages, e. g. Java or C/C++, but
also such things as LaTex document generation. Another influential example
is the Android framework to develop mobile phone applications.

The use of frameworks is less common for embedded applications. One reason
is the expected resources overhead for using non-optimized software on small
embedded targets. Another potential reason is that frameworks work best with
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OO-techniques, which are not widely applied in embedded systems. However,
many companies maintain an internal code base used for multiple similar prod-
ucts. In many cases, this code base can be considered a framework.

AUTOSAR is a good example of an embedded framework and is further de-
scribed in the next section.

For space software, there are also some publicly visible attempts to develop
frameworks. Examples are the on-board software (OBS)-Framework [90] or
the Onboard Operations Support Software (OBOSS) [104]. However, none of
them was used in a space mission yet. Still, it is safe to assume that most prime
contractors in the satellite industry maintain some kind of software “framework”
in-house.

White-Box Frameworks

Since it is relevant in a later section, details on the concept of white-box frame-
works and their relation to so-called abstract base classes, are provided.

Figure 2.6.: Example setup of a base class and two child classes, which provide
different implementations of calculate() and display().

An abstract class is a class with method declarations that lack an implementa-
tion, i. e. there is no code provided for a method call. In OOP, this is allowed, as
classes inheriting from the abstract class can provide an implementation, which
is found using the dynamic dispatch features of the language (see Figure 2.6).

When implementing frameworks, methods of the parent class often call the
abstract methods provided by the subclass. This creates an inversion of control,
as the parent class structures the flow of execution for the child class [73] (see
Figure 2.7). Thus, the abstract class is the basis of execution, and therefore
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is called a base class. The abstract methods are called variation or adaptation
points for the child class, as they allow modification of the parent’s behavior.

CalculationBase Sum

doFramework(1,2)

calculate(1,2)

3

display(3)

Prints: ’The sum of 1 and 2 is:
3’

Figure 2.7.: Sequence diagram of interaction between a base and a subclass.

As a result, the framework is based on inheritance. Unfortunately, this requires
a rather deep knowledge of the base class, as the circumstances under which
the subclass is called and what results are expected, must be well understood.
For that reason, such framework types are called white-box frameworks.

2.3.3. Component Frameworks

The concept of components always comes with the implicit assumption of a
framework connecting components. Therefore, it makes no sense to “think
about components as standalone chunks of functionality that can be ’glued
together’ after the fact” [105]. The framework is an essential part when working
with components, as it manages component interaction (see Figure 2.8). Vice
versa, this is not the case: Frameworks work well without components. A GUI
building framework does not imply a component-based application.

At least, the component framework needs to describe the techniques for compo-
nents to communicate via the middleware. In addition, it may define additional
rules to create, compose and execute components [62]. As frameworks (as de-
fined in Section 2.3.2) are designed for a given domain, component frameworks
are as well. For example, CORBA is a component framework for distributed
network applications.

Using a component framework promises the following benefits:

• A component framework provides a software architecture, there is no need
to reinvent one.
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• The framework guides developers in building components and combining
them to form applications.

• Reuse of components is possible over different applications, as long as the
same framework5 is used.

However, the original domain of the component framework and the intended
domain must mach: Building a 3D video game in the Eclipse IDE may work,
but it will neither run with good performance nor be easy to develop. Still,
Eclipse is a good example of a component framework, as long as the target
application is a programming environment or something similar.

component 1 component 2

middleware

Figure 2.8.: Illustration of a component framework. It combines the concept of
independent components with reusable framework elements.

A remarkable embedded example for component frameworks is AUTOSAR [2].
It defines an architecture, including application programmer interfaces (APIs)
and interfaces for embedded automotive applications. Components play an ele-
mentary role in this architecture, they provide functionality by offering ports to
other components. The framework is formed by the definition of an AUTOSAR
run-time environment and a so-called virtual functional bus over which compo-
nents communicate.

In contrast to the recommendations for framework development described in
Section 2.3.2, AUTOSAR is a top-down approach, i. e. it was first specified
and implemented later. This approach is prone to overspecification and may
therefore not gain wide acceptance. Still, its market share is growing constantly
[59]6.

For space, there are ongoing ESA activities to specify an on-board software
(OBSW) reference architecture similar to that of AUTOSAR [100]. Included
are studies for Component-Oriented Development Techniques (COrDeT) [74].
Like AUTOSAR, these are top-down activities. Another example is the NASA
5Or at least a framework with the same API.
6According to a personal talk, it took several iterations up to version 3 of the standard to

make it actually usable.
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core Flight System (cFS), which has been used on a number of smaller missions
[82]. Both initiatives are described in Section 3.6.

Component Interaction

An important factor when using components is the way components interact.
There are two fundamental ways of communication between software entities:

• Synchronous: One entity simply calls a function or method of the other.
As the flow of execution moves to that function, the caller is blocked until
completion. A phone call is a form of synchronous communication, as the
listener typically waits for the speaker to finish.

• Asynchronous: A request is put in a message (or similar) and sent to
the destination entity. It processes the request when appropriate and
generates a response message to the caller. Neither caller nor receiver is
blocked, but response reception may take a while. Writing letters is a
form of asynchronous communication.

Communication between software entities are typically illustrated using UML
sequence diagrams, as shown in Figure 2.9.

Synchronous Asynchronous

Caller Receiver Caller Receiver

doSomething() msg: doSomething()

Caller is blocked. Caller is not blocked.

result msg: result

Caller continues
execution.

Caller handles reply
message.

Figure 2.9.: Sequence diagram illustrating synchronous and asynchronous com-
munication. Arrow tips and line styles indicate the type of com-
munication.

The main idea of a component-based architecture is separation of concerns,
i. e. a component should be developed with as few dependencies as possible.
For real-time systems, this is true not only for functional, but also for tem-
poral decoupling, i. e. the timing of component activities should not depend
on other components. Thus, direct synchronous calls between components are
problematic, as they create temporal dependencies.

For illustration, consider a control algorithm issuing a torque command to an
actuator of the system. When using synchronous calls, the control algorithm
commanding the torque would block execution until the request is transmitted
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to the actuator and a confirmation is received in the controller. In effect, the
control algorithm is unable to process input data for the next actuation cycle,
making it unnecessarily slow.

Synchronous interaction is not forbidden in principle, and commonly used in
interactive systems, where quick reactions on user input are most important.
However, aside from potentially bad overall performance, the execution sched-
ule, i. e. in which intervals the controller actuates the system, becomes difficult
to predict.

To resolve that issue, all communication between components in a real-time
system must be asynchronous. There are two main techniques to do so:

• Messages: The caller puts its request in a message, which is read and
handled by the receiving component when appropriate. So-called mes-
sage queues manage reception of multiple messages, typically with FIFO
ordering.

• Shared memory: A component writes information to a shared memory
region, where it is read out by the receiver at another point in time. While
both reading and writing the shared memory is synchronous, the entire
data transmission is asynchronous. To avoid reading half-written data,
shared memory regions need to be locked, which happens with so-called
semaphores or mutexes.

With these techniques, it is possible to build a component framework for em-
bedded systems which adheres to real-time schedulability rules.

2.3.4. Service-Oriented Architecture

Another, more recent technique is service-oriented architecture (SOA). It fo-
cuses on the architecture required to form a software application from dis-
tributed, interacting, independently maintained software components which
each provide certain services to handle a given “business case”. To do so, it
defines techniques to find and agree upon services to enable interaction be-
tween service providers and service consumers [71].

These service definitions are the main extension of the concept of component
frameworks described in Section 2.3.3 above. A service provider is a software
component which offers a certain functionality to other components with a well-
defined interface. In general, it publishes a service in a service registry, so a
service consumer receives the information to access the service, e. g. an address,
and sets up a connection. This process is called binding, after which the service
consumer can use the functionality by invoking the provider’s service interface.
Components can serve as providers and consumers of different and multiple
services at the same time.
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Figure 2.10.: Basic interaction scheme of service providers and consumers in
SOA using a service repository.

The basic concept of SOA does not limit the communication technique to use,
however, it was originally designed for large enterprise web applications, utiliz-
ing protocols like SOAP for interaction.

Figure 2.11.: Sketch of interaction between proxy on consumer and skeleton on
provider side in a SOA deployment. The inner workings are not
relevant for SOA, they may or may not use frameworks.

One common style of implementation is using stubs or proxies on client and
skeletons on server side, which represent the communication partners locally
(see Figure 2.11). Skeletons and proxies are generated from a common service
interface definition.

Due to the distributed nature, the SOA concepts have not yet found their
way into embedded applications. However, there are some initiatives to use
SOA for complex systems. Two of these are adaptive AUTOSAR, an extension
of the classic AUTOSAR for complex automotive control [2], and the CCSDS
Mission Operations (MO) services, which apply SOA concepts in the spacecraft
operations domain [19].

However, to make use of the concepts of SOA in embedded systems, two issues
need to be resolved:
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• Communication complexity: SOA communication often uses complex
protocols for service discovery and invocation, which may introduce an
overhead that outweigh its benefits. This is especially true if the system
is rather static and dynamic service discovery is rarely used. In addition,
as it is a conceptual offspring, SOA faces the same challenges regarding
real-time interaction as component frameworks (see Section 2.3.3).

• Service interface definitions: The concept itself does not aid in the
actual definition of service interfaces, as it is too generic to provide so-
lutions for specific domains. However, if each software component only
offers custom, non-generic services, components are tightly coupled, miss-
ing the original idea of loose coupling. Therefore, well-managed service
definitions are crucial for a successful SOA deployment. This is further
detailed below.

When taking a closer look at the above findings, it becomes apparent that they
are not only relevant for using SOA in embedded systems, but for any usage of
SOA. Thus, these may be two reasons why service-oriented architecture never
fulfilled the huge expectations that were attributed to the concept before about
2009 [80]. Some even claim that SOA is an “architects dream”, but a “devel-
opers nightmare” [67], stating that the architecture is fine, but the tooling and
understanding for actual implementations is rather poor. The recent concept
of microservices may be viewed as an evolution of the original SOA idea [34].

Service Definition Issue

As stated above, good service interface definitions, or “useful abstractions" [73]
are decisive for the success of a SOA-like deployment. These service interfaces
shall, at the same time, be abstract enough to make them reusable while still
having an obvious practical meaning and being simple to use. Moreover, service
definitions must be stable over time, as a change typically requires adjustments
in all consumers and providers.

To illustrate the issue, imagine a control algorithm component with two ad-
justable parameters 𝑎 and 𝑏. Figure 2.12 shows two options for interfaces to
access and adjust these parameters:

• On the left, there is a specific service interface, which is easy to imple-
ment and use. However, this interface is tightly coupled to the content
of the component, as adding a new, or different parameter changes the
interface. Therefore, this design is not reusable and the interface more or
less obsolete.

• On the right, a more abstract service interface is displayed, which requires
a component to define IDs for adjustable parameters and is therefore more
difficult to implement. However, it does not change with the component’s
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Figure 2.12.: Example of specific (a) and abstract (b) interface definitions.

content and can even be used for other components in the same way. In
effect, this interface definition has better reusability and unifies access to
parameters.

This simple example highlights the importance to find suitable, generic service
definitions for the domain at hand.

2.3.5. Generative programming

Generative programming or software product lines are inspired by another hard-
ware engineering analogy: The concept of assembly lines. As pointed out in [30],
assembly lines are not about creating identical copies of a product (which obvi-
ously is easy for software), but to efficiently create customized similar products.
For example, due to customer demand for individualization, there are rarely
two identical cars leaving a factory today.

So, for software, individual solutions are not supposed to be coded by hand, but
assembled from pre-built existing elements. Thus, the approach builds upon
framework and component technology as described above. However, it extends
these concepts by introducing features as customer-relevant functionality of a
software. Based on the feature need of a customer, generators are supposed to
automate the customization process.

There are few application-size examples of software product lines, some enter-
prise resource planning solutions such as SAP ERP use modules and configura-
tion parameters to customize software. In the small, the C++ STL introduces
default solutions for data containers, which are customizable to programmer’s
needs by C++ template metaprogramming [30].
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There are no known convincing examples for product lines of embedded systems.
However, some research was conducted to apply the concepts to the OBS-
Framework [29]. Also, the NASA cFS has similar goals. It is further described
in Section 3.6.5.

Domain Analysis

For software product lines to work, there is a need to specify the family of
systems, or the domain, the product intends to cover. In [30], p. 20, there
is a distinction between vertical domains, which classify systems with regard
to their target application, such as Internet shopping systems, and horizontal
domains, which group system parts with regard to their functionality, e. g. a
database system. As a hardware analogy, the domain of “all types of cars” is a
vertical, whereas “all types of screws” is a horizontal domain, as it can be used
in many vertical domains7.

The activity to isolate, define and describe a domain is referred to as domain
analysis. It requires separating the domain from neighbouring topics (called do-
main definition or domains scoping) as well as collecting and analyzing knowl-
edge of the selected domain. Getting a domain analysis right requires a certain
amount of expertise, ideally by having designed several systems in that do-
main.

Feature Modeling

Car

Car body Transmission

Manual

Automatic

Engine

Electric

Gasoline

Pulls trailer

Figure 2.13.: Simple example of a feature tree. Features connected with filled
circles are mandatory, those with an empty circle are optional.
Filled squares represent groups of OR features, empty squares
groups of XOR features. From [30].

The expected result of a domain analysis is a domain model. The authors of [30]
propose to display this model in a feature diagram, which draws relationships
between a basic concept and features and subfeatures in tree form.
7However, “all types of cars” may be a horizontal domain in the taxi driving system of a

city. Domain classification is a matter of point of view.
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Basic concepts and high-level features are typically abstract, whereas the leaves
of the tree are concrete implementations or functionalities. Their diagram in-
corporates notations for mandatory (filled circle), optional (empty circle), as
well as OR and XOR alternative features (filled/empty squares). Figure 2.13
illustrates the concept.

2.3.6. Design patterns

Design patterns were introduced in 1995 in a book of the same name by a group
of authors since then known as the Gang of Four8 [60]. It had an enormous
impact in the OO community, as it tackled an urgent issue of OOP: How to
make a good, reusable design. As the authors called it: “Designing object-
oriented software is hard, and designing reusable object-oriented software is
even harder.” ([60], p.11). They proposed a number of abstract solutions for
recurring problems in the form of a concise catalogue of design patterns. Most
of these patterns are classics in OO design today, such as Singleton, Adapter or
Composite.

However, design patterns are relevant on the level of implementation only, i. e.
to create well-structured OO code. They are of little relevance on the level
of architecture. In the wake of the book’s success, many publications praised
“patterns” of any form as programmer’s universal remedy, be it for obvious
building blocks or complete software architectures. To avoid misunderstanding,
the term “design pattern” will be used in the original sense only.

As pointed out, design patterns are tightly linked to OO design. Thus, they are
not in widespread use in embedded programming, as OOP isn’t either. Also,
some design patterns rely on dynamic memory allocation, a technique which
is avoided in embedded programming (see Section 2.4.3). Still, as soon as OO
techniques are applied, design pattern help making good, reusable designs.

2.3.7. Summary

The essence of the above recapitulation seems straightforward: There is an
increasing amount of reuse in software systems, powered by the evolution of
components and frameworks to component frameworks and SOA, making use
of OO design patterns. The process of building a customer-defined product is
handled by automated generators in software product lines as far as possible.

Unfortunately, evolution is much slower and less controlled, and there are many
technical and non-technical challenges on the outlined pathway. For instance,
on the non-technical side there is the training of developers accustomed to a
certain style of programming. Or, more technical, the difficulty of finding the
8Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides
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right level of abstraction to make frameworks truly reusable (see below). Also
there is a certain overhead of creating and running reusable software when
compared to a fully specialized one. Obviously, there will be no payoff for
reusable software if the number of reuses is zero.

However, many of these concepts, especially frameworks and design patterns,
are in regular use in today’s software industry and are elementary for the ex-
ponential growth of digital applications and services. Still, more advanced
techniques such as software product lines are far from being in widespread
productive use.

This is even more true for embedded systems, were even basic OO techniques
face strong scepticism. As argued, this is a valid attitude as long as complexity
is low. With rising complexity, the advantages of being capable to handle
complexity will outweigh the disadvantage of overhead and indirection, which
is already acknowledged by initiatives such as AUTOSAR.

Finally, the transition from handcrafting to assembly line manufacturing for
hardware did not simplify the process of inventing new products. But it helped
to produce better and more complex products at lower costs. Likewise, there is
an intrinsic effort in software design which cannot be reduced arbitrarily. None
of the mentioned techniques is a “silver bullet” [9]. However, all off them are
useful to handle more complex software systems.

2.3.8. Issues with Abstraction and Generalisation

All of the aforementioned techniques promote some form of abstraction or gen-
eralisation. Abstraction in computer science means to hide currently unneeded
details from a user of the abstract element. A named function or subroutine is
an abstraction. Generalization means to group similar concepts and form a sin-
gle entity capable of handling these cases, eventually by providing parameters.
For example, base classes collect the generic similarities of different subclasses.
Both concepts are essential to manage complex programs and are often used in
conjunction. Abstraction helps programmers to focus on the essentials, general-
isation avoids duplications, thus reducing maintenance and refactoring effort.

However, there are downsides of both concepts to consider. Abstraction stands
in contrast to the concept of coding a solution as direct and as localized as
possible, as it introduces indirection to hidden details in the code (see e. g. [30],
sec. 4.9.2). This is the same issue as hinted at in the discussion on complexity
(Section 1.1) and probably one of the reasons why OOP and related techniques
are so unpopular in embedded programming: Hiding implementation details is
dangerous if non-functional aspects are essential, such as execution speed and
memory footprint.
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Figure 2.14.: Trade-off between instantiation and adaptation cost

Generalisation always requires a trade-off between the cost to instantiate the
generalisation and the cost to adapt or duplicate existing code, as sketched
in Figure 2.14. This issue is relevant both in the small and in the large: Is
combining two similar functions into one worth the additional complexity? Is
it easier to create a new application from scratch or to build one from an existing
framework?

In essence, both abstraction and generalisation have a certain cost and therefore
should not be applied for their own sake. The ability to come close to the “sweet
spot” is a property that constitutes an experienced programmer.

2.4. Embedded Software Development

There are three main points that distinguish development of embedded software
from that for desktop applications:

• Embedded software has a very specific scope: Together with the hard-
ware, it forms a single product (a cyber-physical system) which interacts
with its environment.

• As a direct result, communication to the outside world is much less
standardized than on desktop systems.
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• Resource utilization, i. e. memory footprint and usage as well as exe-
cution duration and timeliness are a major concern.

To illustrate this difference, compare the requirements of a washing machine
controller to that of a text processing software. These points will be further
illustrated in the following sections. Subsequently, the properties of spacecraft
flight software as specific embedded software is discussed.

2.4.1. Scope

A common definition for embedded systems is that of a microprocessor hidden
in a product other then a (general-purpose) computer (e. g. [96], p. 1). When
taking into account the still-increasing number of “smart" products, the vari-
ability within embedded systems is extremely broad, ranging from light switches
to aircraft autopilots. On the other hand, for a selected embedded system, the
software has a very specific purpose, i. e. providing functionality for the actual
product.

If the product is simple, the embedded software will be simple as well. Thus,
there is no need to introduce abstractions of any form to manage complexity
(c. f. Section 2.3.8). As a result, any form of OOP is ruled out right from the
start.

However, at a certain point of complexity, software development will benefit
from introducing abstractions of some form. This may start at a project size
of as little as 1000 source lines of code (SLOC) ([66], comments).

Real-Time Operating Systems

Despite the broad diversity in embedded systems, the need to interact with the
real world imposes two typical requirements: The ability to handle multiple
issues in parallel, and to react on them in due time. For example, a spacecraft
flight software is supposed to handle telecommand (TC) reception in paral-
lel with control loop execution, which must finish at a certain point in time.
This results in multitasking and real-time requirements for embedded software.
However, parallel process execution imposes additional challenges: First, as
the system is still a single entity, there is a need for inter-process communica-
tion (IPC) to safely exchange information between tasks. Second, concurrent
competing access on shared resources (such as hardware interfaces) must be
managed.

Real-time operating systems (RTOS) provide solutions for these common needs
of embedded systems (see [110], chapter 6). With a very small overhead, they
deliver proven and tested solutions for parallel task execution on a single pro-
cessor. Also, if correctly configured, task execution is assured to keep timing
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requirements. Additional features, such as clock and interrupt management are
often provided as well.

The benefits of using a RTOS in embedded software development is widely
accepted, multiple products are in widespread use. For example, the Real-
Time Executive for Multiprocessor Systems (RTEMS) is often used for space
applications. Thus, RTOSs prove by example that “useful abstraction” are
possible for embedded systems.

2.4.2. Communication

The wide range of all and the specific scope of a single embedded system results
in a very broad spectrum for external communication, ranging from a simple
binary IO pin to complex high-speed networks. This heterogeneity is the reason
for the low amount of standardization regarding device access compared to
desktop computers.
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Figure 2.15.: OSI layer stack [70]

As a result, even though some RTOS are shipped with a set of device drivers,
a large portion of embedded software development deals with communication.
Depending on the availability of drivers, many layers of the Open Systems
Interconnection (OSI) reference model need to be covered (see Figure 2.15). In

32



2.4. Embedded Software Development

contrast, drivers and abstractions for most communication issues are readily
available in desktop systems9.

Thus, development time for embedded systems could be reduced by utilizing
standardized drivers and abstraction of external devices. However, approaches
aiming in that direction are likely to fail due to the variety of interfaces and
memory and speed overhead objections (see below). Still, the more complex the
system to develop is, the less significant is the overhead introduced by abstract
hardware interfaces.

2.4.3. Memory and Speed Overhead
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Figure 2.16.: Software cost per unit

Dealing with limited resources was a major challenge for embedded software
development in the past. Is it still today? First of all, there is always a lim-
itation in computing resources, no matter how fast embedded processors will
be. However, at the same cost, capabilities grow exponentially, continuously
extending the possibility to put complex functionality in software. Indeed, one
can argue that our ambitions of what embedded systems can do grow with the
same rate as hardware capabilities grow10 ([91], p.6).

9No desktop programmer handles keyboard or mouse input on the physical or data link
layer.

10One may think of drones and autonomous cars.
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In a way, this observation defends the current practice to avoid non-functional
abstractions for the sake of optimized, efficient code. However, the increas-
ing complexity of embedded systems challenge this practice not so much on a
technical, but on an economical level:

On the one hand, with current techniques and methods complex projects are
far more expensive than simple ones, but, on the other hand, more memory and
faster processors are always more expensive than smaller and slower ones. So,
assuming that having resources available for “more abstraction” makes program-
ming more efficient, the trade-off is between the recurring cost of computing
hardware and the non-recurring cost of programming the system.

Figure 2.16 illustrates the issue with a simple example. The graph shows the
cost per unit for a man-year of software development (roughly estimated at
100000 €). So, if for example 10 units are to be produced, spending 10000 €
per unit on hardware to reduce programming effort by a year is still beneficial.
For 100000 units, the limit is 1 € per unit, which sounds small, but may still
mean some more megabytes of memory or a faster processor. This observation
is especially true for spacecraft software, where unit numbers are very low ([36],
p.39).

To conclude, spending mony on more potent hardware to improve programmer
possibilities may pay off immediately: It allows to introduce abstraction and
generalisation which brings down development and maintenance cost.

Overhead of Object-Oriented Programming

The concrete overhead of object-oriented programming (OOP) is the source
of a heated, still ongoing debate (e. g. [65] or [66]). As embedded software is
mainly programmed in C or C++ [102], the discussion is also focused on these
languages.

As argued in [66] or [77], the technical overhead for most C++ features, such
as class structures and non-polymorphic inheritance is zero. Main exception
is the dynamic dispatch mechanism of subclasses (see Section 2.1.4), which
introduces a certain memory and execution overhead [35] by providing run-
time type information (RTTI) or type introspection features. Without them,
dynamic dispatch and therefore interface programming doesn’t work. When
implementing them in a procedural language, it is most likely as expensive as
the OO implementation. Also, if not used, dynamic dispatch will not consume
any resources. So, the question is less how expensive C++ is compared to C,
but if the additional features are useful or not for a given project, just like any
sort of abstraction introduced.
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Another point of discussion is that of dynamic memory allocation, which means
creating new structures or objects at run-time. Using dynamic allocation is
discouraged in embedded projects for two reasons:

• Allocating memory may take an arbitrary amount of time as it involves
looking for free memory on the heap. Thus, it introduces uncertainties
regarding execution time and therefore real-time capabilities of the system

• Due to fragmentation of memory, allocation for a certain size may fail
even if the total amount of space is sufficient. This is a root cause for
difficult-to-track faults in a system.

Using C++ does not automatically introduce dynamic allocation, class hierar-
chies and interfaces can be built without allocating any memory. Some libraries
however, most notably STL containers, use it and therefore should be used cau-
tiously in embedded systems.

To summarize, it is possible to write embedded software in C++ just as efficient
and real-time capable as in C. The main aspect of using C++ however is not
covered by resource consumption comparisons: As an OO language, C++ al-
lows totally different patterns and paradigms for programming than procedural
languages. Applying these paradigms has up- and downsides: On the downside,
OOP with C++ is more subtle and complex than procedural programming in C,
but mastering the details down to machine code is equally important [66]. This
introduces non-technical and often overlooked cost to educate programmers in
OO techniques. On the upside, applying the generalization and abstraction ca-
pabilities allows representing dependencies between software elements directly
in the code, and not only in some programmer agreement. In a way, OOP and
therefore C++ helps representing software architecture on source code level.

2.4.4. Spacecraft Flight Software

Spacecraft flight software (FSW) is embedded software with a very special
heritage. The foundations were laid in the software development programme
for the Apollo Guidance Computer, which worked on the limits of what was
technically feasible at that time and faced similar challenges as other early
software engineering endeavours [101].

Given its origins from human space missions, methodologies to develop FSW
have a lot of influence from the safety-critical domain (such as aircraft control
software), i. e. plan-driven methods are typically applied (see Section 2.2). This
is also true for robotic spacecraft, were high monetary and human effort as well
as scientific expectations replace the immediate threat for human life.

In an abstract sense, spacecraft can be characterized as remote-controlled semi-
autonomous embedded control systems. This characterization specifies the main
tasks of a FSW:
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Figure 2.17.: Principle layout of a semi-autonomous embedded control system.

• Most important task of a spacecraft FSW is control, i. e. providing com-
mands to change some state in accordance with the current system ob-
jective. Control implicitly distinguishes between a control system, which
is typically implemented in software, and a system under control, which
may include software, hardware, and the environment ([91], p.34). Fig-
ure 2.17 illustrates the concept. Most obvious example is attitude control
of a spacecraft.

• Being an embedded system, determining and controlling the system’s
state requires sensors to interpret the physical environment and actuators
to adjust that state. Thus, FSW handles interpretation of sensor data and
preparation of actuator commands, as well as management of both sensor
and actuator hardware. Example hardware are star sensors and reaction
wheels.

• A semi-autonomous system must perform its control tasks, but also
change objectives, without immediate supervision by a human operator.
The former requires some awareness of the control system’s own state,
especially to account for faults in the system. The latter requires some
form of scheduling or sequencing mechanism, to allow out-of-sight changes
of control goals.

• Apart from crewed missions, spacecraft are remote-controlled by na-
ture. Beside the immediate effect of having to manage communication
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hardware, which is merely another control task, the most important im-
pact on FSW is the need for remote monitoring and maintenance capabil-
ities. Especially the latter point is challenging, as maintenance includes
that of the software itself.

With about sixty years of successful space missions, the above tasks are sup-
posed to be well understood and therefore FSW development should be rel-
atively straightforward. However, there are some indications that this is not
the case. For instance, NASA conducted a study on FSW complexity in 2009
[36], which shows that code size, as a hint for complexity, is rising continuously
since the time of the Apollo programme (see Figure 2.18). As indicated in Sec-

Figure 2.18.: History of flight software growth in human and robotic missions
[36].

tion 2.4.3, one reason for growing complexity are greater ambitions regarding
autonomy and control. Indeed, for recent deep space missions such as Rosetta
or the Mars Science Laboratory, complex control software is an enabling tech-
nology. For earth observation or telecommunication spacecraft, this may be
less true, but cost pressure, especially for proposed mega-constellations, will
still call for enhanced spacecraft autonomy to improve availability and reduce
operational cost.

In effect, FSW will most likely continue to become more complex. Denying
this trend and resorting to the KISS11 principle, in the sense of a software
with low abstraction, will not help in managing complexity. Instead, it is likely
that incidental complexity (see Section 1.1) grows if not kept under control by
principles of separation of concern and information hiding.
11Keep it simple, stupid!
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Thus, the main goal of this thesis is to test the presented software engineering
techniques in a spacecraft FSW project and evaluate their benefits.

38



3. Flight Software Domain Analysis

Flight Software (FSW) is likely to become both more complex and important
in the near future, which calls for some strategy to avoid delivery delays and
cost overruns due to late software. All techniques presented in Section 2.3 are
promising candidates to ease spacecraft FSW development, either by improving
reusability of the code, or by introducing abstractions which improve separation
of concerns.

However, before selecting a certain set of technologies, it is necessary to figure
out what it actually is that needs to be designed. Thus, this chapter will
perform a domain analysis for FSW. As described in Section 2.3.5, the main
goal of such an analysis is to find and assess all features needed for software of
a certain domain. The approach is quite similar to a requirements analysis, but
instead of collecting the needs of a single product, those of an entire product
family are taken into account.

The resulting domain model, which collects and orders all features of the do-
main, is intended to guide the development of a generic software product or a
software product line. Moreover, it is a good starting point to identify reusable
elements and suitable abstractions for the design.

Domain Definition

Domain Modeling

Flying Laptop mission CCSDS standards ECSS standards Existing FSW

Synthesis

Figure 3.1.: Workflow of the domain analysis performed for FSW.

Methodically, the approach defined in [30] is used, which is illustrated in Fig-
ure 3.1.
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• The domain definition in Section 3.1 sets the scope of the analysis by
defining the content of the FSW domain, its boundaries and main ele-
ments.

• With that top-level definition, the domain modeling phase is performed
in Section 3.2 and following. It requires a survey of existing domain
knowledge, which is extracted from available standards, and the author’s
own working experience. Also, existing similar approaches for reusable
satellite software are analyzed and evaluated.

• The resulting requirements and features1 are ordered and synthesised
in Section 3.7. To illustrate the domain model, a feature diagram as
described in Section 2.3.5 is used.

The resulting set of features are the starting point for designing a flexible,
reusable flight software.

3.1. Domain Definition

Spacecraft flight software is a software to manage a remote-controlled partially
autonomous embedded control system, which happens to operate beyond earth
boundaries. These four findings form the basis of the flight software domain
definition. Some basic requirements for such software have already been out-
lined in Section 2.4.4. The following list derives the top level FSW features
from these requirements:

• Controlling the spacecraft requires to execute multiple control algorithms,
as well as other tasks, in parallel. Organizing and supporting these activ-
ities is summarized under the term component management, which
includes real-time schedulers or data exchange services.

• As an embedded system, FSW needs to provide features to handle equip-
ment, which in turn requires to manage on-board communications. A
space system compromises multiple control domains, or subsystems, in
parallel. Features in that category are summarized under system man-
agement.

• Many features of a FSW are dedicated to remote control or operations.
Aside from basic monitoring and control needs, features are required to
support on-board maintenance of the spacecraft.

• Aside from remote operation capabilities, almost every FSW requires cer-
tain autonomy features. A common autonomy feature is fault manage-
ment software. In addition, spacecraft software typically provides some
kind of scheduling or sequencing features.

1Due to their similar definition for software, the words “requirements” and “features” are
used synonymously in this chapter.
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All identified features will be categorized and added to one of these top-level
findings.

3.1.1. Differentiation from Neighbouring Domains

Flight software, given the definition in Section 2.3.5, is a vertical domain, i. e.
it covers a family of similar target applications. Thus, there are a number of
neighbouring domains with similar feature requirements. To perform a proper
differentiation, it is useful to re-arrange the previous findings to the form shown
in Figure 3.2.

AutonomySpace

Remote control

FSW

Embedded control
systems

Figure 3.2.: Illustration of the flight software domain.

The embedded control software domain is a superset of the other domains2.
From the illustration, it is easy to define neighbouring domains by omitting

2Even though both non-embedded autonomous systems and space systems may exist, they
are rather exceptions than the norm.
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one of the attributes of FSW, as indicated by the intersections of two of the
three circles. Thus, there are three neighbouring domains:

1. First, there are autonomous space systems, which are not remote con-
trolled, e. g. manned spacecraft. These systems differ in requiring human-
machine interfaces for controls and displays. Reliability requirements are
typically more strict, given the immediate threat for human life. Still,
maintenance and autonomy requirements may be relaxed, as in situ re-
pair is possible.

2. Software for autonomous, remote-controlled vehicles probably forms the
closest neighbouring domain to FSW. Apart from remote maintenance
capabilities, the requirements for e. g. UAV software are quite similar to
those of a spacecraft. Other robotic vehicles, such as autonomous cars,
also have similar requirements, however, the need for remote control is
even less strong.

3. The last category are remote-controlled space systems with no or very
little autonomy. This is a rather small category, which may contain rock-
ets and geostationary satellites, as these systems are under direct ground
supervision during most of their mission time. While remote monitoring
and control needs are similar, omitting autonomy reduces the need for
system state awareness within the software itself.

In effect, this domain analysis focuses on the very specific needs of spacecraft
flight software, even though it is tempting to cover other neighbouring domains
or even embedded control systems in general. However, a useful software prod-
uct must provide what a software developer of that domain needs. If the scope
is too wide, it will likely be too general to provide any benefit3. Therefore,
the target entity for which the software is intended will be called a “spacecraft”
in the rest of this thesis, meaning an unmanned satellite or space probe and
excluding manned spacecraft or rockets. A successful software product may be
extended to cover additional domains in the future.

3.2. Domain Modeling

The following sections summarize a survey of existing sources containing re-
quirements or features for a flight software product line. As many sources
contain features for multiple of the top-level categories identified in Section 3.1,
the survey will be ordered by types of sources first. Each source will be summa-
rized and identified features will be listed. The resulting feature tree for each
top-level category will be presented at the end of the survey.

3It is too costly to instantiate it, i. e. it is too far on the right in Figure 2.14 of Section 2.3.8.
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The first source is the Flying Laptop project, a micro satellite mission executed
at the University of Stuttgart. The spacecraft mission profile and therefore
essential complexity (see Section 1.1) is representative for small satellites. Its
design and the resulting FSW requirements are listed in Section 3.3. To avoid a
bias from specific technical solutions of Flying Laptop, some aspects are put in
relation to other space missions. This comparison and the impact on a generic
FSW are described in Section 3.3.6.

