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Abstract
This thesis is devoted to the class of automaton groups and semigroups, which has gained
a reputation of containing groups and semigroups with special algebraic properties that
are hard to find elsewhere. Both automaton groups and semigroups are studied from
a structural and an algorithmic perspective. We motivate the use of partial automata
as generating objects for algebraic structures and compare them to their complete
counterparts. Additionally, we give further examples of semigroups that cannot be
generated by finite automata and show that every inverse automaton semigroup is
generated by a partial, invertible automaton. Moreover, we study the finite and infinite
orbits of ω-words under the action induced by an automaton. Here, our main result is
that every infinite automaton semigroup admits an ω-word with an infinite orbit.

We apply these structural results algorithmically and show that the word problem for
automaton groups and semigroups is PSpace-complete. Furthermore, we investigate a
decision problem related to the freeness of automaton groups and semigroups: we show
that it is undecidable whether a given automaton admits a non-trivial state sequences that
acts trivially and we use this problem for further reductions. Afterwards, we strengthen
Gillibert’s result on the undecidability of the finiteness problem for automaton semigroups
and give a partial solution for the group case of the same problem. Finally, we consider
algorithmic questions about increasing the orbits of finite words and apply these results
to show that, among others, the finiteness problem for (subgroups of) automaton groups
of bounded activity is decidable.

Zusammenfassung
Diese Arbeit widmet sich der Klasse der Automatengruppen und -halbgruppen, die bekannt
dafür ist, Gruppen und Halbgruppen mit speziellen Eigenschaften zu enthalten, die sich anderswo
nur schwer finden lassen. Sowohl Automatengruppen als auch -halbgruppen werden aus einem
strukturellen und einem algorithmischen Blickwinkel untersucht. Wir motivieren die Verwendung
partieller Automaten als erzeugende Objekte algebraischer Strukturen und vergleichen sie mit
ihren vollständigen Gegenstücken. Außerdem geben wir weitere Beispiele von Halbgruppen an, die
nicht durch endliche Automaten erzeugt werden können, und zeigen, dass alle inversen Automaten-
halbgruppen von einem partiellen, invertierbaren Automaten erzeugt werden. Zudem untersuchen
wir die endlichen und unendlichen Bahnen von ω-Wörtern unter der durch einen Automaten
induzierten Wirkung. Hierbei ist unser Hauptresultat, dass jede unendliche Automatenhalbgruppe
ein Wort mit unendlicher Bahn liefert.

Wir wenden diese strukturellen Ergebnisse algorithmisch an und zeigen, dass das Wortproblem
für Automatengruppen und -halbgruppen PSpace-vollständig ist. Darüber hinaus untersuchen
wir ein Entscheidungsproblem in Verbindung mit der Freiheit von Automatengruppen und
-halbgruppen: Wir zeigen, dass es unentscheidbar ist, ob ein gegebener Automat eine nichttriviale
Zustandsfolge besitzt, die trivial operiert, und verwenden dieses Problem für weitere Reduktionen.
Anschließend erweitern wir das Ergebnis von Gillibert über die Unentscheidbarkeit des Endlich-
keitsproblems für Automatenhalbgruppen und geben eine partielle Lösung für dasselbe Problem
im Gruppenfall an. Schließlich betrachten wir algorithmische Fragestellungen hinsichtlich der
Vergrößerung der Bahnen endlicher Wörter und wenden diese Ergebnisse an, um zu zeigen, dass
unter anderem das Endlichkeitsproblem für (Untergruppen von) Automatengruppen beschränkter
Aktivität entscheidbar ist.
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1 See [GP08] for an
accessible introduc-
tion to this topic
with an emphasis
on the Grigorchuk
group.
2 See for example
the problem list in
[GNS00]
3 One could argue
that the problem in
Section 1.4 is an ex-
ample for this.
4 See for exam-
ple [Kli13; Gil14;
Pic19]
5 See for example
[Cai09; BC15;
BC17; Kli16;
Bar+18; Pic19]
to only mention a
few.
6 We will make
heavy use of this
connection for
example in Sec-
tion 1.4 but also in
Section 2.3.

-1 Introduction

The intriguing class of automaton groups is a rich source for groups with interesting and
sometimes peculiar properties. In contrast to more classical forms of presentation, the
groups in this class are defined using automata, which, in this context, refer to what
might be more precisely described as finite-state, letter-to-letter transducers. Every such
automaton defines an action mapping input to output words, which is then used to
generate the group. Due to their nature based on finite-state automata, one might be
tempted to think that only structurally simple or even only finite groups can be generated
in this way. However, quite on the contrary, even a seemingly simple automaton can
generate a group with surprisingly complex behavior. The best known example here is
probably the Grigorchuk group. It became famous as the historically first example of a
group with subexponential but superpolynomial growth, answering a question by Milnor
[Car+68, Problem 5603] on the existence of such groups. The growth of a group refers to
the number of elements contained within balls of growing size around the neutral element
in the Cayley graph of the group.1 Additionally, while the Grigorchuk group itself is
infinite, every group element has finite order. Thus, it also constitutes an answer with
a quite simple presentation to the Burnside problem [Bur02]. The tension between the
simplicity of the presentation and the complexity of the behavior also extends to research
questions in the area. Even though questions may have simple formulations, answers are
often notoriously hard to obtain,2 even in cases for which the eventual solution may turn
out to be rather simple.3 This leads to the phenomenon that even partial solutions can
have significant value.4
The idea of using automata to generate groups naturally extends to inverse and non-

inverse semigroups. This leads to the term “automaton structures” used in this work
to cover automaton groups, inverse automaton semigroups and (general) automaton
semigroups. Although the research initially was – and to a certain degree still is – mostly
focused on groups, automaton semigroups seem to attract more and more interest lately.5
One reason for this increase might be that automaton semigroups often come up even if
one is mostly interested in automaton groups. For example, this occurs by considering
the dual automaton, in which states and letters changes roles. In general, the dual of an
automaton generating a group will not generate a group itself; however, the dual can be
used to study the original automaton and its generated group.6 Another reason might
be found in the overall landscape of the research activity in the area. In rough terms,
the research on automaton structures can be divided into three branches. First (also in a
chronological sense), there is the research on individual interesting automaton groups
such as the already mentioned Grigorchuk group. The observation that many of these
groups can naturally be presented using automata lead to the second research branch
focusing on the overall class of automaton groups and on relations between properties of
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7 namely the word
problem (see Sec-
tion 2.1) and the
finiteness problem
(see Section 2.3)

the automaton and properties of the generated group or semigroup. At this point, the
third research branch comes into play naturally: it studies algorithms to answer questions
on automaton structures. It is this algorithmic study of automaton structures that
might explain some of the interest in automaton semigroups. Obviously, the automaton
usually plays a central role in algorithms for automaton groups and many times it is more
important than the actual group structure. Therefore, algorithms for automaton groups
can often be generalized to semigroups. On the other hand, many decision problems over
automaton groups are either proven or generally suspected to be undecidable. Since,
compared to groups, it is usually easier to encode computations in semigroups, this
leads to the situation that undecidability results for automaton semigroups exist while
the corresponding problems for groups are still open or could only be solved later. An
important example here is the finiteness problem, which asks whether a given automaton
generates a finite or an infinite group or semigroup, respectively. It has been shown
to be undecidable for automaton semigroups by Gillibert [Gil14] but its decidability
for groups is still an important open problem [GNS00, 7.2 b)]. Another example is
the order problem, where the question is whether a given group element has finite or
infinite order. A similar problem for automaton semigroups had already been shown to
be undecidable [Gil14, Corollary 3.14] but the undecidability in the group case was only
obtained later [Gil18] (also in the case of so-called contracting automaton groups [BM20]).
Similarly, it could be shown that the word problem, which, in this case, asks whether
two given state sequences represent the same semigroup element, is PSpace-complete
for automaton semigroups – in fact, even for inverse automaton semigroups – [1] but the
result could only later be lifted to automaton groups [5]. On the other hand, the other
two of Dehn’s fundamental problems in algorithmic group theory [Deh11], the conjugacy
and isomorphism problem, have been settled directly for the group case [ŠV12].

The aim of this work is to contribute to the latter two of the above mentioned research
branches: the structural and the algorithmic study of automaton structures. As the
theory of automaton structures lies at the meeting point of algebra and automaton theory,
it is not surprising that we will combine various tools from different areas of theoretical
computer science and mathematics such as complexity and computability, automaton
theory, Wang tilings, graph theory and, of course, a bit of semigroup and group theory.
In Chapter 1, we present the structural results, where we put an emphasis on partial

automata. This emphasis is motivated by the fact that partial automata have turned
out to be useful for certain algorithmic problems7 and allow for a natural presentation
of inverse semigroups using automata. We discuss this and compare the classes of
semigroups generated by partial and by complete automata in Section 1.1, where we
show some closure properties for the partial case; the corresponding closure properties
for the complete case pose an open problem by Cain [Cai09, Open problem 5.3] and we
establish that this open problem has a positive answer if and only if both classes coincide.
Then, in Section 1.2, we show that (certain subsemigroups of) semidirect products of the
monogenic free semigroup are not automaton semigroups, which significantly increases
the so-far very limited set of examples for such semigroups. Next, we look at invertible
yet partial automata in Section 1.3 and the inverse semigroups they generate. We present
the monogenic free inverse monoid as such an automaton semigroup and then show that
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every automaton semigroup that happens to be an inverse semigroup can be generated by
a partial invertible automaton. For the latter result, we generalize the classical Preston-
Vagner theorem (see e. g. [How95, Theorem 5.1.7, p. 150] or [Pet84, p. 168]). Finally, we
have a look at the orbits of automaton semigroups in Section 1.4. Our main result here
is that every infinite automaton semigroup (and, thus, every infinite automaton group)
admits an ω-word with an infinite orbit, which solves an open problem communicated by
Ievgen Bondarenko (see also [3, Open problem 4.3]). While this is an important result
on its own, the techniques used and developed in the course of its proof are also quite
versatile and we apply them to some other problems.

Chapter 2 collects some algorithmic results for automaton structures (where we also
make use of the previously shown structural results). We start with a study of the
word problem for automaton groups and semigroups in Section 2.1 and show that the
uniform and non-uniform versions of this problem are PSpace-complete, which proves a
conjecture by Steinberg [Ste15, Question 5] (see also [AIM07, section 2, 6.]) and is related
to a problem by Cain [Cai09, Open problem 3.6]. The basis of this proof is a general
construction to simulate Turing machines in automaton groups, which we also apply to
the so-called compressed word problem. Then, in Section 2.2, we consider a problem
related to the freeness of automaton semigroups and groups: we show that it is impossible
to decide whether a given automaton admits a non-trivial state sequence which acts
trivially. We motivate this problem by reducing it to some other natural problems and
conclude the section with a discussion of why the used constructions cannot be applied
to the freeness problem for automaton semigroups and groups [GNS00, 7.2 b)], which
asks whether a given automaton generates a free automaton structure. In Section 2.3,
we discuss the finiteness problem for automaton structures. We strengthen Gillibert’s
result on the general undecidability in the semigroup case [Gil14] to bi-reversible yet
partial automata. We briefly discuss the problem of extending the presented construction
to inverse semigroups and give a partial result to the finiteness problem for automaton
groups. The last section, Section 2.4, is devoted to the notion of expandable words.
These are words whose orbit size can be increased by appending a suffix. We see that
the expandability of a given word can be decided, even for semigroups, and give a more
efficient algorithm in the group case. In both cases, we also obtain upper bounds on the
length of the orbit increasing suffix. Finally, we apply these results to the important
class of automaton groups of bounded activity. We obtain that the orbit sizes for such
groups can be described using a finite weighted automaton, which allows us to decide
many problems that are open or undecidable in the general case. Most notably, we
can decide the finiteness problem for this class of automaton groups and the problem
asking whether a given automaton acts spherically transitive, which is an open problem
in general [GNS00, 7.2 e) and f)]. In fact, we can even solve the finiteness problem for
finitely generated subgroups in this setting answering [2, Question 3.7] positively.
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8 The reason for
this notation will
become apparent
later.

0 Preliminaries

0.1 Fundamentals and Notation

Words and Alphabets with Involution. An alphabet is a non-empty finite set A. Its
elements a ∈ A are called letters. A finite word (over A) is a sequence w = a1 . . . a` with
a1, . . . , a` ∈ A; its length is |w| = `. The set of finite words over A is denoted by A∗.
It includes, in particular, the empty word ε and we use A+ = A∗ \ {ε} if we want to
exclude it. A right infinite sequence α = a1a2 . . . with a1, a2, · · · ∈ A is an ω-word (over
A). The set of ω-words over A is denoted by Aω. Finally, the generic term word can
refer to both finite words and ω-words, and the set of words over A is A∞ = A∗ ∪Aω. A
subset L ⊆ A∞ is called a language (over A).

While we can concatenate a finite word u ∈ A∗ with any word v ∈ A∞ to obtain a new
word uv, we can only append the empty word to an ω-word α ∈ Aω: αε = α.

For a finite word w = a1 . . . a` with a1, . . . , a` ∈ A, we use ∂w = a` . . . a1 to denote its
reverse.8 Taking the reverse of an ω-word α = a1a2 . . . with a1, a2, · · · ∈ A leads to a left
infinite sequence . . . a2a1 = ∂α. We use A−ω to denote the set of left infinite sequences
over A; however, we will not use the term “word” to refer to such objects in order to
make a clearer distinction.

To denote subsets and elements of A∞, we use some natural and common notation. For a
language L ⊆ A∗ of finite words, we write L+ for L+ = {w1 . . . wi | i > 0, w1, . . . , wi ∈ L}
and L∗ for L∗ = L+ ∪ {ε}. In addition, we apply operators of words also to languages
and write, for example, ∂L for the reverse ∂L = {∂w | w ∈ L} of the language L ⊆ A∞
and KL for the product KL = {uv | u ∈ K, v ∈ L} of two languages K ⊆ A∗ and
L ⊆ A∞. For singleton languages {w}, we sometimes simply write w and, accordingly,
we use w∗ for the set {wi | i ≥ 0} when w is a finite word. We also write wω for the
ω-word arising from concatenating w ∈ A+ infinitely many times with itself. An ω-word
arising in this way, i. e. one of the form wω, is called periodic and one of the form uvω

for u, v ∈ A∗ is called ultimately periodic. Similarly, we write w−ω for the left infinite
sequence . . . ww ∈ A−ω if w is a finite word from A+. Furthermore, for a language L
of finite words, we write Ln for the set {w1 . . . wn | w1, . . . , wn ∈ L}, L≤n for the set
{w1 . . . wi | i ≤ n,w1, . . . , wi ∈ L} and L<n for {w1 . . . wi | i < n,w1, . . . , wi ∈ L}.
A finite word u ∈ A∗ is a prefix of v ∈ A∞ if there is some x ∈ A∞ with v = ux and

Pre v is the language of all finite prefixes of v ∈ A∞. Symmetrically, u ∈ A∗ is a suffix
of v ∈ A∗ ∪ A−ω if there is some x ∈ A∗ ∪ A−ω with xu = v and Suf v is the language
of all finite suffixes of v ∈ A∗ ∪ A−ω. For an ω-word α ∈ Aω, we have, in particular,
Suf ∂α = ∂ Preα. A language L ⊆ A∞ is prefix-closed if we have Prew ⊆ L for all w ∈ L
and it is suffix-closed if we have Suf w ⊆ L for all w ∈ L.
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9 In this context
only, we also al-
low “infinite alpha-
bets”. It is clear
that the definitions
for words and lan-
guages from above
can be extended ac-
cordingly.

For every alphabet A, we define a disjoint copy A = {a | a ∈ A} of A and extend
the notation a into an involution by setting a = a. We write Ã for Ã = A ∪ A and,
finally, extend the involution to finite words over Ã by defining a1 . . . an = an . . . a1 for
a1, . . . , an ∈ Ã. For L ⊆ Ã∗, we let L = {w | w ∈ L} and L̃ = L ∪ L analogously.

Semigroups, Inverse Semigroups, Monoids and Groups. A semigroup S is a set
equipped with a usually implicit associative binary operation (written in infix notation).
An element z ∈ S is called a left zero if we have zs = z for all s ∈ S. Symmetrically, it is
a right zero if we have sz = z for all s ∈ S and it is a zero if it is both a left and a right
zero. A zero in a semigroup is unique if it exists and we can adjoin a new (disjoint) zero
0 to any semigroup S by letting 0s = s0 = 0 = 00 for all s ∈ S; this way, we obtain the
semigroup S0.

An element s ∈ S may have a semigroup inverse; this is an element t ∈ S with sts = s
and tst = t. In general, a semigroup element can have multiple semigroup inverses.
However, if every element of a semigroup S has a unique semigroup inverse, then we
say that S is an inverse semigroup. In this case, we use the notation s to denote the
semigroup inverse of s ∈ S. Idempotents commute in an inverse semigroup; in fact, a
semigroup is inverse if and only if every element has a semigroup inverse and idempotents
commute (see e. g. [How95, Theorem 5.1.1, p. 145]). Because ss and ss are idempotent
for all elements s of an inverse semigroup S, we have st = ts for all s, t ∈ S.
A neutral element of a semigroup S is an element e ∈ S with es = se = s for all

s ∈ S. If a semigroup S contains a neutral element, it is unique and we denote it by 1S ;
furthermore, S is called a monoid in this case. If the semigroup is clear from the context,
we simply write 1 instead of 1S . To a semigroup S, we can adjoin a new (disjoint) neutral
element 1 to obtain the monoid S1 by letting 11 = 1 and 1s = s = s1 for all s ∈ S.
In the case of a monoid M , it makes sense to consider a different notion of inverses:

an element s ∈ M is (group) inverse to an element t ∈ M if we have st = ts = 1. A
(group) inverse is always unique and every (group) inverse is a semigroup inverse but
the converse does not hold. To emphasize the difference between the two concepts of
inverses, we sometimes use s−1 to denote the (group) inverse of s. If every element of a
monoid M has a (group) inverse, then M is a group. However, an inverse monoid is a
monoid that is inverse in the semigroup sense. In this work, we use algebraic structure as
an umbrella term for (inverse and non-inverse) semigroups, monoids and groups.

An element s of a semigroup S has torsion if there are i, j > 0 with i 6= j but si = sj.
The corresponding notion for groups is the order of a group element g. It is the smallest
number i > 0 such that gi = 1; if not such number exists, the order of g is infinite. It is
easy to see that an element of a group has torsion if and only if it has finite order. A
semigroup is a torsion semigroup (or group) if all its elements have torsion. If it does
not contain an element of torsion, it is called torsion-free.
The set of non-empty finite words Q+ over some (possibly infinite) set Q forms the

free semigroup over Q, whose operation is the concatenation of finite words.9 If we also
add the empty word, we obtain the free monoid over Q. We obtain the free inverse
semigroup and the free inverse monoid (over Q) from Q̃∗ and Q̃+ if we additionally let
www = w for all w ∈ Q̃∗. To obtain the free group F (Q) (over Q) from Q̃∗, it suffices to
let aa = aa = 1 for all a ∈ Q.

6
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10 For structures
with inverses, this
means, of course,
that s is also a gen-
erator in the semi-
group sense.

A semigroup S is generated by T ⊆ S if every element of s can be written as a product
of elements of T . In the case of a monoid M , we also allow the empty product for the
neutral element. An inverse semigroup, inverse monoid or group is generated by some T
if it is generated by T̃ as a semigroup or a monoid, respectively. If an algebraic structure
S is generated by some set T ⊆ S, there is a natural surjective semigroup homomorphism
π from T+, T ∗, T̃+ or T̃ ∗, respectively, onto S. We write u = v in S for two finite words
u, v (over T or T̃ ) if we have π(u) = π(v); if we have π(u) 6= π(v), we write u 6= v in S,
accordingly. Finally, an algebraic structure is finitely generated if it is generated by some
finite set and it is monogenic if it is generated10 by a singleton set {s}.

Numbers, Sets and Functions. For numbers, we will use common notation. For
example, we use Z for the set of integers and N for the set of natural numbers, which
contains zero.

Concerning the notation for sets, we use A]B to denote the disjoint union of two sets
A and B. To indicate that f is a partial function f from A to B, we write f : A ⇀ B
and, to indicate that f is total, we write f : A → B. The composition of f : A ⇀ B
and g : B ⇀ C is g ◦ f : A ⇀ C with (g ◦ f)(a) = g(f(a)). Here, we have used the
convention that f(a) and every term involving f(a) is undefined if f is undefined on
a ∈ A. This means, for example, that g(f(a)) can be undefined even if g is a total
function, which is in line with the normal rules of partial function composition. The
domain of a partial function f : A ⇀ B is dom f = {a | f(a) defined}; its image is
im f = {f(a) | f(a) defined}. The partial functions A ⇀ A form the semigroup P(A)
with composition as its multiplication.

A partial function f : A ⇀ B is one-to-one if f(a1) = f(a2) implies a1 = a2 for all
a1, a2 ∈ dom f . We use the term injective exclusively for total one-to-one functions.
A partial function f : B ⇀ A is semigroup inverse to f : A ⇀ B if im f = dom f ,
dom f = im f and f(f(f(a))) = f(a) for all a ∈ dom f as well as f(f(f(b))) = f(b) for all
b ∈ dom f . The set of one-to-one partial functions A ⇀ A forms the so-called symmetric
inverse semigroup I (A). It is an inverse subsemigroup of P(A).

Actions. A partial left action of a semigroup S on a set X is a homomorphism α :
S → P(X), s 7→ αs and αs is (simply) called the action of s in this case. The partial
left action α is faithful if α is injective and it is a total partial left action (on X), or
simply a left action (on X), if all αs for s ∈ S are total functions X → X. In addition to
(partial) left actions, there are also (partial) right actions: a partial right action is an
anti-homomorphism α : S →P(X), s 7→ αs, i. e. we require α(st) = α(t) ◦ α(s). In the
same way as with (partial) left actions, the partial right action is faithful if α is injective,
it is total (on X) if all αs are total functions X → X and a total partial right action (on
X) is a right action (on X). Often, we will use infix notation for actions; i. e. we will for
example write s ◦ x for αs(x) in the case of a (partial) left action or x · s for αs(x) in
the case of a (partial) right action. Throughout this text, we will also encounter special
actions that respect additional structure in S or in X, for example actions of groups
(where α is a group homomorphism to the set of permutations over X) or actions of
semigroups on semigroups (where α is a semigroup homomorphism to the endomorphism
monoid of a semigroup).
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11 Missing details
can be found in any
introductory text-
book on the topic
(such as [Pap94]
but also [HU79]).

12 . . . and we will
only encounter it
briefly.

Computability and Complexity Theory. We will need some basic notions from com-
putability and complexity theory, which the reader is assumed to be familiar with.11
Required knowledge is a basic understanding of deterministic and nondeterministic Turing
machines and algorithms as well as the concept of decidable and undecidable decision
problems. To show the undecidability of a problem, we usually use computable (many-one)
reductions or co-reductions (which are reductions to the complement). Configurations
of (single tape) Turing machines are written as words of the form ∆∗P∆+ where ∆ is
the tape alphabet and P is the state set. Any sequence of such configurations forms a
computation, which may be valid or invalid.

By NSpace(s), we denote the class of problems that can be solved by a nondeterministic
Turing machine with space bound s. Furthermore, we denote the class of problems
solvable by deterministic Turing machines in logarithmic space by LogSpace. For the
classes PSpace and ExpSpace of problems solvable in polynomial and exponential
space, respectively, it does not matter whether deterministic or nondeterministic Turing
machines are considered (by Savitch’s theorem, see e. g. [Pap94, Theorem 7.5]). The only
complexity class with a time bound that we will encounter12 is NP, the class of problems
solvable by nondeterministic Turing machines in polynomial time. Whenever we talk
about a hard or complete problem for a complexity class, we define this with respect to
(many-one) LogSpace-reductions.

Finally, we make lax use of Landau O-notation (even in multiple variables) but do not
go into the formal details.

0.2 Automata, Constructions and Structures

0.2.1 Automata

Automata. The most central notion in this work is that of an automaton. An automaton
is a triple T = (Q,Σ, δ) where Q and Σ are alphabets and δ is a relation δ ⊆ Q×Σ×Σ×Q.
To distinguish Q and Σ, we call Q the state set of T and Σ its (input and output) alphabet.
Accordingly, the elements of Q are called states and only the elements of Σ are called
letters in this context. To distinguish the elements in Q∞ from those in Σ∞, we will
usually refer to the former as state sequences and only to the latter as words. Finally,
the elements of δ are called transitions and, in this context, we use the more graphical
notation p qa/b for the tuple (p, a, b, q) ∈ Q × Σ × Σ ×Q. Additionally, we use the
common way of depicting automata, where

p q
a/b

indicates a transition p qa/b .

Remark 0.2.1.1. It would actually be more precise to describe automata as finite-state,
letter-to-letter transducers with coinciding input and output alphabets. However, the
term “automaton” is the standard term used in the setting of this work.

8
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13 We will mostly
be dealing with
deterministic au-
tomata. However,
it is important to
emphasize that we
do not require S-
automata to be
complete.

On a few occasions, we will also talk about automata without output. In these cases,
we will use the term acceptor to distinguish the two concepts. However, we will encounter
acceptors only briefly and, thus, do not define them formally.

Properties of Automata. Let T = (Q,Σ, δ) be an automaton. If all sets

δp,a = {p qa/b ∈ δ | b ∈ Σ, q ∈ Q}

with p ∈ Q and a ∈ Σ contain at most one element, we say that T is deterministic. If
they all contain at least one element, we call T complete. If all the sets

δp,b = {p qa/b ∈ δ | a ∈ Σ, q ∈ Q}

with p ∈ Q and b ∈ Σ contain at most one element, then T is invertible. Finally, T is
reversible if all sets

δa,q = {p qa/b ∈ δ | p ∈ Q, b ∈ Σ}

with a ∈ Σ and q ∈ Q contain at most one element (i. e. if T is co-deterministic with
respect to the input) and it is inverse-reversible if all sets

δb,q = {p qa/b ∈ δ | p ∈ Q, a ∈ Σ}

with b ∈ Σ and q ∈ Q contain at most one element (i. e. if T is co-deterministic with
respect to the output). A reversible and inverse-reversible automaton is called bi-reversible.

Remark 0.2.1.2. Often, bi-reversible automata are defined to also be invertible. Here,
we will not make this requirement but, in most cases, we will only consider bi-reversible
automata that also happen to be invertible anyway. Therefore, no confusion should arise.

Certain combinations of the above properties play an important role for the semantics
of automata. Therefore, we give them special names: an S-automaton is a deterministic
(but not necessarily complete) automaton,13 an S-automaton is an inverse S-automaton
and a G-automaton is a complete S-automaton (see Table 0.1).

automaton properties generated structure
S-automaton deterministic (partial) automaton semigroup
complete S-automaton deterministic,

complete
complete automaton semigroup

S-automaton deterministic,
invertible

automaton-inverse semigroup/
inverse automaton semigroup

G-automaton deterministic,
complete,
invertible

automaton group

Table 0.1: S-automata, S-automata and G-automata compared
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14 Cross diagrams
seem to have
been introduced
in [Akh+12,
p. 1250052-16]
where the authors
connect them to
the square dia-
grams of [GM05].

Cross Diagrams. We use cross diagrams14 to indicate transitions in automata. To
indicate that an automaton T = (Q,Σ, δ) has a transition p qa/b ∈ δ, we use the cross
diagram

a

p q

b .

Multiple small cross diagrams can be combined into larger ones. In this way, the cross
diagram

a0,1 . . . a0,m
q1,0 q1,1 . . . q1,m−1 q1,m

a1,1 a1,m...
...

...
...

an−1,1 an−1,m
qn,0 qn,1 . . . qn,m−1 qn,m

an,1 . . . an,m

states that T contains the transitions qi,j−1 qi,j
ai−1,j/ai,j for all 1 ≤ i ≤ n and

1 ≤ j ≤ m. Often, we will omit unnecessary names for intermediate states and letters
from cross diagrams. Additionally, we also use an abbreviated notation: the cross diagram

u = a0,1 . . . a0,m
p = qn,0 . . . q1,0 q = qn,m . . . q1,m

v = an,1 . . . an,m

is an abbreviated version of the larger cross diagram given above. It is important to
note the order in which the states appear in the abbreviated cross diagram: q1,0 is the
last letter of q but it is the first one in the cross diagram above. This somewhat reverse
notation will makes more sense shortly; it comes from the fact that we use left actions
instead of right actions.

Automaton Actions. If T = (Q,Σ, δ) is an S-automaton, then, for every p ∈ Q+ and
u ∈ Σ+, there is at most one v ∈ Σ+ and q ∈ Q+ such that the cross diagram

u

p q

v

holds and we define p ◦ u = v and p · u = q. If no such v ∈ Σ+ and q ∈ Q+ exist, we say
that p ◦ u and p · u are undefined. Additionally, we let ε ◦ u = u, p ◦ ε = ε, p · ε = p and
ε ·u = ε. By definition, we have qp◦u = q ◦p◦u (or both undefined) and p ·uv = p ·u ·v
(or both undefined). Thus, we have effectively defined a partial left action of Q∗ on the
set Σ∗ (using ◦), which we call the partial action of T , and a partial right action of Σ∗
on the set Q∗ (using ·), which we call the dual partial action of T . Since the former is
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length-preserving and prefix compatible, it extends naturally into a partial action of Q∗
on Σ∞. In the same way, the latter extends into a partial action of Σ∗ on Q∗ ∪ Q−ω.
Usually, when we use the action notations p ◦ u and u · p, the automaton defining these
action will be clear from the context. If it is necessary to state it explicitly, we will use
subscript notation, i. e. we will write p ◦T u and u ·T p.

Remark 0.2.1.3. We will follow the convention that common word operations take
precedence over the two partial automaton actions. For example ∂q ◦ u means (∂q) ◦ u
instead of ∂(q ◦ u). Similarly, if we write Suf q ◦ u, we mean the set (Suf q) ◦ u =
{p ◦ u | p ∈ Suf q,p ◦ u defined} instead of the set Suf(q ◦ u). This allows us to use fewer
parentheses.

Example 0.2.1.4 (“The Adding Machine”). The automaton

q id1/0
0/1 0/0

1/1

is known as the adding machine. It is deterministic, complete and invertible and, thus, a
G-automaton. However, it is neither reversible nor inverse-reversible.

The action of id on Σ∞ is indeed the identity mapping. To understand the action of q,
it is useful to first look at an example. We have the cross diagram

0 0 0
q id id id

1 0 0
q q id id

0 1 0
q id id id

1 1 0
q q q id

0 0 1
.

We can interpret the input and output words in the above cross diagrams as reverse/least
significant bit first binary numbers (of length three). The action on q on these binary
numbers is now an increment. In fact, if we denote by ∂ binn ∈ {0, 1}ω the reverse/least
significant bit first binary representation of n ∈ N (of infinite length/with infinitely many
trailing zeros), then we have qi ◦ ∂ binn = ∂ bin(n+ i) for all n, i ∈ N.
Regarding the dual action, we clearly have id ·u = id for all u ∈ {0, 1}∗ as well as

q · u = id for all u ∈ {0, 1}∗ \ 1∗ and q · 1` = q for all ` ∈ N.

0.2.2 Automaton Constructions

Before we have a closer look at the semantics of automata and the algebraic structures
they generate, we will first introduce some frequently used automaton constructions.

11
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T is . . . ⇐⇒ ∂T is . . .
deterministic deterministic

complete complete
invertible reversible

inverse-reversible inverse-reversible

Table 0.2: Properties of T and ∂T

Union Automata. For two automata T1 = (Q1,Σ1, δ1) and T2 = (Q2,Σ2, δ2), we define
their (disjoint) union automaton as T1 ]T2 = (Q1 ]Q2,Σ1 ∪Σ2, δ1 ] δ2). If T1 and T2 use
the same alphabet Σ = Σ1 = Σ2, the union automaton is deterministic/complete/invert-
ible/reversible if T1 and T2 are both also deterministic/complete/invertible/reversible.

Composition and Power Automata. Now, let T1 = (Q1,Σ, δ1) and T2 = (Q2,Σ, δ2)
be two automata over the same alphabet. Their composition is the automaton T2T1 =
(Q2Q1,Σ, δ2δ1) where Q2Q1 = {q2q1 | q1 ∈ Q1, q2 ∈ Q2} is the Cartesian product of Q2
and Q1 and the transition are given by

δ2δ1 = {p2p1 q2q1
a/c | p1 q1

a/b ∈ δ1, p2 q2
b/c ∈ δ2}.

Obviously, the composition of two deterministic/complete/invertible automata is itself
deterministic/complete/invertible.

For S-automata, the partial action of p2p1 ∈ Q2Q1 is the same regardless of whether it
is seen as a state of T2T1 or as a state sequence over Q1 ]Q2, i. e. we have p2p1 ◦T2T1 u =
p2 ◦T2 p1 ◦T1 u (or both sides undefined) for all u ∈ Σ∞.

An important application of the composition of automata is the k-fold power automaton.
For an automaton T , we let T 1 = T and T k = T k−1T . Typically, this construction will
allow us to consider state sequences q ∈ Qk as single states of the power automaton while
maintaining the same action.

Dual Automata. Another automaton construction is the dual automaton, in which
states and letters change roles. Formally, the dual automaton of an automaton T =
(Q,Σ, δ) is the automaton ∂T = (Σ, Q, ∂δ) whose transitions are given by

∂δ = {a bp/q | p qa/b ∈ δ}.

Defined in this way, taking the dual automaton is an involution: ∂∂T = T . It maintains
determinism, completeness and inverse-reversibility of the automaton but it swaps the
roles of invertibility and reversibility (see Table 0.2). Thus, the dual of an S-automaton is
again an S-automaton and the dual of a bi-reversible G-automaton is again a bi-reversible
G-automaton but the dual of a general G-automaton is a reversible and complete S-
automaton.

To simplify our notation, we write u ◦∂ q and u ·∂ q for the partial actions of ∂T if the
automaton is clear from the context (and if T is an S-automaton). When we pass from
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15 Recall from Re-
mark 0.2.1.3 that
∂ has higher prece-
dence than the par-
tial automaton ac-
tion ◦.

16 A term already
prominently used
in the title of this
work.

T to its dual ∂T , we have to mirror the cross diagrams at the north-west to south-east
diagonal, i. e. we have a cross diagram

u

p q

v

in T if and only if we have the cross diagram
∂p

∂u ∂v

∂q

in ∂T .

Thus. we have p ◦ u = v ⇐⇒ ∂u ·∂ ∂p = ∂v and p · u = q ⇐⇒ ∂u ◦∂ ∂p = ∂q if T is
an S-automaton15 (in particular, the left hand sides are defined if and only if the right
hand sides are).

Inverse Automata. Finally, we can also take the inverse of an automaton. Let T =
(Q,Σ, δ) be an automaton. Then, its inverse is the automaton T = (Q,Σ, δ) whose
transitions are given by

δ = {p qb/a | p qa/b ∈ δ}.

The inverse T is deterministic if and only if T is invertible. Accordingly, the inverse
of an S-automaton is again an S-automaton and the same is true for G-automata.
Additionally, taking the inverse is an involution: T = T . When dealing with inverse
automata, we will usually also be dealing with the union T̃ = T ] T of T and its inverse
T .

We will not introduce additional notation for the partial actions induced by the inverse
of an invertible automaton T . Since the states Q of T are disjoint to those of T , the
action is clear from the context anyway. We have a cross diagram

u

p q

v

in T if and only if we have the cross diagram
v

p q

u

in T .

In other words: when passing from T to T , we have to mirror the cross diagram horizontally
and take the inverse of the state sequences. Accordingly, we have p◦u = v ⇐⇒ p◦v = u
or, put another way, pp◦u = u for all u such that p◦u is defined (if T is an S-automaton).
Example 0.2.2.1. The inverse of the adding machine from Example 0.2.1.4 is

q id0/1
1/0 0/0

1/1 .

The action of id is the same as the action of id. The action of q, on the other hand, can
be considered as a decrement.

0.2.3 Automata and Algebraic Structures
We are now ready to define a few closely related concepts that play a central role in this
work: we will define (complete and partial) automaton semigroups and monoids, inverse
automaton semigroups and monoids, and automaton groups. As an umbrella term for
these concepts, we speak of automaton structures.16
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Automaton Semigroups and Automaton Monoids. When we have an S-automaton
T = (Q,Σ, δ), it induces a partial action of the state sequences from Q+ on the set of
words Σ∞. The idea is to quotient Q+ in such a way that the action becomes faithful.

Formally, we define the relation =T ⊆ Q∗ ×Q∗ over the state sequences by

p =T q ⇐⇒ ∀w ∈ Σ∗ : p ◦ w = q ◦ w (or both undefined).

This is equivalent to defining it via p =T q ⇐⇒ ∀w ∈ Σ∞ : p ◦ w = q ◦ w (or both
undefined).
Clearly, =T is an equivalence and it is also easy to see that it is a congruence. We

will write [q]T for the congruence class of q ∈ Q∗ with respect to =T . The semigroup
generated by the S-automaton T is S (T ) = Q+/=T and a semigroup is an automaton
semigroup if it is generated by some S-automaton. Analogously, the monoid generated by
T is M (T ) = Q∗/=T and a monoid is an automaton monoid if it is generated by some
S-automaton. Between the semigroup and the monoid generated by some S-automaton,
there is an obvious connection, which we will often use implicitly:

Fact 0.2.3.1. Let T = (Q,Σ, δ) be an S-automaton. If there is some q ∈ Q+ with
q =T ε, then M (T ) is (isomorphic to) S (T ). If there is no such state sequence, then
M (T ) is (isomorphic to) S (T )1.

The Functional View. Sometimes, it will be more useful to consider automaton
semigroups and monoids as subsemigroups of P(Σ∗) = {f | f : Σ∗ ⇀ Σ∗} or of
P(Σ∞) = {f | f : Σ∞ ⇀ Σ∞}.
If T = (Q,Σ, δ) is an S-automaton, every state sequence q ∈ Q∗ induces a partial

function q ◦ : Σ∞ ⇀ Σ∞ mapping u ∈ Σ∞ to q ◦ u. Since these functions are given by a
partial action, the composition of q◦ with p◦ is qp◦ and, since they are prefix-compatible,
two maps p◦ : Σ∞ ⇀ Σ∞ and q◦ : Σ∞ ⇀ Σ∞ coincide if and only if their restrictions into
partial maps Σ∗ ⇀ Σ∗ do. We can take the closure Q+ ◦ = {q ◦ | q ∈ Q+} of these maps
under composition, which forms a subsemigroup of P(Σ∞) (or P(Σ∗), respectively).
It is not difficult to see that this subsemigroup is isomorphic to S (T ). Similarly, the
monoid generated by T is isomorphic to Q∗ ◦ = {q ◦ | q ∈ Q∗}.

Complete Automaton Semigroups and Complete Automaton Monoids. If an automa-
ton semigroup is generated by a complete S-automaton, we call it a complete automaton
semigroup and the definition of complete automaton monoids is analogous. This does
not only reflect the completeness of the generating automaton: if we consider a complete
automaton semigroup or monoid under the functional view, then all maps q ◦ with q ∈ Q∗
are in fact total maps Σ∞ → Σ∞.
Remark 0.2.3.2. In the literature, automaton semigroups are usually defined only us-
ing complete automata, i. e., there, the term “automaton semigroup” implies that the
generating automaton is complete. We will discuss the motivation to also consider
partial automata and some questions about the difference between these two concepts in
Section 1.1.
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The term “automaton monoid”, on the other hand, is not widely used in the literature
anyway. Sometimes the term “automaton semigroup” even refers to the generated monoid.
In this work, however, we will make a clear distinction between the two concepts.

Inverse Automaton Semigroups and Inverse Automaton Monoids. The functional
view of automaton semigroups and monoids comes in particularly handy if we consider
invertible automata. If T = (Q,Σ, δ) is an S-automaton, then every function q ◦ with
q ∈ Q∗ is one-to-one. This implies that the semigroup or monoid generated by T (under
the functional view) is a (not necessarily inverse) subsemigroup of the symmetric inverse
semigroup I (Σ∞) (or I (Σ∗)). If we now also consider the inverse automaton, then we
obtain that the semigroup generated by T̃ = T ] T is an inverse semigroup. We call it
the inverse semigroup generated by T and denote it by S (T ) = S (T̃ ). A semigroup
is an automaton-inverse semigroup if it is the inverse semigroup generated by some S-
automaton. In the same way, the inverse monoid generated by T is M (T ) = M (T̃ ) and
any monoid generated in this way is an automaton-inverse monoid. Note that, a priori,
there is a difference between automaton-inverse semigroups or monoids and automaton
semigroups or monoids that happen to be inverse (see Example 1.3.2.1). However, we
will show in Theorem 1.3.2.6, that both concepts describe the same class of semigroups or
monoids. Therefore, we will usually use the simpler terms “inverse automaton semigroup”
and “inverse automaton monoid” unless the distinction is of importance.
Remark 0.2.3.3. We will discuss inverse automaton semigroups and monoids in more
detail in Section 1.3. There, the reader may also find some examples of S-automata and
their generated inverse semigroups and monoids.

Automaton Groups. If we take a complete S-automaton T = (Q,Σ, δ), then all
functions q ◦ with q ∈ Q∗ are total. If the S-automaton is invertible, then they
are one-to-one. If we combine these two properties, i. e. if T is a G-automaton, we obtain
that the functions are actually bijections Σ∞ → Σ∞ (or Σ∗ → Σ∗). Thus, in this case,
the inverse monoid M (T ) generated by T (under the functional view) is a group or,
more precisely, it is a subgroup of the symmetric group over Σ∞ (or Σ∗). Additionally,
we have that S (T ) is (isomorphic to) M (T ) because we have qq =T̃ ε for any q ∈ Q.
To emphasize that we are dealing with a group, we write G (T ) for M (T ) or S (T ) if
T is a G-automaton and say that G (T ) is the group generated by T . Accordingly, an
automaton group is a group generated by some G-automaton.
Remark 0.2.3.4. As with inverse automaton semigroups, there is a difference in the
definition between automaton groups and automaton semigroups that happen to be
groups. However, it turns out that also these two classes coincide. For the case of complete
automaton semigroups, this has already been shown by Cain [Cai09, Proposition 3.1]
and, for the case of partial automata, we will show this in Corollary 1.3.2.7.

