
Institute of Software Technology

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Investigating the Relationship
between Conscientiousness and the

Performance in Solving Coding
Challenges

Patrick Lux

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Stefan Wagner

Supervisor: M.Sc Marvin Wyrich

Commenced: Febuary 3, 2020

Completed: September 28, 2020

Abstract

A recent study [WGW19] has provided clues that conscientiousness can have a negative effect on
the performance in solving coding challenges. Since coding challenges have become a popular tool
to assess the problem solving ability and conscientiousness is widely acknowledged to be a positive
influence on work performance this has serious implications.
To study this effect and its consequences we conducted an exploratory study to find differences less
and more conscientious developers display while solving coding challenges. Further, we analyze
the differences found on their impact on the performance in solving coding challenges.
Our findings indicate that software developers of intermediate and high conscientiousness are more
likely to create concepts, think in silence for longer periods of time, start implementing later than
less conscientious software developers and provide better code quality. Furthermore, we found that
software developers use trial and error approaches regardless of their level of conscientiousness.

3

Contents

1 Introduction 13
1.1 Motivation . 13
1.2 Research Objectives and Contributions . 14
1.3 Methodological Approach . 14
1.4 Structure of the Work . 15

2 Background and Related Work 17
2.1 Background . 17
2.2 Hiring and Technical Interviews . 17
2.3 Behavioural Traits and Personality . 19
2.4 Coding Challenges . 23

3 Methodology 29
3.1 Study Design . 29
3.2 Participants . 33
3.3 Technical Details . 33
3.4 Coding Challenges . 33
3.5 Data Collection . 47
3.6 Data Analysis . 52

4 Results 57
4.1 Findings . 62
4.2 Attribution to Conscientiousness and Performance 65

5 Discussion 69
5.1 Implications . 69
5.2 Limitations . 70

6 Conclusion 75

Bibliography 77

A Appendix A 85

B Appendix B 93

C Appendix C 107

5

List of Figures

3.1 Structure of the Study . 32

4.1 Conscientiousness Values of the Participants . 61

7

List of Tables

3.1 Performance Scoring Scheme . 53

4.1 Performance Scores of the Participants . 58
4.3 Performance Scores of the Conscientiousness Categories 60
4.2 Conscientiousness of the Participants . 60

9

List of Listings

3.1 Coding Challenge 1: FizzBuzz . 35
3.2 FizzBuzz Solution 1: Simple loop in O(n) . 35
3.3 FizzBuzz Solution 2: Outsourced predicates in O(n) 36
3.4 FizzBuzz Solution 3: String appendage in O(n) 36
3.5 FizzBuzz Solution 4: Stream in O(n) . 37
3.6 Coding Challenge 2: Sum Swap . 38
3.7 Sum Swap Solution 1: Blind Brute Force in O(n²) 39
3.8 Sum Swap Solution 2: Targeted Brute Force in O(n²) 40
3.9 Sum Swap Solution 3: Targeted and sorted in O(n log n) 41
3.10 Sum Swap Solution 4: Hashset in O(n) . 42
3.11 Coding Challenge 3: First Unique Character . 43
3.12 First Unique Character Solution 1: Brute Force in O(n²) 44
3.13 First Unique Character Solution 2: Hashmap in O(n) 45
3.14 First Unique Character Solution 3: Alphabet Array in in O(n) 46
3.15 First Unique Character Solution 4: indexOf & lastIndexOf in O(n²) 46

11

1 Introduction

1.1 Motivation

Technical interviews have become a staple of the hiring process within the field of software devel-
opment. Most successful companies dealing in such endeavors, especially the well-known software
giants Amazon, Apple, Facebook, Google, and Microsoft use technical interviews to assess the
problem solving ability of their applicants using algorithmic tasks that are to be solved a given time
frame. Such tasks are referred to as coding challenges.
Although the exact process of the technical interview itself differs greatly from company to company
and sometimes even from interviewer to interviewer, they all have one thing in common: The
candidates have to solve or present knowledge about coding challenges in one way or another. More
often than not this is done by introducing a problem to the candidate and observing the candidate
during his attempt to solve it. In most cases, access to external sources e.g literature and the World
Wide Web are cut out of the process and the only help the candidate may rely on is the interviewer
himself.
In the past years, there has been a lot of critique against different forms of technical interviews
especially but not exclusively in the sense of bias towards specific age groups, technical interviews
having a high false-negative rate, excluding candidates based on their personality types as well as
testing for abilities not necessarily needed for the job description [BPB19] [BSBP20].
Recent research into the individual characteristics of coding challengers suggests that there are
be significant positive correlations between academic success, programming experience, and the
coding challenge performance and significant negative correlations between the affective state of
sadness and the performance in coding challenges as well as the personality trait conscientiousness
and the performance [WGW19]. While academic success and programming experience are, for the
most part, factored in as preconditions to get a chance to participate in a technical interview in the
first place and the state of sadness is usually temporary, conscientiousness is something different,
which, depending on the job description, should be highly sought after. However, according to
the study, conscientious developers appear to be at a disadvantage in the current state of technical
interviews[WGW19].
Further research into conscientiousness within the field of software development is necessary. We
suggest a qualitative exploratory study to investigate the relationship between conscientiousness
and the ability to solve coding challenges well and within the given time frame. The findings of
this work could help raise the developers’ and companies awareness of this issue and may lead to
changes in future hiring practices.

13

1 Introduction

1.2 Research Objectives and Contributions

The objective of our research is to explore the correlation between conscientiousness and the
performance in coding challenges. As such we identify differences between software developers
and analyze which differences can be attributed to conscientiousness. Further, we investigate what
impact those differences have on the performance in coding challenges in the context of technical
interviews. The contributions of this work are:

1. Less conscientious software developers are less likely to create concepts. Creating concepts
within limited time decreases the probability of successfully solving coding challenges.
Additionally, participants of technical interviews receive fewer hints during the time they take
to create the concept.

2. There is no correlation between conscientiousness and participants using a trial and error
approach. Additionally observed developers incorporating trial and error elements into their
solution process have a higher probability of solving coding challenges successfully within
technical interviews.

3. Less conscientious software developers spend less time thinking in silence. We found thinking
in silence has a negative impact on the performance in coding challenges within technical
interviews.

4. Less conscientious software developers start implementing earlier. We found less conscien-
tious developers spending less time to conceptualize. Having more time to fix potentially
occurring problems increase the probability of solving coding challenges successfully. Addi-
tionally, we observed less conscientious software developers receive more hints and guidance
from the interviewer since their solving process is more transparent.

5. Software developers of intermediate and high conscientiousness provide better code quality.
This can have a positive impact on the impression they make on the interviewer as well as on
their scoring.

1.3 Methodological Approach

To investigate the relationship between conscientiousness and the performance in solving coding
challenges, we conducted a qualitative exploratory study with the following research questions.

RQ1: What are the differences between more conscientious and less conscientious software devel-
opers?

RQ2: How do those differences impact coding challenge performance?

A total of 12 software developers took part in our study, all of which were currently studying
computer science, software engineering, or media computer science or had graduated recently. Over
the course of our study participants had to solve three coding challenges while being observed using
screen-sharing technology. In between those challenges they were personally interviewed, with
special regards towards their approach in solving the challenges. Additionally, the participants had
to fill out a personal questionnaire, gathering data about their academic performance, experience,
and current mood as well as a personality test.

14

1.4 Structure of the Work

After the study had been conducted the performance score of the participants was calculated based
on correctness, time-complexity, and, for one challenge, in elegance. We then proceeded to apply
Grounded Theory towards the qualitative data we gathered during the session recordings and inter-
views to find differences between the approaches of the participants. As next step, we evaluated
the personal questionnaire and the personality test with special regards towards their conscientious-
ness values. Afterwards, we categorized the participants according to their conscientiousness and
investigated which differences can be attributed to conscientiousness.

1.4 Structure of the Work

The following Chapter contains the background and related work of this thesis. The current situation
in hiring and technical interviews, the coding challenges in technical interviews and programming
competitions, behavioral traits, personality including conscientiousness. In Chapter 3 we describe
the design of the study, the participants, the technical details, the coding challenges including various
solutions as well as all the components of our data collection and data analysis. The differences
between software developers and the attributions towards conscientiousness are presented in Chapter
4. In Chapter 5 we discuss the findings and their implications and in Chapter 6 we present our
conclusion.

15

2 Background and Related Work

The related work chapter contains four sections. The first section provides the background of our
study. The second section covers general aspects of the current situation and research of technical
interviews. The third section provides knowledge about personalities, measurements of personality,
and behavioral traits with a focus on the conscientiousness and its role as a performance predictor.
The fourth section focuses on coding challenges and their use within educational environments,
coding competitions, and technical interviews.

2.1 Background

In a previous study, published under the name of “A theory on individual characteristics of suc-
cessful coding challenge solvers“, several potential performances predicting variables, for example,
experience, GPA, and personality types, have been analyzed [WGW19]. With the expectation a low
score on extraversion, one of the five personality dimensions, according to the Big 5 Inventory, might
have a negative impact on the performance in coding challenges, they explored the correlations
between the personality dimensions and the coding challenge performance. Their findings show no
indication that extraversion, agreeableness, neuroticism and openness are in correlation with the
performance in coding challenges,however, they found a significant moderate negative relationship
for conscientious participants meaning individuals who scored high in conscientiousness performed
worse in the coding challenges compared to those who scored low.

2.2 Hiring and Technical Interviews

Hiring is the process of attracting potential candidates and evaluating them for a given position
within a company. Finding the best suitable person for a given job is of utmost importance for any
company and can be a tedious time- and resource-consuming task. For this reason, most modern
companies have some sort of structured pipeline to order this very valuable process, striving for
impartiality and accurate results.

Proposals for standardization of the hiring practices exist but are rarely taken into account. It is up
to the companies whether or not to follow any sets of instructional guidance, which tends to lead to
companies making and following their own rules. This leads to the fact that hiring processes are
performed wildly differently comparing companies, in some cases even departments and sections
within the same company. However, in modern software development, this hiring pipeline usually
consists of preliminary screenings, behavioral and technical interviews, as well as an offer and
negotiation part.

17

2 Background and Related Work

During the preliminary screenings, potential candidates are assessed based on their applications and
scores. If these applicants are, on paper, fit the job description, they’ll receive an invitation, usually
via phone or email. The interviews can generally be separated into two categories, behavioral and
technical interviews.

While behavioral interviews focus on the interpersonal skills and the presentation of the candidate,
technical interviews are tailored towards evaluating the problem solving or analytical ability of the
candidates as well as giving the interviewer an impression of the candidate’s cognitive state and his
applied thought process.

Since this thesis concentrates on finding out differences in job performance based on the candidates’
personality, there is a strong focus on the technical aspect of the hiring process and thus focuses on
the technical interview aspect rather than the personal interview.

To test the problem-solving ability, applicants are tasked to solve programming challenges which
typically involve writing code or pseudo-code on paper, a whiteboard, or a specific set up computer
environment which limits the access of other sources. While technical interviews are frequently
conducted on-site, off-site testing of applicants is nothing unheard of, specifically when the given
position is for a remote job. Remote technical interviews typically use screen sharing technologies,
a coding platform and the interviewer and interviewee remain in a call for the duration of the
interview.

Properly carried out, technical interviews are a benefit to the company, the hired applicants, and
thanks to constructed feedback, even to candidates who did not receive an offer. Conflictingly recent
scientific research suggests the technical interview process, as currently applied by many companies,
has a high potential for flaws, which will be discussed in the following analysis of related research
[BSBP20][BPB19].

Bad Practices

To avoid mistakes during the conduction of our study we identified several bad practices in the
following literature.

In an empirical investigation, Behroozi et al. [BSBP20] identified poor practices in the hiring
process where otherwise qualified candidates are lost due to various reasons and provided guidelines
for future improvements. Using the website Glassdoor as a resource of anonymous reviews on
companies hiring pipelines, each step of the hiring process has been analyzed for risks, identifying
bad practices from the initial contact, preparation and scheduling, interviews, hearing back as well as
offer and negotiation. Among the highest impact on bad practices have inexperienced interviewers,
bad communications of the hiring criteria and ghosting1candidates. [BSBP20].

Another study conducted by Behroozi et al [BPB19], based on the feedback of interviewees taken
from Hacker News, a social website for software developers, states that technical interviews are
biased towards younger candidates, require practice to do well in and may even cause anxiety and
frustration as well as having little to no real-world relevance [BPB19].

1Ghosting, in the professional environment, is the process of not contacting and updating the candidates on their
application status after the conduction of interviews

18

2.3 Behavioural Traits and Personality

In a study conducted by Ford et al.[FBRP17] gathering both, qualitative and quantitative data
about technical interviews, they found that software engineer job candidates often do not succeed
despite correctly answering most questions as well as solving most challenges presented [FBRP17].
According to the study, this is primarily because many candidates underestimate the value the
interviewer places on interpersonal skills and proper communication. The study was conducted
using mock-up interviews with verified interviewers from nine different companies, gathering and
analyzing qualitative and quantitative data based on the feedback of the interviewers. The primary
goal of the study was to determine whether or not there are differences between companies in
their interview criteria and how the interviewers interpret these criteria. Determining the success
of the interview was based on six criteria, with problem-solving only being one of them. Body
language, clear communication, concrete examples to back up statements about themselves, their
enthusiasm displayed as well as confidence in their abilities were just as important. The study
concludes that most companies have consistent expectations for candidates and that interviewers
care about interpersonal communication just as much as their technical abilities. The difference
between what the candidate prepared for and what the interviewer was looking for became apparent,
especially considering that the expectation and interpretation from different interviewers varied
[FBRP17].

The Media used in Technical Interviews

Apart from the interviewer, the medium provided to the candidate is also important. As typical
media, we identified whiteboards, pen&paper, integrated development environments (IDEs) with
limited to full access to features like coding assistance, refactoring, and testing tools. External
sources e.g, documentation, guides, and internet research are typically cut out of the process. In a
pilot study, Behroozi et al. found out that whiteboards can cause excessive stress and cognitive load
compared to solving a task on a paper sheet [BLM+18].

2.3 Behavioural Traits and Personality

Research in the past forty years has shown that personality has a major impact on job performance.

2.3.1 Evolution of behavioral software engineering

Over the years, scientific research specifically tailored to software engineering has constantly
improved their methodological approach to gather relevant data, gain meaningful insights, and
to draw the right conclusions. However, to this day, many different approaches, practices, and
personality tests are used and contradictory results in similar studies are no rare sight. Although
this issue is widely known, it has not properly been addressed, many scientists have started using
personality tests developed from more established theories like the Myers-Briggs Type Indicator or
the Five-Factor Model instead of their own constructs, which studies clearly benefit from.

Scientific research does currently not agree on the specifics, but the general consensus is that
behavioral traits and personality have a major impact on job performance.

19

2 Background and Related Work

Even though human aspects of software engineering have been acknowledged for some time, and
studies on the matter have been conducted since the 1970s, the subject is still considered immature,
especially regarding some concepts receiving more attention than others [CSC15] [LFW15]. One
of the causes might be the industry, studies of the sort rarely yield tangible results. Focusing on
short-term profits to satisfy investors seems to be more important than a long-term improvement in
their development process. in the recent past a new term, Behavioral Software Engineering (BSE),
has surfaced, describing research aimed at exploring cognitive, behavioral, and social aspects of
software engineering performed by individuals, groups, or organizations. The distinction between
Human-Computer Interaction (HCI) and BSE is the object of focus, BSE focuses on the engineers
during the development process, while HCI focuses on the computer system and software from a user
perspective [LFT+17]. Also, multiple studies reviewed past research and identified knowledge gaps
and the need for collaboration between social science and software engineering to yield adequate
results [LFW15] [CSC15].

Lenberg et al. [LFW15] performed a professional search on the ISI Web of Science on the number
of articles published on certain topics in software engineering and found out that a staggering 70%
of the research was about technological advancements or process-related topics while less than 5%
were of human-related themes. On the positive side, the amount of human-related topics has been
steadily increasing for the past decades. From 1997 to 2015, more than 250 BSE related research
topics have been published [LFW15].

2.3.2 Methods of measuring behavioural traits and personality

Motivated by wild inconsistencies within the results of scientific research on behavioral software
engineering, Cruz et al. [CSC15] performed a systematic review on 19000 studies published between
1970 and 2010, analyzing approaches and comparing facts based on the studies results. To do so 90
articles have been, in part automatically, in part manual labor, selected to give a deeper insight in a
very broad set of context, while maintaining a high representativity. Analyzing relevant quantitative
data (e.g temporal view, number of pages) as well as qualitative data, retrieved from the content of
the articles, they manage to show recent trends in both, theoretical and empirical research. Cruz et
al. [CSC15] identified that the majority (57%) of researchers chose personality tests based on Jung’s
Personality Types Theory, the Myers-Briggs Type Indicator (48%), or the Kersey Temperament
Sorter (9%), while 19% used the Big Five (BF) or Five-Factor Model (FFM) personality tests like
the NEO-PI, increasing in popularity recently. Other personality test included the Rotter Internal-
External Control Scale (Rotter I-E), Rathus Assertiveness Schedule (RAS), Thurstone Temperament
Schedule (TTS), Rosenberg’s Self-Esteem Scale (RSES), Judge’s Generalized Self-Efficacy Scale
(JGSE), Levenson’s Locus of Control Scale (LLC), Personality Type A/B, Self-Monitoring of
Expressive Behaviour (SMEB), Hostility Inventory (HI), Type A Behaviour, Minnesota Multiphasic
Personality Inventory (MMPI), Personal Resilience Questionaire (PRQ) and Personality Research
Form (PRF) [CSC15].

The Myers-Briggs Type Indicator (MBTI) is, as previously discussed, one of the most frequently
used tools to assess personality types to this day, especially in the field of consultancy and training
world [Fur96]. Developed by Kathrine Cook Briggs and Isabel Briggs Myers based on Jung’s
Personality Types Theory, the test not only provides the type of personality but also gives plentiful
insight into the meaning behind the result. Technically the MBTI splits personality into four
dimensions, Extroversion(E) and Introversion(I), Sensing(S) and Intuition(N), Thinking(T) and

20

2.3 Behavioural Traits and Personality

Feeling(F), Judging(J) and Perceiving(P), which leads to sixteen possible combinations of distinct
personalities. The personality test itself has different forms, however, it is usually a questionnaire
consisting of 50 to 150 questions answered on a five- or seven-point Likert scale. The concept
behind the MBTI has proven to be reliable, robust, easy to use, providing accurate results and has
thus been used in various studies, some of them related to software engineering [Mye] [Mye62]
[CA10a] [CA10b] [PY18] [YO12] [Que09]. A handbook for the MBTI has been developed as early
as 1944 and has since then steadily improved and is, to this day, one of the most used approaches to
analyze the personality traits of a given person. The most recent addition to the MBTI has been
Step III from 2009. [Mye62] [Que09]

Another popular approach to assess the personality type of a person is the Five Factor Model
(FFM), sometimes also referred to as the Big Five Inventory, which, similar to the MBTI, splits
the personality into different dimensions. These are Neuroticism (N), Extraversion (E), Openness
to Experience (O), Agreeableness (A) and Conscientiousness (C) [RMSA12] [Fur96].

During the 70’s many psychologists experimented with three or four dimensions to display an entire
personality, however, those models were not able to display the full range of personality traits, which
at the time was believed by many psychologists to be impossible [CM08]. “Language and individual
differences: The search for universals in personality lexicons written by Lewis R. Goldberg [Gol81]
was the first to publish an article connecting five individually accepted dimensions, forming what
he believed to be a full range of psychological characteristics, which, at the time, received plenty
of critique [CM08]. Supported by evidence of several researchers, the construct has stood its test
of time and is deemed as one of the more reliable and accurate methods of getting insight into
personality today [Chr] [MJ92] [big] [BM91].

In 1991, John O.P et al. [JDK91] compiled and simplified the Big Five Inventory, listing the five
dimensions, their facets, and correlated trait adjectives and provided a simple 44-item test for their
evaluation.

In 2012, Deborah A. Cobb-Clark and Stefanie Schurer [CS12] analyzed the stability of the big
five personality traits, and according to their data provided by the Household, Income and Labour
Dynamics in Australia over a four year period (2005-2009), the traits do appear to be stable in the
working-age group (25-65).

Another, shorter, 15 item version of the BFI, the BFI-S [HGS12] has been developed by Elisabeth
Hahn, Juliana Gottschling, and Frank M. Spinath in 2012. It has been evaluated and yielded good
results and acceptable levels of all dimensions but the Agreeableness score.

Quite recently, in 2017, Soto and John proposed a second iteration of the BFI, the BFI-2, to further
enhance bandwidth, fidelity, and predictive power, however, most current research is still being done
using the original BFI since it has been evaluated and proved to be robust for decades [SJ17].

Another highly popular test, incorporating the big five inventory, the NEO-PI has been developed
during the ’80s by Robert R. McCrae and Paul T. Costa [CM08] and was later refined into the NEO-
PI-R test during 1992, improving its potency and accuracy by introducing scales to agreeableness
and conscientiousness.

