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Abstract

In this master’s thesis, we investigate machine learning methods to support the visu-
alization of ensemble data. Our goal is to develop methods that allow us to efficiently
explore the projections of various ensemble datasets and investigate the ability of
autoencoder-based techniques to extract high-level data features. This enables clus-
tering of data samples on the projections according to their behavior modes. First,
we apply unsupervised feature learning techniques, such as autoencoders or varia-
tional autoencoders, to ensemble members for high-level feature extraction. Then,
we perform a projection from the extracted feature space for scatterplot visualiza-
tion. In order to obtain quantitative results, in addition to qualitative, we develop
metrics for evaluation of the resulting projections. After that, we use the quantita-
tive results to obtain a set of Pareto efficient models. We evaluate various feature
learning methods and projection techniques, and compare their ability of extracting
expressive high-level data features. Our results indicate that the learned unsuper-
vised features improve the clustering on the final projections. Autoencoders and
(beta-)variational autoencoders with properly selected parameters are capable of
extracting high-level features from ensembles. The combination of metrics allow
us to evaluate the resulting projections. We summarize our findings by offering
practical suggestions for applying autoencoder-based techniques to ensemble data.
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Chapter 1

Introduction

In this chapter, we provide an introduction to our research. First, we explain the
motivation of this study and the objectives set. We then give a short description of
the thesis structure.

1.1 Motivation and Goal

Visualizing ensemble datasets is always challenging. These are large scientific datasets,
collected from multiple experimental runs, with many dimensions. The goal of this
work is to develop methods that allow us to visualize the ensemble data in such
a way that this visualization allows efficient exploration of data samples. We are
interested in such reduced-dimension visualizations that show the time steps of en-
semble members with similar behavior regimes in the same areas of the projections
close to each other.

One of the possible approaches is to extract the high-level features representing
data in order to support the visualization of ensemble datasets. This is necessary
since basic dimensionality reduction techniques, such as PCA, t-SNE, and UMAP
have problems with large high-dimensional datasets. Such techniques are aiming to
obtain a lower-dimensional (2D or 3D) perceptually understandable visualization.
However, the performance of these methods decreases when applied directly to high-
dimensional datasets, due to the sparseness of the data samples.

That is why the extraction of high-level features as a first step is of great importance.
Such feature extraction can be achieved by unsupervised feature learning techniques,
which do not require class information (labels). During the studies, our goal is to
test the possibility of using standard or sparse autoencoders, variational, and beta-
variational autoencoders. After applying these methods to the ensemble members,
it is possible to use the extracted features for visualization. In our experiments,
the features are then applied to standard dimensionality reduction techniques. The
projections show that by obtaining high-level features as a first step, an improve-
ment can be achieved on the resulting visualization since it relies on the learned

1



2 Chapter 1. Introduction

unsupervised features of the experimental datasets. In our experiments, we used
two ensemble datasets: Vortex Street and Drop Dynamics.

After extracting the high-level features, we perform the projections with different
dimensionality reduction algorithms from the extracted feature space. However, it
is important not only to achieve qualitative results in the forms of visualizations but
also to evaluate the resulting projections. Therefore, we develop and adopt metrics
for assessing the quality of the final projections, in terms of the ability to form
clusters with similar behavior modes of time steps. The quantitative results attained
with the metrics are then used to obtain the best performing models. However, as
we use more than one metric, it is important to check the models according to
multi-objective optimality criteria. After that, the Pareto frontier is obtained.

We compare different machine-learning-based feature extraction techniques in the
present work. In our studies, we use one ensemble simulation and also one ensemble
dataset from the physical experiment. Such approaches, as interpolation of the
variables, representing the high-level features are also investigated. Moreover, the
developed core technique of feature extraction is further extended by studying the
learned features (i.e. inferred latent variables) via interpolation in the latent space.

This investigation may have an application for a problem scenario where a user
has data with a small number of labels. Labels depict the behavioral regimes of
flow or drop dynamics presented at different time steps of ensemble members. In
that case, it will be possible to apply our proposed methods as well as obtain a
quantitative evaluation. In order to evaluate the feature extraction based projections
with the above-discussed metrics, we use a labelled subset of the data which we
selected as a test set. This is necessary since the used metrics require labelled
data. However, when there is no labelled subset and labelling of the ensemble
members is challenging, the user can rely on our evaluation and select one of the
best models which are found using a multi-objective optimization and shown as
the Pareto frontier. The model could be, as we show later, a standard, sparse, or
(beta-)variational autoencoder.

1.2 Thesis Structure

First, we start by presenting in Chapter 2 the theoretical basis for the methods used
in our work. Then, Chapter 3 gives an overview of the most relevant research done in
the area of feature extraction using autoencoders to support ensemble visualization.
Chapter 4 describes in detail our proposed methods. In Chapter 5, we explain which
ensemble datasets were used for the experiments, their preprocessing steps, our
experimental setup and implementation details. Chapter 6 shows both qualitative
and quantitative results obtained in this study. In chapter 7, we provide a high-level
summary as well as an analysis and explanation for the obtained results. Lastly,
Chapter 8 gives a conclusion of our investigation and provides an outlook for the
future research directions.



Chapter 2

Background

In this chapter, we review the literature on the methods used in this work. We start
with neural networks and explain some of their special types. Then, we move on
to various types of autoencoders. After that, we explain the used dimensionality
reduction methods. Finally, we show the existing approaches of ensemble data
visualization.

2.1 Neural Networks

An artificial neural network (ANN) is a computing system that functions in a similar
way to a biological neural network. It is a structure of connected artificial neurons,
upon the connection of which depends the functionality of the network. A simple
neuron calculates the product of the input and its weight and gives the output after
some activation (or transfer) function. A transfer function can be linear or nonlinear
and is chosen for each specific problem differently [1]. Neurons are organized in
layers, which perform different kinds of transformations on their inputs.

In ANNs information is propagating from the first (input) to the last (output) layer,
which is a forward propagation phase. After the network obtained the result, it is
compared with the label, which is known as a supervised learning. Then the error,
which is usually calculated with least squares or cross-entropy, is propagated back
to update the weights, which is a backward propagation phase [2]. Such systems are
able to learn, that is to gradually improve their ability. The learning means that
the model is updating its weights to perform specific tasks by considering examples,
without task-specific programming. The gradient of the loss function ζ (which shows
the error calculated before) w.r.t. weights look like:

∂ζ

∂Wl,ij

=
∂ζ

∂zl+1,i

∂zl+1,i

∂Wl,ij

, (2.1)

where Wl,ij - weight in the layer l for the node with output index j and input i,
and zl+1,i is the the input to all neurons in layer l+ 1. The update of the weights is

3
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Figure 2.1: An example of a Deep Neural Network.

based on the basic gradient descent optimization [2].

A deep neural network (DNN) is an ANN with a more complex structure and a
number of hidden layers [3], [4], which allows DNNs to recognize complex non-linear
patterns. The number of hidden layers could be from ten to thousands. Each layer
passes data forward to the next layer, each node of the layer adjusts its weights to
improve performance on the training data set. Such technique, as was mentioned
before, is called supervised learning, to which belong DNNs. An example of a Deep
Neural Network with two hidden layers is shown in the Figure 2.1.

Historically, the first algorithm for supervised learning of binary classifiers was called
the “perceptron” and was introduced by Rosenblatt far in 1958 [5]. The first neural
network was a simple feed-forward network with just one hidden layer. It was used
for supervised learning and trained with backpropagation. This neural network was
called Multilayer Perceptron (MLP) [6]. Since that time, increased computational
power in recent years, made deep learning approaches possible and DNNs found
good application in many tasks. They show significant performance in the range of
classification tasks, such as image, video, text, natural language. In 2006, Geoffrey
Hinton et al. [7] first used latent variables in a restricted Boltzmann machine to
learn a high-level representation from the input of the network.

The possibility of using GPUs and supercomputers, which increased the speed of
the training, make it possible to increase the capacity of the neural networks. Such
large networks became known as DNN and were particularly used in image and
visual recognition problems.

There are various types of neural networks: Feedforward Neural Network, Convo-
lutional Neural Network (CNN) [8], Recurrent Neural Network (RNN) and Long
Short-Term Memory (LSTM) [9], Autoencoder (AE) and Variational Autoencoder
(VAE). The task for which they can be used can be supervised or unsupervised
learning [10]. Later in this chapter, we will consider in more detail some of them
used during this work.
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Figure 2.2: Mathematical operation of convolution: an image I was convolved with
a kernel K. During the convolution, each cell value of a red square is multiplied
with a corresponding cell value of a blue square (kernel) and then all results are
summed up. The final result is shown in green on this illustration.

2.2 Convolutional Neural Networks

The structure of Convolutional Neural Networks is inspired by biological processes
[11] and is similar to the structure of the visual cortex. CNNs typically consists of
multiple convolutional layers. These layers have the task to extract useful features
from the input, which results in multiple feature maps. The pooling layer which is
usually used after each convolution reduces the spatial size of these feature maps.
The convolutional layers concentrate on the local features and detecting them. The
fully connected layers, which usually follow convolutional, ensure invariance from
the spatial position of the local features. The illustration for convolution is shown
in Figure 2.2.

A CNN usually consists of multiple hidden layers with a series of convolutional
layers. The activation function between the layers is commonly a rectified linear unit
(ReLU) [12]. The convolution operation is computationally intensive, but training
on a graphics processing unit (GPU) is nowadays possible [13]. In practice, there
are spatial (2D) and spatio-temporal convolutions (3D) [14] which are used for the
data with the corresponding dimensionality. While 2D convolutions are related to
a single image, 3D convolutions are applied to the sequence of images. By that,
3D convolutions gain more information from the temporal data. It is possible to
combine 3D and 2D convolutions within a neural network. The position of temporal
convolutions could be different. The inverse to the convolutional is the transposed
convolutional layers, which are also called deconvolutional layers. In contrast to
convolutional layers, transposed convolutional layers produce multiple outputs from
a single input activation.

2.3 Autoencoders

An autoencoder is a well-established technique used for dimensionality reduction.
It is a neural network that can be used in unsupervised learning tasks, where the
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data has no label or class information. The goal of an autoencoder is to learn a
compressed representation of the input data by achieving a reconstruction at the
output. There are several variations of autoencoders. We first describe its standard
version and then show other versions as well.

2.3.1 Standard Autoencoder

A standard autoencoder represents a structure consisting of two parts. The first part
is an encoder that receives the input data and learns to compress them to obtain
an encoding (also known as code or latent representation). This can be done by
learning the most important features of the data. The structure of an autoencoder
is depicted in Figure 2.3. Mathematically the code for one hidden layer and input
x can be represented as: h = σ(Wx + b), where h is the latent representation, σ is
an activation function of the network layer, W and b are weight matrix and biases
respectively.

Input

Code

Reconstruction

Encoder Decoder

Figure 2.3: Autoencoder structure consisting of two parts: an encoder and a decoder.

The second part is a decoder that receives the encoding. The aim of the decoder is
to reconstruct the code so that the resulting reconstruction is as close as possible to
the input data of the encoder. The reconstruction x′ in this case can be expressed
by x′ = σ′(W ′h + b′) , where σ′, W ′ and b′ are different activation, weight matrix
and bias parameters.

Both parts of an autoencoder may be represented via deep neural networks, contain-
ing several hidden layers, and consist of convolutional and fully connected layers.
Autoencoder training is aimed at minimizing its objective function, which in this
case is a reconstruction loss. Examples of objective function metrics include mean
squared error (MSE) or cross entropy [15]. In case of MSE, the loss takes the form of
L(x, x′) = ‖x− x′‖2. The network can be trained using standard machine learning
techniques for training such as backpropagation [16].
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Usually, an autoencoder is used to extract features which have lower dimensionality
comparing to the input. Application areas include dimensionality reduction of any
data, information retrieval, anomaly detection, image processing, drug discovery,
machine translation. A standard autoencoder does not contain any regularization
constraints. Other variations of a standard autoencoder with added regularizations
are sparse, denoising, and contractive.

2.3.2 Sparse Autoencoder

A regularized version of a standard autoencoder is known as a sparse autoencoder.
In sparse autoencoders, only a small amount of hidden units (or neurons) are active
at the same time. The sparsity can be achieved by using one of the penalization
terms. There are several options that can serve a sparsity role. The regularization
constraint added to a standard autoencoder prevents overfitting [17],

The regularization forms can be Ridge Regression (also known as L2) or Least Ab-
solute Shrinkage and Selection Operator (LASSO or L1) [18]. These regularizations
can be added to an embedding layer of an autoencoder to inhibit the growth of the
weighting coefficients.