Example 0.2.3.5. Recall from Example 0.2.1.4 that the action of q in the adding
machine T can be considered as an increment on reverse/least significant bit first binary
numbers: qi ◦ ∂ binn = ∂ bin(n + i) for all i, n ∈ N. Thus, we have qi 6=T qj for i 6= j.
Additionally, we have q id =T id q =T q. Thus, the semigroup generated by the adding

15



0 Preliminaries

machine is (isomorphic to) the monogenic free monoid q∗. Since id acts as the identity
(i. e. since we have id =T ε), the monoid generated by T coincides with (or, more precisely,
is isomorphic to) the semigroup generated by T . This turns the monogenic free monoid
q∗ into a complete automaton semigroup (and a complete automaton monoid).
The (semigroup) generators of the group G (T ) under the functional view are the

increment q◦, the identity id ◦and the decrement q◦, where we have qq◦= qq◦= id ◦= ε◦,
which means that G (T ) is the free group in one generator.

0.3 Automaton Actions

0.3.1 The Dual Action

We have used the action given by an S-automaton to define algebraic structures. In this
subsection, we will have a closer look at the dual partial action given by an S-automaton.

Dual Action on an Automaton Semigroup. The dual ∂T of an S-automaton T =
(Q,Σ, δ) is also an S-automaton and, thus, generates a semigroup. This semigroup,
however, is not an algebraic property of S (T ) but rather a property of the presentation
via T . However, the dual partial action of Σ∗ on Q∗ induced by T is compatible with the
structure of S (T ) and M (T ).

Fact 0.3.1.1. Let T = (Q,Σ, δ) be an S-automaton and let p, q ∈ Q∗ with p =T q.
Then, we have p · w =T q · w for all w ∈ Σ∗.

Proof. For w = ε, there is nothing to show. If w = w′a for some a ∈ Σ, then we have
p′ = p · w′ =T q · w′ = q′ by induction and we have to show p′ · a =T q′ · a. Let u ∈ Σ∗
be arbitrary. We have (p′ ◦ a)(p′ · a ◦ u) = p′ ◦ au = q′ ◦ au = (q′ ◦ a)(q′ · a ◦ u) and, thus,
p′ · a ◦ u = q′ · a ◦ u.

This allows us to extend our notations for the dual partial action of Σ∗ on Q∗ to
elements of S (T ) and M (T ): for q ∈ Q∗ and u ∈ Σ∗, we let [q]T · u = [q · u]T (if q · u is
defined; otherwise, we let [q]T · u be undefined as well). This way, we can write s · u for
an abstract element s ∈ S (T ).

The Functional View of the Dual. We can extend the idea of the functional view to
the dual partial action. For an S-automaton T = (Q,Σ, δ), every finite word w ∈ Σ∗
partially acts on Q∗∪Q−ω. Thus, it induces a partial function ·w : Q∗∪Q−ω ⇀ Q∗∪Q−ω,
q 7→ q · w. By the definition of the dual automaton, · w can be obtained from w ◦∂ by
taking the composition with the reversing operator ∂ and we can observe that · w is
suffix-compatible and length-preserving.
If T is complete, the functions · w with w ∈ Σ∗ are total and, just like the functions

q ◦ with q ∈ Q∗ are permutations of Σ∞ if the automaton is invertible and complete
(i. e. a G-automaton), the functions ·w with w ∈ Σ∗ are permutations of Q∗ ∪Q−ω if the
automaton is reversible and complete. More precisely, we have:
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Fact 0.3.1.2. If T = (Q,Σ, δ) is a complete and reversible S-automaton, all functions
·w with w ∈ Σ∗ mapping q to q ·w are length-preserving, suffix-compatible permutations
of Q∗ ∪Q−ω.

Proof. The fact follows immediately if we consider the dual automaton: we have q · w =
∂(∂w ◦∂ ∂q) and ∂w ◦∂ is a length-preserving, prefix-compatible permutation of Q∞ since
∂T is a G-automaton.

0.3.2 Stabilizers, Orbits and Orbital Graphs
Stabilizers. For an S-automaton T = (Q,Σ, δ) and a word u ∈ Σ∞, the sets

StabT (u) = {q ∈ Q+ | q ◦ u = u (defined, in particular)}
and

Stab1
T (u) = {q ∈ Q∗ | q ◦ u = u (defined, in particular)} = StabT (u) ∪ {ε}

contain the state sequences which stabilize u. Obviously, StabT (u) and Stab1
T (u) are

closed under product, i. e., if one of them contains p and q, it will also contain pq. Thus,
the image of StabT (u) in S (T ) forms a subsemigroup of S (T ) and Stab1

T (u) forms a
submonoid in M (T ). If T is invertible, then StabT̃ (u) is closed under taking the inverse,
i. e. we have q ∈ StabT̃ (u) for all q ∈ Q̃+ with q ∈ StabT̃ (u). Accordingly, Stab1

T̃
(u)

forms a subgroup in G (T ) if T is a G-automaton. These substructures are called the
(semigroup, monoid and group) stabilizer of u (respectively).

K-Orbits, Orbits and Orbital Graphs. Let T = (Q,Σ, δ) be an S-automaton. For
K ⊆ Q∗, the K-orbit of a word w ∈ Σ∞ (under the action of T ) is the set

K ◦ w = {q ◦ w | q ∈ K, q ◦ w defined}.

The Q∗-orbit of a word w is simply called the orbit of w.
The orbit of a word has a natural graph structure: the orbital graph of a word w ∈ Σ∞

is a directed graph whose node set is Q∗ ◦ w and whose edges are given by

{q ◦ u u
q | u ∈ Q∗ ◦ w, q ◦ u defined}.

To avoid notational overhead we will use Q∗ ◦ w to denote both the orbit of w and the
orbital graph of w. It will be clear from the context whether we refer to the orbit as a
set or to the orbital graph. Clearly, the orbital graph Q∗ ◦ w is connected, in the sense
that every node can be reached from its initial node w.
Remark 0.3.2.1. Because we have defined automaton semigroups using a left action, our
orbital graphs are somewhat “backwards”. For example, (if defined) the node qn . . . q1 ◦w
with q1, . . . , qn ∈ Q can be reached from w by a path whose first edge is labeled by q1
and whose last edge is labeled by qn. Thus, it is sometimes useful to write paths (and
edges) in orbital graphs from right to left, i. e. we denote the path mentioned above by

qn . . . q1 ◦ w . . . q1 ◦ w w
qn q2 q1 .

However, at other times, we will also write paths (and edges) in the normal way from
left to right.

17
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17 In fact, π is
the order of the
map as an element
of the symmetric
group over P ∗ ◦ w.

18 We will see later
in Subsection 1.4.1
that such a word
exists if and only if
G (T ) is infinite.
19 If no such state
exists, we can sim-
ply add it to the
automaton without
altering the gener-
ated group.

Orbits of Invertible Automata. If T = (Q,Σ, δ) is invertible, we can also take its
inverse into consideration. In this case, the orbital graph Q̃∗ ◦ w of a word w ∈ Σ∞
(under the action of T̃ = T ] T ) is an undirected graph in the sense that, for every edge
v u

q , we also have the back edge v u
q .

In the case of a G-automaton, it turns out that the orbits Q∗ ◦w and Q̃∗ ◦w are either
equal (if they are finite) or they are both infinite. This is a well-known connection that
we state in the following fact. In fact, we extend it here to finitely generated subgroups.

Fact 0.3.2.2 (generalization of [3, Lemma 2.5]). Let T = (Q,Σ, δ) be a G-automaton
and let P ⊆ Q̃∗ be finite.

Then, for any w ∈ Σ∞, we have

P ∗ ◦ w = P̃ ∗ ◦ w or |P ∗ ◦ w| =
∣∣∣P̃ ∗ ◦ w∣∣∣ =∞.

Proof. By taking the union with suitable powers of T , we can, without loss of generality,
assume P = P ⊆ Q̃. By definition, we have P ∗ ◦ w ⊆ P̃ ∗ ◦ w. Thus, if P ∗ ◦ w is infinite,
P̃ ∗ ◦ w must also be infinite.

Thus, let P ∗◦w be finite. Every p ∈ P induces a mapping P ∗◦w → P ∗◦w, q◦w 7→ pq◦w.
This mapping is total because T is complete and it is injective because T is invertible.
Since P ∗ ◦w is of finite size, the mapping must also be surjective for reasons of cardinality
and is, thus, a permutation of the finite set P ∗ ◦ w. Therefore, there must be some
natural number17 π ≥ 1 such that we have pπ ◦ u = u for all u ∈ P ∗ ◦ w. We obtain
p ◦ u = ppπ ◦ u = pπ−1 ◦ u for all u ∈ P ∗ ◦ w. This means that every node in the orbital
graph Q̃∗ ◦w that can be reached from w by a path with a label in P̃ ∗ can also be reached
from w in Q∗ ◦w by a path with a label in P ∗ because we can replace edges labeled by p
by paths labeled by pπ−1.

The completeness of the automaton is essential to the last proof. In fact, also considering
the inverse can indeed increase the orbit size for (non-complete) S-automata.

Counter Example 0.3.2.3 (compare to [3, Lemma 2.6]). Let T = (Q,Σ, δ) be a G-
automaton such that there is some18 α ∈ Σω with |Q∗ ◦ α| = |Q̃∗ ◦ α| = ∞. Without
loss of generality,19 we may assume that there is some state q1 ∈ Q whose action is the
identity on Σ∞. Let Q′ = {q′ | q ∈ Q} be a disjoint copy of Q and let Σ̂ = {â | a ∈ Σ} be
a disjoint copy of Σ. We define T ′ = (Q′,Σ] Σ̂, δ′) as the automaton with the transitions

δ′ = {p′ q′a/b̂ | p qa/b ∈ δ},

i. e. every state acts in the same way as before but, additionally, adds a hat decoration to
every output letter. Certainly, T ′ is still invertible but not complete anymore. We have
that q′ ◦ w is undefined for any w ∈ (Σ ] Σ̂)∞ that contains at least one letter from Σ̂
and for all q′ ∈ Q′. Thus, the partial action of any state sequence from (Q′)∗ containing
more than a single state is undefined on all words (except the empty one). Therefore,
we have |(Q′)∗ ◦ w| ≤ |Q′|+ 1 = |Q|+ 1 for all w ∈ (Σ ] Σ̂)∞. A symmetric argument
shows that |(Q′)∗ ◦ w| must also be bounded by |Q|+ 1. Thus, all purely positive orbits
(Q′)∗ ◦ w and all purely negative orbits (Q′)∗ ◦ w are finite.

18
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On the other hand, the action of q1
′ is to remove the hat decoration from every letter.

Therefore, the partial action of q1
′q′ is the same as the action of q ∈ Q on words from

Σ∞. Accordingly, we have Q∗ ◦ α ⊆ (Q̃′)∗ ◦ α and, thus, that (Q̃′)∗ ◦ α is of infinite size.

L-Dual Orbits and Dual Orbits. An S-automaton T = (Q,Σ, δ) also induces the dual
partial action of Σ∗ on Q∗∪Q−ω, for which we can define an orbit as well. For a language
L ⊆ Σ∗, the L-dual orbit of a sequence q ∈ Q∗ ∪Q−ω (with respect to T ) is

q · L = {q · u | u ∈ L, q · u defined}.

Symmetrically to (normal) orbits, the Σ∗-dual orbit of q is simply called the dual orbit
of q.

The dual orbit of a state sequence is closely related to its orbit under the action of the
dual; in fact, they are in bijection by taking the reverse. This can easily be seen as we
only have to mirror the cross diagrams if we pass to the dual automaton.

Fact 0.3.2.4. Let T = (Q,Σ, δ) be an S-automaton and let q ∈ Q∗ ∪Q−ω. The map

q · Σ∗ → Σ∗ ◦∂ ∂q
q · u 7→ ∂(q · u) = ∂u ◦∂ ∂q

is a bijection.

By Fact 0.3.1.1, the S-automaton T also induces a (dual) partial action of Σ∗ on
S (T ). This allows us to also define the dual orbit of a semigroup element s ∈ S (T ). It
is

s · Σ∗ = {s · u | u ∈ Σ∗, s · u defined}.
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1 Structure Theory

1.1 Partial and Complete Automata
With our definition, an automaton semigroup is generated by a partial and, thus, possibly
non-complete automaton. In the literature, the notion of automaton semigroups is often
defined using complete automata only. However, there are reasons for allowing partial
instead of only complete automata. First of all, it is a natural notion: while group
actions need to be total to maintain the group notion of invertibility, there is no such
requirement for semigroups. In fact, partial actions are essential for the study of inverse
semigroups and, using partial automata, we are able to define the notion of inverse
automaton semigroups (which we will discuss more thoroughly in Section 1.3). Inverse
automaton semigroups are interesting because they bridge the gap between automaton
semigroups and automaton groups. This idea of bridging the gap has turned out to be
also interesting algorithmically as we will see later on in Section 2.1 and Section 2.3.

Additionally, there does not seem to be a good reason not to take possibly non-complete
automata into consideration. Usually, it turns out that a result holding for complete
automaton semigroups can also be shown for (partial) automaton semigroups. In fact,
we will see in this section that we can show certain closure properties for the class of
(partial) automaton semigroups that are unknown for the class of complete automaton
semigroups.

Every semigroup acts faithfully on itself (after possibly adjoining an identity element)
and, thus, every semigroup element can be represented as a total function from some
set to the same set. This includes semigroups that actually consist of partial functions.
Therefore, for general semigroups, it does not seem to be a restriction to only consider
total functions and one can ask whether the same is true for automaton semigroups:
does the class of (partial) automaton semigroups coincide with the class of complete
automaton semigroups? As every complete automaton semigroup is in particular also a
partial one, we can also formulate this question as:

Open Problem 1.1.0.1. Is every (partial) automaton semigroup a complete automaton
semigroup?

It is this question that motivates our study in this section. First, we will see that
we can go from a (partial) automaton semigroup to a complete one by re-using an
existing left zero or by adjoining a new zero. Then, we will see that the class of (partial)
automaton semigroups is closed under removing a previously adjoined zero. This is
interesting because it answers the analogue of a question asked by Cain [Cai09, Open
problem 5.3] on complete automaton semigroups for the class of partial automaton
semigroups. Additionally, it shows that an adjoined zero can always be assumed to be of
a certain form in the generating automaton; more precisely, it can always be assumed
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to be the partial function that is undefined everywhere (except for ε). The relation
between this closure property and Cain’s question finally leads to a partial answer to
Open Problem 1.1.0.1: the classes coincide if and only if Cain’s question has a positive
answer as we will see at the end of this section.

Attribution. The results in this section are joint work with Daniele D’Angeli and
Emanuele Rodaro [9] and the presentation mostly follows that work (with minor changes
to the proofs). The only exception is Proposition 1.1.1.1, which is generalized to use
left zeros instead of zeros. The idea to pass from a (partial) automaton semigroup to
a complete one by adjoining a zero is already stated in [1, Proposition 1] and a small
oversight in its proof led to some more general results given here (see [9] for a short
discussion of this). Some of the shown constructions are inspired by similar ones given
by Cain [Cai09] and [Cai09, Open problem 5.3] is of particular interest to our discussion.
Other results on partial automaton structures seem only to exist in the context of

inverse semigroups, which we discuss further in Section 1.3.

1.1.1 Re-Using and Adjoining Zeros
Our first result is that we can use an existing zero in an automaton semigroup to complete
the generating automaton. In fact, it suffices to have a left zero.

Proposition 1.1.1.1 (extension of [9, Proposition 6] to left zeros). Every (partial)
automaton semigroup with a left zero is a complete automaton semigroup.

Proof. Let S = S (T ) for some (partial) S-automaton T = (Q,Σ, δ) contain a left zero.
Without loss of generality, we may assume that there is some z ∈ Q which is this left
zero in S (otherwise we can substitute T by T ] T i for a suitable i). We will define a
complete S-automaton T̂ = (Q̂, Σ̂, δ̂) such that Ŝ = S (T̂ ) is isomorphic to S. Let Q̂
be a disjoint copy of Q. Notice that we have ẑ ∈ Q̂. We extend the notation q̂ to finite
words over Q by defining q̂ = q̂n . . . q̂1 for all q = qn . . . q1 ∈ Q∗ (with q1, . . . , qn ∈ Q).
For the alphabet, we choose Σ̂ = Σ] {⊥} for a new symbol ⊥. Finally, the transitions of
T̂ are given by

δ̂ = {p̂ q̂a/b | p qa/b ∈ δ} ∪
{p̂ ẑa/⊥ | p · a undefined} ∪ {p̂ ẑ⊥/⊥ | p ∈ Q},

i. e. we basically have the transitions of T and some additional ones to make T̂ complete.
We will show that mapping q to q̂ for all q ∈ Q+ induces a well-defined isomorphism
ι : S → Ŝ.
To show that ι is well-defined, we have to show that p = q in S implies p̂ = q̂ in Ŝ

for all p, q ∈ Q+. We show the latter by showing p̂ ◦ w = q̂ ◦ w for all p, q ∈ Q+ and
all w ∈ Σ̂∗ using an induction on the length of w. For w = ε, there is nothing to show.
Therefore, let w = au for some a ∈ Σ̂.

The first case is that a = ⊥ 6∈ Σ. By construction of T̂ , we have the cross diagrams

⊥
p̂ ẑ|p|

⊥
and

⊥
q̂ ẑ|q|

⊥
.
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Since z is a left zero in S, we have z|p| = z = z|q| in S. Thus, we obtain p̂ ◦ ⊥u =
⊥(ẑ|p| ◦ u) = ⊥(ẑ|q| ◦ u) = q̂ ◦ ⊥u from induction.
Next, let a ∈ Σ and p ◦ a = q ◦ a (both) defined. Thus, if we write p = pm . . . p1 and

q = qn . . . q1 for p1, . . . , pm, q1, . . . , qn ∈ Q, we have the cross diagrams

a

p1 p′1...
...

...
pm p′m

b

and

a

q1 q′1...
...

...
qn q′n

b

for some p′1, . . . , p′m, q′1, . . . , q′n ∈ Q and b ∈ Σ. By the construction of T̂ , this yields the
cross diagrams

a

p̂1 p̂′1...
...

...
p̂n p̂′n

b

and

a

q̂1 q̂′1...
...

...
q̂n q̂′m

b

.

From p′n . . . p
′
1 = q′m . . . q

′
1 in S, we obtain p̂◦au = b(p̂′n . . . p̂′1◦u) = b(q̂′m . . . q̂′1◦u) = q̂◦au

by induction.
Finally, let a ∈ Σ and let p◦a and q◦a both be undefined. We can factorize p = p3p2p1

for p1,p3 ∈ Q∗ and p2 ∈ Q such that p1 ◦ a is defined but p2p1 ◦ a is not. Factorizing q
in an analogous way, we obtain the cross diagrams

a

p̂1 p̂′1
b

p̂2 ẑ

⊥
p̂3 ẑ|p3|

⊥

and

a

q̂1 q̂′1
c

q̂2 ẑ

⊥
q̂3 ẑ|q3|

⊥

for p′1 = p1 · a, q′1 = q1 · a and some b, c ∈ Σ from the construction of T̂ (similarly to the
cross diagrams above). Because z is a left zero in S, we have z|p3|zp′1 = z = z|q3|zq′1 in
S and obtain p̂ ◦ au = ⊥(ẑ|p3|ẑp̂′1 ◦ u) = ⊥(ẑ|q3|ẑq̂′1 ◦ u) = q̂ ◦ au from induction.
By definition, ι is both a homomorphism and surjective. Therefore, it only remains

to show that ι is injective. Assume that we have p 6= q in S for some p, q ∈ Q+. This
can only be the case if there is some witness u ∈ Σ∗ such that either p ◦ u and q ◦ u are
both defined but their values differ or one of them (say: p ◦ u) is defined while the other
(q ◦ u) is not. In the first case, we have p̂ ◦ u = p ◦ u 6= q ◦ u = q̂ ◦ u and, in the second
case, we have that p̂ ◦ u = p ◦ u does not contain a ⊥ while q̂ ◦ u does. In either case, we
have p̂ 6= q̂ in Ŝ.
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20 The idea is sim-
ilar to the one in
the proof of [Cai09,
Proposition 5.2].

We continue by showing that we can adjoin zeros to semigroups without leaving the
class of (partial) automaton semigroups.20 This is the analogue of [Cai09, Proposition 5.1]
for partial automaton semigroups.

Proposition 1.1.1.2 (see [9, Proposition 7]). For all semigroups S, we have:

S is a (partial) automaton semigroup =⇒ S0 is a (partial) automaton semigroup

Proof. Let S = S (T ) for some S-automaton T = (Q,Σ, δ). Let Q̂ be a disjoint copy
of Q and let q̂ = q̂n . . . q̂1 for all q = qn . . . q1 with q1, . . . , qn ∈ Q. We define the S-
automaton T̂ = (Q̂ ] {z},Σ ] {>}, δ̂) where z is a new state and > is a new letter with
the transitions

δ̂ = {p̂ q̂a/b | p qa/b ∈ δ} ∪ {p̂ p̂>/> | p ∈ Q},

i. e. we basically have the transitions from T and, additionally, loops at every state
mapping > to >. In particular, there are no transitions from z or to z and, therefore,
z ◦ u is undefined on all u ∈ (Σ ] {>})∗ except the empty word. This makes z a zero in
T̂ = S (T̂ ). We also have q̂ ◦ > = > for all q ∈ Q+ while z ◦ > is undefined. Thus, we
have q̂ 6= z in T̂ for all q ∈ Q+. We obtain that Ŝ, the semigroup generated by Q̂ in T̂ ,
contains all elements in T̂ except z. In other words, we have T̂ = Ŝ0.

We claim that mapping q to q̂ for all q ∈ Q∗ induces an isomorphism ι : S → Ŝ, which
will conclude our argument. To show that ι is well-defined, we use an induction on the
length of w ∈ (Σ ] {>})∗ and show that p = q in S implies p ◦ w = q ◦ w (or both
undefined) for all p, q ∈ Q+.
For w = ε, there is nothing to show. If w = >u for some u ∈ (Σ ] {>})∗, then it is

easy to see that we have p̂ ◦ >u = >(p̂ ◦ u) = >(q̂ ◦ u) = q̂ ◦ >u (or all undefined) where
the equality in the middle follows by induction. Finally, let w = au for some a ∈ Σ and
some u ∈ (Σ] {>})∗. If p ◦ a is undefined, then q̂ ◦ a is, too, and the same holds for q ◦ a
and q̂ ◦ a. Therefore, in this case, we have that p̂ ◦ au and q̂ ◦ au are both undefined. If
p ◦ a = q ◦ a are both defined, then it is easy to see from the construction of T̂ that we
have p̂ ◦ au = (p̂ ◦ a)(p̂′ ◦ u) = (p ◦ a)(p̂′ ◦ u) (or all undefined) where p′ = p · a. In the
same way, we also obtain q̂ ◦ au = (q ◦ a)(q̂′ ◦ u) (or both undefined) for q′ = q · a. Since
we have p′ = q′ in S, we are done by induction.

It remains to show that ι is injective, surjective and a homomorphism. However, the
latter two are trivial and, for the former, we observe that a witness u ∈ Σ∗ for p 6= q in
S is also a witness for p̂ 6= q̂ in Ŝ.

Combining Proposition 1.1.1.1 and Proposition 1.1.1.2, we can obtain a complete
automaton semigroup from any (partial) automaton semigroup by adjoining a zero.

Corollary 1.1.1.3 (see [1, Proposition 1] and [9, Corollary 8]). For all semigroups S,
we have:

S is a (partial) automaton semigroup =⇒ S0 is a complete automaton semigroup
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21 Other properties
such as complete-
ness and invert-
ibility are main-
tained as well, of
course. However,
we will only need
that the construc-
tion preserves de-
terminism.

1.1.2 Removing Zeros
We have seen that we can use an existing (left) zero to go from a partial automaton
semigroup to a complete one. In this section, we will see that we can safely remove a
previously adjoined zero from a (partial) automaton semigroup.
First, we define a construction on S-automata that does not change the generated

semigroup. Later on, this construction will allow us to remove some transitions from the
automaton without coincidentally creating more equalities in the semigroup.

Definition 1.1.2.1 (end marker extension, see [9, Definition 11]). Let T = (Q,Σ, δ) be
an automaton. Define the disjoint copy Σ$ = {a$ | a ∈ Σ} of Σ, whose elements are
called end marker letters. The end marker extension of T is the automaton T̂ = (Q̂, Σ̂, δ̂)
where Q̂ is a disjoint copy of Q, Σ̂ is the alphabet Σ̂ = Σ ] Σ$ and the transitions δ̂ are
given by

δ̂ = {p̂ q̂a/b | p qa/b ∈ δ} ∪ {p̂ p̂a$/b$ | p qa/b ∈ δ for some q ∈ Q}.

So, the end marker extension of T has the same transitions as T and additional
self-loops for the end marker letters. It is easy to see that the end marker extension of
an S-automaton is again an S-automaton.21
First, we show that adding these self-loops does not change the generated semigroup.

This allows us to assume that any automaton semigroup is generated by an end marker
extension automaton.

Proposition 1.1.2.2 (see [9, Lemma 12]). If T̂ is the end marker extension of some S-
automaton T , then S (T̂ ) and S (T ) are isomorphic.

Proof. Let T = (Q,Σ, δ) and T̂ = (Q̂, Σ̂, δ̂). For any state sequence p = pn . . . p1 ∈ Q∗
with p1, . . . , pn ∈ Q, let p̂ = p̂n . . . p̂1. We will show that mapping p to p̂ defines a
well-defined isomorphism ι : S (T )→ S (T̂ ).

To show that it is well-defined, we will show, for all w ∈ Σ̂∗ and all p, q ∈ Q+, that
p = q in S (T ) implies p̂ ◦ w = q̂ ◦ w (or both undefined) and we do this using an
induction on the length of w. For w = ε, there is nothing to show. Suppose that we
have w = au for some a ∈ Σ and u ∈ Σ̂∗ and p = q in S (T ). If p ◦ a and q ◦ a are both
undefined, then we also have that p̂ ◦ a and q̂ ◦ a are both undefined (by the construction
of the end marker extension). Thus, let p ◦ a = q ◦ a = b be defined. By construction of
T̂ , the cross diagram

a

p p′

b

in T implies the cross diagram
a

p̂ p̂′

b

in T̂ .

Using an analogous argument and analogous definitions for q, we obtain p̂ ◦ au =
b(p̂′ ◦ u) = b(q̂′ ◦ u) = q̂ ◦ au (or all of them undefined) from induction since we must
have p′ = q′ in S (T ).
The remaining case is that we have w = a$u for some a ∈ Σ and u ∈ Σ̂∗ and, again,

p = q in S (T ). We show this case using a contradiction and assume that we have
p̂◦a$u 6= q̂ ◦a$u (including the case that one side is undefined while the other one is not).
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zp q
a/b a/c

a$/b$ a$/c$

Figure 1.1: Removing z without introducing the end marker self-loops causes q and p to
become the same element in the generated semigroup ([9, Fig. 1]).

Without loss of generality, we assume that p̂ ◦ a$u is defined. This can only be the case
if p ◦ a = q ◦ a = b is defined. By construction, we, therefore, have the cross diagrams

a$
p̂ p̂

b$

and
a$

q̂ q̂

b$

in T̂

and, thus, p̂ ◦ a$u = b$(p̂ ◦ u) = b$(q̂ ◦ u) = q̂ ◦ a$u (or all undefined) by induction.
That ι is surjective is trivial and that it is injective is clear since p̂ = q̂ in S (T̂ ) implies

p = q in S (T ) as we just have to restrict the alphabet to go from p̂ to p and from q̂ to
q.

Now, we come to the main point for this section: the class of (partial) automaton
semigroups is closed under removing an adjoined zero. The basic idea of the proof for this
is that we take the generating automaton and remove all states that represent the zero
in the semigroup. In general, this might change the generated semigroup (see Figure 1.1)
but it turns out that this does not happen if we pass to the end marker extension before
removing the zeros.

Proposition 1.1.2.3 (see [9, Proposition 13]). For all semigroups S, we have:

S0 is a (partial) automaton semigroup =⇒ S is a (partial) automaton semigroup

Proof. Let S be a semigroup such that S0 is generated by some S-automaton T =
(Q,Σ, δ). By Proposition 1.1.2.2, we may safely assume that T is an end marker
extension (of some other automaton). Define Z = {z ∈ Q+ | z is the zero in S (T )} and
let Q′ = {q′ | q ∈ Q \ Z} be a copy of Q \ Z. We define the automaton T ′ = (Q′,Σ, δ′)
via the transitions

δ′ = {p′ q′a/b | p qa/b ∈ δ, p, q 6∈ Z}.

In other words, the automaton T ′ basically contains the same transitions as T except
those that go into or come from a state belonging to Z. We will show that T ′ generates
S = S0 \ {0}. For this, we first define the notation p′ = p′n . . . p

′
1 for all p = pn . . . p1

with p1, . . . , pn ∈ Q \ Z and claim that mapping p′ to p for all p ∈ (Q \ Z)+ induces a
well-defined, injective homomorphism ι : S (T ′)→ S (T ′) = S0 whose image is S.

Before we show this claim, we observe that a cross diagram

u

p′ r′

v

in T ′ yields the cross diagram
u

p r

v

in T
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by the construction of T ′. In particular, we have that p◦u is defined for some p ∈ (Q\Z)+

if p′ ◦ u is. In fact, we have p ◦ u = p′ ◦ u in this case. By contraposition, this means
that p′ ◦ u must be undefined if p ◦ u is.

Now, we show that ι is well-defined by showing that, for all w ∈ Σ∗ and all p′, q′ ∈ (Q′)+,
p′ = q′ in S (T ′) implies p ◦ w = q ◦ w using an induction on the length of w. For
w = ε, there is nothing to show. Thus, let w = au for some a ∈ Σ and u ∈ Σ∗. If
p′ ◦ a = q′ ◦ a = b is defined, we have the cross diagrams

a

p′ r′

b

and
a

q′ s′

b

in T ′ for some r′, s′ ∈ (Q′)+.

This yields the analogous cross diagrams with p and r or p and s, respectively, in T .
Therefore, we have p ◦ au = b(r ◦ u) = b(s ◦ u) = q ◦ au (or all undefined) by induction
since we must have r′ = s′ in S (T ′).

We show the case where p′ ◦ a and q′ ◦ a are both undefined using a contradiction and
assume that we have p′ = q′ in S (T ′) but p ◦ au 6= q ◦ au (including the case that one
is defined while the other one is not). Without loss of generality, we may assume that
p ◦ au (and, thus, also p ◦ a) is defined. Remember that T is an end marker extension.
If a is not already an end marker letter, then we can consider the corresponding a$. On
the other hand, if a is an end marker letter, then a is of the form a$ anyway. Since p ◦ a
is defined, we have that p ◦ a$ = b$ must be defined as well and we obtain the cross
diagrams

a$
p p

b$

in T and
a$

p′ p′

b$

in T ′

(since p cannot contain a state from Z).
If q ◦ a is undefined, we have that also q ◦ a$ must be undefined (by the construction

of end marker extensions). Thus, we have that q′ ◦ a$ is undefined while p′ ◦ a$ = b$ is
defined; a contradiction. Similarly, if q ◦ a = c is defined but we have b 6= c, we have
q′ ◦ a$ = c$ 6= b$ = p′ ◦ a$ and a contradiction as well.

Finally, let b = p◦a = q◦a be (both) defined. Since p′ ◦a and q′ ◦a are both undefined,
there must be a state z from Z in p · a and in q · a. Since this state is the zero in S (T ),
we obtain that p · a = q · a = z ∈ Z in S (T ). Thus, we have p ◦ au = b(z ◦ u) = q ◦ au
(or all undefined), which contradicts our assumption p ◦ au 6= q ◦ au.

This concludes the proof that ι is well-defined and it remains to show that it is injective
and that its image is S. We first show the latter. Since S is a subsemigroup of S0 = S (T ),
no image q ∈ (Q \ Z)+ of an element q′ ∈ (Q′)+ can be in Z. On the other hand, for
every element s ∈ S there is some q ∈ Q+ that is s in S (T ). No such q can contain a
state in Z as this would mean that q is the zero in S (T ), which is not in S. Therefore,
q′ is a preimage of q under ι.

Finally, we show that ι is injective by showing that, for all w ∈ Σ∗ and all p, q ∈ (Q\Z)+,
we have that p = q in S (T ) implies p′ ◦ w = q′ ◦ w (or both undefined). We do this
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by an induction on the length of w. For w = ε, there is nothing to show. Therefore, let
w = au for some a ∈ Σ and u ∈ Σ∗. If p′ ◦ a and q′ ◦ a are both undefined, then we are
done as also p′ ◦ au and q′ ◦ au must be undefined. Thus, we assume without loss of
generality that p′ ◦ a = b is defined. This yields the cross diagrams

a

p′ r′

b

in T ′ as well as
a

p r

b

and
a

q s

b

in T

for some r′ ∈ (Q′)+ and s ∈ Q+ with s = r in S (T ). Note that r cannot contain a state
from Z (since it is given by r′) and that, thus, r is not the zero in S (T ). Therefore,
s cannot contain a state from Z either. By the construction of T ′, this yields the cross
diagram

a

q′ s′

b

in T ′.

Thus, we have p′ ◦ au = b(r′ ◦ u) = b(s′ ◦ u) = q′ ◦ au (or all undefined) by induction.

We can combine Proposition 1.1.1.2 and Proposition 1.1.2.3 to obtain the following
closure property for the class of (partial) automaton semigroups.

Theorem 1.1.2.4. For all semigroups S, we have:

S0 is a (partial) automaton semigroup ⇐⇒ S is a (partial) automaton semigroup

If we combine Proposition 1.1.2.3 and (the proof of) Proposition 1.1.1.2 in a different
way, we can say something about the structure of adjoined zeros in the generating
automaton:

Proposition 1.1.2.5. For every (partial or complete) automaton semigroup of the form
S0, there is some S-automaton T = (Q,Σ, δ) with S (T ) isomorphic to S0 such that the
action of the zero is undefined on all u ∈ Σ∗ except for ε.

1.1.3 A Problem Due to Cain
We have seen that the class of (partial) automaton semigroups is closed under adding
and removing adjoined zeros in Theorem 1.1.2.4. At first, the underlying question seems
a bit artificial. However, it turns that it is not only closely related to the very natural
question whether the classes of (partial) automaton semigroups and complete automaton
semigroups coincide (Open Problem 1.1.0.1) but also to a similar open problem given by
Cain [Cai09, Open problem 5.3], that arose without considering non-complete automata:

Open Problem 1.1.3.1 ([Cai09, Open problem 5.3], see also [9, Problem 9]). Does

S0 is a complete automaton semigroup =⇒ S is a complete automaton semigroup

hold for all semigroups S?
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In fact, Open Problem 1.1.3.1 is asking whether the analogue of Theorem 1.1.2.4 for
the class of complete automaton semigroups holds (since it is closed under adjoining a
zero by Corollary 1.1.1.3 or [Cai09, Proposition 5.1]). Thus, if the two classes coincide,
i. e., if Open Problem 1.1.0.1 has a positive answer, then also Open Problem 1.1.3.1 has
a positive answer.
On the other hand, if Open Problem 1.1.3.1 has a positive answer, we can start

with a (partial) automaton semigroup S, adjoin a zero to obtain a complete automaton
semigroup (by Corollary 1.1.1.3) and then use the positive answer to finally obtain that
S must be a complete automaton semigroup. This shows the following equivalence.

Proposition 1.1.3.2. Open Problem 1.1.3.1 has a positive answer if and only if Open
Problem 1.1.0.1 has.

1.2 Non-Automaton Semigroups

We have discussed the problem of whether the class of (partial) automaton semigroups
coincides with that of complete automaton semigroups in Section 1.1. If we want to show
that the two classes are distinct, we need to disprove that some (partial) automaton
semigroup is a complete automaton semigroup. However, there do not seem to exist
general techniques for this.

One approach to disprove that some semigroup is an automaton semigroup, is to show
that the semigroup in question does not satisfy certain properties common to all automaton
semigroups (e. g. being finitely generated, residually finite [Cai09, Proposition 3.2] or
having a word problem in PSpace, see Section 2.1). In our setting, however, this approach
does not seem to be very useful because the typical properties of complete automaton
semigroups are also shared by all (partial) automaton semigroups.
The number of example semigroups that are not (complete or partial) automaton

semigroups but share the typical properties of automaton semigroups seems to be very
limited. One example was given by Cain [Cai09, Proposition 4.3]: the monogenic
free semigroup q+ is not a complete automaton semigroup.22

22 On the other
hand, the monogenic
free monoid (Exam-
ple 0.2.3.5) and the
free (or free commu-
tative) semigroups
of higher rank are
complete automaton
semigroups [Cai09,
Proposition 4.1] (or
[Cai09, Proposition 4.2],
respectively).

Later this example was
generalized by Brough and Cain [BC17, Theorem 15] who showed that no (non-empty
and) non-trivial subsemigroup of (q+)0 is a complete automaton semigroup.

In this section, we will further extend this result in two ways: first, we will also consider
partial automata and, second, we show that no semidirect product of an arbitrary
semigroup and q+ is an automaton semigroup. In fact, we will make a slightly more
general statement (about subsemigroups of small extensions of q+) that truly generalizes
Brough and Cain’s result.
While, unfortunately, our result does not help with the original question about the

relation of the class of (partial) automaton semigroups and the class of complete automaton
semigroups, it still substantially increases the class of known non-automaton semigroups
and gives more insight into possible methods for disproving that a semigroup is not a
(complete or partial) automaton semigroup.
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Attribution. The results presented here generalize the corresponding results of [9], which
is joint work with Daniele D’Angeli and Emanuele Rodaro. In particular, considering
ideal small extensions (as a generalization of zeros in a semigroup) is a novel approach.
The overall proof, however, is still based on the core idea originally presented by Cain
[Cai09, Theorem 15] and later elaborated on by Brough and Cain [BC17, Theorem 15].

1.2.1 Semidirect Products of the Monogenic Free Semigroup

Ideal Small Extensions. Let S be a semigroup. A subset I ⊆ S is a right ideal if {is |
i ∈ I, s ∈ S} = IS ⊆ I holds; analogously, it is a left ideal if {si | s ∈ S, i ∈ I} = SI ⊆ I
holds. A (two-sided) ideal is a subset I that is both a left and a right ideal. In this case,
we have SIS ⊆ I. Notice that, in particular, ∅ is an ideal of any semigroup and that any
(left or right) ideal is a subsemigroup.

A semigroup T is a small extension of S if S is a subsemigroup of T and the Rees
index |T − S| of S in T is finite. An ideal small extension of S is a small extension T of
S such that T − S is an ideal of T .

Example 1.2.1.1. S0 is an ideal small extension of S for any semigroup S. More
generally, if S is an arbitrary semigroup and T is a finite semigroup, then S ] T with
st = ts = t for all s ∈ S and t ∈ T (in addition to the product in S and in T ) is an ideal
small extension of S.

Nearly Injective Maps. A function f : A→ B from a set A to a set B is nearly injective
if there is a constant C such that f−1(b) = {a | f(a) = b} contains at most C elements
for all b ∈ B.

We are mostly interested in nearly injective homomorphisms between semigroups and
start by observing that an element has torsion if and only if its image under a nearly
injective homomorphism has torsion.

Fact 1.2.1.2 ([9, Lemma 16]). Let S and T be semigroups and let γ : S → T be a nearly
injective homomorphism. Then, s ∈ S has torsion in S if and only if γ(s) has torsion in
T .

Proof. Let t = γ(s) for some s ∈ S. Then, t has torsion in T if and only if the
subsemigroup t+ = {ti | i ≥ 1} of T is finite. If this is the case, then γ−1(t+) ⊇ s+ must
also be finite since γ is nearly injective. This is equivalent to s having torsion.

We will use the notion of nearly injective homomorphisms to generalize the following
idea. Suppose we have some state q of an S-automaton and all out-going transitions
from q are self-loops back to q (i. e. q recurses only to itself), then the action of q has
torsion. This basic idea also underlies [BC17, Lemma 14] where the element may also
recurse to a zero. Here, we will generalize this further to the case that all reachable
elements are either mapped into some finite ideal or to the same element under some
nearly injective homomorphism. A typical application of the following lemma is, thus,
that the additional ideal consists of a single zero or is entirely empty.
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23 For the nota-
tion s · Σ∗, recall
that the partial
action of Σ∗ on
Q∗ also induces
a well-defined
partial action of
Σ∗ on S (T ) by
Fact 0.3.1.1, which
allowed us to ex-
tend the notation
for dual orbits
to semigroup
elements.
24 The cross
diagram uses semi-
group elements
instead of state
sequences (with
the obvious seman-
tics). This is also
well-defined by
Fact 0.3.1.1.

Lemma 1.2.1.3 (see also [9, Lemma 17]). Let T = (Q,Σ, δ) be an S-automaton such
that there is a nearly injective homomorphism γ : S → T from S = S (T ) to some
(arbitrary) semigroup T . Furthermore, let I be a finite ideal of T and s ∈ S.

If γ(s · Σ∗) \ I contains at most one element, then s has torsion.23

Proof. Let t = γ(s). By hypothesis, we already have γ(s · Σ∗) ⊆ I ∪ {t} and will first
show that we have γ(si · Σ∗) ⊆ I ∪ {ti} for all i ≥ 1. Let i ≥ 1 and w ∈ Σ∗ such that
si · w is defined. Then, we have the cross diagram24

w0 = w

s s · w0
w1

s s · w1
...

wi−1
s s · wi−1.

wi

for some w0, . . . , wi−1 ∈ Σ∗. If there is some 0 ≤ k < i with γ(s · wk) ∈ I, we have
γ(si ·w) = γ(s ·w0) . . . γ(s ·wk) . . . γ(s ·wi−1) ∈ TIT ⊆ I. By hypothesis, the only other
option is γ(s · wk) = t for all 0 ≤ k < i. In this case, we have γ(si · w) = ti.

