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Abstract

In this thesis we investigate Schrödinger operators corresponding to N -particle

quantum systems in dimension d ≥ 3. First, we study the lower spectral threshold

of the essential spectrum of the operator. We assume that it coincides with the

half-line [0,∞) and we consider the case that the system is in a “critical state”,

i.e. where a negative eigenvalue of the operator is created as soon as an additional

arbitrarily small part of the potential is added. In this case there is a solution of the

Schrödinger equation corresponding to the spectral threshold zero, which is either

an eigenvalue or a resonance of the operator. We are concerned with questions

regarding the behaviour of such solutions at infinity and we provide estimates on

their corresponding decay rates for a class of long- and short-range potentials. They

depend on the underlying dimension, the number of quantum particles and their

respective masses. Furthermore, we show that the obtained estimates are optimal by

providing the concrete asymptotic behavior of the solutions in the case of short-range

pair interactions.

Based on these results we then investigate the discrete spectrum of multi-particle

Schrödinger operators with regard to the Efimov effect. In case of d ≥ 3 and N ≥ 3

or d ≥ 5 and N ≥ 2 the solutions described above are eigenfunctions corresponding

to the eigenvalue zero. For such systems we prove by variational methods that the

Schrödinger operator corresponding to the (N + 1)-body system has only a finite

number of negative eigenvalues. The case of three particles in dimension four is

fundamentally different, because in this case the two-body subsystems can have

zero-energy resonances. For this reason, we choose a different approach based on

the method of the Faddeev equations to prove that the Efimov effect cannot exist

for three-body systems in dimension four.
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Zusammenfassung

In dieser Dissertation untersuchen wir Schrödingeroperatoren, die Systeme von N

Quantenteilchen in Dimension d ≥ 3 beschreiben. Zunächst beschäftigen wir uns mit

der unteren Spektralkante des essentiellen Spektrums des Operators. Hierbei nehmen

wir an, dass es mit der Halbgeraden [0,∞) zusammenfällt und betrachten den Fall,

dass das System sich im “kritischen Zustand” befindet, d.h. bei dem der Operator

stets einen negativen Eigenwert generiert, sobald ein noch so kleiner Teil des Potenti-

als hinzuaddiert wird. In diesem Fall existiert eine Lösung der Schrödingergleichung

zu der Spektralkante Null, die sowohl ein Eigenwert, als auch eine Resonanz des

Operators sein kann. Wir untersuchen das Verhalten der entsprechenden Lösung im

Unendlichen und liefern für eine Klasse von lang- und kurzreichweitigen Potentialen

Abschätzungen für die entsprechenden Abfallraten. Diese hängen von der zugrunde-

liegenden Dimension, der Anzahl der Quantenteilchen und ihren jeweiligen Massen

ab. Wir zeigen außerdem, dass die Abschätzungen scharf sind, indem wir das kon-

krete asymptotische Verhalten von solchen Lösungen im Fall von kurzreichweitigen

Wechselwirkungen beweisen.

Darauf aufbauend untersuchen wir anschließend im Hinblick auf den Efimov-Effekt

das diskrete Spektrum von Mehrteilchen-Schrödingeroperatoren. Im Fall von d ≥ 3

und N ≥ 3 oder d ≥ 5 und N ≥ 2 handelt es sich bei den oben beschriebenen

Lösungen um Eigenfunktionen zum Eigenwert Null. Für solche Systeme zeigen

wir mit variationellen Methoden, dass der zum (N + 1)-Teilchensystem gehörende

Operator nur eine endliche Anzahl an negativen Eigenwerten besitzen kann. Der Fall

von drei Teilchen in Dimension vier ist grundlegend anders, da hier die Teilsysteme

mit zwei Teilchen Resonanzen in der Null haben können. Aus diesem Grund wählen

wir hierzu eine auf den Faddeev-Gleichungen basierende Methode, um zu zeigen,

dass es für Systeme bestehend aus drei Teilchen keinen Efimov-Effekt geben kann.
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1 Introduction

The theory of the Schrödinger equation has grown into a large area in both physics

and mathematics. Especially in quantum mechanics, the existence of eigenvalues

and the behaviour of the corresponding eigenfunctions of Schrödinger operators

have been studied for many years. It is well known, that eigenfunctions of the

Schrödinger operator corresponding to eigenvalues below its essential spectrum have

an exponential decay at infinity [Agm82]. At the edge of the essential spectrum,

however, the situation is quite different. Consider the Schrödinger operator

h(λ) = −∆ + λV (1.0.1)

acting in L2(Rd) with a coupling constant λ > 0 and where the real valued potential

V satisfies V (x)→ 0 as |x| → ∞. It is known that for such potentials the essential

spectrum of h(λ) is given by σess(h(λ)) = [0,∞). Assume that E(λ) < 0 is an

eigenvalue of h(λ), which for some fixed λ0 > 0 satisfies E(λ) → 0 as λ ↘ λ0. In

other words, the eigenvalue is absorbed into the continuous spectrum. On the other

hand, if λ↗ λ0 + ε for some ε > 0, then a negative eigenvalue is created from the

essential spectrum. This situation is known as the coupling constant threshold, see

[KS80a]. In literature, the spectral threshold E(λ0) = 0 is also known as the virtual

level of the Schrödinger operator, see for example [Yaf75]. The term virtual level

is to be understood here as a generic term, since it can be both an eigenvalue and

a zero-energy resonance of the operator. Roughly speaking, zero is a resonance if

there exists a solution ψ : Rd → R of the Schrödinger equation

−∆ψ + V ψ = 0, (1.0.2)
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1 Introduction

which for d ≥ 3 decays in some sense to zero as |x| → ∞ but is not an element

of L2(Rd). There is a large body of literature in both physics and mathematics

studying zero-energy resonances of Schrödinger operators in various contexts, e.g.

[Pin88, Yaf75, Wei99, JK79, Jen84, Jen80].

For example, in dimension d = 3 it is known that for non-positive short-range

potentials without negative eigenvalues of h(λ0) and without symmetry restrictions of

the domain of the operator the virtual level is a resonance, where the corresponding

solution ψ satisfies

ψ(x) ∼ c|x|−1 as |x| → ∞ (1.0.3)

and the constant c is proportional to the integral over the function V ψ, see [Yaf00].

However, with certain symmetry restrictions the virtual level can be a zero-energy

eigenvalue of the operator, which is precisely when c = 0, see for example [KS80a].

Furthermore, in case of long-range potentials even sub-exponential decay of the

solution can occur [HOHOS83, GG07, HJL19b].

The decay rate of the solution corresponding to the zero-energy resonance in

(1.0.3) is the same as that of the fundamental solution of the Laplace operator, which

for dimension d ≥ 3 is given by G(x) = cd|x|2−d. This is due to the structure of the

Poisson’s equation (1.0.2), which under certain restrictions on the potential V in

dimension d = 3 can be rewritten as

ψ(x) = (G ∗ (V ψ)) (x) = − 1

4π

ˆ
R3

V (y)ψ(y)

|x− y|
dy. (1.0.4)

Therefore, based on the behaviour of the fundamental solution of the Laplace

operator, it is evident that for short-range potentials virtual levels in dimension

d = 4 are resonances, where the corresponding solution is on the edge of being

square integrable. In dimension d ≥ 5, however, virtual levels must be zero-energy

eigenvalues. The approach of Green’s function formalism in order to study the

behaviour of such solutions can be found for various individual cases in a wide range

of literature, see for example [GG07], [Mur86] and the references contained therein.

In quantum mechanics, neglecting certain constants, the operator (1.0.1) deter-

mines the evolution of states of one particle in a potential or the relative motion of

two interacting particles. In general, a system of N quantum particles of masses
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m1, . . . ,mN > 0 and position vectors x1, . . . xN ∈ Rd is described by the N -body

Schrödinger operator

HN = −
N∑
i=1

1

2mi

∆xi +
∑

1≤i<j≤N

Vij(xi − xj) (1.0.5)

acting on L2(RdN), where Vij are the corresponding pair interactions. Spectral

properties of such operators differ fundamentally from the one- and two-particle

operators described above. Especially the existence of virtual levels, and in particular

the asymptotic behaviour of the corresponding solutions, lead to a number of non-

intuitive phenomena, one of which is the so-called Efimov effect. It was originally

discovered by the physicist V. Efimov in the 1970’s [Efi70], which can be described

as follows: The three-body Schrödinger operator of three-dimensional particles

interacting via short-range potentials has an infinite number of negative eigenvalues,

if the Hamiltonians of the two-body subsystems have no negative eigenvalues and at

least two of them have a zero-energy resonance. It is surprising because although

the interactions are short-range, the three-body system behaves as if there is a

long-range attraction.

The first rigorous mathematical proof was provided by D. R. Yafaev [Yaf74], which

is based on the study of the known Faddeev equations for three-body systems together

with the low-energy behaviour of the resolvents corresponding to the two-particle

Schrödinger operators. The proof consists of three major steps:

(i) Applying the Birman-Schwinger principle to characterize the number of eigen-

values of the three-particle Schrödinger operator.

(ii) For the proof of the infiniteness of the discrete spectrum, any compact pertur-

bation of the kernel can be neglected.

(iii) Analysing the spectral asymptotics of the operator in step (ii), which does

not depend on the particular form of the pair potentials.

Years later, A. Sobolev completed the proof of D. R. Yafaev by providing the low

energy asymptotics of the counting function of the three-body Schrödinger operator

[Sob93]. Namely, by the use of the behaviour of the resolvents of the corresponding

13



1 Introduction

two-body Hamiltonians [JK79] together with the calculation of the distribution

of a Toeplitz operator it was proved that the number of eigenvalues of the three-

body Hamiltonian increases logarithmically as soon as one approaches the spectral

threshold zero. Precisely, the counting function N(z) of eigenvalues that are less

than z < 0 admits the asymptotics

lim
z→0−

N(z)

| ln |z||
= U0 > 0. (1.0.6)

The constant U0 depends only on the mass rations of the particles and not on the

pair potentials, which also underlines the universality of the Efimov effect.

This phenomenon, originally coming from physics, has inspired many other mathe-

matical results in this field. A variational approach was presented by Y. Ovchinnikov

and I. Sigal [OS79], where the authors used the technique of the Born-Oppenheimer

approximation to prove the Efimov effect. Later, H. Tamura further developed the

method and provided the proof under more general conditions on the potentials, see

the works [Tam91, Tam93]. An interesting question from a mathematical point of

view is under which circumstances the effect no longer occurs and which conditions

can be weakened. In the work [Yaf76] D. R. Yafaev has shown that the three-particle

Schrödinger operator can only have a finite discrete spectrum if the two-particle

subsystems have negative eigenvalues or if at least two of them have no resonances.

In this regard see also the work [Zhi74] of G. M. Zhislin. In the work [VZ83] S. A.

Vugalter and G. M. Zhislin considered systems of thee particles restricted to certain

symmetry subspaces and proved that the corresponding Hamiltonian has only a finite

number of negative eigenvalues. The key argument in their work is that virtual levels

of the two-body operators for such systems are eigenvalues at the threshold of the

essential spectrum. It is the first result which shows that zero-energy eigenfunctions

in the subsystems cannot produce the Efimov effect. Further results regarding the

absence of the Efimov effect are for example [Vug96, Vug98, VZ84, VZ83].

Despite the mathematical results concerning the existence or non-existence of

the Efimov effect, from a physical point of view it was not clear for about 35

years whether the Efimov effect could be observed experimentally. It had become

a remarkable challenge to do so. In 2006, quantum states were observed in an

ultracold gas of caesium atoms, indicating that they are related to the Efimov effect

14



[KMW+06]. Another experimental observation of the effect, for example, was made

in bosonic quantum gases [ZDD+09]. As a result, research interest in this field has

increased considerably in the last years. For an overview with more references and

also further details on the physical aspect of the Efimov effect we refer to [NE17].

In the year 2013 the physicists Y. Nishida, S. Moroz and D. T. Son discovered the so-

called super Efimov effect [NMT13]. They showed that in case of three nonrelativistic

spinless fermions in dimension two, where every two-body subsystem has a resonance

at zero, the three-body system has an infinite number of negative bound states.

Moreover, in this case the counting function N(z) of negative eigenvalues less than

z < 0 satisfies

lim
z→0−

N(z)

| ln | ln |z|||
=

8

3π
. (1.0.7)

The first mathematical proof of this was later provided by D. K. Gridnev [Gri14]

using techniques similar to [Yaf74] and [Sob93]. Comparing this result with the

result [VZ83] of S. A. Vugalter and G. M. Zhislin mentioned above shows that the

same systems in different dimensions lead to completely different structures of the

discrete spectra of the corresponding Schrödinger operators. The main reason for

this is the sensitive behaviour of the virtual levels corresponding to the Schrödinger

operators of the subsystems. In view of the result of S. A. Vugalter and G. M. Zhislin

one could assume that the Efimov effect depends on whether the threshold energy

of the subsystems is a resonance or an eigenvalue only. As already mentioned above,

in dimension four the two-body virtual level is a resonance and the corresponding

solution behaves like c|x|−2 as |x| → ∞. In physical literature, however, it is not

expected that an Efimov-type effect can possibly occur in case of three quantum

particles in dimension four [NT11]. Furthermore, in 2017 Y. Nishida has shown

with a series of physical arguments that an Efimov-type effect is possible for four

two-dimensional bosons [Nis17], if the three-body subsystems are at zero-energy

resonance. Here it should be noted that the underlying configuration space of

the three-body system of two-dimensional particles has dimension four as well.

This indicates that the characteristics of virtual levels in multi-particle systems

are different. However, in contrast to the cases N = 1 and N = 2, the study of

virtual levels of Schrd̈inger operators corresponding to N ≥ 3 particles is much more

complicated.
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1 Introduction

Consider the N -body Schrödinger operator after separation of the center of mass,

i.e.

H(λ) = H0 + λ
∑

1≤i<j≤N

Vij (1.0.8)

with a coupling constant λ > 0. Here H0 is the operator of the kinetic energy of

relative motion and Vij are the pair interactions of the particles. Suppose that for

some critical λ0 > 0 the operator H(λ) has a bound state ψ(λ) with a bound state

energy E(λ) < inf σess(H(λ)) for all λ close to λ0. Let E(λ) → inf σess(H(λ0)) as

λ→ λ0. Whether E(λ0) is a bound state energy of H(λ0) and how the corresponding

function ψ(λ0) behaves has been considered in the literature for many individual cases,

e.g. [KS80b, BFLS14, Kar87, HJL19a, HOHOS83, GG07, BGS85, Gri12a, Gri12b].

With regard to the Efimov effect the case inf σess(H(λ)) = 0 is of most interest,

since according to the HVZ theorem in case of negative eigenvalues in the subsystems,

the bottom of the essential spectrum of the operator corresponding to the whole

system coincides with the lowest eigenvalue of the subsystems. In 2011 D. K. Gridnev

proved under the assumption σess(H(λ)) = [0,∞) that for systems of N = 3 particles

in dimension d = 3 virtual levels are zero-energy eigenvalues, provided the two-body

subsystems do not have a zero-energy resonance and the pair interactions Vij are non-

positive and belong to L1(R3) ∩ L3(R3), see [Gri12a]. Later the result was extended

to systems consisting of N ≥ 4 particles in dimension d = 3, where in addition the

assumption of non-positivity of the potentials was dropped [Gri12b]. The proof is

based on the analysis of integral equations corresponding to the zero-energy solution

of the Schrödinger equation.

However, the study of the behaviour of the corresponding eigenfunctions faces

a number of difficulties compared to the cases of one- and two-particle systems.

The heuristic approach with the Green’s function formalism described above in the

case of a regular Schrödinger equation (1.0.4) might suggest that the eigenfunction

could have similar behaviour as the fundamental solution of the Laplace operator

in the configuration space of the system. In case of N ≥ 3 particles in dimension

d = 3 it decays as C|x|−3(N−5) for |x| → ∞. However, even if one assumes that

every potential Vij is compactly supported, the sum V =
∑
Vij does not necessarily

have to tend to zero at infinity, which considerably complicates the implementation

of the method of such integral equations. In addition, the kinetic energy operator
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1.1 Summary of the main results

H0 in (1.0.8), which also depends on the masses of the respective particles, must

have an effect on the behaviour of the corresponding solutions as well. Furthermore,

in case of Coulomb-potentials, i.e. potentials of the form c|x|−1, and some other

long-range interactions, it is known that such threshold eigenvalues might have

a sub-exponential decay, see [HOHOS83, HJL19a, GG07]. The question is how

the corresponding solutions behave for different classes of potentials in different

dimensions and how their decay rates depend on the respective quantum particles

and their masses.

As described above this also has a fundamental impact on the existence and

non-existence of the Efimov effect for such systems. Although there are still many

open problems, both from a mathematical and a physical point of view regarding

when an effect similar to the Efimov effect exists for multi-particle systems, the two

physicists R. D. Amado and F. C. Greenwood made the following claim in 1976

[AG73]: Systems consisting of N ≥ 4 bosons in dimension three cannot produce

the Efimov effect, assuming that only the (N − 1)-body subsystems have virtual

levels. In 2013, D. K. Gridnev provided the first mathematical proof of this claim,

see [Gri13].

1.1 Summary of the main results

The results of this thesis are based upon the following three articles:

(i) S. Barth and A. Bitter. On the virtual level of two-body interactions and

applications to three-body systems in higher dimensions.

Journal of Mathematical Physics, 60 (11):113504, 2019.

(ii) S. Barth and A. Bitter. Decay rates of bound states at the spectral threshold

of multi-particle Schrödinger operators.

Doc. Math., 25:721-735, 2020.

(iii) S. Barth, A. Bitter, and S. Vugalter. Decay properties of zero-energy resonances

of multi-particle Schrödinger operators and why the Efimov effect does not exist

for systems of N ≥ 4 particles.

arXiv: 1910.04139, 2020.

17



1 Introduction

This work consists of two main parts. The first part deals with the existence and the

behaviour of solutions corresponding to virtual levels of one-body and many-body

Schrödinger operators. In the second part the results from the first part are applied

to prove several statements regarding the Efimov effect.

At first we study virtual levels of general Schrödinger operators at the threshold

zero. We assume that the potentials are relatively form-bounded with relative bound

zero, i.e. we consider real-valued functions V : Rd → R in dimension d ≥ 3, such

that for every ε > 0 there exists a constant C(ε) > 0 with

〈|V |ψ, ψ〉 ≤ ε‖∇ψ‖2 + C(ε)‖ψ‖2 for any ψ ∈ H1(Rd). (1.1.1)

This will allow us to overcome the difficulty that the sum of potentials in the multi-

particle case does not converge to zero at infinity. Furthermore, it also provides a

variational approach to the investigation of virtual levels of one-body Schrödinger

operators

h = −∆ + V in L2(Rd). (1.1.2)

We consider the case where

h ≥ 0 and inf σ(−(1− ε)∆ + V ) < 0 (1.1.3)

is satisfied for any ε ∈ (0, 1) and where

〈hψ, ψ〉 − γ0‖∇ψ‖2 − α2
0〈|x|−β0ψ, ψ〉 ≥ 0 (1.1.4)

holds for some constants α0, γ0 > 0, β0 ∈ (0, 2] and all functions ψ supported outside

a ball of a fixed radius. We prove that in this case there exists a unique zero-energy

solution ϕ0 : Rd → R satisfying

‖∇ϕ0‖2 + 〈V ϕ0, ϕ0〉 = 0. (1.1.5)

We show that the decay rate of ϕ0 depends on the constants α0 and β0 in (1.1.4).

In the case β0 = 2 the solution ϕ0 satisfies

∇ (| · |α0ϕ0) ∈ L2(Rd) and (1 + | · |)α0−1ϕ0 ∈ L2(Rd). (1.1.6)

18



1.1 Summary of the main results

In the case β ∈ (0, 2) we prove that ϕ0 then satisfies

exp
(
α0κ

−1| · |κ
)
ϕ0 ∈ L2(Rd), where κ = 1− β0

2
. (1.1.7)

As a simple conclusion we apply the result to different classes of potentials and

determine in connection with the Hardy constant Cd = (d−2)2

4
in dimension d ≥ 3

critical cases when it is a resonance and when it is an eigenvalue. Since the method

is purely variational, we allow potentials with local singularities.

The main applications of this result are virtual levels of multi-particle Schrödinger

operators of the form (1.0.5) corresponding to N ≥ 3 quantum particles in dimension

d ≥ 3. By introducing the space

R0 =

{
x = (x1 . . . , xN) ∈ RdN :

N∑
i=1

mixi = 0

}
(1.1.8)

and the scalar product

〈x, y〉1 =
N∑
i=1

2mi〈xi, yi〉, |x|1 =
√
〈x, x〉, (1.1.9)

the Hamiltonian of the system after separation of the center of mass is given by

H = −∆0 + V, (1.1.10)

where V =
∑

1≤i<j≤N Vij and −∆0 is the Laplace-Beltrami operator on R0 with

respect to the metric 〈·, ·〉1, cf. [SS70]. We consider potentials of the form

Vij = V
(1)
ij + V

(2)
ij , (1.1.11)

where V
(1)
ij are short-ranged, decaying as c|x|−2−ν for some ν > 0 and are allowed to

have local singularities. The functions V
(2)
ij are assumed to be non-negative, bounded

and tend to zero as |x| → ∞. We prove that in case of H ≥ 0 and

σess (−(1− ε)∆0 + V ) = [0,∞) and σdisc (−(1− ε)∆0 + V ) 6= ∅ (1.1.12)
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1 Introduction

for any sufficiently small ε > 0 zero is an eigenvalue of H. We show that a

corresponding eigenfunction ϕ0 satisfies

∇0 (| · |α0
1 ϕ0) ∈ L2(R0) and (1 + | · |1)α0−1ϕ0 ∈ L2(R0) (1.1.13)

for any 0 ≤ α0 <
d(N−1)−2

2
. Furthermore, if V

(2)
ij (xij) ≥ αij|xij|−β holds for some

constants αij > 0 and β ∈ (0, 2), then ϕ0 decays sub-exponentially with

exp (µ| · |κ1)ϕ0 ∈ L2(R0), where κ = 1− β

2
(1.1.14)

and µ > 0 depends on the coefficients αij and on the masses of the particles only.

The obtained estimate on the decay rate of ϕ0 in (1.1.13) is close to optimal. We

prove this by using

∇0 (| · |α0
1 ϕ0) ∈ L2(R0) (1.1.15)

as an a-priori estimate, which then allows us to obtain the asymptotic behaviour of

ϕ0 by studying its integral representation corresponding to the zero-energy eigenvalue

equation. Precisely, we prove that in case of short-range potentials Vij decaying as

|Vij(x)| ≤ C|x|−2−ν for |x| ≥ A (1.1.16)

with constants ν > 0 and A,C > 0, the solution ϕ0 satisfies

ϕ0(x) =
C0

|x|β1
+ g(x) as |x|1 →∞, (1.1.17)

where β = d(N − 1)− 2 and the remainder g belongs to Lp(R0) for any p satisfying

β + 2

β + γ∗

1+γ∗

< p <
β + 2

β
with γ∗ = min

{
d

2
− 1, ν

}
. (1.1.18)

Furthermore, the constant C0 is given by

C0 = − 1

(β − 2)|Sβ−1|

ˆ

R0

∑
1≤i<j≤N

Vijϕ0 dx, (1.1.19)
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1.1 Summary of the main results

where |Sβ−1| is the volume of the unit sphere in Rβ. We discuss the importance

of the constant C0 by providing examples of systems where the constant is always

non-zero and where it vanishes.

In the second part of the thesis we apply the obtained results to prove statements

about the discrete spectrum of multi-particle Schrödinger operators. We show that

the Efimov effect does not occur for systems of N ≥ 4 particles in dimension d ≥ 3

by giving a purely variational proof, which is based on the method developed by

S. A. Vugalter and G. A. Zhsilin in [VZ83]. The key argument in the proof is that

virtual levels of Hamiltonians corresponding to (N − 1)-body subsystems satisfying

(1.1.12) are eigenvalues. This allows us to prove that for the corresponding N -body

system there exist constants ε > 0 and b > 0, such that

‖∇0ϕ‖2 +
∑

1≤i<j≤N

〈Vijϕ, ϕ〉 − ε‖|x|−1
1 ϕ‖2 ≥ 0 (1.1.20)

holds for all ϕ ∈ H1(R0) with suppϕ ⊂ {x ∈ R0, |x|1 ≥ b}. This leads to the

finiteness of the discrete spectrum of the N -body Hamiltonian. The approach is

fundamentally different from the method developed in [Gri13] and generalizes it in

the sense that we consider a larger class of potentials and go beyond dimension three.

Furthermore, we apply the result to systems with a fixed permutation symmetry.

In case of three particles in dimension four virtual levels of the two-body subsystems

are resonances and as already mentioned the corresponding zero-energy solutions

decay like c|x|−2 as |x| → ∞, which is the boundary between square integrable and

non-square integrable. The approach described above is no longer suitable in this

case because it relies on certain estimates regarding the localization error, which

do not hold here. We prove the finiteness of the discrete spectrum of three-body

Schrödinger operators with short-range potentials in dimension four by adapting

the techniques of A. Sobolev [Sob93] and D. R. Yafaev [Yaf74] to this case, which

involves the investigation of the kernel of a Birman-Schwinger type operator. Since

this method was originally used to prove the Efimov effect for three particles in

dimension three, it also allows us to compare both systems and provide a precise

reason why in this case resonances in every two-body subsystem do not lead to the

Efimov effect.
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1 Introduction

1.2 Outline of the thesis

The thesis is structured as follows.

In Chapter 2 we summarize basic concepts of Schrödinger operators corresponding

to multi-particle quantum systems and introduce the notation we need for the

following chapters.

In Chapter 3 we study the concept of virtual levels of Schrödinger operators with

different classes of potentials in the case where the bottom of the essential spectrum

of the operator is zero. We prove the existence of solutions corresponding to the

zero-energy eigenvalue equation and give their decay rates at infinity. Furthermore,

we extend the results to systems of a fixed permutation symmetry. We also provide

the asymptotic behaviour of these solutions in dependence of the number of particles,

their masses and the corresponding dimension.

In Chapter 4 we apply the results from Chapter 3 to prove statements about the

discrete spectrum of multi-particle Schrödinger operators in terms of the Efimov

effect, starting with the special case of three particles in dimension four and then

moving on to N ≥ 4 particles in dimension d ≥ 3.
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2 Basic Concepts of Multi-Particle

Quantum Systems

As preparation for the study of multi-particle systems in the next chapters we briefly

introduce the concept of Schrödinger operators and summarize properties that will

be important for the later course of the thesis. The contents in this chapter are

based on the presentations given in [Sim71], [RS75], [Dav95], [CFKS87] and [GS11].

We start with the case of one particle.

2.1 One-particle Schrödinger operators

Schrödinger operators corresponding to one particle in a potential acting on a

subspace of L2(Rd) are formally given by

(hf)(x) = −∆f(x) + V (x)f(x), (2.1.1)

where −∆ is the Laplacian on Rd and V : Rd → R is a real-valued function, called

the potential of the Hamiltonian h. The total energy of the system is determined

by the quadratic form f 7→ 〈hf, f〉, which is split into the kinetic energy 〈−∆f, f〉
and the potential energy 〈V f, f〉. It is therefore more accessible to work with the

quadratic form of the operator h.

2.1.1 The quadratic form of a Schrödinger operator

Throughout the following we work in the Hilbert space H = L2(Rd). We denote by

D(A) the domain of an operator A and by Q(A) the form domain of the corresponding

quadratic form of A. The following theorem is known as the KLMN theorem, where
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2 Basic Concepts of Multi-Particle Quantum Systems

the letters stand for Kato, Lions, Lax-Milgram and Nelson.

Theorem 2.1.1 (cf. [Sim71, Theorem 2]). Let A be a positive self-adjoint operator

and suppose that β is a symmetric bilinear form with the corresponding form domain

Q(β) ⊃ Q(A) so that for some τ < 1 and b ∈ R,

|β(x, x)| ≤ τ〈Ax, y〉+ b‖x‖2 (2.1.2)

for all x ∈ Q(A). Then the quadratic form

x 7→ 〈Ax, x〉+ β(x, x) (2.1.3)

defined on Q(A) ∩ Q(β) = Q(A) is the form of a self-adjoint operator, which is

bounded below.

The operator version of Theorem 2.1.1 is the Kato-Rellich theorem.

Theorem 2.1.2 (cf. [Sim71, Theorem 1]). Suppose that A is a self-adjoint operator

and B is symmetric with domain D(B) ⊃ D(A), such that for τ < 1 and b ∈ R,

‖Bx‖ ≤ τ‖Ax‖+ b‖x‖ (2.1.4)

for all x ∈ D(A). Then A + B is a self-adjoint operator on D(A) and essentialy

self-adjoint on any core of A.

Let h0 be the closure of

−∆ : C∞0 (Rd)→ L2(Rd), (−∆f)(x) = −
d∑
i=1

∂2

∂x2
i

f(x) (2.1.5)

and denote by q0 the quadratic form of h0 with the corresponding form domain

Q(q0) = H1(Rd). For all ψ ∈ H1(Rd) it is given by

q0[ψ] =

ˆ
Rd
|∇ψ(x)|2 dx. (2.1.6)
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2.1 One-particle Schrödinger operators

According to the KLMN-Theorem 2.1.1 for any potential V : Rd → R satisfying

〈|V |ψ, ψ〉 ≤ τ‖∇ψ‖2 + b‖ψ‖ for every ψ ∈ H1(Rd) (2.1.7)

with τ < 1 and b ∈ R we obtain a self-adjoint operator corresponding to the quadratic

form q with form domain H1(Rd) and

q[ψ] = ‖∇ψ‖2 + 〈V ψ, ψ〉, ψ ∈ H1(Rd). (2.1.8)

For convenience, we denote this operator by

h = −∆ + V (2.1.9)

and its domain by

D(h) = {ψ ∈ H1(Rd) : −∆ψ + V ψ ∈ L2(Rd)}. (2.1.10)

It should be noted that (2.1.9) is a form sum and not an operator sum. Moreover,

for ψ ∈ H1(R) the expression −∆ψ + V ψ ∈ L2(Rd) is to be understood in the

distributional sense, which means that there exists a function f ∈ L2(Rd), such that

ˆ
Rd

(∇ψ · ∇ϕ+ ψϕV ) dx =

ˆ
Rd
fϕ dx (2.1.11)

is satisfied for all ϕ ∈ C∞0 (Rd). However, if we assume that the potential V is

−∆-bounded with relative bound τ < 1, i.e., when

‖V ψ‖ ≤ τ‖∆ψ‖+ b‖ψ‖, ψ ∈ H2(Rd) (2.1.12)

is satisfied, then by the Kato-Rellich-Theorem 2.1.2 the operator h is self-adjoint on

D(h) = D(−∆) = H2(Rd). (2.1.13)

In the following we denote by σ(h), σess(h) and σdisc(h) the spectrum, the essential

spectrum and the discrete spectrum of h, respectively.