Another approach is to use Kullback-Leibler divergence [19] as a regularization term
that keeps most of the neurons in an inactive state. Another form of regularization
is Dropout [20]. This technique ensures that some neurons are not active during the
training.

2.3.3 Denoising Autoencoder

Denoising autoencoder (DAE) considered being an autoencoder-based neural net-
work that is appropriate for a task where some random noise was added to the input
data [21]. Such noise can be isotropic Gaussian, white, salt and pepper, or any other
type of noise [22]. In case the input is partially corrupted, the DAE can be trained
to recover the original input by denoising it. If the DAE is capable of performing
this task, it is assumed that the network is more stable with the modifications in
the input. The features extracted with such autoencoder are able to capture the
most useful parts of the inputs.

2.3.4 Variational and Beta-Variational Autoencoder

Variational autoencoders (VAEs) have a similar structure of the discussed above
autoencoders, however, they have major differences as well. VAEs are generative
models based on variational inference and probabilistic graphical models. There
are certain limitations of standard autoencoders, namely their latent space is not
continuous as each vector from that space corresponds to a certain output. The
variational autoencoder imposes constraints to the distribution of latent representa-
tion, mapping to this distribution instead of a fixed vector in the latent space. We
first explain the idea behind VAE and then show its basic mathematical aspects.
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It is challenging to perform efficient probabilistic inference and learning in case
of intractable posterior distributions and large datasets. A variational Bayesian
(VB) method is among the existing approaches which approximate the intractable
(non-differentiable) posteriors. However, the analytical solutions obtained using this
method are also non-differentiable, which means that they cannot be evaluated. In
the case of large datasets, Monte Carlo methods that involve sampling may be used.
However, such approaches are slow and computationally costly.

The research conducted by D. P. Kingma and M. Welling [23] has two main contri-
butions, namely: an unbiased estimator for the intractable posterior distributions
and an application of this estimator in the construction of variational auto-encoder.
By combining these techniques, it is possible to achieve a variational inference and
learning algorithm.

The proposed solution for intractable posteriors is the reparameterization of the
variational lower bound (the final objective function that needs to be maximized).
A simple differentiable unbiased estimator of this objective function was derived
using univariate Gaussian distribution with zero mean and unit standard deviation.
After reparameterization was applied, the lower bound became differentiable and
was optimized with standard machine learning techniques such as stochastic gradient
ascent. This novel method of making intractable posterior distribution differentiable
was called Stochastic Gradient Variational Bayes (SGVB). The authors claim that
generally, the method is useful for efficient posterior inference in continuous latent
(unobserved) variable models.

Another novel approach that was proposed for large i.i.d. (independent and iden-
tically distributed) datasets and continuous latent variables is the Auto-Encoding
VB (AEVB) algorithm. It employs the SGVB estimator discussed above to perform
probabilistic inference and learning. This technique is based on a simple and effi-
cient sampling strategy and can be used instead of Monte Carlo based methods. The
proposed AEVB algorithm was used to construct a variational autoencoder with a
neural network consisting of two parts: an encoder (inference network for the ap-
proximation of the posterior) and a decoder (generative network). Both parts have
the same number of hidden neurons. This idea is based on a general auto-encoder
neural network. However, it performs variational approximation of the generative
model.

During experiments, the proposed methods were tested on such benchmarking image
datasets as MNIST and Frey Face. Analyses included a comparison with the existed
Wake-Sleep and Monte Carlo EM (MCEM) algorithms. Quantitative results showed
that the AEVB approach outperformed both existing algorithms. Findings also
indicated that variational bound has a regularizing nature. Therefore it is not
necessary to apply any additional sparsity constrains to the AEVB algorithm in
order to avoid overfitting.

Now we turn to a closer look at the mathematical model of VAEs. We assume that
we have the dataset that contains samples from a variable x. A random unobserved
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variable z (latent variable) from prior distribution pθ∗(z) is involved in generating the
data. And conditional distribution pθ∗(x|z) generates the data sample xi. The prior
pθ∗(z) is related to a similarly-shaped distribution (parametric family) pθ(z) and the
likelihood pθ∗(x|z) to pθ(x|z) with differentiable probability density functions w.r.t.
parameters θ and z. In addition to unobserved variable z, the true parameter θ∗ is
unknown as well.

The marginal likelihood and the true posterior distribution which are required to
describe the data and latent variables are defined as follows:

pθ(x) =

∫
pθ(x)pθ(x|z)dz, (2.2)

pθ(z|x) = pθ(x|z)pθ(z)/pθ(x). (2.3)

However, these expressions are intractable since they both contain complicated like-
lihood pθ(x|z) which in our case is a deep non-linear neural network.

For efficient approximations of the posterior, a recognition model is introduced:
qφ(z|x). Then, a neural network which has an autoencoder-based structure can
be used to learn the recognition as well as generative model parameters φ and θ.
Using the idea of an autoencoder, an encoding part can be used for the recognition
model qφ(z|x) and a decoder for the likelihood pθ(x|z). The major difference from
a standard autoencoder can be seen here, as the recognition model (encoder) does
not encode a latent variable z, but outputs a distribution. That makes it possible
to sample z and further input the sampled value to the decoder.

The Kullback–Leibler (KL) divergence between qφ(z|x) and pθ(z|x) is:

DKL(qφ(z|x)||pθ(z|x)) =
∑
z

qφ(z|x) log
qφ(z|x)

pθ(z|x)

= E[log
qφ(z|x)

pθ(z|x)
]

= E[log qφ(z|x)− log pθ(z|x)].

(2.4)

Note that the expectation is over z. Now it is possible to apply Bayes’ rule [24] as
follows:

DKL[qφ(z|x)||pθ(z|x)] = E[log qφ(z|x)− log
pθ(x|z)pθ(z)

pθ(x)
]

= E[log qφ(z|x)− (log pθ(x|z) + log pθ(z)− log pθ(x))]

= E[log qφ(z|x)− log pθ(x|z)− log pθ(z) + log pθ(x)].

(2.5)
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We can put pθ(x) out of brackets since it does not depend on expectation. Thereafter
by rewriting E[log qφ(z|x) − log pθ(z)] as a second KL divergence term, achieve the
following form:

log pθ(x)−DKL[qφ(z|x)||pθ(z|x)] = E[log pθ(x|z)]−DKL[qφ(z|x)||pθ(z)]. (2.6)

Now we achieved the VAE’s objective function. It can be rewritten as:

log pθ(x) = DKL(qφ(z|x)||pθ(z|x)) + L(θ, φ;x). (2.7)

Since the right hand side contains non-negative KL divergence, the second term
is called variational lower bound, also known in statistics as evidence lower bound
(ELBO). We can write it in the form of:

L(θ, φ;x) = −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)[log pθ(x|z)]. (2.8)

After that, the lower bound −L(θ, φ;x) must be minimized. We can notice in the
right hand side, the KL divergence term and the reconstruction term in the form of
expected likelihood.

We assume that the prior pθ(z) is a unit Gaussian distribution N (0, I) and the ap-
proximate posterior is a Gaussian N (µ, σ2) with parameters µ and σ as the outputs
of the encoding. Now the closed-form expression for KL term is:

DKL(qφ(z|x)||pθ(z)) = −1

2

∑
(1 + log σ2 − µ2 − σ2). (2.9)

This term, in addition to the reconstruction term, encourages a trade-off between
reconstruction quality and the distribution of prior which generates the latent space.

During the training with a neural network, the encoder input converts to µ and log σ.
The model has to be deterministic to be trained with backpropagation. Therefore,
we must apply the reparameterization trick for the change of variables to yield a
differentiable network both w.r.t φ and θ parameters. This means that the sampling
of latent variable z from approximate posterior is replaced with z = µ + σ · ε, by
using random noise ε ∼ N (0, I).

β-VAE. In the case of β-VAE [25], the objective function has a difference. β-VAE
can be formulated as an optimization problem with a Lagrangian multiplier β:

max
φ,θ

Ex[Ez[log pθ(x|z)]] s.t. DKL(qφ(z|x)||p(z)) < δ. (2.10)
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It has the form of an optimization problem, with one inequality constraint (δ).
Since both β and δ are non-negative, the beta-variational loss can be defined with
one Lagrangian multiplier hyperparameter β:

L(θ, φ;x, z, β) = −Eqφ(z|x)[log pθ(x|z)] + βDKL(qφ(z|x)||p(z)). (2.11)

The hyperparameter β can take different values. The smaller values, less than one,
encourage the expression to be in a form of an autoencoder, with the value β = 1 this
is a standard VAE explained above, the greater values restrict the representation
capacity of the latent space.

2.4 Dimensionality Reduction

The traditional approach to visualize and analyze high-dimensional datasets was to
use dimension reduction (DR) techniques [26]. Dimensionality reduction is a tech-
nique of projecting high-dimensional data to a low-dimensional space by preserving
the significant structure of the data. This can be done by reducing the number of
variables from the original set by keeping the most informative variables. It is usu-
ally performed in order to visualize the initial data, reduce the amount of storage
required to keep the data, or to prepare the data for other machine learning algo-
rithms. Another advantage of performing dimensionality reduction is to avoid the
“curse of dimensionality” (a term introduced by Richard Bellman in 1957). This is
the problem when distance metrics produce similar results as the data is too sparse
in high-dimensional space. Even the amount of data in very large datasets may not
be enough if the number of dimensions is too high.

Dimensionality reduction techniques can be categorized as feature selection and
feature extraction methods. A feature is a measurable variable of a process from
which the data is collected. The goal of feature selection is to select a subset of
features from the original input space. Feature extraction is a more complicated
technique of creating a new low-dimensional space. Subsequently, the initial high-
dimensional data is projected into that space. This can be done via the extraction
of new features from the original input features. According to the projection, all DR
techniques can be categorized into linear and nonlinear methods. Linear techniques
have the property that the axes of newly constructed low-dimensional space are
interpretable. Nonlinear (manifold learning) techniques have the benefit of intrinsic
structure interpretability. However, it is important not only to achieve a proper
reduction to a low-dimensional space, visually understandable by humans but also
to evaluate quantitatively such projection.

The examples of feature extraction algorithms are Principal Component Analysis
(PCA), Non-negative Matrix Factorization, Kernel PCA, Linear Discriminant Anal-
ysis (LDA), t-SNE, UMAP, and Autoencoders. Later, we will discuss in detail some
of these techniques which were used in this work.
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2.4.1 PCA

Principal Component Analysis (PCA) is an old-established and relatively simple
technique. It is a linear and non-parametric method that is widely used to per-
form dimensionality reduction in order to reveal hidden patterns in data [27]. The
algorithm is based on linear algebra and can be implemented using eigenvalue decom-
position of a data covariance (or correlation) matrix or singular value decomposition
(SVD) of a data matrix [28]. The non-linear version of this method is a kernel PCA
which is based on a reproducing kernel Hilbert space (RKHS) [29, 30].

The method transforms the data into the lower-dimensional space by constructing
a new coordinate system. The axes of this new coordinate system with reduced
dimensions are defined according to the variance of the original data. The first
coordinate corresponds to the greatest variance by some scalar projection of the
data, the second greatest variance lies on the second coordinate, and so on. The
transformed coordinated are called principal components. The principal components
transformation is orthogonal and linear, which means that it preserves the inner
product. The transformation can be made using a Singular Value Decomposition
(SVD). In this case, only the first several largest singular values and their singular
vectors will create a new coordinate system.

The normalization step of the initial data is important. It is necessary to normalize
the input vectors to zero mean and unit standard deviation since PCA uses squared
reconstruction error in case of eigenvalue decomposition or Frobenius norm in case
of SVD.

2.4.2 t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a DR technique, which
in recent years was very often used to visualize large high-dimensional datasets.
In contrast to PCA, t-SNE is more modern, non-linear, and parametric [31]. The
disadvantages of this technique are that it finds local optima and is computationally
complex.

The purpose to use t-SNE is to represent high-dimensional data in a space with a
reduced number of dimensions. For the perceptual reasons such a newly constructed
low-dimensional space has two or three dimensions that can be easily visualized and
understood by humans. Usually, the data on a reduced dimension space is presented
with a scatterplot.