Since γ is nearly injective, there is some constant C such that γ−1(t′) contains at most
C elements for all t′ ∈ T . With γ(si ·Σ∗) ⊆ I ∪{ti}, this implies |si ·Σ∗| ≤ (|I|+1)C = K
for all i ≥ 1. In other words, each si can be defined using an S-automaton over Σ of
size at most K. Since there are only finitely many (non-isomorphic) such automata, we
obtain si = sj for some i, j ≥ 1 with i 6= j.

Semidirect Products of Semigroups. Let T be a semigroup acting on some other
semigroup S (from the left), i. e. there is a homomorphism α : T → End(S), t 7→ αt where
End(S) is the endomorphism monoid of S with composition as operation. The semidirect
product S oα T is the semigroup with elements (s, t) ∈ S × T and the multiplication
(s, t)(s′, t′) = (sαt(s′), tt′) (where we multiply in S in the first component and in T in
the second). We simply write S o T when the action of T on S is given implicitly.

We will show that no (infinite subsemigroup of a) semidirect product of the monogenic
free semigroup q+ is an automaton semigroup. This extends the result by Brough and
Cain [BC17, Theorem 15] (based on [Cai09, Proposition 4.3]) that no subsemigroup of
(q+)0 is an automaton semigroup to a wider class of semigroups. The central proof idea,
however, is still that of [Cai09, Proposition 4.3].

Theorem 1.2.1.4 (generalization of [9, Theorem 19]). Let S be an arbitrary but non-
empty semigroup and let T be an infinite subsemigroup of an ideal small extension of q+.
Then, S o T is not an automaton semigroup.

Proof. Let T̂ be the ideal small extension of q+ of which T is an infinite subsemigroup.
Then, Î = T̂ − q+ is a finite ideal of T̂ and I = Î ∩ T is a finite ideal of T . Since T is
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25 For all finite
semigroups S,
there is some π
such that sπ is
idempotent for all
s ∈ S. Here, we
can choose i = 2π.

infinite, there must be some element of the form qi for some i ≥ 1 in T . To simplify our
notation, we write such elements as i and use additive instead of multiplicative notation,
i. e. we write i+ j instead of qiqj for these elements.
Since T \ I is non-empty, we can define ` = minT \ I (where the minimum is taken

with respect to the ordering of the natural numbers) and observe that all (s, `) with
s ∈ S must be in any generating set for S o T . Therefore, if S is infinite, we are done
since S o T is not finitely generated and, thus, no automaton semigroup in this case.
We show the case where S is finite using a contradiction. Therefore, assume that

S o T = S (T ) for some S-automaton T = (Q,Σ, δ). If we denote the action of ` on S
by f ∈ End(S), then there has to be some k ≥ 1 with fk = f2k (where fk is the k-fold
composition of f). Furthermore, if we denote by R the image of Q in S (T ) and by
R2 = {j | (r, j) ∈ R}, then R2 \ I is finite (since Q and R are) but also non-empty (since
R contains all (s, `) with s ∈ S). Thus, the maximum L = maxR2 \ I exists and there
is some s ∈ S with (s, L) ∈ R. Also note that all (s′, `) with s′ ∈ S must be in R (as
mentioned above) and that r ∈ Rj implies r · Σ∗ ⊆ Rj for all j.

Without loss of generality, we may assume that L is a multiple of k`: since (s, L) is in
R, its power (s, L)k` = (s′, k`L) is the image of a state of T k` and its second component
k`L is not in I. Furthermore, k`L is the largest value among all second components of
such elements. Thus, if L is not a multiple of k`, we can replace T by T ] T k .̀
The action of L on S is f

L
` = fkλ = fk (for λ = L

k`) and we can calculate the powers
(s, L)j for j ≥ 2:

(s, L)j = (s, L)j−2(s, L)(s, L) = (s, L)j−3(s, L)(sfk(s), 2L)
= (s, L)j−3(sfk(s)f2k(s), 3L) = (s, L)j−3(sfk(s)fk(s), 3L)
= (s, L)j−3(sfk(s2), 3L) = · · · = (sfk(sj−1), jL).

Since S is finite, there is some i ≥ 1 such that si`−1si` = s2i`−1 = si`−1 holds25 and,
for this i, we have(

sfk(s`−1), `
) (
f iL−1(s`), `

) (
f iL−2(s`), `

)
· · ·
(
f1(s`), `

)
=
(
sfk(s`−1)f iL(s`), 2`

) (
f iL−2(s`), `

)
· · ·
(
f1(s`), `

)
=
(
sfk(s`−1)fk(s`), 2`

) (
f iL−2(s`), `

)
· · ·
(
f1(s`), `

)
=
(
sfk(s`−1s`), 2`

) (
f iL−2(s`), `

)
· · ·
(
f1(s`), `

)
=
(
sfk(s`−1s2`), 3`

) (
f iL−3(s`), `

)
· · ·
(
f1(s`), `

)
= · · · =

(
sfk(s`−1s(iL−1)`), i`L

)
=
(
sfk(si`L−1), i`L

)
=
(
sfk(si`−1), i`L

)
= (s, L)i`,

where we have used fk = f iL (which holds because L is a multiple of k) and si`L−1 = si`−1

(which holds by the choice of i). Since all the iL many factors in the first line are from R
and since (s, L) is also in R, we obtain (s, L)i` ∈ Ri`∩RiL and even (s, L)i` ·Σ∗ ⊆ Ri`∩RiL.
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We conclude by showing that (r, j) ∈ Ri`∩RiL implies j ∈ {i`L}∪I. Once we have done
this, we can consider the projection γ : SoT → T to the second component. It is a nearly
injective homomorphism (since S is finite) and we (then) have γ((s, L)i` ·Σ∗) ⊆ {i`L}∪ I.
Therefore, we can apply Lemma 1.2.1.3 and obtain that (s, L)i` must have torsion, which
is a contradiction.

Let (r, j) ∈ Ri` ∩RiL. If j is in I, there is nothing to show. Therefore, let j 6∈ I. Since
we have (r, j) ∈ Ri ,̀ we can write

(r, j) = (ri`, Ji`) . . . (r1, J1)

for (r1, J1), . . . , (ri`, Ji`) ∈ R and J1, . . . , Ji` 6∈ I. The definition of L implies J1, . . . , Ji` ≤
L. Therefore, we have j = Ji` + · · ·+ J1 ≤ i`L. On the other hand, we can also write

(r, j) = (r′iL, jiL) . . . (r′1, j1)

for some (r′1, j1), . . . , (r′iL, jiL) ∈ R because (r, j) is in RiL. Again, we have j1, . . . , jiL 6∈ I
and, by the choice of `, also j1, . . . , jiL ≥ `. Thus, we have j = jiL + · · ·+ j1 ≥ iL` and,
therefore, j = i`L.

Remark 1.2.1.5. That T needs to be an infinite subsemigroup in Theorem 1.2.1.4 is not
very restrictive. The only other subsemigroups of an ideal small extension T̂ of q+ are
contained in the finite ideal T̂ − q+ and, thus, entirely unrelated to the monogenic free
semigroup q+.

Of course, it would be interesting to find further examples of non-automaton semigroups.
One candidate for which the above methods might still be applicable is the semigroup
q+ ∪ p+ ∪ {0}, in which 0 is a zero and we have qp = pq = 0.

Open Problem 1.2.1.6. Is q+ ∪ p+ ∪ {0} an automaton semigroup?

1.3 Inverse Automaton Semigroups
In this section, we will study inverse automaton semigroups more closely. They form a
natural intermediate step between automaton semigroups and automaton groups and
have, in fact, turned out to be useful in tackling the complexity of the word problem for
automaton groups (which we will discuss in more detail in Section 2.1).

We begin by giving a non-trivial example of an inverse automaton monoid: we present
the free inverse monoid in one generator as an automaton-inverse monoid. This fits
in the line of our previous examples as we have already seen that the free monoid on
one generator is an automaton monoid and that the free group in one generator is an
automaton group (see Example 0.2.3.5 for both). Additionally, we have discussed that
the free semigroup in one generator is not an automaton semigroup in Section 1.2.

After looking at the free inverse monoid in one generator, we will see that any inverse
automaton semigroup (or monoid) is already generated by an S-automaton, i. e. that
it is an automaton-inverse semigroup (or monoid). To show this, we will exploit the
close connection between inverse semigroups and partial one-to-one mappings expressed
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in the so-called Preston-Vagner theorem (see e. g. [How95, Theorem 5.1.7, p. 150] or
[Pet84, p. 168]). In its classical formulation, it states that every inverse semigroup S is a
subsemigroup of the symmetric inverse semigroup I (S). In this way, it is the inverse
semigroup counterpart to Cayley’s theorem for groups, which states that every group G
is a subgroup of the symmetric group over G. We will first prove a generalized variant of
the Preston-Vagner theorem for (possibly non-faithful) semigroup actions. Then, we will
use this generalization to construct an S-automaton generating the same semigroup as
some given S-automaton if the semigroup is inverse.
Using the same construction, we can also extend a result by Cain stating that every

complete automaton semigroup that happens to be a group is already an automaton
group [Cai09, Proposition 3.1] to (partial) automaton semigroups: if a group is a (partial)
automaton semigroup, it is an automaton group.

Attribution. The idea to modify the adding machine to generate the free inverse
monoid in one generator is inspired by a construction due to Olijnyk, Sushchansky and
Słupik [OSS10, Fig. 8] which presents the free inverse semigroup in one generator as
a subsemigroup of an automaton monoid. The actual modification is joint work with
Daniele D’Angeli and Emanuele Rodaro [3, Example 2.3], [9, Example 23].

The result on the equivalence of inverse automaton semigroups and automaton-inverse
semigroups is also joint work with Daniele D’Angeli and Emanuele Rodaro [9]; the monoid
case is a direct extension of this. The idea is based on the similar approach used by Cain
for groups [Cai09, Proposition 3.1] in the setting of complete automaton semigroups.
The Preston-Vagner theorem is a classical result for inverse semigroups. The theorem
itself and references to the original works by Preston and by Vagner can be found for
example in [How95, Theorem 5.1.7, p. 150] or [Pet84, p. 168]. The proof of the generalized
variant presented here (more or less loosely) follows the proof given by Howie [How95,
Theorem 5.1.7, p. 150] for the classical variant.

In general, inverse automaton semigroups seem to be much less studied than automaton
groups or even (complete) automaton semigroups. There is the already mentioned work
by Olijnyk, Sushchansky and Słupik [OSS10] investigating partial one-to-one functions
defined by automata, which gives further references to other works by (some of) these
authors. Other works mentioning self-similar inverse semigroups are due to Nekrashevych
(e. g. [Nek06]).

1.3.1 The Monogenic Free Inverse Monoid

In this subsection, we are going to present the monogenic free inverse monoid as an inverse
automaton monoid. We start, however, with discussing a graphical way of presenting the
elements of free inverse monoids.

Munn Trees for the Monogenic Free Inverse Monoid. A good way to understand free
inverse semigroups and monoids is to use their Munn tree presentation (see [Mun74] for
Munn’s original work or, for example, [How95, Example 5.10.7]). We will only give a

34



1.3 Inverse Automaton Semigroups

26 In fact, it is
an anti-automor-
phism.

semi-formal description of Munn trees in the case of the monogenic free inverse monoid
in the generator q. Here, a Munn tree can graphically be depicted as

. . . . . . . . .
q q q q q q
m times n times

r times
.

It is a non-empty, finite, (weakly) connected subgraph of the bi-infinite directed line graph
whose edges are labeled by q and has two dedicated nodes: the initial node (marked with
an entering arrow) and the final node (marked with a leaving arrow). Thus, it can also
be characterized by a triple m,n, r of natural numbers with −m ≤ r ≤ n. The number
m is the length of the graph to the left of the initial node, n is the length to the right
and r is the distance of the final node from the initial node (negative values indicate a
position to the left, positive values a position to the right).
The elements of the monogenic free inverse monoid are in bijection with such Munn

trees [Mun74, Theorem 2.8]. The bijection is given by taking the labeling of an arbitrary
path in the Munn tree which starts in the initial node, ends in the final node and visits
each node at least once. Here, a directed edge can also be used in the opposite direction
by using the inverse of its label. For the above Munn tree, we can, for example, take
the path labeled by qmqm+nqn−r. Thus, if we show that all elements qmqm+nqn−r with
−m ≤ r ≤ n of a monogenic inverse monoid are pairwise distinct, we have shown that the
monoid is a free inverse monoid. Because mapping an element to its inverse is a bijection
on an inverse monoid,26 we can alternatively show that all elements qn−rqm+nqm with
−m ≤ r ≤ n are pairwise distinct. Since this is the approach we are eventually going to
use, we state this result in the following fact.

Fact 1.3.1.1. A monogenic inverse monoid in the generator q is free if (and only if) all
elements qn−rqm+nqm with −m ≤ r ≤ n are pairwise disjoint.

After these preparations, we are now ready to give an automaton generating the
monogenic free inverse monoid as an automaton-inverse monoid.

Example 1.3.1.2 ([9, Example 23], [3, Example 2.3]; compare to [OSS10, Fig. 8]). Let
us extend the adding machine from Example 0.2.1.4 into the S-automaton T

q id1/0
0/1

0̂/1̂
0/0 0̂/0̂
1/1 1̂/1̂,

whose inverse automaton is

q id0/1
1/0

1̂/0̂
0/0 0̂/0̂
1/1 1̂/1̂.
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We claim that the inverse monoid M = M (T ) generated by T is the monogenic free
inverse monoid. By definition, it is an inverse monoid and, because we have id = id = ε in
M , the state q is in M the single generator (as an inverse monoid). Thus, by Fact 1.3.1.1,
we only have to show that qn−rqm+nqm with −m ≤ r ≤ n is distinct to qn′−r′qm′+n′qm′

with −m′ ≤ r′ ≤ n′ in M whenever we have m 6= m′, r 6= r′ or n 6= n′.
In order to give a witness on which the two state sequences act differently, we extend

the notation ∂ bin i from Example 0.2.1.4: for a natural number i with 0 ≤ i < 2`, let
∂ bin` i denote the reverse/least significant bit first binary representation of i with length
` ≥ 1 over the alphabet {0, 1}. To obtain an actual length of `, we possibly have to add
trailing zeros. For an integer z outside the range 0 ≤ z < 2`, we define ∂ bin z as ∂ bin i
where i is the smallest non-negative representative of the congruence class of z modulo
2` (i. e. we have 0 ≤ i < 2` and that z and i are congruent modulo 2`). In particular, we
have ∂ bin` 0 = 0` and ∂ bin`(−1) = 1`. We have already seen in Example 0.2.1.4 that
q acts as an increment on ∂ bin i and q acts as a decrement. In the same way, we have
qj ◦ ∂ bin` i = ∂ bin`(i+ j) and qj ◦ ∂ bin` i = ∂ bin`(i− j).
Now, suppose we have m 6= m′, r 6= r′ or n 6= n′ for −m ≤ r ≤ n and −m′ ≤ r′ ≤ n′.

We need to show that p = qn−rqm+nqm and p′ = qn
′−r′qm

′+n′qm
′ are different in M .

First, suppose that we have r = −(n− r) +m+n−m 6= −(n′− r′) +m′+n′−m′ = r′.
We choose ` large enough so that r and r′ are distinct modulo 2`. Then, we have

p ◦ ∂ bin` 0 = ∂ bin`(−(n− r) +m+ n−m+ 0) = ∂ bin` r 6= ∂ bin` r′ = p′ ◦ ∂ bin` 0.

Next, suppose that we have (r = r′ but) m 6= m′. Without loss of generality, we only
consider the case m < m′. To avoid overflows in the following calculation, we choose `
large enough with m+ n < 2`. In particular, this also ensures m+ r ≤ m+ n < 2` and
we have

qn−rqm+nqm ◦ (∂ bin`m) 0̂ = qn−rqm+n ◦ (∂ bin` 0) 0̂ = qn−r ◦ (∂ bin`(m+ n)) 0̂
= (∂ bin`(m+ r)) 0̂

since we have always already entered id or id before reading 0̂. On the other hand,
we have that p′ ◦ (∂ bin`m) 0̂ is undefined because, for d = m′ − m > 0, already
qm
′ ◦ (∂ bin`m) 0̂ = qm+d ◦ (∂ bin`m) 0̂ = qd ◦ (∂ bin` 0) 0̂ = qd ◦ 0`0̂ is undefined.
There remains the case (r = r′,) m = m′ but n 6= n′. Again, we may safely assume

n < n′ (due to symmetry). We choose ` large enough so that 2` ≥ m + n + 1 (i. e. we
have 2` − 1− n+ r ≥ 2` − 1− n−m ≥ 0) and obtain

qn−rqm+nqm ◦ (∂ bin`(2` − 1− n)) 1̂ = qn−rqm+n ◦ (∂ bin`(2` − 1− n−m)) 1̂
= qn−r ◦ (∂ bin`(2` − 1)) 1̂
= (∂ bin`(2` − 1− n+ r)) 1̂

because we again always enter id or id before reading 1̂. On the other hand, p′ ◦
(∂ bin`(2`−1−n)) 1̂ = qn

′−rqm+n′qm ◦ (∂ bin`(2`−1−n)) 1̂ is undefined: we have already
seen qm+nqm ◦ (∂ bin`(2` − 1 − n)) 1̂ = (∂ bin`(2` − 1)) 1̂ = 1` 1̂ and the action of q on
this word is undefined; thus, qm+n′qm ◦ (∂ bin`(2` − 1− n)) 1̂ must be undefined.
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a b ab ba aa

a aa ab aa a aa
b ba aa b aa aa
ab a aa ab aa aa
ba aa b aa ba aa
aa aa aa aa aa aa

(a) The multiplication table of B2

a ∗ab

∗ba b

∗aa

(b) The eggbox presentation of B2 (see
e. g. [How95, p. 48] for an explana-
tion)

Figure 1.2: The Brandt semigroup B2 = {a, b, ab, ba, aa}

27 An alternative
way of thinking
about B2 is to con-
sider it as the syn-
tactic semigroup of
the language (ab)+.
28 In fact, this
is the basic idea
of how every fi-
nite semigroup can
be presented as
a complete auto-
maton semigroup,
see [Cai09, Propo-
sition 4.6].

We have seen that the monogenic free monoid is an automaton semigroup in Exam-
ple 0.2.3.5 while the monogenic free semigroup is not ([Cai09, Theorem 15] and Section 1.2
for the partial case). Now, in Example 1.3.1.2, we have seen that the monogenic free in-
verse monoid is an automaton semigroup. This raises the question whether the monogenic
free inverse semigroup is an automaton semigroup.

Open Problem 1.3.1.3. Is the monogenic free inverse semigroup an automaton semi-
group?

1.3.2 Inverse Automaton Semigroups and Automaton-Inverse Semigroups
An inverse automaton semigroup is an automaton semigroup that happens to be an
inverse semigroup. On the other hand, an automaton-inverse semigroup is defined as the
inverse semigroup generated by an S-automaton. To make this distinction a bit clearer,
we will start by looking at a typical example for an inverse semigroup.

Example 1.3.2.1 (see also [9, Example 4]). The Brandt semigroup B2 (see e. g. [How95,
p. 32]) consists of the elements {a, b, ab, ba, aa}. From its multiplication table (or its
eggbox presentation) given in Figure 1.2, it is easy to see that B2 is an inverse semigroup
(with a = b and b = a).27 The multiplication table also shows that B2 acts faithfully on
itself by left multiplication. We can use this fact to present B2 as a complete automaton
semigroup:28 it is generated by the S-automaton

p q

a/aa

b/ab

ab/aa

ba/a

aa/aa

a/ba

b/aa

ab/b

ba/aa

aa/aa

over the alphabet B2 = {a, b, ab, ba, aa} (i. e. ab, ba and aa are considered as single letters).
To better distinguish alphabet and state set, we have used p instead of a and q instead
of b for the states.
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29 See e. g. [How95,
Theorem 5.1.1,
p. 145]

That B2 can be generated by a (complete) S-automaton proves that it is an inverse
(complete) automaton semigroup. However, the automaton depicted above is not invertible
and, therefore, not an S-automaton. To prove that B2 is an automaton-inverse semigroup,
we need an S-automaton T ′ with S (T ′) = B2.

Before we can go into detail about how to construct an S-automaton from an S-
automaton whose generated semigroup is inverse, we will first need some abstract, non-
automaton-related results about inverse semigroups. We will start with a fact about
partial actions of inverse semigroups.

Fact 1.3.2.2 (compare to [How95, Lemma 5.1.6]). Let a semigroup S partially act from
the left on some set X via α : S →P(X), s 7→ αs and write s ◦ x for αs(x) as well as
s ◦X for αs(X) = {αs(x) | x ∈ X,αs(x) defined}. If S is an inverse semigroup, we have

1. ss ◦X = s ◦X and, thus, ss ◦X = s ◦X for all s ∈ S as well as

2. s ◦X ∩ t ◦X = sstt ◦X = ttss ◦X for all s, t ∈ S.

Proof. For the first statement, observe that the inclusion ss ◦X ⊆ s ◦X is trivial and
the converse inclusion holds because of ss ◦X ⊇ sss ◦X = s ◦X.

The second equation of the second statement holds because ss and tt are idempotent
and idempotents commute in inverse semigroups.29 To prove the first equation, we use
the first statement. This yields s◦X∩t◦X = ss◦X∩tt◦X. We have ss◦X ⊇ sstt◦X =
ttss◦X ⊆ tt◦X, which shows the inclusion s◦X∩t◦X ⊇ sstt◦X. For the other inclusion,
let x ∈ ss ◦ X ∩ tt ◦ X, i. e. there are y, z ∈ X with x = ss ◦ y = tt ◦ z (in particular,
both defined). We have sstt ◦ x = sstttt ◦ z = sstt ◦ z = ss ◦ x = ssss ◦ y = ss ◦ y = x
(all defined), which shows that x is in sstt ◦X.

Next, we will prove the following generalization of the Preston-Vagner theorem (see
e. g. [How95, Theorem 5.1.7, p. 150] or [Pet84, p. 168] for the classical formulation of the
Preston-Vagner theorem; also for the original references), which states that an inverse
semigroup that partially (and faithfully) acts on a set as a semigroup already partially
(and faithfully) acts on this set as an inverse semigroup (i. e. using partial one-to-one
mappings). While this result is interesting on its own, it will also be the key ingredient
for our automaton construction later on.

Proposition 1.3.2.3 ([9, Lemma 24]). Let a semigroup S partially act from the left on
some set X via α : S → P(X), s 7→ αs and write s ◦ x for αs(x) as well as s ◦X for
αs(X) = {αs(x) | x ∈ X,αs(x) defined}. Additionally, let S be an inverse semigroup.
Then, the restriction

ϕs : s ◦X → s ◦X
s ◦ x 7→ ss ◦ x

of the partial action of s is total, one-to-one and surjective for all s ∈ S.
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Furthermore, if we consider ϕs as a partial function X ⇀ X, then the map

ϕ : S → I (X)
s 7→ ϕs

is a homomorphism of inverse semigroups and it is injective if the partial action α is
faithful.

Proof (following the outline of the proof of [How95, Theorem 5.1.7, p. 150]). First, we
show that ϕs is total for all s ∈ S as a function s ◦X → s ◦X. If s ◦x is defined for some
x ∈ X, we have that sss ◦ x = s ◦ x must also be defined. This implies, in particular,
that ss ◦ x must be defined.

Next, we show that ϕs is one-to-one. Suppose, we have ss ◦ x = ss ◦ y (and that both
are defined). This implies s ◦ x = sss ◦ x = sss ◦ y = s ◦ y (where all terms are defined).
By Fact 1.3.2.2, we have s ◦ X = ss ◦ X for all s ∈ S. This, in particular, implies

imϕs = ss ◦X = s ◦X, i. e. that ϕs is surjective (as a map s ◦X → s ◦X).
If we consider ϕs as a partial function X ⇀ X (i. e. as an element of I (X)), then its

semigroup inverse ϕs is ϕs. To see this, observe that we have domϕs = imϕs = s ◦X =
s ◦X = domϕs and ϕs(ϕs(s ◦x)) = sss ◦x = s ◦x for all x ∈ X such that s ◦x is defined.

We use this to show that ϕ is a homomorphism, i. e. that ϕs ◦ ϕt = ϕst. We have
domϕt ◦ϕs = ϕs(imϕs ∩ domϕt) = ϕs(s ◦X ∩ t ◦X) = ϕs(sstt ◦X) where we have used
Fact 1.3.2.2 in the last equality. Since sstt ◦X is a subset of s ◦X = domϕs, we have
ϕs(sstt◦X) = ssstt◦X = stt◦X = st◦X = ts◦X where we have again used Fact 1.3.2.2
in the second last equality. Summarizing this, we have domϕt ◦ ϕs = ts ◦X = domϕts.
This shows ϕs ◦ϕt = ϕst since the values of ϕt ◦ϕs and ϕts coincide on all elements from
this domain by definition.

It remains to show that ϕ is injective if the partial action α is faithful, i. e. that ϕs = ϕt
implies s = t for all s, t ∈ S. Thus, assume ϕs = ϕt, which also implies ϕs = ϕs = ϕt = ϕt.
Additionally, we have s◦X = domϕs = domϕt = t◦X and, symmetrically, s◦X = t◦X.
In particular, we have ϕs(t ◦ y) = st ◦ y (or both undefined) for all y ∈ X.

This allows us to show that ts is idempotent in this case. We have to show ts◦x = tsts◦x
(or both undefined) for all x ∈ X. If ts◦x is undefined, then tsts◦x must also be undefined.
If ts ◦ x is defined, we have have ts ◦ x = ttts ◦ x = t ◦ϕt(ts ◦ x) = t ◦ϕs(ts ◦ x) = tsts ◦ x.

To finally show s = t, we show s ◦ x = t ◦ x (or both undefined) for all x ∈ X and then
use the assumption that α is faithful. For simplicity, assume that s ◦ x is defined for
some x ∈ X. Then, we have

s ◦ x = sss ◦ x = s ◦ ϕs(s ◦ x) = s ◦ ϕt(s ◦ x) = sts ◦ x = sttts ◦ x = ststt ◦ x

(and that all terms are defined) where we have used that tt and ts are idempotent in the
last step. Because ϕs is defined on t ◦X = s ◦X, we can continue with

= st ◦ ϕs(tt ◦ x) = st ◦ ϕt(tt ◦ x) = stttt ◦ x = stt ◦ x = ϕs(tt ◦ x) = ϕt(tt ◦ x)
= ttt ◦ x = t ◦ x

(where all terms are defined). If t◦x is defined, we can use the same calculation backwards
to show t ◦ x = s ◦ x.
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30 In fact, for the
example, the clas-
sical formulation of
the Preston-Vagner
theorem mentioned
above suffices.

We will now return from abstract inverse semigroups to automaton semigroups. First,
we continue our example from above.

Example 1.3.2.4 (see also [9, Example 4]). We can use Proposition 1.3.2.3 to restrict the
faithful action of B2 on itself from Example 1.3.2.1 to a faithful partial action using one-to-
one partial mappings.30 We have aB2 = bB2 = {b, ba, aa} and bB2 = aB2 = {a, ab, aa}.
We can use

a′ : bB2 → aB2 and b′ : aB2 → bB2

b 7→ ab a 7→ ba

ba 7→ a ab 7→ b

aa 7→ aa aa 7→ aa

as the partial action of a and b on B2, respectively.
This leads to the S-automaton

p q

b/ab

ba/a

aa/aa

a/ba

ab/b

aa/aa

generating B2 (where we have again used p and q instead of a and b for the state set
and where ab, ba and aa have to be considered as single letters). Indeed, this automaton
demonstrates the basic idea of constructing an S-automaton from an S-automaton that
generates the same (inverse) semigroup.
Note, however, that, at least in this special case, we can find a smaller S-automaton

generating B2 (as an inverse semigroup). First, the state q acts in the same way as the
state p of the inverse automaton. Thus, the whole state can be dropped without altering
the generated inverse semigroup. Second, the letter aa does not seem to be very useful.
In fact, the very simple S-automaton

pa/b

over the alphabet Σ = {a, b} generates B2 as an inverse semigroup. The partial action
of the state p is to map an to bn for all n ∈ N; this corresponds to a in B2. The partial
action of its inverse p obviously maps bn to an for all n ∈ N and corresponds to b in B2.
The partial action of p2 is the partial function that is undefined everywhere (except on
the empty word) and p2, thus, corresponds to the zero aa in B2. The other two partial
functions in the automaton semigroup (under the functional view) are given by an 7→ an

and by bn 7→ bn for all n ∈ N and correspond to ba and ab in B2.

The idea from the example also works in the general case. If we have an S-automaton
T such that its generated semigroup S (T ) is an inverse semigroup, then we can construct
an S-automaton T ′ as a subautomaton of T with S (T ′) isomorphic to S (T ). Before
we describe the construction, however, we first show that the isomorphism between S (T )
and S (T ′) also implies that S (T ′) and S (T ) are isomorphic.
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Fact 1.3.2.5. Let T be an S-automaton. Then, we have

S (T ) is an inverse semigroup =⇒ S (T ) is (isomorphic to) S (T ) and
M (T ) is an inverse monoid =⇒ M (T ) is (isomorphic to) M (T ).

Proof. Let T = (Q,Σ, δ) and consider the map

ι : M (T ) = Q∗/=T → Q̃∗/=T̃ = M (T )
[q]T 7→ [q]T̃ .

It is clearly a well-defined, injective, homomorphism of monoids. To show that it is also
surjective, we show that, for every q ∈ Q (that is not the neutral element in M (T )),
there is some q̂ ∈ Q+ with q̂ =T̃ q. Since M (T ) is an inverse monoid, there must be
some q̂ ∈ Q+ with qq̂q =T q and q̂qq̂ =T q̂. This implies qq̂q =T̃ q and q̂qq̂ =T̃ q̂ or, in
other words, that q̂ is a semigroup inverse to q in M (T ). Since q is also a semigroup
inverse of q in M (T ) and since this monoid is inverse, we obtain q =T̃ q̂. The statement
about semigroups follows by using the appropriate restriction of ι.

Theorem 1.3.2.6 (extension of [9, Theorem 25] to monoids). A semigroup is an inverse
automaton semigroup if and only if it is an automaton-inverse semigroup and a monoid
is an inverse automaton monoid if and only if it is an automaton-inverse monoid.

Proof. If S is an automaton-inverse semigroup, there is some S-automaton T with
S (T ) = S. Thus, S is an inverse semigroup and it is generated as an automaton
semigroup by the S-automaton T ] T . The monoid statement follows in the same way.
For the other direction, suppose that S = S (T ) for some (not necessarily invertible)

S-automaton T = (Q,Σ, δ) is an inverse semigroup. In particular, for every p ∈ Q,
there is some p ∈ Q+ such that p is the semigroup inverse of p in S. We need to find
some S-automaton T ′ such that S (T ′) is (isomorphic to) S. In fact, we will give an S-
automaton T ′ such that S (T ′) is already (isomorphic to) S; this is a stronger statement
by Fact 1.3.2.5.

We use T ′ = (Q′,Σ, δ′) as this automaton where Q′ = {q′ | q ∈ Q} is a disjoint copy of
Q and the transitions are given by

δ′ = {p′ q′a/b | p qa/b ∈ δ, a ∈ p ◦ Σ}.

Here, p ◦Σ is p ◦Σ = {p ◦ a | a ∈ Σ,p ◦ a defined}. The automaton T ′ is a (disjoint copy
of a) subautomaton of T and, thus, an S-automaton. Furthermore, if we restrict the
partial action p′ ◦ of p′ ∈ Q′ to a partial function Σ ⇀ Σ, then this coincides with the
restriction of the action p ◦ of p ∈ Q to a partial function p ◦Σ ⇀ Σ by construction. By
Proposition 1.3.2.3, the latter is one-to-one, which means that T ′ must be invertible and,
thus, an S-automaton.
We claim that the partial action p′ ◦ of p′ ∈ Q′ is, in fact, the restriction of p ◦ to a

partial function p ◦Σ∗ ⇀ Σ∗ (where p ◦Σ∗ is p ◦Σ∗ = {p ◦ u | u ∈ Σ∗,p ◦ u defined}). If
this is true, then we have that S (T ′) is (isomorphic to) S = S (T ) by Proposition 1.3.2.3.
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Clearly, every run in T ′ yields a corresponding run in T . Thus, if p′ ◦u is defined for some
u ∈ Σ∗, then we have p′ ◦ u = p ◦ u (which must be defined, in particular). Therefore, to
show the semigroup statement, we only have to show that the domain of p′ ◦ is p ◦ Σ∗.
To do this, we let Dp = p ◦ Σ∗ and D′p = dom p′ ◦ ⊆ dom p ◦ for all p ∈ Q and show

Dp ∩ Σn = D′p ∩ Σn (F)

for all n ∈ N by induction.
For n = 0, we have Dp ∩ Σ0 = {ε} = D′p ∩ Σ0. For n > 0, we first observe that we

have Dp ∩ Σ = D′p ∩ Σ by construction. Suppose we have a ∈ Dp ∩ Σ = D′p ∩ Σ for some
a ∈ Σ. Then, we have p′ ◦ a = b = p ◦ a (all defined) for some b ∈ Σ and p′ · a = q′ for
some q′ ∈ Q′. In T , this yields the cross diagram

a

p q

b

p q̂

c

p r

b

for some c ∈ Σ, r ∈ Q and q̂ ∈ Q+. In particular, we have c ∈ p ◦Σ and, thus, that p′ ◦ c
is defined and equal to b. Since T ′ is invertible, we obtain c = a and r = p · c = p · a = q.
This means that we have the cross diagram

b

p q̂

a

in T .

Since we will need it later on to apply the induction hypothesis, we will continue by
showing that q̂ = q in S holds. We do this by showing that q̂ is a semigroup inverse to q
in S. Since, in an inverse semigroup, the inverse is unique, the equality then follows.
Let u ∈ Σ∗ be arbitrary. If q ◦ u is undefined, then qq̂q ◦ u is also undefined. If it is

defined, we have the cross diagram

a u

p q

b v

p q̂

a w

p q

b v

in T for v = q ◦ u and some w ∈ Σ∗ because p is the inverse of p in S. Thus, we have
q ◦ u = v = qq̂q ◦ u (all defined).
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On the other hand, if we now let v ∈ Σ∗ be arbitrary, then we have that q̂qq̂ ◦ v is
undefined if q̂ ◦ v is. If it is defined, however, we obtain the cross diagram

b v

p q̂

a u

p q

b w

p q̂

a u

in T for u = q̂ ◦ v and some (new) w ∈ Σ∗; again, because p is the inverse of p in S. This
shows q̂qq̂ ◦ v = u = q̂ ◦ v (all defined) and, thus, that q̂ is indeed the inverse of q in S.

Now, for the inductive step, let x′ ∈ Dp ∩Σn = p ◦Σn. We have to show x′ ∈ D′p ∩Σn,
which is implied by x′ ∈ D′p. We can write x′ = ax for some x ∈ Σn−1 without loss of
generality since a was chosen arbitrarily from Dp ∩ Σ = D′p ∩ Σ. Now, ax ∈ Dp implies
that there is some c ∈ Σ and some z ∈ Σn−1 with ax = p ◦ cz. Thus, we have the cross
diagram

c z

p r̂

a x

p q

b y

p q̂

a x

in T for some y ∈ Σn−1 and some r̂ ∈ Q+. The highlighted part implies x = q̂ ◦ y ∈
q̂ ◦ Σn−1 = q ◦ Σn−1 = Dq ∩ Σn−1 = D′q ∩ Σn−1 by induction. This means that q′ ◦ x is
defined and that we, thus, have the cross diagram

a x

p′ q′

b y

in T ′, which shows ax ∈ D′p.
For the other direction, let x′ ∈ D′p∩Σn. We have to show x′ ∈ Dp∩Σn, which is implied

by x′ ∈ Dp. Again, we can, without loss of generality, write x′ = ax for some x ∈ Σn−1.
Since ax is in D′p, we have that p′ ◦ ax is defined and, thus, that p′ ◦ ax = p ◦ ax = by
for some y ∈ Σn−1. Together with the fact that p is the inverse of p in S, this yields the
cross diagram

a x

p q

b y

p q̂

a z

p q

b y
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in T for z = q̂ ◦ y. We have z = q̂ ◦ y = q ◦ y ∈ q ◦ Σn−1 = Dq ∩ Σn−1 = D′q ∩ Σn−1 by
induction, which implies the cross diagram

a z

p′ q′

b y

in T ′. Since T ′ is invertible, we have that q′ ◦ is one-to-one, which implies x = z and,
thus, together with the highlighted part of the above cross diagram, ax ∈ Dp.

We have shown (F) and, thus, the statement for semigroups. To extend it to monoids,
we will show that p =T ε holds for Q+ 3 p = p` . . . p2p1 with p1, p2, . . . , p` ∈ Q if and
only if p′ =T ′ ε holds where p′ is p′ = p′` . . . p

′
2p
′
1. Then, if there is some p ∈ Q+ with

p =T ε, we have the following chain of isomorphisms:

M (T ) ' S (T ) ' S (T ′) ' S (T ′) 'M (T ′)

where we have used Fact 1.3.2.5 in the third step. If there is no p ∈ Q+ with p =T ε,
then we have a similar chain of isomorphisms:

M (T ) ' S (T )1 ' S (T ′)1 'M (T ′) 'M (T ′)

where we have used Fact 1.3.2.5 again in the last step.
To show the actual claim, observe that p′ =T ′ ε implies p =T ε because, in this case,

the partial action p′ ◦ of p′ is the identity mapping and, thus, defined on all of Σ∗. On
the other hand, if we have p =T ε, the inverse of p in M (T ) must also be ε. Thus, by
the above proof, p′ ◦ u is defined for all u ∈ ε ◦ Σ∗ = Σ∗ and we have p′ ◦ u = p ◦ u = u
for all u ∈ Σ∗.

The construction from the previous proof can also be used to show that an automa-
ton semigroup that is a group is already an automaton group. This extends [Cai09,
Proposition 3.1] to partial automata.

Corollary 1.3.2.7 ([Cai09, Proposition 3.1] for partial automata). A group is a (partial)
automaton semigroup if and only if it is an automaton group.

Proof. An automaton group G (T ) is by definition the automaton semigroup S (T̃ ).
For the other direction, suppose that S (T ) = G is a group for some S-automaton
T = (Q,Σ, δ). Thus, there is some e ∈ Q+ such that e is the neutral element in G. Since
the trivial group is certainly an automaton group, we may assume that G is not trivial,
which implies that e ◦ Σ = {e ◦ a | a ∈ Σ, e ◦ a defined} is not empty. We will show
that we have q ◦ Σ = e ◦ Σ for all q ∈ Q+. To do this, we first observe that, for every
q ∈ Q+, there is some q−1 ∈ Q+ such that q−1 is the (group) inverse of q in G. We have
q ◦ Σ = eq ◦ Σ ⊆ e ◦ Σ and e ◦ Σ = qq−1 ◦ Σ ⊆ q ◦ Σ.

Recall the construction of the S-automaton T ′ from T in the proof of Theorem 1.3.2.6.
Applying this construction here, we obtain the automaton T ′ = (Q′,Σ, δ′) where Q′ is a
disjoint copy of Q and the transitions are given by

δ′ = {p′ q′a/b | p qa/b ∈ δ, a ∈ p−1 ◦ Σ = e ◦ Σ}
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31 The problem
was also com-
municated by
Ievgen Bonda-
renko (although no
reference exists).

32 See Corol-
lary 1.4.1.12 (and
the part before it)
for references.

and that S (T ′) is (isomorphic to) S (T ). We claim that T ′ is a complete automaton
over the alphabet e ◦ Σ, which implies that S (T ) is (isomorphic to) the automaton
group G (T ′). Clearly, for every transition p′ q′a/b in δ′, we have a ∈ p−1 ◦ Σ = e ◦ Σ
and b = p ◦ b ∈ p ◦ Σ = e ◦ Σ. It remains to show that p′ ◦ b is defined for all b ∈ e ◦ Σ
and this is the case if p ◦ b is defined for all b ∈ e ◦ Σ. So, let b = e ◦ a (be defined) for
some a ∈ Σ. Then, we have that e ◦ a = p−1pe ◦ a is defined. This is only possible if also
pe ◦ a = p ◦ e ◦ a = p ◦ b is defined.

1.4 Orbits of Automaton Semigroups

In this section, we will have a closer look at the orbits of automaton semigroups and
groups. In the first subsection, we will show our main result that every infinite automaton
semigroup (and, thus, also every infinite automaton group) admits an ω-word with an
infinite orbit. This result is less obvious than it seems at first and solves a previously
open problem [3, Open problem 4.3].31 In fact, we will show a more general result stating
that, if a suffix-closed language K over the state set of an S-automaton has an infinite
image in the generated semigroup, then it also admits an ω-word with an infinite K-orbit.
We will apply this result to the whole semigroup, to finitely generated subsemigroups
but also to principal left ideals of the semigroup (which form non-finitely generated
subsemigroups in general). On the other hand, we will see that the analogue of this result
does not hold for general non-finitely generated subsemigroups since it is not true for
principal right or two-sided semigroup ideals.
While the main result has many interesting consequences (also for some algebraic

decision problems that we will discuss in Subsection 2.3.3 and Subsection 2.4.3), its proof
and the involved objects are also interesting on their own. The central idea is to extend
the well-known result that an S-automaton generates an infinite semigroup if and only
if its dual does32 to a generalized form of Schreier graphs for (automaton) semigroups.
Here, we will prove a duality result, which will not only be central for the main result but
can also be used to show some further interesting consequences. For example, it allows us
to give a simple proof for a connection between the torsion of a semigroup element and
the finiteness of its orbit under the action of the dual generalizing a result for automaton
groups to semigroups, which we will give at the beginning of the second subsection. In
connection with the existence of infinite torsion automaton groups, this result allows us
to show that the ω-word with an infinite orbit can neither be assumed to be periodic
nor to be ultimately periodic in general. On the other hand, we will also see from the
dual connection that, if an automaton semigroup admits an ω-word with a finite orbit,
then it already admits such an ω-word which is ultimately periodic or, in the case of a
complete and reversible automaton, even periodic. Eventually, we will re-visit this short
glimpse on (ultimately) periodic words with a finite orbit in Subsection 2.2.2 to show
some undecidability result.

