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Zusammenfassung

Sobald der Bruch eines Erdbebens beginnt, fangen seismische Wellen an, sich auszubre-
iten. Diese verändern die Dichteverteilung in der Erde, was zu einer Änderung der Gravi-
tation führt. Diese Änderung breitet sich mit Lichtgeschwindigkeit aus und ist somit viel
schneller als die seismischen Wellen. Das führt dazu, dass bereits vor dem Einsatz der
P-Welle so genannte prompt elasto-gravity Signale (PEGS) mit Gravimetern und Seis-
mometern gemessen werden können.
Die Detektion dieser Signale wird allerdings dadurch erschwert, dass Gravimeter und
Seismometer nicht nur die genannte Änderung der Schwere messen, sondern auch eine
Bodenbeschleunigung, die durch eben diese Schwereänderung verursacht wird. Diese Sig-
nale heben sich teilweise gegenseitig auf. Daher wäre es von Vorteil, Messinstrumente
zu verwenden, die sensitiv für Schwereänderungen, aber nicht für Bodenbeschleunigungen
sind. Diese Eigenschaft erfüllen Gravitationsdehnungsmesser (gravity strainmeter) und
Schweregradiometer (gravity gradiometer).
In dieser Arbeit geht es um das Potential von Schweregradiometern für die Detektion
von PEGS. Es werden zunächst zwei Methoden zur Modellierung von Schweregradienten
von PEGS untersucht und getestet: Die Methode von Harms (2016), welche ein stark
vereinfachtes Erdmodell verwendet, kann erfolgreich angewendet werden. Die Umsetzung
einer abgewandelten Form der Normalmodensummation, mit der Schweregradienten von
PEGS für ein deutlich genaueres Erdmodell berechnet werden können, scheitert hingegen
an der Berechnung von Normalmoden für hohe Frequenzen.
Daher wird die Methode von Harms (2016) verwendet, um Schweregradienten von PEGS
für das Tohoku-Oki Beben zu simulieren. Die Ergebnisse werden mit den Rauschspektren
aktueller Schweregradiometer verglichen. Es zeigt sich, dass die Detektion von PEGS
des Tohoku-Oki Bebens auf Grund der unzureichenden Genauigkeit der Instrumente mit
aktuellen Schweregradiometern nicht möglich gewesen wäre. Auch mit solchen Schwere-
gradiometern, welche gerade in der Entwicklung sind, stellt sich die Detektion von PEGS
als sehr schwierig heraus. Für eine eindeutige Detektion von PEGS müsste die Genauigkeit
von Schweregradiometern ungefähr zehnmal höher sein als die derer, welche aktuell en-
twickelt werden.
Zur Zeit sollten daher für die Untersuchung von PEGS die Messdaten von Seismometern
und Gravimetern verwendet werden. In Zukunft können eventuell außerdem Gravita-
tionsdehnungsmesser verwendet werden. Diese werden vor allem für die Detektion von
Gravitationswellen entwickelt. Ihr Potential für die Detektion von PEGS wurde bereits
in anderen Arbeiten untersucht.
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Chapter 1

Introduction

From the first moment, when the rupture of an earthquake begins, seismic waves start
to propagate. The propagation of these waves changes the density distribution of the
medium, which leads to a change in gravity, the so-called prompt gravity signal which
propagates at the speed of light through the whole Earth.

This gravity perturbation can be observed for example with gravimeters or broadband
seismometers before the arrival of the P-wave, but its amplitude is many times smaller
than the P-wave signal. Furthermore, the gravity perturbation described above is not the
only signal a gravimeter or seismometer measures before the arrival of the P-wave: Ad-
ditionally, they both measure a ground acceleration induced by the gravity change itself.
The resulting signal of both effects is called prompt elasto-gravity signal (PEGS). The
gravity change and the ground acceleration partly cancel each other in the measurements
of gravimeters or seismometers (Heaton 2017, Vallée et al. 2017, Kame and Kimura 2019),
which complicates the detection. However, after having understood this partial cancella-
tion, PEGS have been observed in the measurements for the 2011 Tohoku-Oki earthquake
(moment magnitude MW = 9.1) (Vallée et al. 2017) and later for the 1994 deep Bolivia
earthquake (MW = 8.2), the 2018 deep Fiji earthquake (MW = 8.2), the 2018 Whar-
ton Basin strike-slip earthquake (MW = 8.6), the 2010 Maule megathrust earthquake
(MW = 8.8) and the 2018 Gulf of Alaska strike-slip earthquake (MW = 7.9) (Vallée and
Juhel 2019). Meanwhile, methods to model PEGS were developed: Whereas the first one
considered the Earth to be a homogeneous full-space (Harms et al. 2015), nowadays PEGS
for a self-gravitating, spherical, radial inhomogeneous Earth can be simulated (Juhel et al.
2018b or Zhang et al. 2020).

The detection of PEGS could contribute to earthquake and tsunami early warning sys-
tems, especially because they show a strong dependency on the earthquake’s magnitude
(Vallée et al. 2017). This could lead to earlier realistic estimates of the magnitude, which
help to rate the danger of a tsunami. As the measurements of seismometers or gra-
diometers suffer from the cancellation of ground acceleration and gravity change, Harms
et al. (2015), Montagner et al. (2016) and Vallée et al. (2017) proposed to use gravity
gradiometers or gravity strainmeters for the detection, which are both not sensitive to
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Chapter 1. Introduction

ground motion. The capabilities of gravity strainmeters in this context have been inten-
sively studied by Juhel et al. (2018a) and Shimoda et al. (2020). They found that with
gravity strainmeters which are currently under development PEGS of earthquakes down
to magnitude MW = 7.0 could be detected.

Supplementing these studies for gravity strainmeters, the aim of this master thesis is to
investigate if high sensitivity gravity gradiometers that are already developed or that are
under development (Power spectral density between 3 E/

√
Hz and 10−4 E/

√
Hz ) can rep-

resent an alternative solution. An overview of gravity gradiometers that exist or are under
development is given in Chapter 5 together with a comparison of the main principles of
gravity gradiometers and gravity strainmeters. As a case study I model the gravity gradi-
ents of PEGS for the Tohoku-Oki earthquake. To do this simulation, I first have to study
how to model gravity gradients of PEGS. Here, I focus on the method of Harms (2016)
as a method for a rather simplified Earth model (flat and homogeneous) and the normal
mode summation method developed by Juhel et al. (2018b), which is using a more realistic
Earth model (radial inhomogeneous sphere) (see Chapter 6). Afterwards, in Chapter 7 I
analyse the simulated signals and compare them to the noise spectrum of existing gravity
gradiometers and of gravity gradiometers that are under development. Additionally, I
compare the signals of gravity gradiometers to the signals of gravity strainmeters.

The main questions, which should be answered in this thesis are:

1. How can existing methods to model gravimeter, seismometer or gravity strainmeter
measurements of PEGS be adapted to model gravity gradiometer measurements of
PEGS?

2. What do the signals of gravity gradients of PEGS look like?

3. Should it be possible to detect those signals with gravity gradiometers that exist or
are under development?

4. Are there advantages or disadvantages of gravity gradiometer signals compared to
gravity strainmeter signals with regards to the detection of PEGS?

To give some more background to these investigations I will first present an overview of the
Tohoku-Oki earthquake (Chapter 2) and thereafter give a more detailed introduction to
the discovery of PEGS and their main physical principles (Chapter 3). This introductory
part is concluded by a short recapitulation of the gravity field in spherical harmonics and
the basics of continuum mechanics (Chapter 4). In Chapter 8 the results of this master
thesis are summarised and further investigations are proposed.
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Chapter 2

The Tohoku-Oki earthquake

The investigations of prompt elasto-gravity signals (PEGS) in this thesis are done for the
example of the Tohoku-Oki earthquake. The earthquake happened on the 11th of March
2011 off the coast of north eastern Japan (37.52◦ N, 143.05◦ E) (Nettles et al. 2011),
about 130 km east of the city of Sendai and 370 km north east of Tokio (U.S. Geological
Servey 2011). It had a moment magnitude of MW = 9.1, making it the fourth largest
earthquake in the last 100 years worldwide and the largest well documented earthquake in
Japan (Nettles et al. 2011). The geometry of the moment tensor, strike 203◦, dip 10◦ and
slip 88◦, indicates that it was triggered by the subduction of the pacific plate beneath the
island of Honshu (Nettles et al. 2011). All characteristics of the Tohoku-Oki earthquake
reported in the global Centroid Moment Tensor (CMT) catalogue (Nettles et al. 2011) are
noted in Table 2.1. A map of Japan showing the fault plane solution of the earthquake can
be seen in Figure 2.1. (Nettles et al. 2011). The depth of 0 to 100 km is a typical depth
for megathrust earthquakes. They are thrust fault earthquakes happening at subduction
zones due to compression and fraction of the two plates (Frisch and Meschede 2005).

Megathrust earthquakes are responsible for most of the tsunamis world-wide and also
the Tohoku-Oki earthquake triggered a huge tsunami wave. The tsunami reached the
Japanese mainland 20 minutes after the earthquake rupture and affected 2000 km of the
Japanese coast. The maximum run-up height was 39.7 m at Miyako, and run-up heights
greater than 10 m occurred along 425 km of the coast. The tsunami propagated more than
5 km inland and inundated more than 400 km2 of land (Mori et al. 2011).

Despite existing early warning systems and tsunami disaster countermeasures, for ex-
ample tsunami barriers, 15 899 people died through the Tohoku-Oki earthquake and the
tsunami. 2 528 people are still missing (National Police Agency of Japan - Emergency Dis-
aster Countermeasures Headquarters 2020). The major cause of death was the tsunami.
Furthermore, the tsunami caused the nuclear catastrophe at the nuclear power plant of
Fukushima, which was rated with the highest level 7 of the international nuclear and
radiological event scale INES (Japanese ministry of economy, trade and industry 2011).
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Chapter 2. The Tohoku-Oki earthquake

Figure 2.1: Tohoku-Oki earthquake. Map of Japan showing the fault plane solution of the Tohoku-Oki
earthquake (Nettles et al. 2011)

There is still a clear need for better early warning systems to which measurements of PEGS
could possibly contribute, especially because of their high sensitivity to the earthquake’s
magnitude.

Table 2.1: Characteristics of the Tohoku-Oki earthquake reported in the global CMT cata-
logue (Nettles et al. 2011)

Date: 2011/03/11 Centroid
time:

5:47:32.8 GMT Half
width:

70 s

Latitude: 37.52◦ Longitude: 143.05◦ Depth: 20 km

Moment tensor in 1× 1029 dyne cm:
Mrr 1.730 Mϑϑ −0.281 Mϕϕ −1.450
Mrϑ 2.120 Mrϕ 4.55 Mϑϕ −0.657s

Fault plane:
Strike: 203◦ Dip: 10◦ Slip: 88◦
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Chapter 3

Prompt elasto-gravity signals

In this chapter I first summarise the results of former studies about prompt elasto-gravity
signals (PEGS). In the second part I will explain their main physical principles.

3.1 Discovery and recent research results

P-waves were for a long time thought to be the earliest measurable signal of an earthquake.
P-wave stands for primary wave and it is the fastest elastic wave.

Mansinha and Hayes (2001) were the first to consider that a gravity signal could be
observed in the measurements of superconducting gravimeters before the arrival of the
P-wave. However, their search was not successful.

Since Harms et al. (2015) modelled the prompt gravity signal for a homogeneous infinite
space, more interest has been devoted to this topic. He later extended his theory to an
infinite half space (Harms 2016). Montagner et al. (2016) searched for prompt gravity
signals of the 2011 Tohoku-Oki earthquake (MW = 9.1). Using a statistical method, they
found a prompt gravity signal with a significance of 98.4 % in the data of the supercon-
ducting gravimeter in Kamioka, Japan and a prompt gravity signal with a significance of
99 % in a stacked data set from five broadband seismometers. However, the amplitude of
the measured signal was only two third of the one predicted by the model of Harms et al.
(2015).

In reply to the observations of Montagner et al. (2016), Heaton (2017) argued that the
response of a gravimeter to an instantaneous change in gravity does not only consist of
the gravity signal but also of the ground acceleration induced by the elastic response
of the Earth to this gravity change. He also showed that these signals should at least
partly cancel each other. Vallée et al. (2017) and later Kame and Kimura (2019) showed
that for an infinite homogeneous space the ground acceleration would cancel the gravity
change completely before the P-wave arrival time. For a more realistic Earth model the
cancellation was found to be not as strong but still non-negligible (Vallée et al. 2017).
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Chapter 3. Prompt elasto-gravity signals

For this reason, the signal before the arrival of the P-wave, consisting of both the gravity
perturbation and the elastic response of the ground, is called prompt elasto-gravity signal
(PEGS).

Based on this, Vallée et al. (2017), modelled the PEGS for the Tohoku-Oki earthquake in a
layered non-self-gravitating Earth at eleven stations chosen by a signal-to-noise criterion.
For the modelling they used a three step procedure. The modelled signals matched very
well with the measurements at the eleven stations. The biggest amplitudes were obtained
in a distance of 1000 km to 1500 km away from the earthquake, where PEGS measured
with seismometers reached an amplitude of 1.6 nm/s2 before the P-wave arrival time. This
favourable distance results from the effect, that for small distances the pre P-wave arrival
window is too short and for stations too far away from the earthquake the signal becomes
too small due to the distance dependency of the gravity change. Next advances in signal
modelling were made by Juhel et al. (2018b) who used a normal mode approach to speed
up the computation of the gravity change. However, the ground acceleration can not
be directly used from the synthetic seismogram of the normal mode summation due to
numerical errors. These errors are induced by the small amplitude of ground acceleration
of the PEGS compared to the P-wave. Ground acceleration still had to be calculated
in a second step. Additionally to the reduction of computation time, the normal mode
approach has the advantage to incorporate the self-gravitation of the Earth, while the
approach of Vallée et al. (2017) does not. Nevertheless, the PEGS modelled by Juhel et
al. (2018b) differed by about less than 0.3 nm/s2, that is 14 % from the results of Vallée et
al. (2017). This indicates that the effect of self-gravitation of the Earth is negligible. The
most recent method to date for modelling PEGS is the one Zhang et al. (2020) describe
in their paper. They solve the elastic equation of motion fully coupled to the Poisson
equation with the code QSSP (Wang et al. 2017) and overcome the numerical problems
resulting from the much smaller displacement contained in the PEGS compared to P-wave
by an elegant differential method. Hence, they can model PEGS with only one step of
computation. That makes the computations faster. The results have a good agreement
to the ones of Vallée et al. (2017) and Juhel et al. (2018b) and the small differences can
be essentially explained by different structure and source models.

By modelling PEGS of different focal mechanisms and depths, Vallée and Juhel (2019)
found that shallow strike slip earthquakes and large deep earthquakes causes PEGS of
bigger amplitudes than megathrust earthquakes of the same magnitude. Based on these
findings, they searched for PEGS of other earthquakes than the Tohoku-Oki earthquake.
They found PEGS for five more earthquakes (see Chapter 1).

Already in the first articles of Harms et al. (2015) and Montagner et al. (2016) the pos-
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Chapter 3. Prompt elasto-gravity signals

sibility to use PEGS for early warning systems was mentioned. In the simple test of
modelling the signal not only for the MW = 9.1 Tohoku-Oki earthquake but also for the
Tohoku-Oki earthquake scaled down to magnitude MW = 8.5 Vallée et al. (2017) found a
strong dependency of PEGS on the earthquake’s magnitude. The signal of the MW = 8.5

earthquake had a maximum amplitude of 0.5 nm/s2 before the arrival of the P-wave, com-
pared to 1.6 nm/s2 for the MW = 9.1 earthquake. This opens the possibility to obtain
accurate magnitude estimates for big earthquakes faster than with current techniques.
From their analysis of PEGS of other earthquakes, Vallée and Juhel (2019) conclude that
if today’s instruments can detect a PEGS, it can be directly assumed that an earthquake
of MW ≥ 8 happened. Furthermore, if the detected PEGS has a positive sign, the possi-
bility of a subduction megathrust event can be excluded as they produce negative signals
everywhere.

Juhel et al. (2018a) investigated the capabilities of gravity strainmeters, which are under
development for gravitational wave detection, for earthquake early warning systems. As
the sensitivity needed for earthquake early warning systems is lower than for gravita-
tional wave detection, already early stage prototypes of the gravity strainmeters could be
used for this purpose. The advantages of both, gravity strainmeters as well as gravity
gradiometers, compared to gravimeters were already discussed by other authors before
(Harms et al. 2015, Montagner et al. 2016, Vallée et al. 2017): The background seismic
noise and the gravity induced ground acceleration would be the same for the two iner-
tial sensors of a gradiometer and therefore, would mostly cancel out in the differential
mode. As a result the gravity signal alone is measured. This would not be possible with
a gravimeter or seismometer. Juhel et al. (2018a) found that if gravity strainmeter sen-
sitivities of 10−15 /

√
Hz can be achieved, PEGS of earthquakes larger than MW = 7.0

could be detected before the P-wave arrival up to 1000 km away from the earthquake
and in the first 10 s up to 120 km away from the earthquake. For the Tohoku-Oki event,
they tested a real-time algorithm for estimating the earthquake parameters, based on a
matched-filter technique. They found that 5 s before the arrival of the P-wave the PEGS
would have been detected with good estimates of the location, the onset time and so far
released moment. Furthermore, realistic estimates for the magnitudes could be achieved
much earlier than with today’s early warning systems, which is important for tsunami
early warning. Thus, the gravity strainmeters currently under development show a great
potential for the detection of PEGS and their usage for early warning systems.

In this thesis the capabilities of gravity strainmeters are compared to those of gravity
gradiometers, which are the second type of instruments sensitive to gravity but not to
ground motion.
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Chapter 3. Prompt elasto-gravity signals

3.2 Main physical principles

In the following I will present the two main principles of PEGS. Firstly, why there is
a prompt-gravity signal measurable before the arrival of P-waves. Secondly, why this
prompt gravity signal is not the only signal and why there also exist ground accelerations
before the arrival of the P-wave which partly cancels the gravity signal in measurements of
seismometers or gravimeters. The sum of these two signals is called prompt-elasto gravity
signal (PEGS).

3.2.1 Prompt gravity signals

A sketch of the process responsible for prompt-gravity signals is shown in Figure 3.1.
There is a station measuring gravity away from the earthquakes epicentre. Before the
earthquake with hypocentre rrr0 starts, undisturbed gravity is measured. After the rupture
onset seismic waves start to propagate. The fastest is the P-wave, which propagates with
velocity vP . The propagation of seismic waves causes dilatation and compression inside
the Earth which leads to a change in density. Furthermore, the seismic waves lead to
displacement of materials carrying different density. This additionally changes the density
distribution. An example is the deformation of layer boundaries. The layer boundary with
the biggest density contrast, the the Earth’s surface, is the most important in this context.
So by all these effects after a certain time t1 in a sphere with |rrr − rrr0| < vPt1 the density
distribution has changed. This density change leads to a change in gravity, which occurs
throughout the whole Earth, but with increasing distance from the earthquake the size
of the gravity change gets smaller. As a seismic wave contains both, areas of dilatation
and areas of compression, a lot of their contributions to the gravity change cancel each
other. However, the change in density at the wave front the closest to the measurement
station contributes the most to the gravity change, so the sign of the gravity change is
governed by the contribution of the wave front. As time passes the wave front gets closer
to the station. That results in an increase of the gravity change. This time dependent
change in gravity can be measured at the station until the first P-wave arrives. Since the
signal of the P-wave is about 106 times larger than the gravity change the latter cannot
be observed anymore after the arrival of the P-wave.

One could think that also the redisplacement of masses at the fault plane produces a
measurable gravity change at the measurement station. This would lead to a nearly
instantaneous step in measured gravity with the time span of the moment rate function
of the earthquake, which should be simultaneously observed at all measurement stations.
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Chapter 3. Prompt elasto-gravity signals

Figure 3.1: Principle sketch of the origin of prompt gravity signals. (a) Before the onset of the
earthquake the undisturbed gravity g0 is measured at the station (green triangle). (b) Seismic waves start
to propagate. This leads to density increase in the compressed part of the Earth (orange) and density
decrease in the dilated part of the Earth (blue). As the compressed part is the closest to the station it
has the biggest influence on the gravity change at the station. Gravity at the station increases. (c) The
wave front with compressed material gets closer to the station. As a result the gravity change increases.
(d) The first P-wave arrives at the station and masks the change in gravity measured at the station. This
figure is adapted from Juhel (2017).
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Chapter 3. Prompt elasto-gravity signals

However such a signal was not observed (see the observations of Vallée et al. (2017)).
Thus, I expect its contribution to be much smaller than the one of the density change
related to seismic waves. The reason could be, that the fault plane is further away from
the station than the density change related to seismic waves.

