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Abstract

Abstract

In the past decades, biotechnological sales have increased steadily along with the range of products.
Amino acids and organic acids as high-value feedstock are major contributors to the constantly
growing market. Microbial production hosts such as C. glutamicum or P. putida yield stable pro-
duction during process development in lab scale. However, as consequence of the process transfer
into large scale, microorganisms may be prone to occurring inhomogeneities due to longer mix-
ing times or hampered mass transfer, finally yielding deteriorated performance. Experimentally
resolving environmental conditions in production scale bioreactors is rarely feasible due to dif-
ficulties in installing analytical instruments in the required resolution and low plant availability
for optimisation topics. Consequently, in the past years computational fluid dynamics (CFD) has
emerged as a tool to predict gradients in industrial scale fermenters. By tracking the bacteria on
their way through the bioreactor, resulting flow fields can be used for the statistical evaluation of
experienced concentration fluctuations. Although existing CFD studies already describe possible
scenarios, the influence of multiple gradients at a time was neglected and focus was put solely
on a single parameter such as glucose as main substrate. In fact, oxygen as growth determining
substrate was omitted so far, due to the complexity of two-phase flow simulations. Moreover, if
the gas phase was included, validation of gained multiphase simulation results was done sparsely.

This thesis provides supporting tools to characterise single and multiphase large scale conditions,
which help to minimise the risk of suboptimal scale up. A framework is presented, depicting the
necessary steps to investigate large scale conditions by CFD, consisting of the characterisation of
the biological system and reactor setup, multiphase and gradient simulation as well as the subse-
quent analysis of large scale heterogeneities. Starting point was the determination of cell specific
rates and yields by batch cultivations with C. glutamicum. Additionally, physical properties of the
broth, such as viscosity, density and surface tension were identified to be similar to water. Accord-
ingly, the experimental characterisation of a pilot scale bioreactor system was performed without
adjusting to medium specific properties. By variation of agitation and gassing rates, ranges of vol-
umetric power input, mixing time, volumetric mass transfer coefficient (kLa) and gas hold-up (εG)
were obtained and used for the validation of multiphase simulations. As a result, an operating point
was chosen at 300 rpm and 0.25 vvm, yielding a specific power consumption of 2.2 kW m−3 and a
kLa value of 125 h−1 to mimic a late stage fed-batch scenario without flooding of the impellers but
sufficient oxygen supply and realistic power input.

Subsequently, amongst several models for the description of two-phase flows, a suitable setup for
the multiphase simulation of the pilot scale bioreactor was implemented. The introduction of a
scaling factor for the turbulent dissipation rate, reduced the computational demand by enabling the
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use of a coarser grid size (1.12 · 105 #/m3), finally leading to only minor deviations of < 12 %
compared to the experimentally determined parameters.

Moreover, a ’snap-shot’ of a late fed-batch scenario consisting of glucose and oxygen concentra-
tion profiles was depicted, using the said setup in combination with an Euler-Lagrange approach.
The Roels kinetic served to model multi-substrate uptake, which is controlled by the local extra-
cellular environment and therefore the reaction was coupled to the Eulerian phase. The bacterial
phase was simulated as massless Lagrangian particles. The obtained concentration profiles were
overlaid and classified into a low glucose (LS), a transient (T) and a low oxygen (LO2) regime. So-
called lifelines, records of bacterial cells encountering fluctuating environmental conditions were
statistically evaluated, providing information on the frequency of regime transitions and average
dwelling times in specific regimes. Since dwelling times in the transient regime were rather short
(< 1 s) and the estimated volume was below 5 % of the total volume, the regime T can be ne-
glected in the subsequent design of scale-down (SD) devices. Lacking detailed information on
environmental conditions inside a bioreactor, traditionally, these SD devices are based on indus-
trial mixing times. In contrast, more realistic transition patterns and dwelling times were extracted
from the performed lifelines analysis. Consequently, a complex and a simplified design were pro-
posed. Furthermore, the statistical analysis revealed mostly less than 15 % deviation in dwelling
time distributions for the coarse grid size of 1.12 · 105 #/m3 compared to ten times finer meshes,
thereby significantly decreasing the computational cost. In a case study, the multiphase approach
was applied to a large scale setup showing fair agreement of overall simulated process parameters
like kLa and εG compared to predicted values by fitted correlations. As regime assignments were
identical to the examined pilot scale, the transferability of the approach on larger scales was shown.

In a second case study with P. putida in a 54 m3 bioreactor, further information on the formation
of large scale heterogeneities were retrieved. A single phase CFD simulation was coupled via
lifelines analysis to a cell cycle model for P. putida, describing replication phase (Cc) adjustments
dependent on substrate availability. Short and long term responses were formulated, as well as
subpopulations of different Cc-periods identified. Additionally, the cell cycle model was adapted
for the use with C. glutamicum and fitted to display replication phase duration dependent on carbon
dioxide stress and substrate availability. Hereby, the investigation of CO2 stress on C. glutamicum
in large scale fermentations is enabled.

In conclusion, following the proposed framework, the proper prediction of physical and biological
readouts in multiphase systems is possible. Proposed scale down devices and biological response
models offer the potential for both wet-lab and in silico analysis to predict realistic industrial case
scenarios. Accordingly, this work contributes to the a priori risk minimisation of suboptimal large
scale performance while computational cost is reduced.
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Zusammenfassung

Zusammenfassung

In den letzten Jahrzehnten hat sowohl der Umsatz als auch die Bandbreite an biotechnologischen
Produkten stark zugenommen. Als Grundbausteine bio-basierter Chemikalien tragen hochwertige
Rohstoffe wie Aminosäuren und organische Säuren entscheidend zum Wachstum des Biotech-
Marktes bei. Typische mikrobielle Produzenten wie C. glutamicum oder P. putida zeigen dabei
während der Prozessentwicklung im Labormaßstab ein stabiles Produktionsverhalten. Allerdings
entstehen im Laufe des Prozesstransfers in den industriellen Maßstab aufgrund von längeren Mis-
chzeiten und erschwertem Massentransfer häufig Inhomogenitäten, welche die Mikroorganismen
in ihrem Metabolismus beeinflussen und letztendlich zur verschlechterten Prozessperformance
führen können. Die experimentelle Untersuchung solcher Inhomogenitäten ist oftmals nur schwer
umzusetzen. Zum Einen, da Produktionsanlagen in der Regel nicht für Optimierungsstudien zur
Verfügung stehen, zum Anderen können analytischen Instrumente nicht in der erforderlichen Au-
flösung installiert werden. Ein vielversprechendes Tool, um Gradienten in industriellen Anlagen zu
prädizieren bietet daher die numerische Strömungssimulation (CFD). Anhand der ermittelten Strö-
mungsfelder können Bakterien auf ihrem Weg durch den Bioreaktor verfolgt werden und so die
Auswirkungen der Konzentrationsänderungen statistisch ausgewertet werden. Obwohl derartige
Studien bereits existieren, wurde der Einfluss mehrerer Gradienten bisher vernachlässigt und der
Fokus unmittelbar auf ein Hauptsubstrat -meist Glukose- gesetzt. Aufgrund der Komplexität von
Zweiphasenströmungen wurde Sauerstoff als wachstumslimitierendes Substrat für solche Studien
bisher vernachlässigt. Hinzu kommt, dass Validierungsexperimente für Multiphasensimulationen
nur sehr selten durchgeführt wurden.

Diese Arbeit stellt Werkzeuge vor, welche die Charakterisierung von großskaligen Ein- und Mul-
tiphasensystemen vereinfachen, um letztendlich das Risiko von suboptimalem Scale-up zu ver-
ringern. Notwendige Schritte zur Untersuchung industrieller Bioreaktoren mithilfe von CFD wer-
den beschrieben, wie die Charakterisierung des verwendeten biologischen Systems und des Reak-
torsetups, die Simulation von Multiphasensystemen und Gradienten sowie die folgende Anal-
yse von großskaligen Heterogenitäten. Ausgangspunkt war die Bestimmung von zellspezifis-
cher Raten und Ausbeuten mittles Batch Kultivierungen von C. glutamicum. Zusätzlich wurden
physikalische Eigenschaften der Fermentationsbrühe wie Viskosität, Dichte und Oberflächenspan-
nung gemessen, welche ähnlich zu Wasser gleicher Temperatur waren. Demnach war die Berück-
sichtigung der Medieneigenschaften für die experimentelle Charakterisierung des Pilotmaßstabs-
bioreaktor nicht notwendig. Durch Variation der Rührerdrehzahl und Begasungsraten konnte eine
Bandbreite volumenspezifischer Leistungseinträge, Mischzeiten, volumenspezifischer Massentrans-
ferkoeffizienten (kLa) sowie Gas hold-up (εG) erhalten werden, welche der Validierung anschließen-
der Multiphasensimulationen dienten. Als Ergebnis wurde ein Betriebspunkt bei 300 rpm und
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0.25 vvm gewählt, da diese Einstellungen mit einem spezifischen Leistungseintrag von 2.2 kW m−3

und einem kLa Wert von 125 h−1 ein realistisches Szenario eines späten Fed-Batch Prozesses
repräsentieren, in dem kein Fluten des Rühres auftritt und genügend Sauerstoff zur Versorgung
der Mikroorganismen zur Verfügung steht.

Im Anschluss wurde ein geeignetes Simulationssetup implementiert, um die Multiphasenströmung
im Pilotmaßstab zu dem gewählten Betriebspunkt numerisch abzubilden. Durch die Einführung
eines Skalierungsfaktors für die turbulente Dissipationsrate konnte der Rechenaufwand erheblich
gesenkt werden, da gröbere Rechennetze verwendet werden konnten (1.12 · 105 #/m3). Letz-
tendlich betrug die Abweichung zwischen simulierten und experimentellen Werten weniger als
12 %.

Darüber hinaus konnte durch die Kombination dieses Setups mit einem Euler-Lagrange Ansatz
die Momentaufnahme eines späten Fed-Batch Prozesses bestehend aus Glukose- und Sauerstoff-
profilen dargestellt werden. Der kinetischen Ansatz von Roels diente dabei zur Beschreibung der
Multisubstrataufnahme, welche über die extrazellulären Konzentrationen kontrolliert wurde und
somit an die Euler-Phase geknüpft wurde. Die Bakterien wurden als masselose Partikel mittels
der Lagrange’schen Beschreibungsweise simuliert. Die resultierenden Konzentrationsprofile wur-
den überlagert und in folgende Regime eingeteilt: geringe Glukosekonzentrationen (LS), transient
(T) und ein geringe Sauerstoffkonzentrationen (LO2). Die von den Bakterien wahrgenommenen
Umgebungsbedingungen wurden aufgezeichnet und statistisch ausgewertet. Diese sogenannten
lifelines liefern wertvolle Informationen über die Häufigkeit der Wechsel in bestimmte Regime,
sowie die Aufenthaltszeiten der Bakterien innerhalb dieser Regime. Da Regime T nur 5 % des
gesamten Volumens betrug und die Verweilzeiten in diesem Regime im Allgemeinen sehr kurz
waren (< 1 s), kann T für das Design von Scale-Down (SD) Apparaten vernachlässigt werden.
Üblicherweise richteten sich solche SD Anlagen aufgrund fehlender Detailinformationen über die
Umbegungsbedingungen nach industriellen Mischzeiten. Über die Analyse der bakteriellen life-
lines ist es jedoch möglich realistische Verteilungen der Regimewechsel sowie Aufenthaltszeiten
innerhalb der Regime zu erhalten und so genauere Einstellungen für die SD Experimente zu ver-
wirklichen. Infolgedessen wurden zwei Designs für SD Anlagen vorgeschlagen. Anhand der
statistischen Auswertung für das gröbste Netz von 1.12 · 105 #/m3 wurden nur geringe Abwe-
ichungen in den Verweilzeiten von mehrheitlich unter 15 % im Vergleich zu zehnfach feineren
Netzen bestimmt, was zu einer deutlichen Verringerung des nötigen Rechenaufwands führt. Der
Multiphasenansatz wurde weiterhin in einer Fallstudie zur Simulation eines großskaligen Reaktors
genutzt. Dabei konnten gute Übereinstimmungen der simulierten Prozessparameter wie kLa und
εG mit den durch Korrelationen vorhergesagten Werten erzielt werden. Die Übertragbarkeit des
vorhandenen Ansatzes von Pilot- auf Industriemaßstab wurde zudem über die identische Regime-
verteilung des resultierenden Gradienten bestätigt.

In einer zweiten Fallstudie mit P. putida in einem 54 m3 Bioreaktor wurden weitere Informationen
über die Entstehung von Heterogenitäten ermittelt. Eine einphasige CFD Studie wurde per lifeline
analyse an ein Zellzyklusmodell von P. putida gekoppelt, welches Anpassungen der Replikation-
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sphase (Cc) abhängig von der Substratverfügbarkeit beschreibt. Kurz- und langfristige biologische
Antworten wurden formuliert, sowie Subpopulationen unterschiedlicher Cc-Phasenlänge identi-
fiziert. Zusätzlich wurde das Zellzyklusmodell zur Darstellung des Einflusses von CO2-Stress und
Substratverfügbarkeit auf die Dauer der Replikationsphase für C. glutamicum adaptiert. Dadurch
kann zukünftig auch der Einfluss von CO2-Stress auf C. glutamicum in großskaligen Fermentatio-
nen untersucht werden.

Zusammengefasst wird durch das Befolgen der in dieser Arbeit genannten Schritte die korrekte
Vorhersage relevanter physikalischer und biologischer Parameter in Multiphasensystemen ermögli-
cht. Die empfohlenen Scale-Down Anlagen und biologischen Modelle haben das Potential über ex-
perimentelle und in silico Analysen realistische industrielle Fermentationsszenarien darzustellen.
Demnach trägt diese Arbeit dazu bei a priori das Risiko suboptimaler Leistung in großskaligen
Fermenter zu minimieren und gleichzeitig den Rechenaufwand zu reduzieren.
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1 Introduction

1.1 The biotechnological market and challenges of production

Growth of global population, climate change, protection of environment or conquering diseases
- the society of the 21st century has to face important challenges. Traditional sectors based on
fossil fuels can no longer fulfill the needs of this growing population. Biotechnology offers a sus-
tainable solution by increasing the productivity of both low-cost and high-value products lowering
by-product and waste accumulation. The biotechnological market is constantly on the rise with the
pharmaceutical market traditionally holding the major share. Worldwide sales in the biotechno-
logical drug production increased up to 113 $bn in 2017 for the top 20 biopharmaceuticals (Walsh,
2018). Also, the white biotech sector, driven by the production of biofuels, biomaterials, biochem-
icals, industrial enzymes or feed additives was expected to increase drastically by the end of 2020
with feed additives as key market (Festel, 2018). L-Lysine, a popular feed additive is globally
produced by Corynebacterium glutamicum with 2.2 million tons per year and a registered growth
rate of 10 % per year (Yokota & Ikeda, 2017). Manufacturing processes of such products gener-
ally involve large scale stirred tanks up to 500 m3. The development, however, is conducted in
shake flasks or laboratory scale bioreactors, typically at a liquid volume < 10 L. Within this scale,
optimal operating conditions are searched for to ensure the efficiency and productivity of the fer-
mentation process. These optima are usually very specific concerning pH, temperature, dissolved
oxygen, carbon or nitrogen source and feed strategy. Challenges arise when transferring these
processes from laboratory to pilot scale and finally into a production facility. With the volume in-
crease at each scale, operational conditions have to adapt to ensure optimal process performance.
However, due to limited mixing and mass transfer within larger scales, this might not be possible.
Concentration fluctuations of glucose, pH, oxygen or elevated carbon dioxide levels may arise and
influence the organisms metabolism, which could result in deteriorated yields.