The NEO-PI-R test has become a tool widely used, specifically in academic research, to assess
personality types due to its ease of use, robustness and comprehensive descriptions [CM08] [Fur96].
The only major problem identified with the accuracy and validity of the NEO-PI-R was that children

21

2 Background and Related Work

and teenagers had difficulties in some of the terminology used, which lead to incomplete personality
assessments. This had been addressed in 2005 when Robert R. McCrae and Paul T. Costa further
improved and simplified the test, which resulted in the NEO-PI-3 [MCM05].

For the NEO-PI-R, two different ways of administration are provided, Form S, which is used for
self-reports, and Form R, which is designed for a third-person observer. Both versions contain 240
items, responded to by a 5-point Likert-Scale, and take 30-40 minutes to complete, which is a major
drawback [CM92]. The validity of the test and underlying model was determined by a variety of
studies, performed by McCrae and Costa themselves and by various other researchers [CM08].

In the mid-’90s Adrian Furnham performed a direct comparison between the MBTI and the NEO-PI
five-factor model using 160 adult participants for his study. Apart from neuroticism, which had
a minimal and inconsistent reflection in the MBTI, all remaining four dimensions of the NEO-PI
FFM had at one or multiple correlations to MBTI values [Fur96].

A method of getting insight into emotions, focusing on the frequency of thereof, is the Scale
of Positive and Negative Experiences (SPANE) [Diea]. The original SPANE, developed by
Diener et al. in 2009 [DWB+09], is a Questionnaire consisting of twelve items, six of them
regard positive feelings while the other six regard negative feelings. Answered on a five-point
Likert scale, then aggregated into SPANE-P(ositive) and SPANE-N(egative) values which are used
to calculate the Affect Balance (SPANE-B) which in turn gives insight into the users’ current
state of happiness. Spane has been successfully used in studies both, inside and outside, the
scope of software engineering and is regarded as a robust and efficient tool by various sources
[Diea][Dieb][RHS17a][RHS17b] [WGW19][GWA14].

2.3.3 Conscientiousness

While The Cambridge Dictionary2 defines conscientiousness simply as “the quality of working
hard and being careful“psychologists and social scientists prefer to define it by its specification
of behavioral traits, often referred to as facets. Common synonyms for conscientiousness are
dependability, will to achieve, self-control, prudence, and constraint, while it’s opposite is defined
as lack of direction [JDK91] [CM98].

Conscientiousness and the General Mental Ability (GMA) have proven to play a major role in
predicting the performance in all kinds of professions [MBS99] [BM91] [Hun80] [Hun86]. The joint
relationship between the two has been researched and discussed for the better half of a century. Since
the late 1950s, researchers try to create mathematical formulas to describe this effect. Some suggest
there might be an interactive formula between motivation and GMA, while others believe they add
up additively [MBS99] [Dig90]. The only matter on which scientific research seems to agree on
is that conscientiousness has little or no effect on the GMA [MBS99] [Dig90]. Controversially
conscientiousness has also been seen to have a negative correlation with Intelligence, one of the
many synonyms used for GMA, which further complicates the matter [MFP04]. However, the
significance of this relationship is still in a debate, and there is also a debate about whether personal
performance on intelligence tests reflects actual intelligence [MFP04].

2https://dictionary.cambridge.org/de/worterbuch/englisch/conscientiousness

22

2.4 Coding Challenges

A detailed investigation into Conscientiousness shows its effect on performance is primarily in two
ways. Conscientious individuals are more likely to set goals and plan for future success while also
actively and deliberately avoid counterproductive behaviors [MBS99] [BMS93] [BWPO91].

While there is no consensus on a definitive set of behavioral traits for conscientiousness in current
research, the BFI and NEO-PI-R FFM indicate that Competence, Order, Dutifulness, Achievement
striving, Self-Discipline, and Deliberation are the driving facets of conscientiousness [CM98].

Recent research about which behaviors conscientious persons show conducted by Jackson et al.
[JWB+10] display confirms the stereotypes many of us had in mind. “Individuals are clean and tidy,
work hard, follow the rules of society and social decorum, think before acting, and are organized.
For example, conscientious people tend to write down important dates, comb their hair, polish their
shoes, stand up straight, and scrub floors. Less conscientious people exceed their credit limit, watch
more television, cancel plans, curse, oversleep, and break promises“[JWB+10, p. 507]. However,
they also determine that individuals with the “same latent trait level of conscientiousness .. differ in
frequency and type of their behavior.“[JWB+10, p. 507].

As problem solvers, conscientious people are rumored to be narrow-minded and stick to predeter-
mined processes, while possibly missing solutions outside of the box.[Leh]. However, we did not
find a scientific source to confirm this.

Scientific research on the relationship conscientiousness and the performance in tasks relevant
to software engineering are scarce. We found one study by Acuña et al. [AGJ09], which found
a correlation between job satisfaction, conscientiousness, and agreeableness when working in
teams.

2.4 Coding Challenges

Coding challenges, also known as programming challenges, are programming tasks designed to
assess the problem-solving ability of a person. Creating a good coding challenge is not an easy task
and depends highly on the area of application. However, usually, they have one thing in common,
multiple possible solutions in different complexity and run-time classes.

The main areas of application are education and assessment of problem-solving ability. In teaching,
those challenges can stimulate and engage students into programming, while also being a possible
method of testing and assessing the students. In a regular job, interview assessment is the key, and
herein lies the focus.

23

2 Background and Related Work

Major Programming contests such as the International Collegiate Programming Contest (ICPC)3,
the International Olympiad in Informatics (IOI)4, Googles Hash Code5 and Code Jam6, as well as
online competition websites such as Coderbyte7, HackerRank8 and Edabit9 are based on coding
challenges to test and challenge their subjects.

The purpose of those competitions, as well as their tasks and difficulties, vary greatly. The IOI,
for example, uses different levels of difficulty in their set of challenges with the primary goal
to score participants according to their skill level in a highly competitive environment and over
a small period of time, currently five days. Other organizations, e.g Edabit, have their primary
focus on long-term education and the enhancement of their users’ skill levels and experience in
different programming languages, various difficulties with a more neighborhood-friendly, however
still competitive, environment.

2.4.1 Training and Preparation

Motivated by various statements that programming competitions become progressively harder each
year, Michal Forisek [For10] analyzed tasks of major programming competitions quantitatively and
qualitatively. The qualitative data gathered were used to find out if the subjective task difficulty rating
of contestants while the quantitative data based on the results of the contest were evaluated using
Item Response Theory. According to the results, the yearly increase in difficulty is mainly based on
the growing popularity of the contests and the continually increasing preparation [For10].

Many detailed guides and books have been written in the recent past to improve the readers’ abilities
in solving puzzle-like questions currently used in contests as well as in technical interviews of
many major companies. Among them are the “Art of Programming Contest“[Are06], “Elements of
Programming Interviews“[ALP12],“Programming Interviews Exposed“[MKG12] and “Cracking
the Coding Interview“[McD19]. While the specifics vary within these books, they all provide
plentiful sources of different programming tasks, explain how to tackle them and provide hints
where necessary.

2.4.2 Designing Coding Challenges

Burton et al.[BH08] investigated in what they called“the Black Art of Olympiad tasks and hence the
hardship coming with designing and creating tasks worthy for the competitive contest environment.
They provide a detailed plan on how to tackle this problem and offer extended guidelines on how to
design proper challenges for programming contests[BH08].

3https://icpc.global/
4https://ioinformatics.org/
5https://codingcompetitions.withgoogle.com/hashcode/
6https://codingcompetitions.withgoogle.com/codejam
7https://coderbyte.com/
8https://www.hackerrank.com/
9https://edabit.com/

24

2.4 Coding Challenges

With the intent to assess the problem-solving ability accurately using programming contests, Coles
et al.[CJW11] provide a deep analysis of the topic, define problem-solving skills, and design
programming exercises accordingly. Their contest approach has been evaluated in a 15 participant
study with a high degree of variation among the results of the students, revealing that maintaining the
participants’ motivation was a major issue and needs some sort of incentive. They remain confident
the contest approach they have taken can give very accurate results on the general problem-solving
ability of participants, however, they acknowledge that the difficulty and style of the tasks, as well
as the students’ motivation, have to be addressed [CJW11].

2.4.3 Coding Challenges and Education

Coding challenges within the educational environment have been used with great success to attract
and motivate students as well as to evaluate and test them. Short summaries are provided in the
following paragraphs.

Motivated by lowering the high dropout rates of students in computer science degrees, which
according to their research happened mainly due to the complexity of the matter and lack of
motivation, García-Mateos et al.[GF09] changed the methodology and structure of their courses,
replacing the final exam with a continuous stream of tasks making those tasks, comparable to online
competitions, more appealing to students. Automatically evaluating the results using a bias-free
online judging tool Mooshak. Based on the qualitative and quantitative analysis in they succeeded,
reducing drop-out rates from 72% down to 45% and receiving positive feedback from the majority
of students [GF09].

Brad Alexander and Cruz Izu [AI10] admit that post-graduation students usually have very good
theoretical knowledge while, for the most part, lacking in the practical application. Their primary
concern was to challenge the stronger students while also helping and motivating the weaker ones.
They had success, determined by quantitative data gathered on their exams as well as the qualitative
feedback given by students, by altering their course structure to offer optional paths to take especially
incorporating non-enforced cooperative learning [AI10].

Carbone et al.[CHMG00] studied and analyzed the learning behavior first year programming students
to improve the design of programming exercises. Baird identified poor learning tendencies, namely
superficial attention, impulsive attention, and staying stuck, which were then analyzed, and evidence
was provided. Carbone at al. then improved the tasks by minimizing the risk students fall into those
poor learning approaches [CHMG00].

Dagiene et al.[DS04] analyzed major programming competitions and argue that one of the best
methods of developing problem-solving abilities is through coding competitions. They have the
opinion that programming in schools should be brought back alive since it allows the development
of critical and creative thinking to solve problems [DS04]. In further investigation, they analyzed
the current decline in school-informatics, which was once very pronounced in the ’80s and ’90s, and
the role competitive programming contests could play general education, especially in attracting,
motivating, and inspiring students [Dag10].

Unhappy with the shifting focus from algorithmic problem solving to object orientation, event-
driven programming, GUIs, and design patterns, Owen L. Astrachan [Ast04] implemented a
non-competitive web-based submission system, based on just-in-time teaching, to solidify students

25

2 Background and Related Work

algorithmic problem solving using small one-method/one-class weekly tasks evaluated by a small
number of tests. These tasks usually take about two to three hours per week to complete and provide
APIs where necessary, to keep the assignments short. According to him, this method is successful
in creating better problem solvers, and programmers and the added experience has a beneficial
effect[Ast04]. After investigating different puzzles and analyzing algorithms in regards to their
efficiency, Anany Levitin [Lev05] concludes that puzzles are very suitable for teaching algorithmics,
improving general solving techniques, and are a valuable tool for algorithm analysis [Lev05].

2.4.4 Automatic scoring of Coding Challenges

Since human scoring of assignments is slow, tedious and error-prone many coding challenge
providers have implemented automatic grading systems. Short summaries are provided in the
following paragraphs.

Handling larger programming contests manually can be a logistical nightmare, requires a lot of staff
to judge solutions, and without clear guidance, the marking accuracy can suffer and is potentially
biased. Mooshak, developed by José Paulo Leal and Fernando Silva [LS03], is a web-based system
to manage and judge programming contests in a highly scalable fashion. Code evaluation is done
simply by testing for input and output and then marked after the all or nothing principle. [LS03].

Another take on alternative methodologies in introductory computer science courses is the Code
Mangler. A fictional character used to modify well-written code, rearranging lines, messing up the
indentation, removing comments, adding bugs, and more as an alternative to tasks simply asking
to generate code or pseudocode. Cheng et al. investigated the marking speed, the confidence of
teaching assistants, and how accurately marks resemble the students’ abilities between different
solutions and found code written from scratch as well as mangled code to be the question types
superior to others in regards to the criteria [CH17].

Cheang et al. propose a system, an online judge, which evaluates electronically submitted assign-
ments automatically. They analyzed human grading behavior and identified issues and hardships to
use this information designing and improving their automatic grading system. The chosen criteria
enveloped correctness, efficiency, and maintainability. While grading correctness and efficiency
were fully automated the grading on maintainability stayed in the hands of the lecturers, since this
topic is highly subjective and hard to translate into quantitative, measurable data. The judge was
then evaluated in three programming courses, from beginner to advanced training, showing that
differences in difficulty pose no issues. A positive aspect of this system is that students can complete
shorter tasks regularly, compared to a few rather large projects throughout their courses, alleviating
stress on both, lecturers and students [CKLO03].

Investing in objective scoring for computation competition tasks, Kemkes et al.[KVC06] debate
whether the current scoring system is the right approach for the IOI. Solutions within the IOI
are automatically evaluated using tests regarding time and memory limits. Within the current
scoring system, failed tests lead to a solution receiving a partial score, however at the time of
programming the contestants have no clue how high that might be. This issue was addressed in
2004 by implementing a 50% rule stating criteria with when fulfilled, the user receives a score
minimum of 50%. Kemkes et al. [KVC06] use Item Response Theory to investigate the difficulty and
discrimination of the IOI tasks and evaluate them using different automated scoring schemes. The
motivation behind this is the huge gap between contestants, with many receiving an unpredictable

26

2.4 Coding Challenges

partial scoring for any of their solutions. They propose a combined scoring scheme which separates
the tests into batches according to their difficulty, and awards points for each batch successfully run.
This allows for students of all ability levels to predict their potential score and plan accordingly
[KVC06].

2.4.5 Parsons Programming Puzzles

Parsons programming puzzles and other similar learning environments were originally introduced
to the programming community as an alternative to writing code specifically designed to appeal
first-year students in introductory programming courses. Using predetermined blocks of code,
which then have to be moved around by the user to form a program that is capable of solving the
question. They are powerful tools allowing for an engaging environment and interesting problems
and immediate feedback. The process of solving algorithmic tasks is usually of great interest,
however, invisible to the lecturer. Using Parsons Puzzles, Helminen et al. propose a method to
gain insight into their students’ thought processes by analyzing a recorded trace of the solving
process. They focused on and categorized how their students arrived at a solution, using various
tools, detecting positive and negative solving patterns, analyzing how often students made use of
the immediate feedback provided. Also, a valuable visualization approach for the solving process
is provided. The intent behind this work was to provide better feedback in the immediate and
automated feedback feature, not only on the current state but on the entire process, enabling students
to improve their thinking process and avoid negative solving patterns [HIKM12].

2.4.6 Good Coding Challenges

As a result of our literature research, we have identified several key components and features, good
coding challenges must have. Firstly, the challenges have to have an easy-to-read, easy-to-understand,
non-ambiguous task description. Secondly, a good coding challenge has to have several different
solutions, especially for different run-time classes. Thirdly, in a technical interview environment,
the solutions must have straightforward implementations. For our evaluation, we decided against
incorporating any automatic evaluation tools. However, we plan on using predetermined test-cases
to evaluate the solutions our participants provide us with.

27

3 Methodology

The objective of this thesis to explore the relationship between conscientiousness and performance in
coding challenges. In order to achieve this, we designed a study of qualitative and exploratory nature
which we propose in the following section. In Section 3.2 we discuss the participants and in Section
3.3 we describe the technical details of the study. In addition, we describe the coding challenges and
provide possible solutions in Section 3.4. Furthermore, we describe our data collection in Section
3.5 and the analysis of our data in Section 3.6.

3.1 Study Design

To answer the research questions we designed an exploratory qualitative study, incorporating three
coding challenges which had to be solved, three interviews, two in between the challenges and
one after all the challenges had been completed, a personal questionnaire gathering data such
as experience levels, their subject of study, their current grades, their frequency of positive and
negative emotions and a Big Five personality test. The study was conducted online, recording
both, the solving process of the coding challenges and the intermediate and final interviews. The
questionnaires were filled out in private after the final interview had been conducted. As typical for
this type of study, we do not have any well-defined hypothesis which we could have tested for, but
rather a set of guidelines and ideas to gather qualitative rich data and derive hypotheses from these
data [Max08].

Since this study is strongly related to technical interviews used in the application process of
well-known companies, we restricted the use of the internet during the interview solving process
accordingly, not allowing the participants to do any online research. The only two sources of
additional information and help during the interview process were hints provided by the interviewer
and all features, specifically the Java documentation, offered by their integrated development
environment (IDE). The Java documentation in particular was allowed to use for two reasons. Firstly,
in any real technical interview participants usually come prepared, for a study, however, this is not
the case. Secondly, students come across many programming languages over the course of their
education, which in turn means they often have trouble recalling the exact syntax for a specific
language.

To motivate potential candidates to take part in this study, we explained to them how strongly related
this study is to the application process, especially technical interviews, of many major software
developing companies and thus the experience might be worthwhile their time. We also told them the
study would take about one and a half hours of their time, involves solving three coding challenges
in a given time frame, and requires a laptop or pc, a microphone, and a stable internet connection.
After the brief introduction, we asked interested candidates to enter an online poll to choose their
preferred day and time using their names and email addresses as credentials. For simplicity, we

29

3 Methodology

used predetermined time slots, with the option of customization by contacting the interviewer. After
entering the online poll, a follow-up email was sent, with additional information on the technical
details of the interview, such as the requirement to download Zoom1 and either IntelliJ IDEA2 or
Eclipse3 as IDE, which could be downloaded prior or during the study. Further, we sent them a
study introduction script, which can be found in the appendix, describing the structure of the study,
the rules, the scoring of their solutions, and a consent form. To ensure every participant had the
same information we used the same invitation and follow-up email as well as an introduction script
for each participant.

The study was conducted one interview at a time with one researcher and a single participant.
This ensured the consistency of the interviews as well as the attention and possible assistance the
individual participants received.

Before the recording of the interview, the participant received a folder containing the coding
challenges, a second copy of the introduction script which was sent by email before, and several
links including the download links for all necessary software. The introduction script was then
traversed through by the interviewer and participant together, encouraging the participants to ask
questions where needed.
Within the introduction script, we provided the participant with the scoring method, how his or her
solution will be judged after completion. The criteria for the algorithmic solutions were, descending
in importance, correctness, time-complexity, and elegance, explicitly excluding space-complexity.
The participants were also told that an early submission will not result in any advantage and focusing
on potential improvements to the three previously stated criteria might be more beneficial in their
remaining time. Additionally, the participants were enlightened, in case they provided multiple
solutions they had to choose which one to hand in, commenting out the others.

At the beginning of the recording, the participant was asked six relevant questions. If they had any
additional questions, what their subject of study is or was if they had any experience with Java and
the IDE in use (IntelliJ IDEA or Eclipse) if they had any questions about the consent form and
finally they were asked to give their verbal consent.

After the formal consent had been given, the interviewer and participant proceeded to import the
first challenge to the chosen IDE explaining the structure of the challenges. Every challenge was
comprised of at least a runnable Java environment, the main method, and an explanatory comment.
The comment described the problem the participant had to solve in detail and stated the time frame
in which they had to do so. The first challenge did not contain anything further since everything
needed to solve the problem was possible within the main method, without any parameters or return
values, to give the participant a high degree of freedom in design.

Since challenges 2 and 3 were a little more complex, we provided a little framework, an additional
method, specifying the parameters and return values which the participant was not allowed to change.
We also provided the user with a little Input/Output example within the descriptive comment. Further
information about the challenges can be found in section 3.4.

1https://zoom.us/
2https://www.jetbrains.com/de-de/idea/
3https://www.eclipse.org/

30

3.1 Study Design

After a brief discussion between the participant and interviewer, making sure the participant
understood the challenge correctly, the timer was set accordingly and started. As previously
mentioned the participant was not allowed to change the given signatures, the parameters, and
return values. They were allowed to create additional methods and encouraged to use alternative
data structures if they made sure to translate those back into the originally intended and provided
return values. This was primarily done to not give unintended hints about possible optimizations to
the runtime complexity of their code while still providing some kind of helping framework. The
participants were also allowed to run the code whenever they chose to, to take notes, in paper or
digitally, to support their thought process, and to ask questions.

An image describing the structure the study with all of its components can be found in Figure 3.1

31

3
M

ethodology

Introduction

Including:
1. Explaining the structure of the study
2. Explaining what data we gather

(Observation, Interviews)
3. The rules while programming
4. The scoring of their solutions
5. The consent form

Structure of the study

Coding
Challenge 1:

FizzBuzz

Technical Setup
1. Downloading and updating necessary software
2. Creating and joining the Zoom meeting

 5 Minutes

10 Minutes

Verbal
declaration of

consent &
Questions

1 Minute

Interview
Challenge 1:

FizzBuzz

Explanation
2 Minutes

10 Minutes

Importing project

10 Minutes

Coding
Challenge 2:
SumSwap

Explanation
 5 Minutes

25 Minutes

Importing project

Interview
Challenge 2:
SumSwap

10 Minutes

Coding
Challenge 3:

First
Nonrepeated

Character

Explanation
 5 Minutes

25 Minutes

Importing project

Interview
Challenge 2:

First
Nonrepeated

Character

10 Minutes

Final Interview:
General Questions

10 Minutes
Personal

Questionnaire

Big 5 Inventory
Personality Test

5 Minutes

5 Minutes

Exporting
Solutions 2 Minutes

Prior to recording

during recording after recording

Figure 3.1: Structure of the Study

32

3.2 Participants

3.2 Participants

As potential candidates, we preferred soon-to-be graduated students and students who had graduated
already, with the focus that they benefit from the experience the most as well ensuring they were
experienced enough. The minimum requirement to participate in the study was that the candidates
had at least visited lectures on data structures, algorithms, and time-complexity. We settled with
12 participants, one post-grad computer scientist, two students of media computer science, and
the remaining nine being software engineering students currently working on their final thesis or
who already had graduated in the recent past. None of the participants were forced to participate to
receive any credit nor did they receive any compensation other than the experience gathered during
the interview. All of the students had been invited personally by email before the conduction of the
first interview.