Another important set of sources for this study are space engineering stan-
dards, namely Consultative Committee for Space Data Systems (CCSDS) and
European Cooperation for Space Standardization (ECSS) standards. The for-
mer standards are internationally agreed space communication standards, the
latter are a set of European standards mainly maintained by the European
Space Agency (ESA). They are surveyed in Section 3.4 and Section 3.5, re-
spectively.

The third source for the survey is existing flight software. Most FSW code
and its documentation is an industrial secret. However, there are a number of
commercial and research project, e. g. by ESA or the National Aeronautics and
Space Administration (NASA), for which enough information is available. This
analysis can be found in Section 3.6. The domain modeling phase concludes
with a synthesis of the survey in Section 3.7.

3.3. The Flying Laptop Mission

Flying Laptop is the first satellite mission within the small satellite programme
of the University of Stuttgart. It is an earth-observation, technology demon-
stration and educational mission, which was launched successfully on July 14th,
2017 to a 600 km sun-synchronous orbit.

Aside from its representative hardware and mission profile for low earth orbit
(LEO) missions, Flying Laptop is chosen as reference due to the author’s own
involvement as software developer in the project. As stated in Section 2.3.5,
experience is a decisive factor for a successful domain analysis and definition.

This section will provide an overview of the mission and the spacecraft subsys-
tems, with a focus on elements which are relevant for the spacecraft software.
From that description, a set of general requirements for FSW are derived.

3.3.1. Payload and Technology Demonstration

For its main earth observation mission, Flying Laptop utilizes three instru-
ments:
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Figure 3.3.: The small satellite Flying Laptop before attaching the shear panels.

• The primary imager is the Multispectral Imaging Camera System
(MICS), which was designed for bidirectional reflectance distribution
function (BRDF) measurements of vegetation in three color channels (up-
per left compartment in Figure 3.3).

• The system utilizes a secondary imager, the Panorama Camera (PAM-
CAM), which is used mainly for public outreach (upper right corner in
Figure 3.3).

• In addition to the camera systems, an automatic identification sys-
tem (AIS) receiver supports space-based ship tracking.

As a secondary science goal, the satellite’s star tracker unit is tested to serve as
detector for near-earth asteroids. Further details on the instruments and their
development are found in [15] and [106].

Data management for the payload is done by the FPGA-based payload on-board
computer (PLOC), which was developed for Flying Laptop and manages data
acquisition and storage from the instruments [64]. It also handles a dedicated
payload downlink, the data downlink system (DDS) (horn antenna in upper
right section on Figure 3.3).

In addition, Flying Laptop hosts multiple technology demonstrations, most of
which are innovative bus components, such as an innovative on-board computer
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3.3. The Flying Laptop Mission

(OBC), or a star tracker unit augmented by an inertial reference unit (IRU).
Another experiment is the optical high speed infrared link system (OSIRIS),
which aims to demonstrate direct data downlink via infrared lasers.

3.3.2. Spacecraft Bus

A spacecraft bus exists to provide the necessary infrastructure, such as com-
munications, power or a certain attitude, for the payloads to reach the mission
goals. There is a functional decomposition of the Flying Laptop bus into sev-
eral subsystems. Each subsystem constitutes an embedded control system (see
Section 2.4.4) with its own set of sensors, actuators and control algorithms.
The spacecraft FSW interfaces with every subsystem, as most control tasks are
executed within software on the main computer. An overview of the system on
a logical interconnection level is found in Figure 3.4.

One requirement for the Flying Laptop bus on system level is single failure
tolerance, i. e. a fault in any part of the system shall not result in a complete
mission loss. Thus, different types of redundancies are implemented in the
system, which need handling by the FSW.

A typical redundancy scheme used in Flying Laptop is dual redundancy with
one element either powered or not, i. e. hot or cold redundancy. In such a
configuration, not every faulty sensor can be clearly identified autonomously4.
To keep the system stable, a typical reaction is a transition to a safe mode
with reduced sensor and actuator demand, which requires human intervention
to restore nominal operations. This concept reduces availability of the system,
but avoids overly complex and expensive systems, which would be necessary to
allow autonomous failure recovery in all cases. Further details on the system’s
fault management and redundancy schemes can be found in [109].

Following, a short overview of the satellite bus subsystems is provided.

Command and Data Handling Subsystem

The command and data handling (CDH) subsystem is responsible for data
management and command distribution. Also, it is the central element to
interface sensors and actuators of all other subsystems. For Flying Laptop, a
central OBC serves as main computing and interface unit for all bus components
(see Figure 3.3, lower left compartment, and Figure 3.4, center). The computer,
which was developed in collaboration with Airbus Defence and Space, consists
of four types of boards, each existing twice for redundancy reasons:

4To clearly identify a deviating sensor, three identical sensors are necessary to overrule
the faulty one.
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Figure 3.4.: Simplified overview of Flying Laptop subsystems and their logical
connections. Cross-couplings of stacked elements are omitted.
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3.3. The Flying Laptop Mission

• A processor board, which holds the main processor, a LEON3-FT5

UT699 microprocessor, and provides four SpaceWire6 interfaces to con-
nect to the other boards. The processor is clocked at 33Mhz and provides
8MiB of EDAC-protected memory.

• A so-called IO-Board, which serves as a multiplexer to interface other
bus components. Also, it provides memory for telemetry and state vector
storage.

• The CCSDS-Board serves as a decoder/encoder board for the ground-
space link, in accordance with CCSDS standards (see Section 3.4.1). It
connects the OBC to the units of the TTC subsystem.

• The OBC power board mainly provides regulated power for the other
boards, and routes some dedicated signal lines.

A switchover of the cold redundant processor board in case of a hardware fault
or a software error is handled by the power management unit, forming the
patented Combined Data and Power Management Infrastructure (CDPI) [53].
It is initiated either autonomously utilizing a watchdog functionality or by a
dedicated high-priority command to the power management unit, bypassing
the processor board. The CCSDS-Boards execute in hot redundancy, to allow
reception of TCs even in case of a failure of one board.

The flight software runs on the processor board and therefore depends on its
resources and reliability. Most of the fault tolerance features of the LEON3-FT
processor are implemented in hardware, providing a high level of confidence in
the integrity of FSW execution.

Power Supply Subsystem

The power supply subsystem (PSS) serves two main purposes: Power condi-
tioning, i. e. providing sufficient power from batteries and solar arrays at all
times, and power distribution, i. e. providing controllable switches to supply all
bus components and payloads. Main element of the PSS system is the power
control and distribution unit (PCDU), which, in addition to the above function-
ality, serves as a reconfiguration unit for the satellite [52] and digitizes analog
sensor values, e. g. from temperature sensors [103].

To serve as reconfiguration unit, the PCDU is designed to operate at a high
level of autonomy, e. g. evaluating temperature ranges and battery charge status
before starting the OBC. Still, the FSW executes the main control and moni-
toring algorithms for PSS as soon as it is started, and, for example, calculates
an improved state of charge.
5FT stands for fault tolerant.
6SpaceWire is a spacecraft communication network standard managed by ESA, see Sec-

tion 3.4.3.
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Attitude Control Subsystem

Due to their small size and mass, it is relatively easy to build small satellites
with high agility, which allows off-path observation to increase revisits of a
certain area. Flying Laptop makes use of this ability to provide multi-angle
imagery of a given target. Also, the MICS camera system and especially the
OSIRIS experiment define challenging requirements for pointing accuracy of
the attitude control subsystem (ACS). Moreover, a basic sun pointing ability
is critical in contingency situations, as energy is generated only if the solar
arrays are pointed towards the sun. All possible ACS modes of Flying Laptop
are illustrated in Figure 3.5.

Figure 3.5.: Illustration of Flying Laptop ACS modes.

To achieve these requirements, Flying Laptop’s ACS operates in two different
modes: A safe mode using a very basic algorithm, as well as simple, but robust
sensors and actuators, namely sun sensors (SUSs), magnetometers (MGMs) and
magnetic torquerss (MGTs). On top of that are the pointing modes, with more
advanced sensors, actuators and algorithms to enable precise pointing of the
spacecraft and complex maneuvers, such as target pointing to a ground station.
For the pointing mode, the spacecraft additionally uses a star tracker (STR),
fibre-optic gyros (FOGs), and GPS receivers as sensors, as well as reaction
wheels (RWs) for actuation.

In effect, the ACS is the most complex subsystem, with a wide range of sensors
and actuators, each of which has a dedicated redundancy scheme.

To make best use of the sensors and actuators, the FSW needs to execute
calculation-intense navigation and control algorithms, which also require on-
orbit tuning of parameters.

Further information on the ACS system is found in [63] and [112].
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3.3. The Flying Laptop Mission

Other Subsystems

There are three more subsystems of the Flying Laptop bus, each of which is
a dedicated embedded control system. Interaction with these subsystems and
FSW is similar to that of PSS or ACS, however, processing demand and number
of associated equipment is typically lower.

• Telemetry, Tracking and Control Subsystem: This subsystem man-
ages the radio frequency (RF) physical layer, or OSI layer 1, of the space
link with a pair of receivers and transmitters. With information obtained
from that equipment, FSW performs certain control operations, e. g. ac-
tivating a transmitter as soon as a signal is received.

• Thermal Control Subsystem: The TCS ensures all bus and payload
components remain in their operational temperature ranges during the
mission. Flying Laptop uses an actively controlled, cold-biased system,
which mainly works with passive insulation and radiator surfaces, but
provides additional temperature control by using electric heaters [97]. A
range of temperature sensors are used to measure component tempera-
tures, in conjunction with internal temperature sensors provided by more
complex equipment. The thermal control algorithm is executed in FSW.

• Structure and Mechanics: The S&M subsystem ensures mechanical
stability of the spacecraft during assembly, launch and in orbit, and hosts
movable parts such as deployment mechanisms. Most important is the so-
lar array deployment mechanism, other mechanisms are the AIS antenna
and an experimental drag sail to speed up deorbit of the satellite [79].
Using the mechanism is initiated and monitored by the flight software.

3.3.3. Ground Segment and Operations

A satellite, as a remote-controlled entity, is useless without a well-matched
ground segment, which makes maximum use of the system. For Flying Laptop,
the ground segment infrastructure evolved in parallel with the satellite. To
fulfil the educational goal and train students for large-scale missions, agency
and industry standards and products were applied where appropriate, creating
a ground software with professional and custom-made elements (see Figure 3.6)
[75].

Using ECSS and CCSDS standards for the space link has significant impact on
the flight software, as they define detailed requirements with regards to com-
mandability and observability of a spacecraft. These are discussed in dedicated
sections 3.4 and 3.5.

Operating a satellite at an University institute has some additional impact on
the FSW:
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Figure 3.6.: Ground segment overview block diagram (from [75]).

• Due to the limited number of ground stations, the spacecraft must be
able to execute pre-planned tasks out of ground station visibility7.

• In addition, there are no resources to ensure staffing for 24/7 shifts during
nominal operations. In effect, the spacecraft shall survive longer periods
of time without operator interaction, even in case of an on-board
failure.

• Spacecraft operations are conducted by non-professional operators and
students. Therefore, commanding the satellite shall be simple and
safe.

In summary, the operational environment demands a robust operability design
from the FSW and a certain amount of on-board autonomy and failure handling
capabilities.

3.3.4. Software and System Testing

To ensure proper operation of Flying Laptop in space, a thorough test program
is required. This does not only cover functional verification of the integrated
spacecraft, but early functional tests on component and subsystem level. For
7I. e. it needs ESA mission execution autonomy level E2 at least (see Section 3.5.3).

50



3.3. The Flying Laptop Mission

example, subsystem compatibility with the OBC was verified in a so-called
flatsat campaign (see Figure 5.2). Also, flight software testing was conducted
early on using a system testbed (STB) as described in [50]. Further information
on the system and software testing campaign can be found in [12].

For these tests to be executed successfully, capabilities of the FSW need to be
readily available for the test campaigns. This implies the need for a modular
software design and incremental development, which provides growing func-
tionality in line with system test milestones [14]. Also, it must be possible to
disable any kind of autonomous activity on-board, to avoid interference with
system tests.

3.3.5. Resulting Flight Software Features

This section will identify features any flight software needs on the basis of the
Flying Laptop mission.

Payload

As the exact nature of a payload is inherently mission specific, it is somewhat
difficult to derive generic requirements from the Flying Laptop payload. How-
ever, in distinction to the basic control loops of the satellite bus, many payload
operations are short-term activities, such as taking a picture with the cameras
of Flying Laptop. The FSW therefore must provide means to trigger such an
action of a software component, such as the camera driver:

Feat.: FLP.1 Action execution
Allow to trigger a dedicated, finite activity of a software component.

Other requirements, such as maintaining the temperature of a camera, or check-
ing a camera’s health, are either derived from support activities of the bus, or
are discussed in the context of generic requirements of satellite equipment.

Control Algorithm Execution

For the satellite bus, the main and most obvious software feature is: Execute
control algorithms. While this is certainly true, it is also rather superficial.
Still, it is a good starting point to define more precise requirements.

First of all, a FSW needs to manage concurrent execution of tasks, and allowing
to define the cycle intervals for each control algorithm. These duties are typi-
cally provided by a real-time operating system (RTOS) (see Section 2.4), but
providing access to those tasks and management may be part of the software.
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Moreover, the FSW needs to provide means to deliver sensor data from the
software part handling the equipment to the control algorithm and forward
generated commands to actuator handling software. Due to discrete and cycli-
cal execution, these in- and outputs need cyclical distribution as well.

Besides periodic data, satellite’s control algorithms use a variety of parameters,
such as gains or system constants, which need only occasional adjustment or
fine tuning.

Finally, some controllers, such as the Flying Laptop attitude controller provide a
number of dedicated modes, which alter their behaviour. Also, it may be useful
to disable any control activity manually in contingency and testing situations.

The following list sums up these core features:

Feat.: FLP.2 Cyclic execution
Allow software elements to execute cyclically and concurrently at different rates.
Feat.: FLP.3 Periodic data distribution
Distribute sensor measurements and actuator commands within the software.
Feat.: FLP.4 Parameter access
Allow external access to read or update parameters in software components.
Feat.: FLP.5 Controller modes
Allow adjusting the permanent cyclic behavior of a control algorithm and eventu-
ally disabling it.

Spacecraft Equipment

Regarding sensors and actuators, Flying Laptop is a good reference for a LEO
satellite, as it is equipped with the typical range of sensors and actuators for
such a mission8. Managing this equipment is one of the challenging tasks of a
flight software.

To illustrate the issue, consider the Flying Laptop reaction wheel (RW) as-
sembly. RWs produce torque by changing the rotation speed of a flywheel.
The Flying Laptop ACS is equipped with four such wheels in a tetrahedron
configuration for redundancy reasons (see Figure 3.7). Each reaction wheel is
independently connected to the OBC’s IO-Board.

Communication with a single wheel takes place via a serial connection and a
vendor-specific protocol to command the wheel and read out telemetry (TM)
data.

This example illustrates the challenges of equipment communication:

8Disregarding means for orbit control, such as a maneuver engine.
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Figure 3.7.: The reaction wheel assembly of Flying Laptop.

• Hardware vendors tend to devise dedicated application protocols (OSI
layer 7). Thus, a framework can not provide certain protocols out-of-the-
box, as there are too many variants.

• Similarly, there is a large number of interface types, such as the RW
UART, which are defined by the vendor of a specific equipment, and not
by the customer.

• Moreover, equipment communication is often indirect and the actual com-
mands or responses are relayed with a very different protocol. Most
equipment of Flying Laptop, like each individual RW, is connected to
the IO-Board, which by itself is controlled via SpaceWire from the main
processor board.

To manage these variants, a reusable FSW shall provide means of layering
between lower level protocols on the communication media and equipment ap-
plication protocols. This simplifies combining software components and a spe-
cific communication hardware architecture. This would, for example, allow to
reuse the software logic to control the wheels even if they are connected to the
processor board with a bus system.

Besides enabling communication, the main duty of equipment handling software
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is to read out sensors and command actuators and exchange these values with
control algorithms. To do so, it is in most cases necessary to poll sensor devices
or forward actuator commands at regular intervals, for example to command
RW torques.

For almost all spacecraft, not all sensors are needed in all system modes, there-
fore, equipment modes, which allow deactivation and initialization of devices
are reasonable. Ideally, this includes switching of power lines.

So, the first set of equipment-related software requirements are:

Feat.: FLP.6 Communication Layering
Provide means to separate the low level communication media from the applica-
tions which communicate.
Feat.: FLP.7 Polling and Commanding
Fetch sensor data and forward actuator commands at regular intervals.
Feat.: FLP.8 Equipment modes
Provide means to enable and initialize, but also disable some equipment.

Another important topic is equipment monitoring, as outtakes can happen due
to random faults or the space radiation environment. If the equipment does
not respond anymore, or the packet is obviously incorrect, a equipment error
is a likely cause. Thus, a software framework should provide communication
monitoring, at least for digital sensors and actuators.

Sensor value monitoring is relevant for simple sensors as well. For example,
a simple temperature sensor can be monitored by checking its value against
absolute limits and eventually the temporal gradient of its output. Thus, value
monitoring support is another framework feature.

In case some equipment is found to be not working anymore, it must be disabled,
or at least its inputs must be ignored. To make this explicit, a FSW can manage
equipment health states.

Another, related issue is management of redundant sensors and actuators. For
Flying Laptop, there are redundancies for all sensors and actuators on-board.
For example, the tetrahedron configuration of the RW assembly shown in Fig-
ure 3.7 allows a three-out-of-four redundancy scheme, i. e. the system works
well even with one wheel disabled. While many aspects of redundancy man-
agement are mission specific, a FSW may provide support to manage various
redundancy schemes.

In summary, the following features are found for monitoring and redundancy
management:
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Feat.: FLP.9 Communications monitoring
Support the detection of communication errors to monitor equipment.
Feat.: FLP.10 Equipment value monitoring
Provide means to monitor sensor and actuator values and report monitoring vio-
lations.
Feat.: FLP.11 Health states
Allow equipment to be tagged non-functional to avoid using it in the future.
Feat.: FLP.12 Redundancy management
Support the implementation of specific redundancy schemes for sensors and actu-
ators.

Operations

The specific challenges of operating Flying Laptop, as described in Section 3.3.3,
directly outline a number of requirements for FSW:

Feat.: FLP.13 Command scheduling
Allow out-of-sight execution of telecommands (TCs).
Feat.: FLP.14 Survivability
Enable spacecraft survival by detecting faults autonomously and ensuring the
spacecraft is in a safe state until operator intervention.

It is more difficult to translate “simple and safe” commanding into a FSW re-
quirement. One approach is to reduce and generalize the number of commands
an operator can use, as unification is a prerequisite for simplicity:

Feat.: FLP.15 Common commanding
Provide unified, simple commands to operate different software components of
the spacecraft.

Another aspect regarding operations is the functional decomposition of the
Flying Laptop system into a number of subsystems, as described in Section 3.3.2.
To simplify operations, it may be useful to represent this subsystem hierarchy
in software, especially when speaking of system modes. For example, it would
improve visibility if there were a software component, which indicated and
controlled the mode of the entire attitude control subsystem.

Feat.: FLP.16 Subsystem representation
Represent the functional decomposition of the system in software and allow oper-
ator interaction with these representations.
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Testing

A software design for testability is especially important for spacecraft devel-
opment, not only on software unit, but also on subsystem and system level.
Experience from Flying Laptop, as described in Section 3.3.4, shows that a
modular software design, e. g. with software components which are controllable
individually, supports system-level testing early on. For example, the flatsat
testing campaign was executed only with equipment handler software running,
most control algorithms were not available yet. As these software components
can be used unchanged in the final software, confidence in their suitability is
high after the tests.

The aspect of disabling controllers for tests has been covered in the control
algorithm section above.

Feat.: FLP.17 Software Modularity
Create software components which work at a maximum level of independence.

3.3.6. Comparison to other Space Missions

Given the vast range of spacecraft types and mission profiles, it is likely that
some aspects of spacecraft flight software are not found by looking at Flying
Laptop only. Still, none of the found requirements describes functionality spe-
cific to that mission or the Flying Laptop bus, indicating that the found features
are generally applicable.

However, to ensure no relevant aspect is omitted, this section discusses some
variants of other missions for comparison with Flying Laptop.

Nano and Large Satellites

Flying Laptop, as a micro satellite, is in terms of size right in the middle of a
common satellite classification scheme (see Table 3.1). In terms of its subsys-
tem and equipment structure, as well as operational concepts and redundancy
schemes, it is more comparable to larger satellites, even though certain subsys-
tems may be missing.

To check this issue, one can take a look at a 1995 report from the US Air Force,
which performed a domain analysis on spacecraft FSW [57]. The main findings
are that every spacecraft consists of a number of typical subsystems, of which
only those that are jointly referred to as orbit control subsystem (OCS) are
missing in Flying Laptop (see Appendix B.1 for a graphical summary).

Even though the impact of utilizing a propulsion system is significant on overall
spacecraft level, it is yet another control system for FSW. The generic software
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Group name Mass (kg)

Large satellite > 1000
Mini and Medium satellites 100 to 1000
Micro satellite 10 to 100
Nano satellite 1 to 10
Pico and femto satellites < 1

Table 3.1.: Classification of satellites by size (from [76]).

functionality can not handle the exact type of a controller and is therefore
responsible for the infrastructure aspects only. The same argument applies to
other types of payload: In most cases, they do not affect the generic software
infrastructure.

Also, there may be requirements missing for smaller spacecraft, i. e. nano satel-
lites. These typically come in the form of CubeSats, which are spacecrafts with
a standardized outer shape of one or more cubes of 10x10x10cm³ each. These
satellites feature highly miniaturized, simplified subsystems, with typically no
or very limited redundancy.

Even though the subsystem structure of CubSats is conceptually similar to that
of larger missions, miniaturization allows different technologies to be used. For
example, on-board networks in CubeSats often use SPI or I²C buses, which
are intended for short-distance communications only. Also, simpler space link
protocols such as AX.25 are used [111].

For a FSW to cover these aspects, the following requirements may be consid-
ered:

Feat.: FLP.18 Embedded serial buses
Support embedded on-system buses for equipment communication, such as SPI
or I²C.
Feat.: FLP.19 AX.25
Support amateur radio protocols for the space link.

On-Board Computer Architecture and Equipment Hardware

There are no standardized on-board computer architectures in spaceflight. In-
stead, many hardware setups are custom configurations for a specific mission.
However, the high-level requirements on FSW are often identical. Therefore, a
FSW product should provide a certain amount of hardware abstraction to allow
implementing controllers and functionality independent of the actual execution
platform.
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Enabling portability is significantly more difficult in cases where computing is
distributed among multiple, homogeneous nodes9. In such cases, as in [3], the
framework needs to ensure proper communication between distributed parts of
the overall software, i. e. provide a middleware.

Feat.: FLP.20 Hardware portability
Provide functionality for applications such that it is independent of the underly-
ing computing hardware.
Feat.: FLP.21 Distributed computing
Allow parts of the application software to be executed on homogeneous intercon-
nected computers, and hide the details of communication.

Just like different computer architectures, other main subnetwork protocols
to interface spacecraft sensor and actuator equipment exist than SpaceWire,
such as CAN or MIL-STD-1553B buses. These aspects are covered in detail in
Section 3.4.3.

3.4. CCSDS Standards

As spacecraft are remote-controlled entities, communication between the sys-
tem and its remote controller, i. e. the ground station, is fundamental. To avoid
incompatibilities between different actors in the space community, the Consul-
tative Committee for Space Data Systems (CCSDS) defines communication
standards which ensure interoperation between spacecraft and ground systems.
There are protocol definitions for all OSI layers, from the physical RF layer to
application layer operation services.

The importance of the CCSDS suite of space standards stems from the fact that
they are truly international standards, which are intended to ensure cooperation
between different space agencies for satellites and space probes.

Even though many aspects of that domain, such as RF engineering, are not
relevant for software, there are a number of documents dealing with spacecraft
operations containing important recommendations for a generic FSW. More-
over, CCSDS extended its role over time and released more standards with
relevance for FSW, e. g. on-board communication.

This section scans all CCSDS standards for relevant features of a generic
FSW.

9If the nodes were inhomogeneous, one would be treated as master and the rest is merely
“smart” equipment on the subnetwork.
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3.4.1. Frame and Packet Protocols

Ground-to-space, space-to-ground, or space-to-space communications are often
summarized as a space link. One set of standards provided by the CCSDS deals
with communication over the space link on frame and packet level, i. e. on OSI
layer 2 and 3 (see Section 2.4).

The frame level, as defined by CCSDS, is divided in a Synchronization and
Channel Coding and a Data Link Layer sublevel (see Figure 3.8). The former
deals with low-level encoding and forward error correction in data blocks and
is typically implemented in hardware (see [22], [20]). The latter defines TC
and TM transfer frames, which transport some kind of packet over the space
link (see [26], [27]). The standards define virtual channels (VCs), which enable
transport of multiple data streams over a single space link.

3 Network

2 Data Link

1 Physical

TC Sync. and Channel Coding
CCSDS 231.0-B2

TM Sync. and Channel Coding
CCSDS 131.0-B2

Space Packet Protocol
CCSDS 133.0-B-1

Radio Frequency and Modulation Systems
CCSDS 401.0-B

TC Space Data Link
CCSDS 232.0-B2

TM Space Data Link
CCSDS 132.0-B2

Figure 3.8.: OSI protocol stack of the CCSDS protocols

Typically, this is the level where FSW comes in contact with the protocols.
Main activity for both TC and TM frames is frame encoding or decoding, as
well as VC multiplexing or demultiplexing. The protocol is asymmetric regard-
ing the TC and TM path. For TC uplink, the standard defines a sliding window
protocol called Communications Operation Procedure-1 (COP-1) to ensure all
frames are received, and in the correct order [18]. The protocol requires an ap-
propriate implementation in the FSW. As the delivery of spacecraft telemetry
is assumed to be less critical, there is no such protocol defined for downlink.

On packet level, the CCSDS Space Packet Protocol [16] defines variable-length
space packets for routing of data within space and ground networks. Address-
ing takes place with a so-called application process identifier (APID) to find
the destination entity. The protocol is quite simple, aside from the APID,
it mainly defines a length field and a sequence count to check completeness.
Still, a FSW using space packets needs to be capable of routing such packets
to the intended destination entity on board. Furthermore, on-board generated
telemetry packets need to be aggregated for downlink.
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Even though these are the recommended protocols for space applications, it
is possible to replace each of them with an alternative one. In fact, CCSDS
defines a so called encapsulation service [17] to allow using other network layer
protocols within TC or TM frames.

Another, small aspect of data exchange defined by CCSDS is the definition of
time codes in [21] which ensures that time and timing information is exchanged
unambiguously. A FSW needs to be able to interpret these time codes and
generate time stamps in CCSDS format from its own time source.

In summary, the resulting features from a FSW perspective are:

Feat.: CCSDS.1 CCSDS TM frames
Encoding of TM frames and handling of multiple TM VCs.
Feat.: CCSDS.2 CCSDS TC frames
Decoding of TC frames and handling of multiple TC VCs.
Feat.: CCSDS.2.1 COP-1
Handling of the sliding window protocol on the receiving end for assured TC
frame reception. As non-assured transmission is possible as well, this feature is
optional.
Feat.: CCSDS.3 Space packets
Encoding and decoding of space packets.
Feat.: CCSDS.3.1 Space packet routing
Routing incoming space packets to the intended on-board destination, as well as
routing generated TM packets to a downlinking entity.
Feat.: CCSDS.4 Encapsulation
Allow other network protocols to be transferred over the space link.
Feat.: CCSDS.5 Time Codes
Interpret and generate CCSDS time codes.

3.4.2. Mission Operation Services

Mission operation (MO) services are a CCSDS activity to harmonize commu-
nication between spacecraft, ground segments and mission operations centers.
Work was initiated in 2006 and is, as of 2018, still ongoing. The current output
is a whole suite of interdependent standards (see Figure 3.9), many of which
are still under development or review.

Main intent is to create a framework for the development of an Open Systems
Interconnection (OSI) application layer protocol which connects each entity of
the system-of-systems, following service-oriented architecture (SOA) principles
(see Section 2.3.4).

One intention of the protocol is to allow interaction between software com-
ponents in an end-to-end fashion, e. g. from a payload operations center via
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Figure 3.9.: Overview of the MO service framework. From [19].

the mission operations center to a payload on-board the spacecraft. Thus, the
protocol needs to operate on multiple transport protocols with very diverging
capabilities, e. g. a high speed local network and a resource constrained deep
space link.

Therefore, an intermediate layer, the so called message abstraction layer (MAL),
is introduced. It specifies basic data types, as well as certain message inter-
action patterns which can be used to define service interfaces and messages.
These interaction patterns are, for example, a simple request-response pattern,
but also a complex publish-subscribe mechanism.

As these patterns and the data types are described in an abstract manner the
Mission Operations (MO) standard suite defines certain technology bindings,
e. g. to transport MO messages in space packets [25]. With regard to the OSI
model, the MAL and the bindings are conceptually similar to a presentation
layer protocol.

On top of the MAL, there is the so called MO services layer, which defines
standard service specifications for applications, i. e. on OSI layer 7. These
specifications rely on the Common Object Model (COM), which defines some
common types and services, such as object identifiers and events, that form a
template to specify other services.

The standard services, which are defined in terms of the MAL and COM tem-
plates, specify some common functionality of space missions, such as monitoring
and control (M&C) or scheduling services. Of those standard services, only a
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draft of the M&C standard is available to date. The relationship between the
MO services stack and the OSI model is shown in Figure 3.10.

Figure 3.10.: Relationship between OSI model and MO services stack.

The intention of this section is to check the suite of MO service specifications
for requirements regarding FSW implementations. Given that the standards
do not specifically address the on-board environment, but any computing en-
tity involved in mission operations, some functionality may be challenging to
implement with the limited resources on-board a spacecraft.

Message Abstraction Layer

A FSW compatible to MO services needs to provide an implementation for
the abstract data types and interaction patterns defined in the MAL, both for
space-ground and for on-board communications. The most challenging part
of such an implementation is the publish-subscribe interaction pattern. The
intention is to distribute information, e. g. events, by publishing messages on a
certain topic, and distributing these messages to a set of interested subscribers.
This feature requires dynamic management of topics and subscriber lists.

Moreover, the FSW needs to handle the space packet binding, as incoming and
outgoing messages are most likely transmitted via space packets. Depending on
the implementation, it might be useful to translate messages into a dedicated
on-board format for internal distribution as well.

Thus, the feature set resulting from the MAL is:

Feat.: CCSDS.6 MAL interaction patterns
Handling of the send, submit, request, invoke, progress and publish-subscribe
interaction pattern as defined in the MAL, both for space-ground and for on-
board communications.
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Feat.: CCSDS.7 MAL space packet binding
De- and encode MO messages in space packets.
Feat.: CCSDS.8 MAL on-board binding
De- and encode MO messages in a dedicated internal protocol.

Common Object Model and Common Services

All MO service specifications rely on the common services defined in the COM
specification [24]. Thus, a FSW needs to provide these services as well. Namely,
these are an event service for the distribution of events, an archive service
for storing any kind of information in a service deployment and an activity
tracking service to inform about successful or failed transmission and execution
of messages.

In a more abstract sense, these service specifications are instances of more
general concepts: Independent of any specific protocol, a FSW should provide
the following features:

Feat.: CCSDS.9 Event distribution
Reporting “something that happens in a system at a given point in time” ([24],
section 2.4), and distributing this event to multiple interested parties.
Feat.: CCSDS.10 Information storage
Storing changes in variables, parameters, etc. for later retrieval.
Feat.: CCSDS.11 Activity reporting
Providing fine-grained reports of forwarding and execution of certain activities,
especially ground commands.

Monitoring and Control Service

As the name says, this standard specifies what services a FSW shall provide
to control and monitor a spacecraft. The current draft [28] specifies six main
service types, of which at least the first three are mandatory to operate a
spacecraft:

• MO action service: Providing access to activities which control the space-
craft, and monitoring of the progress of such an activity.

• MO parameter service: Monitoring of single on-board parameters and
adjusting their value, if appropriate.

• MO alert service: A refinement of the basic COM event service to report
and control the reporting of “significant asynchronous events or anoma-
lies” ([28], section 2.8).
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• MO check service: The service allows monitoring of value changes of pa-
rameters within the service providing entity and reports check violations
with COM events.

• MO statistics service: Similar to the check service, this service allows
computation of statistical values of a parameter within a service provider
and reporting of the results.

• MO aggregation service: To avoid having numerous small packets with
single parameter values, this service allows to define reports of multiple
parameters which are transmitted in a single message.

As for the basic COM services above, these M&C services are concrete protocol-
specific instances of fundamental features of a FSW. The MO action service, as
well as the ability to set values in the parameter service, deal with remote con-
trol of behavior and activities in the spacecraft, i. e. commandability, while the
other services provide more or less convenient means to monitor the spacecraft’s
state, which is referred to as observability.

Feat.: CCSDS.12 Commandability
Top-level feature of all aspects that allow adjusting the spacecraft’s state and
operational goals.
Feat.: CCSDS.12.1 Activity commanding
Handling of remote action invocation and monitoring of their execution.
Feat.: CCSDS.12.2 Parameter adjustment
Refining and adjusting of on-board parameters.
Feat.: CCSDS.13 Observability
Top-level feature that summarizes aspects of monitoring the spacecraft’s state.
Feat.: CCSDS.13.1 Event reporting
Reporting asynchronous events that happened on-board the spacecraft.
Feat.: CCSDS.13.2 Housekeeping reporting
Reporting of on-board variables, typically periodic.
Feat.: CCSDS.13.3 Enhanced monitoring mechanisms
On-board preprocessing of variables, e. g. calculating statistics or performing on-
board monitoring.

In an overview of planned MO services [19], more standard services are pro-
posed, e. g. an automation service. However, no draft standards are available
to elicit requirements from.

3.4.3. Spacecraft Onboard Interface Services

Another CCSDS initiative related to FSW are the Spacecraft Onboard Interface
Services (SOIS) [23]. They consist of a set of reports which provide abstract
interface specifications for communication on-board a spacecraft. The main
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focus lies on data exchange between FSW applications and equipment, i. e.
sensors and actuators, but it also contains concepts for communication between
applications. Due to the high level of abstraction of these specifications, they do
not provide a dedicated protocol to translate into software. Instead, they serve
more as a collection of abstract functionality that should exist in some way or
the other for on-board communication. This may not be a good guidance for
practical implementations, but, for the same reason, makes SOIS a good source
to identify generic FSW features.

