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Abstract

The CO2 emission intensity of electricity use in a country is determined by the combination of
generation technologies used to satisfy the demand. In an interconnected electricity network, imports
and exports between countries can be a significant contributor to the combination. In this thesis, we
employ the Flow Tracing method to assess the carbon flow in the European electricity network based
on the information made available by the European Network of Transmission System Operators for
Electricity (ENTSO-E). The resulting data serves as basis for the employment statistical analysis
methods, such as correlation, to ascertain whether a connection between electricity prices, CO2
emission intensity, and electricity trade can be identified. Analysis results imply a correlation
between price and emissions and determine that trade has a large impact on a countries emission
intensity. Moreover, we present a simple optimal scheduling problem with the goal of minimising
CO2 emissions caused by a simple daily task in different European countries. The optimisation is
able to reduce the caused CO2 emissions by between 5% and 40%, meaning that there is potential
for a Demand Response program to lessen the environmental impact of electricity use.
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1 Introduction

The generation of electricity is a significant contributor to the emission of greenhouse gases. To
assess the country specific environmental impact of electricity use is not enough to just consider the
country’s production technologies. Electricity imports are influencing the composition of consumed
power and thus the emission intensity in these countries. For this reason it is interesting to examine
the impact this trade has on the emission intensity of European countries. Identifying potential
patterns in their generation, trade and consumption could produce interesting data. Additionally,
resulting information may then be used to investigate the potential for demand side management
based on CO2 values.

Little research available in literature focuses on the analysis of the correlation between CO2 intensity
and trade, price, or energy mix. While several articles examine the impact of Demand response
using CO2 signals in single countries, a comparison between them and the impact of a different
electricity consumption mix is not as well researched. The main research questions this project
addresses are:

1. What patterns and correlations can be identified among European countries regarding their
electricity trade and emission intensity?

2. Can this data then be used as an input for Demand Response?

3. How does the impact of Demand Response using CO2 signals vary in countries with different
consumption mixes?

To fulfil the main goals of this project we develop a Python application with the ability to calculate
the hourly CO2 -emission of European countries. This will take the electricity generation in Europe,
the trade between European countries into account. Further, we analyse the results with statistical
measures like correlation. Key questions are if energy prices and CO2 emissions are connected
or how electricity trade affects the importing country’s emission intensity. The obtained emission
data will be used as input for an optimal scheduling problem. Hourly CO2 intensity will serve as
the input to create an example of the emission impact of a daily task in households in different
European countries.
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2 Background Information

Electricity can be generated by a wide variety of technologies. The CO2 emissions produced
during the generation differ significantly between them. For this thesis we consider the lifecycle
CO2 emission intensity of generation technologies. Not only the emissions during operations are
considered, but also the emission during other lifecycles, such as during manufacture. For example,
the emission during operation of solar technologies is close to 0 grams of CO2 per kilowatt-hour,
but when the full lifecycle is considered it increases to a value between 70 and 100. This example is
based on the emission intensities presented by Tranberg et al. (2019).

The flow of electricity can not be physically traced. This means it is not possible to determine the
electricity source by any physical measurement. Instead, to assess the distribution of electricity of
a specific source throughout a network a mathematical method is needed. Flow Tracing is such a
method. According to Hörsch et al. (2018), ”flow tracing follows the power flow from net-generating
sources through the network to the net-consuming sinks”[P.1].

According to Albadi and El-Saadany (2007), the idea of Demand Response is to influence the elec-
tricity consumption behaviour of the end user. They describe that Demand Response encompasses
äll intentional modifications to consumption patterns of electricity of enduse customers that are
intended to alter the timing, level of instantaneous demand, or the total electricity consumption”[p.1].
For example, when a network is operating near capacity, a high electricity price could be used to
discourage further electricity use. Change on the consumer side has the advantage, that it is more
flexible than on the generation side. This is especially the case for renewable electricity production,
as it often relies on wind or sunlight.
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3 State of the Art

Here we provide a brief overview of the available literature on the two main topics, namely methods
for carbon emission assessment in interconnected networks and Demand Response programs based
on CO2 signals.

3.1 Assessment of carbon emissions

Hörsch et al. (2018) present a flow tracing formulation that can be applied in large electricity
networks with a diverse technology composition. There it is used to analyse an example network
with different types of generation methods and trade. Li et al. (2013) also detail flow tracing in
electricity networks. The focus here is on carbon flow rather than power flow. The electricity
trade between Chinese regions is used as a case study finding a significant impact of trade on CO2
emission intensity in the regions. Tranberg et al. (2019) use the flow tracing method to examine
carbon emissions in Europe. They assign the specific CO2 emission intensity to the traced power.
This means similar results to the research by Li et al. (2013) are presented, only for a different
region. The data is then used to explore the differences between emission intensities of production
and consumption but no further statistical analysis is done. Tao Sun et al. (2016) take a directed
graph-based approach to flow tracing instead of the usual version with linear equations. It achieves
the same goal as the usual version while being much less calculation intensive. They demonstrate
with sample calculations that it is a massive improvement for networks with many nodes. For few
nodes the difference between methods is too small to be relevant (saving 0.1s for 300 nodes).

3.2 Demand Response Programs

Not only the price of and demand for electricity are subject to hourly change but also its emission
intensity. This makes Demand Response measures based on the CO2 emissions interesting. Most
research available on Demand Response based on CO2 signals focuses on single, especially northern
European countries. The way CO2 emissions are calculated also changes from article to article. For
instance, Song et al. (2014) develop a simulation model for Demand Response programs based on
a combination of price and CO2 signals. Sweden is used as an example in a case study. It comes
to the conclusion that using the presented technique would be more interesting in environments
with higher shares of fossil electricity generation since then the possible CO2 emission reduction
would possibly be more significant. For several countries, a dynamic CO2 intensity is introduced
and their correlation with electricity price is examined by Stoll et al. (2014). Although this takes
different generation technologies into account, the impact of imported electricity on emissions
is not fully calculated. The paper concludes that dynamic CO2 intensity can be used in Demand
Response to improve environmental impact while also enabling the consumer to choose between

6



3 State of the Art

reduced cost or reduced carbon footprint if there is a negative correlation between electricity price
and CO2 intensity. The articles above concentrate on single countries without evaluating the impact
of Demand Response measures on their neighbours. Multiple scenarios with different Demand
Response measures in European countries are analysed by Bergaentzlé et al. (2014) They find that
measures in one country can have an impact on its neighbours by influencing marginal electricity
costs and the way power is traded. Their primary focus is on electricity price and efficiency and
only indirectly on CO2 emissions.
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4 Data Gathering

A central requirement to examine the research question is to gather information on European
electricity network. For this, we develop a Python application. Its implementation is presented in
this chapter. The resulting data provides the basis on which the analysis and CO2 - efficient demand
response depend. Section 4.2 describes where the information on the European electricity network
is obtained from and how it is processed for further use. Furthermore, Section 4.2.5 is concerned
with gathering CO2 emission intensity values for electricity generation technologies. In Section 4.3,
the method to assess the electricity mix and CO2 emission intensity for each country is explained.
Immediately following is a more thorough summary of the application.

4.1 Application Introduction

The main goal of the Python application is to provide easy access to information on the European
market, specifically on the energy composition, emission impact, import and export balance as well
price. Moreover, it will allow for several statistical analysis methods to be used on this data directly
through the application. To further increase the accessibility it should also be possible to expand
the provided analysis methods. To achieve this the data format and application structure should be
as flexible as possible.

4.1.1 Overview

The ENTSO-E transparency platform (European Network of Transmission System Operators, 2020)
was chosen as the core information source because it offers an accessible API, with which extensive
data on European electricity production, consumption as well as trade can be accessed. Other
required information, such as CO2 emission intensity values, is not offered by the ENTSO-E
platform and needs another source. See the Section 4.2 for details on ENTSO-E and Section 4.2.5
for the other sources.

The European electricity market is very interconnected. Imports and exports can have a significant
influence on a country’s power balance. Therefore, simply considering a country’s generation as
a basis for the assessment of the local CO2 emissions caused by electricity consumption can be
misleading. For instance, the CO2 emission intensity in a country with low carbon production but
high carbon imports would be significantly lower without considering the imports. That is the
reason the Flow Tracing technique is applied to the data. It enables a more accurate evaluation of
local electricity consumption by taking the trade throughout the network into account. Section 4.3
illustrates the method and its application.
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4 Data Gathering

To realize this application the Python programming language was chosen since many libraries and
tools are available for data analyses. All of the application is written in Python using Anaconda
2020.2. The “pandas python library”, 2020 provides the internal data format and the foundation for
the implementation of most analysis methods such as Spearman correlations.

An outline of the central components of the Python implementation is shown in Figure 4.1. A short
explanation of the components follows.

• demandResponse: Contains the linear optimization concerning CO2 efficient demand response
programs. More information on this component can be found in Chapter 6.

• statisticAnalysis: Provides several statistic analysis methods based on the information offered
by flowTracing. The employed methods and results are presented in Chapter 5.

• flowTracing: Uses the aforementioned Flow Tracing technique to calculate the networks
electricity composition. Requires the download component for data access. Further explained
in Section 4.3.

• download: Uses the entsoe-py library to download the required data and processes it for
further use by other components. See Section 4.2.

• entsoe: Integrated library enabling ENTSO-E API downloads. Details in Subsection 4.2.2

Figure 4.1: Component Diagram
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4 Data Gathering

AT BE BG CH CZ
DE DK EE ES FI
FR GR HU IT LT
LV NL NO PL PT
RO RS SE SI SK
UK

Table 4.1: Countries with enough available data in 2019

4.2 Data Sources

The following section explains how the information required for this thesis is obtained. First, the
data download and processing from the ENTSO-E API is explained. Then, other data sources
are introduced. They concern information on CO2 emissions, which can not be obtained from
ENTSO-E.

4.2.1 ENTSO-E transparency platform

ENTSO-E, the European Network of Transmission System Operators, aggregates and publishes
data regarding electricity generation, consumption, and trade in the European market. A REST API
through which said information can be accessed is available for public use. This is the main source
of data. For this thesis four categories of information are obtained from ENTSO-E:

• total load

• generation by production type

• cross-border physical flows

• 24h price forecast data

From 2015 onward this type of information is available on ENTSOE-E. Before 2015 only limited
data is published, which is also not accessible via the API. Hence, this legacy data will not be used
in this thesis.