In the first stage, t-SNE compares pairs of data points in the high-dimensional space.
The conditional probability for each pair shows how close the points are located.
The similarity metric used to construct probability distribution can be Euclidean
distance. According to it, nearby data points have a high probability while widely
separated data points have an infinitesimal probability. Mathematically, conditional
probability between two data points xi and xj has the form of:
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pj|i =
exp(−‖xi − xj‖2 /2σ2

i )∑
k 6=i exp(−‖xi − xk‖2 /2σ2

i )
, (2.12)

where σ2
i is the variance of the Gaussian distribution. The algorithm finds the

value of σi according to the perplexity of this distribution. Perplexity measures the
prediction capability of some probability distribution and is an important parameter
in the t-SNE. The user can specify this parameter, the useful values are in the range
from 5 to 50.

To measure the pairwise similarity between two data points, conditional probabilities
are symmetrized, considering N points in total, to joint probabilities pij:

pij =
pj|i + pi|j

2N
. (2.13)

After the pairwise probabilities are measured for the space of original data, the next
stage is to construct a low-dimensional space. The similarities qij between two data
points yi and yj on this space are calculated as follows:

qij =
(1 + ‖yi − yj‖2)−1)∑
k 6=l(1 + ‖yk − yl‖2)−1)

. (2.14)

As it could be seen, the equation is similar to that used for high-dimensional
space. Differently from the SNE method [32], t-SNE uses one-dimensional Student
t-distribution [33] to measure similarities between low-dimensional points. This pro-
vides scale invariant for a low-dimensional map. The denominator in the equation
is the normalization part.

The next step is to minimize the difference between the probability distribution of
the original high dimensional space and the newly created space with a reduced
number of dimensions. For the minimization of this difference with gradient de-
scent, the loss function is used. In the case of t-SNE this loss is non-symmetric
Kullback–Leibler (KL) divergence:

DKL(pij||qij) =
∑
i 6=j

pij log
pij
qij
. (2.15)

This method has its drawbacks as well. Direct application to multidimensional
datasets is impractical because the distances are too similar in large dimensions.
Another problem is that t-SNE has computational and memory complexity which
is quadratic in the number of data points. This also makes the method infeasible
for large datasets.

Before using t-SNE, the multidimensional data can first be applied to another dimen-
sionality reduction method. After that, t-SNE can be applied if necessary. Before
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inputting the data, normalization is an important step as the distance metrics used
is Euclidean distance. Here the normalization means scaling to unit vectors. As the
algorithm is stochastic, it can be run multiple times to find the solution with the
lowest loss according to the KL divergence.

2.4.3 UMAP

In recent years, a novel DR method was developed by McInnes et al. [34] - Uniform
Manifold Approximation and Projection (UMAP). This technique is nonlinear and
follows the idea of t-SNE by creating a low-dimensional space to project the data.
However, it has many major differences as well. Its mathematical model is based
on Riemannian geometry and topology. UMAP does not use normalization in the
probability distributions, as it was for t-SNE, instead, a smoothed version of k-
nearest neighbors [35] distance is used.

UMAP has several advantages over the t-SNE in terms of its performance. It is
faster when embedding into new dimensional space is larger than 3D. UMAP better
preserves the global structure while at the same time it saves the local information.
According to the algorithm, each point in the high-dimensional representation is
connected to its neighbor.

While t-SNE has a single important hyper-parameter (perplexity), UMAP has many
of them. The most important hyperparameters are the number of neighbors, mini-
mum distance, number of components, and metric. However, the advantage is that
those parameters are intuitively understandable and we explain them more detailed
below.

The hyperparameter number of nearest neighbors is one of the most important hy-
perparameters. It determines the considered local neighborhood size which affects
the construction of the initial high-dimensional graph. When low values are spec-
ified for this parameter, local details are preserved. In contrast, with high values,
the algorithm pays attention to the global structure in the initial data. This hy-
perparameter may be considered as a variation of the perplexity hyperparameter in
t-SNE. The second most important hyperparameter is the minimum distance which
controls how close to each other the points can be located on a low dimensional
representation. Low values result in more dense representation while high values
achieve a more loose allocation of the data points. The hyperparameter number of
components determines the dimensionality of the reduced dimension space to which
the data will be projected. Metric hyperparameter controls how distance is com-
puted in the ambient space of the input data. Some of the often used metrics are
Manhattan, Euclidean, Mahalanobis, Chebyshev, or Minkowski.

The cost function which uses UMAP is cross-entropy between topological represen-
tations of high and low dimensional spaces. That is also an important difference
comparing to t-SNE which uses KL-divergence as a cost function. However, simi-
larly to many DR techniques, UMAP uses gradient descent to minimize this cost
function.
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The drawback of this DR technique is that it is not trivial to select a good set of
hyperparameters and the final choice depends on the data. The distances between
clusters might be meaningless since local distances are considered when constructing
the graph. UMAP algorithm is stochastic, it ends up at a local minimum, therefore
it is a good practice to obtain the results with the same parameters multiple times.

2.5 Ensemble Visualization

The ensemble data collected in various fields of science differ from traditional data.
The additional dimension member of the ensemble makes a major difference and
challenge for processing and visualizing such data [36]. Each ensemble has a number
of members, each with several time steps which have different values at different
locations. This makes in total five dimensions of ensemble data: ensemble, member,
time step, location, and variable (value). In many disciplines, such as astrophysics
and high energy physics, meteorology, materials science, CFD modelling, medicine,
data are often represented as ensembles. In such fields of science, usually, one
experiment with specific parameters is not enough for modelling a real physical
phenomenon. It is desirable to obtain data from multiple experimental runs. In
each experimental run, which creates one ensemble member, the parameters of the
experimental setup vary.

The visualization systems designed to work with ensemble data must be able to effi-
ciently handle a large number of members and time steps. Traditional approaches to
building such systems usually contain aggregation and composition steps, compress-
ing the data or visualizing statistical summaries [36]. Such techniques as pseudo-
coloring and glyph visualization were attempted to handle large-dimensional ensem-
ble data. Ensemble visualization could contain side-by-side visualizations, linking
or brushing for highlighting the data, spaghetti plots, glyph-based multidimensional
visualizations, scaled spheres, or attribute blocks.
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Related Work

In this section, we discuss the most relevant scientific research which was done in
the domain of feature extraction for ensemble visualization.

Several approaches to efficiently visualize ensemble data were investigated. In the
survey by Wang et al. [36], ensemble dataset is considered as a collection of simula-
tion data. They discuss how the traditional visualization techniques can be adapted
to ensemble data by using aggregation and composition steps. However, such meth-
ods as pseudo-coloring and glyph interpretation often introduce additional challenges
for understanding the visualization. Such analytical tasks as an overview, clustering,
temporal trend analysis, and feature extraction must cover the member dimension of
the ensemble data as well. According to [37], a proper ensemble visualization helps
to further perform clustering and to detect outliers from the resulting projections.
The effectiveness of traditional ensemble visualization techniques decreases with a
large number of members. The investigation of using such techniques differs from
the direction of feature extraction. To provide an overview and statistical displays
of ensembles, Potter et al. [38] developed an interactive framework Ensemble-Vis.
It allows scientists to study the distribution and uncertainty of simulation data.

The traditional approach to visualize and analyze high-dimensional datasets was to
use dimension reduction techniques [26]. Such techniques which were developed in a
few past decades can be categorized into linear and non-linear methods. However, it
is important not only to achieve a proper reduction to a low-dimensional space, visu-
ally understandable by humans but also to evaluate quantitatively such projection.
Vernier et al. [39] propose methods to evaluate the quality of such dimensionality
reduction techniques as PCA, t-SNE, UMAP, and Autoencoders. For that, various
spatial and temporal stability metrics were used. Basic dimensionality reduction
techniques, such as PCA, t-SNE, and UMAP can be applied to high-dimensional
data to obtain a lower-dimensional (2D or 3D) visualization understandable for hu-
mans. However such methods have problems with large high-dimensional datasets.
The performance of these methods decreases when applied to pure data. That is
why it is important to extract useful features as a first step.

17
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The purpose of our investigations is automatic feature extraction with autoencoders-
based methods. There was a large amount of work dedicated to feature extraction,
including the usage of neural networks and especially various types of autoencoders
[40], [41], [42]. As we showed before, many different approaches were proposed
in order to achieve an effective visualization for ensemble datasets [36], [37], [38].
However, there are not many studies that combine these two areas. There have not
been many results confirming the ability to extract expressive high-level functions
to support the visualization of ensemble data.

In the area of autoencoder-based feature extraction, Hinton et al. [43] first showed
that autoencoders can be used for dimensionality reduction and can be applied to
large datasets. The better performance was achieved on the MNIST digits dataset
by using autoencoders rather than PCA. Han et al. [44] developed an autoencoder
based framework FlowNet to extract such features as streamlines and stream sur-
faces. The experiments were conducted on various flow volumetric datasets. They
present an interactive interface to explore flow lines or surfaces using clustering,
filtering, and selection. Jain et al. [45] used deep convolutional autoencoder to
obtain a compact representation of multivariate time-varying volumes by learning
high-level features. That allowed to process this compressed volumetric data on
GPUs.

Kingma et al. [23] introduce the Auto Encoding Variational Bayes (AEVB) al-
gorithm, an unbiased estimator for the intractable posterior distributions, and an
application of this estimator in the construction of a variational autoencoder (VAE).
This method is based on a variational inference and learning algorithm which is scal-
able for large datasets and has the regularizing nature which helps to avoid over-
fitting. The experiments were conducted on MNIST and Frey Face benchmarking
image datasets. Hou et al. [46] show how a deep feature consistency can be achieved
with VAE. A better perceptual quality was achieved for facial attribute prediction.
They investigate the continuity of learned latent space by performing linear inter-
polation between latent vectors. Way et al. [47] use variational autoencoders to
extract biologically relevant features from gene expression data. They test the idea
of changing the impact of KL divergence loss for transitioning from autoencoder to
VAE.

Higgins et al. [25] modified the VAE and introduced beta-VAE, a framework that
allows controlling the capacity of latent space. With beta-VAE, a disentangled rep-
resentation of the image factors was achieved. However, It is important to properly
select the value of a hyperparameter β. Burgess et al. further investigate β-VAE
with varying Lagrangian multiplier beta. [48] They compare entangled with disen-
tangled representations and further investigated how β-VAE learns an axis-aligned
disentanglement. It was proposed to gradually increase the β-weighted KL term in
order to achieve both disentangled representation and high reconstruction quality.

Some of the discussed above studies did not include analysis and comparison of
the results with ensemble datasets. Many discussed above studies [44], [46], [47]
visualize the extracted latent vectors by using only t-SNE algorithm. None of the
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researches included the influence of beta-VAE on the positions of data points in the
resulting reduced dimension space, application to Vortex Street or Drop Dynamics
ensemble datasets and comparison analysis, final projection with a novel UMAP
technique. In our approach, we also evaluate the quality of feature extraction based
projections (clustering accuracy) via various metrics, and based on these results find
Pareto efficient models.





Chapter 4

Methodology

In this chapter, we describe our approach of feature extraction for ensemble visual-
ization. We explain how we extract features from the ensemble members’ time steps
and use them for a projection to 2D space. Then, we show how we evaluate the
results with various metrics to obtain a quantitative evaluation. Finally, we find the
Pareto efficient models and discuss the possible application of this research.

Preprocessing
Feature

extraction
Projection

Evaluation and
Pareto efficiency

Figure 4.1: Overview of our approach: we start by preprocessing the data which
is then applied (left trapezoid part) to an autoencoder-based feature extraction
method. An autoencoder then reconstructs the data (right trapezoid part), however,
we are interested in the extracted features (middle part) which are then used for
the projection techniques. After obtaining the visualization, it is further evaluated
with developed metrics to obtain a Pareto frontier.

As it is shown in Figure 4.1 (overview of our approach, as a pipeline), the first step
is to preprocess the ensemble data. The preprocessed data is then passed on to the
encoder, which extracts the features. These high-level features are used to create 2D
projections and efficiently visualize ensemble data. Thereafter, various metrics were
used to evaluate these projections. The last step is to check all models according to
multi-objective optimality criteria to obtain the Pareto frontier.