1.2 Motivation of this thesis

In order to predict the behaviour of a system or even improve it, the proper description and un-
derstanding of processes related to that system is crucial. Although large scale biotechnological
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manufacturing processes exist for numerous products, the environment inside a bioreactor and
potential consequences on microbial behaviour remain unclear. On one hand, little information
on large scale production processes are available, since the facilities are owned by companies and
therefore information are confidential. On the other hand, it is extremely difficult to gather detailed
information inside a large scale reactor system due to high risk of contamination and unsuitable
measurement techniques. In the recent years, computer aided techniques to study the bacterial
environment gained momentum, as local conditions can be captured by the application of Com-
putational Fluid Dynamics (CFD) (Werner et al., 2014). Thereby, the turbulent flow field of a
stirred tank reactor is simulated enabling the prediction of various flow variables as well as reactor
specific characteristics like power consumption or mixing times (Montante et al., 2005; Coroneo
et al., 2011). Several possibilities to include the bacterial reaction towards fluctuating concen-
trations within a large scale bioreactor exist (Morchain et al., 2014; Pigou & Morchain, 2015).
Latest research focuses on an Euler-Lagrange approach, which treats the liquid-phase motion in
an Eulerian representation, but computes single massless particles to display the bacterial phase in
a Lagrangian way (Lapin et al., 2004; Haringa et al., 2016; Kuschel et al., 2017). This method is
a powerful tool to review the conditions to which the bacteria are exposed to. By tracking their
path, the complete environmental (cell) history is recorded. Results of statistical evaluation can
be coupled to biological models to display the formation of population heterogeneity or help to
design scale down (SD) devices (Haringa et al., 2017a). These SD devices are laboratory scale
bioreactors, which enable the installation of large scale conditions, allowing to measure microbial
responses simultaneously. In contrast to traditional approaches relying on industrial mixing times
for SD design (Neubauer & Junne, 2010; Käß et al., 2014; Heins et al., 2015), the Euler-Lagrange
approach reflects the actual conditions encountered by the microorganisms.

Until now, these simulation of bacterial trajectories, so called lifeline analysis has been performed
in single phase or with a carbon source as sole substrate neglecting the influence of oxygen. How-
ever, as most biotechnological processes are aerated it is necessary to include an oxygen balance in
the simulation. In general, the conduction of multiphase simulations is rather complex and several
aspects need to be considered like the modelling of the bubble size distribution, bubble breakage,
bubble coalescence, interphase momentum exchange and grid size of the numerical mesh to keep
a balance between simulation cost and accuracy of the obtained results.

To address these issues, in the presented thesis Resolving heterogeneities in single and multiphase

bioreactor systems - Predictive modelling tools towards successful scale-up an experimentally
validated multiphase pilot scale bioreactor system was investigated and heterogeneities occurring
within a fed-batch fermentation process of C. glutamicum are displayed from the bacterial point of
view. Furthermore, it suggest biological models as bacterial response towards fluctuating concen-
trations. A detailed overview of each chapter is given in the next section.
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1.3 Objectives, strategies and thesis outline

The core aspects covered in this thesis are depicted for each chapter supported by several research
questions (RQn), which will be answered in the respective chapter. Chapter 2 - Theory gives an
overview of relevant background considering fundamental characteristics of numerical flow simu-
lation, modelling of turbulence, agitation and mixing in stirred tanks as well as general problems
which need to be solved to depict the complex flow of a multiphase system. Furthermore several
models to include population heterogeneity are presented. Chapter 3 - Characterisation of bio-
processes with C. glutamicum as model organism describes the conduction of batch experiments
with C. glutamicum in a laboratory scale stirred tank to determine organism specific consumption
and production rates. The growth parameters serve to parameterise later numerical simulations.
Additionally, media properties were examined and the following question arose:

RQn3.1 How do viscosity, density and surface tension of the broth change compared to pure
water? How will these properties affect the numerical simulation?

The following chapter, Chapter 4 - Characterisation of a pilot scale bioreactor, deals with
the generation of experimental data to validate numerical simulations. Hereby, reactor and setup
specific quantities like power consumption, mixing time, gas hold up and volumetric mass transfer
coefficients are gathered which lead to the question:

RQn4.1 What is a suitable operating point for the bioreactor?

Furthermore, the chapter addresses the complex issue of multiphase simulations and the questions
were raised:

RQn4.2 Which models are suitable to display the multiphase stirred tank pilot scale system?
How well does the simulation reflect the experimental data?

RQn4.3 Is it possible to reduce computational costs by reducing the grid density without loosing
accuracy of the physical read outs?

Relating to chapter 4, Chapter 5 - Simulated oxygen and glucose gradient concentrates on the
inclusion of glucose feed as well as glucose and oxygen consumption to the numerical simulation
of the pilot scale reactor. Organism specific rates of chapter 3 were used to simulate a glucose and
oxygen gradient. Moreover, bacterial trajectories or lifelines were simulated to display the envi-
ronmental changes inside the fermenter from the bacterial point of view. The following research
questions were targeted:

RQn5.1 How does a multi substrate gradient consisting of glucose and oxygen concentration
profiles for C. glutamicum look like and which different zones may be derived?
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RQn5.2 Which information are gained by statistically evaluating bacterial readouts from the
simulation of lifelines in a multi substrate gradient? How can the results be used for
process optimisation?

RQn5.3 Are the concentration profiles influenced by the simplifications made in chapter 4 to
reduce the mesh density? How big are the deviations in the final lifeline analysis?

The chapter couples numerical flow simulations to simple biological models to describe substrate
consumption. Hereby, based on the work of Lapin et al. (2004) and Haringa et al. (2016) bacte-
ria are treated as massless lagrangian particles and statistically evaluated to depict heterogeneity
of a two phase flow system. A possible model to describe the bacterial response towards these
concentration fluctuations is presented in Chapter 6 - Cell cycle model. The analyses of data
obtained by single cell flow cytometry experiments of samples derived by continuous cultivations
of C. glutamicum lead to the question:

RQn6.1 How does the replication phase duration of C. glutamicum change for different sub-
strate availability and carbon dioxide stress in a multiphase system?

As a preliminary study this was also examined in a single phase system dependent on substrate
availability for Pseudomonas putida.

Heterogeneity of two large scale reactor systems is examined in Chapter 7 - Heterogeneity anal-
ysis in large scale exemplarily. In this chapter the findings of the biological response model from
chapter 6 obtained for P. putida are connected to the single phase numerical simulations of a 54 m3

stirred tank. Furthermore, the multiphase reactor setup of previous chapters is scaled up by a factor
of 100 to display gradient formation in large scale as well as to include a basis for carbon dioxide
mass transfer. Aspects examined in this chapter were:

RQn7.1 How could the response of a P. putida culture towards substrate gradients within a
large scale bioreactor look like and how does this influence the homogeneity of the
population?

RQn7.2 How does the obtained multiphase setup for C. glutamicum perform in large scale?

The final chapter, Chapter 8 - Conclusion and outlook discusses major findings and summarises
the answers of the research questions. Suggestions for future work are also provided.
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2.1 Corynebacterium glutamicum

Corynebacterium glutamicum was isolated in the 1950s in Japan, while searching for a glutamate
producer to enhance flavours. It is a rod-shaped Gram-positive microorganism, which belongs to
the phylum Actinobacteria. The cell length varies between 1.6 - 2.5 µm (Neumeyer et al., 2012).
It often grows in V-shaped pairs, as result of the snapping division (Letek et al., 2008). Because
C. glutamicum is not only non-sporulating, non-endotoxic and generally regarded as safe (GRAS),
but also grows fast and is easily cultivated, it is one of the most important platform for biotechno-
logical applications (Leuchtenberger et al., 2005; Takors et al., 2007; Becker & Wittmann, 2012).
Therefore, its metabolism has been extensively described in literature (Eggeling & Bott, 2005;
Liebl, 2006; Yukawa & Inui, 2013; Becker & Wittmann, 2017) being able to produce carboxylic
acids like L-lactate, succinate and acetate, while growing on carbon sources like glucose, fructose,
sucrose or ribose under aerobic conditions. Marginal growth was also reported under anaerobic
conditions but only in presence of nitrate (Takeno et al., 2007). As an industrial workhorse it is
usually used for the production of organic acids, biofuels and polyamines, but most importantly
for the production of amino acids like L-lysine or L-glutamate. The yearly production of lysine,
which is used as feed additive for animals, is currently estimated to be 2.2 million tons (Yokota &
Ikeda, 2017). Also, the annually L-glutamate production exceeds 3 million tons with product titers
of 100 g L−1 (Wendisch et al., 1997). The cultivation of C. glutamicum is generally conducted as
aerated stirred fed-batch process in reactor volumes of up to 500 m3 (Eggeling & Bott, 2015). The
production in such huge fermenters, however, often suffer from deteriorated yields as described in
the next section.

2.2 Scale up of fermentation processes

Manufacturing processes of low-cost and high quality products are usually performed in large-
scale fermenters to decrease the economic burden. Being developed in laboratory scale tanks of 1
to 50 L, the challenge lies in the accurate transfer of these processes to a full scale production fa-
cility. An industrial production plant normally operates at a working volume >10 000 L especially
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for microbial processes. Most commonly, the geometric similarity is kept constant resulting in a
constant tank height to tank diameter and tank diameter to impeller diameter ratio. While this is
simple to realise, maintaining all other physical, chemical or biological factors is rather compli-
cated. In fact a “1:1 approach” is simply impossible. For a single impeller systems, mixing time
might be correlated very well to the agitation rate (Villadsen et al., 2011), however keeping the
impeller speed constant leads to unreasonable high power consumption in large scale (Oldshue,
1966). On the contrary, if the volumetric power consumption (P/V) is kept constant, high mixing
times might lead to the formation of gradients. Gradient formation is mainly dependent on the
growth characteristics of the organism. As different strains vary significantly in their growth kinet-
ics, the substrate consumption rate is an additional factor which needs to be considered for process
development and scale up. In essence, the time of carbon source consumption at carbon source
concentrations equal to the half saturation concentration (cS = KS) differs dramatically by orders
of magnitude (25 to > 1000 s) between various organisms, preventing the creation of a general
scale up guideline (Bach, 2018).

Cultured in these fluctuating conditions heterogeneities may arise, due to cells differing in their
metabolism, yields or quality of the product (Lara et al., 2006). Additionally, in case of an aerobic
process, agitation and gassing rate need to be sufficient to maintain a specific volumetric oxygen
mass transfer coefficient kLa or dissolved oxygen level, to provide enough oxygen to the culture.
Nevertheless, this might result in foaming issues, impeller flooding or increased shear stress. A
proper scale up becomes even more complicated for multi-impeller systems. Therefore, scaling up
of a fermentation process always remains a compromise between the individual scale up factors
and needs to be adjusted dependent on the most relevant criteria for each special case.

The mixing time in a 30 m3 stirred tank, agitated by four Rushton turbines was reported to be 125 s
for a specific power input of 2 kW m−3 (Vrábel et al., 2000), which is fourteen times higher than in
pilot scale (Bach et al., 2017). For the same reactor, Larsson et al. (1996) described the occurrence
of glucose gradients for a fermentation process of Saccharomyces cerevisiae. He tested the influ-
ence of different feeding positions or feeding at multiple positions. However, such changes evoke
new challenges which need to be tackled like mechanical instability, inexact feeding and higher
risk of contamination. Dissolved oxygen gradients were described by Steel & Maxon (1966) and
Oosterhuis & Kossen (1984). These gradients might lower cell growth, product yield and increase
by-product formation (Bylund et al., 1998). Furthermore, as a consequence of high pressures and
poor mixing in large scale, partial pressures of carbon dioxide (pCO2) might reach critical levels.

To investigate the cellular response to such fluctuating conditions, scale-down (SD) experiments
are performed. Information gained by these experiments can elucidate intrinsic regulatory mecha-
nisms and provide guidelines for strain and process engineering to minimise unwanted large scale
impacts. Schilling et al. (1999) observed a reduced biomass and L-lysine production for the L-
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lysine producing strain C. glutamicum DSM 5715 when cultivated under prolonged mixing times
(10-130 s) in a 42 L bioreactor as a scale-down study. For the wild-type strain C. glutamicum

ATCC13032, no significant growth reduction or by-product formation was measured, when culti-
vated in a scale-down experiment consisting of an aerated stirred tank reactor (STR) and a non-
aerated plug flow reactor (PFR) module with a residence time in the PFR of 45-87 s. However,
L-lactate and succinate were accumulated in the PFR, but subsequently re-assimilated in the STR
(Käß et al., 2014). For the same strain oscillating CO2/ HCO−3 level in a three compartment cascade
bioreactor system resulting from installed pCO2 gradients of 73-315 mbar led to the up-regulation
of 66 genes (Buchholz et al., 2014b). Lemoine et al. (2016) observed a drastic growth and product
reduction of a cadavarine producing strain, when cultivated in a three compartment scale-down
(SD) device on complex media, mimicking a bottom-fed late fed-batch scenario.

However, these scale-down experiments usually rely on large scale mixing or circulation times. In
order to obtain more advanced set-ups, residence times of bacterial cells in specific critical regimes
might be used to design SD devices, which can be derived by computational fluid dynamics (CFD).
This will be shown in the course of this thesis.

2.3 Dimensionless numbers

Due to their physical relevance several dimensionless numbers serve to characterise a system and
may be calculated prior to CFD simulations. Additionally, these numbers enable the comparison
of the results to other studies. The power number NP is calculated from the power consumption
P , the density ρ, agitation rate N and impeller diameter DI:

NP = P

ρ N3 D5
I

(2.1)

For many stirrer types the power number has already been calculated as a function of the Reynolds
number Re, making it possible to estimate the power consumed by the agitation system. The Re
represents the ratio of inertial to viscous forces and is expressed as:

Re = ρ N D2
I

η
(2.2)

with η as dynamic viscosity of the liquid phase. Additionally the Froude number Fr, which
describes the ratio of inertial to gravitational forces is often used to describe a system:

Fr = N2 DI

g
(2.3)
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with g as gravitational acceleration. In a non aerated baffled tank operating in the turbulent regime
(Re > 10−4), the power number becomes constant. At such conditions the inertial forces dominate
and the effect of Re or Fr becomes negligible.

Aerated processes are usually characterised by the dimensionless flow number Fl:

Fl = Qg

N D3
I

(2.4)

with Qg as gassing rate. The flow number is an indicator of loading or flooding regime (Nienow,
1998; Warmoeskerken & Smith, 1985) and critical flow numbers can be obtained from several
correlations (Gezork et al., 2000; Rosseburg et al., 2018; Wiedmann, 1983). In the loading regime,
the flow field is dominated by the momentum induced by the impeller, whereas in a flooding regime
the momentum is induced by buoyancy driven flow.

The Eötvös number Eo characterises the shapes of bubbles or drops moving in a surrounding fluid.
Eo is defined by the ratio gravitational forces to surface tension forces with d as bubble diameter
and σ as surface tension:

Eo = g (ρL − ρG) d2

σ
(2.5)

The Schmidt number Sc describes the ratio between internal friction and diffusion rate.

Sc = ν

D
(2.6)

with ν as kinematic viscosity and D as diffusion coefficient.

2.4 Computational fluid dynamics for biotechnology

Computational fluid dynamics gain momentum in several fields amongst them the sector of biotech-
nology. To better understand how the complex flow within a bioreactor can be described, basics of
numerical flow simulation and necessary simplifications are presented in the following sections.

2.4.1 Fundamentals of flow simulation

In principle, all kinds of flows can be described based on the fundamental equation of gas kinetics,
the Boltzmann equation. However, in technical flows the inclusion of all physical effects is usually
not necessary and several simplifications are helpful to reduce computational costs. Figure 2.1
gives a schematic overview of the hierarchy of basic flow equations. As the Knudsen number Kn,
defining the ratio of the molecular mean free path length λm to a representative physical length
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scale L, decreases to a value below 10−2 (Kn < 10−2) the flow can be described macroscopi-
cally by the continuum mechanics. In the 19th century Claude-Louis Navier and George Gabriel
Stokes formulated the Navier-Stokes Equations (NSE) for such flows. The mathematical model
completes the Euler equations by the inclusion of viscosity and is only valid for Newtonian fluids
of compressible or incompressible flows. In case of high Reynolds numbers (Re >> 1), friction is
negligible and the general NSE simplify to the Euler equations. Furthermore, if the Mach number
Ma, defining the ratio of fluid velocity to speed of sound, is small (Ma < 0.3) the incompressible
flow can be described semi-analytically as potential flow. Based on the general NSE in case of
Ma < 0.3, the NSE for incompressible flows can be used. Additionally, if friction and heat trans-
fer are negligible the flow can be described by potential equations, too. If friction and heat transfer
can not be neglected but Re is very small (Re << 1) the Stokes equations can be used.