Information regarding all EU members and a number of other adjacent countries is published.
However, the quality of data can differ significantly between countries. While the data available
concerning EU members, in general, is relatively complete, that can not be said about the other
countries. For those, one or more of the aforementioned categories are often missing. Therefore they
need to be excluded from most calculations. See Table 4.2.1 for a list of countries with sufficient
data in 2019.

To be able to use the API, an access key needs to be requested from ENTSO-E. This is free and
only requires an account on their website.
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4 Data Gathering

4.2.2 entsoe-py Library

The python library entsoe-py enables easy access to the API and is made available by EnergieID
(2020). It offers a Python implementation to download all project-relevant data from the ENTSO-E
API. By specifying the time frame, the country, and the requested information type (i.e. generation
by production type) the appropriate request can be constructed by the library and send via the API.
The response is also received by the library and converted into one of two data formats: a simple
XML file or a pandas dataframe.

For this thesis, the pandas dataframe format is used since pandas offers a wide variety of functions
concerning data manipulation and analysis.

A few changes were made to the client library.

First, the API mapping needed to be updated. It defines what strings the query types and countries
are mapped to. These are used to construct the REST API queries. Some of them were obsolete
while others were missing.

Secondly, the behaviour of the download client when encountering communication problems with
the ENTSO-E servers was changed to allow for more retries with more time between them. This
improved the stability of large downloads substantially. Before, the client tended to fail when used to
download large successive information using the API, which is often required for this application.

The library is directly integrated into the project and can be found in the entsoe folder.

4.2.3 ENTSO-E Data Download

The data download of the application is implemented in the download folder, with the core function
being located in the datasetDownloader.py file. There, a class is implemented, which offers functions
to download a complete data set over a specified time frame. In this complete set all data concerning
load, electricity generation per production type, price forecast, cross border physical flows, and load
is contained for all available countries, representing most of the required input for the flow tracing
calculations as well as for the statistical analyses.

The functions themselves are quite simple. To download generation, price, or load a request is sent
to the API via the aforementioned client. The request contains a start and end date, the request
type, and the country in question. Requesting data regarding the cross border physical flows works
similar only that both countries of the exchange need to be specified. If the information is available
the reply will contain it, otherwise, an error is reported, which is processed by setting this specific
data to None. This process is then repeated for every country and request type. A maximum of one
year of data can be downloaded in one request by the client.

The results are saved with the dataSet class. It implements a simple container for all data and some
utility methods needed for the succeeding flow tracing calculation. Instances of this class can also
be exported to xlsx (Excel) or CSV.
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4 Data Gathering

4.2.4 Data Processing

To clean up the data set several processing methods are used. Their main objective is to remove
inconsistencies while impacting the actual values as little as possible. They are automatically applied
after the downloads. The following subsections outline the processing methods used.

Data Point Frequency

For most countries, data points are reported every hour. Hence, the hourly information is taken
as a basis for the flow tracing calculations. The data for countries reporting in shorter intervals is
averaged to one-hour intervals. This is done via the pandas resample method. No countries report
at intervals larger than 1 hour.

Special Cases

For multiple countries a further regional division of the data is available. This includes Norway,
Denmark, Italy, and Sweden. For these countries, the price data is not available for the whole
country, only for the sub-regions. The other information is available for both the country as a whole
and the sub-regions. To obtain a singular price for these countries a weighted price average is
calculated using the individual prices and their sub-regions share of the total load.

Another special case is the price data for Germany, Luxembourg, and Austria. Before 1.10.2018,
they were considered to be one market zone with a single price. After said date, Austria split into
its own zone while Germany and Luxembourg remained merged. The data can only be requested
for those zones, not the individual countries. So, when individual price values are absent, the value
of the market zone is used instead.

Missing Data

The data available from the ENTSO-E transparency platform is not without flaws. Values at specific
timestamps or even whole data categories can be missing. In case a whole category is missing, the
rest of the country’s data becomes unusable for most further calculations. Hence, the application
keeps a list of countries with fully available categories. In this list, all countries are found with load,
generation, and cross-border flow data available. The price forecast is an exception. Because it is
only needed in limited situations, countries with this price data missing are still included in the list.
Calculations are only conducted for countries contained in this list. For example, countries such as
Russia, Ukraine, and Turkey are excluded since no information on power generation is available.

Individual data points can also be missing. In this case, linear interpolation is used to infer missing
information. This is done by using the pandas method interpolate with a maximum gap of two. So,
larger intervals of missing data are kept unchanged while at most two successive values are inferred.
Since most calculations run for every available timestamp in the data, when one of the remaining
missing data points is encountered, the country is usually excluded at the specific timestamp of the
gap.
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4 Data Gathering

Country Missing Load Data (%) Missing Generation Data (%) Missing Cross-Border Flow Data (%) Missing Price Data (%)
Interpolation Unprocessed Interpolation Unprocessed Interpolation Unprocessed Interpolation Unprocessed

AT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BA 0.09 0.13 0.00 0.01 0.00 0.00 N/A N/A
BE 0.00 0.00 4.06 4.07 0.00 0.00 0.00 0.00
BG 0.00 0.00 0.00 0.00 5.22 5.30 0.00 0.00
CH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CZ 0.00 0.05 0.00 0.02 0.00 0.00 0.25 0.27
DE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
EE 0.01 0.06 0.01 0.06 0.08 0.27 0.00 0.00
ES 0.00 0.00 0.03 0.06 0.00 0.00 0.00 0.00
FI 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00
FR 0.03 0.14 0.03 0.10 0.02 0.04 0.00 0.00
GR 0.00 0.02 0.04 0.08 0.00 0.00 0.00 0.00
HU 0.00 0.00 6.44 6.44 0.00 0.00 0.00 0.00
IE 0.00 0.10 0.00 0.14 0.00 0.00 N/A N/A
IT 0.00 0.00 0.61 0.61 0.08 0.10 0.00 0.00
LT 0.00 0.03 0.27 0.34 0.22 0.28 0.00 0.00
LV 0.00 0.03 0.22 0.29 0.32 0.46 0.00 0.00
ME 0.00 0.00 0.00 0.00 0.00 0.00 N/A N/A
MK 7.92 8.49 11.06 11.85 4.31 4.34 N/A N/A
NL 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
NO 1.07 1.11 0.00 0.01 0.00 0.00 1.11 1.11
PL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RO 0.00 0.01 0.00 0.01 0.02 0.37 0.00 0.00
RS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SE 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01
SI 0.00 0.11 0.15 0.32 0.00 0.00 0.00 0.00
SK 0.00 0.02 0.00 0.00 0.13 0.14 0.00 0.00
UK 0.00 0.05 0.00 0.02 0.03 0.06 0.25 0.27

Table 4.2: Percentage of missing data points for unprocessed data and after linear interpolation in
2019

Frequency of Missing Data

Table 4.2 shows the percentage of missing entries belonging to the four data categories in the year
2019. Values are given for unprocessed data as well as after linear interpolation. The total number
of values for load and price data is 8760, 1 entry for every hour. For generation and cross-border
flow, the total number varies from country to country since the number of technologies or trade
partners is country-specific. Generally, little to no data is missing for most available countries. 19
of the 30 countries report less than 0.1% of missing data for any category, while all but 4 countries
report under 1%. The vast majority of missing values are clustered together in larger continuous
gaps. For example, all of the missing Hungarian power generation values result from a month’s long
gap concerning solar power. Therefore, values inferred by linear interpolation only make up a small
fraction of the total data. They never account for more than 0.79% of a category’s values. Even this
ratio is an outlier. It is found in the information concerning North Macedonia, the available country
with the most incomplete data.
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4 Data Gathering

4.2.5 Other Data Sources

CO2 Data Source

For the assessment of the carbon flow in the European electricity network the CO2 emission intensity
for each generation technology is required. Optimally the emission impact of the technologies is
also specific for the generating country.

The main source used for this information is the article Tranberg et al. (2019). There, a table can
be found detailing the life cycle CO2 emissions for many generation technologies for each EU28
country. Where a value for a country technology pair is not available the EU28 average is used.

The electricity generation data from ENTSO-E contains several different variants of coal and oil
generation technologies. For the sake of this thesis, all variants are considered with the same
emission impact. Generation with offshore and onshore wind turbines are also assigned the same
value. A similar approach is commonly used in literature, e.g. Tranberg et al. (2019), where
differences in CO2 emission factors among technologies using the same primary energy source are
neglected.

For all technologies in Table A.3, except the following, the values are available from Tranberg et al.
(2019).

The CO2 emission intensity for generation with fossil peat is taken from Murphy et al. (2015). The
authors calculate the life cycle impact for Ireland specifically. Noteworthy fossil peat use is only
recorded in Ireland and Finland. For the marine generation type a general emission intensity value
is taken from Intergovernmental Panel on Climate Change (2014). The generation type other is
assumed to be a mixture of oil, coal, and gas generation. Generation from waste is considered part
of other. Therefore, the emission intensity is an average of the three. The emission intensity of the
other renewable type is an average of each countries renewable technology emission intensities.

4.3 Flow Tracing Implementation

Flow Tracing is a method to trace the electricity flow through interconnected networks from
the producing node to the consuming node. Every node in the network is assigned its specific
composition of electricity by source. Not only direct imports from neighbouring nodes are considered
but also indirect flows through intermediary nodes. The electricity flow can be further differentiated
into the specific technologies used in the source country. For example, this means the circulation of
French nuclear power throughout the European electricity network can be tracked individually. Thus,
the complete realisation of this method results in the calculation of the share of every generation
technology in every country. This provides more accurate information on the actual composition of
the consumed electricity. By multiplying a technology’s share of the total load with its specific CO2
emission impact, the carbon flow in the network can be assessed. The application of this method
enables interesting analyses options in the highly interconnected European electricity market, as
further presented in Chapter 5.

To illustrate the underlying principle of the method a simple example follows. Figure 4.2 describes
a four-node network with electricity flow in between the nodes. Nodes C and D produce no own
electricity while node A generates with technology U and node B with technology V. A and B are
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A B

C

D

1, U

1, U

1, V

1, UV

Figure 4.2: Flow through sample network

both exporting 1 unit of electricity to C. Therefore the total power composition in C is 50% U and
V with a total value of 2. Now, C exports 1 unit to D. The same 50/50 split persists in the export
volume. This is one of the core assumptions of the Flow Tracing method. Besides this import, D
also receives 1 unit from A, resulting in a mix of 75% U and 25% V, again with a total value of 2.
The generation technologies are traced through the network.