Attribution. The proof for the main result given in the first subsection has a rather
convoluted history. The original question whether an infinite automaton semigroup always
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33 If there is a
constant uniformly
bounding the orbit
size for all words,
then there are
only finitely many
(non-isomorphic)
orbital graphs and
the semigroup acts
faithfully on the
finite union of
these finite objects.
Thus, it must be
finite in this case.
34 The limit is
taken with respect
to the standard
prefix metric on
Σ∞.
35 And, of course,
we will prove that
such a word with
an infinite orbit
always exists for
infinite automaton
semigroups.

admits a single ω-word with an infinite orbit was put on record in [3, Open Problem 4.3],
which was first uploaded as a pre-print to the arXiv shortly before Christmas 2017. At
the time, the authors of the mentioned work (Daniele D’Angeli, Emanuele Rodaro and
the current author) already had some results on the problem, which were, however, not
ready for publication and, thus, not included in the mentioned pre-print. However, at
the end of January 2018, Dominik Francoeur uploaded a note to the arXiv [Fra18] also
giving a proof for a positive answer to the mentioned open problem and approached the
current author via email shortly after.
This resulted in a joint paper combining the two approaches and considering further

consequences of it, whose first version was uploaded to the arXiv at the beginning
of March 2019 and submitted to the Journal of Algebra. However, the anonymous
reviewer suggested a major revision (and restriction to the main results) of the paper
and observed that a step in the proof can be simplified using an argumentation involving
the dual automaton. This observation lead to a discussion among the authors and a huge
simplification of the proof. Finally, this was the version of the proof that got published
in [7] and the proof presented here (mostly) follows the same argument.
The presented corollaries of the main result and the central dual connection as well

as the other results are also joint work with Daniele D’Angeli, Dominik Francoeur and
Emanuele Rodaro [7; 8].

1.4.1 Infinite Orbits

In this subsection, we are going to show that every infinite automaton semigroup admits
an ω-word with an infinite orbit. Using a standard argument,33 it is straightforward to
see that every infinite automaton semigroup admits a sequence of words with (strictly)
growing orbit sizes. However, this sequence might still converge to an ω-word with a
finite orbit.

Counter Example 1.4.1.1 (compare to [3, Open Problem 4.3]). If we add a new letter
> with identity self-loop at all states to the adding machine from Example 0.2.1.4, we
obtain the automaton

q id

>/>

1/0
0/1 0/0

1/1.

>/>

For this automaton, the word >n0n (for n ∈ N) has an orbit of size 2n. However, the
limit34 lim

n→∞
>n0n is >ω, which has an orbit of size 1. Of course, there still is 0ω which

has an infinite orbit.35

This example shows that we cannot simply take the limit of a sequence of words with
growing orbit sizes to obtain a word with an infinite orbit. In fact, the proof we will use
to show our result will be less of a topological nature and rather use the dual automaton.
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36 Obviously, if K
contains ε, then
K/L is initial.

Generalized Schreier Graphs. To simplify our notation, we fix an arbitrary S-automa-
ton T = (Q,Σ, δ) for the remainder of this subsection.

Recall that we have p =T q for p, q ∈ Q∗ if and only if we have p ◦w = q ◦w (or both
undefined) for all w ∈ Σ∞. We will extend this congruence to arbitrary languages. For
L ⊆ Σ∞, define the relation ≡L ⊆ Q∗ ×Q∗ by

p ≡L q ⇐⇒ ∀w ∈ L : p ◦ w = q ◦ w (or both undefined).

Clearly, ≡Σ∗ and =T are the same congruence and ≡L is an equivalence for all L ⊆ Σ∞.
In general, however, ≡L is not necessarily a congruence (since p ◦ w may not be in L
although w is). As an equivalence, ≡L is coarser than (or equal to) =T and we write
[q]L for the equivalence class of q ∈ Q∗ with respect to ≡L.
For a set K ⊆ Q∗ of state sequences, we let

K/L = {[q]L | q ∈ K}

bet the set of equivalence classes (with respect to ≡L) with a representative in K. On
this set, we can define a natural graph structure: its edges are given by

{[pq]L [q]L
p | q ∈ K, p ∈ Q with pq ∈ K}.

Just like with orbital graphs, we do not distinguish between K/L as a set and K/L as a
graph.
Remark 1.4.1.2. Also like with orbital graphs, we will sometimes draw the edges (and
paths) in K/L from right to left instead of from left to right. This is again connected to
the nature of the underlying action as a left action. In addition, the label of a finite path

[u0]L. . .[u`]L
q` q1

in K/L with q1, . . . , q` ∈ Q is q` . . . q1 ∈ Q` and the label of an infinite path

[u0]L[u1]L. . .
q2 q1

in K/L with q1, q2, · · · ∈ Q is . . . q2q1 ∈ Q−ω.
We say that K/L is initial if we have36 [ε]L ∈ K/L. In this case, [ε]L is the initial node

of K/L and an initial path is a path starting in this initial node. We say that K/L is
connected if it is initial and every node can be reached by an initial path. An important
case here is that K/L is always (initial and) connected if K ⊆ Q∗ is suffix-closed (as a
language over Q). Because the out-degree of the nodes in K/L is always bounded by
|Q|, every infinite connected graph K/L admits an infinite initial and simple path, which
shows the following fact.

Fact 1.4.1.3. Let K ⊆ Q∗ be suffix-closed and let L ⊆ Σ∞ be an arbitrary language. If
K/L is infinite, it contains an infinite initial and simple path.
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37 Recall that
Preα is the set of
finite prefixes of an
ω-word α.

To better understand the structure of K/L, we continue by looking at a few important
special cases.

Example 1.4.1.4 (compare to [7, p. 126]). We have already seen that =T and ≡Σ∗ are
the same relation. Accordingly, Q+/Σ∗ is the same as the automaton semigroup S (T )
and its graph structure is the (left) Cayley graph of S (T ).
For P ⊆ Q, P+/Σ∗ is the subsemigroup generated by P in S (T ) and the graph

structure is that of the (left) Cayley graph of this subsemigroup.
If T is a G-automaton, then Stab(u) = Stab1

T̃
(u) forms the stabilizer H of u ∈ Σ∞ in

G = G (T ). It is straightforward to verify that we have p ≡u q if and only if we have
p Stab(u) = q Stab(u) in G. This yields that Q̃∗/u corresponds to the co-sets G/H and
that its graph structure is given by the (left) Schreier graph of G with respect to H.

Finally, if T is a complete S-automaton and α is an ω-word, then we have37 p ≡Preα q
if and only if we have p ◦α = q ◦α. Thus, for a set K ⊆ Q∗ of state sequences, K/Preα
corresponds to K ◦ α and Q∗/Preα is (isomorphic to) the orbital graph Q∗ ◦ α.

The last example does not work for non-complete automata. We can have that p ◦ α
and q ◦ α are both undefined but that the partial action of p differs from the one of q
on some finite prefix of α (and that, thus, we have p 6≡Preα q). However, if K/Preα is
connected, we still have that it is finite if and only if K ◦ α is finite. We will show this in
the proposition after the next lemma.

Lemma 1.4.1.5 (compare to [7, Lemma 2.3]). Let K ⊆ Q∗ and, for L ⊆ Σ∗, define

~L = {α ∈ Σω | infinitely many prefixes of α are in L}.

If q ∈ Q∗ ∪Q−ω is the label of a (possibly infinite) initial path in K/L, then we have

Suf q ◦ α ⊆ K ◦ α

for all α ∈ ~L.

Proof. Let qi . . . q1 with q1, . . . , qi ∈ Q be a finite suffix of q. Because it is the label of
the initial path

[ε]L. . .[qi . . . q1]L
qi q1

in K/L, there is some pi ∈ Q∗ with pi ∈ K and [qi . . . q1]L = [pi]L. It suffices to show
qi . . . q1 ◦ α = pi ◦ α for all α ∈ ~L. Suppose that this is not the case. Then there is
already some finite prefix u ∈ Σ∗ of α with qi . . . q1 ◦ u 6= pi ◦ u (including the case
that one is defined while the other one is not). Since α is from ~L, there always is a
prefix u′ of α longer than u with u′ ∈ L. Since we have qi . . . q1 ≡L pi, we must have
qi . . . q1 ◦ u′ = pi ◦ u′ (or both undefined), which is a contradiction.

An important special case of Lemma 1.4.1.5 is to choose L = Preα as the set of finite
prefixes of some ω-word α. In this case, we have ~L = #        »Preα = {α}.
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Proposition 1.4.1.6 (compare to [7, Proposition 2.4]). Let K ⊆ Q∗ and α ∈ Σω such
that K/Preα is connected. Then, we have

|K/Preα| =∞ ⇐⇒ |K ◦ α| =∞.

Proof. If K ◦α is infinite, there are infinitely many q0, q1, · · · ∈ K such that all qi ◦α are
(defined but) pairwise different, i. e. for i 6= j, we have qi ◦ α 6= qj ◦ α (but both defined).
Thus, there is some finite prefix u of α with qi ◦ u 6= qj ◦ u, which shows qi 6≡Preα qj for
all i 6= j and, therefore, that K/Preα is infinite.

For the other direction, assume that K/Preα is infinite. Since it is also connected, it
contains some infinite simple and initial path

[ε]Preα[p1]Preα[p2p1]Preα. . .
p3 p2 p1 .

Since the path is simple, we have that all [pi . . . p1]Preα are pairwise distinct.
We first show that all pi . . . p1 ◦α are defined using a contradiction. Suppose that there

is some i0 such that pi0 . . . p1 ◦ α is undefined. There must be some prefix ua of α with
a ∈ Σ such that pi0 . . . p1 ◦ua is undefined. Then, pj . . . p1 ◦ua must also be undefined for
all j ≥ i0. This means that all infinitely many pi . . . p1 ◦ u with i ≥ i0 must be pairwise
different (as we have pi . . . p1 6≡Preα pj . . . p1 for i 6= j), which is not possible.
We obtain that all pi . . . p1 ◦ α are defined and, by Lemma 1.4.1.5 (with L = Preα),

they must be in K ◦ α. Additionally, they must also be pairwise different since pi . . . p1
already acts differently to pj . . . p1 on some finite prefix of α (for i 6= j). This shows that
K ◦ α is infinite.

An important (and elegant!) special case of the last proposition is when K is given as
the (suffix-closed) set of finite suffixes of some left-infinite sequence over Q.

Corollary 1.4.1.7 ([7, Corollary 2.5]). For π ∈ Q−ω and α ∈ Σω, we have

|Suf π/Preα| =∞ ⇐⇒ | Suf π ◦ α| =∞

The proof for our main result is of a dual nature at its core. It is straight-forward that
we can extend the relation ≡L and the graph K/L to the dual ∂T of T . For a language
K ⊆ Q∞, we define the relation ≡K ⊆ Σ∗ × Σ∗ by

u ≡K v ⇐⇒ ∀p ∈ K : u ◦∂ p = v ◦∂ p (or both undefined).

That this relation is to be understood with respect to the dual can be seen from the
fact that K is a subset of Q∞ and not of Σ∞ (as previously in the definition of ≡L).
Now, for L ⊆ Σ∗, we can define L/K as those classes with respect to ≡K that have a
representative in L and add edges to obtain the graph structure: for all u ∈ L and all
a ∈ Σ with au ∈ L, we add an a-labeled edge from the class of u to the class of au.

However, instead of dealing with K/L with respect to T and L/K with respect to ∂T ,
we can directly define a dual object to K/L only working with T .
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38 We only have to
exploit the connec-
tion p ·u = ∂(∂u◦∂
∂p).

Dual Schreier Graphs. For all K ⊆ Q∗ ∪Q−ω, we define the relation ∼K ⊆ Σ∗ ×Σ∗ by

u ∼K v ⇐⇒ ∀q ∈ K : q · u = q · v (or both undefined).

Just like ≡L, this is clearly an equivalence and we write [u]K for the class of u with
respect to ∼K . For a language L ⊆ Σ∗, we define

K\L = {[u]K | u ∈ L}

as the set of classes with a representative in L. Again, we can define a natural graph
structure on this set whose edges are given by

{[u]K [ua]Ka | u ∈ L, a ∈ Σ with ua ∈ L}

and we will not distinguish between the set and the graph notationally.
It is not difficult to see38 that we have u ∼K v if and only if we have u ≡∂K v for all

u, v ∈ Σ∗. From this, we obtain that K\L and ∂L/∂K are basically the same object:

Fact 1.4.1.8. The map

K\L→ ∂L/∂K

[u]K 7→ [∂u]∂K

(where ∂L/∂K is to be understood with respect to the dual automaton ∂T ) is a well-defined
bijection and graph isomorphism.

Of course, we can also transfer the notations of being initial or connected to K\L: it is
initial if we have [ε]K ∈ K\L, in which case we call [ε]K the initial node of K\L and any
path starting there an initial path. The graph is connected if it is initial and every node
is reachable from [ε]K . Again, we have the important special case that K\L is connected
if L ⊆ Σ∗ is prefix-closed. Since the out-degree of a node in K\L is always bounded by
|Σ|, we obtain an analogue of Fact 1.4.1.3.

Fact 1.4.1.9. Let K ⊆ Q∗ ∪Q−ω be arbitrary and let L ⊆ Σ∗ be prefix-closed. If K\L
is infinite, it contains an infinite initial and simple path.

Finally, we can clearly also define ∼L and L\K with respect to ∂T . For L ⊆ Σ∗ ∪Σ−ω,
we let ∼L ⊆ Q∗ ×Q∗ be given by

p ∼L q ⇐⇒ ∀u ∈ L : u ·∂ p = u ·∂ q (or both undefined)

and define L\K for K ⊆ Q∗ as those classes with respect to ∼L that have a representative
in K. To define the graph structure of L\K, we add a q-labeled edge from the class of p
to the class of pq for all p ∈ K and q ∈ Q with pq ∈ K.
Remark 1.4.1.10. While the many objects K/L, K\L, L/K and L\K might seem
confusing, the reader can rest assured that we will actually mostly be working with the
ones defined with respect to T ; only once (and only briefly), we will also need those
defined with respect to ∂T in our main proof.
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39 This result
seems to be first
given in [SV11,
Proposition 2.2]
(see also [Akh+12,
Proposition 10]),
where it is stated
that the result was
also independently
obtained by Šunić.
Furthermore, it
is already present
implicitly in the
proof of [Nek05,
Lemma 1.10.6].

40 Since L is
prefix-closed, the
stated automaton
contains all runs
of T |q| starting in
q whose input is
from L.

The Main Proof. We have now all objects at hand that we need in order to prove our
main result. In fact, we will first prove a result on the dual nature between K/L and
K\L. The underlying idea here it to generalize the fact that an S-automaton generates
an infinite semigroup if and only if its dual does.39

Proposition 1.4.1.11 (see [7, Proposition 3.1]). Let K ⊆ Q∗ be suffix-closed and let
L ⊆ Σ∗ be prefix-closed. Then, we have:

|K/L| =∞ ⇐⇒ ∞ = |K\L|

Proof. We only show one direction as the other one then follows by duality:

∞ = |K\L| = |∂L/∂K| =⇒ |∂L\∂K| = |K/L| =∞

(where we have used ∞ = |K/L| =⇒ |K\L| =∞ with respect to the dual automaton).
We show this direction by using contraposition. So, assume that we have |K\L| = C <
∞. Then, for all q ∈ K, we have |q ·L| ≤ C and, thus, that the size of the S-automaton
with state set q · L, alphabet Σ and the transitions

{q · u q · uaa/q · u ◦ a | ua ∈ L, q · ua defined}

is at most C. Clearly, this automaton fully describes the partial action of q ∈ K on words
from L.40 However, there are only finitely many such automata (that are non-isomorphic)
and, therefore, we can only have finitely many different partial actions of elements from
K on words from L. In other words, K/L must be finite.

Corollary 1.4.1.12 ([SV11, Proposition 2.2]). We have:

|S (T )| =∞ ⇐⇒ ∞ = |S (∂T )|

Proof. We have

|S (T )| = |Q∗/Σ∗| =∞ ⇐⇒ ∞ = |Q∗\Σ∗| = |Σ∗/Q∗| = |S (∂T )|

where we have used that ≡Σ∗ is the equality in S (T ) (for the first equality), Proposi-
tion 1.4.1.11 (for the equivalence), Fact 1.4.1.8 (for the second equality) and, finally, that
≡Q∗ is the equality in S (∂T ) (for the last equality).

While also interesting on its own, Proposition 1.4.1.11 is the central part for proving
that there is a single ω-word with an infinite K-orbit if K is suffix-closed and forms an
infinite subset in an automaton semigroup.

Theorem 1.4.1.13 ([7, Theorem 3.2]). Let K ⊆ Q∗ be suffix-closed for the S-automaton
T = (Q,Σ, δ). Then, we have:

K is infinite in M (T ) ⇐⇒ ∃α ∈ Σω : |K ◦ α| =∞
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41 . . . as we have
seen in Section 1.2
that the mono-
genic free monoid
is an automaton
semigroup while
the monogenic free
semigroup – one of
its subsemigroups –
is not.

Proof. If the image of K in M (T ) is of finite size C, then the size of all K-orbits K ◦ α
with α ∈ Σω is clearly also bounded by C.

If, on the other hand, the image of K in M (T ) is infinite, we have that K/Σ∗ is infinite
since ≡Σ∗ is the equality in M (T ) and it is connected because K is suffix-closed. By
Fact 1.4.1.3, there is an infinite initial and simple path in K/Σ∗ and we let π ∈ Q−ω
denote its label. From Lemma 1.4.1.5, we obtain Suf π ◦ α ⊆ K ◦ α for all α ∈ Σω. Thus,
it suffices to show | Suf π ◦ α| =∞ for some α ∈ Σω.

Clearly, the infinite initial and simple path belonging to π also exists in the subgraph
Suf π/Σ∗ (and it remains initial and simple). Thus, we have that Suf π/Σ∗ is infinite.
Now, Proposition 1.4.1.11 states that Suf π\Σ∗ must also be infinite, which implies that
it must contain an infinite initial and simple path (by Fact 1.4.1.9) whose label we denote
by α ∈ Σω. Again, this path must also exist in the subgraph Suf π\Preα, which, thus,
must be infinite. Applying Proposition 1.4.1.11 a second time yields that Suf π/Preα
must be infinite and, by Corollary 1.4.1.7, that Suf π ◦ α ⊆ K ◦ α is infinite as well.

While making a statement about automaton monoids instead of automaton semigroups
allows for a more elegant formulation in Theorem 1.4.1.13, we clearly have that K \ {ε}
is infinite in S (T ) is and only if K is infinite in M (T ) for K ⊆ Q∗.

Corollaries. The formulation of Theorem 1.4.1.13 is very general. Obviously, its most
interesting special case is to take K as Q∗, which (together with Fact 0.2.3.1) yields than
an automaton semigroup is infinite if and only if it admits an ω-word with an infinite
orbit.

Corollary 1.4.1.14 ([7, Corollary 3.3]). We have

|S (T )| =∞ ⇐⇒ ∃α ∈ Σω : |Q∗ ◦ α| =∞

for the S-automaton T = (Q,Σ, δ).

This connection allows for a re-formulation of the finiteness problem for automaton (semi-
groups and) groups, which we will discuss in Subsection 2.3.3 and use in Subsection 2.4.3.
Together with Fact 0.3.2.2, it also yields the following well-known connection between
the finiteness of the semigroup and the group generated by a G-automaton.

Fact 1.4.1.15. If T = (Q,Σ, δ) is a G-automaton, we have:

|S (T )| =∞ ⇐⇒ |G (T )| =∞

Proof. One direction immediately follows from the functional view of automaton semi-
groups, which interprets S (T ) as a subset of G (T ). If, on the other hand, G (T ) is
infinite, there is some ω-word α ∈ Σω with an infinite orbit Q̃∗ ◦ α by Corollary 1.4.1.14
(applied to T̃ ). From Fact 0.3.2.2, we obtain that Q∗ ◦ α and, thus, S (T ) must also be
infinite.

However, Theorem 1.4.1.13 also covers (finitely generated) subsemigroups of automaton
semigroups. Here, it is worthwhile to recall that the class of automaton semigroups is
not closed under taking subsemigroups.41
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42 For the defini-
tion of a (semi-
group) ideal, see
page 30.

Corollary 1.4.1.16 ([7, Corollary 3.7]). Let P ⊆ Q+ be a finite set of state sequences
for the S-automaton T = (Q,Σ, δ). Then, the subsemigroup given by P+ in S (T ) is
infinite if and only if there is some α ∈ Σω with |P ∗ ◦ α| =∞.
Proof. We may assume P = P ⊆ Q, i. e. that P only contains single states, since we can
replace T by the union of T and suitable powers of T . With this assumption, P ∗ is a
suffix-closed language over Q. The subsemigroup given by P+ in S (T ) is infinite if and
only if P ∗ is infinite in M (T ) and, by Theorem 1.4.1.13, this is the case if and only if
there is some α ∈ Σω with |P ∗ ◦ α| =∞.

We even obtain results for some non-finitely generated subsemigroups from Theo-
rem 1.4.1.13. As an example, we will apply it to principal left ideals.

Semigroup Ideals. The principal left ideal42 of a semigroup element s ∈ S is S1s =
{s′s | s′ ∈ S1}. Accordingly, the principal right ideal of s is sS1 = {ss′ | s′ ∈ S1} and
the principal (two-sided) ideal of s is S1sS1 = {s′ss′′ | s′, s′′ ∈ S1}.
By definition, left, right and two-sided ideals are always subsemigroups. However, in

general, they are not finitely generated. For example, the principal left ideal {a, b}∗a in
the free semigroup {a, b}+ (which is an automaton semigroup by [Cai09, Proposition 4.1])
is not finitely generated. Still, using Theorem 1.4.1.13, we can show an analogue to
Corollary 1.4.1.16 for the case of principal left ideals.
Corollary 1.4.1.17 ([7, Corollary 3.9]). Let p ∈ Q+ for the S-automaton T = (Q,Σ, δ).
For the left principal ideal of p in S (T ), we have:

Q∗p = {qp | q ∈ Q∗} is in S (T ) infinite ⇐⇒ ∃α ∈ Σω : |Q∗p ◦ α| =∞

Proof. By replacing T with T ] T |p|, we may assume p = p ∈ Q. This turns Q∗p ∪ {ε}
into a suffix-closed language over Q. Now, the left principal ideal Q∗p in S (T ) is infinite
if and only if Q∗p ∪ {ε} is infinite in M (T ), which, by Theorem 1.4.1.13, holds if and
only if there is some ω-word α ∈ Σω with |(Q∗p ∪ {ε}) ◦ α| =∞. Obviously, this is the
case if and only if Q∗p ◦ α is infinite.

We cannot extend our result to all (non-finitely generated) subsemigroups, however,
as the following counter-example shows. In fact, we can have infinite principal right or
two-sided ideals which do not admit a single ω-word with an infinite orbit.
Counter Example 1.4.1.18 (see [7, Counter-Example 3.10]). If we choose T = (Q,Σ, δ)
as the S-automaton

q idp a/a
b/a a/a

b/b
a/a

and consider K = pQ∗, then we clearly have either K ◦ α = ∅ or K ◦ α = {aω} for all
α ∈ Σω. However, K is infinite in S (T ) as we have pqi 6= pqj in S (T ) for all i < j. This
is the case because we have that pqi ◦ bj = p ◦ aibj−i is undefined while pqj ◦ bj is aj (and,
thus, defined). This also shows that Q∗pQ∗ is infinite in S (T ). Since aω is fixed by the
partial actions of all states, we also have either Q∗pQ∗ ◦ α = ∅ or Q∗pQ∗ ◦ α = {αω} for
all α ∈ Σω.
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A Corollary of Proposition 1.4.1.11. We conclude this subsection with another corollary
of Proposition 1.4.1.11 about the orbit and the dual orbit belonging to a single left infinite
sequence and a single ω-word.

Corollary 1.4.1.19 (see [7, Corollary 3.11]). For π ∈ Q−ω and α ∈ Σω, we have

|Suf π ◦ α| =∞ ⇐⇒ ∞ = |π · Preα| = |Suf ∂α ◦∂ ∂π|

Proof. The equality on the right hand side is due to the bijection from Fact 0.3.2.4 and
we have:

| Suf π ◦ α| =∞
⇐⇒ | Suf π/Preα| =∞ (by Corollary 1.4.1.7)
⇐⇒ | Suf π\Preα| =∞ (by Proposition 1.4.1.11)
⇐⇒ |∂ Preα/∂ Suf π| =∞ (by Fact 1.4.1.8)
⇐⇒ | Suf ∂α/Pre ∂π| =∞ (since ∂ Preα = Suf ∂α and ∂ Suf π = Pre ∂π)
⇐⇒ | Suf ∂α ◦∂ ∂π| =∞ (by Corollary 1.4.1.7, applied to ∂T ).

1.4.2 Orbits of Periodic and Non-Periodic Words

Torsion and the Dual Orbit. We can derive further interesting corollaries directly from
Proposition 1.4.1.11. For example, we can give a simple proof to show that an element of
an automaton semigroup has torsion if and only if the orbit of the corresponding periodic
word has a finite orbit under the action of the dual automaton. This connection had
previously been shown for groups [DR16, Theorem 3] and, independently, for reversible
G-automata [KPS18, Proposition 7].

First, we link the finiteness of the image of Suf q−ω in the automaton monoid/semigroup
to the property that q has torsion.

Fact 1.4.2.1. For an S-automaton T = (Q,Σ, δ) and q ∈ Q∗, we have:

Suf q−ω is infinite in M (T ) ⇐⇒ q has torsion in S (T )

Proof. If q has no torsion in S (T ), we have that Suf q−ω is infinite in M (T ) since we
must have that already all qi ∈ Suf q−ω with i ≥ 0 must be pairwise distinct in M (T ).
For the other direction, suppose that we have qi = qj in S (T ) for some 0 < i < j

and consider an arbitrary element r of Suf q−ω. It must be of the form r = pqk where
k ∈ N and p ∈ Q∗ is a suffix of q (and, thus, from a finite set). For k ≥ j, we have
pqk =T pqk−(j−i). Thus, only values of k with k < j can yield elements in Suf q−ω that
are distinct in M (T ).

Now, proving the actual connection between a torsion element in the dual and the
finiteness of the corresponding orbit boils down to applying Proposition 1.4.1.11.
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Theorem 1.4.2.2 (dual version of [7, Theorem 3.12]). Let u ∈ Σ+ for an S-automaton
T = (Q,Σ, δ). Then, the statements

1. ∂u has torsion in S (∂T ).

2. The orbit Q∗ ◦ uω is finite.

3. The orbit Q∗ ◦ vuω is finite for all v ∈ Σ∗.

are equivalent.

Proof. For the second equivalence, observe that we have Q∗ ◦ vuω ⊆ Σ|u|(Q∗ ◦ uω) for all
v ∈ Σ∗. Thus, if Q∗ ◦ uω is finite, so are all Q∗ ◦ vuω with v ∈ Σ∗ (and the converse is
trivial).
Regarding the first equivalence, we have

|Q∗ ◦ uω| <∞
⇐⇒ |Q∗/Preuω| <∞ (by Proposition 1.4.1.6)
⇐⇒ |Q∗\Preuω| <∞ (by Proposition 1.4.1.11)
⇐⇒ |∂ Preuω/Q∗| <∞ (by Fact 1.4.1.8)
⇐⇒ | Suf(∂u)−ω/Q∗| <∞ (since ∂ Preuω = Suf(∂u)−ω)
⇐⇒ Suf(∂u)−ω is finite in M (∂T ) (≡Q∗ is the equality in S (∂T ))
⇐⇒ ∂u has torsion in S (∂T ) (by Fact 1.4.2.1, applied to ∂T ).

Later on, it will be useful to also have a dual formulation of Theorem 1.4.2.2 at hand.
This formulation directly follows from swapping the roles of T and ∂T .

Theorem 1.4.2.3 ([7, Theorem 3.12], dual version of Theorem 1.4.2.2). Let q ∈ Q+ for
an S-automaton T = (Q,Σ, δ). Then, the statements

1. ∂q has torsion in S (T ).

2. The orbit Σ∗ ◦∂ qω of qω under the action of the dual of T is finite.

3. The orbit Σ∗ ◦∂ pqω of pqω under the action of the dual of T is finite for all p ∈ Q∗.

are equivalent.

Non-Periodicity. We have seen (in Corollary 1.4.1.14) that every infinite automaton
semigroup admits an ω-word with an infinite orbit. However, the proof is purely existential
and does not allow us to extract much information about the nature of the word. In fact,
we can prove that it does not have certain structural properties. Namely, we will exploit
the connection from Theorem 1.4.2.3 in the next counter example to see that, in general,
it cannot be periodic or ultimately periodic.
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Counter Example 1.4.2.4 (compare to [8, Counter-Example 5.7]). Let T be a G-
automaton generating an infinite torsion group G (T ). For example, we can choose T as
the automaton

b

a

d

c id

0/1
1/0

0/0

1/1

0/0

1/1
0/0

1/1

0/0
1/1

generating the Grigorchuk group, which is an infinite torsion group (see, e. g. [Nek05,
Theorem 1.6.1]).

Since G (T ) is infinite, we also have that S (T ) and, thus, S (∂T ) are infinite (by
Fact 1.4.1.15 and Corollary 1.4.1.12). Now assume that we have an ultimately periodic
word pqω with p ∈ Q∗ and q ∈ Q+ with an infinite orbit Σ∗ ◦∂ pq (under the action of
the dual). Since we have Σ∗ ◦∂ pqω ⊆ Q|p|(Σ∗ ◦∂ qω), we obtain that already the orbit
Σ∗ ◦∂ qω of the periodic word qω must be infinite. Now, Theorem 1.4.2.3 yields that ∂q
must have torsion in S (T ) and, thus, in G (T ), which constitutes a contradiction.

This means that, for example, the complete and reversible dual ∂T

0 1

id/id
b/a
c/a
d/id

a/id id/id
b/c
c/d
d/ba/id

of the above automaton generates an infinite semigroup in which all periodic and ultimately
periodic words have a finite orbit.

Finite Orbits. So far, we have mostly looked at infinite orbits. However, Proposi-
tion 1.4.1.11 can also be used to derive results about finite orbits. In contrast to
Counter-Example 1.4.2.4, we can show in this setting that every automaton semigroup
that admits an ω-word with a finite orbit already admits an ultimately periodic ω-word
with a finite orbit. In the case of a complete and reversible automaton, it even admits a
periodic ω-word with an infinite orbit.

Proposition 1.4.2.5 ([8, Proposition 4.1]). For any S-automaton T = (Q,Σ, δ), we
have

∃α ∈ Σω : |Q∗ ◦ α| <∞ =⇒ ∃u ∈ Σ∗, v ∈ Σ+ : |Q∗ ◦ uvω| <∞.

In fact, u and v can be chosen in such a way that they both contain all letters that appear
infinitely often in α.

If T is a complete and reversible S-automaton, we even have

∃α ∈ Σω : |Q∗ ◦ α| <∞ =⇒ ∃v ∈ Σ+ : |Q∗ ◦ vω| <∞.
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Proof (adapted from the proof of [8, Proposition 4.1]). Suppose we have |Q∗ ◦ α| < ∞
for the ω-word α = a1a2 . . . with a1, a2, · · · ∈ Σ and the S-automaton T . By Propo-
sition 1.4.1.6, this is equivalent to |Q∗/Preα| < ∞, which, in turn, is equivalent to
|Q∗\Preα| < ∞ by Proposition 1.4.1.11. Thus, if we read the initial path labeled by
α in the graph Q∗\Preα, there is some node U that is visited infinitely often. Let
I = {i ∈ N | [a1 . . . ai]Q∗ = U} be the corresponding infinite index set. Choose some
arbitrary elements i, j ∈ I with i < j and let u = a1 . . . ai and v = ai+1 . . . aj . In fact,
we can choose i and j large enough so that u and v both contain all letters that appear
infinitely often in α at least once. From their definition, u labels an initial path from [ε]Q∗
to [u]Q∗ = U in Q∗\Preα and v labels a loop at [u]Q∗ = [uv]Q∗ = [uv2]Q∗ = · · · = U .
This initial path and the loop form the graph Q∗\Preuvω, which is, therefore, finite.
Again, by Proposition 1.4.1.11, we obtain |Q∗/Preuvω| < ∞, which is equivalent to
|Q∗ ◦ uvω| <∞ by Proposition 1.4.1.6.

If T is additionally complete and reversible, there is a surjective function Q∗ ◦ uvω →
Q∗◦vω, which shows |Q∗◦vω| ≤ |Q∗◦uvω| <∞. This function maps a word wβ ∈ Q∗◦uvω
with prefix w of length |w| = |u| to β. Clearly, wβ ∈ Q∗ ◦ uvω implies β ∈ Q∗ ◦ vω and,
to show that the function is surjective, consider an arbitrary element β ∈ Q∗ ◦ vω. Then,
there is some q ∈ Q∗ with q ◦ vω = β. Since T is complete and reversible, there is some
p ∈ Q|q| with p · u = q (as the map · u is a length-preserving permutation in this case by
Fact 0.3.1.2 and we can choose p as the pre-image of q). This yields the cross diagram

u vω

p q

w β

for w = p ◦ u and, thus, that wβ ∈ Q∗ ◦ uvω is a pre-image of β for our function.
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43 In fact, the
typical example of
a non-finitely pre-
sented group, the
lamplighter group,
is an automaton
group [GŻ01]. On
the other hand,
the typical exam-
ple of an automa-
ton group, the Gri-
gorchuk group, is
not finitely pre-
sented [Gri99].
44 The other two
are the conjugacy
problem (“are
two given group
elements conju-
gated?”) and
the isomorphism
problem (“are
two given groups
isomorphic?”).
Both of them are
undecidable for
automaton groups
[ŠV12].
45 for example,
using automaton
minimization tech-
niques (see e. g.
[KMP12, subsec-
tion 2.3]) or by
testing the action
on all words up to
a certain length
(see e. g. [Cai09,
Proposition 3.4])

2 Decision Problems

2.1 Word Problem
While, so far, we have mostly studied structural properties of automaton structures,
we move our attention to the study of algorithmic problems in this chapter. Among
other reasons, automata are interesting as inputs to algorithms because they sometimes
allow for a finite description of algebraic structures which cannot be finitely described
using the classical presentation with generators and relations.43 Together with many
undecidability results, this indicates that automaton structures show a complex behavior
also algorithmically.
In this light, it might be surprising that the first – and probably most fundamental –

of Dehn’s three fundamental problems [Deh11]44 in algorithmic group theory, the word
problem, is decidable for automaton structures. The word problem of a finitely generated
group asks whether a given word in the generators represents the neutral element of the
group. This problem naturally generalizes to semigroups (and monoids) where the input
consists of two words over the generators and the question is whether both represent the
same semigroup element. Additionally, there are also so-called uniform versions of the
word problem where the group or semigroup itself is an additional part of the input in a
suitable (usually finite) representation.

In the setting of automaton structures, the words over the generators are state sequences
and the representation for the uniform versions is obviously the generating automaton.
While there are other ways to solve the word problem for automaton structures,45 it was
Steinberg who first introduced a nondeterministic “guess and check” algorithm requiring
only linear space to solve the word problem of automaton groups [Ste15, section 3].
It turns out that this (rather straight-forward) algorithm is actually an algorithm for
automaton semigroups (even partial ones) and we will briefly discuss and analyze this in
the first subsection. As a byproduct of the algorithm, we can re-prove a result by Cain
giving an upper bound on the length of a shortest word on which two state sequences
representing different elements of an automaton semigroup must act differently [Cai09,
Corollary 3.5]. Cain also asked the question whether this bound can be improved [Cai09,
Open problem 3.6] and we give an explicit lower bound construction for the length and
discuss why a significant improvement is impossible (under common assumptions from
complexity theory).
In addition to stating the “guess and check” algorithm, Steinberg also conjectured

that there is an automaton group whose word problem is PSpace-complete [Ste15,
Question 5] (see also [AIM07, section 2, 6.]). Proving this conjecture is the main result of
this section (which we will present in Subsection 2.1.2). The proof is based on a general
construction to simulate a space-bounded Turing machine in an automaton group: similar
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46 Remember that
an acceptor is an
automaton without
output.

47 This was one of
the main motiva-
tions to introduce
partial automaton
structures in the
first place.

48 The compressed
word problem of
a group can for
example be used
to solve the word
problem of its au-
tomorphism group
(if both groups are
finitely generated).
More on the com-
pressed word prob-
lem can be found in
[Loh14].

to Kozen’s proof that the language intersection emptiness problem for deterministic finite
acceptors46 is PSpace-complete [Koz77, Lemma 3.2.3], the input word for the automaton
is considered to encode a computation of a Turing machine and we have various states
which check that individual aspects of the computation are valid. The construction
originates in the proof that there is an inverse automaton semigroup whose word problem
is PSpace-complete [1, Proposition 6] and its main idea is to use binary counters (in a
way similar to the adding machine from Example 0.2.1.4) to implement a generalized
checkmarking approach. For propagating the information on whether a check of the
computation passed or failed, the original construction (for the inverse semigroup case)
relied on the fact that the automaton was allowed to be partial.47 The already existing
construction for the inverse semigroup case made it significantly simpler to extend the
result to groups. Only the way how the pass or fail information is propagated had to be
changed [5, Theorem 10]. The modified construction (which is what we present here)
uses iterated commutators to simulate a logical conjunction in the group (compare to
[Bar89]).

This general way of simulating Turing machines in automaton groups seems to be quite
versatile and, in the last subsection, we apply it to another problem: the compressed
word problem,48 where the input state sequence(s) are not given as words directly but
are generated using a context-free grammar. We show that there is an automaton group
whose compressed word problem is ExpSpace-complete. In fact, we even show that
there is an automaton group whose (normal) word problem is PSpace-complete and
whose compressed word problem is ExpSpace-complete, which yields an example of
a group whose compressed word problem is provably harder (not only under common
assumptions from complexity theory) than its (normal) word problem.

Attribution. As already mentioned, the “guess and check” algorithm was first put
into the literature by Steinberg [Ste15, section 3]. This algorithm was analyzed and
generalized to (partial) automaton semigroups in joint work with Daniele D’Angeli and
Emanuele Rodaro [1]. In fact, the mentioned work even considers the word problem with
rational constraints where the question is whether the partial actions of the two given
state sequences coincide on all words of a given regular language. The description of the
algorithm and the analysis below are based on this work. The lower bound construction
in the context of Cain’s problem [Cai09, Open problem 3.6] also originates there and the
same is true for the generalized checkmarking approach and most of the construction
used in the PSpace-hardness proof.

The extension of the PSpace-hardness proof to the group case and the results on the
ExpSpace-hardness of the compressed word problem are joint work with Armin Weiß [5].
Some parts of the explanation and proofs (for the PSpace-result) are taken verbatim
from this work. The idea of using commutators to simulate logical conjunctions in groups
was used by Barrington [Bar89] but similar ideas predate him and have been attributed
to Gurevich (see [Mak85]) and given by Mal’cev [Mal62]. That the compressed word
problem for automaton structures is in ExpSpace simply follows by uncompressing the
straight-line program.
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49 In fact, both
algorithms seem to
be deterministic
poly-logarithmic
space algorithms.

50 Strictly speak-
ing, we also have
to ask whether the
two state sequences
are the same ele-
ment in S (T ) in-
stead. However,
this is the case if
and only if they are
the same element
in M (T ).

Other results on the word problem of automaton structures (which we do not discuss
here) include the result that the word problem of (so-called) contracting automaton groups
can be solved in deterministic logarithmic space [Nek05, proof of Proposition 2.13.10].
In particular, this, thus, also holds for automaton groups of bounded activity [Nek05,
Theorem 3.9.12] (which we will encounter again in Subsection 2.4.3). The word problem
of automaton groups of polynomial activity can be solved in sub-exponential time [Bon12,
Corollary 1] and, for Honoi tower groups, one can use the automaton presentation
to obtain an algorithm for the word problem running in sub-exponential time as well
[Bon14].49

For the compressed word problem, there does not seem to exist much prior or related
work (although some related results can be found in [Bar+20]). However, it was observed
by Gillibert (via personal communication) that the proof of [1, Proposition 6] also shows
that there is an inverse automaton semigroup with an ExpSpace-hard compressed word
problem. This fact came up in a discussion that his construction for an automaton
group with an undecidable order problem [Gil18] can be used to prove that there is an
automaton group with a PSpace-hard compressed word problem.

2.1.1 A Straight-Forward “Guess and Check” Algorithm
The (Uniform) Word Problem for Automaton Structures. The uniform word problem
for automaton monoids is the decision problem

Input: an S-automaton T = (Q,Σ, δ) and
two state sequence p, q ∈ Q∗

Question: is p = q in M (T )?
If we limit the two input state sequences to elements of Q+, we obtain the uniform
word problem for automaton semigroups.50 If we alternatively/additionally restrict
the input automaton to an S-automaton and allow the state sequences to be from
Q̃∗ (or Q̃+, respectively), we obtain the uniform word problem for inverse automaton
monoids/semigroups. The uniform word problem for automaton groups is usually stated
with only one input state sequence:

Input: a G-automaton T = (Q,Σ, δ) and
a state sequence q ∈ Q̃∗

Question: is q = 1 in G (T )?
The idea here is that we have g = h if and only if gh−1 = 1.

Furthermore, we can also remove the automaton from the input altogether and consider
the problem for a fixed S-automaton T . This way, we obtain the word problem of (the
automaton monoid) M (T ):

Constant: an S-automaton T = (Q,Σ, δ)
Input: two state sequences p, q ∈ Q∗
Question: is p = q in M (T )?