In this thesis we study the lower edge of the essential spectrum of the Schrödinger
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2 Basic Concepts of Multi-Particle Quantum Systems

operator h. Assume there exists a minimizer ϕ0 ∈ H1(Rd) of the quadratic form q,

which means that ϕ0 satisfies

inf
ψ∈H1(Rd), ‖ψ‖=1

q[ψ] = q[ϕ0] > −∞. (2.1.14)

Then by the variational principle ϕ0 is an eigenfunction of h corresponding to

the lowest eigenvalue λ = q[ϕ0] = inf σ(h), e.g. [LL01, Theorem 11.8]. Such an

eigenvalue of h is called the ground state energy and the corresponding eigenfunction

ϕ0 is called the ground state, which represents the configuration of the system with

the lowest total energy. The concept of zero-energy resonances and resonance states

of Schrödinger operators mentioned in the introduction is closely related to this, as

these are minimizers of q in the homogeneous Sobolev space Ḣ1(Rd), defined as the

closure of C∞0 (Rd) with respect to the gradient-norm

(ˆ
Rd
|∇(·)|2 dx

) 1
2

, d ≥ 3. (2.1.15)

However, here the conditions on the potential must be adjusted accordingly so that

the quadratic form q is well defined on Ḣ1(Rd). This will be discussed in the next

chapter. Note that the assumption d ≥ 3 in (2.1.15) is essential. Furthermore, in

this case every ψ ∈ Ḣ1(Rd) satisfies the well known Hardy inequality [FLW]

ˆ
Rd
|∇ψ(x)|2 dx ≥

(
d− 2

2

)2 ˆ
Rd

|ψ(x)|2

|x|2
dx. (2.1.16)

2.1.2 Relatively form-bounded potentials

We will mainly focus on a class of potentials, which is slightly smaller than the one

consisting of potentials satisfying (2.1.7).

Definition 2.1.3. A potential V : Rd → R is relatively form-bounded with relative

bound zero, if for any ε > 0 there exists a constant C(ε) > 0 with

〈|V |ψ, ψ〉 ≤ ε‖∇ψ‖2 + C(ε)‖ψ‖2 for every ψ ∈ H1(Rd). (2.1.17)
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2.1 One-particle Schrödinger operators

Any bounded potential satisfying

|V (x)| ≤ C for all x ∈ Rd (2.1.18)

and some C > 0 is obviously relatively form-bounded with relative bound zero. The

advantage of form-bounded potentials is that it is not required that V (x)→ 0 as

|x| → ∞, which will play a crucial role in case of multi-particle systems. Furthermore,

stronger local singularities can be allowed. For example, let d = 3 and consider

V (x) = |x|−2| ln |x||−δ, δ > 0. (2.1.19)

Then for every δ > 0 the potential V is relatively form-bounded with relative bound

zero, see p.8 in [CFKS87]. In the following we give further examples, some of which

will be important in the next chapters.

In dimension three so-called Rollnik potentials V ∈ R+ L∞(R3) with

V ∈ R ⇔
¨
|V (x)||V (y)|
|x− y|2

dxdy <∞ (2.1.20)

are relatively form-bounded with relative bound zero, see [RS75, Theorem X.19]. In

the case of other dimensions we will later refer to the following theorem.

Theorem 2.1.4 (cf. [RS75, Theorem X.19] and [RS75, Theorem X.20]). Assume

that d ≥ 3 and V : Rd → R belongs to Lp(Rd) + L∞(Rd), wherep = d
2
, if d 6= 4,

p > 2, if d = 4.
(2.1.21)

Then V is relatively form-bounded with relative bound zero.

Remark. For d ≥ 4 the potential V is not only relatively form-bounded, but

also −∆-bounded with relative bound zero. In dimension three this is the case

if condition (2.1.21) is replaced with V ∈ L2(R3) + L∞(R3). In general, every

−∆-bounded potential with relative bound zero is also relatively form-bounded with

relative bound zero, see [RS75, Theorem X.18].
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2 Basic Concepts of Multi-Particle Quantum Systems

As a concluding example we consider d ≥ 3 and assume that V is a real-valued

measurable function on Rd satisfying

lim
α→0

(
sup
x∈Rd

ˆ
{|x−y|≤α}

|x− y|2−d|V (y)| dy
)

= 0. (2.1.22)

Then V is relatively form-bounded with relative bound zero, see [CFKS87] and

[Kat72]. Note that the potential defined in (2.1.19) belongs to this class, if and only

if δ > 1.

2.1.3 The localization error

An important tool for this thesis is the concept of the so-called localization error.

It is related to a formula, which in the literature is known as the IMS localization

formula. First we introduce the notion of a partition of unity, since in quantum

mechanics it differs from the usual one.

Definition 2.1.5 (cf. [CFKS87, Definition 3.1]). A family of smooth functions

{χα}α∈I indexed by a set I is called a partition of unity if

(i) 0 ≤ χα(x) ≤ 1 and
∑

α∈I χ
2
α(x) = 1 for all x ∈ Rd,

(ii) {χα}α∈I is locally finite, i.e. on any compact set K we have χα = 0 for all but

finitely many α ∈ I,

(ii) supx∈Rd
∑

α∈I |∇χα(x)|2 <∞.

Remark. The smoothness of the functions is not necessary but is often required in

the literature. Later we will always consider a finite partition of unity, i.e., where the

index set I is finite. In this case we simply say that {χα}nα=1 is a partition of unity.

Theorem 2.1.6 (cf. [Sim83, Lemma 3.1.]). Consider h = −∆ + V , where the

potential V satisfies (2.1.17) and let {χα}nα=1 be a partition of unity. Then

h =
n∑

α=1

χαhχα −
n∑

α=1

|∇χα|2. (2.1.23)

The term
∑n

α=1 |∇χα|2 is called the localization error.
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2.1 One-particle Schrödinger operators

In the next chapters we will apply the following estimate of the localization error

in combination with the Hardy inequality. It is a modified variant of [VZ83, Lemma

5.1], which was proved in [BBV20].

Lemma 2.1.7. For any ε > 0 and any fixed b > 0 one can find b̃ > b and real

valued functions χ1, χ2 : Rd → R with piecewise continuous derivatives, such that

χ2
1 + χ2

2 = 1, χ1(x) =

1, |x| ≤ b

0, |x| > b̃
(2.1.24)

and

|∇χ1(x)|2 + |∇χ2(x)|2 ≤ ε|x|−2. (2.1.25)

Proof. Let ε > 0 and b > 0 be fixed. We can always find a function u ∈ C1(R+)

satisfying the following conditions.

(i) u(t) = 1 for t ≤ b,

(ii) u is non-increasing on [b,∞),

(iii) The derivative u′ satisfies

u′(t)
(
1− u2(t)

)− 1
2 → 0 as t→ b. (2.1.26)

Now since by definition u ≤ 1, we can define the function v :=
√

1− u2. Let

χ1 : Rd → R, χ1(x) := u (|x|) and χ2 : Rd → R, χ2(x) := v (|x|) . (2.1.27)

By χ2
1 + χ2

2 = 1 it follows

|∇χ1|2 + |∇χ2|2 =
|∇χ1|2

(1− χ2
1)

=
(u′(|x|))2

1− (u(|x|))2
. (2.1.28)

Since u′(|x|) (1− (u(|x|))2)
− 1

2 → 0 as |x| → b, we can take b′ > b so close to b that

(u′(|x|))2

1− (u(|x|))2
≤ ε|x|−2, |x| ∈ [b, b′]. (2.1.29)

29



2 Basic Concepts of Multi-Particle Quantum Systems

This, together with (2.1.28) implies

(
|∇χ1|2 + |∇χ2|2

)
≤ ε|x|−2, |x| ∈ [b, b′]. (2.1.30)

Let b̃ > b and b′ ∈ (b, b̃). By an abuse of notation we redefine the function u for

arguments t ≥ b′ as

u(t) = u(b′) ln

(
t

b̃

)(
ln

(
b′

b̃

))−1

, t ∈ [b′, b̃] and u(t) = 0, t ≥ b̃. (2.1.31)

Although the value u(b′) is close to 1, it is always strictly less than 1. As before we

set

χ1(x) = u(|x|) and χ2(x) = v(|x|), |x| ≥ b′. (2.1.32)

Then for |x| ≥ b′ we obtain

|∇χ1|2 + |∇χ2|2 ≤
u2(b′)

1− u2(b′)

(
ln

(
b′

b̃

))−2

|x|−2. (2.1.33)

For any fixed b′ we can choose b̃ sufficiently large, such that(
ln

(
b′

b̃

))2

≥ 1− u2(b′)

εu2(b′)
. (2.1.34)

This yields (2.1.25).

Remark. By Lemma 2.1.7 and the Hardy inequality (2.1.16), for any ε > 0 we can

find functions χ1, χ2 with

ˆ
Rd
|∇χi(x)|2|ψ(x)|2 dx ≤ ε

ˆ
Rd
|∇ψ(x)|2 dx (2.1.35)

for i = 1, 2 and every function ψ ∈ Ḣ1(Rd), d ≥ 3.

2.2 Multi-particle quantum systems

In the following we briefly introduce Schrödinger operators of N interacting quantum

particles by adapting the presentation of [CFKS87].
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2.2 Multi-particle quantum systems

The positions of N quantum particles of masses m1, . . . ,mN > 0 each moving in

Rd is represented by a vector x = (x1, . . . , xN) ∈ RdN , where each entry xi ∈ Rd is

the position vector of the ith particle. The operator of the kinetic energy of the

system is given by

H̃0 = −
N∑
i=1

1

2mi

∆xi , (2.2.1)

where ∆xi is the Laplacian with respect to the variable xi = (xi1, . . . , xid) ∈ Rd.

The operator of the potential energy of particle pair interactions is given by the

multiplication of the function

V (x) =
∑

1≤i<j≤N

Vij(xi − xj), (2.2.2)

where each Vij describes the interaction of the particles of masses mi and mj and

position vectors xi and xj, respectively. The Hamiltonian of the whole system is

given by

HN = −
N∑
i=1

1

2mi

∆xi +
∑

1≤i<j≤N

Vij(xi − xj). (2.2.3)

In this section we assume that each Vij is relatively bounded with relative bound

zero.

Remark. For simplicity we always set the Planck’s constant ~ = 1 in our consider-

ations.

2.2.1 Separation of the center of mass

In order to investigate spectral properties of HN , it is convenient to eliminate the

center of mass. In that sense, for each x = (x1, . . . , xN) ∈ RdN we consider the

center of mass of the system, which is given by

R(x) =
1

M

N∑
i=1

mixi, M =
N∑
i=1

mi. (2.2.4)
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2 Basic Concepts of Multi-Particle Quantum Systems

The d(N − 1)-dimensional subspace

R0 =
{
x = (x1, . . . , xN) ∈ RdN : R(x) = 0

}
(2.2.5)

of RdN is the space of relative positions of the particles. One can choose linear

mappings

y1, . . . , yN−1 : RdN → Rd, (2.2.6)

such that

y : RdN → Rd(N−1), y(x) = (y1(x), . . . , yN−1(x)) (2.2.7)

is an isomorphism of R0 ⊂ RdN and Rd(N−1) with yi(x) = 0 if x1 = . . . = xN . By

computing the Laplacian on RdN in terms of the coordinates y1, . . . , yN−1 and R, one

obtains cross terms of the form ∇yi∇yj , i 6= j, but not of the form ∇yi∇R. Hence,

the free Hamiltonian (2.2.1) splits into

H̃0 =

(
− 1

2M
∆R

)
⊗ 1 + 1⊗H0, (2.2.8)

where ∆R is the Laplacian with respect to the variable R acting on L2(Rd) and H0

depends on the choice of y1, . . . , yN−1 and acts on L2(R0) ∼= L2(Rd(N−1)). Since the

potential V does not depend on the variable R the Hamiltonian HN splits into

HN = −
(

1

2M
∆R

)
⊗ 1 + 1⊗H, (2.2.9)

where

H = H0 + V. (2.2.10)

Equation (2.2.9) shows that the center of mass of the whole system moves like a free

particle, whereas the relative motion of the particles is described by the operator H.

In the following we describe a different approach of introducing the Hamiltonian

H in (2.2.10), which is due to A. G. Sigalov and I. M. Sigal [SS70]. We rely on

several results from the works [VZ84], [Zhi74] and [VZ83], which are presented in

the spirit of [SS70]. Therefore, we will adapt the notation and use it in the further

course of the thesis.

32



2.2 Multi-particle quantum systems

For this purpose, we introduce the scalar product 〈·, ·〉1 : RdN × RdN → R by

〈x, y〉1 :=
N∑
i=1

2mi〈xi, yi〉, |x|21 = 〈x, x〉1. (2.2.11)

Here 〈·, ·〉 is the standard scalar product on Rd. Let P0 be the projection operator

from RdN to R0, which is explicitly given by

P0 : x = (x1, . . . , xN) 7→ (x1 −R(x), . . . , xN −R(x)) (2.2.12)

with R(x) being defined by (2.2.4). The d-dimensional subspace of RdN orthogonal

to R0 is

Rc =

{
x = (x1, . . . , xN) ∈ RdN : xi =

1

M

N∑
j=1

mjxj, i = 1, . . . , N

}
, (2.2.13)

which is the configuration space of the center-of-mass position of the system. The

orthogonality of R0 and Rc is understood in the sense of the scalar product 〈·, ·〉1.

Indeed, assume that x ∈ R0 and y ∈ Rc, then due to y1 = yj for all j = 2, . . . , N it

follows

〈x, y〉1 =
N∑
i=1

2mi〈xi, yi〉 =

〈
N∑
i=1

2mixi, y1

〉
= 0. (2.2.14)

Hence, RdN = R0 ⊕Rc and

L2(RdN) ∼= L2(R0)⊗ L2(Rc). (2.2.15)

Since by definition of P0 we have

(P0x)i − (P0x)j = xi −R(x)− (xj −R(x)) = xi − xj, (2.2.16)

the potential V in (2.2.2) satisfies

V (x) = V (P0x). (2.2.17)

Therefore, the operator HN is decomposed as in (2.2.9), where H0 is the Laplace-
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2 Basic Concepts of Multi-Particle Quantum Systems

Beltrami operator on R0 with respect to the metric 〈·, ·〉1, which we denote by −∆0.

Let BR0 = {g1, . . . , gd(N−1)} and BRc = {f1, . . . , fd} be bases of R0 and Rc, both

orthonormal with respect to 〈·, ·〉1. Then BR0 ∪BRc is an orthonormal basis of RdN .

If the coordinate of a vector in RdN with respect to the basis vector gi is denoted by

νi and its coordinate with respect to the basis vector fk by ηk, then

H̃0 = ∆0 + ∆c, (2.2.18)

where

∆0 =

d(N−1)∑
i=1

∂2

∂ν2
i

and ∆c =
d∑

k=1

∂2

∂η2
k

, (2.2.19)

see [SS70]. We denote by ∇0 the gradient corresponding to ∆0. Finally, our main

object of study is the Hamiltonian

H = −∆0 + V. (2.2.20)

There is a significant difference between one- and two-particle systems and systems

consisting of N ≥ 3 particles. Even if each potential Vij(x) tends to zero as |x| → ∞,

the potential V does not necessarily have to. In case of two particles after separation

of the center of mass this difficulty disappears. This is in contrast to the case N ≥ 3,

where the investigation of such systems is significantly more complicated.

2.2.2 Partition of the system

In the following we introduce the concept of the so-called partition of the system

into clusters. We follow the presentation of [BBV20] and [VZ84].

An arbitrary non-empty subset C ⊆ {1, . . . , N} is called a subsystem or cluster of

the system and we denote by |C| the number of its particles. Let

R0[C] =

{
x ∈ RdN :

∑
i∈C

mixi = 0, xj = 0, j /∈ C

}
(2.2.21)

be the corresponding subspace of the relative positions of the particles within the

cluster C. Denote by −∆0[C] the Laplace-Beltrami operator on R0[C] with respect
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to the scalar product 〈·, ·〉1 and denote by

V [C] =
∑

i,j∈C, i<j

Vij (2.2.22)

the potential of interactions of the particles in C. Then for 1 < |C| < N the

corresponding cluster Hamiltonian with its center of mass removed is given by

H[C] = −∆0[C] + V [C]. (2.2.23)

The operator H[C] acts on L2(R0[C]) and it describes the relative motion of the

particles within the cluster C ignoring all the other particles of the system. Note

that for C = {1, . . . , N} we have R0[C] = R0, so we set H[C] = H. For |C| = 1 we

have R0[C] = {0} and L2({0}) = C, so in this case we set H[C] = 0.

We say that Zp = (C1, . . . , Cp) is a partition or a cluster decomposition of the system

of order |Zp| = p, if and only if for all i, j = 1, . . . , p with i 6= j we have

Ci ∩ Cj = ∅ and

p⋃
j=1

Cj = {1, . . . , N}. (2.2.24)

We refer to C ⊂ Zp as a cluster of the partition Zp = (C1, . . . , Cp), if C = Ci for

some i = 1, . . . , p. The only unique partitions are Z1 and ZN , where Z1 corresponds

to the whole system and ZN is the case when each cluster consists of a single particle.

Let

R0(Zp) =
⊕
Ck⊂Zp

R0[Ck] and Rc(Zp) = R0 	R0(Zp). (2.2.25)

This yields the decomposition

L2(R0(Zp)) = L2(R0[C1])⊗ · · · ⊗ L2(R0[Cp]). (2.2.26)

By abuse of notation we use the same symbols −∆0[Ci] and H[Ci] for the operators

I⊗· · ·⊗I⊗(−∆0[Ci])⊗I⊗· · ·⊗I and I⊗· · ·⊗I⊗H[Ci]⊗I⊗· · ·⊗I, (2.2.27)

which both act on L2(R0(Zp)). Now the cluster decomposition Hamiltonian acting
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on L2(R0(Zp)) is given by

H(Zp) =
∑
Ck⊂Zp

H[Ck]. (2.2.28)

The operator H(Zp) describes the joint internal dynamics of the non-interacting

clusters C1, . . . , Cp. Let −∆0(Zp) be the Laplace-Beltrami operator on R0(Zp), then

−∆0(Zp) = −
∑
Ck⊂Zp

∆0[Ck]. (2.2.29)

Corresponding to the decomposition L2(R0) = L2(R0(Zp)) ⊗ L2(Rc(Zp)) we will

sometimes use the same symbols H[Ci] and H(Zp) for the operators acting on L2(R0)

as

H[Ci]⊗ I and H(Zp)⊗ I, (2.2.30)

respectively. We denote the intercluster interaction by

I(Zp) = V −
∑
Ck⊂Zp

V [Ck]. (2.2.31)

Here I(Zp) is the sum of pair potentials of particles from different clusters of the

partition Zp = (C1, . . . , Cp). Then the Hamiltonian H defined in (2.2.20) can be

written as

H = H(Zp)⊗ I + I ⊗ (−∆c(Zp)) + I(Zp), (2.2.32)

where −∆c(Zp) is the Laplace-Beltrami operator on Rc(Zp).

Now we introduce coordinates in spaces R0(Zp) and Rc(Zp) which we will work with

in the following. Denote by P0(Zp) and Pc(Zp) the projections in R0 on R0(Zp) and

Rc(Zp), respectively. For x ∈ R0 let

q(Zp) = P0(Zp)x and ξ(Zp) = Pc(Zp)x. (2.2.33)

To emphasize the dependence of the respective coordinates q(Zp) and ξ(Zp) we will

simply write

−∆q(Zp) = −∆0(Zp) and −∆ξ(Zp) = −∆c(Zp). (2.2.34)
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Thus we can write the Hamiltonian H in (2.2.32) as

H = −∆q(Zp) −∆ξ(Zp) + V or H = H(Zp)−∆ξ(Zp) + I(Zp). (2.2.35)

Note that q(Zp) = (q
Zp
1 , . . . , q

Zp
N ) corresponds to the positions of the particles within

the clusters of the partition Zp and ξ(Zp) = (ξ
Zp
1 , . . . , ξ

Zp
N ) describes the center-of-

mass positions of the corresponding clusters. For the purpose of illustrating the

coordinates q(Zp) and ξ(Zp) we give the following

Example. Consider a system of N = 5 particles of masses m1, . . . ,m5 > 0 and

a partition Z2 = (C1, C2), where C1 is a subsystem of two particles with masses

m1,m2 and position vectors x1, x2 and C2 is a subsystem of three particles with

masses m3,m4,m5 and position vectors x3, x4, x5, respectively. Let

M1 = m1 +m2, M2 = m3 +m4 +m5 (2.2.36)

and denote

R1(x) =
1

M1

2∑
i=1

mixi and R2(x) =
1

M2

5∑
i=3

mixi. (2.2.37)

Then the coordinates q(Z2) and ξ(Z2) are given by

q(Z2) = (x1 −R1(x), x2 −R1(x), x3 −R2(x), x4 −R2(x), x5 −R2(x)), (2.2.38)

ξ(Z2) = (R1(x), R1(x), R2(x), R2(x), R2(x)). (2.2.39)

The Euclidean distance of the clusters C1 and C2 can be computed with the help of

| · |1 =
√
〈·, ·〉1. Indeed, for every x ∈ R0 we have |R(x)|2 = 0, which is equivalent to

M2
1 |R1(x)|2 +M2

2 |R2(x)|2 + 2M1M2〈R1(x), R2(x)〉 = 0. (2.2.40)

By adding the term

M1M2|R1(x)|2 +M1M2|R2(x)|2 (2.2.41)
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Figure 2.1: Coordinates q(Z2) and ξ(Z2)

on both sides of (2.2.40) it yields

M1|R1(x)|2 +M2|R2(x)|2 =
M1M2

M1 +M2

|R1(x)−R2(x)|2. (2.2.42)

Hence, by (2.2.11) we obtain

|ξ(Z2)|1 =

(
2M1M2

M1 +M2

) 1
2

|R1(x)−R2(x)|. (2.2.43)

For q(Z2) = x− ξ(Z2) we have

|q(Z2)|21 =2m1|x1 −R1(x)|2 + 2m2|x2 −R1(x)|2

+ 2m3|x1 −R2(x)|2 + 2m4|x1 −R2(x)|2 + 2m5|x1 −R2(x)|2.
(2.2.44)

Now consider the case when

|q(Z2)|1 ≤ κ|ξ(Z2)|1 for some small κ > 0. (2.2.45)

In view of (2.2.43) and (2.2.44) this means that particles belonging to the same

cluster are relatively close to each other compared to the distance of the respective

clusters.

Motivated by the example above we now define regions in R0, which we will refer

to as cones in the following chapters. See for example [VZ84], p. 51 for more details

on the characteristics of such cones.
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Definition 2.2.1. For a partition Zp and constants κ,R > 0 denote

K(Zp, κ) = {x ∈ R0 : |q (Zp) |1 ≤ κ|ξ (Zp) |1} . (2.2.46)

In the further course of the thesis we will study the spectrum of a multi-particle

Schrödinger operator by making a partition of the unity of the configuration space

R0, corresponding to different partitions Zp of the system into different clusters. By

doing so we can systematically separate the cones KR(Zp, κ), where for sufficiently

small κ > 0 particles belonging to the same cluster in the partition Zp are close to

each other and the other clusters are far away.

2.2.3 Exponential decay of bound states

In the next chapter we will study solutions of the eigenvalue equation corresponding

to the lower threshold of the essential spectrum of the Hamiltonian H. The following

theorem identifies the location of the essential spectrum. It is known as the HVZ

theorem, proved by Zhislin [Zhi60], van Winter [vW64] and Hunziker [Hun66].

Although it is known under more general conditions on the pair potentials, we

formulate it in the way we will use it. We consider potentials Vij, where for some

constants A,C, ν > 0

|Vij(x)| ≤ C|x|−2−ν if |x| ≥ A and Vij ∈ Lploc(R
d) (2.2.47)

with p > 2 for d = 4 and p = d
2

for d ≥ 3, d 6= 4.

Theorem 2.2.2 (cf. [RS78, Theorem XIII.17 (the HVZ theorem)]). Let H be the

N -body Hamiltonian defined by (2.2.20), where the pair potentials Vij satisfy (2.2.47).

Denote

ΣZp = inf (σ(H(Zp))) and Σ = min
Zp, p>1

ΣZp . (2.2.48)

Then the essential spectrum of the operator H is given by

σess(H) = [Σ,∞) . (2.2.49)

Our approach in the coming chapter to investigate solutions corresponding to
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Σ is based on the method developed by S. Agmon [Agm82], which was used to

prove that eigenfunctions corresponding to eigenvalues below the threshold Σ decay

exponentially. Here we also refer to the earlier work [O’C73] by A. J. O’Connor.

Similar to the HVZ theorem we only formulate a weaker version that fits our

framework.

Theorem 2.2.3 (cf. [Agm82, Teorem 4.13]). Let H be the N-body Hamiltonian

defined by (2.2.20), where the pair potentials Vij satisfy (2.2.47). Assume that

σess(H) = [Σ,∞). (2.2.50)

If H has an eigenvalue E < Σ, then the corresponding eigenfunction ψ satisfies

ˆ
|ψ(x)|2e2α|x| dx <∞ for every α <

√
Σ− E. (2.2.51)

Theorem 2.2.3 shows in particular that as long as the eigenvalue E has a positive

distance to the threshold Σ of the essential spectrum of the operator H, the cor-

responding eigenfunction decays exponentially and the decay rate increases as the

eigenvalue is further away from the threshold. It turns out that in the borderline case

E = Σ the decay rates represent the entire remaining range, from sub-exponential

to polynomial ones. This will be the main subject of the next chapter.

40



3 Virtual Levels of Schrödinger

Operators

As already mentioned in the introduction, the investigation of the solutions of the

Schrödinger equation corresponding to the threshold of the essential spectrum of

the operator has taken many directions in both physics and mathematics. As a

result, many different terms have become established and there are several related

definitions in the literature; Critically bound [Ric03], coupling constant threshold

[KS80a, KS80b], binding threshold [BFLS14], resonances [Sob93, Tam93], virtual

levels [Yaf75], etc. We will focus on the concept of virtual levels, which we use as

a generic term for threshold eigenvalues and resonances. The main subject of this

chapter is the study of decay properties of zero-energy resonances and eigenfunctions

of multi-particle Schrödinger operators. First, we present a variational approach

that allows us to prove the existence and in some cases uniqueness of solutions

corresponding to virtual levels of the one-body Schrödinger operator. With this

method we also obtain estimates on their rates of decay at infinity. We choose the

conditions for the potentials in such a way that we are able to apply the results

to systems of N ≥ 3 quantum particles in dimension d ≥ 3. In case of short-

range potentials the obtained estimates on the decay rates allow us to prove the

corresponding asymptotic behaviour of the solutions. With regard to the Efimov

effect, we only consider the case where the essential spectrum of the operator

coincides with the half-line [0,∞).
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3.1 Zero-energy solutions of the Schrödinger

equation

First we introduce the concept of virtual levels for one-particle Schrödinger operators

and prove a general theorem, which we will apply to different systems later in

the thesis. Although our main goal is multi-particle systems, we also apply it to

one-particle operators for both short-range and long-range potentials, which partly

coincides with already known results, cf. [Mur86, Pin88, HJL19b, Yaf75, Yaf00],

but also provides new insights. We follow the presentation of [BBV20].

3.1.1 Threshold resonances and bound states

In the following we consider the Schrödinger operator

h = −∆ + V in L2(Rd), d ≥ 3, (3.1.1)

which was introduced in section 2.1. We assume that the potential V is relatively

form-bounded with relative bound zero, i.e. for every ε > 0 there exists a constant

C(ε) > 0 with

〈|V |ψ, ψ〉 ≤ ε‖∇ψ‖2 + C(ε)‖ψ‖2, ψ ∈ H1(Rd). (3.1.2)

The corresponding quadratic form q with form domain H1(Rd) is given by

q[ψ] = ‖∇ψ‖2 + 〈V ψ, ψ〉, ψ ∈ H1(Rd). (3.1.3)

For any ε ∈ (0, 1) we denote

hε = h+ ε∆ (3.1.4)

and let Ḣ1(Rd) be the homogeneous Sobolev space defined in section 2.1.

Definition 3.1.1. We say that the operator h has a virtual level at zero, if h ≥ 0

and for any ε ∈ (0, 1) we have

inf σess(hε) = 0 and inf σ (hε) < 0. (3.1.5)
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Our main result in this section is the following theorem, which is the basis for

further investigations.

Theorem 3.1.2. Assume that the operator h has a virtual level at zero. If there exist

constants α0 > 0, b > 0 and γ0 ∈ (0, 1), such that for any ψ ∈ H1(Rd) satisfying

supp (ψ) ⊂ {x ∈ Rd : |x| ≥ b} we have

〈hψ, ψ〉 − γ0‖∇ψ‖2 − α2
0〈|x|−2ψ, ψ〉 ≥ 0, (3.1.6)

then the following assertions hold true:

(i) If α0 > 1, then zero is a simple eigenvalue of h and the corresponding eigen-

function ϕ0 satisfies

∇ (| · |α0ϕ0) ∈ L2(Rd) and (1 + | · |)α0−1ϕ0 ∈ L2(Rd). (3.1.7)

Moreover, there exists δ0 > 0, such that for any function ψ ∈ H1(Rd) with

〈∇ψ,∇ϕ0〉 = 0 we have

〈hψ, ψ〉 ≥ δ0‖∇ψ‖2. (3.1.8)

(ii) If α0 ∈ (0, 1) and in addition

〈|V |ψ, ψ〉 ≤ C‖∇ψ‖2 (3.1.9)

is satisfied for any function ψ ∈ Ḣ1(Rd) and some constant C > 0, then there

exists a non-vanishing function ϕ1 ∈ Ḣ1(Rd) with

‖∇ϕ1‖2 + 〈V ϕ1, ϕ1〉 = 0. (3.1.10)

Moreover, we have

∇ (| · |α0ϕ1) ∈ L2(Rd) and (1 + | · |)α0−1ϕ1 ∈ L2(Rd). (3.1.11)

If we assume that for some C > 0

‖V ψ‖2 ≤ C
(
‖∇ψ‖2 + ‖ψ‖2

)
(3.1.12)
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for every function ψ ∈ C∞0 (Rd), then the solution ϕ1 ∈ Ḣ1(Rd) of (3.1.10) is

unique. Furthermore, there exists δ1 > 0, such that for any function ψ ∈ Ḣ1(Rd)

with 〈∇ψ,∇ϕ1〉 = 0 we have

〈hψ, ψ〉 ≥ δ1‖∇ψ‖2. (3.1.13)

(iii) If instead of (3.1.6) a stronger inequality

〈hψ, ψ〉 − γ0‖∇ψ‖2 − α2
0〈|x|−βψ, ψ〉 ≥ 0 (3.1.14)

is satisfied for some constants α0, γ0 > 0 and β ∈ (0, 2), then the function ϕ0

in part (i) of the theorem satisfies

exp
(
α0κ

−1| · |κ
)
ϕ0 ∈ L2(Rd), where κ = 1− β

2
. (3.1.15)

Remark. (i) We will see later that estimates (3.1.7) and (3.1.11) of the decay of

the zero-energy solutions are close to optimal. It will follow from the proof

that for those to hold we do not need the assumption that the operator h has

no negative eigenvalues.

(ii) Function ϕ1 in part (ii) of the theorem is not necessarily an eigenfunction of

h, since it may not belong to L2(Rd). In this case zero is a resonance of h.

In order to prove Theorem 3.1.2 we need several lemmas. The following lemma is

based on a part of the proof of the main theorem in [Zhi74].