Conceptually, SOIS makes a distinction between more high-level application
support services, which provide generic features to applications and subnetwork
services, which create a layer of abstraction between applications (or support
services) and the communication medium.

First of all, the SOIS application support layer provides an interesting concept
of device abstraction, which aims to reduce coupling between equipment-specific
properties, and applications (see Figure 3.11).

Figure 3.11.: SOIS concept of device virtualization. From [23].

The basic idea is to differentiate between a device access service, which provides
direct access to the device in its native protocol, and a device virtualization
service, which serves as a high-level interface for accessing the device, e. g.
by converting sensor data to SI units. Moreover, SOIS identifies the need to
provide unique addresses for equipment, manage underlying device modes and
collect and distribute equipment data with a device data pooling service.

For example, exchanging data with a RW of Flying Laptop in its native, vendor-
specific protocol is part of the device access service. If the FSW provides a soft-
ware component which allows, e. g. setting the speed of a wheel in rotations per
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minute, that would be a part of the device virtualization service. As illustrated
conceptually in Figure 3.11, the FSW provides means for convenient access to
sensors and actuators, e. g. by a control algorithm, which are not handled by
the real device, but only by its software representation.

Whether being fully SOIS-compatible or not, a FSW ought to manage all of
these features:

Feat.: CCSDS.14 Device access
Provide access to on-board equipment and handle the native protocol of the de-
vice, to acquire data and send commands to the equipment.
Feat.: CCSDS.15 Device representation
Provide a representation of the device within software, to allow interaction in a
standardized manner.
Feat.: CCSDS.16 Device modes
Manage equipment modes and provide abstraction for configuration processes.
Feat.: CCSDS.17 Data acquisition
Periodically acquire measurements from equipments.
Feat.: CCSDS.18 Data distribution
Provide means to distribute equipment data (e. g. sensor measurements) in soft-
ware without explicitly requesting the data, e. g. with a data pool.
Feat.: CCSDS.19 Value conversion
Convert sensor values and actuator commands between SI and device specific
units.

In addition to these features, SOIS defines certain services to support dynamic
discovery of equipment and equipment states, similar to USB devices on per-
sonal computers. However, while some ideas are interesting, the activities are
somewhat futile, as spacecraft configuration is rather static and any kind of
reconfiguration is highly mission-specific.

The SOIS application support layer also proposes services to assist development
of on-board applications. One of them is the so-called message transfer ser-
vice, which is a basic concept for communication between applications. Other
services are the file and packet store service, which defines means to store files
and packets on-board a spacecraft, and the time management service. These
services translate well into abstract framework requirements:

Feat.: CCSDS.20 Inter-process communication
Provide means for applications to exchange messages.
Feat.: CCSDS.21 On-board storage
Provide some means to store some kind of data on-board the spacecraft.
Feat.: CCSDS.21.1 File store
Access and manage files and file stores on-board the spacecraft.
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Feat.: CCSDS.21.2 Packet store
Access and manage storage of packets (e. g. TM packets) on-board the space-
craft.
Feat.: CCSDS.22 Time management
All on-board applications shall have access to a common wall clock with a stan-
dardized interface.

Regarding subnetwork services, SOIS provides a good categorization of different
media types a FSW shall support ([23], section 2.1):

Feat.: CCSDS.23 Multidrop buses
Use a shared line for communication between multiple peers. Typically, commu-
nication is asymmetrical with one master and multiple slaves. The shared line
needs precise management.
Feat.: CCSDS.24 Point-to-point connections
Direct connection between two peers, which allows bulk data transfer, e. g. for
instrument connection.
Feat.: CCSDS.25 Homogeneous networks
An interconnection for larger systems with multiple nodes of similar computation
power. Either managed by routers or competing communications, which may
cause varying delays.

Also, it lists some typical physical and data-link layer protocols used in space-
craft, which are concrete instances of the above categories:

Feat.: CCSDS.26 MIL-STD-1553B
A serial data bus, originally designed for military avionics, but commonly used in
spacecraft CDH subsystems.
Feat.: CCSDS.27 SpaceWire
A communication standard managed by ESA for fast point-to-point connections.
Allows building switched networks of multiple nodes.
Feat.: CCSDS.28 CAN
The Controller Area Network (CAN) is a multi-master serial bus designed for
communications of small microcontrollers on a simple, but robust bus. It was
originally developed in the automotive industry, but found its use as sensor bus
in space applications.
Feat.: CCSDS.29 Ethernet
Ethernet is the de-facto standard for cable-bound local area networks (LANs)
on ground and is used in payload networks of some space missions as well [107].
Originally designed for a multi-master competing bus, it is typically used in a
switched network topology.

One goal of SOIS is to provide an abstract interface for applications to com-
municate via any of these media types. To do so, a set of subnetwork services
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are defined, with two different access types: First, there is a packet service,
which is intended for packet-based communication, e. g. for requesting read-out
of a digital sensor. The alternative is the memory access service, which allows
accessing remote memories, e. g. for accessing mass memory or performing soft-
ware updates of equipment. The distinction between these different methods of
communication via a subnetwork is important and should find a representation
in a generic FSW:

Feat.: CCSDS.31 Packet-based subnetwork access
Enable packet-based subnetwork communication.
Feat.: CCSDS.32 Memory-based subnetwork access
Enable memory-based subnetwork communication.

In addition, any media type has different capabilities, e. g. whether transmission
is assured and message order is preserved or not. Some of these qualtiy of service
(QoS) properties of subnetworks may need enhancements on software level,
which is called the convergence layer in SOIS. In other words, SOIS proposes
to extend OSI layer 3 and 4 capabilities of the used subnetworks, to achieve
common capabilities. This would, for example mean to add a functionality to
retry sending failed packets over RMAP SpaceWire, as this is not handled by
the protocol itself.

However, the underlying basic requirement for a FSW is to provide some means
of abstraction for different communication media types:

Feat.: CCSDS.33 Communication abstraction
A FSW framework shall provide means to separate application logic from the
underlying communication medium used.

3.5. ECSS Standards

The suite of standards managed by the European Cooperation for Space Stan-
dardization (ECSS) contains a vast amount of European knowledge of space
systems, ranging from project planning to star sensor performance specifica-
tions (see Figure 3.12).

Some of these standards deal with flight software in the narrow sense, such as
ECSS-E-ST-40C [42] for software engineering. However, there are even more
documents which have an indirect influence on FSW, such as the spacecraft
operability standard ECSS-E-ST-70-11C [39]. Generally speaking, the following
branches contain documents affecting FSW:

• E-40: Software engineering

• E-50: Communications
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Figure 3.12.: ECSS disciplines in tree form [47]. Standards relevant for FSW
have a thick border.
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• E-60: Control engineering

• E-70: Ground systems and operations

In principle, the Q-80 discipline for software product assurance is important
as well. However, these documents have a focus on the software development
process, whereas the goal here is to identify functional requirements for a generic
FSW. Therefore, they are not part of the survey.

The following section will give a quick overview of a number of standards,
with summaries of the resulting requirements for FSW. As some of the E-60
standards depend on the E-70 standards, the latter will be introduced first.

3.5.1. E-40: Software Engineering

The ECSS-E-ST-40C document describes a process for development, operation
and maintenance, as well as verification, validation and review of a space-related
software product [42]. Therefore, its main intention is to define requirements for
the overall software development process, which is basically a classical V-model
approach (see Section 2.2).

In effect, the document does not specify any functional requirements for space
software itself and therefore is, despite the name, a rather poor source to identify
common flight software features. It does however formulate some clauses for
the overall architectural design of a space software.

Clause 5.5.3.2b of [42], for example, states:

The supplier shall test each software unit ensuring that it satisfies
its requirements and document the test results.

Also, clause 5.8.3.3a poses requirements to form a comprehensible represen-
tation of the modularization and hierarchy of the software. These aspects
translate to the following framework requirements:

Feat.: ECSS.1 Unit tests
Support individual unit tests of each software component of the system.
Feat.: ECSS.2 Hierarchical breakdown
Ensure that the hierarchical structure of the software is comprehensible and
traceable.

Another aspect, which is well represented in the standard (in clause 5.8.3.11
and others), is schedulability for real-time software, which is a mandatory re-
quirement for spacecraft FSW:
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Feat.: ECSS.3 Schedulability
The dynamic architecture of a FSW shall support real-time schedulability analy-
sis.

Finally, there is one aspect the standard does not mention: It does not pre-
clude the use of an object-oriented programming (OOP) paradigm. Quite the
contrary, OOP is explicitly mentioned as valid “software design method” ([42],
clause 5.4.3.2).

3.5.2. E-50: Communications Standards

The E-50 series of ECSS standards deal with communication protocols for space
applications. The first set of these standards (-01C till -05C) defines refinements
for CCSDS protocols of the space link. As their relation to FSW is already
covered in Section 3.4.1, they are not detailed here.

The remaining standards define or refine protocols for on-board communica-
tions, namely SpaceWire [41], MIL-STD-1553B [38], CAN [48], as well as a
dedicated standard for discrete connections [40]. For SpaceWire, two standards
define transport protocols: The Remote Memory Access Protocol (RMAP) [45]
and the CCSDS packet transfer protocol [44].

The interaction between these subnetworks and the FSW is already covered in
Section 3.4.3. Therefore, only the previously not mentioned SpaceWire trans-
ports are listed below:

Feat.: ECSS.4 RMAP
A protocol to provide access to memory of remote entities via SpaceWire.
Feat.: ECSS.5 CCSDS packet transport
A protocol to transport space packets via SpaceWire.

3.5.3. E-70: Ground Systems and Operations

The E-70 series of standards deal with ground systems and operational aspects
of space missions. Those which deal with the internal design of the ground seg-
ment have a negligible impact on FSW. However, the E-70 series also provides
a number of documents which define the operational interface to the spacecraft.
As this is the “user interface” to the remote-controlled spacecraft, the impact
on flight software design is high.

Specifically, there are three standards relevant for FSW:
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1. Probably the most important ECSS standard is ECSS-E-ST-70-41C
[49], commonly referred to as packet utilization standard (PUS). It defines
the space-ground interface in the form of a CCSDS space packet-based
application layer protocol.

2. The space segment operability standard ECSS-E-ST-70-11C [39] de-
fines operability aspects of spacecraft handling at different levels of detail.

3. ECSS-E-70-ST-01C [43] is rather specific and defines so-called on-
board control procedures (OBCPs), which shall allow a limited amount
of in-flight reprogramming of the system by operators.

A summary of these standards and resulting requirements are described be-
low.

ECSS-E-ST-70-41C: Telemetry and Telecommand Packet Utilization

The packet utilization standard (PUS), which evolved from an ESA standard
first introduced in 1995 to the most recent “C” version released in 201610, shaped
the design of flight software development in Europe like no other ECSS stan-
dard.

Its basic idea is that there are service providers on-board the spacecraft, which
accept certain request types from service users and generate reports in reply.
Service users are typically on ground, but may as well be on-board. Transport
of these requests between ground and space takes place with CCSDS space
packets (see Figure 3.13).

The standard further details reports to be either data, verification or event
reports. Verification reports are issued at certain stages of request reception
and execution.

To distinguish different requests and reports, a service type and subservice type
is introduced, for which the standard defines a secondary header with associated
fields. In fact, this is the central syntactical specification of the standard.

On top of this basic concept, PUS describes standard service types, which
intend to cover all typical monitoring and control (M&C) activities required to
operate a spacecraft. The standard service types are summarized in Table 3.2.
These service types and their respective subtypes come with detailed protocol
definitions regarding the content of each request and report packet.

A tailoring, i. e. choosing a number of services and service capabilities for a given
mission, is foreseen. Also, the standard encourages the definition of mission-
specific services.
10An update from the “A" version from 2003 [37] was introduced to add new capabilities and

define more “formal” requirements. Unfortunately, this drastically reduced readability
of the standard.
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Figure 3.13.: The space to ground PUS service system context (from [49]).
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Service type name ID Description

Request verification 1 Verify routing, acceptance and execution of
TCs.

Device access 2 Provide direct access to on-board equip-
ment.

Housekeeping 3 Control generation of periodic data reports.
Parameter statistics reporting 4 Manage reporting of data statistics.
Event reporting 5 Definition and control of event reports.
Memory management 6 Low-level access to on-board memories.
Function management 8 Invoke execution of some on-board function.
Time management 9 Control reporting of the on-board time.
Time-based scheduling 11 Allow execution of requests at a specified

time.
On-board monitoring 12 Monitor variable values on-board.
Large packet transfer 13 Transfer large quantities of data.
Real-time forwarding control 14 Filter outgoing reports.
On-board storage and retrieval 15 Manage storage of TM reports for retrieval.
Test 17 Perform application-level connection tests.
On-board operations procedure 18 Manage execution of OBCPs.
Event action 19 Allow linking submission of TC requests to

events.
On-board parameter management 20 Access and manipulate parameter values.
Request sequencing 21 Manage sequences to be executed one-by-

one.
Position-based scheduling 22 Execute requests depending on orbital po-

sition.
File management 23 Handle and access an on-board file system.

Table 3.2.: Summary of service types.
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Protocols and Flight Software Architecture

Ideally, a protocol definition allows interaction between entities regardless of a
specific implementation. However, for application layer protocols such as PUS,
it is difficult to distinguish which functionality exists due to the need of an
application and which stems from protocol definitions.

The PUS standard aims to define the semantics and syntax, or interaction
rules and content, of requests and reports for M&C of a spacecraft. However,
it appears to be used as an implementation reference, as well as the basis for
on-board data distribution (see e. g. [78], p.17). This creates “PUS-based” archi-
tectures, describing every functionality in terms of the standard and enforcing
a certain implementation scheme. However, it should not be the intention of
a standardized protocol to describe a single reference implementation, but to
define access to an implemented functionality. Thus, the protocol definition
should be generic enough to be of use for different styles of implementation.

Unfortunately, the PUS standard does indeed reflect the view of its authors’
on what a spacecraft FSW should look like and leaves little room for interpre-
tation. On the upside, the concept of mission specific tailoring and extensions
allows adaptation to non-standard software implementations, which balances
the overly specific layout of PUS11.

Thus, even though there is a tendency to be too restrictive in the standard,
a wider interpretation and implementation is possible by making use of tailor-
ing.

Generic Features from PUS

For a generic FSW, architectural dependence on a dedicated communication
protocol is not desirable. For example, M&C may take place via MO services
or some common Internet protocol. Therefore, aside from supporting the PUS
foundation model, the service types defined in Table 3.2 serve as reference for
generic operator requirements only.

Feat.: ECSS.6 PUS space packet binding
De- and encode PUS requests and reports in space packets.

Most of the standard services from Table 3.2 are related to direct M&C tasks
such as the execution of a certain activity and generating housekeeping reports.
Service type IDs in that category are, at different levels of complexity: 3, 4,
5, 8, 12, 14, 20, and 21. As the resulting requirements are almost identical to
those defined from the MO monitoring and control standard (see Section 3.4.2),

11This is a trade-off to optimize instantiation and adaptation cost, as described in Sec-
tion 2.3.8.
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they are not reproduced here. Likewise, the request verification service (Srv. 1)
is conceptually identical to the activity reporting service of MO services.

Closely related to M&C tasks is on-board time management, as it is a precondi-
tion for precise control of the spacecraft. It is covered by the time management
service (Srv. 9).

Feat.: ECSS.7 Clock Management
Provide a fine-grained wall clock to applications and report a precise on-baord
time.

Another aspect covered by PUS is that of automation and out-of-sight opera-
tions, which is important for spacecraft operations, especially in LEO, with in-
termittent and limited ground contact. For this purpose, PUS specifies time or
position-based scheduling (Srv. 11 and Srv 22) and a packet-based storage and
retrieval service (Srv. 15), as well as a service to manage loadable control proce-
dures (Srv 18), or link request execution to on-board events (Srv 19). Loadable
conditional procedures, so-called on-board control procedures (OBCPs), are de-
scribed in a dedicated standard and discussed later. To support such services
and activities, a FSW shall provide the following features:

Feat.: ECSS.8 Command injection
Allow injection of TCs as if they were coming from ground.
Feat.: ECSS.9 Command storage
Support storage of TCs for later execution.
Feat.: ECSS.10 Report storage
Support storage of report packets for later retrieval.
Feat.: ECSS.11 Event distribution
Distribution of events to multiple interested parties.

The remaining standard PUS services are related to remote maintenance of the
system and low level access to its resources. The device access service (Srv. 2),
for example, defines remote access to on-board equipment and subnetworks.
Such a service is needed in contingency situations mainly. Likewise, low-level
memory access (Srv.6̇) is reserved for maintenance operations. In effect, a FSW
shall support remote maintenance with the following features:

Feat.: ECSS.12 Device raw access
Support direct access to equipment commands and replies to the ground system.
Feat.: ECSS.13 Subnetwork raw access
Support direct access to on-board subnetworks from the ground segment.
Feat.: ECSS.14 Memory access
Support access to all memory regions in the system in a low-level fashion.
Feat.: ECSS.15 File management
Provide file management capabilities and allow remote access.
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Relation between MO and PUS Services

There is a striking similarity between the ECSS PUS services and the definition
of the MO standard services. This is not surprising, as they have the same
goal, i. e. defining an application protocol for spacecraft operations. The main
distinction is what assumptions about the utilized technology are made:

• PUS assumes a low-level procedural software architecture with limited
abstractions. Thus, representing concepts such as software components
is somewhat difficult with PUS. On the upside, the standard harmonizes
well with limited resources of embedded systems.

• The underlying concept of MO services is that of a service-oriented archi-
tecture (SOA), which makes it easy to use the standard for more abstract
conceptual designs. Also, it is intended not only for the ground-space
link, but within the ground segment as well. However, some concepts of
the standard may be difficult to handle in resource-constraint embedded
systems, e. g. unbounded header fields in messages or archives for variable
objects.

Still, even though the protocol syntax has many differences, the semantics of
the protocols, i. e. the intention and types of services, are very similar.

ECSS-E-ST-70-11C: Space Segment Operability

The space segment operability standard ECSS-E-ST-70-11C is a collection of
recommendations and requirements to ensure a spacecraft is operable in a “safe
and cost-effective manner” ([39], p.7).

The standard is divided in a part for general requirement, which are top-level
for categories such as observability, and a detailed requirements section, which
is more grouped by functionality, such as on-board autonomy. Both sections
provide interesting input, even though the latter part reads more like a lessons-
learned document in some places. The standard does not only cover software-
related requirements, but also system requirements, such as safe redundancy
schemes. Also, many points are duplications or additions to services of the
packet utilization standard. These are not reiterated here. However, there are
a number of aspects not covered by the more formal PUS worth considering,
which are described following.

First, there is safety and security of spacecraft commanding, for which a generic
FSW could provide support. For safety, it can be useful to disable certain crit-
ical commands to avoid inadvertently execution, which is expressed in clause
4.5a and 5.5.2 of the standard. For security, a software framework shall sup-
port authentication and authorization mechanisms to ensure secure command
execution (clause 5.2.1).
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Level Descriptions
E1 Mission exec under ground control, limited OB capability for safety issues
E2 Execution of pre-planned, ground-defined, mission operations on-board
E3 Execution of adaptive mission operations on-board
E4 Execution of goal-oriented mission operations on-board

Table 3.3.: Mission execution autonomy levels, from [39], p, 33.

Feat.: ECSS.16 Critical commands
Provide a mechanism to lock/unlock certain commands in case they are critical.
Feat.: ECSS.17 Authentication and authorization
Support authentication of operators on-board the spacecraft, as well as autho-
rization of command execution.

Section 5.6 of the standard deals with spacecraft configuration and modes.
Clause 5.6.1a defines a minimum of a nominal, standby and survival mode
for the spacecraft and links these modes to used on-board equipment. In addi-
tion, clause 5.6.1d recommends some high-level mechanism to perform on-board
mode transitions. Also, observability requirements for mode transitions are de-
fined in clause 5.6.2. These concepts result in the following FSW concepts:

Feat.: ECSS.18 System modes
Allow representation of system and subsystem modes in software.
Feat.: ECSS.18.1 Mode commanding
Enable transition between subsystem modes, either autonomously or by ground
command.
Feat.: ECSS.18.2 High-level mode commanding
Provide some high-level mechanism for simple mode commanding of the space-
craft.
Feat.: ECSS.18.3 Transition observability
Ensure the equipment configuration used for a certain mode, as well as the cur-
rent mode is properly reported.

Another major aspect of the operability standard is on-board autonomy, which
is divided in mission execution, mission data management and on-board fault
management autonomy. For the first, four levels of mission execution autonomy
are defined, which are described in Table 3.3. The software requirements for
levels E1 to E3 are already covered by the corresponding PUS services. Even
though level E4 is probably difficult to achieve, a FSW supporting that level
should provide the following feature:

Feat.: ECSS.19 Mission goal representation
Support representation of mission goals, together with the required resources in
software.
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For fault management, or failure detection, isolation and recovery (FDIR), a
number of recommendations are made in section 5.7.5 of the standard. The
capabilities are divided in a lower level F1, which ensures spacecraft survivabil-
ity in case of a fault and level F2, which aims to “re-establish nominal mission
operations following an on-board failure” ([39],p. 35). In summary, the stan-
dard proposes a hierarchical FDIR implementation, which handles on-board
faults at the lowest possible level. Also, all detected failures and the resulting
isolation and recovery actions shall be well-observable, as well as configurable,
from ground. Thus, a software framework should support the implementation
of FDIR features in the following manner:

Feat.: ECSS.20 Hierarchical FDIR
Support different levels of failure handling, e. g. equipment, subsystem, system
level and try to isolate a fault at the lowest possible level.
Feat.: ECSS.21 FDIR reporting
Ensure that detected faults and autonomous reactions are properly observable.
Feat.: ECSS.22 FDIR control
Allow disabling and enabling of FDIR actions by ground command.

Finally, in the later sections 5.8.10 and 5.9.1 the standard imposes requirements
to allow reporting of software internal resource demands, such as software or
subnetwork bus loads or processor utilization.

Feat.: ECSS.23 Resource monitoring
A software framework shall support reporting of the utilization of internal re-
sources, such as software buses or shared memory.

ECSS-E-ST-70-01C: Spacecraft On-Board Control Procedures

The intention of on-board control procedures (OBCPs) is to enhance on-board
automation by introducing loadable procedures, “which can easily be loaded,
executed, and also replaced, on-board the spacecraft without modifying the
remainder of the on-board software” ([43], p. 12).

The expected advantages of OBCPs versus native software is enhanced flexibil-
ity, so operators can react to unforeseen external or internal situations, e. g. an
unexpected loss of a critical functionality.

However, it is somewhat difficult to determine the amount of functionality
shifted from classical FSW to OBCPs, as this might introduce additional risks
by hazardous misconfiguration of procedures. This aspect is addressed in the
standard in section 6.2.2.

Still, they have been successfully utilized in a number of missions and are a
good method to prepare a spacecraft for unexpected environments.

79



3. Flight Software Domain Analysis

Feat.: ECSS.24 Procedure execution engine
Support the execution of loadable procedures and allow, but monitor, the usage
of on-board resources.

3.5.4. E-60: Control Engineering Standards

The ECSS control engineering standards E-60 consist of a number of volumes
primarily dealing with attitude and orbit control of a satellite. Three of them,
namely ECSS-E-ST-60-10C, ECSS-E-ST-60-20C and ECSS-E-ST-60-21C de-
fine generic performance requirements for controllers, star sensors and gyro-
scopes. These standards mainly deal with controller design or equipment char-
acteristics and are therefore not relevant to define FSW requirements.

ECSS-E-ST-60-30C [46] describes satellite attitude and orbit control subsys-
tem (AOCS) requirements, not only on performance level, but also regarding
functional and operational requirements. While many of these aspects are too
specific to be useful as input for a generic FSW, some are good illustrations of
required software features, and not covered by other ECSS standards.

For example, controller modes and mode transitions for nominal and contin-
gency situations are defined in clauses 5.1.1.8 to 5.1.1.11. There, the standard
specifies that an AOCS subsystem shall utilize a number of modes and allow
transitions both by ground TC and autonomously. While the mode concept of
system and subsystems is already covered in feature ECSS.18 identified in the
operability standard, there is a new aspect to check and manage preconditions
before performing a mode transition. This is a viable FSW requirement:

Feat.: ECSS.18.4 Mode transition checks
Check and manage software and equipment conditions to ensure ordered mode
transitions.

Likewise, the standard defines some aspects relevant for failure detection, iso-
lation and recovery (FDIR) in clause 5.2.2. There is a definition of a list of
actions to be performed in case of a detected anomaly, which translates into
the following FSW requirement:

Feat.: ECSS.25 Failure reaction
React on on-board failures by:

• ignoring transient faults

• reconfiguration on subsystem level without any change in the subsystem
mode

• reconfiguration on system level including potential mode switches

An example for a transient fault is a single corrupted data packet from a sensor,
with subsequent packets being correct again. Unless they accumulate, it is
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better to have the FDIR ignore such faults than to be overly sensitive and e. g.
force unnecessary safe modes.

The standard also covers requirements for telemetry generation, which are al-
ready covered in Section 3.5.3.

3.6. Existing Flight Software

There are a number of different endeavours to ease and improve FSW develop-
ment. Many of these activities are performed internally in industry, and thus
are not accessible for evaluation. Those which are available in public often are
initiated as research programmes by a space agency, i. e. ESA or NASA, which
try to mitigate the challenges of increasingly complex FSW. Typically, the aim
is to derive a FSW framework or a reference architecture12.

The following section summarizes a survey of those projects, with the pur-
pose of identifying missing requirements for the domain analysis. Also, a basic
evaluation of their capabilities takes place, to identify innovative solutions and
potential shortcomings.

3.6.1. OBS Framework

The first project to investigate is the so-called on-board software (OBS) Frame-
work. It is an extension of the AOCS framework described in [89], which was
developed in 2002 by the Automatic Control Laboratory group of ETH Zurich.
It was an early research project to investigate the use of object-oriented frame-
work technologies for spacecraft FSW [90].

The OBS Framework defines a number of so-called design patterns (see Sec-
tion 2.3.6), which aim to identify some recurring needs of a spacecraft software.
Identified design patterns are e. g. a “control block” or the concept of “vari-
able monitoring”. Based on these design patterns, the framework identifies a
number of abstract interfaces and concrete elements13 provided by the frame-
work. These concrete elements are some kind of managers, which call a list
of registered software elements via the abstract interfaces (see Figure 3.14).
For example, a controller manager executes a number of software components
implementing the Controllable interface.

While the concept of the OBS Framework is interesting, the design lacks a
certain maturity for practical use. For instance, the execution concept depicted
in Figure 3.14 results in one component being called from multiple managers
12A reference architecture is a template solution for a software architecture of a particular

domain [108].
13These elements are called “components” but should not be confused with a component-

based software design.
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Figure 3.14.: Overall structure of the OBS Framework with different managers
executing plug-in components which implement a certain interface
([89], p. 121).

at arbitrary intervals, making a real-time schedulability analysis difficult and
eventually breaking the inner state of a component.

In effect, the OBS Framework never left the laboratory state. Still, it is a well-
documented early example of a spacecraft software framework. The source code
is available in public [90].

3.6.2. OBOSS-3

The Onboard Operations Support Software (OBOSS) framework is another
early, but quite sustained project to develop a on-board software framework.
Initiated by ESA in 1999 [104], it has been maintained and managed by TERMA
with ESA support. In contrast to e. g. the OBS Framework, it has a very specific
focus: Its goal is to provide a framework written in Ada, for PUS-based data
handling software for satellite buses or instruments.

As such, it delivers a configurable packet router and a number of default PUS
service implementations, which allow to define application processes and assign
service instances (see Figure 3.15). The framework is capable of routing TC and
TM packets between different application processes and supports the detailed
definition of packet content.
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Figure 3.15.: OBOSS architecture outline (from [99]).

While this is a useful activity for a framework, its scope is limited to that of
the PUS services. For example, it does not support the design of equipment
handling or any additional control logic. Moreover, it is a framework fully
dependent on the ECSS PUS standard and therefore not universally usable
(see Section 3.5.3).

Still, if it fulfils the need of a project, e. g. to develop a PUS-capable space
instrument controller, OBOSS may be a robust and well-established choice.

3.6.3. RODOS

The goal of RODOS is to provide a highly dependable real-time operating sys-
tem (RTOS) which is explicitly developed for space missions. It is a project
of DLR Bremen and is available open source [85]. To reach a high level of de-
pendability, the focus is put on a small, yet complete microkernel to deliver the
essential functionality of on RTOS, such as time, processor and memory man-
agement. Also, RODOS provides board support packages for various execution
platforms, including LEON processor boards.

In addition, the main architecture of RODOS is defined as network centric:
It means that all applications communicate with each other in a network-like
fashion with a publish-subscribe mechanism. This is an interesting approach
for application separation, and makes RODOS well-suited for systems with
on-board networks, as well as distributed computing topologies.
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However, being primarily an operating system, RODOS does not support the
actual design of higher-level FSW applications and does therefore not provide
additional input for this survey.

3.6.4. ESA On-Board Software Reference Architecture

The On-Board Software Reference Architecture (OSRA) concept is an ESA
programme under the hood of the Space Avionics Open Interface Architec-
ture (SAVOIR) initiative. Its goal is to define an agreed FSW reference archi-
tecture for future space missions, which supports the space industry by allowing
“faster, later, and softer” FSW implementations [56]. The initiative exists for
almost ten years to date, but has not yet produced a final reference architecture
documentation. Still, a number of handbooks exist, which outline concepts and
goals of OSRA.

Being an ESA initiative, OSRA incorporates many requirements of CCSDS
and ECSS standards, e. g. CCSDS SOIS (see Section 3.4.3). Even though the
reference architecture is not accompanied by or derived from a full sample
implementation, and therefore not necessarily useful (see Section 2.3.2), there
are many prototyping activities to avoid an overly theoretical concept.

Figure 3.16.: Basic layout of the On-Board Software Reference Architecture
(from [56]).

Technically, OSRA defines a model- and component-based approach to define a
software architecture for space systems. This architecture is divided into three
layers (see Figure 3.16).

• A component layer, which constitutes application elements.

• An execution platform layer which provides services for application com-
ponents.
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• An interaction layer, which bridges interactions between the other two
layers.

From the OSRA concept, the most interesting element is the overall component-
based approach, with interaction via interfaces, to support separation of con-
cerns and encapsulation, as well as reusability of software. The general idea is
in line with that identified in Section 2.3.3 of this thesis.

Also, OSRA describes a number of interesting consequences from that design
decision. One point noteworthy is the strict separation of a specific technology
or protocol from the application logic. In effect, there is a wrapper or abstrac-
tion layer for the RTOS used, but also for the protocols on the space-ground
link.

Feat.: FSW.1 RTOS abstraction
Hide the details of the operating system used from the application logic, to avoid
dependence on a certain RTOS.
Feat.: FSW.2 Space link abstraction
Ensure the application logic does not depend on a dedicated space link protocol.

OSRA also recommends some good practices for component and interface de-
sign. However, it does not provide a detailed concept on what a component
should be, this is up to the implementation. Also, being a reference architec-
ture and not a ready-to-use framework, many concepts are rather vague, such
as how to actually separate the space-link protocol and applications.

Nonetheless, OSRA describes a wide number of interesting topics to use for
modern FSW developments.

3.6.5. NASA Core Flight System

The core Flight System (cFS) is an effort of NASA’s Goddard Space Flight
Center to find a better way of FSW reuse than the traditional “clone and
own” strategy ([86], p. 18). The initiative started in 2005 and an early version
flew in 2009 on-board the lunar reconnaissance orbiter spacecraft. Since then,
NASA continuously enhanced the software and promotes its use for various
space missions.

The main idea of the cFS is to enable the creation of software applications which
are 100% reusable for different space missions. To do so, a layered approach was
chosen, which hides most of the used hardware and RTOS from the application
layer. Also, the cFS provides a core system, the core Flight Executive (cFE),
which manages application execution with a so-called Executive Service and
provides some fundamental services to applications. These services are:

• Event Service: Distribute events between apps.
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Figure 3.17.: cFS software layers and components (from [86],p. 54)

86



3.6. Existing Flight Software

• Software Bus: Allow asynchronous inter-process communication (IPC)
via messages.

• Table Service: Manages tables used by applications to store and share
various kinds of configuration data.

• Time Services: Provide a common clock and conversion mechanisms for
time codes.

On this foundation, the cFS comes with a number of default applications, which
need to be supplemented by mission-specific apps to build a complete FSW.
The layered architecture is depicted in Figure 3.17. The system is programmed
in C and most of it is available open-source.

The cFE core layer and abstraction layer already provide some interesting fea-
tures: Like OSRA, the cFS proposes RTOS and hardware abstraction to a
certain degree. The Executive Service, however, is more than a simple RTOS
abstraction. It allows stopping and starting applications at run-time, which
is particular useful for quick ground test setups and partial in-flight software
updates. Another interesting application is the Table Service, which allows ap-
plications to store run-time adjustable configuration data, such as subscription
or filter lists. This is a useful feature for a generic FSW, even though the format
of such data is not necessarily in table form.

Feat.: FSW.3 Application control
Allow partial restart and updates of applications for testing and maintenance.
Feat.: FSW.4 Run-time configuration data
Provide applications with run-time adjustable configuration data space.

All other applications and concepts of the core layer are already mentioned
elsewhere.

The available default applications of the cFS are another source of FSW fea-
tures. They are listed in Table 3.4. While the idea of most of these applications
has already been captured, e. g. by a similar PUS service, there are some inter-
esting details to consider:

• The Checksum app provides a configurable out-of-the box memory scrub-
ber, which allows checking and eventually correcting radiation induced
memory corruptions.

• The Data Storage app uses file-based storage of messages, e. g. housekeep-
ing packets, which makes a simple, yet efficient store for TM packets.

• The Software Bus Network app enables distributed systems by extending
the local software bus over some on-board network.
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Application Function

CFDP Transfers/receives file data to/from the ground using CCSDS
CFDP

Checksum Performs data integrity checking of memory, tables and files
Cmd Ingest Lab Accepts CCSDS TC packets over a UDP/IP port
Data Storage Records housekeeping, engineering and science data onboard for

downlink
File Manager Interfaces to the ground for managing files
Housekeeping Collects and re-packages telemetry from other applications
Health & Safety Watches critical tasks check-in, services watchdog, monitor CPU

utilization
Limit Checker Monitor values and take action when exceed threshold
Memory Dwell Allows ground to telemeter the contents of memory locations for

debugging
Memory Manager Provides the ability to load and dump memory
SW Bus Network Passes Software Bus messages over various “plug-in” network

protocols
Scheduler Schedules onboard activities via (e.g. HK requests)
Scheduler Lab Simple activity scheduler with a one second resolution
Stored Command On-board Commands Sequencer (absolute and relative)
TM Output Lab Sends CCSDS telemetry packets over a UDP/IP port

Table 3.4.: List of cFS applications. Those shown greyed out are meant for a
laboratory environment only (from [86], p. 85).