Again, we also have versions where the state sequences must be from Q+ (the word
problem of an automaton semigroup) and where the constant automaton is an S-auto-
maton and the state sequences may contain inverses (the word problem of an inverse
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automaton monoid/semigroup). For the word problem of an automaton group, the
constant automaton T is a G-automaton and we only have a single input state sequence
over Q̃, for which we want to check whether it is the neutral element in the group.
As an upper bound for the complexity of the (uniform) word problem for automaton

structures, we can give a rather straight-forward nondeterministic “guess and check”
algorithm to solve the problem(s).51 We will state this algorithm explicitly and analyze
it in the next theorem.

Theorem 2.1.1.1 (simplified version of [1, Proposition 2], compare to [Ste15, section 3]).
The uniform word problem for automaton monoids

Input: an S-automaton T = (Q,Σ, δ) and
two state sequence p, q ∈ Q∗

Question: is p = q in M (T )?
is in NSpace((|p|+ |q|) log |Q|+ log |Σ|) and, thus, in linear nondeterministic space.

Proof. Actually, we give a space-bounded nondeterministic algorithm for the complement
problem. By the closure of nondeterministic space classes under complement (see, e. g.
[Pap94, Theorem 7.6]), this shows the statement.
An algorithm in pseudo-code can be found in Algorithm 1. The idea is to guess a

(shortest) witness u = a1 . . . a` ∈ Σ+ for a1, . . . , a` ∈ Σ with p ◦ u 6= q ◦ u letter by letter.
The special handling for the case that one partial action is defined while the other one is
not can be found in Algorithm 1 but the general idea is that we have a cross diagram

a1 a2 . . . a`
p = p0 p1 . . . p`

b1 b2 . . . b`

for p1, . . . ,p` ∈ Q|p| and b1, . . . , b` ∈ Σ and a cross diagram

a1 a2 . . . a`
q = q0 q1 . . . q`

c1 c2 . . . c`

for q1, . . . , q` ∈ Q|q| and c1, . . . , c` ∈ Σ. In the algorithm, we guess the letters at from
left to right until we have found some t with bt 6= ct. In addition to the current value of
at (which requires space log |Σ|), we only have to store the current value of pt (requiring
space |p| log |Q|) and qt (requiring space |q| log |Q|).
Clearly, the sequence of guessed at yields a witness for the inequality of p and q in

M (T ) and, on the other hand, if the two state sequence are unequal in the monoid, there
is some witness, which we will guess on some computational branch.

The uniform word problem for automaton monoids is the most general variant52 of the
word problem in our setting. Thus, as a consequence of Theorem 2.1.1.1, we also get
that all other versions of the word problem (where the automaton is constant, invertible
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Algorithm 1 A nondeterministic algorithm for the (complement of the) uniform word
problem for automaton monoids in linear space (simplified version of [1, Algorithm 1]).

1 function coWordProblem (T = (Q,Σ, δ), p, q ∈ Q∗): B;
2 var
3 a ∈ Σ;
4 begin
5 while true do
6 a← guess(Σ);
7
8 if p ◦ a is defined and q ◦ a is defined then
9 if p ◦ a 6= q ◦ a then

10 return “p 6= q in M (T )”; . The guessed values for a form a witness for the inequality.
11 fi;
12 p← p · a;
13 q ← q · a;
14 else if (p ◦ a is defined and q ◦ a is undefined) or
15 (p ◦ a is undefined and q ◦ a is defined) then
16 return “p 6= q in M (T )”; . One partial action is defined but the other one is not.
17 else . Both partial actions are undefined.
18 fail; . Cancel this computational branch.
19 fi;
20 od;
21 end;

53 see, e. g. [Cai09,
Proposition 3.4]
(for complete
automaton semi-
groups) but also
[Bon12, Corol-
lary 1] or [Bon14]
54 Alternatively,
the problem can
also be solved using
a (deterministic)
minimization pro-
cess of T |p| ] T |q|.
This approach can,
for example, be
found in [KMP12,
subsection 2.3]
(for automaton
groups).

and/or complete and we consider the generated (inverse) semigroup or group) are in
linear nondeterministic space.
Often,53 the word problem is solved in a different way: one proves an upper bound

on the length of a shortest witness for the inequality of the two state sequences and
then checks whether the (partial) actions of the two state sequences coincide on all
words up to this length.54 Such an upper bound also follows from the number of possible
configurations of the presented nondeterministic algorithm. The witness for the inequality
of the two state sequences p and q in the monoid is given by the sequence of the letters
a1, . . . , a` ∈ Σ guessed at Line 6 on a successful computational branch. If such a successful
configuration can be reached, it can also be reached on a computational branch where
the configurations at Line 6 are pairwise distinct (otherwise, we can simply remove the
computational loop). Since such a configuration basically consists of the values of pt and
qt for the current time step t (the value of a is overwritten anyway), there are at most
|Q||p|+|q| many different configurations, which yields the following upper bound.

Corollary 2.1.1.2 (extension of [Cai09, Corollary 3.5] to partial automata, compare to
[4, Lemma 5.1]). Let T = (Q,Σ, δ) be an S-automaton and let p, q ∈ Q∗. We have:

p 6= q in M (T ) =⇒ ∃u ∈ Σ∗ : |u| ≤ |Q||p|+|q| and p ◦ u 6= q ◦ u

(including the case that one is defined while the other one is undefined).

Naturally, this raises the question whether the upper bound can be improved (see
[Cai09, Open problem 3.6]). We will shortly see that all versions of the word problem
discussed here are PSpace-hard. This shows that there cannot be a an upper bound
polynomial in |p| + |q| (unless NP = PSpace) since such an upper bound yields a
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nondeterministic polynomial time algorithm (for the complement of the word problem):
first guess a witness of polynomial length, then check that the partial actions of p and q
differ on the guessed word (which can certainly be done in polynomial time). However,
we can also explicitly give an exponential lower bound for the length of a shortest witness
(for a complete and reversible S-automaton), which we will do in the next example.

Example 2.1.1.3 (see [1, Proposition 4]). Recall the adding machine T = (Q,Σ, δ) from
Example 0.2.1.4 and its dual ∂T

0 1id / id

q/ id

id / id

q/q

.

For all n > 0, we have the cross diagram

0n 0
q2n−1 id2n−1 id2n−1

1n 0
q q id

0n 1

for the adding machine, which shows

p · 0n = id|p| = p · 0n+1

for all p ∈ Q∗ with |p| < 2n or, in notation for the dual,

0n ◦∂ p = id|p| = 0n+1 ◦∂ p.

However, it also shows that 0n and 0n+1 are different elements in S (∂T ). Thus, we have
two different state sequences of the dual with lengths n and n+ 1 whose actions coincides
on all words of length smaller than

2n = |Σ|
|0n|+|0n+1|−1

2 .

For a different lower bound, we can extend the adding machine into the S-automaton
T = (Q,Σ′, δ′) by adding the transitions

q id1/0
0/1
c/c

0/0
1/1
c/c

.

In the dual, this means adding a new state c and the loops

c
q/id
id/id .
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55 Alternatively,
we could also take
M as a universal
Turing machine
that can simulate
any polynomially
space-bounded
Turing machine
within polynomial
space.
56 In fact, we will
rather do a co-
reduction!

We obtain 0n ◦∂ p = id|p| = c ◦∂ p for all p ∈ Q∗ with |p| < 2n but 0n and c are certainly
different elements in S (∂T ). Thus, we have two state sequences of the dual with lengths
n and 1 whose actions coincides on all words of length smaller than

2n = (|Σ′| − 1)|0n|+|c|−1.

2.1.2 Simulating a Turing Machine

In this subsection, we will describe a construction for simulating a space-bounded Turing
machine in an automaton group. This will allow us to show that there is an automaton
group with a PSpace-complete word problem (proving a conjecture by Steinberg [Ste15,
Question 5], see also [AIM07, section 2, 6.])).

A Polynomially Space-Bounded Turing Machine. We fix a deterministic, space-bound-
ed Turing machine M with input alphabet Λ, tape alphabet ∆, blank symbol , state set
P , initial state p0 and accepting states F ⊆ P and we let Γ = P ]∆. The configurations
of M are of the form ∆`P∆m where `+ 1 +m = s(n) for the space bound s of M .
For our later reduction, we assume that the space bound s is a polynomial and that

the accepted language of M is PSpace-complete.55 This means that the word problem
of M

Constant: the machine M
Input: w ∈ Λ∗ of length n
Question: does M reach a configuration with a state in F from the initial

configuration p0w
s(n)−n−1 ?

is PSpace-complete and we will use this problem for the reduction56: we will construct
a G-automaton T = (Q,Σ, δ) from M (which does not depend on w!) such that we can
compute a state sequence from w in LogSpace which acts as the identity if and only if
M does not accept w.

Without loss of generality, we may assume that M satisfies the following normalization
property.

Fact 2.1.2.1 (Folklore, see [5, Fact 1]). Without altering the accepted language, we may
assume that the symbol γ(t+1)

i ∈ Γ at position i of a configuration of M at time step t+ 1
only depends on the symbols γ(t)

i−1, γ
(t)
i , γ

(t)
i+1 ∈ Γ at position i− 1, i and i+ 1 at time step

t. Thus, we may always assume that there is a function τ : Γ3 → Γ mapping the symbols
γ

(t)
i−1, γ

(t)
i , γ

(t)
i+1 ∈ Γ to the uniquely determined symbol γ(t+1)

i for all i and t.

Proof idea (of [5, Fact 1]). The only problem appears if the machine moves to the left:
if we have the situation abpc or abpd and the machine moves to the left in state p when
reading a c but does not move when reading a d, then the new value for the second symbol
does not only depend on the symbols right next to it; we can either be in the situation
ap′bc′ or abp′d′. To circumvent the problem, we can introduce intermediate states. Now,
instead of moving to the left, we go into an intermediate state (without movement). In
the next step, we move to the left (but this time the movement only depends on the
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57 Again, the term
acceptor refers to
an automaton with-
out output.

state and not on the current symbol). Clearly, introducing these intermediate states does
not change the behavior of M significantly; in particular, it does not change the accepted
language.

In fact, we will construct T from τ . The general idea of our construction is similar
to the one used by Kozen to show that the language intersection emptiness problem for
deterministic finite acceptors57 is PSpace-complete [Koz77, Lemma 3.2.3]: we basically
consider sequences of configurations of M separated by a special symbol #

γ
(0)
1 γ

(0)
2 γ

(0)
3 . . . γ

(0)
s(n) # γ

(1)
1 γ

(1)
2 γ

(1)
3 . . . γ

(1)
s(n) # . . .

as input words for the automaton and want to check whether the given sequence forms
a valid computation of M . We will have special states that perform these checks and
store the information whether the check passed or failed. Upon reading another special
letter $, we will switch into a different operational mode of the automaton (which we
will call the “A5-mode”). In this mode (which we will describe below), we will extract
the pass or fail information for the checks stored in the states. Concretely, we will have
an identity state id as the “fail state” and a state, which we call σ for reasons that will
become apparent later, as an “okay state” (see Figure 2.5).
The most important part of the checks in the first mode of the automaton (the

“TM-mode”) is to check whether all transitions in the configuration sequence are valid.
In Kozen’s proof, this is done by having a checking state for every position i with
1 ≤ i ≤ s(n). The acceptor than counts modulo s(n) and locally checks the transition
from γ

(t)
i−1γ

(t)
i γ

(t)
i+1 to γ(t+1)

i for all t using τ . In our setting, this is not possible, however,
since the automaton may only depend on M (or τ , respectively) but not on the length n
of the input w.

Generalized Checkmarking. A simple idea to circumvent this problem is to introduce a
checkmarking approach. This is possible because the transition table τ does not depend
on the position i. The idea of this checkmarking approach is depicted in Figure 2.1. We
want to check the transitions at all the first positions without a checkmark (for every
time step). For this, we first ignore all positions with a checkmark, perform the check on
the first uncheckmarked position and add a checkmark to it (in fact, we want to always
add a checkmark independently of whether the check passed or failed); then, we wait
for the symbol # and proceed to the next time step. For technical reasons, we split the
checkmarking and the actual checking of the symbol into two separate steps.

The problem with this approach is that ignoring all already checkmarked symbols and
adding a checkmark to the next position yields an intrinsically non-invertible automaton
(as depicted in Figure 2.2). Therefore, we will use a generalized checkmarking approach
developed in [1]: we equip every symbol of the configurations with a binary digit block.
If the digit block contains only 0s, we consider the symbol as uncheckmarked; if there is
at least one 1, we consider it as checkmarked. Now, adding a checkmark to a symbol
can be done by incrementing the binary number (and we have already seen how to do
this with the adding machine from Example 0.2.1.4). The advantage of this approach is
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γ
(0)
1 γ

(0)
2 γ

(0)
3 . . . γ

(0)
s(n) # γ

(1)
1 γ

(1)
2 γ

(1)
3 . . . γ

(1)
s(n) # . . .

γ
(0)
1
X

γ
(0)
2 γ

(0)
3 . . . γ

(0)
s(n) # γ

(1)
1
X

γ
(1)
2 γ

(1)
3 . . . γ

(1)
s(n) # . . .

γ
(0)
1
X

γ
(0)
2
X

γ
(0)
3 . . . γ

(0)
s(n) # γ

(1)
1
X

γ
(1)
2
X

γ
(1)
3 . . . γ

(1)
s(n) # . . .

check

check

Figure 2.1: Illustration of the checkmark approach ([5, Figure 2])

γ
X/

γ
X

γ/ γX
γ/γ
γ
X/

γ
X

#/#

Figure 2.2: Adding a checkmark yields a non-invertible automaton ([5, Figure 3])

that we can increment the binary number again and the corresponding symbol is still
considered as checkmarked. Since the digit block is of finite length, we obviously have
the problem of overflows but those can be recognized in the automaton and we can add
a suitable additional check for this problem (we will go into details in the proof below).

For the construction, it turns out to be a bit simpler if we have the digit block in front
of the actual symbol, which leads to the idea for the generalized checkmarking approach
depicted in Figure 2.3.
The construction for adding a checkmark to the first so-far uncheckmarked position

of every configuration can be found in Figure 2.4. It acts over the alphabet Σ =
Γ ] {0, 1} ] {#, $} and we make the convention that, whenever a transition with input
x ∈ Σ is missing in a state p, there is an implicit p idx/x transition to the identity
state id. Additionally, an arrow p q

idX for a subset X ⊆ Σ indicates that we have a
transition p qx/x for all x ∈ X. The state g in Figure 2.4 is a placeholder. Later on,
we will instantiate the construction with g = σ, our “okay state”, and with g = id, the
identity state.

000γ(0)
1 000γ(0)

2 000γ(0)
3 . . . 000γ(0)

s(n) # 000γ(1)
1 000γ(1)

2 000γ(1)
3 . . . 000γ(1)

s(n) # . . .

100γ(0)
1 000γ(0)

2 000γ(0)
3 . . . 000γ(0)

s(n) # 100γ(1)
1 000γ(1)

2 000γ(1)
3 . . . 000γ(1)

s(n) # . . .

010γ(0)
1 100γ(0)

2 000γ(0)
3 . . . 000γ(0)

s(n) # 010γ(1)
1 100γ(1)

2 000γ(1)
3 . . . 000γ(1)

s(n) # . . .

ge
n.

ch
ec
k

ge
n.

ch
ec
k

Figure 2.3: The idea of our generalized checkmarking approach ([5, Figure 4])
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Xgg

“So far, the original input digit
block of this symbol did not
contain a 1.”

“The digit block of the last
symbol contained at least one
1.”

“Skip everything up to the next
configuration”

“We have not seen a 0 yet;
an overflow is possible”

0/1

1/0

0/0

1/1idΓ

0/0
1/1idΓ

1/0

0/1

idΓ∪{0}

#/#
$/$

Figure 2.4: The automaton part used for generalized checkmarking (see [5, Figure 5],
compare to [1, Fig. 6]); missing transitions go into an identity state (which is
not drawn here)

To understand the construction, we will look at the example word

100γ(0)
1 000γ(0)

2 000γ(0)
3 # 100γ(1)

1 000γ(1)
2 000γ(1)

3 $

where the γ(t)
i are from Γ [5, p. 6:11]. If we start reading the input word in state Xg, we

turn the first 1 into a 0, go to the state at the bottom, turn the next 0 into a 1 and go
to the state on the right, where we ignore the next 0. When reading γ(0)

1 , we go back
to Xg. Next, we take the upper exit and turn the next 0 into a 1. The remaining 0s are
ignored and we remain in the state at the top right until we read γ(0)

2 and go to the state
at the top left. Here, we ignore everything up to #, which gets us back into Xg. The
second part works in the same way with the difference that we go to g at the end since
we encounter $ instead of #. The output word, thus, is

010γ(0)
1 100γ(0)

2 000γ(0)
3 # 010γ(1)

1 100γ(1)
2 000γ(1)

3 $

and we have checkmarked the next position in both configurations. In addition, we are
in state g after reading $.

If we look at the word
11γ(0)

1 01γ(0)
2 #11γ(1)

1 01γ(1)
2 $

instead and apply state Xg to it, we turn the first 1 into a 0 and go to the state at the
bottom. Here, we also turn the next 1 into a 0 but we cannot continue with γ(0)

1 . By
the above convention, this means that we go into the identity state id, which does not
change the rest of the word. In particular, we are also in the “fail state” id after reading
$ (regardless of the value of g). This is how we will eventually detect a counter overflow.
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id σ α β
ai/ai
idC

ai/σ(ai)
idC

ai/α(ai)
idC

ai/β(ai)
idC

Figure 2.5: States corresponding to the identity and the elements from Fact 2.1.2.2 ([5,
p. 6:8])

58 . . . so-called
NC1-circuits
59 In fact, similar
ideas predate
Barrington’s re-
sult: they have
been attributed
to Gurevich (see
[Mak85]) and
given by Mal’cev
[Mal62].

60 Here, we have
again used the con-
vention about tran-
sitions labeled by
idX from above.
61 In fact, we will
apply the defini-
tion later on in
such a way that
the state sequences
indeed correspond
to α and β from
Fact 2.1.2.2 and
Figure 2.5.

The Group A5 and Balanced Iterated Commutators. All our checks will be of a form
similar to the one we just described: after reading $, we are either in the “okay state” σ
(if everything succeeded) or we are in the “fail state” id. We now need a way to extract
this pass or fail information from the states. In the construction of [1, Proposition 6],
this was basically done by omitting a transition if the check failed, which leads to an
inverse automaton semigroup. Here, we want to construct a group instead and, thus,
cannot apply this approach.

Instead, we will use an idea already applied by Barrington to simulate logical circuits
of logarithmic depth and bounded fan-in58 in a group [Bar89].59 Just like Barrington, we
will use the group A5 of even permutations over five elements. The reason for this is that
it is not solvable and, thus, admits arbitrarily deeply nested non-trivial commutators.
The commutator of two elements g and h of a group is

[h, g] = h−1g−1hg and

the conjugate of g with h (which we also need) is the element

gh = h−1gh.

With this notation, we can state the following fact about A5 (which is stronger than
the statement that A5 is not solvable).

Fact 2.1.2.2 ([5, Lemma 2], see [Bar89, Lemma 1 and 3]). There are σ, α, β ∈ A5 with
σ 6= 1 and σ = [σβ, σα].

Proof. Set σ = (13254), α = (23)(45) and β = (245), for example.

In the remainder of this subsection, we will make heavy use of these elements. We re-
partition the alphabet Σ = Γ]{0, 1}]{#, $} into two disjoint parts Σ = {a1, . . . , a5}]C
where a1, . . . , a5 are arbitrary elements and the other elements are contained in C. We
may assume that the elements of A5 are permutations on a1, . . . , a5 and we can extend
their action first to Σ by letting them act trivially on elements from C and then to Σ∗
by applying their action letter-wise. This is what we do for the identity and σ, α, β from
Fact 2.1.2.2 with the states depicted from Figure 2.5,60 which form a part of T . In the
following, σ, α and β will usually refer to both the permutations from A5 and the states
from Q.

One exception to this rule is the following definition of a balanced iterated commutator
where we use α and β to denote arbitrary61 state sequences over Q. For this definition,
we also extend the notation for commutators and conjugates to state sequences p, q ∈ Q̃∗:
we let [q,p] denote the state sequence [q,p] = qpqp and pq denotes the state sequence
pq = qpq.
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Definition 2.1.2.3 ([5, Definition 5]). For α, β ∈ Q̃∗ and pd, . . . ,p1 ∈ Q̃∗, we inductively
define the word Bβ,α[pd, . . . ,p1] by

Bβ,α[p1] = p1 and

Bβ,α[pd, . . . ,p1] =
[
Bβ,α[pd, . . . ,pb d

2 c+1]β, Bβ,α[pb d
2 c
, . . . ,p1]α

]
.

The idea of the definition is that it allows us to simulate a d-ary logical conjunction in
A5 and, thus, in our automaton group G (T ) if we use the actual states from Figure 2.5
as α and β.
Lemma 2.1.2.4 ([5, Lemma 8]). Let pd, . . . ,p1 ∈ Q̃∗ be state sequences such that, for
all 1 ≤ i ≤ d, we have pi = id in G (T ) or pi = σ in G (T ). Then, we have

Bβ,α[pd, . . . ,p1] =
{
σ if p1 = · · · = pd = σ in G (T )
1 otherwise

in G (T ).

Proof (of [5, Lemma 8] in the arXiv pre-print). For simplicity, we write B instead of
Bβ,α in this proof. For d = 1, there is nothing to show. So, let d > 1 and, first, assume
p1 = · · · = pd = σ in G (T ). Then, we have

B[pd, . . . ,p1] =
[
B[pd, . . . ,pb d

2 c+1]︸ ︷︷ ︸
=
T̃
σ

β, B[pb d
2 c
, . . . ,p1]︸ ︷︷ ︸

=
T̃
σ

α] = σ in G (T )

by induction and the choice of σ, α and β from Fact 2.1.2.2. If there is some i ∈
{1, . . . , bd2c} with pi = id in G (T ), then, by induction, we have

B[pd, . . . ,p1] =
[
B[pd, . . . ,pb d

2 c+1]︸ ︷︷ ︸
=p′

β, B[pb d
2 c
, . . . ,p1]︸ ︷︷ ︸

=
T̃

1

α]

= βp′β α1αβp′β α1α = 1 in G (T ).

The case i ∈ {bd2c+ 1, . . . , d} is symmetric.

Working with a balanced iterated commutator is particularly easy if α, β and all its
entries act trivially on the input word. In this case, we can add the commutator to a
cross diagram without interfering with the output word. We formulate what this means
precisely in the following fact (which can easily be proved using induction).
Fact 2.1.2.5. Let u ∈ Σ∗ and α, β,p1, . . . ,pd ∈ Q̃∗ be state sequences such that we have
the cross diagrams

u

p1 q1
u...
...

...
u

pd qd
u

u

α α′

u

u

β β′

u

and
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for some α′, β′, q1, . . . , qd ∈ Q̃∗. Then, we also have the cross diagram

u

B[pd, . . . ,p1] B′[qd, . . . , q1]
u

where we write B for Bβ,α and B′ for Bβ′,α′.

We will make use of balanced iterated commutators as logical conjunctions to extract
the pass or fail information from the states in the A5-mode of T (which we enter after
reading the first $). In order to do so, we need to compute the balanced iterated
commutator Bβ,α (for arbitrary α, β ∈ Q̃∗) from the input state sequences pd, . . . ,p1 in
LogSpace, however.

Lemma 2.1.2.6 ([5, Lemma 6]). For any α, β ∈ Q̃∗, one can compute Bβ,α[pd, . . . ,p1]
in logarithmic space on input of pd, . . . ,p1.

Proof (of [5, Lemma 6] in the arXiv pre-print). We give a sketch for a (deterministic)
algorithm which computes the symbol at position i of Bβ,α[pd, . . . ,p1] in logarithmic
space. For simplicity, we only describe the case when d = 2k for some k (as we can easily
add dummy entries behaving as σ if necessary). Then, we have

Bβ,α[pd, . . . ,p1] = βBβ,α[pd, . . . ,p d
2 +1]β αBβ,α[p d

2
, . . . ,p1]α

βBβ,α[pd, . . . ,p d
2 +1]β αBβ,α[p d

2
, . . . ,p1]α

and the length `(d) (as a word over α, β, the pi and their inverses) of Bβ,α[pd, . . . ,p1] is
given by `(1) = 1 and `(d) = 8 + 4`(d2). This yields

`(d) =
(
k−1∑
i=0

4i · 8
)

+ 4k = 84k − 1
3 + 4k = 8

3(d2 − 1) + d2 = 11
3 d

2 − 8
3

and, thus, that the length of Bβ,α[pd, . . . ,p1] is polynomial in d (and can be computed in
LogSpace). Therefore, we can iterate the above algorithm for all positions 1 ≤ i ≤ `(d)
to output Bβ,α[pd, . . . ,p1] entirely.

To compute the symbol at position i, we first check whether i is the first or last position
(notice that we need the exact value of `(d) for testing the latter). In this case, we know
that it is β or α, respectively. Similarly, we can do this for the positions in the middle and
at one or three quarters. If the position falls into one of the four recursion blocks, we use
two pointers into the input: left and right. Depending on the block, left and right
either point to p1 and p d

2
or to p d

2 +1 and pd. Additionally, we also store whether we are
in an inverse block or a non-inverse block. From now on, we disregard the input left of
left and right of right (and do appropriate arithmetic on i) and proceed recursively.
If we need to perform another recursive step, we update the variables left and right
(instead of using new ones). Therefore, the whole recursion can be done in logarithmic
space.
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62 Remember also
our conventions
about missing tran-
sitions going to
id and transitions
labeled by idX
from above.

Simulating the Machine M . With the generalized checkmarking approach and the
balanced iterated commutator, we have introduced the two main ideas for the construction.
Therefore, we can now proceed with the main proof.

Theorem 2.1.2.7 ([5, Theorem 10], compare to [1, Proposition 6]). There is an automa-
ton group whose word problem

Constant: a G-automaton T = (Q,Σ, δ)
Input: a word q ∈ Q̃∗
Question: is q = 1 in G (T )?

is PSpace-complete.

Proof (contains parts of the proof of [5, Theorem 10]). Theorem 2.1.1.1 implies that the
word problem of every automaton group is in PSpace. Thus, we only have to show
the hardness part. As we have already discussed, we will construct the G-automaton
T = (Q,Σ, δ) from M (or τ , rather) and reduce the word problem of M

Constant: the machine M
Input: w ∈ Λ∗ of length n
Question: does M reach a configuration with a state in F from the initial

configuration p0w
s(n)−n−1 ?

in logarithmic space to the (complement of the) word problem of G (T ). As the former
problem is PSpace-hard (and as PSpace is closed under taking the complement), we
obtain that the word problem of G (T ) is PSpace-hard as well.

The Definition of T . The automaton T operates in two phases (the TM-mode and
the A5-mode) and, as its alphabet, we have already chosen Σ = Γ ] {0, 1} ] {#, $} =
{a1, . . . , a5} ] C (where Γ = P ]∆ is the alphabet of the configurations of M). The
typical input words for T will be of the form u$v with u ∈ Σ∗ \ {$}. While reading u,
the automaton will be in TM-mode and, upon reading the first $, it will switch to the
A5-mode. Accordingly, we call u the “TM-part” and v the “A5-part”.
We have already encountered some of the states of T in Figure 2.5, where id has the

intuition of a “fail state” and σ has the intuition of an “okay state”. All these states
belong to the A5-mode of the automaton and we also need states corresponding to α and
β that ignore the TM-part of the input word and then go to α and β, respectively (for
the A5-mode) [5, p. 6:9]:

α0 α β β0idΓ∪{#,0,1}
$/$

idΓ∪{#,0,1}
$/$

Here, we have introduced the convention that dotted states refer to ones already defined
above.62

The remaining parts of the automaton belong to the TM-mode and most of them check
whether the input word is well-formed and describes a valid and accepting computation
of the Turing machine M . The first part is responsible for checking that the TM-part of
the input word is from (0∗Γ)+ (#(0∗Γ)+)∗ [5, p. 6:9]:
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r σ

0/0

idΓ

idΓ

#/#
0/0

$/$

If we start reading an input word in r, then we are in σ after reading the first $ if the
word is of the correct form; otherwise, we end in id. Thus, the TM-part of the input
word will typically be of the form

0`
(0)
1 γ

(0)
1 0`

(0)
2 γ

(0)
2 . . . 0`

(0)
I0 γ

(0)
I0

# . . .# 0`
(T )
1 γ

(T )
1 0`

(T )
2 γ

(T )
2 . . . 0`

(T )
IT γ

(T )
IT

(†)

with γ(t)
i ∈ Γ and it helps to consider the remaining parts of T only with respect to such

input words.
Next, we add a part that verifies that the computation contains an accepting state

from F [5, p. 6:9]:

id f σ
$/$

id{#,0,1}∪Γ\F

idF

id{#,0,1}∪Γ

$/$

Again, if we start in f , we end in σ if and only if the part before the first $ contains a
symbol from F ; otherwise, we end in id.

Before we describe the automaton part which actually verifies that all transitions are
valid, we first introduce some parts required for the generalized checkmark approach
outlined above. For this, we add the already discussed part from Figure 2.4 once for
g = σ (this yields the state Xσ) and once for g = id (which yields the state Xid). The
state Xσ goes to σ in the A5-mode if no overflows occurred and the state Xid always ends
in id for the A5-mode.

In addition, we also add the following part containing the state c, which can be used to
verify that all symbols of all configurations haven been checkmarked (in the generalized
sense) [5, p. 6:9]:

id c σ

0/0

$/$

1/1
0/0
1/1

idΓ∪{#}

$/$

Finally, we come to the most technical part, which is used for verifying the transitions
(see [5, pp. 6:10–11]). Intuitively, for checking the transition from time step t − 1 to
time step t at position i, we need to compute γ(t)

i = τ(γ(t−1)
i−1 , γ

(t−1)
i , γ

(t−1)
i+1 ) from the

configuration symbol at positions i− 1, i and i+ 1 for time step t− 1. We store γ(t)
i in
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0 γ0
γ−1

γ−1, γ0

γ′ = τ(γ−1, γ0, γ1)

1 γ0
γ−1

0 γ0
γ′−1

0 τ(γ−1, γ0, )

0 γ′ = qγ′

σ

0/0
1/1

γ0/γ0

0/0
1/1

γ′−1/γ
′
−1

0/0

#/#
$/$

γ1/γ1

idΓ∪{0}

$/$
#/#

Figure 2.6: Schematic representation of the transitions used for checking Turing machine
transitions and definition of q′γ ; the dashed transitions exist for all γ′−1 and
γ1 in Γ but go to different states, respectively ([5, Figure 6], compare to [1,
Fig. 7])

the state (to compare it to the actual value). Additionally, we need to store the last two
symbols we have encountered so far of the configuration at t (for computing what we
expect at the next time step later on) and whether we have seen a 1 or only 0s in the
checkmark digit block.

For all this, we use the states

0 γ0,
γ−1

1 γ0,
γ−1

γ−1, γ0 γ′0

with γ−1, γ0, γ
′
0 ∈ Γ. The idea is the following. In the 0 and 1 states, we store the value

we expect for the first unchecked symbol (γ0) and the last symbol we have seen in the
current configuration (γ−1). We are in the 0 -state if we have not seen any 1 in the digit
block yet and in the corresponding 1 -state if we did. The latter two are used to skip
the rest of the current configuration and to compute the symbol we expect for the first
uncheckmarked position in the next configuration (γ′0).

We use these states in the transitions schematically depicted in Figure 2.6. Here, the
dashed transitions exist for all γ′−1 and γ1 in Γ but go to different states, respectively,
and the dotted states correspond to the respective non-dotted states with different values
for γ0 and γ−1 (with the exception of σ, which corresponds to the state from Figure 2.5).
We also define qγ′ as the state on the bottom right (for every γ′ ∈ Γ, respectively).

To understand this automaton part, we make another example. We will use the
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example word

000γ(0)
1 000γ(0)

2 000γ(0)
3 # 000γ(1)

1 000γ(1)
2 000γ(1)

3 $,

which is similar to the one used for explaining the generalized checkmarking construction
above. Suppose we want to check the transition at position 2 from the first configuration
to the second one. We first create a situation where the second positions are the respective
first ones that are not checkmarked yet. To achieve this, we first apply the state Xid,
which yields the output word

100γ(0)
1 000γ(0)

2 000γ(0)
3 # 100γ(1)

1 000γ(1)
2 000γ(1)

3 $.

We know the initial configuration for M on input w (it is p0w
s(n)−n−1 ) and, thus, the

symbols that we expect for γ(0)
i . For the example, we assume that the first configuration

in the example word matches this expectations. Therefore, we expect the symbol γ(0)
2 at

the second position of the first configuration and we use the state q
γ

(0)
2

to encode this.
If we apply this state to the output word above, we start in the state at the top left in
Figure 2.6 (with γ0 = γ

(0)
2 and γ−1 = ) and immediately take the transition labeled

with 1/1 to the corresponding 1 -state, where we ignore the remaining two digits. Upon
reading γ(0)

1 , we go to the state at the top right, which is effectively the same as the state
on the top left (with γ0 = γ

(0)
2 and γ−1 = γ

(0)
1 , this time). There, we ignore the next

three 0s and go to the state in the middle using the γ(0)
2 /γ

(0)
2 -transition. Note that, here,

it is important that the actual symbol in the configuration matches our expectation! If
this was not the case, we could have only used a transition to the identity state. Next,
we ignore the next digit block and go to the state at the bottom left by reading γ(0)

3 . The
configuration symbol stored in this state is γ′ = τ(γ(0)

1 , γ
(0)
2 , γ

(0)
3 ) and we finally go to the

state qγ′ by reading #.
This means that we start again at the top left state and read the second configuration

is a similar way. Here, the interesting part is before we take the γ0/γ0-transition because
we can have two cases: either γ(1)

2 matches γ′ or it does not. If it does, we continue
just like before and finally go to σ when reading the final $. If it does not, we go to
the identity state, in which we still have to be after reading the $. In this way, we have
implemented a check for the second positions of all configurations where we either end in
σ (if the check passed) or in id (if the check failed) for the A5-mode.

This concludes the definition of T and it remains to describe the state sequence q and
how it is computed from w.

Definition of the State Sequence. We will choose the state sequence q as an iterated
balanced commutator (as in Definition 2.1.2.3) whose individual entries are state sequences
that perform checks for various aspects of the input word. The state sequence q depends
on the input word w ∈ Λ∗ of length n and needs to be computable in logarithmic space
(with respect to n). The idea is that, for a check state sequence p and an input word of
the form u$v with u ∈ Σ∗ \ {$}, p · u$ is either equal to σ (if the check passed) or equal
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63 see Exam-
ple 0.2.1.4

64 This is why we
count back to zero
in the end.

65 This could cause
mistakes when
checking the tran-
sitions or whether
an accepting state
from F occurs (in
a valid way).

to id (if it failed) in G (T ). Furthermore, the check state sequences will operate trivially
on the TM-part u so that the individual checks do not interfere (as we want to apply
Fact 2.1.2.5). Eventually, the idea is to use the commutator as a logical conjunction (as
outlined in Lemma 2.1.2.4) to test whether all checks passed.
The first check consists of the state r from above. We have already discussed that

it will end in σ after reading u$ if and only if u is from (0∗Γ)+ (#(0∗Γ)+)∗. From the
construction, we also immediately obtain that it does not change u. Because of this
check, we will only need to consider input words whose TM-part is of the form (†) any
further.

Next, we verify that all positions 1 ≤ i ≤ s(n) can be checkmarked (in the generalized
sense) without any overflows. This is done by the state sequences

ci = Xid
iXσX

i−1
id

for 1 ≤ i ≤ s(n). Let ∂ bin(z) denote the reverse/least significant bit first binary
representation63 (of a suitable length) for the natural number z. If all digit blocks are
long enough, we have the cross diagrams (see [5, p. 6:12])

∂ bin(0) γ
(t)
1 . . . ∂ bin(0)γ(t)

i−1 ∂ bin(0)γ(t)
i ∂ bin(0)γ(t)

i+1 . . . ∂ bin(0)γ(t)
It

#/$
Xi−1

id Xi−1
id / idi−1

∂ bin(i− 1)γ(t)
1 . . . ∂ bin(1)γ(t)

i−1 ∂ bin(0)γ(t)
i ∂ bin(0)γ(t)

i+1 . . . ∂ bin(0)γ(t)
It

#/$
Xσ Xσ/σ

∂ bin(i) γ
(t)
1 . . . ∂ bin(2)γ(t)

i−1 ∂ bin(1)γ(t)
i ∂ bin(0)γ(t)

i+1 . . . ∂ bin(0)γ(t)
It

#/$
Xid Xid/id

∂ bin(i− 1)γ(t)
1 . . . ∂ bin(1)γ(t)

i−1 ∂ bin(0)γ(t)
i ∂ bin(0)γ(t)

i+1 . . . ∂ bin(0)γ(t)
It

#/$
Xid

i−1 Xid
i−1/idi−1

∂ bin(0) γ
(t)
1 . . . ∂ bin(0)γ(t)

i−1 ∂ bin(0)γ(t)
i ∂ bin(0)γ(t)

i+1 . . . ∂ bin(0)γ(t)
It

#/$

by the transitions in Figure 2.4. In particular, the TM-part of the input word is not
changed.64 If the digit block belonging to the symbol γ(t)

j is too short to count to the
value required by ci (i. e. if an overflow occurs), ci · u$ will only consist of identity states
(and the check is considered to have failed). Additionally, if we have It < i (i. e. if one
configuration does not have length at least i), we will have the same situation. Thus,
using the checks ci for all 1 ≤ i ≤ s(n), we also ensure that all configurations have length
at least s(n).
Complementary to this, we also need to check that no configuration is longer than65

s(n). For this, we use
c′ = Xid

s(n)cXs(n)
id ,

which checks that, after checkmarking the first s(n) many positions in every configuration,
all positions are checkmarked.

These checks guarantee that the TM-part of the input word is of the from given in (†)
and that we have It = s(n) for all t. It remains to check that the γ(t)

i belong to a valid
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computation of M with initial configuration p0w
s(n)−n−1 that reaches an accepting

state from F . Let γ′1 . . . γ′s(n) = p0w
s(n)−n−1 with γ′i ∈ Γ for 1 ≤ i ≤ s(n) and define the

state sequences
qi = Xid

i−1qγ′iX
i−1

id

for 1 ≤ i ≤ s(n). If γ(t)
i matches the expected symbol γ′i (and if no overflows occur during

the checkmarking), we obtain the cross diagram (see [5, p. 6:12])

∂ bin(0) γ
(t)
1 . . . ∂ bin(0)γ(t)

i−1 ∂ bin(0)γ(t)
i ∂ bin(0)γ(t)

i+1 . . . ∂ bin(0)γ(t)
It

#/$
Xi−1

id Xi−1
id / idi−1

∂ bin(i− 1)γ(t)
1 . . . ∂ bin(1)γ(t)

i−1 ∂ bin(0)γ(t)
i ∂ bin(0)γ(t)

i+1 . . . ∂ bin(0)γ(t)
It

#/$
qγ′i q

τ(γ(t)
i−1,γ

(t)
i ,γ

(t)
i+1)/σ

∂ bin(i− 1)γ(t)
1 . . . ∂ bin(1)γ(t)

i−1 ∂ bin(0)γ(t)
i ∂ bin(0)γ(t)

i+1 . . . ∂ bin(0)γ(t)
It

#/$
Xid

i−1 Xid
i−1/idi−1

∂ bin(0) γ
(t)
1 . . . ∂ bin(0)γ(t)

i−1 ∂ bin(0)γ(t)
i ∂ bin(0)γ(t)

i+1 . . . ∂ bin(0)γ(t)
It

#/$

from the transitions in Figure 2.6. By induction on the configurations, we obtain qi·u$ = σ
in G (T ) if all transitions at position i are valid (and, of course, we do not encounter
overflows). On the other hand, if γ(t)

i does not match the expected symbol γ′i, we will
end in a state sequence containing only identity states in the A5-mode. Obviously, the
TM-part of the input word is also not changed by any qi.

Finally, we use the state f from above to check that there is at least one accepting
state from F . By construction, f also does not change the TM-part and ends in σ or id
in the A5-mode.

To combine the individual checks, we use an iterated balanced commutator. We define
B0 as a short-hand notation for Bβ0,α0 (as defined in Definition 2.1.2.3) and let

q = B0[f, qs(n), . . . , q1, c
′, cs(n), . . . , c1, r].

Clearly, the individual checking state sequences can be computed in LogSpace and, by
Lemma 2.1.2.6, we can also compute the iterated balanced commutator from them in
LogSpace.

Correctness ([5, pp. 6:13–14]). We prove that q acts as the identity if and only if the
Turing machine M does not accept the input word w of length n. The easier direction is
to assume that the Turing machine accepts on the initial configuration p0w

s(n)−n−1 .
Let γ(0)

1 . . . γ
(0)
s(n) ` γ

(1)
1 . . . γ

(1)
s(n) ` · · · ` γ

(T )
1 . . . γ

(T )
s(n) be the corresponding computation

with γ(0)
1 = p0, γ(0)

2 . . . γ
(0)
n+1 = w, γ(0)

n+2, . . . , γ
(0)
s(n) = and γ(T )

i ∈ F for some 1 ≤ i ≤ s(n).
We choose ` = dlog(s(n))e+ 1 and let

u = 0`γ(0)
1 . . . 0`γ(0)

s(n)#0`γ(1)
1 . . . 0`γ(1)

s(n)# . . .#0`γ(T )
1 . . . 0`γ(T )

s(n).

We now let q act on the word u$a1 where we assume (without loss of generality) that σ
acts non-trivially on a1 (which is possible because σ belongs to a non-trivial permutation
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u $
r σ

u $
c1 σ

u $
...

...
u $

cs(n) σ

u $
c′ σ

u $
q1 σ

u $
...