Lemma 3.1.3. Consider h = −∆ + V in L2(Rd) with d ≥ 3, where V satisfies

(3.1.2). Assume there exist ε > 0 and b > 0, such that

〈hψ, ψ〉 − ε〈|x|−2ψ, ψ〉 ≥ 0 (3.1.16)

holds for any ψ ∈ H1(Rd) with supp (ψ) ⊂ {x ∈ Rd, |x| ≥ b}. Then

(i) inf σess(h) ≥ 0,

(ii) the operator h has at most a finite number of negative eigenvalues,
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(iii) zero is not an infinitely degenerate eigenvalue of h,

(iv) for V with (3.1.9) the space W of functions ϕ ∈ Ḣ1(Rd) satisfying

ˆ
Rd
∇ϕ(x) · ∇ψ(x) dx+

ˆ
Rd
V (x)ϕ(x)ψ(x) dx = 0 (3.1.17)

for all functions ψ ∈ Ḣ1(Rd) is at most finite-dimensional.

Proof. We construct a finite-dimensional subspace M ⊂ L2(Rd), such that

〈hψ, ψ〉 > 0 for all ψ ∈ H1(Rd) with ψ ⊥M. (3.1.18)

Due to Lemma 2.1.7 we have

〈hψ, ψ〉 ≥ L[ψχ1] + L[ψχ2], (3.1.19)

where the functional L : H1(Rd)→ R is given by

L[ψ] = 〈hψ, ψ〉 − ε〈|x|−2ψ, ψ〉. (3.1.20)

Since the function ψχ2 is supported outside the ball of radius b > 0, condition

(3.1.16) implies L[ψχ2] ≥ 0. Hence, it suffices to show that we have L[ψχ1] > 0 for

any ψ ⊥ M with M being a finite-dimensional space. By Hardy’s inequality and

(3.1.2) we have

L[ψχ1] ≥ (1− 5ε)‖∇(χ1ψ)‖2 − C(ε)‖χ1ψ‖2. (3.1.21)

For k ∈ N let

Mk := {ϕ1χ1, . . . , ϕkχ1} , (3.1.22)

where {ϕ1, . . . , ϕk} is an orthonormal set of eigenfunctions corresponding to the k

lowest eigenvalues of the Laplacian, acting on L2
(
{x ∈ Rd : |x| ≤ b}

)
with Dirichlet

boundary conditions. For ψ ⊥Mk we have ψχ1 ⊥ ϕ1, . . . , ϕk, which for sufficiently

large k implies

‖∇(ψχ1)‖2 ≥ 2 (1− ε)−1C(ε)‖ψχ1‖2. (3.1.23)
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Therefore, we conclude L[ψχ1] > 0. This proves statements (i)-(iii).

In order to prove statement (iv) we consider h̃ = h− (1 + |x|)−3. The operator

h̃ satisfies (3.1.19) for b > 0 sufficiently large and we can use similar arguments as

above. If the space W is not finite-dimensional, then h̃ has an infinite number of

negative eigenvalues. This is a contradiction to (ii).

Proof of statement (i) of Theorem 3.1.2. By Lemma 3.1.3 there exists a se-

quence of eigenfunctions ψn ∈ H1(Rd), corresponding to eigenvalues En < 0 of the

operator hn−1 , i.e. we have

−
(
1− n−1

)
∆ψn + V ψn = Enψn. (3.1.24)

We normalize the sequence (ψn)n∈N by ‖∇ψn‖ = 1 and take a weakly convergent

subsequence, also denoted by (ψn)n∈N, which has a weak limit ϕ0 ∈ Ḣ1(Rd). Note

that by the Rellich–Kondrachov theorem (ψn)n∈N converges to ϕ0 in L2
loc(Rd). In

the following we will prove that ϕ0 satisfies all the assertions of statement (i) of the

theorem.

Lemma 3.1.4. The weak limit ϕ0 ∈ Ḣ1(Rd) of the sequence (ψn)n∈N does not

vanish.

Proof. We consider the functional

L[ψ, ε] := (1− ε)‖∇ψ‖2 + 〈V ψ, ψ〉, (3.1.25)

where ψ ∈ H1(Rd) and ε > 0. Let b > 0, such that (3.1.6) is satisfied. We fix ε1 > 0

and construct functions χ1, χ2 in accordance with Lemma 2.1.7, which implies

L[ψ, ε] ≥ L[ψχ1, ε+ ε1] + L[ψχ2, ε+ ε1] (3.1.26)

for every ψ ∈ H1(Rd) independently of ε. Since the operator h is non-negative, we

have

L[ψχ1, ε+ ε1] = (1− ε− ε1)‖∇(ψχ1)‖2 + 〈V ψχ1, ψχ1〉

≥ −(ε+ ε1)‖∇(ψχ1)‖2.
(3.1.27)
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In addition, since supp (ψχ2) ⊂ {x ∈ Rd : |x| ≥ b} we conclude by (3.1.6) that

L[ψχ2, ε+ ε1] = (1− ε− ε1)‖∇(ψχ2)‖2 + 〈V ψχ2, ψχ2〉

= (1− γ0)‖∇(ψχ2)‖2 + 〈V ψχ2, ψχ2〉+ (γ0 − ε− ε1)‖∇(ψχ2)‖2

≥ (γ0 − ε− ε1)‖∇(ψχ2)‖2. (3.1.28)

Hence, (3.1.27) and (3.1.28) imply

L[ψ, ε] ≥ −(ε+ ε1)‖∇(ψχ1)‖2 + (γ0 − ε− ε1)‖∇(ψχ2)‖2. (3.1.29)

For ψ = ψn and ε = n−1, estimate (3.1.29) yields

− (ε1 + n−1)‖∇(ψnχ1)‖2 + (γ0 − ε1 − n−1)‖∇(ψnχ2)‖2 < 0, (3.1.30)

which implies

(γ0 − ε1 − n−1)
(
‖∇(ψnχ1)‖2 + ‖∇(ψnχ2)‖2

)
< γ0‖∇(ψnχ1)‖2. (3.1.31)

By the normalization of ψn we have

‖∇(ψnχ1)‖2 + ‖∇(ψnχ2)‖2 ≥ ‖∇ψn‖2 = 1 (3.1.32)

for every n ∈ N. Hence, by (3.1.31) we obtain

‖∇(ψnχ1)‖2 ≥ γ0 − ε1 − n−1

γ0

≥ 1− ε2, (3.1.33)

where ε2 > 0 can be chosen arbitrarily small by choosing ε1 > 0 sufficiently small

and n ∈ N sufficiently large. Due to (3.1.28) with ε = n−1 we have

L[ψnχ2, n
−1 + ε1] > 0. (3.1.34)
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This, together with (3.1.26) and L[ψn, n
−1] < 0 implies

0 > L[ψnχ1, n
−1 + ε1] =

(
1− n−1 − ε1

)
‖∇(ψnχ1)‖2 + 〈V ψnχ1, ψnχ1〉

≥
(
1− n−1 − 2ε1

)
‖∇(ψnχ1)‖2 − C(ε1)‖ψnχ1‖2,

(3.1.35)

where in the last inequality we used (3.1.2). By combining (3.1.35) and (3.1.33) we

arrive at

‖ψnχ1‖2 ≥ (1− n−1 − 2ε1)(1− ε2)

C(ε1)
. (3.1.36)

Since χ1 is compactly supported, |χ1| ≤ 1 and (ψn)n∈N converges to ϕ0 in L2
loc(Rd),

the last inequality proves the Lemma.

Remark. Note that

‖∇(χ1ψn)‖2 + ‖∇(χ2ψn)‖2 = ‖∇ψn‖2 +

ˆ (
|∇χ1|2 + |∇χ2|2

)
|ψn|2 dx. (3.1.37)

By inequality (2.1.35) the last term on the r.h.s. of (3.1.37) can be estimated by

ε‖∇ψn‖2 = ε, which implies

‖∇(χ2ψn)‖2 ≤ (1 + ε)− ‖∇(χ1ψn)‖2. (3.1.38)

Combining (3.1.38) with (3.1.33) yields

‖∇(χ2ψn)‖2 ≤ ε̃, (3.1.39)

where ε̃ > 0 can be chosen arbitrarily small for large b̃ and n. We will use this

estimate later.

Lemma 3.1.5. Assume that (3.1.5) and (3.1.6) hold for some α0 > 1. Then there

exists a constant C > 0, such that for any eigenfunction ψn ∈ H1(Rd) corresponding

to a negative eigenvalue of the operator hn−1, normalized by ‖∇ψn‖ = 1, we have

‖∇(| · |α0ψn)‖ ≤ C and ‖(1 + | · |)α0−1ψn‖ ≤ C. (3.1.40)

Remark. Recall that eigenfunctions ψn of the operators hn−1 decay exponentially

and their decay rates depend on the distances of the corresponding eigenvalues to
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the bottom of the essential spectrum, see Theorem 2.2.3. Since for n → ∞ the

negative eigenvalues of hn−1 converge to zero, these estimates are not uniform in

n ∈ N. However, Lemma 3.1.5 shows that if condition (3.1.6) is satisfied, a uniform

estimate exists. This estimate is of the polynomial type and the corresponding power

depends on the parameter α0 in (3.1.6) only.

Proof of Lemma 3.1.5. For any ε > 0 and R > 0 we define the function

Gε(x) =
|x|α0

1 + ε|x|α0
χR(|x|), (3.1.41)

where χR ∈ C∞(R) with

χR(|x|) =

0, |x| ≤ R,

1, |x| ≥ 2R.
(3.1.42)

A simple calculation shows

∇Gε(x) =
x

|x|
(
χ′R(|x|)Gε(x) + χR(|x|)α0|x|−1Gε(x)(1 + ε|x|α0)−1

)
. (3.1.43)

By (3.1.42) we have χR(|x|) = 1 and χ′R(|x|) = 0 for |x| ≥ 2R. Hence, for such

arguments we can estimate

|∇Gε(x)| = α0|x|α0−1

(1 + ε|x|α0)2
≤ α0|x|−1|Gε(x)|. (3.1.44)

Furthermore, for |x| ∈ [R, 2R] the function |∇Gε| is uniformly bounded in ε and for

|x| ≤ R we obviously have Gε(x) = 0. Since every function ψn satisfies

− (1− n−1)∆ψn + V ψn = Enψn (3.1.45)

with En < 0 and each ψn decays exponentially, we can multiply (3.1.45) with G2
εψn

and integrate by parts to obtain

(
1− n−1

)
〈∇ψn,∇

(
G2
εψn
)
〉+ 〈V ψn, G2

εψn〉 = En‖Gεψn‖2 < 0. (3.1.46)
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Furthermore, by

Re〈V ψn, G2
εψn〉 = 〈V ψn, G2

εψn〉 and ReEn‖Gεψn‖2 = En‖Gεψn‖2 (3.1.47)

we conclude

Re〈∇ψn,∇
(
G2
εψn
)
〉 = 〈∇ψn,∇

(
G2
εψn
)
〉. (3.1.48)

Note that

Re〈∇ψn,∇(G2
εψn)〉 = Re〈∇ψn, Gεψn∇Gε〉+ Re〈(∇ψn)Gε,∇(Gεψn)〉 (3.1.49)

= Re〈∇(ψnGε), ψn∇Gε〉 − Re〈ψn∇Gε, ψn∇Gε〉

+ Re〈∇(ψnGε),∇(ψnGε)〉 − Re〈ψn∇Gε,∇(ψnGε)〉

= Re〈∇(ψnGε),∇(ψnGε)〉 − Re〈ψn∇Gε, ψn∇Gε〉.

This implies

〈∇ψn,∇(G2
εψn)〉 = ‖∇(ψnGε)‖2 − ‖ψn∇Gε‖2, (3.1.50)

which together with (3.1.46) yields(
1− 1

n

)(
‖∇(ψnGε)‖2 −

ˆ
|ψn|2|∇Gε|2 dx

)
+

ˆ
V |ψnGε|2 dx < 0. (3.1.51)

By Hardy’s inequality we get

ˆ

{R≤|x|≤2R}

|∇Gε|2|ψn|2 dx ≤ C

ˆ

{R≤|x|≤2R}

|ψn|2 dx ≤ C̃R2

ˆ
|∇ψn|2 dx =: C0. (3.1.52)

Hence, substituting (3.1.44) and (3.1.52) into (3.1.51) yields

(
1− n−1

)
‖∇(ψnGε)‖2 + 〈V Gεψn, Gεψn〉 − α2

0

ˆ
{|x|>2R}

|Gεψn|2

|x|2
dx ≤ C1, (3.1.53)

where C1 > 0 does not depend on n or ε. Note that the function Gεψn is supported

outside the ball of radius R > 0. For R > b it therefore satisfies (3.1.6), i.e. we have

(1− γ0)‖∇(Gεψn)‖2 + 〈V Gεψn, Gεψn〉 − α2
0〈|x|−2Gεψn, Gεψn〉 ≥ 0. (3.1.54)
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For n > 2γ−1
0 estimates (3.1.53) and (3.1.54) imply

γ0

2
‖∇(Gεψn)‖2 ≤ C. (3.1.55)

Taking ε → 0 yields ‖∇ (| · |α0ψn) ‖ ≤ C, which together with Hardy’s inequality

completes the proof.

Lemma 3.1.6. Assume that (3.1.5) and (3.1.6) hold for some α0 > 1. Then zero

is an eigenvalue of h and the corresponding eigenfunction ϕ0 satisfies

∇ (| · |α0ϕ0) ∈ L2(Rd) and (1 + | · |)α0−1ϕ0 ∈ L2(Rd). (3.1.56)

Proof. Let (ψn)n∈N be a sequence of eigenfunctions of the operators hn−1 normalized

by ‖∇ψn‖ = 1. This sequence has a subsequence, also denoted by (ψn)n∈N, with a

weak limit ϕ0 ∈ Ḣ1(Rd). According to Lemma 3.1.4 we have ϕ0 6≡ 0. Furthermore,

the sequence (ψn)n∈N converges to ϕ0 in L2
loc(Rd) and by Lemma 3.1.5 we have

‖(1 + | · |)α0−1ψn‖ ≤ C for α0 > 1 and C independent of n ∈ N. Therefore, we

conclude

(1 + | · |)α0−1ϕ0 ∈ L2(Rd). (3.1.57)

This also shows that 〈V ϕ0, ϕ0〉 is well defined. Our next goal is to prove that ϕ0

satisfies

〈V ϕ0, ϕ0〉 = −1. (3.1.58)

For this purpose we write

〈V ϕ0, ϕ0〉 = 〈V ϕ0, ϕ0 − ψn〉+ 〈V ϕ0, ψn〉

= 〈V ϕ0, ϕ0 − ψn〉+ 〈V (ϕ0 − ψn), ψn〉+ 〈V ψn, ψn〉. (3.1.59)

Due to (3.1.2) the first term on the r.h.s. of (3.1.59) can be estimated by

|〈V ϕ0, ϕ0 − ψn〉| ≤ 〈|V |
1
2ϕ0, |V |

1
2 |ϕ0 − ψn|〉

≤
(
‖∇ϕ0‖2 + C(1)‖ϕ0‖2

) 1
2
(
ε‖∇(ϕ0 − ψn)‖2 + C(ε)‖ϕ0 − ψn‖2

) 1
2

≤ C
(
2ε
(
‖∇ϕ0‖2 + ‖∇ψn‖2

)
+ C(ε)‖ϕ0 − ψn‖2

) 1
2 . (3.1.60)
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Note that by the semi-continuity of the norm we have ‖∇ϕ0‖ ≤ 1. Since

‖ψn − ϕ0‖ → 0 as n→∞, (3.1.61)

choosing ε > 0 sufficiently small and n ∈ N sufficiently large we can get the r.h.s.

of (3.1.60) arbitrarily small. Similar arguments show that the second term on the

r.h.s. of (3.1.59) can be done arbitrarily small as well. Consequently, we have

〈V ψn, ψn〉 → 〈V ϕ0, ϕ0〉 as n→∞. By

(1− n−1)‖∇ψn‖2 + 〈V ψn, ψn〉 ≤ 0 and ‖∇ψn‖ = 1 (3.1.62)

we conclude 〈V ϕ0, ϕ0〉 = −1. Since ‖∇ϕ0‖ ≤ 1, we have

‖∇ϕ0‖2 + 〈V ϕ0, ϕ0〉 ≤ 0. (3.1.63)

This implies ‖∇ϕ0‖ = 1. Hence, ϕ0 is a minimizer of the quadratic form of h and

it is therefore an eigenfunction of h, corresponding to the eigenvalue zero. Finally,

repeating the same arguments for ϕ0, which we used in Lemma 3.1.6 to get (3.1.55)

for the eigenfunctions ψn, we obtain ∇(| · |α0ϕ0) ∈ L2(Rd).

Our next goal is to prove inequality (3.1.8) and the non-degeneracy of ϕ0. We

will do it in Lemma 3.1.7 - Lemma 3.1.9.

Lemma 3.1.7. For any ε > 0 there is n0 ∈ N, such that for any n ≥ n0 and any

eigenfunction ψn with ‖∇ψn‖ = 1, corresponding to some negative eigenvalue of the

operator hn−1, we have ‖ψn − ϕ0‖ < ε.

Proof. We assume that we have eigenfunctions ψn ∈ H1(Rd) with ‖∇ψn‖ = 1, corre-

sponding to some negative eigenvalues of the operator hn−1 for n ∈ N. Furthermore,

we assume that ‖ψn − ϕ0‖ ≥ C > 0. Proceeding as in the proof of Lemmas 3.1.4

and 3.1.6 we can find a subsequence, also denoted by (ψn)n∈N, such that (ψn)n∈N

converges to some function ϕ̃0 ∈ H1(Rd) with ϕ̃0 6≡ 0, ‖∇ϕ̃0‖ = 1 and

‖∇ϕ̃0‖2 + 〈V ϕ̃0, ϕ̃0〉 = 0. (3.1.64)

By ‖∇ϕ0‖ = ‖∇ϕ̃0‖ = 1 and ‖ψn − ϕ0‖ ≥ C > 0 we conclude that ϕ0 and ϕ̃0 are
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linearly independent. Due to [Goe77] the ground state is always non-degenerate.

Consequently, ϕ0 and ϕ̃0 cannot be linearly independent.

Lemma 3.1.8. For any sufficiently small ε > 0 the operator hε has one non-

degenerate negative eigenvalue.

Proof. Assume there is a sequence a(n) ∈ (0, 1) with a(n)→ 0 as n→∞, such that

for any n ∈ N the operator ha(n) = −(1− a(n))∆ + V has at least two eigenvalues.

Recall that the lowest eigenvalue of ha(n) is non-degenerate. We consider two

eigenfunctions ψ
(1)
n and ψ

(2)
n of ha(n), normalized by ‖ψ(1)

n ‖ = ‖ψ(2)
n ‖ = 1, where

ψ
(1)
n corresponds to the lowest eigenvalue. Now ψ

(1)
n and ψ

(2)
n are orthogonal in

L2(Rd) and by Lemma 3.1.7 ψ
(1)
n and ψ

(2)
n both converge to ϕ0 ∈ L2(Rd), which is a

contradiction.

Lemma 3.1.9. There exists δ0 > 0, such that for every function ψ ∈ H1(Rd) with

〈∇ψ,∇ϕ0〉 = 0 we have

(1− δ0)‖∇ψ‖2 + 〈V ψ, ψ〉 ≥ 0. (3.1.65)

Proof. We prove the lemma by contradiction. Assume there is no such constant

δ0 > 0. Then there exists a sequence of functions gn ∈ H1(Rd) with

〈∇gn,∇ϕ0〉 = 0 and 〈hn−1gn, gn〉 < 0. (3.1.66)

Note that for c1, c2 ∈ C we have

〈hn−1(c1gn + c2ϕ0), (c1gn + c2ϕ0)〉 = c2
1〈hn−1gn, gn〉+ c2

2〈hn−1ϕ0, ϕ0〉

+ 2 Re c1c2〈hn−1gn, ϕ0〉.
(3.1.67)

Furthermore, it is easy to see that

Re〈hn−1gn, ϕ0〉 = Re〈gn, hϕ0〉 − n−1 Re〈∇gn,∇ϕ0〉 = 0 (3.1.68)

and

〈hn−1ϕ0, ϕ0〉 = 〈hϕ0, ϕ0〉 − n−1‖∇ϕ0‖2 = −n−1. (3.1.69)
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Hence, we conclude that for any linear combination c1gn + c2ϕ0 we have

〈hn−1(c1gn + c2ϕ0), (c1gn + c2ϕ0)〉 < 0. (3.1.70)

Since by (3.1.66) the functions ϕ0 and gn are linearly independent, for any n ∈ N
we can find a linear combination fn of ϕ0 and gn, such that fn is orthogonal to the

ground state of hn−1 . According to Lemma 3.1.8 for sufficiently large n ∈ N the

operator hn−1 has only one negative eigenvalue, which yields 〈hn−1fn, fn〉 ≥ 0. This

is a contradiction to (3.1.70).

Combining Lemma 3.1.6 and Lemma 3.1.9 proves Theorem 3.1.2 (i).

Proof of statement (ii) of Theorem 3.1.2. Note that for α0 ∈ (0, 1) the se-

quence of eigenfunctions ψn of the operators hn−1 , normalized by ‖∇ψn‖ = 1, does

not necessarily converge in L2(Rd). To ensure that the quadratic form q is well

defined for the weak limit ϕ1 ∈ Ḣ1(Rd) and that 〈V ψn, ψn〉 converges to 〈V ϕ1, ϕ1〉
as n→∞, we assume that the potential V satisfies (3.1.9). We will prove part (ii)

of Theorem 3.1.2 in two steps. In Lemma 3.1.10 we prove the existence of a function

ϕ1 satisfying (3.1.10). Then, in Lemma 3.1.11 we prove the uniqueness of ϕ1 and

the inequality (3.1.13).

Lemma 3.1.10. Assume that (3.1.5) and (3.1.6) hold for α0 ∈ (0, 1) and in addition

〈|V |ψ, ψ〉 ≤ C‖∇ψ‖2 (3.1.71)

is satisfied for any function ψ ∈ Ḣ1(Rd) and some constant C > 0. Then, there

exists a function ϕ1 ∈ Ḣ1(Rd) with

‖∇ϕ1‖2 + 〈V ϕ1, ϕ1〉 = 0. (3.1.72)

Moreover, ϕ1 satisfies

∇ (| · |α0ϕ1) ∈ L2(Rd) and (1 + | · |)α0−1ϕ1 ∈ L2(Rd). (3.1.73)

Proof. By assumption (3.1.5) there exists a sequence of functions ψn ∈ Ḣ1(Rd)
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satisfying

(
1− n−1

)
‖∇ψn‖2 + 〈V ψn, ψn〉 < 0 and ‖∇ψn‖ = 1. (3.1.74)

Repeating the same arguments as in Lemma 3.1.4 shows that there is a subsequence,

also denoted by (ψn)n∈N, which converges in L2
loc(Rd) to some function ϕ1 ∈ Ḣ1(Rd).

Let us prove that ϕ1 is a minimizer of the quadratic form of h in Ḣ1(Rd) by showing

〈V ϕ1, ϕ1〉 = −1. We fix the constant b > 0 and construct functions χ1, χ2 according

to Lemma 2.1.7. By χ2
1 + χ2

2 = 1 we have

〈V ϕ1, ϕ1〉 = 〈V ϕ1, ϕ1χ
2
1〉+ 〈V ϕ1, ϕ1χ

2
2〉. (3.1.75)

Note that

〈V ϕ1, ϕ1χ
2
1〉 = 〈V (ϕ1 − ψn), ϕ1χ

2
1〉+ 〈V ψn, ϕ1χ

2
1〉 (3.1.76)

= 〈V (ϕ1 − ψn), ϕ1χ
2
1〉+ 〈V ψn, ψnχ2

1〉+ 〈V ψn, (ϕ1 − ψn)χ2
1〉.

We estimate the first term on the r.h.s. of (3.1.76) by

|〈V (ϕ1 − ψn), ϕ1χ
2
1〉| ≤ ‖|V |

1
2χ1(ϕ1 − ψn)‖ · ‖|V |

1
2ϕ1‖ (3.1.77)

≤ C‖|V |
1
2χ1(ϕ1 − ψn)‖ · ‖∇ϕ1‖

≤ C
(
ε‖∇ (χ1(ϕ1 − ψn)) ‖2 + C(ε)‖χ1(ϕ1 − ψn)‖2

) 1
2 .

Here we used (3.1.2), (3.1.9), |χ1| ≤ 1 and ‖∇ϕ1‖ ≤ 1. Moreover, we have

‖∇(χ1(ϕ1 − ψn))‖2 ≤ 2‖∇χ1‖2‖ϕ1 − ψn‖2
supp (χ1) + 2‖∇(ϕ1 − ψn)‖2. (3.1.78)

Since ψn → ϕ1 in L2
loc(Rd) and χ1 is compactly supported, for fixed ε1 > 0 and large

n ∈ N we get

‖∇(χ1(ϕ1 − ψn))‖2 ≤ 2ε1 + 4‖∇ϕ1‖2 + 4‖∇ψn‖2 ≤ 9. (3.1.79)
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For any fixed ε̃ > 0 and large n this implies

|〈V (ϕ1 − ψn), χ2
1ϕ1〉| ≤ C

(
9ε+ C(ε)‖χ1(ϕ1 − ψn)‖2

) 1
2 ≤ ε̃. (3.1.80)

Applying similar arguments to the last term on the r.h.s. of (3.1.76) yields

|〈V ψnχ1, (ϕ1 − ψn)χ1〉| ≤ ε̃. (3.1.81)

Hence, we get

〈V ϕ1χ1, ϕ1χ1〉 ≤ 〈V ψnχ1, ψnχ1〉+ 2ε̃. (3.1.82)

Further, by (3.1.71) we have

〈V ϕ1χ2, ϕ1χ2〉 ≤ C‖∇(ϕ1χ2)‖2 ≤ 2C‖(∇ϕ1)χ2‖2 + 2C‖(∇χ2)ϕ1‖2. (3.1.83)

Since ϕ1 belongs to the space Ḣ1(Rd) and χ2 is bounded and supported in the region

{x ∈ Rd : |x| ≥ b}, the first term on the r.h.s. of (3.1.83) is arbitrarily small if b is

sufficiently large. Due to (2.1.35) we have

‖(∇χ2)ϕ1‖2 ≤ ε‖∇ϕ1‖2 = ε (3.1.84)

for b̃ > 0 sufficiently large. This shows that the second term on the r.h.s. of (3.1.83)

can be done arbitrarily small. Therefore, we obtain

〈V ϕ1χ2, ϕ1χ2〉 ≤ 2ε̃. (3.1.85)

Collecting estimates (3.1.82) and (3.1.85) yields

〈V ϕ1, ϕ1〉 ≤ 〈V ψnχ1, ψnχ1〉+ 4ε̃ (3.1.86)

for n ∈ N sufficiently large.
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Let us estimate the r.h.s. of (3.1.86). Assumption (3.1.9) implies

〈V ψnχ1, ψnχ1〉 = 〈V ψn, ψn〉 − 〈V ψnχ2, ψnχ2〉

≤ 〈V ψn, ψn〉+ C‖∇(ψnχ2)‖2

≤ −
(
1− n−1

)
+ C‖∇(ψnχ2)‖2.

(3.1.87)

Due to the remark after Lemma 3.1.4 we can choose n ∈ N and b̃ > 0, such that

‖∇(ψnχ2)‖ ≤ ε. Therefore, we conclude

〈V ϕ1, ϕ1〉 = −1 and ‖∇ϕ1‖2 + 〈V ϕ1, ϕ1〉 = 0. (3.1.88)

Now we prove that

∇ (| · |α0ϕ1) ∈ L2(Rd) and (1 + | · |)α0−1ϕ1 ∈ L2(Rd). (3.1.89)

Let Gε be the function defined by (3.1.41). Since ϕ1 is a minimizer of the quadratic

form of (3.1.88) in Ḣ1(Rd), it satisfies the Euler-Lagrange equation in a generalized

sense, i.e.,

〈∇ϕ1,∇ψ〉+ 〈V ϕ1, ψ〉 = 0, ψ ∈ Ḣ1(Rd). (3.1.90)

For ψ = G2
εϕ1 we therefore obtain

〈∇ϕ1,∇
(
G2
εϕ1

)
〉+ 〈V ϕ1, G

2
εϕ1〉 = 0. (3.1.91)

Computations similar to (3.1.49), together with (3.1.91), imply

‖∇(ϕ1Gε)‖2 −
ˆ
|ϕ1|2|∇Gε|2 dx+

ˆ
V |ϕ1Gε|2 dx = 0. (3.1.92)

By (3.1.44) we can rewrite (3.1.92) as

‖∇(ϕ1Gε)‖2 + 〈V ϕ1Gε, ϕ1Gε〉 − α2
0

ˆ

{|x|≥2R}

|Gεϕ1|2

|x|2
dx ≤

ˆ

{R≤|x|≤2R}

|ϕ1|2|∇Gε|2 dx. (3.1.93)
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Since the function |∇Gε| is uniformly bounded in ε for |x| ∈ [R, 2R], we conclude

ˆ
{R≤|x|≤2R}

|ϕ1|2|∇Gε|2 dx ≤ C

ˆ
{R≤|x|≤2R}

|ϕ1|2 dx ≤ C1R
2

ˆ
|ϕ1|2

(2|x|)2
dx

≤ C2

ˆ
|∇ϕ1|2 dx ≤ C2, (3.1.94)

where the constant C2 > 0 does not depend on ε > 0. Similar to the proof of Lemma

3.1.5, assumption (3.1.6) implies

‖∇(ϕ1Gε)‖ ≤ C.

Taking ε→ 0 yields ‖∇(|x|α0ϕ1)‖ <∞, which together with the Hardy inequality

implies

(1 + | · |)α0−1ϕ1 ∈ L2(Rd). (3.1.95)

This completes the proof.

Lemma 3.1.11. Assume that

‖V ψ‖2 ≤ C
(
‖∇ψ‖2 + ‖ψ‖2

)
(3.1.96)

for some C > 0 and every function ψ ∈ C∞0 (Rd). Then the solution ϕ1 ∈ Ḣ1(Rd) in

Lemma 3.1.10 is unique. Moreover, there exists a constant δ1 > 0, such that for any

function ψ ∈ Ḣ1(Rd) with 〈∇ψ,∇ϕ1〉 = 0 we have

〈hψ, ψ〉 ≥ δ1‖∇ψ‖2. (3.1.97)

Proof. We will prove the lemma by contradiction. Assume that there is no such

constant δ1 > 0, then there exists a sequence of functions (ψ
(1)
n )n∈N in Ḣ1(Rd), such

that ‖∇ψ(1)
n ‖ = 1, 〈∇ψ(1)

n ,∇ϕ1〉 = 0 and

(
1− n−1

)
‖∇ψ(1)

n ‖2 + 〈V ψ(1)
n , ψ(1)

n 〉 < 0. (3.1.98)

Moreover, there exists a subsequence, which by abuse of notation is denoted by

(ψ
(1)
n )n∈N again, and a function ϕ̃1 ∈ Ḣ1(Rd), such that ψ

(1)
n ⇀ ϕ̃1 in Ḣ1(Rd) and
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therefore ψ
(1)
n → ϕ̃1 in L2

loc(Rd). Obviously, both functions ϕ1 and ϕ̃1 are linearly

independent and ϕ̃1 is also a minimizer of the quadratic form q of the operator

h. Due to (3.1.90) with ψ = ϕ̃1, any linear combination of ϕ1 and ϕ̃1 is also a

minimizer of the quadratic form q. By Hardy’s inequality both functions ϕ1 and ϕ̃1

belong to the weighted L2-space with the weight (1 + | · |)−2. Since the subspace of

linear combinations of ϕ1 and ϕ̃1 is two-dimensional, it contains two functions which

are orthogonal with respect to the weighted scalar product. At least one of these

functions, say f , has a non-trivial positive part f+ and a non-trivial negative part

f−, which are also minimizers of the quadratic form of the operator h and satisfy the

corresponding Schrödinger equation. Functions f+ and f− are zero on some open

sets. Since V satisfies (3.1.96), the unique continuation theorem [SS80, Theorem

2.1] implies f+ = f− = 0. This contradiction proves Lemma 3.1.11.