3.3 Technical Details

For the recording process, different screen-sharing programs were evaluated. We considered Skype4

and Discord5 for the sessions and screen-sharing, having in mind their popularity and ease of use.
The issue we encountered was the missing feature of recording such a session in a way that fits our
requirements. This could have been solved by using a recording software such as Open Broadcaster
Software (OBS)6, however, maneuvering through different programs while conducting an interview
seemed to be unnecessarily stressful and prone to error. After having gone through other software
products we finally settled for Zoom™7 since it had the capability of recording entire screen-sharing
sessions using very little resources, only required a free account to operate and the download was
small in size.

To further reduce the technical setup time for the participants we chose two for Java commonly used
IDEs, namely Eclipse8 developed by the Eclipse Foundation®and IntelliJ IDEA9 from JetBrains.
We built our Coding Challenge projects for those two IDEs, letting participants choose which of
them they want to work in, handing out the proper projects.

3.4 Coding Challenges

To gain insight into the participants’ solving process we chose three different coding challenges.
As previously discussed in 3.1 the participants had to solve one challenge at a time using either of
the two suggested IDEs within a given time frame. Our decision in which coding challenges to
choose was based on our research in Section 2.4. First and foremost the challenges had to be easily
understandable while still enabling the participants to provide different solutions in either elegance,

4https://www.skype.com/de/
5https://discord.com/
6https://obsproject.com/de
7https://zoom.us/
8https://www.eclipse.org/
9https://www.jetbrains.com/de-de/idea/

33

3 Methodology

time-complexity, or both. Secondly, we put our emphasis on challenges that had a straightforward
implementation for most of its concepts, especially regarding time-complexity. Thirdly, we made
sure that most of the solutions could be further improved upon in elegance and/or time-complexity
without the need of starting over or changing too much in the already written code. Fourthly, based
on the context of the study, we didn’t want to deviate too far from actual technical interviews and
we made sure to choose coding challenges that are used in practice. And last but not least, since the
focus of this thesis lies in how coding challenges are solved and not if, we chose challenges with
appropriate difficulties.

To make sure the participants were able to solve the challenges within the restricted time frame, we
piloted the study twofold. In the first iteration the interviewer solved the challenges himself and
well within time, however, since he was part of the selection process of these coding challenges,
he knew about the possible ways to solve them. In the second iteration we had a student from the
targeted candidates, who did not have trouble solving the three challenges in time as well.

The following sections describe each individual coding challenge and provide different concepts
and solutions.

3.4.1 Coding Challenge 1: FizzBuzz

For our first coding challenge we chose the FizzBuzz challenge, which is currently the most widely
used challenge in the evaluation of software developers during their application process. The
challenge is easy to understand and has many straight forward implementations which can be further
improved. We set the time limit for this challenge to 10 minutes, which left plenty of time for
potential improvements after the initial implementation. FizzBuzz itself is a game about division.
As shown in Listing 3.1 one counts up the numbers from 1 to a predetermined value, in our case
100. Each number divisible by predetermined number a in our example 3 is replaced by the word
Fizz and each number divisible by second predetermined number b in our example 5, is replaced by
the word Buzz. if a the current number is divisible by both, a and b, the output is replaced by the
word FizzBuzz.

Our focus on possible optimizations for FizzBuzz was less on time-complexity, which is set to O(n),
but rather on elegance, for example, reducing the amount if-statements, or to outsource predicates
into their own methods with proper names to improve on expandability and/or maintainability.

34

3.4 Coding Challenges

1 public class Main {

2

3 /**

4 * Challenge 1: FizzBuzz

5 *

6 * Write a method to print the numbers 1 to 100.

7 * For each multiple of 3 print "Fizz" instead of the number.

8 * For each multiple of 5 print "Buzz" instead of the number.

9 * For each multiple of both, 3 and 5, instead print "FizzBuzz".

10 *

11 * Timelimit: 10 minutes.

12 */

13

14 public static void main(String[] args) {

15 //TODO

16 }

17 }

Listing 3.1: Coding Challenge 1: FizzBuzz

The straightforward implementation, described in 3.2, is a simple for-loop generating the numbers 1
to 100 filtered by an if-else statement using the modulo operator. In this solution, the first statement
has already been optimized to (i%15 == 0) which is the smallest common divisor of 3 and 5 to
check for one argument rather than two.

1 public static void main(String[] args) {

2 for (int i = 1; i <= 100; i++){

3 if (i % 15 == 0){

4 System.out.println("FizzBuzz");

5 } else if (i % 3 == 0) {

6 System.out.println("Fizz");

7 } else if (i % 5 == 0) {

8 System.out.println("Buzz");

9 } else {

10 System.out.println(i);

11 }

12 }

13 }

Listing 3.2: FizzBuzz Solution 1: Simple loop in O(n)

The second solution, described in 3.3, optimizes the previous solution by extracting and outsourcing
the predicates into methods, improving readability. More importantly, it improves maintainability
by reducing the places the variables, which might be subject to change in the future, from multiple
to one.

35

3 Methodology

1 private static boolean fizz(int i) {

2 return i % 3 == 0;

3 }

4

5 private static boolean buzz(int i) {

6 return i % 5 == 0;

7 }

8

9 public static void main(String[] args) {

10 for (int i = 1; i <= 100; i++){

11 if (fizz(i) && buzz(i)){

12 System.out.println("FizzBuzz");

13 } else if (fizz(i)) {

14 System.out.println("Fizz");

15 } else if (buzz(i)) {

16 System.out.println("Buzz");

17 } else {

18 System.out.println(i);

19 }

20 }

21 }

Listing 3.3: FizzBuzz Solution 2: Outsourced predicates in O(n)

Another version of this maintainability improvement can be seen in 3.4, by declaring and appending
to an output string rather than using simple System.out.println(). Further, the String version leads to
a reduction in if-statements which increases the performance marginally.

1 public static void main(String[] args){

2 for (int i = 1; i <= 100; i++){

3 String output= "";

4 if (i % 3 == 0){

5 output += "Fizz";

6 }

7 if (i % 5 == 0) {

8 output += "Buzz";

9 }

10 if (output ==""){

11 output = String.valueOf(i);

12 }

13 System.out.println(output);

14 }

15 }

Listing 3.4: FizzBuzz Solution 3: String appendage in O(n)

As alternative to a for-loop and multiple if-statements a Stream can be used as shown in 3.5. The
resulting code is a lot shorter in size, however, an argument can be made that it impairs readability,
especially towards less experienced programmers. Additionally creating an Stream for such a small
task can lead to a loss in performance.

36

3.4 Coding Challenges

1 public static void main(String[] args) {

2 IntStream.rangeClosed(1, 100)

3 .mapToObj(i -> i % 3 == 0 ? (i % 5 == 0 ? "FizzBuzz" : "Fizz")

4 : (i % 5 == 0 ? "Buzz" : i))

5 .forEach(System.out::println);

6 }

Listing 3.5: FizzBuzz Solution 4: Stream in O(n)

3.4.2 Coding Challenge 2: SumSwap

For the second challenge, we chose the Integer Sum Swap challenge which is featured in “Cracking
the Coding Interview“[McD19] and is of moderate difficulty. After a testing phase, we decided
a time limit of 25 minutes is appropriate. This guarantees the majority of the participants have
enough time to complete the challenge and potentially improve their solution.

The challenge is about a mathematical problem, given two arrays, the participant is supposed to
implement a program that finds a pair of values, one from each array, so both arrays have the same
sum if the values were to be swapped. The participant did not have to swap the values within the
arrays, just to find and return them. The result was returned as an array, with the first value being
a specific value to swap from array1 and the second value being a specific value to swap from
array2. We provided the input and output arrays and the fact that only positive integer values would
occur within the arrays. This was done to simplify the solving process in the context of handling
edge cases. We also provided a framework to determine the Parameters, in this case, a result array,
as well as the output, and provided a simple for-loop to print the resulting array. The description
provided to the participants is shown in 3.6

37

3 Methodology

1 public class Main {

2

3 /**

4 * Challenge 2: Sum Swap

5 * Implement a program that given two arrays filled with positive integer values finds a pair

6 * of values (one from each array) and swaps them so both arrays have the same sum.

7 *

8 * E.g Input: {1,1,5,2,1} and {5,2,5}

9 * Output: {1,2}

10 *

11 * Timelimit: 25 minutes.

12 */

13

14 public static void main(String[] args) {

15 int[] array1 = {1, 1, 5, 2, 1};

16 int[] array2 = {5, 2, 5};

17 int[] result = sumswap(array1,array2);

18 for (int i = 0; i < result.length; i++) {

19 System.out.println(result[i]);

20 }

21 }

22

23 public static int[] sumSwap(int[] array1, int[] array2) {

24 int[] result = {0,0};

25 //TODO

26 return result;

27 }

28 }

Listing 3.6: Coding Challenge 2: Sum Swap

In order to solve this challenge, the participant had to find and solve the rather simple but crucial
mathematical formula behind it. The sum of both values post swapping values calculates as following
postSum1 = sum1 − val1 + val2 and respectively postSum2 = sum2 + val1 − val2. Since the
sum of the arrays was supposed to be the same after swapping the pair the formula resulting was
sum1 - val1 + val2 = sum2 + val1 - val2, which could be further reduced to val1−val2 = sum1−sum2

2 .
Possible solutions exist for three different time-complexity classes. Two versions of simple brute
force Algorithms, described in Listing 3.7 and Listing 3.8 are within the time-complexity class of
O(n · m) Both require a nested for-loop for each array, where every possible pair is checked for its
validity. The only relevant difference between Listing 3.7 and Listing 3.8 is the outsourcing of the
targeting method which makes future improvements easier.

38

3.4 Coding Challenges

1 public static void main(String[] args) {

2 int[] array1 = {1, 1, 5, 2, 1};

3 int[] array2 = {5, 2, 5};

4 int[] result = sumswap(array1,array2);

5 //print results

6 for (int i = 0; i < result.length; i++) {

7 System.out.println(result[i]);

8 }

9 }

10

11 public static int[] sumswap(int[] array1, int[] array2) {

12 int[] result = {0,0};

13 int sum1 = IntStream.of(array1).sum();

14 int sum2 = IntStream.of(array2).sum();

15

16 for (int i = 0; i < array1.length; i++) {

17 for (int j = 0; j < array2.length; j++){

18 int newSum1 = sum1 - array1[i] + array2[j];

19 int newSum2 = sum2 + array1[i] - array2[j];

20 if (newSum1 == newSum2){

21 result = new int[] {array1[i], array2[j]};

22 }

23 }

24 }

25 return result;

26 }

Listing 3.7: Sum Swap Solution 1: Blind Brute Force in O(n²)

39

3 Methodology

1 public static void main(String[] args) {

2 int[] array1 = {1, 1, 5, 2, 1};

3 int[] array2 = {5, 2, 5};

4 int[] result = sumswap(array1,array2);

5 //print results

6 for (int i = 0; i < result.length; i++) {

7 System.out.println(result[i]);

8 }

9 }

10

11 public static int[] sumswap(int[] array1, int[] array2) {

12 int[] result = {0,0};

13

14 //Target Brute Force

15 Integer target = getTarget(array1, array2);

16 if (target == null){

17 return result;

18 }

19 for (int i = 0; i < array1.length; i++){

20 for (int j = 0; j < array2.length; j++){

21 if (array1[i] - array2[j] == target){

22 return new int[] {array1[i], array2[j]};

23 }

24 }

25 }

26

27 static Integer getTarget(int[] array1, int[] array2) {

28 int sum1 = IntStream.of(array1).sum();

29 int sum2 = IntStream.of(array2).sum();

30

31 if ((sum1 - sum2) % 2 != 0) {

32 return null;

33 } else {

34 return (sum1 - sum2) / 2;

35 }

Listing 3.8: Sum Swap Solution 2: Targeted Brute Force in O(n²)

Another solution incorporates sorting both arrays and traversing through them according to the
difference of the current values as shown in Listing 3.9. In a while-loop both arrays are traversed
through at once, this can be pictured as a modified Turing machine with two input tapes, which are
the two arrays. If the difference is currently too small for a valid pair, move the upper tape position
one to the right to find a bigger difference. If the difference is too big move the lower tape position
to the right to find a smaller difference. If both arrays were to be provided in a sorted manner such
a solution would be in linear time O(n), if not the individual arrays have to be sorted in advance
resulting into a solution of linearithmic time-complexity O(n log n + m log m). This is a significant
improvement over the two previously discussed solutions.

40

3.4 Coding Challenges

1 public static int[] sumswap(int[] array1, int[] array2) {

2 int[] result = {0,0};

3 Integer target = getTarget(array1, array2);

4 if (target == null){

5 return null;

6 }

7 result = findDifferenceSorted(array1, array2, target);

8

9 return result;

10 }

11

12 static Integer getTarget(int[] array1, int[] array2) {

13 int sum1 = IntStream.of(array1).sum();

14 int sum2 = IntStream.of(array2).sum();

15

16 if ((sum1 - sum2) % 2 != 0) {

17 return null;

18 } else {

19 return (sum1 - sum2) / 2;

20 }

21 }

22

23 static int[] findDifferenceSorted(int[] array1, int[] array2, int target){

24 int a = 0;

25 int b = 0;

26 Arrays.sort(array1);

27 Arrays.sort(array2);

28

29 while (a < array1.length && b < array2.length){

30 int difference = array1[a] - array2[b];

31 /* Compare difference to target. If difference is too small, then make it bigger

32 by moving a to a bigger value, if difference is too large, make it smaller

33 by moving b to a bigger value. if it's just right, return the two values.

34 */

35 if (difference == target){

36 int[] result = {array1[a], array2[b]};

37 return result;

38 } else if (difference < target) {

39 a++;

40 } else if (difference > target) {

41 b++;

42 }

43 }

44 return null;

45 }

Listing 3.9: Sum Swap Solution 3: Targeted and sorted in O(n log n)

The most optimal solution for the Integer Sum Swap challenge is the use of alternative data structures,
in this case, a Hashset since it offers a lookup time of amortized O(1). The first logical step is
to write all values of either array2 (alternatively array1) into the Hashset. Secondly we replace
the for-loop of the chosen array which we translated to a Hashset and rearrange the formula from
val1 − val2 == target to val2 = val1 − target. If the Hashset and thus our previous array 2

41

3 Methodology

contains the value we are looking for we found a valid pair and can abort the process. This solution
falls into the linear time-complexity class O(n + m) and since we have to touch each element at
least once it is the Best Conceivable Runtime (BCR) [McD19].

1 public static int[] sumswap(int[] array1, int[] array2) {

2 int[] result = {0,0};

3 Integer target = getTarget(array1, array2);

4 if (target == null){

5 return result;

6 }

7 result = findDifference(array1, array2, target);

8 return result;

9 }

10

11 static Integer getTarget(int[] array1, int[] array2) {

12 int sum1 = IntStream.of(array1).sum();

13 int sum2 = IntStream.of(array2).sum();

14

15 if ((sum1 - sum2) % 2 != 0) {

16 return null;

17 } else {

18 return (sum1 - sum2) / 2;

19 }

20 }

21

22 static int[] findDifference(int[] array1, int[] array2, int target){

23 HashSet<Integer> contentsOfArray2 = getContents(array2);

24 for (int i = 0; i < array1.length;i++){

25 int two = array1[i] - target;

26 if (contentsOfArray2.contains(two)){

27 int[] result ={array1[1], two};

28 return result;

29 }

30 }

31 return null;

32 }

33

34 static HashSet<Integer> getContents(int[] array){

35 HashSet<Integer> set = new HashSet<Integer>();

36 for (int i = 0; i < array.length; i++){

37 set.add(array[i]);

38 }

39 return set;

40 }

Listing 3.10: Sum Swap Solution 4: Hashset in O(n)

3.4.3 Coding Challenge 3: First Nonrepeated Character

As third challenge we chose a String based challenge featured in “Programming Interviews Ex-
posed“[MKG12]. Since the source [MKG12], did not specify a difficulty, we performed some testing
and categorized it as moderately difficult. We considered using challenges of harder difficulties
which is frequently done in similar studies as well as real technical interviews, however, since this

42

3.4 Coding Challenges

study is focused on the observation of the solving process of the participants our intention was
to ensure participants had a reasonable chance at solving the challenge. Additionally, we did not
want to exceed our pre-selected time limit of one hour for all three challenges which left us only 25
minutes to work with. We could have extended the time for the study in general but we figured the
worst-case scenario of two hours was already stretching the limits of the participants. The First
Nonrepeated Character challenge which alternatively is called First Unique Character has been
presented to the participants as displayed in Listing 3.11

1 public class Main {

2

3 /**

4 * Challenge 3: First Nonrepeated Character

5 * Write a method to find the first nonrepeated character in a given string.

6 *

7 * E.g Input: dadooriato

8 * Output: r

9 *

10 * Timelimit: 25 minutes.

11 */

12 public static void main(String[] args) {

13 String sample = "dadooriato";

14 System.out.println(firstUniqueChar(sample));

15 }

16

17 public static String firstUniqueChar (String sample){

18 String result = "";

19 //TODO

20 return result;

21 }

22 }

Listing 3.11: Coding Challenge 3: First Unique Character

The most simple way of solving the First Nonrepeated Character challenge is to simply iterate
twice over the given String O(n²) checking for duplicates with a boolean variable, which can be
seen in Listing 3.12.

43

3 Methodology

1 public static void main(String[] args) {

2 String sample = "dadooriato";

3 System.out.println(firstUniqueChar(sample));

4 }

5

6 public static String firstUniqueChar (String sample){

7 String result = "";

8

9

10 for (int i = 0; i < sample.length(); i++){

11 boolean duplicate = false;

12 for (int j = 0; j < sample.length(); j++){

13 if (sample.charAt(i) == sample.charAt(j) && (i != j)){

14 duplicate = true;

15 break;

16 }

17 }

18 if (!duplicate){

19 return String.valueOf(sample.charAt(i));

20 }

21 }

22 return result;

23 }

Listing 3.12: First Unique Character Solution 1: Brute Force in O(n²)

A better solution can be achieved using alternative data structures such as a Hashmap as described
in Listing 3.13. First, all the values of the String have to be converted into said Hashmap using a
simple for-loop. The Hashmap itself can be implemented in multiple ways. We chose to simply to
count the letters of the String. Then a second iteration over the String has to be initiated, checking
each letter in its correct order, if the current letter is found within the Hashmap with an occurrence
of exactly one, we found a solution and can return the letter. Since each element has to be looked
at at least once this solution is within the best conceivable runtime (BCR) of O(n) and is thus an
optimal solution. There are other approaches, for example to only count the duplicates within the
Hashmap, however, this only reduces a few write-to operations which are amortized to be within
O(1). There are a variety of different Hashmap solutions for this problem which all have their
upsides and downsides, such as possibly worse readability without the use of comments, worse or
better maintainability, and the reduction of operations.

44

3.4 Coding Challenges

1 public static void main(String[] args) {

2 String sample = "dadooriato";

3 System.out.println(firstUniqueChar(sample));

4 }

5

6 public static String firstUniqueChar (String sample){

7 String result = "";

8

9 HashMap<Character, Integer> char_counts = new HashMap<>();

10 //fill hashmap

11 for (int i=0; i < sample.length(); i++){

12 char c = sample.charAt(i);

13 if (char_counts.containsKey(c)){

14 char_counts.put(c, char_counts.get(c) + 1);

15 } else {

16 char_counts.put(c, 1);

17 }

18 }

19

20

21 //iterate through string to find occurences

22 for (int i = 0; i<sample.length(); i++) {

23 char c = sample.charAt(i);

24 if (char_counts.get(c) == 1) {

25 result = String.valueOf(c);

26 return result;

27 }

28 }

29 return result;

30 }

Listing 3.13: First Unique Character Solution 2: Hashmap in O(n)

In Listing 3.14 we present a second optimal solution. This solution does not require the incorporation
of alternative data structures, instead, an array, which is often referred to as alphabet array, is used.
This approach requires the letters to be converted to numbers, which can be natively done by using
the ASCII values of each respective letter and subtract the ASCII value of a from it. Alternatively
one could also map the letters to arbitrary numbers in ascending order, which would make another
iteration over the array necessary. This has no impact on time-complexity. The array itself counts
the occurrence of the letters, comparable to the Hashmap seen in Listing 3.13. Another iteration is
then needed to again traverse the original String to find the first letter which occurs exactly once in
the alphabet array.