4.3.1 Method Formulation

The two papers Tranberg et al. (2019) and Hörsch et al. (2018) are the sources for the Flow Tracing
method used in this project. Hereinafter the core concept of the method is introduced, without going
into details. The interested reader is referred to the aforementioned papers.

Following variables are used in the calculation:

• @=,U the ratio of technology U in node =

• != the total load in node =

• �=→G the electricity flow from = to G

• �=,U the electricity generation of technology U in n

• 2=,U the CO2 emission intensity of technology U employed in country n

A fundamental assumption is that the electricity input from different sources is mixed proportionally
in the nodes. This means that a technologies share @G,U in incoming flows is equal to its share in
outgoing flows. With this assumption the electricity balance of a certain technology U in country =

can be expressed in this formula:

(4.1) @=,U!= +
∑
G

@G,U�=→G = �=,U +
∑
G

@G,U�G→=

The left side of the equation is the sum of electric flow leaving the node = and the right side all flow
entering the node at one point in time. All variables are known through the data obtained from
ENTSO-E except the ratio @G,U. For the calculation of the ratio, Equation 4.1 can be transformed
as follows:
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4 Data Gathering

(4.2)
∑
G

[
X=,G

(
!< +

∑
:

�G→:

)
− �G→=

]
@G,U = �=,U

This can be interpreted as the definition of a system of linear equations. There are U different systems
with G individual equations. So a single system describes a solution for the ratios of a technology in
every country at one point in time. The calculated ratios @=,U determine a technology’s percentage
of the node’s total load and are the primary result. Based on this, three additional calculations are
done for every node n, which produce interesting results for further statistical analysis.

First, the absolute electricity share !=,U of a technology in ",ℎ is calculated according to Equation
4.3.

(4.3) @=,U!= = !=,U

Next, Equation 4.4 is used for the calculation of the absolute CO2 emissions of a technology �=,U in
:6/", . �=,U describes how many :6 of CO2 emission are caused by consumption of electricity
generated by technology U in node =.

(4.4) @=,U!=2U = �=,U

Finally, the CO2 emission intensity�= in :6�$2/",ℎ is ascertained by Equation 4.5. �= expresses
how much CO2 is emitted per ", of electricity consumption on average. It can be used as a measure
of how clean a country’s use is, regardless of the total amount. Therefore it is a crucial value for the
assessment and analysis of carbon flow as well as the exploration of demand response programs
based on CO2 emissions.

(4.5)
∑

U �=,U

!=

= �=

4.3.2 Implementation

The implementation of the flow tracing technique is found in the flowTracing folder of the application
with the flowTracingCalculator as the central component.

The calculation of @=,U for every technology U, country = and point in the time interval is imple-
mented in two functions. First calculateTechnology solves the linear equation system for a specific
U and C. The result, a series of @G,U values, is returned to the caller.

The second function calculateFlowTracing is concerned with the calculation of the complete result.
It iterates through the whole data set calling the first function for every U, C combination found.

Result data is saved in individual dataframes for every node with the index being a timestamp. A
dataframe is a pandas data structure realising a two-dimensional matrix with labelled columns
and rows. Every possible technology U has a corresponding column, while each row corresponds

16



4 Data Gathering

to a timestamp. The return values of calculateTechnology are inserted into the dataframes at the
appropriate row column combination. With every finished calculation of calculateTechnology one
entry is added to each of the dataframes.

After the main calculation is finished irrelevant columns are dropped from the dataframes to save
memory space and calculation time of analysis methods. A column is deemed irrelevant when
no entry exceeds a ratio of 0.001. For the same reason, individual values smaller than 0.001 are
also discarded and further considered to be 0. This is done because the flow tracing calculation in
electricity nets as interconnected as the European one leads to almost every technology being present
in every node with the ratio being so small that it would correspond to single-digit watts. Without
optimisations like this working with the full flow tracing data for a year requires vast amounts of
memory and time while their impact is negligible.

The flowTracingData class defined in the correspondingly named file acts as a container for the
resulting data. With the now available @=,U values the absolute electricity share !=,U, the absolute
CO2 emissions �=,U and the CO2 emission intensity�= can be now be determined by the application
according to their formulation in Subsection 4.3.1 for every country at every timestamp. The
implementation is found directly in the flowTracingData class, where the results are again saved in
dataframes.

4.3.3 Example Calculation

The implementation, which is presented in Subsection 4.3.2, is now applied to an example network.
A four-node network is described in Table 4.3 and figure 4.3. Each node produces power with two
different technologies, U and V. Table 4.4 contains the power composition for all nodes, which is
the main result of the flow tracing calculation. Other results, like the CO2 emission intensity, are
not shown.

Node A is a major exporter, crucial for the electricity supply of the network, as all other nodes have
a negative balance without imports. Subsequently, the electricity generated by node A is present
on a significant level throughout the whole network. Although no direct connection exists, node
D relies on imports from A for about 9% of its supply. This is the result of the assumption that
electricity mixes proportionally in the nodes. Since the power composition of node C, the sole trade
partner of D, features A heavily as a source, it is also present in the trade between them. Thus, the
flow tracing method has demonstrated its merits in assessing the electricity balance in networks,
taking indirect flows into account.

Fundamentally, the European electricity network, defined by the data available from ENTSO-E, is
not different from this example. The key difference being, that the number of nodes increases to
about 30 and the number of technologies to 20.

4.3.4 Flawed Data and Methodical Problems

In a perfect system, the sum of all @G,U should add up to 1 for each node G at any time C Unfortunately,
this is generally not the case. Sums smaller than 1 can be caused by missing data, namely technologies
or complete countries being excluded from the flow tracing calculation. Moreover, it was observed
that the electricity balance, expressed by Equation 4.1, is not true at all points in time, according to
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Node Generation Load Balance without Trade
U V

A 100 50 100 +50
B 25 25 70 -20
C 15 30 50 -5
D 25 75 125 -25

Table 4.3: Power generation, total load and node balance for example network in MW

A

B C

D

4010

25

10

Figure 4.3: Power flow through Example Network in MW

the data from ENTSO-E. This means that either too much or too little power is present in the node.
A negative balance shifts the sum lower, while a positive one higher. In Table 4.5 the average sum
of @G,U for every country in 2019 can be found. Most countries have values close to 1. Only certain
countries differ more significantly, caused by the above mentioned reasons.

The application offers the possibility to adjust the sum of ratios to 1. This is done according to the
following formula:

(4.6) @=,U,=4F =
@=,U∑
V @=,V

It scales each @G,U value according to its share of the original sum. This assumes that the electricity
composition of the missing share is equivalent to the initially calculated one. All calculations
relying on the Flow Tracing data are affected by this change. Employing this adjustment can have a

Node Power composition by technologies with Source
A, U A, V B, U B, V C, U C, V D, U D, V

A 0.667 0.333 0 0 0 0 0 0
B 0.140 0.070 0.357 0.357 0.025 0.051 0 0
C 0.314 0.157 0 0 0.176 0.353 0 0
D 0.063 0.031 0 0 0.035 0.071 0.2 0.6

Table 4.4: Flow Tracing result for example network
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significant impact on their results since without it the missing composition share is not considered
in any way. The larger the missing share, the larger the discrepancy between calculations using the
adjusted values and calculations using the original ones.

Electricity losses in the network are not taken into consideration for the calculation. In Hörsch et al.
(2018) the way to account for power losses between nodes is to treat the transmission loss as extra
load at the exporting node. This method is not possible since in the ENTSO-E data the outgoing
flow of the exporting node equals the incoming flow of the importing node. The only information
available on transmission losses is a yearly published document by ENTSO-E detailing overall
monthly transit losses for European countries. No information is given on exact losses between the
individual countries on an hourly basis, making it unusable for the flow tracing calculation.

Power generation through Hydro Pumped Storage is distinct from the other technologies since it
has a significant electricity consumption when it charges. This leads to negative generation values
for this technology in the data. It is unclear whether this additional consumption is included in
the general load value of the country or not. Either way would require special handling in the
implementation of the core flow tracing Equation 4.2. If it is included, the negative �=,U values for
U = �H3A>%D<?43(C>A064 need to be replaced with 0. In case it is not included, negative values
not only need to be replaced but their absolute value also needs to be added to the load !<. We
chose the latter approach for this thesis.
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Country Average sum of @G,U

AT 0.96
BA 0.93
BE 0.98
BG 1.02
CH 0.84
CZ 0.99
DE 0.96
DK 1.00
EE 0.82
ES 0.99
FI 0.86
FR 0.99
GR 0.90
HU 0.89
IE 0.82
IT 0.99
LT 0.64
LV 0.83
ME 1.20
MK 0.82
NL 0.80
NO 0.98
PL 0.90
PT 1.00
RO 0.96
RS 0.87
SE 0.97
SI 0.99
SK 0.99
UK 0.96

Table 4.5: Average sums of @G,U in 2019
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This chapter is concerned with the analysis of the information obtained through the Python appli-
cation, especially through the Flow Tracing method, described in Chapter 4. Possible relations in
the data set are investigated. First, Section 5.1 outlines the employed analysis methods. Then, the
results are presented and discussed in Section 5.2. 2019 was chosen as the year to base the analysis
on because it was the most recent, fully available year at the time of writing this thesis. For all of the
results calculated in this chapter data adjusted by the method outlined in Subsection 4.3.4 is used.

5.1 Analysis Methods

In this section the analysis methods used on the data are presented. No in depth formulation will be
given in this thesis. Only the concepts are introduced to give an understanding of the results.

5.1.1 Correlation Coefficient

Correlation measures the relatedness of two variables through a coefficient. Related variables exhibit
some sort of common behaviour when changing. Two ways to calculate such a coefficient are used
in this thesis. The Pearson correlation coefficient A is determined by dividing the covariance by
the standard derivation of the two variables. This is formulated in Equation 5.1. The Spearman’s
rank correlation coefficient A(% is calculated in the same way as the Pearson coefficient, except
not the actual variable value is considered but the rank. When the values of a variable are ordered
after size, the rank of a value rg(x) is its the place in that order. For example, the rank of the
smallest value would be 1, and of the largest value =, where = is the total number of values. The
formulation is found in Equation 5.2. The source of both methods is the book by Fahrmeir et
al. (2016). Their main difference is the kind of relationship between the variables they detect.
The Spearman correlation coefficient detects monotonic relationships and the Pearson correlation
coefficient only linear relationships. Linear relationships mean that a change in one variable is
related to a proportional change in the other. Therefore a high Pearson coefficient value is achieved
when the proportional change stays the similar. Monotonic relationships are not characterised by
the proportions of the change. Only that the variables change together is of importance. So a high
Spearman coefficient is present when both variables change in sync. For instance, if one usually
rises when the other falls, but not necessarily according to a constant proportion, the result will be
high. Neither of the two method are directly built into the application. Instead the robust and tested
implementation of the the pandas library (“pandas python library”, 2020) is used.