Combining Lemma 3.1.10 and Lemma 3.1.11 completes the proof of Theorem

3.1.2 (ii).

Proof of statement (iii) of Theorem 3.1.2. The proof is similar to the proof

of Lemma 3.1.5 and Lemma 3.1.6 after replacing the function Gε in (3.1.41) with

the function

Jε = exp

(
α0κ

−1 |x|κ

1 + ε|x|κ

)
χR(x), κ = 1− β

2
, (3.1.99)

where χR(x) is defined by (3.1.42) and where α0, β are the constants in (3.1.14).

Indeed, in this case we have

∇Jε(x) =
x

|x|

(
χ′R(|x|)Jε(x) + χR(|x|)α0Jε(x)

|x|κ−1

(1 + ε|x|κ)2

)
, (3.1.100)

which implies

|∇Jε(x)| ≤ α0|x|κ−1|Jε(x)| for |x| ≥ 2R. (3.1.101)

Furthermore, we have ∇Jε(x) = 0 for |x| ∈ [0, R]. For arguments x ∈ Rd with

|x| ∈ [R, 2R] the function |∇Jε| is uniformly bounded in ε. Repeating the same

steps as in the proof of Lemma 3.1.5 with the corresponding eigenfunctions ψn of
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3 Virtual Levels of Schrödinger Operators

hn−1 and with Jε instead of Gε we arrive at

(
1− n−1

)
‖∇(Jεψn)‖2 + 〈V Jεψn, Jεψn〉 − α2

0

ˆ

{|x|>2R}

|Jεψn|2

|x|2(1−κ)
dx ≤ C, (3.1.102)

where C does not depend on n ∈ N or ε > 0. The rest of the proof now follows

analogously as in the proofs of Lemma 3.1.5 and Lemma 3.1.6, together with the

assumption (3.1.14) with β = 2(1− κ).

3.1.2 Connection to Hardy’s inequality

Before we proceed to multi-particle systems, we will apply Theorem 3.1.2 to different

classes of potentials in the one-particle case. The following two theorems can be

found in [BBV20].

Theorem 3.1.12. Let d ≥ 3 and h = −∆ + V , where the potential V satisfiesV ∈ L
d
2 (Rd), if d 6= 4,

V ∈ L2(R4) ∩ L2+µ(R4) for some µ > 0, if d = 4.
(3.1.103)

If h has a virtual level, then there exists a non-vanishing solution ϕ0 ∈ Ḣ1(Rd) of

the equation

‖∇ϕ0‖2 + 〈V ϕ0, ϕ0〉 = 0. (3.1.104)

For any 0 ≤ α0 <
d−2

2
the function ϕ0 satisfies

∇ (| · |α0ϕ0) ∈ L2(Rd) and (1 + | · |)α0−1 ϕ0 ∈ L2(Rd). (3.1.105)

Remark. (i) Note that Theorem 3.1.12 shows in particular that for any dimension

d ≥ 5 virtual levels are eigenfunctions and not resonances, cf. [Yaf00]. This

follows from the fact that the Hardy constant Cd =
(
d−2

2

)2
is greater than one

for all d ≥ 5.

(ii) With regard to the estimate on the decay rate of ϕ0 in (3.1.105), see also

[Mur86].
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3.1 Zero-energy solutions of the Schrödinger equation

Proof. By Theorem 2.1.4 the assumption (3.1.103) implies that the potential V is

relatively form-bounded with relative bound zero, i.e. for every ε > 0 there exists a

constant C(ε) > 0 with

〈|V |ψ, ψ〉 ≤ ε‖∇ψ‖2 + C(ε)‖ψ‖2 for any ψ ∈ H1(Rd). (3.1.106)

In order to be able to apply Theorem 3.1.2 we need to show that assumption (3.1.6)

is fulfilled. We have to prove that there exist constants α0 > 0, b > 0 and γ0 > 0,

such that for any function ψ ∈ H1(Rd) with supp (ψ) ⊂ {x ∈ Rd : |x| ≥ b} we have

〈hψ, ψ〉 − γ0‖∇ψ‖2 − α2
0〈|x|−2ψ, ψ〉 ≥ 0. (3.1.107)

Furthermore, in case of α0 ∈ (0, 1) we need to show that (3.1.9) is satisfied. Therefore,

let ψ ∈ H1(Rd) with supp (ψ) ⊂ {x ∈ Rd : |x| ≥ b}. We set p = d
2

and q = d
d−2

,

which implies 1
p

+ 1
q

= 1. Hence, by the Hölder inequality we obtain

ˆ
{|x|≥b}
|V (x)||ϕ(x)|2 dx ≤

( ˆ
{|x|≥b}
|V (x)|

d
2 dx

) 2
d
( ˆ

{|x|≥b}
|ψ(x)|

2d
d−2 dx

) d−2
d

. (3.1.108)

Applying Sobolev’s inequality yields

(ˆ
{|x|≥b}

|ψ(x)|
2d
d−2 dx

) d−2
d

≤ C∗‖∇ψ‖2 (3.1.109)

for some constant C∗ > 0 independent of ψ. Now since by assumption we have

V ∈ L d
2 (Rd), for any γ0 > 0 we can choose b > 0 sufficiently large, such that

(ˆ
{|x|≥b}

|V (x)|
d
2 dx

) 2
d

≤ γ0

C∗
. (3.1.110)

By (3.1.108) we obtain

〈V ψ, ψ〉 ≥ −〈|V |ψ, ψ〉 ≥ −γ0‖∇ψ‖2. (3.1.111)
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Hence, we arrive at

〈hψ, ψ〉 − γ0‖∇ψ‖2 = ‖∇ψ‖2 + 〈V ψ, ψ〉 − γ0‖∇ψ‖2

≥ (1− 2γ0)‖∇ψ‖2.
(3.1.112)

Let

0 < α0 <
√
Cd =

d− 2

2
and 0 < γ0 <

Cd − α2
0

2Cd
. (3.1.113)

Then, by (2.1.16) we obtain

〈hψ, ψ〉 − γ0‖∇ψ‖2 − α2
0〈|x|−2ψ, ψ〉 ≥ (Cd − α2

0 − 2γ0Cd)〈|x|−2ψ, ψ〉. (3.1.114)

Since by (3.1.113) we have (Cd − α2
0 − 2γ0Cd) ≥ 0, it remains to apply Theorem

3.1.2 to complete the proof.

Obviously, any short-range potential belongs to L
d
2 (Rd). Even though Theorem

3.1.12 covers a larger class than short-range potentials, it cannot be applied to

potentials decaying as c|x|−2 or c|x|−β for some β ∈ (0, 2) as |x| → ∞. It is to be

expected that a slower decay rate of the potential will result in a faster decay of

the solution ϕ0. In dimensions d = 3 and d = 4 resonances can become threshold-

eigenvalues and the decay rate of the corresponding eigenfunctions in all dimensions

d ≥ 3 can change into the sub-exponential one, if the potential decays slower than

|x|−2. However, in order to be able to apply Theorem 3.1.2 for such cases, we

consider potentials positive at infinity.

Theorem 3.1.13. Let d ≥ 3 and h = −∆ + V , where the potential V satisfies

(i) V ∈ L
d
2
loc(Rd) for d 6= 4 and V ∈ L2+µ

loc (Rd) for some µ > 0 if d = 4,

(ii) there exist constants A1, A2 ≥ 0, β1 > 0 and β2 ∈ (0, 2] with

β1|x|−β2 ≤ V (x) ≤ A1 for |x| ≥ A2, (3.1.115)

(iii) V (x)→ 0 as |x| → ∞.

Assume that h has a virtual level, then there exists a solution ϕ0 ∈ Ḣ1(Rd), ϕ0 6= 0
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3.2 Virtual levels of multi-particle quantum systems

of the equation

‖∇ϕ0‖2 + 〈V ϕ0, ϕ0〉 = 0. (3.1.116)

If β2 = 2, then for any 0 ≤ α0 <
√
β1 + 4−1(d− 2)2 the function ϕ0 satisfies

∇ (| · |α0ϕ0) ∈ L2(Rd) and (1 + | · |)α0−1ϕ0 ∈ L2(Rd). (3.1.117)

If β2 < 2, then ϕ0 satisfies

exp (β1| · |κ)ϕ0 ∈ L2(Rd), where κ = 1− β2

2
. (3.1.118)

Remark. (i) Theorem 3.1.13 implies in particular that for d = 3 zero is an

eigenvalue of h for β1 >
3
4

and in case d = 4 zero is an eigenvalue of h for any

β1 > 0.

(ii) For similar results we refer to [GG07, HJL19b].

Proof. The proof follows from similar arguments as in the proof of Theorem 3.1.12

but with the difference that here we need to apply Theorem 3.1.2 (iii).

3.2 Virtual levels of multi-particle quantum systems

In this section we apply the results of Theorem 3.1.2 to multi-particle systems and

we additionally prove that the estimate of the decay rate is very close to optimal

by providing the concrete asymptotic behaviour of such solutions in case of short-

range potentials. We stick to the notation introduced in section 2.2 and follow the

presentation of [BBV20] and [BB20].

3.2.1 Zero-energy solutions of the N-body Schrödinger equation

We consider a system of N ≥ 3 quantum particles in dimension d ≥ 3 with masses

mi > 0, i = 1, . . . , N, and position vectors xi ∈ Rd, i = 1, . . . , N . The corresponding
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Hamiltonian HN acting on L2
(
RdN

)
is given by

HN = −
N∑
i=1

1

2mi

∆xi +
∑

1≤i<j≤N

Vij(xij), xij = xi − xj, (3.2.1)

where the potentials Vij describe the particle pair interactions. In the following we

assume that Vij = V
(1)
ij + V

(2)
ij , such that for some constants A,C, ν > 0

|V (1)
ij (xij)| ≤ C|xij|−2−ν , if |xij| ≥ A and V

(1)
ij ∈ L

p
loc(R

d), (3.2.2)

where p > 2 for d = 4 and p = d
2

for d 6= 4. Furthermore, we assume that

V
(2)
ij ≥ 0 is bounded and V

(2)
ij (xij)→ 0 as |xij| → ∞. (3.2.3)

By Theorem 2.1.4 the potentials Vij are relatively form-bounded with relative bound

zero. We will consider the operator HN in the center-of-mass frame, i.e. we consider

the operator

H = −∆0 + V (3.2.4)

defined in (2.2.20).

Definition 3.2.1. For an arbitrary cluster C we say that the corresponding operator

H[C] = −∆0[C] +V [C] has a virtual level at zero, if H[C] ≥ 0 and for all sufficiently

small ε > 0 we have

σess (−(1− ε)∆0[C] + V [C]) = [0,∞) (3.2.5)

and

σdisc (−(1− ε)∆0[C] + V [C]) 6= ∅. (3.2.6)

Remark. Assume that H has a virtual level, i.e. C = {1, . . . , N} in the upper

definition. Then condition (3.2.5) together with the HVZ theorem imply that there

exists ε > 0, such that for any cluster C ′ with 1 < |C ′| < N we have

σ (−(1− ε)∆0[C ′] + V [C ′]) = [0,∞). (3.2.7)
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3.2 Virtual levels of multi-particle quantum systems

In particular, (3.2.7) implies that if H has a virtual level, then every cluster Hamil-

tonian H[C ′] does not have resonances or eigenvalues at zero.

Theorem 3.2.2. Consider a system of N ≥ 3 particles in dimension d ≥ 3. Suppose

that the potentials Vij satisfy (3.2.2) and (3.2.3). Assume that H has a virtual level

at zero. Then

(i) zero is an eigenvalue of H and the corresponding eigenfunction ϕ0 satisfies

∇0 (| · |α0
1 ϕ0) ∈ L2(R0) and (1 + | · |1)α0−1ϕ0 ∈ L2(R0) (3.2.8)

for any 0 ≤ α0 <
d(N−1)−2

2
.

(ii) There exists a constant δ0 > 0, such that for every function ψ ∈ H1(R0)

satisfying 〈∇0ψ,∇0ϕ0〉 = 0 we have

(1− δ0)‖∇0ψ‖2 + 〈V ψ, ψ〉 ≥ 0. (3.2.9)

(iii) If V
(2)
ij satisfies V

(2)
ij (xij) ≥ αij|xij|−β for αij > 0 and β ∈ (0, 2), then zero is

an eigenvalue of H and the corresponding eigenfunction ϕ0 satisfies

exp (µ| · |κ1)ϕ0 ∈ L2(R0), (3.2.10)

where κ = 1− β
2

and µ > 0 depends on the coefficients αij and on the masses

of the particles only.

Remark. Theorem 3.2.2 shows in particular that for systems of d-dimensional

particles with d ≥ 3 virtual levels can be resonances only in case of two-body cluster

Hamiltonians.

To emphasize the main idea of the proof, we first prove the statement for N = 3

in dimension d = 3 and then extend the proof to the remaining cases afterwards.

We will use the following two lemmas.

Lemma 3.2.3 (cf. [Zhi74, Lemma 2.1]). Suppose that Z2 and Z ′2 are arbitrary

partitions of the system into two clusters with Z2 6= Z ′2. Let K(Z2, κ) and K(Z ′2, κ)
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be the regions defined in (2.2.46). Then there exists κ0 > 0, such that for all

0 < κ < κ0 we have

K(Z2, κ) ∩K(Z ′2, κ) = {0}. (3.2.11)

Lemma 3.2.4 (cf. [VZ83, Lemma 5.1]). Given ε > 0 and κ > 0, for each partition

Zp one can find 0 < κ′ < κ and functions uZp , vZp : R0 → R, such that

u2
Zp + v2

Zp = 1, uZp(x) =

1, x ∈ K (Zp, κ
′)

0, x /∈ K (Zp, κ)
(3.2.12)

and

|∇0uZp|2 + |∇0vZp |2 < ε
[
|vZp |2|x|−2

1 + |uZp|2|q (Zp) |−2
1

]
(3.2.13)

for x ∈ K (Zp, κ) \K (Zp, κ
′).

Remark. Using Lemma 3.2.4 we will make a partition of unity to separate the cones

K(Zp, κ) for all partitions Zp, starting with p = 2. We note at this point that due to

uZp(0) = 1 and Lemma 3.2.3 formally the functions in Lemma 3.2.4 do not form a

partition of unity. However, since we always consider the region {x ∈ R0 : |x|1 ≥ R}
with R > 0 only, this will not be a problem. For p > 2 we can avoid this technical

difficulty in a similar way.

Proof of Theorem 3.2.2 for N = 3 particles in dimension d = 3. We show that all

conditions of statement (i) of Theorem 3.1.2 are fulfilled. Note that in this case we

have to prove (3.2.8) with α0 ∈ (0, 2) in dimension dimR0 = d(N − 1). In addition

show that if V
(2)
ij (xij) ≥ αij|xij|−β for some constants αij > 0 and β ∈ (0, 2), then

(3.2.10) follows from statement (iii) of Theorem 3.1.2.

Since Vij ∈ L
3
2
loc(R3) and it decays at infinity, by Theorem 2.1.4 for any ε > 0

there exists a constant C(ε) > 0 with

〈|Vij|ϕ, ϕ〉 ≤ ε‖∇xijϕ‖2 + C(ε)‖ϕ‖2 for any ϕ ∈ H1(R0), (3.2.14)

which implies (3.1.2) for V =
∑

1≤i<j≤N Vij. In order to prove statements (i) and

(ii) of the theorem it is sufficient to prove that we have

L[ϕ] := (1− γ0) ‖∇0ϕ‖2 + 〈V ϕ, ϕ〉 − α2
0‖|x|−1

1 ϕ‖2 ≥ 0 (3.2.15)
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for some constant γ0 > 0, any α0 ∈ (1, 2) and any function ϕ ∈ H1(R0) satisfying

supp (ϕ) ⊂ {x ∈ R0 : |x|1 ≥ R} for some sufficiently large R > 0.

The proof of (3.2.15) is based on ideas of the proof of an estimate from below of the

quadratic form of a multi-particle operator in [VZ84]. The main difference is that in

[VZ84] it was sufficient to prove a similar inequality with an arbitrary small α0 > 0

in the case when the operators of the subsystems do not have any virtual levels. In

our case we need to prove (3.2.15) for α0 ∈ (1, 2). Similar to [VZ83] we will make a

partition of unity of the configuration space R0 of the system, separating the cones

K(Z2, κ), corresponding to different partitions into two clusters. We will choose

κ > 0 sufficiently small to compensate the term −α0|x|−1
1 with a small part of the

kinetic energy.

Let uZ2 be the localization functions defined by (3.2.12). Recall that uZ2 is supported

in the cone in the configuration space, where two particles belonging to the same

cluster in Z2 are close one to another and the third particle is very far away from

this cluster. Applying Lemma 3.2.3 and Lemma 3.2.4 yields

L[ϕ] ≥
∑
Z2

L1 [ϕuZ2 ] + L2 [ϕV ] , (3.2.16)

where V =
√

1−
∑

Z2
u2
Z2

and the functionals L1, L2 : H1(R0)→ R are defined by

L1[ψ] := (1− γ0) ‖∇0ψ‖2 + 〈V ψ, ψ〉 − ‖α0|x|−1
1 ψ‖2 − ε

∥∥|q(Z2)|−1
1 ψ

∥∥2
,

L2[ψ] := (1− γ0) ‖∇0ψ‖2 + 〈V ψ, ψ〉 − ‖α0|x|−1
1 ψ‖2 − ε

∥∥|x|−1
1 ψ

∥∥2
.

(3.2.17)

We will prove that L1[ϕuZ2 ] ≥ 0 and L2[ϕV] ≥ 0, if ε, γ0 > 0 and κ > 0 are

sufficiently small and R > 0 is sufficiently large. Here, κ > 0 is the parameter in

Definition 2.2.1 of the cone

K(Z2, κ) = {x ∈ R0 : |q(Z2)|1 ≤ κ|ξ(Z2)|1}. (3.2.18)
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At first we estimate L1[ϕuZ2 ] for an arbitrary partition Z2 = (C1, C2). Note that

L1[ϕuZ2 ] = 〈H(Z2)ϕuZ2 , ϕuZ2〉 − γ0

∥∥∇q(Z2)(ϕuZ2)
∥∥2

+ (1− γ0)
∥∥∇ξ(Z2)(ϕuZ2)

∥∥2
+ 〈I(Z2)ϕuZ2 , ϕuZ2〉

− ‖α0|x|−1
1 ϕuZ2‖2 − ε

∥∥|q (Z2) |−1
1 ϕuZ2

∥∥2
.

(3.2.19)

Without loss of generality we assume that in Z2 = (C1, C2) the cluster C1 has two

particles and C2 has only one particle. Applying (3.2.7) we get

〈H(Z2)ϕuZ2 , ϕuZ2〉 ≥ µ0‖∇q(Z2) (ϕuZ2) ‖2 (3.2.20)

for some µ0 > 0 independent of ϕ. For sufficiently small ε > 0 and γ0 > 0 this yields

〈H(Z2)ϕuZ2 , ϕuZ2〉 − γ0

∥∥∇q(Z2)(ϕuZ2)
∥∥2−ε

∥∥|q (Z2) |−1
1 ϕuZ2

∥∥2

≥ µ0

2
‖∇q(Z2) (ϕuZ2) ‖2.

(3.2.21)

Therefore, we arrive at

L1[ϕuZ2 ] ≥
µ0

2
‖∇q(Z2)(ϕuZ2)‖2 + (1− γ0)

∥∥∇ξ(Z2)(ϕuZ2)
∥∥2

+ 〈I(Z2)ϕuZ2 , ϕuZ2〉 − ‖α0|x|−1
1 ϕuZ2‖2.

(3.2.22)

On the support of uZ2 we have |q(Z2)|1 ≤ κ|ξ(Z2)|1, which by Hardy’s inequality

implies
µ0

2
‖∇q(Z2) (ϕuZ2) ‖2 ≥ µ0

8κ2

∥∥|ξ(Z2)|−1
1 ϕuZ2

∥∥2
. (3.2.23)

Since supp (ϕuZ2) ⊂ K (Z2, κ) \B(R) with B(R) being a ball in the space R0 with

radius R, it holds |xij| ≥ C|ξ (Z2) |1 for i ∈ C1, j ∈ C2 and some C > 0. Therefore,

by Vij ≥ V
(1)
ij and |V (1)

ij (xij)| ≤ C|ξ (Z2) |−2−ν
1 we can estimate the r.h.s. of (3.2.22)

from below by

µ0

8κ2
‖|ξ(Z2)|−1

1 ϕuZ2‖2 − C‖|ξ(Z2)|−1
1 ϕuZ2‖2 − α2

0‖|ξ(Z2)|−1
1 ϕuZ2‖2 ≥ 0 (3.2.24)

for sufficiently small κ > 0. Now to prove part (i) and part (ii) of the theorem in

the case of N = 3 it suffices to show L2[Vϕ] ≥ 0. Note that on the support of V
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all the distances between the particles are large. Note that Vij ≥ V
(1)
ij and on the

support of Vϕ we have

|V (1)
ij (xij)| ≤ C|x|−2−ν

1 ≤ ε|x|−2
1 , i, j = 1, 2, 3, i 6= j, (3.2.25)

where ε > 0 can be chosen arbitrarily small by choosing R > 0 sufficiently large.

This yields

L2[Vϕ] ≥ (1− γ0)‖∇0 (Vϕ) ‖2 −
(
α2

0 − 2ε
)
‖|x|−1

1 ϕV‖2. (3.2.26)

Since dimR0 = 6, Hardy’s inequality implies

‖∇0(Vϕ)‖2 ≥ 4‖|x|−1
1 Vϕ‖2. (3.2.27)

For α0 < 2 we can choose 0 < ε <
4−α2

0

2
and γ0 > 0 sufficiently small, such that

L2[ϕV] ≥ 0, which completes the proof of statement (i) and (ii) for d = 3 and

N = 3.

In order to prove statement (iii) it suffices to note that for β ∈ (0, 2) and αij > 0

we have
∑

1≤i<j≤N V
(2)
ij (xij) ≥ C|x|−β1 . Applying statement (iii) of Theorem 3.1.2

completes the proof for N = 3.

In order to prove Theorem 3.2.2 for the case d = 3 and N ≥ 4 we need the

following Lemma, see [BBV20]. It goes back to the work of M. A. Antonets, G. M.

Zhislin, and I. A. Shereshevskij [AZS].

Lemma 3.2.5 (cf. [BBV20, Theorem B.2]). For N ≥ 3 there exist functions

κ, κ′ : N→ (0,∞) with κ′(m) < κ(m) and where for any 2 ≤ m ≤ N − 1 and any

cluster decompositions Zm, Z
′
m with |Zm| = |Z ′m| = m and Zm 6= Z ′m we have

K (Zm, κ(m)) ∩K (Z ′m, κ(m)) ⊂
⋃

Zn: n<m

K (Zn, κ
′(n)) . (3.2.28)

Proof of Theorem 3.2.2 (i)-(ii) for N ≥ 4 and d = 3. For the sake of convenience,

in this part we assume that V
(2)
ij = 0 for every i, j = 1, . . . , N with i 6= j. Let L[·]

be the functional defined in (3.2.15). In the following we will show that we have

L[ϕ] ≥ 0 for every 0 ≤ α0 <
3N−5

2
and every ϕ ∈ H1(R0) with supp(ϕ) ⊂ R0 \B(R),
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where R > 0 is sufficiently large. Analogously to the case N = 3 we get

L[ϕ] ≥
∑
Z2

L1 [ϕuZ2 ] + L2 [ϕV2] , (3.2.29)

where the functionals L1, L2 are defined in (3.2.17) and V2 =
√

1−
∑

Z2
u2
Z2

. By

repeating the same arguments as in the case N = 3, one can easily show that

we have L1[ϕuZ2 ] ≥ 0 for all two-cluster partitions Z2. Hence, it suffices to prove

L2[V2ϕ] ≥ 0.

Due to Lemma 3.2.5 we can find κ(3) > 0, such that on the support of V2ϕ the

cones K (Z3, κ(3)) and K (Z ′3, κ(3)) do not overlap for Z3 6= Z ′3. Applying Lemma

3.2.4 yields

L2 [V2ϕ] ≥
∑
Z3

L′1[uZ3V2ϕ] + L′2[V3V2ϕ], (3.2.30)

where V3 =
√

1−
∑

Z3
u2
Z3

on the support of V2ϕ and

L′1[ψ] = 〈H(Z3)ψ, ψ〉 − γ0

∥∥∇q(Z3)ψ
∥∥2

+ (1− γ0)
∥∥∇ξ(Z3)ψ

∥∥2

+ 〈I(Z3)ψ, ψ〉 −
(
α2

0 + ε
)
‖|x|−1

1 ψ‖2 − ε
∥∥ψ|q (Z3) |−1

1

∥∥2
,

(3.2.31)

L′2[ψ] = (1− γ0) ‖∇0ψ‖2 + 〈V ψ, ψ〉 − ‖α0|x|−1
1 ψ‖2 − 2ε

∥∥|x|−1
1 ψ

∥∥2
. (3.2.32)

Since for each cluster Cj in the partition Z3 we have (3.2.7), it follows

〈H(Z3)ψ, ψ〉 ≥ µ0‖∇q(Z3)ψ‖2 (3.2.33)

for some µ0 > 0 independent of ψ. In addition, on the support of uZ3V2 we

can estimate |Vij (xij) | ≤ c|ξ(Z3)|−2−ν
1 for i, j belonging to different clusters in

Z3. Consequently, by the same arguments as in the estimate of L1[uZ2ϕ] we get

L′1[uZ3V2ϕ] ≥ 0. Repeating this process, we see that to prove the theorem it suffices

to show

L3[ψ] := (1− γ0) ‖∇0ψ‖2 + 〈V ψ, ψ〉 − ‖α0|x|−1
1 ψ‖2 − ε

∥∥ψ|x|−1
1

∥∥2 ≥ 0 (3.2.34)

for small ε, γ0 > 0 and for functions ψ ∈ H1(R0), which are supported outside the
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ball of the radius R in the space R0 in the region, where for any pair of particles i, j

it holds |xij| ≥ c̃|x|1 for some constant c̃ > 0. In this region we have

|Vij (xij) | ≤ c|x|−2−ν
1 . (3.2.35)

We choose 0 < ε < (3(N−1)−2)2

4
− α2

0, such that Hardy’s inequality in dimension

3(N − 1) implies (3.2.34). Now we can apply Theorem 3.1.2 to conclude that zero is

a simple eigenvalue of H and the corresponding eigenfunction ϕ0 satisfies

∇0 (| · |α0
1 ϕ0) ∈ L2(R0) and (1 + | · |1)α0−1ϕ0 ∈ L2(R0) (3.2.36)

for every α0 <
3N−5

2
. This completes the proof of statement (i) and (ii) of Theorem

3.2.2 in the case d = 3 and N ≥ 4. Finally, since Hardy’s inequality holds true for

every d ≥ 3, the proof of the theorem can be adapted to the case d ≥ 4 by replacing

the Hardy constant in the corresponding dimension. Statement (iii) of the theorem

follows from statement (iii) of Theorem 3.1.2 similar to the case of N = 3.

3.2.2 Virtual levels in systems of a fixed permutation symmetry

Since the proof of Theorem 3.2.2 is based on variational methods only, we can

extend the result to systems of a fixed permutation symmetry. At first we explain

what is meant by permutation symmetry in multi-particle systems by following the

presentation of [SS70].

Consider a system of N particles containing K ≤ N identical particles, where

x1, . . . , xK denote the position vectors of the identical particles. We denote by SK

the group of permutations of the identical particles and for each g ∈ SK let

Tgψ(x1, . . . , xN) = ψ(xg−1(1), . . . , xg−1(K), xK+1, . . . , xN) (3.2.37)

be the operator in L2, which realizes the permutation of the corresponding identical

particles. Let π be an irreducible representation of SK and denote by P π the

corresponding projection, i.e. P πL2 is a subspace of functions transformed under the

action of Tg with respect to the representation π. For any partition Zp = (C1, . . . , Cp)
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we define

SK(Zp) = SK(C1)× . . .× SK(Cp) o S0, (3.2.38)

where each SK(Ci) is the subgroup of permutations of the identical particles within

the subsystems Ci and S0 is the subgroup of SK consisting of permutations g0 ∈ SK
that reverse the positions of the identical subsystems Ci in the partition Zp. Here

o is the semidirect product of subgroups for a group. If there are no identical

subsystems, then S0 is the trivial group S0 = {e}. Denote by π(Zp) an irreducible

representation of SK(Zp). The relation π(Zp) ≺ π means that π(Zp) is contained in

the restriction of π to SK(Zp). The operators H and H(Zp) are invariant under the

action of the groups SK and SK(Zp), respectively. This allows us to define Hπ and

Hπ(Zp) as the restrictions of H and H(Zp) to the subspaces of functions transformed

according to π and π(Zp), respectively.

Similar to the case of Theorem 3.1.2 and Theorem 3.2.2, we first formulate a

statement of a general nature and then apply it to multi-particle systems. Therefore,

let

h = −∆ + V in L2(Rd) (3.2.39)

be invariant under action of a symmetry group G and let π be an irreducible

representation of G. Denote by P π the projection in L2(Rd) onto the subspace of

functions transformed according to the representation π. In the following we assume

that for every function ψ ∈ L2(Rd) and χ ∈ C0(Rd) with χ(x) = χ(|x|) the condition

P πψ = ψ implies P π(χψ) = χψ. We denote hπ = P πh, hπε = P πhε, Hπ = P πH1(Rd)

and Ḣπ = P πḢ1(Rd). The following theorem is a straightforward generalization of

Theorem 3.1.2. However, in this case the minimizers of the quadratic form of the

operator hπ are not necessarily unique, but it follows from Lemma 3.1.3 that the

corresponding subspaces are still finite-dimensional.