3.2.2 Prompt elasto-gravity signals

Heaton (2017) mentioned that the change in gravity is not the only signal a gravimeter or
seismometer measures before the arrival of the first P-wave: The change in gravity δggg of
the prompt gravity signal acts as a force on the lithosphere. This force causes an elastic
response of the lithosphere, which leads to a ground acceleration üuu at the gravimeter or
seismometer. Both gravimeters and seismometers measure δggg − üuu and the two signals
partly cancel out each other as they are more or less of the same magnitude. Vallée et al.
(2017) and later Kame and Kimura (2019) showed that for an infinite homogeneous space
the ground acceleration would cancel the gravity change completely before the P-wave
arrival time. For a half space or a layered sphere, this cancellation is not complete and
there remains a measurable signal. The mechanism of the additional ground acceleration
is sketched in Figure 3.2 to further illustrate the effect . When an earthquake is happening,
the propagating waves change the density in a sphere around the hypocentre. This change
in density affects gravity at the measurement station, but also everywhere else. At each
location inside the Earth this change in gravity acts as a force and excites new elastic
waves. If the location is not too far away from the seismometer or gravimeter this wave
can reach the station before the P-wave and will be measured as ground acceleration in
addition to the gravity change. These two signals partly cancel each other.

Therefore, gravity gradiometers or gravity strainmeters which are not sensitive to ground
acceleration but only to a change in gravity could potentially help to measure signals of
PEGS. For gravity gradiometers this is studied in this thesis.
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Figure 3.2: Principle sketch of the origin of the ground acceleration of prompt elasto-gravity
signals. An earthquake with the epicentre at the grey star occurs. Up to now seismic waves (marked in
black) have propagated within the grey circle and changed the density within the grey circle. This causes
a change in gravity at the station (yellow triangle) and everywhere else. The change in gravity acts as a
body force with force density fff = ρggg inside the Earth (see small sketch on the lower right). As a result
new gravity induced elastic waves are exited everywhere inside the Earth. Those which are exited within
the green circle still have enough time to reach the station before the arrival of the P-wave. When they
arrive at the station ground acceleration is measured in addition to the gravity change. The figure is
adapted from Juhel et al. (2018b).
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Chapter 4

Theoretical background to the
modelling of PEGS

In this chapter the basics of the gravity field and its expansions in spherical harmonics
as well as the basics of continuum mechanics will be introduced. Both will be needed in
Chapter 6 to understand the methods for modelling prompt elasto-gravity signals.

4.1 The gravity field and its expansion in spherical har-

monics

The gravity potential Φ at position rrr of a body, for example the Earth, fulfils the Poisson
equation (Aki and Richards 1980):

∇2Φ(rrr) = −4πGρ(rrr) , (4.1)

where G is the gravitational constant and ρ(rrr) is the density distribution inside the body.
The gravity field of the body can than be calculated as

ggg(rrr) = ∇Φ(rrr) (4.2)

and the force density inside the body due to the gravitational field is

fff(rrr) = ρ(rrr)∇Φ(rrr) .

As the shape of the Earth is similar to a sphere it is suitable to use spherical coordinates.
In this thesis I use r for the radius, ϑ for the colatitude and ϕ for the longitude, as sketched
in Figure 4.1.
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Figure 4.1: Spherical Coordinates

In spherical coordinates the ∇-operator, and the ∇2-operator have the following forms:

∇ =eeer
∂
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r sinϑ
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(
sinϑ
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r2 sin2 ϑ

∂2

∂ϕ2
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where eeer, eeeϑ and eeeϕ are the unit basis vectors of the coordinate system. If the Poisson
equation is written in spherical coordinates it can be shown that its solutions are of the
following form (see for example Aki and Richards (1980)):

Φ(r, ϑ, ϕ) =
∞∑
l=0

l∑
m=−l

φlm(r)Ylm(ϑ, ϕ) , (4.3)

where Ylm(ϑ, ϕ) are the so-called spherical harmonic functions. In this thesis ortho-
normalised complex spherical harmonics with the Condon-Shortly phase factor are used:

Ylm(ϑ, ϕ) = P̄m
l (cosϑ)eimϕ , (4.4)

where P̄m
l are the normalised associated Legendre functions, whose definition and some

useful relations can be found in Appendix A.

From Equation 4.3 we can derive expressions for the gravity field and the gravity gradient
tensor:

The gravity field can be written as

ggg(r, ϑ, ϕ) = ∇Φ(ϑ, ϕ)

=
∞∑
l=0

l∑
m=−l

(
∂φlm(r)

∂r
Ylm(ϑ, ϕ)eeer +

1

r
φlm(r)

∂Ylm(ϑ, ϕ)

∂ϑ
eeeϑ +

1

r sinϑ
φlm(r)

∂Ylm(ϑ, ϕ)

∂ϕ
eeeϕ

)
.

(4.5)
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The gravity gradient tensor TTT is a tensor which consists of the second derivatives of the
gravity potential. It describes the gradients of each component of the gravity field. The
SI unit for a gravity gradient is 1/s2, but it is often given in units of Eötvös:

1 E = 1× 10−9 1/s2

It can be shown that the gravity gradient tensor is symmetric. In spherical coordinates
its components are

Tϑj =
1

r

∂

∂ϑ
(∇Φ(ϑ, ϕ))eeej ,

Tϕj =
1

r sinϑ

∂

∂ϕ
(∇Φ(ϑ, ϕ))eeej ,

Trj =
∂

∂r
(∇Φ(ϑ, ϕ))eeej , j ∈ {r, ϑ, ϕ} .

For the six independent components we obtain the following equations:

Tϑϑ =
1

r2

∂2Φ(r, ϑ, ϕ)

∂ϑ2
+

1

r

∂Φ(r, ϑ, ϕ)

∂r

=
∞∑
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(
1

r2
φlm(r)

∂2Ylm(ϑ, ϕ)

∂ϑ2
+

1

r
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)
(4.6)

Tϑϕ = − 1
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)
(4.7)
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(4.9)
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Tϕr = − 1

r2 sinϑ
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Trr =
∂2Φ(r, ϑ, ϕ)

∂r2
=
∞∑
l=0

l∑
m=−l

(
∂2φlm(r)

∂r2
Ylm(ϑ, ϕ)

)
(4.11)

Similar equations can for example be found in Petrovskaya and Vershkov (2006), but they
differ a bit, as they are for real spherical harmonics and only for the outer gravity field of
the Earth, where the dependency on r is known to be φlm(r) = Clm

GM
r0

(
r0
r

)l+1. Hereby is
M the mass of the Earth, r0 the Earth radius and Clm is a coefficient. Furthermore, they
use a slightly different coordinate system.

In Equation 4.5 and 4.6 to 4.11 derivatives of spherical harmonics are needed:

∂Ylm(ϑ, ϕ)

∂ϕ
= imYlm(ϑ, ϕ) ,

∂2Ylm(ϑ, ϕ)

∂ϕ2
= −m2Ylm(ϑ, ϕ),

∂Ylm(ϑ, ϕ)

∂ϑ
=
∂P̄m

l

∂ϑ
exp(imϕ) ,

∂2Ylm(ϑ, ϕ)

∂ϑ2
=
∂2P̄m

l

∂ϑ2
exp(imϕ) ,

∂2Ylm(ϑ, ϕ)

∂ϕ∂ϑ
= im

∂Ylm(ϑ, ϕ)

∂ϑ
,

where ∂P̄ml
∂ϑ

=
∂P̄ml (cosϑ)

∂ϑ
and ∂2P̄ml

∂ϑ2
=

∂2P̄ml (cosϑ)

∂ϑ2
are derivatives of the normalised associated

Legendre functions. Recursion formulas for them can be found in Appendix A.

4.2 Basics of continuum mechanics

Inside the Earth, kinematics is governed by the Lagrangian equation of motion of contin-
uum mechanics:

ρ(rrr)
∂2uuu(rrr, t)

∂t2
= fff(rrr, t) +∇ · τττ(rrr, t) , (4.12)

where uuu(rrr, t) is a vector describing the displacement inside the body at point rrr and time
t, fff(rrr, t) is the force density acting on the body and τττ(rrr, t) is the stress inside the body.
There exists always a dependence between stress and displacement inside the body, which
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is different for different material properties. Therefore, this dependence is called material
equation. For elastic bodies the material equation is given by Hooke’s law, which is a
linear relation between the stress tensor τττ(rrr) and the strain tensor εεε(rrr). The strain
tensor describes the deformation of a body and is composed of spatial derivatives of the
displacement uuu(rrr):

εεε =
1

2

3∑
α,β=1

(
∂uβ
∂rα

+
∂uα
∂rβ

)
eeeα ⊗ eeeβ , (4.13)

where eeeα⊗eeeβ is a tensorial product between the unit basis vectors of the coordinate system.
For a homogeneous isotropic body, Hooke’s law only contains two elastic parameters of
the material, the Lamé parameters λ and µ:

τττ = λ(∇ · uuu) · I + 2µεεε , (4.14)

where I is the identity matrix. For a given force distribution fff(rrr), the equation of motion
and Hooke’s law determine the displacement field.

Displacement inside a body produces density change. The density change δρ(rrr, t) is given
by the continuity equation of mass:

δρ(rrr, t) = −∇ ·
(
ρ0(rrr)uuu(rrr, t)

)
= −ρ0(rrr)∇ · uuu(rrr, t)− (∇ρ0(rrr)) · uuu(rrr, t) (4.15)

Hereby ρ0(rrr) is the density distribution before the displacement. The density change can
be split up into two terms. The first is describing density change due to compression or
dilatation of the material and will be called bulk perturbation in the following:

δρbulk(rrr, t) = −ρ0(rrr)∇ · (uuu(rrr, t)) (4.16)

It causes the change δΦbulk in the gravity potential:

δΦbulk(rrr0, t) = G

∫
V

δρbulk(rrr, t)

|rrr − rrr0|
dV = −G

∫
V

ρ0(rrr)∇ · (uuu(rrr, t))

|rrr − rrr0|
dV (4.17)

The second term of Equation 4.15 describes density change due to the displacement of
materials carrying different densities, it will be called displacement perturbation in the
following:

δρdisp(rrr, t) = −uuu(rrr, t) · ∇(ρ0(rrr)) (4.18)
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Examples for those perturbations are the displacement of the free surface or the defor-
mation of layer boundaries inside the Earth. The related change in gravity potential
is

δΦdisp(rrr0, t) = G

∫
V

δρdisp(rrr, t)

|rrr − rrr0|
dV = −G

∫
V

uuu(rrr, t) · ∇(ρ0(rrr))

|rrr − rrr0|
dV . (4.19)

More details of these basics of continuum mechanics can be found for example in Aki and
Richards (1980).
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Chapter 5

Gravity gradiometers

The aim of this chapter is to get an overview on existing gradiometers and their noise
spectra. In Chapter 7 the noise spectra will be compared to simulated gravity gradients of
prompt elasto-gravity signals (PEGS) in order to analyse if these instruments are suitable
to detect PEGS. Before, the principles of gravity strainmeters are compared with the
principles of gravity gradiometers. This will help to identify advantages of one or the
other type of instrument in Chapter 7.

5.1 Principles of gravity strainmeters and gravity gra-

diometers

As discussed in Chapter 3, one of the main challenges when measuring PEGS is the partial
cancellation of the gravity change by the ground acceleration induced by this very same
gravity change. This problem could be solved by using gravity strainmeters or gravity
gradiometers, which are both insensitive to ground acceleration.

Earlier studies have shown a high potential of gravity strainmeters for the detection of
PEGS (Juhel et al. 2018a, Shimoda et al. 2020). These instruments are under development

Figure 5.1: Sketch of a gravity strainmeter. A gravity strainmeter consists of two sensors. In each
of the sensors a test mass (red circle) is levitated against the static gravity field. Different variations of
the gravity field at the two test masses result in different movements of each of them. The variation of
distance between the two test masses is then measured.
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Figure 5.2: Sketch of a gravity gradiometer. A gravity gradiometer consists of two sensors. At each
of them the total acceleration aaa = δδδg− üuu is measured. The difference of these two accelerations is taken.

mainly for the purpose of gravitational wave detection. A simplified sketch of a gravity
strainmeter can be seen in Figure 5.1. The instrument consists of two test masses levitated
against the static gravity field. The variation of distance between them ∆l(t) is measured
and divided by the original distance l(0). For example for the xx-component of the gravity
strain sxx:

sxx =
∆lx(t)

lx(0)

This is a very good approximation of the true gravity strain, which is the double time
integral of the gravity gradient TTT (Juhel et al. 2018a):

sss =

t∫
t0

t′∫
t0

TTT (t′′)dt′′dt′ (5.1)

If the gravity field changes, the test masses move. If the change in gravity is different at
the two ends, the movement of the test masses is also different, which results in a change of
distance between them. Consequently, the instrument is sensitive to changes in the gravity
gradient. On the other hand, ground acceleration only results in an acceleration of the
frame around the test masses but not of the test masses themselves. Therefore, in this
case the distance between the test masses remains identical. As a result the instrument
is not sensitive to ground acceleration.

The other type of instruments which are sensitive to changes in the gravity gradient, but
not to ground acceleration are gravity gradiometers. The main principle of all gravity
gradiometers is to measure the difference between the accelerations at two points in the
instrument. A simplified sketch of a gravity gradiometer can be seen in Figure 5.2. The
gravity gradient relates to the difference of the accelerations aaa at the two sensors divided
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by the distance l between the sensors, for example for the xx-component

Txx =
a1x − a2x

lx
.

The accelerations can be caused by movements of the instrument or by the gravity field,
but all common movements of the sensors cancel each other in the difference. As a
result the instrument is insensitive to ground accelerations. Some gravity gradiometers
measure directly the difference of the accelerations as for example the torsion balance of
Eötvös (1896), but most of them are measuring the accelerations at two different points
separately. If this is the case the instrument can be used in the common mode or the
differential mode. In the common mode the accelerations are summed up, so that the
mid point acceleration can be approximated. In the differential mode the difference of
the accelerations is calculated to estimate the gradient. In an ideal instrument a common
acceleration would be completely cancelled out in the differential mode, but for a real
instrument this is not the case. Instead of aaa1 − aaa2 it measures:

c1aaa1 − c2aaa2 =
1

2
(c1 + c2)(aaa1 − aaa2) +

1

2
(c1 − c2)(aaa1 + aaa2) ,

where c1 and c2 both are close to 1.0 , but not exactly 1.0. The quotient between the
factor in front of the differential signal 1

2
(c1 + c2) and the factor in front of the common

signal 1
2
(c1 − c2) is called Common Mode Rejection Ratio (CMRR)

CMRR =
c1 + c2

c1 − c2

.

A good instrument should have a high CMRR.

5.2 Gravity gradiometers that exist or that are under

development

In the following I will give a short overview of gravity gradiometers that exist or are under
development and their sensitivities. A detailed overview of the history and the today’s
development in the field of gravity gradiometers can be found in Veryaskin (2018), which
was the main source for this section.
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5.2.1 The torsion balance of Roland Eötvös

The first gravity gradiometers were based on the torsion balance developed by Eötvös
(1896). The principle of this instrument relies on an arm with one test mass at each end,
which hangs at a fine torsion filament. A gradient in the gravity field induces different
forces on the two test masses, which results in a torsion of the filament. This torsion can
be measured and related to the applied torque and the gravity gradient.

5.2.2 Commercial gradiometers

In the recent decades most gradiometers were developed to be used on aircraft or ships
for regional mapping of the gravity field in the context of exploration. For measurements
on ships or aircraft the rejection of the accelerations of the vehicle in the measurements
is very important. The majority of them are using multiple electrical accelerometers on
a platform. Examples are the full tensor gradiometers dFTG and eFTG, produced by
Lockheed Martin, which are two of the most accurate commercial gravity gradiometers
until now. They have a sensitivity of 2.5 to 4 E/

√
Hz. Improvements and changes of these

instruments are planned (FTG plus) for which the performance goals are 0.5 E/
√

Hz in a
frequency range from 0.1 mHz to 5 Hz.

5.2.3 The GREMLIT gradiometer

Another gradiometer for aircraft applications based on electrical accelerometers is the
gravity gradiometer GREMLIT described in Douch et al. (2014). They used accelerome-
ters which were initially developed for the GRACE and GOCE missions. The gradiometer
can measure the Txx, Tyy and Txy components. The following formula for the square root
of the power spectral density (PSD) of the intrinsic noise of the sensor is given for fre-
quencies f :

√
ST (f) = 0.08 E/

√
Hz

√(
fc1
f

)2

+

(
fc0
f

)4

+ 1 +

(
f

fc2

)4

with fc1 = 3× 10−3 Hz, fc0 = 2× 10−5 Hz and fc2 = 0.12 Hz. That results in values below
1 E/
√

Hz in a frequency range of 10−3 to 3× 10−2 Hz.
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5.2.4 Gradiometer developed by Moody et al. (2002)

In the last decades a group of scientists at the University of Maryland developed sev-
eral gradiometers based on superconducting accelerometers. One of them is described
in Moody et al. (2002). The accelerometers consist of test masses suspended with high
quality mechanical springs, whose displacement is measured with superconducting coils
and SQUIDS. Their prototype instrument could measure all three diagonal elements of
the gradient tensor. They presented the following estimated PSD of the intrinsic noise of
the instrument. This estimate consists of thermal noise and readout noise:

ST (f) =
8

ml2

(
kBTωd
Qd

+
ω2
d

2νβ
ESQ(f)

)
for ω = 2πf � ωd . (5.2)

Hereby kB ≈ 1.38× 10−23 J/kg is the Boltzmann constant, m is the mass of the test
masses and l is the baseline between them. T = 4.2 K is the temperature at which the
accelerometers are operating. Qd is the quality factor of the differential mode, which is
increasing with decreasing pressure in the vacuum chamber. ωD is the resonance frequency
of the differential mode. β and η are the electromechanical energy coupling and the energy
coupling efficiency from circuit to SQUID and ESQ(f) is the energy resolution of the
SQUID. Values for m, l, ωd, Qd, β and η are given in Table 5.1. The energy resolution of
the SQUID can reach ESQ(f) = (1 + 0.1 Hz

f
) · 5× 10−31 J/Hz in a ideal experimental setup

but it was measured to be about 10 times larger in the instrument. ESQ(f) = (1 + 0.1 Hz
f

) ·
5× 10−30 J/Hz is used in the following. Inserting these values to Equation 5.2 gives values
for

√
S(f) below 10−2 E/

√
Hz at frequencies between 0.1 Hz and 10 Hz. However, the

measured noise was about 5 times bigger. With further improvements of the instrument,
the theoretic intrinsic noise level (Formula 5.2) seems to be reachable.

5.2.5 Gradiometer developed by Griggs et al. (2017)

The concept of the gradiometer presented in Moody et al. (2002) was further developed
by Griggs et al. (2017). The test masses in the accelerometers which where suspended
mechanically before are here levitated by magnetic fields in a superconducting environ-
ment. A prototype can measure two components of the gradient tensor, one diagonal and
one off-diagonal, for example Txx and Tyz. It is mainly developed for space applications
where the gravity acceleration g is nearly zero, but it could be tested in a laboratory
as well, where g � 0. Due to misalignment of the sensitive axes of the accelerometers
the CMRR was limited and the sensitivity of the instrument could not be demonstrated.
They give formulas for the PSD of the intrinsic sensitivity, similar to Moody et al. (2002),
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but extended for ωd < ω and non-diagonal elements:

For the diagonal element: ST (f) =
8

ml2

(
kBTωd
Qd

+
(ω − ω2)2

2νβω2
d

ESQ(f)

)
(5.3)

For the off-diagonal element: ST (f) =
2

ζ2J

(
kBTωd
Qd

+
(ω − ω2)2

2νβω2
d

ESQ(f)

)
(5.4)

ζ is the gradient to angular acceleration conversion factor and J is the moment of inertia
of the rotating arms. Values for m, l, ζ, J , ωd, Qd, β and η are given in Table 5.1.
Here, it is assumed that the best performance of the SQUID can be reached (ESQ(f) =

(1 + 0.1 Hz
f

) · 5× 10−31 J/Hz). This gives values below 10−3 E/
√

Hz at frequencies below
0.1 Hz. It will be challenging to reach the theoretic intrinsic noise level of the instrument
(Formulas 5.3 and 5.4), especially when g � 0, but it could be possible. According to
the authors (Griggs et al. 2017) it is planned to expand the instrument to a full tensor
gradiometer for space (g ≈ 0). However, they did not clearly state, if the measurement
principle works in an environment with g � 0 for the components Tzz and Txy.

The gradiometers developed at the University of Maryland were also considered in the
study of Juhel et al. (2018a) concerning the capabilities of gravity strainmeters for PEGS
detection. However, in that article they were considered to be used as gravity strainmeters.

Figure 5.3 shows a comparison of measured or estimated square roots of the PSD of the
noise levels of the instruments described above. These will be compared to simulated
gravity gradients of PEGS in Chapter 7.

Other ideas to measure gravity gradients came up in the last decades. Examples are quan-
tum gravity gradiometer with free falling cold atoms or two superconducting gravimeters
measuring next to each other. However, they could not reach sensitivities below 1 E/

√
Hz

yet.