(5.1) A =

∑(G8 − G) (H8 − H)√∑(G8 − G)2(H8 − H)2
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(5.2) A(% =

∑(rg(G8) − rg- ) (rg(H8) − rg. )√∑(rg(G8) − rg- )2(rg(H8) − rg. )2

The calculated coefficient of both methods has the same result range and meaning. It is a value
between -1 and +1. Low values indicate a negative correlation, meaning that when one variable
increases, the other decreases. High values are calculated when both variables change in the same
direction. A value closer to 0 indicates no detectable relationship is present.

The relation between CO2 emission intensity and other elements of the data set are investigated.
Instead of calculating one coefficient for the whole year, the individual months are considered. If
one or both of the values for a timestamp are missing, the specific timestamp is not included in the
calculation. Possible categories include all results of the Flow Tracing calculation as well as the
ones available from the ENTSO-E API, listed in Subsection 4.2.1.

Calculation of the correlation between CO2 emission intensity and price

To investigate the correlation between the CO2 emission intensity and the electricity price the
Spearman correlation coefficient is determined. No linear relationship between both categories
was expected. The emission intensity data points are provided by the flow tracing implementation
outlined in Section 4.3. Only the 24h price forecast is available from ENTSO-E for price information.
This means that the forecast from the day before is used instead of the actual price. Within 24 hours
the actual value can change from the forecast. Still, this is the best data available for the whole
network at hourly intervals. One correlation coefficient is calculated for each month.

Calculation of the correlation between CO2 emission intensity and ratio of electricity imports

The impact electricity imports have on a country’s CO2 emission intensity is explored in this thesis.
For this, the correlation coefficient between the ratio of imports in the electricity composition and
the emission intensity is calculated. A linear relation was assumed, since electricity composition of
the imports should stay similar. This would favour the use of the Pearson correlation coefficient.
Nonetheless, both presented correlation calculation method were used to calculate a coefficient.
Their differences were minimal. Like with the aforementioned calculation, the results are calculated
for every month individually. They were obtained using the Pearson method.

5.1.2 Time-Delayed Correlation

The methods to calculate the correlation coefficient outlined in Subsection 5.1.1 assess whether the
variables change at the same point in time. A potential delay between the two variable’s behaviour
is not considered. Such a relation would not be identified. For instance, it is conceivable that a price
increase foreshadows a later increase in emission intensity, or vice versa. Thus, to investigate this
possibility a time-delayed correlation method is implemented, based on the description by Wang
(2013). Its difference to the aforementioned calculations is, that a time lag is taken into account by
shifting one of the variables forwards or backwards a certain number of hours relative the other. To
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give an example, the value of the CO2 emission intensity at 3PM would correspond to the electricity
price at 5PM, if the first would be shifted forwards by 2 hours. With the adjusted variables, the
Pearson or Spearman correlation coefficient is then determined. A maximum shift of 24 hours in
either direction is considered. For every full hour within this range the correlation is calculated and
the highest absolute value is reported as the result. Equation 5.3 is the formulation of the Spearman
correlation coefficient with an delay of g hours.

(5.3) A(%,g =

∑(rg(G8) − rg- ) (rg(H8+g) − rg. )√∑(rg(G8) − rg- )2(rg(H8+g) − rg. )2

5.2 Analysis Results

An overview of the results for all countries will be presented first. Afterwards, a more in depth
analysis and discussion for specific countries will be follow.

5.2.1 Overview

The ENTSO-E download and the Flow Tracing method produce a huge amount of data for every
country. Thus, it is not feasible to go into detail for every country. Instead, a general summary will
be presented in this chapter to provide insight about the nature of the results.

The CO2 emission intensity is a key metric to assess the environmental impact of electricity
consumption, stating how much CO2 was emitted to produce a certain amount of power. Figure 5.1a
displays the average CO2 emission intensity in Europe in 2019. A full monthly breakdown of the
information can be found in Table A.1. CO2 emission intensity is determined by the composition of
electricity. Not only the domestic production is considered but also the influence of trade. This is
made possible by the Flow Tracing method. The figure clearly shows that the intensity can vary
significantly between countries.

A key difference between the countries with high and low CO2 emission intensity is the presence
of renewable technologies, as they usually are the cleanest power source available. The following
technologies appearing generation data obtained from ENTSO-E data are considered renewable:

• Geothermal

• Biomass

• Hydro Water Reservoir

• Hydro Run-of-river and Poundage

• Marine

• Solar

• Wind Offshore and Onshore

• Other Renewable
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(a) CO2 emission intensity in :6�$2/",ℎ, 2019
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(b) Share of domestic electricity production from re-
newable sources in %, 2019
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(c) Share of imports in electricity composition in %,
2019
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(d) Change from domestic to complete CO2 emission
intensity in %, 2019

Figure 5.1: Overview of results for European countries.

Only nuclear power presents a major exception, producing very little emissions while not being
renewable. Similar to the proceeding map, Figure 5.1b presents the average share of electricity
produced by renewable sources in the country itself. Data regarding the individual months can be
found in Table A.2. While it is generally true that a high ratio of renewable energy in domestic
production coincides with a low emission intensity, it is not a complete match for most countries.
This can be explained by two factors.

One the one hand, there are large differences within the category of renewable and fossil generation.
Solar panels for instance have a far larger emission impact than hydroelectric generation and
gas power plants are significantly cleaner ones burning coal. Table A.3 provides more detailed
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information on the emission values of specific technologies. This means that a country can produce
little renewable energy while still retaining a low CO2 emission intensity. France is the prime
example of this since nuclear power dominates the production.

On the other hand, imports are a central component for the power supply of many countries.
Depending on the volume, this can have a large impact on the emission intensity since it is possible
for import to be far cleaner or dirtier compared to the local generation. Subsequently, the CO2
emission intensity of adjacent countries, from which power can be imported, becomes increasingly
relevant to the environmental impact. Figure 5.1c displays how large the share of imports is in the
electricity composition of European countries in 2019. The full monthly information is available
in Table A.4. Several countries rely on trade for over a third of their supply. Such a large influx
can significantly shift the local CO2 emission intensity but even smaller amounts are not negligible.
The effect of this is visualized in Figure 5.1d. There the change of CO2 emission intensity can be
seen, when imports are also factored in. For example in Norway the intensity increases by more
than 50% when considering imports wheres in the Netherlands it decreases by more than 20%. The
difference for most countries is significant, highlighting the importance taking the impact trade has
into account. In Table A.5 the information for individual months can be found.

In the following subsections the data concerning certain countries will be examined more thoroughly.
For example by employing the correlation methods among other things. Presenting data on such a
level of detail would not have been possible for all countries.

5.2.2 Norway

The CO2 emission intensity in Norway is the lowest of all considered countries. Figure 5.2 contains
the average monthly CO2 emission intensity. The detailed data can be found in Table A.1. Relatively
speaking, the intensity change throughout the year is considerable. While the lowest intensity, in
September, is 18.8 :6�$2/",ℎ, the highest intensity is 38.5 :6�$2/",ℎ in March. Overall,
in the months between May and September a lower intensity can be noted than in the rest of the year.
A high ratio of renewable technologies is present in the electricity composition. Hydroelectricity,
especially water reservoirs, account for the vast majority of domestic production. On average, these
generation technologies produce more than 75% of the consumed power. The electricity mix is
presented in Figure 5.3

It is noteworthy that the correlation coefficient between the CO2 emission intensity and electricity
price is negative for every month. This is very rare, as the only other country with the same result is
Serbia. The most negative correlation is found in late autumn and early winter, reaching as low as
-0.87 in November. In the rest of the year coefficients hover around -0.3, implying a less definitive
relation between CO2 emission intensity and price. June presents an outlier in this period, since
with a value of -0.77. On the other and, a possible cause for the negative correlation presents itself
when analysing the relation between electricity price and composition. Norway’s key generation
technology is water reservoirs, on average making up more than 60% of the electricity composition.
Furthermore, it is a very clean generation method, being responsible for very little CO2 emission per
",ℎ of generated power. A positive correlation between the ratio of generation by water reservoirs
and price can be determined. The coefficients are displayed in Figure 5.4. This means that when a

25



5 Data Analysis

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

18

20

22

24

26

28

30

32

34

36

38

40

Month

CO
2

Em
is

si
on

In
te

ns
ity

in
:
6
�
$

2/
"
,
ℎ

CO2 Emission Intensity

2

4

6

8

10

12

14

16

Sh
ar

e
of

Im
po

rts
in

%

Import Share

Figure 5.2: Average monthly CO2 emission intensity and import share for Norway in 2019

high percentage of the electricity is produced by it, the price tends to be high as well. At the same
time the CO2 emission intensity will be low because a high ratio of the clean technology is used.
That could explain why high prices tend to coincide with low CO2 emissions.

Results of the time-delayed correlation method, described in the Subsection 5.1.2, are presented in
Table 5.1. The delay corresponding to the highest correlation coefficient between the hourly CO2
emission intensity and electricity price was always 0 hours. This means no delayed relation between
the two variables could be identified with the method.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Optimal Delay 0 0 0 0 0 0 0 0 0 0 0 0

Correlation with delay 0.83 0.35 0.47 0.39 0.46 0.78 0.27 0.28 0.53 0.67 0.87 0.75
Correlation without delay 0.83 0.35 0.47 0.39 0.46 0.78 0.27 0.28 0.53 0.67 0.87 0.75

Difference 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.1: Results of the time-delayed correlation method for a correlation between electricity price
and CO2 emission intensity for Norway in 2019

A consistently high and positive correlation can be found between the hourly CO2 emission intensity
and ratio of electricity imports. Since Norway’s power generation is one of the cleanest in Europe,
it is not surprising that a higher ratio of imports leads to an increase in emissions. The Norwegian
trade partners are Denmark, Finland, Germany, the Netherlands and Sweden. Even the relatively
clean Swedish generation causes more than double the CO2 emissions per ",ℎ produced when
compared to Norway. For the other partners, this is even more pronounced. The high difference
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Figure 5.3: Norwegian Electricity Composition in 2019. Other includes Gas.

between the intensity of electricity generation and consumption seen in Table A.5 also indicate
an influx of power with an high degree of CO2 emission. Imported electricity is comparatively
dirty. This leads to the question, whether high emission intensity values in several months can
be explained by a larger presence of imports. The ratio of imports in the electricity composition
of Norway is not insignificant, varying between 1.6% in September and 15.2 % in March. When
comparing the average hourly emission intensity with the ratio of import, the data resembles each
other noticeably. This can be seen in Figure 5.2. In months with a large import volume compared
to domestic production the intensity of CO2 emissions is high. Together with the aforementioned
correlation data, this would indicate that a key reason for higher emission intensity values observed
in certain months are caused by a larger dependence on imports.