For a generic FSW, this drives the following requirements:

Feat.: FSW.5 Memory scrubbing
Provide a concrete method to check for bit flips in memory.
Feat.: FSW.6 File-based TM storage
Use files to store telemetry data.
Feat.: FSW.7 Software bus gateway
Provide extensions for the internal software bus to allow distributed computing.

In summary, the cFS is a very mature system to develop a FSW, as it pro-
vides programmers with common default functionality and the layering allows
adaptation to many different hardware environments. Also, it does define an
overall software architecture with clean interfaces between applications and the
system.

Comparison of OSRA and cFS

As both major FSW endeavours of ESA and NASA have similar goals, i. e.
improve reuse of FSW, it may provide some insight to compare the designs of
OSRA and the cFS.

Conceptually, many of the cFS applications have a counterpart in the ECSS
PUS standard and therefore in OSRA, such as the Memory Manager or the
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Housekeeping service. However, there is a fundamental difference: The cFS is
an existing software, and the cFS apps are standalone executables. There is
no standardized interface document for the system, nor does NASA provide
anything similar. In contrast, OSRA, as a reference architecture, defines the
concept of a FSW only, with PUS services and SOIS as interface definitions.
No default implementation is provided.

This setup reflects the different mission philosophies of NASA and ESA. While
the former does not only define, but also builds most space missions in-house,
ESA typically specifies a spacecraft, with the actual work done by industry. In
effect, the emphasis at NASA on working programming code is much higher
than at ESA, where the primary interest is on precise specification of the space-
craft capabilities and the space-ground interface.

Both approaches have their benefits: While the NASA approach ensures that
the cFS has high practical relevance, with little effort spent on anything other
than a working product, the ESA OSRA concept introduces advanced theoreti-
cal concepts which may aid creating more complex software. Also, the focus on
abstract standards in contrast to a complete software product avoids the risk
of obsolescence due to technological advancements.

3.6.6. GenerationOne

GenerationOne is a Flight Software Development Kit (FSDK) especially de-
signed for small satellite missions by Bright Ascension Ltd., a British space
software company [8], which is also involved in some OSRA studies.

The main FSW architecture is component-based in the sense that software
components for many types of off-the-shelf hardware are available. A service-
based software framework and code generators, which are fed by configuration
files, produce much of the fundamental code for using the selected hardware
(see Figure 3.18). If a FSW is intended for use in multiple missions, this is an
important feature to consider:

Feat.: FSW.8 Off-the-shelf components
Allow the design and composition of off-the-shelf software components, e. g. for
common hardware.

Also, similar to the OSRA concept, the product provides hardware, RTOS, and
space link protocol layering, which makes components highly portable.

The existing number of off-the-shelf components, together with a well-estab-
lished development tool chain and support for testing and mission operations,
make the generationOne software an interesting product. However, being a
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Figure 3.18.: Tool chain of the generationOne Flight SDK to generate FSW and
documentation.

closed-source commercial activity, it is difficult to perform an in-depth assess-
ment of its functionality. Also, its current focus on CubeSats limits its applica-
bility for larger missions, which may require additional features, e. g. to manage
redundancies.

3.7. Synthesis

The goal of this domain analysis is to define one set of requirements for a FSW
product. Therefore, the scattered and unordered findings from the diverse
evaluated sources need to be combined to a single set of features.

A first step of this synthesis is to break up the dependency on a certain data
source and use the top-level features of Section 3.1 as initial categories, which
are displayed in Figure 3.19.

Flight software

Component management System management Operations Autonomy

Figure 3.19.: The main top-level features any FSW must provide.
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Within these topics, removing duplications and more fine-grained categorization
takes place. The results are displayed in the form of dedicated feature diagrams.
As illustrated in Section 2.3.5, filled circles indicate mandatory, empty circle
optional features. Filled squares represent groups of OR features, empty squares
groups of XOR features.

To allow tracing the original sources of requirements, a synthesis table for each
category is provided in Appendix B.2, which links the synthesised require-
ment to its origins and also highlights duplicated requirements from different
sources.

3.7.1. Component Management

The component management top-level feature contains all features and require-
ments related to the execution and management of standalone software com-
ponents. Thus, it is about the handling and support of software elements in
a generic flight software. The term component itself is rather vaguely defined
here: A component is an independently executing software element of an overall
application, e. g. an embedded control algorithm.

Flight software

Component management

1 Execution

1 Cyclic execution

2 Execution control

3 RTOS abstraction

4 Schedulability

5 Hardware abstraction

6 Distributed computing

a IPC gateway

7 Off-the-shelf components

2 Component support

1 IPC

a Data distribution

b Event distribution

2 Configuration data

a File management

3 Time management

4 Action execution

5 Component modes

3 Software maintenance

1 Resource monitoring

2 Memory scrubbing

System management Operations Autonomy

Figure 3.20.: Feature diagram of component management requirements.
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Requirements for this category are summarized in Figure 3.20, which is broken
in three main sub-categories:

• Component execution summarizes the requirements to execute soft-
ware elements. To avoid dependence on a certain operating system or
execution hardware, abstraction layers are introduced. Special cases are
supporting execution of components in a distributed environment, as well
as the possibility to utilize and provide off-the-shelf components.

• Component support collects features which intend to support compo-
nents in their execution. Many features are similar to the services defined
in the SOIS application support layer (see Section 3.4.3), but there are im-
portant additions, such as supporting configuration data and component
modes, e. g. for the different modes of a control algorithm.

• Software maintenance is a category to collect supporting features for
the FSW itself. These features are meant to ensure dependable computing
in space, such as memory scrubbing to retain memory integrity.

3.7.2. System Management

This category contains requirements related to managing spacecraft equipment
and subsystems within the FSW. In contrast to the former category, these
requirements deal with the interaction of FSW with external elements, such as
sensors, and with their internal representation.

As can be seen in Figure 3.21, the three main categories are:

• Equipment: A collection of requirements regarding the handling of a
single on-board equipment, typically sensors or actuators. The require-
ments are not only about data acquisition and commanding of equipment,
but also about more abstract concepts such as handling equipment modes.

• Subsystems: These requirements deal with representing and utilizing
the concept subsystems in software. This includes management of redun-
dant equipment, as well as representing subsystem modes and handling
of mode transitions. For simple spacecraft, the entire category may be
omitted.

• On-board communication: This category summarizes requirements
related to on-board communication, e. g. over a network or a direct con-
nection to a device. An important aspect is communication layering.
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Flight software

Component management System management

1 Equipment

1 Monitoring

2 Access

a Commanding

b Data acquisition

3 Value conversion

4 Eq. representation

5 Equipment modes

2 Subsystems

1 Redundancy mgmt

2 Health states

3 Subsys. representation

4 Subsystem modes

a Mode transitions

3 On-Board Communication

1 Communication Layering

2 Subnetwork access

a Packet based

b Memory based

3 Network types

a Mulitdrop buses

b Point-to-point

c Homogeneous networks

4 Interface types

a MIL-STD-1553B

b SpaceWire

c CAN

d Ethernet

e Embed. serial buses

Operations Autonomy

Figure 3.21.: Feature diagram of system management requirements.
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3.7.3. Operations

The operations category of requirements contains three sub-categories as well:
Control, monitoring and the space link, as depicted in Figure 3.22. The first
two categories contain requirements for interaction between a ground segment
and the spacecraft on OSI application level in an abstract way, i. e. there are
no specific services defined, only categories.

Flight software

Component management System management Operations

1 Commandability

1 Common commanding

2 Action commanding

3 Parameter access

4 Memory access

5 Mode commanding

6 Critical commands

7 Authentication & authorization

2 Observability

1 Event reporting

2 Housekeeping reporting

3 Activity reporting

4 OB monitor reporting

3 Space link

1 Space link abstraction

2 OSI 2 data link layer

a CCSDS frames

b AX.25 frames

3 OSI 3 networking layer

a Space packets

b Encapsulation packets

4 OSI higher layers

a PUS services

b MO services

5 CCSDS Time Codes

Autonomy

Figure 3.22.: Feature diagram of requirements related to operations.

In contrast, the space link category defines options for a concrete protocol stack
to communicate with a spacecraft.

• Commandability: This category mainly comprises of different kinds of
commands in an abstract sense, which are used for nominal operations
and maintenance. In addition, safety and security measures regarding
commanding are included.
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• Observability: In a similar abstract manner as the control category, the
monitoring category collects different types of reports a FSW ought to
provide.

• Space link: The concrete protocols define choices to set up the complete
space communication stack. The options are grouped according to the
OSI layer model. Most protocols stem from CCSDS standards.

3.7.4. Autonomy

The final category of requirements collects FSW needs with regards to on-board
autonomy.

These requirements are sorted in two categories:

• Autonomous operations are FSW requirements which enable the space-
craft to perform activities out of sight of a ground station. In a simple
form, executing pre-planned commands and storing telemetry and mis-
sion products is sufficient. More enhanced FSW may support concepts
of on-board planning and autonomous mission execution. Depending on
the complexity of the mission, these last points may become arbitrary
complex and require additional subfeatures. However, they are optional
for typical earth observation satellites.

• The second autonomy aspect is fault management, which deals with
on-board detection, identification and isolation of equipment faults, as
well as a recovery, if possible.

3.7.5. Summary

The identified set of features and requirements form the baseline of what a
generic flight software shall provide. In an abstract sense, the main four cate-
gories deal with the internal organization of the software, the representation and
management of equipment and subsystems, interfacing with ground operators,
and on-board autonomy, as illustrated in Figure 3.24.

A key challenge for providing a generic FSW as a product is to handle the
high variability in processing hardware, real-time operating system, as well as
sensor and actuator equipment, without compromising efficiency of the embed-
ded system. Moreover, using the product must provide a benefit in terms of
development effort, i. e. using a generic FSW must be more efficient than doing
development from scratch.

Still, the commonalities in FSW duties found in this analysis, and the already
performed research such as the cFS or OSRA, indicate that it is possible to
create a FSW product which allows improved forms of software reuse and by
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Flight software

Component management System management Operations Autonomy

1 Autonomous operations

1 Command scheduling

a Command injection

b Command storage

2 Information storage

a File store

b Packet store

3 Mission goal representation

4 Procedure execution engine

2 Fault management

1 On-board monitoring

2 Failure reactions

3 Hierarchical FDIR

Figure 3.23.: Feature diagram of requirements related to spacecraft autonomy.
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Figure 3.24.: Relationship between feature categories and system elements.
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that reduces development time and cost while maintaining or even improving
software quality.

Non-Functional Features

Some features identified in the domain analysis do not fit into one of the above
categories, as they are not related to a functionality, but to the structure of the
software itself.

Namely, these are FLP.17 on software modularity, ECSS.1 on unit tests and
ECSS.2 on the hierarchical structure of software, as well as FSW.8 on off-the-
shelf components. These features are not included in the feature tree, but taken
into account on architectural level of a software design.
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This chapter describes the implementation of the Flight Software Framework
(FSFW), which utilizes modern software engineering techniques to fulfil the
requirements for a generic, reusable flight software.

To introduce the concepts, the main architectural design and its rationales are
outlined briefly in Section 4.1. This overview is followed by a description of
the software for the small satellite Flying Laptop in Section 4.2. This concrete
flight software (FSW) is based on the FSFW, and therefore provides a practical
example to illustrate its inner workings. The following sections dig deeper into
the implementation details of the framework:

• Section 4.3 outlines common interfaces, which define a set of default func-
tionality components can offer and use.

• This is followed by a description of the FSFW-Core in Section 4.4, which
ensures safe execution of components and communication between them,
as well as accessing the underlying execution platform from components.

• Section 4.5 describes component templates, which facilitate the implemen-
tation of components.

• The FSFW PUS Framework, a collection of software elements to imple-
ment the PUS space link protocol, is described in Section 4.6.

• Finally, Section 4.7 describes the infrastructure to develop FDIR func-
tionality as an integrated, hierarchical part of a FSFW-based software.

4.1. The Flight Software Framework Architecture

The goal of the FSFW design is to utilize software engineering techniques to
make a reusable FSW, which implements the concepts found in the domain
analysis.

To improve separation of concerns, the FSFW aims for a component-based soft-
ware architecture. This means, a well-defined set of interacting components
forms the overall software. These components interact by making use of a
lightweight component framework, the FSFW-Core, which ensures real-time ca-
pable information exchange between components.
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Creating independent components on the basis of a framework fosters software
reuse by using entire components again for different missions. However, as
soon as the hardware environment changes, e. g. the processor architecture of
the on-board computer (OBC), enabling reuse requires to separate components
and the framework from dedicated execution platforms, on-board networks and
operating systems. Therefore, the FSFW introduces abstraction layers, to allow
portability of the software to different environments.

Moreover, to reduce coupling between components, this thesis defines a set
of common interfaces both for inter-component and ground communication.
These interfaces resemble a fixed set of service interface definitions from SOA
(see Section 2.3.4). They are the main means of interaction between compo-
nents and define the functionality a component provides.

Figure 4.1.: The FSFW architecture with components, the FSFW-Core and
execution platform abstractions.

These “invariants of design” ([91], p.31), as depicted in Figure 4.1, form the
foundation of the FSFW architecture defined in this thesis. They are the fun-
damental principles describing how the different parts of the software form
one application. The following sections provide details and rationales for the
described concepts.

4.1.1. Software Components

A flight software implementation which uses the FSFW as basis is assembled
from a number of individual software components.

This term requires a precise definition, as its meaning varies in different con-
texts. OSRA, for example, defines components as an abstract piece of software,
which is a standalone service provider that can be assembled with other pieces,
and may itself consist of smaller parts [56].
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However, this definition doesn’t aid developers in defining components for their
mission. Therefore, the FSFW employs a narrower definition of what a com-
ponent is. In the context of the FSFW defined in this thesis, a component
is

• a standalone element of real-time capable execution,

• which acts as service provider and eventually service consumer in the
sense of SOA services (Section 2.3.4), and

• represents an individual part of the overall system.

The last part of that definition means that each software component represents
a part of the spacecraft system. In effect, the FSFW identifies four classes of
components:

• Device handler components, which represent, control and monitor
equipment, i. e. sensors and actuators of the spacecraft system.

• Controller components, which perform some form of control activity
for the spacecraft.

• Subsystem components, including assemblies, which represent the
engineering concept of a spacecraft subsystem and a redundant set of
equipment, respectively.

• Ground service components, which provide specific functionality rel-
evant for ground interaction.

This clear definition eases understanding and communication between software
and other system engineers, as creating components with an immediate meaning
makes their scope and responsibility obvious1.

To simplify implementing these types, the FSFW provides so-called component
templates2. They support programmers by offering recurring functionality of
a specific component type, which ensures the component is compatible to the
FSFW core.

Technically, a component is an instantiation of a C++ class, which must im-
plement certain interfaces to allow interaction with other components and the
FSFW-Core. Thus, component templates are implemented as abstract base
classes, a concept explained in Section 2.3.2. This means that components
are subclasses of a given template, and need to provide implementations for
adaptation points to define component-specific behavior.

1This is an important aspect, as object-oriented (OO) frameworks often fail to correctly
reflect the ontology of their target domain [92].

2The term template is used in the sense of a boilerplate, and not related to the C++
template language feature.
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Goal of the FSFW is to create reusable components. For example, a device
handler component for a certain sensor, e. g. a star tracker unit, shall be reusable
without changing its source code, if another mission uses the same sensor.

4.1.2. Common Interfaces

Interfaces define the functionality a component offers to other components. By
hiding implementation details from interface users, this powerful concept of
object-oriented programming (OOP) reduce coupling between components.

Figure 4.2.: Illustration of components providing and calling interfaces. Sub-
classes can extend the interfaces provided by component templates.
Interaction is managed by the FSFW-Core.

One goal of this thesis is to identify generic interfaces, which define a common
functionality of different types of components. To find these interfaces, the
FSW feature tree defined in Section 3.7 serves as a guideline. When checking
it for recurring features, the following functionality can be identified:

• Actions: Actions are sporadic, finite, externally triggered activities of
components. This functionality is identified for device handler compo-
nents in feature S.1.2a and C.1.4, e. g. for commanding a payload, and
also for general commanding in feature O.1.2. Thus, it is useful for other
sporadic activities as well, e. g. for resetting a control algorithm.

• Modes: The concept of a mode, which defines the permanent behavior of
a component, occurs surprisingly often in the feature tree, for controllers
(C.2.5), equipment (S.1.5), and subsystems (S.2.4). Therefore, a common
interface definition to read and set a component mode is reasonable.

• Health: The idea of a health state (S.2.2), i. e. whether the component
(and represented hardware) is available for operations, has its most obvi-
ous use for device handler components. Still, a common interface to read
and modify this state is useful, as it is required for e. g. FDIR.
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• Parameters: Parameters, i. e. variables which are adjusted occasionally,
are typical for controller components, but in fact are ubiquitous in a FSW
(O.1.3). A well-defined common interface simplifies reading and adjusting
such on-board parameters.

• Memory: Feature O.1.4 identifies the need for low-level memory access.
For reading and writing memory of a local processor, a common interface
is, strictly speaking, not necessary. However, there is also requirement
S.3.2b to enable access to memory regions in other equipment on a space-
craft over the on-board network, e. g. for dedicated mass memory units.
The memory interface unifies the way device handler components make
such memory accessible.

The FSFW defines interfaces for each functionality and ensures access is pos-
sible using the message-based software bus of the FSFW-Core.

As, ultimately, every component is an object, the FSFW provides interface
definitions in the form of standard OO interfaces (see Section 2.1.4 for the
programming technique).

Components can choose to implement a selection of these interfaces to offer
the corresponding functionality to other components. As shown in Figure 4.2,
component templates already implement certain interfaces, but extension by
subclasses is possible.

4.1.3. The FSFW-Core

To support execution and allow interaction between components, the FSFW
developed in this thesis provides a framework called the FSFW-Core. It delivers
the following functionality to components:

Figure 4.3.: The elements of the FSFW-Core layer.

• Communication: Supporting communication between components is a
major task of the FSFW-Core. To ensure real-time execution of compo-
nents, three methods of asynchronous information exchange are provided:

103



4. The Flight Software Framework

– A messaged-base interface invocation scheme, which forms a software
bus for component interaction.

– In addition, the core provides the possibility to distribute events
within the system.

– Message-based interaction is supplemented by a data pool for ex-
change of periodic data, such as sensor measurements.

• Execution: The FSFW-Core provides software elements and interfaces
to schedule components. This happens either on a periodic basis, typically
needed for control algorithms, or in fixed time slots, e. g. if an on-board
bus is utilized by different components.

• Clocks and Timers: In addition, the FSFW-Core delivers a common
clock source to components in different formats and provides facilities
to manage and set the on-board time. Also, software timers to measure
intervals are provided.

• Data containers: The FSFW-Core provides containers to store and
modify run-time adjustable data, such as telemetry configurations, of
components. These containers are compatible to real-time embedded sys-
tems, as they are not susceptible to fragmentation. In many cases, they
are replacements for common C++ Standard Template Library (STL)
container implementations.

For most of that functionality, the FSFW-Core makes use of the underlying
real-time operating system (RTOS). To avoid being dependent on one specific
product, functionality is accessed via interfaces only, as shown in Figure 4.3.
Likewise, the FSFW-Core defines a software interface to provide abstraction
from a specific hardware interface.

4.1.4. Layering

Reusing a software in the embedded domain is much more difficult than in a
e. g. web or desktop environment. The reason for this is that the latter builds
on a complex set of layers introduced by the operating system infrastructure or
the browser, with abstract device access and virtual machines.

To increase reusability of embedded software, it is necessary to efficiently in-
troduce at least some of that layering. To separate the FSFW from hardware,
two elements need to be decoupled:

• The RTOS: Using an RTOS is typically a good idea, as it helps to
achieve abstraction from the underlying execution platform, i. e. the pro-
cessor. In general, RTOS provide features for tasking, inter-process com-
munication (IPC), and clock management. However, not every RTOS is
available for every hardware platform.
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• Hardware interfaces: The variety in on-board networks and periph-
erals is large in spacecraft systems. Therefore, to increase the chance of
reuse of the software, it is desirable to introduce a layer of abstraction for
utilized hardware interfaces.

Figure 4.4.: The three main layers of the FSFW.

The FSFW designed in this thesis separates the RTOS with a set of interfaces,
e. g. for task creation and control, which the RTOS needs to provide. As third-
party software will not comply to these interfaces, dedicated wrappers for every
RTOS are required.

A similar approach is followed for hardware interface separation. The FSFW
defines a dedicated interface type for drivers, which provides means to configure
and use a connection to some peripheral. Sending and receiving data happens
by calling the interface, which, in fact, is an OO version of the socket API for
network programming on desktop systems.

With this platform abstraction layer, the FSFW consists of three layers:

• Component layer: The layer that contains the application-level com-
ponents.

• Core layer: This layer connects components, as well as components and
the underlying hardware.

• Platform abstraction layer: This layer makes the underlying hardware
- processors, memory and interfaces - available to components.

A layers perspective of the FSFW is depicted in Figure 4.4. The interface
definitions of the FSFW-Core ensure that neither components nor FSFW-Core
elements depend on a specific execution platform.
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4.1.5. System Cognizance

Representing and managing spacecraft equipment is the most underestimated
functionality a FSW needs to provide. In many cases, sensor and actuator man-
agement is regarded as part of the control algorithms, or some lower software
layer, related to the on-board network. As argued in [91], Sec. 4.2.1, marginal-
izing equipment handling leads to bad designs, where e. g. fault management
relies on some vaguely related parameter to identify equipment faults. Still,
without timely, correct commanding and monitoring of devices, even the best
controller design is useless, as it neither receives useful input nor are its control
commands adequately executed.

Figure 4.5.: An example set of FSFW components with control data flow (thick
arrow) and mode dependencies (thin, dotted arrow).

Therefore, the FSFW tackles equipment handling explicitly: Each equipment
is represented in software by a dedicated “control" component, called a device
handler, whose purpose is to control and monitor the status of, and communi-
cation with, external equipment. Also, it represents the equipment internally
and for the ground segment.

This has the following advantages:

• Device handlers explicitly control and monitor interaction with the device.
This does not happen in some ad-hoc manner, e. g. within the control
algorithm.

• Thus, device handlers encapsulate knowledge of device-specific properties
such as initialization commands, the communication protocol and mea-
surement representations.
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• Being the internal representation of a sensor or actuator, device handlers
are the single source of state knowledge of the equipment, e. g. they de-
termine the health state of equipment.

• State information, as well as measurements and command data, is ex-
changed with other components in a disciplined manner, e. g. via a com-
mon interface, which, for example, makes fault management more explicit
and therefore more simple.

Likewise, the abstract engineering concepts of subsystems and assemblies get a
dedicated representation in the FSFW. Their goal is to determine and manage
the mode of a subsystem, which is an emergent property of the mode and
health states of all its controllers, equipment and sub-subsystems. In addition,
assemblies encapsulate the rules of handling redundant equipment on-board the
spacecraft. The basic concept is depicted in Figure 4.5.

It is important to emphasize that the resulting component hierarchy is flat, i. e.
device handler components are on the same hierarchical level as controller or
other components. This is a good design choice, as it avoids deeply nested,
suboptimal hierarchies, which have difficulties to define how, for example, a
temperature delivered by an attitude sensor is transported to a thermal con-
troller [91].

In effect, these types of components ensure that the control system is explicitly
aware, or cognizant, of the state of the system under control. In conjunction
with the framework interfaces for mode and health management, this approach
simplifies many aspects of spacecraft operations and on-board fault manage-
ment, as will be revisited later.

4.1.6. The Space Link

Feature O.3.1 of the feature tree in Figure 3.22 highlights the value of avoiding
a dedicated space link protocol dominating the framework. This is easy for the
lower layer protocols (e. g. the data link layer), as the FSW is largely unaffected
of a specific choice. However, as discussed in Section 3.5.3, it is more difficult
for the application layer protocol, which is closely related to the functionality
of an application.

The strategy to solve that issue in the FSFW is based on the following con-
cepts:

• The FSFW does not use the space link protocol for internal messaging.
Instead, a dedicated, lightweight protocol is used. It is, however, possible,
to distribute TC and telemetry (TM) packets in their native format where
necessary.
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Figure 4.6.: Service gateway components and standalone components in the
FSFW. Solid lines indicate TMTC communication, dotted lines
messages on the internal software bus.

• To communicate with components from ground, so-called service gateway
components are introduced, which translate between the space link and
the on-board protocol.

• In addition, there are standalone service components, which provide ded-
icated, protocol-specific services, such as a TC scheduler.

These ideas and their interactions are illustrated in Figure 4.6. In effect, only
service components depend on the space link protocol, and need adjustment in
case that protocol changes, all other component types do not.

As the ECSS PUS, described in Section 3.5.3, is the dominating application
layer protocol in Europe, the FSFW comes with a dedicated PUS framework
tailored to implement PUS service components on-board. Details of that PUS
framework are found in Section 4.6.

4.1.7. Summary

The FSFW allows the creation of a spacecraft FSW by programming a number
of independent, but interacting components. The component-based approach
and the well-defined framework interfaces make sure that coupling between
components is loose, while still maintaining uniformity. Handling of different
components is possible with identical command invocations.

With that basic layout, it is an implementation of many concepts defined of the
OSRA specification and the CCSDS MO services, while pursing the same goals
with regards to practicality and reusability as the NASA core Flight System.
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4.2. The Flying Laptop Software

The overview of the FSFW architecture described in the previous section may
not provide insight in the actual use of a component framework for spacecraft
software. Therefore, this section is about leaving the realm of theories and
deploying the idea to a real system: The small satellite Flying Laptop.

The Flying Laptop software was written as part of this thesis to verify the
conceptual design of the FSFW with a hands-on example.

As frameworks in general and the FSFW in particular already prescribe an
architectural design, getting started with the software development becomes
more simple. In fact, the main design process for a FSFW-based flight software
implementation is to define the mission specific components, wrappers and
drivers. These are the blue elements in Figure 4.1.

This definition process comprises the following three domains:

• Platform abstraction layer: Depending on selected hardware and
RTOS, defining wrappers for device drivers and the operating system
is necessary.

• Component definition: For the space mission at hand, the list of com-
ponents, i. e. device handlers, controllers, subsystems, and service com-
ponents are to be defined.

• Space link protocol: Also, selecting a specific space link protocol is
important, as well as the necessary components to handle the protocol
itself. Service components are directly affected by that selection.

The presented software layout will serve as example to explain the details of
the Flight Software Framework in later sections.

To avoid an excessive description of Flying Laptop’s subsystems, many elements,
such as specific sensors, will be introduced without explanations beyond those
from the introduction to Flying Laptop in Section 3.3. Also, some details have
been omitted for brevity, such as a control component for the data downlink
system (DDS). A more profound description of the system is found in dedicated
literature, e. g. [55].

4.2.1. Platform Abstraction Layer

As described in Section 3.3.2, a processing board with a LEON3-FT UT699
microprocessor with SPARC V8 architecture controls Flying Laptop, with four
SpaceWire lines as main hardware interface. Due to the good support by the
board’s vendor, the Real-Time Executive for Multiprocessor Systems (RTEMS)
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was selected as RTOS. To use the FSFW in that setting, a wrapper to connect
RTEMS with the FSFW is necessary.

Figure 4.7.: Platform abstraction layer for the Flying Laptop flight software.

Also, the SpaceWire connections require to either wrap an existing driver or to
write a dedicated FSFW-compatible driver. For Flying Laptop it was decided
to write a custom driver for the interface [83].

Therefore, with the wrappers in place, components can directly use RTOS
features or access the SpaceWire lines via the interfaces defined in the FSFW.
The setup is depicted in Figure 4.7.

Due to the OBC design described in [52], the IO-Board and CCSDS-Board
are not treated as part of the execution platform, but instead are considered
as remote equipment, which is managed by dedicated device handling compo-
nents.

4.2.2. Device Handler Components

An important aspect of the FSFW is that each on-board equipment is repre-
sented by a device handler component, as explained in Section 4.1.5. Thus,
each Flying Laptop sensor and actuator has such a representation.

This is the case for both bus and payload equipment. As the payload on-board
computer (PLOC) is responsible for data management only, all payloads are
controlled by the OBC.

For the FSFW, devices are standalone parts of the system with a certain sensing
or actuation purpose. Also, they allow some kind of digital communication with
the OBC. For this reason, simple equipment, such as sun sensors or temperature
sensors of Flying Laptop do not require a dedicated device handler component.
Instead, they are handled by the component reading out the value and the
responsible controller components.
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Figure 4.8.: Device handler components of the Flying Laptop bus system.

Figure 4.9.: Device handler components of the Flying Laptop payloads.
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Figure 4.8 displays all device handling components of the Flying Laptop bus,
ordered by main subsystems for clarity. There is a dedicated device handler
instance for every equipment, i. e. there are four reaction wheel (RW) device
handler instances3.

In the same style, Figure 4.9 shows all device handler components of the pay-
load.

Details on how device handler component communicate with other components
or their device, as well as what they actually do, can be found in Section 4.4.6
and Section 4.5.1, respectively.

4.2.3. Controller Components

While device handler components control and monitor equipments, the system-
wide control algorithms are managed in dedicated controller components.

Figure 4.10.: The controller components of Flying Laptop.

The Flying Laptop software hosts most of the typical spacecraft control loops,
which are attitude, thermal, power, and communication control (see Figure 4.10).
Also, a time controller manages on-board time and a payload controller auto-
mates certain recurring payload activities on-board.

In addition to the actual execution of control algorithms, controller components
in Flying Laptop are responsible for:

• Sensor monitoring: Monitoring sensor values with regards to absolute
limits and comparing multiple sensors.

• Sensor fusion: Processing and combining sensor input data to generate
a single spacecraft state.

• Actuator processing: Formatting the output date for single actuators,
e. g. by transforming torque commands into the correct coordinate system.

3For technical reasons, the four FOGs on Flying Laptop are represented by a single device
handler.
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4.2.4. Subsystems and Assemblies

The FSFW provides means to develop subsystem software components, as in-
troduced in Section 4.1.5. These components are responsible for determining,
controlling and representing the mode of associated software components.

Subsystem Components

With the help of subsystem components, it is possible to transform spacecraft
system mode tables of operations engineers into executable code. Thus, these
components serve two purposes:

1. They allow creating a representation of the system’s functional hierarchy
in software, by forming a so-called mode tree.

2. With that hierarchy established, they allow the abstract definition of a
subsystem mode by specifying the required modes of all children. This
is a direct representation of the mentioned mode tables, which are not
only used to check the current state, but which also enable ordered mode
transitions.

Subsystem and assembly components are branch nodes of the tree, whereas
controller or device handler components represent the leafs of the tree (see
Figure 4.11). The element of commonality of all nodes is that they have a mode,
which is adjustable via a common interface (see Section 4.3.2 for details).

Figure 4.11.: Mode tree of the ACS of Flying Laptop, with dotted lines indicat-
ing the mode dependency.

In practice, this means that there is a subsystem component for each control
domain of a spacecraft, as depicted in Figure 4.12 for Flying Laptop.
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Assembly Components

Assembly components are a refinement of the general subsystem concept to
manage redundant equipment. They extend the general subsystem with the
following functionality:

• They determine and represent the mode of a set of redundant equipment
units. For example, if at least one of a pair of redundant sensors units is
available, the sensors’ assembly is available as well.

• In case of a detected malfunction, assembly components are responsible
for redundancy switching, e. g. activating a cold redundant sensor if the
currently active one fails.

In effect, there is one assembly component for each set of redundant equipment
on a spacecraft4, as shown in Figure 4.12.

Using the Mode Tree

Figure 4.12.: Subsystem and assembly components of Flying Laptop, with dot-
ted lines indicating the mode dependency. System is a subsystem
component as well.

When combining all subsystem, assembly, controller and device handler com-
ponents of Flying Laptop, their hierarchical dependency with regards to the
4In some cases, there are also assemblies for single device handlers, e. g. there is a STR

assembly in Figure 4.11. This is useful in cases where there are internal redundancies
to manage.
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mode forms the mode tree of the system. For illustration, the subtree of the
ACS is shown in Figure 4.11. The full mode tree is found in Appendix C.1.

While defining such trees seems to be some effort, the mode tree brings three
main benefits:

1. It allows changing the mode of all components of a subsystem by issuing
a single command to the top node. This node will autonomously perform
the specified transitions. This works for subsystems, but also for the
entire system by commanding the topmost node. So the mode of Flying
Laptop’s ACS can be changed from safe to a pointing mode with a single
command to the ACS subsystem component.

2. Spreadsheets or databases maintained by operation engineers can serve
as input to auto-generate mode tables and transition sequences within
the FSFW. This ensures documentation and implementation are always
synchronized.

3. The mode tree supports spacecraft failure detection, isolation and recov-
ery (FDIR), as all subsystem components define a so-called fallback mode,
which aids in reconfiguring the system in case of equipment failures. For
example, the ACS subsystem component will trigger a fallback to ACS
safe mode if more than one reaction wheel stops working.

Assembly components play a key role in this concept, especially for the last
point: During redundancy switches of equipments, assemblies do not change
their mode, and therefore do not trigger any fallback transitions of their parent
subsystem component. In effect, switching redundant equipment does not have
an impact at system level.

As a remark, it should be emphasised that the hierarchy introduced is only
relevant for the mode tree, i. e. whose mode depends on which component.
From a software perspective, any device handler component is treated equally
to any subsystem component. Particularly, it is also possible to command the
mode of any component directly.

The inner workings of these features are further described in Section 4.5.3.

4.2.5. Space Link Protocols

The educational goal of Flying Laptop aims to train prospective space engineers
in utilizing common space standards. To reach this goal, and to fulfil the
requirements for the mission regarding communication reliability, a standard
CCSDS stack was selected for the lower layers of the Flying Laptop space link.
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Analogous to the lower layers, a network and application layer stack typical for
an European institutional mission was selected, i. e. CCSDS space packets with
the ECSS PUS-A application layer protocol5.

Figure 4.13.: Ground-space protocol stack of the Flying Laptop mission and
their handling in hard- and software.

The complete stack is depicted in Figure 4.13. As shown, most of the handling
below frame level is performed in hardware, whereas software comes into play
on networking and application layer level:

• Layer 1: The TTC receiver and transmitter hardware handle the CCSDS
RF protocol.

• Layer 2: The CCSDS-Board is responsible for frame de- and encoding,
with the exception of CCSDS TC frame reception. Frame reception, in-
cluding the COP-1 protocol, is managed in software. The functionality is
allocated to the CCSDS-Board device handler component, which extracts
space packet candidates from frames and forwards them to the CCSDS
distributor.