32



Chapter 5. Gravity gradiometers

Figure 5.3: Noise spectra of gradiometers
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Table 5.1: Design parameters of superconducting gravity gradiometers. The table shows the
design parameters of the superconducting gravity gradiometers developed by Moody et al. (2002) and
Griggs et al. (2017).

Parameter Moody et al. (2002) Griggs et al. 2017

m(kg) 1.07 0.10
l(m) 0.19 0.135

J(kgm2) 8.1× 10−5

ζ 0.96
2πωd = fd(Hz) 10.40 0.02

Qd 5× 104 2× 106

β 0.28 1
ν 0.13 0.4
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Chapter 6

Modelling gravity gradients of prompt
elasto-gravity signals

In this chapter two existing methods for the modelling of prompt-elasto gravity signals
(PEGS) are presented: the method of Harms (2016), which uses a rather simplified Earth
model, a flat homogeneous Earth, and the method of Juhel et al. (2018b) which is based on
normal mode summation and considers a self-gravitating, spherical, radial inhomogeneous
Earth. By small adaptations they can be used to model gravity gradients of PEGS. For
both of the methods tests of this modelling are performed in this chapter.

6.1 The method of Harms (2016)

Harms (2016) found a semi-analytic method to calculate prompt gravity signals in a
homogeneous half-space. The model covers the change in gravity but not the ground
acceleration due elastic response of the Earth. For modelling the outputs of gravity
gradiometers, this is sufficient as they are not sensitive to ground acceleration. I will
introduce the basic ideas of the method in this chapter. Afterwards I will explain how I
use it to calculate gravity gradients of PEGS in a half-space.

6.1.1 Theory

The coordinate system used for the half-space is sketched in Figure 6.1. Cartesian co-
ordinates are used. The z-axis is pointing upwards. I will denote position vectors as
rrr = (σσσ, z), where σσσ is a vector in the x-y plane. Similarly other vectors are split in their
x-y-component and their z-component. For example, the displacement vector uuu can be
written as uuu = (uuuσ, uz). The density is constant for z ≤ 0 and zero for z > 0.

The displacement field of the earthquake uuu causes a change in density given by the con-
tinuity equation of mass (see Chapter 4, Equation 4.15). That will cause a change in the
gravity potential. Inserting the density distribution of the half-space into Equation 4.17
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Figure 6.1: Coordinate system for the half space. Cartesian coordinates are used to describe points
in the half space. The vector σσσ is the projection of the position vector rrr to the x-y-plane. The Earth
surface is at z = 0.

gives the first contribution to the change in gravity, which is the bulk perturbation of the
gravity potential:

δΦbulk(rrr0, t) = −Gρ0

∫
V (z≤0)

∇(uuu(rrr, t))

|rrr − rrr0|
dV (6.1)

For the second contribution, the displacement perturbation of the gravity potential, we
need the gradient of the density distribution of the half space:

∇(ρ0(rrr)) = −ρ0nnn(rrr)δ(z) , (6.2)

where nnn(rrr) is the surface normal and δ(z) is the delta distribution. The gradient of the
density distribution is zero everywhere beside at the Earth’s surface (z = 0). There it
points in the direction of the surface normal which is

nnn(rrr) =

0

0

1

 (6.3)

in the used coordinate system.

⇒ uuu(rrr, t) · nnn(rrr) = uz(rrr, t) (6.4)
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Inserting Equations 6.2 and 6.4 into Equation 4.19 gives

δΦdisp(rrr0, t) = Gρ0

∫
S

uz(rrr, t)

|rrr − rrr0|
dS (6.5)

with S as the surface of the half-space.

The calculations are continued in the Fourier domain of σσσ0. The Fourier transforms of
Equations 6.1 and 6.5 are

δΦ̃bulk(kkkσ, z, t) = 2πGρ0
1

kσ

0∫
−∞

e−kσ |z−z0| (∂zũz(kkkσ, z, t) + ikkkσũuu(kkkσ, z, t)) dz ,

δΦ̃disp(kkkσ, z, t) = −2πGρ0
1

kσ
ũz(kkkσ, 0, t)e

−kσ |z0| .

This can be simplified by partial integration of the first summand of the integrand of
δΦbulk(kkkσ, z, t). The total gravity change then becomes

δΦ̃(kkkσ, z, t) = 2πGρ0

0∫
−∞

e−kσ |z−z0|
(

sgn(z − z0)ũz(kkkσ, z, t) + i
kkkσ
kσ
ũuuσ(kkkσ, z, t)

)
dz . (6.6)

The next step is to express the displacement field uuu(rrr, t) in terms of potentials. Following
the Helmholtz theorem the vector field uuu(rrr, t) can be expressed in terms of a gradient of
a scalar potential φs(rrr, t) and the rotation of a vector potential ψψψs(rrr, t):

uuu(rrr, t) = ∇φs(rrr, t) +∇×ψψψs(rrr, t)

with ∇ · ψψψs(rrr, t) = 0. With this constrain ψψψs(rrr, t) can itself be expressed by two scalar
potentials:

ψψψs(rrr, t) = ∇×

 0

0

ψS(rrr, t)

+

 0

0

χs(σσσ, t)

 =

 ∂yψS(rrr, t)

−∂xψS(rrr, t)

χs(σσσ, t)

 ,

⇒ uuu(rrr, t) =

∂xφS(rrr, t))

∂yφS(rrr, t)

∂zφS(rrr, t)

+

∂yχS(σσσ, t) + ∂z∂xψS(rrr, t)

∂z∂yψS(rrr, t)− ∂xχS(σσσ, t)

−∂2
xψS(rrr, t)− ∂2

yψS(rrr, t)

 ,
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or in the Fourier domain of σσσ:

ũuu(kkkσ, z, t) =

ikxφ̃S(kkkσ, z, t)

ikyφ̃S(kkkσ, z, t)

∂zφ̃S(kkkσ, z, t)

+

ikyχ̃S(kkkσ, t) + ikx∂zψ̃S(kkkσ, z, t)

iky∂zψ̃S(kkkσ, z, t)− ikxχ̃S(kkkσ, t)

(k2
x + k2

y)ψ̃S(kkkσ, z, t)

 . (6.7)

Inserting Equation 6.7 into Equation 6.6 leads to

δΦ̃(kkkσ, z, t) = 2πGρ0

0∫
−∞

e−kσ |z−z0|
(

sgn(z − z0)
(
∂zφ̃S(kkkσ, z, t) + k2

σψ̃S(kkkσ, z, t)
)

− kσ
[
φ̃S(kkkσ, z, t) + ∂zψ̃S(kkkσ, z, t)

])
dz .

By smart partial integration, one can obtain

δΦ̃(kkkσ, z0, t) = −2πGρ0

(
e−kσ |z0|

(
sgn(z0)φ̃S(kkkσ, 0, t) + kσψ̃s(kkkσ, 0, t)

)
+ 2φ̃s(kkkσ, z0, t)

)
.

(6.8)

So, to calculate the gravity change in the Fourier domain of σσσ at the observation height z0

we only need the seismic potentials φ̃S(kkkσ, z, t) and ψ̃S(kkkσ, z, t) at the surface z = 0 and
the observation height z = z0. Most of the time measurements are taken above the Earth
surface z0 > 0 where the seismic potentials are equal to zero. In this case Equation 6.8
simplifies to

δΦ̃(kkkσ, z0, t) = −2πGρ0e−kσz0
(
φ̃S(kkkσ, 0, t) + kσψ̃s(kkkσ, 0, t)

)
.

For a measurement at the surface we have

δΦ̃(kkkσ, 0, t) = −2πvGρ0

(
φ̃S(kkkσ, 0, t) + kσψ̃s(kkkσ, 0, t)

)
. (6.9)

Equation 6.9 can be easily transformed to the Laplace domain of time (t→ s):

δΦ̂(kkkσ, z0, s) = −2πGρ0

(
φ̂S(kkkσ, 0, s) + kσψ̂s(kkkσ, 0, s)

)
(6.10)

To calculate the gravity change caused by an earthquake with moment tensor MMM , first
the seismic potentials φS(kkkσ, 0, s) and ψs(kkkσ, 0, s) at the Earth’s surface have to be found.
This can be achieved by solving the equation of motion and Hooke’s Law (see chapter 4,
Equations 4.12 and 4.14) in the Fourier domain of space ((x, y, z)→ (kx, ky, kz)) and the
Laplace domain of time (t→ s). The force term related to a sudden release of the moment
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tensor of the earthquake is

fff(rrr) = −MMM · ∇δ(rrr − rrrs)H(t) , (6.11)

where rrrs is the hypocentre of the earthquake and H(t) is the step function with H(t) = 0

for t < 0 and H(t) = 1 for t ≥ 0.

Attention: I use the opposite sign convention for the moment tensor than Harms (2016)
here to be coherent with section 6.2.1. This is the sign convention of Aki and Richards
(1980).

After having solved the equation of motion and Hooke’s Law, the inverse Fourier trans-
forms of φ̂S(kkk, s) and ψ̂s(kkk,0, s) can be calculated with respect to kz and then be inserted
into Equation 6.10. This gives an analytic expression for the gravity change induced by
the earthquake in the Fourier domain of x and y and the Laplace domain of time:

δΦ̂(kkkσ, 0, s) = δΦ̂∞(kkkσ, 0, s) + δΦ̂α(kkkσ, 0, s) + δΦ̂β(kkkσ, 0, s) (6.12)

with

δΦ̂∞(kkkσ, 0, s) = −2πGekσzs
1

kσs2
(kx, ky, ikσ) ·MMM ·

 kx

ky

ikσ

 ,

δΦ̂α(kkkσ, 0, s) = 4πGeναzs
1

s2

kσ(kσ − νβ)2

(ν2
β + k2

σ)2 − 4νανβk2
σ

(kx, ky, iνα) ·MMM ·

 kx

ky

iνα

 ,

δΦ̂β(kkkσ, 0, s) = 4πGeνβzs
1

s2

k2
σ − 2kσνα + ν2

β

(ν2
β + k2

σ)2 − 4νανβk2
σ

(kxνβ, kyνβ, ik
2
σ) ·MMM ·

 kx

ky

iνβ


and

να =

√
s2

α2
+ k2

σ ,

νβ =

√
s2

β2
+ k2

σ ,

where α and β are the P- and S-wave velocities.
As we are normally interested in the gravity change in spatial and time domain, inverse
Fourier transforms from kx and ky to x and y and an inverse Laplace Transform from s
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to t have to be calculated. In the method of Harms (2016) this is done by the so called
Cangniard-de Hoop method. The basic idea of this method is to write the inverse Fourier
transform of δΦ(kkkσ, 0, s):

δΦ̄(x, z, 0, s) =
1

(2π)2

∞∫
−∞

∞∫
−∞

eikkkσσσσδΦ̂(kkkσ, 0, s)dkydkx

and manipulate the integrals by substitutions to get an expression of the form

δΦ̄(x, z, 0, s) =

∞∫
0

A(t)e−stdt . (6.13)

As this is the same form as the definition of the Laplace transform (see Appendix B), A(t)

is the searched solution for δΦ(x, y, 0, t). In general A(t) will be an integral itself, which
has to be solved numerically. However, compared to direct numerical inverse Fourier
and Laplace transform of Equation 6.12 only one integral instead of three has to be
calculated numerically. The substitutions needed to get the form of Equation 6.13 will
lead to integrals in the complex plane, which causes several difficulties related to complex
analysis. A detailed description of the Cangniard-de Hoop method can be found in Aki
and Richards (1980). The substitutions needed for the inverse transformations of 6.12 are
described in Harms (2016).

The result of the Cangniard-de Hoop method δΦ(x, y, 0, t) gives the change of the grav-
ity potential for a step-like evolution of the body-force equivalent of the earthquake, see
Equation 6.11. For a realistic earthquake, the time evolution of the force is more compli-
cated than a simple step function. It can be expressed as a convolution of the normalised
source-time function ṁ(t) with the step-like evolution of the body force:

fff(t) = −
+∞∫

τ=−∞

ṁ(t)MMM · ∇δ(rrr − rrrs)H(t− τ)dτ

The source-time-function describes how much moment is released per unit of time. It is
often modelled as a triangle. The change in gravity potential for this time evolution is
given by the convolution with the change in gravity potential for a step-like evolution:

δΦrealistic(x, y, 0, t) = δΦ(x, y, 0, t) ∗ ṁ(t)
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6.1.2 Simulations

To simulate gravity gradients of PEGS with the method of Harms (2016) I use a python
code written by Juhel, which is available on GitHub (Juhel 2018). This code is mainly
a translation of a Matlab code written by Harms, where he implemented the method
described in the previous section. The python code was originally written to compute the
xz- and the yz-component of the gravity strain of PEGS. The computation gravity strain
is carried out by taking the difference of the z-component of the gravity vector at two
points with a distance of 10 m, dividing the result by 10 m and performing two numerical
integrations in time. By leaving out these integrations, the code can be used to calculate
gravity gradients. I slightly extended the code to compute also the xx-, the xy-, and the
yy-component of the gravity gradient tensor. I keep the distance of 10 m between the
two points where gravity is computed, although in contrast to gravity strainmeters, most
gravity gradiometers are smaller than 10 m. This linear approximation should remain
below other errors, for example the one of the simplified Earth model, because the spatial
wavelength of the gravity signal is much longer. To compute the zz-component of the
gravity gradient I make use of the property that the gradient tensor is trace free above
the Earth’s surface, where measurements are usually carried out:

Tzz = −Txx − Tyy

The results of these simulations for the Tohoku-Oki earthquake will be shown and dis-
cussed in Chapter 7. For the computations in Chapter 7 I use the same P- and S-wave
velocities as Juhel et al. (2018a): vP = 6400 m/s and vS = 3200 m/s .

6.1.3 Limitations of the method

Although the method of Harms (2016) is very useful for an estimation of the size of the
gravity gradient signals, it has some limitations if accurate time series of gravity gradients
should be calculated.

The first limitation of the method is related to the actual inhomogeneity of the Earth: As
the method solves the problem for a homogeneous half space, we have to choose one P-
and one S-wave velocity which should be valid for the whole Earth. However, in reality
the velocities change especially with depth. Therefore, the optimal choice of the velocities
is not clear. That is why Harms (2016), Juhel et al. (2018a) and Juhel et al. (2018b) used
each a different combination of P- and S-wave velocities, when applying the method of
Harms (2016). The values can be found in Table 6.1. To test the sensitivity of simulated
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gravity gradients on the chosen P- and S-wave velocities for one station I calculated the
gravity gradients with the three different values for P- and S-wave velocities. This test
was done for the Tohoku-Oki earthquake and a station 150 km away from the epicentre
in the west direction perpendicular to the strike. The results can be seen in Figure 6.2.
The higher P-wave velocity of Juhel et al. (2018a) shortens the signals about around 5 s

compared to the signals simulated with the P-wave velocity of Harms (2016) and Juhel
et al. (2018b), which are around 25 s long. This shortening also results in a decrease of the
maximum amplitude of each component of the gravity gradient by about two third of the
signal. For most of the components (EE, NN, EN, ZZ) beside this shortening the signals
are nearly not influenced by the different velocities. As a result, the signals simulated
with the velocities of Harms (2016) and those simulated with the velocities of Juhel et al.
(2018b) are nearly the same, as they use the same P-wave velocity and therefore have the
same length. However, for example for the EZ-component the forms of the signal differ
clearly between the three different velocity models. Here, the signal simulated with the
velocity model of Juhel et al. (2018b) is about three times bigger at the end of the time
series than the one simulated with the velocities of Harms (2016). In conclusion, on the
one hand, significant differences between the results of the different velocity models can be
seen, which would become important for example if measured data should be analysed.
On the other hand the magnitude of the signals is similar for all the velocity models,
hence for estimating the order of magnitude of gravity gradients the differences between
the different velocity models are not important.

A second limitations of the method of Harms (2016) is the negligence of the full coupling
between gravity change and ground motion. This means, that Harms (2016) considers
that the displacement field of the earthquake changes the gravity field, but he does not
consider that the change of the gravity field itself changes the displacement field, which
then changes the gravity field again and so on. This would lead to a complete coupling
between the equation of motion and the Poisson equation. However, at least for the gravity
field Juhel et al. (2018b) found, that the influence of this coupling is smaller than 14 %

and I expect it to be at the same order of magnitude for the gravity gradient. Whereas for
the simulation of outputs of gravity gradiometers the coupling of the equation of motion
and the Poisson equation may be neglected, it is indeed not negligible anymore, when
simulating the output of gravimeters or seismometers, as then it is this coupling which
leads to the additional ground acceleration.

Another limitation of the method pf Harms (2016) is the negligence of the sphericity of
the Earth. However, all stations studied in this thesis are not more than 1000 km away
from the earthquake. Therefore, I expect the influence of the negligence of the Earth’s
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Table 6.1: P- and S-wave velocities used by different authors, when applying the method of
Harms (2016).

P-wave velocity S-wave velocity

Harms (2016) 6.4 km
s

3.2 km
s

Juhel et al. (2018a) 7.8 km
s

4.4 km
s

Juhel et al. (2018b) 6.4 km
s

3.7 km
s

sphericity to be much smaller than the influence of the assumption that the Earth’s
material is homogeneous.

6.2 The method of Juhel et al. (2018b)

One possibility to overcome the limitations of the method of Harms (2016) that were stated
above is to use the method of normal mode summation. It facilitates the simulation of
PEGS for a spherical, radial inhomogeneous, self gravitating Earth.

Juhel et al. (2018b) were the first one, who used the method of normal mode summation
to calculate PEGS. Originally normal mode summation was developed to calculate low
period synthetic seismograms for teleseismic earthquakes. But with very little modifica-
tion it can be used to calculate prompt-gravity signals of earthquakes. As Juhel et al.
(2018b) simulated seismometer outputs, they also had to simulate the pre P-wave ground
acceleration. Due to numerical difficulties, this is not possible with a direct normal mode
summation. However, for the simulation of gravity gradiometer outputs ground accel-
eration is not relevant. Hence for this purpose all results can be calculated by a direct
normal mode summation.

6.2.1 Normal mode theory

This section gives an introduction to the theory of normal modes. First, I discuss the
equations of motion for a spherical, non-rotating, self-gravitating symmetric Earth. Based
on this, normal modes are introduced. Afterwards, I derive how the whole wave field of
an earthquake can be described as a sum of normal modes. In the end, it is shown how
these formulas can easily be changed to calculate the change in gravity or the change in
the gravity gradient instead of the displacement. Except for the last part, a more detailed
introduction can be found for example in Aki and Richards (1980).
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Figure 6.2: Sensitivity of the method of Harms (2016) to different choices for P- and S-wave
velocities. The figure shows the time evolution of all six components of the gravity gradient simulated
with the method of Harms (2016). The computations were done with three different velocity models used
by other authors when applying the method of Harms (2016). The results are shown for the Tohoku-Oki
earthquake and a station 150 km away from the earthquake in the west direction perpendicular to the
strike.
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The equations of motion for a spherical, non-rotating, self-gravitating, sym-
metric Earth

The governing equations for elastic processes inside the Earth, for example seismic wave
propagation caused by an earthquake, are the equation of motion of continuum mechanics
and Hooke’s law (see Chapter 4, Equations 4.12 and 4.14).

If Hooke’s law is inserted into the equation of motion and the strain εεε is written in terms of
the displacement uuu(rrr), one differential equation in space and time for the displacement uuu
can be obtained. This differential equation depends on the density distribution, the
distribution of the Lamé parameters and the force density.

The main part of the force term is the body force fffEQ(rrr, t) connected to the moment
tensor MMM(rrrs) of the earthquake at the hypocentre rrrs (see Equation 6.11). However,
especially for low frequencies, the change in gravity due to the deformation of the Earth
is also a significant part of the force term. Then, the force term becomes

fff(rrr, t) = fffEQ(rrr, t) +∇δΦ(rrr, t) .

The change of the gravity potential during the earthquake δΦ(xxx, t) and the change in the
density distribution δρ(xxx, t) satisfy the Poisson equation (Equation 4.1):

∇2δΦ(rrr, t) = −4πGδρ(rrr, t)

Furthermore, the continuity equation of mass gives a relation between the density change
and the displacement, see Chapter 4, Equation 4.15. As the change in gravity enters into
the force density of the equation of motion by ∇δΦ(rrr, t), this leads to a coupling of the
equation of motion and the Poisson equation. They need then to be simultaneously solved
for the displacement uuu(rrr, t) and the change in gravity potential δΦ(rrr, t). For seismic waves
the displacement is small and the solution can be assumed to be a small perturbation away
from the equilibrium configuration.