4.1 Autoencoder-based Feature Extraction

Standard dimensionality reduction (DR) techniques, such as PCA, t-SNE, and
UMAP lose efficiency when applied directly to high dimensional ensemble data,

21
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as explained in section 2.4. Therefore, we first reduce the dimensionality of the
ensemble data with autoencoders. Only after that, this compressed representation
is used by standard projection techniques to obtain a 2D visualization.

All types of autoencoders used in this work (AE, VAE, beta-VAE) have a similar
structure which we found most efficient to extract features from used ensemble
datasets. Our implementation of autoencoders contains convolutional as well as
fully connected (dense) layers. The proposed autoencoder structures are symmetric,
meaning that the decoder has a similar but reversed encoder structure.

As it was explained theoretically in Chapter 2, an autoencoder consists of two parts,
an encoder and a decoder, which both can be implemented using neural networks.
In this thesis, the implementation of the models consists of 2D/3D convolutions as
well as fully connected layers.

Encoder. In this work an encoder consists of convolutional and fully connected
layers. The purpose of using convolutional layers is to detect the local features.
The following dense layers provide independence from local position of features.
While 2D convolutions were performed for encoding a single time step at a time, 3D
convolutions were used to encode several time steps at a time. Such models should,
according to our expectation, be capable to learn more useful features by using three
time steps instead of one. According to our expectation, in that case there is no
need to increase the dimension of latent space by the factor of three (same factor by
which we increased the number of time steps in one input). This will show that a
neural network is able to learn from several temporal continuous input frames (time
steps).

We use stride in the convolutional layers instead of (maximum) pooling [49]. During
the experiments, we noticed that after using max-pool layers, grid-like artifacts
appeared in the reconstruction. This was expected for autoencoders since they
consider the positional information which was removed by max operation. That
leads to worse results. Therefore, it was essential to use stride. The parameter
stride defines how far the kernel moves along the grid after each convolution. When
the stride is equal to 2, it halves the tensor after every such layer.

Embedding. Various dimensions of the latent space have been tested. It is desir-
able to find smaller values, with the dimension of which the latent space is capable
of representing features.

We apply regularization constraints L1 and L2 to the final dense layer of the encoder
which produced the latent vectors. L1 regularization is applied to the weight matrix
of this layer to make it sparse. L2 regularization is used for the output of the layer
to prevent its growth and overfitting. Therefore our regularized autoencoder can be
considered as sparse.

Since the ensemble datasets used during our experiment are too complicated (contain
complex features) and high-dimensional we do not expect the models to be capable
of reducing the dimensionality to 2D and subsequently reconstruct the input data.
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That is, specifying the latent space size as 2D is not a good option - neural networks
will not be able to learn the features. That is why it is necessary to use other
dimensionality reduction techniques after applying autoencoders.

Decoder. As the decoder has a symmetrical structure with respect to the encoder,
first it inputs the code to the dense layer. Further, the transposed convolutional
(deconvolutional) layers bring the compressed data to its original size.

Furter, we will show and explain the results of the models which succeeded to re-
construct the input data. We expect the models with both types of convolutions
to be capable of reconstructing the images and minimizing the mean squared error
(MSE) loss.

Different activation functions were tested to be applied to all hidden layers. Initially
we considered such activations as: ReLU, ELU, tanh, softmax. Since ReLU ensured
stable training and better results, it was selected for all experiments which are shown
further. The advantages of ReLU activations are to prevent gradient vanishing and
explosion. The data range at the output of ReLU activation function is [0, 1]. We
apply the ReLU activation function to all hidden layers of the considered neural
networks.

Linear activation was used on the final output layer and showed the best perfor-
mance. This allows the output to be in any possible range of values. It is necessary
since we are interested in the ability of our autoencoders to reconstruct the input
images, which is similar to the regression problem. Other activations, which can
be applied to the output layer are sigmoid and softmax. However, sigmoid is usu-
ally used for the two-class logistic regression and softmax is its multi-class version.
Therefore, those activations are not proper for the regression task and showed the
worse result, as it was expected. Also, the sigmoid function may slow down weights
updating as the gradient of this function is close to zero at the tails. Next, we
explain some details and differences regarding VAE and β-VAE.

VAE and β-VAE. In the case of Variational Autoencoder (VAE), we use a similar
structure for its encoder and decoder. In the encoder, layers till the last dense layer
are similar. The difference appears in the second dense layer which produces the
latent space. VAE has two parallel dense layers, for the mean and variance, which
produce the latent space. After that, the last layer of the encoder implements a
reparameterization trick for sampling the value z. The decoding part has no major
differences from AE, it is also symmetric to the encoder. The sampled value, received
from the encoder as input, is used to reconstruct the initial image through dense and
deconvolutional layers. For the calculation of the final VAE loss function, we scale
the coefficient for the KL divergence part of the loss according to the dimensionality
of the latent space. The details about the dimensions of the latent space as well as
about the coefficient for the KL divergence can be found in Section 5.3. Using VAE,
the clustering of the data must be seen distributed as a Gaussian with unit variance,
resulting in a rounded shape for the clusters. Activations used in VAE are similar
to the AE: ReLU in all hidden layers and linear activation in the output. There is
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no need to apply regularization to VAE as encoding an input to a distribution over
the latent space introduces regularisation. as we explained in Chapter 2.

4.2 Projection to 2D Space

After extracting the features from the ensemble data, we obtain a high-level repre-
sentation (in the form of a latent vector) for each time step. These vectors are now
projected to a 2D map using DR techniques discussed in Section 2.4. Our main
experiments were carried out using the UMAP projection. Other DR algorithms
such as t-SNE and PCA have also been tested.

We compare our feature extraction results with the baseline results. The baseline
was obtained by directly projecting the ensemble data using standard DR methods.
For consistency in the analysis, we use the similarly preprocessed data as input to
produce baseline results.

We use UMAP with its parameter min. distance to control how close points are to
be located on the newly created 2D map. That produces visually less overlapping
projections, therefore this technique was preferable. Since a simple linear DR tech-
nique - PCA, did not produce the expected results we did not use it for the main
experiments. The t-SNE algorithm with tuned perplexity parameter also supports
visual analysis, however, it was found to be less effective comparing to UMAP.

To support the visual analysis, additionally, we use the projected positions to con-
struct a regular grid of time step renderings. To compute grid positions, we utilize
kernelized sorting technique [50]. The new position in the grid was found by solving
the linear assignment problem. To find optimal allocation, the cost has been mini-
mized so that the position in the grid is less different from the position on the real
2D map.

After obtaining the projection into 2D space, it is additionally evaluated using the
metrics developed for this purpose. We will discuss these metrics in the next section.

4.3 Metrics and Pareto Frontier

To assess the quality of all final projections for each dataset (see Section 5.1), we
propose two metrics and adopt one from [39]. In order to compare the projections
from different DR and feature extraction techniques, it is important to normalize
the projection space. Therefore, before we start calculating the metrics discussed
below, we scale the projection space to the range of [0, 1]. We will discuss in detail
how the three spatial quality metrics were developed. We call the developed two
metrics separability and spread. The adopted metric is called neighborhood hit.

The developed separability metric is based on the k-nearest neighbors method [35].
For each data point in the projection, k closest neighbors are considered based on
Euclidean distance. The predicted label for each data point is classified based on
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the majority of votes among neighbors. The result is then compared to the actual
label. If it is true, then this data point is considered to be correctly classified. This
procedure is performed on all data points and the number of correctly classified data
points is counted. After that, the obtained value is divided into the total number of
points. Therefore, the final value is obtained based on the total number of correct
predictions. The output of this metric is in the range of [0, 1]. Since our purpose is
to extract features and separate the classes with different features, the separability
metric should achieve high values with a proper for this task DR technique.

The idea behind the neighborhood hit metric is similar to discussed previously sep-
arability metric. It is also based on k-nearest neighbors, however, takes into con-
sideration the fraction of neighbors which belong to the same class. Therefore the
value that each point contributes to the total result is not integer (1 or 0) but frac-
tional. Similarly to the separability metric, the range of output is [0, 1]. Both these
metrics take into account how far away the points of different classes are in the final
projections. The highest values mean that the clusters are well separated.

The metric spread calculates the average distance between the data points on the
projection and their class center. It takes into account how close points belonging
to the same class are from each other. The algorithm is the following. First, we
calculate the class centers by mean value from all their corresponding points. Then,
the distance from each data point to its class center is calculated. To measure
the distance we use Euclidean distance, which for n points looks like: d(c, p) =√∑n

i=1 (c− pi)2, where c is the coordinate for class center and p = (p1, p2, ..., pn)

are the coordinates of the data points belonging to this class. This procedure is
performed for each class, and then the results are averaged to obtain one final
value. Similarly as for the other two metrics, the range of the output for this
metric is [0, 1]. Since we are trying to get a projection in which data with similar
characteristics form one cluster, lower values are better. The exception is a very low
value that can be achieved when all points are located in almost the same position,
which complicates to visually examine the actual time steps. However, since we use
projection techniques with such parameters that avoid this problematic situation,
we neglect this exceptional case.

By using the labeled subset of the data, it is possible to achieve a quantitative
evaluation of resulting projections. Together with qualitative results, the proposed
metrics support the analysis of the final projections.

The measurement of uncertainty is of great importance in all experiments in which
the methods are probabilistic in nature. In such methods, the results obtained with
the same parameters, but different experimental runs, will have small variations.
Our experiments involve stochasticity because the data was randomly selected for
the final test sets, and the initialization of the weights is random in neural networks.
Therefore, we collect the results of the same models several times. All of our exper-
imental runs were performed 5 times. After that, averaged quantitative results were
calculated, yielding the mean and standard deviation of the metrics values.
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After collecting the statistical information, we use this information to create a Pareto
frontier graph. We show the results of evaluating the clustering quality of the final
projections with the metrics discussed above for all models. Then we check all
models based on the multi-objective optimality principle to obtain Pareto efficient
models. After that, we construct a graph with a set of all such models (Pareto
frontier). After obtaining the Pareto frontier, it is possible to select one of the best
models shown on the graph, check its corresponding visualization, and investigate
the projection of ensemble data.

4.4 Visualization of Ensembles and Latent Space

Interpolation

To visualize the CFD simulation ensemble (Vortex Street) we use viridis color map
shown in Figure 4.2. The advantages of this color map are that it is perceptually
uniform blue to yellow scale and clearly emphasizes the details in the images.

Figure 4.2: Viridis color map.

Since the Drop Dynamics ensemble consists of grayscale camera images, a simple
grayscale color map was selected for this dataset.

We place the time steps at the positions where data points are located in the final
2D projection. To support the visual investigation of the projections, interactive
options were added. For the Vortex Street data analysis, information about the
names of simulations has been added. This was implemented via a mouse hover
event. Interactive zooming with mouse scroll was added for all visualization of
projections.

We place time steps at the locations where the data points are located in the final 2D
projection. Interactive options have been added to support the visual exploration of
forecasts. For Vortex Street data analysis, simulation naming information has been
added so that you can hover over a point or frame in a 2D map and the name will
be displayed as an annotation. This was implemented using a mouse hover event.
Interactive scaling with mouse scrolling has been added for all projection rendering.

To compare AE, VAE, β-VAE, and to understand the effect of Lagrangian multi-
plier β, we interpolate between two vectors of the latent space which correspond
to two input frames. This idea is called latent space interpolation and allows us
to inspect how continuous the latent space is. For interpolation, we use spherical
interpolation [51] between two vectors. Spherical interpolation interpolates accord-
ing to the sphere surface and allows rendering improvements [52]. It is useful for
finding an intermediate point in the case when the probability density of the points
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Figure 4.3: Illustration of spherical interpolation between two vectors v and u: s -
point obtained by spherical, l - by linear interpolation.

is concentrated on areas of the sphere surface. In this case, the length of the newly
interpolated vector remains the same. For the 2D case, this is shown graphically in
Figure 4.3. After the interpolation is done, the interpolated frames are compared
with the original time steps to find those which differ less. The comparison is based
on the mean squared error.

For the multi-objective optimality criteria, all models are shown on a 2D map with
the axes of neighborhood hit (maximum is better) and spread (minimum is better)
metrics. From that map, a Pareto optimal set (Pareto frontier) is shown as a graph
with different colors. It is possible to zoom in and hover the mouse to check the
model name if it is not visible due to overlap.