5.2.3 Germany

The German electricity production is diverse. Renewable as well as fossil generation technologies
are both employed on a significant scale, especially coal and wind power. Figure 5.5 shows the
composition of the electricity mix in Germany. Overall the average share of renewables in the
production composition is between 30% and 50%. Still, the CO2 emission intensity especially com-
pared to countries western and northern Europe is high, as can be seen in Table A.1. Generally, the
intensity between April and October is relatively stable at a value slightly above 400 :6�$2/",ℎ.
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Figure 5.4: Correlation Coefficients in Norway, 2019

In January, February and November the intensity is notably higher than in the rest of the year, while
for March and December the lowest values are reported. In the following paragraphs the reason for
these differences in intensity will be investigated.

Another similarity between March and December, besides the low CO2 emission intensity, is that in
both months wind power is responsible for an above the ordinary share of the electricity composition.
In turn, other technologies must be present at a diminished rate. Primarily a decline in coal based
generation is noticeable, while other technologies remain at a share similar to adjacent months.
Two possible explanations for this are presented. First, the consumption in March and December
could be lower compared to the other months. Assuming renewable technologies generate as much
power as possible in the environmental conditions this would mean that less fossil technologies are
required. Consequently, the generation of one or multiple of these technologies would be throttled
with the choice most likely depending on (economic) feasibility. Since the only reduction is notable
in coal power, it was apparently the preferred choice. The idea behind the second explanation is
similar. Key difference is that instead of a low consumption in Germany, a high production of wind
energy is assumed. Parallel to the before, it would reduce the need for other technologies. The same
throttling would take place. A further investigation of the data in Table 5.2 reveals that while the
consumption is relatively high, onshore wind power is produced in a huge amount, reinforcing the
second explanation. Regardless of the definitive reason for the shift in electricity composition, it is
most likely the central reason for the low emission intensity
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Figure 5.5: German Electricity Composition in 2019. Other includes Oil and Waste as well.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Consumption 61579 60612 58027 54527 54466 53267 54438 52184 53254 55654 58468 55718

Onshore Wind generation 16780 13164 18415 10102 8623 7097 6583 5966 9897 12549 10899 16350

Table 5.2: Power generation by Onshore wind and load in Germany in ", , 2019

The months January, February and November, where an increased CO2 emission intensity is noted
are also characterised by the highest level of electricity consumption. This puts extra strain on
electricity supply. A comparison to the aforementioned low intensity months reveals a key difference.
Whereas the consumption is only marginally lower in November and March, no as accentuated
increase in renewable production is present. This leads to an inverse effect as before, meaning fossil
fuels needs to be relied on more heavily, increasing the emission intensity. In the same way as
before the coal power output is adjusting to the different requirement. It seems as though coal is the
preferred technology to react to changes in the supply.

The correlation between price and CO2 emission intensity was investigated as well. In contrast to
Norway, a positive coefficient is calculated for each month. This means a higher electricity price
tends to coincide with higher emission intensity. A reason for this could lie in the composition of
electricity. Onshore wind power has a significant negative correlation with price, while coal has
a positive one. This means, when prices are high, coal tends to be present in an increased way.
For wind power it is the other way around. The mentioned correlation coefficients can be seen

29



5 Data Analysis

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Month

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

Correlation between electricity price and co emission intensity
Correlation between electricity price and ratio of Onshore Wind generation

Correlation between electricity price and ratio of Fossil Hard coal

Figure 5.6: Different Correlations in Germany, 2019

in Figure 5.6. As coal is one of the dirtiest generation technology and wind of the cleanest ones,
the positive correlation could be caused by this. The time-delayed correlation method was again
employed to investigate a delayed relation between price and CO2 emission intensity. Results are
displayed in Table 5.3 Similar to Norway no noteworthy lag could be identified. Only in April a
higher correlation coefficient was calculated when shifting the intensity forward one hour compared
to the price. This would imply that a price increase predicts a intensity increase one hour later.
However the margin of difference is practically negligible. Combined with the fact that a delay was
only identified in one month, it can not be said that a delayed relation is present in a significant
manner.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Optimal Delay 0 0 0 1 0 0 0 0 0 0 0 0

Correlation with delay 0.82 0.65 0.82 0.66 0.71 0.85 0.80 0.80 0.78 0.80 0.75 0.88
Correlation without delay 0.82 0.65 0.82 0.66 0.71 0.85 0.80 0.80 0.78 0.80 0.75 0.88

Difference 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.3: Results of the time-delayed Correlation method for a correlation between electricity
price and CO2 emission intensity for Germany in 2019
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5.2.4 Netherlands

Of the three examined countries, the Netherlands has the highest CO2 emission intensity. This can in
part be explained by the small presence of renewable technologies in the country. In no month more
than 12% of generation are attributed to them. Most electricity supply is covered by domestic gas
and oil power plants. Figure 5.7 details the composition of Dutch electricity. The three main trade
partners are Norway, Germany and Belgium. All of which have considerably cleaner electricity
compositions. Combined with an import share between 11% and 24% this means that the CO2
emission intensity is lowered notably by the trade. This can be seen by the large difference between
the intensity only considering local generation and the intensity taking imports into account as seen
in Table A.5 and Figure 5.1d. The change of CO2 emission intensity over the year is similar to
Norway and Germany. In the colder months a higher intensity is calculated.
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Figure 5.7: Dutch Electricity Composition in 2019. Components smaller than 2% are included in
other.

A remarkable similarity between Germany and the Netherlands are the high CO2 emission intensity
values in January, February and November. For both countries the value is notably higher than in the
surrounding months. Can a connection be identified in the data? As mentioned in Subsection 5.2.3,
in Germany a high electricity consumption is accompanied by a comparably fossil heavy electricity
composition. In the considered month, the majority of Dutch imports arrives from Germany. This
is in contrast to the rest of the year, where Belgian and Norwegian imports are more relevant. Of
the three trade partners, Germany has by far the dirtiest electricity composition. This suggests
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that one the reasons for high Dutch emission intensity is the increased ratio of German imports.
A further factor can be identified in the domestic production in the Netherlands. Compared to the
other Months, an unusually high ratio coal generation is noted.

In 2019 a positive correlation between the CO2 emission intensity and electricity price can be
observed in Figure 5.8 Although it must be said that the coefficient values are not consistent
throughout the year. Especially till May the values are low, only weakly implying a relation between
the variables. When comparing the data to Germany, it is clear that a far stronger connection
between price and CO2 emission intensity exists there.
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Figure 5.8: Correlation between electricity price and CO2 emission intensity in the Netherlands,
2019

The results of the time-delayed correlation method are displayed in Table 5.4. Again, for most of
the time no delayed relation was identified. The exception to this are the months of October to
December and January. There, for a negative shift a higher correlation coefficient was calculated. A
negative shift means that the CO2 emission intensity is moved back in time compared to the price.
This would imply that a change CO2 emission intensity predict a change is price. Similar to the
German results, the actual difference between the delayed and normal correlation calculation are
minimal. In January a difference of 0.08 is recorded, by far the largest result observed. Considering
the limited decisiveness of the change with the inconsistent delay for different months no delayed
relationship can be assumed based on this data.
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The presence of the Other technology introduced an uncertainty to the presented results. This
category contains all power generation from unknown sources. Hence the exact emission intensity
of the technology can only be estimated. For this, the source of the CO2 emission data Tranberg
et al. (2019) assumes a mixture of coal, oil and gas power generation. In the Netherlands this is
especially relevant as Other is responsible for more than 10% of the electricity supply.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Optimal Delay -5 0 0 0 0 0 0 0 0 -1 -2 -1

Correlation with delay 0.45 0.42 0.38 0.41 0.56 0.63 0.64 0.47 0.50 0.67 0.37 0.65
Correlation without delay 0.37 0.42 0.38 0.41 0.56 0.63 0.64 0.47 0.50 0.67 0.34 0.64

Difference 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01

Table 5.4: Results of the time-delayed Correlation method for a correlation between electricity
price and CO2 emission intensity for the Netherlands in 2019
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6 Demand Response

We investigate the potential of using CO2 efficient Demand Response by constructing a simple
linear optimisation problem with the goal of minimising emissions of a simple daily task. Cooking
pasta is the daily task to be examined. Fiorini et al. (2020) present a calculation to measure the
emission of CO2 when cooking a serving of pasta. We adapt their research to ascertain the emission
impact of cooking for a range of times for every day in 2019. In addition to emissions, the monetary
cost is also considered. The optimisation determines the best time to cook by either minimising the
emissions, the cost, or a combination of both. We compare the change in cost and emissions when
using different minimisation goals to ascertain their potential benefits. The information obtained
from ENTSO-E and by the Flow Tracing method, described in Chapter 4, serves as a data basis.

6.1 Method Formulation

A mathematical formulation of the optimisation is presented in this subsection. The approach is
based on the resources and information made available by Gurobi (2020) on their website. The goal
is to find the time on a specific day at which it is optimal to cook the pasta. Following variables are
used.

• ) the set of all possible times of day

• C ∈ ) one specific time of day

• ,4 the amount of electric power required by specific equipment to cook the pasta in ,ℎ

• ,6 the amount of gas power required by specific equipment to cook the pasta in ,ℎ

• �C the CO2 emission intensity in 6�>2/,ℎ

• %C the electricity cost in e/,ℎ

• -C variable determining which time of day is chosen. A value of 1 indicates that C is chosen,
otherwise it is 0.

• � ? the price of using gas power in e/,ℎ

• �4 the CO2 emission intensity of using gas power in 6�>2/,ℎ

Values for �C and %C are obtained through the Python Application described in Chapter 4. The
price of gas � ? is obtained from the information published by European Statistical Office (2020).
The required power ,4 and ,6 is calculated based on the paper of Fiorini et al. (2020). There,
the total amount of power required to heat up, boil, and cook 500 grams of pasta in 5 litres of
water is determined. They calculate the efficiency of different types of cooking equipment. For
instance, using an electric kettle to boil the water and then cook the pasta on a gas stove. The
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method formulation and implementation are able to operate with any of the cooking equipment
combinations presented by Fiorini et al. (2020). This is done by splitting the total power required to
cook with the equipment combination into an electric power part and a gas power part.