Biotechnological applications are often conducted in the turbulent flow of stirred tanks (Re >> 1)
under moderate temperatures (30 - 37 ◦C) and pressures (1 - 1.5 bar). Main components of the
media, which is used to cultivate the bacteria are water and salts. Hence, the incompressible
Navier-Stokes equations are generally used as model approach. Hereby, the volume occupied
by the fluid in the vessel is described by a three-dimensional computational grid and the flow is
characterised macroscopically by state variables. Physical relevant effects are described by the
conservation laws for mass (eq. 2.7a), the three momentum equations (2.7b, 2.7c, 2.7d) and the
energy conservation equation (2.7e) within an infinitesimally small volume element, resulting in a
system of partial differential equations:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (2.7a)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ η

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
(2.7b)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂y
+ η

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
(2.7c)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −∂p

∂z
+ η

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
(2.7d)

ρcp

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)
= λ

(
∂2T

∂x2 + ∂2T

∂y2 + ∂2T

∂z2

)
(2.7e)

with u, v and w as velocity components (u, v, w) of a fluid particle in x, y or z direction (x, y, z),
p as pressure within the fluid and η as dynamic viscosity. As incompressible fluid, the density is
assumed to be constant (ρ = const.). The energy equation contains the temperature T , the thermal
capacity cp and the thermal conductivity λ. For biotechnological applications the temperature is
controlled. Temperature gradients are neglected in this study and the process is assumed to be
isotherm. So the NSE can be reduced to mass and momentum equations. Considering gravitation,
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Figure 2.1: Fundamental flow equations. Schematic overview of flow equations. Modified to Laurien & Oertel jr.
(2018). The relevant mathematical model for biotechnological applications is marked in grey.

the tensor notation with i, j = 1, 2, 3 referring to the three velocities u, v, w and the coordinates
x, y, z , respectively, can be written as:

∂ui
∂xi

= 0 (2.8a)

ρ
∂ui
∂t

(I)

+ ρ
∂(uiuj)
∂xj

(II)

= − ∂p

∂xi

(III)

+ η
∂

∂xj

∂ui
∂xj

(IV)

− ρgi

(V)

(2.8b)

The left side of equation 2.8b describes the local (I) and convective (II) acceleration. Term (III)
describes compressive forces, term (IV) frictional forces and term (V) gravitational forces with gi
as gravitational acceleration (g1 = g2 = 0; g3 = 9.81 m s−2).

2.4.2 Modelling of turbulence in stirred tanks

Although the NSE are generally valid for all kinds of flows, the practical applicability for tech-
nical systems is usually reduced to laminar flows. To capture all properties of a turbulent system
a very high grid resolution is necessary to simulate the flow, which leads to immense computa-
tional costs. Alternatively, the turbulence is modelled to diminish the computational effort. Figure
2.2 (A) shows the hierarchy of turbulence models in terms of grid size and computational effort
and figure 2.2 (B) displays the energy spectrum which is still captured by the respective model.
The computationally cheapest approach are the Reynolds Average Navier-Stokes (RANS) models.
Hereby, turbulence is already modelled at the integral (energy containing) scale L, which contains
the largest eddy scales and concentrations of turbulent kinetic energy. The length scale L is con-
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A B 

Figure 2.2: Hierarchy of turbulence models and turbulent kinetic energy spectrum. (A) Velocity distribution of
a turbulent jet using RANS, LES and DNS. Modified to Rodriguez (2019). (B) Turbulent kinetic energy of isotropic
turbulence with respect to the wavenumber κ. The level of computed and modelled scales in RANS, DNS and LES is
shown. Adapted from Sagaut et al. (2006).

sidered as the size of the eddies containing most of the turbulent kinetic energy. These vortices
decay to smaller ones in the inertial range, which is based on the Kolmogorov hypotheses (Kol-
mogorov, 1941) that correlate the inertial subrange energy spectrum E(κ) with the wavenumber κ,
the turbulent dissipation rate ε and a constant Cκ:

E(κ) ∼ Cκκ
− 5

3 ε
2
3 (2.9)

with the mean value of turbulent kinetic energy obtained by:

〈k〉 =
∞∫
0

E(κ)dκ (2.10)

The smaller eddies decay further and the turbulent kinetic energy is transferred to the mean flow
by viscous effects until dissipation takes place at microscale ηκ, the Kolmogorov length scale:

ηκ =
(
ν3

ε

)0.25

(2.11)

with ν as kinematic viscosity. This range is denoted as dissipation range in figure 2.2 (B). RANS
models assume isotropy for the turbulence, whereas the flow in a stirred tank is anisotropic. It
was shown, that the mean flow was predicted satisfactory by RANS models in two directions but
over or underpredicted in the third direction (Coroneo et al., 2011; Bakker et al., 1997; Joshi
et al., 2011). Furthermore, turbulent kinetic energy profiles were significantly underpredicted by
RANS models (Murthy & Joshi, 2008). The unsteady RANS (URANS) approach bears the same
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drawbacks, but is capable of resolving periodic flow features or moving parts of the flow. Much
finer mesh resolution is necessary to perform a Large Eddy Simulation (LES), as large temporal
and spatial scales are simulated, but small scales are modelled by a subgrid-scale. Resolving all
but the smallest scale was shown to predict turbulent flow structures more accurately, especially
the dissipative characteristics of a stirred tank, because smallest scales tend to be more isotropic
than larger scales (Bakker & Oshinowo, 2004; Delafosse et al., 2009; Derksen & Van Den Akker,
1999; Hartmann et al., 2004; Jahoda et al., 2007).

However, LES needs very fines mesh resolution near the wall and is therefore very time consum-
ing. Several hybrid models like detached-eddy simulation (DES) exists, which use LES away
from the walls and RANS modelling near the wall to overcome limitations by RANS but offering
increased insight in the solution of unsteady flows. By Direct Numerical Simulation (DNS) all
turbulent structures are simulated and none are modelled. This is the most accurate approach, but
requires high spatial and temporal resolution up to the Kolmogorov scale. Typically, DNS is only
used in academia to investigate the properties of turbulence by replacing experimental approaches.
Furthermore, it serves as basis to compare the quality of obtained results of computationally less
demanding approaches like LES or RANS.

From a practical point of few, RANS models are still the most frequent choice to model techni-
cal flows because of the reduced computational demand, for stability reasons and easy handling.
Especially for stirred multiphase flows, the computational demand increases drastically for other
approaches. Therefore, the focus of this thesis is drawn to the description of RANS models.

The Reynolds-Averaged Navier-Stokes models solve ensemble-averaged (or time-averaged) Navier-
Stokes equations by introducing averaged and fluctuating components. For instance the velocity u
can be calculated by:

u(x, y, z, t) = u(x, y, z) + u′(x, y, z, t) (2.12)

with u as mean value of the time interval ∆t and u′ as positive or negative fluctuation. To include
the effect of turbulent fluctuations on the mean flow, equation 2.12 is inserted in the Navier-Stokes
equations. After transformation and simplification this results in :

∂ui
∂xi

= 0 (2.13a)

ρ
∂ui
∂t

+ ρ
∂(uiuj)
∂xj

= − ∂p

∂xi
+ ∂

∂xj

(
η
∂ui
∂xj
− ρu′iu′j

)
− ρgi (2.13b)

The double average results in ui = ui or uiuj = uiuj . By definition the mean of the fluctuation
is zero u′i = u′j = 0, resulting also in uiu′j = u′iuj = 0. The additional six terms −ρu′iu′j
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(i, j = 1, 2, 3) were derived from terms (II) in eq. 2.8b, which contain fluctuations as consequence
of turbulent mixing and are defined as Reynolds stress terms τReji . These fluctuations are unknown
and have to be modelled.

Several models to compute the Reynolds stresses exist. The most common models are the k− εmod-
els, which solve two additional transport equations and model the Reynolds stresses using the eddy
viscosity approach.

In the standard formulation the transport equation for the turbulent kinetic energy k and the turbu-
lent dissipation rate ε are :

ρ
∂k

∂t
+ ρ

∂(kuj)
∂xj

= ∂

∂xj

((
η + ηt

σk

)
∂k

∂xj

)
+ Gk − ρε (2.14a)

ρ
∂ε

∂t

(I)

+ ρ
∂(εuj)
∂xj

(II)

= ∂

∂xj

((
η + ηt

σε

)
∂ε

∂xj

)

(III)

+ C1ε
ε

k
Gk

(IV)

− C2ερ
ε2

k

(V)

(2.14b)

with term (I) describing the rate of change, term (II) transport by convection, term (III) transport
by molecular and modelled turbulent diffusion and term (V) the dissipation per volume. The
production term (IV) includes the Reynolds stress terms and can be expressed as:

Gk = −ρu′iu′j
∂ui
∂xj

(2.15)

Hereby, the Reynolds stress terms are modelled by the turbulent viscosity (Boussinesq-approach)
neglecting turbulent pressure:

− ρu′iu′j = ηt

(
∂ui
∂xj

+ ∂uj
∂xi

)
(2.16)

With the turbulent viscosity as :

ηt = ρ Cη
k2

ε
(2.17)

The constants for the standard k − ε (SKE) model are Cη = 0.09, σk = 1.0, σε = 1.3, C1ε = 1.44
and C2ε = 1.92. Generally, the realizable k − ε model showed better performance in rotating
flows and was therefore used in this study (Gimbun et al., 2009). The difference to the standard
k − ε model is in the formulations of the turbulent viscosity and the transport equation for ε:

ρ
∂ε

∂t
+ ρ

∂(εuj)
∂xj

= ∂

∂xj

((
η + ηt

σε

)
∂ε

∂xj

)
+ ρC1Sε− ρC2ε

νε2

k +
√
ε

(2.18)
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with C1 = max(0.43, ξ/(ξ + 5)), ξ = Sk/ε and S =
√

2SijSij and the shear strain tensor:

Sij = 0.5
(
∂ui
∂xj

+ ∂uj
∂xi

)
(2.19)

The variableCη to determine the turbulent viscosity is no longer constant in the realisable k− εmodel
but dependent on the mean strain and rotation rates, the angular velocity of the system rotation,
and the turbulence fields (k and ε). The constants for the realizable k − ε model are C2 = 1.9,
σk = 1.0 and σε = 1.2.

The velocity changes rapidly and turbulences are subdued in the near wall zone due to no-slip
conditions at the wall. Owing to these high solution gradients, the size of the grid cell nearest to
the wall is very important. To compare near wall effects of several flows, the velocity u is made
dimensionless (u+):

u+ = u

uτ
, y+

w = yw uτ
ν

, uτ =
√
τw
ρ

(2.20)

with y+
w as dimensionless wall distance, yw as actual wall distance, uτ as shear velocity, ν as

viscosity, τw as wall shear stress and ρ as density of the medium.

If the viscous sublayer is completely resolved, the first grid cell needs to be y+
w =1. This will

significantly increase the mesh density and is only used in combination with low-Reynolds models
(like k − ω). The application of a wall function is more common for high Re models (like SKE
or RKE), especially if mixing in the middle of the domain is more important, rather than forces at
the wall. Hereby, the first grid cell needs to be 30 < y+

w < 300. In the viscous sublayer the flow is
dominated by the molecular viscosity and is modelled as:

u+ = y+
w (2.21)

The near wall zone, the fluid layer above the viscous sublayer is modelled by the logarithmic wall
function:

u+ = 2.5 ln y+
w + 5.5 (2.22)

The first grid cell might be calculated by eq. 2.23 by inserting τw in eq. 2.20 :

Cf = 0.058 Re−0.2, τw = 0.5 Cf ρ u2
∞ (2.23)

with the skin friction coefficient Cf of a flat plate (von Kármán, 1934) and u∞ as the velocity
distant to the wall. Other wall functions are applicable like the enhanced wall treatment option for
low - Re flows or flows with complex near-wall phenomena, as well as the scalable wall functions.
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2.4.3 Modelling of agitation and mixing in stirred tanks

A number of models to incorporate the motion of the impeller exist. Amongst them are steady
state approaches like the Computational Snapshot (CS) model (Ranade & Van den Akker, 1994)
the Inner-Outer (IO) model (Brucato et al., 1998) and the Multiple Reference Frame (MRF) model
(Luo & Gosman, 1994). Hereby, the rigid body is subtracted from the fluid region and forces to
impose the impeller motion are added either at the impeller or in the surrounding zone. In the CS
approach impeller blades are fixed at a specific position and forces exerted by the impeller on the
fluid are modelled. The IO and MRF models divide the mesh into two zones, one rotating frame
containing the impeller and one stationary frame containing the baffles. By the separation into
these zones, the impeller baffle interaction is accounted for. In contrast to the MRF method, the
zones in the IO approach overlap, which requires an iterative matching of the solution obtained
on the boundaries of the overlapping zones. The transient behaviour of the fluid motion can be
modelled by the Sliding Mesh (SM) model (Murthy et al., 1994), however it is less favorable due
to high computational costs (Dewan et al., 2006). The most frequently applied approach is the
MRF method, as it showed adequate results compared to experimental Laser Doppler Anemom-
etry (LDA) (Naude et al., 1998), with only small differences in fluid velocities and power draw
compared to SM (Koh et al., 2003; Montante et al., 2001).

Mixing time studies generally showed better performance for single and multiple impeller sys-
tems applying LES methods compared to MRF-SKE or SM-SKE methods (Jahoda et al., 2007;
Haringa & Mudde, 2018). In single impeller systems the mixing time was overpredicted by SM
approaches (Jahoda et al., 2007; Zadghaffari et al., 2010) but good agreement with experimen-
tal data was shown for the MRF method provided, that the mesh resolution was sufficient. For
multiple impeller systems the mixing time was over-estimated with both MRF-SKE and SM-SKE
by 20 % and 26 % respectively (Jahoda et al., 2007). Kukuková et al. (2005) predicted only an
overestimation of 8.6 % with MRF-SKE. For a three and four impeller system mixing time was
overpredicted or fixed by tuning the turbulent Schmidt number Sc (Moštěk et al., 2005; Mon-
tante et al., 2005; Delafosse et al., 2014). Haringa et al. (2018b) reported an increase in mixing
time with increasing mesh density, leading to poorer prediction of the mixing time. However,
the study was conducted with large impeller spacings ∆C = T, which exhibit complete parallel
flow and thereby a pronounced inter-compartment plane. Furthermore, these mixing studies were
conducted on frozen velocity and turbulence fields. Transient MRF performed with an URANS
solver captures unsteady and rotational effects of the vortex (Gullberg & Sengupta, 2011), which
might effect mixing times as well. Bach et al. (2017) reported good agreement with experimental
mixing time for transient RANS simulations and a multiple reference frame approach. Moreover,
as their study was conducted as multiphase simulation their results qualify the applicability of this
approach to derive mixing times in two phase systems.
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2.4.4 Modelling of two phase flows in stirred tanks

The majority of biotechnological applications is performed as aerobic fermentation, making it
necessary to include a second phase in the simulation. Approaches for multiphase modelling are
depicted in figure 2.3.

The Discrete Phase Model (DPM) follows the Euler-Lagrange approach. The fluid phase is treated
as continuum and solved by the NSE, whereas the dispersed phase is solved by tracking a large
number of particles. In case of a gas liquid flow these particles are bubbles which are calculated
through the flow field. This approach is applicable for small gas volume fractions and becomes
very computationally expensive for a large number of particles. For higher gas volume fractions the
Euler-Euler approach is more suitable, treating the different phases as interpenetrating continua.
Since a phase cannot be occupied by the other phase the sum of the volume fractions must add up
to one. For each phase conservation equations are solved. The three common models are depicted
in figure 2.3. The Volume of Fluid (VOF) is a surface-tracking technique designed for immiscible
fluids, where the position of the interface between two fluids is of interest and therefore mostly
applied for free-surface flows. For bubbly flows the Mixture and Eulerian model are better suited.
In the mixture model, momentum equations for the mixture are solved and the dispersed phase
is described by relative velocities, whereas the Eulerian model solves a set of n momentum and
continuity equations for each phase. The mixture model is less computationally costly and used if
the dispersed phase is wide distributed within the fluid phase. In the heterogeneous environment
of a large scale stirred tank however, the dispersed phase is often concentrated, especially around
the impeller. Additionally, interphase drag laws play an important role, which makes the Eulerian
model a better choice to simulate a multiphase stirred tank. The basic equations for the two fluid
model are shown in equation 2.24:

∂αk
∂t

+ ∂(αkuki )
∂xi

= Γk (2.24a)

ρk

(
∂(αkuki )
∂t

+ ρ
∂(αkuki ukj )

∂xj

)
= −αk

∂p

∂xi
+
∂(αkτ kji + τRe,kji )

∂xj
− αkρgi +Mi,k (2.24b)

with αk as the volume fraction of phase k, Γk as source or sink term to describe mass transfer at
the interface. As for single phase flows, the Reynolds stresses τRe,kji = −ρkα′ki α

′k
j are modelled

by either the mixture or dispersed formulation of the k − ε-model. The term Mi,k represents
inter-phase momentum exchange.