If these equations should be solved for a spherical symmetric Earth where the Lamé pa-
rameters λ(xxx) and µ(xxx) only depend on the radius r it turns out to be useful to express the
spatial variation of the change in gravity potential δΦ(ϑ, ϕ) and the displacement uuu(r, ϑ, ϕ)
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(a) Y00(ϑ, ϕ)eeer (b) ∇1Y20(ϑ, ϕ) (c) er × (∇1Y20(ϑ, ϕ))

Figure 6.3: Vector Spherical Harmonics. The figure shows examples for the three summands of a
vector spherical harmonic expansion: The radial part (Subfigure 6.3a), rotation free part of the tangential
displacement (Subfigure 6.3b) and the incompressible part of the tangential displacement (Subfigure 6.3c).

in terms of spherical harmonics and so-called vector spherical harmonics:

δΦ(r, ϑ, ϕ, t) =
∞∑
l=0

m=l∑
m=−l

φ̃lm(r, t)Ylm(ϑ, ϕ) (6.14)

uuu(r, ϑ, ϕ, t) =

∞∑
l=0

m=l∑
m=−l

Ũlm(r, t)Ylm(ϑ, ϕ)eeer + Ṽlm(r, t)∇1Ylm(ϑ, ϕ) + W̃lm(r, t)eeer × (∇1Ylm(ϑ, ϕ))

(6.15)

with ∇1 being the tangential part of the gradient:

∇1 = eeeϑ
∂

∂ϑ
+ eeeϕ

1

sinϑ

∂

∂ϕ

In the vector spherical harmonic expansion of uuu(r, ϑ, ϕ, t), Ũlm(r, t) describes the radial
part of the displacement, Ṽlm(r, t) describes the rotation free part of the tangential dis-
placement (∇×

[
Ṽlm(r, t)∇1Ylm(ϑ, ϕ)

]
= 0) and W̃lm(r, t) describes the divergence-free or

incompressible part of the tangential displacement (∇
(
W̃lm(r, t)eeer × [∇1Ylm(ϑ, ϕ)]

)
= 0).

Possible examples of these three parts of the displacement are shown in Figure 6.3. As the
displacement described by W̃lm(r, t) is divergence-free and for a radial symmetric Earth
ρ0(xxx) only varies in radial direction, Equation 4.15 shows that the displacement described
by W̃lm(r, t), the so-called toroidal displacement, does not cause density change and con-
sequently no gravity change. Furthermore, it can be shown that the equation for W̃lm(r, t)

completely decouples from the others. Therefore W̃lm(r, t) and the toroidal displacement
will not be further considered here.

46



Chapter 6. Modelling gravity gradients of prompt elasto-gravity signals

If the spherical harmonic expansions of the gravity potential and the displacement are
inserted into the equation of motion, Hooke’s law and the Poisson equation, three coupled
differential equations for Ũlm(r, t), Ṽlm(r, t) and φ̃lm(r, t) can be obtained. In theory, also
the force term would have to be expressed in vector spherical harmonics, but I will now
first discuss the solutions for the homogeneous equation, that is for fff(rrr) = 0.

If the force term is set to zero, the ansatz

Ũlm(r, t) = Ulm(r)eiωt ,

Ṽlm(r, t) = Vlm(r)eiωt ,

φ̃lm(r, t) = φlm(r)eiωt

can be made. Then three differential equations of second order for Ulm(r), Vlm(r) and
φlm(r) are obtained, which contain only λ(r), µ(r), ρ0, g0(r), l and ω. The differen-
tial equations and their complete derivation is given for example by Takeuchi and Saito
(1992). It can be found, that there only exist solutions for discrete values of nωl. They
are called eigenfrequencies of the Earth corresponding to the eigenmodes (n, l,m). The
corresponding solutions nUl(r), nVl(r) and nφl(r) are called eigenfunctions. As the equa-
tions for Ulm(r), Vlm(r) and φlm(r) do not depend on m, eigenmodes with different m but
same n and l, have the same eigenfrequencies and the same radial dependency, but they
have different dependencies in ϑ and ϕ, which are described by the spherical harmonic
functions. On the contrary, eigenmodes with different n but same l and m have the same
dependency on ϑ and ϕ but different frequency and different radial dependence. The
modes with n > 0 are called overtones with respect to the mode with n = 0.

The just discussed eigenmodes, for which the corresponding displacement is described by
Ulm(r) and Vlm(r) are called spheroidal modes in contrast to the toroidal modes. For
l = 0, Vlm(r) = 0, so the eigenmodes with l = 0 only contain radial movement. Normally
they are treated separately, as the differential equations simplify for them. They are then
called radial modes. A sketch of the spatial patterns of some of the modes can be found
in Figure 6.4.

These solutions to the homogeneous problem without a force term describe free oscilla-
tions of the whole Earth, which can for example be excited by earthquakes. Figure 6.5
shows the frequency spectrum of a seismogram observed after the great Sumatra 2004
earthquake together with the theoretical spectrum for a spherical, non-rotating Earth,
based on normal mode theory. A match between the peaks at frequencies of normal
modes, can clearly be seen. This match further improves for more realistic Earth models.
It is also possible to describe the whole wave field caused by an earthquake as a large sum
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Figure 6.4: Spatial Patterns of the first normal modes. The sketch shows the spatial pattern of
(a) the 0S0-mode also called the ”breathing”-mode, (b) the 0S2-mode also called the ”football” mode and
(c) the 0T 2-mode. All the modes are shown for m = 0. The figure is taken from Woodhouse and Deuss
(2015).

of eigenmodes. I will later introduce how the solution for the inhomogeneous problem
with an excitation force, for example the equivalent body force of the earthquake, can be
build up from eigenfrequencies and eigenfunctions. But I will first discuss the simplified
problem of N particles oscillating around an equilibrium.

Summation of normal modes

This formulation of the summation of normal modes follows the work of Gilbert (1970).

Let us consider a system of N particles, which can move in three dimensions. The α-th
particle has mass mα. Its displacement from equilibrium is described by the three di-
mensional vector uuuα (α ∈ {1..N}). The internal elastic force fff elastic

α on the α-th particle
depends linearly on the displacements uuuβ of all other β particles. The linear relation is
described by the N2 3× 3 matrices VVV αβ, which are called the potential energy matrices:

fff elastic
α (t) = −

N∑
β=1

VVV αβ · uuuβ(t)

Additionally, different external forces fffα(t) can act on each particle. This gives the
following equation of motion:

mα
d2uuuα(t)

dt2
+

N∑
β=1

VVV αβ · uuuβ(t) = fffα(t) (6.16)

This system has eigenfunctions of the form nsssαeiωnt which solve 6.16 for fffα(t) = 0. For
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Figure 6.5: Observations of normal modes after the great Sumatra event 2004. The black
line shows the frequency spectrum of a seismogram observed at station ANMO. In red the theoretical
spectrum for a spherical non-rotating Earth model based on normal mode theory is shown. The figure is
adapted from Woodhouse and Deuss (2015)

each eigenfunction n the N vectors sssα describe the spatial pattern of the eigenfunction,
whereas eiωnt describes the temporal evolution of this special pattern.

⇒ −ω2
nmα nsssα +

N∑
β=1

VVV αβ · nsssβ = 0 (6.17)

3N eigenvectors nsssα, which are orthonormal to each other, can be found:

N∑
α=1

mα nsss
∗
α · lsssα = δnl (6.18)

As the movement of the N particles has 3N degrees of freedom the eigenfunctions form a
complete orthonormal basis for any movement of the particles.

The Laplace transform (for definition see Appendix B) of Equation 6.16 gives

mαp
2ūuuα(p) +

N∑
β=1

VVV αβ · ūuuβ(p) = f̄ffα(p) . (6.19)

As the eigenfunctions form a complete basis for the solutions of the system, ūuuβ(p) can be
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written as

ūuuβ(p) =
3N∑
n=1

an(p) nsssβ . (6.20)

Multiplying Equation 6.20 bymβ lsss
∗
β, taking the sum over β and using Equation 6.18 gives

al(p) =
N∑
β=1

mβ lsss
∗
β · ūuuβ(p), (6.21)

where ∗ denotes complex conjugation.

Now Equation 6.19 is multiplied with nsss
∗
α. Afterwards the sum over α is taken by making

use of Equations 6.21 and 6.20:

p2an(p) +
N∑
α=1

N∑
β=1

nsss
∗
α · VVV αβ ·

3N∑
l=1

al(p) lsssβ =
N∑
α=1

nsss
∗
α · f̄ffα(p) (6.22)

This can further be simplified with the help of Equation 6.17. Multiplying Equation 6.17
with lsss

∗
α and taking the sum over α leads to

N∑
α=1

N∑
β=1

lsss
∗
α · VVV αβ · nsssβ = ω2

nδnl .

Which simplifies Equation 6.22 to

p2an(p) + ω2
nan(p) =

N∑
α=1

nsss
∗
α · f̄ffα(p) .

⇒ an(p) =
N∑
α=1

nsss
∗
α · f̄ffα(p)

p2 + ω2
n

If the time evolution of the force has a step like form: fffα(t) = FFFαH(t − t0), its Laplace
transform is f̄ffα(p) = FFFα

p
and from Equation 6.20 follows

ūuuβ(p) =
3N∑
n=1

(
N∑
α=1

nsss
∗
α ·FFFα

p(p2 + ω2
n)

)
nsssβ .

Taking the inverse Laplace transform finally leads to

uuuβ(t) =
3N∑
n=1

(
N∑
α=1

nsss
∗
α ·FFFα

)
1− cosωnt

ω2
n

H(t− t0) nsssβ . (6.23)
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Figure 6.6: Time evolution of one normal mode. At time t0 happens a sudden release of the moment
of the earthquake source. From that time on the Earth is oscillating around the new equilibrium.

Up to now I only discussed ideal elastic interaction between the particles. But there is
always some friction which leads to attenuation. The attenuation of the n-th eigenmode
can be described by the quality factor Qn. If Qn � 1 for all n, Equation 6.23 slightly
modifies to

uuuβ(t) =
3N∑
n=1

(
N∑
α=1

nsss
∗
α ·FFFα

)
1− cos(ωnt) exp

(
− ωnt

2Qn

)
ω2
n

H(t− t0) nsssβ . (6.24)

Equation 6.24 describes the displacement of the β-th particle in a system of N particles
caused by forces FFFα applied at some particles α. The forces vary all with the same step
function. It can be seen that this displacement is a sum of the displacements nsssβ related

to the n-th n eigenfunction of the system varying in time as
1−cos(ωnt) exp(− ωnt

2Qn
)

ω2
n

H(t − t0)

which describes a oscillation around the new equilibrium position (see Figure 6.6). The
contribution of each eigenmode is calculated by the sum of the scalar products of the forces
applied on particle α and the displacement of particle α related to the eigenmode. Now a
continuous body like the Earth should be considered. The eigenvectors nsssα then become
continuous functions in space nsss(rrr). and the number of eigenfunctions gets infinity. The
forces at each particle FFFα are replaced by the force density fff(rrr) and the sum over all
particles (the sum over α) is replaced by a volume integral:

uuu(rrr, t) =
∞∑
n=1

∫
V

nsss
∗(ξξξ) · fff(ξξξ)dV

 1− cos(ωnt) exp
(
− ωnt

2Qn

)
ω2
n

H(t− t0) nsss(rrr) (6.25)

The orthonormal relation between the eigenfunctions changes to∫
V

ρ(ξξξ) nsss
∗(ξξξ) ·l sss(ξξξ)dV = δnl . (6.26)
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The force density of an earthquake with hypocentre rrrs is the double couple related to the
moment tensor MMM (see also Equation 6.11):

fp(ξξξ) = −
∑
q

Mpq
∂

∂ξq
δ(ξξξ − rrrs)

The volume integral in Equation 6.25 then turns to∫
V

nsss
∗(ξξξ) · fff(ξξξ)dV =−

∑
p,q

∫
ns
∗
p(ξξξ)

∂

∂ξq
δ(ξξξ − rrrs)dV

=
∑
p,q

∂

∂rq
ns
∗
p(rrrs)Mpq =

∑
p,q

nε
∗
pq(rrrs)Mpq ,

where nεεε(rrrs) is the strain tensor at the hypocentre of the earthquake caused by the dis-
placement of the n-th normal mode. It means that for an earthquake, the excitation
amplitude of each eigenmode can be calculated by the so-called double dot product of the
moment tensor of the earthquake source and the strain tensor of the normal mode at the
hypocentre:

uuu(rrr, t) =
∞∑
n=1

(nεεε
∗(rrrs) : MMM)

1− cos(ωnt) exp
(
− ωnt

2Qn

)
ω2
n

H(t− t0) nsss(rrr) (6.27)

with

aaa : bbb =
∑
jk

ajkbjk

As discussed above for a radial symmetric, self-gravitating Earth the radial variations
of the eigenfunctions are nU l(r), nV l(r) and nφl(r) and they are degenerate in m. The
displacement related to the spheroidal mode (n, l,m) is

nssslm(r, ϑ, ϕ) = nU l(r)eeerYlm(ϑ, ϕ) + nV l(r)∇1Ylm(ϑ, ϕ) . (6.28)

Using the orthonormal relation between eigenfunctions (Equation 6.26), the following
normalisation for nU l(r) and nV l(r) can be found:∫

V

ρ(ξξξ)
[
nU

2
l (ξξξ) + l(l + 1) nV

2
l (ξξξ)

]
dV = 1 (6.29)

As already discussed when describing the method of Harms (2016) (see Section 6.1.1), for
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Table 6.2: The strain tensor at colatitude ϑ = 0. The table shows the strain tensor at ϑ = 0 related to
the displacement of normal mode (n, l,m) expressed by nU l(r), nV l(r) and their radial derivatives nU ′l(r)
and nV

′
l(r). nX l(r) = nV

′
l(r) +

nU l(r)−nV l(r)
r and F = 1

r (2 nU l(r)− l(l + 1) nV l(r)). Each component

has to be multiplied by d|m|l = 1
2|m|

√
2l+1
4π

(l+|m|)!
(l−|m|)! .

′ denotes the derivative with respect to the radius.

m = 0 m = ±1 m = ±2

εrr nU
′
l(r) 0 0

εϑϑ
1
2 n
F l(r) 0 nV l(r)

r

εϕϕ
1
2 n
F l(r) 0 −nV l(r)

r

2εrϑ 0 ∓ nX l(r) 0
2εrϕ 0 −i nX l(r) 0
2εϑϕ 0 0 ±2i nV l(r)

r

a realistic earthquake the time evolution of the moment tensor is more complicated than
a simple step function and can be described with the aid of the source-time function ṁ(t).
Again the solution for this force evolution is given by the convolution of the solution for
the step-like time evolution (Equation 6.27) with the source time function. The radial
component of the displacement finally becomes

ur(rrr, t) = ∞∑
n=0

∞∑
l=0

l∑
m=−l

(neee
∗(rrrs) : MMM)

1− cos(ωnt) exp
(
− ωnt

2Qn

)
ω2
n

H(t− t0) nU l(r)Ylm(ϑ, ϕ)︸ ︷︷ ︸
nΓurlm(r,ϑ,ϕ)

 ∗ ṁ(t) .

(6.30)

To simplify the form of the strain tensor caused at the hypocentre by the normal mode,
it is useful to set up the coordinate system in such a way that the earthquake occurs at
the point of colatitude ϑ = 0. Furthermore, the actual geographic north pole is imposed
to be located at longitude ϕ = π in this new coordinate system (for the transformation to
the new coordinate system see Appendix C). Then the strain tensor at ϑ = 0 caused by
normal mode (n, l,m) can be derived by inserting Equation 6.28 into the definition of the
strain tensor (Equation 4.13) and taking the limits ϕ → 0 and ϑ → 0 (see for example
Masters (lecture notes)). For m = 0,±1,±2 the components of the strain tensor at ϑ = 0

expressed by nU l(r) and nV l(r) are given in Table 6.2. For |m| > 2 the strain tensor at
colatitude ϑ = 0 becomes zero for the here considered double couple source. Therefore,
the sum over m in Equation 6.30 only has to be evaluated for −2 ≤ m ≤ 2.

The expression I call nΓurlm(r, ϑ, ϕ) in Equation 6.30 describes the radial displacement at
the point of measurement produced by the eigenmode (n, l,m). If one is interested in
another physical quantity, nΓurlm(r, ϑ, ϕ) must be replaced by the value of this quantity
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caused by the eigenmode (n, l,m) at the point of measurement. In this thesis I am mainly
interested in the radial component of the gravity vector gr(r, ϑ, ϕ) and the gravity gradient
tensor TTT (r, ϑ, ϕ). For gr(r, ϑ, ϕ), nΓgrlm(r, ϑ, ϕ) has to be used (see Equations 4.2 and 6.14):

nΓgrlm(r, ϑ, ϕ) =
∂ nφl(r)

∂r
Ylm(ϑ, ϕ) (6.31)

This replacement was also done by Juhel et al. (2018b).

For the six independent components of the gravity gradient tensor Txx, Txy, Txz, Tyy, Tyz,
Tzz the following expressions for nΓlm(r, ϑ, ϕ) have to be used (see Equations 4.6 to 4.11
and 6.14):

nΓTxxlm (r, ϑ, ϕ) =
1

r2 nφl(r)
∂2Ylm(ϑ, ϕ)

∂ϑ2
+

1

r

∂ nφl(r)

∂r
Ylm(ϑ, ϕ) (6.32)

nΓ
Txy
lm (r, ϑ, ϕ) =− 1

r2 tanϑ sinϑ nφl(r)
∂Ylm(ϑ, ϕ)

∂ϕ
+

1

r2 sinϑ nφl(r)
∂2Ylm(ϑ, ϕ)

∂ϑ∂ϕ
(6.33)

nΓTxzlm (r, ϑ, ϕ) =− 1

r2 nφl(r)
∂Ylm
∂ϑ

+
1

r

∂ nφl(r)

∂r

∂Ylm
∂ϑ

(6.34)

nΓ
Tyy
lm (r, ϑ, ϕ) =

1

r2 tanϑ nφl(r)
∂Ylm(ϑ, ϕ)

∂ϑ

+
1

r2 sin2 ϑ nφl(r)
∂2Ylm(ϑ, ϕ)

∂ϕ2
+

1

r

∂ nφl(r)

∂r
Ylm(ϑ, ϕ) (6.35)

nΓ
Tyz
lm (r, ϑ, ϕ) =− 1

r2 sinϑ nφl(r)
∂Ylm(ϑ, ϕ)

∂ϕ
+

1

r sinϑ nφl(r)
∂2Ylm(ϑ, ϕ)

∂ϕ∂r
(6.36)

nΓTzzlm (r, ϑ, ϕ) =
∂2

nφl(r)

∂r2
Ylm(ϑ, ϕ) (6.37)

6.2.2 Tests and problems of the simulations

To compute gravity gradients of PEGS with the method of normal mode summation, I
first compute the normal modes for a radial symmetric, spherical, self gravitating Earth
with the aid of the software Mineos. For the radial structure of the Earth the PREM
model (Dziewonski and Anderson 1981) is used. In a second step I use a python program
written by myself to perform the summation of Formula 6.30 or their equivalents for
gravity or gravity gradients. In the following, I will give an introduction to the Mineos
software, present my python program, describe some validation tests and finally point
out the problems which prevented me from computing the gradients of PEGS with this
method.
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The Mineos software

Mineos is a software package to compute synthetic seismograms based on normal mode
computation and normal mode summation. It was written by Guy Masters based on
former codes by J. Freeman Gilbert and John Woodhouse. It consists of two main parts:
first the computation of normal modes for a given frequency range and specified mode
indices (lmin, lmax, nmin, nmax), second the summation for a specified event and a given
receiver. Each of these parts consists of two FORTRAN programs. For the normal mode
computation they are called minos_bran and eigcon, for the normal mode summation
green and syndat.

The main normal mode calculation is done by minos_bran. It takes the following input
parameters: a 1D Earth model, containing material parameters such as density P- and S-
wave velocities, the type of oscillation (radial, toroidal or spheroidal modes), the frequency
range and the range of l and n. Furthermore, the accuracy of the integration of the
differential equations and a frequency ωgrav have to be given. For all eigenmodes of
frequencies above ωgrav only the equation of motion and Hooke’s law without the Poisson
equation will be solved. For our calculations it should be set to the same value as ωmax.
Based on these inputs, minos_bran determines all modes in the given ranges of ω, l
and n and calculates their eigenfrequencies nωl, their attenuation coefficient nQl and
their eigenfunctions. The eigenfunctions are returned as FORTRAN binary files. In
the case of spheroidal modes in these binary files nU l(r), nV l(r) and nφl(r) as well as
their first derivatives are given at discrete values of r. In the case of radial modes only

nU l(r) and its derivatives are given, as nV l(r) and nφl(r) are zero in this case. The other
output parameters are given in an ASCII table. To get a portable output, eigcon is
used to convert the output of minos_bran to a portable database. Furthermore, eigcon
renormalises the eigenfunctions to

ω2

∫
V

ρ(ξξξ)
[
nU

2
l (ξξξ) + l(l + 1) nV

2
l (ξξξ)

]
dV = 1 . (6.38)

The calculation of synthetic seismograms is also divided in two parts. First green calcu-
lates six Green’s functions for each component of the moment tensor for an earthquake
happening at a given location and measured at specified receivers. Afterwards syndat

calculates the double dot product between the Green’s functions and the moment tensor
and convolves the result with a triangle source time function of a given half width. By
default the output of syndat is given as acceleration, but if specified, also displacement
or velocity can be given. In the output of syndat not only the ground motion is consid-
ered, but the sum of every signal of the earthquake that a seismometer measures. For the

55



Chapter 6. Modelling gravity gradients of prompt elasto-gravity signals

vertical component these are the ground acceleration and two other signals: the change in
gravity due to a displacement of the instrument in the static gravity field and the gravity
signal induced by the density changes related to the earthquake. The last one is the
signal that I want to model. After the arrival of the P-wave for not very low frequencies
only the ground acceleration is relevant. For the vertical component of mode 8S1 which
has a frequency of 2.871 mHz the ground motion already represents 99.1 % of the signal,
whereas for mode 0S2 with a frequency of 0.309 mHz it represents only 81.5 % of the sig-
nal, the remaining 18.5 % are related to the change in gravity due to the displacement of
the instrument in the static gravity field and the gravity signal induced by the density
change related to the earthquake.