The goal of the optimisation is defined by an objective function. Depending on whether CO2
emissions, electricity cost, or a combination of both is to be minimised a different objective function
is used. Equation 6.1 is used when the goal is to minimise the cost of cooking the pasta and Equation
6.2 when minimising the caused emissions. Both are very similar. The first equation minimises the
sum of (,4%C +,6� ?)-C for every C. The sum is the total monetary cost of cooking. It includes the
cost of electricity and the cost of gas. It is multiplied with -C , which can be either 0 or 1. Obviously
to achieve a minimal sum, -C must be 1 for the smallest total cost. The second objective function is
formulated in the same way, with the sole difference being that cost is replaced by CO2 emission
output.

(6.1) Min Cost =
∑
C ∈)

(,4%C +,6� ?)-C

(6.2) Min Emissions =
∑
C ∈)

(,4�C +,6�4)-C

When both cost and emissions are to be considered, Equation 6.3 is employed. It differs from the
previous equation since a simple addition of cost and CO2 emissions can not be used because the
numeric difference between the variables is too large. The smaller price values would have next
to no impact on the objective function. The unit of the variables is also different. One is in eand
the other in grams of CO2 . Normalisation of both variables is required. For this, we first calculate
the minimisation for cost and emission values independently, according to the two aforementioned
formulas. $% is defined as the minimal electricity cost and $� as the minimal emission value.
The individual objective functions are divided by their minimal value and then summed. So, the
optimisation evaluates the sum based on how close the terms are to their individual optimum. A
prerequisite for this normalisation to work as intended is that %C and �C must be positive for all C.
Otherwise, the minimisation will produce wrong results. For prove this we assume, without loss
of generality, that %C < 0 for at one C, leading to an negative $%. Thus, the value of the fraction
(,4%C+,6�?)-C

$%
is negative for a positive numerator because the denominator is negative. The value

of the fraction for the actual minimal price would be 1 (a division of $% through itself). That means
the optimisation would prioritise the maximum of %C instead of the minimum. Unfortunately, this
problem actually can occur since a few electricity prices obtained from ENTSO-E are negative.
To solve it, we add a constant to all prices, which leads to %C > 0 for any C. The constant is only
used to determine the optimal time and not present in any of the resulting cost averages presented
in Section 6.3. To the best of our knowledge, the introduction of the constant does not affect the
optimisation in any other way than to resolve the negative value problem.

(6.3) Min Combination =
∑
C ∈)

(,4%C +,6� ?)-C

$%

+
(,4�C +,6�4)-C

$�
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We assume that pasta is only cooked once a day. Therefore only one time may be chosen. This
means -C must be 0 for all C except one. Equation 6.4 describes this additional constraint placed on
the optimisation.

(6.4)
∑
C

-C = 1

6.2 Implementation

The mathematical optimisation solver of Gurobi (2020) is employed to solve the presented problem.
With the provided Python interface, the mathematical formulation from Section 6.1 can be defined
in code and solved by the application. The flowTracingData data container class described in
Subsection 4.3.2 serves as source for the information regarding CO2 emissions and electricity price.
The results for all three presented objective functions are calculated. To achieve a more meaningful
result we calculate the optimisation for every day in 2019. Additionally, not every time in the day is
a possible solution. They are limited to full hours in one of the following intervals:

• between 06:00 and 09:00

• between 11:00 and 14:00

• between 17:00 and 20:00

The intervals are based around the time of breakfast, lunch and dinner. We assumed for this
optimisation that considering times too distant from normal meal times would lead to questionable
results. For example, there would little value in knowing that the least emissions are produced when
cooking pasta at midnight, as it is not plausible to expect anyone to do so. The change to and from
daylight saving time is also taken into account. This means we always consider the current local
time.

As outlined in Chapter 4, price or CO2 emission values can be missing for various reasons. When
the data is available for at least one of the mentioned hours in a day, we calculate the optimisation.
Otherwise, the day is excluded from the result.

6.3 Optimisation Results

We present the results of the method for Germany, the Netherlands, and Norway in this section.
First, the optimal time chosen by the optimisation is listed. Then, we compare the potential change
in CO2 emissions or electricity cost when cooking the pasta at the optimal time defined by the three
objective functions. Instead of considering different equipment types, we take an average efficiency
value of equipment using electric power. It amounts to 987.07 Watts.
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6.3.1 Optimal Times

Figure 6.1 shows how often a certain time of day was deemed optimal by the three objective
functions in Germany. 14:00 is the time chosen the most in all three functions. The difference
between considering CO2 emissions and electricity cost or only electricity cost is minimal. This can
be observed as Figures 6.1a and 6.1b are almost identical. The choice of hours when minimising
costs is displayed in Figure 6.1c. A greater difference to the previous results is evident. Then,
14:00 and 06:00 are chosen more often, mainly at the cost of 13:00 and 12:00. Furthermore, it is
notable that out of the 12 possible times of day only the same 5 are chosen frequently, no matter the
objective function.
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(a) Optimal hours considering electricity
cost and CO2 emission intensity.
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(b) Optimal hours only considering CO2
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(c) Optimal hours only considering electricity cost.

Figure 6.1: Optimal hours chosen according to different objective functions in Germany in 2019.
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In the Netherlands, we reached a result with a comparable similarity between the times chosen by
the combined objective function and the CO2 emission focused one. This is presented in Figures
6.2a and 6.2b. For a majority of days the optimal time to cook pasta was either 06:00 or 20:00.
When minimising costs instead, very different times are chosen. Primarily, the amount of times
14:00 is optimal increases drastically. In contrast to the German results a larger variety of times
is identified as optimal. This is especially the case when the combination or emission oriented
objective function is used. Despite this, for a large share of days the same hours are chosen. More
than two thirds of optimal times are decided between two hours.
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(c) Optimal hours only considering electricity cost.

Figure 6.2: Optimal hours chosen according to different objective functions in the Netherlands in
2019.
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In Norway, the objective function minimising a combination of cost and emissions, shown in Figure
6.3a, and the function only minimising emissions, shown in Figure 6.3b, produce almost the same
results again. However, the optimal times are more evenly dispersed over the day than for the other
two countries. No single hour is deemed optimal for a large share of the days. Hours in the morning
and evening are chosen the most. Similar to before, when the electricity cost objective function, the
results differ significantly. 06:00 is optimal for over 50% of days and 14:00 for over 20%. This is a
drastic change compared to the other objective functions, where both times are included in other.
Note that only 362 days are considered in Norway because 4 are unavailable due to missing data.
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Figure 6.3: Optimal hours chosen according to different objective functions in Norway in 2019.
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6.3.2 Emission and Cost Reduction

The CO2 emissions by cooking the pasta at the time deemed optimal by the different objective
functions is listed in Table 6.1. For the Netherlands there is only a marginal difference between the
combined and emission objective function. In Germany and Norway the result is practically the
same. This was to be expected, as very similar times are optimal, as seen in Subsection 6.3.1. In
contrast, the emission values when considering cost-oriented objective function are significantly
higher compared to combined function. The largest difference can be noted for Norway, where
the emissions increased by 91.6%. In Germany and the Netherlands the increase only amounts to
2.3% and 5.9% respectively. The difference between the cost-oriented and the emission-oriented
objective functions is identical to the just mentioned values with the exception of the Netherlands,
where the increase raises to 6&. Table 6.2 lists the cost of cooking pasta. Although the difference
in price values for the combined and CO2 oriented approach is more pronounced compared to
the emissions values it is still not very significant. For example the largest difference is found in
Norway and amounts to circa 3%. Like before, when comparing the combined or CO2 oriented
optimisation to the price based one, a more definitive disparity is noticeable. Furthermore, any
optimisation reduces emissions as well as the cost of cooking pasta when compared the average in
Germany and the Netherlands. For Norway this is not the case. There, employing the cost-oriented
optimisation actually increases the caused emissions. Compared to the average emission impact of
cooking, employing an optimisation, which considers CO2 emissions intensity, leads to a significant
reduction of emissions when cooking pasta for all three countries. The highest potential reduction
can be found in Norway, followed by Germany.

Country CO2 emissions
Equal Price CO2 Average

Germany 366.2 374.6 366.2 427.9
Netherlands 494.7 524.1 494.4 522.3
Norway 16.6 31.8 16.6 28.2

Table 6.1: Average CO2 emissions of cooking pasta in grams. The first three columns consider
the value at the optimal time according the noted objective function. The last column
considers the country’s average CO2 emission intensity.

Country Costs of cooking
Combined Price CO2 Average

Germany 3.161 2.998 3.229 3.767
Netherlands 4.001 3.510 4.121 4.120
Norway 4.12 3.731 4.136 3.890

Table 6.2: Average cost of cooking pasta in Euro Cent. The first three columns consider the value
at the optimal time according the noted objective function. The last column considers
the country’s average electricity price.
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6.4 Discussion

A positive correlation between electricity price and CO2 emissions indicates that when prices are
high, emissions are also high. Consequently, minimising the cost or emissions of cooking pasta
should lead to a similar result. On the other hand, when a negative correlation is present, the
results should go in opposite directions. An examination of the assumption is possible based on the
data presented in Section 6.3 and Chapter 5. In Germany and the Netherlands we find a positive
correlation between price and CO2 emission intensity. Of the two, Germany exhibits a stronger
correlation. Therefore, we expect a smaller difference between the results of the optimisation than
in the Netherlands, which supported by the result data. Furthermore, the largest optimisations result
difference can be observed in Norway, where the correlation of price and CO2 emissions is negative.
These facts support the assumption, that the nature of the correlation indicates how different the
optimisation outcomes of the objective functions are.

The share of electricity generated by renewable technologies could be a reason for the difference in
CO2 emission reduction compared to the average. Most renewable technologies are dependant on
environmental factors for their generation and thus are subject to more significant change over time
compared to fossil technologies. We assume that this also leads to an increased variance in CO2
emission intensity values. When there is a larger difference between values, the optimisation has a
greater potential to reduce emissions. In Norway and Germany, renewable technologies are utilised
on a larger than in the Netherlands and the potential emission reduction is larger as well, supporting
this hypothesis.