Theorem 3.2.6. Suppose that V satisfies (3.1.2). Furthermore, assume that we

have

hπ ≥ 0 and inf σ (hπε ) < 0 (3.2.40)

for any ε ∈ (0, 1). If there exist constants α0 > 0, b > 0 and γ0 ∈ (0, 1), such that
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for any function ψ ∈ Hπ with suppψ ⊂ {x ∈ Rd : |x| ≥ b} we have

〈hπψ, ψ〉 − γ0‖∇ψ‖2 − α2
0〈|x|−2ψ, ψ〉 ≥ 0, (3.2.41)

then the following assertions hold:

(i) If α0 > 1, then zero is an eigenvalue of hπ with finite degeneracy. Denote by

W0 the corresponding eigenspace. Then for any ϕ0 ∈ W0 we have

∇ (| · |α0ϕ0) ∈ L2(Rd) and (1 + | · |)α0−1ϕ0 ∈ L2(Rd). (3.2.42)

Moreover, there exists a constant δ0 > 0, such that for any function ψ ∈ Hπ

satisfying 〈∇ψ,∇ϕ0〉 = 0 for all ϕ0 ∈ W0 we have

〈hπψ, ψ〉 ≥ δ0‖∇ψ‖2. (3.2.43)

(ii) If α0 ∈ (0, 1) and in addition

〈|V |ψ, ψ〉 ≤ C‖∇ψ‖2 (3.2.44)

for any function ψ ∈ Ḣπ and some constant C > 0, then there exists a

finite-dimensional subspace W1 ⊂ Ḣπ, such that for any function ϕ1 ∈ W1 we

have

‖∇ϕ1‖2 + 〈V ϕ1, ϕ1〉 = 0. (3.2.45)

Moreover, ϕ1 satisfies

∇ (| · |α0ϕ1) ∈ L2(Rd) and (1 + | · |)α0−1ϕ1 ∈ L2(Rd) (3.2.46)

and there exists a constant δ1 > 0, such that for any function ψ ∈ Ḣπ satisfying

the condition 〈∇ψ,∇ϕ1〉 = 0 for all ϕ1 ∈ W1 we have

〈hπψ, ψ〉 ≥ δ1‖∇ψ‖2. (3.2.47)
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(iii) If instead of (3.2.41) a stronger inequality

〈hπψ, ψ〉 − γ0‖∇ψ‖2 − 〈α2
0|x|−βψ, ψ〉 ≥ 0 (3.2.48)

holds for some constant α0 > 0 and β ∈ (0, 2), then each function ϕ0 ∈ W0 in

part (i) of the theorem satisfies

exp
(
α0κ

−1| · |κ
)
ϕ0 ∈ L2(Rd), where κ = 1− β

2
. (3.2.49)

Now we consider a system of N particles containing K ≤ N identical particles.

Definition 3.2.7. We say that for an irreducible representation π of SK the operator

Hπ has a virtual level of symmetry π, if Hπ ≥ 0 and for all sufficiently small ε > 0

σess (P π(H + ε∆0)) = [0,∞) (3.2.50)

and

σdisc (P π(H + ε∆0)) 6= ∅. (3.2.51)

Similar to the remark after Definition 3.2.1, condition (3.2.50) together with

the HVZ theorem imply that for any partition Zp with p > 1 and any irreducible

representation π(Zp) ≺ π we have for sufficiently small ε > 0

P π(Zp) (H(Zp) + ε∆0(Zp)) ≥ 0. (3.2.52)

The following theorem is a straightforward generalization of Theorem 3.2.2. How-

ever, since the decay rate of ϕ0 depends on the Hardy constant, which can be larger

for certain representations π, this can result in a stronger decay rate.

Theorem 3.2.8. Suppose that N ≥ 3 and consider the operator Hπ, where the

potentials Vij satisfy (3.2.2) and (3.2.3). Assume that Hπ has a virtual level of

symmetry π. Then

(i) zero is an eigenvalue of Hπ with finite degeneracy. LetW0 be the corresponding

eigenspace, then for any ϕ0 ∈ W0 we have

∇0 (| · |α0
1 ϕ0) ∈ L2(R0) and (1 + | · |1)α0−1ϕ0 ∈ L2(R0) (3.2.53)
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3.3 Asymptotics of multi-particle bound states at the threshold

for any 0 ≤ α0 <
d(N−1)−2

2
.

(ii) There exists a constant δ0 > 0, such that for any function ψ ∈ P πH1(R0)

satisfying 〈∇0ψ,∇0ϕ0〉 = 0 for all ϕ0 ∈ W0, we have

(1− δ0)‖∇0ψ‖2 + 〈V ψ, ψ〉 ≥ 0. (3.2.54)

(iii) If V
(2)
ij satisfies V

(2)
ij (x) ≥ αij|x|−β for some constants αij > 0 and β ∈ (0, 2),

then for every function ϕ0 ∈ W0 we have

exp (µ| · |κ1)ϕ0 ∈ L2(R0), (3.2.55)

where κ = 1− β
2

and µ > 0 depends on the coefficients αij and on the masses

of the particles only.

Remark. The group SK has two one-dimensional representations. The trivial one

corresponds to bosons and the antisymmetric representation corresponds to fermions.

The other higher-dimensional representations have no immediate interpretation in

quantum mechanics but are of independent mathematical interest.

3.3 Asymptotics of multi-particle bound states at the

threshold

As we have seen in Theorem 3.2.2 in the last section, in case of a virtual level of

the N -body Hamiltonian H of N ≥ 3 particles in dimension d ≥ 3, zero is a simple

eigenvalue of H and the corresponding eigenfunction ϕ0 satisfies

(1 + | · |1)αϕ0 ∈ L2(R0) for any α <
d(N − 1)

2
− 2. (3.3.1)

Since we can choose α arbitrarily close to d(N−1)
2
− 2, we get an estimate from

below on the rate of decay of ϕ0. Indeed, recall that the configuration space R0 has

dimension d(N − 1). For simplicity, assume that

ϕ0(x) ∼ c|x|−τ1 as |x|1 →∞. (3.3.2)
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Let α = d(N−1)
2
− 2− ε for some ε > 0, then (3.3.1) yields

2(τ − α) > d(N − 1) ⇐⇒ τ > d(N − 1)− 2− ε. (3.3.3)

For ε→ 0 we get d(N − 1)− 2 as the lower bound of the decay rate of ϕ0. Note that

the fundamental solution of the Laplace operator in R0 decays like c|x|−(d(N−1)−2)
1

as |x|1 →∞, which corresponds to the same lower bound (3.3.3). Heuristically, by

the Green’s function formalism, one could conclude from this that virtual levels of

multi-particle systems with short-range potentials always admit such a behaviour at

infinity. In this section we answer this question by giving an asymptotic behaviour

of eigenfunctions corresponding to zero-energy eigenvalues of H, which provides an

upper bound of the estimate (3.3.1). We follow the presentation of [BB20].

Similar to the last section, we consider d,N ≥ 3 and we assume that the potentials

Vij satisfy

|Vij(xij)| ≤ c|xij|−2−ν , xij ∈ Rd, |xij| ≥ A (3.3.4)

for some constants c, ν, A > 0 and we allow singularities of the type
Vij ∈ L2

loc(Rd), if d = 3,

Vij ∈ Lploc(Rd) for some p > 2, if d = 4,

Vij ∈ L
d
2
loc(Rd), if d ≥ 5.

(3.3.5)

However, compared to the last section we also allow systems in which H can have

negative eigenvalues. Precisely, in terms of Definition 3.2.1 our main assumption

here is that for all sufficiently small ε > 0 we have that

σess (−(1− ε)∆0 + V ) = [0,∞). (3.3.6)

This is in particular the situation where for any cluster C with 1 < |C| < N the

Hamiltonian H[C] has neither resonances nor eigenvalues at the threshold zero.

However, the operator H of the whole system might have eigenvalues E ≤ 0. Taking

into account the remark after Theorem 3.1.2, even in case of negative eigenvalues of

H the eigenfunction corresponding to the eigenvalue zero satisfies (3.2.8).

In accordance with 2.2.21, for a fixed pair of particles i 6= j and k 6= i, j we use
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the abbreviation

Rij = {x = (x1, . . . , xN) ∈ R0 : mixi +mjxj = 0, xk = 0} (3.3.7)

and R⊥ij = R0 	 Rij. In the same spirit we denote by Pij and P⊥ij the projections

in R0 with respect to the scalar product 〈·, ·〉1 onto Rij and R⊥ij, respectively. For

x ∈ R0 we set

qij = Pijx and ξij = P⊥ij x. (3.3.8)

Computations similar to (2.2.43) show that for any 1 ≤ i < j ≤ N we have

|qij|1 =

(
2mimj

mi +mj

) 1
2

|xij|, (3.3.9)

which together with (3.3.4) implies

|Vij(xij)| ≤ C|qij|−2−ν
1 for some constant C > 0 and all |xij| ≥ A. (3.3.10)

Theorem 3.3.1. Assume that H satisfies the conditions described above. Suppose

that ϕ0 is an eigenfunction of H corresponding to the eigenvalue zero. Then

(i) for all 1 ≤ i < j ≤ N we have

Vij(xij)ϕ0(x) ∈ L1(R0). (3.3.11)

(ii) Let β = d(N − 1)− 2 and denote by |Sβ−1| the volume of the unit sphere in

Rβ. Furthermore, let

C0 = − 1

(β − 2)|Sβ−1|

ˆ

R0

∑
1≤i<j≤N

Vij(xij)ϕ0(x) dx. (3.3.12)

Then the function ϕ0 has the following asymptotics:

ϕ0(x) =
C0

|x|β1
+ g(x) as |x|1 →∞, (3.3.13)
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where the remainder g belongs to Lp(R0) for any p satisfying

β + 2

β + γ∗

1+γ∗

< p <
β + 2

β
with γ∗ = min

{
d

2
− 1, ν

}
. (3.3.14)

Remark. (i) The most interesting question with regard to (3.3.13) is whether

the constant C0 is zero or not. In the next section we discuss the importance

of this constant by presenting examples where the constant is always zero and

where it is never zero.

(ii) The relation (3.3.13) also shows that the decay rate of the eigenfunction ϕ0

does not depend on the potentials as long as they are short-range and the

constant C0 is not zero. However, due to

|x|1 =

(
N∑
i=1

2mi|xi|2
) 1

2

(3.3.15)

for not identical masses the decay of ϕ0(x) depends on the direction of x.

(iii) The theorem is formulated for N ≥ 3 particles only. By adjusting the notation

it can be proved for one- and two-body Schrödinger operators

− 1

2m
∆ + V in L2(Rd) (3.3.16)

as well. However, for d = 3 and d = 4 we must speak of general zero-energy

solutions, since in these cases it could be resonances. The zero-energy solution

ϕ0 in any dimension d ≥ 3 then satisfies

ϕ0(x) = −
m · Γ

(
d
2

)
(d− 2)π

d
2

|x|2−d
ˆ
V (y)ϕ0(y) dy + g(x) as |x| → ∞, (3.3.17)

where

g ∈ Lp(Rd) for
d

d− 2 + ν
1+ν

< p <
d

d− 2
. (3.3.18)

We prove the theorem successively through a series of propositions. The first

statement follows from
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3.3 Asymptotics of multi-particle bound states at the threshold

Proposition 3.3.2. For all 1 ≤ i < j ≤ N and any 0 < γ < γ∗ we have

(1 + |x|1)γVij(xij)ϕ0(x) ∈ L1(R0). (3.3.19)

Proof. By (3.2.8), together with |∇qij | ≤ |∇0| and Hardy’s inequality in the space

H1(Rij) we have

(1 + |qij|1)−1 (1 + |x|1)α ϕ0 ∈ L2(R0). (3.3.20)

Note that this estimate is crucial. In fact, using the Hardy inequality in x instead of

qij at this point would not be enough. For any fixed 0 < γ < γ∗ we write

(1 + |x|1)γ Vij(xij)ϕ0(x) = (1 + |qij|1)−1 (1 + |x|1)α ϕ0(x)f(x), (3.3.21)

where

f(x) := (1 + |x|1)−α+γ (1 + |qij|1)Vij(xij). (3.3.22)

In view of (3.3.20) to prove Proposition 3.3.2 it suffices to show that f belongs to

L2(R0). Note that by definition of Rij and R⊥ij we have

L2(R0) = L2(Rij)⊗ L2(R⊥ij). (3.3.23)

Hence, we write

f(x) = f(x)χ{|xij |<A} + f(x)χ{|xij |≥A} (3.3.24)

and estimate fχ{|xij |<A} and fχ{|xij |≥A} separately, starting with fχ{|xij |<A}.

Due to (3.3.9) and (3.3.5) we have

(1 + |qij|1)Vij(xij)χ{|xij |<A} ∈ L2(Rij). (3.3.25)

Therefore, in order to prove fχ{|xij |<A} ∈ L2(R0) we only need to show that the

function (1 + |x|1)−α+γ belongs to L2(R⊥ij). Since

dim(R⊥ij) = d(N − 2) (3.3.26)
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we conclude that

(1 + |ξij|1)−α+γ ∈ L2(R⊥ij) ⇐⇒ α− γ > d(N − 2)

2
. (3.3.27)

Recall that γ < γ∗, which in particular implies γ < d
2
− 1. Therefore, the condition

in (3.3.27) is satisfied if we choose α close enough to d(N−1)−2
2

. By the relation

|x|21 = |qij|21 + |ξij|21 we have

(1 + |x|1)−1 ≤ (1 + |ξij|1)−1 (3.3.28)

and therefore (1 + |x|1)−α+γ ∈ L2(R⊥ij). This implies

fχ{|xij |<A} ∈ L2(R0). (3.3.29)

In order to prove that the function fχ{|xij |≥A} belongs to L2(R0) we show that it

can be estimated by

|f(x)χ{|xij |≥A}| ≤ C|f1(qij)| · |f2(ξij)|, (3.3.30)

where f1 ∈ L2(Rij) and f2 ∈ L2(R⊥ij). Here we will use the assumption that the

potential Vij(xij) decays faster than |qij|−2
1 as |xij| → ∞. By

dim(Rij) = d and dim(R⊥ij) = d(N − 2) (3.3.31)

for any 0 < ε < ν − γ we have

f1(qij) := (1 + |qij|1)−
d
2
−ε ∈ L2(Rij) (3.3.32)

and

f2(ξij) := (1 + |ξij|1)−α+γ−ν+ε+ d
2
−1 ∈ L2(R⊥ij). (3.3.33)

Note that we can always assume ν < d
2
− 1. Hence, by the use of |qij|1, |ξij|1 ≤ |x|1

we obtain

(1 + |x|1)−α+γ ≤ (1 + |ξij|1)−α+γ−ν+ε+ d
2
−1 (1 + |qij|1)1− d

2
+ν−ε . (3.3.34)
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This, together with (3.3.10) yields

|f(x)χ{|xij |≥A}| ≤ C|f1(qij)| · |f2(ξij)| (3.3.35)

and therefore

fχ{|xij |≥A} ∈ L2(R0). (3.3.36)

This completes the proof of Proposition 3.3.2.

Now we turn to the proof of statement (ii) of Theorem 3.3.1. Recall that by

assumption we have

Hϕ0 = (−∆0 + V )ϕ0 = 0 (3.3.37)

and according to Proposition 3.3.2 we also have V ϕ0 ∈ L1(R0). Therefore, we can

apply [LL01, Theorem 6.21] to conclude

ϕ0(x) =
−1

(β − 2)|Sβ−1|

ˆ
R0

|x− y|−β1 V (y)ϕ0(y) dy. (3.3.38)

We derive the asymptotics (3.3.13) by studying the integral representation of ϕ0

in (3.3.38). We will see that only certain regions of the configuration space R0

contribute to the leading term of ϕ0. We write

ϕ0(x) =
−1

(β − 2)|Sβ−1|
(I1(x) + I2(x)) , (3.3.39)

where

I1(x) =

ˆ

{|x−y|1≤1}

|x− y|−β1 V (y)ϕ0(y) dy,

I2(x) =

ˆ

{|x−y|1>1}

|x− y|−β1 V (y)ϕ0(y) dy.

(3.3.40)

First we show that the function I1 belongs to the remainder g in (3.3.13).

Proposition 3.3.3. The function I1 is an element of Lp(R0) for all 1 ≤ p < β+2
β

.
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Proof. Due to dim(R0) = d(N − 1) and β = d(N − 1)− 2 we have

|x|−β1 χ{|x|1≤1} ∈ Lp(R0) for all 1 ≤ p <
β + 2

β
. (3.3.41)

Applying Young’s inequality yields the claim of Proposition 3.3.3.

Now we show that only a part of I2 gives the leading term in (3.3.13). Let η = 1
1+γ∗

.

For x ∈ R0 we define

Ω1(x) = {y ∈ R0 : |x− y|1 > 1, |y|1 > |x|η1} ,

Ω2(x) = {y ∈ R0 : |x− y|1 > 1, |y|1 ≤ |x|η1}
(3.3.42)

and

I2,k(x) =

ˆ
Ωk(x)

|x− y|−β1 V (y)ϕ0(y) dy, k = 1, 2. (3.3.43)

At first we prove that the function I2,1 belongs to the remainder g in (3.3.13).

Proposition 3.3.4. Let I2,1 be given by (3.3.42) and (3.3.43), then we have

I2,1 ∈ Lp(R0) for all
β + 2

β + γ∗

1+γ∗

< p <
β + 2

β
. (3.3.44)

Proof. Let γ < γ∗. By the use of |y|1 > |x|η1 for y ∈ Ω1(x) we get

|I2,1(x)| ≤
ˆ

Ω1(x)

|x− y|−β1 |V (y)ϕ0(y)| dy (3.3.45)

≤ (1 + |x|η1)−γ
ˆ

Ω1(x)

|x− y|−β1 (1 + |y|1)γ |V (y)ϕ0(y)| dy

= (1 + |x|η1)−γ Ĩ2,1(x).

We show that for any fixed p satisfying (3.3.44) we find a constant γ < γ∗, such

that the function on the r.h.s. of (3.3.45) belongs to Lp(R0). Note that γ∗

1+γ∗
= ηγ∗,

which for γ sufficiently close to γ∗ implies

p >
β + 2

β + ηγ
. (3.3.46)
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By Proposition 3.3.2 and Young’s inequality we have

Ĩ2,1(x) =

ˆ
Ω1(x)

|x− y|−β1 (1 + |y|1)γ|V (y)ϕ0(y)| dy ∈ Ls(R0) (3.3.47)

for s > d(N−1)
d(N−1)−2

. Now we apply Hölder’s inequality to the r.h.s. of (3.3.45). For

this purpose we fix a constant s > d(N−1)
d(N−1)−2

and define

t1 =
s

s− p
≥ 1 and t2 =

s

p
≥ 1 with

1

t1
+

1

t2
= 1. (3.3.48)

Then we formally get

ˆ
R0

|Ĩ2,1(x)|p

(1 + |x|η1)γp
dx ≤

(ˆ
R0

(1 + |x|η1)−γpt1dx

) 1
t1

(ˆ
R0

|Ĩ2,1(x)|pt2 dx

) 1
t2

. (3.3.49)

Since pt2 = s and Ĩ2,1 ∈ Ls(R0), the second integral on the r.h.s of (3.3.49) is finite.

Due to dim(R0) = d(N − 1), to prove the finiteness of the first integral on the r.h.s

of (3.3.49) it suffices to show that ηγpt1 > d(N − 1). By definition of t1 this is

equivalent to

ηγsp > d(N − 1)(s− p) ⇔ p(ηγs+ d(N − 1)) > d(N − 1)s

⇔ 1

p
<
ηsγ + d(N − 1)

sd(N − 1)
=

ηγ

d(N − 1)
+

1

s
. (3.3.50)

Since p > d(N−1)
d(N−1)−2+γη

, we see that the condition in (3.3.50) is fulfilled if s is chosen

sufficiently close to d(N−1)
d(N−1)−2

. It remains to use the relation β = d(N − 1) − 2 to

complete the proof.

Now we finally show that I2,2 yields the leading term of ϕ0 in (3.3.13).

Proposition 3.3.5. Let I2,2 be given by (3.3.43), then we have

I2,2(x) = |x|−β1

ˆ
Ω2(x)

V (y)ϕ0(y) dy + h(x) as |x|1 →∞, (3.3.51)
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where

h ∈ Lp(R0) for all p >
β + 2

β + γ∗

1+γ∗

. (3.3.52)

Proof. For y ∈ Ω2(x) and |x|1 � 1 sufficiently large we have

|x− y|−1
1 = |x|−1

1

∣∣∣∣ x|x|1 − y

|x|1

∣∣∣∣−1

1

≥ |x|−1
1

(
1− |x|η−1

1

)
(3.3.53)

and on the other hand

|x− y|−1
1 ≤ (|x|1 − |y|1)−1 = |x|−1

1

∞∑
k=0

(
|y|1
|x|1

)k
≤ |x|−1

1

(
1 + c|x|η−1

1

)
(3.3.54)

for some c > 0. This results in

|x|−1
1

(
1− |x|η−1

1

)
≤ |x− y|−1

1 ≤ |x|−1
1

(
1 + c|x|η−1

1

)
. (3.3.55)

We apply this inequality to the positive and the negative part of the integrand of

I2,2. Therefore, let

(V ϕ0)+(x) = max {V (x)ϕ0(x), 0} (3.3.56)

and

(V ϕ0)− = −(V ϕ0 − (V ϕ0)+). (3.3.57)

Then we have

|x|−β1

(
1− |x|η−1

1

)β ˆ
Ω2(x)

(
V ϕ0

)
±(y) dy ≤

ˆ
Ω2(x)

(
V ϕ0

)
±(y)

|x− y|β1
dy (3.3.58)

and

ˆ
Ω2(x)

(
V ϕ0

)
±(y)

|x− y|β1
dy ≤ |x|−β1

(
1 + c|x|η−1

1

)β ˆ
Ω2(x)

(
V ϕ0

)
±(y) dy. (3.3.59)

Since dim(R0) = d(N − 1) we conclude from (3.3.58) and (3.3.59) that there exist

functions

h± ∈ Lp(R0), p >
d(N − 1)

d(N − 1)− 2 + 1− η
, (3.3.60)
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such that for sufficiently large |x|1 we have

ˆ

Ω2(x)

(
V ϕ0

)
±(y)

|x− y|β1
dy = |x|−β1

ˆ

Ω2(x)

(V ϕ0(y))± dy + h±(x). (3.3.61)

Hence, we obtain

I2,2(x) = |x|−β1

ˆ

Ω2(x)

V (y)ϕ0(y) dy + h(x) as |x|1 →∞, (3.3.62)

where h = h+ − h− belongs to Lp(R0) for p given in (3.3.60). By 1− η = γ∗

1+γ∗
and

β = d(N − 1)− 2 we conclude the proof of Proposition 3.3.5.

Proof of Theorem 3.3.1. By Propositions 3.3.3, 3.3.4 and 3.3.5 we have

ϕ0(x) =
−|x|−β1

(β − 2)|Sβ−1|

ˆ

Ω2(x)

V (y)ϕ0(y) dy + g(x) as |x|1 →∞ (3.3.63)

with

g ∈ Lp(R0) for
β + 2

β + γ
1+γ

< p <
β + 2

β
. (3.3.64)

Note that the integral on the r.h.s of (3.3.63) is over the set Ω2(x), which is in

contrast to (3.3.13), where the integral is over the whole space R0. Therefore, to

complete the proof of Theorem 3.3.1 it remains to show that

|x|−β1

ˆ

R0\Ω2(x)

V (y)ϕ0(y) dy (3.3.65)

does not contribute to the leading term in the asymptotic estimate of ϕ0. Due to

Proposition 3.3.2 it is easy to see that for any γ < γ∗ we have∣∣∣ ˆ

R0\Ω2(x)

V (y)ϕ0(y) dy
∣∣∣ ≤ C (1 + |x|1)−ηγ (3.3.66)
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for |x|1 sufficiently large. This implies

|x|−β1

ˆ

R0\Ω2(x)

V (y)ϕ0(y) dy ∈ Lp(R0) for p >
β + 2

β + γ
1+γ

. (3.3.67)

Choosing γ < γ∗ sufficiently close to γ∗ and combining (3.3.63) and (3.3.67) com-

pletes the proof of the theorem.

3.3.1 Examples of systems with different asymptotics of

threshold bound states

In this section we give some examples that recapitulate some of the main results of

this chapter and highlight their differences. In particular, we compare the statements

of Theorem 3.2.2 and Theorem 3.2.8 for certain systems by examining the constant

C0 = − 1

(β − 2)|Sβ−1|

ˆ

R0

∑
1≤i<j≤N

Vij(xij)ϕ0(x) dx (3.3.68)

in the asymptotics (3.3.13) of a zero-energy eigenfunction. Precisely, we give examples

of systems where C0 is never zero and where it is always zero. We follow [BB20].

One-particle case

We start with the case of a one-particle Schrödinger operator

h = −∆ + V in L2(Rd), (3.3.69)

which will show what is to be expected in the multi-particle case. In order to speak

about eigenvalues and not resonances, we assume that d ≥ 5. Suppose that the

potential V has a compact support K ⊂ Rd and is spherically symmetric, i.e. it

satisfies

V (x) = V (|x|) for all x ∈ Rd. (3.3.70)

Then σess(h) = [0,∞). Assume that zero is an eigenvalue of h and ϕ0 is a corre-

sponding spherically symmetric eigenfunction. Since V has a compact support, we
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3.3 Asymptotics of multi-particle bound states at the threshold

have

(hϕ0)(x) = −∆ϕ0(x) = 0 for all x ∈ Rd\K. (3.3.71)

Here one can explicitly calculate the function ϕ0 by reducing the problem to the

radial equation in one dimension. For arguments outside of the support of V , as a

spherically symmetric harmonic function, ϕ0 is given by

ϕ0(x) = c1 + c2|x|−(d−2). (3.3.72)

Due to ϕ0(x) → 0 as |x| → ∞ we obviously have c1 = 0. In case of c2 = 0 the

function ϕ0 would vanish outside of the support of V . This is not possible for

solutions of a second order differential equation. Hence, we have c2 6= 0 and by

(3.3.17) we conclude 〈V, ϕ0〉 6= 0. Note that in the one-particle case the scalar product

〈V, ϕ0〉 corresponds to the constant C0 in (3.3.68), which in the multi-particle case

cannot be formally written as a scalar product, because the sum of potentials does

not belong to L2(R0). If ϕ0 is a function of angular momentum l ≥ 1, then we

always have 〈V, ϕ0〉 = 0, cf. [KS80a]. We emphasize that in both cases there is no

restriction on whether the operator h has negative eigenvalues, i.e. zero need not

necessarily be the ground state.

Multi-particle case

Now we move to systems of N ≥ 3 particles in dimension d ≥ 3 with the correspond-

ing Hamiltonian

H = −∆0 +
∑

1≤i<j≤N

Vij in L2(R0). (3.3.73)

Similar to one-particle systems, with regard to the constant C0 both cases can occur

in multi-particle systems as well. Assume that all conditions of Theorem 3.2.2 are

fulfilled. Then a zero-energy eigenfunction ϕ0 of the operator H satisfies

ϕ0(x) = C0|x|−d(N−1)+2
1 + g(x) as |x|1 →∞, (3.3.74)
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where g ∈ Lp(R0) for

d(N − 1)

d(N − 1)− 2 + ν
1+ν

< p <
d(N − 1)

d(N − 1)− 2
(3.3.75)

with a sufficiently small ν > 0. Now assume that H has no negative eigenvalues and

the potential of the system is non-positive, i.e.∑
1≤i<j≤N

Vij(xij) ≤ 0 for all xij ∈ Rd. (3.3.76)

Since in this case zero is the ground state energy of the system, the eigenfunction

ϕ0 does not change its sign and can therefore be chosen to be strictly positive or

negative. This implies C0 6= 0 and thus determines the asymptotic behaviour of ϕ0

by (3.3.74). Note that with regard to (3.3.75) the function

w : R0 → R, w(x) = (1 + |x|1)−d(N−1)+2 (3.3.77)

belongs to Lq(R0), only if q > d(N−1)
d(N−1)−2

.

As already mentioned in the remark of Theorem 3.2.8, in case that certain

symmetries are involved, the decay rate of ϕ0 can only increase. For example,

assume that all potentials Vij are spherically symmetric. Then the operator H is

invariant under the action of the group SO(Rd). Consider the operator H on a

subspace of functions transformed according to a fixed irreducible representation of

degree l = 0, 1, . . . of the group, see for example [Ham62] . Assume that zero is an

eigenvalue and ϕ0 is a corresponding eigenfunction of H with rotational symmetry of

degree l ≥ 1. Then, due to the orthogonality of functions corresponding to different

irreducible representations we have C0 = 0. Therefore, in this case by (3.3.74) the

eigenfunction ϕ0 always decays at least as fast as C|x|−θ1 , where θ > d(N − 1)− 2.

Bosons and fermions

According to the example above we conclude that for N ≥ 3 identical bosons in

dimension d ≥ 3 with non-positive short-range interactions, the zero-energy ground

state of the corresponding Hamiltonian H behaves like C0|x|−d(N−1)+2
1 as |x|1 →∞.
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3.3 Asymptotics of multi-particle bound states at the threshold

However, if we consider a system of N ≥ 3 particles in dimension d ≥ 3, which

contains at least K ≥ 3 identical fermions, then the decay rate of ϕ0 increases.

To this end, assume that zero is a bound state of the Hamiltonian H, then ϕ0 is

orthogonal to all functions symmetric with respect to permutations of each pair of

fermions. This implies C0 = 0. For such systems it does not matter whether the

potentials are non-positive and if zero is the ground state. Hence, by (3.3.74) the

eigenfunction ϕ0 always decays at least as fast as C|x|−θ1 with θ > d(N − 1)− 2.
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4 The Efimov Effect

As described in the introduction, the Efimov effect is strongly related to the existence

and properties of virtual levels. In order to give a mathematical description of the

Efimov effect, we present the proof of A. Sobolev by briefly summarizing the

work [Sob93]. Since our method for the investigation of the three-body system in

dimension four is based on the same method as developed in [Sob93], we will explain

the techniques in the proof, which will be important for us later, in more detail.

This, together with the results obtained in the previous chapter will allow us to

compare the same systems but in different dimensions. We prove that in contrast to

dimension three the two-body resonances in dimension four do not lead to the infinite

number of negative eigenvalues of the three-body system. Due to the chosen method

we can provide a precise reason for this. Furthermore, we prove the finiteness of the

three-particle Hamiltonian in dimension four restricted to the subspace of functions

antisymmetric with respect to the permutation of particles. We also extend the

result to three-body systems in dimension d ≥ 5. We then move on to many-body

systems with N ≥ 4 particles in dimension d ≥ 3. In contrast to the case of three

particles in dimension four, the main reason for the absence of the Efimov effect for

such systems is that virtual levels of the corresponding Hamiltonians are eigenvalues,

see Theorem 3.2.2. Here we will use the technique of S. A. Vugalter and G. M.

Zhislin [VZ83] and extend it to arbitrary multi-particle systems. We combine this

with the results of the previous chapter and show that the discrete spectrum of

Schrödinger operators of such systems is always finite. Furthermore, we apply the

result to systems with a fixed permutation symmetry.
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4 The Efimov Effect

4.1 Three quantum particles in dimension three

In this section we present a short proof of the Efimov effect by giving a brief summary

of the work [Sob93].

Consider a system of three quantum particles of masses m1,m2,m3 > 0 in dimen-

sion three with position vectors x1, x2, x3 ∈ R3 and potentials v12, v23, v31 : R3 → R.