...
u $

qs(n) σ

u $
f σ

u $B
0[

]
,

,
,

,
,

,
,

,

B
[

]
,

,
,

,
,

,
,

,

Figure 2.7: Cross
diagram for q [5,
Figure 7]

66 To which gram-
mar the relation
refers will always
be obvious from
the context.

from A5). This yields the black part of the cross diagram depicted in Figure 2.7. From
Fact 2.1.2.5, we immediately also obtain the gray additions to the cross diagram where
we use B instead of Bβ,α for the balanced commutator from Definition 2.1.2.3. By
Lemma 2.1.2.4, we obtain B[σ, . . . , σ] = σ in G (T ). Therefore, q acts non-trivially on
u$a1.
For the other direction, assume that no valid computation of M on the initial config-

uration p0w
s(n)−n−1 contains an accepting state from F . We have to show that q

acts like the identity on all words from Σ∗. If the word does not contain a $, then all
individual parts of q act on it like the identity by construction. This is clearly the case
for r, c′, the qi and f . For the ci, the only point to note is that Xσ acts in the same way
as Xid on such words.
Thus, we may assume that the word is of the form u$v. If u is not of the form

(0∗Γ)+ (#(0∗Γ)+)∗, we have the cross diagram

u $
r id
u $

and, thus,
u $

q B[pd, . . . ,p2, id]
u $

for some p2, . . . ,pd ∈ Q̃∗ such that every pi is equal to σ or equal to id in G (T ). As
we have, B[pd, . . . ,p2, id] = 1 in G (T ) by Lemma 2.1.2.4, we obtain that q acts like the
identity on u$v.

Therefore, we assume u to be of the form (†) and use a similar argumentation for the
remaining cases. If u does not contain a state from F , then we end up in state id after
reading $ for f . As w is not accepted by the machine, this includes in particular all
valid computations on the initial configuration p0w

s(n)−n−1 . If one of the 0 blocks
in u is too short to count to a value required for the checkmarking (i. e. one `(t)i is too
small), then the corresponding ci will go to (a state sequence equivalent to) id. This is
also true if one configuration is too short (i. e. It < s(n) for some t). If one configuration
is too long (i. e. It > s(n)), then this will be detected by c′ as not all positions will be
checkmarked after checkmarking all first s(n) positions in every configuration. Finally, qi
yields an id if γ(0)

i is not the correct symbol from the initial configuration or if we have
γ

(t+1)
i 6= τ(γ(t)

i−1, γ
(t)
i , γ

(t)
i+1) for some t (where we let γ(t)

−1 = = γ
(t)
s(n)+1).

2.1.3 Compressed Word Problem
Straight-Line Programs. A context-free grammar (over Σ) is a tuple G = (V,Σ, P, S)
where V is an alphabet of variables, Σ is an alphabet of terminal symbols with V ∩Σ = ∅,
P ⊆ V × (V ∪Σ)∗ is the set of production rules and S ∈ V is the start variable. For such
a context-free grammar,66 we define the relation → ⊆ (V ∪ Σ)∗ × (V ∪ Σ)∗ by

λAρ→ λµρ ⇐⇒ (A,µ) ∈ P

for all λ, µ, ρ ∈ (V ∪ Σ)∗ and A ∈ V . Note that we have A→ µ if and only if (A,µ) ∈ P .
The reflexive and transitive hull of → is →∗. A variable A ∈ V is called productive if
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there is some w ∈ Σ∗ with A→∗ w and a production rule (A,µ) ∈ P is called effective if
there are λ, ρ ∈ (V ∪Σ)∗ and w ∈ Σ∗ with S →∗ λAρ→ λµρ→∗ w. A variable A ∈ V is
effective if there is an effective production rule (A,µ) ∈ P .

The language generated by a variable A ∈ V is the set

L (A) = {w ∈ Σ∗ | A→∗ w}

and the language generated by G is L (G) = L (S). If the generated language of a
context-free grammar is a singleton set, the grammar is called a straigt-line program for
the unique word in the generated language, which we denote by W (G). In the same way,
we also write W (A) for the unique element of L (A) if we are dealing with a singleton
set. Note that this is the case for all effective variables of a straight-line program.
We use the term degree of a context-free grammar G = (V,Σ, P, S) here for the

maximal length of the second component of a production rule in P , i. e. it is the number
max{|µ| | ∃A ∈ V : A→ µ}. The degree can be used to derive an upper bound on the
length of the word generated by a straight-line program.

Fact 2.1.3.1. Let G = (V,Σ, P, S) be a straight-line program and let D = max{|µ| |
∃A ∈ V : A→ µ}. Then, we have:

|W (G)| ≤ D|V |

Proof. If we have D = 0, we must also have S → ε and the statement holds. Otherwise,
we may assume that all variables of G are productive and all production rules of G are
effective since it can only decreases the size of V and the value of D if we remove those
which are not. This implies that, for every A ∈ V , there is exactly one rule of the form
(A,µ) with µ ∈ (V ∪ Σ)∗ in P . Additionally, we may assume that all letters from Σ
appear in W (G). Then, the graph given by the node set V ∪ Σ and the edge set

{A→ X | A ∈ V,X ∈ V ∪ Σ such that A→ λXρ for some λ, ρ ∈ (V ∪ Σ)∗}

is a directed tree whose root is S, whose leaves are given by Σ and the variables A ∈ V
with A → ε and whose maximal out-degree is D. We can assign a level to each node
X ∈ V ∪ Σ of the tree: it is the maximal number of edges needed to go from X to a leaf,
i. e. leaves get level 0, nodes that only have leaves as children get level 1 and, in general,
an inner node has level i+ 1 if and only if it has a child of level i. Note that the level of
the root S can at most be |V |.

We set W (a) = a for all a ∈ Σ and show that W (X) for a node X of level i has length
|W (X)| ≤ Di by induction on i. For the leaves with i = 0, we either have X ∈ Σ and,
thus, |W (X)| = 1 = D0 or X → ε and, thus, |W (X)| = 0 < D0. For a node X ∈ V with
level i > 0, we have that all children have level smaller than i. Thus, for the unique
production rule (X,Y1 . . . Yd) with Y1, . . . , Yd ∈ V ∪ Σ and 0 ≤ d ≤ D in P , we have
|W (Yk)| ≤ Di−1 for all 0 ≤ k ≤ d and, thus,

|W (X)| = |W (Y1) . . .W (Yd)| ≤ dDi−1 ≤ Di.
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67 We continue to
write B0 for Bβ0,α0 .

The Compressed Word Problem. The difference between the (normal) word problem(s)
and the compressed word problem(s) is that the state sequences are not given directly
but as straight-line programs. Accordingly, the uniform compressed word problem for
automaton monoids is

Input: an S-automaton T = (Q,Σ, δ) and
two straight-line programs P and R over Q

Question: is W (P) = W (R) in M (T )?
The compressed versions of the other uniform word problems for automaton structures
are defined in the obvious way and the compressed word problem of an automaton group
generated by a G-automaton T is

Constant: a G-automaton T = (Q,Σ, δ)
Input: a straight-line program P over Q̃
Question: is W (P) = 1 in G (T )?

An obvious way to solve the compressed word problem is to uncompress the input
straight-line program(s) and to apply the algorithm for the (normal) word problem
afterwards. This way, we immediately obtain the following space bound by combining
Fact 2.1.3.1 and Theorem 2.1.1.1.

Corollary 2.1.3.2. The uniform compressed word problem for automaton monoids
Input: an S-automaton T = (Q,Σ, δ) and

two straight-line programs P = (V,Q, P, S) and R = (W,Q,R, T )
Question: is W (P) = W (R) in M (T )?

is in NSpace((D|V | + E|W |) log |Q| + log |Σ|) and, thus, in ExpSpace where D =
max{|µ| | ∃A ∈ V : A→ µ for P} is the degree of P and E is the degree of R.

Since we have again considered the most general variant of the compressed word
problems, we immediately obtain that also the word problem of any (fixed) automaton
structure is in ExpSpace. On the other hand, we can combine the construction from
the proof of Theorem 2.1.2.7 with some further ideas to obtain an automaton group
with an ExpSpace-hard compressed word problem. Thus, there is no significantly better
algorithm than the naïve approach given above.

ExpSpace-Hardness. The outline of the proof is the same as for the (normal) word
problem: we start with a Turing machine M and construct a G-automaton T = (Q,Σ, δ)
from it in the same way as in the proof of Theorem 2.1.2.7. This time, however, the
Turing machine accepts an (arbitrary) ExpSpace-complete problem and we assume
that the length of its configurations is s(n) = n+ 1 + 2ne (for some natural number e).
Additionally, we assume the same normalizations as before.

Finally, we reduce the word problem of M to the compressed word problem of G (T ).
Here, we cannot simply use the same proof as in the case of the (normal) word problem,
however! Recall that we have mapped the input word w of length n to the state sequence67

q = B0[f, qs(n), . . . , q1, c
′, cs(n), . . . , c1, r]
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for the reduction. The problem is that we now have exponentially many ci and qi and we,
thus, cannot output all of them with a LogSpace (or even polynomial time) transducer
– even if we compress every individual ci and qi using a straight-line program. On the
positive side, we have that all ci and all except linearly many qi are structurally very
similar: we have

ci = Xid
i−1 XidXσX

i−1
id and qj = Xid

j−1 q Xj−1
id

for all 1 ≤ i ≤ s(n) and all n + 2 ≤ j ≤ s(n). Due to this structural similarity, we
will still be able to output a single straight-line program that generates a word equal
to B0[cs(n), . . . , cn+2] in G (T ) and one generating a word equal to B0[qs(n), . . . , qn+2] in
G (T ).

Twisted Balanced Iterated Commutators. For the construction of these straight-line
programs, we use a twisted version of our balanced iterated commutators, where the left
side has an additional conjugation.

Definition 2.1.3.3. For α, β, γ ∈ Q̃∗ and p ∈ Q̃∗, we inductively define the word
Bγ
β,α[p, d] by

Bγ
β,α[p, 1] = p and

Bγ
β,α[p, d] =

[(
γb

d
2 cBγ

β,α

[
p, d d

2e
]
γb

d
2 c
)β
, Bγ

β,α

[
p, b d

2c
]α]

.

Compared to the (ordinary) balanced iterated commutators from Definition 2.1.2.3, the
left side has an additional conjugation with γb

d
2 c.

Before we look further into how we can use the twisted balanced iterated commutators,
we first have to return to the interaction between (ordinary) balanced iterated commuta-
tors and conjugation as we will need it in our proof. For normal commutators in groups,
we have [h, g]k = [hk, gk] where g, h and k are group elements and, for balanced iterated
commutators, we have something similar.

Fact 2.1.3.4. Let α, β, γ ∈ Q̃∗ such that γ commutes with α and β in G (T ). Then, we
have

Bβ,α[pd, . . . ,p1]γ = Bβ,α[pγd , . . . ,p
γ
1 ] in G (T )

for all pd, . . . ,p1 ∈ Q̃∗

Proof. We simply write B instead of Bβ,α and prove the statement by induction. For
d = 1, we have B[p1]γ = pγ1 = B[pγ1 ] and, for d > 1, we have in G (T )

B[pd, . . . ,p1]γ =
[
B[pd, . . . ,pb d

2 c+1]β, B[pb d
2 c
, . . . ,p1]α

]γ
=
[
B[pd, . . . ,pb d

2 c+1]βγ , B[pb d
2 c
, . . . ,p1]αγ

]
([h, g]k = [hk, gk])

=
[
B[pd, . . . ,pb d

2 c+1]γβ, B[pb d
2 c
, . . . ,p1]γα

]
(γ comutes with α, β)

=
[
B[pγd , . . . ,p

γ

b d
2 c+1]β, B[pγb d

2 c
, . . . ,pγ1 ]α

]
(by induction)

= B[pγd , . . . ,p
γ
1 ].
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This compatibility between balanced iterated commutators and conjugation allows us
to use the twisted version to move an iterated conjugation of the commutator entries
into the commutator itself. As we have already seen, the check state sequences ci and
(most) qi are of this form.

Lemma 2.1.3.5. Let α, β, γ ∈ Q̃∗ such that γ commutes with α and β in G (T ) and let
p ∈ Q̃∗. Furthermore, let

pd = γd−1pγd−1

for d ≥ 1. Then, we have

Bγ
β,α[p, d] = Bβ,α[pd, . . . ,p1] in G (T ).

Proof. Similar to before, we write Bγ for Bγ
β,α and B for Bβ,α and prove the statement

by induction on d. For d = 1, we have Bγ [p, 1] = p = p1 = B[p1] and, for d > 1, we have

Bγ [p, d] =
[(
γb

d
2 cBγ[p, d d

2e
]
γb

d
2 c
)β
, Bγ[p, b d

2c
]α]

=
[(
γb

d
2 cB[pd d

2 e
, . . . ,p1]γb

d
2 c
)β
, B[pb d

2 c
, . . . ,p1]α

]
(induction)

=
[(
B[γb

d
2 cpd d

2 e
γb

d
2 c, . . . , γb

d
2 cp1γ

b d
2 c]
)β
, B[pb d

2 c
, . . . ,p1]α

]
(Fact 2.1.3.4)

=
[(
B[pd, . . . ,p1+b d

2 c
]
)β
, B[pb d

2 c
, . . . ,p1]α

]
(definition of pi)

= B[pd, . . . ,p1] (definition of B)

in G (T ).

The connection in Lemma 2.1.3.5 allows us to use twisted balanced iterated commu-
tators for the check sequences ci and qi. The advantage of this approach is that the
twisted version can efficiently be compressed into straight-line programs (although the
corresponding (ordinary) balanced iterated commutator would have too many entries).

Lemma 2.1.3.6. On input α, β, γ ∈ Q̃∗, p ∈ Q̃∗ and ` ∈ N in unary, one can compute
in logarithmic space a straight-line program G with W (G) = Bγ

β,α[p, 2`].

Proof. The alphabet of the straight-line program is obviously Q̃ and we only give the
variables implicitly. Clearly, if we can compute the production rules for a variable X
generating W (X), then we can also compute the production rules for a variable X with
W (X) = W (X). Therefore, we only give the positive version for every variable (but
always assume that we also have a negative one).

First, we add the production rules for

M2`−1 →M2`−2M2`−2 , . . . , M21 →M20M20 , M20 → γ
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2.1 Word Problem

because we need blocks of γ for the recursion of Bγ
β,α. Clearly, we have W (M2d) = γ2d

for all 0 ≤ d < `. For the actual commutator, we use the variables A2d for 0 ≤ d ≤ ` and
add the production rules for A20 → p and

A2d → β M2d−1A2d−1M2d−1 β αA2d−1α
β M2d−1A2d−1M2d−1 β αA2d−1α

for all 0 < d ≤ `. Using a simple induction it is now easy to see that we have W (A2d) =
Bγ
β,α[p, 2d]. Accordingly, we choose A2` as the start variable.
To compute the productions rules, we obviously only need to count up to ` and this

can clearly be done in logarithmic space as ` is given in unary.

With twisted balanced iterated commutators and the corresponding straight-line
programs, we have introduced the missing piece to adapt the proof for PSpace and the
(normal) word problem from Theorem 2.1.2.7 to ExpSpace and the compressed word
problem.

Theorem 2.1.3.7 ([5, Theorem 13]). There is an automaton group whose compressed
word problem

Constant: a G-automaton T = (Q,Σ, δ)
Input: a straight-line program P over Q̃
Question: is W (P) = 1 in G (T )?

is ExpSpace-complete.

Proof. We only have to show that the problem is ExpSpace-hard by Corollary 2.1.3.2.
As already mentioned, we construct the G-automaton T = (Q,Σ, δ) from the machine M
for an ExpSpace-complete problem in the same way as in the proof of Theorem 2.1.2.7
and reduce the (normal) word problem of M to the compressed word problem of G (T ).
We map an input word w of length n forM to a straight-line program for a state sequence
equal to

B0
[
f,B0[qs(n), . . . , qn+2], qn+1, . . . , q1, c

′, B0[cs(n), . . . , cn+2], cn+1, . . . , c1, r
]

in G (T ). If we think of the balanced iterated commutator as a logical conjunction, we
see that the inner balanced iterated commutators do not change the semantics compared
to the state sequence used as input for the (normal) word problem in the proof of
Theorem 2.1.2.7.

Thus, it remains to describe how the straight-line program can be computed in logarith-
mic space. If we have straight-line programs for the individual entries, we immediately
also obtain straight-line programs for their inverses and can combine everything into a
straight-line program for the overall balanced iterated commutator. This can be done
(on the level of the variables) in logarithmic space by Lemma 2.1.2.6. For f , qn+1, . . . , q1,
cn+1, . . . , c1 and r, we do not even need straight-line programs but can output the words
directly (as in the PSpace-case).
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68 In fact, we al-
ready have the re-
quired production
rules and variables
up to M2ne−1 .
69 An alternative
way to obtain
this result is to
use a universal
Turing machine
for M which al-
lows to simulate
a polynomially
space-bounded
machine in poly-
nomial space and
an exponentially
space-bounded
one in exponential
space (i. e. the
simulation must
not introduce
too much space
overhead). Then,
we can simply
construct the G-
automaton T from
this universal
machine.

For the inner balanced iterated commutators, we recall that we have

qn+1+d = Xid
d−1 Xid

n+1q Xn+1
id Xd−1

id and cn+1+d = Xid
d−1 Xid

n+1XidXσX
n+1

id Xd−1
id

for all 1 ≤ d ≤ 2ne. Thus, we have

BXid
0 [Xid

n+1q Xn+1
id , 2ne ] = B0[q2ne + n+ 1︸ ︷︷ ︸

=s(n)

, . . . , qn+2] in G (T )

and

BXid
0 [Xid

n+1 XidXσX
n+1

id , 2ne ] = B0[c2ne + n+ 1︸ ︷︷ ︸
=s(n)

, . . . , cn+2] in G (T )

by Lemma 2.1.3.5 where we write BXid
0 for BXid

β0,α0
. In order to apply Lemma 2.1.3.5, we

need that Xid commutes with α0 and β0. However, this immediately follows from the
construction of T (as Xid only manipulates the TM-part of the input word while α0 and
β0 only manipulate the A5-part). Finally, we can compute a straight-line program for
the two twisted balanced iterated commutators in LogSpace by Lemma 2.1.3.6. Here,
it is important that n is given in unary and that, thus, ne can also be output in unary.
The last remaining part is a straight-line program for

c′ = Xid
s(n)cXs(n)

id = Xid
2ne

Xid
n+1cXn+1

id X2ne

id .

The inner part can be output directly and the outer Xid-blocks of length 2ne can be
generated in the same way as in the proof of Lemma 2.1.3.6.68

We can take the direct product of the automaton group with a PSpace-complete
word problem and the automaton group with an ExpSpace-complete compressed word
problem.69 In this way, we obtain an automaton group whose (normal) word problem
is PSpace-complete and whose compressed word problem is ExpSpace-complete and,
thus, provably harder (by the space hierarchy theorem, see e. g. [Pap94, Theorem 7.2,
p. 145]).

Corollary 2.1.3.8 ([5, Corollary 14]). There is an automaton group whose word problem

Constant: a G-automaton T = (Q,Σ, δ)
Input: a state sequence q ∈ Q̃∗
Question: is q = 1 in G (T )?

is PSpace-complete and whose compressed word problem
Constant: a G-automaton T = (Q,Σ, δ)
Input: a straight-line program P over Q̃
Question: is W (P) = 1 in G (T )?

is ExpSpace-complete.
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2.2 Positive Relations

In this section, we are going to study the problem of finding a so-called positive relation
in an automaton group. For an S-automaton T = (Q,Σ, δ), we define the set of positive
relations as

P(T ) = {q ∈ Q+ | q =T ε}.

The name stems from the fact that, if T is a G-automaton, then P(T ) is the set of
words in the positive generators of the group generated by T which are equal to the
neutral element. While the set of positive relations is obviously connected to the freeness
of the generated group, it is not an algebraic property but depends on the presentation.
However, we will see that it also has some (somewhat surprising) connections to algebraic
properties of the semigroup generated by T .
We will see that we cannot algorithmically check the existence of positive relations

for a given G-automaton. In other words, we show that the problem Automaton Group
Positive Relation

Input: a G-automaton T
Question: is P(T ) 6= ∅?

is undecidable. Afterwards, we will look into some other decision problems that turn out
to be equivalent to Automaton Group Positive Relation. The first of these problems
is to check whether the semigroup generated by a given S-automaton (or, in fact, G-
automaton) is a monoid. We obtain that the problem Automaton Semigroup Neutrality

Input: an S-automaton T
Question: does S (T ) have a neutral element?

is undecidable. Then, we will see that the existence of a positive relation is closely
connected to the existence of a torsion element in the semigroup generated by an S-
automaton. This will lead to the undecidability of the problem Torsion Element

Input: an S-automaton T
Question: does S (T ) contain an element of torsion?

Finally, we use the connection between elements of torsion and finite orbits in the dual
already given in Theorem 1.4.2.3 to obtain that the problem Finite Orbit

Input: an S-automaton T = (Q,Σ, δ)
Question: ∃α ∈ Σω : |Q∗ ◦ α| <∞?

is undecidable. Because the finiteness problem for automaton semigroups is co-equivalent
to finding an ω-word with an infinite orbit by Corollary 1.4.1.14, Finite Orbit can be
seen as a dual problem to it.
The interest in finding positive relations in an automaton group is obviously also

motivated by the open problem to decide whether a given automaton semigroup or
group is free [GNS00, 7.2 b)]. However, the approach we will be taking here to show
the undecidability of Automaton Group Positive Relation does not seem to be well
suited to solve these problems unfortunately. We will discuss this briefly at the end of
this section.
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Attribution. The results concerning Automaton Group Positive Relation are joint
work with Daniele D’Angeli and Emanuele Rodaro [3]. Crucial for the reductions is an
automaton construction used by Šunić and Ventura to construct an automaton group with
undecidable conjugacy problem [ŠV12], which the next subsection is devoted to. This
construction uses techniques similar to those used by Brunner and Sidki [BS98] to present
the generators of the affine group over Zd as finite state automorphisms. Finally, we use
a variant of Post’s Correspondence Problem, called Identity Correspondence Problem, for
the reduction. This has been shown to be undecidable by Bell and Potapov [BP10].
The relations between Automaton Group Positive Relation and the other stated

problems have not been discussed in this form previously but the results on the non-
applicability of the presented approach for the freeness problems of automaton groups
and semigroups are again joint work with Daniele D’Angeli and Emanuele Rodaro [6]
and the presentation loosely follows the one given there.

2.2.1 A Construction Due to Šunić and Ventura

We will investigate a construction by Šunić and Ventura to present d-dimensional linear
– or, in fact, affine – transformations over the ring of integers using automata. While
it was used by Šunić and Ventura to construct an automaton group with undecidable
conjugacy problem [ŠV12], the construction is more versatile. The constructed automata
act on n-adic expansions of vectors over the ring of n-adic integers. This is where we
start our study.

The Ring of n-Adic Integers. Let n ≥ 2 be a natural number. The ring of n-adic
integers is the projective limit

Zn = lim←−
k≥1

Z/nkZ.

Thus, its elements are sequences (ak + nkZ)k≥1 of residue classes ak + nkZ ∈ Z/nkZ
satisfying ak ≡ a` mod nk for all ` ≥ k and its operations are the component-wise
addition and multiplication of these sequences. The ring of (normal) integers Z embeds
into the ring of n-adic integers Zn by mapping z ∈ Z to the sequence (z + nZ, z +
n2Z, . . . ). If z is a natural number, then the corresponding sequence of the least non-
negative representatives for these residue classes will eventually become stationary and
the stationary value is z. On the other hand, any such stationary sequence belongs to a
natural number.

An alternative way to represent n-adic integers is to use formal sums of the form

Z =
∞∑
k=0

dkn
k

with 0 ≤ dk < n. It is natural to write Z ≡
∑`−1
k=0 dkn

k mod n` and, so, the sum Z is
considered to represent the n-adic integer

(d0, d0 + d1n, d0 + d1n+ d2n
2, . . . ).
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On the other hand, any n-adic integer (a1 + nZ, a2 + n2Z, . . . ) can be written as the sum

∞∑
k=0

dkn
k with dk = ak+1 − ak

nk

where we set a0 = 0 and assume without loss of generality that all other ak are the least
non-negative representatives of their classes. Together with ak ≡ ak+1 mod nk, this
yields 0 ≤ ak ≤ ak+1 and that dk is a natural number. Since we also have ak+1 < nk+1,
we obtain 0 ≤ dk < n.

Instead of writing the sum Z =
∑∞
k=0 dkn

k, we rather use its n-adic expansion: this is
the ω-word d0d1 . . . over the alphabet {0, . . . , n− 1}.

Example 2.2.1.1. We have the following presentations of integers as 2-adic numbers.

number sequence 2-adic expansion

−2 (−2 + 2Z,−2 + 4Z,−2 + 8Z, . . . )
= (0 + 2Z, 2 + 4Z, 6 + 8Z, . . . )

0111 . . .

−1 (−1 + 2Z,−1 + 4Z,−1 + 8Z, . . . )
= (1 + 2Z, 3 + 4Z, 7 + 8Z, . . . )

1111 . . .

0 (0 + 2Z, 0 + 4Z, 0 + 8Z, . . . ) 0000 . . .

1 (1 + 2Z, 1 + 4Z, 1 + 8Z, . . . ) 1000 . . .

2 (2 + 2Z, 2 + 4Z, 2 + 8Z, . . . )
= (0 + 2Z, 2 + 4Z, 2 + 8Z, . . . )

0100 . . .

3 (3 + 2Z, 3 + 4Z, 3 + 8Z, . . . )
= (1 + 2Z, 3 + 4Z, 3 + 8Z, . . . )

1100 . . .

From this table, it is easy to observe that the adding machine from Example 0.2.1.4 is
actually operating on 2-adic expansions of integers!

We will shortly be working in the module Zdn with dimension d rather than in the ring
Zn directly. In a slight abuse of nomenclature, we will call the elements of Zdn vectors.
Let

x =

x1
...
xd

 ∈ Zdn

be such a vector and let xi,1xi,2xi,3 . . . be the n-adic expansion of its component xi. We
could present the vector as a vector of these n-adic expansions:x1,1x1,2x1,3 . . .

...
xd,1xd,2xd,3 . . .


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However, for the automaton presentation later, it will be more convenient to define the
n-adic expansion of the vector x as the ω-wordx1,1

...
xd,1


x1,2

...
xd,2


x1,3

...
xd,3

 . . .
whose letters are from {0, . . . , n− 1}d.

Affine Integer Transformations of n-Adic expansions. When using the sequence pre-
sentation of n-adic integers, we can add and multiply component-wise. Performing the
same operations using the n-adic expansion is a bit less obvious. We will describe the
operation in the more general setting of applying affine transformations.
Let M ∈ Zd×d be a matrix and c ∈ Zd a vector with (normal) integer coefficients as

entries. They induce an affine transformation

Mc : Zdn → Zdn
x 7→ c +Mx.

For example using the sequence presentation of n-adic integers, it is easy to see that Mc

is equal to another affine transformation M ′c′ with M ′ ∈ Zd×d and c′ ∈ Zd if and only if
they coincide on all vectors from Zd, i. e. on those with (normal) integer coefficients.
In order to see how this affine transformation operates on the n-adic expansion

x1x2x3 . . . with x1, x2, · · · ∈ {0, . . . n − 1}d of some vector x ∈ Zdn, we first define the
operators mod and div. For an integer z ∈ Z, we define z mod n as the least non-negative
representative of the residue class z + nZ and z divn as b znc. When applied to a vector,
mod and div operate component-wise.

Recall that the n-adic expansion x1x2x3 . . . of x is a different presentation for the sum∑∞
k=0 xkn

k. With this in mind, we have (see [ŠV12, Lemma 4.3])

Mc(x1x2x3 . . . ) = c +M(x1x2x3 . . . )
= c +M

(
x1 + n(x2x3 . . . )

)
= c +Mx1 + n

(
M(x2x3 . . . )

)
= Mcx1 + n

(
M(x2x3 . . . )

)
= [Mcx1 mod n] + n[Mcx1 divn] + n

(
M(x2x3 . . . )

)
= [Mcx1 mod n] + n[(c +Mx1) divn] + n

(
M(x2x3 . . . )

)
= [Mcx1 mod n] + n[M(c+Mx1) divn(x2x3 . . . )],

which means that the first letter of the n-adic expansion gets transformed into Mcx1 mod
n ∈ {0, . . . , n−1} and, for the subsequent letters, we have to apply an affine transformation
with a new “carry vector” (c +Mx1) divn ∈ Zd. We can reproduce this behavior with
a finite state automaton if we can bound this carry vector. Let mi,j ∈ Z denote the
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70 If we say that
a matrix M from
Zd×d or Nd×d is in-
vertible, we mean
that it has non-
zero determinant,
i. e. its inverse is
not necessarily
from Zd×d or Nd×d,
respectively.

entry in the ith row and jth column of M and define ‖M‖ = max1≤i≤d
∑d
j=1 |mi,j | as the

maximum absolute row sum norm of M . We define the finite set

CM =

 c =

c1
...
cd

 ∈ Zd

∣∣∣∣∣∣∣ −‖M‖ ≤ c1, . . . , cd ≤ ‖M‖ − 1


and claim that, if we start with a vector c from CM , then the “new” carry vector
c′ = d′ divn ∈ Zd with d′ = (c +Mx1) is in CM as well. Let ci, c′i, d′i and yi be the ith
component of c, c′, d′ and x1, respectively. We have

−n‖M‖ = −‖M‖−‖M‖(n−1) ≤ d′i = ci+
d∑
j=1

mi,jyj ≤ ‖M‖−1+‖M‖(n−1) = n‖M‖−1.

This implies −‖M‖ ≤ c′i divn ≤ ‖M‖ − 1 and, thus, c′ ∈ CM , which proves our claim.
Finally, we observe that CM always contains the zero vector 0 ∈ Zd.

The Automaton Construction. The above considerations allow us to define the Šunić-
Ventura automaton TM,n for M with respect to n: its state set is

QM = {sM,c | c ∈ CM},

its alphabet is {0, . . . , n− 1}d and it contains the transitions

sM,c sM,(c+Mx) divn
x/(c +Mx) mod n

for all x ∈ {0, . . . , n − 1}d and c ∈ CM . Furthermore, we define the Šunić-Ventura
automaton with respect to n of a finite set M of matrices from Zd×d as the union
automaton

TM,n =
⊎

M∈M
TM,n.

These automata are clearly deterministic and complete, and the action of sM,c on the
n-adic expansion of a vector x ∈ Zdn is the same as applying Mc by construction. In
particular, the action of sM,0 is the same as applying M . Accordingly, the semigroup
generated by TM,n is (isomorphic to) the closure of {Mc | c ∈ CM} under composition.
If M ∈ Zd×d is invertible,70 we can choose n co-prime to detM . In this case, M is

also invertible as a matrix from (Z/nZ)d×d and the Šunić-Ventura automaton for M is
invertible. Again, by construction, the action of the state sM,0 in the inverse automaton
TM,n on an n-adic expansion of a vector is the same as applying M−1 to this vector.

The Affine Semigroup and the Affine Group. The semigroup SGLd(Zn) of matrices
from Zd×dn acts naturally (from the left) on the additive group Zdn via matrix multiplication.
This allows us to define the affine semigroup SAffd(Zn) = Zdno SGLd(Zn) and to identify
the affine transformations Mc used above with the elements (c,M) from this semigroup.
Under this view, the semigroup generated by the Šunić-Ventura automaton TM,n is
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71 Recall that
F (Σ) denotes the
free group over Σ.

(isomorphic to) a subsemigroup of SAffd(Zn). In fact, as long as we do not consider
inverses, the generated semigroup is even a subsemigroup of SAffd(Z) = Zd o SGLd(Z)
(which is defined analogously but all components are from Z instead of Zn).

To define the affine group, we first need to define the semidirect product of groups. Let
a group K act (from the left) on another group H, i. e. there is a group homomorphism
α : K → AutH, k 7→ αk from K to the automorphism group AutH of H. Then we
can define the semidirect product H oα K of the two groups. Its elements are from
H ×K and its multiplication is given by (h1, k1)(h2, k2) = (h1αk1(h2), k1k2). As with
semigroups, we simply write H oK instead of H oα K if the action is implicitly given
by the context.
Now, the group GLd(Zn) of matrices from Zd×dn with determinant co-prime to n acts

on the additive group Zdn as a group (again, via matrix multiplication), which allows us to
define the affine group Affd(Zn) = ZdnoGLd(Zn). By construction, ifM contains (finitely
many) matrices with determinant co-prime to n, then the group generated by TM,n is
(isomorphic to) a subgroup of Affd(Zn). In fact, it is even a subgroup of Zdn o G (M)
where G (M) is the group generated by the matrices fromM. In this case, it contains
G (M) as a subgroup (because we have the zero vector 0 in all CM ). If the matrices have
all either determinant −1 or 1 (i. e. if they are elements from GLd(Z)), then the group
generated by TM,n is isomorphic to Zd o G (M) [ŠV12, Lemma 4.1].

2.2.2 The Reduction

With the automaton construction by Šunić and Ventura at hand, we can prove the unde-
cidability of the above mentioned problems. For Automaton Group Positive Relation,
we will do this in two steps. First, we reduce the Identity Correspondence Problem ICP71

Constant: a binary alphabet Σ = {a, b}
Input: a finite number of pairs (g1, h1), . . . , (gm, hm) ∈ F (Σ)×F (Σ)
Question: is there a finite, non-empty sequence i1, i2, . . . , i` of indices 1 ≤

i1, i2, . . . , i` ≤ m with

gi1gi2 . . . gi` = hi1hi2 . . . hi` = 1F (Σ)?

to a variant of Automaton Group Positive Relation for matrix groups, called Matrix
Group Positive Relation. Then, we will reduce Matrix Group Positive Relation
to Automaton Group Positive Relation. Because ICP was shown to be undecidable
by Bell and Potapov [BP10, Theorem 11], this shows that Automaton Group Positive
Relation is also undecidable.

For a finite setM of matrices with the same dimension d, let

P(M) = {M1M2 . . .M` ∈M+ |M1M2 . . .M` = 1}

where 1 denotes the d× d identity matrix and define Matrix Group Positive Relation
as the problem

Constant: a natural number d
Input: a finite setM of invertible matrices from Zd×d

Question: is P(M) 6= ∅?
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Proposition 2.2.2.1. Matrix Group Positive Relations is undecidable for d ≥ 4.

Proof (see also proof of [3, Theorem 3.7]). As already mentioned, we give a reduction
from ICP to Matrix Group Positive Relation. For this, we use the usual embedding
% of the free group F (Σ) into the special linear group SL(2,Z) given by

%(a) =
(

1 2
0 1

)
and %(b) =

(
1 0
2 1

)

and encode each pair (gi, hi) as the 4× 4 block matrix

Mi =
(
%(gi) O2
O2 %(hi)

)

where O2 denotes the 2 × 2 zero matrix. As the input for Matrix Group Positive
Relation, we useM = {M1, . . . ,Mm}, which is clearly computable and contains invert-
ible matrices from Z4×4. By construction, we also clearly have that every solution to the
input ICP instance induces a positive relation in P(M) and vice-versa.

For finally reducing Matrix Group Positive Relation to Automaton Group Posi-
tive Relation, we use Šunić and Ventura’s construction from above and the following
connection.

Lemma 2.2.2.2 (see [3, Lemma 3.6]). LetM be a finite set of matrices from Zd×d for
some d, n ≥ 2 and let Mk . . .M1 and N` . . . N1 be two sequences of matrices from M.
Then, we have

Mk . . .M1 = N` . . . N1

if and only if there are two sequences p1 . . . pk and q1 . . . q` in which pi is a state of
the Šunić-Ventura automaton TMi,n for all 1 ≤ i ≤ k and qj is a state of TNj ,n for all
1 ≤ j ≤ ` with

pk . . . p1 =TM,n
q` . . . q1.

In particular, we have Mk . . .M1 = 1 if and only if there is a sequence pk . . . p1 in
which pi is a state of TMi,k for all 1 ≤ i ≤ n with

pk . . . p1 =TM,n
ε,

i. e. pk . . . p1 acts as the identity.

Proof. The second statement is a special case of the first one, where the right sequence
is empty (` = 0). Therefore, we only show the first statement.
If we have Mk . . .M1 = N` . . . N1, we can set pi = sMi,0 ∈ QMi for all 1 ≤ i ≤ k

and qj = sNj ,0 ∈ QNj for all 1 ≤ j ≤ ` (where 0 ∈ Zd denotes the zero vector). By
construction of the Šunić-Ventura automaton, we immediately have that the two state
sequences belong to the same element of the automaton semigroup.
For the other direction, we have, for every 1 ≤ i ≤ k and 1 ≤ j ≤ `, that pi = sMi,bi

and qj = sNj ,ck
where bi and cj are vectors form CMi and CNj , respectively. Since, by
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construction, the action of a state sM,b on the n-adic expansion of a vector is the same
as applying Mb to the vector, we have

(bk,Mk) . . . (b1,M1) = (c`, N`) . . . (c1, N1)

in SAffd(Zn) and, thus, from the second components, Mk . . .M1 = N` . . . N1 as desired.

Theorem 2.2.2.3 ([3, Theorem 3.7]). The problem Automaton Group Positive Rela-
tion

Input: a G-automaton T
Question: is P(T ) 6= ∅?

is undecidable.

Proof. For reducing Matrix Group Positive Relation to Automaton Group Positive
Relation, we map the finite setM of invertible matrices from Z4×4 to the Šunić-Ventura
automaton TM,n, which is a G-automaton if we choose n ≥ 2 co-prime to all determinants
detM with M ∈ M. Clearly, such an n can be computed and the automaton is
computable as well since all the transitions of the automaton are of the form

sM,c sM,(c+Mx) divn
x/(c +Mx) mod n

with x ∈ {0, . . . , n − 1}d, M ∈ M and c ∈ CM . Finally, by Lemma 2.2.2.2, we have
P(M) 6= ∅ ⇐⇒ P(TM,n) 6= ∅.

To show that Automaton Group Positive Relation is equivalent to the variants of
Automaton Semigroup Neutrality and of Torsion Element where the input automaton
is a G-automaton, we use the following fact.

Fact 2.2.2.4. For a G-automaton T = (Q,Σ, δ), we have

P(T ) 6= ∅ ⇐⇒ S (T ) is a monoid
⇐⇒ S (T ) contains an element of torsion

Proof. If the set of positive relations is non-empty, there is some state sequence q ∈ Q+

that acts as the identity and is, thus, a neutral element in the semigroup S (T ), which is
obviously of torsion.
On the other hand, if q ∈ Q+ has torsion in S (T ), there are i and j with i > j and

qi = qj in S (T ). Using the fact, that T as a G-automaton generates a group, we obtain

qi−j ◦ u = qiqj ◦ u = qjqj ◦ u = u

for all u ∈ Σ∗ and, thus, qi−j =T ε.
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Combining Fact 2.2.2.4 and Theorem 2.2.2.3, we obtain that also our next two problems
are undecidable.

Corollary 2.2.2.5. The problem
Input: a G-automaton T
Question: does S (T ) contain a neutral element?

and, thus, Automaton Semigroup Neutrality are undecidable.

Corollary 2.2.2.6. The problem
Input: a G-automaton T
Question: does S (T ) contain an element of torsion?

and, thus, Torsion Element are undecidable.

To finally reduce Automaton Group Positive Relation to Finite Orbit, we need a
few results from Section 1.4.

Proposition 2.2.2.7. Let T = (Q,Σ, δ) be a G-automaton. Then, we have:

S (T ) contains an element of torsion ⇐⇒ ∃π ∈ Qω : |Σ∗ ◦∂ π| <∞

Proof. If there is some q ∈ Q+ such that q has torsion in S (T ), then, by Theorem 1.4.2.3,
the orbit Σ∗ ◦∂ (∂q)ω is finite.
On the other hand, if there is some π ∈ Qω with finite orbit Σ∗ ◦∂ π, then there is

already some periodic word with a finite orbit by Proposition 1.4.2.5 because the dual
∂T of the G-automaton T is a complete and reversible S-automaton. Thus, there is
some q ∈ Q+ with |Σ∗ ◦∂ qω| < ∞ and Theorem 1.4.2.3 yields that ∂q has torsion in
S (T ).

If we combine Fact 2.2.2.4 and Proposition 2.2.2.7, we obtain that mapping the input
G-automaton to its dual is a reduction from Automaton Group Positive Relation to
Finite Orbit, which shows that the latter is undecidable.

Corollary 2.2.2.8. The problem
Input: a complete and reversible S-automaton T = (Q,Σ, δ)
Question: ∃α ∈ Σω : |Q∗ ◦ α| <∞?

and, thus, Finite Orbit are undecidable.

2.2.3 Interlude: the Freeness Problem

The existence of positive relations seems to be connected to the freeness of the generated
group. However, the approach given above does not seem to be well-suited to study the
freeness problem for automaton groups or semigroups as the Šunić-Ventura automaton
will (almost) never generate a free group or semigroup.
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72 Since N contains
zero, it is the free
monoid of rank
one in additive no-
tation.

The Group Case. IfM is a set of matrices from Zd×d with determinant detM ∈ {−1, 1}
for all M ∈M, then those matrices generate a group G and G (TM,n) is (isomorphic to)
the semidirect product Zd o G of groups [ŠV12, Lemma 4.1]. Accordingly, the group
generated by the Šunić-Ventura automaton contains a non-cyclic abelian subgroup and
is, therefore, not free. We will show here that this is also true in the case of general
invertible matrices.

Proposition 2.2.3.1 ([6, Proposition A]). LetM be a non-empty, finite set of matrices
Zd×d whose determinants are all co-prime to n. Then, G (TM,n) is free if and only if
d = 1.

Proof. First, we consider the case that the group G (M) generated by the matrices inM
is trivial. This implies thatM can only contain the d dimensional identity matrix (and,
thus, in particular, includes the case d = 1). In this case, the group generated by TM,n is
(isomorphic to) Zd o 1 [ŠV12, Lemma 4.1] and this is free if and only if d = 1.