Since 2006 the Mineos code is distributed by the Computational Infrastructure for Geo-
dynamics (CIG) (Masters 2014). A more detailed introduction to the software package
and how to use it can be found in the Mineos manual (Masters et al. 2014). The theory
behind Mineos is explained in detail by Masters (lecture notes).

The Python program for normal mode summation

The normal mode summation of Mineos (green and syndat) only gives the sum of the
ground acceleration, the gravity change due to a displacement of the instrument in the
static gravity field and the gravity signal induced by the density change related to the
earthquake. However, for the study of gravity gradients of PEGS we need the last one
separated from the two others. To calculate it, I wrote my own python program for normal
mode summation. It can be seen as a replacement for greens and syndat. The compu-
tation of the normal mode catalogue still has to be done with minos_bran and eigcon,
whose output is used as input for the python program. The python program is a direct
implementation of Formula 6.30. Attention should be paid to the special normalisation
of Mineos (Equation 6.38) which differ by a factor of ω2 from the normal normalisation
(Equation 6.29). Therefore, the eigenfunctions of Mineos contain a factor 1

ω
. As they

occur twice in Equation 6.30 (in the stain tensor and in nΓlm(r, ϑ, ϕ)) this cancels out the
factor 1

ω2 in the time-dependent part of Equation 6.30.

There are three slightly different versions of the normal mode summation program, one
for vertical displacement, one for vertical gravity change and one for the six indepen-
dent components of the gravity gradient tensor. They only differ in the calculation of

nΓlm(r, ϑ, ϕ) (See comments on Formula 6.30.) The code of the programs can be found
in Appendix E containing the three main programs and several modules needed by the
main programs:

56



Chapter 6. Modelling gravity gradients of prompt elasto-gravity signals

• to read the input parameters and the eigenfunction catalogue created with minos_bran
and eigcon

• to do computations related to time series

• to convert between SI units and the unit system of Mineos

• to find the coordinates of the receiver in epicentric coordinates and to rotate the
moment tensor to a local south oriented coordinate system (for further explanation
and formulas see Appendix C)

• to calculate the double dot product between the moment tensor and the strain tensor

• to interpolate the eigenfunctions nU l(r), nV l(r), nφl(r) which are given at discrete
points to the source dept

• to calculate the value of nΓlm(r, ϑ, ϕ) at the receiver

Testing the program

To validate the implementation of Formula 6.30 I first perform normal mode summations
for verical displacement for the first 6 h = 21 600 s after the onset of the Tohoku-Oki
earthquake at three different observatories: the Black Forest Observatory in Germany
(BFO), the South African Geodynamic Observatory in Sutherland (SUR) and the obser-
vatory in Nana, Peru (NNA). For this first test a normal mode catalogue with all radial
and spheroidal modes up to 8 mHz is used. It is computed with mios_bran and eigcon.
Toroidal modes are not relevant for vertical displacement. The frequency range is the one
of long period surface waves. Numerical differentiation of the outputs of the normal mode
summation gives ground velocities. The ground velocities are convolved with the instru-
ment responses of the seismometers at the observatories to get theoretical measurements.
These are compared to true measurements after applying the same band-pass Butterworth
filter (order 4, corner frequencies 1 mHz and 5 mHz) on both, the measurements and the
simulated signal. Furthermore, I simulate the vertical ground velocities with the help of
the Mineos subprograms greens and syndat based on the same normal mode catalogue
as for the python program. This results are also convolved with the instrument response,
filtered and compared to the others. The comparison can be seen in Figure 6.7. At each
of the three stations it can be seen that the order of magnitude of all three signals and
their general form is the same. But in the 1500 s long sections on the right of Figure 6.7,
differences between the signals can be observed. The differences in amplitude compared to
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Figure 6.7: Comparison of theoretical and measured seismograms for the Tohoku-Oki earth-
quake
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the measured signal reach about 30 % for both simulations. Additionally, we can observe
time shifts between the signals which reach 75 s for the normal mode summation with
python and 100 s for the normal mode summation with Mineos. In general the results of
the normal mode summation with python fit better to the measured data than the results
of the normal mode summation with the Mineos subprograms. The results of the normal
mode summation with python have especially high agreement to the measurements at the
beginning of the time series, whereas the time shift occurs only for later times. This could
be due to the simplified Earth model: For a true rotating elliptical Earth with a three
dimensional distribution of materials the eigenfrequencies are slightly different than for
the spherical non-rotating Earth with only radial variations in the material considered in
the computation. These differences become more and more relevant with time.

Theoretically, the normal mode summation with python and with the subprograms of
Mineos should give the exactly same results, as the same formula should be implemented
and the same moment tensor, half time duration, event and station coordinates are used.
Therefore, the differences between the results of the normal mode summations of Mineos
and python are surprising. To analyse this further, I also computed “normal mode sum-
mations” with only one mode and simplified moment tensors with only one component,
but the differences between the output of syndat and the python program got even worse
and could reach up to a factor of four. However, no systematic difference can be found. It
was for example not the case, that the amplitude of the output of one program is always
bigger than the amplitude of the output of the other program. There has to be a mistake
in the outputs of the normal mode summation with Mineos or the one with python. From
the comparison with real data, I would expect the output of the Mineos normal mode
summation to be wrong, the reason might be a wrong usage of the greens and syndat

program. The reason for the discrepancies between the python and the Mineos results
could not be finally resolved and has to be further investigated. The results of the normal
mode summation with python have a good agreement to the measured. Therefore, the
python program is used in the following.

In the next step, the normal mode summation with python is tested for the vertical
component of gravity. The same normal mode catalogue as before (up to 8 mHz) is
used. The signals are calculated for the IC MDJ station (44.62◦N, 129.59◦E) in order
to compare the results to Figure 2 of Juhel et al. (2018b), who also used this station.
For the computation of the vertical gravity anomaly nΓurlm(r, ϑ, ϕ) has to be exchanged by

nΓgrlm(r, ϑ, ϕ) in Formula 6.30. It contains the first derivative of the eigenfunction nφl(r)

at the radius of the receiver which is in our case the Earth radius r0. There are two
possibilities to get the value of d nφl(r)

dr
|r=r0 : The straightforward one is to use the value
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given as a direct output of eigcon. Another one, proposed by Masters (lecture notes),
is to make use of the fact that the gravity potential is harmonic outside the Earth and
measurements are taken above the Earth’s surface. This leads to the relation

d nφl(r)

dr
|r=r0 =

(l + 1)

r0
nφl(r = r0) . (6.39)

So d nφl(r)
dr
|r=r0 can also be calculated based on the values eigcon gives for nφl(r = r0). In

theory, the two values should be the same, but I observe that they are not. I perform the
normal mode summation with both of these values and filter the results with a Butter-
worth low-pass filter (order 4, corner frequency 7 mHz). It should be noted that the corner
frequency of 7mHz might be to high to avoid the Gibb’s phenomena completely, but when
applying a filter with a lower corner frequency the comparison to the results of Juhel et al.
(2018b) is not possible anymore. The results can be seen in Figure 6.8. For both methods
the order of magnitude and the general form of the signal are very similar. The maximum
peak occurs at about 500 s after the rupture onset and has a maximum value of 8 µGal for
the first method and 10 µGal for the second method. But the waveforms calculated with
the two different values of d nφl(r)

dr
|r=r0 clearly differ from each other. However, the general

pattern of the gravity change and the size of magnitude are similar to the ones presented
in Figure 3 of Juhel et al. (2018b) for both values of d nφl(r)

dr
|r=r0 despite the fact that the

high frequencies are missing in my simulations. Furthermore, the maximum peak occurs
a bit earlier in Juhel et al. (2018b) at about 425 s. This is very likely related to the time
shift I introduce by filtering the data. In general it should be kept in mind that what
is mainly seen in these figures are not PEGS but the gravity change when seismic waves
have already reached the station, so a signal that will not be measurable. Additionally, it
is only the gravity change and not the ground acceleration induced by the gravity change.

For the normal mode summation for the six components of the gravity gradient tensor I
need not only the first but also the second derivative of the eigenfunction nφl(r) at the
Earth’s surface. This is not given directly as an output of eigcon and besides that it
is not continuous at the Earth’s surface. As measurements are taken above the Earth’s
surface, where the potential is harmonic it is reasonable to use Equation 6.39 for the first
derivative and

d2
nφl(r)

dr2

∣∣∣
r=r0

=
(l + 2)(l + 1)

r2
0

nφl(r = r0) (6.40)

for the second derivative. With these values for the first and second derivative of nφl(r)
at the Earth’s surface I perform a normal mode summation for all components of the
gravity gradient tensor at the MDJ station. I still use all spheroidal modes up to 8 mHz
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Figure 6.8: Gravity change at station MDJ during the Tohoku-Oki earthquake calculated
with normal mode summation. The summation is done for eigenmodes up to an eigenfrequency
of 8mHz, afterwards they are low-pass filtered below 7mHz. For the signal in blue the values for the
derivative of nφl(r) at the Earth’s surface are directly taken from the output of eigcon. For the signal
in orange they are calculated from the values of nφl(r = r0) given by eigcon.
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Figure 6.9: Change in gravity gradient at station MDJ during the Tohoku Oki earthquake
calculated with normal mode summation. The summation is done for eigenmodes up to an eigen-
frequency of 8mHz, afterwards they are low-pass filtered below 4mHz.

and low-pass filter them afterwards below 4 mHz. The results can be seen in Figure 6.9.
Most of the components also have their main peak between 400 s and 500 s and they reach
up to 0.6 mE, but again these are not gravity gradients of PEGS but changes in gravity
gradients after the seismic waves have reached the station. For validation of the code,
I also computed the time series of the trace of the gravity gradient tensor. It vanished
below some numerical uncertainties (≈ 1× 10−16 mE). However, it has to be borne in
mind that the trustworthiness of the computations of the gravity gradients suffers from
the uncertainty in the computation of the first derivative of nφl(r), which also propagate
to the second derivative.

Besides all these problems of the normal mode summation, the main challenge is to com-
pute a normal mode catalogue for high frequencies with Mineos. All the described tests
were performed only up to a frequency of 8 mHz which is equivalent to a minimum period
of 125 s. For stations, for which I will simulate the gravity gradients associated to PEGS
with the method of Harms (2016) in Chapter 7 the pre P-wave window is only between
3 s and 120 s long. As a consequence, higher frequencies might be needed. Further, due
to the Gibb’s phenomena the normal mode summation should always be performed up
to higher frequencies than the needed ones and afterwards the signal should be filtered
with a low pass filter to avoid ringing in the seismogram at the cut-off frequency (personal
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communication by Rongjiang Wang). Therefore, we even need higher frequencies than
the highest frequency we expect in the signal.

Juhel et al. (2018b) wrote in their paper, that they have calculated all eigenmodes and
their overtones up to harmonic degree l = 2695 and a maximum frequency of 200 mHz

which is equivalent to a minimum period of 5 s. On the other hand in the manual of the
Mineos package it is written that Mineos works well for low frequency but not for periods of
a few seconds. This is also what I observed: By slightly increasing the maximum frequency
and adjusting nmax and lmax in a way that all modes up to the maximum frequency are
computed, the program could not complete the computation for a maximum frequency
of 80 mHz. For a maximum frequency of 50 mHz the computation time is about 7 min,
but for a maximum frequency of 80 mHz the program was still running after three days.
Therefore, I assume that it enters into an infinite loop somewhere. Probably Juhel et al.
(2018b) have used a modified version of Mineos, which is able to calculate eigenmodes for
higher frequencies. Unfortunately I do not have access to this version. Therefore, I did
not continue simulating gravity gradient of PEGS by normal mode summation.

As a summary, the python code I wrote during this thesis is able to perform normal mode
summation for vertical displacement, vertical gravity and all components of the gravity
gradient tensor, if a normal mode catalogue is given. This normal mode catalogue can
be calculated with the minos_bran and the eigcon program of Mineos. The output for
vertical displacement differs from the one I calculated with the normal mode summation
of Mineos, but it agrees well with measured data. This could be due to a wrong usage of
the green and syndat subprograms. For the normal mode summation of vertical gravity
and the gravity gradient tensor, it is not clear which are the correct values of the first
and second derivatives of nφl(r) at the Earth’s surface. However, the magnitude of the
vertical gravity change and the general pattern compares quite well to the signal shown
in Juhel et al. (2018b) and the trace of the gravity gradient tensor was zero. The major
problem remains to compute normal modes for high frequencies (> 50 mHz).
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Chapter 7

Results of the simulations

In this Chapter I present gravity gradient signals of prompt elasto-gravity signals (PEGS)
for the Tohoku-Oki earthquake simulated with the method of Harms (2016). The results
are compared to the noise spectrum of gravity gradiometers presented in Chapter 5 to
estimate if gradiometers that exist or are under development could have detected PEGS
of the Tohoku-Oki earthquake. Furthermore, the capabilities of gravity gradiometers are
compared to those of gravity strainmeters in the context of the detection of PEGS.

7.1 Time series of individual stations

I calculated time series of all six components of the gravity gradient tensor at 55 virtual
stations for PEGS of the Tohoku-Oki earthquake. They are located on five lines starting
from the epicentre, two in the direction of the strike, two perpendicular to the strike and
one in a direction 45◦ away from the line of strike. The distance to the epicentre varies
from 10 km to 1000 km: 10 km, 25 km, 50 km, 100 km, 150 km, 250 km, 375 km, 500 km,
625 km, 750 km and 1000 km. The signals are simulated with a sampling interval of 0.1 s

by applying the method of Harms (2016) as described in Section 6.1.2. The moment
tensor and the half width of the source time function are taken from the the global CMT
catalogue and can be found in Chapter 2.

First, I discuss the angular dependence of the signals. In Figure 7.1 all time series at the
stations 250 km away from the epicentre are shown. They are all 32.1 s long, as for all of
them the P-wave arrives after 32.1 s. That follows from the distance and the chosen P-wave
velocity. It can be seen, that in general the signals of the gradients are smaller at the two
stations in the direction of the strike, than at the other three stations. Furthermore, the
signals in the direction of compression, that is the direction of the Japanese mainland,
are bigger than in the direction of dilatation, that is the direction of the open Pacific
ocean. The largest signals occur at the station in the westward direction perpendicular
to the strike (Station (c)), where they reach up to 0.6 mE. These characteristics are true
for the overall signal but not for each individual component of the gravity gradient, as
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(a) (b)

(c) (d)

(e)

Figure 7.1: Angular dependence of gravity gradients of PEGS. The figure shows gravity gradients
of PEGS induced by the Tohoku-Oki earthquake at stations 250 km away from the epicentre. The stations
are located at 5 different directions, shown on the map.

66



Chapter 7. Results of the simulations

the highest amplitude components change with the direction. For example at the station
in the north direction of the strike (Station (b)) the EE-component is bigger than in the
east direction perpendicular to the strike (Station (d)). The reason is, that at Station (b)
the EE- and the NN-component are the most prominent ones, whereas at Station (d) the
EZ- and the NZ-components have the biggest amplitudes.

Since I observed that the signals are in general the largest in the westward direction
perpendicular to the strike (direction of Station (c)), I will focus on these signals to study
the dependence on the distance from the epicentre. In Figure 7.2 all time series for stations
in this direction are shown with the same time- and gradient-scale. It can be observed,
that the length of the time series increases with increasing distance, as the P-wave arrives
later. The amplitudes of the signals increase from 10 km to 25 km, where they nearly reach
40 mE. For larger distances they decrease rapidly. As already seen in Figure 7.1 they only
reach 0.6 mE at a distance of 250 km. This is very different from the behaviour of PEGS
measured with gravimeters or seismometers. For these, as discussed in Section 3.1, Juhel
et al. (2018b) found increasing signal amplitudes up to distances of 1000 km to 1500 km.
Probably, this difference is linked to the 1

r3
decay of gravity gradients of point sources

compared to a 1
r2

decay of gravity of point sources, where r is the distance to the source.

To get a better idea of the form of the signals, the same time series as in Figure 7.2 are
shown again in Figure 7.3, this time with different time- and gradient scales. Here I find
it remarkable that the form of the signals is nearly the same for all stations further than
100 km away from the epicentre except for increasing time length and decreasing signal
amplitude: For all of them the EE-component is the biggest negative component and the
ZZ-component is the biggest positive one. For the three stations closer than 100 km to
the epicentre the behaviour of the signals is completely different at each station. For the
stations at 25 km and 50 km the signal amplitudes increase rapidly at the very end of
the time series. Here it should be taken into account that due to the implementation of
the program the last data point of each time series could also be after the arrival of the
P-wave, as the last data point is chosen to be as close as possible to the arrival of the
P-wave, no matter if it is before or after. However, at least for the station at a distance
of 25 km the steep increase already starts one data point before.

To complete the overview of time series at different locations, the signals for all stations
in the other directions can be found in Appendix D. The general findings are confirmed
by these plots: The amplitudes of the gradients increase up to a distance of 25 km and
decrease rapidly afterwards. The length of the time series increase with increasing dis-
tance. The change in the forms of the signals is much smaller for stations more than
100 km away from the epicentre than for the closer stations. However, for some direc-
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Figure 7.2: Distance dependence of gravity gradients of PEGS - Amplitude and time span.
The figure shows gravity gradients of PEGS induced by the Tohoku-Oki earthquake at stations in the
westward direction perpendicular to the strike (direction of Station (c) in Figure 7.1). The stations are
located at eleven different distances from the epicentre, indicated in the titles of the subplots. All plots
have the same time- and gradient scale.
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Figure 7.3: Distance dependence of gravity gradients of PEGS - Pattern of the signals. The
figure shows gravity gradients of PEGS induced by the Tohoku-Oki earthquake at stations in the westward
direction perpendicular to the strike (direction of Station (c) in Figure 7.1). The stations are located
at eleven different distances from the epicentre, indicated in the titles of the subplots. The plots have
different time- and gradient scales.
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tions significant changes in the form of the signals, sometimes even a change of sign, are
still happening more than 100 km away from the epicentre. But if those changes occur
at further distances they are happening very slowly from one station to the next (See
for example EE-component in Figure D.3, which shows the signals in the east direction
perpendicular to the strike).

Additionally, for each chosen distance the signals are smaller in the direction of the strike,
than perpendicular to it. The observation that the signals are bigger in the direction of
compression is not confirmed for all distances. Especially, for the stations the furthest
away from the epicentre they also become slightly bigger for the direction of dilatation
than for the direction of compression.

7.2 Maps of signal amplitudes immediately prior to P-

wave arrival time

Figure 7.4 shows maps of the amplitudes of each component of the gravity gradient tensor
immediately prior to the P-wave arrival for the Tohoku-Oki earthquake. They are com-
puted on a circular grid with the epicentre at the centre. The radial distance between the
computation points is 25 km, the angular distance is 10◦. Gravity gradients are computed
up to a distance of 250 km. To avoid the described problem that the last data point of
each time series can be just before or just after the P-wave arrival, I choose the second to
last data point.

For all components in all directions a decrease of the amplitudes with distance can be
seen for stations further than 75 km away from the epicentre. The biggest amplitudes
always occur at stations 25 km away from the epicentre. Especially the angular pattern
of the EE-, the ZZ- and the EZ-component confirm the finding, that signal amplitudes
are larger perpendicular to the strike than in the direction of the strike. However these
patters can not be clearly observed in the other components. Closer investigation of these
maps are needed.

7.3 Comparison to the noise spectrum of gradiometers

In this section I would like to compare the simulated gravity gradients of PEGS presented
in the last section to the noise spectrum of the gradiometers presented in Chapter 5.
This will lead to an estimation of the detectability of gravity gradients of PEGS with
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(a) EE-component (b) NN-component

(c) ZZ-component (d) EN-component

(e) EZ-component (f) NZ-component

Figure 7.4: Map of signal amplitudes at P-wave arrival time The figure shows a map of the
amplitudes of each component of the gravity gradients at the p-wave arrival time. The signals are shown
for the Tohoku-Oki earthquake up to 250 km away from the epicentre of the earthquake. The white points
can also indicate signal amplitudes lower than 0.01mE.
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gradiometers that exist or are under development.