The complexity of the interactions between the phases in aerated tanks makes it difficult to describe
the dynamic behaviour of multiphase systems. Fundamental problems need to be tackled like:
(i) interphase momentum exchange, (ii) modelling of bubble size distribution, (iii) modelling of
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Figure 2.3: Multiphase models. The Discrete Phase Model (DPM) follows an Euler-Lagrange approach. The Volume
of Fluid (VOF), Mixture and Eulerian model are Euler-Euler approaches.

bubble breakage, coalescence and daughter size distribution as well as (iv) the impact of grid size
on the simulation results.

(i) interphase momentum exchange: Various forces act on bubbles in a bubbly turbulent flow
like drag, lift, virtual mass force, turbulent dispersion or wall lubrication forces. As drag force
was reported to be the most dominant contributor to momentum exchange in stirred tanks, a com-
monly accepted simplification is to reduce the momentum exchange to the impact of drag force
(Scargiali et al., 2007). Unfortunately, drag coefficients are usually derived from measurements in
stagnant laminar flows where bubbles are isolated due to the extreme dilution (Ishii & Zuber, 1979;
Tomiyama et al., 1998). In turbulent flows containing large gas volume fractions the momentum
boundary layers of bubbles interact, which results in crowding effects (Buffo et al., 2016; Ishii &
Zuber, 1979) or the layer is affected by smaller eddies leading to decreasing bubble rise velocities
(Bakker & Van den Akker, 1994; Brucato et al., 1998). If a bubble size distribution is simulated,
typically only the Sauter diameter of the local distribution is used for drag force calculation.

(ii) modelling of the bubble size distribution (BSD): The bubble size distribution in a stirred tank
is strongly heterogeneous. Assuming a fixed bubble diameter might lead to false interfacial area
calculation and thereby false prediction of gas-liquid mass transfer. BSD are often described by
Population Balance Equations (PBE), which consist of a complicated integro-partial differential
equation. As an analytical solution is difficult to obtain, several approaches exist to solve the PBE
numerically. The most widely explored methods include the Class Method and the Method of Mo-
ments. Two formulations may be applied for the Class Method. While the Kumar & Ramkrishna
(1996) formulation is more accurate but computationally demanding, differences in accuracy can
be corrected by a suitable choice of bin sizes in the Hagesaether et al. (2002) formulation. A range
of 16 – 20 classes has been recommended by Haringa et al. (2017a) and Laakkonen et al. (2007a).
However, the gain in accuracy was shown to be less pronounced if more classes than that were
chosen (Laakkonen et al., 2007b). The PBE contain source terms to express the birth rates and
death rates of bubbles of a specific size due to aggregation or break up, which need to be modelled.
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(iii) modelling of bubble breakage, coalescence and daughter size distribution (DSD): As a
consequence of turbulence and viscous stresses in a gas-liquid system, bubbles can break into
smaller bubbles or coalesce over time. To describe the bubble dynamics, the inclusion of a suitable
break up and coalescence model is necessary. Many break up models follow the kinetic theory of
gases, leading to similar assumptions such as that breakage is caused by turbulent eddies smaller
or equal to the size of the bubble, thereby bearing enough energy to overcome the resisting forces.
The breakup frequency is provided by the collision rate between the particles and turbulent eddies
multiplied by the collision efficiency. The collision efficiency terms, however, are based on dif-
ferent assumptions. For instance Lehr et al. (2002) assume that breakage occurs if the dynamic
pressure of the eddy is larger than the capillary pressure, whereas other models assume that a criti-
cal value of eddy energy (Luo & Svendsen, 1996) or that the relative velocity of oscillations has to
be exceeded (Alopaeus et al., 1999) to promote bubble breakage. Coalescence models are usually
derived from similar assumptions and the models used by Luo & Svendsen (1996) and Alopaeus
et al. (1999) or Prince & Blanch (1990), respectively, are based on the work of Coulaloglou &
Tavlarides (1977). Lehr et al. (2002) investigated bubble collision with a high speed camera and
proposed a model, where only gentle collisions lead to coalescence. The daughter size function
describes the probability of the formation of a daughter particle of a specific volume from a mother
particle. The DSD in the model of Luo & Svendsen (1996) is directly derived from the expression
of the break up rate, whereas Alopaeus et al. (1999) used a simple β-distribution which was not
dependent on physical properties of the system as in the other models. This simple expression
requires significant less computational effort. Although the model by Luo & Svendsen (1996) is
the most frequently used break up model, its practical applicability was questioned (Kálal et al.,
2014). The authors thoroughly reviewed several break up models and concluded that the model by
Alopaeus et al. (1999) predicted the BSD the best. The same approach was further used in several
studies of Laakkonen, showing good agreement to experimental data (Laakkonen et al., 2007b).

(iv) impact of the grid size: The Reynolds-Average Navier-Stokes (RANS) k-ε model was stated
to underestimate the turbulent quantities locally in single and multiphase simulations, albeit giving
satisfactory results of the total dissipated energy. Being less computational demanding, RANS
is the preferred choice over other turbulence models. However, higher discretisation schemes
and grid resolution are necessary for the accurate prediction of turbulent quantities. On the other
hand, the velocity field or the power number by torque are less affected (Coroneo et al., 2011),
legitimising the introduction of a scaling factor for turbulent quantities (Laakkonen et al., 2007b).
This factor was based on experimental torque measurements and diminished the dependence of
turbulent dissipation rate on grid size.
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2.4.5 Modelling of population heterogeneity

As mentioned in section 2.2 concentration fluctuations within a large scale stirred tank may lead to
the formation of population heterogeneities. In order to describe the microbial heterogeneity in a
bioreactor, models are necessary to depict the microbial growth with different level of detail. Bailey
(1998) classified microbial models into non-structured/structured and non-segregated/segregated
approaches. The simplest models are non-structured/non-segregated approaches assuming average
growth behaviour by a black box model approach (Nyholm, 1976). These models are usually used
for process design, but fail to predict population heterogeneity or complex subcellular structures
to identify bottlenecks. If subcellular levels like metabolic and transcriptional regulation, com-
partmentalisation or signal transduction are of interest, structured/non-segregated models are used
(Nielsen et al., 1991; Shuler, 1999; Chassagnole et al., 2002). For these models the knowledge
about the network structure is compulsory. The network can either be a metabolic or a gene regu-
latory network (GRN). GRNs can be further divided into continuous models, which are described
by ordinary differential equations (Machado et al., 2012; Hardiman et al., 2009; Khodayari &
Maranas, 2016), Boolean models (Wang et al., 2012; Davidich & Bornholdt, 2008) or probabilis-
tic models (Chandrasekaran & Price, 2010; Qian & Elson, 2002; Turner et al., 2004). However,
population heterogeneity can only be depicted by segregated models. The formation of subpop-
ulations may result from small deviations in cellular metabolism and cell cycle dynamics or due
to asymmetric division (Jahn et al., 2013), leading to differences according to their size and intra-
cellular state. The PBE model framework presents a segregated approach, where the intracellular
state can be represented with only few variables such as cell age (Nishimura & Bailey, 1981) or cell
mass (Hjortso & Nielsen, 1995). Structured/segregated models reflect the most realistic approach
to display microbial heterogeneity in large scale bioreactors, however, due to the complexity of
cellular mechanisms they are limited in scale. As an alternative the focus was shifted to cell en-
semble models, where the population is described by an ensemble of single-cell models, which
differ according to key properties (Henson et al., 2002).

By coupling microbial models with the hydrodynamics in a stirred tank, populations heterogeneity
within a large scale fermentation process can be depicted. Different approaches are possible. Some
studies consider the coupling of a two-phase Euler-Euler approach using PBE with unstructured
kinetic growth models to include microbial diversity (Morchain et al., 2014; Pigou & Morchain,
2015). The incorporation of a detailed intracellular reaction network, however, leads to computa-
tional extensive and intractable problems due to the high-dimensional distribution function, which
needs to be solved. Additionally, no information about cell history is provided. With their pio-
neering work Lapin et al. (2004) presented a workaround by simulating individual cells choosing
an Euler-Lagrange approach. The extracellular environment is still based on the continuous Eu-
ler approach, whereas a discrete cell ensemble (Lagrange) approach is applied to account for the
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biophase. By the simulation of a sufficiently large number of individual cells, the behaviour of
a bacterial population is approximated. Furthermore, the approach permits the analysis of bac-
terial lifelines in space and time. Simple Monod-like black box models can be applied in this
agent-based modelling approach to account for spatially distributed substrate uptake (Haringa et
al., 2016) and can be coupled to models describing a microbial response (Kuschel et al., 2017).
More detailed kinetic models may be adopted (Lapin et al., 2006; Haringa et al., 2018a). Due to
rapid bacterial responses to changing substrate concentrations in terms of substrate uptake rate,
the bacterial consumption can be coupled to the continuous phase (Haringa et al., 2016). Hereby,
only one-way coupling is considered, but the computational demand can be effectively reduced by
a smaller number of simulated particles (Haringa et al., 2017b). In later studies this approach was
used to derive scale down devices for process optimisation (Haringa et al., 2017a). However, the
aforementioned studies neglected the influence of multiphase systems on bacterial heterogeneity.
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3 Characterisation of bioprocesses with C. glutamicum as
model organism

The market for biotechnological products is constantly on the rise and the portfolio is ever grow-
ing. Emerging fields are the production of amino and organic acids with bacterial systems or
biopharmaceuticals with mammalian cells (Becker & Wittmann, 2012; Morrison & Lähteenmäki,
2017). Corynebacterium glutamicum is one of the most important platforms, being used for the
production of more than 30 different chemicals (Leuchtenberger et al., 2005; Takors et al., 2007).
However, for the production in industrial bioreactors the scale-up from smaller laboratory scales
is crucial and tools to predict process performance a priori are of high interest. To parameterise
these models cell specific growth, uptake and production rates were determined during a batch
fermentation of C. glutamicum. Additionally, physical properties of the broth were analysed re-
sulting in density and viscosity values similar to water. Smallest amounts of antifoaming agents
(0.01 mL L−1) already resulted in a surface tension reduction > 40 % at thermodynamic equilib-
rium, whereas high biomass concentration of up to 80 g L−1 showed almost no effect. The dynamic
surface tension measurement revealed furthermore that dwelling times of bubbles inside a bioreac-
tor lie within the range of affected surface ages for these concentrations. However, the ambivalent
behaviour of antifoam concerning kLa values shows the need of a thorough analysis to quantify
these effects before considering a reduction of surface tension in numerical simulations.

3.1 Introduction

The yearly production of lysine is currently estimated to be 2.2 million tons (Yokota & Ikeda,
2017). Corynebacterium glutamicum is used as workhorse to produce not only L-lysine but also
L-glutamate in fed-batch processes of 500 m3 volume (Eggeling & Bott, 2015). However, indus-
trial scale fermentations usually suffer from deteriorated yields due to the formation of substrate
and gas gradients caused by limited mixing and mass transfer. To gain better knowledge of ratios
inside the reactor, modelling tools have been used in the recent years to support scale-up pro-
cesses. Prerequisite to develop such models is the knowledge about cell specific rates and physical
properties of the broth. Cell specific growth rates µ, biomass substrate yields YXS or substrate con-
sumption rates qS are needed to parameterise simple kinetic models like the well known Monod
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model for saturated substrate consumption (Monod, 1949). Because fermentation processes with
C. glutamicum are usually aerobic, also oxygen consumption rates qO2 need to be determined.
They can be incorporated in multisubstrate kinetic models in order to predict the formation of
substrate and gas gradients (Roels, 1983).

Physical properties of the broth mainly influence the power consumption and gas-liquid mass trans-
fer in stirred tanks. The behaviour of gas and liquid phase can be simulated by computational fluid
dynamics. As density and viscosity of the broth have a high impact on mass and impulse balances,
thorough experimental determination has to be performed. Viscosity quantifies the frictional force
that arises between two adjacent layers which are in relative motion. With increasing process du-
ration and thereby higher biomass concentrations, the viscosity of the broth may rise. Especially
if the organism is sensitive to shear stress, cell disruption might contribute to elevated viscosity
levels (Newton et al., 2017; Newton et al., 2016). As consequence rheometric properties might
also change. If the shear force is still proportional to the shear rate, the fluid is characterised as
Newtonian fluid with the viscosity as proportionality factor. Rheometric properties need to be
included in numerical flow simulations in order to properly predict the flow behaviour.

In turbulent systems like stirred tanks, fast interface formation has to be considered. The interfaces
between bubbles and the liquid have a strong impact on mass-transfer. Therefore, it is very im-
portant to measure the interfacial tension during the formation of the interface. Various methods
exist to determine the surface tension (Tricot, 1997). Static methods measure the surface tension in
thermodynamic equilibrium. These are very cheap and fast methods to characterise surface activity
of an agent. Dynamic surface tension measurements determine the surface tension as function of
the surface or interface age. The value reduces dependent on diffusion and absorption rate of the
surfactant until the thermodynamic equilibrium is reached. As the dwelling time of bubbles within
a stirred tank is limited, the interfacial gas-liquid area only exists for a certain time. Thereby, time
dependent effects of a surfactant on bubbles within a bioreactor can be estimated.

In this chapter a batch fermentation of C. glutamicum was conducted as triplicate. Cell specific
rates, yields and also physical properties of the broth were determined. The obtained data serve
for later parametrisation of numerical simulations.
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3.2 Material and methods

3.2.1 Materials

3.2.1.1 Instruments and software

A list of all instruments and software used in this work is provided in appendix A table A.1 and
table A.2.

3.2.1.2 Chemicals

A list of chemicals used in this work is provided in appendix A table A.3.

3.2.1.3 Buffers and solutions

Phosphate-buffered saline (PBS)

The buffer consisted of 400 mM Na2HPO4/NaH2PO4, 150 mM NaCl and was adjusted to pH 7.2.
PBS was used to wash the cells before staining.

Staining buffer

The staining buffer for fluorescence microscopy consisted of 0.68 µM 4’,6-diamidino-2’-phenylindole
(DAPI, SIGMA) and 0.2 M Na2HPO4 (pH = 7.0).

Sterilisation buffer

Sterilisation buffer for the fermentation process contained 1 M K2HPO4 and 1 M KH2PO4.

Tris buffer

Tris buffer consisted of 400 mM Tris and 4 mM MgSO4. The pH value of the buffer was adjusted
to 7.6 with 32% (w v−1) HCl.

3.2.1.4 Media

2x TY complex media and agar plates

Components of the 2xTY complex media listed in table 3.1 were dissolved in deionised water
dH2O. For solid cultures, 18 g L−1 agar was added prior to autoclaving (121 ◦C, 2 bar, 20 min).
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Table 3.1: Composition of 2xTY complex medium. According to Russell & Sambrook (2001).

Component Concentration [g L−1]

Tryptone 16
Yeast extract 10

NaCl 5

CGXII minimal media

For batch experiments CGXII minimal media containing 40 g L−1 glucose was used to obtain high
cell densities. CGXII media contained several stock solutions listed in table 3.2. Components
for the trace element stock solution were dissolved in dH2O by adding 5 M HCl (pH = 1) and
sterile filtered (0.2 µm). For the Biotin stock solution (1000x), 0.2 g Biotin was dissolved in 1 L
dH2O and ≈ 5 mL 5 M HCl. After mixing, the solution was sterile filtered (0.2 µm) aliqouted and
stored at −20 ◦C. By analogy the protocatechuic acid (PCA) solution was produced: 30 g PCA
were dissolved in 1 L dH2O and ≈ 10 mL 5 M HCl. After mixing, the solution was sterile filtered
(0.2 µm) aliquoted and stored at −20 ◦C. Stock solutions of MgSO4 and CaCl2 (1000x) were made
by dissolving 250 g MgSO4 and 10 g CaCl2 in 1 L dH2O respectively. Solutions were autoclaved
(121 ◦C, 2 bar, 20 min) and stored at 4 ◦C. A 50 % glucose stock solution contained 550 g glucose-
monohydrate in 1 L dH2O, which was autoclaved at 121 ◦C and 2 bar for 20 min.