45

3 Methodology

1 public static void main(String[] args) {

2 String sample = "dadooriato";

3 System.out.println(firstUniqueChar(sample));

4 }

5

6 public static String firstUniqueChar (String sample){

7 String result = "";

8 int[] char_counts = new int[26];

9 for (char c : sample.toCharArray()) char_counts [c - 'a']++;

10

11 for (char c : sample.toCharArray()) {

12 if (char_counts[c - 'a'] == 1) {

13 return String.valueOf(c);

14 }

15 }

16 return result;

17 }

Listing 3.14: First Unique Character Solution 3: Alphabet Array in in O(n)

Another approach we want to present is shown in Listing 3.15. The solution consists of only four
lines of code. The solution might be short and the readability high, but the indexOf() as well as the
lastIndexOf() both settle in the time-complexity class O(n²) and thus is no optimal solution

1 public static void main(String[] args) {

2 String sample = "dadooriato";

3 System.out.println(firstUniqueChar(sample));

4 }

5

6 public static String firstUniqueChar (String sample){

7 String result = "";

8 for (int i=0; i<sample.length(); i++){

9 if (sample.indexOf(sample.charAt(i)) == sample.lastIndexOf(sample.charAt(i))){

10 return String.valueOf(sample.charAt(i));

11 }

12 }

13 return result;

14 }

Listing 3.15: First Unique Character Solution 4: indexOf & lastIndexOf in O(n²)

Since the participants were allowed to ask as many questions as they wanted during the study, we
purposely left out some of the edge cases of the requirements and encouraged the participants to
ask. An example for this is the input String and its constraints in Challenge 3: First Nonrepeated
Character. We purposely left out the fact that the String will only ever contain lowercase English
letters, no special letters, no numbers, no signs, and no upper case letters and will not be empty. The
intention behind this was, to not give unwanted hints and additional information that might steer
the participants into implementing a solution they would not usually consider themselves. Having
this information can lead to the participant to specifically think about those restricted constraints
rather than a more general approach which might not depend on those constraints at all. However
these constraints do open up paths to alternative solutions and if a participant asks, according to our
interpretation, he is already considering going that direction.

46

3.5 Data Collection

3.5 Data Collection

To answer the research questions if there are differences between conscientious and non-
conscientious software developers while solving coding challenges and how those differences
impact the coding challenge performance, without knowing what those differences could be, we
decided to gather a set of rich qualitative data which would enable us to find phenomena in regards
to this effect.
For this purpose, we designed the study with two components in mind which would be set up in
iterative stages, the coding challenges, followed by semi-structured interviews.
Our theory was the observational part would later help us find qualitative data based on our per-
ception, while the interviews would help us understand the thinking process and approaches of the
participants, based on their perception.

To enhance our results and conclusions we decided on gathering additional quantitative data in a
follow-up questionnaire. This involved demographic data such as the names and email addresses to
provide us with their contact information for potential future questions. Additionally, we gathered
data of their age, gender, subject of study, how many semesters they had been studying or had
studied, their academic performance as well as experience in commercial software engineering,
whether they had previously worked on open source projects or possess a Stack Overflow10 account.
We also assessed their current mood using the Scale of Positive and Negative Experience (SPANE)
[Diea][RHS17b][Dieb]. We decided that the current mood, especially happiness, is of great im-
portance for software development, and recent research on happiness and unhappiness of software
developers by Graziotin et al. tends to agree [GWA14] [GWA13] [GFWA18]. We are aware, some
researchers e.g Rahm et al. [RHS17a] who examined the German version of SPANE, especially
its validity compared to other measurements, and criticize particularly the SPANE-B value for the
reduction of complexity since there is no scientific evidence positive and negative feelings have a
canceling effect on each other. They also raise awareness about measuring frequency, disregarding
intensity, and being self-reported. However, they also admit the two-factor structure of SPANE
showed good results on psychometric properties and convergent validity [RHS17a].

Research suggests, measuring the experience of programmers in years and education can be mislead-
ing and wrong. Thus we extended the questionnaire to additionally ask about professional experience
and incorporated two questions where the participants had to evaluate their experience based on
comparison to (a) their classmates and (b) their professional colleagues since those questions have
been evaluated and recommended by one of our primary sources on the topic written by Siegmund.
et al. [SKL+14] who criticized other researchers’ methods of measuring experience. The main
purpose of the questionnaire was to filter out certain phenomena which were with a high probability
related to factors other than conscientiousness, such as for example experience.

The last part of the data collection consisted of a Big 5 Inventory personality test assessing the
participants’ personality in five dimensions. Those five dimensions are: extraversion, agreeableness,
conscientiousness, neuroticism and openness to experience. As presented in section 2.3.2 we had the
option of three differently modeled personality tests, the Myers-Briggs Type Indicator (MBTI), the
Big Five Inventory (BFI), and NEO-PI and its different versions. We chose the Big Five Inventory
over its competitors for two reasons. Firstly opposed to the MBTI the BFI grants direct access to

10https://stackoverflow.com/

47

3 Methodology

conscientiousness instead of a coded personality. Secondly, the different versions of the NEO-PI e.g
the NEO-PI-R have a tremendous amount of up to 240 items. For our participants, this would have
meant quite some time spend on the personality test. Since the Big 5 Inventory test only features 44
items which can be answered in a few minutes while still yielding scientifically valuable results
[Chr] [MJ92] [big] [BM91], we decided to incorporate the Big 5 Inventory test.

We consciously placed the personality test and the personal questionnaire posterior to the conduction
of the study, since filling out the questionnaire at an earlier stage might have caused the participant to
have a certain perception of what data we were after, which, according to our perception, could cause
the participant to act biased or derive from his usual path of solving coding challenges. Additionally,
both, the personal questionnaire as well as the personality test were filled out in private.

3.5.1 The interviews

To gather the rich qualitative data, we required to answer the research questions we considered
different types of interviews which are discussed in the following.

The choice of the Interview Structure

Firstly we had to decide which kind of interview would yield the best results over the course of our
study regarding our inexperience. As a starting point, we used several short guides aimed towards
different types of interviews provided by the Robert Wood Johnson Foundation, which is also
available on their website [CC08]. We also confirmed their statements using other sources [CC08]
[Bla13] [KPJK16]. The different types of interviews we considered were structured interviews,
semi-structured interviews, unstructured interviews as well as informal interviews.

Structured Interviews are typically used when the topic to be researched has a clear focus and a
well-developed understanding of, since neither of those factors fit our scenario we decided to dismiss
this type of interview [CC08].

Using Unstructured interviews, the interviewer has to have a clear agenda towards the focus and
goal of the interview. Since our goal was to find out if there are differences within the solving
process of coding challenges between conscientious and non-conscientious individuals, we did not
know where this would lead us and hence dismissed this type of interview as well [CC08].

Although informal interviews are frequently used to accompany participant observations, we parted
from the idea of using them due to the fact our researcher had little experience in conducting
interviews and the thought of conducting one without any preparation aimed towards what questions
to ask seemed to be an unnecessary risk towards the quality of our data [CC08].

Semi-structured interviews are a balanced combination of some components of the other types
of interviews mentioned previously. A clear guide and a small set of broad questions keep the
interviewer on track while any interesting information given by the interviewee can be followed
up on with additional spontaneous questions. They are frequently used when the researcher only
gets one chance to interview the participants. Well executed semi-structured interviews can result
in comparable, reliable qualitative data, and since a comparison between participants differing in
conscientiousness is a crucial part of our analysis we decided on using and preparing for semi-
structured interviews [CC08].

48

3.5 Data Collection

Preparation for the Interview

After having decided which type of interview to use, we entered the planning stage. Firstly we had
to determine which questions to use as a guide for the interviewer and secondly, we had to prepare
the interviewer himself with the awareness in mind that the quality of the data we gathered strongly
correlates with how the interviews were conducted and prepared for [HA05].

According to our sources [HA05] [Pat90] there are six types of questions commonly used in
interviews. (1) Questions based on behavior and experience which yield into a description of the
interviewees’ experiences, behavior, or actions. (2) Questions based on the opinions or values of the
participants that reveal information on how the interviewee thinks or feels towards a certain topic.
(3) Feeling based questions which aim towards an emotional response. (4) Knowledge questions
asking for facts. (5) Sensory questions that draw information from what the interviewee sees, hears,
etc. (6) Questions about the background or demographic used to identify the characteristics of the
interviewee [HA05] [Pat90].

We determined that we did not need to prepare questions from categories 4 and 5, since neither
knowledge-based questions nor sensory questions would offer us any insight into the participants’
approach of implementing coding challenges. Additionally, we figured they wouldn’t help to
guide the interviewer through the interview. Further, we decided to refrain from background or
demographic questions since this is what we used the personal questionnaire for.

Since we were lacking experience in conducting interviews we based our selection of questions,
in addition to the previously stated categories, on the opinions and experiences of more advanced
interviewers. Especially regarding which questions usually work well and yield good qualitative
and rich data, such as letting the user explain how he approached a certain aspect or how he did
something in particular, or which types questions to avoid, such as very detailed questions where
the user may have trouble recalling or questions assuming the user to have completed a task which
might not be the case. Additionally, reflexive questions are deemed to provide good information for
example what he could have done differently [HA05].

We also made use of a concept called Grand Tour Questions mentioned in “Asking Questions:
Techniques for Semi-structured Interviews“[Lee02]. A Grand Tour Question usually asks for a
routine of the interviewee such as “Could you describe a typical day on your weekend?“, something
the interviewee most certainly knows and has a description for and which gets them to talk. We
were also aware that questions within interviews should always be asked in ascending order towards
their threat level while keeping it as low as possible [Lee02].

With this information, we set out to create questions we deemed to be worthy of being asked in each
interview, which provide rich information and at the same time guide the interviewer through the
process.

In order to keep the consistency needed to gather the valuable qualitative data, we prepared six
questions for the three interviews tailored to the coding challenges and four general questions the
participants would respond to in the final interview. The questions were, as previously discussed
and typical for semi-structured interviews, meant to be an open-minded thread, a starting point, and
as that we would generally go into the direction the participants lead us with their responses or to a
direction which the participant might have omitted, purposely or not.

49

3 Methodology

We designed our first question as something easy to answer to, something that would put the in-
terviewee at ease, not requiring much, however still providing good information so we decided on
“What was the first thing you thought of when you read the assignment? “which we believed to be a
descriptive question, of category 1, however, we later found out many participants reacted with an
emotional response.
As the second question, we thought the user had been warmed up enough and we could now be
asked the most important question: “Can you explain your approach towards the Challenge?“. To
ensure this question was answered to a satisfying degree and properly followed up the researcher
was prompted to put more emphasis on this question.
Since both previous questions had been of explanatory nature and thus category 1 we decided to
change the pace and ask a question of category 3, a feeling-based question “How did you feel during
the Challenge?“. This was done because we believed the emotional state could very well have an
effect on the approach the participant chose during the solving process.
As the fourth question we used one of reflective and descriptive nature “What do you think you’ve
been spending most of your time on?“. This lets the user reflect on what he had done and what he
may improve on in the future.
This was followed up with another feeling-based question“Are you satisfied with your result?“which
gave us the insight of their level of satisfaction. Finally, we asked another descriptive and the prob-
ably most threatening question: “Can you think of a more elegant solution?“which required the
user to find improvements to his own solution and thus criticizing himself. We also left the term
elegance without explanation since their interpretation of the term could be of importance.
If they managed to find a more elegant solution which might have been smaller or larger improve-
ments in performance, readability, and/or maintainability we figured it was interesting why they did
not use that approach or solution in the first place and asked: “(If yes) Why didn’t you attempt its
implementation?“.

For the final interview we decided on asking two more descriptive questions about their approach
which involved their reflection and comparison to their usual approach outside of the interviews
in a Grand Tour-Esque manner: “Is that how you usually approach programming problems?“and
“Were there any differences?“. Both questions we hoped would further increase our understanding
of the participants’ solving process, especially what differed during the interviews. Additionally, we
asked What is your opinion on Coding Challenges within the application process?, an opinion based
question and finally we asked them “Assuming this was a real interview, what do you think your
chances for the job would be?“which again like the very first question could be responded to in an
emotional approach or very descriptive. The last two questions were primarily for the participants,
to enhance their experience from our interview rather than us gathering useful data from.

After having decided which questions to use, we started acquiring information to prepare the
interviewer.

Searching through the plentiful literature on the topic, we focused primarily on sources related to
software engineering and qualitative research thereof. Some of our sources [HA05] [Lee02] [Bla13]
offer guidelines and explain qualities a good interviewer must have . Based on them, we decided on
compiling a list of rules which the interviewer had to follow, a code of conduct to always be present
during the interviews. This, so we hoped, would increase the quality of the interviews and thus
potentially have a major impact on them. In addition to its persistent presence over the course of the

50

3.5 Data Collection

interviews, we made sure the interviewer would read it at least once before every session. The code
of conduct has been translated from German to English and is presented as follows, in no particular
order:

The code of conduct:

• Build an atmosphere of trust.

• Ask non-threatening questions.

• Assure anonymity.

• Encourage the interviewees to talk freely.

• Ask relevant and insightful questions.

• Follow up / Explore interesting topics.

• Don’t openly disagree with interviewees.

• Don’t express dismay.

• Don’t interrupt.

• Keep it positive!

• Try to enjoy the interview!

• Thank the interviewees for their participation.

In addition to the code of conduct, we used a primitive reflexive journal where the interviewer had to
write a short status report on describing anything he went through emotionally as well as his physical
status before the interview. We first came across the idea of a reflexive journal reading “Behavioural
software engineering - guidelines for qualitative studies“[LFT+17]. Since the interviewer was
acquainted with all the participants, we also made sure he put any potentially perceived bias into
written form.

Some sources [HA05] suggest using two interviewers instead of one, to increase the quality of the
data gathered and to reduce the cognitive load of the interviewers through sharing responsibilities.
Another benefit of working with two interviewers is that taking notes becomes possible without
interrupting the flow of the interview. To ensure the interviewer can fully concentrate on the
questions to ask and the responses thereof, we refrained from taking notes frequently, this was
possible due to the fact we recorded the entire study. Additionally, studies about interviews [HA05]
have proven that interviews conducted by two interviewers generally have a significant increase
in time. We were already stretching the time for the participants before this decision, which was
another factor of our decision to remain with one interviewer.

Finally, we also ensured the interviewer would use prompts whenever he felt like the answer he
received was too little or too general or upon discovery of something interesting to follow up on
[Lee02].

51

3 Methodology

3.6 Data Analysis

To process our data which we generated throughout the study, we split the analysis of the data we
gathered in four parts, the solutions provided by the participants, the recordings of the sessions, the
personality test and the personal questionnaire. Firstly calculated the performance scores of the
individual participants in regards to their results and our criteria which is described in the following
subsection 3.6.1. Secondly applied Grounded Theory on the qualitative data from the sessions
which is described in Subsection 3.6.2.

3.6.1 Scoring the Coding Challenges

The criteria, to evaluate the solutions with, were correctness, time-efficiency and elegance disre-
garding space-complexity and were based on our needs and experiences from the closely related
research described in section 2.4. We figured elegance is a highly subjective matter and only applied
this criteria to the results of the first coding challenge. Our first challenge, the FizzBuzz challenge
did not offer implementations in differing time-complexity classes but a rather high potential for
improvements towards its elegance, more precisely its maintainability, the lines of code, combination
of predicates, outsourcing of the predicates. which can be seen in section 3.4.
To evaluate the correctness of FizzBuzz we did not see the necessity to create any test cases since
many solutions had no input parameters and the output was printed to the console so checking the
correctness did not require any additional steps but scanning the printed output. For FizzBuzz we
decided a running solution will always yield one point. Additionally bonus points could be earned
through improvements

• Combining the two arguments for the FizzBuzz case resulted in 0.25 bonus points.

• Outsourcing the predicates in separate methods and giving them proper names resulted into
0.25 bonus points.

• For a solution with 10 lines of code (loc) or less we would 0.25 bonus points.

• Decreasing the number of places a variable had to be changed at if the requirements changed
resulted in 0.25 bonus points.

We also added the possibility of giving bonus points towards improvements we did not consider
before the study, in case a participant came up with other well designed improvements. Since our
approach towards scoring the FizzBuzz Challenge was open minded and based on improvements,
we do not provide a maximum score for FizzBuzz.

For the other two coding challenges, Sum Swap and First Nonrepeated Character, we decided to
stay close to what other expert researchers believe, and that is that objectivity is crucial for any
programming competition and technical interview and dismissed including elegance to our scoring
scheme. To evaluate those two solutions started with the best run-time efficiency possible and score
that solution with 2 points.
As described in Section 3.4, the best conceivable runtime (BCR) for both Sum Swap and First
Nonrepeated Character is within the time-complexity class of O(n) since each element has to be
touched at least once [McD19][MKG12]. For Solutions in linear runtime O(n), we would award 2
points per challenge. For solutions in linearithmic time O(n log n), we would deduct half a point.
For solutions in quadratic time O(n2), we would deduct one point.

52

3.6 Data Analysis

Challenge 1 Challenge 2 Challenge 3

Complexity Score Complexity Score Complexity Score

O(n) 1.0 O(n + m) 2.0 O(n) 2.0
Improvements + 0.25 O(n log n + m log m) 1.5 O(n log n) 1.5

O(n · m) 1.0 O(n2) 1.0

Table 3.1: The scoring scheme and the bonus points awarded for the first challenge for each im-
provement

For the evaluation of Sum Swap and First Nonrepeated Character, we used a specific set of tests,
testing only for edge cases we did not previously exclude. The excluded test cases only affect the
evaluation of the First Nonrepeated Character challenge and are: empty Strings, signs, upper case
letters, and letters not used in the English language. Other than in programming competitions and
possibly technical interviews, we refrained from using a weighting towards the difficulties of the
challenges since they were revealing different qualities of the participants.
All criteria were clearly communicated within the study introduction, and have been repeatedly
stated throughout the interview when necessary or when asked for.
As elegance is a special case we prompted each participant after having completed a solution to use
the remaining time for improvements and we also explicitly mentioned maintainability, readability,
code size, and potential outsourcing.

To create a participant’s final score we summed up their scores for the individual challenges.

3.6.2 Analysis procedure of the sessions and interviews

The qualitative data recordings we gathered throughout the course of our study were sessions
consisting of an iteration between three observational parts, while the participants solved coding
challenges, and three interview parts where the participant offered insight into his thought process
as described in Figure 3.1.
In accordance with our research objectives, we chose Grounded Theory as our analysis approach.
Grounded Theory (GT) is a well-known methodology within the field of qualitative research to ana-
lyze qualitative data typically derived from interviews and observations. GT describes an iterative
process of constant comparison to code and conceptualize data in order to find things of interest, a
situation, an event, an activity, which are referred to as phenomena.
Based on the phenomena, hypothesis are found and a theory can be formed aimed at explaining
relationships between those phenomena [SC90] [SPP08] [Cha14]. The Methodology was first de-
scribed by Barney Glaser and Anselm Strauss in 1967 [GS67] and has since been applied, suggested,
and modified in numerous ways [RP10].
As far as we are aware of there are currently four officially recognized approaches towards Grounded
Theory and its practical application [SCEB11].
The first two originate from the original authors, Barney Glaser’s “Classic Grounded Theory“and
Anselm Strauss and Juliet Corbin’s “Basics of Qualitative Research“[SCEB11][Gla92][SC90]. Fur-
ther there is “Constructing grounded theory: A practical guide through qualitative analysis“written
by Kathy Charmaz and Adele. E. Clarks “Situational analysis“[Cha06] [Cla07].

53

3 Methodology

Upon inspecting our data, we found a transcription of the observational parts impractical. The
subtleties of e.g, mouse movement and keystrokes together with their respective timings were nearly
impossible to be transcribed accurately.
We thought about more coarsely-grained approaches. However, they all yielded in a loss of potentially
important data. Since we did not know what we were looking for in the data, as suggested by
Grounding Theory, we did not want to take that risk.
As an alternative approach, we used something similar to what Salinger et al. suggested in “A
Coding Scheme Development Methodology Using Grounded Theory for Qualitative Analysis of
Pair Programming“[SPP08]. They had previously encountered a similar problem of transcribing
video and audio data from screen-sharing and filming. Since tools exist to code the raw video
and audio data, e.g ATLAS.ti11, Salinger et al. suggest annotating the codes directly onto the
video/audio data. They also provide a more practical approach of coding the data within ATLAS.ti,
since the tool and the version of GT suggested by Strauss and Corbin in “Basics of Qualitative
Research: Grounded Theory Procedures and Technique“, had trouble translating into each other
[SC90][SC97][SPP08].