The Hamiltonian of the system in coordinate representation is given by

− 1

2m1

∆x1−
1

2m2

∆x2−
1

2m3

∆x3 +v12(x1−x2)+v23(x2−x3)+v31(x3−x1). (4.1.1)

Assume that the potentials vij satisfy

vij(x) ≤ 0 and |vij(x)| ≤ C(1 + |x|)−b, b > 3. (4.1.2)

After separation of the center of mass, the Hamiltonian of relative motion is denoted

by

H = H0 +
∑

1≤i<j≤3

vij. (4.1.3)

The configuration space R0 is a six-dimensional subspace of R9 and by assumptions

(4.1.2) the Hamiltonian H is essentially self-adjoint. In contrast to Hamiltonians

of arbitrary N particles, in case of N = 3 it is usual to work with a fixed set of

coordinates, mostly with the so-called Jacobi coordinates. In this sense, denote by

α = ij an arbitrary pair of particles and for l 6= i, j set

xα = xi − xj and yα =
mixi +mjxj
mi +mj

− xl. (4.1.4)

Furthermore, let

mα =
mimj

mi +mj

and nα =
ml(mi +mj)

mi +mj +ml

. (4.1.5)

Then,

H0 = − 1

2mα

∆xα −
1

2nα
∆yα . (4.1.6)

Every two-body subsystem corresponding to the subscript α ∈ {12, 23, 31} is then
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described in the center of mass frame by the Schrödinger operator

hα = − 1

2mα

∆xα + vα(xα) in L2(R3), (4.1.7)

where mα is the so-called reduced mass. For the sake of simplicity we leave out the

index xα and write − 1
2mα

∆.

Denote by N(z) the number of eigenvalues of the operator H below z < 0. The

following theorem describes the Efimov effect.

Theorem 4.1.1. Let the pair potentials vα satisfy (4.1.2). Suppose that hα ≥ 0 for

all α ∈ {12, 23, 31} and that one of the following conditions is fulfilled:

(i) Zero is a resonance for all two-particle subsystems;

(ii) Zero is a resonance for two-particle subsystems α, β and is neither a resonance

nor an eigenvalue of hγ, where α 6= β 6= γ.

Then the operator H has an infinite negative discrete spectrum and the counting

function N(z) obeys the relation

lim
z→0−

| log |z||−1N(z) = U0, (4.1.8)

where the constant U0 > 0 depends only on the mass ratios and not on the pair

potentials vα.

In order to simplify the representation of H, the computations are carried out

in the momentum space. For i = 1, 2, 3, denote by ki the conjugate variable of xi

and introduce the set of variables (kα, pα), conjugate with respect to the Jacobi-

coordinates (xα, yα). For respectively different i, j, l ∈ {1, 2, 3} they are explicitly

given by

kij =
mjki −mikj
mi +mj

, pij =
ml(ki + kj)− (mi +mj)kl

mi +mj +ml

. (4.1.9)

Furthermore, it holds

kij = −pjl −
mi

mi +mj

pij = pli +
mj

mi +mj

pij. (4.1.10)
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See [Fad63] for more details. Hence, one can write

kα = dαβpα + eαβpβ, (4.1.11)

where the constants dαβ and eαβ can be computed by the relation (4.1.10). The shift

from xα to kα is carried out by the partial Fourier transform

(Φαf) (kα, ·) = (2π)−
3
2

ˆ
R3

e−i〈kα,xα〉f(xα, ·) dxα. (4.1.12)

In this setting, by abuse of notation, the three-body Hamiltonian has the form

H = H0 +
∑
α

Vα, (4.1.13)

where the interactions Vα are given by

Vα = ΦαvαΦ∗α (4.1.14)

and H0 is the multiplication-operator

(H0f)(k, p) = H0(k, p) · f(k, p). (4.1.15)

Here H0 is given by

H0(k, p) =
k2
α

2mα

+
p2
α

2nα
=

k2
β

2mβ

+
p2
β

2nβ
=

k2
γ

2mγ

+
p2
γ

2nγ
. (4.1.16)

The function H0 can be expressed in terms of pα and pβ, where in such a case it is

denoted by H0
αβ(p, q). It is explicitly given by

H0
αβ(p, q) =

p2
12

2m23

+
〈p12, p23〉
m2

+
p2

23

2m12

=
p2

23

2m31

+
〈p23, p31〉
m3

+
p2

31

2m23

=
p2

31

2m23

+
〈p31, p12〉
m1

+
p2

12

2m31

.

(4.1.17)
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Hence, one can write

H0
αβ(p, q) =

p2

2mβ

+
〈p, q〉
lγ

+
p2

2mα

, (4.1.18)

where lγ ∈ {m1,m2,m3} is given by the relation (4.1.17). It is easy to see that

H0
αβ(p, q) ≥ p2

2mα

+
q2

2mβ

. (4.1.19)

The coefficient U0 in (4.1.8) is expressed by means of the self-adjoint integral

operator Ŝ(λ), λ ∈ R in the space L2(3)
(S2), whose kernel depends on the scalar

product t = 〈ξ, ν〉 with ξ, ν ∈ S2 and has the formŜαα(t, λ) = 0,

Ŝαβ(t, λ) = (2π)−1aαβeibαβλ
sinh(λ(arccos(cαβt))
sinh(πλ)

√
(1−c2αβt2)

,
(4.1.20)

where

aαβ = καβ

(
nαnβ
mαmβ

) 1
4

, bαβ =
1

2
log

(
mα

mβ

)
, cαβ =

(mαmβ)
1
2

lγ
. (4.1.21)

Here καβ = 1 if both systems α and β have a zero-energy resonance and καβ = 0

otherwise. Let n(µ, Ŝ(λ)) be the number of eigenvalues of Ŝ(λ) greater than µ. Note

that cαβ < 1, which implies that the integral

U(µ) := (4π)−1

ˆ ∞
−∞

n(µ, Ŝ(λ)) dλ (4.1.22)

is finite. Moreover, the function U(µ) is continuous in µ > 0, see [Sob93, Lemma

3.4]. It turns out that U0 = U(1). The proof of Theorem 4.1.1 is based on the

investigation of a symmetrized form of the Faddeev equations.

4.1.1 Faddeev equations

We briefly sketch the derivation of the Faddeev equations developed in [Mot08] and

adapt the notation from [Sob93] accordingly.
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Consider the eigenvalue equation(
H0 +

∑
α

Vα

)
u = zu, (4.1.23)

where z < 0 and α ∈ {12, 23, 31}. Denote R0(z) = (H0 − z)−1, then by (4.1.23)

u = −R0(z)
∑
α

Vαu. (4.1.24)

Note that

u =
∑
α

uα, uα = −R0(z)Vαu. (4.1.25)

We denote

Hα = H0 + Vα and Rα(z) = (Hα − z)−1, (4.1.26)

then it follows

uα = −R0(z)Vα
∑
α

uα ⇐⇒ uα +R0(z)Vαuα = −R0(z)Vα(uβ + uγ) (4.1.27)

⇐⇒ uα = −Rα(z)Vα(uβ + uγ). (4.1.28)

By Vα ≤ 0 and the resolvent identity

Rα(z) = R0(z)−R0(z)VαRα(z), (4.1.29)

one arrives at

uα = R0(z)(I + |Vα|Rα(z))|Vα|(uβ + uγ). (4.1.30)

For z < 0 let

Wα(z) = I + |Vα|
1
2Rα(z)|Vα|

1
2 . (4.1.31)

Then equation (4.1.30) yields

uα = R0(z)|Vα|
1
2Wα(z)|Vα|

1
2 (uβ + uγ). (4.1.32)
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Substituting

fα = W
1
2
α (z)|Vα|

1
2 (uβ + uγ) (4.1.33)

for every z < 0 one arrives at the system of equations

f12 = W
1
2

12|V12|
1
2R0|V23|

1
2W

1
2

23f23 +W
1
2

12|V12|
1
2R0|V31|

1
2W

1
2

31f31, (4.1.34)

f23 = W
1
2

23|V23|
1
2R0|V12|

1
2W

1
2

12f12 +W
1
2

23|V23|
1
2R0|V31|

1
2W

1
2

31f31, (4.1.35)

f31 = W
1
2

31|V31|
1
2R0|V12|

1
2W

1
2

12f12 +W
1
2

31|V31|
1
2R0|V23|

1
2W

1
2

23f23. (4.1.36)

In other words, the eigenvalue equation (4.1.23) is equivalent to

A(z)F = F, where F = (f12, f23, f31) (4.1.37)

and A(z) is a 3× 3−matrix with the entries

Aαβ(z) = W
1
2
α (z)|Vα|

1
2R0(z)|Vβ|

1
2W

1
2
β (z). (4.1.38)

Hence, we give the following

Definition 4.1.2. Let z < 0 and

A(z) = W
1
2 (z)K(z)W

1
2 (z), (4.1.39)

where

W (z) =

W12(z) 0 0

0 W23(z) 0

0 0 W31(z)

 , (4.1.40)

such that

Wα(z) = I + |Vα|
1
2Rα(z)|Vα|

1
2 , Rα(z) = (H0 + Vα − z)−1 (4.1.41)

and

K(z) =

 0 K12|23(z) K12|31(z)

K23|12(z) 0 K23|31(z)

K31|12(z) K32|23(z) 0

 , (4.1.42)
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where

Kαβ(z) = |Vα|
1
2R0(z)|Vβ|

1
2 , R0(z) = (H0 − z)−1. (4.1.43)

The following statement relates the spectra of the operators H and A(z).

Theorem 4.1.3. For z < 0 the operator A(z) is compact and continuous in z and

N(z) = n(1, A(z)), (4.1.44)

where N(z) is the number of eigenvalues of H below z < 0 and n(1, A(z)) is the

number of eigenvalues of A(z) greater than one.

We will only present the proof of the compactness and the continuity of A(z) for

z < 0. In z = 0 the compactness is lost due to a singularity of W (z), which results

from the resonances of the two-body systems. This is the reason for the infinity

of the negative discrete spectrum of H. To see this, one has to study the integral

kernel of the resolvent corresponding to the two-body Schrödinger operator.

4.1.2 Zero-energy resonances in two-body subsystems

With regard to definition (4.1.2) it is necessary to study the behaviour of the

resolvents rα(z) of the two-body Schrödinger operators

hα = − 1

2mα

∆ + vα (4.1.45)

for z → 0 in the presence of resonances. It should be noted here that the technique

developed in the work [JK79] was important to this part of the proof in [Sob93].

Definition 4.1.4. Let z < 0 and α ∈ {12, 23, 31}. Denote by rα(z) the resolvent of

the two-body Schrödinger operator hα and define the operator

wα(z) = I + |vα|
1
2 rα(z)|vα|

1
2 . (4.1.46)

Further, denote by G0
α, G

1
α the operators with the kernels

G0
α(x, y) =

mα

2π

|vα(x)| 12 |vα(y)| 12
|x− y|

, G1
α(x, y) =

m
3
2
α√

2π
|vα(x)|

1
2 |vα(y)|

1
2 . (4.1.47)
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4.1 Three quantum particles in dimension three

Lemma 4.1.5. Let z = −k2, k > 0 and denote by r0
α(z) the resolvent of − 1

2mα
∆.

Further, let vα satisfy (4.1.2). Then, for any positive δ < min
{

1, (b−3)
2

}
the relation

holds

|vα|
1
2 r0
α(z)|vα|

1
2 = G0

α − kG1
α + k1+δG2

α(k), (4.1.48)

where G2
α(k) is continuous in k ≥ 0.

Using (4.1.48) one can determine the behavior of wα(z) for z → 0. Indeed, by the

resolvent identity it follows

rα(z) = r0
α(z)− r0

α(z)vαrα(z) = r0
α(z)− rα(z)vαr

0
α(z), (4.1.49)

which implies

I =
(
I − |vα|

1
2 r0
α(z)|vα|

1
2

)(
I + |vα|

1
2 rα(z)|vα|

1
2

)
=
(
I + |vα|

1
2 rα(z)|vα|

1
2

)(
I − |vα|

1
2 r0
α(z)|vα|

1
2

)
.

(4.1.50)

This yields

wα(z) = I + |vα|
1
2 rα(z)|vα|

1
2 =

(
I − |vα|

1
2 r0
α(z)|vα|

1
2

)−1

. (4.1.51)

Now assume that hα has a resonance at zero and denote by fα the corresponding

resonance function. Recall that in case of no negative eigenvalues of hα such zero-

energy resonances are non-degenerate, the function fα decays like c|x|−1 as |x| → ∞
and it satisfies ˆ

R3

vα(x)fα(x) dx 6= 0. (4.1.52)

These properties, together with Lemma 4.1.5 provide a certain behaviour of the

operator wα(z) for z → 0, which plays a fundamental role for the behaviour of the

operator A(z). In the following, let

ϕα = |vα|
1
2fα. (4.1.53)

Note that ϕα ∈ L2(R3) and 〈ϕα, |vα|
1
2 〉 6= 0.
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4 The Efimov Effect

Lemma 4.1.6. Assume that vα satisfies (4.1.2). Further, let z = −k2, where k > 0

is small enough, such that wα(z) is defined.

(i) If zero is neither a resonance nor an eigenvalue, then wα(−k2) is continuous

in k ≥ 0.

(ii) If zero is a resonance, then for any positive δ < 1
2

min {1, b− 3} the represen-

tation

wα(−k2) =
〈·, ϕα〉ϕα

k
+ k−1+δw(δ)(k) (4.1.54)

is valid, where the operator w(δ)(k) is continuous in k ≥ 0. If, in addition,

hα ≥ 0 then wα ≥ 0 and

(
wα(−k2)

) 1
2 = ‖ϕα‖−1 〈·, ϕα〉ϕα

k
1
2

+ k−
1−δ
2 w̃(δ)

α (k), (4.1.55)

where the operator w̃
(δ)
α (k) is continuous in k ≥ 0.

By the assumptions of Lemma 4.1.6 the representation (4.1.55) of w
1
2
α (z) only

applies to z < 0 with |z| sufficiently small. Even if this representation is only needed

for small |z|, it will be convenient to write down the operator w
1
2
α (z) in this form

for all z ≤ 0. Namely, let ζ ∈ C∞(R+) be a function with ζ(t) > 0 for all t > 0,

ζ(z) = t for t ≤ 1, and ζ(t) = 1 for t ≥ 2. Then for all k ≥ 0 it holds

(
wα(−k2)

) 1
2 = ‖ϕα‖−1ζ(k)−

1
2 〈·, ϕα〉ϕα + ζ(k)−

1−δ
2 w̃(δ)

α (k), (4.1.56)

where the operator w̃
(δ)
α (k) is continuous in k ≥ 0.

4.1.3 Two-body resonances in three-body systems

It is easy to see that for Wα(z) defined in (4.1.41) and wα(z) defined in (4.1.46), the

following relation holds:

Wα(z) = Φαwα

(
z − p2

α

2nα

)
Φ∗α. (4.1.57)

Here Φα is the partial Fourier transform defined in (4.1.12). Since wα(z′) is bounded

in L2(R3) uniformly in z′ ≤ z < 0, the operator Wα(z) is bounded. Further
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4.1 Three quantum particles in dimension three

properties of the operator wα(z), such as (4.1.56) can now be transferred Wα(z).

The compactness and continuity of A(z) for z < 0 are now a consequence of the

following

Lemma 4.1.7. Let Γα(z) be the multiplication by the function ζ
(
p2α

2nα
− z
)

and

Γ(z) = diag {Γ12(z),Γ23(z),Γ31(z)}. For µ, ν ≥ 0 define

Kµ,ν(z) = (Γ(z))−µK(z) (Γ(z))−ν , (4.1.58)

where K(z) is defined by (4.1.42). Then the operator Kµ,ν(z) is continuous in z for

z < 0 and compact for all µ ≥ 0 and ν ≥ 0. If ν ≤ 1
4
, µ ≤ 1

4
and µ + ν < 1

2
, then

Kµ,ν(z) is continuous up to z = 0.

Proof. Set Φ = diag {Φ12,Φ23,Φ31}, where Φα is the partial Fourier transform

defined in (4.1.12). It is sufficient to consider the operator

K̃(z) = Φ∗Kµ,ν(z)Φ, (4.1.59)

where each entry K̃αβ(z) has the kernel

1

(2π)3
eixpdαβ

|vα(x)| 12 eixp′eαβe−ix′pdβα |vβ(x′)| 12(
ζ
(

p2

2nα
− z
))µ (

ζ
(
p′2

2nβ
− z
))ν (

H0
αβ(p, p′)− z

)e−ix′p′eβα (4.1.60)

with x = xα, x
′ = xβ, p = pα, p

′ = pβ. Denote by χR the multiplication by the

characteristic function of the ball {p ∈ R3 : |p| ≤ R}. Then

K̃αβ(z) = ZR
αβ(z) + Y R

αβ(z), (4.1.61)

where

ZR
αβ(z) = χRK̃αβχR + (I − χR)K̃αβχR + χRK̃αβ(I − χR), (4.1.62)

Y R
αβ(z) = (I − χR)K̃αβ(I − χR). (4.1.63)

The kernel of ZR
αβ(z) is obviously square-integrable over its arguments for z < 0,

which shows that it belongs to the Hilbert-Schmidt class. Hence, suppose that
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4 The Efimov Effect

µ+ ν < 1
2
, µ ≤ 1

4
, ν ≤ 1

4
and z ≤ 0. Inequality (4.1.19) implies

H0
αβ(p, q) ≥ cp2κ(p′)2κ′ , κ+ κ′ = 1. (4.1.64)

Therefore, the kernel of ZR
αβ(z) can be estimated by

|vα(x)|
1
2χR(p)p−2(µ+ν)(p′)−2(µ+ν)χR(p′)|vβ(x′)|

1
2 . (4.1.65)

Choosing µ+ κ < 3
4

and ν + κ′ < 3
4

shows that the first term in (4.1.62) belongs to

the Hilbert-Schmidt class and is therefore continuous in z ≤ 0. The second operator

in (4.1.62) is Hilbert-Schmidt, since its kernel is bounded by

C|vα(x)|
1
2 (1− χR(p))p−2

(
p′2

2nβ
− z
)−ν

χR(p′)|vβ(x′)|
1
2 . (4.1.66)

Using the same argument for the last term in (4.1.62) proves the compactness of

ZR
αβ(z). The norm of the operator (4.1.63) is bounded by CR−2 for all z ≤ 0, since

χR(p)
(
H0
αβ(p, p′)− z

)
χR(p′) ≥ CR2. (4.1.67)

By (4.1.61) this implies

‖ZR
αβ(z)− K̃αβ(z)‖ → 0 as R→∞. (4.1.68)

The compactness and continuity of K̃αβ(z) now follow from those of ZR
αβ(z).

The following lemma shows that for the asymptotics (4.1.8) any compact pertur-

bation can be neglected.

Lemma 4.1.8. Let T (z) = T0(z) + T1(z), where T0(z) (T1(z)) is compact and

continuous in z < 0 (z ≤ 0). Assume that for some function f with f(z) → 0 as

z → 0− there exists the limit

lim
z→0−

f(z)n(λ, T0(z)) = l(λ), (4.1.69)
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4.1 Three quantum particles in dimension three

continuous in λ > 0. Then the same limit exists for T (z) and

lim
z→0−

f(z)n(λ, T (z)) = l(λ). (4.1.70)

Now we can give a sketch of the proof of Theorem 4.1.1. For a complete proof see

[Sob93].

Proof of Theorem 4.1.1. Since the function U(·) is continuous, by Lemma 4.1.8 any

perturbation of A(z), which is compact and continuous up to z = 0, does not

contribute to the asymptotics (4.1.8). Suppose that condition (i) of the theorem is

fulfilled.

Let Γα(z) be the multiplication by the function ζ
(
p2α

2nα
− z
)

and Πα be the operator

such that

(Παf)(kα, pα) = ‖ϕα‖−1 (Φαϕα)

ˆ
f(k′α, pα)(Φαϕα) (k′α) dk′α. (4.1.71)

Then

(Wα(z))
1
2 = (Γα(z))−

1
4 Πα + (Γα(z))−

1−δ
4 W̃ (δ)

α (z)

= Πα (Γα(z))−
1
4 + W̃ (δ)

α (z) (Γα(z))−
1−δ
4 ,

(4.1.72)

where

W̃ (δ)
α (z) = Φαw̃

(δ)
α

(
z − p2

α

2nα

)
Φ∗α (4.1.73)

is bounded and continuous in z ≤ 0. Thus

(W (z))
1
2 = (Γ(z))−

1
4 Π + (Γ(z))−

1−δ
4 W̃ (δ)(z)

= Π (Γ(z))−
1
4 + W̃ (δ)(z) (Γ(z))−

1−δ
4 ,

(4.1.74)

where Γ(z),W (z), W̃ (δ)(z) and Π are diagonal matrices with the corresponding

entries Γα(z),Wα(z), W̃
(δ)
α (z) and Πα, respectively. Therefore, one can decompose

A(z) = A0(z) + Y (z), where

A0(z) = ΠK
1
4
, 1
4 (z)Π (4.1.75)
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4 The Efimov Effect

and

Y (z) = ΠKµ,ν(z)W̃ (δ)(z) + W̃ (δ)(z)Kν,µ(z)Π + W̃ (δ)(z)Kν,ν(z)W̃ (δ)(z) (4.1.76)

with µ = 1
4

and ν = 1−δ
4

. By Lemma 4.1.7 the operators Kµ,ν(z), Kν,µ(z) and

Kν,ν(z) are compact and continuous in z ≤ 0. Hence, by Lemma 4.1.8 the operator

Y (z) does not contribute to the asymptotics of A(z) for z → 0. Therefore, it

suffices to study the operator A0(z). Let χ be the characteristic function of the ball

{p : |p| ≤ 1} and χα the multiplication by the function χ(pα). Define the matrix

Ξ = diag {χ12, χ23, χ31}. It is easy to see that A(z) − ΞA0(z)Ξ is compact and

continuous in z up to z = 0. Further, let F = diag {F12, F23, F31}, where

Fα : L2(R3)→ L2(R6), (Fαf)(kα, pα) = (Φαϕα) (kα)f(pα). (4.1.77)

Then

(F ∗αf) (pα) =

ˆ
(Φαϕα) (kα)f(kα, pα) dkα. (4.1.78)

Since Π2
α = 〈·,Φαϕα〉Φαϕα = FαF

∗
α, the non-trivial eigenvalues of ΞA0(z)Ξ coincide

with those of the operator

S(z) = ΞK
1
4
, 1
4 (z)ΞΠ2. (4.1.79)

The operator S(z) acts on functions in L2(B1), Br = {p : |p| ≤ r}, and its kernel is

given by
ψα(dαβp+ eαβ)ψβ(dβαq + eβαp)

ζ
(

p2

2nα
− z
) 1

4
(H0

αβ(p, q)− z)ζ
(

q2

2nβ
− z
) 1

4

, (4.1.80)

where ψα(k) =
(

Φα|vα|
1
2ϕα

)
(k) and the constants eαβ, eβα and dαβ, dβα are given

by (4.1.10). Due to 〈ϕα, |vα|
1
2 〉 6= 0 one can always normalize

(2π)
3
2 ψα(0) = 〈ϕα, |vα|

1
2 〉 = 2

1
4π

1
2m
− 3

4
α . (4.1.81)
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4.1 Three quantum particles in dimension three

By the use of |e−〈k,x〉 − 1| ≤ |k|δ|x|δ it follows

|ψα(k)− ψ(0)| ≤ Cδ|k|δ, 0 < δ <
b− 3

2
. (4.1.82)

This, together with H0
αβ(p, q) ≥ Cp2κq2κ′ for any κ, κ′ ≥ 0 with κ + κ′ = 1 shows

that the difference is bounded by

C(|p|δ + |q|δ)(
p2

2nα
− z
) 1

4 (
H0
αβ(p, q)− z

) (
q2

2nβ
− z
) 1

4

≤C ′|p|δ−2κ− 1
2 |q|−2κ′− 1

2

+ C ′|p|−2κ′− 1
2 |q|δ−2κ− 1

2 .

(4.1.83)

Choosing κ ∈
(

1
2
, 1+δ

2

)
shows that this operator is Hilbert-Schmidt up to z = 0.

Hence, one can replace the functions ζ
(

p2

2nα
− z
)

and ζ
(

q2

2nβ
− z
)

by p2

2nα
− z and

q2

2nβ
− z, respectively. One arrives at the operator with the kernel

2−
5
2π−2 (mαmβ)−

3
4

(
p2

2nα
− z
)− 1

4
(
q2

2nβ
− z
)− 1

4 (
H0
αβ(p, q)− z

)−1
. (4.1.84)

For r > 0 let U = diag {Ur, Ur, Ur}, where

Ur : L2(B1)→ L2(Br), (Urf)(p) = r−
3
2f
(
r−1p

)
. (4.1.85)

Using U one can show that the operator with the kernel (4.1.84) is unitary equivalent

to that with the kernel

2−
5
2π−2 (mαmβ)−

3
4

(
p2

2nα
+ 1

)− 1
4
(
q2

2nβ
+ 1

)− 1
4 (
H0
αβ(p, q) + 1

)−1
, (4.1.86)

acting on L2(Br) with r = |z|− 1
2 . Further, one can replace(

p2

2nα
+ 1

)−1

,

(
q2

2nβ
+ 1

)−1

and H0
αβ(p, q) + 1 (4.1.87)

by

2nαp
−2(1− χ(p)), 2nβq

−2(1− χ(q)) and H0
αβ(p, q), (4.1.88)
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4 The Efimov Effect

respectively. Indeed, it is easy to see that the difference is a Hilbert-Schmidt operator

continuous up to z = 0. Using (4.1.17) one arrives at the operator in L2(Br\B1)

with the kernel

(2π)−2(mαmβ)−
3
4 (nαnβ)

1
4 |p|−

1
2 |q|−

1
2

(
p2

2mβ

+
〈p, q〉
lγ

+
q2

2mα

)−1

. (4.1.89)

For R > 0 let M = diag {MR,MR,MR}, where

MR : L2(Br\B1)→ L2((0, R)× S2, dx⊗ dΩ),

(MRf) (x, ω) = e
3x
2 f(ex, ω), x ∈ (0, R), ω ∈ S2.

(4.1.90)

Using M one can show that the operator with the kernel (4.1.89) is unitary equivalent

to the operator SR, R = 1
2
| log |z||, defined in L2((0, R) × S2, dx ⊗ dΩ) with the

kernel Sαβ(x− x′, 〈ξ, ν〉), ξ, ν ∈ S2, whereSαα(x, t) = 0,

Sαβ(x, t) = (2π)−2 aαβ
cosh(x+bαβ)+cαβt

.
(4.1.91)

Here the constants aαβ, bαβ, cαβ are given by (4.1.21). By an argument known as the

calculation of the canonical distribution of a Toeplitz operator one can show that

lim
R→∞

R−1n(µ, SR) = 2U(µ). (4.1.92)

See [Sob93, Theorem 4.5] for a detailed proof of (4.1.92). By Theorem 4.1.3 this

implies (4.1.8) with U0 = U(1).

Now assume that condition (ii) of Theorem 4.1.1 is fulfilled. Without loss of

generality suppose that operators h12 and h23 have a zero-energy resonance and for

h31 zero is neither a resonance nor an eigenvalue. By Lemma 4.1.6 the operator

W31(z) is continuous in z ≤ 0. Hence, setting ϕ31 = 0 shows that W31(z) satisfies

(4.1.72), where

W̃
(δ)
31 (z) = (Γ31(z))

1−δ
4 W31(z). (4.1.93)

Repeating the same arguments from above completes the proof.
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4.2 Absence of the Efimov effect in dimension four

4.2 Absence of the Efimov effect in dimension four

In this section we apply the technique presented in the previous section to systems

of three particles in dimension four and prove that an Efimov-type effect does not

exist in such systems. We follow the presentation of [BB19].

4.2.1 Systems of three four-dimensional quantum particles

We adapt the notation introduced in the last section, but adjust it to dimension four

accordingly. Consider a system of three quantum particles of masses m1,m2,m3 > 0

and pair interactions v12, v23, v31 : R4 → R with the corresponding Hamiltonian in

coordinate representation

− 1

2m1

∆x1−
1

2m2

∆x2−
1

2m3

∆x3 +v12(x1−x2)+v23(x2−x3)+v31(x3−x1). (4.2.1)

For every subscript α ∈ {12, 23, 31} we assume that the potential vα satisfies

vα ≤ 0 and |vα(x)| ≤ C(1 + |x|)−b, b > 4. (4.2.2)

The Hamiltonian of relative motion is given by

H = H0 +
∑
α

vα, (4.2.3)

where H0 is the free Hamiltonian of the system. The corresponding configuration

space R0 in this case is an eight-dimensional subspace of R12. Under assumptions

(4.2.2) on the potentials vα the operator H is essentially self-adjoint. Every two-body

subsystem corresponding to the subscript α is described in the center of mass frame

by the Hamiltonian

hα = − 1

2mα

∆ + vα in L2(R4), (4.2.4)

where mα is the reduced mass. Denote µ = min
α

inf σ(hα), then by the HVZ theorem

σess(H) = [µ,∞). (4.2.5)
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The case µ < 0 in dimension three was studied earlier in [Zhi74] and [Yaf76] and

can be adapted to the case d = 4. We consider the case µ = 0.

Theorem 4.2.1. Assume that all potentials vα satisfy (4.2.2). Then σdisc(H) is

finite.

In case of three identical particles the corresponding pair interactions satisfy

vij(xi − xj) = vij(xj − xi), i 6= j (4.2.6)

and the operator H is invariant under the action of the group S3 of permutatation

of particles. Denote by π1, π2 and π3 the three irreducible representations of S3,

where π1 is the trivial representation, π2 the antisymmetric representation and π3

the two-dimensional irreducible representation, respectively. Denote by P πi with

i ∈ {1, 2, 3} the corresponding projection. In case of π2 we denote the two-body

Hamiltonians on P π2L2(R4) by has
α and the corresponding three-body Hamiltonian

by Has.

Theorem 4.2.2. Assume that all potentials vα satisfy (4.2.2) and vα(x) = vα(−x).

Then σdisc(H
as) is finite.

Remark. Consequently, an Efimov-type effect does not exist in dimension four.

The strategy of the proof of Theorem 4.2.1 is to adapt the technique of [Sob93]

summarized in Section 4.1 to simplify the representation of H and carry out the

computations in the momentum space. Analogous to the three-dimensional case

in [Sob93] we denote by ki the conjugate variable of xi and introduce the set of

variables (kα, pα), conjugate with respect to the Jacobi-coordinates (xα, yα). They

are explicitly given by (4.1.9). In dimension d = 4 the shift from xα to kα is done

by the partial Fourier transform

(Φαf) (kα, ·) = (2π)−2

ˆ
R4

e−i〈kα,xα〉f(xα, ·) dxα. (4.2.7)

The relation of (kα, pα) and (pα, pβ) is described by

kα = dαβpα + eαβpβ, (4.2.8)
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where the coefficients dαβ and eαβ can be expressed via the masses m1,m2 and m3,

see (4.1.10). The Hamiltonian has the form

H = H0 +
∑
α

Vα, (4.2.9)

where the interactions are given by

Vα = ΦαvαΦ∗α (4.2.10)

and H0 is the multiplication operator

(H0f)(k, p) = H0(k, p)f(k, p), (4.2.11)

where the function H0(k, p) is given by (4.1.16). H0 expressed in terms of pα, pβ is

denoted by H0
αβ and it takes the form

H0
αβ(pα, pβ) =

p2
α

2mβ

+
〈pα, pβ〉
lγ

+
p2
β

2mα

, (4.2.12)

where the constants mα, nα and lα are the same as in section 4.1. Finally, we will

use the same symmetrized form of Faddeev equations to study the discrete spectrum

of H, i.e. for z < 0 we consider the matrix

A(z) = W
1
2 (z)K(z)W

1
2 (4.2.13)

from Definition 4.1.2 but where every entry

Aαβ(z) = W
1
2
α (z)|Vα|

1
2 (H0 − z)−1|Vβ|

1
2W

1
2
β (4.2.14)

is an operator acting in L2(R4). In Theorem 4.1.3 the Birman-Schwinger principle

(4.1.44) also applies in dimension four. Hence, the proof of the following proposition

is the same as in [Sob93].