We also show the temporal behavior of time steps in 2D projection for the CFD
ensemble members. This can be useful for examining the evolution trajectory of
time steps movement. In order to achieve it, we connect the time steps of the
ensemble member with a line so that to see the start and end positions and their
movement.





Chapter 5

Datasets and Experimental Setup

In this chapter, we show how the experiments were conducted. First, we present
the data sets which were used and explain how they were preprocessed. Then, we
show how the methods were implemented and with which parameters. We show
the results of different experiments and provide qualitative as well as quantitative
comparison. The discussion of the presented results is in the following chapter.

5.1 Datasets

We conduct experiments on two main ensemble datasets which include Vortex Street
computational fluid dynamics (CFD) simulation and Drop Dynamics ensembles. We
also used one additional benchmark data set - MNIST digits to give a basic example
of the results.

CFD simulation is an ensemble dataset where the Reynolds number is a varying
parameter. Our used data consisted of 300 fluid dynamics simulations, containing
flow in a tube obstructed by a cylindrical obstacle. The size of a cylinder, its position
as well as fluid viscosity vary. The flow can be very turbulent or completely laminar.
Reynolds number shows how turbulent is the flow and in these simulations varies
from 40 to 100. Figure 5.1 demonstrates the original CFD simulation time steps.

The second used ensemble dataset, Drop Dynamics, was created through a physical
experiment. In this dataset, ensemble members had Weber numbers and a dimen-
sionless film thickness parameters [53]. The data (images) were collected from the
splashing of a hexadecane drop with a film. Figure 5.2 shows the original Drop
Dynamics time steps.

The original time step size of Vortex Street ensembles is (441*84) and of Drop
Dynamics is (160*224). For all time steps (to which we also refer as frames or simply
images) the number of channels is 1 as each time step represents a monochrome
image.

29
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Figure 5.1: Vortex Street, examples of original data.

Figure 5.2: Drop Dynamics, examples of original data.

5.2 Data Preprocessing

The first stage of our methods was a preprocessing of the ensemble data. The prepro-
cessing includes normalization; cropping; combining time steps for 3D convolutional
models; division into training, validation, and test splits; shuffling.

An important preprocessing step was the normalization of the images. This prepro-
cessing step is necessary because differences in brightness would have a large impact
on the latent vectors, resulting in clustering based on member brightness and not
their content. This is due to the fact that autoencoders are sensible to the bright-
ness of the data samples since the goal of the network is to reconstruct the output
as closely as possible to the input. Normalization was applied in order to have the
same brightness for all data samples. We use a standard normalization technique
[54], to zero mean and unit standard deviation. Since the mean and variance of the
data in the Vortex Street ensemble were similar, total normalization was applied.
However, data samples in the Drop Dynamics ensemble did not have the same mean
and variance, therefore it was important to normalize each time step individually in
order to have the same brightness.

Another important preprocessing step was cropping. The data contained regions of
the images which were irrelevant for proper cluster formation on the final projections.
Therefore it was important to remove the regions which were seen as significant but
unimportant features by autoencoders and projections. Various parts of the input
images were cropped for the Vortex Street and Drop Dynamics ensembles. In the
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Figure 5.3: Vortex Street, examples of original data with cropping.

Figure 5.4: Drop Dynamics, examples of original data with cropping.

case of CFD simulations, 30% was cropped from the top to remove the part with
varying cylinder size. For the Drop Dynamics ensemble, 10% was cropped from left
and 15% from the right parts to remove shady areas in the images. Our ensemble
datasets had the dimensionality of (309*84) and (160*168) after the preprocessing for
Vortex Street and Drop Dynamics ensembles respectively. Figure 5.3 and Figure 5.4
demonstrates the cropped data.

To prepare the data for 3D convolutions, three consecutive time steps were combined.
For that, a dividable to 3 range of each ensemble member was selected. To ensure
it, several empty frames from the beginning of each ensemble member were skipped.

5.3 Experimental Setup, Implementation, and Pa-

rameters

In this chapter we explain the implementation details of the proposed methods. This
is necessary for reproducibility of the obtained results.

The implementation of all methods was performed using Python programming lan-
guage. For the implementations of neural networks, Keras framework [55] was used,
which uses Tensorflow [56] as backend. For training on GPU, CUDA Toolkit 10.1
[57] was used.

All experiments were performed on a machine with:
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� NVIDIA GeForce GTX Titan GPU

� Intel Core i7-4770 3.40GHz CPU

� Gigabyte GA-Z87X-UD5H motherboard

� 32 GB DDR4 RAM

5.3.1 Autoencoder

First, we explain the implementation of our autoencoders. After that, we describe
the difference in the implementation of the variational versions.

Encoder. We implemented all autoencoders with 4 convolutional layers. To reduce
the resolution of the input image by half on each convolutional layer, we used the
parameter stride of 2 for each dimension. This is applicable for spacial convolutions
(2D). For the temporal convolutions (3D) stride of 3 was used. In this thesis the
implementation of the described in Chapter 4 methods consisted of models with
2D or 3D convolutions. The temporal convolution position was tested on the first,
second, and middle layer. Since we did not notice the influence of its position, we
performed all the presented experiments with the first temporal convolution of 3D
convolutional models. The kernel size for convolution operations was set to 3 for
each dimension. Instead of max. pooling we used the stride parameter. The number
of filters parameter in each layer was chosen to be 64. The parameter padding was
specified as “same” for zero padding.

A fully connected layer always followed the group of convolutional layers. First,
we reshaped the tenors after the convolutional layers to flatten them. After that,
we applied the first dense layer. The dimension of the fully connected layer, which
followed the convolutions, was set to be greater than the dimension of the latent
space. For instance, if the dimension of latent space was 256, then the previous fully
connected layer had 1024 units. These dimensions were also selected so that to keep
the proportion of the compression rate at each layer.

Embedding. The second dense layer generated the latent representation. This is
the layer that has the smallest dimensionality in the network and therefore is also
known as the “bottleneck”. We performed experiments with different latent space
dimensions, from 2 to 512. The space of size 2 did not achieve any reconstruction
and extraction of features. All main experiments were carried out with latent space
dimensionality of 32 and higher. Values smaller than that did not achieve better
performance.

To the dense layer that produced the latent space, we applied L1 and L2 regular-
izations. By that, we have added a sparsity constraint to the standard version of
the AE. The same L1 and L2 regularizations were applied to all versions of sparse
autoencoders used in the experiments. The value was chosen small but sufficient to
prevent the growth and overfitting of the weights. We did not observe any improve-
ment by using dropout instead or in addition to L1/L2 regularization, it only slowed
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down the training.

Decoder. As we mentioned in Chapter 4, our Decoder is symmetrical to the en-
coder. The first layer of the decoder was a fully connected dense layer that upsam-
pled the input to be suitable for convolutional layers. After reshaping the vectors to
the tensors, 4 transposed convolutional layers followed. These layers are also known
as deconvolutional layers. In the output, a linear activation was used.

5.3.2 Variational Autoencoder

VAEs have a difference in the implementation comparing to the AE, which will
be shown below. We used the implementation of convolutional VAE [58] with our
modifications. As it was explained in Chapter 4, VAE has two parallel dense layers,
which produce the latent space. The coefficient for the KL divergence part in the
loss function calculation was scaled according to the dimensionality of the latent
space. Therefore, we multiplied the KL loss to the coefficient which is equal to:

dim(L)

height · width
, (5.1)

where height and width are the dimensions of the input image (time step), and
dim(L) is the dimension of latent space.

In the case of β-VAE, an additional coefficient β (Lagrangian multiplier) was multi-
plied with the previously shown coefficient. The values ranging from 0.1 to 100 were
tested. The coefficient β which produces the best result was found experimentally.
Recall that when β = 1, this method is called VAE.

An example of the model structure of AE/VAE with 3D convolutional layers is
shown in Table 5.1. The difference is emphasized in italics.

5.3.3 Other Implementation Details

We now explain some general aspects which were used in all versions of our neural
networks. The initialization of neural network weights was random but in such a
way that the gradients are not close to zero. In combination with “ReLU” activation
function, “he uniform” weight initialization was used. While tests with “tanh” acti-
vation function, “glorot uniform” weight initialization was used, however since this
combination did not yield any improvement, we did not perform main experiments
with this combination.

Batch normalization was not used between the layers since according to our ex-
periments, it slows down the training speed and makes the training unstable. The
padding for convolutional and deconvolutional layers was selected as “same” which
means that empty values were added at the edges of the downsampled time step.
This ensures that the output size after the convolution operations is equal to the
input size divided by the number specified in strides.
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Layer type Output Shape Details
Input (batch size, 3, h, w, 1) height = h, width = w

Conv3D (batch size, 1, h/2, w/2,
64)

kernel size = (3, 3, 3), stride =
(3, 2, 2)

Conv3D (batch size, 1, h/4, w/4,
64)

kernel size = (1, 3, 3), stride =
(1, 2, 2)

Conv3D (batch size, 1, h/8, w/8,
64)

kernel size = (1, 3, 3), stride =
(1, 2, 2)

Conv3D (batch size, 1, h/16,
w/16, 64)

kernel size = (1, 3, 3), stride =
(1, 2, 2)

Flatten (batch size, 1, (h/16) ·
(w/16) · 64)

reshape before dense layer

Dense (batch size, num. of
units)

first dense layer of encoder

AE : Dense (batch size, latent
dimension)

second dense layer

VAE : Dense (µ, log σ) (batch size, latent
dimension)

two parallel dense layers for
VAE

VAE : Sample z (batch size, latent
dimension)

reparameterization trick for
VAE

Dense (batch size, 1, (h/16) ·
(w/16) · 64)

first dense layer of decoder

Reshape (batch size, 1, (h/16) ·
(w/16) · 64)

reshape before deconvolutions

Conv3DTranspose (batch size, 1, h/8, w/8,
64)

kernel size = (1, 3, 3), stride =
(1, 2, 2)

Conv3DTranspose (batch size, 1, h/4, w/4,
64)

kernel size = (1, 3, 3), stride =
(1, 2, 2)

Conv3DTranspose (batch size, 1, h/2, w/2,
64)

kernel size = (1, 3, 3), stride =
(1, 2, 2)

Conv3DTranspose (batch size, 1, h, w, 64) kernel size = (3, 3, 3), stride =
(3, 2, 2)

Conv3DTranspose (batch size, 1, h, w, 64) kernel size = (3, 3, 3), stride =
(1, 1, 1)

Table 5.1: 3D AE/VAE architecture. The difference is highlighted in italics in the
bottleneck.

The learning rate is an important hyperparameter as it controls the speed of the
training and influences in which local minima the model will end up. If it is too low
then the local minima will be reachable in too many steps, if it is too high - then the
minima can be overshot. It has a relation to the batch size and is inversely related
to it [59]. As an optimization algorithm, we selected Adaptive Moment Estimation
(Adam) [60] with the parameter learning rate of 0.0005. It can be used instead of
the basic stochastic gradient descent algorithm for neural network weights update.
This optimizer combines the advantages of other methods such as AdaGrad and
RMSProp. The benefits include computation efficiency, little memory requirements,
and invariance to the gradients scale.

In our implementation, mini-batch training was combined with the shuffling of the
training data. This is a common practice to find a good local minimum. We trained
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the models with batches of size 16. The selection of larger values was not possible due
to the limitations of the GPU. The number of epochs was varying. It depended on
different methods and datasets. The training was dome till the loss was minimized to
a good local minimum and the decent reconstruction was achieved. Early stopping
[61] was used in order to acquire efficient training. This means that if the network
performs repeatedly worse than the best epoch, the training will be stopped, and
the weights from the best epoch will be recovered. The number of subsequent “bad
epochs” was determined with the patience parameter, which was set to 10.

For our baseline results, we used the projections of the same data which was in-
putted to autoencoders. That is, the same preprocessing steps were applied, such
as normalization and cropping. UMAP algorithm was used with the following pa-
rameters: num. of neighbors = 15; num. of components = 2; metric = Euclidean;
num. of epochs = 500; min. distance = 1.0. The parameters for t-SNE algorithm
were selected as: num. of components = 2; perplexity = 30.0; num. of iterations =
1000.