The important characteristics of a signal in the context of its detectability are both am-
plitude and frequency content. If the frequency content of the noise and the signal are
different, the noise can be filtered out without altering the signal. This is not possible if
the frequency content of the signal is in a frequency band where the noise shows a high
PSD. Therefore, a signal with low amplitude could be easier to detect than a signal with
high amplitude, if they have a different frequency content. For this reason, it is likely that
the gravity gradients with the biggest amplitudes, about 25 km away from the source, are
not the easiest to detect. They have a very short timescale (for the sharp increase the
time scale is less than one second) and for most of the instruments the noise increases for
frequencies above 100 mHz (see Figure 5.3). Therefore, it is important to look not only
at the simulated time series with the maximum amplitude, but at time series for all the
eleven different distances, when analysing the detectability of gravity gradients of PEGS.
In the following, I will do this analysis for each of the gradiometers presented in Chap-
ter 5. I concentrate on the signals in the westward direction perpendicular to the strike,
as they had the biggest amplitudes and the same time scales as for the other directions.

I will first look at the gradiometers with the lowest instrumental noise levels, presented in
Chapter 5, which are the gradiometers developed at the University of Maryland (Moody
et al. 2002 and Griggs et al. 2017). For all frequencies below 300 mHz the instrument
of Griggs et al. (2017) has a lower noise amplitude than the instrument of Moody et al.
(2002). So, for all signals which have a time scale of more than 3 s, there is a better chance
of detectability with the instrument of Griggs et al. (2017). As this is the case for most
of the stations I will now first study the detectability with the instrument of Griggs et al.
(2017) in more detail. Nevertheless, for the three closest stations to the epicentre, the
signals are not longer than 3 s. Therefore, afterwards, I will study the detectability of the
gravity gradients at these stations with the instrument of Moody et al. (2002). A long
time series of noise of the instrument of Griggs et al. (2017) for all the diagonal gradient
components was simulated from the noise PSD using the method of Broersen and Waele
(2003). In the following, I always use pieces of this time series of the required length. If
a time series of filtered noise is needed, the filter is applied to the full time series and a
piece of the required length is taken from the middle to avoid undesirable edge effects of
the filtering at the start and the end of the time series.

In Figure 7.5 the EE-components of the gravity gradients at stations in the westward
direction perpendicular to the strike are shown once without and once with the additive
noise of the instrument of Griggs et al. (2017). Additionally, the pure noise is shown. The
EE-component is chosen, as it is the biggest one in this direction. It can be seen, that
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Figure 7.5: Comparison between simulated gravity gradients and noise of the instrument of
Griggs et al. (2017). In blue the time series of simulated noise of the instrument of Griggs et al. (2017)
are shown. However, as the difference is too small, they look the same as the time series of the noisy
EE-components of gravity gradients of PEGS shown in orange. As a result the series of simulated noise
can not be seen. The pure modelled EE-components of gravity gradients are shown in green. The signals
shown here are for the Tohoku-Oki earthquake at stations in the westward direction perpendicular to the
strike. The distances to the epicentre are given in the title of the subplots.
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Figure 7.6: Comparison between simulated gravity gradients and noise of the instrument
of Griggs et al. (2017) after applying a lowpass filter. The same signals as in Figure 7.5 are
shown, but after applying a low-pass filter with the corner frequency fc given in the title of the subplot.
Additionally, the unfiltered model is shown in red.
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without applying any filter the standard deviation of the noise is for all stations several
orders of magnitude larger than the standard deviation of the signal and no difference
between the time series of noise alone and the times series of signal with added noise
can be seen. However, for most of the stations the main frequency of the noise is much
higher than the main frequency of the signal. Therefore, the situation should improve
by applying a low pass filter. As the timescale of the signals differ between the stations,
the closer the station is to the epicentre the higher the corner frequency should be for
not influencing the signal too much by the filtering. By testing different parameters I
discover that a Butterworth filter of order 4 and a corner frequency of 5

T
reduces the

noise significantly without reducing the signal too much. Here, T is the length of the
time series, that is the arrival time of the P-wave. With a finer tuning a better choice
can probably be found, but for a first estimation of the detectability this filter should be
sufficient. Also, it is not considered here that the application of the filter introduces a
time shift of the signal. Probably, taking this into consideration and correcting this time
shift, filters with lower corner frequency would still not have influenced the signal too
much and filtered out more noise.

In Figure 7.6 the filtered model with and without the filtered additive noise can be seen
for the same stations as before. Additionally, the filtered noise alone and the unfiltered
model are shown. The last one is used to control that the filter does not affect the signal
too much. In contrast to the unfiltered time series, a clear difference between the pure
noise and the signal with added noise can be seen. Compared to the standard deviation of
the remaining noise, this difference is the biggest between 250 km and 625 km away from
the epicentre, but it never exceeds two times the standard deviation of the remaining
noise.

Several methods for signal detection, e.g. the matched-filter technique, are based on the
cross-correlation of the model and the measured signal. If the latter one is changing
from a value close to zero to a value close to one, the model is expected to be present in
the signal. Therefore, the cross-correlation between the model and the simulated signal
(model with additive noise) can give a more objective impression of the detectability than
just inspecting signal and model by eye. Therefore, for 50 different realisations of the noise
at each station I calculate the cross-correlation coefficient between the filtered model and
the model with additive noise. For comparison, I also calculate the cross-correlation
coefficient between the filtered model and the pure filtered noise. The results are plotted
as histograms in Figure 7.7. For a perfect detection of the signal the correlation coefficient
between the model and the measured signal should be as close as possible to 1 and the
cross-correlation between the pure noise and the model should in theory be 0, but at least
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Figure 7.7: Correlation coefficients between the model and the the simulated gradiometer
output (model with additive noise) compared to correlation coefficients between the model
and the pure noise. The correlation coefficients are calculated for 50 different realisations of the noise
at each station. Before calculating the correlation coefficient, low-pass filters with the corner frequencies
given in Figure 7.6 are applied to all time series.
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the cross-correlation coefficient should significantly change when the model is present in
the data compared to when there is only noise measured. It can be seen that for stations
more than 50 km away from the epicentre the mean of the correlation coefficient between
the model and the model with additive noise is closer to 1 than the correlation coefficient
between the model and the pure noise, but for most of the stations the distributions of
correlation coefficient are not clearly separated. The only station for which they are not
overlapping is the one 250 km away from the earthquake. However, also at this station
the difference between the highest value of the correlation coefficient between the model
and the pure noise is only about 0.15 smaller than the smallest correlation coefficient
between the model and the simulated data. I assume when trying with different noise
realisations the distributions can very likely overlap as well for the station 250 km away
from the epicentre.

To sum things up, the correlation coefficients between the model with and without noise
do not differ significantly from those between the model and the pure noise. That will
make the detection of the gravity gradients of PEGS very difficult, but maybe it could
be possible with very sophisticated methods, which consider several components of the
gradient and several stations simultaneously. On the other hand, we should also keep in
mind that here only the instruments self-noise was considered, but not seismic noise for
example. Additionally, PEGS was assumed to be the only signal present in the measure-
ments, while there could be other natural signals in the same frequency band as PEGS.
These two things will complicate the detection of PEGS.

As mentioned before, I will analyse now if for the three closest stations a detection of
the gravity gradients of PEGS could be possible with the instrument of Moody et al.
(2002) as it has a lower noise level for signals shorter than 3 s. Figure 7.8 shows the
modelled signal of the EE-component of the gradient with and without additive noise of
the instrument of Moody et al. (2002). The pure noise of the instrument is shown for
reference. In contrast to the instrument of Griggs et al. (2017), already before applying
any filter a slight difference between the pure noise and the model with added noise can
be seen. However, it is far to small for a detection of the signal. For the instrument
of Moody et al. (2002), the noise spectrum shows high amplitudes for low frequencies.
Thus, a low-pass filter will not help increasing the detectability, but a high-pass filter
might help. On the other hand, it can be seen in Figure 7.8 that the noise still contains
much of its amplitude at frequencies higher than the dominant frequency of the signal,
which will not be filtered out with a high-pass filter. Therefore, I assume that also with
the instrument of Moody et al. (2002) the gravity gradients are not detectable at stations
up to 50 km away from the epicentre of the earthquake. For further stations anyway the
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Figure 7.8: Comparison between simulated gravity gradients and noise of the instrument of
Moody et al. (2002). In blue the time series of simulated noise of the instrument of Moody et al.
(2002) are shown, in orange the modelled EE-component gravity gradients of PEGS added with noise.
The pure modelled EE-components of gravity gradients are shown in green. The signals are shown for the
Tohoku-Oki earthquake for stations in the westward direction perpendicular to the strike. The distances
to the epicentre are given in the title of the subplots.
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instrument of Griggs et al. (2017) is the more appropriate one.

The analysis for the gradiometers with the lowest noise level already showed it to be
very challenging to detect PEGS with them. Therefore, I will now only shortly analyse
the instruments with the higher noise level. For the GREMLIT instrument the modelled
gravity gradients of PEGS are shown with and without additive noise in Figure 7.9 for the
same stations as before. All the signals are filtered with the same low-pass Butterworth
filters as for the instrument of Griggs et al. (2017) (order 4 and a corner frequency of 5

T
,

with T being the P-wave travel time), as for both of these instruments high noise especially
occurs for high frequencies. However, a band-pass filter could be a better choice for
the GREMLIT instrument as the PSD is increasing for frequencies lower than 3 mHz.
Figure 7.9 shows that after applying an appropriate low-pass filter the standard deviation
of the noise is still about thousand times bigger than the signal. I expect the situation
not to be much better when a band-pass filter is applied as the noise still shows much
variation at the corner frequency of the low-pass filter. Therefore, the detection of PEGS
will be impossible with the GREMLIT gradiometer. Since the noise level is even bigger for
the dFTG and the FTGplus instrument of Lockheed Martin, also these instruments are
not suitable to measure PEGS of an earthquake similar to the Tohoku-Oki earthquake.

7.4 Comparison between gravity gradient and gravity

strain signals

Another question of this thesis is, whether there are disadvantages or advantages to detect
PEGS with gravity gradiometers compared to gravity strainmeters. To analyse this ques-
tion, I calculate the signals measured by gravity strainmeters for the stations in the east
direction perpendicular to the strike used in Sections 7.1 and 7.3. Gravity strainmeters
measure the double time integral of gravity gradients (See Formula 5.1). So, to calculate
the strain signal I perform two numerical integrations of the gradient signal. The results
for the EE- and the ZZ- component can be seen together with the gravity gradient signals
in Figure 7.10. The EE- and the ZZ-component are chosen, because they were the biggest
components of the gradient in this direction. It can be seen again, that the amplitudes
of the gradients increase up to 25 km and decrease rapidly afterwards. The situation for
gravity strains is completely different: They even decrease from 10 km to 25 km but they
start to increase afterwards and they are still increasing at a distance of 1000 km. That
means, that although the gravity gradient itself gets smaller its double time integral gets
larger, as the time over which I integrate twice gets longer. In other words: A gravity
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Figure 7.9: Comparison between simulated gravity gradients and noise of the GREMLIT
instrument after applying a low-pass filter. In blue the time series of filtered simulated noise of
the instrument of Griggs et al. (2017) are shown. They are completely overlapped by the time series of
the filtered noisy EE-component gravity gradients of PEGS shown in orange. The pure filtered modelled
EE-components of gravity gradients are shown in green. For all the signals a low-pass Butterworth filter
of order 4 was used. The corner frequency fc depends on the distance to the epicentre and is given in
the subtitles of the plots. The signals shown here are for the Tohoku-Oki earthquake at stations in the
westward direction perpendicular to the strike. The distances to the epicentre are given in the title of
the subplots. 80
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Figure 7.10: Comparison between gravity gradient signals and strain signals of PEGS. The
figure shows two components of gravity gradients and gravity strains (EE- and ZZ-component) of PEGS
induced by the Tohoku-Oki earthquake at stations in the westward direction perpendicular to the strike
(direction of Station (c) in Figure 7.1). The stations are located at eleven different distances from the
epicentre. All plots have the same gravity gradient- and gravity strain scale, but different time scales.
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gradient in a gravity strainmeter produces a differential acceleration on the test masses.
Although this acceleration gets smaller for larger distances, the final distance change be-
tween the test masses is bigger, because they were accelerated for a longer time. However,
as the gravity gradient decays with 1

r3
in the far field and the time before the P-wave ar-

rival increases only linearly with r, further away also the gravity strain will finally start
to decrease with increasing distance.

I expect this could be an advantage of gravity strainmeters over gravity gradiometers: The
gravity strainmeter signal is larger for larger distances where the signal also has a longer
time scale and there would be more time to detect the signal. However, the detectability
highly depends on the specific form of the noise spectrum of an instrument compared to
the amplitude and frequency of the signal. A closer comparison of gravity strainmeters
to gravity gradiometers would be needed in order to know if the maximum signal further
away from the earthquake is really an advantage for detectability of PEGS with gravity
strainmeters.

Anyway, there is a big advantage of gravity strainmeters compared to gravity gradiome-
ters: following previous studies (Juhel et al. 2018a and Shimoda et al. 2020) there are
gravity strainmeters under development in the context of gravitational wave detection
which could detect PEGS of earthquakes down to a magnitude of MW = 7.0. Com-
pared to this, all gravity gradiometers for which I could find some information, including
those under development, would hardly be able to detect PEGS of an earthquake like the
Tohoku-Oki earthquake, which had magnitude MW = 9.1.
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Conclusion and outlook

As a summary of this thesis the questions posed in Chapter 1 are answered and an outlook
for further investigations is given:

1. How can existing methods to model gravimeter, seismometer or gravity
strainmeter measurements of PEGS be adapted to model gravity gra-
diometer measurements of PEGS?

In this thesis gravity gradients of PEGS were successfully modelled with the method
of Harms (2016). This method solves the elastic equation of motion in a homoge-
neous half-space. From the solution with the help of the Poisson equation the change
in gravity is calculated. Although the method is using a very simplified Earth model
and ignores the coupling between the equation of motion and the Poisson equation, it
is very convenient to estimate the order of magnitude of gravity gradients of PEGS.
However, especially the assumption of homogeneity of the Earth is too much of a
simplification, to obtain results accurate enough to compare to true measurements.
I demonstrated this by showing that the size of the signal for gravity gradients of
PEGS can change up to a factor of three when using different realistic values for P-
and S-wave velocities.

To overcome the limitations of the method of Harms (2016), I tested the use of
normal mode summation to calculate gravity gradients of PEGS in a similar way
as Juhel et al. (2018b) used it to calculate the vertical component of gravity change
of PEGS. By this approach, a spherical, self gravitating Earth model with radial
changing material and the coupling of the equation of motion and the Poisson equa-
tion is realised. I developed three very similar python programs for normal mode
summations for vertical displacement, vertical gravity change and the change in
all components of the gravity gradient tensor. They take normal mode catalogues
calculated with the software package Mineos as input.

The programs were tested for low frequencies (≤ 8 mHz) on the Tohoku Oki earth-
quake. The output of the python program for vertical displacement compares well
to measured seismograms. Beside the missing high frequencies the output of the
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python program for the vertical component of gravity change compared well to the
simulations shown in Juhel et al. (2018b).

However, these tests showed some problems: The results for vertical displacement of
the normal mode summation with python were inconsistent with those obtained with
the normal mode summation of Mineos. Furthermore, using two different methods
for the computation of the derivatives of the gravity potential at the Earth’s surface,
I obtained two different results. The main problem, which could not be solved, was
to compute normal modes including gravity for frequencies higher than 50 mHz. For
this reason I did not continue using this method.

The most recent published method for simulating PEGS measured with gravimeters
or seismometers is the one proposed by Zhang et al. (2020). They use the same
equations and a similar Earth model as the approach of normal mode summation,
but they do not solve the eigenvalue problem but they solve the inhomogeneous
equations directly. This is implemented in the QSSP code (Wang et al. 2017). In
the end of the processing time of my thesis I got in contact with Rongjiang Wang,
who provided me with the code of this method. Probably also gravity gradiometer
or gravity strainmeter outputs can be simulated with it. I will try this in the future.

2. What do the signals of gravity gradients of PEGS look like?

Gravity gradients tensors of PEGS were simulated with the method of Harms (2016)
for the Tohoku Oki earthquake. Most of the simulated signals are monotonically
increasing or monotonically decreasing starting from zero. As a result, the largest
amplitudes occur just before the P-wave arrival. The biggest amplitudes of about
40 mE are reached in the EZ-component about 25 km from the epicentre in the
westward direction perpendicular to the strike. In general signals were bigger in the
directions perpendicular to the strike than in all other directions. Furthermore, the
maximum signal increases with distance from the epicentre up to a distance of 25 km.
Afterwards a strong decrease with distance can be observed. 250 km away from the
epicentre the maximum signal is already only 0.6 mE. That means the distance to
the epicentre of the maximum signal of PEGS is much smaller for gravity gradients
than for the vertical component of gravity. For the vertical component of gravity
the maximum signals were obtained between 1000 km and 1500 km away from the
epicentre in previous studies (Vallée et al. 2017). The form of the time evolution of
the gravity gradients changes a lot up to a distance of 100 km, afterwards it is very
stable, except for increasing signal length and decreasing amplitude.
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3. Should it be possible to detect those signals with gravity gradiometers
that exist or are under development?

The most promising gradiometer to detect PEGS is the one Griggs et al. (2017) are
currently developing. However, also with this one the detection of PEGS will be
very difficult: Even for the Tohoku Oki earthquake, the fourth largest earthquake
in the last 100 years worldwide, the standard deviation of the instrument’s noise
is still similar to the standard deviation of the signal after appropriate filtering.
As the signals get longer with increasing distance from the epicentre, lower corner
frequencies for the low-pass filter can be used. This leads to the fact that the
signals at stations about 250 km away from the epicentre have the highest chance
of detectability with the instrument of Griggs et al. (2017). However, I conclude
from the standard deviation of the signal and the noise in Figure 7.6, that for a
reliable detection of PEGS of earthquakes similar to the Tohoku Oki earthquake,
instruments with at least ten times smaller noise levels would be needed. Maybe
further developments in the techniques of gravity gradiometers such as quantum
gradiometers will be able to reach these noise levels.

All the other instruments studied in this thesis (eFTG, FTGplus, GREMLIT and
the one of Moody et al. (2002)) were found not to be appropriate for the detection
of PEGS, because of their noise level being too high.

4. Are there advantages or disadvantages of gravity gradiometer signals
compared to gravity strainmeter signals with regards to the detection
of PEGS?

I found that the amplitude of the signals of gravity strain of PEGS increases up
to a distance larger than 1000 km to the epicentre, whereas the signals of gravity
gradients increase only up to 25 km and decrease quickly afterwards. This could be
an advantage of gravity strainmeters.

There is another more practical advantage of gravity strainmeters: Very accurate
gravity strainmeters are planned to be developed for gravitational wave detection.
As for gravitational wave detection even higher sensitivities are needed than for
PEGS detection, prototypes of the gravitational wave detectors could be used for
PEGS detection. Previous studies have shown that with these instruments PEGS of
earthquakes down to magnitude MW = 7.0 could be detected. This is much better
than the results for gravity gradiometers inspected in this thesis, for which I found
that even an earthquake of magnitude MW = 9.1 is hardly detectable with gravity
gradiometers under development.
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Chapter 8. Conclusion and outlook

Finally, I come to the conclusion that the gradiometers that have so far been devel-
oped and probably also gradiometers currently under development will not help to detect
PEGS. For the moment I propose to study PEGS with signals measured by gravimeters
or seismometers. In the future gravity strainmeters can eventually be used as well. Be-
side not being sensitive to ground motion they will have the advantage to carry more
directional information compared to the vertical component of gravity. The methods of
signal modulation of gravity gradients of PEGS studied in this thesis will also be useful
to simulate signals measured with gravity strainmeters, as a gravity strain is the double
time integral of a gravity gradient. With those simulations a lot of open questions could
be addressed as for example:

1. Which component of the gravity strain shows the signals with the highest amplitude?
This component does not need to be one in the local north oriented reference frame
but it can be one in any rotated reference frame, depending probably on the direction
of the strike. Answering this question could help to install gravity strainmeters in
an optimal way, as in a specific region the strike of different earthquakes is often
similar.

2. How can PEGS measured with gravity strainmeters be detected in real time?

3. How can measurements of gravity strainmeters contribute to earthquake early warn-
ing systems?
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Appendix A

Associated Legendre functions

The associated Legendre functions are (Aki and Richards 1980):

Pm
l (x) =

√
(1− x2)m

2ll!

∂l+m

∂xl+m
(x2 − 1)l ,

for positive integers l and m, where m ≤ l. The corresponding associated Legendre
function for negative m are

P−ml (x) = (−1)m
(l −m)!

(l +m)!
Pm
l (x) .

For the definition of the orthonormalised complex spherical harmonics (Equation 4.4) we
need P̄m

l (cosϑ). P̄m
l (x) are normalised versions of the associated Legendre functions such

that

1∫
−1

(P̄m
l (x))2dx =

1

2π
.