• Layer 3: Network layer routing of TC and TM packets happens in soft-
ware, with a CCSDS distributor component on the TC side and forward-
ing of TM packets implemented in the CCSDS-Board device handler.

• Layers 4-6: OSI layers 4 to 6 (transport, session and presentation layer)
are not used in the space link stack.

5The newer C version of PUS was not available yet during design. However, most changes
between version A and C are insignificant for the services used on Flying Laptop
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• Layer 7: PUS services are implemented as dedicated service components,
of which some handle standard and some mission specific services. These
service components are further described in Section 4.2.6 below.

To implement that functionality the PUS framework of the FSFW is used,
which is described in Section 4.6.

End-To-End Communication

The basic distribution of telecommand (TC) and telemetry (TM) within the
Flying Laptop software is illustrated in Figure 4.14.

To enable end-to-end interaction between the ground segment and software
components, some PUS services are implemented as gateway services (see Sec-
tion 4.1.6), which translate PUS packets to the internal protocol and route
the request to a software component. Other PUS components are standalone
services, which handle the incoming PUS TC directly.

In effect, the complete end-to-end TC and TM chain works as following:

• TCs are received and decoded by the receiver (Rx) and CCSDS-Board
hardware. Likewise, TM is encoded by the CCSDS-Board and linked to
ground with a transmitter (Tx).

• The CCSDS handler component transfers TC frames between CCSDS-
Board and FSW, extracts TC space packets and transfers them to the
CCSDS distributor component. The CCSDS handler also accepts TM
packets, which are forwarded to the CCSDS-Board unchanged.

• The CCSDS distributor is responsible for routing TCs with respect to
their APID. Any components can register for receiving TCs. For exam-
ple, direct routing to the star tracker handler is possible, which forwards
packets to the PUS-capable star tracker unit.

• There is one APID for all services of the FSW, within which a PUS
distributor component forwards the command to the destination service
component.

• The service components either handle incoming TCs directly (standalone
service), or translate and forward commands to another software compo-
nent, e. g. a device handler (gateway service).

• In principle, TM can be sent directly to the CCSDS handler. However, to
select and forward TM packets to the TM stores (not shown), a storage
selection component is added to the route.

With this setup, ground commands reach any service component on-board the
spacecraft and, through gateways, all other components as well.
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Figure 4.14.: Example of end-to-end communication between ground and dif-
ferent software components and equipment within Flying Laptop.

118



4.2. The Flying Laptop Software

4.2.6. Service Components

To complete the overview of the Flying Laptop flight software this section de-
scribes the standalone and gateway service components.

With the ECSS PUS-A protocol selected for Flying Laptop, each service com-
ponent represents one PUS service, with a dedicated service identifier and a
number of subservices.

Most service components are of a standard service type as described in Sec-
tion 3.5.3, but there are a number of mission specific definitions as well, espe-
cially for the gateway services. The tailoring, i. e. the selection of a set of both
standard and mission specific services, is further detailed in [55].

Standalone Service Components

Standalone service components handle PUS TC requests directly. The services
either interact with FSFW-Core elements, such as the housekeeping service
accessing the data pool, or they interact with other service components, such
as the TC verification service6.

event reporting (5)

housekeeping (3)

TC verification (1)

operations scheduling (11)

time (9)

test (17)

TC distribution

FSFW core

data pool

event manager

clock IF

any service comp.

monitoring service (12)comp. with monitors

Figure 4.15.: Standalone service components implemented on Flying Laptop
with indications which elements of the FSFW-Core they use. The
numbers correspond to the definitions of the PUS standard.

For example, as shown in Figure 4.14, the operations scheduling service com-
ponent stores time-tagged TCs internally and forwards them to the CCSDS

6Fully self-contained services would have little use to control or monitor the system.

119



4. The Flight Software Framework

distributor when due. The TC, e. g. a ping command7, then arrives at the
destined service at the planned time as if coming from ground.

All standalone service components used in Flying Laptop are illustrated in Fig-
ure 4.15.

Service Gateway Components

Another set of PUS services is translated into gateway components, meant to
bridge communication between the ground segment and individual components.
As such, each gateway component is responsible for translating PUS packets
of a single service type to corresponding FSFW messages on the software bus.
In practice, that means that e. g. the PUS memory management service (Srv.
6) translates PUS memory commands, so the request can be forwarded to any
component providing a memory interface.

function management (8)

mode commanding (200)

health commanding (201)action IF

memory management (6)
parameter management (206)

device commanding (2) mode IF

health IF

memory IF

storage and retreival (15)

parameter IF

TM store IF

device handler IF

Figure 4.16.: Gateway service components implemented on Flying Laptop with
indications which interfaces they access. Colored ellipses repre-
sent common framework interfaces, dotted ones indicate specific
interfaces.

For Flying Laptop, there is typically one gateway service for each of the common
interfaces defined in Section 4.1.2. For example, there is a custom mode com-
manding service, which receives mode TCs in PUS format from ground. These
are translated within the service and forwarded to the destination component
on the internal software bus8. For that component, the request is identical to
one from any other component in the system. Also, as shown in Figure 4.14,
any component implementing the mode interface can be target of such a com-
mand. In case of a device handler component, the command may result in one
or more commands exchanged between the device handler and its associated
equipment.

7A ping TC, or PUS test service (17,1) request, is a simple command to test the connection
to an application process. It is replied with a (17,2) report TM packet.

8A component address must be provided within the data field of the TC.
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All gateway service components of Flying Laptop are shown in Figure 4.16.
There is a deviation from the one-on-one translation to a common interface in
two cases:

• The device commanding service translates commands for the action in-
terface as well as for a specific device handler interface. Device handler
components use the former to forward high-level commands to devices,
while the latter provides low-level access. It is more convenient to use a
single service for all commands to equipment.

• For Flying Laptop, telemetry stores are implemented as semi-independent
components. Access from ground happens through a dedicated TM store
interface.

In summary, the combination of standalone and gateway components using the
FSFW allows to provide a PUS-compatible ground interface, which bridges con-
ceptual gaps between the PUS protocol and the FSFW component framework.
More details on the FSFW PUS framework can be found in Section 4.6.

4.2.7. Summary

The Flying Laptop satellite is equipped with the first flight software imple-
mentation based on the FSFW. As shown, interacting components provide a
suitable architectural design to implement a FSW. With device handler and
subsystem components a form of system cognizance is created, which improves
observability by precisely allocating state variables to a software component.
By using the FSFW PUS framework, it is possible to interact with compo-
nents from the ground segment in an end-to-end fashion using a tailored PUS
protocol.

4.3. Common Interfaces

The first FSFW elements to describe in detail are the common interfaces. Goal
of these interfaces is to define a common functionality which is shared among
different components and component types. This is useful for programming, as
accessing that common functionality works uniformly when using the interface.
Also, interfaces define a “shared vocabulary” [73] to use when talking about
components.

The FSFW defines five common interfaces, as introduced in Section 4.1.2. The
following section presents these interfaces, and outlines the syntax and seman-
tics for their implementation.
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4.3.1. HasActionsIF

Actions, in the sense of this interface, are activities with a well-defined begin-
ning and end in time. They may adjust substates of components, but are not
supposed to change the main mode of operation, which is handled with the
HasModesIF described below.

Figure 4.17.: Example image of a component providing the HasActionsIF.

In illustrations, a triangle represents that common FSFW interface (see Fig-
ure 4.17).

Example

A typical example for using an action is commanding a camera system to take
a picture. In the same manner, the device handler component for the digital
reaction wheels (RWs) of Flying Laptop implements the interface, and provides
actions to e. g. set the wheel speed. In case some other component calls the
interface, the command is checked, parameters are formatted to fit the device
native format and forwarded to the wheel, which, then adjusts its speed.

Another example is the attitude control component, for which setting a new
pointing target happens using an action.

Definition

Figure 4.18.: Signature of the HasActionsIF interface.
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The HasActionsIF allows components to define such actions and make them
available for other components to use. Implementing the interface is straight-
forward: There is a single executeAction call, which provides an identifier
for the action to execute, as well as arbitrary parameters for input (see Fig-
ure 4.18). Aside from direct, software-based actions, it is used in device handler
components as an interface to forward commands to devices.

Implementing components of the interface are supposed to check identifier (ID)
and parameters and immediately start execution of the action. It is, however,
not required to immediately finish execution. Instead, this may be deferred to
a later point in time, at which the component needs to inform the caller about
finished or failed execution. This is further explained in Section 4.4.

Effects

This interface definition is useful for providing and accessing arbitrary func-
tionality of components. However, such an open definition creates the risk of
misuse, in that the interface is taken for any kind of activity, e. g. a mode
change. The FSFW counteracts this risk by providing a clear definition and
other interfaces for specific use cases.

In fact, the main use of the HasActionsIF in the FSFW comes from its role in
device handler components, where it provides high-level access to forwarding
commands to devices, similar to the idea of the Device Virtualization Service
in SOIS (see Section 3.4.3).

In that, the interface definition covers the features O.1.2, C.2.4 and S.1.2a of
the generic features found in Section 3.7.

4.3.2. HasModesIF

A mode represents a certain operational state a component and eventually as-
sociated hardware is in. Changing the mode permanently changes the principle
of operation for a component. This is in opposition to actions, which do not
have a permanent effect on the component.

The HasModesIF provides external access to a component’s mode. Modes have
different meanings, depending on the type of component. For better differenti-
ation, each mode can have a number of submodes. In principle, any component
could freely define own modes and meanings, but for reasons of uniformity, a
MODE_OFF and a MODE_ON, as well as SUBMODE_NONE are provided by default.

Certain component types have additional predefined modes. For example, con-
troller components typically define MODE_NORMAL, which, on top of processing
the inputs, actually activates the calculated output of the control algorithms.
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Figure 4.19.: The exemplary RW device handler with a HasActionsIF and a
HasModesIF interface.

The interface symbol is a colored circle (see Figure 4.19).

Example

When the device handler of a RW of Flying Laptop is in MODE_OFF, the device is
not powered and all handler outputs are invalid. When issuing a command to
the device handler to start a transition to MODE_ON, it will power up the wheel,
perform an initialization and confirm successful communication with the wheel.
Only then is the mode changed to MODE_ON, which means the device is available
for operations.

Similarly, commanding the attitude control component to MODE_OFF will disable
any activities, which is useful for ground testing of equipment. When activated,
the submode indicates the exact control strategy, i. e. a pointing or safe mode.

Definition

Figure 4.20.: Signature of the HasModesIF interface.
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The HasModesIF itself requires a component to implement the following method
calls:

• getMode: Read out the current mode.

• checkModeCommand: Check an incoming request to change the mode.

• startTransition: Start a transition to a new mode.

• setToExternalControl: Take component under direct control.

• annonceMode: Announce the current mode in an event.

The full signature is given in Figure 4.20. The interface allows a fine-grained
access to the mode properties of components, and pre-checks of allowed transi-
tions before issuing the actual command.

An example shall illustrate the need for the setToExternalControl call: Usu-
ally, the mode of the RW 0 device handler depicted in Figure 4.19 is under
control of a RW assembly component. So, if the assembly mode is MODE_OFF,
all device handler components are supposed to be in MODE_OFF as well. If a
manual checkout of a single wheel is required, it is necessary to indicate to the
assembly that it shall not disable it during this manual checkout, which is done
with the setToExternalControl call. This is further detailed in Section 4.5.3.

Effects

The HasModesIF is broadly used within the FSFW. It is quite useful to com-
mand mode changes of any component uniformly, as it simplifies the number of
commands needed to operate different components. With this setting, it covers
the features C.2.5, S.1.5, S.2.4, and O.1.5 of the domain analysis.

The unification of mode commanding unfolds its true power in conjunction
with the subsystem and assembly components: These components can control
a number of different components, i. e. controllers and device handlers, and
therefore are able to orchestrate mode changes of entire subsystems. This is
further described in Section 4.5.3.

4.3.3. HasHealthIF

Due to the harsh environment to which spacecraft are exposed, faults in space-
craft equipment have to be expected during a mission. A typical means to
mitigate faults is to include redundant devices. To decide and remember which
of multiple redundant devices to use, some information about the health state
of equipment is required, e. g. to indicate if a temperature sensor is broken or a
complex digital star tracker unit has failed. The HasHealthIF provides means
for convenient management of this health state of a component.
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Figure 4.21.: RW device handler with HasActionsIF, HasModesIF and Has-
HealthIF interface.

In illustrations, it is represented by a circle with a cross (see Figure 4.21).

Example

Consider a situation in which RW 0 of Flying Laptop, shows signs of degradation
and must be disabled permanently. By setting its health state to faulty, the
RW assembly controlling all wheel device handlers will automatically disable
the wheel by setting its mode to MODE_OFF. The assembly itself keeps its own
operational mode as long as the remaining three wheels are available. Even
after the entire assembly was disabled, e. g. during safe mode, it will not try to
activate RW 0 until the health state is reset to healthy.

Definition

As seen in Figure 4.22, the interface provides two methods for callers, a get-
Health and a setHealth call.

Figure 4.22.: Signature of the HasHealthIF interface.

The interface also defines possible health states of components:

• healthy: Unsurprisingly, the health state indicates that the component
is working and available for operations.

• faulty: In opposition to healthy, this state indicates some fault in an
equipment, which therefore shall not be used anymore.
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• external control: This state is relevant in conjunction with the mode
hierarchies described in Section 4.5.3. It defines that a component is under
direct control of an operator and shall not be subject to autonomous mode
changes.

• needs recovery: To provide a convenient method to restart devices for
recovery activities, the FSFW introduces this health state. It represents a
transient state and either results in the component being faulty or healthy
again.

• permanent faulty is a stronger version of faulty. In some critical cases,
where health states need to be ignored, this state hints that a component
should be ignored as long as possible.

By convention, if a component’s health state changes, it does not change its
mode by itself. Instead, a component that is on a higher hierarchical level is
responsible for changing the mode as an effect of the health state, as the RW
assembly does in the above example.

Effects

The interface is most useful for device handler components, to represent faults
in the associated hardware. With that use of the interface, feature S.2.2 of the
feature tree (Figure 3.21) is covered. Also, the needs recovery state is useful
to initiate a power cycle of equipment, which helps getting rid of transient faults
in devices.

However, the interface is used in controller and subsystem components as well.
Allowed health states are typically limited to healthy and external control
to indicate that the component is under ground control.

4.3.4. HasMemoryIF

Data handling systems of spacecraft maintain different types of memory, e. g. a
PROM including the software image or telemetry packet stores. Those memory
regions may be local, i. e. in the same address space as the FSW, or remote,
e. g. in a dedicated mass memory unit. More so, smart sensors or actuators
may expose memory, e. g. for software updates. During nominal operations,
there should be no need to access such memory directly. However, the remote
nature of spacecraft requires means to do so for maintenance or in contingency
situations.

The HasMemoryIF provides a common interface to allow low-level access of mem-
ory resources in the system. It is represented by a segmented square (see Fig-
ure 4.23).
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Figure 4.23.: Both the Core and the IO-Board handler provide the HasMemoryIF
interface.

Example

Loading a new software version to the OBC is a typical use case for accessing
memory directly. In Flying Laptop, this happens by loading the entire software
image to a memory region in the IO-Board, before copying it from there to the
PROM banks in the OBC.

As both the IO-Board and the Core-Board handler component implement Has-
MemoryIF, uploading the memory happens with the same command type from
ground. Namely, PUS memory load requests are sent, which are translated by
the memory service component to access the components’ interfaces. The fact
that the IO-Board handler needs to convert the call to a SpaceWire message,
which is then forwarded to the board, is encapsulated in the handler compo-
nent.

Definition

Figure 4.24.: Signature of the HasMemoryIF interface.

The HasMemoryIF’s signature, as seen in Figure 4.24, contains a handleMemory-
Load and a handleMemoryDump call. A component implementing the interface
shall provide a pointer to the memory address at which the operation aims, so
copying data can take place. In case the target address does not exist or access
is restricted, the call returns a failure code.
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As already mentioned in the example, the exact mechanism of accessing the
memory is an implementation detail of the component and therefore fully en-
capsulated. To allow forwarding the call to remote entities, it is possible to
defer completion of the call.

Effects

The HasMemoryIF interface as defined by the FSFW allows components to ex-
pose access to raw memory in a uniform manner. This is a powerful tool for
remote maintenance, as low level checks and updates are possible.

It is tempting to use the interface for nominal operational activities, e. g. to ad-
just parameters in controller components. However, dedicated interfaces such
as the HasParametersIF should be used for such purposes, as they are much
safer, e. g. by performing type and range checks, than fiddling in the raw mem-
ory of a safety-critical program.

The HasMemoryIF covers features O.1.4 and S.3.2b found in Section 3.7.

4.3.5. HasParametersIF

Every software has configuration parameters, which allow adjusting controller
gains, the number of retries of a recovery loop, or any other default setting
of an algorithm. For spacecraft, having externally adjustable parameters is
reasonable, as they allow minor modifications of the FSW without the need for
a complete software upload and restart. This would be necessary if parameters
were fixed at compile time.

Figure 4.25.: An attitude control component which exposes parameters with
the HasParametersIF and internal building blocks.

For this reason, the FSFW features the HasParametersIF which allows ac-
cessing and modifying parameters in components. Parameters are fixed size
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variables, vectors or matrices with a well-defined plain old data (POD) type9.
The representing symbol is a square (see Figure 4.25).

Example

The HasParametersIF interface is commonly used in controller components, to
fine-tune ground settings and control gains. The attitude controller of Flying
Laptop for example, exposes more than 70 parameters with that interface. This
includes the orientation matrix of all RWs, which can be adjusted if, for some
reason, the orientation of a wheel or the numbering is wrong.

However, other components can have parameters as well: The RW device han-
dler has a mode which activates the wheel and sets some idle speed, which is
adjustable using the HasParametersIF.

Definition

Figure 4.26.: Signature of the HasParametersIF interface.

A component can expose any member variable with this interface. To do so, the
interface defines a single call, which is getParameter (see Figure 4.26). This
call is sufficient, as the implementing component only returns a reference to
the parameter, wrapped in a special ParameterWrapper class, and expects the
caller to either adjust or dump the parameter. In case of a parameter load,
the new value is provided as well, so components can perform a range check if
necessary. By using some smart template metaprogramming tricks, accessing
parameters is type and range safe.

Effects

The HasParametersIF is a useful tool to allow run-time fine-tuning of a FSW.
The simple interface minimizes overhead in the implementing component and
allows uniform access to any kind of adjustable value from ground. The interface
covers feature O.1.3 of the feature tree.
9I. e. characters, integers, or floating-point numbers
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In cases where components expose many parameters, which may even be nested
in reusable building blocks, unambiguous addressing is important. For this
reason, the 32 bit parameter address is split into three segments: A domain ID,
a parameter ID, as well as an index to identify the parameter’s position within
a vector or matrix. Thus, components can maintain internal address spaces, if
necessary. The concept is illustrated in Figure 4.25.

4.3.6. Summary

The common interfaces defined by the FSFW cover the majority of functionality
a component can provide to other components, as was validated from experience
with the Flying Laptop software. Unification simplifies control, which facilitates
both ground and inter-component interaction:

• For an operator in the ground segment, uniform interfaces reduce the
type of possible interactions with components and therefore the effort
to understand their behavior. Moreover, common interfaces limit the
number of command types, which reduces maintenance effort for ground
station configuration data. Thus, the approach supports feature O.1.1 of
the operational features.

• Within the FSW, common interface definitions enable the implementation
of more complex algorithms, relying on the encapsulation and unification
the interfaces introduce. Examples for such algorithms are subsystem
components (Section 4.5.3) or the FDIR mechanisms (Section 4.7).

There are some cases where these common interfaces are not the right fit, e. g.
for distributing clock information. Therefore, other interface definitions exist
within the FSFW, which are described when needed. Also, mission-specific
extensions are possible.

4.4. The FSFW-Core

The FSFW-Core designed in this thesis is the actual framework part of the
Flight Software Framework. Its main purpose is to provide the infrastructure
for component interaction and execution, as outlined in Section 4.1.3. To do
so, it relies on functionality provided by the underlying RTOS where possible,
e. g. by utilizing message queues and mutexes. Also, the FSFW-Core provides
abstraction interfaces for components to access these features directly, which
together form the operating system abstraction layer (OSAL) of the FSFW-
Core.

For example, the RTOS scheduling features are used to facilitate component
execution, by assigning components to different types of tasks for periodic or
slotted execution.
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For interaction, the FSFW-Core ensures that all communication between com-
ponents is asynchronous and therefore real-time compatible (see Section 2.3.3).
It does so by providing message-based interaction with a software bus and event
message distribution, as well as a shared memory-based data pool.

In addition to internal communication, the FSFW-Core is responsible for al-
lowing components to use hardware interfaces for external communication. For
this reason, the core defines another interface, which must be implemented by
drivers, or wrappers of legacy drivers, to be accessible by components.

Moreover, the FSFW-Core provides access to a common clock source and data
containers for storage of run-time adjustable configurations.

4.4.1. RTOS Abstraction

To avoid any specific details of an RTOS to leak into the framework, the FSFW-
Core defines a set of interfaces over which RTOS features are accessible.

Figure 4.27.: RTOS interfaces defined by the FSFW-Core.

As shown in Figure 4.27, these interfaces are:

• Task interfaces: Allow an implementation to control tasks, e. g. start
or stop them, as well as adding components for execution.

• Queue interface: Allows components to send and receive messages.

• Clock interface: Components can use this interface to read or adjust a
clock in different formats.

• Mutex interface: With this interface, mutexes are controlled, which
lock shared resources to avoid data corruption. This interface is used in
the FSFW-Core mainly, not in individual components.
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This set of interfaces is collectively called the operating system abstraction
layer (OSAL).

Apart from the clock interface, all of these interfaces describe software elements
of which components need individual instances. To generate these instances, for
each interface a so-called factory is defined, which creates and returns instances
of the elements10

Figure 4.28.: Simplified example of creating a message queue for a component,
using the queue factory.

For a given RTOS, implementations for both the concrete elements and the
factories need to be provided. In practice, this happens with wrapper classes
implementing the interfaces.

For example, Figure 4.28 illustrates the creation of a message queue for the
RW device handler of Flying Laptop using RTEMS as RTOS. As shown, the
act of getting the factory instance and creating a message queue happens in
a single call. After creation of the queue, the component can use it via the
interface, fully agnostic of the actual implementation. The other interfaces are
used analogously.

4.4.2. Component Execution

To achieve temporal decoupling, the FSFW is capable of individual scheduling
of components. A fundamental assumption made is periodic execution, i. e. all
components execute their tasks within a fixed period. As this is the common
scheduling scheme for real-time systems, this is a reasonable limitation.

10A factory is a design pattern classic from [60]. Factories are implemented using another
pattern, the singleton.
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Components become executable by implementing the ExecutableIF, which
mandates implementation of a performOperation method.

Figure 4.29.: Simplified example class diagram of a task class executing the
attitude control component via the ExecutableIF.

This method is called by task objects, which manage cyclic execution. These
objects implement one of the aforementioned task interfaces.

This means the performOperation method of a component is executed and,
upon completion, called again after a certain period. Thus, the periodicity is
not defined by the component itself, but by the task executing it.

The component itself is persistent, i. e. all attributes and parameters of the
component maintain their values between calls of performOperation. For ex-
ample, the attitude control component shown in Figure 4.29 maintains internal
states between calls to performOperation.

The assignment of components to task objects typically happens in the overall
main file of the FSW. For reasons of efficiency, multiple components can be
grouped into one task, which then execute with the same period and in the
order of registration.

Apart from the assumption of periodicity, the FSFW does not mandate any
specific scheduling algorithm. Thus, any form of periodic scheduling devised
for real-time systems is possible, e. g. a fixed run-to-completion schedule or
priority preemptive scheduling. For a summary of scheduling algorithms, see
e. g. [13]. Parallel or quasi-parallel execution of components is possible, as all
communication techniques of the FSFW-Core are thread-safe.
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Device Handler Component Execution

While the described task management is convenient for typical control compo-
nents, device communication, especially via shared lines and buses, often has
more strict timing requirements. Here, it is necessary to create precise sched-
ules to optimize utilization of the communication lines and adhere to equipment
requirements. This communication is typically planned with a so-called channel
acquisition scheduling table or polling sequence table (PST) [51].

For illustration, consider the interface setup on Flying Laptop, in which equip-
ment communication is channeled through a SpaceWire line to the IO-Board
(see Section 3.3.2). This poses some challenges on scheduling of device handler
components:

• The handlers need to invoke read and write calls from the IO-Board at
precise points in time. So, a single period is not sufficient.

• To avoid overloading the SpaceWire line, not all equipments should com-
mand at exactly the same time, but calls should be evenly distributed.

These challenges are even more severe in other configurations, e. g. when using
a bus such as MIL-STD-1553.

Figure 4.30.: Simplified example class diagram of a task class to execute com-
ponents in fixed timeslots.
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To handle such precise scheduling, the FSFW defines a dedicated tasking in-
terface called FixedTimeslotTaskIF, which allows adding components in time
slots with a fixed execution time. In addition, the opCode parameter of a com-
ponents ExecutableIF is used to identify the execution position within a PST,
i. e. if a write or read call is scheduled. A FixedSlotSequence class provided
by the FSFW-Core supports implementation of the sequence list. Figure 4.30
shows an example class for RTEMS as used in Flying Laptop.

Together, these FSFW elements allow exact control over timing of device com-
munication. However, due to the scattered execution of slots in a PST task,
it poses some challenges on schedulability analysis. These are addressed in
Appendix C.2.2.

4.4.3. The FSFW Software Bus

The FSFW software bus is one of the main methods for inter-component com-
munication. The software bus operates with so-called command messages and
replies, which are transmitted over the bus. Basically, it works as following:

• Every component which intends to communicate over the bus has a unique
component identifier (ID).

• Also, each such component has a message queue, which is provided in the
form of an interface by the FSFW-Core.

• Any other component can use this ID to send a message from its queue
to the destination component.

• The message protocol allows the receiver to identify the type of message
and its sender.

• Looking up component IDs is possible at run-time with the help of a
global component directory.

Most message types sent over the bus are related to the common interface
definitions defined in Section 4.3.

For illustration, consider the reaction wheel device handler from Flying Laptop
again. Another component, for example the device commanding service for-
warding a ground command, wants to read telemetry, i. e. motor current and
wheel speed, from a RW. Thus, it wants to invoke a “read telemetry” action via
the action interface (see Figure 4.31). As discussed, a direct call is not allowed,
so invocation must take place via messages. So, the service component sends
an action message, which triggers execution on reception.

Likewise, the FSFW-Core defines a dedicated set of message types for every
common FSFW interface, i. e. an action message, a mode command message
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Figure 4.31.: The device commanding service component invokes an action of
a reaction wheel device handler via the FSFW software bus.

and so on. These messages contain the parameters required to invoke the
method call.

In total, to invoke the action request, the following steps take place:

• The calling component creates an action message, containing the param-
eters for action execution.

• It obtains the component ID of the receiving component and submits the
message.

• When scheduled, the called component receives the message and identifies
it as an action message.

• It extracts and checks action ID and parameters.

• With these parameters, the receiving component invokes its own exe-
cuteAction call with parameters from the message.

• Results of the call are returned to the calling component in one or more
messages.

To continue with the above example, the device commanding service would
create the action message and send it to the RW device handler. On reception,
this component would invoke its own interface call, generate a command to the
RW device, and return the information to the service component (or indicate
failed execution).

Invoking other calls of the common interfaces, e. g. reading a mode, setting a
health state, or changing a parameter, happens in a similar fashion. In all cases,
specific messages are sent to a component, which returns the results of a call
in a reply message.
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Figure 4.32.: Mapping of an action message to an interface call using the Ac-
tionHelper class.

Helper Classes

When looking at the invocation steps above, the act of identifying a message,
extracting the parameters and calling the interface within a component only
depends on the message format and the signature of the interface. Also, to
generate reply messages, only the result of the interface call and the command
message protocol is relevant.

Therefore, all steps from parsing an incoming message to returning the reply
message are generic for a given common interface. To avoid programming that
procedure multiple times, so-called helper classes are created. Helper classes
encapsulate the generic behavior for each type of interface, e. g. there is an
ActionHelper class, which effectively maps an action message to a method call
of HasActionsIF (see Figure 4.32).

Instances of these helper classes can be part of a component and take over its
entire command message protocol handling. This interaction forms a specific
design pattern, similar to the classic adapter or wrapper pattern from [60].

Example

With that background, it is possible to complete the above example of interac-
tion between device commanding service and RW device handler component.

The device handler component contains an instance of the ActionHelper class,
which checks incoming messages for being action messages, parses them and
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calls the device handler’s executeAction method. In addition, the helper cre-
ates and sends reply messages to the calling component.

So, effectively, the ActionHelper bridges between an asynchronous, message-
based protocol and a synchronous protocol defined by the HasActionsIF inter-
face.

Device Com. Service RWHandler:HasActionsIF

helper:ActionHelper

msg: EXECUTE ACTION

handleMessage(msg)

prepareExecution()

Unpacks id and parameters.

executeAction(id, parameters)

OK

msg: STEP SUCCESS

Forwards request to RW.

step(OK)

msg: STEP SUCCESS

Data received.

reportData(data)

prepareDataReply()

msg: DATA REPLY

finish(OK)

msg: COMPLETION SUCCESS

Figure 4.33.: Interaction of caller and component, including a helper object,
when executing an action.

The action message protocol extends the interface protocol by introducing the
possibility to report execution steps and return data to the caller. In total, it
has the following properties:

• An action is initiated with a single dedicated command message which
contains the action ID and parameters to pass.

• The executing component is not required to finish the action immediately.
Instead, it may issue an arbitrary amount of step messages to inform
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about progress of action execution. A “step failed” message aborts the
transaction.

• In some cases, actions trigger the generation of data for the initiator. This
data may be delivered in a dedicated data reply message before finishing
or aborting the action.

• As a minimum, the caller expects a message indicating successful or failed
finish of execution (or a failed step) of the action in a decent amount of
time.

As shown in Figure 4.32, the helper class offers callbacks to manage reply
messages.

For reading telemetry data from a RW, the full exchange of calls and messages
between caller and receiver is illustrated in Figure 4.33.

For all other common FSFW interfaces, a similar mechanism is provided, us-
ing e. g. ModeHelper or ParameterHelper classes. Some of those helpers may
execute multiple interface calls for a single incoming message request, e. g. to
allow the implementation to perform a sanity check before actually executing
the command. For reasons of brevity, however, similar sequence diagrams of
other framework interfaces have been left out.

Effects

The FSFW software bus allows sending messages between components for asyn-
chronous data exchange. This message passing mechanism is enhanced by link-
ing it to the common FSFW interfaces using dedicated message protocols and
helper classes.

This is, in fact, a form of remote method invocation (RMI), which is typically
found in middleware frameworks, such as the Common Object Request Broker
Architecture (CORBA) or Simple Object Access Protocol (SOAP). The helper
classes of the FSFW are similar to proxies used in service-oriented architec-
ture (SOA). However, as these frameworks are intended for heterogeneous,
distributed systems they come with many features that are irrelevant for well-
defined embedded systems. So, the intention of the FSFW software bus is to
use a similar mechanism for component communication, with a minimum of
overhead.

To achieve this, the FSFW-Core provides the infrastructure, in the form of
message definitions and helpers, primarily for the common interfaces introduced
in Section 4.3. In case these interfaces do not fit, the FSFW-Core allows to
use the messaging mechanism directly, i. e. without calling any interface, or
implement mission specific extensions.
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As a remark, the FSFW software bus is no real bus, for which components must
compete for resources. Instead, it is more an umbrella term for the message
queue and addressing mechanisms of the FSFW-Core.

In favor of a cohesive summary of the software bus functionality, other details,
such as the mechanism to exchange large data chunks between components,
have been omitted. Additional information is found in Appendix C.2.

4.4.4. Event Distribution

Events are aperiodic incidents in a system. Such events are typically gener-
ated at one point and consumed at one or multiple destinations. Therefore, a
publish-subscribe mechanism is suitable for event distribution.

Event Consumer Event Manager Event Provider

Register

Register ack

*Event(Event ID, Reporter ID)

*Event(Event ID, Reporter ID)

Deregister

Deregister ack

Figure 4.34.: Distribution of events with the event manager as broker of a
publish-subscribe mechanism.

The FSFW provides an event manager, which takes the role of a broker for
distribution of events (see Figure 4.34). It receives event messages generated
by components and forwards them to those components that registered for a
matching set of events. Components are capable of throwing events at any
time.

An event message contains the following information:

• A system-wide unique event ID. The FSFW ensures uniqueness by as-
signing event domains to each software element defining events, within
which events are unique.

• A severity field, which allows to distinguish between informational and
failure events of varying criticality. The FSFW defines information events,
as well as low, medium and high severity failure events.
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Event ID
Name Domain ID Severity Reporter ID Parameters

MISSED_REPLY 28 05 low RW_HANDLER_0 command ID
MODE_INFO 74 01 info RW_HANDLER_0 current mode
CANT_KEEP_MODE 74 04 high ACS_CONTROLLER current mode
TIME_JUMP 77 02 low TIME_CONTROLLER none

Table 4.1.: Example event messages used in Flying Laptop.

• The reporter ID, which is the component ID to which the event is associ-
ated.

• Two parameter values, which can be used to transport additional infor-
mation with the event.

Table 4.1 shows event definitions from Flying Laptop as examples. Many event
definitions are pre-defined in the FSFW, such as the mode-related events in Ta-
ble 4.1, but mission-specific extensions are possible by utilizing unused domain
IDs. Every component can use any event definition, therefore the reporter ID
is an integral part of an event message to identify its origin.

Figure 4.35.: Example of event distribution in Flying Laptop.

An example, depicted in Figure 4.35, will illustrate event distribution: It is
desirable to disable the time-tagged command schedule in cases where the on-
board time gets out of synchronization with the ground segment. In the Flying
Laptop FSW the time controller takes care of monitoring the on-board wall
clock. If a time jump larger then a certain threshold is detected, event distri-
bution happens as following (see Figure 4.35):

• The time controller triggers an event message, which is forwarded to the
event manager.

• The event manager forwards the event to all components with a fitting
registration. In this case, this is the event reporting and the operations
scheduling service component.

• The scheduling component receives the event and acts accordingly, e. g.
by disabling the schedule and triggering an event itself (not shown).
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• The event reporting service transforms the on-board event in a PUS event
report and forwards it to ground.

Components can safely adjust their registration at run-time. For example, this
is used in the event reporting service to ignore events for downlink.