Chapter 6

Results

In this chapter we show all obtained results, both qualitative and quantitative. We
first start with a brief evaluation of the proposed methods on a benchmark MNIST
dataset. This is not an ensemble dataset and does not contain any complicated
features. This is only a basic example, which we used to demonstrate the differ-
ences between the models and to analyse the consistency of our results. Then, we
demonstrate results obtained with two ensemble datasets: Vortex Street and Drop
Dynamics.

6.1 Example of Basic Evaluation

Figure 6.1: Baseline results for MNIST digits dataset: UMAP projection scatterplot

For consistency of the analysis and to compare our developed feature extraction
techniques, the findings and conclusions were tested with the MNIST digits dataset.
This dataset does not consists of ensembles, and not as high-dimensional as Vortex
Street and Drop Dynamics. Therefore the baseline result (Figure 6.1) using only
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projections showed good performance on MNIST digits. Almost all clusters are well
separated. Dimensionality reduction techniques as t-SNE or UMAP are capable of
performing a decent clustering on MNIST dataset.

(a) AE (b) β(0.1)-VAE

(c) VAE (d) β(2)-VAE

Figure 6.2: Feature extraction with AE/(β)-VAEs and projection with UMAP on
MNIST digits dataset.

Next, we performed feature extraction using AE and VAEs, shown in Figure 6.2.
Qualitative results show that feature extraction using AE and (β-)VAE with prop-
erly tuned small β values outperform the baseline. We used 2D convolutional au-
toencoders with latent dimension of 32 for these experiments. Projections were
made with UMAP. We can notice that the classes for digits “9” and “4” are mixed
on the baseline. However, this is not the same for AE and VAE with β=0.1, as
it can be seen in Figure 6.2a and Figure 6.2b. In the MNIST dataset, the digits
are located at approximately the same position. This means that the compressed
representation may contain the same components for different classes. This adds
another challenge in extracting the features for autoencoder-based methods.
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The quantitative results obtained on the MNIST dataset with our developed metrics
are presented in the Table 6.1.

Method Separability Neighborhood
hit

Spread

AE 0.895 0.842 0.094
VAE 0.741 0.651 0.125
β(0.1)-VAE 0.869 0.803 0.107
β(2)-VAE 0.729 0.627 0.125
Baseline 0.830 0.755 0.106

Table 6.1: Quantitative results for MNIST after performing feature extraction with
different autoencoders and projection with UMAP.

We can notice that the more elaborate approaches perform worse comparing to the
baseline and standard AE. We believe that this is due to the restricted capacity of
the latent space in (β-)VAEs. For the data samples with similar feature locations,
latent vectors look the same for different classes of digits. Examples are the classes
“9” and “4”, in Figure 6.2c and Figure 6.2d, as well as all present in this dataset
images, on which the digits are written not distinctly.

6.2 Qualitative Evaluation

We now begin to present the results on our two main ensemble datasets which were
used to confirm hypotheses: Vortex Street and Drop Dynamics.

First, we show the results and explain them on Drop Dynamics ensembles. We start
with baseline results shown in Figure 6.3, which were obtained by using only direct
UMAP projection. The left side of the figure shows a projection with time steps.
On the right is the same projection presented as a scatterplot. Class information
is always displayed in the legend at the top right. There is additional quantitative
information on the label of the right figure, but we will show it in detail and discuss
in the next section.

In the baseline result, we can observe clusters with similar classes. However, we
can clearly see that many scattered clusters have formed, located separately. A
scatterplot with different colors for each class helps to understand this information.
Such metrics as separability and neighborhood hit reach high enough values (which
is considered as a good result) on such projections. However, the spread metric is
able to show that the result is not good (high values), which shows problems with
the ability to form only one cluster of the same class. The baseline results are im-
portant for the comparison with the developed feature extraction methods. From
these results, we can conclude that good results (high values) of separability and
neighborhood hit metrics are not always an indication of good clustering. It is also
important to take into account the results of the spread metric and only after that
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draw conclusions about the quality of the final projections.

Figure 6.3: Baseline results on Drop Dynamics ensemble dataset: left - direct UMAP
projection shown with time steps, right - corresponding UMAP scatterplot.

Now we show the results of feature extraction with Auroencoders and Variational
Autoencoders on the Drop Dynamic dataset. We present in the beginning a few
results of models with simple 2D convolutions. After that, we will show more results
with 3D convolutional models.

Figure 6.4: 2D Sparse AE with latent space dim. of 128: left - UMAP projection
after feature extraction shown with time steps, right - the corresponding UMAP
scatterplot.

In the case of the simple 2D Autoencoder with added sparsity constraint, as we can
see in Figure 6.4, the model cannot group all data points belonging to the same
class into one cluster. We can see the “bubble” type time steps present in many
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different parts of the final projection, which is based on the latent space learned
by the autoencoder. Also, the time steps belonging to the class “splash” form two
distant clusters.

Figure 6.5: 2D VAE with latent space dim. of 256: left - UMAP projection after
feature extraction shown with time steps, right - the corresponding UMAP scatter-
plot.

A similar result was achieved with the 2D Variational Autoencoder. In Figure 6.5,
we can again notice that although data points belonging to the same class type form
clusters, almost all of them are distributed on the projection space. We aimed to
improve this result with other feature extraction models.

We now present the results of the models with 3D convolutional layers. We start
again with simpler autoencoder models and then subsequently move to (beta-)variational
versions.

Figure 6.6: 3D AE with latent space dim. of 64: left - UMAP projection after feature
extraction shown with time steps, right - the corresponding UMAP scatterplot.
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In Figure 6.6 we can notice in the lower left corner of the projections a cluster with
outlying time steps. A closer look (to the left figure) reveals that these are images
with a small number of pixels responsible for the type of drop dynamics behavior.
It can be assumed that in this case the autoencoder was guided by other prevailing
but not important features of the images. This prevented the correct classification
of such time steps.

Figure 6.7: 3D AE with latent space dim. of 128: left - UMAP projection after fea-
ture extraction shown with time steps, right - the corresponding UMAP scatterplot.

Figure 6.6 shows a similar situation for 3D AE with increased latent space size.
There is a similar group of mixed time steps in the bottom.

Figure 6.8: 3D Sparse AE with latent space dim. of 256: left - UMAP projection
after feature extraction shown with time steps, right - the corresponding UMAP
scatterplot.

A similar result was also achieved with 3D sparse autoencoder with latent space
dimension of 256, shown in Figure 6.8. Since there is no visible improvement by



6.2. Qualitative Evaluation 43

increasing the dimension of latent vectors, we do not present the results of similar
models with a larger capacity of latent space.

Overall, we can notice an improvement with 3D standard (Figure 6.7, Figure 6.6)
and sparse (Figure 6.8) versions of autoencoders comparing to their 2D convolutional
versions. Although we are still not seeing well separated and nicely shaped clusters,
the projection has fewer mixed points. Now points with similar features are less far
from each other. There are some outliers, however, the visualizations show that the
features are not very different for the outlying data points. We can also notice that
3D models with lower latent space dimensions are capable of performing proper
feature extraction. Models with higher dimensions of the latent variables do not
show any noticeable improvement.

Figure 6.9: 3D β(0.1)-VAE with latent space dim. of 256: left - UMAP projection
after feature extraction shown with time steps, right - the corresponding UMAP
scatterplot.

Figure 6.10: 3D VAE with latent space dim. of 256: left - UMAP projection after
feature extraction shown with time steps, right - the corresponding UMAP scatter-
plot.
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In Figure 6.9 and Figure 6.10 corresponding to the VAEs with β = 0.1 and β =
1 respectively, similarly good projections can also be observed. However, one can
visually notice that in contrast to previously shown AE results, the 3D VAE model
created clusters in the form of Gaussian distributions. It can be noticed for the
“bubble” type time steps. This effect is due to the KL divergence term in the VAE
loss calculation. We can later notice an even greater effect of KL loss in models with
higher β values.

Figure 6.11: 3D β(2)-VAE with latent space dim. of 256: left - UMAP projection
after feature extraction shown with time steps, right - the corresponding UMAP
scatterplot.

Figure 6.12: 3D β(4)-VAE with latent space dim. of 256: left - UMAP projection
after feature extraction shown with time steps, right - the corresponding UMAP
scatterplot.

In Figure 6.11 and Figure 6.12 we observe that the projections are also good for β =
2 and β = 4 respectively. We can notice that data points are less distributed across
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the projection and grouped together forming circle-shaped clusters. This is due to
the fact that with higher β values, the KL divergence constraint further reduces the
deviation between the distribution representing the original data and the Gaussian
distribution with zero mean and unit standard deviation.

Figure 6.13: 3D β(10)-VAE with latent space dim. of 256: left - UMAP projection
after feature extraction shown with time steps, right - the corresponding UMAP
scatterplot.

Figure 6.14: 3D β(100)-VAE with latent space dim. of 256: left - UMAP projection
after feature extraction shown with time steps, right - the corresponding UMAP
scatterplot.

However, with too high β values, such as 10 (Figure 6.13) or even 100 (Figure 6.14) ,
all data points are mixed on the final visualization. In such cases, the KL divergence
constraint is too high and the autoencoder cannot produce the latent vectors which
are very different from a Gaussian distribution. The distribution representing the
original data has a very small impact in such cases, which leads to poorly learned
features.
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Overall, we observed a significant improvement by performing feature extraction on
Drop Dynamics ensembles. In the final projection of many models, we saw that
most of the data points belonging to the same class are located close to each other,
forming clusters of the same classes. Qualitative results (visualizations) show that
both AE and (β-)VAE (with different β values) outperform the baseline by ex-
tracting high-level features. The investigation of visualizations reveals that the KL
divergence term in the (β-)VAE objective forces the clusters to be in the shape of a
Gaussian distribution. Some results indicate that VAEs achieve a denser representa-
tion. However, we have always used other projection techniques applied to the latent
representation, therefore this property is vague. In the case of β-VAE, it depends on
the Lagrangian multiplier β of the KL divergence part, how the distribution varies
from zero mean and unit standard deviation. Properly selected values of β (not very
high) can improve the results and lead to perceptually pleasing projections.

Qualitative results on Vortex Street. Now we turn to the results on Vortex
Street ensemble. We start again with baseline results shown in Figure 6.15, which
were achieved by using direct UMAP projection. Similarly to the results on Drop
Dynamics, the left side of the figure shows a projection with time steps and the right
with a scatterplot. Class information is displayed in the legend at the top right and
additional quantitative information is on the label of the right figure. Vortex Street
dataset has only two distinct flow behavior types: “laminar” and “turbulent”. In
the case of this dataset, images on the scatterplot are visualized using the viridis
color map.

Figure 6.15: Baseline results on Vortex Street ensemble dataset: left - direct UMAP
projection shown with time steps, right - corresponding UMAP scatterplot.

This result in Figure 6.15 resembles the baseline on Drop Dynamics since data points
belonging to the same flow behavior are located close together, but they do not form
separate clusters. As with the previous dataset, all metrics should be checked to
determine the quality of the projection.
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Now we begin to present the final projection of latent space with simpler models: 2D
convolutional autoencoders. Similar to the previous results, we show the scatterplot
projections on the right and scatterplots with time steps on the left figures.

Figure 6.16: 2D Sparse AE with latent space dim. of 128: left - UMAP projection
after feature extraction shown with time steps, right - the corresponding UMAP
scatterplot.

As shown in Figure 6.16, in the case of 2D Sparse AE, we can notice that very
turbulent time steps are located close together, forming a group. However, this
cluster is poorly separated from laminar frames. All turbulent data points are shown
in yellow in the right scatterplot projection. Time steps with laminar behavior are
located close to each other which is a good property of such feature extraction and
projection. However, laminar time steps do not form one cluster. All data points
with laminar behavior are shown in purple.

Figure 6.17: 2D VAE with latent space dim. of 128: left - UMAP projection after
feature extraction shown with time steps, right - the corresponding UMAP scatter-
plot.
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In the case of 2D VAE, Figure 6.17, turbulent frames are close to each other but
with a greater degree of confusion. This gives an insight that the latent space of
VAE in the case of the 2D convolutional model was not capable of learning well the
high-level features. If we look at the scatterplot with the time steps on the right,
we can notice that very turbulent frames are close to each other. However, there
are no properly formed clusters.

Figure 6.18: 3D Sparse AE with latent space dim. of 256: left - UMAP projection
after feature extraction shown with time steps, right - the corresponding UMAP
scatterplot.