Table 3.2: Composition of CGXII minimal medium. Modified to Blombach et al. (2013).

Component Stock concentration [g L−1] Final concentration [g L−1]

(NH4)2SO4 10
K2HPO4 1
KH2PO4 1
MgSO4 250 0.25
CaCl2 10 0.01
Biotin 0.2 0.0002
PCA 30 0.03

Glucose 500 40
Trace element stock solution (1000x)

Fe(II)SO4 · 7H2O 16.4 0.0164
MnSO4·H2O 10 0.01

CuSO4 · 5H2O 0.2 0.0002
ZnSO4 · 7H2O 1 0.001
NiCl2 · 6H2O 0.02 0.00002
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3.2.1.5 Bacterial strain

The wild-type strain (WT) Corynebacterium glutamicum ATCC13032 obtained from the American
Type Culture Collection (ATCC, Manassas, VA, USA) was used for batch cultivations.

3.2.2 Seed train

The seed train as shown in figure 3.1 was conducted by streaking out cell material from a −70 ◦C
glycerol stock on 2xTY agar medium (table 3.1). After incubation for two days at 30 ◦C, a single
colony was picked to inoculate the first preculture, consisting of 5 mL 2xTY medium in a glass
tube. The first preculture was incubated for 14 h at 30 ◦C on a shaker (Benchtop shaker AK85,
Infors AG, Switzerland) at 120 rpm. The complete cell suspension was transferred into a baffled
Erlenmeyer shaking flask (500 mL, working volume of 50 mL 2xTY medium). The second precul-
ture was incubated for 8 h at 30 ◦C on a shaker at 120 rpm. The optical density at a wavelength
of 600 nm (OD600) was measured with a spectrophotometer (spectrophotometer DR2800, Hach
Lange, Germany). The amount of preculture suspension to inoculate the reactor to OD600 = 1.0
was calculated:

ODpreculture Vpreculture = ODmain culture Vmain culture (3.1)

The cell suspension was pelleted (4000 g, 2 min, 4 ◦C) with a centrifuge (centrifuge 5430 R, Ep-
pendorf, Germany). The supernatant was discarded and after two washing steps in 0.9 % (w v−1)
NaCl solution, the pellet was resuspended in 50 mL CGXII and transferred to the main culture,
thereby inoculating the fermenter to an OD600 = 1.0.

Figure 3.1: Seed train. (i) A cryo tube culture stored at −70 ◦C was thawed and cell suspension was streaked on
(ii) 2xTY agar medium. After incubation for two days at 30 ◦C, a single colony was transferred to a (iii) 5 mL 2xTY
medium and incubated for 14 h at 30 ◦C on a shaker at 120 rpm. (iv) The second preculture was inoculated with the
complete cell suspension and incubated under the same conditions for 8 h. Finally the cell suspension was washed
and the (v) stirred tank containing 1.5 L CGXII was inoculated to OD600 = 1. Batch fermentations were agitated and
gassed at 30 ◦C for 12 h.
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3.2.3 Bioreactor cultivation

Batch fermentations were conducted as triplicates in a 3.7 L stainless steel stirred tank (STR) (KLF
2000, Bioengineering, Switzerland) with a working volume of 1.5 L. The tank was equipped with
four baffles and one Rushton impeller. Gassing was enabled by a ring sparger close to the reactor
bottom. The height of the reactor was 333 mm, the liquid filling height was HL = 130 mm, the tank
diameter TD = 125 mm and the impeller diameter DI = 60 mm. Off bottom impeller spacing was
set to 50 mm. The piping and instrumentation flowchart in figure 3.2 shows how the reactor was
operated in batch mode. Air flow was set to 1 L min−1 and controlled by a mass flowmeter (V01,
Model 3585, Analyt MTC Messtechnik GmbH, Germany). Before entering the reactor through the
ring sparger, air was aseptically filtered (0.2 µm) (G01). The pressure was kept to 1.5 bar by con-
trolling the exhaust gas flow (V02). During the fermentation process the exhaust gas composition
was recorded by an off-gas analyser (BlueSens RS232, BlueSens GmbH, Deutschland). In order to
remove the water in the exhaust gas and sterilise it, the exhaust gas was cooled by a heat exchanger
(W01) and filtered (G02) prior to off-gas analysis. Additional to mechanical pressure relief, an
overpressure valve was installed (VC01), releasing gas at p = 2.5 bar. The pH was monitored by

Figure 3.2: P&ID of the bioreactor in batch mode. EN ISO 10628:2000. Symbols are explained in the main text.
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a pH probe (405-DPAS-SC-K8S, Mettler Toledo, Germany) and controlled (02) to keep pH = 7.4
by base addition (NH4OH) from a base reservoir (B01) enabled by a pump (P01, Watson-Marlow
Fluid Technology Group, USA). Base consumption was balanced by a scale (WA01, Kern 572,
Kern& Sohn, Germany). Antifoam (B02, Struktol® J 647, Schill&Seilacher, Germany) was in-
jected via a controlled syringe pump (P02, Spritzenpumpe LA-30, HLL Landgraf Laborsysteme,
Germany) (03). The dissolved oxygen (DO) was measured as percentage of air saturation by an
oxygen probe (InPro 6800, Mettler-Toledo, Germany) and registered by the process control sys-
tem (05). To keep the DO signal above 30 % agitation was controlled (04). The reactor mass was
monitored throughout the process by a scale (WA02, Combics 3, Sartorius, Germany). Sampling
was enabled by a manual valve (H01). Optical density and glucose concentrations were measured
every hour. Density, cell dry weight, surface tension and viscosity were determined once in three
hours. At a later process stage after about nine hours all samples were taken hourly for the second
and third batch process. Temperature was monitored by a PT-100 sensor (PT-100 sensor, Bioengi-
neering, Switzerland) and controlled (06) through direct contact to an electrical heating element
and a water cooled cooling stick. The LabVIEW® 2009 SP1 software (National Instruments, USA)
was used to for data recording and process control. Process duration was about 12 h.

3.2.4 Analytics

3.2.4.1 Determination of biomass concentration

Optical density

Bacterial growth was monitored by measuring the turbidity of the liquid culture at OD600 with
a spectrophotometer (spectrophotometer DR2800, Hach Lange, Germany). For this purpose a
sample was withdrawn from the bioreactor and diluted in 0.9 % (w v−1) NaCl solution to reach
the linear range of the spectrophotometer (0.1 - 0.3). Samples were measured as triplicates. NaCl
solution also served as reference.

Cell dry weight

Prior to the experiment, 1.5 mL glas vials (glas vials, VWR, Germany) were dried at 105 ◦C for two
days, cooled to room temperature in a desiccator and weighted. Cell dry weight was determined
as triplicates. Therefore, 1 mL of the biosuspension was centrifuged together with 1 mL dH2O in
a 2 mL eppendorf tube at 20 000 g and 4 ◦C for 4 min. The additional water was used to remove
all remaining biosuspension from the pipette tip. The supernatant was discarded, the cell pellet
resuspended in 1 mL dH2O and centrifuged again. This washing step was performed twice, before
the pellet was resuspended in 0.5 mL dH2O and transferred to the dried glass vials. The samples
were dried at 105 ◦C for two days, cooled to room temperature in a desiccator and weighted.
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The biomass weight was determined by subtracting the sample weight from the weight of the
empty vial. A cell dry weight - optical density correlation factor was determined by fitting a linear
correlation with λ as correlation factor:

CDW = λOD OD600 (3.2)

3.2.4.2 Determination of glucose concentration

The photometric quantification of glucose is based on the enzymatic conversion of glucose to
gluconate-6-phosphate by the hexokinase and glucose-6-phosphate-dehydrogenase (G6P-DH).
NADPH forms as by-product, which can be measured via photometry at a wavelength of 365 nm.
The glucose concentration cS can be determined by Lambert-Beer law as follows:

cS = ∆E
εNADPH dc

(3.3)

with ∆E as difference of extinction with and without G6P-DH, dc the diameter of the cuvette and
εNADPH = 3.54 L mmol−1 cm−1 as specific constant for NADPH. In practice, 1-2 ml was taken from
the cell suspension, centrifuged (20 000 g, 4 ◦C, 4 min) and the supernatant was transferred into
a new tube, frozen at −20 ◦C or measured directly as triplicates. The glucose measurement was
performed in acrylic semi-micro cuvettes with an Ultrospec 2100 pro UV/Visible spectrophotome-
ter (GE Healthcare Europe GmbH, Germany). Therefore 500 µL Tris buffer (400 mM Tris, 4 mM
MgSO4, pH 7.6; see section 3.2.1.3), 100 µL NADP+ (4.4 mg mL−1), 100 µL ATP (9.6 mg mL−1),
190 µL dH2O and 100 µL of the prediluted supernatant (concentration in the cuvette < 0.1 mM)
were mixed. Subsequently the extinction at 365 nm was measured. After adding 10 µL G6P-DH
/ hexokinase mix (Roche Diagnostics International Ltd) and incubation of the reaction mix for
10 min at room temperature, the final extinction was determined.

3.2.4.3 Determination of volumetric oxygen mass transfer coefficient

Steady-state (stationary) approach with Microorganisms

The volumetric oxygen mass transfer rate kLa can be determined from the oxygen mass balance of
the liquid phase within the bioreactor. The oxygen consumption is hereby balanced as follows:

VL
dcO2,L

dt
= kLa∆cO2,m VL − QO2 VL (3.4)

with VL as reactor liquid volume,
dcO2,L
dt

as oxygen accumulation rate, ∆cO2,m as concentration
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gradient and QO2 as volumetric oxygen uptake rate. During the cultivation, the change of oxygen
accumulation rate and reactor volume is small and can be treated as pseudo stationary between two
time steps. The oxygen accumulation rate is thereby set to zero resulting in equation 3.5.

kLa = QO2

∆cO2,m
(3.5)

The average logarithmic oxygen gradient can be calculated by:

∆cO2,m =
Hcp

O2 p (yinO2 − youtO2 )

ln

 1− E
100

youtO2
yinO2
− E

100


(3.6)

with Hcp
O2 as Henry coefficient of oxygen, p as ambient pressure, y as molar gas fraction with

subscript (O2) for oxygen for the incoming (in) and outgoing (out) gaseous phase and E (in %) as
the liquid oxygen concentration.

The volumetric oxygen uptake rate QO2 is obtained by offgas analysis according to:

QO2 = p V̇g,in

VL RT

(
yO2,in −

1− yinO2 − y
in
CO2

1− youtO2 − y
out
CO2

youtO2

)
(3.7)

with V̇g,in as gas volume flow, R as ideal gas constant and T as temperature under standard condi-
tions (T = 294.15 K, p = 1.01325 · 105 Pa). Subscript (CO2) denotes carbon dioxide.

Dynamic approach approach without Microorganisms (desorption)

The volumetric mass transfer coefficient kLa was measured with the dynamic gassing out method
(Puthli et al., 2005; García-Ochoa & Gómez, 1998; Djelal et al., 2012; Sánchez Mirón et al., 2000).
First, the liquid was deoxygenated by gassing with pure nitrogen. The second step included gassing
with air until the liquid was saturated. The oxygen profile was monitored following the start of the
air inflow by an optical oxygen probe (OXYBase WR-RS485-L5-OIW, PreSens, Germany) with
the oxygen exchange cap (OEC-PSt3-NAU-OIW, PreSens, Germany). Integration of equation 3.8
results in equation 3.9.

dcO2,L

dt
= kLa (c∗O2,L − cO2,L) (3.8)

ln

(
c∗O2,L − cO2,L,2

c∗O2,L − cO2,L,1

)
= −kLa (t2 − t1) (3.9)

with cO2,L as oxygen liquid and c∗O2,L as oxygen saturation concentration. Plotting the logarithm
against the time, the kLa value was directly calculated by the slope of the line. With a probe
response time t63 < 3 sec (time at which 63 % of the final value is reached) kLa values < 480 h−1
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can be measured directly without considering a delay time according to the criteria of Van’T Riet
(1979) and Zlokarnik (1999). Measurements were performed as triplicates in deionised water and
in antifoam solutions containing 1.0 mL Struktol® J 647 .

3.2.4.4 Determination of viscosity

Samples for viscosity measurement were frozen immediately with liquid nitrogen and stored until
further analysis. Prior to measurement, the samples were thawed slowly on ice to prevent cell
bursting. The rheometer (rheometer MCR 501, Anton Paar, Austria) with a spinning cone and
a stationary plate was used to determine the viscosity of the samples. The distance between the
moveable cone and the stationary plate was calibrated by setting zero gap. After the adjustment
of the temperature to 30 ◦C, 300 µL sample was placed on the stationary plate. The measuring
position was set to 0.1 mm distance to the stationary plate and the program was started. First the
sample was spun for 10 s. After this, the cone spun with a rotational speed between 2 and 100 s−1,
increasing in an interval of 3.5 s−1. Thereby, a constant shear rate was generated and the applied
shear force was measured. Measurements were performed as triplicates. The principle is presented
in figure 3.3. For Newtonian fluids the shear stress τs is proportional to the applied shear rate δ̇.
The viscosity η can then be calculated by equation 3.10.

τs = η δ̇ (3.10)

Figure 3.3: Principle of viscosity measurement with a rheometer. Sample is placed between the two plates and
shear force is measured by applying rotational speed.

3.2.4.5 Determination of surface tension

Surface tension can be measured by several methods with two of them applied in this work. The
stationary method was used to measure the surface tension of the broth and different antifoam
concentrations in water, whereas the dynamic method was only applied to the latter.
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Figure 3.4: Principle of the Du Noüy method. Static surface tension measurement. The ring is lifted by the force
Fmeas.. Fg,ring and Fg,liquid denote the gravitational force of the ring and the liquid. Fsigma symbolises the force of
surface tension. Fg,ring is compensated at the beginning of the measuring procedure.

The stationary surface tension measurement according to de Du Noüy ring method was performed
with the tensiometer (STA1A, Sinterface Technologies, Germany). Thereby a platinum-indium
ring was rinsed with ethanol and water and burned out in a Bunsen burner. Samples were heated to
30 ◦C, mixed prior to the measurement and 10 mL were transferred to a cleaned glass beaker. Then
the ring was placed at a liquid-gas interface, so that the interface was horizontally directed and the
ring completely wetted. The density was measured in advance and set in the program previous to
the measurement. The automated surface tension measurement started by lifting up the submerged
ring and registering the maximal applied force to lift the ring Fmax. In figure 3.4 the principle of
the measurement is shown.

As the ring’s thickness is much smaller than the diameter, the inner and outer radius can be av-
eraged to R with 4πR corresponding to the wetted length of the ring. The surface tension σ is
calculated by:

σ = Fmax
4πRφ (3.11)

The correction factor φ considers the ring geometry and the force to lift the liquid film beneath the
ring Fg,liquid, which is raised when the ring pulls. Measurements were performed as triplicates.

The dynamic surface measurement of different antifoam (Struktol® J 647, Schill&Seilacher, Ger-
rmany) concentrations (0.1 mL L−1, 1.0 mL L−1, 10 mL L−1) was performed with a bubble pressure
tensiometer (BP100, Krüss GmbH, Germany). Only the concentration with 1.0 mL L−1, which
resembles the concentration at the end of the batch process was measured as triplicate. The mea-
surement setup is depicted in figure 3.5 (A). Approximately 10 mL of the sample was filled in
a cleansed cylindrical glas bowl. The density of the sample was measured gravimetrically in ad-
vance. A capillary was positioned in 2 mm distance to the liquid surface of the sample. A magnetic
stirrer prevented the accumulation of surface active material at the liquid surface prior to the mea-
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Figure 3.5: Principle of the bubble pressure method. Dynamic surface tension measurement. (A) Measurement
setup. (B) Principle of the measurement. Pressure characteristics dependent on curvature radius (r1 - r5) or surface
age. Capillary radius is indicated as rc. Figure modified to (Fainerman et al., 2004).

surement. The measurement started by immersing the capillary in the liquid. Bubbles were formed
by the airflow through the capillary. Figure 3.5 (B) shows schematically the principle of the mea-
surement. The internal pressure of a bubble forming at a capillary depends on the radius of the
curvature r and the surface tension σ according to the Young Laplace equation. The radius of a
forming bubble first decreases until it equals the radius of the capillary (r3 = rc), before it increases
again. At this point the internal pressure maximum is reached and with a known capillary radius
the surface tension can be determined according to:

σ = (pmax − p0) r
2 (3.12)

with pmax beeing the pressure at r = rc and p0 as hydrostatic pressure. The surface tension is thereby
coupled to a specific surface age, the time until pmax is reached . By varying the speed to form the
bubble, the surface tension can be expressed as a function of surface age. In this case the radius of
the capillary was determined by a reference measurement with water.