As faults always qualify for “aperiodic incidents”, failure event messages play
an important role for failure management in the system. The FSFW provides
distinct features to implement FDIR mechanisms based on events, which are
described in Section 4.7.

4.4.5. The Data Pool

Data pools are a typical element of embedded control software in general and
flight software (FSW) in particular. The basic idea is to provide a possibility for
exchange of periodic data with blackboard logic: If only the most recent value
is of interest, it is reasonable to provide a single location for this value, like
on a blackboard, and cyclically overwrite the current value with a newer one.
As sensor and actuator data have a very short time of usage anyway - they
become stale -, the data pool is the main mechanism for exchanging control
data between components.

Figure 4.36.: Example use of the data pool for exchanging attitude control data.

The Flying Laptop attitude controller, for example, mainly relies on sensor data
from the star tracker (STR) and fibre-optic gyros (FOGs), and actuation hap-
pens with reaction wheels. Thus, the respective software components exchange
these values through the data pool, as illustrated in Figure 4.36. In addition,
the housekeeping service component accesses the data pool to compose house-
keeping packets for ground observation.

In principle, the data pool implementation of the FSFW-Core is based on a
shared memory mechanism, which is segmented in individual variables, each
with a unique data pool ID. In addition, the data pool provides the following
features:
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• The data pool allows storage of vectors and single variables of all POD
types. Access is type-safe and possible at any time, i. e. thread-safe.

• A locking mechanism allows consistent checkout of a set of variables, i. e.
a thread trying to overwrite parts of a set of variables is blocked if the set
is currently read out. Thus, neither single variables nor a set of related
values can contain inconsistent data.

• A valid flag is managed for each entry in the pool. It allows marking
variables as valid or invalid, depending e. g. on the availability of a sensor.

• The data pool provides commit-and-rollback semantics for write access.
This means that changes take place on local copies first, their value is
written back to the pool with a dedicated commit call. When encountering
an error condition, the local copy may be discarded.

In Flying Laptop, over 600 sensor measurements, actuator commands, and in-
termediate calculation values are registered in the data pool configuration.

4.4.6. Communication with Equipment

Interaction between the control system and its sensors and actuators happens
via digital hardware interfaces. An embedded software framework is quite use-
less without some dedicated means to interact with peripheral hardware. How-
ever, no component, not even a device handler component, should depend on
a certain interface, as this would impede reuse when using the component on
another mission.

For example, on Flying Laptop the RW device handler communicates with the
RW device via the IO-Board using a SpaceWire line. In another spacecraft, the
same RW may connect to the OBC on a multidrop bus.

To allow reuse of components in such cases, the FSFW-Core defines a communi-
cation interface called DeviceCommunicationIF. It works with the assumption
that received data is polled by a component. The interface provides calls to
open and close the interface, as well as adjust options. Also, there are four
steps defined for the actual communication:

• Send data to a device.

• Get an acknowledgement for sending.

• Request reading data from a device.

• Read the received data with a dedicated call.
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Figure 4.37.: Example usage of the DeviceCommunicationIF within a device
handler component.

The four steps of communication with equipment provide more flexibility to
map the interface to various underlying communication mechanisms than a
simple read / write scheme. Also, the approach fits better to real-time systems
which are not using blocking interface calls.

By implementing the interface, drivers, or wrappers for legacy drivers, become
usable by components. To identify different connections over a single interface,
drivers can return so-called cookies to components11.

As an example, the Flying Laptop peripheral connection happens via Space-
Wire and the RMAP protocol. As stated in Section 4.2.1, a dedicated driver
implementing the interface was developed. The RW device handler component
is configured on initialization to use this driver, and is then capable to commu-
nicate with the RW device (see Figure 4.37). In case another interface is used,
the code of the RW device handler does not change.

4.4.7. Date and Time

In spacecraft, time and data management is more important than in many other
embedded systems, as remote operation and precise maneuvers require well
synchronized clocks between ground and space segment. The FSFW-Core relies
on time management features of the underlying RTOS, making it accessible for
components with a dedicated clock interface.

11These cookies are similar to sockets of the socket API.
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As computers typically use the so-called POSIX time internally [69], but space-
craft timestamps are defined in Consultative Committee for Space Data Sys-
tems (CCSDS) time [21], the FSFW-Core also provides a library called CCSDS-
Time for convenient conversion between different time formats.

In addition, there are dedicated message definitions to pass timestamps of
events between components, e. g. to distribute the exact time of an incoming
pulse-per-second signal.

4.4.8. Data Containers

The FSFW-Core provides a number of container elements for storage of run-
time adjustable data. Most of these containers are replacements for STL build-
ing blocks, such as lists and maps, with a maximum size determined at compile
time. This is necessary to avoid dynamic memory allocation at run-time.

Figure 4.38.: Simplified signature of the DataStorageIF interface.

In addition, the FSFW-Core defines an interface to safely store and retrieve
variable-sized chunks of data, the DataStorageIF. Its signature is shown in
Figure 4.38. The core also provides a compatible implementation, called Pool-
Manager, which uses a fixed-size pool-based memory allocation scheme.

This storage facility is used in various places within the FSFW-Core, e. g. for
efficient large data distribution (see Appendix C.2.1).

Also, it serves as the memory back end for a building block called Placement-
Factory. It allows creation of arbitrary objects, whose types are determined
at compile time, in reserved memory at run-time. This is particular useful to
efficiently create and delete temporary or configurable objects of variable size.
For example, the Flying Laptop housekeeping and operations scheduling com-
ponents rely on this factory to maintain their housekeeping report definitions
and the TC schedule, respectively. As it is a good example of the advantages of
C++ features such as template metaprogramming, its full source code is shown
in Appendix A.1.1.
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4.4.9. Summary

The FSFW-Core is the central element of the Flight Software Framework de-
sign, which allows FSW developers to focus on the essential complexity of a
certain component instead of worrying about interaction and execution infras-
tructure.

Moreover, the FSFW-Core codifies the overall component-based software archi-
tecture, and therefore aids using the FSFW. It is the key factor for introducing
reusability in FSW development, as it mediates between components and the
underlying execution platform. Its own reusability is ensured by relying on the
OSAL interfaces to provide functionality to components.

With the infrastructure the FSFW-Core provides, it covers most features iden-
tified for component management, as illustrated in Figure 3.20. Particularly,
RTOS abstraction (C.1.3) and inter-process communication (C.2.1) are achieved.
Also, the device communication interface covers the system management fea-
ture for communication layering (S.3.1) and subnetwork access (S.3.2).

4.5. Component Templates

In principle, it is possible to use the interfaces and communication techniques
defined by the FSFW and implement every component required for a system
from scratch. However, there are strong similarities between components with
a similar purpose, e. g. for device handling.

Therefore, the FSFW offers a set of component templates, which reduce the
effort of component creation by providing default implementations for recurring
activities. The FSFW identifies four types of components:

• Device handlers

• Controllers

• Subsystems

• Ground services

The FSFW offers component templates for each of these types. However, this
section provides insight in only three of them: As ground services depend on the
space link protocol, these templates are part of the TMTC framework described
in Section 4.6.
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4.5.1. Handling Spacecraft Equipment - DeviceHandlerBase

Purpose of the DeviceHandlerBase template is to simplify implementation of
device handler components. To provide a useful template, it is necessary to
identify commonalities between the handling of very different equipment, e. g.
a reaction wheel and a PCDU, and put it in a base class12.

Fortunately, the domain analysis synthesized in Section 3.7 already identifies a
list of common features for equipment in S.1 features. These are implemented
in the DeviceHandlerBase class, which is described below.

An important aspect here is that device handlers always act as a mediator be-
tween other software components and a specific equipment, so there are always
two perspectives on a given functionality: That of the equipment and that of
the FSW, i. e. of other components.

To illustrate these views and the common features, an example is introduced
first.

Example

Once again, the reaction wheel (RW) device of Flying Laptop shall serve as
an example. Like all off-the-shelf equipment, the device comes with a technical
description in the form of an interface control document (ICD), which describes
the properties of various interfaces, e. g. mechanical or electrical.

Figure 4.39.: Mode diagram and commands of the Flying Laptop reaction wheel.
Transitions in brackets happen due to power-up or automatically.
From [93].

From a software perspective, the modes of operation and the communication
protocol are the most relevant. The ICD of the Flying Laptop RWs describes
the following modes and protocol [93]:

12As discussed in Section 4.2.2, simple sensors such as a single analog temperature sensor
are not regarded here.
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• There are four modes defined, which are power-off, initialization, standby
and command-mode. Initialization is a transient mode after power-up and
moves to standby mode automatically. From there, an external command
is necessary to bring the device in command-mode.

• Communication works in a strict command-response scheme, i. e. the de-
vice sends a single reply for every command.

• On OSI application layer, the device communicates with an ASCII char-
acter protocol, with the main command format being [AA,CC„DDDD,ZZ].
CC identifies a command code, DDDD data to transmit13.

• Available commands are setting a wheel speed or torque, requesting teleme-
try, and changing the mode, i. e. commanding from standby to command-
mode and vice versa, or resetting to initialization mode.

• When commanding a speed or torque, the data field DDDD contains the
desired value converted to a 16 bit signed integer in a vendor specific
fashion.

Modes and commands are depicted in Figure 4.39.

As described in Section 4.4.6, the wheel is connected to the OBC via the IO-
Board. It is powered by the PCDU, which has command-controllable power
switches.

Equipment Modes

An important aspect of controlling a device such as the described RW is to
handle equipment modes (feature S.1.5 in Figure 3.21).

From the equipment perspective, this means managing the equipment itself,
e. g. commanding power switches and sending an enable command in case of the
reaction wheels. DeviceHandlerBase supports equipment mode management
by providing a state machine which performs transitions in case a mode change
is commanded by another component. It organizes the following activities:

• Sending power switch commands to a component that provides the Power-
SwitchIF. In case of Flying Laptop, this is the PCDU device handler. The
switch (or switches) to control is configured on initialization.

• Allowing subclasses to configure the device by implementing specific tran-
sition methods, for start-up, shutdown, and other transitions. The RW
handler, for example, sends a reset command to the wheel during start-up
to confirm availability.

13AA is an address, which is not used for Flying Laptop, and ZZ a checksum.
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Figure 4.40.: Extract of the DeviceHandlerBase class diagram to illustrate
mode management functionality.
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To adjust the behavior of the state machine to specific properties, Device-
HandlerBase defines a number of mode-related abstract methods as adaptation
points, as shown in Figure 4.40.

From a FSW perspective, i. e. from other components, the HasModesIF is used
to adjust the operational state of a device. From that point of view, a common
set of modes is desirable, as uniformity helps creating an abstract perspective
of device handling. This simplifies handling of redundancies and subsystem
modes.

Therefore, the DeviceHandlerBase class defines common modes for device han-
dlers, which are:

• MODE_OFF: The device is not powered and considered off.

• MODE_ON: The device is powered and configured for operation, but sup-
posed to be passive, i. e. components neither send periodic commands nor
poll sensors.

• MODE_NORMAL: Components periodically request data from sensors and
command actuators. Values are stored to and taken from the data pool.

• MODE_RAW: A dedicated contingency mode, in which the device handler
component relays communication “as-is” from external sources, e. g. from
and to the ground system. No commands are generated, and responses
are not interpreted in the handler.

As stated above, DeviceHandlerBase takes care of recurring activities such
as power switching for devices. Also, MODE_RAW, in which the device handler
component simply relays commands and replies, is entirely implemented in
DeviceHandlerBase. Still, it is up to specific component implementations to
map equipment modes to the common device handler modes and ensure correct
transitions.

For the RWs, for example, MODE_ON is mapped to the standby mode of the
equipment and MODE_NORMAL to command-mode, in which the RW handler ad-
ditionally sends torque commands and requests telemetry from the wheel (see
below). The commands for equipment transitions are also provided by the RW
handler.

Equipment Access and Value Conversion

Another main functionality of device handler components identified in the do-
main analysis is device access (feature S.1.2). This again, is a two-fold activ-
ity:

• Communication with the equipment in its native protocol must be en-
sured.
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• The device and its measurements ought to be accessible to other compo-
nents, e. g. for direct ground commands.

Figure 4.41.: Extract of the DeviceHandlerBase class diagram to illustrate
equipment access.

The DeviceHandlerBase class handles much of the first point by managing a de-
vice communication interface of the FSFW-Core, as described in Section 4.4.6.
This covers all low-level communication, i. e. below OSI application layer. The
base class also defines a communication scheme using the slotted means of de-
vice handler communication described in Section 4.4.2, which ensures cyclic
commanding and reply reception to and from the equipment.

The remaining task for a subclass is to implement the actual application pro-
tocol of an equipment, for which DeviceHandlerBase provides a number of
adaptation points (see Figure 4.41):

• buildCommandFromCommand: Build a command for a device, with a com-
mand ID and optional parameters as input. Incoming parameters are in
a generic format, typically in SI units. Thus, the subclass is responsible
for creating the correct protocol and converting parameters. The RW
handler, for example, creates the bracket-based ASCII-protocol in which
converted torque values are inserted.

• scanForReply: Incoming data from the device is forwarded to the subclass
for basic format checking and identification of a reply ID. For example,
the RW device handler calculates and checks a message checksum.

• interpretDeviceReply: If formal checking was successful, DeviceHand-
lerBase calls this method, in which subclasses extract data from the raw
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device reply and format the data for external use, e. g. writing it to the
data pool. The RW handler for example, converts the raw wheel telemetry
to SI units.

The two-step handling of equipment replies in device handlers separates the
formal checking of the application layer protocol and the interpretation of the
content.

To complete the concept of equipment communication with DeviceHandler-
Base, the following part explains how sending commands to devices is actually
initiated, and in which format. In total, there are three methods foreseen in
DeviceHandlerBase to start interaction with the hardware device:

• Automatic commanding in MODE_NORMAL: In that mode, the device
handler itself is responsible for creating a command for the device. Com-
mand parameters, e. g. the torque for a RW command, are taken from a
variable of the data pool. Likewise, sensor measurements are written back
to the data pool. A subclass can create such commands by implementing
the buildNormalCommand method.

• High-level commanding with the HasActionsIF: By submitting an
action to a device handler, other components can communicate with
the device without knowledge of the device specific protocol. This is
a step towards virtualization of devices, as proposed in CCSDS SOIS
(Section 3.4.3).

• Raw access with the DeviceHandlerIF: Raw commands allow commu-
nication with the device in its native protocol, circumventing any form of
translation and safety measures, e. g. range checks. This is intended for
contingency situations and only available if the device handler is in its
MODE_RAW mode.

The DeviceHandlerBase class provides the infrastructure for these three meth-
ods, and takes care of communication with other components. Since protocol
conversion for high-level commanding is already implemented in the aforemen-
tioned adaption points, no further effort is necessary in a subclass. This also
covers feature S.1.3 for value conversion.

For illustration, Figure 4.42 shows a sequence diagram of reading telemetry
from a RW in MODE_NORMAL.

Equipment Monitoring

As identified in feature S.1.1, another important activity is equipment moni-
toring. A good start for monitoring is to check communication with a device.
If, for example, no reply is received from a RW device, this is a first indication
of an error.
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Figure 4.42.: Sequence diagram to show the interaction between DeviceHand-
lerBase and a subclass, here a RW handler, to create a command
in MODE_NORMAL.
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Figure 4.43.: Extract of DeviceHandlerBase with elements relevant for moni-
toring.

Since device handlers already provide the protocol and the generic structure
of data exchange, it is possible to monitor device communication in the base
class. This happens by checking the duration of reply reception and reacting on
results of scanForReply and interpretDeviceReply from the subclass. Also,
DeviceHandlerBase takes errors of the communication interface into account.
For each such error, DeviceHandlerBase triggers a failure event, relieving sub-
class implementations from doing so. This communication monitoring is an
essential part of device failure detection, since a broken device will likely pro-
duce incorrect or no replies.

Aside from detection of communication errors, device handler components are
responsible for collecting and interpreting failure events related to their device.
This is part of the distributed hierarchical FDIR concept of the FSFW and
further described in Section 4.7.

The elements relevant for equipment monitoring of DeviceHandlerBase are
shown in Figure 4.43.

DeviceHandlerBase also implements the HasHealthIF interface, so a device
handler component represents the health state of its equipment. Being a com-
mon FSFW interface, changing the health state is possible by every component.
In practice, however, a health state is adjusted by the component’s FDIR or the
ground segment, such as the health commanding service of Flying Laptop.

Equipment Representation

The remaining point found in the domain analysis is equipment representation
(S.1.4), which is somewhat more vague than the others. However, as discussed
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in Section 4.1.5, it is already covered by introducing device handlers in the first
place.

Figure 4.44.: Graphical representation of the RW device handler and its inter-
action with FSFW-Core elements.

As shown in Figure 4.44, each device handler represents its device in software
with regards to the device mode, health and data exchange. It encapsulates
specific behavior and protocols, so all devices share a uniform appearance to
other components. Making use of DeviceHandlerBase supports commonality,
as it already defines certain interfaces, e. g. mode and health, and implements
a common usage.

With this approach, incidental complexity in other components can be avoided,
which simplifies implementation of advanced functionality, such as fault and
redundancy management of equipment.

Moreover, using DeviceHandlerBase allows rapid and straightforward imple-
mentation of a wide range of different device handlers. For Flying Laptop, for
example, almost all device handler components introduced in Section 4.2.2 use
DeviceHandlerBase as foundation.

4.5.2. Implementing Controllers - ControllerBase

Controllers are the central element of an embedded control system and likewise
of FSW. They combine and monitor sensor values, apply control laws and
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calculate output values for actuators. Thus, providing a template for controller
implementation in the FSFW seems reasonable.

In practice, however, it is difficult to factor out commonalities between con-
trollers to form a component template. This is due to the fact that every
controller has a specific purpose which is very different form that of another
controller. For instance, there are almost no functional commonalities between
the thermal and attitude control component of Flying Laptop. For the same
reason, no generic features of controllers were identified in the domain analysis
(Section 3.7).

In effect, it is more useful to provide subsystem-specific building blocks, which
can be used when needed, for controller components than defining a complex
common base class such as DeviceHandlerBase.

Figure 4.45.: Simplified class diagram of the ControllerBase template used by
an attitude control component.

Nonetheless, a lightweight ControllerBase template is provided by the FSFW.
Its main purpose is to identify a component as a controller and provide some
common interfaces (see Figure 4.45).

As shown, the template provides the HasModesIF interface, as controllers may
operate in different modes. Similar to DeviceHandlerBase the ControllerBase
class pre-defines some modes and their semantics:

• MODE_OFF: Disables a controller, i. e. no calculation is performed and out-
puts are invalid. This is reasonable under certain circumstances, e. g.
during ground tests.

157



4. The Flight Software Framework

• MODE_ON: All control algorithms are executed, but the output is set to
invalid. This mode is intended for diagnostics mainly.

• MODE_NORMAL: Controller executes nominally. The submode determines
the current control strategy.

For example, the attitude control component of Flying Laptop provides seven
submodes in MODE_ON and MODE_NORMAL, e. g. safe mode or target pointing
mode.

Controllers in the FSFW shall execute periodically and mainly independent
from device handlers, with data exchange happening asynchronously through
the data pool (see Section 4.4.5). Periodic execution is ensured by implementing
the ExecutableIF and relying on the component execution infrastructure of the
FSFW-Core (Section 4.4.2).

The component template also implements the HasHealthIF. As it is not very
reasonable to talk about a “faulty” controller, the only allowed health state are
healthy and external_control.

Building Blocks

The ControllerBase template, especially when compared to DeviceHandler-
Base, is merely an empty hull for controller implementation, as it is not possible
to find abstractions for domain-specific control problems.

To support such implementations, e. g. for thermal control, so-called building
blocks are provided by the FSFW. They are an aid to assemble complex control
components by providing out-of-the-box solutions for specific issues.

For instance, to support implementation of a thermal control component, the
following building blocks are provided:

• Heaters: Represents a simple electric heater, which can be activated with
a power switch.

• TemperatureSensor: This building block handles non-linear value con-
version and range checks for analog temperature sensors.

• ThermalModule: Allows creation of different thermal control domains
within a system.

Together, these building blocks cover typical needs of a thermal control soft-
ware. Thus, implementing a thermal controller takes the form of assembling
those building blocks according to system specifications, as illustrated in Fig-
ure 4.46.
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Figure 4.46.: Illustration of a thermal control component, created with Con-
trollerBase and some building blocks for thermal control.

In a similar fashion, there are domain-specific building blocks for power control,
such as a PowerSensor. It monitors current and voltage limits, calculates a
power value and can be used for solar array or battery monitoring.

A more generic group of building blocks are monitors, which support checking
of on-board variables. In most cases, monitoring is not a standalone activity,
but embedded into dependent procedures. For example, an attitude control
algorithm will check if the rate sensor inputs are within a certain range before
progressing.

The monitoring building blocks of the FSFW support such embedded value
checking in the form of a collection of monitoring classes (see Figure 4.47).
These classes have the following properties:

• The basic MonitorReporter class provides the basis for reporting of out-
of-range events, which can be enabled and disabled by adjusting parame-
ters. Also, it defines a unique identifier for the monitor and the parameter
it monitors.

• On top of that, MonitorBase implements checking a sample of the variable
to monitor, as well as fetching that sample from the data pool, if needed.
However, the type of check is an adaptation point for subclasses.
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Figure 4.47.: Simplified class diagram of monitoring building blocks.
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• The FSFW provides standard implementations for

– LimitMonitors which check against a lower and upper limit.

– AbsLimitMonitors which check the absolute value of a sample against
a limit.

– ExpectMonitors which check if a variable exactly has a certain value.

• The limit values for these monitors are adjustable via the HasParameters-
IF.

Controller components can either use these classes directly, or create subclasses
to modify the default behavior. The monitoring building blocks simplify imple-
mentation of monitoring needs within components and ensure that reporting
of violations and adjustment of parameters is common for all monitors within
the FSFW.

In combination, the ControllerBase template and the FSFW building blocks
provide valuable support for the development of control components for a FSW.
All but one control component described for Flying Laptop in Section 4.2.3 use
the template as basis.

4.5.3. System, Subsystems and Assemblies - SubsystemBase

The goal of these component templates is to provide an easy implementation
for subsystem and assembly components. These components aim to control the
mode of other components and form the so-called mode tree of the system, as
introduced in Section 4.2.4. The functionality was first described in [84].

Before explaining their implementation, an example shall detail their opera-
tion.

Example

For illustration, the ACS subsystem of Flying Laptop is depicted in Figure 4.48.
On the image, the subsystem is in its safe mode configuration, using simple
sensors for sun acquisition only14.

For a transition to a fine-pointing ACS mode, it is necessary to enable all
equipment of the subsystem. This could happen one-by-one with dedicated
commands or ground procedures.

However, the mode tree allows doing so with a single mode command to the
ACS subsystem component:
14The sun sensors are simple solar cells read by the PCDU and have no dedicated device

handler component.
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Figure 4.48.: The mode tree of the ACS subsystem of Flying Laptop in safe
mode. On a transition to a pointing mode, first all assemblies are
commanded (black lines), then the controller (blue line).

• The subsystem will check the mode command by looking up the intended
mode, which is an identifier for a specific mode sequence.

• This mode sequence consists of a number of mode tables: One target and
multiple transition tables. These specify which mode commands to issue
to its children.

• In case of commanding the ACS subsystem to a pointing mode, the se-
quence consists of two transition tables, one to activate all equipment
and one to change the controller mode. These tables are executed con-
secutively, so the controller will switch to pointing control only after all
high-level devices have been activated.

• The first table directs the subsystem to send mode commands to assem-
blies. Each assembly forwards mode commands to the device handlers,
taking into account health states and the redundancy scheme of the de-
vices.

• Device handlers take care of the power up procedure of their device and
perform an initial communication check.

• The device handler reports a successful mode change to the assembly,
which, when all requested devices are available, reports a successful mode
change to the subsystem.

• After confirmation of the mode change, the ACS subsystem will proceed
with the current sequence, take the next table and command the controller
to adjust its control strategy.

• In a final step, the subsystem uses the target table to check if all compo-
nents are in their intended mode. If so, the transition was successful.
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• The target table also defines the modes of all components to maintain the
current mode. This makes it possible to, e. g. disable device with a tran-
sition table, but allow them to be enabled manually without jeopardizing
the current mode.

The described mode change does not only work on subsystem level, but also in
nested form for the entire system. This section describes the FSFW elements
which allows the implementation of such a mode tree.

The SubsystemBase Template

SubsystemBase is the common template for all assembly and subsystem compo-
nents (see Figure 4.49). It provides the basic functionality to build a mode tree,
as it allows to register child nodes in a list and handle the execution of mode ta-
bles. To allow recursive composition for building the mode tree, it implements
the HasModesIF itself15. The HasHealthIF is implemented as well, but used to
indicate EXTERNAL_CONTROL only, similar to its use in ControllerBase.

Figure 4.49.: Simplified class diagram of the SubsystemBase template.

A mode table is a list with component identifiers, as well as modes and submodes
to command to (see Table 4.2). Execution of mode tables works as following:

• For each entry, it is checked if the component is registered.

• Then, the component’s health state is checked. If it is faulty, it is com-
manded to MODE_OFF, no matter what the initial command was.

• If it is healthy and commandable, i. e. not in health state EXTERNAL-
_CONTROL, the intended mode command is created.

• If the component is already in the right mode, the command is discarded.
Otherwise, it is sent via the software bus.

15This is the implementation of a classic design pattern of [60], the composite pattern.
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Component ID Mode Submode

MGT_ASSEMBLY MODE_NORMAL 0
MGM_ASSEMBLY MODE_NORMAL 0
RW_ASSEMBLY MODE_NORMAL TORQUE
STR_ASSEMBLY MODE_NORMAL 0
FOG_ASSEMBLY MODE_NORMAL 0
GPS_ASSEMBLY MODE_ON 0

Table 4.2.: Extract of a mode table of a transition of the ACS subsystem of
Flying Laptop

A remarkable point is that the entire commanding relies only on the HasHealth-
IF and HasModesIF interfaces. Thus, it is an example on how abstraction in
the form of interfaces simplifies high-level commanding.

SubsystemBase is an abstract class, aside from setting up a mode tree and
executing mode tables, it does not provide an implementation on what to do
with these features. The functionality of the base class is exploited in its sub-
classes, AssemblyBase and Subsystem. The former is a component template to
implement assemblies of device components, the latter a complete component
representing entire subsystems. These are described following.

The AssemblyBase Template

Almost all spacecraft fly with some sort of redundant equipment which is avail-
able in case of a device failure, as servicing a spacecraft is very difficult and
expensive. It is easy to instantiate multiple device handler components for
redundant devices. However, there needs to be an element that monitors the
state of such equipment and handles reconfiguration if necessary. These efforts
could be put into controllers, but this increases complexity of a component that
has enough essential complexity anyway.

Instead, the FSFW provides the AssemblyBase template, which allows imple-
menting assembly components to manage redundant equipment. As a subclass
of SubsystemBase, it has a mode itself, which represents the mode of the de-
vice handler components registered as child nodes (see Figure 4.50). Registered
device handlers are typically of identical type, e. g. four RW components.

The AssemblyBase template monitors mode and health state of its children
and checks availability of devices on every detected change. AssemblyBase does
not implement any redundancy logic by itself, but provides adaptation points
for implementations to do so. Since most monitoring activities rely on mode
and health state only and are therefore generic, it is sufficient for subclasses to
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Figure 4.50.: Simplified class diagram of the AssemblyBase template.

provide the check logic when active (checkChildrenStateOn) and the transition
logic to change the mode (commandChildren).

Thus, the RW assembly component will implement a three-out-of-four logic for
the reaction wheels, which works as following:

• In case a mode change to “active”, i. e. MODE_NORMAL is requested, the
assembly commands all healthy RW device handlers to that mode.

• After the transition, the assembly checks if at least three of the four wheels
are available.

• If so, it reports a successful mode change to the subsystem component.

• If this is not the case, it will disable all other wheels and report to the
ACS subsystem that the mode can’t be maintained.

• The same logic applies in case a health or mode change is detected by
the assembly. If, for example, more than one RW handler’s health state
is faulty, the assembly will disable all wheels and report accordingly.

As described, assembly components manage redundancies by relying on mode
and health states of their children. They do, however, not change the health
state of children themselves, e. g. by analyzing events. Thus, assemblies are
responsible for failure recovery, but neither for failure detection nor for failure
identification.

Still, the approach simplifies the design of system mode management and FDIR,
which are freed of knowing every detail of component redundancy handling.
Admittedly, control algorithms need to be aware of available sensors and actu-
ators anyway, but only as an input information to select an appropriate control
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law. The use of assemblies and subsystems in FDIR design is described in
Section 4.7.

The Subsystem component

With a mode tree of the system or a subsystem, such as that in Figure 4.48,
it becomes apparent that the mode of a subsystem or the system as a whole is
defined by all modes of its direct children. With this main idea, it is possible
to define a generic machine capable of observing and changing the mode of
arbitrary child nodes.

Figure 4.51.: Simplified class diagram of the Subsystem component.

This machine is encoded in the Subsystem component. It extends the facilities
of SubsystemBase to manage a number of mode tables and mode sequences. As
introduced in the above example, these sequences describe the steps necessary
to reach a certain mode. The steps themselves consist of a reference to a list of
transition tables, like that shown in Table 4.2, as well as a potential wait time
before executing the next table. In addition, each sequence has an identifier,
which is equivalent to one mode of the subsystem, and a reference to a fallback
sequence. This is illustrated in Figure 4.52.

By executing the tables one-by-one, an ordered mode transition of the entire
subsystem is achieved.

The fallback sequence becomes relevant in case a transition failed or the compo-
nent can’t keep its current mode, e. g. when a child node autonomously changed
its mode. This is further described below.

The subsystem component is no template, as it is not necessary to implement
any adaptation points for instantiation. Instead, it is sufficient to configure
the pre-defined component by registering child nodes and defining mode tables
and sequences. Still, it is possible to create subclasses of Subsystem to extends
its functionality, e. g. to add autonomous mode changes on certain on-board
events. For example, the Flying Laptop top-level System node is a Subsystem
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Figure 4.52.: Example of a mode sequence for a transition to an ACS target
pointing mode

component extended to handle system-wide failures such as a low battery state
of charge.

Fallback Transitions

Fallback transitions come into play as soon as something goes wrong. For
example, the ACS subsystem would react with a fallback to ACS safe mode if
the RW assembly were not available anymore.

In such cases, the Subsystem component looks up the fallback sequence and
executes it like any other sequence. These are typically less demanding than
the original sequence, and therefore there is an increased chance of successful
execution. For illustration, Figure 4.53 shows an extract of the system-wide
modes with fallback references from Flying Laptop.

This is an important feature of failure recovery, as it allows creating hierar-
chies of modes with increasing functionality, where fallback transitions to lower-
functionality modes are possible. In case of equipment relevant for the current
mode becomes faulty, and no more redundancies managed by the assembly are
available, the subsystem will trigger a fallback mode transition, which will again
trigger a fallback of the higher level subsystem or system node, until the system
reaches a stable configuration16. Thus, reconfiguration happens in a bottom-up
manner and stops automatically at the lowest level of containment.

16The final safe mode transition must be recursive and always successful, as is the case for
safe mode in Flying Laptop
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Figure 4.53.: Extract of Flying Laptop modes with arrows indicating fallback
modes. None mode can only be commanded manually. From [55].

The FSFW FDIR concept relies on this feature for recovery actions, as further
explained in Section 4.7.

In summary, SubsystemBase and its subclasses AssemblyBase and Subsystem
are good examples where abstraction, encapsulation and generalization is use-
and successful. This is mainly due to the fact that they rely on the rather ab-
stract framework interfaces HasModesIF and HasHealthIF, which enforce unifor-
mity. Thus, the benefits which SubsystemBase components bring to operators
and FDIR designers of a spacecraft are a result of the abstraction introduced
by the FSFW.

4.5.4. Summary

The component templates introduced in this section unify and simply creation
of components for a FSW. Those templates allow internal code reuse, as their
code is shared among many different components. For example, almost all
components of the Flying Laptop software are implemented using a component
template.

Inheritance is a good way to group components into categories, as the templates
form a dedicated type hierarchy. This categorization simplifies describing and
arguing about implemented components, as it is possible and correct to talk of
a property of e. g. ‘all device handlers of the system”. The approach chosen is
that of a white-box framework for components (see Section 2.3.2).
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Component templates, especially SubsystemBase and its subclasses are good
examples of the utilization of abstraction, encapsulation and generalization.
Relying on the common HasModesIF and HasHealthIF interfaces, which enforce
uniformity, reduces effort for spacecraft operators and component designers.

4.6. The FSFW PUS Framework

A standardized communication protocol such as PUS allows to provide generic
implementations for certain protocol features avoiding implementing the same
protocol over and over again in every mission.

Thus, the FSFW provides a PUS framework, which in principle has the same
role as other such frameworks, e. g. OBOSS (Section 3.6), but is compatible to
the overall design of the FSFW.

The PUS framework provides building blocks and component templates to im-
plement a space link stack like that of Flying Laptop described in Section 4.2.5.
Thus, it provides supporting elements for the following OSI layers:

• Handling of TC frame acceptance of the data link layer in software.

• Distributing space packet TCs and returning TM packets for downlink,
i. e. routing packets in the on-board networking layer

• Implementing service components for the application layer.

4.6.1. Data Link Layer - Channeling Frames

The CCSDS TM and TC data link layer is responsible for correct transmission
of multiple virtual channels (VCs) over a single space link (see Section 3.4.1).

The FSFW provides an implementation for TC transfer frame reception, in-
cluding distribution to different VCs and the entire Communications Operation
Procedure-1 (COP-1) reception engine. It is provided in the form of a build-
ing block and allows free configuration of number and IDs of virtual channels.
After extraction, the frame content, typically a space packet, is forwarded to a
configurable entity on a per-VC basis17.

The framework does not support dedicated handling of TM frames. Due to the
simple protocol, these frames are often handled in hardware encoder boards,
reducing the need to deliver a software solution. However, an implementation
can be added if necessary.

17More precisely, packets are distributed depending on the Multiplexer Access Point (MAP)
channel, of which multiple are transferred within one VC
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Example

For Flying Laptop, the COP-1 frame acceptance building block is instantiated in
the CCSDS device handler component, of which two instances manage each of
the hot redundant CCSDS-Boards (see Figure 4.54). Each board is configured
to accept frames of a dedicated virtual channel, so command packets are not
duplicated and the ground station can decide which board to use for decoding.

Figure 4.54.: TC frame reception and packet distribution, as well as TM packet
forwarding in the Flying Laptop setup. Orange elements with
thick borders are provided by the PUS framework.