Additionally, the Condon-Shortly phase factor (−1)m is used. That leads to the following
formula for P̄m

l (x):

P̄m
l (x) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (x)

⇒P̄−ml (x) = (−1)mP̄m
l (x)

Further, for the gravity gradient tensor we need the derivatives ∂P̄ml (cosϑ)

∂ϑ
and ∂2P̄ml (cosϑ)

∂ϑ2
of

the normalised associated Legendre functions. For the first derivative of the unnormalised
associated Legendre functions Ilk (1983) gives

∂Pm
l (cosϑ)

∂ϑ
=

1

2

(
(l +m)(l −m+ 1)Pm−1

l (cosϑ)− Pm+1
l (cosϑ)

)
,

where Pm
l should be set to zero for m > l.
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From this formula a recursion formula for the second derivative can be derived:

∂2Pm
l (cosϑ)

∂ϑ2
=

1

2

(
(l +m)(l −m+ 1)

∂Pm−1
l (cosϑ)

∂ϑ
− ∂Pm+1

l (cosϑ)

∂ϑ

)
=

1

4

(
(l +m)(l −m+ 1)(l +m− 1)(l −m+ 2)Pm−2

l

− (l +m)(l −m+ 1)Pm
l

− (l +m+ 1)(l −m)Pm
l + Pm+2

l

)
.

For the normalised Legendre functions the scaling in the functions leads to a scaling in
the derivatives:

∂P̄m
l (cosϑ)

∂ϑ
= (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!

∂Pm
l (cosϑ)

∂ϑ
,

∂2P̄m
l (cosϑ)

∂ϑ2
= (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!

∂2Pm
l (cosϑ)

∂ϑ2
.
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Appendix B

Laplace transformation

The definition used in this thesis for the Laplace transform L{f(t)} = f̄(s) of the func-
tion f(t) is

f̄(s) =

∞∫
0

f(t) exp(−st)dt for Re{s} > 0 .

if it exists (Aki and Richards 1980). Otherwise the Laplace transform keeps undefined.
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Appendix C

Transformations of the coordinate
system

C.1 From a geodetic to a geocentric coordinate system

The locations of epicentres and receivers are normally given as geodetic latitude and
longitude. These coordinates must be transformed to geocentric colatitude and longitude.
The difference between geodetic and geocentric latitude arises due to the flattening f of
the Earth (see Figure C.1). Geocentric latitude θgeoc. can be calculated from geodetic
latitude θgeod.(Masters, lecture notes):

tan θgeoc. = (1− f)2 tan θgeod.

From the geocentric latitude the geocentric colatitude ϑ can be calculated:

ϑ =
π

2
− θgeoc.

The geocentric longitude ϕ is equal to the geodetic longitude.

C.2 From a geocentric to a epicentric coordinate sys-

tem

As discussed in Section 6.2.1 the summation of normal modes simplifies if the earthquake
occurs at colatitude ϑ′EQ = 0. Therefore, a new coordinate system is defined, where this
is true. To completely define this coordinate system the actual geographic North pole is
further imposed to be at ϕ′N = π. In this section the coordinates of the receiver in this new
coordinate system (ϑ′R, ϕ

′
R) must be calculated. The coordinates of the earthquake EQ

and the receiver R in geocentric coordinates are noted (ϑEQ, ϕEQ) and (ϑR, ϕR), as can
be seen in Figure C.2. The imposed conditions for the new coordinate system can be
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Appendix C. Transformations of the coordinate system

Figure C.1: Difference between geodetic and geocentric colatitude. The figure shows a quarter
of the Earth as a ellipsoid of rotation with semi-axes a and b. The difference between geocentric and
geodetic latitude is shown. Furthermore, the definition and the value of the Earth’s flattening f are given.
The sketch is adapted from Masters (lecture notes).

Figure C.2: From geocentric to epicentric coordinates. The sketch shows the geographic North pole
(N), the epicentre of the earthquake (EQ) and the receiver (R) in geocentric coordinates. To change from
a geocentric to an epicentric coordinate system, where the epicentre is at colatitude zero, the coordinate
system first has to be rotated around the z-axis by ϕEQ and afterwards around the y-axis by ϑEQ.
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Appendix C. Transformations of the coordinate system

achieved by the following transformations of the geocentric coordinate system:

1. ϕEQ → 0 ⇒
mathematical positive rotation of the coordinate system
by ϕEQ around the z-axis:

R1 =

 cosϕEQ sinϕEQ 0

− sinϕEQ cosϕEQ 0

0 0 1



2. ϑEQ → 0 ⇒
mathematical positive rotation of the coordinate system
by ϑEQ around the y-axis:

R2 =

cosϑEQ 0 − sinϑEQ

0 1 0

sinϑEQ 0 cosϑEQ



The coordinates of the receiver after the rotations are

rrr′R =RRR2 ·RRR1 · rrrR

=

cosϑEQ 0 − sinϑEQ

0 1 0

sinϑEQ 0 cosϑEQ

 ·
 cosϕEQ sinϕEQ 0

− sinϕEQ cosϕEQ 0

0 0 1

 ·
cosϕR sinϑR

sinϕR sinϑR

cosϑR



=

cosϑEQ 0 − sinϑEQ

0 1 0

sinϑEQ 0 cosϑEQ

 ·
sinϑR cos(ϕR − ϕEQ)

sinϑR sin(ϕR − ϕEQ)

cosϑR



=

cosϑEQ sinϑR cos(ϕR − ϕEQ)− sinϑEQ cosϑR

sinϑR sin(ϕR − ϕEQ)

sinϑEQ sinϑR cos(ϕR − ϕEQ) + cosϑR cosϑEQ


!

=

cosϕ′R sinϑ′R
sinϕ′R sinϑ′R

cosϑ′R

 .

93



Appendix C. Transformations of the coordinate system

Figure C.3: Rotation of the gravity gradient tensor. In the epicentric coordinate system the x-axis
of local Cartesian coordinates is pointing away from the epicentre of the earthquake (EQ). By a negative
rotation by γ around the z-axis this local Cartesian coordinate system can be transformed to the local
south oriented reference frame, where the x-axis is pointing to the South pole.

⇒ cosϑ′R = sinϑEQ sinϑR cos(ϕR − ϕEQ) + cosϑr cosϑEQ (C.1)

sinϑ′R =
√

1− cos2 ϑ′R (C.2)

⇒ sinϕ′R =
sinϑR sin(ϕR − ϕEQ)

sinϑ′R
(C.3)

cosϕ′R =
cosϑEQ sinϑR cos(ϕR − ϕEQ)− sinϑEQ cosϑR

sinϑ′R

=
cosϑEQ cosϑ′R − cosϑR

sinϑEQ sinϑ′R
(C.4)

These formulas are also given by Masters (lecture notes).

C.3 Rotation of the moment tensor to a local south

oriented frame

The gravity gradient tensor TTT is calculated in a local Cartesian coordinate system. In
the epicentric coordinate system used for the normal mode summation the x-axis of local
Cartesian coordinates is pointing in the opposite direction of the earthquake, the z-axis is
pointing upwards and the y-axis is completing the right-hand system. However, we will
normally be interested in the gravity gradient tensor in a local south oriented reference
frame, with the x-axis pointing towards the South pole, the z-axis again pointing upwards
and the y-axis completing the right-hand system. Thus, the gravity gradient tensor has to
be rotated around the z-axis by γ, where γ is the azimuth between the North pole and the
earthquake observed at the measuring station (see Figure C.3). γ can also be seen as the
difference between the longitude of the earthquake and the longitude of the North pole
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Figure C.4: From epicentric to receiver-central coordinates. The sketch shows the geographic
North pole (N), the epicentre of the earthquake (EQ) and the receiver (R) in epicentric coordinates. To
change from an epicentric to a receiver-central coordinate system, where the receiver is at colatitude zero,
the coordinate system first has to be rotated around the z-axis by ϕ′R and afterwards around the y-axis
by ϑ′R.

in a coordinate system with the receiver located at the positive z-axis (receiver-central
coordinate system). A sketch of the coordinates of the epicentre of the earthquake, the
geographic North pole and the receiver in epicentric coordinates is shown in Figure C.4.
The transformation from epicentric coordinates to receiver-central coordinates can be
achieved by the following transformations:

1. ϕ′R → 0 ⇒
mathematical positive rotation of the coordinate system
by ϕ′R around the z-axis:

R3 =

 cosϕ′R sinϕ′R 0

− sinϕ′R cosϕ′R 0

0 0 1



2. ϑ′R → 0 ⇒
mathematical positive rotation of the coordinate system
by ϑ′R around the y-axis:

R4 =

cosϑ′R 0 − sinϑ′R
0 1 0

sinϑ′R 0 cosϑ′R
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The coordinates of the earthquake in receiver-central coordinates are

rrr′′EQ = RRR4 ·RRR3 ·

0

0

1

 =

− sinϑ′R
0

cosϑ′R

 !
=

cosϕ′′EQ sinϑ′′EQ

sinϕ′′EQ sinϑ′′EQ

cosϑ′′EQ

 .

⇒ ϑ′′EQ = ϑ′R

⇒ ϕ′′EQ = π

The coordinates of the North pole in receiver-central coordinates are

rrr′′N =RRR4 ·RRR3 ·

− sinϑEQ

0

cosϑEQ



=

cosϑ′R 0 − sinϑ′R
0 1 0

sinϑ′R 0 cosϑ′R

 ·
 cosϕ′R sinϕ′R 0

− sinϕ′R cosϕ′R 0

0 0 1

 ·
− sinϑEQ

0

cosϑEQ



=

cosϑ′R 0 − sinϑ′R
0 1 0

sinϑ′R 0 cosϑ′R

 ·
− cosϕ′R sinϑEQ

sinϕ′R sinϑEQ

cosϑEQ



=

− cosϑ′R cosϕ′R sinϑEQ − sinϑ′R cosϑEQ

sinϕ′R sinϑEQ

− sinϑ′R cosϕ′R sinϑEQ + cosϑ′R cosϑEQ

 .

And making use of C.3 and C.4,

rrr′′N =


− cosϑ′R(cosϑEQ cosϑ′R−cosϑR)

sinϑ′R
− sinϑ′R cosϑEQ

sinϑEQ sinϑR sin(ϕR−ϕEQ)

sinϑ′R

− cosϑEQ cosϑ′R + cosϑR + cosϑEQ cosϑ′R



=


− cosϑEQ+cosϑ′R cosϑR

sinϑ′R
sinϑEQ sinϑR sin(ϕR−ϕEQ)

sinϑ′R

cosϑR

 !
=

cosϕ′′N sinϑ′′N
sinϕ′′N sinϑ′′N

cosϑ′′N

 .
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⇒ ϑ′′N = ϑR

⇒ cosϕ′′N =
− cosϑEQ + cosϑ′R cosϑR

sinϑ′R sinϑR

sinϕ′′N =
sinϑEQ sin(ϕR − ϕEQ)

sinϑ′R

γ = ϕ′′EQ − ϕ′′N = π − ϕ′′N

⇒ cos γ =
cosϑEQ − cosϑ′R cosϑR

sinϑ′R sinϑR

sin γ =
sinϑEQ sin(ϕR − ϕEQ)

sinϑ′R

Again, these formulas can also be found in Masters (lecture notes).

Finally, as can be seen in Figure C.3, the rotation we need for the gravity gradient tensor
is a negative rotation of the coordinate system by γ around the z-axis:

TTT ′ =

cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 · TTT ·
 cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 .
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Appendix D

Distance dependency of gravity
gradients of PEGS for other directions

In Section 7.1 the dependency of gradients of PEGS of the Tohoku-Oki earthquake on the
distance was only shown for stations in the westward direction perpendicular to the strike.
To complete the overview of time series of gravity gradients of PEGS for the Tohoku-Oki
earthquake the dependence on the distance is shown for four more directions in Figure
D.1, D.2, D.3 and D.4.
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Appendix D. Distance dependency of gravity gradients of PEGS for other directions

Figure D.1: Distance dependency of gravity gradients of PEGS in a direction of 45◦ away
from the strike. The figure shows gravity gradients of PEGS induced by the Tohoku-Oki earthquake
at stations in the north west direction 45◦ away from the strike (direction of station (a) in Figure 7.1).
The stations are located at 11 different distances from the epicentre, which are given in the titles of the
subplots.
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Appendix D. Distance dependency of gravity gradients of PEGS for other directions

Figure D.2: Distance dependency of gravity gradients of PEGS in the north direction of the
strike. The figure shows gravity gradients of PEGS induced by the Tohoku-Oki earthquake at stations
in the northward direction of the strike (direction of station (b) in Figure 7.1). The stations are located
at 11 different distances from the epicentre, which are given in the titles of the subplots.
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Figure D.3: Distance dependency of gravity gradients of PEGS in the east direction per-
pendicular to the strike. The figure shows gravity gradients of PEGS induced by the Tohoku-Oki
earthquake at stations in the eastward direction perpendicular to the strike (direction of station (d) in
Figure 7.1). The stations are located at 11 different distances from the epicentre, which are given in the
titles of the subplots.
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Figure D.4: Distance dependency of gravity gradients of PEGS in the south direction of the
strike. The figure shows gravity gradients of PEGS induced by the Tohoku-Oki earthquake at stations
in the southward direction of the strike (direction of station (c) in Figure 7.1). The stations are located
at 11 different distances from the epicentre, which are given in the titles of the subplots.
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Appendix E

Python code for normal mode
summation

E.1 Main programs

E.1.1 Normal mode summation for vertical displacement

import CoeffMomentStrain as coeff

import EigenReceiver as eigen

import ReadInput as read

import Time as time

import Units as un

import geometry as geo

import interpol as ip

import numpy as np

import matplotlib.pyplot as plt

### Input parameters

#Folder with output files of eigcon (part of the Mineos program) giving all

#information about eigenfunctions

folderEigen=’./ TestMineos/RelParaDisp/Anoocean_R_S ’

#Folder with moment tensor file of the earthquake

folderQuake=’.</ EarthquakeDatabase/Tohoku ’

T=360*60 -1 #length of the times series to be computed

deltat =1 #sampling interval

#Latitude and Longitude of the receiver

#latR ,lonR =[48.3319 ,8.3311]# BFO

#latR ,lonR=[ -32.3797 ,20.8117]# SUR

latR ,lonR =[ -11.9875 , -76.8422]#NNA
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### Setup time vector and change to Mineos unit system

t=time.time(T,deltat)

tmineos=un.s2mineos(t)

deltatmineos=un.s2mineos(deltat)

###Read the input

#Attention: The eigenfuction of the potential is called P in this code

#it was called phi in the thesis

n,l,omega ,q,r,U,dUdr ,V,dVdr ,P,dPdr=read.ReadEigenMode(folderEigen)

M,rs,latS ,longS ,dmdtmineos ,tdmdtSI=read.ReadEarthquake(folderQuake ,deltat)

#Calculate epicentric coordinates of the receiver

Delta ,Phi=geo.changeangles(latR ,lonR ,latS ,longS)

### Normal mode summation of the Greens function for vertical displacement

green=np.zeros(t.size)

for i,li in enumerate(l):

lint=int(li)

U_rs ,dUdr_rs=ip.eigenfuncatsource(r,U[i],dUdr[i],rs)

V_rs ,dVdr_rs=ip.eigenfuncatsource(r,V[i],dVdr[i],rs)

U_rr=U[i][-1]

maxm=int(min(li ,2))

summem =0

for m in range(-maxm ,maxm +1):

Coeff=coeff.MultMomentStrain(lint ,m,rs,U_rs ,dUdr_rs ,V_rs ,dVdr_rs ,M)

Gamma=eigen.VertDispEigen(lint ,m,U_rr ,Delta ,Phi)

summem +=Gamma*Coeff

timeseries=time.TimeSeries(omega[i],q[i],tmineos)

summand=summem*timeseries

green=green+summand

green=green.real

###Time convolution with source time function and conversion back to SI units

mess=time.convol(dmdtmineos ,green ,deltatmineos)

messSI=un.mineos2m(mess)

tmess=time.time(t[-1]+len(tdmdtSI)-1,deltat ,t0=tdmdtSI [0])

###Save the result

np.savetxt(’MessTohokuNNAMastersSH.txt’, np.vstack ((tmess ,messSI )).T)
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E.1.2 Normal mode summation for vertical component of gravity

import CoeffMomentStrain as coeff

import EigenReceiver as eigen

import ReadInput as read

import Time as time

import Units as un

import geometry as geo

import interpol as ip

import numpy as np

import matplotlib.pyplot as plt

import scipy.signal as sig

### Input parameters

#Folder with output files of eigcon (part of the Mineos programm) giving all

#information about eigenfunctions

folderEigen=’./ TestMineos/RelParaDisp/Anoocean_R_S ’

#Folder with momenttensor file of the earthquake

folderQuake=’./ EarthquakeDatabase/Tohoku ’

T=360*60 -1 #length of the times series to be computed

deltat =1 #sampling interval

#Latitude and Longitude of the receiver

latR ,lonR =[44.62 ,129.59] #MDJ

### Setup time vector and change to Mineos unit system

t=time.time(T,deltat)

tmineos=un.s2mineos(t)

deltatmineos=un.s2mineos(deltat)

###Read the input

n,l,omega ,q,r,U,dUdr ,V,dVdr ,P,dPhdr=read.ReadEigenMode(folderEigen)

M,rs,latS ,longS ,dmdtmineos ,tdmdtSI=read.ReadEarthquake(folderQuake ,deltat)

#Calculate epicentric coordinates of the receiver

Delta ,Phi=geo.changeangles(latR ,lonR ,latS ,longS)
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### Normal mode summation of the Greens function for vertical gravity

green=np.zeros(t.size)

for i,li in enumerate(l):

lint=int(li)

U_rs ,dUdr_rs=ip.eigenfuncatsource(r,U[i],dUdr[i],rs)

V_rs ,dVdr_rs=ip.eigenfuncatsource(r,V[i],dVdr[i],rs)

dPdr_rr=dPdr[i][-1]

P_rr=P[i][-1]

maxm=int(min(li ,2))

summem =0

for m in range(-maxm ,maxm +1):

Coeff=coeff.MultMomentStrain(lint ,m,rs,U_rs ,dUdr_rs ,V_rs ,dVdr_rs ,M)

Gamma=eigen.VertGravEigen2(lint ,m,dPdr_rr ,Delta ,Phi)

summem +=Coeff*Gamma

timeseries=time.TimeSeries(omega[i],q[i],tmineos)

summand=summem*timeseries

green=green+summand

green=green.real

###Time convolution with source time function and conversion back to SI units

mess=time.convol(dmdtmineos ,green ,deltatmineos)

messSI=un.mineos2mpersqrs(mess)

tmess=time.time(t[-1]+len(tdmdtSI)-1,deltat ,t0=tdmdtSI [0])

###Save the results

np.savetxt(’Tohoku_MDJ_Gravity1.txt’, np.vstack ((tmess ,messSI )).T)
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E.1.3 Normal mode summation for all components of the gravity

gradient tensor

import CoeffMomentStrain as coeff

import EigenReceiver as eigen

import ReadInput as read

import Time as time

import Units as un

import geometry as geo

import interpol as ip

import numpy as np

import matplotlib.pyplot as plt

import scipy.signal as sig

### Input parameters

#Folder with output files of eigcon (part of the Mineos programm) giving all

#information about eigenfunctions

folderEigen=’/home/geodaesie/Clara/Master/TestMineos/RelParaDisp/Anoocean_R_S ’

#Folder with moment tensor file of the earthquake

folderQuake=’/home/geodaesie/Clara/Master/EarthquakeDatabase/Tohoku ’

T=360*60 -1 #length of the times series to be computed

deltat =1 #sampling interval

#Latitude and Longitude of the receiver

latR ,lonR =[44.62 ,129.59]#MDJ

### Setup time vector and change to Mineos unit system

t=time.time(T,deltat)

tmineos=un.s2mineos(t) #in s

deltatmineos=un.s2mineos(deltat)

###Read the input

n,l,omega ,q,r,U,dUdr ,V,dVdr ,P,dPdr=read.ReadEigenMode(folderEigen)

M,rs,latS ,longS ,dmdtmineos ,tdmdtSI=read.ReadEarthquake(folderQuake ,deltat)

### Calculate epicentric coordinates of the receiver

Delta ,Phi ,gamma=geo.changeangles(latR ,lonR ,latS ,longS ,ReturnGamma=True)
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### Compute Legendre function and its first and second derivative at the

#receiver coordinates

lmax=int(max(l))

Plm_Matrix ,Plm_dtheta_Matrix ,Plm_d2theta_Matrix=eigen.initializePlm(lmax ,2,Delta)

### Normal mode summation of the Greens function for gradient tensor

green=np.zeros ((6,t.size),dtype=complex)

for i,li in enumerate(l):

lint=int(li)

U_rs ,dUdr_rs=ip.eigenfuncatsource(r,U[i],dUdr[i],rs)