3.2.4.6 Fluorescence microscopy

Freezing and thawing might damage the bacterial cell, leading to cell burst and DNA leakage.
DNA is highly viscose and changes the viscosity of the broth. To exclude viscosity increase due
to the sampling procedure, fluorescence microscopy was performed after samples were frozen and
thawed. In short, biosuspension was centrifuged at 20 000 g and 4 ◦C for 4 min and washed in PBS
after sampling. The pellet was first frozen in liquid nitrogen and then thawed on ice. Staining
buffer was added (see 3.2.1.3), samples were incubated for 10 min in a dark room and subsequent
microscoped.
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3.2.4.7 Calculation of cell specific rates

Due to the constant volume of the batch fermentation the biomass concentration cX can be ex-
pressed by the biomass mass balance after rearranging according to:

dcX

dt
= µ cX (3.13)

with µ as specific growth rate in (h−1). The maximal growth rate µmax for the exponential growth
phase can be obtained by linear regression:

µ = ln

(
cX,1

cX,0

)
1

t1 − t0
(3.14)

Similar to the biomass, the substrate concentration cS can be expressed by the substrate mass
balance according to :

dcS

dt
= −qS cS (3.15)

with qS as specific substrate consumption rate and can be calculated by equation 3.16. The biomass
per substrate yield YXS is defined as:

YXS = µ

qS
(3.16)

and can be determined by linear regression according to:

YXS =
(
cX,1 − cX,0

cS,0 − cS,1

)
(3.17)

For the oxygen mass balance applies by rearranging equation 3.4 :

dcO2,L

dt
= kLa∆cO2,m −QO2 (3.18)

with the specific oxygen uptake rate qO2 = QO2
cX

follows for the biomass oxygen yield YXO2:

YXO = µ

qO2

(3.19)

Equivalent to oxygen, carbon dioxide mass balance can be rearranged and volumetric carbon diox-
ide emission rate QCO2 can be formulated as:

QCO2 = p V̇g,in

VL RT

(
youtCO2

1− yinO2 − y
in
CO2

1− youtO2 − y
out
CO2

− yinCO2

)
(3.20)

where the specific carbon dioxide rate is defined as qCO2 = QCO2
cX

.
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An elemental carbon balance was performed in order to verify the consistency of the obtained
experimental data and calculated rates. A simple black box model is set up with glucose being the
sole carbon source and biomass and CO2 as products.

cglucose = cbiomass + cCO2 (3.21)

Furthermore the formation of by-products can be controlled by checking for uncovered carbon use.
In- and out-flowing compounds were converted to C −mol.

3.3 Results and discussion

A batch fermentation with C. glutamicum was conducted to obtain cell specific rates and physical
properties of the broth. The determined parameter serve for later parametrisation of numerical
simulations.

3.3.1 Process kinetics

To characterise the growth behaviour of C. glutamicum WT, a batch fermentation with glucose in
CGXII media (see table 3.2) was carried out as triplicate (B1, B2, B3). The time course of biomass
and glucose concentration for all three batch fermentations is displayed in figure 3.6, showing no
significant differences. Concentrations are based on OD600-CDW correlation which resulted in a
correlation factor λOD = 0.2669 ± 0.0027. Hereby, B2 was excluded because of a measurement
error in CDW determination. This factor is in fair agreement with Buchholz et al. (2013). Initial
biomass concentration was about cX = 0.246 ± 0.014 g L−1. After a lag phase of approximately
3 h, cells grew exponentially until reaching stationary phase at 11 h. On average, a final biomass
of cX = 18.44± 0.76 g L−1 was reached. Glucose concentrations were determined by an enzymatic
assay, considering a calibration curve. Initial glucose concentration was cS = 41.66 ± 0.72 g L−1.
Glucose depletion occurred between 11 - 12 h, the end of the fermentation process.

Exponential growth rates were determined with µ = 0.441 ± 0.019 h−1, which are very similar to
exponential growth rates by Buchholz et al. (2013). Biomass substrate yield resulted in YXS =
0.474 ± 0.012 gCDW g−1

S , which is in good comparison to Buchholz et al. (2014b).

The pH was controlled to pH = 7.4 and the dissolved oxygen was controlled to be higher than
30 %. Because of increasing biomass and thereby elevated oxygen demand, the agitation rate was
increased throughout the process to keep the dissolved oxygen above 30 %. If the system becomes
more turbulent, bubble breakup is enhanced leading to an increased interphase exchange area. This
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Figure 3.6: Time course of cX and cS . Biomass concentration cX for B1 ( ), B2 ( ) and B3 ( ). Respective substrate
cS concentration are B1 ( ), B2 ( ) and B3 ( ).
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Figure 3.7: Time course of kLa. The kLa value for the three batch fermentations (B1, B2, B3) is shown for the whole
process time.

is directly coupled to higher mass transfer coefficients. The kLa values of the three fermentations
as function of the process duration are shown in figure 3.7. On average kLa values are about 44 h−1

at process start. Maximal values of 600 - 700 h−1 are reached at about 9 h. Afterwards glucose is
depleted and the biomass concentration, agitation and consequently kLa stay constant.

The biomass oxygen yield for the exponential phase was calculated with YXO2 = 0.043 ± 0.0072
gCDW mmol−1

O2 . With a specific oxygen uptake rate of qO2 =10.16± 0.929 mmolO2 g−1
CDW h−1 and a

specific carbon dioxide emission rate qCO2 = 9.3±1.23 mmolO2 g−1
CDW h−1 the respiratory quotient

RQ = qCO2
qO2

is close to the theoretical value of 1.0.
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Figure 3.8: Elemental carbon balance of the exponential phase. The biomas (X) and carbon dioxide (CO2) content
in C-mol recovery is shown as stacked bar plot for all three fermentation processes (B1, B2, B3).

The elemental carbon balance of the exponential phase is displayed in figure 3.8. Balances were
calculated on basis of glucose as sole carbon source. The biomass content is shown in dark grey
and the carbon dioxide content in light grey. In general, all three batches show similar results.
The balance for the first process adds up to 93 %, the second up to 107 % and the third up to 90 %
with a ratio of 2:1 for biomass compared to CO2. As high gassing rates used for this experiment
led to stripping of CO2, the measurement of total inorganic carbon was not performed (Buchholz
et al., 2014a). Considering that measurement inaccuracy of biomass and glucose measurements
are likely to occur, a deviation of maximal 10 % is acceptable. Therefore, the consistency of the
data and the determined rates was assumed. Furthermore, the formation of relevant amounts of
by-product can be excluded Blombach et al. (2013) and Buchholz et al. (2014a).

3.3.2 Determination of broth viscosity

Prerequisite of viscosity measurements is, that cells stay intact during sampling and measurement
procedure. If cells are disrupted, DNA will leak from the cell and modify the viscosity of the broth.
Therefore, prior to viscosity measurements cells were stained with 4’,6-diamidino-2’-phenylindole
(DAPI) as explained in section 3.2.4.6 and examined via fluorescence microscopy. Figure 3.9
shows different samples of DAPI stained cells of C. glutamicum in the fermentation broth. As
the DNA is still located within the cells, it was concluded, that the sampling and measurement
procedure did not influence the cell structure. Therefore, an increase of viscosity due to DNA
leakage after sampling was excluded. The viscosity of the broth containing different biomass
concentrations was measured with a rheometer. Calibration was performed with water at different
temperatures resulting in a correction factor of 1.9. The results of viscosity measurement serve
for later parametrisation of the numerical flow simulations. However, those simulations are only
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Figure 3.9: Fluorescence microscopy of viscosity samples. Viscosity samples were frozen and subsequently thawed
on ice. The DAPI coloured DNA (blue) is located within the cells which shows that cells are still intact.
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Figure 3.10: Newtonian fluids. Shear stress as function of the strain rate for water and different biomass concentra-
tions. A linear correlation indicates a Newtonian fluid. Goodness for all fits was not less than R2 = 0.99.

valid for Newtonian fluids if no other functions are implemented. Therefore, first it was tested if
the broth was still a Newtonian fluid like water. Figure 3.10 shows the shear stress as function
of the shear rate for water at 30 ◦C and different biomass concentrations at 30 ◦C. Because only
cX ≈ 20 g L−1 could be obtained by the batch fermentations, biomass of B3 was concentrated
and resuspended in defined volumes of 0.9 % (w v−1) NaCl solution to obtain higher biomass
concentrations. As indicated in section 3.2.4.4 Newtonian fluids have the property that the shear
stress is proportional to the strain rate with the dynamic viscosity η as factor of proportionality. All
samples in figure 3.10 exhibit a linear viscous behaviour, concluding that in case of C. glutamicum

higher biomass concentration do not change the rheology.

To examine if the viscosity of the broth is influenced by increasing biomass concentrations, the
viscosity of the broth was measured at different stages of the fermentation process. Figure 3.11
depicts the viscosity as function of the biomass concentration for the batch triplicates (B1, B2, B3).
At fermentation start the viscosity is similar to water at 30 ◦C (0.0008 Pa s). The viscosity increases
with increasing biomass concentration within the fermentation broth up to 0.0016 Pa s (B1). This
lies in a similar range as reported by García-Ochoa & Gómez (2005) for Candida bombicola. The
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Figure 3.11: Viscosity of the broth. Viscosity of the
three batch fermentations (B1, B2, B3) is shown as func-
tion of the biomass concentration cX at 30 ◦C.
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Figure 3.12: Viscosity of different biomass concen-
trations. Viscosity is shown as function of different
biomass concentrations cX. Biomass of B3 was con-
centrated and resuspended in NaCl to examine the in-
fluence of higher cell densities at 30 ◦C.

influence of higher biomass concentrations up to 80 g L−1 on the viscosity at 30 ◦C is shown in
figure 3.12. For low values of cX of up to 20 g L−1 reached in the fermentation, the viscosity does
not differ from water at 30 ◦C. The viscosity increases steadily with increasing biomass and reaches
a value of 0.003 Pa s for the maximal tested biomass concentration. While 80 g L−1 reflects a very
high concentration for a fermentation process, a viscosity of 0.003 Pa s equals the viscosity of milk
at room temperature. Moreover, in the later chapters a numerical simulation of a fermentation
process containing cX ≈ 35 g L−1 is examined, which results in a viscosity of 0.001 25 Pa s, which
is not more than water at 10 ◦C. Therefore, the influence of viscosity of a fermentation process of
C. glutamicum on numerical simulation was neglected.

3.3.3 Determination of broth surface tension

The surface tension was measured with the static and the dynamic method as described in sec-
tion 3.2.4.5. The static method was used to examine if the broth or high biomass concentrations
influence the surface tension. The dynamic method was only applied for different antifoam con-
centrations to assess the dependency of surface age on the surface tension of the solution.

Results of the fermentation broth measured by the static method for all three batch fermentations
are displayed in figure 3.13. Prior to the measurement, the density of the broth was determined
gravimetrically to be 1016 ± 5.4 g L−1 which is similar to water. As a batch fermentation was
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Figure 3.13: Surface tension of the broth. Surface ten-
sion of the three batch fermentations (B1, B2, B3) is
shown as function of the biomass concentration cX at
30 ◦C.
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Figure 3.14: Surface tension as function of biomass.
Surface tension of different biomass concentrations cX
is shown. Biomass was concentrated and resuspended
in NaCl (not washed). An additional washing step was
included to lower the antifoam concentration (washed).

conducted, the density did barely change for the complete process duration. Subsequent to the
process start a surface tension of 62.74 ± 0.267 mN m−1 was measured. This value is a bit smaller
than the surface tension for water at 30 ◦C or CGXII media at 30 ◦C (71.85 ± 0.275 mN m−1).
For longer process durations and thereby increasing biomass concentrations the surface tension
dropped strongly and converged to a value of 35 mN m−1. The biomass at the end of the process
was concentrated and resuspended in defined volumes of 0.9 % (w v−1) NaCl solution. Figure 3.14
shows, that a biomass concentrations of 80 g L−1 also resulted in the same final value of 35 mN m−1

for the surface tension (not washed). Surprisingly, even smallest concentrations of biomass show
a surface tension of ≈ 40 mN m−1. Thus, the biomass concentration might have a negligible influ-
ence on the surface tension and other surface active agents like base or antifoam, which showed
steadily increasing concentration with increasing process time, caused the drop in surface tension.
This could explain the rapid drop of surface tension in figure 3.13. Because samples for the mea-
surement in NaCl solution, displayed in figure 3.14 (not washed), were concentrated from biomass
at process end, residual antifoam was still attached to the bacterial cells. To reduce the influence of
agents, samples were washed in water and measured again (see figure 3.14 washed). It is clearly
visible, that especially for low biomass concentrations the surface tension was significantly higher
after the washing step, confirming the previously made assumptions. To search for the main con-
tributor to surface tension reduction, different antifoam concentrations in water were measured.
As displayed in figure 3.15, already smallest concentrations of 0.01 mL L−1 induce a drop in sur-
face tension of 30 mN m−1 compared to water. Higher concentrations converge to the a value of
33 mN m−1.
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Figure 3.16: Surface tension of antifoam solutions (dynamic
method). The surface tension of different concentrations of an-
tifoam (Struktol® J 647) was measured.

Accordingly, it was concluded that the influence of biomass on the surface tension is negligible
and already smallest concentration of antifoam affect the surface tension of the broth.

Nevertheless, with the static method, only the surface tension of the thermodynamic equilibrium
can be determined. In essence, this implies that the interfacial area has to exist long enough un-
til the surface concentration of the surfactant is equal to the concentration in the volume phase.
However, the residence time of a bubble within the reactor is limited and depends on the bubble
rise velocity, which is about 0.25 m s−1 in bubble columns (Heijnen & van’t Riet, 1984). Consid-
ering a velocity reduction of ≈ 35-50 % in the turbulent flow field of a stirred tank and assuming
a reactor height of 0.5-5 m, dwelling times lie between 3-40 s, depending on the agitation rate
(Poorte & Biesheuvel, 2002; Alves et al., 2004). In order to assess the influence of surface age
on surface tension, a dynamic surface tension measurement was performed with a bubble pressure
tensiometer. The results of the measurement are depicted in figure 3.16. Water at 30 ◦C served
as reference, resulting in σ ≈ 71 mN m−1 independent of the surface age. With ≈ 70 mN m−1 the
surface tension for the smallest concentration of antifoam (0.1 mL L−1) was similar to water within
the first 23 ms. For longer surface ages of 48 s the surface tension decreased slowly to 40 mN m−1.
The measurement was stopped at this point. Due to the continuous accumulation of alkoxylated
fatty acid originating from the antifoam at the interfacial area, the surface tension was reduced.
Higher antifoam concentrations (1.0 mL L−1) already lowered the surface tension to ≈ 55 mN m−1

for the first measurement point at 5 ms. Subsequent to a sharp drop at 15-40 ms the surface tension
converged slowly and reached 31 mN m−1 after more than 70 s. The surface tension of a solution
containing 10 mL L−1 was already reduced to 37 mN m−1 at measurement start. It converged to
32 mN m−1 after 48 s where the measurement was stopped. Consequently, the higher the initial

40



3.3 Results and discussion

200 300 400 500 600 7000

100

200

300

400

N | rpm

k L
a
|h

−1

dH2O
1.0 mL L−1

Figure 3.17: Influence of antifoam on kLa values (lab
scale). The kLa is shown as function of the agitation
rate N for water and an aqueous solution containing
1.0 mL Struktol® J 647. Measured at 0.5 vvm.
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Figure 3.18: Influence of antifoam on kLa values (pi-
lot scale). The kLa is shown as function of the agitation
rate N for water and an aqueous solution containing
1.0 mL Struktol® J 647. Measured at 0.5 vvm.

antifoam concentration, the faster the interfacial area is covered with surfactant molecules which
lowers the surface tension. The examined pilot scale bioreactor in the following chapter was op-
erated with an antifoam concentration of 1.0 mL L−1 at process end. With a gas velocity of ≈
0.15 m s−1 average dwelling times of bubbles are about 7 s. So the surface tension of the broth
influences bubble behaviour to some extent, as the value is reduced by almost 50 % compared to
pure media. According to most breakage models, a lower surface tension enhances bubble breakup
(Kálal et al., 2014). Moreover, enhanced bubble breakage leads to the formation of smaller bub-
bles and thereby an increased interfacial area which is beneficial for species mass transfer between
gas and liquid phase. To examine the effect of antifoam on volumetric oxygen mass transfer, kLa

values for lab (2.5 L) and pilot scale (200 L) were measured. Figure 3.17 and 3.18 present a com-
parison between lab and pilot scale. While the addition of antifoam increased the kLa values in
lab scale, it clearly showed a negative effect on kLa values in pilot scale. Both reactors had a
similar HL/TD and TD/DI ratio and impeller spacing. However, they differ in the flow regimes for
the current operational conditions. As a decreased surface tension is beneficial for bubble breakup
but limits coalescence, the results for the pilot scale reactor are contradictory. Therefore, the sole
assumption that antifoam only affects the surface tension might be to simple. Maia et al. (1999)
reported similar contradictory results for various agitation and gassing rates leading to the assump-
tion that beneath a positive effect on kLa values due to reduction of surface tension, coalescence
is also enhanced and surface mobility is inhibited by antifoam leading in turn to a reduction of
oxygen mass transfer rate. Hydrodynamic change by suppression of surface mobility as well as
interfacial blockage by increasing mass transfer resistance was also reported by Kawase & Moo-
Young (1990) and Yagi & Yoshida (1974). Additionally, different antifoam agents create different
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effects (Benedek & Heideger, 1971; Schügerl et al., 1978). In the current pilot scale reactor setup
coalescence effects are stronger compared to the lab scale reactor. The coalescence enhancing ef-
fect of antifoam might predominate over other effects in pilot scale leading to smaller kLa values.
However, a thorough analysis is needed to quantitatively describe mass transfer dependency on
antifoam addition. Because of this ambivalent behaviour the reduction in surface tension due to
antifoam addition was not included in numerical simulations.