Next, let G (M) be non-trivial and consider G (TM,n) as a subgroup G of Zdn o G (M).
Since we have 0 ∈ CM for all M , we can consider G (M) as a subgroup of G. Thus, if
G (M) is not free, G cannot be free either. Therefore, assume that G (M) is free and
contains the non-identity element M . Since we must have d ≥ 2, there are two distinct
elements c and d in CM (for example, we can take −e1 and −e2 for the first two d
dimensional unit vectors e1 and e2). Let H be the subgroup of G generated by (c,M)
and (d,M). We will show that H is solvable but not cyclic and, thus, not free, which
shows that G cannot be free either.
Suppose H is generated by a single element (v, N). Then, there must be i 6= j with

(c,M) = (v, N)i = (c′, N i) and (d,M) = (v, N)j = (d′, N j). Thus, we must have
N i = M = N j and, therefore, N = 1 since the neutral element is the only element of
finite order in the free group G (M). This is a contradiction, however, since it implies
M = 1.
To show that H is solvable, we show that the commutator subgroup [H,H] can be

considered a subgroup of the abelian (additive) group Zdn. Since H is generated by
(c,M) and (d,M), every element h ∈ H can be written as h = (u,M i) for some
i and some u ∈ Zdn. Thus, the commutator of h = (u,M i) and k = (v,M j) is
[k, h] = k−1h−1kh = (w,M−jM−iM jM i) = (w, 1) for some w ∈ Zdn.

The Semigroup Case. The semigroup case is a bit different to the group case because,
here, it does not suffice to show that a subsemigroup is not free. Yet, we can still show
that the semigroup generated by a Šunić-Ventura automaton is never free. In fact, we will
show a more general algebraic result for subsemigroups of certain semidirect products.
However, we first need to discuss some properties of free semigroups.

Remember that we can adjoin a new (disjoint) neutral element 1 to every semigroup S
and that the resulting semigroup is denoted by S1. Clearly, S is a free semigroup if and
only if S1 is a free monoid, which allows us to work with monoids instead of semigroups.
A proper length function of a monoid M is a homomorphism λ : M → N such that
λ(m) = 0 implies m = 1.72
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s1 s2

s′1 s′2

x

(a) s1 is longer than s′
1

s1 s2

s′1 s′2

x

(b) s1 is shorter than s′
1

Figure 2.8: Graphical representation of equidivisibility.

73 Actually, it is
also compatibles
with the inverses
but we do not need
this property in
the following.

A monoid M is equidivisable if, for all s1, s2, s
′
1, s
′
2 ∈ S with s1s2 = s′1s

′
2, there is some

x ∈M with s1 = s′1x and xs2 = s′2 or with s1x = s′1 and s2 = xs′2 (see Figure 2.8).
Obviously, every free monoid Σ∗ has a natural proper length function that maps a

finite word w ∈ Σ∗ to its length |w| and is equidivisable by Levi’s Lemma [How95,
Proposition 7.1.2]. It turns out that the converse also holds [How95, Proposition 7.1.8]
and that, thus, these two properties characterize free monoids.

Fact 2.2.3.2. Let M be a monoid. We have:

M is a free monoid ⇐⇒ M has a proper length function and is equidivisable

A semigroup S is right cancellative if xs = ys implies x = y for all s, x, y ∈ S.
Symmetrically, it is left cancellative if sx = sy implies x = y for all s, x, y ∈ S and
it is cancellative if it is both left and right cancellative. Clearly, every free monoid is
cancellative.

The semigroup generated by a Šunić-Ventura automaton for a setM of matrices from
Zd×d is (isomorphic to) a subsemigroup of the affine semigroup SAffd(Z) = ZdoSGLd(Z).
This semidirect product has a crucial property: the action of SGLd(Z) on Zd is compatible
with the monoid structure of Zd.73 In general, a semigroup S acts on a monoid M (from
the left) via a homomorphism α : S → EndM, s 7→ αs where EndM is the monoid of
monoid endomorphisms of M , i. e. we have αs(1) = 1 for all s ∈ S. If we have such an
action and we form the semidirect product M o S, we have (1, s)(1, t) = (1αs(1), st) =
(1, st). Thus, by identifying s with (1, s), we obtain S as a subsemigroup of M o S.

We will proceed by showing that certain subsemigroups of M o S are not free. After-
wards, we will apply these general results to the specific setting of the affine semigroup
and Šunić-Ventura automata.

Lemma 2.2.3.3 ([6, Lemma D]). Let a semigroup S act on a monoid M (from the left)
and let T be a subsemigroup of M o S such that S is in turn a subsemigroup of T . Then,
we have:

T is a free semigroup =⇒ S is a free semigroup

Proof. Let T be a free semigroup or, equivalently, let T 1 be a free monoid. This implies
that T 1 has a proper length function and is equidivisable. We will show that S1 inherits
both these properties and is, thus, a free monoid (by Fact 2.2.3.2), which shows that S is
a free semigroup.
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74 Of course, we
have another equa-
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thank Armin Weiß
for pointing out
this counter exam-
ple.

We define the length of 1 ∈ S1 as 0 and the length of s ∈ S to be the same as the
length of (1, s) in T 1, which clearly gives us a proper length function. To show that S1 is
equidivisable, let s1s2 = s′1s

′
2 for s1, s2, s

′
1, s
′
2 ∈ S1. We have to show that there is some

x ∈ S1 with s1 = s′1x and xs2 = s′2 or with s1x = s′1 and s2 = xs′2 (again, see Figure 2.8).
If we have s1 = 1, we can set x = s′1 as we, then, have s1x = s1s

′
1 = 1s′1 = s′1 and

s2 = 1s2 = s1s2 = s′1s
′
2 = xs′2. The cases s′1 = 1, s2 = 1 and s′2 = 1 can be handled

symmetrically. Thus, let s1, s2, s
′
1, s
′
2 ∈ S = S1 \ {1}. Because S is a subsemigroup of T ,

we have
(1, s1)(1, s2) = (1, s′1)(1, s′2)

in T and, therefore, also in T 1. Because T 1 is equidivisable, there is some y ∈ T 1 with
(1, s1) = (1, s′1)y and y(1, s2) = (1, s′2) or with (1, s1)y = (1, s′1) and (1, s2) = y(1, s′2).
If y = 1, we obtain s1 = s′1 and s2 = s′2 from the second components (in both cases)
and can set x = 1. Otherwise, y must be of the form y = (m,x) ∈ T = T 1 \ {1}, which
yields the sought element x. That x indeed satisfies the required condition can be seen
by restricting the equations to their second components (in both cases).

Proposition 2.2.3.4 ([6, Proposition E]). Let α : S → End(M), s 7→ αs be an action
of a semigroup S on a monoid M and let T be a subsemigroup of M o S such that T
contains S as a subsemigroup. If there is some (m, s) ∈ T with m 6= 1 (i. e. if S is
a proper subsemigroup) and we have (αs(m), s) ∈ T as well, then T cannot be a free
semigroup.

Proof. Suppose we have (m, s), (m′, s) ∈ T for some m 6= 1 and m′ = αs(m). We show
the statement by contradiction and assume that T is a free semigroup or, equivalently,
that T 1 is a free monoid.

This implies that T 1 is equidivisable. In particular, since we have

(1, s)(m, s) = (1m′, s2) = (m′, s)(1, s)

in T (and, therefore, also in T 1), there is some y ∈ T 1 with y(m, s) = (1, s) or with
(m, s) = y(1, s).74 In both cases, we cannot have y = 1 because we have m 6= 1. Thus, y
is of the form y = (n, x) for some n ∈M and x ∈ S. From the second component of the
respective equation, we obtain xs = s, again, in both cases.
Finally, since we assumed T to be a free semigroup, S must be a free semigroup as

well by Lemma 2.2.3.3 and we obtain that the (thus) free monoid S1 is cancellative. This
yields x = 1, which constitutes a contradiction.

Counter Example 2.2.3.5. It might be tempting to assume that no subsemigroup of
M o S which contains S as a proper subsemigroup is a free semigroup. However, this is
not true.
For a counter example,75 let S = q+ act on the monoid M = {a, b}∗ via the action α

induced by αq(a) = a and αq(b) = ab and consider the subsemigroup T generated by
(ε, q) and (b, q) in M o S. Clearly, S is a proper subsemigroup of T . However, T is freely
generated by (ε, q) and (b, q) (and, thus, a free semigroup). We will show that every
element t = (w, qi) ∈ T has a unique factorization over these generators. We observe
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76 For the group
case, see [GNS00,
7.2 b)].

that all elements in (ε, q)T 1 = {(ε, q)t′ | t′ ∈ T 1} either have an empty first component
or one which starts with an a. On the other hand, the first component of all elements in
(b, q)T 1 must start with a b. Thus, the first letter of w uniquely determines whether t is
in (ε, q)T 1 or in (b, q)T 1 and our claim follows by induction.

We can use Proposition 2.2.3.4 to handle the non-trivial cases in the proof that no
Šunić-Ventura automaton can generate a free semigroup.

Theorem 2.2.3.6 ([6, Proposition B]). Let M be a non-empty, finite set of matrices
from Zd×d and let n ≥ 2. Then, S (TM,n) is never a free semigroup.

Proof. IfM only consists of the zero matrix 0 from Zd×d, then the semigroup generated
by TM,n consists of a single element (as C0 only contains the d dimensional zero vector)
and is, thus, not a free semigroup.
Otherwise, there is some M ∈ M with maximum absolute row sum norm ‖M‖ ≥ 1.

Thus, we have −e1 ∈ CM where e1 is the first unit vector of the canonical base for Zd.
The ith component of v = M(−e1) is −mi,1, the entry in the first column and ith row
of M . Since we have mi,1 ≤ ‖M‖, we obtain v ∈ CM as well. Thus, if we consider
S (TM,n) as a subsemigroup T of SAffd(Z) = ZdoSGLd(M), we have (−e1,M) ∈ T and
(M(−e1),M) ∈ T . Additionally, SGLd(M) is a subsemigroup of T because CM always
contains the d dimensional zero vector. This allows us to apply Proposition 2.2.3.4 to
conclude the proof.

2.3 Finiteness Problem

The finiteness problem for automaton semigroups Automaton Semigroup Finteness

Input: an S-automaton T
Question: is S (T ) finite?

was shown to be undecidable by Gillibert [Gil14]. On the other hand, the corresponding
problems for inverse automaton semigroups and automaton groups remain open.76 In this
section, we will strengthen Gillibert’s result and show that the problem Bi-Reversible,
Invertible Automaton Semigroup Finiteness

Input: a bi-reversible, invertible (possibly partial) S-automaton T
(i. e. a bi-reversible S-automaton)

Question: is S (T ) finite?
is undecidable. Just like Gillibert’s result, our proof is based on Wang tilings but,
while Gillibert completed the resulting automaton by adding a sink state (compare to
Corollary 1.1.1.3), we will work with partial automata instead.

This result is a step closer to showing the undecidability of the finiteness problem for
inverse automaton semigroups Inverse Automaton Semigroup Finiteness:

Input: an invertible (possibly partial) S-automaton T
(i. e. an S-automaton)

Question: is S (T ) finite?

97



2 Decision Problems

77 Later on, in
Subsection 2.4.3,
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Similar to the word problem (see Section 2.1), solving the version for inverse automaton
semigroups could be interesting as a step stone to the finiteness problem for automaton
groups Automaton Group Finiteness

Input: an invertible, complete S-automaton T
(i. e. a G-automaton)

Question: is G (T ) finite?
Unfortunately, our result here shows neither and we will discuss the connections between
these problems at the end of this section. However, we will give a partial solution by
showing that a generalized version of the finiteness problem for automaton groups is
undecidable.77 We will re-formulate this generalized version using results from Section 1.4
as the problem to find an ω-word with a given finite prefix and an infinite orbit and as
the finiteness problem for left principal ideals in a semigroup generated by a complete
and reversible automaton.

Attribution. The results on the bi-reversible, partial case at the beginning of this section
are joint work with Daniele D’Angeli and Emanuele Rodaro [3]. Similar to Gillibert’s
original approach [Gil14], the undecidability proof is based on an undecidability result
for Wang tilings, namely a result by Lukkarila showing that the tiling problem remains
undecidable for 4-way-deterministic Wang tile sets [Luk09]. This result, in turn, uses the
existence of a 4-way-deterministic Wang tile set that can be mapped homomorphically
to Robinson’s aperiodic tile set [Rob71], which was found by Kari and Papasoglu [KP99].
We can simplify the original proof (from [3]) slightly by using the results on infinite orbits
from Section 1.4.
Finally, the partial solution to the finiteness problem for automaton groups given at

the end of this section and the two alternative formulations are joint work not only
with Daniele D’Angeli and Emanuele Rodaro but also with Dominik Francoeur [8]. The
construction heavily relies on the one given by Gillibert to show that the order problem
for automaton groups is undecidable [Gil18].

2.3.1 An Undecidability Result Due to Lukkarila

Our proof for extending Gillibert’s undecidability result to bi-reversible partial automata
is – just like Gillibert’s original proof – heavily based on Wang tiles. Therefore, we start
our discussion by introducing a result by Lukkarila in this area.

Wang Tilings. Let C be a finite set of colors. A Wang tile over C is a quadruple
t = (tN , tW , tS , tE) ∈ C4, for which we also use the more graphical notation t = cNcW cEcS

in this context. For D ∈ {N,W,S,E}, we say that tD is the color at the D-edge.78 A tile
set W is a finite set of Wang tiles. It is CD-deterministic for CD ∈ {NW,SW,SE,NE}
if a tile t ∈ W is uniquely determined by the colors at its C- and D-edges. It is
4-way-deterministic if it is CD-deterministic for all CD ∈ {NW,SW,SE,NE}.

A tiling of the discrete plane Z2, or Z2-tiling for short, for a tile set W is a map
f : Z2 →W such that adjacent tiles share the same color on their common edge, i. e. we
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have f(x, y)E = f(x+ 1, y)W and f(x, y)N = f(x, y + 1)S for all x, y ∈ Z. Analogously,
a tiling of the first quadrant N2, or N2-tiling for short, for W is a map f : N2 →W with
f(x, y)E = f(x+ 1, y)W and f(x, y)N = f(x, y + 1)S for all x, y ∈ N. The Wang tile set
W is said to tile the discrete plane Z2 (or the first quadrant N2, respectively) if there is a
Z2-tiling (an N2-tiling, respectively) for W.
The following fact is well-known.

Fact 2.3.1.1. A tile set W tiles the discrete plane Z2 if and only if it tiles the first
quadrant N2.

Periodicity. For an N2-tiling f : N2 →W for a tile set W ⊆ C4 with the colors C, we
can define the notion of a horizontal word: the yth horizontal word is

f(0, y)Sf(1, y)Sf(2, y)S . . . ∈ Cω.

An N2-tiling is non-y-recurrent if all its horizontal words are pairwise distinct; otherwise,
it is y-recurrent.
A Z2-tiling f is called periodic if there is a (non-zero) periodicity vector v ∈ Z2 with

f(p+v) = f(p) for all p ∈ Z2; otherwise, it is called non-periodic. If there is a periodicity
vector of the form (x, 0) for some x ∈ Z or of the form (0, y) for some y ∈ Z, then the
Z2-tiling f is called horizontally periodic or vertically periodic, respectively. A tile set is
aperiodic if it admits a non-periodic Z2 tiling but does not admit a periodic one.

The following connection between periodicity and horizontal and vertical periodicity is
well-known (see e. g. [Rob71, §1. Introduction]).

Fact 2.3.1.2. A tile set W admits a periodic Z2-tiling if and only it admits a Z2-tiling
which is horizontally and vertically periodic.

Proof idea. One implication is obvious. The idea for the other direction is best understood
by considering Figure 2.9. We start with an arbitrary periodic Z2-tiling and combine
its tiles into blocks whose size is given by the periodicity vector. As these blocks are of
finite size, there are only finitely many possibilities for them. Therefore, there must be
a block which appears twice in the same row (see Figure 2.9a). This yields a pattern
which we can repeat to tile the whole plane. The resulting Z2-tiling has a horizontal as
well as a vertical period (see Figure 2.9b).

Using very similar ideas, we can also link the periodicity of Z2-tilings to the non-y-
recurrence of N2-tilings.

Lemma 2.3.1.3 ([3, Lemma 4.4]). A tile set W tiles the first quadrant in a y-recurrent
way if and only if it tiles the discrete plane periodically.

Proof. Let f be a y-recurrent N2-tiling forW such that the ith and the jth horizontal words
coincide for i < j (see Figure 2.10). Because there are only finitely many possibilities,
there have to be x1 < x2 such that f(x1, y) = f(x2, y) for all y ∈ {i, . . . , j−1}. Therefore,
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? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

(a) A tiling with periodicity vector (3, 2). Blocks of the same shade contain the same tiles.

(b) Repeating the pattern yields both a horizontal and a vertical period.

Figure 2.9: Periodic tilings

i

j

x1 x2

Figure 2.10: A y-recurrent N2-tiling

100



2.3 Finiteness Problem

79 Strictly speak-
ing, we will give a
co-reduction again.

we can repeat the pattern given by the tiles at positions {x1, . . . , x2 − 1} × {i, . . . , j − 1}
(i. e. the hatched part in Figure 2.10) infinitely often in both directions, which yields a
periodic Z2-tiling.
If, on the other hand, we have a periodic Z2-tiling, then, by Fact 2.3.1.2, we also

have a vertically periodic Z2-tiling. Restricting this tiling into a map N2 →W yields a
y-recurrent N2-tiling.

A homomorphism of tile sets is a map ϕ : V → W from a tile set V to a tile set W such
that tD = t′D implies ϕ(t)D = ϕ(t′)D for all t ∈ V and all D ∈ {N,W,S,E}. Clearly, a
periodic Z2-tiling for V induces a periodic Z2-tiling for W . Thus, if W is aperiodic and V
admits any Z2-tiling, then V is aperiodic as well. A tile set is homomorphically aperiodic
if it can be mapped homomorphically to an aperiodic tile set.

Undecidability. It was shown by Berger [Ber66] that the tiling problem for Wang tiles
Input: a tile set W
Question: does W tile the discrete plane Z2?

is undecidable. Later, the proof was simplified by Robinson [Rob71]. Crucial to both
undecidability proofs – in fact, to any such proof – is the existence of an aperiodic tile set.
Using an aperiodic 4-way-deterministic tile set constructed by Kari and Papasoglu [KP99],
Lukkarila [Luk09] could show the undecidability of the problem 4-Way-Deterministic
Tiling

Input: a 4-way-deterministic, homomorphically aperiodic tile set W
Question: does W tile the discrete plane Z2?

We will reduce79 4-Way-Deterministic Tiling to Bi-Reversible, Invertible Auto-
maton Semigroup Finiteness to show the undecidability of the latter.

2.3.2 The Reduction

There is a very natural connection between Wang tile sets and automata. For a Wang
tile set W ⊆ C4, we define the (partial) automaton T (W) = (C,C, δ) by

δ =
{
cW cE

cS/cN

∣∣∣ cNcW cEcS
∈ W

}
.

Clearly, for a given tile set W , the automaton T (W) can be computed. Furthermore, we
have the following straight-forward connections.

Fact 2.3.2.1. Let W be a Wang tile set. We have:

• T (W) is deterministic ⇐⇒ W is SW-deterministic,

• T (W) is invertible ⇐⇒ W is NW-deterministic,

• T (W) is inverse-reversible ⇐⇒ W is NE-deterministic and

• T (W) is reversible ⇐⇒ W is SE-deterministic.
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Additionally, we can link the properties that a tile set tiles the discrete plane and that
the associated automaton generates an infinite semigroup.

Lemma 2.3.2.2. Let W be a homomorphically aperiodic, SW-deterministic tile set.
Then, we have:

W tiles the discrete plane Z2 ⇐⇒ |S (T (W))| =∞

Proof. Let C be the colors belonging to W. If W tiles the discrete plane Z2, then, in
particular, it also tiles the first quadrant N2 and this N2-tiling must be non-y-recurrent
since a y-recurrent N2-tiling yields a periodic Z2-tiling by Lemma 2.3.1.3, which cannot
exist as W is homomorphically aperiodic. If we denote the ith horizontal word of this
non-y-recurrent N2-tiling by αi, then α0, α1, . . . are the nodes of an infinite path in the
orbital graph C∗ ◦ α0 with respect to T (W) (whose labels are given by the colors on the
west side). This shows that S (T (W)) must be infinite.

For the other direction, suppose that S (T (W)) is infinite. Then, by Corollary 1.4.1.14,
there is some ω-word α with an infinite orbit under the action of T (W). Thus, its orbital
graph C∗ ◦ α contains an infinite simple path

α = α0 α1 α2 . . .
c1 c2 c3

since there are infinitely many nodes reachable from α and the out-degree of all nodes is
bounded by |C|. This path (uniquely) induces a (non-y-recurrent) N2-tiling whose ith
horizontal word is given by αi and whose west side is labeled by c1c2 . . . . By Fact 2.3.1.1,
this also yields a Z2-tiling (which has to be aperiodic since W is homomorphically
aperiodic).

From the above lemma, we obtain the undecidability of the strengthened version of
the finiteness problem for automaton semigroups.

Theorem 2.3.2.3. The problem Bi-Reversible, Invertible Automaton Semigroup
Finiteness

Input: a bi-reversible, invertible (possibly partial) S-automaton T
(i. e. a bi-reversible S-automaton)

Question: is S (T ) finite?

is undecidable.

Proof. We give a co-reduction from 4-Way-Deterministic Tiling to the stated prob-
lem. We map the 4-way-deterministic, homomorphically aperiodic tile set W to the
(computable) automaton T (W), which is an invertible, bi-reversible S-automaton by
Fact 2.3.2.1. The correctness of this co-reduction follows immediately from Lemma 2.3.2.2.
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80 In fact, Gillib-
ert’s proof for
the undecidability
of Automaton
Semigroup Fi-
niteness [Gil14]
also seems to
have a “partial
nature”. However,
he made the au-
tomaton complete
by adding a sink
state (compare to
Corollary 1.1.1.3).
81 This construc-
tion is entirely dif-
ferent to the one
for the finiteness
problem that was
mentioned above.

2.3.3 The Case of Invertible Automaton Structures
Inverse Automaton Semigroups. In the group case, we have the well-known connection
from Fact 1.4.1.15, which states that a G-automaton generates an infinite group if and
only if it generates an infinite semigroup.
In fact, we have proved this connection using Fact 0.3.2.2, which yields that, for a G-

automaton T = (Q,Σ, δ) and all w ∈ Q∞, the positive orbit Q∗ ◦w is of the same size as
Q̃∗ ◦ w, where we also consider inverses.
However, the corresponding result for the orbits of (non-complete) S-automata does

not hold (see Counter-Example 0.3.2.3). Thus, it might not be too surprising that the
inverse semigroup generated by an S-automaton can be infinite while the generated
semigroup is finite.

Counter Example 2.3.3.1 (see also [3, Lemma 2.6]). We use the same idea as in
Counter-Example 0.3.2.3. Let T = (Q,Σ, δ) be an arbitrary G-automaton generating an
infinite group such that there is a state q1 whose action is the identity on Σ∗. Let Σ̂ be a
disjoint copy of Σ and define T ′ = (Q,Σ ] Σ̂, δ′) by

δ′ = {p qa/b̂ | p qa/b ∈ δ}.

Then, S (T ′) as well as S (T ′) are finite while S (T ′) is infinite.
The former is obvious since the partial action of any state sequence containing more

than one state is undefined on every non-empty word. For the latter, we need to observe
that the partial action of q1 in T ′ consists of mapping a to â for every a. Accordingly,
the partial action of q1 in T ′ removes the hat decoration. Thus, the partial action of
q ∈ Q in T is the same as that of q1q in T ′.

This prevents us from directly using the above reduction to show that Inverse Auto-
maton Semigroup Finiteness is undecidable. The problem here is that, if S (T (W))
is infinite, then we only know that we have an ω-word with an infinite orbit under the
combined partial actions of the states and their inverses. On the Wang tile side, this
corresponds to also allowing tiles mirrored at the horizontal axis. However, if we have
such tiles, then we can tile the discrete plane Z2 if we can tile a single horizontal line
and the corresponding problem is suddenly decidable.

Automaton Groups. That the resulting automaton is partial is somewhat intrinsic to
the above construction.80 Clearly, if T (W) is complete for some tile set W, then we can
find a Wang tile t ∈ W with tS = cS and tW = cW for any pair cS , cW of colors, which
implies that W tiles the discrete plane Z2.
However, we can show a partial result for Automaton Group Finitness using the

construction given by Gillibert to show that there an automaton group with an undecidable
order problem:81

Constant: a G-automaton T = (Q,Σ, δ)
Input: a finite state sequence q ∈ Q∗
Question: has q finite order in G (T )?
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82 G (T ) · w is
well-defined by
Fact 0.3.1.1.

83 In Gillibert’s pa-
per, the function is
called Q, actually.
However, this no-
tation clashes with
the convention of
using Q to denote
the state sets of au-
tomata followed in
this work. There-
fore, we use Λ in-
stead. Addition-
ally, Gillibert uses
right actions to
define automaton
groups. Therefore,
we mirror the or-
dering here.

Theorem 2.3.3.2 ([8, Theorem 3.1]). The decision problem82

Constant: a G-automaton T = (Q,Σ, δ)
Input: a finite word w ∈ Σ∗
Question: is G (T ) · w = {g · w | g ∈ G (T )} finite?

is undecidable for some G-automaton T .

Proof (adapted from the proof of [8, Theorem 3.1]). Although it is not explicitly stated
in his proof, Gillibert actually shows the undecidability of the decision problem

Constant: a G-automaton R = (P,Γ, τ) and
a state $ ∈ P

Input: a finite sequence p ∈ P ∗ of states
Question: has $Λ(p) finite order in G (R)?

where Λ : P ∗ → P ∗ is given by Λ(ε) = ε and Λ(p̂p) = Λ(p)p̂Λ(p) [Gil18].83
We take the G-automaton R and extend it into a new G-automaton T = (Q,Σ, δ).

Then, we reduce the above version of the order problem of R to the generalized finiteness
problem for T from the theorem statement.
As the alphabet of T , we use Σ = Γ ] {ap | p ∈ P} × {0, 1} ] {∗,#}, i. e. we add two

new special letters ∗ and # as well as two new letters (ap, 0) and (ap, 1) for every state
p ∈ P . Similarly, we use Q = P ] {s, t, id} ] {#p | p ∈ P} for the state set, i. e. we add
three new states s, t and id as well as a new state #p for every old state p ∈ P . Of
course, we also add new transitions

δ′ = τ ∪ {s t∗/∗ , t $#/# } ∪ {t t(ap, 1)/(ap, 0) , t #p
(ap, 0)/(ap, 1) | p ∈ P}

∪ {#p #p
(aq , i)/(aq , i) ,#p p#/# | p, q ∈ P, i ∈ {0, 1}}

∪ {id ida/a | a ∈ Σ},

which are depicted schematically in Figure 2.11, and make the automaton complete by
adding a transition to the identity state whenever some transition is missing:

δ = δ′ ∪ {q ida/a | q ∈ Q, a ∈ Σ, @a′ ∈ Σ, q′ ∈ Q : q q′a/a′ ∈ δ′}

Note that the resulting automaton is indeed a G-automaton!
For the reduction of the strengthened version of the order problem to the generalized

version of the finiteness problem, we map the input sequence p = p` . . . p1 to the finite
word w = ∗w′ = ∗(ap1 , 0) . . . (ap`

, 0)#, which is obviously computable. In the remainder
of this proof, we show that $Λ(p) has finite order in G (R) if and only if G (T ) ·w is finite.

First, we show that $Λ(p) has finite order in G (R) if and only if it has in G (T ). We do
this, by showing that ($Λ(p))i and ($Λ(p))j are distinct in G (R) if and only if they are
distinct in G (T ) for i, j ∈ N. If they are distinct in G (R), there is some witness u ∈ Γ∗
which they act differently on. Since we have τ ⊆ δ′ ⊆ δ, this is also a witness for their
difference in G (T ). For the other direction, suppose that ($Λ(p))i is different to ($Λ(p))j
in G (T ). Then, there must be some witness u ∈ Σ∗ which they act differently on. We are
done if u is already in Γ∗. Otherwise, we can factorize u = u1au2 with u1 ∈ Γ∗, a ∈ Σ \ Γ
and u2 ∈ Σ∗. By the construction of T , we remain in states from P if we start in P and
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read letters from Γ. If we read a letter from Σ \ Γ, we go to id, which yields the cross
diagrams

u1 a u2
($Λ(p))i idi |$Λ(p)|

v1 a u2

and
u1 a u2

($Λ(p))j idj |$Λ(p)|

v′1 a u2

for T .

Thus, ($Λ(p))i and ($Λ(p))j must already act differently on u1, which is from Γ∗ and,
thus, also a witness for R.
Next, we observe that ∗ is not changed by the action of any state and that we have

q · ∗ = id for all q ∈ Q \ {s} and s · ∗ = t. Thus, G (T ) · ∗ is the subgroup T generated by
t in G (T ) and we obtain G (T ) · w = T · w′. To understand the elements in T · w′, we
will show that we have the cross diagram

w′

tk |$Λ(p)| ($Λ(p))k
w′

in T (†)

for all k ∈ N. This shows that G (T ) · w = T · w′ is given by

Suf ($Λ(p))−ω ∪ Suf
(
$Λ(p)

)−ω
in G (T ),

which is finite if and only if $Λ(p) has finite order in G (T ) (or, equivalently, in G (R)) by
Fact 1.4.2.1.

The easiest way to establish the cross diagrams (†) is by calculation. For example, for
p = p3p2p1, we have w′ = (ap1 , 0)(ap2 , 0)(ap3 , 0)# and the cross diagram:

(ap1 , 0) (ap2 , 0) (ap3 , 0) #
t #p1 #p1 #p1 p1

(ap1 , 1) (ap2 , 0) (ap3 , 0) #
t t #p2 #p2 p2

(ap1 , 0) (ap2 , 1) (ap3 , 0) #
t #p1 #p1 #p1 p1

(ap1 , 1) (ap2 , 1) (ap3 , 0) #
t t t #p3 p3

(ap1 , 0) (ap2 , 0) (ap3 , 1) #
t #p1 #p1 #p1 p1

(ap1 , 1) (ap2 , 0) (ap3 , 1) #
t t #p2 #p2 p2

(ap1 , 0) (ap2 , 1) (ap3 , 1) #
t #p1 #p1 #p1 p1

(ap1 , 1) (ap2 , 1) (ap3 , 1) #
t t t t $

(ap1 , 0) (ap2 , 0) (ap3 , 0) #

Λ(q2q1)

Λ(q2q1)

Λ(q3q2q1)
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Notice that, in the second component, t implements a binary increment (in the same way
as the adding machine in Example 0.2.1.4). This is what creates the pattern of Λ(p).
For a formal proof, we first define the shorthand notations (ap, i) = (ap1 , i) . . . (ap`

, i)
for i ∈ {0, 1} and p = p` . . . p1 as well as #ε = ε and #Λ(p̂p) = #Λ(p)#p̂#Λ(p) for p ∈ P ∗
and p̂ ∈ P . We start by showing the cross diagram(s)

(ap, 0)
t|Λ(p)| #Λ(p)

(ap, 1)
t t

(ap, 0)

for every p ∈ P+ by induction on the length of p. For p = p ∈ P , this is easily verified
from the definition of T (note that Λ(p) = Λ(p) = p in this case). For p′ = p̂p with
p̂ ∈ P , we have |Λ(p̂p)| = 2|Λ(p)|+ 1 and the cross diagram

(ap, 0) (ap̂, 0)
t|Λ(p)| #Λ(p) #Λ(p)

(ap, 1) (ap̂, 0)
t t #p̂

(ap, 0) (ap̂, 1)
t|Λ(p)| #Λ(p) #Λ(p)

(ap, 1) (ap̂, 1)
t t t

(ap, 0) (ap̂, 0)

#Λ(p̂p)

where the shaded part is obtained by using the induction hypothesis twice. For the part
on the right, notice that we have #p ◦ (aq, i) = (aq, i) and #p · (aq, i) = #p for all p, q ∈ P
and i ∈ {0, 1} by construction. The two transactions on the right involving t can directly
be verified, which concludes the induction.

Finally, we can extend this to prove the cross diagrams (†) required above:

(ap, 0) #
t|Λ(p)| #Λ(p) Λ(p)

(ap, 1) #
t t $

(ap, 0) #

The only point to notice here is that we indeed have #Λ(p) ·# = Λ(p); however, this is
straight-forward to verify.
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s t #p p

$id

∗/∗

(ap, 1)/(ap, 0)

(ap, 0)/(ap, 1)

#/#

(aq, 0)/(aq, 0)
(aq, 1)/(aq, 1)

#/#

a/a

Figure 2.11: New transitions of T

Orbital and Dual Formulation. Using the results from Section 1.4, we can re-formulate
Automaton Group Finiteness in two interesting ways. First, we obtain from Corol-
lary 1.4.1.14 (and Fact 0.3.2.2) that it is equivalent to (the complement of) the problem:

Input: a G-automaton T = (Q,Σ, δ)
Question: ∃α ∈ Σω : |Q∗ ◦ α| =∞?

This view allows us to also re-formulate Theorem 2.3.3.2.

Corollary 2.3.3.3 ([8, Corollary 3.2]). The decision problem
Constant: a G-automaton T = (Q,Σ, δ)
Input: a finite word w ∈ Σ∗
Question: ∃α ∈ Σω : |Q∗ ◦ wα| =∞?

is undecidable for some G-automaton T .

Proof (of [8, Corollary 3.2]). We have to show that G (T ) · w is infinite if and only if
there is some ω-word α ∈ Σω such that the orbit Q∗ ◦ wα is infinite.
In G (T ), the elements of G (T ) · w are given by Q̃∗ · w, which is suffix-closed and,

thus, by Theorem 1.4.1.13, infinite in G (T ) if and only if there is some α ∈ Σω with
|Q̃∗ · w ◦ α| =∞. We claim that Q̃∗ · w ◦ α is infinite if and only if Q̃∗ ◦ wα is. Since the
latter is the case if and only if Q∗ ◦ wα is infinite by Fact 1.4.1.15, we are done when we
have shown this claim.
Clearly, we can map Q̃∗ ◦ wα surjectively onto Q̃∗ · w ◦ α by removing the prefix of

length |w|. Thus, if Q̃∗ · w ◦ α is infinite, so must be Q̃∗ ◦ wα. On the other hand, we
have Q̃∗ ◦wα ⊆

(
Q̃∗ ◦ w

) (
Q̃∗ · w ◦ α

)
and the first of the two sets on the right is always

finite. Thus, if Q̃∗ ◦ wα is infinite, Q̃∗ · w ◦ α must also be infinite.

Since a G-automaton generates an infinite group if and only if its dual generates an
infinite semigroup (which follows, for example, from combining Corollary 1.4.1.12 and
Fact 1.4.1.15), we can re-formulate Automaton Group Finiteness in yet another way.
It is equivalent to the problem:

Input: a complete and reversible S-automaton T = (Q,Σ, δ)
Question: is S (T ) finite?
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Again, we can re-formulate Theorem 2.3.3.2 under this view and obtain that there is a
semigroup generated by a complete and reversible automaton whose finiteness problem
for left principal ideals is undecidable.

Corollary 2.3.3.4 ([8, Corollary 3.3]). The decision problem
Constant: a complete and reversible S-automaton R = (P,Γ, τ)
Input: a finite state sequence p ∈ P ∗
Question: is P ∗p finite in S (R)?

is undecidable.

Proof (adapted from the proof of [8, Corollary 3.3]). We reduce the problem from Corol-
lary 2.3.3.3 to this problem. As the automaton R, we choose the dual ∂T of the G-
automaton T = (Q,Σ, δ) and, for the reduction, we map w ∈ Σ∗ to ∂w as the input
sequence p. We have to show that there is some α ∈ Σω with |Q∗ ◦ wα| =∞ if and only
if Σ∗∂w is infinite in S (∂T ).
If the orbital graph Q∗ ◦ wα is infinite (for some α ∈ Σω), it must contain an infinite

simple path labeled by some π ∈ Q−ω starting in wα. For this π, we have |Suf π◦wα| =∞
and, by Corollary 1.4.1.19, also that Suf ∂(wα)◦∂∂π = Suf ((∂α)(∂w))◦∂∂π ⊆ Σ∗∂w◦∂∂π
is infinite. This is only possible if Σ∗∂w is infinite in S (∂T ).
On the other hand, if Σ∗∂w is infinite in S (∂T ), we have in particular that L =

Σ∗∂w∪Suf ∂w is infinite in S (∂T ). Since L is suffix-closed, we obtain by Theorem 1.4.1.13
that there is some π ∈ Q−ω such that L◦∂∂π is infinite. This is only possible if Σ∗∂w◦∂∂π
is infinite. This means that there is some α ∈ Σω such that (∂α)(∂w) labels a path in the
orbital graph Σ∗ ◦∂ ∂π starting in ∂π which visits infinitely many nodes, i. e. we have that
Suf ((∂α)(∂w)) ◦∂ ∂π = Suf ∂(wα) ◦∂ ∂π is infinite. By Corollary 1.4.1.19, this means
that Suf π ◦ wα ⊆ Q∗ ◦ wα must be infinite as well.

2.4 Expandability
This section is devoted to the study of the notion of “expandability”. Informally, a word
w is expandable if we can append some suffix to w and obtain a larger orbit. From
Corollary 1.4.1.14, we know that every infinite automaton semigroup admits a word with
an infinite orbit. However, the proof for this is purely existential and we do not gain
much information about the structure of the word. Gaining such information is the idea
behind the notion of expandability. Clearly, if α is an ω-word with an infinite orbit, then
every finite prefix of α is expandable. On the other hand, if we start with an expandable
word and successively append orbit increasing suffixes in such a way that the resulting
word always remains expandable, then, in the limit, we obtain an ω-word with an infinite
orbit. Therefore, studying expandable words is closely related to studying the words with
infinite orbital or – in the group case – Schreier graphs.

Formally, we define expandability in the following way.

Definition 2.4.0.1. Let T = (Q,Σ, δ) be an S-automaton, K ⊆ Q∗ and k ∈ Z.
A finite word w ∈ Σ∗ is K-orbit k-expandable (with respect to T ) if there is some

x ∈ Σ∗ such that |K ◦ wx| ≥ |K ◦ w|+ k. A finite word w ∈ Σ∗ is K-orbit expandable if
it is K-orbit k-expandable for some k ≥ 1.
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84 Both problems
are open in the case
of general automa-
ton groups (see
Section 2.3 and
[GNS00, 7.2 e) and
f)]).
85 . . . answering [2,
Question 3.7]

An important observation here is that, if the S-automaton T is partial, the size of K ◦wx
can indeed be smaller than the size of K ◦ w, while in the complete case this cannot
happen.

We are primarily interested in the cases K = Q∗ and K = P ∗ for a finite set P ⊆ Q∗,
which belong to the orbit of the whole semigroup (or group) and the orbit of a finitely
generated subsemigroup (or subgroup). To make this simpler, we say that a finite word
w ∈ Σ∗ is k-expandable (expandable) if it is Q∗-orbit k-expandable (Q∗-orbit expandable).

In the first subsection, we will see that it is decidable whether a given word is P ∗-orbit
k-expandable with respect to some given S-automaton for some given finite set P of
state sequences, i. e. whether the P ∗-orbit can be increased by appending a suffix. This
contrasts the result from Corollary 2.3.3.3 where the question was whether an infinite
suffix can be appended to obtain an infinite orbit. From the decision algorithm, we obtain
an upper bound on the length of a shortest suffix that increases the P ∗-orbit by k.

Afterwards, we look at the special case where the automaton is a G-automaton. Here,
we give a (somewhat) algebraic characterization for the expandable words using their so-
called shifted stabilizer. We use this characterization to obtain a more efficient algorithm
in the group case to decide whether a given word is expandable and to obtain a better
upper bound on the length of a shortest orbit increasing suffix. Again, we prove these
results directly for finitely generated subgroups.

Then, we apply our results to the class of automaton groups of bounded activity. We
will discuss the importance of this class later in Subsection 2.4.3 but point out that
many decision problems are in fact easier for such automata than in the general case
(for example, the word problem discussed in Section 2.1). Using our results about the
expandability in groups, we will construct a (finite) weighted acceptor that describes the
P ∗-orbit size of a given word where P is a finite set of state sequences. This description
yields some interesting consequences. Most notably, we obtain that the finiteness problem
and the problem whether the group acts spherically transitive are both decidable for
automaton groups of bounded activity.84 We even obtain these two results for finitely
generated subgroups of automaton groups of bounded activity.85

Attribution. The notion of expandability was developed together with Daniele D’Angeli
and Emanuele Rodaro [4]. Here, we generalize it to K-orbits where K is a language over
the state set. The decidability results and the upper bounds in the general case and
for groups that we present here are direct generalizations of the corresponding results
in [4] to finitely generated subsemigroups and subgroups and we (mostly) follow the
presentation given in [4]. In fact, some proofs are verbatim copies from [4] adapted to
our generalized setting.
The activity hierarchies (and, thus, bounded automaton groups) were introduced by

Sidki [Sid00]. The results given here for automaton groups of bounded activity have
not previously been published in this form. However, the author of the current work
approached Ievgen Bondarenko with (a preliminary version not handling subgroups)
of the results, who turned out to already have had solved the finiteness problem for
automaton groups of bounded activity some time ago but never published the result.
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This resulted in a joint paper on this topic [2], whose approach deviates from the one
given here, however. In fact, the approach presented here is already generalized to finitely
generated subgroups and, thus, solves [2, Question 3.7].

2.4.1 Expandability is Decidable
In this subsection, we show that it is decidable whether a given word is P ∗-orbit expandable
for a (possibly) given finite set P of state sequences with respect to a (possibly) given S-
automaton. In fact, we give a nondeterministic space-bounded algorithm and analyze its
resource requirements.

The key idea of our algorithm is to basically guess a suffix x such that the P ∗-orbit of
wx is larger than that of the input word w. To verify that the P ∗-orbit of wx is indeed
larger, we will guess many different simple paths in a generalized orbital graph of wx. To
bound the length of these paths, we will use the following combinatorial lemma, which
holds for arbitrary languages K over the state set.