For the interview stages, we decided on a more coarsely-grained approach of transcribing since
there was not much going on on the screens except for some rare occasions where the participants
pointed at their code to make a statement, which could be easily referenced in the transcript and
traced back to the respective recordings.
Another factor for our decision to transcribe the interviews was that transcripts are easier to work
with, traverse through, and code. As of technical limitations, working on the video and audio data
directly includes many hiccups and do-overs, and searching for references to connect the dots can
be tedious and prone to error.

Further, we decided on looking for different types of phenomena within the interviews, compared to
what we were looking for in the observation parts. We did not specify any, until later in the process,
to remain open-minded towards the findings, but we found ourselves tending to pay closer attention
to the frequency of occurrences of certain phenomena within the observational data while focusing
on the detailed thought processes and chosen approaches within the interview transcriptions. Which
might be retraced to the process of iterating over both data sets various times, gathering more
information each time, concretizing our ideas we developed in the process.

Due to similarities in the nature of our study compared to the study provided by Salinger et al.
[SPP08] we decided to benefit from their experiences and build our approach towards GT accordingly.
For simplicity reasons we decided on using the same coding schemes for both, the transcriptions
and the session recordings and used ATLAS.ti to apply any form of coding.

3.6.3 Analysis of the Personality Test and Personal Questionnaire

As final step of our analysis we proceeded to evaluate the personality test and personal questionnaire.
We consciously placed the evaluation of the personality test and personal questionnaire after we had
completed the coding process to minimize potential bias towards the coding procedure and ensure a
higher level of credibility which we will further discuss in Section 5.2.

11https://atlasti.com/

54

3.6 Data Analysis

Firstly, we calculated the data from the Big 5 Personality Test using the scoring scheme provided
in “The Big Five inventory (BFI)“[Joh] which is based on “The Big-Five trait taxonomy: History,
measurement, and theoretical perspectives“written by Oliver P. John and Sanjay Srivastava [JDK91]
to gain the participants values for Extraversion, Agreeableness, Conscientiousness, Neuroticism and
Openness.

Secondly, we extracted the personal information such as names, email adresses, academic perfor-
mance, experience and SPANE-values provided within the personal questionnaire and calculated the
corresponding values for the SPANE-N, SPANE-P and SPANE-B according to the scoring scheme
in [Mea].

55

4 Results

Our sample consisted of 12 participants which were in the final phase of their educational process or
had already graduated. All of our participants identify as male. The average age of our participants
was 29.17 years with a standard deviation of 2.41.

The study was designed to find differences displayed by more and less conscientious developers in
their respective approaches towards solving coding challenges and their impact on the performance.
In order to reference a particular participant throughout the analysis while maintaining anonymity
we used a simple coding scheme. Each participant received an Identifier based on the scheduling
order of the interviews. Information on the scheduling order is only available to third parties if the
participant willingly shared this information.

4.0.1 Performance Scores

We calculated the performance scores of each participant according to the criteria described in
Section 3.6.1 and shown in Table 3.1, and report them in accordance with their performance in
descending order as can be seen in Table 4.1. Although challenges two and three might be considered
to be significantly harder to solve, we decided the elegance factor of challenge one was of equal
importance to us.
Leaving open to award more bonus points than specified in the preset list towards the FizzBuzz
challenge meant it had no real maximum. However, we estimated the maximum to be 2.0 which
leads to a maximum score for all challenges of 6.0 points. On average the participants had 2.17
correct solutions and a score of 2.92. In Table 4.1 we can see that five out of twelve and thus 41,7%
of the participants achieved a correct solution for all three challenges and not a single participant
had not at least solved one challenge correctly. Neither of our par

For the FizzBuzz challenge, only P10 failed to provide a correct solution due to a negotiation error
he quickly fixed in the following interview. However, just five participants, P11, P04, P01, P08, and
P03 managed to receive any bonus points for their improvements on elegance in spite of the fact we
prompted everyone to try and provided hints towards possible directions.
The SumSwap challenge was correctly implemented by seven of the participants while only partici-
pant P11 achieved the Best Conceivable Runtime (BCR). P12 ran out of time implementing his
previously created concept, P02 got stuck on the logic of his solution and ran out of time trying to
figure out a way back in, P09 ran out of time debugging his Hashmap solution which would have
achieved the BCR had he completed it, P03 and P10 forgot to handle some edge cases in a brute
force approach.
The First Nonrepeated Character challenge was correctly solved by eight participants, and 6 of
which found a solution within the BCR. P08 first implemented a solution in O(n2) and ran out of
time trying to improve it. P09 provided a solution in O(n2) using Substrings and preferred testing his
solution extraordinarily over the implementation of improvements to achieve a better runtime. P12

57

4 Results

Participant Challenge 1 Challenge 2 Challenge 3 Score

P11 O(n) + 0.5 O(n + m) O(n) 5.5
P04 O(n) + 0.75 O(n · m) O(n) 4.75
P01 O(n) + 0.25 O(n · m) O(n) 4.25
P05 O(n) O(n · m) O(n) 4.0
P08 O(n) + 0.25 O(n · m) O(n2) 3.25
P12 O(n) - O(n) 3.0
P07 O(n) O(n · m) - 2.0
P06 O(n) O(n · m) - 2.0
P10 - - O(n) 2.0
P09 O(n) - O(n2) 2.0
P03 O(n) + 0.25 - - 1.25
P02 O(n) - - 1.0

Table 4.1: A description of the individual performance of the participants, the run-time of the
solutions, the bonus points for the improvements of the FizzBuzz challenge and their
final score

was the only participant solving the challenge correctly using an alphabet array, the other successful
participants and as such P11, P04, P01, P05, and P10 implemented a version using alternative data
structures such as a Hashmap. Both data structures, the Hashmap and the alphabet array, lead
to a solution within the BCR O(n). P07 implemented his solution using regex expressions and
a Hashmap in O(n), failing implement some of the edge cases which. P03 failed to debug his
alphabet array approach, which, even if he had completed the challenge, would have resulted in a
O(n2) run time. P06 had no success at debugging his rather unconventional concept of sorting the
character string and iterating twice over it using a nested for-loop, which would also have resulted
in a O(n2) runtime, and P02 ran out of time after changing his approach several times ending up
with a Substring based version which did not quite work yet.

4.0.2 Grounded Theory Application

After having calculated the performance scores, we started with the open coding process according
to our description in Section 3.6.2 for the transcribed interview data in a line-by-line manner, which
resulted into very descriptive codes.
At this point, we had not calculated the conscientiousness values of the participants with the intention
of reducing bias towards the findings which we discussed in Section 3.6.3.
After going through one iteration of the transcripts, we proceeded to code the recordings of the
observations in a similar fashion. In order to make sure we could properly navigate the recordings
we first had to iterate over the set of recordings once, annotating them according to their structure
e.g Challenge 2: Sum swap and their timestamps. We then proceeded to annotate the recordings but
realized a sentence-by-sentence or word-by-word coding would result in a huge pile of unnavigable
data not only due to the sheer mass of annotations but also due to technical limitations.
After careful consideration, we changed our approach towards recording annotations in a more
goal-oriented way. We defined a focus. With our research objective in mind, we started to code

58

anything which we deemed important towards the solving process of the participant, such as ideas,
changes in approach, failed attempts, improvements, hints, when clarification was needed, the
amount and length of thinking periods, when the participant started the implementation and periods
of conceptualization in comparison to other participants.
This resulted in lengthy descriptive codes e.g “The participant changed the data structure after
being given a hint to think about them“or “The participant immediately started coding without any
conceptualization period“.
In further iterations, we would refine these codes to properly reflect concepts rather than descriptions,
as suggested by Strauss and Corbin [SC90]. This would frequently lead to taking apart previously
generated codes and properly restructuring them e.g “The participant immediately started coding
without any conceptualization period“we would refine to “Immediately Coding“and “No Concept“.
We also applied this conceptualization and simplification to the codes within the interviews.
In parallel, we started the axial coding phase. We defined categories in which most of the codes fell.
Those categories were then treated in the same fashion as we did the open codes and reduced them
further in size of their descriptive content over the course of future iterations.
We ended up with two major coding groups for the interviews which were Approach and Emotions
and Character and four major coding groups for the recordings, namely Participant-Computer
Interaction (PCI), Participant Interviewer Interaction (PII)Thinking Periods (TP) and lastly, not to
become confused by the amount of unassigned structural codes General Structure.

Our Approach resulted in over 600 individual codes. Over 500 of those codes came from the
interview transcriptions, while we used approximately 120 codes within the recordings. The vast
differences in the number of codes between the two media can be explained by the reusability of the
codes.
In the interviews, the majority of the generated codes occurred three times or less, e.g “Kiss
Principle“or “Sushi Chef Analogy“which both occurred exactly once, while the codes for the
recordings were more general and optimized towards reusability, e.g “PCI: Debugging“which had
been used 24 times. Our top contender in the amount of times used was TP for Thinking Periods
with 244 occurrences, Our top contender in the amount of times used was TP for Thinking Periods
with 244 occurrences, followed by “PII: Clarification“ 81 times, and “PII: Hint (asked for)“Syntax
56 times.
We used the clarification code for basically any additional information asked for or given, which lead
to a conversation, a back and forth between the participant and interviewer, which wasn’t resolved
by a single statement. How this information was acquired or presented was derived from another
code often used in parallel, such as the previously mentioned Hint code.
The hints were separated into two major categories, syntax and logic. A logical hint encompassed
data structures, programming logic, and steering lost participants back on track while syntactical
hints were used to help the participants struggling with the specific Java syntax.
The participants could ask for a hint at any time and any stage of the challenge solving process, or if
they struggled for long enough or tried something that clearly does not work in Java, the interviewer
interfered as practiced in technical interviews.

The categorization of every individual code into a code group resulted in 312 codes within the code
group Approach, 209 within Emotions and Character, 18 in General Structure, 76 in Participant-
Computer Interaction, 30 in Participant-Interviewer Interaction and 7 in Thinking Periods. Gener-
ally, we specified the codes to fall only into one code group and reworked the more ambiguous ones

59

4 Results

Category Score

High Conscientiousness 3.35
Intermediate Conscientiousness 2.75
Low Conscientiousness 2.42

Table 4.3: The average score per category

by splitting them into multiple codes with a clear description. However, in some cases, we decided
against this procedure because of the loss of qualitative information. Further, throughout the process
of annotating the codes, we used memos to describe and solidify our ideas and impressions.

4.0.3 Personality Test

Analyzing the personality test, we found conscientiousness values between 0.33 to 0.72, which are
described in Table 4.2 and further in Figure 4.1. These values were comparable to the data provided
by Wyrich et al. in “A theory on individual characteristics of successful coding challenge solvers“
[WGW19], which were in the range of 0.38 to 0.86.

Part. P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12

Cons. 0.61 0.61 0.5 0.5 0.72 0.36 0.64 0.33 0.47 0.58 0.61 0.58

Table 4.2: The participants and their respective conscientiousness values according to the Big 5
Inventory

Since our goal is to determine differences between lower and higher conscientious software de-
velopers, which impact the performance of coding challenges, we arranged the participants into
different categories according to levels of conscientiousness measured with the Big 5 Inventory
Test. To improve the significance of the findings the categories had to be rather distinguishable.
For this purpose, we chose the categorization according to the following criteria. Every participant
with a conscientiousness value larger than or equal to 0.6 was put into the higher conscientiousness
category. Every participant with a conscientiousness value smaller than 0.5 was put into the lower
conscientiousness category, and participants between those values were put into the immediate
conscientiousness category.

Upon calculation of the performance scores of the generated groups, which are described in Table
4.3 the data we found did not replicate the negative correlation between conscientiousness and
coding challenge performance of the study conducted by Wyrich et al. [WGW19].
In fact, we found the exact opposite correlation.
In our sample, the developers with higher conscientiousness values significantly outperformed those
of lower conscientiousness. Our sample consists of only twelve developers and can neither refute nor
confirm the results of that study nor do we intend to. Since we applied Grounded Theory towards
our interview transcriptions and session recordings before the calculation of the conscientiousness
values, this did not affect our generated codes.

60

Figure 4.1: Conscientiousness Values of the Participants

4.0.4 Personal Questionnaire

The analysis of the personal questionnaire provided us with plentiful quantitative data to further
specify our sample of software developers. As previously stated, The average age of our participants
was 29.17 years, with a standard deviation of 2.41.
The average academic performance was 2.22 measured in the German grading scale, while students
of a master’s degree program had an average academic performance of 2.51 for their bachelor’s
degree.
The average programming experience was 10.46 years, with a standard deviation of 4.54. For Java,
the average programming experience was 6.5 years, with a standard deviation of 3.47.
Out of the 12 participants, only P10 describes his programming experience compared to his student
and professional colleagues below average. P3 assesses his programming capabilities compared
to his student and professional colleagues as average. The remaining participants specify their
programming experience above or exceptionally above those of their student and professional
colleagues.
10 out of 12 participants have gathered professional experience working for companies within the
realm of software development, only P1 and P2 have not. The average professional experience
working for companies is 2.3 years, with a standard deviation of 2.22.

61

4 Results

Nine participants do not come across coding challenges in their day to day life. The exceptions
are P3, who stated he comes across coding challenges once or twice per semester, P4, who comes
across them once or twice per month, and P11 comes in contact with coding challenges in a daily
fashion.

From the personal questionnaires, we gathered data about 11 of our 12 participants and their current
emotional data, according to the frequency of emotions used in the SPANE-Scale. 10 out of 11
participants provided their current emotional level in accord with the SPANE-Scale. Out of those,
only P09 had a slightly negative SPANE-B value, while P02 had a neutral value. P08 and P10 had a
slightly positive value, and the remaining participants had positive values at 7 or higher.

4.1 Findings

Applying Grounded Theory we found phenomena in four categories, approaches, thinking peri-
ods, conceptualization periods, and voluntary participant-interviewer interaction, which will be
discussed in the following section. In Section 4.2, we use our previously generated categories of
conscientiousness to attribute the phenomena to the different levels of conscientiousness, and for
those phenomena related to conscientiousness, we describe the impact on the performance based
on our observations. We define the performance in solving coding challenges as (a) the score, the
individual participants achieved for his solutions, and (b) the impression the participants left on the
interviewer. For phenomena, we observed for only a few participants we give specific examples.
For the more general phenomena, we provide tendencies.

4.1.1 Approaches

The first distinctive approach we found was the use of a concept which we refer to as the concept
approach. Out of our twelve participants, only two incorporated a true concept into their solving
process.
Only P12 used a significant portion of his time, before his implementation, to take notes on a sheet
of paper to solve and analyze the coding challenge at hand and only for the SumSwap and First
Nonrepeated Character challenges. He did not complete the SumSwap challenge because he ran
out of time but solved the First Nonrepeated Character successfully and in the BCR.
In the interview, he stated that this is his general approach towards more complex programming
tasks and that there is a correlation between the complexity of the task and the scope of his concept.
Further, he stated the time pressure forced him to conceptualize a minimalistic solution that barely
meets the requirements and to start implementing a solution before he had completed the concept.
Under different circumstances, without a strict time limit, he would have completed the concept
prior to implementation.
P01 used notes and drawings which he created over the course of his solving process instead of
before it for the SumSwap challenge, which he completed not optimally but successfully.

Further, we identified a test driven development approach. As test driven development approach,
we defined the approach in which participants write various test cases before they start implementing
the actual solution. Only one participant, P04, used this approach and only within the context of
the SumSwap challenge. In the interview, he admitted he did this because had not had an idea how

62

4.1 Findings

to solve the challenge at the time and figured the testing would help him find one, so his primary
incentive for the approach was to gain knowledge and guide his implementation. P10 also told us in
the interview he thought about developing his solution using test-driven development but considered
it to be out of scope.

Analyzing the session recordings, we identified four participants, P04, P08, and P11 used the
Java documentation not only more extensively than the other participants but to conceptualize and
generate ideas, we called this the Java documentation research approach. The other participants
used the Java documentation primarily to fix their syntax and to ease the process of implementation
by using what the Java libraries offer.

Another approach we detected in our session recordings, many participants were frequently deleting
and commenting out parts of their solution. Some eventually decided to start over. We called this
the trial and error approach. We observed this phenomenon in primarily three ways. (a) The
participants who finished their solutions were unhappy about their algorithms, commented out
their solution, and started over. (b) The participants became confused or stuck during the process
of the implementation and deleted parts of their code. (c) They hastily implemented structural
elements, which they reworked either directly after or when figuring out the next steps. Among
those three types (c) was the most frequently displayed behavior. The analysis showed in many cases,
participants used their previously gained knowledge to implement different, often more optimized,
and fitting code structures.

During the analysis of the recordings for the FizzBuzz challenge, we discovered that most participants
implemented their solutions a the line-by-line approach. Incorporating a line-by-line approach
approach, the participant would iteratively implement their solution based on the description of the
challenge.
In our description for the FizzBuzz challenge, we used, apart from the name and time limit, exactly
four lines to describe the requirements of the challenge. The majority of participants were observed
to incorporate this behavior, to implement exactly what was written in the line of the description,
without future requirements in mind. Our observations show this worked well for the first three
lines. However, trying to implement the fourth, many of our participants had to remodel their code
structure to include the most specific case, the FizzBuzz statement. In a few cases, the participants
appended the logic to the other statements rather than properly rearranging the for-loop, resulting in
suffering code quality in exchange for the sake of simplicity of the implementation.

Related to the line-by-line approach, we discovered an iterative step-by-step approach for the two
challenges of moderate difficulty. Using a step-by-step approach, the participants were observed to
solve one problem after another, only dealing with subproblems at the time they encounter them.
Elements of a step-by-step approach could be observed for all of our participants, including P12
and P01, who created concepts. None of our participants created concepts to envelop the entire
logic of the program, as they admitted during the interviews, we hypothesize that the step-by-step
approach might be the polar opposite of the concept approach.

Further, we found traces of what we call an outside-in approach and an inside-out approach
among our participants. The outside-in approach we defined as constructing the larger framework
before implementing the specifics, while the inside-out approach, as the polar opposite, we defined
as solving and implementing the specifics before the larger framework.

63

4 Results

We observed elements of both approaches being used so interchangeably, and none of our partici-
pants showed more than a tendency that we cannot determine if either of those approaches exists
independently. Additionally, we observed elements of the inside-out approach have been used
significantly more often than elements of the outside-in approach.

Another observation we made was the approaches taken by the participants to solve our challenges
highly depended on the difficulty and complexity of the task. For our FizzBuzz challenge, the
entirety of all twelve participants mostly used elements of a trial and error and sequential approaches
while for the more difficult and complex challenges, SumSwap and First Nonrepeated Character the
approaches varied to a much higher degree.
We also found that some of the approaches, especially the creation of a concept, test-driven devel-
opment, and using the Java documentation for a research purpose, were deliberate and conscious
choices while trial and error and step-by-step approaches were frequently used unconsciously. Ad-
ditionally, the analysis of our interviews supports that some elements of the test driven development,
trial and error and sequential approaches can be traced back to a learning-by-doing the behavior.

On a higher abstraction level, we found elements of all previously discussed approaches were used
interchangeably.

4.1.2 Thinking Periods

Another phenomenon we found was differences between the thinking periods taken by the partici-
pants. During the coding phase, we found the amount of time, the frequency, and the timing of when
thinking periods occur differ between the participants. While some participants actively avoided
taking their hands off their keyboards, feeling uncomfortable in periods of silence, others would
frequently stop coding and think.
As Thinking Periods (TPs), we defined situations in which the participant would stop implementing
actively, and little to no conversation was hold between the participant and interviewer.
To not drown in detail, we set the minimum time period of a thinking period to three seconds. The
amount of TPs varied between 8 and 34 for the entirety of all three coding challenges among our
participants. The duration for individual TPs was between three seconds and three minutes. The ses-
sion duration, calculated by the sum of all TPs of an individual participant for one recording, varied
between 2 minutes and 6 seconds to 19 minutes and 32 seconds for entire sessions. We also found
differences in the timings, when TPs occur, which have only been created for the conscientiousness
groups rather than individuals and thus are discussed in Section 4.2.

4.1.3 Conceptualization Periods

Additionally, we observed the time the participants took to think about the current challenge, prior
to their implementation, varied greatly. We called those periods conceptualization periods (CPs),
which we defined by all thinking periods that happen prior to any form of implementation. A CP
does not necessarily result in a concept, notes, diagrams, or any other tools in material form. As per
our definition, CPs are purely based on the time taken to think prior to the implementation.
CPs were primarily used to form ideas on how to tackle the challenge.
The conceptualization periods varied significantly between participants as well as coding challenges.
For FizzBuzz, we observed only two participants who had any form of CPs and those were 7 seconds

64

4.2 Attribution to Conscientiousness and Performance

and 20 seconds long. The SumSwap challenge had the most evenly distributed form of CPs. Not a
single participant started the implementation without at least a small period of conceptualization.
The average time spend prior to the implementation was 92 seconds, the minimum was 16 seconds
and the maximum was 8 minutes and 59 seconds. For the First Nonrepeated Character challenge,
we observed the highest degree of variations between the participants. Three participants immedi-
ately started coding, while the others took 11 seconds to nearly 4 minutes to conceptualize their
implementation.