Figure 6.19: 3D Sparse AE with latent space dim. of 512: left - UMAP projection
after feature extraction shown with time steps, right - the corresponding UMAP
scatterplot.

Now we show results of 3D sparse autoencoders with latent space dimensions of 256
and 512. We can see in Figure 6.18 and Figure 6.19 that the laminar time steps are
located in the vicinity to each other but they do not form a cluster separated from
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the time steps with turbulent behaviour. With 3D models, we can notice results
similar to the 2D models, that distinctly different flows are forming groups, however,
they are not well separated. It is also possible to observe that the points are mixed
where the flow is changing from laminar to turbulent.

Figure 6.20: 3D VAE with latent space dim. of 256: left - UMAP projection after
feature extraction shown with time steps, right - the corresponding UMAP scatter-
plot.

Figure 6.21: 3D β(0.5)-VAE with latent space dim. of 256: left - UMAP projection
after feature extraction shown with time steps, right - the corresponding UMAP
scatterplot.

Now we turn to the 3D VAE models. The results of 3D VAE and 3D β(0.5)-VAE
are presented in Figure 6.20 and Figure 6.21. 3D β(0.5)-VAE model produces the
feature extracted space which is very similar to the one obtained with 3D sparse
autoencoders. We assume that since the final projections of these models look very
similar. We can notice that there is some improvement with the 3D VAE model,
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this result is similar to the 2D Sparse AE projection, in Figure 6.16. Once more
we see that very turbulent time steps are located close together but they are poorly
separated from laminar time steps.

Figure 6.22: Top row: 3D β(2)-VAE; middle row: 3D β(4)-VAE; bottom row: 3D
β(10)-VAE. Latent space dimension of 256 was used in all models. UMAP projection
applied after feature extraction, shown with time steps, is on the left of the figures,
the corresponding UMAP scatterplot is on the right.
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With higher values of β, such as β = 2, β = 4, and β = 10 time steps of different
labels are mixed even further, as shows Figure 6.22. The impact of KL divergence
does not lead to an improvement in the case of Vortex Street ensembles. In the case
of very high value of β, such as 100, in Figure 6.23, the points are completely mixed,
suggesting that the distribution representing the original data is neglected.

Figure 6.23: 3D β(100)-VAE with latent space dim. of 256: left - UMAP projection
after feature extraction shown with time steps, right - the corresponding UMAP
scatterplot.

To examine further the behavior of the time steps in the projections, we show the
temporal trajectories (movement) of the time steps for the Vortex Street ensemble.

Figure 6.24: 2D Sparse AE with latent space dim. of 128: UMAP scatterplot with
temporal behavior of the time steps on the projection.
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Figure 6.25: 3D VAE with latent space dim. of 256: UMAP scatterplot with tem-
poral behavior of the time steps on the projection.

We can notice on both Figure 6.24 and Figure 6.25 that the initial positions of the
most time steps are similar on the projections. The ending positions in contrast
are different in most cases. However, these figures confirm that there is always an
area in the middle where laminar and turbulent behavior modes are mixing. In such
regions, a smooth transition appears between different flows which makes a proper
feature extraction impossible.

Although the improvement on the Vortex Street dataset is not as significant as on
Drop Dynamics, we can still notice that very distinguishable streams are located
in the vicinity, forming a cluster. However, the regions of mixed data points are
always present in the projections. Close examination reveals that in such regions
the data points are located where the flow transitions from laminar to turbulent.
Therefore, there the features are not very different and our models cannot distin-
guish between two different classes. The possible reasons for that are discussed in
the Chapter 7. Still, considering that this dataset is particularly challenging for
autoencoders, we achieved a reasonable improvement in clustering quality over the
baseline of projecting the preprocessed data.

In order to compare how continuous the latent spaces of different methods are, we
obtained results of interpolation between two latent vectors for AE and β-VAE. In
the Figure 6.26 and Figure 6.27 results of spherical interpolation are shown. In
both figures, the top row shows the reconstruction of interpolation between two
latent vectors corresponding to the two input images. The bottom row shows the
corresponding original time steps. They were found based on the minimum mean
squared error between two images principle.
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Figure 6.26: Interpolation of latent vectors of 3D AE: top - reconstructed interpo-
lated vectors, bottom - corresponding real images.

Figure 6.27: 3D β(4)-VAE interpolation: Interpolation of latent vectors of 3D β(4)-
VAE: top - reconstructed interpolated vectors, bottom - corresponding real images.

As we can see in Figure 6.26 and Figure 6.27, although it is difficult to grasp the
difference in the reconstruction of interpolated vectors (top row), the found nearest
images (bottom row) show smoother interpolation in the case of β-VAE with β = 4
comparing to the standard AE. We come to this conclusion because we can see
frames corresponding to different behavior type in the middle on the bottom row in
Figure 6.27.
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6.3 Quantitative Evaluation

Metrics. Now we present the quantitative results obtained with the metrics for
clustering quality assessment. We show the tables with corresponding columns for
the models, their convolution type, the dimensionality of the latent space, and three
spatial metrics. Recall that in the presented below two tables, all results refer to
five experimental runs of the models with the same parameters. In the separability,
neighborhood hit and spread columns, the first number refers to the mean value and
the second to the standard deviation of the measurements.

Method
type

Convo-
lution

Latent
dim.

Separability Neighbor-
hood hit

Spread

Sparse AE 2D 128 0.746±0.016 0.632±0.016 0.178±0.018
Sparse AE 2D 256 0.737±0.014 0.626±0.013 0.181±0.009
AE 3D 32 0.853±0.015 0.757±0.013 0.132±0.025
AE 3D 64 0.857±0.010 0.763±0.015 0.119±0.005
AE 3D 128 0.867±0.012 0.771±0.013 0.132±0.008
AE 3D 256 0.866±0.008 0.760±0.006 0.137±0.015
Sparse AE 3D 256 0.864±0.015 0.762±0.019 0.127±0.016
AE 3D 512 0.866±0.012 0.761±0.013 0.137±0.017
Sparse AE 3D 512 0.857±0.008 0.760±0.008 0.138±0.035
VAE 2D 128 0.724±0.013 0.613±0.011 0.180±0.008
VAE 2D 256 0.707±0.016 0.605±0.011 0.181±0.027
VAE 3D 256 0.802±0.016 0.696±0.013 0.119±0.011
VAE 3D 512 0.828±0.017 0.722±0.023 0.133±0.019
β(0.1)-VAE 3D 256 0.844±0.023 0.747±0.016 0.120±0.019
β(0.5)-VAE 3D 512 0.818±0.022 0.730±0.025 0.126±0.019
β(2)-VAE 3D 256 0.796±0.018 0.691±0.016 0.121±0.023
β(4)-VAE 2D 128 0.661±0.012 0.539±0.010 0.197±0.045
β(4)-VAE 3D 256 0.746±0.032 0.637±0.030 0.103±0.024
β(10)-VAE 3D 256 0.670±0.042 0.548±0.035 0.111±0.013
β(100)-VAE 3D 256 0.410±0.020 0.290±0.016 0.191±0.021
Baseline – – 0.739±0.007 0.618±0.005 0.228±0.032

Table 6.2: Measurement results of metrics for all models which performed feature
extraction on Drop Dynamics ensemble.

As we can see in Table 6.2, all models outperformed the baseline according to the
spread metric. This means that the ability of feature extraction techniques to form
clusters surpasses the direct projection technique. We can notice that almost all
models with 3D convolutional layers are better than 2D convolutional models for all
metrics. The exception for this case are the β-VAE models with very high β values,
such as 10 or 100. We can also notice that according to the quantitative results, all
AE models outperformed the baseline based on separability and neighborhood hit
metrics.

Overall, the improvement for the models which performed feature extraction from
the Drop Dynamics ensemble is significant, especially according to the spread met-
rics. The best performing model, based on this metric is 3D β(4)-VAE with latent
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space dimension of 256. According to the separability and neighborhood hit metrics,
the best model is 3D AE with latent space dimension of 128. Table 6.2 reveals that
many models succeeded in proper feature extraction and outperformed the baseline.
The best models, according to multi-objective optimality criteria are shown later in
this section.

Now we turn to the quantitative results on Vortex Street ensemble dataset.

Method
type

Convo-
lution

Latent
dim.

Separability Neighbor-
hood hit

Spread

Sparse AE 2D 64 0.797±0.019 0.718±0.019 0.189±0.03
AE 2D 128 0.812±0.025 0.716±0.032 0.260±0.018
Sparse AE 2D 128 0.813±0.016 0.738±0.023 0.204±0.039
AE 3D 256 0.775±0.016 0.694±0.016 0.220±0.038
Sparse AE 3D 256 0.789±0.007 0.696±0.013 0.223±0.024
AE 3D 512 0.764±0.022 0.690±0.03 0.192±0.042
Sparse AE 3D 512 0.781±0.017 0.690±0.015 0.234±0.027
VAE 2D 128 0.761±0.051 0.697±0.029 0.207±0.022
VAE 2D 256 0.719±0.025 0.667±0.013 0.220±0.035
β(0.5)-VAE 2D 128 0.771±0.044 0.696±0.034 0.256±0.027
β(2)-VAE 2D 128 0.716±0.019 0.673±0.01 0.201±0.049
β(4)-VAE 2D 128 0.757±0.023 0.681±0.027 0.219±0.048
VAE 3D 128 0.775±0.028 0.697±0.025 0.250±0.029
VAE 3D 256 0.753±0.038 0.676±0.03 0.220±0.046
VAE 3D 512 0.737±0.019 0.650±0.017 0.189±0.053
β(0.5)-VAE 3D 256 0.753±0.034 0.675±0.031 0.218±0.06
β(2)-VAE 3D 256 0.699±0.029 0.628±0.026 0.227±0.045
β(4)-VAE 3D 256 0.739±0.018 0.649±0.023 0.184±0.04
β(10)-VAE 3D 256 0.688±0.026 0.605±0.016 0.241±0.071
β(100)-VAE 3D 256 0.567±0.032 0.527±0.007 0.234±0.041
Baseline – – 0.752±0.021 0.667±0.004 0.223±0.027

Table 6.3: Measurement results of metrics for all models which performed feature
extraction on Vortex Street ensemble.

As we can see in Table 6.3, in terms of well separated clusters (separability and
neighborhood metrics), Sparse Autoencoder with 2D convolutions outperformed all
other models. In terms of how well the clusters are formed, how spread the points
within clusters are (spread metric), 3D β(4)-VAE showed the best result. However,
the quantitative improvement is not very significant comparing to the baseline.

Overall, the results in Table 6.3 show that a simple 2D AE model with latent space
dimension of 128 show high performance according to separability and neighborhood
metrics. Similarly to the case of Drop Dynamics, 3D β(4)-VAE with latent space
dimension of 256 shows the best performance according to spread metric. It is
noticeable that the standard deviation of the results on Vortex Street is higher
comparing to the Drop Dynamics. This suggests that it is more challenging to
perform a proper feature extraction on this ensemble dataset.

Quantitative results from both Table 6.2 and Table 6.3 show that autoencoders
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(standard and sparse) with different convolution types (2D and 3D) outperform
variational models according to separability and neighborhood hit metrics for both
ensemble datasets. According to the spread metric, the best results were achieved
by VAE or β-VAE with beta values greater than one. The discussion and possible
reasons for that are in Chapter 7. As the reader may conclude, it is difficult to
determine the most effective model overall for all metrics. Therefore we have one
additional technique for this task, which will be presented later in this chapter.

Pareto Frontier. At the last stage of our investigations, we identified the best
performing models based on multi-objective optimality criteria (Pareto frontier).
We construct a 2D graph with the axes of neighborhood hit (maximum is better)
and spread (minimum is better) metrics. Since the calculation of a neighborhood
hit metric is close to the separability, and neighborhood hit appeared to be more
accurate, we did not use separability metric to find the Pareto frontier. In the scatter
graph below, 3D convolutional models are shown with blue circles, and 2D models
are shown with cyan squares.

Figure 6.28: Pareto frontier of all models, averaged on 5 experiments, which per-
formed feature extraction on Drop Dynamics ensemble.