As TM frame generation happens in the CCSDS-Board hardware, the CCSDS
device handler simply serves as the receiving end for TM packets within the
software. It provides one access point per VC and is responsible for the correct
forwarding of these packets to the CCSDS-Board. In Flying Laptop the TM
VCs are used for live TM on VC 0 and different types of stored telemetry on
the other VCs (Figure 4.54).

4.6.2. Networking Layer - Distributing Space Packets

The FSFW supports space packet routing on-board the spacecraft with a dedi-
cated software component called CCSDSDistributor (Figure 4.55). It is the first
entity to receive incoming telecommands packets after decoding and extraction
from TC frames.

The distributor is designed to forward space packet to individual software com-
ponents. To actually receive packets, components need to provide a dedicated
interface called AcceptsTelecommandsIF and register at the CCSDSDistributor,
which consequently forwards all space packets containing the respective application
process identifier (APID). Passing the packets between components happens
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Figure 4.55.: Simplified class diagram of the CCSDSDistributor component.

with the same mechanisms as those of the FSFW software bus, i. e. asyn-
chronously via messages, but on dedicated communication lines.

Routing of TM packets is even more simple, as they are always forwarded to
a single downlinking entity. However, to allow on-board storage, it is often
convenient to route all TM packets to a storage component first, which stores
selected packets and routes all packets to the live downlink. The routing scheme
for Flying Laptop is shown in Figure 4.54.

This routing component, together with space packet representation and distri-
bution methods, form the on-board networking layer provided by the FSFW.
The modular setup makes adding APIDs or introducing new TM routes a mere
configuration issue.

Space Packets

To simplify handling of space packets, it is convenient to wrap the content in an
object providing getters and setters for various packet fields. The SpacePacket-
Base class of the FSFW provides such an interface. To avoid costly copying
of data, it operates on a data stream, directly accessing the underlying data.
It is the basis for subclasses used for the packet utilization standard (PUS)
application protocol, as seen in Figure 4.56. As these subclasses indeed are
space packets of a specific type, inheritance is a natural way to define the
dependency. Using the base class simplifies access to and creation of space
packets.
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Figure 4.56.: Simplified class diagram of SpacePacketBase and its subclasses.
or clarity, only getters of packet fields are shown.

4.6.3. Application Layer - Providing PUS Services

The FSFW PUS framework provides component templates to implement stan-
dalone and gateway service components. These templates are PUSServiceBase
and CommandingServiceBase, which are described following. There are, how-
ever no complete components provided, neither for standard service types, nor
for FSFW-specific gateways components. In some cases, such as the house-
keeping service, this would in principle be possible, but the mission-specific
tailoring, e. g. which optional field of a specific request to use, is difficult to
bring in a generic form.

PUSServiceBase

The basic activities of a PUS service are as following:

• Receiving a request in form of a TC packet.

• Decoding the content and performing some immediate action, if necessary.

• Generating verification reports as requested by the standard.

• In some cases, returning a data report in form of a TM packet in response.

• Producing TM report packets periodically, such as housekeeping packets.
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Figure 4.57.: Simplified class diagram of the PUSServiceBase component tem-
plate.

To implement such a service, the FSFW provides the PUSServiceBase compo-
nent template (see Figure 4.57). It reduces service implementation to a mini-
mum by performing all generic steps of TC handling, including registration for
packet routing, as well as generation of verification reports.

Specific service implementations can extend the basic functionality with two
adaptation points, which are handleRequest to actually handle an incoming
request and performService to support periodic activities of the service.

Even though the model is rather simple, it is a viable basis for a lot of service
implementations. For example, all standalone services of Flying Laptop shown
in Section 4.2.6 use this template as basis. Figure 4.57 shows the implementa-
tion of a simple test service component.

CommandingServiceBase

CommandingServiceBase is a component template to implement service gate-
ways as described in Section 4.1.6. Thus, it is responsible for forwarding PUS
requests to other software components as internal software bus messages and
vice versa.

Regarding interface inheritance and handling of PUS requests, it is similar to
PUSServiceBase, but has additional capabilities to communicate with other
components using messages over the software bus. Thus, the adaptation points
for component implementations are different:

173



4. The Flight Software Framework

• isValidSubservice: Check if a TC request is acceptable.

• getMessageQueueAndComponent: Check existence and obtain address of
the intended target component.

• prepareCommand: Prepare a message for the software bus based on the
incoming TC request content.

• handleReply: Handle incoming replies from components, eventually cre-
ate data reports and complete the transaction.

This template is the basis for all gateway components of Flying Laptop (Sec-
tion 4.2.6).

To illustrate its functionality, the interaction between the template and the
implementation of a function service, which forwards action commands to com-
ponents is shown in Figure 4.58.

In the example, the ground segment dispatches a TC to the attitude control
component to adjust the pointing target. This message is received by the
function service component, which uses the CommandingServiceBase template
to handle the bulk of the PUS protocol.

4.6.4. Summary

The FSFW PUS framework can be used for FSFW-based flight software im-
plementations which use the common CCSDS / ECSS PUS protocol stack. It
eases frame reception, as well as on-board packet handling and distribution.

Also, it provides templates to implement PUS service components, either in
the form of standalone or gateway services. These component templates sim-
plify implementation of specific services. Alternatively, reuse of existing service
components is possible, even though they are not provided by the framework
itself.
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Figure 4.58.: Sequence diagram to show the interaction between Commanding-
ServiceBase and a subclass, here the function service, to forward
an action invocation to the ACS control component.
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4.7. Fault Management

A distinctive feature of spacecraft in comparison to other machines is the
uniqueness and remoteness of their operational environment. Typically, they
are built in precisely controlled clean room conditions under direct control of
engineers, only to be released into the harsh environment of open space, where
direct access is virtually impossible. This has a strong influence on system de-
sign and typically dictates a spacecraft to carry redundant sensor and actuator
equipment to compensate for arbitrary failures.

These redundancies are quite useless, however, if they are not activated and
used in potentially hazardous situations. As remote control is often intermittent
and slow, this results in autonomy requirements for fault management software,
as described in Section 3.5.3. This failure detection, isolation and recovery
(FDIR) software must ensure spacecraft availability, or at least survival, in
case of critical equipment failures.

The Flight Software Framework supports implementing FDIR software: As
every hardware equipment is represented by a dedicated device handler compo-
nent, or some building block within a control component, the goal of the FDIR
design of the FSFW is to identify the faulty component and adjust the compo-
nent’s or building block’s health state. The component itself, or an associated
assembly or subsystem component then reacts on this change in health state.
The system’s main design goal is to handle faults as local as possible, ideally
within the faulty component itself.

This section describes the interaction of FSFW interfaces, core features and
component types to ensure a seamless integration of failure detection, isolation
and recovery in a FSFW implementation.

4.7.1. Example

To illustrate the functionality, parts of the attitude control subsystem (ACS)
of Flying Laptop serve as example, namely the MGM sensors and the RW
actuators. These FDIR concepts have been devised and described in detail in
[109].

All higher modes of the ACS subsystem require the RW assembly to be available
in MODE_NORMAL, but they are not needed for safe mode. The MGM assembly
must be available at all times18. As described in Section 3.3.2, all equipment is
connected to the IO-Board, which is controlled by the OBC’s processor board.

The three-out-of four redundancy allows the RW assembly to remain opera-
tional even if an arbitrary wheel fails, but it always tries to keep all healthy
18In higher ACS modes, the magnetic field information is needed for RW desaturation.
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Figure 4.59.: Extract of the Flying Laptop ACS subsystem mode tree with
MGM and RW assemblies.

wheels active. It uses the AssemblyBase template as basis. Each RW device
is represented by its own RW device handler component, which have the RW
assembly as mode tree parent. As described in Section 4.5.1, the RW device
handler is based on the DeviceHandlerBase template.

To improve measurement accuracy, the MGM assembly keeps both MGMs ac-
tive by default, but remains available with one faulty MGM as well. The MGM
devices are polled for measurements with a simple command, which is manged
by a device handler component for each MGM. Both the assembly and the de-
vice handler component are based on their respective component template.

4.7.2. Fault Detection

A prerequisite for autonomous FDIR software is that faults are properly de-
tected. In the FSFW, failure detection takes place either in the device handler
component itself, or in some assembly or controller component monitoring sen-
sor variables 19. In [109], Section 5.5, these are the stages two and three of “the
three stages of device failure detection”. Any detected fault is reported using
the FSFW-Core event distribution mechanism.

If the device handler component template is used (see Section 4.5.1), monitoring
of equipment communication is built-in. If the device itself is capable of error
19Monitoring building blocks as described in Section 4.5.2 can be used for this purpose.
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reporting, the device handler component additionally translates these error
reports into on-board event messages. For example, the FOGs used in Flying
Laptop are capable of reporting a number of hardware errors.

Other equipment failures can be detected based on sensor values. These values
may be coming from the equipment itself, or are associated values, such as
power or temperature of the equipment. They are best monitored not in the
device component, but in the sensor or actuator monitoring parts of controller
components. This is more simple, as controllers process the values anyway, but
also more reasonable, as cross-checks and comparisons of hot redundant sensor
values are possible.

Figure 4.60.: Illustration of failure detection for a MGM device.

For example, measurements of the MGM device are checked in the attitude con-
trol component against expected minimum and maximum field values, which
depend on the orbit of the mission. Also, a comparison between values from
MGM 1 and 2 takes place if both are available. An important point is that the
reporter ID of a failure event is always that of the potentially faulty compo-
nent: If, for instance, the attitude controller detects an out-of-range magnetic
field value of MGM 1, the reporter ID of the issued event is set to MGM_1,
and not ACS_CONTROLLER. Failure detection for such a sensor is illustrated in
Figure 4.60.

4.7.3. Failure Isolation

Failure isolation is twofold: The first part is identification, which is about
finding the root cause of a failure based on detected and reported faults. In
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technical systems, one needs to take into account the possibility of common
cause failures, where a failure in multiple components is caused by a single
fault, e. g. if a faulty power supply equipment drives multiple components.

Second, the actual failure isolation are the measures to be taken to avoid in-
fection of other parts of the system. An example is to ignore sensor values or
shut down faulty equipment.

Failure Identification

To illustrate the issue of failure identification, one of the failure cases of Flying
Laptop is used: As described in Section 11.1 of [109], the attitude controller
performs different checks on the MGM measurements. While an out-of-range
check of a single device is directly attributable, this is impossible for a com-
parison of MGM N and R. So for failure identification, the first case would
result in some isolation activity, whereas the second won’t, as the system can
not identify the root cause of the fault by itself. In such cases, ground segment
intervention is necessary.

It gets even more tricky in case of missed replies of the MGM devices (or any
other device). As all equipment communication is routed over the IO-Board, a
failure of the board would result in MISSED_REPLY events of all currently active
device handlers.

The FSFW supports failure identification with a so-called FailureIsolation-
Base building block (see Figure 4.61). It is an abstract base class, which is
intended for use as part of other components in general and device handlers
components in particular.

Its main intention is to collect all events assigned to its owner, to evaluate them
and ultimately, decide on corrective actions for failure isolation. To do so, it
subscribes for all events with its owners reporter ID at the FSFW-Core event
manager and prepares incoming events for evaluation. The evaluation itself
depends on the type and properties of the owning component, therefore, users
of this abstract building block must implement the eventReceived method as
main adaptation point.

To handle issues such as the faulty IO-Board of the above example, Failure-
IsolationBase provides a failure confirmation mechanism: It allows compo-
nents to request confirmation from failure isolation building blocks of other
components, as well as handling and responding to such requests. Communi-
cation takes place with modified event messages, which are exchanged between
the building blocks using a dedicated ConfirmsFailuresIF interface.

This mechanism helps resolving failure identification in the above example:
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Figure 4.61.: Simplified class diagram of FailureIsolationBase class, the
DeviceHandlerFailureIsolation subclass, and a specialization
for failure isolation of MGM devices.
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• In case of a MISSED_REPLY, the failure isolation building block of a MGM
device handler first issues a confirmation request to the failure isolation
block of the IO-Board device handler.

• Depending on its own state and other incoming confirmation requests,
the IO-Board device handler’s failure isolation has two options:

– Confirm the fault, i. e. returning that it is caused by the MGM device
itself.

– Returning that a common cause fault was identified. This means a
broken IO-Board was detected and most likely the MGM device is
not broken.

• Depending on the result of the confirmation request, the MGM failure
isolation either initiates isolation activities or ignores the fault.

This strategy avoids wrong association of faults due to common cause failures.

Δ𝑡

count

time

!

! !

!
!

threshold

Δ𝑡

Figure 4.62.: Diagram showing the use of the FaultCounter building block.
From [109].

Failure events can either indicate a change of state, e. g. a fuse triggered, or not,
as in case of a lost device reply. In the latter case, the failure isolation blocks
needs to make sure isolation does not react overly sensible on glitches [109]. The
FSFW provides so-called FaultCounter building blocks for that purpose. They
have two adjustable parameters, a threshold value and a decrement interval
∆𝑡. As depicted in Figure 4.62, an adjustable amount of incidents can be
ignored in a certain time range. FailureIsolationBase does not use any fault
counters directly, but is prepared for using them by providing a HasParameters-
IF for parameter adjustment from ground and the decrementFaultCounters
adaptation point.

Failure Isolation

If conditions are met to unambiguously assign a failure to a certain component,
i. e. the failure cause is identified, failure isolation takes place.
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In the FSFW this happens by adjusting the heath state of a component (or
building block). Useful options are either faulty, to disable the equipment
and/or ignore sensor values, or needs recovery to initiate a power cycle of a
device.

No other action for failure isolation is necessary, as associated assembly and
subsystem components will autonomously react on the changed health state and
perform the programmed recovery actions, as detailed in section Section 4.7.4
below.

DeviceHandlerFailureIsolation

Even though failure causes and reactions are typically unique for every device,
there are some common failure modes for different equipment. For example,
both MGMs and RWs should be disabled if the temperature is out of the
operational range.

This is even more true if the device handler component template is used as
basis. Due to the generic communication monitoring, it generates a com-
mon set of events for every device. This facilitates the implementation of
a default equipment failure isolation building block, which is provided with
DeviceHandlerFailureIsolation. As shown in Figure 4.61, it inherits from
FailureIsolationBase and implements the eventReceived method.

Within this method, it handles all common events regarding power, thermal
and communication of a device. To avoid being overly sensible, it uses fault
counters to count missed and malformed replies before adjusting the health
state of its owning component.

With the exception of a few severe events, e. g. too high power consumption, it
first tries to reboot the device using the needs recovery state, before marking
the device faulty20. Also, it uses the failure confirmation mechanism to check
if communication errors stem from a failure in a dedicated interface component,
such as the IO-Board of Flying Laptop. For illustration, the entire source code
of the eventReceived method is shown in Section A.2.

This building block further simplifies FDIR implementations, as all common
forms of failure handling are already programmed. Variations and extensions
are possible by creating subclasses of DeviceHandlerFailureIsolation. For
example, the MGM device handler extends the default failure isolation block
by adding an isolation action, which triggers if an value out-of-range event is
detected.

20Another FaultCounter is used to avoid indefinite reboot cycles.
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4.7.4. Failure Recovery

The missing piece for a complete FDIR implementation are means for failure
recovery. Most of these are, in fact, already described in Section 4.5.3. Assem-
bly components react on health states of device handlers, i. e. they command
MODE_OFF in case a component is faulty and perform a power cycle if it is set to
needs recovery21. In addition, they implement redundancy type-specific logic
to check if the current mode can be kept, eventually by activating redundant
equipment.

This is illustrated with the RW assembly of the above example:

• In case of a health change of one of the RWs to needs recovery, the RW
assembly will power cycle the device without changing its own mode.

• If successful, the failure is handled and no further actions are required.

• If the problem persists, the same failure events will cause the RW com-
ponent to change its health state to faulty.

• The assembly shuts down the wheel and checks if at least three wheels
are available.

• If so, the assembly retains its mode and the failure is handled.

• If not, the assembly shuts down all wheels, changes its mode to MODE_OFF
and reports this step, e. g. by issuing a CANT_KEEP_MODE event.

• These reports trigger the parent subsystem, i. e. the ACS subsystem com-
ponent to check its mode: If the RW assembly is needed in the current
mode (which is likely), it will trigger an autonomous system fallback as
described in Section 4.5.3.

In effect, multi-staged device failure recovery is already implemented in the
system mode tree.

As the whole is often greater than the sum of its parts, there may be some failure
cases which are not attributable to a single device, but need direct treatment
on system level, e. g. a low battery state or high rotation rates. For such cases,
failure isolation building blocks within other components, such as controllers
or subsystem components can handle dedicated events and perform reactive
measures directly.

In Flying Laptop, for example, the top level System component reacts on low
battery state events by disabling all non-essential loads, which happens by
commanding the Payload subsystem component to MODE_OFF.

21They do so by commanding MODE_OFF and MODE_ON, consecutively.
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4.7.5. Summary

This chapter showed the concepts of fault management implementation with
the FSFW. It shows that a hierarchical FDIR, which is desirable for rea-
sons of decomposition and separation of concern [61], harmonizes well with the
component-based approach. It allows not only to create a unit and system level
FDIR, but also multiple intermediate subsystem levels for failure handling.

Figure 4.63.: Illustration of the interaction of FDIR elements of the FSFW.
Thick lines indicate events or confirmation messages, thin lines
indicate software bus messages or data pool access.

In addition, the strict separation of failure detection, isolation and recovery
enables a clean FDIR design, which mainly utilizes standard, built-in function-
ality of components, such as modes and health, as well as recovery features
of assemblies and subsystems. The only additional implementation effort is
required for failure isolation, which is alleviated by the building blocks and de-
fault implementations the FSFW provides. Utilizing those, a complete FDIR
implementation comes together like the pieces of a puzzle, as shown in Fig-
ure 4.63.

Moreover, the generic form of this implementation simplifies interaction with
ground operators, as reactions, even of complex failure scenarios, follow a com-
mon concept. Also, operators can interact with the FDIR implementation, e. g.
by setting device component health states manually in cases where on-board
identification fails. Changing the health state by ground command triggers
the same on-board reactions as an autonomous failure detection, which also
supports ground testing of fault management software.
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The FDIR implementation of the FSFW supports all fault management-related
FSW features identified in the domain analysis in Section 3.7.
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This chapter evaluates to what extent the original hypothesis has been achieved:

Utilizing modern software engineering techniques improves devel-
opment of complex embedded software in general, and spacecraft
flight software in particular.

First of all, it is indeed possible to utilize these techniques to develop, imple-
ment, test, and operate a spacecraft FSW: The small satellite Flying Laptop,
whose FSW is based on the FSFW developed in this thesis, was launched on
July 14th, 2017 and is performing extraordinary well since then. To date, there
were no unexpected issues related to the general architecture of the FSFW.
The first test image was received five days after launch (see Figure 5.1).

This on-orbit proof of concept of the FSFW shows that a component frame-
work architecture with SOA-like communication for embedded systems is not
just a vision in the ivory tower of a University, but works in a real-world de-
ployment.

Thus, the following evaluation focuses on describing scenarios in which the
FSFW architecture proved particularly useful, not only during development,
but also during system tests and operations of the spacecraft.

5.1. Developing a FSFW-Based Software

The component-based approach followed in the FSFW ensures separation of
concerns, as every functionality is clearly assigned to a dedicated component.
Thus, developers can focus on implementing individual components, without
the need to fear interference from their colleague’s work. For example, there
were typically little issues regarding software integration during the develop-
ment of the Flying Laptop software and bugs in new components were well
encapsulated.

Due to interaction between components by well-defined mechanisms, coupling is
loose, and it is simple to replace individual components with stubs, e. g. for unit
testing. Moreover, by hedging the inflationary definition of service interfaces
and instead defining a limited common set (Section 4.3), the often-encountered
incidental complexity of a general-purpose SOA implementation was avoided.
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Figure 5.1.: First image acquired from Flying Laptop, showing southern Ger-
many. Taken on July 19th, 2017.
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Thus, one finding of this thesis is that domain-specific, but component-generic
interfaces support developers and improve reuse of software components.

Also, by providing component templates and common building blocks, the
FSFW design fosters internal reuse of code, as they are applicable for many
different components of a project. For example, 54 of the 57 components from
Flying Laptop - introduced in Section 4.2 - use one of the component templates
of the FSFW as basis. For device handler components this means that most
code to handle equipment is shared by using the component template, reducing
implementation effort to a minimum.

This is not only convenient for developers, but improves overall code quality:
Shared code reduces the need for duplicated functionality and allows new com-
ponents to be based on well tested foundations.

These templates provide enough flexibility to cover uncommon extensions: The
TTC subsystem from Flying Laptop, for example, is based on the Subsystem
class, but was extended to serve as a controller to manage automatic mode tran-
sitions of the subsystem, e. g. to activate transmitters on an incoming ground
segment signal.

Still, the most important aspect of developing with the FSFW is that it provides
a software architecture. This architecture guides developers on how to create
the overall FSW, and by providing the fundamental FSW-specific infrastructure
for execution and communication, ensures that programmers can focus on the
essential complexity of mission-specific applications.

5.2. Spacecraft Testing with the FSFW

The component-based approach also provides advantages for spacecraft test-
ing:

First, it is possible to perform system tests early with rather incomplete versions
of a flight software, as each component can operate independently. For example
the Flying Laptop flatsat campaign was performed with a software that provided
only the most relevant PUS services and device handler components, some of
which were being completed just in time for the tests. However, as every
component is an encapsulated unit, the tests were representative enough to
validate the electrical interfaces and device handler components themselves.

Moreover, the flexibility to exchange software components helps adjusting the
system to different testbeds. For example, the Flying Laptop software was
ported to an evaluation board without SpaceWire lines to overcome a testing
bottleneck in the final development campaign. This was managed by replacing
the CCSDS-Board and IO-Board components with simple bridging components,

189



5. Evaluation

Figure 5.2.: Flatsat setup of Flying Laptop.

which routed space-ground, as well as equipment communication over available
Ethernet links.

As a last point, the flexible mode concept of the FSFW as described in Sec-
tion 4.5.3 eases system tests, as it is possible to quickly bring the entire system
into a specific system mode with a single command. Moreover, the FSFW
allows to configure each component manually by commanding individual con-
troller and device handler modes.

5.3. Operating a Spacecraft with the FSFW

A FSFW-based software helps operators to get a consistent view of the system
as all interactions happen with components conforming to common interfaces
[84]. This also ensures that every telemetry value and every event is bound to
a certain component and thus is automatically ordered.

Moreover, using component templates as basis ensures that the “look-and-feel”
of every component is similar, avoiding unpleasant surprises for operators.

For example, instead of memorizing particular start-up procedures of individual
equipment of the spacecraft, operators can rely on the mode abstraction intro-
duced by the DeviceHandlerBase component template (Section 4.5.1). Also,
each device handler component issues a common sequence of events, e. g. during
a mode change, which makes it easier to understand the system’s behavior as
a ground operator.

190



5.3. Operating a Spacecraft with the FSFW

For Flying Laptop, the “simple” operability due to the FSFW allowed operating
the spacecraft by undergraduate students as staff shortly after commissioning.
The basics for satellite operations were taught in a one-semester lecture.

Another feature to simplify operations is the FDIR concept of the FSFW:
Due to the hierarchical isolation of failures, ideally on assembly level, mission
operations can continue even in the presence of arbitrary equipment faults, as
the system can recover from most faults without a mode switch.

For example, almost every higher-mode ACS sensor on Flying Laptop gets stuck
due to radiation from time to time, but such errors are handled by the on-board
FDIR, e. g. by power-cycling equipment, without interrupting the mission. The
system proved so robust that first night-time, and later week-end and public
holiday operations were fully automated to reduce operator workload.

Common interfaces and components also pay off for on-board maintenance. The
HasParametersIF interface ensures that parameter manipulation to fine-tune
the system happens in a common, type-safe manner, and due to the assignment
of parameters to components, addressing is obvious.

Figure 5.3.: Illustration of the software upload process of Flying Laptop, using
standard PUS memory service commands and a custom memory
copy subservice, in combination with the HasMemoryIF interface.

Also, the HasMemoryIF facilitates moving software patches around the system:
For example, this interface allowed introducing a memory copy subservice in
the PUS memory service in Flying Laptop, which is capable of moving raw
memory from one component implementing HasMemoryIF to another. In ef-
fect, FSW patches can be uploaded to the IO-Board memory first and can be
checked there, before performing a fast copy to the critical boot memory (see
Figure 5.3).
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5.4. Software Reuse with the FSFW

Another main goal of the FSFW, aside from loose coupling to facilitate devel-
opment, testing and operations, is improving software reuse. Software reuse
shall avoid developing almost, but not entirely identical applications over and
over again.

And indeed, using the FSFW enhances both internal and external software
reuse:

• Internal reuse is improved by identifying and eliciting recurring func-
tionality and refactoring this code in an abstract fashion. The goal is
to minimize code duplication, by providing common building blocks and
component templates, as described in Section 5.1 above.

• External reuse is supported by the three software layers of the FSFW
(Section 4.1.4):

– Component layer: By ensuring components interact with other
components, RTOS features and equipment via standardized inter-
faces only, reusing entire components is a matter of configuration.
This allows deploying well-written components in different contexts.

– FSFW-Core layer: The FSFW-Core itself is the basis for FSW
reuse, as it holds the individual pieces together. Reuse of components
is possible only by utilizing the FSFW-Core.

– Platform abstraction layer: This layer, in the form of inter-
faces for the underlying RTOS and drivers, ensures that the FSFW-
Core and all applications are independent of the execution platform.
Thus, as soon as RTOS and device driver wrappers are available, an
entire FSFW implementation is portable between different systems.

The applicability of the above concepts has been shown in parts by porting the
Flying Laptop software to different execution platforms for software testing,
e. g. an FPGA-based development board, but also a common Linux computer.
In this example, most components are identical to those of the Flying Laptop
software, but the wrappers and drivers in the platform abstraction layer are
replaced.

Moreover, the Flight Software Framework is the basis for the flight software of
the Flexible LEO Platform (FLP2), a spin-off from the original Flying Laptop
design by Airbus Defence and Space for modular small satellite missions [54]. In
this setting, the flexibility of the FSFW can be fully exploited, e. g. by providing
replaceable software components to support various propulsion options of the
platform.
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Figure 5.4.: Reuse of the FSFW in the Flexible LEO Platform. It utilizes legacy
components from Flying Laptop where appropriate, but requires
additional interface drivers, as well as dedicated components, e. g.
for propulsion systems.

Existing components from Flying Laptop can be reused for the platform by
means of component configuration. For example, the RW device handler com-
ponent is highly configurable to the mission on construction, e. g. by setting
operational limits and specific identifiers, such as data pool IDs. The software
stack for the FLP2 is shown in Figure 5.4.

5.5. Towards an FSFW-based Software Product Line

An important aspect for reusability is whether the FSFW actually provides
suitable features for more than just the Flying Laptop mission. Thus, it is
necessary to check which of the features of a generic spacecraft FSW identified
in Chapter 3 are actually supported by the FSFW.

As shown in the feature tracing tables in Appendix B.2, the FSFW supports
most of the generic features identified in Section 3.7. Some missing elements,
such as additional device interfaces, or low-level space link protocols are sim-
ple to be added on demand. Other functionality, such as file system support
or another application layer for the space link, as well as execution on dis-
tributed systems requires additional effort. These open issues are addressed in
Chapter 5.7.

To form a flight software product line, a relevant aspect is ease of use for software
developers as using a framework as basis will only pay off if it actually simplifies
work.
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This is the goal of the FSFW in general and of component templates in par-
ticular. In their current form, these elements form a white-box framework (see
Section 2.3.2), which is a well understood technique for framework implemen-
tations.

Still, the wide range of supported generic FSW features indicate that the FSFW
is a good fit for many types of space missions. Also, it lays the foundation
for better forms of reuse than simple “clone-and-own” strategies and may in-
deed support flight software development of many space missions to come, even
though, for now, the simple drag-and-drop software solution remains a vision
on the horizon.

5.6. The FSFW as Real-Time Embedded Software

Due to the design of the FSFW-Core for component communication and execu-
tion (Section 4.4), the FSFW is well-suited for embedded systems with regards
to real-time capabilities.

However, memory and performance overhead are relevant factors for space mis-
sions (see Section 2.4.3), as high-performance processors and memory are ex-
pensive due to the harsh space environment. Thus, it is reasonable to evaluate
the resource demand introduced by using the FSFW. A comparative analysis
would require performance data of FSW from comparable space missions. Un-
fortunately, such data was not available. Therefore, only the resource demands
of the Flying Laptop sofware are presented.

Regarding performance, an important quantitative result is that the Flying
Laptop software, utilizing a 5 Hz attitude control cycle and executing 57 com-
ponents in 24 tasks, runs on a 33 MHz LEON3-FT microprocessor with about
35% of processor utilization. This is a good indication that using the FSFW
does not produce unacceptable performance overhead. Also, it shows that it
was a good decision to focus performance optimizations on core elements of
the system, such as an efficient implementation of the software bus. A more
detailed performance analysis, albeit of an early version of the FSFW, can be
found in [11].

For memory utilization, a relevant metric is the code size introduced by the
FSFW, as critics of OOP often complain about so-called code bloat. As shown
in Table 5.1, the FSFW does introduce significant overhead in code size of
about 1 MB when compared to an empty RTOS. Still, the increase in code size
of about 1.5 MB to a full FSW implementation is rather moderate.

Due to this overhead, using the FSFW may be unattractive for very simple
deployments, e. g. on small CubeSats. For more complex use-cases, the ad-
vantage of internal code reuse comes into play, which allows building complex
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Image Code Size (B)

RTEMS sample 206 320
Empty FSFW/RTEMS 1 218 624
Flying Laptop software 2 710 736

Table 5.1.: Code size of a simple RTEMS example, an almost empty FSFW
deployment and the Flying Laptop image. All images are compiled
with the RTEMS g++ compiler with full optimization (O3).

applications with little additional code. In Flying Laptop, the entire FSW, with
execution code, stacks and heap, runs on 8 MiB of RAM.

Thus, even though performance and memory utilization were regarded sec-
ondary to functionality aspects and code readability1, the FSFW is well suited
for the computing hardware of current space missions.

5.7. Improvements and Open Issues

Despite the operational success of the FSFW in Flying Laptop, which proved
its general applicability to develop operational FSW, some known open issues
exist in the current implementation. Also, there is room for improvements and
extensions. These points are addressed in this section.

5.7.1. Incomplete SOA Implementation

In the FSFW in its current form, there is an imbalance between implementing
and calling a common interface over the software bus.

To provide an interface to other components, it is sufficient to implement the
adaptation points in the form of method calls, and to instantiate a helper class
(c. f. Section 4.4.3), which handles the incoming message and invokes an inter-
face. For example, providing a changeable mode is realized by implementing
the HasModesIF interface and forwarding incoming messages to a mode helper
class. In effect, the helper takes the role of a skeleton in a SOA implementation
(Section 2.3.4). Thus, only few details of the underlying implementation are
known to a component implementer.

In contrast, there is no support for calling another component’s interface:
Callers uses the middleware directly. For instance, commanding a mode change
requires creating a message, looking up the receiver’s address and putting it into
1This is in accordance with the first rule of code optimization: Don’t. [6]
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the middleware manually, with the unpleasant consequence that many imple-
mentation details of the framework are exposed to the caller. In other words,
there is no such thing as a SOA proxy available in the FSFW so far.

Some experiments to close that conceptual gap have been conducted: The
FSFW offers a CommandsActionsIF and a CommandActionHelper to invoke ac-
tions of other components. They interact in a similar fashion as normal inter-
faces and helper classes, but for the commanding side of the interaction, and
therefore hide the messaging details from a component implementation. This
concept could be transferred to all common interfaces of the FSFW in future
upgrades.

5.7.2. Improving DeviceHandlerBase implementation

The DeviceHandlerBase component template is an important element of the
FSFW, which shows that some abstract form of device handling is possible in
spacecraft systems (see Section 4.5.1). Still, the functionality of DeviceHand-
lerBase is provided by a large, monolithic base class. Thus, using the template
is a all-or-nothing issue.

A better separation of features and a more modular design, e. g. using build-
ing blocks for device communication monitoring or power switching, may be
more desirable, to avoid instantiating unneeded functionality, but also from
a code maintenance perspective. Also, modularization could facilitate adding
new functionality, such as power and thermal monitoring.

5.7.3. More Common Interfaces

A number of iterations took place to identify the current set of common inter-
faces defined in the FSFW. They finally are an adequate basis to control and
monitor small satellite systems.

However, to add new features to components of the FSFW, additional interfaces
become necessary. Some ideas for such interfaces are presented here.

Persistence

Due to the radiation environment in space, occasional reboots of computers,
including the main OBC, must be taken into account. In such cases, it is
important to restore the correct state of the system, e. g. for control parameters
and health states.

Thus, in a component-based software, it would be ideal to allow loading and
saving of the inner state of components in the form of a common interface.
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Such an interface is missing in the presented FSFW implementation and would
be a good extension for upcoming releases2.

Distribution of Periodic Data

In its current form, the data pool works reasonably well and provides a good
decoupling in time of sensor/actuator and control components. Also, asyn-
chronous access of a data reporting entity, such as the PUS housekeeping ser-
vice, works quite well.

On the downside, however, the global accessibility violates the encapsulation
concept of the FSFW, less because it makes the variable accessible at any time,
but more so because it allows other component to change the variable at will,
i. e. it is not owned by a single component. Also, the shared memory concept
makes accessing specific samples of a variable difficult, as a reader may always
miss a sample due to varying timing conditions3.

A potential better fit to the FSFW architecture would be some well-designed
publish-subscribe mechanism on the software bus. Components could publish
data or data sets to subscribers and the subscription mechanism could include
the requested sampling frequency, e. g. 5Hz or ALL.

This would allow fine-grained control of data exchange between device han-
dler, controller, housekeeping, and diagnostic components, but also make the
current data pool implementation obsolete. Therefore, such a change would
require redesign of all existing components, as well as new common interfaces
for publishing and receiving periodic data.

5.7.4. Handling the Space Link Protocol

Being the only way to interact with a spacecraft, the space link protocol is very
important for FSW design. However, as explained in Section 4.1.6, the FSFW
has a dedicated internal protocol, which are the messages on the software bus
Section 4.4.3.

In the current solution, translation takes place on service level, after incoming
commands were distributed according to their address. This approach allows
dedicated translation of each telecommand to an optimized protocol on the soft-
ware bus. Also, standalone components, which accept telecommands without
translation, are possible.