The optimal time of cooking pasta varies significantly depending on the used objective function. For
instance, in Norway the majority the times determined by the price-oriented function are completely
different to the times recommended by the CO2 -oriented function. Thus the intended behaviour
change of Demand Response programs can be go into opposite directions depending on the used
function. For a large percentage of days the optimal time is decided between few specific hours. An
example for are the times recommended by the combined objective functions in the Netherlands.
There, on almost 60% of days 06:00 is the chosen time. Subsequently, a Demand Response program
based on such functions do not need to be very dynamic. A static incentive to move consumption to
the hours that represent the majority of optimal times could achieve a significant reduction in price
or CO2 emissions. For the possible times we chose a four hour interval around breakfast, lunch, and
dinner. This limits the potential reductions of the optimisation as it is possible for the price or CO2
emissions at the excluded hours to be lower than during the included hours. As mentioned before,
we chose this limitation to produce more realistic results. Even within the limited intervals, the
optimisation recommends hours that many consumers would probably dislike as a time to cook pasta.
For instance, we assume that a Demand Response program trying to shift electricity consumption
to 06:00 would encounter difficulties to convince the user to do so.

Examining the absolute emissions caused by cooking pasta in the three countries illustrates the
effect a different electricity composition can have on daily tasks. Cooking pasta everyday for two to
four weeks in Norway is responsible for an equal amount of CO2 emissions as cooking once in the
Netherlands. The difference is so drastic since clean renewable electricity is prominent in Norway
while the Netherlands obtains most of its supply from fossil fuels.
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We only consider the average electric equipment efficiency to calculate the power usage of cooking
pasta. For several reasons, this average does not necessarily represent the actual equipment efficien-
cies in the three countries. First, gas-powered cooking equipment is also present in some European
households. For instance, according to the Federal Statistical Office of Germany (2018), 6.1%
of German households owned a gas cooker in 2018. This means that for a certain percentage of
households, the optimisation changes as gas-powered cooking equipment is not subject to the same
CO2 emission intensity fluctuation as electricity. Furthermore, we calculate an equally weighted
average efficiency. Every possible equipment combination has the same impact on the average.
This calculation method assumes that every equipment combination is used in an equal amount
of households. This assumption does almost certainly not reflect the actual situation. We chose
this simplified way of calculating the average efficiency because we deemed an average efficiency
calculation based on the actual technology used too extensive for the simple optimisation model.

42



7 Conclusion and Outlook

The application we developed provides an easy way to download the information required to assess
flows in the European electricity network. Directly included is an implementation of the Flow
Tracing method. The provided information serves as an extensive data basis for different analysis
methods. As the application’s data format is based on the widely used data analysis library pandas it
is possible for other research projects to add additional calculations and methods. On the ENTSO-E
transparency platform more data is available than is utilised by us. For instance, the stored energy
value of water reservoirs and hydro storage plants is published and could be used in a further
examination of variances in CO2 emission intensities and electricity compositions. Furthermore,
for a number of countries ENTSO-E offers electricity network information divided into sub-region.
Utilising the more granular data could provide insight into intra-country differences.

The data analysis we conducted shows that electricity trade between countries has an impact on
the CO2 emission intensity of electricity consumption. Depending on the country, changes in
excess of 50% are possible. Thus, only considering a country’s domestic production to assess the
emission intensity of electricity consumption can be very different and potentially misleading results.
Furthermore, the data indicates a correlation between the CO2 emission intensity and electricity
price for the examined countries. Positive as well as negative correlations can be found, depending
on the month and country. This relation has implications for possible Demand Response programs.
According to Albadi and El-Saadany (2007), programs based around electricity price are one of the
main forms of Demand Response. Such programs encourage or discourage electricity consumption
based on high and low prices. In countries where a strong negative correlation between price and
CO2 emissions is present this could potentially increase the actual emission output.

The optimisation problem we presented indicates that CO2 emission output can be reduced signif-
icantly by shifting the time of consumption. Therefore, a Demand Response program based on
CO2 emission signals has the potential to achieve a reduction in CO2 emissions. The possible CO2
emission reduction of such a program would certainly be smaller than the results achieved in the
optimisation, as the optimisation results present the largest possible saving within the considered
times of day. Further research is required to develop an actual Demand Response program based on
CO2 emission intensity as a signal.
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A Tables

Country Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average
AT 314.1 314.3 213.9 188.3 135.2 127.4 210.8 208.4 254.8 309.2 282.5 283.1 236.8
BA 839.1 763.7 788.8 661.8 631.5 705.6 889.3 886.6 867.4 801.8 723.1 650.8 767.5
BE 309.0 273.6 219.1 204.2 184.0 182.8 194.6 176.3 189.8 247.4 269.0 213.7 222.0
BG 644.0 586.4 523.4 502.3 586.3 396.1 499.5 509.5 584.9 708.7 564.1 548.1 554.4
CH 226.2 224.4 158.9 154.7 109.7 156.3 131.0 132.0 129.8 156.1 189.8 145.9 159.6
CZ 658.1 636.3 620.8 607.9 555.4 534.4 575.6 596.5 611.2 577.2 601.9 615.9 599.3
DE 490.9 496.1 371.7 436.2 437.2 390.3 428.1 429.1 407.1 423.5 512.8 383.6 433.9
DK 365.2 327.0 267.1 288.7 205.1 123.1 151.4 226.7 189.2 264.6 315.5 267.8 249.3
EE 969.0 783.3 822.2 770.6 631.1 403.1 374.4 602.2 669.2 563.8 699.9 555.2 653.7
ES 297.6 270.0 186.3 202.7 206.5 235.5 263.7 254.5 235.7 257.7 198.5 170.0 231.6
FI 326.6 281.1 247.9 196.9 159.7 104.9 109.7 116.6 187.8 227.9 235.5 219.7 201.2
FR 92.4 76.8 57.2 49.9 45.0 44.6 63.0 53.8 65.9 67.6 101.0 71.8 65.7
GR 724.6 666.0 673.4 684.8 652.3 655.2 648.7 609.7 631.6 659.1 677.0 670.6 662.7
HU 451.4 453.2 434.6 352.7 321.5 362.8 414.8 396.1 434.9 434.7 407.3 384.7 404.1
IE 406.8 315.3 389.1 413.5 436.5 445.8 430.9 376.3 399.3 357.6 400.1 346.1 393.1
IT 456.0 424.0 413.0 420.0 366.7 363.5 392.1 402.9 427.6 435.3 400.1 382.0 406.9
LT 390.6 274.4 220.2 224.0 228.4 216.0 257.1 258.9 310.8 205.6 217.9 261.9 255.5
LV 546.1 447.3 320.1 381.5 386.2 372.9 376.2 438.1 448.6 368.4 347.2 321.9 396.2
ME 707.9 589.3 743.5 540.4 379.8 591.0 803.1 814.2 791.2 867.0 513.4 453.7 649.5
MK 819.9 783.4 791.1 811.6 705.2 864.9 820.4 843.0 911.5 850.3 807.8 772.3 815.1
NL 590.6 599.9 542.8 540.6 526.9 487.6 490.7 457.0 450.8 532.9 596.0 539.5 529.6
NO 36.4 27.1 38.5 32.1 28.7 21.7 22.0 23.8 18.8 23.3 30.6 35.3 28.2
PL 932.9 906.5 869.2 899.6 929.9 947.5 928.0 974.4 916.3 910.7 904.1 873.5 916.1
PT 379.5 344.2 299.7 298.5 274.9 373.2 409.6 272.2 251.3 299.9 218.4 186.6 300.7
RO 428.2 407.4 376.3 351.0 302.2 276.5 385.7 404.1 432.8 440.4 397.6 389.2 382.6
RS 932.4 877.3 930.7 860.3 755.3 752.0 935.4 1007.8 1010.0 1043.4 944.4 912.6 913.5
SE 113.6 100.9 97.3 87.4 69.0 52.3 56.6 60.1 63.6 73.7 85.3 85.9 78.8
SI 464.9 410.2 345.1 287.4 256.9 253.9 382.5 340.3 356.2 628.4 321.1 338.0 365.4
SK 420.0 364.8 325.5 351.2 305.4 312.1 356.1 323.2 371.4 382.6 305.9 345.5 347.0
UK 340.3 281.0 256.1 268.1 259.0 270.8 275.4 228.9 229.4 256.4 297.7 250.7 267.8

Table A.1: Average CO2 emission intensity in 2019
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A Tables

Country Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average
AT 61.6 62.7 78.7 80.9 90.0 87.8 79.6 77.4 70.6 61.0 64.7 63.0 73.2
BA 27.6 34.1 32.3 43.2 45.3 38.8 23.5 23.8 25.5 31.8 37.3 43.9 33.9
BE 14.2 15.2 18.0 14.2 13.9 18.6 14.8 15.7 15.8 15.7 14.6 18.1 15.7
BG 8.5 13.3 12.8 12.6 20.0 22.6 13.0 13.1 10.8 9.1 9.7 10.4 13.0
CH 26.9 22.7 14.9 19.7 24.7 44.2 39.0 39.5 27.3 23.6 26.4 27.9 28.1
CZ 8.9 9.6 13.2 14.0 12.2 14.7 14.7 12.5 11.0 9.9 8.4 8.9 11.5
DE 39.0 38.1 49.6 44.5 45.3 47.3 41.7 40.4 42.7 41.4 34.7 46.3 42.6
DK 59.0 62.5 70.4 65.7 76.9 75.4 72.9 67.3 75.4 71.9 66.2 70.2 69.5
EE 12.7 23.3 22.1 17.3 22.3 31.5 30.9 26.3 26.9 30.2 25.4 35.3 25.3
ES 39.2 38.2 43.8 42.1 43.4 34.3 30.6 28.8 32.9 31.6 51.3 51.9 39.0
FI 31.2 35.5 38.0 39.3 50.7 48.0 39.8 39.4 38.4 32.4 34.6 38.8 38.8
FR 14.4 16.1 20.5 18.5 20.4 22.1 18.6 18.2 17.0 18.5 21.3 24.3 19.2
GR 23.0 30.0 34.3 29.5 32.5 30.0 28.1 34.8 30.1 26.2 28.2 32.4 29.9
HU 6.3 8.2 8.1 7.7 7.6 6.1 5.2 4.8 6.0 8.8 8.4 9.0 7.2
IE 37.6 54.7 45.4 41.4 27.7 30.6 26.0 40.1 39.1 47.8 41.2 52.1 40.3
IT 28.6 33.9 34.1 35.5 42.3 43.2 36.9 35.9 31.9 28.7 39.0 40.3 35.9
LT 69.4 76.8 75.7 70.7 64.3 58.4 55.1 47.6 55.7 58.8 69.1 69.5 64.3
LV 26.0 43.9 64.0 65.9 52.3 31.5 26.6 24.2 21.9 38.9 48.6 54.6 41.5
ME 43.5 54.4 38.1 100.0 100.0 53.9 34.3 37.0 35.4 18.7 69.3 75.9 55.0
MK 19.5 21.6 20.0 19.7 24.8 14.7 17.0 15.6 10.5 20.5 19.4 24.1 19.0
NL 9.0 7.6 10.8 8.6 7.0 6.8 5.4 7.6 9.6 10.0 7.5 11.3 8.4
NO 97.4 97.9 97.5 97.2 97.2 97.1 97.3 97.4 97.7 97.8 97.9 97.6 97.5
PL 13.3 15.1 17.1 13.0 10.7 9.2 10.1 7.4 12.7 11.9 13.3 15.7 12.5
PT 49.2 51.1 57.6 54.9 52.6 37.6 34.9 44.8 48.3 45.8 61.8 68.0 50.5
RO 33.4 36.8 41.1 45.1 60.2 57.3 39.8 36.8 34.4 29.9 36.5 36.5 40.7
RS 24.2 30.5 28.0 31.7 40.6 39.9 26.4 21.7 21.2 17.9 24.9 25.7 27.7
SE 51.8 52.9 53.5 52.3 55.1 50.6 52.3 47.7 55.4 54.0 54.3 55.4 52.9
SI 16.6 26.7 23.9 32.5 37.8 40.4 25.9 25.8 26.9 28.9 39.6 35.7 30.1
SK 18.7 21.5 27.4 26.0 28.1 31.0 21.2 19.3 16.7 17.3 19.5 18.3 22.1
UK 24.6 29.8 34.3 30.5 28.6 32.2 28.5 35.7 33.5 31.0 28.3 37.0 31.2