First, we show the optimal set of models according to Pareto efficiency on the
Drop Dynamics ensemble. In this graph, for instance, the label “3d b4 vae 256”
stands for 3D β(4)-VAE with latent space dimension of 256, and “3d ae 256 reg”
stands for 3D Sparse AE with latent space dimension of 256. As can be seen in
Figure 6.28, a significant improvement was achieved with 3D convolutional models
over the baseline, which is shown as a red point. The Pareto efficient models, shown
in green, are 3D AEs with latent space dimension of 64 and 128; 3D VAE/β(4)-VAE
with latent space dimension of 256.
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Figure 6.29: Pareto frontier of all individual models, which performed feature ex-
traction on Drop Dynamics ensemble.

We can distinctly notice in Figure 6.29 that the models which use 3D convolution
(blue circles) form a group that has the best neighbour hit and spread measure. Also
we can notice that there is some level of variation between different experimental
runs of the models with the same parameters. An enlarged fragment of this figure
is shown below.

Figure 6.30: Pareto frontier of all individual models, which performed feature ex-
traction on Drop Dynamics ensemble, interactive zooming
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Since for analysis of individual models the region with the best models looked clut-
tered, interactive zooming was added. The enlarged region can be seen in Fig-
ure 6.30. Now we can notice that individual Pareto efficient models belong to the
families of 3D AEs with latent space dimension of 128/256/512; and 3D β(2)- and
β(4)-VAE with latent space dimension of 256.

We now turn to the Vortex Street dataset. The construction of the graph is similar
as explained earlier, the colors and shapes of the symbols are the same. According
to the Figure 6.31, the Pareto efficient models are 2D Sparse AEs with latent space
dimension of 64 and 128; 3D VAE/β(4)-VAE with latent space dimension of 512
and 256 respectively.

Figure 6.31: Pareto frontier of all models, averaged on 5 experiments, which per-
formed feature extraction on Vortex Street ensemble.

As can be seen in Figure 6.31, an improvement was achieved with some models over
the baseline shown again with a red point. However, we may notice that several
results are very close to the baseline, which is an indication of the challenge in
feature extraction on the Vortex Street simulation ensemble dataset. In contrast,
previously in the case of Drop Dynamics, we saw clearly that the baseline result
was far behind in accordance with spread metric. On the Vortex Street ensemble,
this is not the same. In Figure 6.31 we can also notice that 2D models are among
the best as well, according to the Pareto frontier graph shown in green. This is also
what sets these results apart from previous ones obtained on Drop Dynamics. The
possible reasons of such difference are discussed in Chapter 7.
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Figure 6.32: Pareto frontier of all individual models, which performed feature ex-
traction on Vortex Street ensemble.

Individual Pareto efficient models are shown in Figure 6.32. They belong to the
families of 2D Sparse AEs with latent space dimension of 64/128; 3D AE/VAE with
latent space dimension of 512; and 3D β(0.5)-VAE with latent space dimension of
256. Since we saw in Figure 6.31 that, for instance, on average, 3D β(4)-VAE model
has lower spread score, these results indicate once more that there is some level of
variation between the individual models.

The t-SNE projection based on feature extraction, constructed regular grids of time
step renderings based on projected positions, and examples of input frames recon-
struction with autoencoders for some models can be found in Chapter 8. All pre-
sented in this chapter results can be reproduced using the developed software which
can be found in Chapter 8.





Chapter 7

Discussion

In this section, we discuss the results, provide analysis, and explain the achievements.
Also, we argue the advantages and disadvantages of the developed methods.

We presented how autoencoders can be used for feature extraction in order to sup-
port analysis of ensemble data. We have achieved an improvement over the baselines
for both ensemble datasets used in these investigations. Our obtained results indi-
cate that the resulting visualization relies on the learned unsupervised features of
the experimental datasets. It focuses on distinguishing the visual higher-level as-
pects of the ensemble members and highlighting spatial regions that differ the most
between them. To evaluate the results, we developed metrics that allow us to obtain
multi-objective optimality criteria (Pareto frontier). We performed an analysis of
the proposed methods and proposed an application for this research. Later in this
chapter, we will discuss a high-level summary of results.

Baseline results: Baseline results in Figure 6.3 and Figure 6.15, achieved by using
only projections techniques, indicated that there are further directions for improve-
ment. They also showed that it is important to rely not only on a single metric
technique since it can overlook some problems in the final projection.

Comparison of 2D and 3D convolutional models: As we assumed, models
which used 3D convolutional layers of the neural network and combined time steps in
the input, outperformed models with 2D convolutions in the case of Drop Dynamics.
3D convolutional models were capable to learn more useful features by using three
time steps instead of one, without the need to increase the dimension of latent
space. The advantage of such models is strongly noticeable on the Drop Dynamics
ensemble (Table 6.2, Figure 6.29). However, in the case of the Vortex Street ensemble
members, 2D models are among the best as well, according to the Pareto frontier
graph (Figure 6.28). We believe that this is due to the fact that features are located
in very similar positions in the case of Vortex Street. It can be assumed that in this
case the compressed time steps further increase the variation within results. This
assumption requires further study. In fact, qualitative analysis of VAEs shows that
3D models outperform those with 2D convolutions. This can be seen in Figure 6.20

61
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and Figure 6.17. While 3D convolutional models cannot separate the classes far
apart, they do not form scattered clusters.

Comparison of AE and VAE results: Quantitative results in both Table 6.3
and Table 6.3 show that autoencoders (standard and sparse) outperform variational
models according to separability and neighborhood hit metrics. We believe this
is due to the fact that these metrics consider how far away the points of different
classes are on the final projections. Therefore separability or neighborhood hit
metrics always reach higher values for autoencoders. However, according to the
spread metric (which considers how close points belonging to the same class are
from each other), the best results were achieved by VAEs or β-VAEs with beta
values greater than one. Qualitative results in the form of projections show that
both AEs and (β-)VAEs with different β values are capable of outperforming the
baseline by extracting features for clustering. As we expected, the Kullback-Leibler
divergence term of (β)-VAE causes the clusters to have a Gaussian distribution,
with the influence depending on the Lagrangian multiplier β.

Feature extraction directly to 2D: The reduction of dimensionality to 2D space
directly with autoencoders did not show any good results, in terms of data recon-
struction (Figure 15) and the clustering on the projection. We presume that this is
due to the fact that ensemble datasets used during our experiments are too com-
plicated (contain complex features) and high-dimensional. Autoencoders are not
capable of compressing the data to be represented by just two latent dimensions
and subsequently reconstructing them.

Comparison of results on Drop Dynamics and Vortex Street ensemble
datasets: We observed a significant improvement by performing feature extraction
on Drop Dynamics ensemble. According to Pareto frontier, in Figure 6.28 this
progress was achieved with 3D convolutional models. The fact that features present
at different locations of time steps in the case of Drop Dynamics ensemble makes it
easier for autoencoders to distinguish between different behavior types. Overall, as
the number of classes in the case of Drop Dynamics was greater comparing to Vortex
Street (7 against 2), it was possible to carry out more accurate analysis with less
effort. However, the improvement over the baseline is not at such a significant scale
in the case of Vortex Street, in Figure 6.31. We presume that this is due to the fact
that autoencoders, which use mean squared error, consider spatial positions of the
features. Results on Vortex Street show that the mixed data points were related to
the time steps where laminar flow turns to turbulent, and such time steps are difficult
to classify. Visualizing the temporal behavior in the final projections contributed to
finding such regions of a smooth transition. Therefore, we assume that the location
of features at approximately the same position adds another challenge to feature
extraction.

Even simple modifications of the datasets, such as normalization and cropping have
a significant influence on the feature extraction. This is due to the fact that methods
will learn unimportant features presented in the input. That will prevent the other
important features which actually describe the difference in the ensemble members
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to dominate.

Pareto frontier results: According to uncertainty measurements, some variation
in the results exists between experiments with the same parameters. Therefore,
improvement of the stability of the models might be the direction of future work. To
analyze how the models perform, we computed the mean and the standard deviation
of multiple runs of models with the same parameters. For our analysis, we examined
the Pareto frontier with such averaged results of model performances. However, for
a possible practical application - user analysis, we can offer the results of individual
models so that the user can find the most effective model.

Possible application of this research: This work is useful for visual analysis of
ensemble datasets, where different distinguishable types of behavior persist in data
time steps. If the user has a few labeled members of such new ensemble dataset,
then it will be possible to find the best latent space projection. In this case, the
Pareto frontier will show the best models, then the user can select any models from
this set and apply it to other datasets. If the new ensemble dataset is completely
unlabelled and manual labelling is too complicated, the user can rely on our analysis
and select one of the models which performed best according to Pareto frontier on
our datasets.





Chapter 8

Conclusion and Future Work

In this thesis, we presented approaches to autoencoder-based feature extraction.
We demonstrated that it is possible to achieve a better clustering quality of time
steps’ behavior types on various ensemble datasets. Our developed feature extrac-
tion methods achieved a better performance comparing to the pure dimensionality
reduction techniques. We obtained the evaluation of their performance quality us-
ing the developed and adopted metrics and found the best models according to the
Pareto efficiency. The performance of the methods varied depending on the dataset,
however, we achieved an improvement in many cases. In the end, we offered the
practical application of the developed methods for new ensemble datasets.

We have performed a comprehensive study of autoencoders’ and (β-)variational au-
toencoders’ ability to cluster ensemble data, performing many experiments with dif-
ferent model configurations. We presented a summary of our findings in Chapter 7.
Overall, many results indicated a significant improvement by using autoencoders
comparing to the projections of preprocessed data. This thesis concludes that it
is possible to support the visual analysis of ensemble datasets via various machine
learning techniques.

Outlook

In the future, it would be promising to provide robustness of the methods, since
measuring the uncertainty of our experiments revealed some level of variance.

In the case of β-VAEs, it was challenging to find the best Lagrangian multiplier β
value. Therefore, rather than to employ a fixed value of β, it might be better to
gradually increase the β-weighted KL term during training in order to achieve both
disentangled representation and high reconstruction quality.

Other future directions include analysis of the learned model parameters through
visualization. Gradients or relevance propagation within autoencoders can better
explain how the models operate. Future directions may also involve parameter space
visualization and the development of an interactive tool to support the analysis.
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Reproducibility

We provide all our designed software for the reproducibility of the presented re-
sults. The developed methods can be applied to other ensemble datasets with
little changes. The code can be found at: https://github.com/HamidGadirov/

ML-for-EnsembleVis.
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Appendix

Figure 1: 3D VAE with latent space dim. of 256: t-SNE projection after feature
extraction on Drop Dynamics, shown with time steps.
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Figure 2: 3D VAE with latent space dim. of 256: t-SNE projection after feature
extraction on Drop Dynamics, shown with time steps on regular grid.

Figure 3: 3D VAE with latent space dim. of 256: t-SNE projection after feature
extraction on Drop Dynamics, shown with scatterplot.
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Figure 4: 3D VAE with latent space dim. of 256: UMAP projection after feature
extraction on Drop Dynamics, shown with time steps.

Figure 5: 3D VAE with latent space dim. of 256: UMAP projection after feature
extraction on Drop Dynamics, shown with time steps on regular grid.
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Figure 6: 3D VAE with latent space dim. of 256: UMAP projection after feature
extraction on Drop Dynamics, shown with scatterplot.

Figure 7: 3D VAE with latent space dim. of 256: top row - original time steps,
bottom row - reconstruction.
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Figure 8: 2D Sparse AE with latent space dim. of 64: t-SNE projection after feature
extraction on Vortex Street, shown with time steps.

Figure 9: 2D Sparse AE with latent space dim. of 64: t-SNE projection after feature
extraction on Vortex Street, shown with time steps on regular grid.
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Figure 10: 2D Sparse AE with latent space dim. of 64: t-SNE projection after
feature extraction on Vortex Street, shown with scatterplot.

Figure 11: 2D Sparse AE with latent space dim. of 64: UMAP projection after
feature extraction on Vortex Street, shown with time steps.
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Figure 12: 2D Sparse AE with latent space dim. of 64: UMAP projection after
feature extraction on Vortex Street, shown with time steps on regular grid.

Figure 13: 2D Sparse AE with latent space dim. of 64: UMAP projection after
feature extraction on Vortex Street, shown with scatterplot.
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Figure 14: 2D Sparse AE with latent space dim. of 64: top row - original time steps,
bottom row - reconstruction.

Figure 15: 3D AE with latent space dim. of 2: top row - original time steps, bottom
row - reconstruction.
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