Lemma 2.4.1.1 (extension of [4, Lemma 3.1] to K-orbits). Let T = (Q,Σ, δ) be an S-
automaton and let w ∈ Σ∗ be K-orbit k-expandable for some K ⊆ Q∗. Then, there is an
x ∈ Σ∗ such that

n+ k ≤ |K ◦ wx| < (n+ k) |Σ|,

where n = |K ◦ w|.

Proof (of [4, Lemma 3.1] adapted to K-orbits). Since w is K-orbit k-expandable, there
is a y ∈ Σ∗ with n + k ≤ |K ◦ wy|. Let x′ denote the longest prefix of y such that
|K ◦ wx′| < n + k, i. e. we have y = x′ay′ for some a ∈ Σ and some y′ ∈ Σ∗. By our
choice of x′, we have n+ k ≤ |K ◦ wx′a|. As the size of |K ◦ ua| is limited by |K ◦ u| |Σ|
for any word u ∈ Σ∗, this yields

n+ k ≤
∣∣K ◦ wx′a∣∣ ≤ ∣∣K ◦ wx′∣∣ |Σ| < (n+ k) |Σ| .

Thus, x = x′a satisfies the inequality in the lemma.

P ∗-Orbital Graphs. For the algorithm, we are mostly interested in the case where K is
of the form K = P ∗ for a finite set P of state sequences (because this belongs to the
orbit of the subsemigroup generated by P in the semigroup). To make this easier, we
enrich the P ∗-orbit with a graph structure (similar to the normal orbital graph). For
an S-automaton T = (Q,Σ, δ) and a finite set P ⊆ Q∗, the P ∗-orbital graph of a word
w ∈ Σ∞ consists of the nodes P ∗ ◦ w and its edges are given by

{p ◦ u u
p | p ∈ P , u ∈ P ∗ ◦ w,p ◦ u defined}.

In the same way as with Q∗ ◦ w, we do not distinguish between P ∗ ◦ w as a set and as
a graph. However, it is important to point out that the edges are labeled with state
sequences in P ∗ ◦ w in general and not only with single states. Therefore, P ∗ ◦ w, may
not be a subgraph of Q∗ ◦ w.
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Deciding Expandability. In the algorithm, we will need to compute the size of the
P ∗-orbit of the input word. That this can basically be done in linear nondeterministic
space is stated in the following fact.

Fact 2.4.1.2. The problem
Input: an S-automaton T = (Q,Σ, δ),

a finite set P ⊆ Q∗,
a natural number n and a word w ∈ Σ∗

Question: is |P ∗ ◦ w| = n?
is in NSpace(|w|(1 + log |Σ|) + log |P |).

Proof. By simply guessing n words from Σ|w| one after another (using a suitable linear
ordering of Σ∗) and checking that each guessed word can be reached from w in the graph
P ∗ ◦ w, one sees easily that the modified problem with question “is |P ∗ ◦ w| ≥ n?” is in
NSpace(|w|(1 + log |Σ|) + log |P |). Note that n must not exceed |Σ||w| (or the answer
will be “no” anyway), so we can store a counter for a value up to n in the given space.
Since nondeterministic space classes are closed under complement (see, e. g., [Pap94,
Theorem 7.6]), we obtain the fact.

We can now describe and analyze the algorithm in more detail. We obtain that the
problem is in ExpSpace.

Theorem 2.4.1.3 (extension of [4, Theorem 3.2] to P ∗-orbits). The problem
Input: an S-automaton T = (Q,Σ, δ),

a finite set P ⊆ Q∗,
a natural number k and a word w ∈ Σ∗

Question: is w P ∗-orbit k-expandable (with respect to T )?
is in NSpace((n + k)2 |Σ| (1 + log |P |) + |w|(1 + log |Σ|)) ⊆ ExpSpace, where n =
|P ∗ ◦ w| ≤ |Σ||w| is the size of the P ∗-orbit of the input word. This yields that the
problem

Constant: an S-automaton T = (Q,Σ, δ) and
a finite set P ⊆ Q∗

Input: a natural number k and a word w ∈ Σ∗
Question: is w P ∗-orbit k-expandable (with respect to T )?

is in NSpace
(
2O(|w|+log k)

)
⊆ ExpSpace.

Proof (based on the proof of [4, Theorem 3.2]). First, note that all words in Q∗ ◦ w are
of length |w|. Thus, n is bounded by |Σ||w|. Using Fact 2.4.1.2, we can compute the exact
value of n within the required space bound by increasing a variable in a loop starting at
1 and going to |Σ||w| until the value is found.

We can solve the main part of the problem using a “guess and check” approach. We
give a rather informal description of the algorithm here; pseudo-code for it can be found
in Algorithm 2. First, we guess n+k state sequences p1, . . . ,pn+k ∈ P ∗ of length smaller
than N = (n+ k)|Σ| − 1. The idea is that these state sequences lead to different elements
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in P ∗ ◦ wx for some witness x ∈ Σ∗ for the P ∗-orbit k-expandability of w. Next, we
compute pi ·w for each of the state sequences. Finally, we guess x letter by letter (without
storing the previous letters). After we guessed a new letter b ∈ Σ, we update the stored
state sequences pi to pi · b. While we do all of this, we also keep track of the pairs of
state sequences for which we have already encountered a difference in their outputs on w
followed by the guessed letters. Whenever a transition is not defined, we simply cancel
the respective computational branch.
It is clear that, if the algorithm returns “w is P ∗-orbit k-expandable”, then this is

correct as the guessed state sequences and letters witness the expandability. On the other
hand, it is sufficient to only consider state sequences whose length over P is smaller than
N to discover a witness if one exists. To see this, suppose that w is P ∗-orbit k-expandable.
Then, by Lemma 2.4.1.1, there is an x ∈ Σ∗ such that w is P ∗-orbit k-expandable by x
and the P ∗-orbital graph is of size |P ∗ ◦ wx| ≤ N . Now, any element of this graph is
reachable from wx by a path with less than N edges as longer paths need to include a
loop by the pigeon hole principle. The labels of these paths correspond to the elements
pi and, thus, bounding them to elements from P<N is no restriction.

The most interesting part of the space analysis are the variables p1, . . . ,pn+k and the
variable differences. Other variables, like elements of Σ and counters up to |w|, n, n+k
or N , can certainly be realized in O(1 + log |Σ|+ log |w|+ log(n+ k)) and, thus, in the
space bound stated in the theorem. For storing a single variable pi ∈ P<N, we need space
smaller than N(1+log |P |) < (n+k) |Σ| (1+log |P |). Thus, for all variables p1, . . . ,pn+k,
we need less than (n + k)2 |Σ| (1 + log |P |) space, which is within the required space
bound. Finally, for differences, we need to store a bit for the

(n+k
2
)
many subsets of

size 2 of {1, . . . , n+ k}. This yields a space requirement in O
((n+k

2
))
⊆ O((n+ k)2).

By counting the possible pairwise distinct configurations on an accepting computational
branch of Algorithm 2, we can obtain an upper bound on the length of a shortest word x
witnessing the P ∗-orbit k-expandability of the input word w.

Corollary 2.4.1.4 (extension of [4, Corollary 3.3] to K-orbits). Let T = (Q,Σ, δ) be an
S-automaton and let P ⊆ Q∗ be finite. A word w ∈ Σ∗ is P ∗-orbit k-expandable with
respect to T if and only it is already P ∗-orbit k-expandable by some x ∈ Σ∗ with

|x| < (max{2, |P |})|Σ| (n+k)2
2(n+k

2 ),

where n = |P ∗ ◦ w|.

Proof (extension of the proof of [4, Corollary 3.3] to P ∗-orbits). If w is k-expandable, then
Algorithm 2 will return “w is P ∗-orbit k-expandable” on some computational branch. The
letters guessed at Line 32 for this branch yield a witness x ∈ Σ∗ for which |P ∗ ◦ wx| ≥ n+k
holds. However, if, at any two points of the branch, the variables p1, . . . ,pn+k and
differences have the same values, then the computation has a cycle and we can shorten
x by that cycle. This means that, without loss of generality, we may assume the length
of x to be bounded by the number of different configurations of these variables:

|x| ≤
∣∣∣P<N

∣∣∣n+k
· 2(n+k

2 ).
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Algorithm 2 A nondeterministic algorithm to decide whether a word is P ∗-orbit k-
expandable (extension of [4, Algorithm 1] to P ∗-orbits)

1 function IskExpandable (T = (Q,Σ, δ), P ⊆ Q∗, k, w = a1 . . . am ): B;
2 const
3 n = |P ∗ ◦ w|;
4 N = (n+ k)|Σ| − 1;
5 var
6 p1, . . . ,pn+k ∈ P<N ;
7 p ∈ P ;
8 differences ⊆ {{i, j} | i 6= j, 1 ≤ i, j ≤ n+ k}; . For which pairs have we seen a difference?
9 b ∈ Σ;

10 begin

11 for i ∈ {1, . . . , n+ k} do . Guess initial values p
(0)
1 , . . . ,p

(0)
n+k

∈ P<N of p1, . . . ,pn+k

12 pi ← ε;
13 while guess({true, false}) and |pi| < N − 1 do
14 p← guess(P ); . We store the elements of P as indices (using space log |P |)
15 pi ← pip;
16 od;
17 od;

18 differences ← ∅; . Compute p
(0)
i · w while checking for differences between pairs

19 for ` ∈ {1, . . . ,m} do
20 if ∃i : pi ◦ a` is undefined then
21 fail;
22 fi;
23 differences ← differences ∪ {{i, j} | pi ◦ a` 6= pj ◦ a`};
24 for i ∈ {1, . . . , n+ k} do
25 pi ← pi · a`;
26 od;
27 od;
28 while true do . Guess x ∈ Σ∗ letter-wise until we have seen a difference for every pair
29 if ∀1 ≤ i, j ≤ n+ k : {i, j} ∈ differences then

30 return “w is K-orbit k-expandable”; . All p(0)
i ◦ wx are defined and pairwise disjoint

31 fi;
32 b← guess(Σ); . Guess next letter of x
33 if ∃i : pi ◦ b is undefined then
34 fail;
35 fi;
36 differences ← differences ∪ {{i, j} | pi ◦ b 6= pj ◦ b};
37 for i ∈ {1, . . . , n+ k} do
38 pi ← pi · b;
39 od;
40 od;
41 end;

For |P | ≥ 2, we have

∣∣∣P<N
∣∣∣ =

N−1∑
i=0
|P |i = |P |

N − 1
|P | − 1 < |P |N < |P ||Σ| (n+k)

and, for |P | = 1, we have

∣∣∣P<N
∣∣∣ =

N−1∑
i=0
|P |i = N < 2N < 2|Σ| (n+k).
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2.4.2 Expandability in Groups

In the group case, we can state an algebraic characterization of expandable words based
on their stabilizers and this characterization yields a more efficient algorithm for deciding
whether a word is expandable.

If T = (Q,Σ, δ) is a G-automaton and P ⊆ Q̃∗ is a finite set, then we can see easily
from Fact 0.3.2.2 that a word w ∈ Σ∗ is P ∗-orbit expandable (with respect to T̃ ) if and
only if it is P̃ ∗-orbit expandable. Therefore, we will not make a distinction between the
two. To lighten the notation further, we simply write StabP (w) instead of P̃ ∗∩Stab1

T̃
(w)

for w ∈ Σ∗ whenever the G-automaton T is clear from the context.
With this notation, we can show a connection between the P ∗-orbit size of wx on the

one hand and, on the other hand, the P ∗-orbit size of w and the state sequences from

StabP (w) · w = {p · w | p ∈ StabP (w)}.

This set StabP (w) · w contains the state sequences from P̃ ∗ stabilizing w shifted by w.
It is easy to see that it is closed under product and taking inverses and, thus, forms a
subgroup in G (T ), which we call the shifted P -stabilizer of w. The connection between
the sifted stabilizer and the two mentioned orbit sizes is given in the next lemma.

Lemma 2.4.2.1 (special case of [4, Lemma 4.1] extended to subgroups). Let T = (Q,Σ, δ)
be a G-automaton and let P ⊆ Q̃∗ be finite. For w, x ∈ Σ∗, we have

|P ∗ ◦ wx| = |P ∗ ◦ w| · |StabP (w) · w ◦ x| .

Proof. First note that we have P ∗ ◦wx = P̃ ∗ ◦wx and P ∗ ◦w = P̃ ∗ ◦w by Fact 0.3.2.2.
Therefore, we will not distinguish between the two.

Let G be the subgroup given by P̃ ∗ in G (T ), H be the subgroup formed by StabP (w)
in G (T ) and K be the subgroup formed by StabP (wx) in G (T ). It is easy to see that we
have K ≤G H ≤G G ≤G G (T ) (where we use ≤G to indicate a subgroup relation). We
define an action of H on Σ∗ by defining h ? y for h ∈ H and y ∈ Σ∗ as p · w ◦ y where
p ∈ P̃ ∗ is in G (T ) equal to h. This action is well-defined by Fact 0.3.1.1. Let

Stab?(x) = {s ∈ StabP (w) | s · w ◦ x = x} ⊆ StabP (w)

and observe that we have StabP (wx) = Stab?(x). Therefore, the image of Stab?(x) in
G (T ) (and, thus, in G and H) is K. We obtain

|StabP (w) · w ◦ x| = |H ? x| = |H/K|

where the equality on the left follows from the set equality StabP (u) · u ◦ x = H ? x =
{h ? x | h ∈ H} and the equality on the right is a well-known fact of group orbits.
Therefore, we finally have

|P ∗ ◦ wx| = |G/K| = |G/H| · |H/K| = |P ∗ ◦ w| · | StabP (w) · w ◦ x|.
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We immediately obtain the following proposition from Lemma 2.4.2.1.

Proposition 2.4.2.2 (extension of [4, Proposition 4.2] to subgroups). Let T = (Q,Σ, δ)
be a G-automaton and let P ⊆ Q̃∗ be finite. A word w ∈ Σ∗ is P ∗-orbit expandable if
and only if

StabP (w) · w 6= {1} in G (T ).

This characterization leads to a more efficient algorithm to decide the P ∗-orbit expand-
ability of a given word w in the group case. The idea is to nondeterministically guess
an element of StabP (w) · w which is non-trivial in the automaton group. However, to
get to an actual decision algorithm, we need to bound the length of the guessed element
somehow and this is what we use the following lemma for. It states that the shifted
stabilizer of w is generated by a set of “short” generators.

Lemma 2.4.2.3 (extension of [4, Lemma 4.4] to subgroups). Let T = (Q,Σ, δ) be a G-
automaton, let P ⊆ Q̃∗ be finite and let w ∈ Σ∗. Then, there is some C ⊆ P̃<2n with(

C̃ · w
)∗

= (C̃ · w)∗ = StabP (w) · w in G (T )

where n = |P ∗ ◦ w|.

Proof (compare to proof of [4, Lemma 4.4]). First, we will show that there is some C ⊆
P̃<2n with C̃∗ = StabP (w) in G (T ). Clearly, the elements of StabP (w) correspond
to the loops starting and ending in w in the P̃ ∗-orbital graph P̃ ∗ ◦ w. Note that, by
Fact 0.3.2.2, the size of this graph is |P̃ ∗ ◦ w| = |P ∗ ◦ w| = n. Let us consider the graph
P̃ ∗ ◦ w as an undirected graph. If we fix some spanning tree for it, then every edge
v u

p not belonging to this spanning tree induces a loop c ∈ P̃ ∗ beginning and ending
in w: first, follow the unique path from w to u on the spanning tree, then, take the edge
v u

p itself, finally, return from v to w on the spanning tree again. Notice that this
loop contains at most n− 1 + 1 + n− 1 = 2n− 1 edges since any (reduced) path on the
spanning tree can visit any node at most once. There are only finitely many such loops
and they generate the set of all loops beginning and ending in w. Let C be the set of the
labels (from P̃ ∗) belonging to these generating loops. Then, C generates the stabilizer
StabP (w) in G (T ) (as a subgroup).
To see that C · w = {c · w | c ∈ C} generates StabP (w) · w in G (T ) (as a subgroup),

consider some element d ∈ StabP (w) · w. There must be some c ∈ StabP (w) with
d = c · w and we can write c as a product of elements from C̃: c = c` · · · c1. Since all
c1, . . . , c` ∈ C̃ are, in particular, elements of StabP (w) (and, thus, stabilize w), we have

d = c · w = (c` · · · c1) · w = (c` · w) . . . (c1 · w) ∈ (C̃ · w)∗.

Finally, we observe that we have s · w = s ·w for all state sequences s ∈ Q̃∗ that stabilize
w (i. e. with s ◦ w = w). Thus, we have C̃ · w = C̃ · w.
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Since a subgroup is non-trivial if and only if one of its generators is non-trivial, we can
improve the upper bounds from Theorem 2.4.1.3 in the group case.

Theorem 2.4.2.4 (extension of [4, Theorem 4.5] to subgroups). The problem
Input: a G-automaton T = (Q,Σ, δ),

a finite set P ⊆ Q̃∗ and
a word w ∈ Σ∗

Question: is w P ∗-orbit expandable (with respect to T̃ )?
is in NSpace(n(1 + log |P |) + |w|(1 + log |Σ|)) where n = |P ∗ ◦ w| ≤ |Σ||w|. This yields
NSpace(2O(|w|)) for the problem

Constant: a G-automaton T = (Q,Σ, δ) and
a finite set P ⊆ Q̃∗

Input: a word w ∈ Σ∗
Question: is w P ∗-orbit expandable (with respect to T̃ )?

Proof (compare to the proof of [4, Theorem 4.5]). As in the proof of Theorem 2.4.1.3, we
use Fact 2.4.1.2 to compute n within our space bound. Then, we guess a state sequence
p ∈ P̃<2n. To store such a sequence, we need space O(n(1 + log |P |)).
The rest of the algorithm is similar to the “guess and check” algorithm for the word

problem (Algorithm 1). We compute p · w letter by letter (of w). Simultaneously, we
check whether p ∈ StabP (w) by computing p◦w and comparing the result with w (again,
we do this letter by letter). For this, we need to store only single letters (O(1 + log |Σ|))
and some pointer (O(log |w|)).

Finally, we solve the word problem “p ·w 6= 1 in G (T )?” by guessing a witness x ∈ Σ∗
with p · w ◦ x 6= x. As before, we guess x letter by letter and update the stored state
sequence accordingly. At the same time, we check whether at least one output letter
differs from its input letter.
Clearly, if we can guess a state sequence p and a witness x ∈ Σ∗ with p ◦ w = w but

p · w ◦ x 6= x, the shifted P -stabilizer of w is non-trivial and w is P ∗-orbit expandable
(by Proposition 2.4.2.2). If, on the other hand, w is P ∗-orbit expandable, then its shifted
P -stabilizer is non-trivial (again, by Proposition 2.4.2.2) and, by Lemma 2.4.2.3, it
contains a non-trivial element which is in P̃<2n · w. Some computational branch of the
above algorithm will guess the corresponding element p ∈ P̃<2n and a corresponding
witness x for the non-triviality of p · w.

In the same way as with Algorithm 2 (for the general case), we can analyze the last
part of the presented algorithm to obtain a better upper bound for the witness x in the
group case (compared to the general case presented in Corollary 2.4.1.4).

Corollary 2.4.2.5 (extension of [4, Corollary 4.6] to subgroups). Let T = (Q,Σ, δ) be a
G-automaton and let P ⊆ Q̃∗ be a finite set. A word w ∈ Σ∗ is P ∗-orbit expandable if
and only if it is already P ∗-orbit expandable by some x ∈ Σ∗ with

|x| < (2 |P |)2n

where n = |P ∗ ◦ w|.
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86 Usually, we use
α for ω-words but,
here, we also use it
for the activity.
87 We could de-
fine the activity of
an automaton also
by taking the maxi-
mum instead of the
sum. However, tak-
ing the latter will
make our life a bit
easier below.

Proof (extension of the proof of [4, Corollary 4.6] to subgroups). We use the same anal-
ysis as in the proof of Corollary 2.4.1.4: consider the last part of the algorithm, in which
the witness x is guessed letter by letter. If, during this guessing, the stored state sequence
(p ·w) ·x has the same value as some time before on the same computational branch, then
this computational loop can be eliminated. Thus, we only need to count the possible
values for the stored state sequence:∣∣∣P̃<2n

∣∣∣ < |P̃ |2n = (2 |P |)2n

2.4.3 Groups of Bounded Activity
In this subsection, we have a quick look at the special case of automaton groups of
bounded activity. We apply the results from Subsection 2.4.2 in this setting and obtain
both some structural results about such groups and their subgroups but also decidability
results. The class of automaton groups of bounded activity is interesting for two reasons:
first, many of the well studied automaton groups are in fact of bounded activity (see e. g.
the introduction of [Bon+13]) and, second, many problems that are undecidable in the
general case are decidable for automata of bounded activity. One example of this is that
the order problem is undecidable for automaton groups [Gil18] even in the contracting case
[BM20] but it is decidable for automaton groups [Bon+13] and semigroups [Bar+18] of
bounded activity. Similarly, the conjugacy problem is undecidable for general automaton
groups [ŠV12] but decidable within the group of regular tree automorphisms of bounded
activity [Bon+13]. We already discussed the situation for the finiteness problem in the
general case in Section 2.3 and we will see in this subsection that the finiteness problem
for automaton groups of bounded activity and for their finitely generated subgroups is
decidable. Finally, we will see that the problem of checking whether a given G-automaton
acts spherically transitive (an open problem in the general case [GNS00, 7.2 e) and
f)]) can be decided for (finitely generated subgroups of) automaton groups of bounded
activity and we also obtain decidability results regarding torsion and torsion-freeness for
the dual automaton.

Activity. Let T = (Q,Σ, δ) be an S-automaton and let q ∈ Q. We define

Aq : N→ Σ∗

n 7→ {v | ∃u ∈ Σn : v = q ◦ u (defined, in particular) and
q · u 6=T ε}.

The activity of q is the map86 αq : N → N with αq(n) = |Aq(n)| and q has bounded
activity if there is a constant K such that αq(n) ≤ K for all n ∈ N. The activity of T
is αT : N→ N with87 αT (n) =

∑
q∈Q αq(n) and T has bounded activity if there is some

constant K such that αT (n) ≤ K for all n ∈ N. Note that the latter is equivalent to all
states of T having bounded activity.

It is not difficult to see that pq (as a state of T 2) has bounded activity if p and q have
bounded activity (as states of T ) [Bar+18, Lemma 3.1]. If T is a G-automaton, then it
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is also easy to see that T has bounded activity if and only if T has; in fact, q ∈ Q has
bounded activity if and only if q has.
Remark 2.4.3.1. The notion of activity originally used by Sidki [Sid00] to define the
polynomial and exponential activity hierarchies was a bit different to the one presented
here. He only considered groups and defined αq(n) as the cardinality of the set

{u ∈ Σn | q · u 6= 1 in G (T )}.

Here, we follow the definition of Bartholdi, Godin, Klimann and Picantin [Bar+18], who
extended the notion to automaton semigroups. Clearly, the two definitions coincide in
the case that T is a G-automaton.

Directly from the definition of bounded activity, we obtain the following fact.

Fact 2.4.3.2.The situation as
a cross diagram:

u0
q1 q1 · u0

u1
q2 q2 · u1

u2...
...

qn qn · un−1
un

Let T = (Q,Σ, δ) be an S-automaton whose activity is bounded by a
constant K. Furthermore, let u0 ∈ Σ∗ and q1, . . . , qn ∈ Q such that qn . . . q1 ◦u0 is defined
and all ui = qi . . . q1 ◦u0 with 1 ≤ i ≤ n are pairwise distinct. Then, qn . . . q1 ·u0 contains
at most K states whose partial action is not the identity.

Proof. Every ui is an element of Aqi if qi ·ui−1 6=T ε. However,
⋃
q∈QAq contains at most

K elements.

From now on, we will mostly be dealing with G-automata and we, therefore, continue
with the notational conventions of Subsection 2.4.2 and write StabP (w) instead of
P̃ ∗ ∩ Stab1

T̃
(w) for P ⊆ Q̃∗ when the G-automaton T = (Q,Σ, δ) is clear from the

context.
The previous fact allows us to improve the upper bound of Lemma 2.4.2.3 to a constant

if the activity of the G-automaton is bounded. This meas that all shifted stabilizers are
generated by state sequences whose length is bounded by a constant.

Lemma 2.4.3.3. Let T = (Q,Σ, δ) be G-automaton of bounded activity and let P ⊆ Q̃.
Then, we have:

∃K > 0 ∀w ∈ Σ∗ ∃D ⊆ Q̃≤K : D̃∗ = StabP (w) · w in G (T ).

Furthermore, the subset D generating StabP (w) · w in G (T ) can be computed from T
and w.

Proof. Since T has bounded activity, so has T̃ and we let K ′ be a constant bounding
the activity of T̃ .
Let w ∈ Σ∗ be arbitrary. We fix some spanning tree in the P̃ ∗-orbital graph P̃ ∗ ◦ w

and choose C in the same way as in the proof of Lemma 2.4.2.3. Then, C generates
StabP (w) in G (T ) and, therefore, C ·w generates StabP (w) ·w in G (T ) (as a subgroup).
We will show that c · w for c ∈ C is equal to a computable element from Q̃∗ of length at
most K = 2K ′ + 1 in G (T ), which shows the lemma (since we can compute the orbital
graph P̃ ∗ ◦ w, a spanning tree therein and the corresponding set C).
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88 We use the term
“acceptor” here
again instead of
the more common
term “automaton”
because we use the
latter to refer to
transducers. Also
our notion of a
weighted accep-
tor/automaton is
only a special case
of the usual, more
general notion.

Let c ∈ C be arbitrary. By the construction of C, we have c = t′n . . . t
′
1ptm . . . t1 where

t = tm . . . t1 ∈ P̃ ∗ belongs to a simple path from w to u (along the spanning tree) in
P̃ ∗ ◦ w, p ∈ P is the label of a single edge v u

p and t′ = t′n . . . t
′
1 ∈ P̃ ∗ belongs

to a simple path from v back to w. Therefore, all wi = ti . . . t1 ◦ w with 1 ≤ i ≤ m
are pairwise distinct and the same holds for all w′j = t′j . . . t

′
1 ◦ v with 1 ≤ j ≤ n. We

obtain that t · w contains at most K ′ states different to the neutral element in G (T ) by
Fact 2.4.3.2 and, in the same way, that t′ · v contains at most K ′ such states as well.
Thus, c ·w = (t′ · v)(p · u)(t ·w) is equal to an element of length at most K = 2K ′ + 1 in
G (T ) and, since we can test equality to the identity (i. e. solve the word problem, see
Section 2.1), we can compute this element.

We will use Lemma 2.4.3.3 to describe the P ∗-orbit size of a word by a weighted acceptor.

Weighted Acceptor. A (finite) weighted acceptor88 is a tuple A = (Q,Σ, δ, q0) where
Q is a finite set of states, Σ is an alphabet, δ ⊆ Q × Σ × N × Q is a set of weighted
transitions and q0 ∈ Q is the initial state. The weighted transition (p, a, γ, q) goes from
state p to state q and has weight γ. It is labeled by a. As is the case with (our usual)
automata, we use the graphical notation p q

a
γ for the weighted transition (p, a, γ, q).

A run of the weighted acceptor A = (Q,Σ, δ, q0) is a sequence

p0 p1 . . . pn
a1
γ1

a2
γ2

an

γn

of weighted transitions pi−1 pi
ai

γi
∈ δ with 1 ≤ i ≤ n. It is labeled by a1 . . . an and its

weight is
∏n
i=1 γi. The run is initial if p0 is the initial state of A. Clearly, the idea of a

run can be extended to infinite runs and, thus, to ω-words. Here, the weight of a run can
possibly be infinite.
We will only consider deterministic and complete weighted acceptors, i. e. we have

dp,a =
∣∣∣{ p q

a
γ ∈ δ

∣∣∣ γ ∈ N, q ∈ Q
}∣∣∣ = 1

for all p ∈ Q and a ∈ Σ, and will not explicitly mention these properties. Thus, a
weighted acceptor A = (Q,Σ, δ) has exactly one initial run for every word w over Σ. It
accepts the function f : Σ∞ → N∪ {∞} which maps a word w ∈ Σ∞ to the weight of the
unique initial run labeled by w.

Our goal is to describe – or, more precisely, compute – a weighted acceptor that accepts
the function mapping a word to its P ∗-orbit size (for a finite set P of state sequences).
We will use the following fact to show that our acceptor is well-defined.

Fact 2.4.3.4. Let T = (Q,Σ, δ) be an S-automaton, P ⊆ Q. For all w,w′ ∈ Σ∗ and
a ∈ Σ, we have

StabP (w) · w = StabP (w′) · w′ in S (T )
=⇒ StabP (wa) · wa = StabP (w′a) · w′a in S (T )

where we write StabP (u) instead of P ∗ ∩ StabT (u) for finite words u ∈ Σ∗.
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89 Note that it
is not necessary
to compute K for
this.

Proof. Let q ∈ StabP (wa) · wa. By symmetry, we only have to show that there is some
q′ ∈ StabP (w′a) · w′a with q = q′ in S (T ). There has to be some p ∈ StabP (wa) with
p · wa = q. We have p ∈ StabP (wa) ⊆ StabP (w) and, therefore, p · w ∈ StabP (w) · w.
By the hypothesis, there has to be some p′ ∈ StabP (w′) with p′ · w′ = p · w in S (T ).
In particular, we have p′ · w′ ◦ a = p · w ◦ a = a and, therefore, p′ ◦ w′a = w′a and
p′ ∈ StabP (w′a). Finally, we get q′ = p′ · w′a = p · wa = q in S (T ) by Fact 0.3.1.1.

Theorem 2.4.3.5. Let T = (Q,Σ, δ) be a G-automaton of bounded activity and let
P ⊆ Q̃∗ be finite. Then, it is possible to compute a weighted acceptor from T that accepts
the function

Σ∞ → N ∪ {∞}
w 7→ |P ∗ ◦ w|.

Proof. We may assume P = P ⊆ Q̃ as we can replace T by a union with suitable powers
of T (these powers and the union are also of bounded activity and can be computed).
Let K be the constant from Lemma 2.4.3.3 belonging to (the possibly new) T = (Q,Σ, δ).
Now, for every w ∈ Σ∗, we can compute89 D(w) ⊆ Q̃≤K such that D(w) generates
StabP (w) · w (as a subgroup) in G (T ).
We will define the weighted acceptor over the alphabet Σ via a saturation process.

We start with the single state D(ε), which we choose as the dedicated initial state.
As long as we have a state D(w) without outgoing transitions, we add the transition
D(w) D(wa)a

γ for every a ∈ Σ whose weight γ we define later. Adding such a
transition possibly also adds a new state D(wa). However, since all D(w) are subsets of
Q̃≤K, the process has to terminate. Note that the resulting acceptor is complete. Finally,
we define the weight γ of a transition C D

a
γ as the cardinality of C̃∗ ◦ a = C∗ ◦ a (see

Fact 0.3.2.2). This cardinality can be computed by its own saturation process.
We have no guarantee that D(w) = D(w′) implies D(wa) = D(w′a). However, we can

guarantee some equality in the group. Let w = a1 . . . an ∈ Σ∗ with a1, . . . , an ∈ Σ be
some word and consider its (unique and existing) initial run

D0 D1 . . . Dn
a1
γ1

an

γn
.

We claim that we have D̃∗i = StabP (wi) ·wi in G (T ) for all 0 ≤ i ≤ n where wi = a1 . . . ai
and that γ1 . . . γi is the orbit size |P ∗◦wi|. Clearly, this is true for i = 0. For i > 0, there is
some w′ ∈ Σ∗ such that Di−1 = D(w′) and Di = D(w′ai) by construction of the acceptor.
By definition, we have that D(w′) generates StabP (w′) ·w′ in G (T ) (as a subgroup) and,
by induction, we obtain StabP (w′) · w′ = StabP (wi−1) · wi−1 in G (T ). By Fact 2.4.3.4,
this implies that StabP (w′ai) · w′ai, which is generated by D(w′ai) = Di in G (T ), is
equal to StabP (wi−1ai) ·wi−1ai = StabP (wi) ·wi in G (T ). This establishes the first part
of the claim. For the second part, we observe that we have D̃∗i−1 = StabP (wi−1) ·wi−1 in
G (T ). From Lemma 2.4.2.1, we obtain

|P ∗ ◦ wi| = |P ∗ ◦ wi−1ai| = |P ∗ ◦ wi−1| · | StabP (wi−1) · wi−1 ◦ ai|
= |P ∗ ◦ wi−1| · |D̃∗i−1 ◦ ai| = γ1 . . . γi−1 · γi

where the equality |P ∗ ◦ wi−1| = γ1 . . . γi−1 follows from induction.
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90 We will also not
define DFAs for-
mally but refer the
reader to a stan-
dard textbook on
automaton theory
(such as [HU79]).

Theorem 2.4.3.5 has some interesting consequences. The first one is that we can define
those transitions in the weighted acceptor with weight larger than one as accepting. We
consider an ω-word as accepted by the acceptor if its initial run contains infinitely many
accepting transitions. In this way, we obtain a deterministic Büchi acceptor for the lan-
guage of ω-words with an infinite P ∗-orbit. We will not define Büchi acceptors(/automata)
formally but refer the reader to Perrin and Pin’s book [PP04] for more details.

Corollary 2.4.3.6 (compare to [2, Theorem 1.2]). Let T = (Q,Σ, δ) be a G-automaton of
bounded activity and let P ⊆ Q̃∗ be finite. Then, it is possible to compute a deterministic
Büchi acceptor from T that accepts the set

{α ∈ Σω | |P ∗ ◦ α| =∞}

of ω-words with infinite P ∗-orbit

We also obtain that the set of P ∗-orbit expandable words for a finite set P ⊆ Q̃∗

with respect to a G-automaton T = (Q,Σ, δ) of bounded activity is recognized by a
deterministic finite acceptor (DFA)90 (i. e. it is regular): we mark those states as final
from which a transition whose weight is larger than one can be reached (in the weighted
acceptor from Theorem 2.4.3.5 where we forget the weight afterwards).
Because the states of the weighted acceptor from Theorem 2.4.3.5 are subsets of

Q̃≤K (where K is the constant from Lemma 2.4.3.3 with respect to the G-automaton
T = (Q,Σ, δ)), we obtain that there can be at most 2|Q̃≤K | < 2|Q̃|K+1 such states. Thus,
if we can reach a weighted transition with weight larger than one from some state, we
can already reach it in less than 2|Q̃|K+1 steps, which shows the following improvement
over Corollary 2.4.2.5 (and Corollary 2.4.1.4).

Corollary 2.4.3.7. Let T = (Q,Σ, δ) be a G-automaton of bounded activity and let
P ⊆ Q̃∗ be finite. Then, there is a constant M such that a word w ∈ Σ∗ is P ∗-orbit
expandable if and only if it is already P ∗-orbit expandable by some x ∈ Σ∗ with

|x| < 2(2|Q|)M

.

Proof. If we have Q = {q} for a single state q, the action of q must be a letter-wise
permutation of order |G (T )| and we obtain a maximal P ∗-orbit size by appending a suffix
which contains all letters in Σ. Thus, we only have to choose M with |Σ| < 22M .

Thus, assume |Q| > 1. Only one direction is non-trivial and we let w ∈ Σ∗ be P ∗-orbit
expandable. Furthermore, let N = max{|p| | p ∈ P } and T ′ = (Q′,Σ, δ′) =

⊎N
i=1 T i.

Then, we have P ⊆ Q̃′ and

|Q′| =
N∑
i=1
|Q|i = |Q|

N+1 − 1
|Q| − 1 − 1 < |Q|N+1.

We let K be the constant from Lemma 2.4.3.3 with respect to T ′ and obtain from the size
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of the automaton from Theorem 2.4.3.5 (with respect to T ′) that there is some x ∈ Σ∗
with |P ∗ ◦ w| < |P ∗ ◦ wx| and

|x| ≤ 2
∣∣(Q̃′)≤K

∣∣
< 2(2|Q′|)K+1

< 2(2|Q|)(N+1)(K+1) .

Thus, we can choose M = (N + 1)(K + 1).

The next application of Theorem 2.4.3.5 is again a structural result: an infinite
automaton group of bounded activity yields a periodic word with an infinite orbit. In
fact, the periodic word can even be computed. In addition, an infinite finitely generated
subgroup of an automaton group of bounded activity still admits an ultimately periodic
word with an infinite orbit.

Corollary 2.4.3.8. Let T = (Q,Σ, δ) be a G-automaton of bounded activity. Then, the
statements

1. |G (T )| =∞

2.The current author
would like to thank
Dominik Francoeur
for pointing out the
implication 2 =⇒
3.

∃u ∈ Σ∗, v ∈ Σ+ : |Q∗ ◦ uvω| =∞

3. ∃v ∈ Σ+ : |Q∗ ◦ vω| =∞

4. ∃w ∈ Σ+ : w has no torsion in S (∂T )

are equivalent. Furthermore, the subgroup generated by a finite set P ⊆ Q̃∗ in G (T ) is
infinite if and only if

∃u ∈ Σ∗, v ∈ Σ+ : |P ∗ ◦ uvω| =∞.

Proof. The implications 3 =⇒ 2 and 2 =⇒ 1 (as well as the corresponding direction
of the second statement) are clear. The implication 2 =⇒ 3 follows from the inclusion
Q∗ ◦ uvω ⊆ Σ|u|(Q∗ ◦ vω) and the equivalence 4 ⇐⇒ 3 follows from Theorem 1.4.2.2.

Finally, the implication 1 =⇒ 2 is a special case of the (other direction of the) second
statement. To see the latter, observe that there is some α ∈ Σω with an infinite P ∗-orbit
P ∗ ◦ α if the subgroup P̃ ∗ in G (T ) is infinite by Theorem 1.4.1.13 (and Fact 0.3.2.2,
where, to apply the former, we have to assume that P is a subset of Q̃ again without
loss of generality). Therefore, the Büchi acceptor from Corollary 2.4.3.6 accepts at least
one word. Thus, there must be a cycle with an accepting state/transition reachable from
the initial state and the acceptor must accept an ultimately periodic word.

Remark 2.4.3.9. We can obtain the previous result without all the machinery behind
Corollary 1.4.1.14. If an automaton group (or one of its finitely generated subgroups)
is infinite, then we can find arbitrarily long words with arbitrarily large orbits. These
also yield a reachable cycle containing a transition with weight larger than one in the
weighted acceptor from Theorem 2.4.3.5.

Other applications of Theorem 2.4.3.5 concern decidability results. The first example
of this is that the finiteness problem is decidable for the class of automaton groups of
bounded activity and their finitely generated subgroups (the former is a special case of
the latter). We have already discussed the situation of the finiteness problem for general
automaton groups and semigroups in Section 2.3.
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91 Note that it is
decidable whether
a given G-automa-
ton has bounded
activity: this is the
case if and only
if no cycle (con-
taining a non-iden-
tity state) is reach-
able from another
one [Sid00, Corol-
lary 14].

92 The corre-
sponding problem
for general S-
automata is un-
decidable by
Corollary 2.2.2.6.

93 The correspond-
ing problem in the
general case (even
without subgroups)
is an open problem
[GNS00, 7.2 e) and
f)].

Corollary 2.4.3.10 (compare to [2, Theorem 1.1]). The finiteness problem for finitely
generated subgroups of automaton groups of bounded activity91

Input: a G-automaton T of bounded activity and
a finite set P ⊆ Q̃∗

Question: is the subgroup generated by P in G (T ) infinite?
is decidable.
Proof. First, we replace the input G-automaton by a suitable union T = (Q,Σ, δ) of the
original G-automaton with some of its powers so that we obtain P = P ⊆ Q̃. This is
computable, does not change the group and T remains to be of bounded activity.

By Corollary 1.4.1.14 (and Fact 0.3.2.2), the subgroup P̃ ∗ in G (T ) is now infinite if and
only if there is some α ∈ Σω with |P ∗ ◦ α| =∞. The latter can be decided by computing
the Büchi automaton mentioned in Corollary 2.4.3.6 and checking whether it contains a
cycle reachable from the initial state with at least one accepting transition/state.

Similarly, we obtain that the torsion problem and the torsion-freeness problem for
reversible input S-automaton whose dual is of bounded activity are decidable.
Corollary 2.4.3.11. The problems

Input: a reversible S-automaton T = (Q,Σ, δ)
whose dual ∂T is of bounded activity

Question: ∃q ∈ Q+ : q has no torsion in S (T )?
and 92

Input: a reversible S-automaton T = (Q,Σ, δ)
whose dual ∂T is of bounded activity

Question: ∃q ∈ Q+ : q has torsion in S (T )?
are decidable.
Proof. By Corollary 2.4.3.8, the first problem is equivalent to the finiteness problem for
∂T and, thus, decidable by Corollary 2.4.3.10.

Similarly, we obtain from Theorem 1.4.2.3 that S (T ) contains an element of torsion if
and only if there is a periodic ω-word with finite orbit under that action of the dual. The
latter can be decided from the acceptor in Theorem 2.4.3.5 (or Corollary 2.4.3.6).

The next example of a decidability result following from Theorem 2.4.3.5 is about
spherical transitivity. A set K ⊆ Q∗ for an S-automaton T = (Q,Σ, δ) acts spherically
transitive (or level transitive) if, for every n ∈ N and every u, v ∈ Σn, there is some q ∈ K
with v = q ◦ u. An alternative formulation is that every word from Σn has a K-orbit of
size |Σ|n. If we have a G-automaton T = (Q,Σ, δ) and K is of the form P ∗ for a finite
set P ⊆ Q̃, K acts spherically transitive if and only if every transition of the weighted
acceptor from Theorem 2.4.3.5 has weight |Σ| and we obtain the following corollary.93

Corollary 2.4.3.12 (compare to [2, Corollary 1.4]). The problem
Input: a G-automaton T = (Q,Σ, δ) of bounded activity and

a finite set P ⊆ Q̃∗
Question: is the action of P ∗ spherically transitive?

is decidable.
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