V_rs ,dVdr_rs=ip.eigenfuncatsource(r,V[i],dVdr[i],rs)

dPdr_rr=dPdr[i][-1]

P_rr=P[i][-1]

maxm=int(min(li ,2))

summem =0

for m in range(-maxm ,maxm +1):

Coeff=coeff.MultMomentStrain(lint ,m,rs,U_rs ,dUdr_rs ,V_rs ,dVdr_rs ,M)

Plm ,Plm_dtheta ,Plm_d2theta=eigen.evaluatePlm(Plm_Matrix[abs(m),lint],

Plm_dtheta_Matrix[abs(m),

lint],

Plm_d2theta_Matrix[abs(m),

lint],

lint ,m)

Gamma=eigen.GradientTensor(lint ,m,P_rr ,Delta ,Phi ,Plm_dtheta ,Plm_d2theta)

summem +=Coeff*np.array(Gamma)

summem=np.array(geo.RotateGravTensor(summem [0], summem [1], summem [2],

summem [3], summem [4], summem [5],gamma))

timeseries=time.TimeSeries(omega[i],q[i],tmineos)

for k in range (6):

summand=summem[k]* timeseries

green[k,:]= green[k,:]+ summand

green=green.real

###Time convolution with source time function and conversion back to SI units

mess=np.zeros((6,t.size+len(tdmdtSI )-1))

for k in range (6):

mess[k,:]= time.convol(dmdtmineos ,green[k,:], deltatmineos)

messSI=un.mineos2sqrHz(mess)

tmess=time.time(t[-1]+len(tdmdtSI)-1,deltat ,t0=tdmdtSI [0])

###Save the results

np.savetxt(’MessGradientTohokuMDJMastersSH.txt’, np.vstack ((tmess ,messSI )).T)
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E.2 Modules needed for the main programms

E.2.1 Read Input (ReadInput)

import numpy as np

import Units as un

import os

import Time as time

#Read the latitude , longitude , CMT moment tensor , the depth and the half duration

#of the earthquake given in the file file. Depth is converted to radius and

#radius and moment tensor are converted to the Mineos unit system

def readmomenttensor(file):

lon ,lat ,depth ,mrr ,mtt ,mpp ,mrt ,mrp ,mtp ,exp ,Thalf=np.loadtxt(file , unpack=True)

M=np.array([mrr ,mtt ,mpp ,mrt ,mrp ,mtp])

expNm=exp -7

M=un.Nm2mineos(M*10**( expNm))

rs=un.rn-depth *1000

rs=un.m2mineos(rs)

return(M,rs,lat ,lon ,Thalf)

#Compute a Triangle Source time function for a given half duration and convert

#it to Mineos unit system

def Triangle(Thalf ,dt):

tdmdt=time.time (2*Thalf ,dt)-Thalf

dmdt=np.append (1/ Thalf +1/ Thalf **2* tdmdt[np.nonzero(tdmdt <0)],

1/Thalf -1/ Thalf **2* tdmdt[np.nonzero(tdmdt >=0)])

dmdttmineos=un.mHz2mineos (1000* dmdt)

return(dmdttmineos ,tdmdt)

#Read the information about the earthquake given in the folder folderQuake

def ReadEarthquake(folderQuake ,dt):

fileMoment=folderQuake+’/Moment.txt’

M,rs,lat ,lon ,Thalf=readmomenttensor(fileMoment)

dmdt ,tdmdt=Triangle(Thalf ,dt)

return( M,rs ,lat ,lon ,dmdt ,tdmdt)

#Read degree , order , eigenfrequency , damping coefficient and the values of the

#eigenfuctions nUl , nVl , nPl and its derivatives given at discreet radius r from

#output files of eigencon (Mineos ). The files are all in the given folder. If

#unmineos=True , r and omega are converted to Mineos unit system. The

#eigenfunctions are already given in the Mineos unit system in the output files

#of eigcon
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def ReadEigenMode(folder ,unmineos=True):

n=[]

l=[]

omega =[]

Q=[]

U=[]

dUdr =[]

V=[]

dVdr =[]

P=[]

dPdr =[]

for filename in os.listdir(folder ):

path=os.path.join(folder , filename)

ni ,li ,Ti ,Qi ,=np.loadtxt(path ,max_rows=1,usecols = (0,1,4,7), unpack=True)

omegai =2*np.pi/Ti *1000 #omega in mHz

if unmineos:

omegai=un.mHz2mineos(omegai)

dataEigenMode=np.loadtxt(path ,skiprows =1)

if dataEigenMode.shape [1]==3:

ri ,Ui ,dUdri=dataEigenMode.T

Vi=np.zeros(Ui.size)

dVdri=np.zeros(Ui.size)

Pi=np.zeros(Ui.size)

dPdri=np.zeros(Ui.size)

else:

ri ,Ui ,dUdri ,Vi,dVdri ,Pi ,dPdri=dataEigenMode.T

Ui=np.flip(Ui)

dUdri=np.flip(dUdri)

Vi=np.flip(Vi)

dVdri=np.flip(dVdri)

Pi=np.flip(Pi)

dPdri=np.flip(dPdri)

n.append(ni)

l.append(li)

omega.append(omegai)

Q.append(Qi)

U.append(Ui)

dUdr.append(dUdri)

V.append(Vi)

dVdr.append(dVdri)

P.append(Pi)

dPdr.append(dPdri)
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ri=np.flip(ri)

if unmineos:

ri=un.m2mineos(ri)

return(n,l,omega ,Q,ri,U,dUdr ,V,dVdr ,P,dPdr)

E.2.2 Functions related to time (Time)

import numpy as np

import scipy.signal as sig

#Compute the time dependence of a normal mode with frequency omega and damping

#coefficient q. t contains the times for which the time series should be

#calculated. If noq=True , damping is ignored

def TimeSeries(omega ,q,t,noq=False ):

if noq or q==0:

eigenschwing =(1-np.cos(omega*t))

else:

eigenschwing =(1-np.cos(omega*t)*np.exp(-omega*t/(2*q)))

return(eigenschwing)

#Returns a numpy array t with times between t0 and t0+T sampled by deltat

def time(T,deltat ,t0=0):

N=int(T/deltat +1)

t=np.linspace(t0 ,(N-1)* deltat+t0,N)

return(t)

#Calculate the convolution of two time series x1 and x2 which are sampled by

#deltat

def convol(x1,x2 ,dt):

mess=dt*sig.fftconvolve(x1,x2,mode=’full’)

return(mess)

E.2.3 Constants and unit conversion (Units)

import numpy as np

### Constants

rhon =5515

piG=np.pi *6.6723e-11

rn =6.371 e6

flat = 1/298.256
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###Unit conversion

#For numerical stability Mineos has its own unit system. The following units

#exist:

#1 roh_n= 5515kg/m^3

#1 pi*G=pi *6.6723e-11 m^3/(kg s^2)

#1 rn= 6.3781 e6 m

#Out of these basic units other units can be constructed. For example

#1m/s^2=1/(6.3781 e6 *5515* pi *6.6723e-11) rn*rohn*pi*G

def mpers2mineos(a):#from m/s to Mineos units

return(a/(rn*np.sqrt(rhon*piG)))

def mineos2mpers(a):#from Mineos units to m/s

return(a*rn*np.sqrt(rhon*piG))

def mHz2mineos(a):#from mHz to Mineos units

return(a*1e-3*1/np.sqrt(rhon*piG))

def mineos2mHz(a):#from Mineos units to mHz

return(a*1e3*np.sqrt(rhon*piG))

def m2mineos(a):#from m to Mineos units

return(a/rn)

def mineos2m(a):#from Mineos units to m

return(a*rn)

def mpersqrs2mineos(a):#from m/s^2 to Mineos units

return(a/(rn*rhon*piG))

def mineos2mpersqrs(a):#from Mineos to m/s^2

return(a*(rn*rhon*piG))

def Nm2mineos(a):#from Nm to Mineos units

return(a/(rhon **2*rn**5* piG))

def mineos2Nm(a):#from Mineos units to Nm

return(a*(rhon **2*rn**5* piG))

def s2mineos(a):#from s to Mineos units

return(a*np.sqrt(rhon*piG))
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def mineos2s(a):#from Mineos units to s

return(a/np.sqrt(rhon*piG))

def sqrHz2mineos(a):# from 1/s^2 to Mineos units

return(a/(rhon*piG))

def mineos2sqrHz(a):# from Mineos units to 1/s^2

return(a*rhon*piG)

E.2.4 Geometry (geometry)

import math as m

import Units as un

#geodetic to geocentric coordinates

def geodetic2geocent(xi ,phi):

xirad =2*m.pi*xi/360

phirad =2*m.pi*phi /360

geocentlat=m.atan((1-un.flat )**2*m.tan(xirad))

theta=m.pi/2- geocentlat

return(theta ,phirad)

# Compute colatitude Delta of the receiver in epicentric coordinates

def ComputeDelta(thetas ,thetar ,phis ,phir):

return(m.acos(m.cos(thetar )*m.cos(thetas )+

m.sin(thetar )*m.sin(thetas )*m.cos(phir -phis )))

#Compute Longitude Phi of the receiver in epicentric coordinates

def ComputePhi(thetas ,thetar ,phis ,phir ,Delta):

PhiTest=m.acos(-(m.cos(thetar)-

m.cos(thetas )*m.cos(Delta ))/(m.sin(thetas )*m.sin(Delta )))

if abs(m.sin(phir -phis)*m.sin(thetar )/m.sin(Delta)-m.sin(PhiTest ))<1e-7:

return(PhiTest)

else:

PhiTest =2*m.pi -PhiTest

if abs(m.sin(phir -phis)*m.sin(thetar )/m.sin(Delta)-m.sin(PhiTest ))<1e-7:

return(PhiTest)

else:

print(’Error in ComputePhi ’)
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#Compute azimuth gamma of the earthquakes epicentre observed at the receiver

def ComputeGamma(thetas ,thetar ,phis ,phir ,Delta ):

gammaTest=m.acos((m.cos(thetas)-

m.cos(Delta )*m.cos(thetar ))/(m.sin(Delta)*m.sin(thetar )))

if abs((m.sin(thetas )*m.sin(phir -phis)/m.sin(Delta))-m.sin(gammaTest ))<1e-7:

return(gammaTest)

else:

gammaTest =2*m.pi-gammaTest

if (abs((m.sin(thetas )*m.sin(phir -phis)/m.sin(Delta))-m.sin(gammaTest ))

<1e-7):

return(gammaTest)

else:

print(’Error in ComputeGamma ’)

#Compute coordinates of source and receiver in all needed coordinate

#systems

def changeangles(latR ,lonR ,latS ,lonS ,ReturnGamma=False ):

thetar ,phir=geodetic2geocent(latR ,lonR)

thetas ,phis=geodetic2geocent(latS ,lonS)

Delta=ComputeDelta(thetas ,thetar ,phis ,phir)

Phi=ComputePhi(thetas ,thetar ,phis ,phir ,Delta)

if ReturnGamma:

gamma=ComputeGamma(thetas ,thetar ,phis ,phir ,Delta)

return(Delta ,Phi ,gamma)

else:

return(Delta ,Phi)

#Rotate the gravity gradient tensor to the local south oriented reference frame

def RotateGravTensor(Txx ,Txy ,Txz ,Tyy ,Tyz ,Tzz ,gamma ):

Txxneu =(m.cos(gamma )**2*Txx -2*m.sin(gamma)*m.cos(gamma)*Txy

+m.sin(gamma )**2* Tyy)

Txyneu =(m.cos(gamma)*m.sin(gamma)*Txx+m.cos (2* gamma )*Txy

-m.cos(gamma)*m.sin(gamma )*Tyy)

Txzneu=m.cos(gamma)*Txz -m.sin(gamma)*Tyz

Tyyneu =(m.sin(gamma )**2* Txx+2*m.sin(gamma)*m.cos(gamma)*Txy

+m.cos(gamma )**2* Tyy)

Tyzneu=m.sin(gamma)*Txz+m.cos(gamma)*Tyz

Tzzneu=Tzz

return(Txxneu ,Txyneu ,Txzneu ,Tyyneu ,Tyzneu ,Tzzneu)

116



Appendix E. Python code for normal mode summation

E.2.5 Interpolation of eigenfunctions (interpol)

import numpy as np

#Fit a third order polynomial to values and derivatives of the function given at

#two points

def cubicfit(x1 ,x2 ,y1 ,y1diff ,y2,y2diff ):

vecy=np.array([y1 ,y1diff ,y2,y2diff ])

matrix=np.array ([[x1*x1*x1,x1*x1,x1 ,1],

[3*x1*x1 ,2*x1 ,1,0],

[x2*x2*x2 ,x2*x2,x2 ,1],

[3*x2*x2 ,2*x2 ,1 ,0]])

veccoeff=np.matmul(np.linalg.inv(matrix),vecy)

return(veccoeff)

#Interpolate the eigenfunction X and its derivative dXdr at the source

#radius rs. X and dXdr are given at at all values of the radius given in r

def eigenfuncatsource(r,X,dXdr ,rs):

r0=r[np.nonzero(r<rs)][ -1]

r1=r[np.nonzero(r>=rs)][0]

y0=X[np.nonzero(r<rs)][ -1]

y1=X[np.nonzero(r>=rs)][0]

y0diff=dXdr[np.nonzero(r<rs)][-1]

y1diff=dXdr[np.nonzero(r>=rs)][0]

coeff=cubicfit(r0,r1,y0 ,y0diff ,y1,y1diff)

derivcoeff =[coeff[i]*(3-i) for i in range (0,3)]

ys=np.polyval(coeff ,rs)

dydrs=np.polyval(derivcoeff ,rs)

return(ys,dydrs)
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E.2.6 Double dot product of moment tensor and strain tensor

(CoeffMomentStrain)

import numpy as np

#Strain Tensor at the pole for eigenmode lm, for given Ulm and Vlm and its

#derivatives at source radius rs

#Reference: Masters , G. SIO227B class notes at UCSD

def ComputeStrain(l,m,rs ,U_rs ,dUdr_rs ,V_rs ,dVdr_rs ,):

F=(2*U_rs -l*(l+ 1)* V_rs )/rs

X=dVdr_rs +(U_rs -V_rs)/rs

if m==0:

d=np.sqrt ((2*l+1)/(4* np.pi))

err=d*dUdr_rs

eDD=d*0.5*F

ePP=eDD

twoerD =0

twoerP =0

twoeDP =0

if (m==1 or m== -1):

d=1/2*np.sqrt ((2*l+1)/(4* np.pi)*(l+1)*l)

err=0

eDD=0

ePP=0

twoerD=-d*m*X

twoerP=-1j*d*X

twoeDP =0

if (m==2 or m== -2):

d=1/4*np.sqrt ((2*l+1)/(4* np.pi)*(l+2)*(l+1)*l*(l-1))

err=0

eDD=d*(V_rs/rs)

ePP=-eDD

twoerD =0

twoerP =0

twoeDP=d*m*1j*V_rs/rs
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return(np.array([err ,eDD ,ePP ,twoerD ,twoerP ,twoeDP ]))

#Compute e*:M

def MultMomentStrain(l,m,rs,U_rs ,dUdr_rs ,V_rs ,dVdr_rs ,M):

e=ComputeStrain(l,m,rs ,U_rs ,dUdr_rs ,V_rs ,dVdr_rs)

e=np.conjugate(e)

multMe =0

for i in range (6):

multMe +=e[i]*M[i]

return(multMe)

E.2.7 Displacement, gravity and gravity gradient change induced

by normal modes at the Earth’s surface at the receiver

coordinates (EigenReceiver)

import scipy.special as sp

import math

import cmath

import numpy as np

#Compute Vertical Displacement at the receiver coordinates rr, thetar and phir

#related to the eigenfunctions nUl_rr and nVl_rr

def VertDispEigen(l,m,U_rr ,thetar ,phir):

X=U_rr*sp.sph_harm(m,l,phir ,thetar)

return(X)

#Compute vertical gravity at the receiver coordinates rr , thetar and phir

#related to the eigenfunction nPl. Derivative of nPl are computed by

#dnPl/dr=(l+1)/r0*nPl (r0 , the radius of the earth is 1 in Mineos units)

#As the sign convention for the potential used in Mineos is opposite from

#the one in this thesis , the sign here is opposite to Equations 6.31

#in this thesis

def VertGravEigen(l,m,P_rr ,thetar ,phir):

X=-(l+1)* P_rr*sp.sph_harm(m,l,phir ,thetar)

return(X)

#Same as VertGravEigen , but for dnPl/dr the value of the derivative given by

#Mineos is used

def VertGravEigen2(l,m,dPdr_rr ,thetar ,phir):

X=-dPdr_rr*sp.sph_harm(m,l,phir ,thetar)

return(X)
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#Compute Gradient Tensor at the receiver coordinates rr , thetar and phir related

#to Gravity Eigenfunction nPl_rr for degree and order l and m. Needs the first

#and second derivatives Plm_dtheta and Plm_d2theta of the Legendre Function

#Plm.

def GradientTensor(l,m,P_rr ,thetar ,phir ,Plm_dtheta ,Plm_d2theta ):

#Calculate spherical harmonics and its first and second derivatives

Ylm=sp.sph_harm(m,l,phir ,thetar)

Ylm_dphi =1j*m*Ylm

Ylm_d2phi=-m*m*Ylm

Ylm_dtheta=Plm_dtheta*cmath.exp(1j*m*phir)

Ylm_dphi_dtheta =1j*m*Ylm_dtheta

Ylm_d2theta=Plm_d2theta*cmath.exp(1j*m*phir)

#Calculate first and second derivatives of the potential

Pot_dphi=P_rr*Ylm_dphi

Pot_d2phi=P_rr*Ylm_d2phi

Pot_dtheta=P_rr*Ylm_dtheta

Pot_d2theta=P_rr*Ylm_d2theta

Pot_dphi_dtheta=P_rr*Ylm_dphi_dtheta

Pot_dr=-(l+1)* P_rr*Ylm

Pot_d2r =(l+2)*(l+1)* P_rr*Ylm

Pot_dphi_dr =-(l+1)* P_rr*Ylm_dphi

Pot_dtheta_dr =-(l+1)* P_rr*Ylm_dtheta

#Setup the gravity gradient tensor from the derivatives of the potential

#As the sign convention for the potential used in Mineos is opposite

#from the one in this thesis , the signs here are opposite to

#Equations 6.32 -6.37 in this thesis

Txx=-Pot_d2theta -Pot_dr

Txy =(1/( math.tan(thetar )*math.sin(thetar ))* Pot_dphi

-1/math.sin(thetar )* Pot_dphi_dtheta)

Txz=Pot_dtheta -Pot_dtheta_dr

Tyy=-1/math.tan(thetar )* Pot_dtheta -1/ math.sin(thetar )**2* Pot_d2phi -Pot_dr

Tyz =1/ math.sin(thetar )*Pot_dphi -1/ math.sin(thetar )* Pot_dphi_dr

Tzz=-Pot_d2r

return(Txx ,Txy ,Txz ,Tyy ,Tyz ,Tzz)
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#Compute unnormalised Legendre Functions Plm(cos(thetar ))and its first and

#second derivative up to degree and order lmax and mmax. Second derivative by

#iteration formula , see Appendix A

def initializePlm(lmax ,mmax ,thetar ):

Plmcostheta ,Plmcostheta_dtheta=sp.lpmn(mmax+2,lmax ,math.cos(thetar ))

Plmcostheta_dtheta *=-math.sin(thetar)

Plmcostheta_d2theta=np.zeros ((mmax+1,lmax +1))

for l in range(lmax +1):

for m in range(min((l+1,mmax +1))):

a1 =1/4*(l+m)*(l-m+1)*(l+m-1)*(l-m+2)

a2= -1/4*((l+m)*(l-m+1)+(l-m)*(l+m+1))

a3=1/4

Plm=Plmcostheta[m,l]

Plmplus2=Plmcostheta[m+2,l]

if m<2:

Plmminus2=Plmcostheta [(2-m),l]

if Plmminus2 !=0:

Plmminus2 *=( -1)**(2 -m)*( math.factorial(l-(2-m))

/math.factorial(l+(2-m)))

else:

Plmminus2=Plmcostheta[m-2,l]

Plmcostheta_d2theta[m,l]=a1*Plmminus2+a2*Plm+a3*Plmplus2

return(Plmcostheta ,Plmcostheta_dtheta ,Plmcostheta_d2theta)

#Evaluate and normalise Plm and its first and second derivative for given l and m

#m can be negative (P_l^(-m)=( -1)^m P_l^m for normalised Plm)

def evaluatePlm(Plm ,Plm_dtheta ,Plm_d2theta ,l,m):

if m<0:

faktor =( -1)**m*math.sqrt ((2*l+1)/(4* math.pi)*( math.factorial(l+m)

/math.factorial(l-m)))

else:

faktor=math.sqrt ((2*l+1)/(4* math.pi)(* math.factorial(l-m)

/math.factorial(l+m)))

return(faktor*Plm ,faktor*Plm_dtheta ,faktor*Plm_d2theta)
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