3.4 Conclusion

A batch fermentation of C. glutamicum has been conducted to derive cell specific parameters and
physical properties of the broth for later parametrisation of numerical simulations. The maximal
growth rate during exponential growth phase was determined to be µmax = 0.441 ± 0.019 h−1

and the biomass substrate yield YXS = 0.474 ± 0.012 gCDW g−1
S . The oxygen balance resulted

in a biomass oxygen yield of YXO2 = 0.043 ± 0.0072 gCDW mmol−1
O2 . Thereby, the cell specific

oxygen uptake rate of qO2 =10.16 ± 0.929 mmolO2 g−1
CDW h−1 was derived and the cell specific

carbon dioxide emission rate qCO2 = 9.3± 1.23 mmolCO2 g−1
CDW h−1 was calculated from the carbon

dioxide balance. Accordingly, the respiratory quotient was obtained by RQ = qCO2
qO2

and is close
to the theoretical value of 1.0. The accuracy of the rates were furthermore confirmed by a nearly
closed C-balance, which also excluded the formation of by-products.

Furthermore, physical properties of the broth were examined. The density of the broth was de-
termined to be 1016 ± 5.4 g L−1 and stayed constant during the process. With increasing biomass
the viscosity increased to a value of 0.0016 Pa s at cX ≈ 20 g L−1. To obtain higher biomass con-
centrations, biomass was concentrated and resuspended in 0.9 % (w v−1) NaCl solution leading
to a viscosity of 0.003 Pa s at cX ≈ 80 g L−1. In the later chapters a fermentation process con-
taining cX ≈ 35 g L−1 is examined by numerical simulation, which results in a viscosity of about
0.001 25 Pa s which is not more than water at 10 ◦C. Due to only slight increases, the influence of
viscosity change within a fermentation process of C. glutamicum on numerical simulation will be
neglected. The surface tension of the broth was found to be almost independent on the biomass
concentration but was dominated by the addition of smallest amounts of antifoaming agents. At
thermodynamic equilibrium, the surface tension was thereby reduced to 35 mN m−1 from initial
71 mN m−1. Dynamic surface tension measurement revealed that the surface tension at surface
ages > 20 ms were influenced by antifoaming agents of 0.1 mL L−1 whereas higher concentrations
> 1.0 mL L−1 already showed a reduction in surface tension at measurement start. However, kLa

measurements showed that the sole simplification of the impact of antifoam to a reduction of sur-
face tension is invalid and a thorough analysis is needed to quantify these effects.
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4 Characterisation of a pilot scale bioreactor

Maintaining process performances during scale-up is not an easy task, especially for aerated sys-
tems. The transition from laboratory to a full scale production facility is usually hampered due
to limited mixing and mass transfer. Only few correlations exist to estimate physical parameters
in gassed systems. Besides, their validity is restricted to specific reactor geometries and operat-
ing regimes. In the recent years, CFD gain momentum for such predictions especially to provide
detailed information on environmental conditions inside a fermenter. However, two phase flow
simulations are complex and current approaches published in literature are mostly not validated
by experimental data. In this study, a 300 L pilot scale reactor has been characterised experimen-
tally to find best operating conditions within a loading regime. First, single phase (SP) simulations
were conducted to test the reactor setup and to determine an appropriate range of grid size. A
thorough multiphase study (MP) followed, which showed, that higher grid resolution for MP is
needed. Due to considerable computational costs, grid dependence of the turbulent dissipation
rate was reduced by introducing a scaling factor in breakage, coalescence, drag and mass transfer
functions. Amongst several models for the description of the latter, a suitable approach was im-
plemented resulting in very good agreement with experimental data. Even the coarsest resolution
with 1.12 · 105 #/m3 was sufficient enough to display the experimental data.

4.1 Introduction

False assumptions during scale-up may be costly in terms of diminished yields and productivities.
First of all, the correct determination of physical parameters is required. Among these are the
volume specific power input, oxygen transfer coefficient, gas hold-up and mixing time. These
can be estimated by correlations predicting mean values for distinct reactor setups (Moucha et al.,
2003; Van’T Riet, 1979; Vasconcelos et al., 1995). Albeit, resolving local differences can not
be accomplished. By contrast, the use of CFD allows the prediction of these parameters without
neglecting local differences within the bioreactor. However, only few multiphase studies exist. On
the one hand, the validity of several multiphase models has never been proven due to the lack of
experimental data. While the experimental effort to determine global parameters in large scale
is immense, achieving local resolutions is almost impossible. However, prerequisite of correct
determination of local parameters by CFD is the validation of global values. On the other hand,
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the complexity of the interactions between the phases in aerated tanks makes it difficult to describe
the dynamic behaviour of multiphase systems. Fundamental problems need to be tackled. An
extensive evaluation of simulation strategies for two phase flows is given in chapter 2.4.4.

In this study, a multi-impeller pilot scale bioreactor is characterised to find suitable operating con-
ditions considering gassing and mixing to display a late fed-batch process of a C. glutamicum

culture. By using CFD, first a single phase study is conducted to evaluate reactor setup and neces-
sary grid resolution. Subsequently, the two phase flow within the stirred tank is simulated, process
relevant parameters are validated experimentally and the influence of grid size is investigated also
for multiphase. Additionally, a novel approach of scaling turbulent dissipation rate is used to
reduce the effect of discretisation scheme and grid size on the simulation output.

4.2 Experimental measurements

4.2.1 Bioreactor setup

Measurements were performed in a pilot scale multi impeller stirred bioreactor with a reaction vol-
ume of 200 L. The tank was equipped with four baffles and three Rushton turbines. All geometric
measures are displayed in figure 4.1 and table 4.1. For gassed experiments air was introduced
through a ring sparger. Experiments were carried out in deionised water with the properties listed
in table 4.1. For better comparison the density and viscosity were chosen similar to water, as mea-
surements of the broth in the previous chapter resulted in no significant difference. Because of
the ambivalent behaviour of antifoaming agents the influence on surface tension was neglected as
discussed before.

4.2.2 Power consumption

The total value of power input was measured by electrical measurement method performed directly
in the motor by an inhouse made wattmeter with the digital control instrument SP670 (Schwille
Elektronik, Germany). The power draw P for the direct current motor can be obtained by:

P = U I (4.1)

where U is the supplied voltage and I the current intensity. The LabView software (National
Instruments, USA) was used for data acquisition and impeller speed controlling. To account for
the actual power consumption, power due to losses must be considered. Energy losses of the
agitation system measured only in air were therefore subtracted from the measurements with fluid.
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4.2 Experimental measurements

Measurements were carried out for several agitation speeds (100 rpm - 500 rpm) and gassing rates
(0 vvm, 0.25 vvm, 0.5 vvm, 1 vvm). The sampling rate was set to 10 kHz. The average of 1000
samples was taken to record the signal every 100 ms for a duration of 15 min. The mean power
draw from the recorded signal was then taken for further analysis.

4.2.3 Mixing time

Mixing time was determined by pulse-response experiments. The tracer solution (75 ml of a 6 M
di-potassium phosphate, K2HPO4) solution was injected into the bioreactor containing deionised
water (dH2O) at a height of ≈ 0.5 m. A pressure of 6 bar was used to inject the tracer within
25 ms (Buchholz et al., 2014b). The response curves of various reactor conditions (agitation
speed: 100 rpm - 500 rpm and gassing rate: 0 vvm, 0.25 vvm, 0.5 vvm, 1 vvm) were recorded
with conductometers (LF 521, Wissenschaftlich-Technische Werkstätten GmbH, Germany) at a
fixed temperature of 30 ◦C. Starting from a nonhomogeneous state, mixing time τ95 is defined as
the time reaching 95 % homogeneity. The normalized tracer concentration ct/ct with ct as vessel
average is then between 0.95 and 1.05. Average mixing times were derived from triplicates of each
experimental condition.

4.2.4 Gas hold-up

Gas hold-up was measured with a self constructed ultrasonic device consisting of an ultrasonic
probe (HC-SR04 Distance Sensor Module, Aukru, China) which was connected to an Arduino
Board (Nano V3, Arduino, Italien) containing a microcontroller (ATmega328, Arduino, Italien).
The probe was installed at the top of the reactor. Distance to the liquid surface of the non-agitated
and non-gassed reactor served as reference state which was less than 50 mm. Gas hold-up was
measured for several agitation speeds (100 rpm - 500 rpm) and gassing rates (0 vvm, 0.25 vvm,
0.5 vvm, 1 vvm) by recording the change of the liquid height at 30 ◦C. The signal was recorded for
5 min with a sampling rate of 10 s−1.

4.2.5 Measurement of kLa

The volumetric mass transfer coefficient kLa was measured with the dynamic gassing out method
as previously described in chapter 3.2.4.3. Measurements were performed in deionised water at
several agitation speeds (100 rpm - 500 rpm) and gassing rates (0 vvm, 0.25 vvm, 0.5 vvm, 1 vvm).
Each operation condition was measured as triplicate at 30 ◦C.
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Figure 4.1: Pilot scale reactor geom-
etry. Tank was equipped with four baf-
fles and three Rushton turbines. Liquid
filling height is marked with a triangle.

Table 4.1: Pilot scale geometry, operational conditions and media proper-
ties. The tank was operated at varies agitation and gassing rates. Measures are
displayed in figure 4.1. Subscripts L and G stand for liquid and gas, respec-
tively.

Description Symbol Unit

Tank height (liquid level) HL 1.06 m
Tank diameter TD 0.488 m

Impeller diameter DI 0.2 m
Off-bottom impeller clearance C 0.22 m

Impeller spacing ∆C 0.21 m
Baffle length BH 1.1 m

Baffle diameter BD 0.04 m
Off-bottom baffle clearance BC 0.07 m

Off-bottom sparger clearance SC 0.056 m
Media density ρL 995.7 kg m−3

Media viscosity ηL 0.0008 Pa s
Media surface tension σL 0.0712 N m−1

Gas density (air) ρG 1.1 kg m−3

Temperature ϑ 30 ◦C
Agitation rate N 100 - 500 rpm
Gassing rate Qg 0 - 1 vvm

4.3 Numerical simulations

4.3.1 General setup

Details of the geometry as well as operating conditions and liquid properties are given in 4.2.1.
Baffles and blades were assumed as zero-thickness walls. Structured hexahedral meshes of the full
2π three dimensional domain were adopted. Different grid sizes were considered, depending on
the simulation setup (see table 4.2, 4.3). Orthogonal quality and aspect ratio were not less than
0.4 or higher than 12 respectively. The multiphase simulation (MP) for mesh 4 (MPM4) was not
included in the following results part but was discussed at the end of section 4.4.2.2.

Numerical simulation were conducted with the commercial software ANSYS® Fluent 18.1 using
the realizable k−ε (RKE) RANS turbulence model and MRF to account for agitation. Simulations
were carried out on 4 cores (Intel® Core™ i7) or on 16 cores (Intel® Xeon™ CPU E5-2650 v3). In
case of higher mesh densities simulations were run at the bwUniCluster (Intel® Xeon™ E5-2670,
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4.3 Numerical simulations

bwUniCluster, Germany), the FORHLR II (Intel® Xeon™ E5-2660 v3 processors, FORHLR II,
Germany) or the High-Performance Computing Center Stuttgart (HLRS) (Intel® Xeon™ CPU E5-
2680 v3, Cray XC40, High-Performance Computing Center Stuttgart, Germany). All simulations
were performed in transient mode with a pressure based solver.

4.3.2 Single phase simulations

Spatial discretisation was set to second order upwind scheme for continuity and momentum as
well as for k and ε equations in single phase simulations. Standard wall functions were employed.
No-slip boundary conditions were applied for all walls except for the top of the reactor, which was
set to no-shear to mimic a free surface. Agitation rate was set to N = 5 s−1. Temporal discreti-
sation was second order implicit. Convergence of the flow field was declared when the residuals
remained < 10−5 within each time step. In order to reach that criterium, time step size has been
varied depending on the mesh density (see table 4.2). Radial velocity, energy dissipation rates,
torque and volume integrated energy dissipation rate were averaged for 15 s. To investigate mixing
performance a tracer was introduced in the impeller region of the second impeller with equal prop-
erties of the bulk fluid. The tracer concentration was recorded at three different vertical positions
in the reactor: at the bottom P ( 0 | 0.03 | 0.115 ), in the middle P ( 0 | 0.518 | 0.115 ) and at the top
P ( 0 | 1.06 | 0.115 ).

Table 4.2: Setup for Single Phase Simulations.
Grid size as number of numerical cells per volume for all
simulation setup in (single phase (SP)). Agitation speed
N in rounds per second and timestep size ∆t in seconds.

Mesh
grid size

# m−3 N s−1 ∆t
s

SPM1 8.77E+05 5 0.00500

SPM2 1.76E+06 5 0.00500

SPM3 3.69E+06 5 0.00333

SPM4 1.02E+07 5 0.00050

Table 4.3: Setup for Multiphase Simulations.
Grid size as number of numerical cells per volume for all
simulation setup in (multiphase (MP)). Agitation speed
N in rounds per second and timestep size ∆t in seconds.