4.1.4 Voluntary Participant-Interviewer Interaction

Analog to the thinking periods, we found differences in the amount and duration of the voluntary
Participant-Interviewer Interaction (vPII). While some participants actively engaged in discussions
and sought help from the interviewer, others refrained from talking, coded in silence, and even if
they had gotten stuck, waiting for the interviewer to initiate the conversation.
We calculated the average frequency of the vPIIs per participant and we found significant differences
between participants. The lowest amount of vPIIs we discovered was 0,67 for a participant per
session while the largest amount we found was 11,67 vPIIs. The average of all participants was
5,42.
The duration of vPIIs varied considerably. We have observed vPIIs lasting from less than five
seconds to four minutes. Most participants kept the vPIIs short and precise, for example asking
how much time they had left, or how to write the specific syntax of a Hashmap in Java. However,
for eight of our participants, we observed lengthy discussions on various topics and for different
challenges, though the tendency for such an occurrence was more frequently observed in the more
difficult tasks. Participant P6 was, in this regard, exceptionally striking, we discovered large vPIIs
across all three challenges, which we did for no other participant.

4.2 Attribution to Conscientiousness and Performance

In the next step, we compare the previously created groups of conscientiousness with the phenomena
we found using Grounded Theory. The goal is to find out whether or not these differences can be
attributed to different levels of conscientiousness. Further, we analyze the performance impact of
found phenomena that are related to conscientiousness.

Elements of the concept approach were only used by two participants, P1, and more pronounced
by P12. P1 used a quickly created paper drawing for the SumSwap challenge, and P10 spent an
extended period of time for a concept he had written using pen and paper for both the SumSwap
challenge and the First Nonrepeated Character challenges. P1 is part of the highly conscientious
group, while P10 is part of the group of intermediate conscientiousness. For our sample, only
participants of lower conscientiousness had no representation for using a concept. This leads to the
assumption that software developers of intermediate and higher conscientiousness are more likely
to work using a concept.
Further, we observed that concept creation can lead to various outcomes. P01 used a concept and
achieved a non-optimal solution for the SumSwap challenge. P12 failed to complete the SumSwap
challenge due to running out of time but solved the First Nonrepeated Character challenge optimally.
This has a few consequences on coding challenges in technical interviews as we conducted them.

65

4 Results

The creation of a concept was, for the most part, done in silence, which can lead to a negative
impression of the interviewee. However, the creation and use of a concept left a very positive
impression of the interviewee. During periods of silent thinking, especially without any presented
code, the interviewer can not provide any hints unless he interrupts the interviewee asking about
the process. Additionally, the time for solving coding challenges is limited, and the creation of a
concept takes time, ergo, creating concepts that increase the risk of running out of time and hence
not completing the challenge.

Only one person incorporated a true test driven development approach. This participant was from
the immediate conscientiousness group. This lead to no assumption towards conscientiousness.
Additional data is needed to answer if there is a correlation between conscientiousness and a
test-driven development approach. However, we hypothesize that experience factors into this
phenomenon as P04 and P11 were the two most experienced participants in our study, and P04
incorporated the approach while P11 stated he thought about doing so but decided against it in the
interviews. No other participants did or said anything related to test-driven development.
The creation of tests increases the risk of running out of time. However, since this a very visual
process, we believe this can leave a very positive impression of the interviewee depending on the
interviewers’ values, the companies values, or both.

The Java documentation research approach was applied by three participants, P04, P08, and
P11. Since each of those participants is in different conscientiousness categories, but all three
of them gathered major experience working for companies, we do not see a relationship between
conscientiousness and incorporating the Java documentation research approach. However, we
hypothesize this is related to experience.

Elements of the trial and error approach have not been used during the FizzBuzz challenge
by any participant. Over the course of the SumSwap challenge, four participants from the higher
conscientious group, two of the lower conscientious group, and one participant from the intermediate
conscientious group incorporated elements of the trial and error approach. During the final challenge,
First Nonrepeated Character, four participants of the high conscientiousness group, two of the lower
conscientiousness group, and two of the intermediate conscientiousness group used elements of the
trial and error approach. Upon discovery of the trial and error approach, we believed participants with
lower conscientiousness values would more frequently use elements of this approach. However, the
analysis showed this is not the case for our sample. In fact, we found that the higher conscientiousness
group has a higher tendency towards using elements of a trial and error approach.
Our observation showed the trial and error approach has two effects on performance in technical
interviews. The participants using this approach receive more hints than the ones who do not, which
increases the chance of completion but incorporating elements of trial and error also leads to a
negative impression of the interviewee.

The line-by-line approach was used by participants of all three groups. However, the extent to
which varied slightly. We found that two out of four participants of intermediate used elements of the
line-by-line approach during the FizzBuzz challenge. For the developers high in conscientiousness,
this was the case for three out of five participants, and only one of the three low conscientiousness
participants applied this approach for the FizzBuzz challenge. This leads us to believe software
developers of higher conscientiousness are more inclined to code solving their challenges in a line-
by-line fashion. Using this approach resulted in proper solutions for most participants. However,
we have seen this approach increases the risk of bad code style. We did not observe any positive or
negative impressions towards the interviewee.

66

4.2 Attribution to Conscientiousness and Performance

We observed participants using elements of the step-by-step approach for all three challenges
to varying degrees. The only participant for whom we could clearly identify a distinct change in
approach was P12. This change happened during the SumSwap challenge, and in the interviews,
he admitted his concept was minimalistic and incomplete. This leads to the assumption that
a step-by-step approach is the opposite of the concept approach. In our sample, we found no
correlation between different levels of conscientiousness and using elements of a step-by-step
approach. However, under the assumption that creating a concept is indeed the opposite of the
step-by-step approach and the fact we found no concept creation among participants of lower
conscientiousness, we believe that participants of lower conscientiousness have a higher tendency
towards using a step-by-step approach. Additionally, since we observed every participant using
elements of a step-by-step approach we think this is the most regularly used approach for participants
in a technical interview.
Using a step-by-step approach left neither negative nor positive impressions of the interviewees.
Solving problems as they occur was the common approach and resulted in different kinds of solutions
for all challenges. We do not see any relation to the performance directly. However, we observed
this approach to be very visible resulting in more hints given by the interviewer compared to the
concept approach.

Since our tasks required no larger frameworks and the implementations were straight forward, we
found no conclusive support in our data that connects the level of conscientiousness between the
inside-out and the outside-in approach.

The amount of thinking periods (TPs) per participant averaged overall challenges for the three
different groups were only marginally different. The group higher in conscientiousness showed the
lowest amount with 20,6, the intermediate conscientiousness group 23, and the lower conscientious-
ness group 21,34. As the amount of TPs was evenly distributed among all our participants, we do
not believe conscientiousness is a driving factor for the amount of TPs.

The time spent on thinking periods was the lowest among the lower conscientious participants,
with an average of 517 seconds, followed by the higher conscientious participants with 611 seconds.
The group of intermediate conscientiousness showed the largest amount, with 727,5 seconds on
average. These numbers give us reason to believe there might be a correlation between the level
of conscientiousness and the time taken to think in silence. To further support this, we found that
experience gathered in working environments drastically reduces the amount and duration of TPs.
Since P04, of the intermediate conscientiousness group and P11 of the higher conscientiousness
group, have significantly more experience compared to the other participants, we argue that the
differences between the groups should be even more pronounced.

To make observations about the placement of the thinking periods, we defined three categories,
early TPs, intermediate TPs, and late TPs. The early TPs represented the conceptualization and
early implementation stages. The intermediate TPs represented the primary implementation process,
and the late questions represented the finalizing stages, which we frequently observed to be testing,
debugging, and optimizing.

We found that more conscientious developers had more early TPs compared to the other two groups.
On average, a more conscientious developer showed 7 early TPs, compared to 6 TPs for the two
remaining groups. Although this effect is not very prevalent, we argue it indicates conscientious
developers tend more TPs at the early stages since the difference in experience among our groups
has decreased this effect.

67

4 Results

For intermediate TPs, the highly conscientious developers had fewer (7,4) compared to the control
group (10) and the lower conscientious developers (11). This leads us to the assumption, that
developers higher in conscientiousness are less likely to run into structural or logical issues within
the implementation since they, on average, spend more time on the conceptual work prior to the
implementation.

The intermediate conscientiousness group displayed the highest number of late TPs with an av-
erage of 6, while the highly conscientious group asked 5,6 questions and members of the lower
conscientious group 4,34. This result leads us to the assumption that less conscientious developers
spend less time thinking about possible optimizations, testing, and debugging.

TPs are a crucial process in the solving of coding challenges. We found no indication in our data
that thinking periods are directly related to the performance in coding challenges. However, we
did observe participants with a lower duration within their TPs make more logical and syntactical
mistakes and more typos. Those mistakes can have a negative impact on the perception of the
participant, but we observed this effect to be faint. Additionally, long periods of silence are
uncomfortable for both the interviewee and the interviewer.

For the conceptualization periods (CPs), we found the highest time spent before the implementation
among the intermediate conscientiousness group with 208 seconds on average. Participants of
the more conscientious group spent on average 134,6 seconds before implementing and the lower
conscientious group, on average 36,67. Since this is a striking effect, we conclude less conscientious
developers take less time to conceptualize.

For our sample, we have observed no correlation between the conceptualization periods and perfor-
mance within the coding challenges. P04 and P09 have both spend less than 20 seconds conceptu-
alizing for all three of our coding challenges, and P09 achieved a score of 1.25 with his solutions
while P04 achieved the second-best score of 4.75. On the other end, we have seen P10 spending
four minutes of his time conceptualizing during the First Nonrepeated Integer challenge achieving
an optimal solution and P12 spending nearly nine minutes on conceptualizing periods during the
SumSwap challenge without achieving a working solution. However, we do have observed that
lengthy conceptualization periods as well as no conceptualization periods have a negative impact
on the impression the interviewer has about the interviewees.

The amount of voluntary participant-interviewer interaction (vPIIs) differed slightly between
the groups. The lower conscientious developers showed, on average, with 4,78, the lowest amount
followed by the highly conscientious developers with 5,13 and the intermediate conscientiousness
group with 6,25.
We see no correlation between the vPIIs and conscientiousness and argue this is based on agree-
ableness since we found P06, the only participant displaying large vPIIs across all three coding
challenges also has the highest agreeableness score in our study with 0.78.

Analyzing the code quality, we found participants of higher conscientiousness received an average
of 0.15 bonus points, those of intermediate conscientiousness received an average of 0.2 and those
of lower conscientiousness 0.08. Additionally, we observed participants of intermediate and higher
conscientiousness talk about code quality more frequently and more in depth. This leads to the
assumption that less conscientious developers provide solutions worse in code quality.

68

5 Discussion

5.1 Implications

Over the course of our data analysis, we found several phenomena that are related to the level of
conscientiousness and to the performance in solving coding challenges. Based on our findings, we
present the following hypotheses.

5.1.1 Hypothesis: Developers lower in conscientiousness are less likely to create a
concept

We found no participants of lower conscientiousness created a concept or talked about their concep-
tualization in their interviews. Creating a concept takes time and is, as we observed, frequently done
with minimal communication between the candidate and interviewer. This has some implications
for the performance in coding challenges as well as other factors of technical interviews. Although
we have not observed this behavior to have a direct impact on the scoring of their solutions, we have
found a negative impact on the impression they leave on the interviewer. Additionally, we found no
differences between developers of intermediate and higher conscientiousness.

5.1.2 Hypothesis: There is no correlation between conscientiousness and the use of
a trial and error approach

Upon discovery of trial and error approaches, we assumed this might be an indicator for the
participants being lower in conscientiousness. However, further analysis showed this is not the
case. In fact, we found a slightly higher amount of more conscientious developers used elements
of trial and error. We believe this effect is likely to be attributed to the small sample size and has
no correlation with conscientiousness. Further, we have observed incorporating elements of trial
and error approaches can increase the odds of successfully solving coding challenge in technical
interviews. We reason this is because the interviewer is more inclined to provide hints to what he
sees rather than having to ask what the problem is and elements of trial and error approaches are
very visual. However, we also observed elements of trial and error approaches to have a negative
effect on the impression the interviewer has of the participant.

69

5 Discussion

5.1.3 Hypothesis: Developers lower in conscientiousness spend less time in pause
for thought

Our data analysis provided us reasons to believe that developers of lower conscientiousness spend
less time thinking in silence. Since thinking in silence is not giving the interviewer insight into the
thought process of the candidate, the interviewer might opt to interrupt this process asking to be
more involved or think the candidate might have gotten stuck and offer help. Developers spending
less time thinking in silence and more in discussions reduce this risk of interruption according to
our observation.

5.1.4 Hypothesis: Developers of lower conscientiousness take less time to
conceptualize

We have observed notable differences between the time participants take to conceptualize. The
conceptualization periods are, as defined in Section 4.1.3, periods time taken to think in silence
prior to any form of implementation. We found that the group of less conscientious developers
spend notably less time on conceptualization periods compared to the other two groups. We assume
this might result in a more visible solving process which the interviewer is more involved in and thus
provides more hints, which in turn increases the odds of successfully solving the coding challenges.
Additionally, we did not observe major differences between developers of higher and intermediate
conscientiousness.

5.1.5 Hypothesis: Developers of lower conscientiousness provide worse code
quality

Developers of lower conscientiousness received fewer bonus points on elegance for their FizzBuzz
solutions and talked about code quality less frequently during the interviews. We detected only
minor differences between intermediate and higher conscientious participants. We have observed
better code quality to lead to a better scoring and a better impression the participants leave on the
interviewer.

5.2 Limitations

As the study is of exploratory and qualitative nature our results do not represent the general population.
The goal of this study is to provide qualitative insights into differences less and more conscientious
persons display while solving coding challenges that can impact the performance therein. As such,
this study has some limitations in regards to internal and external validity to be discussed in the
following sections.

70

5.2 Limitations

5.2.1 Data collection: Semi-Structured Interviews

Although semi-structured interviews are valued within the qualitative research to provide rich
data, they also pose a risk towards internal validity. This happens primarily in two ways. The
researcher is responsible to create the atmosphere of trust required for the interviewee to open up
and provide rich qualitative data. Without such an atmosphere, the interviewee may derive from
the path of being truthful and tell the researcher what he wants to hear instead, which is commonly
referred to as social desirability bias [Ned85]. To ensure the researcher was capable of providing the
atmosphere required, we specified a code of conduct, the rules of behavior in advance, and forced
the researcher to refresh his memory before every interview. Additionally, the code of conduct was
placed in front of the interviewer during the sessions to provide reassurance in cases of doubt or
insecurity. Further, the researcher is a primary driving force within the interview. He can control
the course of the semi-structured interview by steering the participants into desired directions. This
is usually perceived as an advantage semi-structured interviews have over structured interviews
since additional qualitative data can be gathered upon discovery. However, it is also susceptible
to bias. The decisions made by the researcher in this regard are defined by his area of interest and
have a direct influence on the quality of data gathered. In our specific case, this could have lead to
the interviewer to take different paths with interviewees he perceived as conscientious, and those
whom he thought were not. We used two steps to overcome this threat. We designed the predefined
questions in such a way that all major categories were covered, and we used a reflexivity journal,
where the researcher had to describe his perception of the interviewee.

5.2.2 Data analysis: Transcriptions and Coding

While transcribing the interviews, the researcher has to define the granularity of the contents
to separate the data put into the transcription. This can lead to a loss of potentially important
information due to subjective decisions made by the researcher. To circumvent this issue, we used
an accurate word-by-word approach, only transcribing what is explicitly said, including only the
thinking pauses and references to code, with no interpretation of the meaning and intention. To
compensate for this loss of information, we used a two-step approach of not only analyzing the
transcripts of the interviews but also annotating the session recordings themselves, specifically
looking for anything we did not capture within the interviews.

The coding procedure applying Grounded Theory is, to a degree, subjective in nature. Purely
descriptive codes cannot lead to the discovery of new hypotheses and theories. However, too much
interpretation can be a threat to reliability and credibility. To find a decent balance between the two
we used a concoction between objective-descriptive and subjective-evaluative codes as suggested by
Salinger et al. [SPP08].

5.2.3 Relationship towards Technical Interviews

Technical Interviews conducted within the industry can differ from the design of this study in
various ways. Within the industry, two different types of technical interviews are commonly used,
remote interviews and on-site interviews. For on-site interviews most companies still use either a
whiteboard or a pen and paper approach. Code written in either of those media does not benefit
from any advanced features an IDE might offer and the sole source of additional information is the

71

5 Discussion

interviewer him- or herself. Remotely conducted Interviews also vary to a degree. Some companies
let candidates code in plain text editors to mirror on-site interviews, others use properly set up IDEs
to represent professional programming instead. The difficulties of coding challenges in technical
interviews also varies depending on the circumstances. Some companies use coding challenges of
higher difficulties for a better assessment of their cognitive abilities and filtering out candidates they
deem inappropriate. Since we intended to find differences in the approaches of our participants and
use multiple coding challenges, we refrained from taking such actions.

Additionally, the interviewer is usually a trained and experienced professional, we are neither in this
regard, however, to minimize this effect we extensively researched this topic according to current
literature and used structured guides to support the interviewer to create an environment more
closely related to professionally conducted interviews.

5.2.4 Guidance for the Participants

To simulate real technical interviews, we decided on providing extended guidance for our participants.
As previously admitted, we are neither trained nor experienced in this regard, so we can not guarantee
that the extent to which we, in the role of the interviewer, provided help was equal towards all
participants. In particular, we could have provided too much additional information to struggling
participants, which might have resulted in a closer gap between better and worse participants in
regards to performance. Further providing hints on certain subjects such as data structures might
have influenced the participants towards attempting a solution they would not have discovered on
their own

5.2.5 Lack of Preparation

The lack of preparation was a major concern for us. Unlike Candidates of professionally conducted
technical interviews who are hoping to receive a job offer, our participants had nothing to gain
from the interview except for the experience itself. There was no incentive to do well, which had a
clear impact on their preparation. At best, as we thought, the participants would do some minor
research towards the syntax of Java, which they might not have programmed actively in for years.
If a participant struggled with the java syntax and refrained from asking, we would provide the
hints anyway, to even the playing field. Our intention behind this was to receive information on
their thought- and solving processes rather than to test their knowledge. To capture the effect of
preparation by our participants, we asked them if and how often they come in contact with coding
challenges.

5.2.6 The inclusion of Code Quality

In an attempt to stay true to the nature of the study, which has been designed as a simulation of a
technical interview with a few minor tweaks, the quality criteria have been included for one of the
challenges. This meant we had to determine possible improvements towards simplicity, readability,
maintainability, compactness, and other quality criteria. Since there was no certainty we could
capture all possible improvements, we left our scoring scheme for the first challenge subject to
change. Besides, the participants were not informed about the exclusion of the quality criteria for

72

5.2 Limitations

the two more challenging tasks. We did not want to risk the participants taking an easier approach
and spend less time on improvements since they would have known it had no impact on their scoring.
Further, if participants finished their tasks early, we would prompt them if they wanted to continue
improving their solutions towards elegance.

5.2.7 Conscientiousness

Although we found comparable values for conscientiousness in the data provided by Wyrich et al.
[WGW19], we are aware our values are from a small sample and do not account for the general
software development population. In fact, we have seen different ranges for conscientiousness in
larger samples such as recent research on social media-predicted personality traits and values by
Kern et al. [KMCR19] who found much lower values for conscientiousness in the range of 0.05 to
0.61 for three different categories of software developers which amount to over 600.

73

6 Conclusion

A recent study found a negative correlation between conscientiousness and the ability to solve
coding challenges well and within the given time frame [WGW19]. Conflictingly conscientiousness
is widely acknowledged to be in a positive correlation with job performance, which in the industry,
should be highly sought after. Since coding challenges have become a popular tool to assess the
problem-solving ability of applicants, this has serious implications.

To investigate this correlation, we conducted an exploratory study to find differences between
more and less conscientious developers and what impact those differences have on solving coding
challenges, especially in the context of technical interviews. We found differences in two cate-
gories, those who affect the achieved score of the candidates directly and those which affect the
interviewers’ impression. Our findings indicate that software developers of intermediate and high
conscientiousness are more likely to create concepts, think in silence for longer periods of time,
start implementing later than less conscientious software developers but provide better code quality.
In a regular work environment, these differences have a positive influence on development. In some
scenarios of technical interviews they pose a threat. We observed the creation of a concept can
take up so much time the candidate is not able to finish his solution. Longer periods of silence can
not only be uncomfortable for both, the interviewer and the candidate but give the interviewer no
insight into the thought processes of the candidate, which can lead to a worse evaluation.
For any future candidates we suggest, take your time to think but involve the interviewer in every
decision you make and every step you take. Consciously choose your approach, the more visual, the
better, and discuss your thoughts with the interviewer so he or she can assist in finding a solution.
Finally, be talkative and share specific knowledge, it will lead to a better impression.