Proposition 4.2.3. Let N(z) be the number of eigenvalues of the operator H below

z < 0 and let n(1, A(z)) be the number of eigenvalues of the operator A(z) greater
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than one. Then

N(z) = n(1, A(z)). (4.2.15)

Remark. As we have seen in the previous section, in case of three-dimensional

particles the corresponding operator A(z) is compact for z < 0 and due to resonances

in the two-body subsystems the compactness is lost for z → 0. We will see that in

dimension four the singularity in z = 0 caused by the resonances in the two-body

subsystems is not strong enough to break the compactness of A(z) for z → 0. To

this end, we study the the operator Wα(z) in the frame of two-body subsystems.

4.2.2 Resonance interaction of two four-dimensional particles

The technique developed by A. Jensen in [JK79] was used by A. Sobolev in [Sob93]

to obtain the representation (4.1.54) of the operator wα(z) for z → 0. In [Jen84] this

technique was extended to dimension four. We will use this method in a similar way

to derive a representation of wα(z) for z → 0 in our case. However, the difficulty is

that dimension four is even and therefore Hankel functions are involved.

Definition 4.2.4. For z < 0 let rα(z) be the resolvent of hα = − 1
2mα

∆ + vα and

wα(z) = I + |vα|
1
2 rα(z)|vα|

1
2 . (4.2.16)

Similar to (4.1.51) for r0
α(z) =

(
− 1

2mα
∆− z

)−1

we have that

wα(z) =
(
I − |vα|

1
2 r0
α(z)|vα|

1
2

)−1

. (4.2.17)

The next two lemmas together with (4.2.17) show how a zero-energy resonance of

the two-body operator hα affects wα(z).

Lemma 4.2.5. Let Gα be the integral operator in L2(R4) with the kernel

Gα(x, y) =
mα

2π2

|vα(x)| 12 |vα(y)| 12
|x− y|2

. (4.2.18)

If zero is a resonance of hα, then µ = 1 is a simple eigenvalue of Gα.
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4.2 Absence of the Efimov effect in dimension four

Proof. By assumption (4.2.5) with µ = 0, together with (4.2.2) we have that

σ(hα) = [0,∞). Therefore, the zero-energy resonance is non-degenerate. Let fα

be a resonance state of hα and set ϕα = |vα|
1
2f . Since fα ∈ Ḣ1(R4) we conclude

ϕα ∈ L2(R4) and

(Gαϕα) (x) =
mα

2π2

ˆ
R4

|vα(x)| 12 |vα(y)| 12
|x− y|2

ϕα(y) dy (4.2.19)

= |vα(x)|
1
2

(
−mα

2π2

ˆ
R4

vα(y)fα(y)

|x− y|2
dy

)
= |vα(x)|

1
2fα(x)

= ϕα(x).

Lemma 4.2.6. Let Gα be the operator defined by the kernel (4.2.18). For z < 0,

|z| sufficiently small, there exist compact operators G
(1)
α , G

(2)
α and a constant δ > 0,

such that

|vα|
1
2 r0
α(z)|vα|

1
2 = Gα + zG(1)

α + z ln |z|G(2)
α + |z|1+δG(δ)

α (z), (4.2.20)

where G
(δ)
α (z) is an operator with ‖G(δ)

α (z)‖HS ≤ Cδ|z|δ. Here ‖ · ‖HS denotes the

Hilbert-Schmidt norm.

Proof. In the following we consider |z| < 1. The kernel of (−∆− z)−1 is given by

(−∆− z)−1(|x− y|) =
i
√
z

8π|x− y|
H

(1)
1

(√
z|x− y|

)
, x, y,∈ R4, (4.2.21)

where H
(1)
1 is the first Hankel function, see for example in [AS64]. Hence, it follows

r0
α(z, |x− y|) =

(
−(2mα)−1∆− z

)−1
(|x− y|)

=
mαi
√

2mαz

4π|x− y|
H

(1)
1

(√
2mαz|x− y|

)
.

(4.2.22)
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4 The Efimov Effect

According to [AS64], p.360, one has H
(1)
1 (ζ) = J1(ζ) + iY1(ζ) and

J1(ζ) =
ζ

2

∞∑
k=0

(
−1

4
ζ2
)k

k!(k + 1)!
,

Y1(ζ) = − 2

πζ
+

2

π
ln

(
ζ

2

)
J1(ζ)− ζ

2π

∞∑
k=0

(
−1

4
ζ2
)k

(ψ(k + 1) + ψ(k + 2))

k! (k + 1)!
,

(4.2.23)

where

ψ(1) = −1, ψ(k) =
k−1∑
j=1

1

j
− γ, k ≥ 2 (4.2.24)

and γ is the Euler–Mascheroni constant. Hence, we obtain

H
(1)
1 (ζ) = − 2i

πζ
+

(
ζ

2
+
ζi

π
ln

(
ζ

2

)) ∞∑
k=0

ak
(
ζ2
)k − ζi

2π

∞∑
k=0

bk
(
ζ2
)k
, (4.2.25)

where

ak =
(−1)k

4kk!(k + 1)!
and bk = (ψ(k + 1) + ψ(k + 2)) ak. (4.2.26)

Note that both series in (4.2.25) converge for every ζ ∈ C. By (4.2.22) the kernel of

|vα(x)| 12 r0
α(z)|vα(y)| 12 is given by

|vα(x)|
1
2 |vα(y)|

1
2
mαi
√

2mαz

4π|x− y|
H

(1)
1

(√
2mαz|x− y|

)
, (4.2.27)

which by (4.2.25) can be decomposed as

Gα + zG(1)
α + z ln |z|G(2)

α +G, (4.2.28)

112



4.2 Absence of the Efimov effect in dimension four

where for ṽα(x, y) = |vα(x)| 12 |vα(y)| 12 the kernels Gα, G
(1)
α and G

(2)
α are given by

Gα(x, y) =
mα

2π2

ṽα(x, y)

|x− y|2
, (4.2.29)

G(1)
α (x, y) =

m2
α

4π2
ṽα(x, y)

(
ψ(1) + ψ(2)− ln(2mα)− 2 ln

(
|x− y|

2

))
, (4.2.30)

G(2)
α (x, y) = −m

2
α

4π2
ṽα(x, y). (4.2.31)

We will show that the remainder G(x, y, z) is a Hilbert-Schmidt kernel and that the

Hilbert-Schmidt norm is of order O
(
|z|1+δ

)
as z → 0, where δ > 0 is sufficiently

small.

Let
√

2mα|z||x− y| > 1. By [AS64], p.364, we have∣∣∣H(1)
1 (ζ)

∣∣∣ ≤ c|ζ|−
1
2 , |ζ| ≥ 1. (4.2.32)

Relations (4.2.22) and (4.2.28) imply that |G(x, y, z)|χ{√2mα|z||x−y|>1} can be esti-

mated by

c
|z| 12 ṽα(x, y)

|x− y|

∣∣∣H(1)
1 (
√

2mαz|x− y|)
∣∣∣+ |Gα|+ |z||G(1)

α |+ |z ln |z|||G(2)
α |. (4.2.33)

Hence, by definition of the kernels (4.2.29)-(4.2.31), together with (4.2.32) we obtain

|G(x, y, z)|χ{√2mα|z||x−y|>1}

≤ |z|| ln |z||ṽα(x, y)

(
c1 + c2

∣∣∣∣ln( |x− y|2

)∣∣∣∣) (4.2.34)

≤ |z|| ln |z||ṽα(x, y)
(1 + |x|)4δ(1 + |y|)4δ

(1 + |x− y|)4δ

(
c1 + c2

∣∣∣∣ln( |x− y|2

)∣∣∣∣)
≤ c|z|1+2δ| ln |z||ṽα(x, y)(1 + |x|)4δ(1 + |y|)4δ

(
c1 + c2

∣∣∣∣ln( |x− y|2

)∣∣∣∣) .
Now let

√
2mα|z||x− y| ≤ 1. Note that in view of (4.2.25) we have

G(x, y, z) = z|vα(x)|
1
2

(
∞∑
j=1

1∑
k=0

zj(ln |z|)kGk
j (x, y)

)
|vα(y)|

1
2 , (4.2.35)
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4 The Efimov Effect

where the kernels Gk
j are defined by

G1
j(x, y) = −(2mα)jαj|x− y|2j, (4.2.36)

G0
j(x, y) = (2mα)jαj|x− y|2j

(
βj − 2 ln

(
|x− y|

2

))
(4.2.37)

and the constants αj, βj are given by

αj =
(−1)jm2

α

4j+1π2j!(j + 1)!
, βj = ψ(j + 1) + ψ(j + 2)− ln(2mα). (4.2.38)

By definition of the kernels Gk
j we have

G(x, y, z) = z|vα(x)|
1
2 (σ1(x, y, z) + σ2(x, y, z) + σ3(x, y, z)) |vα(y)|

1
2 , (4.2.39)

where

σ1(x, y, z) =
∞∑
j=1

αjβj
(√

2mαz|x− y|
)2j

, (4.2.40)

σ2(x, y, z) = −2 ln

(
|x− y|

2

) ∞∑
j=1

αj
(√

2mαz|x− y|
)2j

, (4.2.41)

σ3(x, y, z) = − ln |z|
∞∑
j=1

αj
(√

2mαz|x− y|
)2j

. (4.2.42)

We are going to estimate σ1, σ2 and σ3 separately. Let 0 < δ < 2−1. Since by

assumption we have
√

2mα|z||x− y| ≤ 1, it holds

|σ1(x, y, z)| ≤
(√

2mα|z||x− y|
)4δ

∞∑
j=1

|αjβj|
(√

2mα|z||x− y|
)2(j−2δ)

≤ C|z|2δ|x− y|4δ
∞∑
j=1

|αjβj|

≤ C1|z|2δ(1 + |x|)4δ(1 + |y|)4δ. (4.2.43)
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4.2 Absence of the Efimov effect in dimension four

In the last inequality we used the fact that
∞∑
j=1

|αjβj| <∞. Analogously we obtain

|σ2(x, y, z)| ≤ 2

∣∣∣∣ln( |x− y|2

)∣∣∣∣ ∞∑
j=1

|αj|
(√

2mα|z||x− y|
)2j

≤ C2|z|2δ
∣∣∣∣ln( |x− y|2

)∣∣∣∣ (1 + |x|)4δ(1 + |y|)4δ (4.2.44)

and also

|σ3(x, y, z)| ≤ C3|z|2δ| ln |z||(1 + |x|)4δ(1 + |y|)4δ. (4.2.45)

Hence, by collecting estimates (4.2.43)-(4.2.45), together with (4.2.39), we see that

for |z| < 1 sufficiently small |G(x, y, z)|χ{√2mα|z||x−y|≤1} can be estimated by

|z|1+2δ| ln |z||ṽα(x, y)(1 + |x|)4δ(1 + |y|)4δ

(
c3 + c4

∣∣∣∣ln( |x− y|2

)∣∣∣∣) . (4.2.46)

By combining estimates (4.2.46) and (4.2.34) we obtain

|G(x, y, z)| ≤ |G(x, y, z)|χ{√2mα|z||x−y|≤1} + |G(x, y, z)|χ{√2mα|z||x−y|>1}

≤ C|z|1+2δ| ln |z||ṽα(x, y)×

× (1 + |x|)4δ(1 + |y|)4δ

(
1 +

∣∣∣∣ln( |x− y|2

)∣∣∣∣) .
(4.2.47)

Since ∣∣∣∣ln( |x− y|2

)∣∣∣∣ ≤ C max
{
|x− y|ε, |x− y|−ε

}
, ε > 0 (4.2.48)

and

|vα(x)| ≤ C(1 + |x|)−b, b > 4, (4.2.49)

we can choose ε, δ > 0, such that 0 < δ < b−4−2ε
8

. This implies that the remainder

G(z) belongs to the Hilbert-Schmidt class and that the operator norm is of order

O
(
|z|1+2δ| ln |z||

)
. Hence, the operator G

(δ)
α (z) = |z|−1−δG(z) is bounded up to

z ≤ 0. Furthermore, we have that

|vα|
1
2 r0
α(z)|vα|

1
2 = Gα + zG(1)

α + z ln |z|G(2)
α + |z|1+δG(δ)

α (z), δ > 0. (4.2.50)

115



4 The Efimov Effect

This completes the proof.

Remark. We used similar arguments as in [Jen84], where it was shown that for

|vα(x)| ≤ C(1 + |x|)−b, b > 8, (4.2.51)

G(z) is of order O(|z|2 ln |z|). We allow weaker assumptions on the potential and

obtain a weaker estimate as a result.

Lemma 4.2.7. If zero is a resonance of hα, then for z < 0, |z| sufficiently small,

the operator wα(z) has the representation

wα(z) = (z(ln |z| − τα))−1〈·, ϕα〉ϕα + (z(ln |z| − τα))−1+δ w(δ)
α (z), (4.2.52)

where δ > 0 is sufficiently small, ϕα is an eigenfunction of the operator Gα corre-

sponding to the eigenvalue µ = 1 and τα ∈ R is a constant, which depends on the

potential vα and on the mass mα. In addition, the operator w
(δ)
α (z) is bounded for

z ≤ 0.

Proof. Let

sα(z) = I − |vα|
1
2 r0
α(z)|vα|

1
2 . (4.2.53)

We will use expansion (4.2.20) of Lemma 4.2.6 in order to compute the inverse

s−1
α (z) = wα(z). (4.2.54)

Let P0 be the one-dimensional projection on the subspace associated with the

eigenfunction ϕα of the operator Gα corresponding to the eigenvalue µ = 1 and

denote by P1 the projection onto the orthogonal complement of the eigenspace of

µ in L2(R4). Following [Jen84], for every ψ ∈ L2(R4) we have the unique partition

ψ = P0ψ + P1ψ, which allows us to write sα(z)ψ as S(z)(P0ψ, P1ψ)>, where

S(z) =

(
P0sα(z)P0 P0sα(z)P1

P1sα(z)P0 P1sα(z)P1

)
. (4.2.55)
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4.2 Absence of the Efimov effect in dimension four

Furthermore, let

P (z) =

(
|z|− 1

2P0 0

0 P1

)
and B(z) = P (z)S(z)P (z). (4.2.56)

The entries of B(z) are given by

b00(z) = |z|−1P0(I − |vα|
1
2 r0
α(z)|vα|

1
2 )P0, (4.2.57)

b01(z) = |z|−
1
2P0(I − |vα|

1
2 r0
α(z)|v|

1
2 )P1, (4.2.58)

b10(z) = |z|−
1
2P1(I − |vα|

1
2 r0
α(z)|vα|

1
2 )P0, (4.2.59)

b11(z) = P1(I − |vα|
1
2 r0
α(z)|vα|

1
2 )P1. (4.2.60)

By the use of Lemma 4.2.6 we have

B(z) = C(z) +D(z), (4.2.61)

where the matrix C(z) is given by

C(z) =

(
P0

(
G

(1)
α + ln |z|G(2)

α

)
P0 0

0 P1 (I −Gα)P1

)
(4.2.62)

and the matrix D(z) is given by

D(z) =

(
d00(z) d01(z)

d10(z) d11(z)

)
(4.2.63)

with the corresponding entries

d00(z) = −|z|δP0G
(δ)
α (z)P0, (4.2.64)

d01(z) = |z|
1
2P0

(
G(1)
α + ln |z|G(2)

α − |z|δG(δ)
α (z)

)
P1, (4.2.65)

d10(z) = |z|
1
2P1

(
G(1)
α + ln |z|G(2)

α − |z|δG(δ)
α (z)

)
P0, (4.2.66)

d11(z) = |z|P1

(
G(1)
α + ln |z|G(2)

α − |z|δG(δ)
α (z)

)
P0. (4.2.67)
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4 The Efimov Effect

By abuse of notation we write

D(z) = O
(
|z|δ
)
. (4.2.68)

Since P1 projects onto the subspace of functions orthogonal to ϕα, the operator

P1(I −Gα)P1 is invertible. Now since 〈|vα|
1
2 , ϕα〉 6= 0, we can normalize ϕα by

〈|vα|
1
2 , ϕα〉 =

2π

mα

. (4.2.69)

Then we have

〈G(2)
α ϕα, ϕα〉 = −1 and 〈G(1)

α ϕα, ϕα〉 = τα, (4.2.70)

where due to (4.2.30) the constant τα is given by

m2
α

4π2

¨ (
Cα − 2 ln

(
|x− y|

2

))
|vα(x)|

1
2 |vα(y)|

1
2ϕα(x)ϕα(y) dxdy (4.2.71)

with Cα = ψ(1) + ψ(2)− ln(2mα). Using the relation

P0 = ‖ϕα‖−2〈·, ϕα〉ϕα (4.2.72)

we obtain

P0

(
G(1)
α + ln |z|G(2)

α

)
P0 =

(τα − ln |z|)
‖ϕα‖2

P0 (4.2.73)

and therefore

C−1(z) =

(
〈·,ϕα〉ϕα

(τα−ln |z|) 0

0 K

)
, (4.2.74)

where K = (P1(I −Gα)P1)−1. Now we can write

B(z) = C(z) +D(z) =
(
I +D(z)C−1(z)

)
C(z). (4.2.75)

By (4.2.68) we have

‖D(z)C−1(z)‖ z→0−→ 0. (4.2.76)
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Therefore, we obtain the inverse of B(z) by the Neumann series

B−1(z) = C−1(z)
(
I −

(
−D(z)C−1(z)

))−1
(4.2.77)

= C−1(z) + C−1(z)
∞∑
n=1

(
−D(z)C−1(z)

)n
. (4.2.78)

Note that
∞∑
n=1

‖D(z)C−1(z)‖n ≤ ‖D(z)C−1(z)‖
1− ‖D(z)C−1(z)‖

, (4.2.79)

which together with (4.2.68) yields

B−1(z) =

(
〈·,ϕα〉ϕα

(τα−ln |z|) 0

0 K

)
+O

(
|z|δ
)
. (4.2.80)

Furthermore, we have that

S−1(z) = P (z)B−1(z)P (z) (4.2.81)

and |z|(τα − ln |z|) = z(ln |z| − τα) for |z| sufficiently small. This completes the

proof.

Lemma 4.2.8. For z < 0, |z| sufficiently small, the operator wα(z) is positive and

we have

w
1
2
α (z) =

〈·, ϕα〉ϕα
‖ϕα‖

√
z (ln |z| − τα)

+ (z(ln |z| − τα))−
1−δ
2 w̃(δ)

α (z), (4.2.82)

where w̃α
(δ)(z) is bounded for z ≤ 0.

Proof. For |z| sufficiently small we have z(ln |z| − τα) > 0 Hence, by P0 = P 2
0 we

obtain(
〈·, ϕα〉ϕα

z(ln |z| − τα)

) 1
2

=

(
‖ϕα‖2P 2

0

z(ln |z| − τα)

) 1
2

=
〈·, ϕα〉ϕα

‖ϕα‖
√
z(ln |z| − τα)

. (4.2.83)
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By rα(z) ≥ 0 for hα ≥ 0 we have that wα(z) ≥ 0. Using

‖A
1
2 −B

1
2‖ ≤ ‖A−B‖

1
2 (4.2.84)

for positive operators A,B, Lemma 4.2.7 implies∥∥∥∥∥w 1
2
α (z)− 〈·, ϕα〉ϕα

‖ϕα‖
√
z (ln |z| − τα)

∥∥∥∥∥ ≤ C(z(ln |z| − τα))−
1−δ
2 . (4.2.85)

This completes the proof.

4.2.3 Finiteness of the discrete spectrum

Now we move to the three-body system. In this section we prove that every entry

Aαβ(z) of the matrix A(z) is a compact operator for every z ≤ 0. By Definition

4.1.2 we have

Aαβ(z) = W
1
2
α (z)Kαβ(z)W

1
2
β (z). (4.2.86)

Due to the partial Fourier transform Φα,Φβ, defined by (4.2.7), and the structure

of the operator Aαβ(z), we will make use of the mixed coordinates (xα, pα), (xβ, pβ).

We start with the proof of the compactness of Kαβ(z), which can be proved with

similar arguments as in the proof of Lemma 4.1.7. However, the proof cannot be

applied directly due to different dimensions. For the sake of completeness we give a

proof by adjusting it to our case.

Lemma 4.2.9. The operator Kαβ(z), defined by

Kαβ(z) = |Vα|
1
2R0(z)|Vβ|

1
2 , R0(z) = (H0 − z)−1 (4.2.87)

is compact for every z ≤ 0.

Proof. It is sufficient to consider the operator

K̃αβ(z) = Φ∗αKαβ(z)Φβ. (4.2.88)
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4.2 Absence of the Efimov effect in dimension four

For R ≥ 1 let

χR : R4 → R, χR(p) =

1, |p| ≤ R,

0, |p| > R.
(4.2.89)

We decompose K̃αβ(z) = ZR
αβ(z) + Y R

αβ(z), where in contrast to the decomposition

(4.1.61) we set

ZR
αβ(z) = χRK̃αβχR, (4.2.90)

Y R
αβ(z) = (I − χR)K̃αβχR + χRK̃αβ(I − χR) + (I − χR)K̃αβ(I − χR). (4.2.91)

The kernel of the operator ZR
αβ(z) is square-integrable for z ≤ 0. Indeed, by the

relation Vα = ΦαvαΦ∗α and by the use of (4.2.8) it follows(
K̃αβ(z)f

)
(xα, pα)

=

ˆ
R4

dkα
eikαxα |vα(xα)| 12

(H0(kα, pα)− z)

ˆ
R4

dxβe−ikβxβ |vβ(xβ)|
1
2f(xβ, pβ) (4.2.92)

= C

ˆ
R4

dpβ
eixα(dαβpα+eαβpβ)|vα(xα)| 12

(H0
αβ(pα, pβ)− z)

ˆ
R4

dxβe−ixβ(dβαpα+eβαpβ)|vβ(xβ)|
1
2f(xβ, pβ).

Hence, the kernel of K̃αβ(z) is of the form

K̃αβ ((x, p), (x′, p′)) = ceixpdαβ
|vα(x)| 12 eixp′eαβe−ix′pdβα |vβ(x′)| 12

(H0
αβ(p, p′)− z)

e−ix′p′eβα . (4.2.93)

By the estimate

H0
αβ(pα, pβ) ≥ c|pα|2κ|pβ|2κ

′
(4.2.94)

with κ = κ′ = 1
2

it follows that ZR
αβ(z) belongs to the Hilbert-Schmidt class for every

z ≤ 0. Using estimate (4.1.19) one can see that the norm of the operator Y R
αβ(z) is

bounded by CR−2 for every z ≤ 0, where C does not depend on z. Hence, we have

‖K̃αβ(z)− ZR
αβ(z)‖ = ‖Y R

αβ(z)‖ → 0 (4.2.95)

as R→∞, which completes the proof.
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4 The Efimov Effect

Recall that wα(z) is uniformly bounded in L2(R4) for every z ≤ z0 < 0, where

|z0| > 0 can be chosen arbitrarily small. Furthermore, in accordance with Definition

4.1.2 we have

Wα(z) = Φαwα

(
z − p2

α

2nα

)
Φ∗α. (4.2.96)

Hence, the operator Wα(z) is bounded for every z < 0, which together with Lemma

4.2.9 and Proposition 4.2.3 implies that the counting function satisfies N(z) <∞
for every z < 0. The critical case is the existence of a zero-energy resonance of

the two-body Hamiltonian hα, which by Lemma 4.2.8 affects the behaviour of the

operator wα(z) and therefore Wα(z) as z → 0. In this case the operator w
1
2
α (z) has

the representation

w
1
2
α (z) =

〈·, ϕα〉ϕα
‖ϕα‖

√
z (ln |z| − τα)

+ (z(ln |z| − τα))−
1−δ
2 w̃(δ)

α (z), (4.2.97)

where |z| < 1 is sufficiently small and ln |z| − τα < 0. Our goal is to use this

representation of combination with (4.2.96) to study the integral kernel of

Aαβ(z) = W
1
2
α (z)Kαβ(z)W

1
2
β (z) for z → 0. (4.2.98)

However, we can use (4.2.97) only if
∣∣∣z − p2α

2nα

∣∣∣ is sufficiently small and when

ln
(
z − p2α

2nα

)
− τα < 0 holds. Therefore, similar to (4.1.56) for every α we introduce

the following auxiliary function ζα : (−∞, 0)→ R, where ζα ∈ C∞, ζα(t) > 0 for all

t < 0 and

ζα(t) =


√
t (ln |t| − τα), t ∈ (µα, 0),

1, t ≤ −1.
(4.2.99)

The constant µα ∈ (−1, 0) is chosen so that we have ln |t| − τα < 0 for all t ∈ [µα, 0).

This will allow us to use (4.2.97) not only for small z but for every z < 0. To do so,

we introduce the operator

ũ(δ)
α (z) =

w̃
(δ)
α (z), z ∈ (µα, 0),

ζα(z)−δ
(
ζα(z)w

1
2
α (z)− ‖ϕ‖−1〈·, ϕα〉ϕα

)
, z ∈ (−∞, µα].

(4.2.100)
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4.2 Absence of the Efimov effect in dimension four

Since w
1
2
α (z) is uniformly bounded for z ≤ µα < 0 and w̃

(δ)
α (z) is continuous up to

z = 0, it follows

w
1
2
α (z) = ζα(z)−1‖ϕα‖−1〈·, ϕα〉ϕα + ζα(z)−1+δũ(δ)

α (z), (4.2.101)

where the operator ũ
(δ)
α (z) is continuous up to z = 0. From (4.2.96) and (4.2.98) it is

clear that for z = 0 the kernel of Aαβ(z) admits a singularity in pα = 0 and pβ = 0.

For this reason, we will study the kernel in four disjoint areas. Simply put, we will

cut the region with respect to the variables pα, pβ, where both |pα|, |pβ| are small,

both |pα|, |pβ| are large and the other two cases where |pα| is small and |pβ| is large,

and vice versa. Here, it should be noted that in dimension four the mixed cases

of one of the variables |pα|,|pβ| being small and the other one being large is more

complicated compared to the three-dimensional case. The reason for that is that

after squaring the kernel the resolvent provides in both cases the decay |pα|−4 and

|pβ|−4, which in dimension three yields the Hilbert-Schmidt property. This argument

cannot be adapted to the four-dimensional case.

Lemma 4.2.10. Let Γα(z) be the operator of multiplication by ζα

(
z − p2α

2nα

)
, i.e.

(Γα(z)f)(kα, pα) = ζα

(
z − p2

α

2nα

)
· f(kα, pα). (4.2.102)

Then the operator

Mαβ(z) = Γα(z)−1Kαβ(z)Γβ(z)−1 (4.2.103)

is compact for every z ≤ 0.

Proof. We consider the operator

M̃αβ(z) = Φ∗αMαβ(z)Φβ. (4.2.104)

The compactness for z < 0 follows from Lemma 4.2.9. We only need to consider the

case z = 0. Similar to (4.2.93) the kernel of M̃αβ(0) is formally given by

M̃αβ ((x, p), (x′, p′)) = ceixpdαβ
|vα(x)| 12 eixp′eαβe−ix′pdβα |vβ(x′)| 12

ζα

(
− p2

2nα

)
H0
αβ(p, p′)ζβ

(
− p′2

2nβ

)e−ix′p′eβα . (4.2.105)
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4 The Efimov Effect

Let µα, µβ < 0 be in accordance with (4.2.99) and 0 < r < min(|µα|, |µβ|}. Denote

by χr(p) the multiplication by the characteristic function of the area{
p ∈ R4 :

|p|2

2n
< r

}
with n = min{nα, nβ}. (4.2.106)

We decompose

M̃αβ = M̃1
αβ + M̃2

αβ + M̃3
αβ, (4.2.107)

such that

M̃1
αβ = χr(p)M̃αβχr(p

′), (4.2.108)

M̃2
αβ = χr(p)M̃αβ(I − χr(p′)) + (I − χr(p))M̃αβχr(p

′), (4.2.109)

M̃3
αβ = (I − χr(p))M̃αβ(I − χr(p′)). (4.2.110)

The compactness of M̃3
αβ follows from Lemma 4.2.9.

Let us prove that M̃2
αβ is compact. We consider only the first term, the second

one can be treated analogously. Let R > r > 0 be fixed. Then the first term of M̃2
αβ

can be written as

χr(p)M̃αβ(I − χr(p′)) = Xαβ + Yαβ, (4.2.111)

where

Xαβ = χr(p)M̃αβ(χR(p′)− χr(p′)), Yαβ = χr(p)M̃αβ(I − χR(p′)). (4.2.112)

By the use of

H0
αβ(p, p′) ≥ cp′2 (4.2.113)

the absolute value of the kernel of Xαβ can be estimated from above by

cχr(p)
|vα(x)| 12 |vβ(x′)| 12

|p||p′|2
(χR(p′)− χr(p′)), (4.2.114)

which is square-integrable with respect to the arguments x, x′, p, p′. The kernel of
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4.2 Absence of the Efimov effect in dimension four

Yαβ is given by

cχr(p)(1− χR(p′))eixpdαβ
|vα(x)| 12 eixp′eαβe−ix′pdβα |vβ(x′)| 12

ζα

(
− p2

2nα

)
H0
αβ(p, p′)

e−ix′p′eβα . (4.2.115)

We will show that Y ∗αβYαβ is continuous and that its operator norm tends to zero as

R→∞. The kernel Y ∗αβYαβ ((x′′, p′′), (x′, p′)) is given by

¨
Yαβ ((x, p), (x′, p′))Yαβ ((x, p), (x′′, p′′)) dxdp. (4.2.116)

Hence, |Y ∗αβYαβ ((x′′, p′′), (x′, p′)) | can be estimated from above by

c|v̂α(p′ − p′′)||vβ(x′)|
1
2 |vβ(x′′)|

1
2J(p′, p′′)(I − χR(p′′))(1− χR(p′)), (4.2.117)

where

v̂α(p′ − p′′) =

ˆ
|vα(x)|e−ieαβx(p′−p′′) dx, (4.2.118)

J(p′, p′′) =

ˆ
{|p|<√2nr}

1

p2(p2 + p′2)(p2 + p′′2)
dp. (4.2.119)

Due to the characteristic functions (I − χR(p′′)) and (1 − χR(p′)) in (4.2.117) we

can assume that |p′|, |p′′| ≥ c > 0 for some fixed c, which yields

J(p′, p′′) ≤ C

p′2p′′2
. (4.2.120)

This implies

|Y ∗αβYαβ ((x′′, p′′), (x′, p′)) |

≤ C
|̂vα(p′ − p′′)|

p′2p′′2
|vβ(x′)|

1
2 |vβ(x′′)|

1
2 (I − χR(p′′))(1− χR(p′)).