However, the concept has some drawbacks (see Figure 5.5): As services are
supposed to operate in a dedicated address space, defined by the application
2Some unpublished experiments on that topic have been performed by Steffen Gaisser at

the IRS.
3This is an aliasing effect.
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Figure 5.5.: The current space link translation in the FSFW. For each address
space, dedicated service gateway components are required. Solid
lines indicate TMTC communication, dotted lines messages on the
internal software bus.

process identifier (APID), all components behind the gateway belong to that
address. Thus, TC and TM packets need to contain an additional component
address to allow gateways to identify the command destination. Moreover, for
each application process, dedicated instances of all needed service components
are required, which is rather costly. For instance, the flight software of Flying
Laptop utilizes a single APID for all components.

A possible alternative to the current approach would be to establish some form
of end-to-end communication between the ground segment and software com-
ponents, which can for example be realized by using the APID as a component
address. This would require changes in the FSFW PUS framework, but existing
controller and device handler components work without changes.

5.7.5. Supporting Distributed Computing

Even though FSFW components are well encapsulated and designed for in-
dependent execution, building distributed systems is currently not supported.
This has some technical background, as certain interaction, such as system ini-
tialization, as well as the data pool, work via shared memory in a single address
space.

Adjusting the FSFW to handle these issues may be possible, so components
could be distributed on several independent nodes, but there is a high risk to
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Figure 5.6.: Deploying the FSFW on multiple computers or partitions, using
gateways for communication. Solid lines are network communica-
tion, dotted lines represents IPC on the FSFW software bus.

introduce a lot of incidental complexity for functionality which is required only
by few deployments of the FSFW.

Therefore, a simpler approach would be to run multiple independent instances
of the FSFW and introduce to gateways that forward inter-component commu-
nication to some on-board network, as illustrated in Figure 5.6. This approach
would also work for deploying the FSFW on multiple partitions in one com-
puter. This concept has been successfully implemented for the FLP2 platform
at Airbus Defence and Space, where two instances of the FSFW run in the
multiprocessor environment of a GR712 system-on-chip.

5.7.6. Evolving a Blackbox Framework

The FSFW is a white-box framework (see Section 2.3.2), i. e. creating com-
ponents from templates happens by subclassing. This is a well understood
technique, but not ideal with regards to information hiding: Creating sub-
classes always requires a certain amount of insight into structure and dynamic
behaviour of base classes and therefore some expertise and training.

This effort could be reduced by evolving the FSFW to a black-box framework,
where interaction between components and the framework only happens via
interfaces, as illustrated in Figure 2.5 of Section 2.3.2.

However, these techniques are much less investigated than those for white-
box frameworks. Therefore, this is rather a promising direction of research
than a simple update of the current design. Still, some ideas to use C++
metaprogramming techniques to generate component “containers” are found in
Appendix A.3.
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6. Summary

To counter the challenges introduced by ever more complex flight software, the
Flight Software Framework (FSFW) was developed in the frame of this thesis.

It uses selected software engineering techniques to assist the development of
FSW for space missions. The software engineering techniques applied are:

• A framework approach, to provide a domain specific tool set to developers
to speed up implementation.

• Software components, to improve separation of concerns and allow reuse
on component basis.

• Communication techniques similar to that in service-oriented architecture,
to ensure loose coupling between components.

With these concepts, the FSFW forms a component framework, which keeps
essential complexity manageable by enforcing strict separation of concerns due
to independent components. Also, it avoids incidental complexity by focusing
on domain specific needs of software development with the framework elements
provided.

To ensures that the FSFW not only covers the need of a specific space mission,
but may serve as the basis for a software product line for very different satellites,
an extensive domain analysis is part of this thesis. Its outcome is a feature tree,
which structures generic requirements for any robotic space software, divided
in component and system management, as well as operations and autonomy.

The FSFW covers most features in this tree by providing the following ele-
ments:

• A set of common interfaces, which reflect functionality a component has
or offers to other components. These interfaces are the basis for inter-
component communication.

• The FSFW-Core allows real-time compatible execution of, and commu-
nication between components. Also, it provides abstractions for the un-
derlying execution platform and on-board networks.

• A set of component templates, which form a framework to implement
typical component types, such as device handlers and controllers.
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• The FSFW PUS framework, which supports designing a space link pro-
tocol stack to utilize common CCSDS and ECSS protocols.

With these elements, the FSFW is designed to improve software reuse, in-
ternally by sharing code with component templates and building blocks and
externally by reusing the entire FSFW-Core and components on different mis-
sions. This is a key factor to produce high-quality flight software with reduced
development effort.

Moreover, the common interfaces of the FSFW introduce a layer of abstraction
and generalization, which simplifies the design of complex features, such as
hierarchical failure detection, isolation and recovery.

Within this thesis, the framework was not only designed as a big laboratory
experiment, but actually used to implement software for the small satellite
Flying Laptop. The spacecraft performs well in orbit since its launch in July
2017. The testing, integration and operations campaign provided invaluable
real-life feedback not only for the Flying Laptop software itself, but also for the
overall framework design.

In conclusion, the flight software domain analysis in this thesis and the Flight
Software Framework itself will hopefully provide a small contribution to master
software development of future space missions.

Indeed, the prospects for further use are good: The FSFW is continuously
improved at the University of Stuttgart and serves as baseline for planned
satellite projects there. Furthermore, Airbus Defence and Space applies the
framework on its new Flexible LEO Platform (FLP2).
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A.1. Object-Oriented Programming Examples

Listing A.1: Class and object example

1
2 class A {
3 public :
4 // c l a s s A constructor
5 A( ) : va lue (0 ) {}
6 //another c l a s s A constructor
7 A( int s t a r t ) : va lue ( s t a r t ) {}
8 //a method
9 int getValuePlusOne ( ) {

10 return ++value ;
11 }
12 private :
13 //an a t t r i b u t e
14 int value ;
15 }
16
17 int main ( ) {
18 // create ob j ec t "myA" as instance of c l a s s "A"
19 A myA;
20 // c a l l a method of myA
21 myA. getValuePlusOne ( ) ;
22 std : : cout << myA. getValuePlusOne ( ) << std : : endl // pr in t s "2"
23 myA. value = 10 ; //compile error : " value i s pr i va t e "
24 // create another ob j ec t "myOtherA"
25 A otherA (3) ;
26 std : : cout << otherA . getValuePlusOne ( ) << std : : endl // pr in t s "4"
27 }
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Listing A.2: Inheritance and interface example

1
2 class A; // dec lara t ion of c l a s s A as in l i s t i n g A.1
3
4 class PrintIF {
5 public :
6 //C++ expects a v i r t u a l des t ruc tor
7 virtual ~PrintIF ( ) {}
8 virtual void pr in t ( ) = 0 ;
9 } ;

10
11 class C {
12 public :
13 void pr in t ( ) {
14 std : : cout << "Class C" << std : : endl ;
15 }
16 } ;
17
18 class B : public A, public PrintIF {
19 public :
20 //Implements method pr in t
21 void pr in t ( ) {
22 std : : cout << "Class B has a " ;
23 myC. p r in t ( ) ;
24 }
25 private :
26 C myC;
27 } ;
28
29 int main ( ) {
30 // create ob j ec t "myB" as instance of c l a s s "B"
31 B myB;
32 std : : cout << myB. getValuePlusOne ( ) << std : : endl // pr in t s "1"
33 myB. p r in t ( ) ; // pr in t s "Class B has a Class C"
34 myB.myC. p r in t ( ) //compile error : "myC i s pr i va te "
35
36 // obtain a re ference to myB
37 PrintIF ∗ p r i n t ab l e = &myB;
38 pr in tab l e −>pr in t ( ) ; // pr in t s "Class B has a Class C"
39 pr in tab l e −>getValuePlusOne ( ) ; //compile error
40 }
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A.1.1. PlacementFactory

Listing A.3: Full source code of PlacementFactory implementation

1
2 #include <framework/ storagemanager /StorageManagerIF . h>
3 #include <u t i l i t y >
4
5 class PlacementFactory {
6 public :
7 PlacementFactory ( StorageManagerIF∗ backend ) :
8 dataBackend ( backend ) {
9 }

10 template<typename T, typename . . . Args>
11 T∗ generate ( Args &&.. . a rgs ) {
12 store_address_t tempId ;
13 uint8_t∗ pData = NULL;
14 ReturnValue_t r e s u l t = dataBackend−>getFreeElement(&tempId ,

s izeof (T) ,
15 &pData ) ;
16 i f ( r e s u l t != HasReturnvaluesIF : :RETURN_OK) {
17 return NULL;
18 }
19 T∗ temp = new ( pData ) T( std : : forward<Args>(args ) . . . ) ;
20 return temp ;
21 }
22 template<typename T>
23 ReturnValue_t dest roy (T∗ thisElement ) {
24 //Need to c a l l des t ruc tor f i r s t , in case something was

a l l o ca t ed by the ob j ec t
25 //( shouldn ’ t do that , however ) .
26 thisElement−>~T() ;
27 uint8_t∗ po in t e r = ( uint8_t ∗) ( thisElement ) ;
28 return dataBackend−>deleteData ( po inter , s izeof (T) ) ;
29 }
30 private :
31 StorageManagerIF∗ dataBackend ;
32 } ;
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A.2. DeviceHandlerFailureIsolation::eventReceived

The following code listing shows the complete implementation of the event-
Received method of the DeviceHandlerFailureIsolation building block. As
shown, failure isolation boils down to implementing a switch case over all possi-
ble events. Code comments provide rationales for the resulting reactions.There
are four reactions implemented:

• Do nothing: In case the event is information only, or can’t be handled
on-board, it is ignored.

• Increment a fault counter using incrementAndCheck: If only multiple
event occurrences indicate a fault, fault counters are used for confirma-
tion. The method returns true if the threshold was reached, resulting in
another reaction.

• Get confirmation from a potential “common cause” component:
Using the sendConfirmationRequest method, other components can be
asked for confirmation. The reply to this confirmation request is handled
in dedicated eventConfirmed and wasCommonCause methods.

• Initiate a recovery with handleRecovery: The method sets its owner’s
health state to needs recovery. Within the method call, another counter
is checked to avoid infinite reboots of devices. If the counter has reached
its threshold, the health state is set to faulty.

• Mark the component faulty: In some cases, the component’s health
state is set to faulty directly, as a reboot will not resolve the situation.

With these explanations and the comments in the code, understanding the
reaction on different failure events is quite straightforward.
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Listing A.4: DeviceHandlerFailureIsolation::eventReceived

1 ReturnValue_t
2 Dev i c eHand l e rFa i l u r e I s o l a t i on : : eventReceived ( EventMessage∗ event

) {
3 i f ( isFdirInActionOrAreWeFaulty ( event ) ) {
4 return RETURN_OK;
5 }
6 ReturnValue_t r e s u l t = RETURN_FAILED;
7 switch ( event−>getEvent ( ) ) {
8 case HasModesIF : :MODE_TRANSITION_FAILED:
9 case HasModesIF : :OBJECT_IN_INVALID_MODE:

10 //We’ l l t ry a recovery as long as def ined in MAX_REBOOT.
11 //Might cause some AssemblyBase cyc les , so keep number low .
12 handleRecovery ( event−>getEvent ( ) ) ;
13 break ;
14 case DeviceHandlerIF : :DEVICE_INTERPRETING_REPLY_FAILED:
15 case DeviceHandlerIF : :DEVICE_READING_REPLY_FAILED:
16 case DeviceHandlerIF : :DEVICE_UNREQUESTED_REPLY:
17 case DeviceHandlerIF : :DEVICE_UNKNOWN_REPLY: //Some DH’ s generate

generic reply−i d s .
18 case DeviceHandlerIF : :DEVICE_BUILDING_COMMAND_FAILED:
19 //These f a u l t s a l l mean tha t there were s tup id r e p l i e s from a

device .
20 i f ( strangeReplyCount . incrementAndCheck ( ) ) {
21 handleRecovery ( event−>getEvent ( ) ) ;
22 }
23 break ;
24 case DeviceHandlerIF : :DEVICE_SENDING_COMMAND_FAILED:
25 case DeviceHandlerIF : :DEVICE_REQUESTING_REPLY_FAILED:
26 //The two above should never be confirmed .
27 case DeviceHandlerIF : :DEVICE_MISSED_REPLY:
28 r e s u l t = sendConfirmationRequest ( event ) ;
29 i f ( r e s u l t == HasReturnvaluesIF : :RETURN_OK) {
30 break ;
31 }
32 // e l s e
33 i f ( missedReplyCount . incrementAndCheck ( ) ) {
34 handleRecovery ( event−>getEvent ( ) ) ;
35 }
36 break ;
37 case StorageManagerIF : :GET_DATA_FAILED:
38 case StorageManagerIF : :STORE_DATA_FAILED:
39 //Rather strange bugs , occur in RAW mode only . Ignore .
40 break ;
41 case DeviceHandlerIF : : INVALID_DEVICE_COMMAND:
42 //Ignore , i s bad conf igura t ion . We can ’ t do anything in f l i g h t

.
43 break ;
44 case HasHealthIF : :HEALTH_INFO:
45 case HasModesIF : :MODE_INFO:
46 case HasModesIF : :CHANGING_MODE:
47 //Do nothing , but mark as handled .
48 break ;
49 //∗∗∗∗Power∗∗∗∗∗
50 case PowerSwitchIF : :SWITCH_WENT_OFF:
51 r e s u l t = sendConfirmationRequest ( event , powerConfirmation ) ;
52 i f ( r e s u l t == RETURN_OK) {
53 s e tFd i rS ta t e (DEVICE_MIGHT_BE_OFF) ;
54 }
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55 break ;
56 case Fuse : :FUSE_WENT_OFF:
57 //Not so good , because PCDU reacted .
58 case Fuse : :POWER_ABOVE_HIGH_LIMIT:
59 //Better , because sof tware detec ted over−current .
60 se tFau l ty ( event−>getEvent ( ) ) ;
61 break ;
62 case Fuse : :POWER_BELOW_LOW_LIMIT:
63 //Device might got s tuck during boot , re t ry .
64 handleRecovery ( event−>getEvent ( ) ) ;
65 break ;
66 //∗∗∗∗Thermal∗∗∗∗∗
67 case ThermalComponentIF : :COMPONENT_TEMP_LOW:
68 case ThermalComponentIF : :COMPONENT_TEMP_HIGH:
69 case ThermalComponentIF : :COMPONENT_TEMP_OOL_LOW:
70 case ThermalComponentIF : :COMPONENT_TEMP_OOL_HIGH:
71 //Well , the device i s not r e a l l y fau l t y , but i t i s required to

stay o f f as long as po s s i b l e .
72 se tFau l ty ( event−>getEvent ( ) ) ;
73 break ;
74 case ThermalComponentIF : :TEMP_NOT_IN_OP_RANGE:
75 //Ignore , i s information only .
76 break ;
77 //∗∗∗∗∗∗∗Defaul t monitoring va r i a b l e s . Are current l y not used

.∗∗∗∗∗
78 // case DeviceHandlerIF : :MONITORING_LIMIT_EXCEEDED:
79 // se tFau l ty ( event−>getEvent () ) ;
80 // break ;
81 // case DeviceHandlerIF : :MONITORING_AMBIGUOUS:
82 // break ;
83 default :
84 //We don ’ t know the event , someone e l s e should handle i t .
85 return RETURN_FAILED;
86 }
87 return RETURN_OK;
88 }
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A.3. Container Generation For A Black Box Framework

This is a compiling demonstration of how to use template metaprogramming to
instantiate containers that automatically instantiate and call helper classes, de-
pending on the interfaces the component implements. This technique may serve
as an idea to enhance the FSFW to form a black box software framework.

Listing A.5: Example Code to generate framework containers.

1 #include <iostream>
2 #include <type_tra i t s>
3
4 using namespace std ;
5
6 //Def in i t ions for in t e r f a c e A
7
8 //A al lows some ca l l b a ck to the FW
9 class ACallbackIF {

10 public :
11 virtual ~ACallbackIF ( ) {
12 }
13 virtual void doCallback ( ) = 0 ;
14 } ;
15
16 class Afunc t i ona l i ty IF {
17 public :
18 virtual ~Afunc t i ona l i ty IF ( ) {
19 }
20 virtual void setCal lbackForA ( ACallbackIF∗ ca l l ba ck ) = 0 ;
21 virtual void doA( ) = 0 ;
22 } ;
23
24 class AHelper : public ACallbackIF {
25 public :
26 void helpA ( Afunc t i ona l i ty IF ∗ user ) {
27 cout << "Helping A . . " << endl ;
28 user−>doA( ) ;
29 }
30 void doCallback ( ) {
31 cout << " Ca l l i ng back AHelper . He l lo ! " << endl ;
32 }
33 } ;
34
35 //Using SFINAE
36 template<class T, typename = void>
37 class ContainerA {
38 public :
39 void doAction (T∗ user ) {
40 }
41 void i n i t i a l i z e U s e r (T∗ user ) {
42 }
43 } ;
44
45 template<class T>
46 class ContainerA<T,
47 typename enable_i f<is_base_of<Afunct iona l i ty IF , T>: : value >: :

type> {
48 public :
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49 AHelper aHelper ;
50 void doAction (T∗ user ) {
51 aHelper . helpA ( user ) ;
52 }
53 void i n i t i a l i z e U s e r (T∗ user ) {
54 cout << " . . . f o r A impl . " << endl ;
55 user−>setCallbackForA(&aHelper ) ;
56 }
57 } ;
58
59 //Def in i t ions for in t e r f a c e B
60
61 class Bfunc t i ona l i t y IF {
62 public :
63 virtual ~Bfunc t i ona l i t y IF ( ) {
64 }
65 virtual void doB( ) = 0 ;
66 } ;
67
68 class BHelper {
69 public :
70 void helpB ( Bfunc t i ona l i t y IF ∗ user ) {
71 cout << "Helping B . . " << endl ;
72 user−>doB( ) ;
73 }
74 } ;
75
76 template<class T, typename = void>
77 class ContainerB {
78 public :
79 void doAction (T∗ user ) {
80 }
81 } ;
82
83 template<class T>
84 class ContainerB<T,
85 typename enable_i f<is_base_of<Bfunct iona l i ty IF , T>: : value >: :

type> {
86 public :
87 BHelper bHelper ;
88 void doAction (T∗ user ) {
89 bHelper . helpB ( user ) ;
90 }
91 } ;
92
93 //The complete container , aware of a l l
94 // e x i s t i n g in t e r f a c e s .
95
96 template<typename T>
97 class Container {
98 public :
99 T in s tance ;

100
101 ContainerA<T> containerA ;
102 ContainerB<T> containerB ;
103
104 void i n i t i a l i z e ( ) {
105 cout << " I n i t i a l i z i n g conta ine r . . . " << endl ;
106 containerA . i n i t i a l i z e U s e r (& in s tance ) ;
107 }
108
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109 void doAction ( ) {
110 containerA . doAction(& in s tance ) ;
111 containerB . doAction(& in s tance ) ;
112 }
113 } ;
114
115 class SmallComponent : public Bfunc t i ona l i t y IF {
116 public :
117 void doB( ) {
118 cout << "Small : B " << endl ;
119 }
120 } ;
121
122 class LargeComponent : public Afunct iona l i ty IF , public

Bfunc t i ona l i t y IF {
123 public :
124 void doA( ) {
125 cout << "Large : A " << endl ;
126 callbackForA−>doCallback ( ) ;
127 }
128 virtual void setCal lbackForA ( ACallbackIF∗ ca l l ba ck ) {
129 cal lbackForA = ca l l ba ck ;
130 }
131 void doB( ) {
132 cout << "Large : B " << endl ;
133 }
134 void doC( ) {
135 cout << "Large : C " << endl ;
136 }
137 private :
138 ACallbackIF∗ cal lbackForA ;
139 } ;
140
141 class NoneComponent {
142 public :
143 void doNothing ( ) {
144 }
145 } ;
146
147 int main ( ) {
148 Container<LargeComponent> myContainer ;
149 myContainer . i n i t i a l i z e ( ) ;
150 myContainer . doAction ( ) ;
151 cout << " S i z e o f l a r g e conta ine r : " << s izeof ( Container<

LargeComponent> )
152 << endl ;
153
154
155 Container<SmallComponent> myContainer2 ;
156 myContainer2 . i n i t i a l i z e ( ) ;
157 myContainer2 . doAction ( ) ;
158 //Helpers for IF A are not inc luded .
159 cout << " S i z e o f smal l conta ine r : " << s izeof ( Container<

SmallComponent> )
160 << endl ;
161
162 Container<NoneComponent> myContainer3 ;
163 myContainer3 . i n i t i a l i z e ( ) ;
164 //Doesn ’ t do anything at a l l .
165 myContainer3 . doAction ( ) ;
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166 //There ’ s a s i n g l e pointer overhead , as an instance of
NoneComponet i s created .

167 cout << " S i z e o f none conta ine r : " << s izeof ( Container<
NoneComponent> ) << endl ;

168 }
169 }

212



B. Domain Analysis Details

213



B. Domain Analysis Details

B.1. Historical Domain Analysis Results

Figure B.1.: Summary of the generic subsystem relationships found in a 1995
domain analysis for spacecraft FSW [57].
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B.2. Feature Tracing Tables

The first set of tables in Section B.2.1 ensures a backtrace from the synthesized
FSW features identified in the domain analysis in Chapter 3 to the original
sources, e. g. features identified in a CCSDS standard.

The second set of tables in Section B.2.2displays which of these synthesized
features are actually implemented or supported in the FSFW of this thesis.

B.2.1. Backtrace Tables

Component Management

ID Name FLP CCSDS ECSS FSW

Component execution
C.1.1 Cyclic execution 2
C.1.2 Execution control 3
C.1.3 RTOS abstraction 1
C.1.4 Schedulability 3
C.1.5 Hardware abstraction 20
C.1.6 Distributed computing 21
C.1.6a - IPC gateway 7
C.1.7 Off-the-shelf components 8

Component support
C.2.1 Inter-process communication 20
C.2.1a - Data distribution 3 18
C.2.1b - Event distribution 9 11
C.2.2 Run-time configuration data 4
C.2.2a - File management 15
C.2.3 Time management 22 7
C.2.4 Action Execution 1
C.2.5 Component Modes 5

Maintenance
C.3.1 Resource monitoring 23
C.3.2 Memory scrubbing 5

Table B.1.: Synthesis of generic FSW requirements for component manage-
ment.
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System Management

ID Name FLP CCSDS ECSS FSW

Equipment
S.1.1 Equipment monitoring 9
S.1.2 Equipment access 14 12
S.1.2a - Commanding 7
S.1.2b - Data acquisition 7 17
S.1.3 Value conversion 19
S.1.4 Equipment representation 15
S.1.5 Equipment modes 8 16

Subsystems
S.2.1 Redundancy management 12
S.2.2 Health states 11
S.2.3 Subsystem representation 16
S.2.4 Subsystem modes 18
S.2.4a - Mode transitions 18.4

On-Board Communication
S.3.1 Communication Layering 6 33
S.3.2 Subnetwork access 13
S.3.2a -Packet based 31
S.3.2b -Memory based 32
S.3.3 Network types
S.3.3a - Mulitdrop buses 23
S.3.3b - Point-to-point 24
S.3.3c - Homogeneous networks 25
S.3.4 Interface types
S.3.4a - MIL-STD-1553B 26
S.3.4b - SpaceWire 27
S.3.4b – RMAP 4
S.3.4b – CCSDS packet transport 5
S.3.4c - CAN 28
S.3.4d - Ethernet 29
S.3.4e - Embedded serial buses 18

Table B.2.: Synthesis of generic FSW requirements for system management.
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Operations

ID Name FLP CCSDS ECSS FSW

Control
O.1 Commandability 12
O.1.1 Common commanding 15
O.1.2 Action commanding 12.1
O.1.3 Parameter access 4 12.2
O.1.4 Memory access 14
O.1.5 Mode commanding 18.1, 18.2
O.1.6 Critical commands 16
O.1.7 Authentication and authorization 17

Monitoring
O.2 Observability 13
O.2.1 Event reporting 13.1
O.2.2 Housekeeping reporting 13.2
O.2.3 Activity reporting 11
O.2.4 OB monitor reporting 10 13.3

Space link
O.3.1 Space link abstraction 2
O.3.2 Data Link Layer
O.3.2a - CCSDS TM frames 1
O.3.2a - CCSDS TC frames 2
O.3.2a – COP-1 2.1
O.3.2b - AX.25 19
O.3.3 Networking layer
O.3.3a - Space packets 3
O.3.3a – Space packet routing 3.1
O.3.3b - Encapsulation 4
O.3.4 Higher layers
O.3.4a - PUS space packet binding 6
O.3.4b - MO MAL space packet binding 7
O.3.4b MAL interaction patterns 6
O.3.5 Time Codes 5

Table B.3.: Synthesis of generic FSW requirements for operations.
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Autonomy

ID Name FLP CCSDS ECSS FSW

Autonomous operations
A.1.1 Command scheduling 13
A.1.1a - command injection 8
A.1.1b - command storage 9
A.1.2 Information storage 10
A.1.2a - File store 21.1 6
A.1.2b - Packet store 21.2 10
A.1.3 Mission goal representation 19
A.1.4 Procedure execution engine 24

Fault management FDIR
A.2 Survivability 14
A.2.1 On-board monitoring 10 13.3
A.2.2 Failure reaction 25
A.2.3 Hierarchical FDIR 20

Table B.4.: Synthesis of generic FSW requirements for on-board autonomy.
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B.2.2. Feature Tracing Tables of the FSFW

Component Management

ID Name Impl. Remark

Component execution
C.1.1 Cyclic execution Yes PeriodicTaskIF
C.1.2 Execution control No Not possible to start, stop,

restart tasks
C.1.3 RTOS abstraction Yes FSFW-Core OSAL
C.1.4 Schedulability Yes See Appendix C.2.2
C.1.5 Hardware abstraction Yes FSFW-Core OSAL and

DeviceCommunicationIF
C.1.6 Distributed computing No See Section 5.7.5
C.1.6a - IPC gateway No Subfeature of C.1.6
C.1.7 Off-the-shelf components Yes Possible e. g. for DH components

Component support
C.2.1 Inter-process communication Yes FSFW-Core
C.2.1a - Data distribution Yes software bus, data pool
C.2.1b - Event distribution Yes event manager
C.2.2 Run-time configuration data Yes Container building blocks
C.2.2a - File management No May be useful, not tried yet.
C.2.3 Time management Yes FSFW-Core clock IF
C.2.4 Action Execution Yes HasActionsIF
C.2.5 Component Modes Yes HasModesIF

Maintenance
C.3.1 Resource monitoring No FSFW-Core error reporting

implemented, but no continuous
monitoring of SW resources.

C.3.2 Memory scrubbing No Mission-specific memory
scrubbing implemented, but no
generic functionality.

Table B.5.: Implemented component management features of the FSFW.
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System Management

ID Name Impl. Remark

Equipment
S.1.1 Equipment monitoring Yes Monitoring building blocks and

DeviceHandlerBase
S.1.2 Equipment access Yes DeviceHandlerIF for low-level,

HasActionsIF for “virtual” access
S.1.2a - Commanding Yes DeviceHandlerBase
S.1.2b - Data acquisition Yes DeviceHandlerBase
S.1.3 Value conversion Yes DeviceHandlerBase
S.1.4 Equipment representation Yes DeviceHandlerBase
S.1.5 Equipment modes Yes DeviceHandlerBase, HasModesIF

Subsystems
S.2.1 Redundancy management Yes AssemblyBase
S.2.2 Health states Yes HasHealthIF
S.2.3 Subsystem representation Yes SubsystemBase
S.2.4 Subsystem modes Yes SubsystemBase, HasModesIF
S.2.4a - Mode transitions Yes SubsystemBase and Subsystem

On-Board Communication
S.3.1 Communication Layering Yes DeviceCommunicationIF
S.3.2 Subnetwork access Yes DeviceCommunicationIF
S.3.2a -Packet based Yes DeviceCommunicationIF
S.3.2b -Memory based Yes HasMemoryIF
S.3.3 Network types
S.3.3a - Mulitdrop buses No Not needed yet, should fit with

FixedTimeslotTaskIF
S.3.3b - Point-to-point Yes SpaceWire implementation
S.3.3c - Homogeneous networks Yes Tested with TCP/IP stack
S.3.4 Interface types
S.3.4a - MIL-STD-1553B No Not needed yet.
S.3.4b - SpaceWire Yes Custom driver
S.3.4b – RMAP Yes Custom driver
S.3.4b – CCSDS packet transport No Not needed yet.
S.3.4c - CAN No Not needed yet.
S.3.4d - Ethernet Yes For testing purposes, no

qualified implementation.
S.3.4e - Embedded serial buses No Not needed yet.

Table B.6.: Implemented system management features of the FSFW.
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Operations

ID Name Impl. Remark

Control
O.1 Commandability
O.1.1 Common commanding Yes Common interfaces
O.1.2 Action commanding Yes HasActionsIF
O.1.3 Parameter access Yes HasParametersIF
O.1.4 Memory access Yes HasMemoryIF
O.1.5 Mode commanding Yes HasModesIF
O.1.6 Critical commands No Hardware high-priority

commands used.
O.1.7 Authentication and authorization No Not deemed necessary.

Monitoring
O.2 Observability
O.2.1 Event reporting Yes Event distribution, service

implementation
O.2.2 Housekeeping reporting Yes Data pool, service

implementation
O.2.3 Activity reporting Yes PUS TC verification
O.2.4 OB monitor reporting Yes Supported by monitoring

building blocks

Space link
O.3.1 Space link abstraction Yes FSFW-Core is independent
O.3.2 Data Link Layer
O.3.2a - CCSDS TM frames No Not necessary, easily

extensible.
O.3.2a - CCSDS TC frames Yes FSFW PUS framework
O.3.2a – COP-1 Yes FSFW PUS framework
O.3.2b - AX.25 No Not needed yet.
O.3.3 Networking layer
O.3.3a - Space packets Yes SpacePacket classes
O.3.3a – Space packet routing Yes TcDistributor, interfaces
O.3.3b - Encapsulation No Not needed yet.
O.3.4 Higher layers
O.3.4a - PUS space packet binding Yes FSFW PUS framework
O.3.4b - MO MAL space packet binding No See Section 5.7.4
O.3.4b MAL interaction patterns No See Section 5.7.4
O.3.5 Time Codes Yes CCSDSTime library

Table B.7.: Implemented operations features provided by the FSFW.

221



B. Domain Analysis Details

Autonomy

ID Name Impl. Remark

Autonomous operations
A.1.1 Command scheduling Yes FSFW PUS framework
A.1.1a - command injection Yes TCDistributor
A.1.1b - command storage Yes StorageMangerIF, PoolManager
A.1.2 Information storage Yes
A.1.2a - File store No No file system support yet.
A.1.2b - Packet store Yes PUS-based
A.1.3 Mission goal representation No
A.1.4 Procedure execution engine No

Fault management FDIR
A.2 Survivability Yes FSFW FDIR framework
A.2.1 On-board monitoring Yes monitoring building blocks
A.2.2 Failure reaction Yes FSFW FDIR framework
A.2.3 Hierarchical FDIR Yes FSFW FDIR framework

Table B.8.: Implemented autonomy features provided by the FSFW.
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C.1. Flying Laptop Mode Tree
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C. FSFW Details

Figure C.1.: Mode tree of Flying Laptop.

224



C.2. More FSFW-Core Features

C.2. More FSFW-Core Features

This appendix sums up some technical implementation details of the FSFW
core.

C.2.1. Large Data Distribution

As described in Section 4.4.3, data distribution happens mainly via messages.
However, the queue implementations in most RTOSs use allocated slots of
messages for queuing. Thus, the maximum message size is a critical parameter
for memory utilization, especially if the number of message queues reaches
multiple hundreds. Therefore, messages are kept as small as possible.

To enable forwarding of large data chunks, e. g. for a software patch, the mes-
sage queue mechanism is supplemented with a shared memory mechanism for
large data transfer. Its basic idea is to reserve a certain amount of space in a
shared memory and use messages to pass the address of the memory between
components. Thus, the address works as a token, with the component holding
the token responsible for the data. With this mechanism, copying of data is
eliminated and locking reduced to the reservation and deletion of data.

Even though the idea allows very efficient distribution of both small and large
amounts of data, there is some risk in this concept. First, creating multiple
copies of the address ID token must be avoided, otherwise, components may
operate on invalid data. Moreover, as deletion of data is in the responsibility
of components, there is a risk for memory leaks due to erroneous implemen-
tations. Therefore, accessing the shared memory should ideally be handled
entirely within the well-tested FSFW-Core, e. g. in helper classes, and not be
accessible by users of the framework.

The shared memory is effectively implemented using a container introduced in
Section 4.4.8, enhanced by locking mechanisms for thread safety.

C.2.2. Schedulability Analysis

In real-time systems there is always a strong focus on schedulability, which
means that provisions are taken to make sure no unfortunate combination of
task execution exists such that one tasks misses its intended deadline. Even
though spacecraft are rather soft than hard deadline systems, i. e.there is no
immediate danger to the system if a deadline is missed, a schedulability analysis
is often mandatory for spacecraft (see e. g. [42], section 5.8.3.11).

As already stated in Section 4.4.2, the scheduling policy for the FSFW depends
on the RTOS used. Still, in [13] was a concept devised for the common fixed
priority preemptive or rate monotonic scheduling (RMS), as e. g. provided by
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RTEMS. In summary, one needs to calculate the overall processor utilization
for each task, taking into account interruption by higher priority tasks and
blocking due to shared resources. This is reflected in the formula (from [95]):

∀𝑖, 1 < 𝑖 < 𝑛,
∑︁

𝑘∈ℎ𝑝(𝜏𝑖)

𝐶𝑘

𝑇𝑘
+

𝐶𝑖 + 𝐵𝑖

𝑇𝑖
≤ 𝑖(21/𝑖 − 1)

This formula needs to be calculated for any given task 𝜏𝑖 in the system. ℎ𝑝(𝑖)
denotes all tasks with higher priority than 𝜏𝑖, 𝐶𝑖 is the worst-case execution
time (WCET) of a task, 𝑇𝑖 its period and 𝐵𝑖 the worst-case blocking time, which
is the longest interval a task with a lower priority than 𝜏𝑖 holds a common
shared resource. The right-hand side of the inequation determines a upper
limit for processor utilization and converges to ≈ 69%. To correctly include
PST implementations into the analysis, one needs to convert it into a number
of periodic tasks with same priority but shorter period than the original polling
task.

However, the difficulty of performing a schedulability is not the mathematics,
but to determine reasonable numbers for the WCETs 𝐶𝑖 and blocking times
𝐵𝑖. This is especially difficult with large message queues, as the types of in-
coming messages often have a large impact on task duration. The FSFW does
currently not provide any built-in features for component execution time mea-
surement, however, an appropriate extension would be useful for schedulability
analysis.
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