6.0.1 Future work

We identified several components in our study, which benefit from future research. In this study, we
simulated an off-site technical interview, incorporating a properly set up IDE with access to the Java
documentation, using screen-sharing software. We did not use a web camera to record potentially
important facial expressions, and the participants were not allowed to do any internet research.
Altering any of those components can lead to new insights, more differences between more and less
conscientious software developers can potentially be found, and our findings can be evaluated for
other forms of technical interviews.
Since our participants were unprepared, similar studies can repeat this process with prepared
participants to gain additional insights and compare the differences. Another topic of interest we
can think of is studying different levels of guidance, and the degree of impact guidance has on the
solutions and the behavior candidates display. Further future studies can statistically confirm or
refute our hypothesis.

75

Bibliography

[AGJ09] S. T. Acuña, M. Gómez, N. Juristo. “How do personality, team processes and task
characteristics relate to job satisfaction and software quality?” In: Information and
Software Technology 51.3 (2009), pp. 627–639 (cit. on p. 23).

[AI10] B. Alexander, C. Izu. “Engaging weak programmers in problem solving”. In: IEEE
EDUCON 2010 Conference. IEEE. 2010, pp. 997–1005 (cit. on p. 25).

[ALP12] A. Aziz, T.-H. Lee, A. Prakash. Elements of Programming Interviews: The Insiders’
Guide. EPI, 2012 (cit. on p. 24).

[Are06] A. S. Arefin. Art of programming contest: C programming tutorials, data structures,
algorithms. 2006 (cit. on p. 24).

[Ast04] O. L. Astrachan. “Non-competitive programming contest problems as the basis for
just-in-time teaching”. In: 34th Annual Frontiers in Education, 2004. FIE 2004. IEEE.
2004, T3H–20 (cit. on pp. 25, 26).

[BH08] B. A. Burton, M. Hiron. “Creating informatics olympiad tasks: exploring the black
art”. In: Olympiads in Informatics 2 (2008), pp. 16–36 (cit. on p. 24).

[Bla13] A. Blandford. “Semi-structured qualitative studies”. In: Interaction Design Founda-
tion, 2013 (cit. on pp. 48, 50).

[BLM+18] M. Behroozi, A. Lui, I. Moore, D. Ford, C. Parnin. “Dazed: measuring the cognitive
load of solving technical interview problems at the whiteboard”. In: Proceedings of
the 40th International Conference on Software Engineering: New Ideas and Emerging
Results. 2018, pp. 93–96 (cit. on p. 19).

[BM91] M. R. Barrick, M. K. Mount. “The big five personality dimensions and job perfor-
mance: a meta-analysis”. In: Personnel psychology 44.1 (1991), pp. 1–26 (cit. on
pp. 21, 22, 48).

[BMS93] M. R. Barrick, M. K. Mount, J. P. Strauss. “Conscientiousness and performance of
sales representatives: Test of the mediating effects of goal setting.” In: Journal of
applied psychology 78.5 (1993), p. 715 (cit. on p. 23).

[BPB19] M. Behroozi, C. Parnin, T. Barik. “Hiring is broken: What do developers say about
technical interviews?” In: 2019 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE. 2019, pp. 1–9 (cit. on pp. 13, 18).

[BSBP20] M. Behroozi, S. Shirolkar, T. Barik, C. Parnin. “Debugging Hiring: What Went
Right and What Went Wrong in the Technical Interview Process”. In: ACM/IEEE
International Conference on Software Engineering (ICSE), SEIS Track. 2020 (cit. on
pp. 13, 18).

[BWPO91] W. C. Borman, L. A. White, E. D. Pulakos, S. H. Oppler. “Models of supervisory job
performance ratings.” In: Journal of Applied Psychology 76.6 (1991), p. 863 (cit. on
p. 23).

77

Bibliography

[CA10a] L. F. Capretz, F. Ahmed. “Making sense of software development and personality
types”. In: IT professional 12.1 (2010), pp. 6–13 (cit. on p. 21).

[CA10b] L. F. Capretz, F. Ahmed. “Why do we need personality diversity in software engineer-
ing?” In: ACM SIGSOFT Software Engineering Notes 35.2 (2010), pp. 1–11 (cit. on
p. 21).

[CC08] D. Cohen, B. Crabtree. Semi-structured interviews. Robert Wood Johnson Foundation
Qualitative Research Guidelines Project. URL. 2008 (cit. on p. 48).

[CH17] N. Cheng, B. Harrington. “The Code Mangler: Evaluating Coding Ability Without
Writing any Code”. In: Proceedings of the 2017 ACM SIGCSE Technical Symposium
on Computer Science Education. 2017, pp. 123–128 (cit. on p. 26).

[Cha06] K. Charmaz. Constructing grounded theory: A practical guide through qualitative
analysis. sage, 2006 (cit. on p. 53).

[Cha14] K. Charmaz. Constructing grounded theory. sage, 2014 (cit. on p. 53).
[CHMG00] A. Carbone, J. Hurst, I. Mitchell, D. Gunstone. “Principles for designing programming

exercises to minimise poor learning behaviours in students”. In: Proceedings of the
Australasian conference on Computing education. 2000, pp. 26–33 (cit. on p. 25).

[Chr] J. J. J. Christopher J. Soto. Five-Factor Model of Personality. url: https://www.
oxfordbibliographies.com/view/document/obo-9780199828340/obo-9780199828340-

0120.xml?print (cit. on pp. 21, 48).
[CJW11] D. Coles, C. Jones, E. Wynters. “Programming contests for assessing problem-solving

ability”. In: Journal of Computing Sciences in Colleges 26.3 (2011), pp. 28–35 (cit. on
p. 25).

[CKLO03] B. Cheang, A. Kurnia, A. Lim, W.-C. Oon. “On automated grading of programming
assignments in an academic institution”. In: Computers Education 41.2 (2003),
pp. 121–131. issn: 0360-1315. doi: https://doi.org/10.1016/S0360-1315(03)00030-
7. url: http://www.sciencedirect.com/science/article/pii/S0360131503000307
(cit. on p. 26).

[Cla07] A. E. Clarke. “Situational analysis”. In: The Blackwell Encyclopedia of Sociology
(2007), pp. 1–2 (cit. on p. 53).

[CM08] P. T. Costa Jr, R. R. McCrae. The Revised NEO Personality Inventory (NEO-PI-R).
Sage Publications, Inc, 2008 (cit. on pp. 21, 22).

[CM92] P. T. Costa, R. R. McCrae. Neo personality inventory-revised (NEO PI-R). Psycholog-
ical Assessment Resources Odessa, FL, 1992 (cit. on p. 22).

[CM98] P. T. Costa Jr, R. R. McCrae. “Six approaches to the explication of facet-level traits:
examples from conscientiousness”. In: European Journal of Personality 12.2 (1998),
pp. 117–134 (cit. on pp. 22, 23).

[CS12] D. A. Cobb-Clark, S. Schurer. “The stability of big-five personality traits”. In: Eco-
nomics Letters 115.1 (2012), pp. 11–15 (cit. on p. 21).

[CSC15] S. Cruz, F. Q. [Silva], L. F. Capretz. “Forty years of research on personality in software
engineering: A mapping study”. In: Computers in Human Behavior 46 (2015), pp. 94–
113. issn: 0747-5632. doi: https://doi.org/10.1016/j.chb.2014.12.008. url:
http://www.sciencedirect.com/science/article/pii/S0747563214007237 (cit. on
p. 20).

78

https://www.oxfordbibliographies.com/view/document/obo-9780199828340/obo-9780199828340-0120.xml?print
https://www.oxfordbibliographies.com/view/document/obo-9780199828340/obo-9780199828340-0120.xml?print
https://www.oxfordbibliographies.com/view/document/obo-9780199828340/obo-9780199828340-0120.xml?print
https://doi.org/https://doi.org/10.1016/S0360-1315(03)00030-7
https://doi.org/https://doi.org/10.1016/S0360-1315(03)00030-7
http://www.sciencedirect.com/science/article/pii/S0360131503000307
https://doi.org/https://doi.org/10.1016/j.chb.2014.12.008
http://www.sciencedirect.com/science/article/pii/S0747563214007237

Bibliography

[Dag10] V. Dagienė. “Sustaining informatics education by contests”. In: International Con-
ference on Informatics in Secondary Schools-Evolution and Perspectives. Springer.
2010, pp. 1–12 (cit. on p. 25).

[Diea] E. Diener. Scale of Positive and Negative Experience (SPANE). url: http://labs.
psychology.illinois.edu/~ediener/SPANE.html# (cit. on pp. 22, 47).

[Dieb] E. Diener. Scale of Positive and Negative Experience (SPANE). url: https : / /

eddiener.com/scales/8 (cit. on pp. 22, 47).
[Dig90] J. M. Digman. “Personality structure: Emergence of the five-factor model”. In: Annual

review of psychology 41.1 (1990), pp. 417–440 (cit. on p. 22).
[DS04] V. Dagiene, J. Skupiene. “Learning by competitions: olympiads in informatics as a

tool for training high-grade skills in programming”. In: ITRE 2004. 2nd International
Conference Information Technology: Research and Education. IEEE. 2004, pp. 79–83
(cit. on p. 25).

[DWB+09] E. Diener, D. Wirtz, R. Biswas-Diener, W. Tov, C. Kim-Prieto, D.-w. Choi, S. Oishi.
“New measures of well-being”. In: Assessing well-being. Springer, 2009, pp. 247–266
(cit. on p. 22).

[FBRP17] D. Ford, T. Barik, L. Rand-Pickett, C. Parnin. “The tech-talk balance: what technical in-
terviewers expect from technical candidates”. In: 2017 IEEE/ACM 10th International
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE).
IEEE. 2017, pp. 43–48 (cit. on p. 19).

[For10] M. Forišek. “The difficulty of programming contests increases”. In: International
Conference on Informatics in Secondary Schools-Evolution and Perspectives. Springer.
2010, pp. 72–85 (cit. on p. 24).

[Fur96] A. Furnham. “The big five versus the big four: the relationship between the Myers-
Briggs Type Indicator (MBTI) and NEO-PI five factor model of personality”. In:
Personality and Individual Differences 21.2 (1996), pp. 303–307. issn: 0191-8869.
doi: https: //doi .org /10 .1016 /0191 -8869(96)00033 -5. url: http: //www .
sciencedirect.com/science/article/pii/0191886996000335 (cit. on pp. 20–22).

[GF09] G. Gárcia-Mateos, J. L. Fernández-Alemán. “A course on algorithms and data struc-
tures using on-line judging”. In: Proceedings of the 14th annual ACM SIGCSE confer-
ence on Innovation and technology in computer science education. 2009, pp. 45–49
(cit. on p. 25).

[GFWA18] D. Graziotin, F. Fagerholm, X. Wang, P. Abrahamsson. “What happens when software
developers are (un) happy”. In: Journal of Systems and Software 140 (2018), pp. 32–
47 (cit. on p. 47).

[Gla92] B. G. Glaser. Basics of grounded theory analysis: Emergence vs forcing. Sociology
press, 1992 (cit. on p. 53).

[Gol81] L. R. Goldberg. “Language and individual differences: The search for universals in
personality lexicons”. In: Review of personality and social psychology 2.1 (1981),
pp. 141–165 (cit. on p. 21).

[GS67] G. Glaser Barney, L. Strauss Anselm. “The discovery of grounded theory: strategies
for qualitative research”. In: New York, Adline de Gruyter (1967) (cit. on p. 53).

79

http://labs.psychology.illinois.edu/~ediener/SPANE.html#
http://labs.psychology.illinois.edu/~ediener/SPANE.html#
https://eddiener.com/scales/8
https://eddiener.com/scales/8
https://doi.org/https://doi.org/10.1016/0191-8869(96)00033-5
http://www.sciencedirect.com/science/article/pii/0191886996000335
http://www.sciencedirect.com/science/article/pii/0191886996000335

Bibliography

[GWA13] D. Graziotin, X. Wang, P. Abrahamsson. “Are happy developers more productive?”
In: International Conference on Product Focused Software Process Improvement.
Springer. 2013, pp. 50–64 (cit. on p. 47).

[GWA14] D. Graziotin, X. Wang, P. Abrahamsson. “Happy software developers solve problems
better: psychological measurements in empirical software engineering”. In: PeerJ 2
(2014), e289 (cit. on pp. 22, 47).

[HA05] S. E. Hove, B. Anda. “Experiences from conducting semi-structured interviews in
empirical software engineering research”. In: 11th IEEE International Software
Metrics Symposium (METRICS’05). IEEE. 2005, 10–pp (cit. on pp. 49–51).

[HGS12] E. Hahn, J. Gottschling, F. M. Spinath. “Short measurements of personality–Validity
and reliability of the GSOEP Big Five Inventory (BFI-S)”. In: Journal of Research in
Personality 46.3 (2012), pp. 355–359 (cit. on p. 21).

[HIKM12] J. Helminen, P. Ihantola, V. Karavirta, L. Malmi. “How do students solve parsons
programming problems? an analysis of interaction traces”. In: Proceedings of the
ninth annual international conference on International computing education research.
2012, pp. 119–126 (cit. on p. 27).

[Hun80] J. E. Hunter. Validity Generalization for 12.000 Jobs: An Application of Synthetic
Validity and Validity Generalizatoin to the General Aptitude Test Battery (GATB).
US Department of Labor, Employment Service, 1980 (cit. on p. 22).

[Hun86] J. E. Hunter. “Cognitive ability, cognitive aptitudes, job knowledge, and job per-
formance”. In: Journal of vocational behavior 29.3 (1986), pp. 340–362 (cit. on
p. 22).

[JDK91] O. P. John, E. M. Donahue, R. L. Kentle. “Big five inventory”. In: Journal of Person-
ality and Social Psychology (1991) (cit. on pp. 21, 22, 55).

[Joh] S. S. John O P. BIG FIVE INVENTORY (BFI). url: https://fetzer.org/sites/
default/files/images/stories/pdf/selfmeasures/Personality-BigFiveInventory.

pdf (visited on 09/28/2020) (cit. on p. 55).
[JWB+10] J. J. Jackson, D. Wood, T. Bogg, K. E. Walton, P. D. Harms, B. W. Roberts. “What do

conscientious people do? Development and validation of the Behavioral Indicators
of Conscientiousness (BIC)”. In: Journal of Research in Personality 44.4 (2010),
pp. 501–511 (cit. on p. 23).

[KMCR19] M. L. Kern, P. X. McCarthy, D. Chakrabarty, M.-A. Rizoiu. “Social media-predicted
personality traits and values can help match people to their ideal jobs”. In: Proceedings
of the National Academy of Sciences 116.52 (2019), pp. 26459–26464 (cit. on p. 73).

[KPJK16] H. Kallio, A.-M. Pietilä, M. Johnson, M. Kangasniemi. “Systematic methodological
review: developing a framework for a qualitative semi-structured interview guide”.
In: Journal of advanced nursing 72.12 (2016), pp. 2954–2965 (cit. on p. 48).

[KVC06] G. Kemkes, T. Vasiga, G. Cormack. “Objective scoring for computing competition
tasks”. In: International Conference on Informatics in Secondary Schools-Evolution
and Perspectives. Springer. 2006, pp. 230–241 (cit. on pp. 26, 27).

[Lee02] B. L. Leech. “Asking questions: Techniques for semistructured interviews”. In: PS:
Political science and politics 35.4 (2002), pp. 665–668 (cit. on pp. 49–51).

80

https://fetzer.org/sites/default/files/images/stories/pdf/selfmeasures/Personality-BigFiveInventory.pdf
https://fetzer.org/sites/default/files/images/stories/pdf/selfmeasures/Personality-BigFiveInventory.pdf
https://fetzer.org/sites/default/files/images/stories/pdf/selfmeasures/Personality-BigFiveInventory.pdf

Bibliography

[Leh] M. Lehr. Working better with conscientious people as problem solvers. url: https:
//omegazadvisors.com/2018/07/02/conscientious-people-as-problem-solvers/

(visited on 09/28/2020) (cit. on p. 23).
[Lev05] A. Levitin. “Analyze That: Puzzles and Analysis of Algorithms”. In: SIGCSE Bull.

37.1 (Feb. 2005), pp. 171–175. issn: 0097-8418. doi: 10.1145/1047124.1047409. url:
https://doi.org/10.1145/1047124.1047409 (cit. on p. 26).

[LFT+17] P. Lenberg, R. Feldt, L. G. W. Tengberg, I. Tidefors, D. Graziotin. “Behavioral software
engineering-guidelines for qualitative studies”. In: arXiv preprint arXiv:1712.08341
(2017) (cit. on pp. 20, 51).

[LFW15] P. Lenberg, R. Feldt, L. G. Wallgren. “Behavioral software engineering: A definition
and systematic literature review”. In: Journal of Systems and software 107 (2015),
pp. 15–37 (cit. on p. 20).

[LS03] J. P. Leal, F. Silva. “Mooshak: a Web-based multi-site programming contest system”.
In: Software: Practice and Experience 33.6 (2003), pp. 567–581. doi: 10.1002/spe.
522. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.522. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.522 (cit. on p. 26).

[Max08] J. A. Maxwell. “Designing a qualitative study”. In: The SAGE handbook of applied
social research methods 2 (2008), pp. 214–253 (cit. on p. 29).

[MBS99] M. K. Mount, M. R. Barrick, J. P. Strauss. “The joint relationship of conscientiousness
and ability with performance: Test of the interaction hypothesis”. In: Journal of
Management 25.5 (1999), pp. 707–721 (cit. on pp. 22, 23).

[McD19] G. L. McDowell. Cracking the coding interview: 189 Programming Questions and
Solutions. CareerCup, 2019 (cit. on pp. 24, 37, 42, 52).

[MCM05] R. R. McCrae, P. T. Costa Jr, T. A. Martin. “The NEO–PI–3: A more readable revised
NEO personality inventory”. In: Journal of personality assessment 84.3 (2005),
pp. 261–270 (cit. on p. 22).

[Mea] E. D. Measurement Instrument Database for Social Sciences. Scale of Positive and
Negative Experience (SPANE). url: https://www.midss.org/content/scale-
positive-and-negative-experience-spane-0 (cit. on p. 55).

[MFP04] J. Moutafi, A. Furnham, L. Paltiel. “Why is conscientiousness negatively correlated
with intelligence?” In: Personality and Individual Differences 37.5 (2004), pp. 1013–
1022 (cit. on p. 22).

[MJ92] R. R. McCrae, O. P. John. “An Introduction to the Five-Factor Model and Its Applica-
tions”. In: Journal of Personality 60.2 (1992), pp. 175–215. doi: 10.1111/j.1467-
6494.1992.tb00970.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/
j.1467-6494.1992.tb00970.x. url: https://onlinelibrary.wiley.com/doi/abs/10.
1111/j.1467-6494.1992.tb00970.x (cit. on pp. 21, 48).

[MKG12] J. Mongan, N. S. Kindler, E. Giguère. Programming interviews exposed: secrets to
landing your next job. John Wiley & Sons, 2012 (cit. on pp. 24, 42, 52).

[Mye] I. B. Myers. The Myers Briggs Foundation. url: https://www.myersbriggs.org/my-
mbti-personality-type/ (cit. on p. 21).

[Mye62] I. B. Myers. “The Myers-Briggs Type Indicator: Manual (1962).” In: (1962) (cit. on
p. 21).

81

https://omegazadvisors.com/2018/07/02/conscientious-people-as-problem-solvers/
https://omegazadvisors.com/2018/07/02/conscientious-people-as-problem-solvers/
https://doi.org/10.1145/1047124.1047409
https://doi.org/10.1145/1047124.1047409
https://doi.org/10.1002/spe.522
https://doi.org/10.1002/spe.522
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.522
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.522
https://www.midss.org/content/scale-positive-and-negative-experience-spane-0
https://www.midss.org/content/scale-positive-and-negative-experience-spane-0
https://doi.org/10.1111/j.1467-6494.1992.tb00970.x
https://doi.org/10.1111/j.1467-6494.1992.tb00970.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-6494.1992.tb00970.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-6494.1992.tb00970.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-6494.1992.tb00970.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-6494.1992.tb00970.x
https://www.myersbriggs.org/my-mbti-personality-type/
https://www.myersbriggs.org/my-mbti-personality-type/

Bibliography

[Ned85] A. J. Nederhof. “Methods of coping with social desirability bias: A review”. In:
European journal of social psychology 15.3 (1985), pp. 263–280 (cit. on p. 71).

[Pat90] M. Q. Patton. Qualitative evaluation and research methods. SAGE Publications, inc,
1990 (cit. on p. 49).

[PY18] R. Poonam, C. M. Yasser. “An experimental study to investigate personality traits on
pair programming efficiency in extreme programming”. In: 2018 5th International
Conference on Industrial Engineering and Applications (ICIEA). IEEE. 2018, pp. 95–
99 (cit. on p. 21).

[Que09] N. L. Quenk. Essentials of Myers-Briggs type indicator assessment. Vol. 66. John
Wiley & Sons, 2009 (cit. on p. 21).

[RHS17a] T. Rahm, E. Heise, M. Schuldt. “Measuring the frequency of emotions—validation
of the Scale of Positive and Negative Experience (SPANE) in Germany”. In: PloS
one 12.2 (2017) (cit. on pp. 22, 47).