(4.2.121)

For ξ1, ξ2 ∈ R4\{0} and b > 4 we define the function

y(ξ1, ξ2) = (1 + |ξ1|)−
b
2 |ξ2|−2. (4.2.122)
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4 The Efimov Effect

By assumption (4.2.2) we have

vα ∈ L1(R4) ∩ L∞(R4) and v̂α ∈ L2(R4) ∩ L∞(R4). (4.2.123)

Hence, by the use of (4.2.121) and (1 + | · |)− b2 |vβ(·)| 12 ∈ L1(R4) we obtain

ˆ ∣∣Y ∗αβYαβ ((x′′, p′′), (x′, p′)) y(x′, p′)
∣∣ dx′dp′ ≤ |vβ(x′′)| 12

|p′′|2
CR

≤ y(x′′, p′′)CR,

(4.2.124)

where CR → 0 as R→∞. By symmetry we also have

ˆ ∣∣Y ∗αβYαβ ((x′′, p′′), (x′, p′)) y(x′′, p′′)
∣∣ dx′′dp′′ ≤ y(x′, p′)CR. (4.2.125)

Hence, we can apply the Schur test, see for example [HS78], to conclude that Yαβ

is a bounded operator on L2, where the operator norm tends to zero as R → ∞.

By applying the same arguments to the second kernel of (4.2.109) we conclude that

M̃2
αβ is compact.

It remains to show that M̃1
αβ is compact. By definition of the function (4.2.99)

and in view of the characteristic functions χr(p), χr(p
′) with

0 < r < µ < min{|µα|, |µβ|}, (4.2.126)

it is sufficient to show that the integral

ˆ
{|p|<µ}

ˆ
{|p′|<µ}

K (p, p′) dp′dp (4.2.127)

is finite, where µ > 0 is sufficiently small and the kernel K is given by

K(p, p′) =
1

|p|2 |ln |p||
(
H0
αβ(p, p′)

)2 |p′|2 |ln |p′||
. (4.2.128)

Note that

(
H0
αβ(p, p′)

)2 ≥ c|p|4κ|p′|4κ′ with κ+ κ′ = 1. (4.2.129)
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4.2 Absence of the Efimov effect in dimension four

We set κ = 0 and use spherical coordinates p = (ω, ρ), p′ = (ω′, ρ′) to obtain

ˆ

{|p|<µ}

ˆ

{|p′|<µ}

K(p, p′) dp′dp =

ˆ

{|p|<µ}

 ˆ

{|p′|≤|p|}

K(p, p′) dp′ +

ˆ

{|p|<|p′|<µ}

K(p, p′) dp′

 dp

≤ C

ˆ

{|p|<µ}

1

p2 |ln |p||

 ˆ

{|p|≤|p′|<µ}

1

p′6 |ln |p′||
dp′

 dp

≤ C ′
ˆ µ

0

ρ

| ln ρ|

(ˆ µ

ρ

1

ρ′3 |ln ρ′|
dρ′
)

dρ

= C ′
ˆ µ

0

ρ

|ln ρ|
F (µ, ρ) dρ, (4.2.130)

where the function F is given by

F (µ, ρ) =

ˆ µ

ρ

1

ρ′3 |ln ρ′|
dρ′ = − 1

2ρ′2 |ln ρ′|

µ∣∣∣∣
ρ

−
ˆ µ

ρ

1

2ρ′3 |ln ρ′|2
. (4.2.131)

For µ > 0 sufficiently small we have that |ln ρ′| ≥ 1, which implies

|F (µ, ρ)| ≤ C(µ) +
1

2ρ2 |ln ρ|
+

1

2
|F (µ, ρ)| . (4.2.132)

Hence, by inserting (4.2.132) into (4.2.130) we obtain

ˆ

{|p|<µ}

ˆ

{|p′|<µ}

K(p, p′) dp′dp ≤ C ′
ˆ µ

0

ρ

|ln ρ|
F (µ, ρ) dρ (4.2.133)

≤ C1 + C2

ˆ µ

0

1

ρ(ln ρ)2
dρ <∞. (4.2.134)

This completes the proof of Lemma 4.2.10.

Now we are ready to prove Theorem 4.2.1 and Theorem 4.2.2.

Proof of Theorem 4.2.1. At first we assume that for every α ∈ {12, 23, 31} the two-

body Hamiltonian hα has a virtual level at zero. By assumption (4.2.5) with µ = 0

and Theorem 3.3.1, zero is a resonance of hα. By (4.2.101) every entry Aαβ(z) of

127



4 The Efimov Effect

A(z) defined in (4.2.14) can then be written as

Aαβ(z) = ΠαΓα(z)−1Kαβ(z)Γβ(z)−1Πβ + Ũ (δ)
α (z)Γα(z)−1+δKαβ(z)Γβ(z)−1Πβ

+ ΠαΓα(z)−1Kαβ(z) (Γβ(z))−1+δ Ũ
(δ)
β (z) (4.2.135)

+ Ũ (δ)
α (z)Γα(z)−1+δKαβ(z)Γβ(z)−1+δŨ

(δ)
β (z),

where the operator Πα is defined by

(Παf)(kα, pα) = ‖ϕα‖−1(Φαϕα)(kα)

ˆ
f(k′α, pα)(Φαϕα)(k′α) dk′α (4.2.136)

and Ũ
(δ)
α (z) is given by

Ũ (δ)
α (z) = Φαũ

(δ)
α

(
z − p2

α

2nα

)
Φ∗α. (4.2.137)

The operator ũ
(δ)
α (z) is defined by (4.2.100). Now since the operators Πα,Πβ and

Ũ
(δ)
α (z), Ũ

(δ)
β (z) are bounded for z ≤ 0, the finiteness of σdisc(H) follows from Lemma

4.2.10 and Proposition 4.2.3.

Assume that for one subsystem, say α, the operator hα does not have a resonance.

In this case the operator wα(z) is continuous up to z = 0. Indeed, one can easily see

that µ = 1 is not an eigenvalue of the operator with the kernel

Gα(x, y) =
mα

2π2

|vα(x)| 12 |vα(y)| 12
|x− y|2

. (4.2.138)

Similar to the proof of Lemma 4.2.7 we then have

wα(z) = (I −Gα + o(1))−1 = (I −Gα)−1 + o(1), z → 0. (4.2.139)

This implies the finiteness of σdisc(H) in this case as well. This concludes the

proof.

Proof of Theorem 4.2.2. By Theorem 3.3.1 a virtual level of has
α is an eigenvalue and

by Theorem 3.1.3 such an eigenvalue has always finite multiplicity. Let E0 be the

corresponding eigenspace. By Theorem 3.2.6 there exists a constant µE0 > 0, such
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4.3 On the Efimov effect for more than three quantum particles

that for every function g ⊥ E0 in Ḣ1(R4)\{0} we have

〈has
α g, g〉 ≥ µE0‖|∇g|‖2. (4.2.140)

The finiteness of σdisc(H
as) now follows by the same arguments as in the proof of

[VZ83, Theorem 2.1].

Remark. The main difference between the two systems in Theorem 4.2.1 and

Theorem 4.2.2 is that virtual levels in the two-particle subsystems in Theorem 4.2.1

are not eigenvalues but resonances. By the assumptions of Theorem 4.2.2, however,

they are always eigenvalues, which therefore requires a completely different method

of proof. By the remark after Theorem 3.1.12 virtual levels of two-body Schrödinger

operators in dimension d ≥ 5 are eigenvalues. By combining this with the technique

of [VZ83], we can generalize the statement of Theorem 4.2.1 to dimension d ≥ 4. In

the next section we extend this technique to arbitrary N -body systems with N ≥ 4

quantum particles in dimension d ≥ 3.

4.3 On the Efimov effect for more than three

quantum particles

As already mentioned in the introduction, it is an interesting question from both a

mathematical and physical point of view whether there is an Efimov-type effect in

case of more than three particles. One result of the general case of N particles is

the assertion [AG73] of the two physicists R. D. Amado and F. C. Greenwood from

1973, which was first mathematically proven by D. K. Gridnev in 2013, see [Gri13].

4.3.1 The assertion of Amado and Greenwood

Since our results are related to this, in the following we will give a brief summary of

the main result of the work [Gri13].

Consider the Schrödinger operator of N ≥ 4 particles in dimension d = 3, i.e.

H = H0 + V, (4.3.1)
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4 The Efimov Effect

where H0 is the operator of kinetic energy with the center of mass removed and

V =
∑

1≤i<j≤N vij with the pair-interactions vij satisfying

vij ∈ L1(R3) ∩ L3(R3) for all i 6= j. (4.3.2)

Let V{j} be the sum of pair-interactions where particle j ∈ {1, . . . , N} is removed

and let V{j,s} be the sum of pair-interactions where particles j and s are removed.

Furthermore, let V +
j,s and V −j,s be the sums of the corresponding positive and negative

parts of the potentials. Assume that

σess(H) = [0,∞) (4.3.3)

and that there exists ω > 0 with

H0 + V +
j,s − (1 + ω)V −j,s ≥ 0 for all 1 ≤ j < s ≤ N. (4.3.4)

Theorem 4.3.1 (cf. [Gri13, Theorem 3.]). Assume that the operator H satisfies

(4.3.2), (4.3.3) and (4.3.4). Then the discrete spectrum σdisc(H) of H is finite.

The method of the proof of Theorem 4.3.1 is based on the techniques developed

in [Yaf74] and [Sob93], presented in section 4.1. Here again the main idea is to

reduce the problem to the analysis of an integral operator. However, in this case the

operator is created by applying the Birman-Schwinger principle N times. Due to the

typical structure of the Birman-Schwinger operator it requires an investigation of

the resolvent of the operators corresponding to the respective subsystems. The main

focus of the proof of Theorem 4.3.1 is the investigation of the case when a (N − 1)-

particle subsystem is at critical coupling, e.g. [KS80b]. An important ingredient

is the following theorem, which was shown in [Gri12b] using similar methods as

described above.

Theorem 4.3.2 (cf. [Gri12b, Theorem 2.]). Let N ≥ 3 and assume that the operator

H(λ) = H0 + λ
∑

1≤i<j≤N

vij (4.3.5)

satisfies σess(H(λ)) = [0,∞) and vij ∈ L1(R3) ∩ L2(R3). Assume that H(λ) is at
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4.3 On the Efimov effect for more than three quantum particles

critical coupling λcr, i.e. H(λcr) ≥ 0 and H(λcr) + ε
∑

1≤i<j≤N vij 6≥ 0 for any ε > 0.

Suppose that H(λcr) has no subsystems, which have a bound state with E ≤ 0, and

no particle pairs at critical coupling. Then there exists a normalized ψ0 in the domain

D(H0) of H0 such that H(λcr)ψ0 = 0.

In the previous chapter in Theorem 3.2.2 and Theorem 3.3.1 we have established

decay rates of the solutions corresponding to the virtual levels. In particular,

it implies that for N ≥ 3 particles these are eigenvalues in all dimensions d ≥ 3.

Theorem 3.2.2 can therefore be seen as a generalization of Theorem 4.3.2 with respect

to the restrictions of both the potentials and the dimension. Since the method

of proof of Theorem 4.3.1 depends strongly on the behaviour of the resolvents

corresponding to subsystems of the three-dimensional particles, it cannot be directly

applied to systems of other dimensions. In the next section we take a different

approach, based on variational methods, to present a different proof and extend the

statement of Theorem 4.3.1 to other systems.

4.3.2 Absence of the Efimov effect in many-body systems

In this section we prove the absence of the Efimov effect for N ≥ 4 quantum particles

in dimension d ≥ 3 by generalizing the method developed in [VZ83] to any N -particle

system and combining it with the results of Theorem 3.2.2. Furthermore, with the

help of Theorem 3.2.8 we generalize this result to systems with fixed permutation

symmetries. We follow the presentation of [BBV20].

In the following we stick to the notation introduced in section 2.2 and consider

the operator H defined in (2.2.20). We assume that the pair interactions Vij are of

the form Vij = V
(1)
ij + V

(2)
ij , such that for some constants A,C, ν > 0 we have

|V (1)
ij (xij)| ≤ C|xij|−2−ν , if |xij| ≥ A and V

(1)
ij ∈ L

p
loc(R

d), (4.3.6)

where 
p = 2, if d = 3,

p > 2, if d = 4,

p = d
2
, if d ≥ 5.

(4.3.7)
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Furthermore, we assume that

V
(2)
ij (xij) ≥ 0 is bounded and V

(2)
ij (xij)→ 0 as |xij| → ∞. (4.3.8)

Theorem 4.3.3. Consider the operator H with d ≥ 3 and N ≥ 4, where the

potentials Vij satisfy (4.3.6) and (4.3.8). Assume that for any subsystem C with

|C| = N − 1 the operator H[C], defined in (2.2.23), satisfies

H[C] ≥ 0 and σess (−(1− ε)∆0[C] + V [C]) = [0,∞) (4.3.9)

for any ε ∈ (0, 1). Then the discrete spectrum of H is finite.

Remark. We emphasize that in Theorem 4.3.3 the operator H[C] corresponding

to subsystems C with |C| = N − 1 may have a virtual level. On the other hand,

operators H[C ′] corresponding to subsystems C ′ with |C ′| < N − 1 do not have have

virtual levels.

Proof. Consider the functional L1 : H1(R0)→ R, defined by

L1[ϕ] := 〈Hϕ,ϕ〉 − ε‖|x|−1
1 ϕ‖2. (4.3.10)

Due to Lemma 3.1.3, in order to prove the theorem it suffices to show that there exist

constants ε > 0 and b > 0, such that L1[ϕ] ≥ 0 holds for all functions ϕ ∈ H1(R0)

with suppϕ ⊂ {x ∈ R0, |x|1 ≥ b}. Applying Lemma 3.2.4 yields

L1[ϕ] ≥
∑
Z2

L2[ϕuZ2 ] + L3[ϕV ], (4.3.11)

where V =
√

1−
∑

Z2
u2
Z2

and the functionals L2, L3 : H1(R0)→ R are defined by

L2[ψ] := 〈Hψ,ψ〉 − ε‖|x|−1
1 ψ‖2 − ε1‖|q(Z2)|−1

1 ψ‖2
Ω(Z2), (4.3.12)

L3[ψ] := 〈Hψ,ψ〉 − (ε+ ε1)‖|x|−1
1 ψ‖2, (4.3.13)

with

Ω(Z2) ⊂ {x ∈ R0 : |x|1 ≥ b, κ′|ξ(Z2)|1 ≤ |q(Z2)|1 ≤ κ|ξ(Z2)|1}. (4.3.14)
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The constants ε1 > 0 and κ > 0 can be chosen arbitrarily small and κ′ > 0 depends

on ε1 and κ. At first we prove that L2[ϕuZ2 ] ≥ 0. We need to distinguish between

two different types of partitions Z2 = (C1, C2):

(i) |C1| < N − 1 and |C2| < N − 1,

(ii) |C1| = N − 1 or |C2| = N − 1.

As it was mentioned in the remark after Theorem 4.3.3 in case (i) the operators

H[C1] and H[C2] do not have virtual levels, i.e. there exists a constant µ0 > 0, such

that

〈H(Z2)ϕuZ2 , ϕuZ2〉 ≥ µ0‖∇0(ϕuZ2)‖2 (4.3.15)

holds for any ϕ ∈ H1(R0). In this case analogously to the proof of Theorem 3.2.2

we conclude that L2[ϕuZ2 ] ≥ 0.

We turn to case (ii), where the Hamiltonians of the subsystems may have virtual

levels. Suppose that |C1| = N−1 and that H[C1] has a virtual level. Then, according

to Theorem 3.2.2, zero is a simple eigenvalue of H[C1]. Let ϕ0 be the corresponding

eigenfunction with ‖ϕ0‖ = 1. Let

ϕuZ2(q(Z2), ξ(Z2)) = ϕ0

(
q(Z2)

)
f
(
ξ(Z2

))
+ g
(
q(Z2), ξ(Z2)

)
, (4.3.16)

where

f(ξ(Z2)) = ‖∇q(Z2)ϕ0‖−2〈∇qZ2(ϕuZ2),∇q(Z2)ϕ0〉q(Z2) (4.3.17)

and

〈∇q(Z2)g(·, ξ(Z2)),∇q(Z2)ϕ0〉 = 0 (4.3.18)

for almost every ξ(Z2). Note that

L2[ϕuZ2 ] = 〈H[C1] g, g〉+ 〈H[C1] ϕ0f, ϕ0f〉+ 2 Re〈H[C1] g, ϕ0f〉

+ ‖∇ξ(Z2)(ϕuZ2)‖2 + 〈I(Z2)ϕuZ2 , ϕuZ2〉

− ε‖|x|−1
1 ϕuZ2‖2 − ε1‖|q(Z2)|−1

1 ϕuZ2‖2
Ω(Z2).

(4.3.19)

Since H[C1]ϕ0 = 0, the second term and the third term on the r.h.s. of (4.3.19) are
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4 The Efimov Effect

zero. Due to the orthogonality condition (4.3.18), Theorem 3.2.2 yields

〈H[C1]g, g〉 ≥ δ0‖∇q(Z2)g‖2 (4.3.20)

for some δ0 > 0. Hence, we arrive at

L2[ϕuZ2 ] ≥δ0‖∇q(Z2)g‖2 + ‖∇ξ(Z2)(ϕuZ2)‖2 + 〈I(Z2)ϕuZ2 , ϕuZ2〉

− ε‖|x|−1
1 ϕuZ2‖2 − ε1‖|q(Z2)|−1

1 ϕuZ2‖2
Ω(Z2).

(4.3.21)

Now since Vij ≥ V
(1)
ij , we have

〈I(Z2)ϕuZ2 , ϕuZ2〉 ≥
∑

i∈C1,j∈C2

〈V (1)
ij ϕuZ2 , ϕuZ2〉 ≥ −

∑
i∈C1,j∈C2

〈|V (1)
ij |ϕuZ2 , ϕuZ2〉

≥ −C‖|ξ(Z2)|−1− ν
2

1 ϕuZ2‖2 ≥ −ε2‖|∇ξ(Z2)ϕuZ2‖2, (4.3.22)

where ε2 > 0 can be chosen arbitrarily small by choosing b > 0 sufficiently large.

Here we used the fact that on the support of ϕuZ2 we have

|V (1)
ij (xij)| ≤ C|ξ(Z2)|−2−ν

1 ≤ ε2

4
|ξ(Z2)|−2

1 (4.3.23)

for i, j belonging to different clusters. This implies

L2[ϕuZ2 ] ≥ δ0‖∇q(Z2)g‖2+(1− ε2)‖∇ξ(Z2)(ϕuZ2)‖2

− ε‖|x|−1
1 ϕuZ2‖2 − ε1‖|q(Z2)|−1

1 ϕuZ2‖2
Ω(Z2).

(4.3.24)

Since on the support of ϕuZ2 we have |x|−1
1 ≤ |ξ(Z2)|−1

1 , applying Hardy’s inequality

yields

(1− ε2)‖∇ξ(Z2)(ϕuZ2)‖2 − ε‖|x|−1
1 ϕuZ2‖2 ≥ (1− ε3)‖∇ξ(Z2)(ϕuZ2)‖2, (4.3.25)

where ε3 = ε2 + 4ε. This implies

L2[ϕuZ2 ] ≥ δ0‖∇q(Z2)g‖2 + (1− ε3)‖∇ξ(Z2)(ϕuZ2)‖2

− ε1‖|q(Z2)|−1
1 ϕuZ2‖2

Ω(Z2).
(4.3.26)
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Let us estimate the last term on the r.h.s. of (4.3.26). Note that

‖|q(Z2)|−1
1 ϕuZ2‖2

Ω(Z2) ≤ 2‖|q(Z2)|−1
1 ϕ0f‖2

Ω(Z2) + 2‖|q(Z2)|−1
1 g‖2

Ω(Z2). (4.3.27)

By combining the terms δ0‖∇q(Z2)g‖2 and 2ε1‖|q(Z2)|−1
1 g‖2

Ω(Z2) and applying Hardy’s

inequality we get for small ε1 > 0

L2[ϕuZ2 ] ≥ (1− ε3)‖∇ξ(Z2)(ϕuZ2)‖2 − 2ε1‖|q(Z2)|−1
1 ϕ0f‖2

Ω(Z2). (4.3.28)

Now we estimate the last term on the r.h.s. of (4.3.28). Note that for κ > 0

sufficiently small and x ∈ Ω(Z2) it holds |ξ(Z2)|1 ≥ b
2

and

‖|q(Z2)|−1
1 ϕ0f‖2

Ω(Z2) ≤
ˆ

{|ξ(Z2)|1≥ b2}

|f |2dξ(Z2)

ˆ

Ω̃(Z2,ξ(Z2))

|ϕ0|2|q(Z2)|−2
1 dq(Z2)

≤ (κ′)−2

ˆ

{|ξ(Z2)|1≥ b2}

Φ|f |2|ξ(Z2)|−2
1 dξ(Z2), (4.3.29)

where Ω̃(Z2, ξ(Z2)) = {q(Z2) : κ′|ξ(Z2)|1 ≤ |q(Z2)|1 ≤ κ|ξ(Z2)|1} and

Φ (ξ(Z2)) =

ˆ
Ω̃(Z2,ξ(Z2))

|ϕ0(q(Z2))|2 dq(Z2). (4.3.30)

Since ϕ0 is square-integrable in q(Z2), for fixed κ′ > 0 and any δ > 0 one can find

b > 0, such that Φ (ξ(Z2)) < δ holds uniformly in |ξ(Z2)|1 ≥ b
2
. Hence, for any fixed

κ′ > 0 and ε4 > 0 we can choose b > 0 sufficiently large, such that

‖|q(Z2)|−1
1 ϕ0f‖2

Ω(Z2) ≤ ε4

ˆ
|ξ(Z2)|−2

1 |f(ξ(Z2))|2 dξ(Z2). (4.3.31)

This, together with (4.3.28) yields

L2[ϕuZ2 ] ≥ (1− ε3)‖∇ξ(Z2)(ϕuZ2)‖2 − 2ε1ε4‖|ξ(Z2)|−1
1 f‖2. (4.3.32)

In the following we will estimate the first term on the r.h.s. of (4.3.32). By Hardy’s
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inequality we have

‖∇ξ(Z2)(ϕuZ2)‖2 ≥ 1

4
‖ϕuZ2|ξ(Z2)|−1

1 ‖2 =
1

4
‖ϕ0f |ξ(Z2)|−1

1 + g|ξ(Z2)|−1
1 ‖2. (4.3.33)

Hence, ‖∇ξ(Z2)(ϕuZ2)‖2 can be estimated from below by

1

4

(
‖ϕ0f |ξ(Z2)|−1

1 ‖2 + ‖g|ξ(Z2)|−1
1 ‖2 − 2

∣∣〈ϕ0f |ξ(Z2)|−1
1 , g|ξ(Z2)|−1

1 〉
∣∣) . (4.3.34)

Note that functions f and g are supported in the region |ξ(Z2)|1 ≥ (1 + κ2)−
1
2 |x|1,

where |x|1 ≥ b > 0. Hence, f |ξ(Z2)|−1
1 ∈ L2(Rc(Z2)) and g|ξ(Z2)|−1

1 ∈ L2(R0).

By the assumptions on the potentials Vij we have ϕ0 ∈ H2(R0(Z2)). Therefore,

〈∇q(Z2)ϕ0,∇q(Z2)g|ξ(Z2)|−1〉 = 0 and [VZ83, Lemma 5.3] imply

∣∣〈ϕ0f, g|ξ(Z2)|−2
1 〉
∣∣ ≤ (1− ω)

2

(
‖ϕ0f |ξ(Z2)|−1

1 ‖2 + ‖g|ξ(Z2)|−1
1 ‖2

)
, (4.3.35)

where ω > 0 depends on ‖ϕ0‖, ‖∇0ϕ0‖ and ‖∆0ϕ0‖ only. By combining (4.3.35) and

(4.3.34) we get

‖∇ξ(Z2)(ϕuZ2)‖2 ≥ ω

2

(
‖ϕ0f |ξ(Z2)|−1

1 ‖2 + ‖g|ξ(Z2)|−1
1 ‖2

)
≥ ω

2
‖f |ξ(Z2)|−1‖2.

(4.3.36)

This, together with (4.3.32) implies L2[ϕuZ2 ] ≥ 0.

It remains to prove that L3[ϕV ] ≥ 0 holds for every function ϕ ∈ H1(R0) satisfying

suppϕ ⊂ {x ∈ R0, |x|1 ≥ b}. For any partition Zp = (C1, . . . , Cp) with p ≥ 3 the

corresponding operators H[Ci] do not have virtual levels. Therefore, we can estimate

the functional L3[ϕV] in cones corresponding to partitions Zp into 3 ≤ p ≤ N − 1

clusters, similarly to the proof of Theorem 3.2.2. In the region, which remains

after the separation of cones corresponding to all Zp with p ≤ N − 1 it holds

|V (1)
ij (xij)| ≤ c|x|−2−ν

1 for all i 6= j. Applying Hardy’s inequality completes the

proof.

The difficult part in the proof of Theorem 4.3.3 is the case when the (N − 1)-body

subsystems have virtual levels at zero. Here the key ingredient is the partition

(4.3.16), where by Theorem 3.2.2 ϕ0 is the eigenfunction corresponding to the
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eigenvalue zero. In case of N = 3 particles in dimension d = 3 or d = 4 with

short-range potentials virtual levels of two-body subsystems are resonances. Here

the term (4.3.29) can no longer be controlled. According to Theorem 3.2.8 virtual

levels of the operator H restricted to a subspace with a fixed permutation symmetry

are eigenvalues as well. However, in this case these eigenvalues no longer have to be

simple, but still have finite multiplicity.

Therefore, we can generalize Theorem 4.3.3 to multi-particle systems with per-

mutation symmetries. Let Z1 be a system of N ≥ 4 particles containing K ≤ N

identical particles. Let the operators Hπ, Hπ(Zp), the group SK(Zp) and πK(Zp) ≺ π

be defined as in subsection 3.2.2. By Theorem 3.2.8 and the proof of Theorem 4.3.3

we conclude

Theorem 4.3.4. Consider the operator Hπ with d ≥ 3 and N ≥ 4, where the

potentials Vij satisfy (4.3.6) and (4.3.8). Assume there exists ε > 0, such that for

all partitions Z2 into two clusters C1 and C2 with |C1| = N − 1 or |C2| = N − 1 we

have

P π(Z2)H(Z2) ≥ 0 and σess

(
P π(Z2) (H(Z2) + ε∆0(Z2))

)
= [0,∞) (4.3.37)

for all π(Z2) ≺ π. Moreover, we assume that for all partitions Z2 into two clusters

C1 and C2 with |C1| 6= N − 1 and |C2| 6= N − 1 we have

σ
(
P π(Z2) (H(Z2) + ε∆0(Z2))

)
= [0,∞) (4.3.38)

for all π(Z2) ≺ π. Then the discrete spectrum of Hπ is finite.
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Further Developments and Open

Problems

Lower dimensions

In the thesis we have considered only dimension d ≥ 3 and have excluded the lower

dimensions one and two. An important tool for many arguments in the proofs was

the Hardy inequality

ˆ
Rd
|∇ψ(x)|2 dx ≥

(
d− 2

2

)2 ˆ
Rd

|ψ(x)|2

|x|2
dx, (4.3.39)

which is known not to hold in dimension d = 1 and d = 2. This also has as a

consequence that the space Ḣ1(Rd) cannot be defined in the same way. Furthermore,

in dimension d = 1 and d = 2 the fundamental solutions of the Laplace operator are

of the type c1|x| and c2 ln |x|, respectively. Hence, most results cannot simply be

applied to lower dimensions, because the behaviour of virtual levels is significantly

different in these cases. This is already apparent from the different properties of

the Laplace operator in dimension one and two compared to dimension three or

higher. With regard to the existence and the behaviour at infinity of the solutions

corresponding to the virtual levels it requires a somewhat different approach. This

also applies to the Efimov effect of one- and two-dimensional multi-particle systems.

In this regard we refer to the joint project with S. Barth and S. Vugalter, which is

currently in preparation and will be published soon.
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Virtual levels in the subsystems

In Theorem 4.3.3 we assumed that for any subsystem C with |C| = N − 1 the

operators H[C] defined in (2.2.23) may have virtual levels. However, the operators

H[C ′] corresponding to subsystems C ′ with |C ′| < N − 1 do not have have virtual

levels. This condition was essential in order to prove that zero-energy solutions

of Hamiltonians of (N − 1)-body subsystems decay sufficiently fast, which implies

that the corresponding virtual levels are eigenvalues at the threshold of the essential

spectrum. This is due to the assumption that we can subtract a small part of the

total kinetic energy of the quadratic form and it remains positive. In the spirit of

[KS80b] this corresponds to the critical coupling constant λ being multiplied by the

sum of the total pair interactions. However, one can also consider Hamiltonians

where each potential Vij is multiplied by its own coupling constant λij . For example,

in case of three particles in dimension three it was discussed in [Gri15] that one

can tune the three-body system to have a zero-energy resonance. Here the question

arises what overall properties such N -body systems have and how the corresponding

solutions behave at infinity. Furthermore, with regard to the discrete spectrum of the

operator, it is not clear what implications such subsystems can have. In this context

we also refer to the conjecture formulated in [Gri13], where it is expected that for

such systems there may be an Efimov-type effect for four particles in dimension

three.
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1960.

[Zhi74] G. M. Zhislin. Finiteness of the discrete spectrum in the quantum

problem of n particles. Teoret. Mat. Fiz., 21:60–73, 1974. English

translation: Theoret. and Math. Phys. 21:971–980, 1974.

148


	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction
	Summary of the main results
	Outline of the thesis

	Basic Concepts of Multi-Particle Quantum Systems
	One-particle Schrödinger operators
	The quadratic form of a Schrödinger operator
	Relatively form-bounded potentials
	The localization error

	Multi-particle quantum systems
	Separation of the center of mass
	Partition of the system
	Exponential decay of bound states


	Virtual Levels of Schrödinger Operators
	Zero-energy solutions of the Schrödinger equation
	Threshold resonances and bound states
	Connection to Hardy's inequality

	Virtual levels of multi-particle quantum systems
	Zero-energy solutions of the -body Schrödinger equation
	Virtual levels in systems of a fixed permutation symmetry

	Asymptotics of multi-particle bound states at the threshold
	Examples of systems with different asymptotics of threshold bound states


	The Efimov Effect
	Three quantum particles in dimension three
	Faddeev equations
	Zero-energy resonances in two-body subsystems
	Two-body resonances in three-body systems

	Absence of the Efimov effect in dimension four
	Systems of three four-dimensional quantum particles
	Resonance interaction of two four-dimensional particles
	Finiteness of the discrete spectrum

	On the Efimov effect for more than three quantum particles
	The assertion of Amado and Greenwood
	Absence of the Efimov effect in many-body systems


	Bibliography