Table A.2: Share of renewable technologies in domestic electricity production in %, 2019
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A Tables

Country Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average
AT 30.5 31.8 28.5 20.5 18.3 15.1 25.1 25.2 30.7 36.1 25.7 31.6 26.6
BA 4.0 5.3 14.6 7.8 3.5 4.9 1.7 1.7 2.1 4.4 2.3 1.7 4.5
BE 13.3 16.7 11.9 10.9 14.1 16.5 8.1 5.4 2.4 5.3 9.0 12.4 10.5
BG 4.8 4.0 6.1 6.1 9.4 9.8 4.6 2.7 2.9 3.6 5.7 7.8 5.6
CH 41.8 48.8 47.2 28.5 30.7 26.4 12.7 14.8 32.2 36.4 37.3 42.0 33.2
CZ 12.8 9.5 11.4 10.2 6.7 9.7 18.0 9.1 9.8 8.9 6.6 11.5 10.4
DE 1.4 2.8 3.4 3.9 7.6 9.1 8.3 9.4 6.9 3.6 3.6 4.6 5.4
DK 23.7 24.8 25.2 38.8 34.2 55.0 49.7 51.9 41.2 38.4 31.9 30.1 37.1
EE 9.2 20.3 15.1 26.7 38.5 59.5 63.6 37.4 31.1 45.5 29.1 39.4 34.6
ES 4.7 7.8 9.1 7.6 6.4 4.5 4.3 4.8 5.1 6.2 3.4 6.5 5.9
FI 17.7 16.0 15.1 16.1 18.2 20.9 28.0 27.2 27.5 21.5 21.0 17.5 20.6
FR 3.0 0.9 0.6 1.1 0.2 0.2 1.1 0.9 1.7 1.7 4.0 2.8 1.5
GR 7.4 11.7 19.5 18.6 18.2 15.4 17.2 14.7 16.7 14.9 15.6 18.7 15.7
HU 33.0 35.5 38.5 34.7 38.9 33.6 26.8 33.8 36.0 30.6 24.6 29.8 33.0
IE 7.0 2.5 3.6 3.4 2.7 2.1 5.9 5.1 4.8 3.6 3.6 3.7 4.0
IT 11.8 16.5 15.7 11.5 13.2 11.9 11.9 9.1 12.2 15.7 13.1 14.7 13.1
LT 63.7 53.0 52.7 58.8 55.5 73.7 68.8 72.7 61.5 60.4 50.3 50.3 60.1
LV 30.6 31.7 18.5 35.5 35.6 42.3 46.9 26.8 24.2 26.4 19.6 24.8 30.2
ME 40.0 27.9 46.9 77.7 59.0 44.5 47.9 53.1 47.0 50.4 42.3 42.8 48.3
MK 36.7 44.8 59.8 45.9 63.9 34.0 41.4 39.4 34.9 49.2 53.0 56.2 46.6
NL 11.9 12.3 14.9 19.8 17.4 23.5 17.8 20.0 18.8 12.5 13.3 18.7 16.7
NO 7.7 8.3 15.2 10.8 9.7 10.0 4.1 3.2 1.6 6.1 8.5 13.3 8.2
PL 6.0 6.6 7.5 8.4 8.7 9.0 10.2 7.7 9.8 9.5 8.3 8.1 8.3
PT 10.7 18.3 20.2 13.9 16.4 12.1 10.8 17.9 19.2 15.3 7.5 4.2 13.9
RO 4.6 1.8 2.0 1.8 1.0 0.6 3.6 10.0 11.0 7.4 4.8 4.2 4.4
RS 15.3 10.9 5.0 11.5 10.2 14.1 12.1 11.3 12.4 10.2 15.2 17.3 12.1
SE 8.3 5.0 4.6 4.0 2.6 2.3 6.2 11.0 8.3 5.3 5.8 4.7 5.7
SI 32.7 19.6 29.7 31.9 23.2 27.6 31.0 32.4 36.2 47.9 8.3 13.1 27.8
SK 37.0 31.1 25.6 31.5 26.2 27.6 31.8 30.1 38.5 38.2 20.8 29.2 30.7
UK 5.6 10.0 10.5 6.7 9.7 8.7 8.4 8.2 7.2 6.2 7.8 7.9 8.1

Table A.4: Share of imports in electricity composition in %, 2019

49



A Tables

Country Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average
AT 23.0 22.0 40.5 46.6 71.4 43.5 37.1 26.5 26.9 20.4 16.2 10.8 32.1
BA 16.9 43.1 52.0 10.4 21.5 40.1 39.9 43.7 32.8 20.1 55.5 56.4 36.0
BE 11.4 12.5 9.3 1.7 -11.3 -6.6 1.3 9.2 9.6 14.4 14.0 22.6 7.3
BG 14.8 12.1 27.6 26.1 13.6 21.6 25.1 26.6 23.0 19.5 26.0 17.3 21.1
CH 179.7 212.6 107.4 63.2 17.0 -13.2 35.3 39.3 79.0 106.6 176.1 130.3 94.4
CZ 36.3 36.6 28.4 33.0 34.8 27.9 31.3 32.4 40.7 42.2 34.1 36.1 34.5
DE 6.2 4.7 5.3 1.5 -5.4 -7.8 -4.7 -4.3 -0.5 1.8 0.9 0.9 -0.1
DK 28.4 22.6 36.3 12.7 24.1 -22.4 -7.6 -3.0 21.5 33.4 27.4 41.5 17.9
EE 9.5 -21.1 -20.2 -16.0 -28.0 -46.9 -45.1 -40.1 -28.9 -35.8 -33.0 -39.7 -28.8
ES -34.0 -36.7 -36.5 -41.2 -39.7 -40.2 -39.9 -39.8 -38.8 -39.9 -37.3 -35.9 -38.3
FI -23.9 -22.6 -22.9 -20.1 -19.7 -14.5 -15.2 -25.8 -28.7 -24.3 -24.5 -19.1 -21.8
FR 13.7 15.6 18.1 15.4 9.0 8.0 17.6 18.4 20.2 18.2 13.3 13.1 15.0
GR -14.4 -23.0 -21.7 -24.8 -25.3 -20.0 -17.8 -14.2 -12.9 -16.3 -23.1 -26.3 -20.0
HU 1.3 -17.0 -8.4 1.3 -9.2 -17.5 -5.1 -5.1 7.5 18.1 -0.1 6.5 -2.3
IE -18.3 -9.1 -14.5 -21.6 -20.0 -10.3 -22.5 -12.4 -11.6 -18.0 -13.6 -14.7 -15.6
IT -5.1 -9.4 -10.0 -7.1 -9.4 -9.8 -9.1 -6.6 -8.0 -9.3 -7.8 -9.5 -8.4
LT 7.6 4.4 -12.2 -27.1 -50.0 -46.4 -44.0 -53.8 -36.6 -58.0 -50.0 -31.8 -33.2
LV 56.2 46.4 83.6 131.8 39.3 11.8 8.1 25.3 28.8 13.5 38.7 42.4 43.8
MK 2.4 5.1 21.7 -11.5 20.9 12.6 37.3 29.4 25.0 7.5 11.5 25.9 15.7
NL -25.5 -34.1 -29.0 -35.3 -33.1 -41.7 -34.2 -36.3 -39.2 -26.7 -19.1 -23.4 -31.5
NO 84.1 49.7 90.1 92.8 39.6 36.1 49.6 62.4 33.9 27.0 75.0 123.2 63.6
PL -7.3 -9.6 -11.6 -11.6 -11.5 -13.5 -12.4 -12.0 -12.2 -13.2 -12.2 -10.5 -11.5
PT 6.3 -3.5 -7.1 2.6 -0.2 -0.1 1.9 -0.1 1.9 2.4 10.6 19.5 2.8
RO 0.5 3.1 4.0 2.9 6.5 10.4 0.8 2.0 1.7 -1.0 3.7 1.3 3.0
RS -28.5 -20.6 -5.4 -16.3 -17.5 -16.4 -19.4 -19.1 -22.1 -24.9 -19.4 -21.9 -19.3
SE 26.0 28.7 27.0 25.7 23.0 40.1 41.2 37.3 27.0 27.2 28.2 29.8 30.1
SI 7.7 13.5 8.9 26.8 33.2 27.0 44.7 62.4 60.8 -0.7 40.6 33.3 29.9
SK 126.5 110.1 94.9 104.0 117.5 84.6 108.7 141.4 155.3 137.0 78.1 101.5 113.3
UK -17.4 -22.4 -24.1 -18.2 -20.9 -12.4 -17.2 -20.7 -21.1 -19.3 -19.3 -21.0 -19.5

Table A.5: Change between CO2 emission intensity by domestic generation and consumption in %,
2019
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