[RHS17b] T. Rahm, E. Heise, M. Schuldt. “Measuring the frequency of emotions—validation of
the Scale of Positive and Negative Experience (SPANE) in Germany”. In: PLoS ONE
12.2 (Feb. 2017), e0171288. doi: 10.1371/journal.pone.0171288 (cit. on pp. 22, 47).

[RMSA12] M. Rehman, A. K. Mahmood, R. Salleh, A. Amin. “Mapping job requirements of
software engineers to Big Five Personality Traits”. In: 2012 International Conference
on Computer & Information Science (ICCIS). Vol. 2. IEEE. 2012, pp. 1115–1122
(cit. on p. 21).

[RP10] L. Rupsiene, R. Pranskuniene. “The variety of grounded theory: Different versions of
the same method or different methods”. In: Socialiniai mokslai 4.70 (2010), pp. 7–20
(cit. on p. 53).

[SC90] A. Strauss, J. Corbin. “Basics of Qualitative Research: Grounded Theory Procedures
and Techniques, Sage Publications, Inc”. In: (1990) (cit. on pp. 53, 54, 59).

[SC97] A. Strauss, J. M. Corbin. Grounded theory in practice. Sage, 1997 (cit. on p. 54).
[SCEB11] A. Sbaraini, S. M. Carter, R. W. Evans, A. Blinkhorn. “How to do a grounded theory

study: a worked example of a study of dental practices”. In: BMC medical research
methodology 11.1 (2011), p. 128 (cit. on p. 53).

[SJ17] C. J. Soto, O. P. John. “The next Big Five Inventory (BFI-2): Developing and assessing
a hierarchical model with 15 facets to enhance bandwidth, fidelity, and predictive
power.” In: Journal of personality and social psychology 113.1 (2017), p. 117 (cit. on
p. 21).

[SKL+14] J. Siegmund, C. Kästner, J. Liebig, S. Apel, S. Hanenberg. “Measuring and modeling
programming experience”. In: Empirical Software Engineering 19.5 (2014), pp. 1299–
1334 (cit. on p. 47).

[SPP08] S. Salinger, L. Plonka, L. Prechelt. “A coding scheme development methodology
using grounded theory for qualitative analysis of pair programming”. In: Human
Technology: An Interdisciplinary Journal on Humans in ICT Environments (2008)
(cit. on pp. 53, 54, 71).

[WGW19] M. Wyrich, D. Graziotin, S. Wagner. “A theory on individual characteristics of
successful coding challenge solvers”. In: PeerJ Computer Science 5 (2019), e173
(cit. on pp. 3, 13, 17, 22, 60, 73, 75).

82

https://doi.org/10.1371/journal.pone.0171288

Bibliography

[YO12] M. Yilmaz, R. V. OConnor. “Towards the understanding and classification of the
personality traits of software development practitioners: Situational context cards ap-
proach”. In: 2012 38th Euromicro Conference on Software Engineering and Advanced
Applications. IEEE. 2012, pp. 400–405 (cit. on p. 21).

All links were last followed on September 28, 2020.

83

A Appendix A

85

8/17/2020 Persönlicher Fragebogen

https://docs.google.com/forms/d/1NqRYqRVsUYzkuSiBBOSmI75I7U9xrLuvIH5k0mOvBGI/edit 1/6

1. E-Mail-Adresse *

Abschnitt persönliche Angaben
Tragen sie im folgenden Abschnitte bitte ihre persönlichen Daten ein, die wie schon zuvor beschrieben nicht an
Dritte weitergereicht werden.

2.

3.

4.

Markieren Sie nur ein Oval.

Männlich

Weiblich

Divers

5.

Markieren Sie nur ein Oval.

studiere momentan

habe mein Studium bereits beendet

Persönlicher Fragebogen
Zur Studie über Coding challenges.
* Erforderlich

Vor- und Nachname. *

Alter *

Geschlecht *

Ich..

8/17/2020 Persönlicher Fragebogen

https://docs.google.com/forms/d/1NqRYqRVsUYzkuSiBBOSmI75I7U9xrLuvIH5k0mOvBGI/edit 2/6

6.

Markieren Sie nur ein Oval.

Sonstiges:

M.Sc Softwaretechnik

B.Sc Softwaretechnik

M.Sc Informatik

B.Sc Informatik

7.

8.

9.

Abschnitt Programmiererfahrung

10.

Markieren Sie nur ein Oval.

Nie

1-2 mal pro Semester

1-2 mal pro Monat

Einmal pro Woche

2-3 mal pro Woche

Täglich

Ich studiere bzw. Ich habe studiert (nur der höchste Grad notwendig): *

Im wievielten Fachsemester befinden sie sich? Bzw. Wieviele Semester haben sie
studiert? *

Aktueller Notenschnitt *

Aktueller Notenschnitt des Bachelors, falls sie diesen bereits beendet haben.

Wie häufig haben sie im letzten Jahr Erfahrungen mit Coding Challenges
gemacht? *

8/17/2020 Persönlicher Fragebogen

https://docs.google.com/forms/d/1NqRYqRVsUYzkuSiBBOSmI75I7U9xrLuvIH5k0mOvBGI/edit 3/6

11.

12.

13.

Markieren Sie nur ein Oval.

Sehr unerfahren

1 2 3 4 5 6 7 8 9 10

Sehr erfahren

14.

Markieren Sie nur ein Oval.

Sehr unerfahren

1 2 3 4 5 6 7 8 9 10

Sehr erfahren

15.

16.

Programmiererfahrung in Jahren *

Programmiererfahrung mit Java in Jahren *

Wie hoch würden Sie ihre Programmiererfahrung einschätzen verglichen mit
ihren (Ex-) Studienkollegen.

(Vorrausgesetzt sie haben ihr Studium bereits abgeschlossen) Wie hoch würden
Sie ihre Programmiererfahrung gegenüber ihren Arbeitskollegen in
vergleichbaren Positionen einschätzen?

Arbeitserfahrung mit Tätigkeitsschwerpunkt auf Softwareentwicklung in
Unternehmen in Jahren?

Falls Sie an Open-Source Projekten mitarbeiten, geben sie bitte einen Link zu
Ihrem Profil an.

8/17/2020 Persönlicher Fragebogen

https://docs.google.com/forms/d/1NqRYqRVsUYzkuSiBBOSmI75I7U9xrLuvIH5k0mOvBGI/edit 4/6

17.

Abschnitt aktuelle Gefühlslage
Bitte denken Sie an das, was Sie in den letzten 4 Wochen getan und erlebt haben.
Anschließend kreuzen Sie bitte in der folgenden Liste an, wie häufig Sie sich so gefühlt haben.

18.

Markieren Sie nur ein Oval.

sehr selten oder Nie

0 1 2 3 4

sehr oft oder immer

19.

Markieren Sie nur ein Oval.

sehr selten oder Nie

0 1 2 3 4

sehr oft oder immer

20.

Markieren Sie nur ein Oval.

sehr selten oder Nie

0 1 2 3 4

sehr oft oder immer

21.

Markieren Sie nur ein Oval.

sehr selten oder Nie

0 1 2 3 4

sehr oft oder immer

Falls sie einen "Stack Overflow"-Account besitzen, geben Sie bitte einen Link zu
Ihrem Profil an

positiv *

negativ *

gut *

schlecht *

8/17/2020 Persönlicher Fragebogen

https://docs.google.com/forms/d/1NqRYqRVsUYzkuSiBBOSmI75I7U9xrLuvIH5k0mOvBGI/edit 5/6

22.

Markieren Sie nur ein Oval.

sehr selten oder Nie

0 1 2 3 4

sehr oft oder immer

23.

Markieren Sie nur ein Oval.

sehr selten oder Nie

0 1 2 3 4

sehr oft oder immer

24.

Markieren Sie nur ein Oval.

sehr selten oder Nie

0 1 2 3 4

sehr oft oder immer

25.

Markieren Sie nur ein Oval.

sehr selten oder Nie

0 1 2 3 4

sehr oft oder immer

26.

Markieren Sie nur ein Oval.

sehr selten oder Nie

0 1 2 3 4

sehr oft oder immer

angenehm *

unangenehm *

glücklich *

traurig *

von Freude erfüllt *

8/17/2020 Persönlicher Fragebogen

https://docs.google.com/forms/d/1NqRYqRVsUYzkuSiBBOSmI75I7U9xrLuvIH5k0mOvBGI/edit 6/6

27.

Markieren Sie nur ein Oval.

sehr selten oder Nie

0 1 2 3 4

sehr oft oder immer

28.

Markieren Sie nur ein Oval.

sehr selten oder Nie

0 1 2 3 4

sehr oft oder immer

29.

Markieren Sie nur ein Oval.

sehr selten oder Nie

0 1 2 3 4

sehr oft oder immer

Dieser Inhalt wurde nicht von Google erstellt und wird von Google auch nicht unterstützt.

ängstlich *

zufrieden *

wütend *

 Formulare

B Appendix B

93

8/17/2020 Persönlichkeitstest

https://docs.google.com/forms/d/1W2HW3rsWjlK5zaZPsHYS65oUkKSRKfT6drJi8v6gBh0/edit 1/12

1.

Skala
0. Trifft überhaupt nicht zu.
1. Trifft wenig zu.
2. Trifft teils/teils zu
3. Trifft gut zu.
4. Trifft sehr gut zu.

Kontext
Ich sehe mich als jemanden, der ...

2.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

3.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

Persönlichkeitstest
Im Folgenden finden Sie eine Reihe von Beschreibungen, die auf Sie zutreffen
können oder nicht. Bitte kreuzen Sie eine Zahl unter jede der aufgeführten
Beschreibungen an, um anzuzeigen, wie sehr diese Aussage auf Sie zutrifft oder nicht
zutrifft.

* Erforderlich

Vor- und Nachname *

1. gesprächig ist, sich gerne unterhält *

2. dazu neigt, andere zu kritisieren *

8/17/2020 Persönlichkeitstest

https://docs.google.com/forms/d/1W2HW3rsWjlK5zaZPsHYS65oUkKSRKfT6drJi8v6gBh0/edit 2/12

4.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

5.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

6.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

7.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

3. Aufgaben gründlich erledigt *

4. deprimiert, niedergeschlagen ist *

5. orginell ist, neue Ideen entwickelt *

6. eher zurückhaltend und reserviert ist *

8/17/2020 Persönlichkeitstest

https://docs.google.com/forms/d/1W2HW3rsWjlK5zaZPsHYS65oUkKSRKfT6drJi8v6gBh0/edit 3/12

8.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

9.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

10.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

11.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

7. hilfsbereit und selbstlos gegenüber anderen ist. *

8. etwas achtlos sein kann *

9. entspannt ist, sich durch Stress nicht aus der Ruhe bringen lässt *

10. vielseitig interessiert ist *

8/17/2020 Persönlichkeitstest

https://docs.google.com/forms/d/1W2HW3rsWjlK5zaZPsHYS65oUkKSRKfT6drJi8v6gBh0/edit 4/12

12.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

13.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

14.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

15.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

11. voller Energie und Tatendrang ist *

12. häufig in Streitereien verwickelt ist *

13. zuverlässig und gewissenhaft arbeitet *

14. leicht angespannt reagiert *

8/17/2020 Persönlichkeitstest

https://docs.google.com/forms/d/1W2HW3rsWjlK5zaZPsHYS65oUkKSRKfT6drJi8v6gBh0/edit 5/12

16.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

17.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

18.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

19.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

15. tiefsinnig ist, gerne über Sachen nachdenkt *

16. begeisterungsfähig ist und andere mitreißen kann *

17. nicht nachtragend ist, anderen leicht vergibt *

18. dazu neigt, unordentlich zu sein *

8/17/2020 Persönlichkeitstest

https://docs.google.com/forms/d/1W2HW3rsWjlK5zaZPsHYS65oUkKSRKfT6drJi8v6gBh0/edit 6/12

20.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

21.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

22.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

23.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

19. sich viele Sorgen macht *

20. eine lebhafte Vorstellungskraft hat, phantasievoll ist *

21. eher still und wortkarg ist *

22. anderen Vertrauen schenkt *

8/17/2020 Persönlichkeitstest

https://docs.google.com/forms/d/1W2HW3rsWjlK5zaZPsHYS65oUkKSRKfT6drJi8v6gBh0/edit 7/12

24.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

25.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

26.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

27.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

23. bequem ist und zur Faulheit neigt *

24. ausgeglichen ist, nicht leicht aus der Fassung zu bringen *

25. erfinderisch und einfallsreich ist *

26. durchsetzungsfähig und energisch ist *

8/17/2020 Persönlichkeitstest

https://docs.google.com/forms/d/1W2HW3rsWjlK5zaZPsHYS65oUkKSRKfT6drJi8v6gBh0/edit 8/12

28.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

29.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

30.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

31.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

27. sich kalt und distanziert verhalten kann *

28. nicht aufgibt ehe die Aufgabe erledigt ist *

29. launisch sein kann, schwankende Stimmungen hat *

30. künstlerische und ästhetische Eindrücke schätzt *

8/17/2020 Persönlichkeitstest

https://docs.google.com/forms/d/1W2HW3rsWjlK5zaZPsHYS65oUkKSRKfT6drJi8v6gBh0/edit 9/12

32.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

33.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

34.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

35.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

31. manchmal schüchtern und gehemmt ist *

32. rücksichtsvoll und einfühlsam zu anderen ist *

33. tüchtig ist, flott arbeitet *

34. ruhig bleibt, selbst in angespannten Situationen *

8/17/2020 Persönlichkeitstest

https://docs.google.com/forms/d/1W2HW3rsWjlK5zaZPsHYS65oUkKSRKfT6drJi8v6gBh0/edit 10/12

36.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

37.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

38.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

39.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

35. routinemäßige und einfache Aufgaben bevorzugt *

36. aus sich herausgeht, gesellig ist *

37. schroff und abweisend zu anderen sein kann *

38. Pläne macht und diese auch ausführt *

8/17/2020 Persönlichkeitstest

https://docs.google.com/forms/d/1W2HW3rsWjlK5zaZPsHYS65oUkKSRKfT6drJi8v6gBh0/edit 11/12

40.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

41.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

42.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

43.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

39. leicht nervös und unsicher wird *

40. gerne Überlegungen anstellt, mit Ideen spielt *

41. nur wenig künstlerische Interessen hat *

42. sich kooperativ verhält, Zusammenarbeit dem Wettbewerb vorzieht *

8/17/2020 Persönlichkeitstest

https://docs.google.com/forms/d/1W2HW3rsWjlK5zaZPsHYS65oUkKSRKfT6drJi8v6gBh0/edit 12/12

44.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

45.

Markieren Sie nur ein Oval.

Trifft überhaupt nicht zu.

0 1 2 3 4

Trifft sehr gut zu

Dieser Inhalt wurde nicht von Google erstellt und wird von Google auch nicht unterstützt.

43. leicht ablenkbar ist, nicht bei der Sache bleibt *

44. sich gut in Musik, Kunst und Literatur auskennt *

 Formulare

C Appendix C

107

Einleitung zur Studie

Patrick Lux

Juli 2020

1 Allgemeines

• Beschreibung der Studie

– Bei der Studie geht es um die Beobachtung und Evaluierung einer
Person während der Programmierung von Coding Challenges ähnlich
zu derzeitig praktizierten technischen Interviews innerhalb von Vorstel-
lungsgesprächen der Industrie.

• Studienaufbau

– Der geplante Zeitraum der Studie liegt zwischen eineinhalb und zwei
Stunden.

– Die Studie besteht aus drei Coding Challenges, einem anschließendem
Interview (je Challenge), einem persönlichen Fragebogen und einem
Persönlichkeitstest.

– Während der Studie wird der Bildschirminhalt des Teilnehmers sowie
die Kommunikation zwischen Teilnehmer und Interviewer aufgezeich-
net.

– Die Coding Challenges werden durch ihren Kopfkommentar inner-
halb des Codes erklärt, sollten Sie Fragen haben, bitte stellen Sie
diese.

– Die Lösungen der Coding Challenges sollen eingereicht werden. Diese
werden zu einem späteren Zeitpunkt bewertet.

• Regeln

– Während der Coding Challenges können Tips beim Interviewer einge-
holt werden.

– Die Nutzung von externen Quellen, speziell die Internetrecherche ist
während der Coding Challenges untersagt.

– Bitte schalten Sie ihr Smartphone auf stumm, lautlos oder aus und
benutzen dieses während der Coding Challenges nicht. Auch andere
elektronische Geräte mit Internetanschluss, beispielsweise Tablets,
sind hier eingeschlossen.

1

– Ich bitte Sie, sich während der Coding Challenges nicht vom PC
bzw. Laptop zu entfernen, zwischen den Coding Challenges und/oder
während des Interviews können gerne Pausen eingelegt werden.

– Bitte verändern sie die vorgegebenen Methoden Signaturen nicht.

– Es gibt ein Zeitlimit für jede der Challenges, dieses ist aus dem
Kopfkommentar jeder Challenge zu entnehmen.

• Sie dürfen..

– .. bei Bedarf zusätzliche Methoden erstellen.

– .. die Main-Methode ändern, nicht aber die gegebenen Signaturen.

– .. Zusätzliche Methoden erstellen (Hilfsmethoden)

– .. den Code ausführen.

– .. sich Notizen machen. Holen Sie sich gerne Stifte und Papier (Es
wäre sehr nett, wenn Sie diese später mit einreichen)

– .. jederzeit nachfragen, wenn etwas unklar ist.

• Bewertung

– Korrektheit

– Effizienz (O-Notation, Zeitkomplexität (time complexity))

– Stil (Eleganz, Kommentare, Länge des Codes)

– Auf die Platzkomplexität (space complexity) wird nicht eingegangen.

– Eine vorzeitige Abgabe bietet keinen Vorteil bei der Bewertung, nutzen
Sie ihre Zeit für mögliche Verbesserungen. Sollten sie dennoch vorzeitig
abgeben wollen, sei Ihnen das gestattet.

2 Einverständniserklärung

• Ich wurde für mich ausreichend mündlich/schriftlich über die wissenschaftliche
Studie informiert.

• Ich erkläre mich bereit, dass im Rahmen der Studie Daten über mich
gesammelt werden und anonymisiert aufgezeichnet werden. Es wird gewährleistet,
dass meine personenbezogenen Daten nicht an Dritte weiter gegeben wer-
den. Bei der veröffentlichung in einer wissenschaftlichen Zeitung wird aus
den Daten nicht hervorgehen, wer an dieser Studie teilgenommen hat. Ihre
persönlichen Daten unterliegen dem Datenschutzgesetz.

• Mir ist bewusst, dass es sich bei den erfassten Daten um personenbezogene
Daten handelt, speziell um mein Verhalten während des Lösens der Coding
Challenges.

• Ich gestatte die veröffentlichung der aufgenommenen, personenbezogenen
Daten in anonymisierter Form.

2

• Ich weiß, dass ich jederzeit meine Einverständniserklärung, ohne Angaben
von Gründen, widerrufen kann, ohne dass dies für mich nachteilige Folgen
hat.

• Ich weiß, dass die Teilnahme an dieser Studie freiwillig ist. Ich kann die
Studie jederzeit, ohne Angabe von Gründen, abbrechen.

• Mir ist bekannt, dass alle Daten nach der Auswertung permanent gelöscht
und damit unzugänglich gemacht werden.

• Mit der Teilnahme entsteht für mich kein Risiko, außer dass Sie men-
tale und physische Müdigkeit durch die Arbeitsbelastung erfahren. Die
Vorteile liegen im Wissen, dass die Forscher aus den gesammelten Daten
erhalten sowie der gewonnenen Erfahrung, die sich positiv auf potentielle
Bewerbungsprozesse auswirken kann.

• Mit der vorstehend geschilderten Vorgehensweise bin ich einverstanden
und bestätige dies mit meiner mündlichen Zusage zu Beginn der Auf-
nahme.

3 Fragen zu Beginn der Aufzeichnung

• Haben Sie bezüglich der Einverständniserklärung Fragen?

• Sind Sie mit dieser einverstanden?

• Sie studieren Informatik oder Softwaretechnik bzw. haben ein solches
Studium abgeschlossen?

• Sind Sie mit Java vertraut?

• Sind Sie mit Eclipse und/oder IntelliJ IDEA vertraut?

• Haben Sie Fragen bevor wir anfangen?

3

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Research Objectives and Contributions
	1.3 Methodological Approach
	1.4 Structure of the Work

	2 Background and Related Work
	2.1 Background
	2.2 Hiring and Technical Interviews
	2.3 Behavioural Traits and Personality
	2.4 Coding Challenges

	3 Methodology
	3.1 Study Design
	3.2 Participants
	3.3 Technical Details
	3.4 Coding Challenges
	3.5 Data Collection
	3.6 Data Analysis

	4 Results
	4.1 Findings
	4.2 Attribution to Conscientiousness and Performance

	5 Discussion
	5.1 Implications
	5.2 Limitations

	6 Conclusion
	Bibliography
	A Appendix A
	B Appendix B
	C Appendix C