Mesh
grid size #

m−3 N s−1 ∆t
s

MPM1 1.12E+05 5 0.0050

MPM2 4.53E+05 5 0.0005

MPM3 2.04E+06 5 0.0005

(MPM4) (4.24E+06 ) (5) (0.0005)

4.3.3 Multiphase simulations

Polydispersed multiphase flow was simulated by the Eulerian model including a discrete Popula-
tion Balance Model (PBM), which allows the prediction of local bubble size distribution (BSD).
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Characterisation of a pilot scale bioreactor

The setup is mainly based on Kuschel & Takors (2020) and contained a scaling factor for turbulent
dissipation rate ε in bubble break up, bubble coalescence, bubble drag and for the calculation of the
mass transfer coefficient kL. This scaling factor was introduced to overcome the underprediction of
turbulent energy dissipation due to insufficient grid resolution. It is based on the assumption, that
mixing energy (power calculated from impeller torque Pt with subscript (t) for torque and gassed
power input Ppneum) converts to turbulent energy and dissipates to heat in the liquid phase (Pε).
Hence local energy dissipation was linearly scaled to εsc by the factor fsc described in equation 4.2
resulting in 4.3 introducing the subscript (sc) as scaled quantity.

fsc = Ptotal

Pε
= Ppneum + Pt

Pε
(4.2)

εsc = fsc εlocal (4.3)

Hereby, Pt was calculated according to equation 4.18. Ppneum and Pε were calculated as follows
(Roels & Heijnen, 1980):

Ppneum = Φg R T ln

(
p0

p

)
(4.4)

Pε =
∫
αL ρL ε dV (4.5)

with Φg as molar flow, R as universal gas constant, T as temperature, p0 as standard pressure, p
as actual pressure, αL and ρL as liquid volume fraction and density. The agitation rate was set to
N = 5 s−1. Breakup was described by the Laakkonen breakup kernel (Laakkonen et al., 2007b),
which was implemented via user defined function. However, for stability reasons and simplicity
not the original function but a simple sine function has been used to fit the error function:

arg =
√√√√C2

σ

ρL ε
2
3sc d

5
3
i

+ C3
ηL

√
ρL ρG ε

1
3sc d

4
3
i

(4.6a)

x =


2√
π
sin(sin(arg)) arg ≤ 1

sin(arg 2
3 ) 1 < arg ≤ 2

1 2 < arg

(4.6b)

g(di) = C1 ε
1
3sc (1− x) (4.6c)

Here g(di) stands for the breakage rate of bubbles with diameter di and ηL for the liquid dynamic
viscosity. Values for C1, C2 and C3 were proposed by Laakkonen et al. (2007b) to be 2.52, 0.04
and 0.01, respectively. The goodness of the fit is discussed in section 4.4.2.2.

48



4.3 Numerical simulations

Turbulent collision frequencies were calculated based on the coalescence kernel originating from
Coulaloglou & Tavlarides (1977) with the algebraic correction of Alopaeus et al. (1999) and Prince
& Blanch (1990) and implemented via user defined function:

h(di, dj) = C4 ε
1
3
sc (di + dj)2 (d

2
3
i + d

2
3
j ) 1

2 λ(di + dj) (4.7)

with C4 suggested by Laakkonen et al. (2007b) to be 2.65. The model for coalescence efficiency
λ(di+dj) was also taken from Prince & Blanch (1990) with C5 = 5.17 as proposed by Laakkonen
et al. (2007b) with σ as surface tension:

λ(di + dj) = exp

−C5
ρ

1
3
L ε

1
3sc(

1
di

+ 1
dj

) 5
6 σ

1
2

 (4.8)

The daughter size distribution was also modelled according to Laakkonen et al. (2007b).

The Hageseather formulation (Hagesaether et al., 2002) for the discrete method with 23 bubble
classes was used to describe particle size distribution. The Ramkrishna formulation was proposed
to provide more accurate results (Kumar & Ramkrishna, 1996). However, it can be very slow due
to the large number of integration points. Whereas the Hageseather formulation requires fewer
integration points, the difference in accuracy can be corrected by a suitable choice of bin size.

The correlation of Tomiyama et al. (1998) for isolated bubbles in slightly contaminated systems
was implemented via user defined function to account for bubble drag coefficient CD,0:

CD,0 = max
{
min

( 24
Re

(1 + 0.15Re0.687), 72
Re

)
,

8
3

Eo

Eo+ 4

}
(4.9)

with Eo as Eötvös number defined as:

Eo = g (ρL − ρG) d2

σ
(4.10)

As Tomiyama drag closure was obtained for bubbles in quiescent fluids, effective (eff) viscosity
ηeff (Bakker & Akker, 1994; Brucato et al., 1998) and swarm effects (Ishii & Zuber, 1979) were
also included to consider drag modification under turbulent conditions.

Reeff = ρL d |uL − uG|
ηeff

, ηeff = ηL + C5 ρL ε
1
3sc d

4
3 (4.11)

with C5 = 0.02 as proposed by Bakker & Akker (1994) and u as liquid or gas velocity.
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Characterisation of a pilot scale bioreactor

The bubble swarm function accounts for the crowding effect and was included via drag coefficient
CD:

CD = f(αD) CD,0(Reeff), f(αG) =

(1− αG)C6 αG ≤ 0.8

1 αG > 0.8
(4.12)

with C6 to be -1.3 as proposed by Buffo et al. (2013). For the simulation of dispersed phase tur-
bulence the mixture model was included. The Schmidt number was set from 0.7 to 0.2 as recom-
mended by Montante et al. (2005) to improve mixing times. The gassing rate was set to 0.25 vvm.
Gassing was enabled by setting the top surface of the ring sparger to velocity inlet boundary con-
dition. The default value for turbulence intensity was kept and the hydraulic diameter was set to
0.056 m. The initial bubble diameter was calculated with 10 mm according to the correlation of
Gaddis & Vogelpohl (1986).

d =
(6 d0 σ

ρL g

) 4
3

+
(

81 ηL Qg

π g ρL

)
+
(

135 Q2
g

4 π2 g

) 4
5


1
4

(4.13)

with d0 as nozzle diameter, σ as surface tension, ηL as dynamic viscosity and Qg as gassing rate.

Degassing boundary condition was applied at the top of the reactor. The expansion of the fluid
was considered by increasing the liquid height according to the experimental gas hold-up. All
walls were no-slip boundaries for liquid and free-slip for gas except for the impellers, which were
also modeled with no-slip boundaries for gas to account for the accumulation of gas in the trailing
vortices behind the blades. The agitation rate was set to N = 5 s−1. Spatial discretization was set
to second order upwind for continuity and momentum as well as for k and ε equations. Transient
formulation was also set to second order implicit with a time step size of ∆t = 0.0005 s. Conver-
gence of the flow field was declared when the residuals remained < 10−4 within each time step
and a steady gas volume fraction was reached.

Mixing performance in multiphase was performed identical to single phase simulations (see sec-
tion 4.3.2). The overall volumetric oxygen mass transfer coefficient was calculated according to
equation 4.17. All functions were implemented as user defined function (UDF) into the Fluent
code.
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4.4 Results and discussion

4.3.4 Validation parameters

Simulated data have been validated with overall experimental gas hold-up, kLa value, power input
and mixing time. The overall gas hold-up was calculated by volume-averaging the local gas hold-
up with i as control variable according to :

αG =
∑
αG,i Vi∑
Vi

(4.14)

with Vi and αG,i as local volume and gas hold up. Similarly, the kLa value has been calculated. To
account for the mass transfer coefficient kL , different values for CkL are proposed (0.301 (Kawase
et al., 1992), 0.4 (Linek et al., 2004), 0.46 (Laakkonen et al., 2007b), 0.5 (Laakkonen et al., 2006),
0.523 (Linek et al., 2004) and 0.592 (Prasher & Wills, 1973)).

kL,i = CkL

√
DO2

(
ρL,i εi
ηL,i

)0.25

(4.15)

with DO2 as diffusion coefficient of oxygen in water.

The local interfacial surface area aIi was calculated with the local sauter diameter dSi assuming
sphere shaped bubbles:

aI,i = 6 αGi
dS,i

(4.16)

The overall kLa was then expressed by:

kLa =
∑
kL,i aI,i Vi∑

Vi
(4.17)

The power input from torque Pt was calculated by:

Pt = 2 π N M (4.18)

with M as rotational momentum in Nm. Also, the overall sauter diameter was calculated and
compared to data from literature:

dS =
∑
dS,i αG,i Vi∑
αG,i Vi

(4.19)

4.4 Results and discussion

A pilot scale bioreactor was characterised experimentally in terms of power input, gas hold up,
mixing time and mass transfer rate. A loading regime was determined for numerical simulations.
Data were furthermore used to validate single and multiphase simulations.
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4.4.1 Experimental measurements

Power consumption

The results for power input measurements for four different gassing rates and five different agita-
tion rates are displayed in figure 4.2.
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Figure 4.2: Power input as function of agitation rate. The power input by electrical power measurement is shown
for different operating conditions.

The power consumption increases exponentially with agitation rate for both, ungassed and gassed
conditions. For non aerated conditions and 100 rpm the power consumption was about 0.1 kW m−3,
whereas for 500 rpm the maximum power consumption of 12.8 kW m−3 was obtained. In general,
gassed power consumption is always smaller than ungassed power consumption. Only 68 % of
the non-aerated power consumption were reached for 0.25 vvm, 53 % for 0.5 vvm and 39 % for
1 vvm, respectively. This power reduction is caused by the formation of cavities behind the im-
peller blades, as well as by different fluid densities under aerated conditions (van’t Riet & Smith,
1973). For single impellers many authors have extensively studied this effect (Warmoeskerken &
Smith, 1981; Oosterhuis & Kossen, 1981; Yawalkar et al., 2008). The difference between aerated
and unaerated power consumption becomes less pronounced for lower stirrer speeds. This may be
due to the poor gas dispersion of smaller agitation rates. If the power number NP of the ungassed
case is calculated and plotted against the Reynolds number, the typical profile of a Rushton turbine
is visible as shown in figure 4.3. Normally, for baffled tanks a NP of 5 per Rushton turbine for a
fully turbulent flow (Re > 104) can be expected in single phase (Rushton & Costich, 1950; Doran,
2013). However, having three Rushton turbines in this study, results in a NP of ≈13.5. Only for
multi-impeller systems with complete parallel flow higher NP can be obtained.

52



4.4 Results and discussion

0 1.5 · 105 3 · 105 4.5 · 105
0

5

10

15

20

25

Re | −

N
P
|−

Figure 4.3: Power number as function of Reynolds
number. The ungassed power number for different agi-
tations rates (100 rpm - 500 rpm) is shown.
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Figure 4.4: Power ratio as function of flow num-
ber. This study: 300, 400 and 500 rpm for
gassing rates (0.25, 0.5, 1 vvm). Literature: × Taghavi
et al. (2011), + Vrábel et al. (2000), - Nienow & Lilly
(1979), Markopoulos & Pantuflas (2001), Karcz et
al. (2004).

The stirrer spacing of this pilot scale bioreactor lies in the transition from merging to parallel
flow according to Chunmei et al. (2008) and Xueming et al. (2008), causing a reduction in power
consumption. This phenomenon will be further discussed in 4.4.2.

To compare the data with other studies, the power ratio of gassed power and ungassed power
consumption is often plotted as function of the flow number Fl. Figure 4.4 shows exemplarily the
power ratio of aerated (0.25, 0.5, 1 vvm) and non-aerated power consumption for 300, 400 and
500 rpm as well as data from literature. There exist no data for the exact same setup, however, for
similar agitations systems the power ratio ranges from 0.35 to 1 depending on the impeller type
and aeration rate. The power ratio decreases with increasing aeration rate for all studies. While the
results of Nienow & Lilly (1979) for the measured dual impeller system are in general a bit higher,
the results of this study are in good agreement with the other authors. Especially for 300 rpm
the power ratio fits very well with dual Rushton system of Taghavi et al. (2011), Markopoulos &
Pantuflas (2001), Karcz et al. (2004) as well as the triple impeller system of Vrábel et al. (2000).
While the flow number includes effects of rotational speed and gassing rate, differences between
the authors usually arise from deviating impeller setup like blade number or thickness.

Discrepancies between the individual agitation rates are also reported in Cui et al. (1996) who
concluded that the flow number alone may not be sufficient enough to describe the power ratio,
because gassed power consumption varies considerably at the same flow number. Instead, he sug-
gested to plot (1− Pg/P0) over QgN

0.25D−2 and thereby showed that the QgN
0.25D−2 correlated

better under various operating conditions, making it possible to obtain a critical Fl. However, he
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Table 4.4: Determination of flooding regime. for various operating conditions, critical flow numbers of several
authors ([1] Zwietering ,[2] Dickery ,[3] Zlokarnik ,[4] Mikulcova (a), [5] Mikulcova (b), [6] (Rosseburg et al., 2018),
[7] (Gezork et al., 2000)) are listed. Correlations from authors [1-5] are summarized in Wiedmann (1983). The
Correlation of Mikulcova includes a positive (a) or a negative (b) factor. Flooding regimes are highlighted in grey.

Qg [vvm] N [rpm] Fl [−] [1] [2] [3] [4] [5] [6] [7]

0.25 100 0.061 0.003 0.024 0.225 0.036 0.055 0.027 0.075
0.25 200 0.031 0.012 0.047 0.637 0.145 0.218 0.106 0.299
0.25 300 0.020 0.027 0.071 1.170 0.325 0.491 0.240 0.674
0.25 400 0.015 0.048 0.094 1.802 0.578 0.873 0.426 1.198
0.25 500 0.012 0.075 0.118 2.518 0.904 1.364 0.665 1.872

0.5 100 0.123 0.003 0.024 0.225 0.036 0.055 0.027 0.075
0.5 200 0.061 0.012 0.047 0.637 0.145 0.218 0.106 0.299
0.5 300 0.041 0.027 0.071 1.170 0.325 0.491 0.240 0.674
0.5 400 0.031 0.048 0.094 1.802 0.578 0.873 0.426 1.198
0.5 500 0.025 0.075 0.118 2.518 0.904 1.364 0.665 1.872

1 100 0.245 0.003 0.024 0.225 0.036 0.055 0.027 0.075
1 200 0.123 0.012 0.047 0.637 0.145 0.218 0.106 0.299
1 300 0.082 0.027 0.071 1.170 0.325 0.491 0.240 0.674
1 400 0.061 0.048 0.094 1.802 0.578 0.873 0.426 1.198
1 500 0.049 0.075 0.118 2.518 0.904 1.364 0.665 1.872

also showed that in a multi-impeller system each impeller has an individual loading and flooding
regime, which is furthermore dependent on the stirrer spacing. Unfortunately, power consump-
tion of individual impellers could not be measured in this study. To determine impeller flooding
the correlations of various authors were compared as summarized in table 4.4. The critical flow
numbers when flooding occurs are highlighted in grey. According to all authors the impellers are
flooded with a gassing rate of 1 vvm and 100 rpm. The correlation of Zwietering even predicts a
flooding regime for 400 rpm. For 0.5 vvm and 0.25 vvm most authors predict a flooding regime
for 100 rpm, whereas for 200 rpm two authors predict flooding for 0.5 vvm and only Zwietering
predicts flooding for 0.25 vvm.

These correlations were derived from single impeller measurements. The critical flow number in
a system with dual Rushton turbines can be different for each turbine (Taghavi et al., 2011). How-
ever, since no correlation for a triple impeller system exists and also stirrer spacing has an influence
on the critical Fl, the correlations mentioned in table 4.4 give a good overview about operating
conditions which could cause a flooding regime.
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4.4 Results and discussion

Gas hold up

Another possibility to determine a flooding regime is to plot the gas hold up as a function of the
Froude number Fr. In figure 4.5 the results of the three different gassing rates expressed as super-
ficial gas velocity are presented. The gas hold up increases with increasing Fr and superficial gas
velocity. For a superficial gas velocity of 0.0044 m s−1 gas hold up rises from 1.2 % to 5.2 % and
for 0.0087 m s−1 from 2.5 % to 8.1 %. A maximal gas hold up of 10 % was reached for the highest
superficial gas velocity and Froude number. The black circle indicate the transition from loading
to flooding regime, which can be determined by the change in slope of the graphs (Rosseburg
et al., 2018). For a high agitation rate, the gaseous phase is dispersed efficiently by the Rushton
turbines leading to an homogeneous regime. Only a small increase in gas hold up with increasing
stirrer frequencies was observed. If the agitation rate decreases insufficient momentum induced
by the stirrer leads to a sudden drop in gas hold up, because the gas phase is not properly dis-
persed anymore. A heterogeneous regime consisting of bubble agglomerates forms, which will
pass the turbines due to higher buoyancy. Consequently, flooding of the impeller could occur up to
a Fr = 0.26 (about 200 rpm) for 0.25 vvm. Most of the correlations shown in table 4.4 predict a bit
smaller transition point. For 0.5 vvm and 1 vvm flooding could occurs up to a Fr = 0.34 which lies
between 200 rpm and 300 rpm and is also a bit higher predicted as most of the correlations. More
measurement points would lead to a better determination of the transition point and therefore a
better determination of the flooding regime. However, the current results can be helpful to choose
an operating point in order to avoid impeller flooding.
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Figure 4.5: Gas hold up as function of Fr. The gas hold up of the three different gassing rates expressed as superficial
gas velocity (0.25 vvm =̂ 0.0044 m s−1, 0.5 vvm =̂ 0.0087 m s−1, 1 vvm =̂ 0.0175 m s−1) is shown for different agitation
rates (100 rpm - 500 rpm) expressed as Fr. Black circles indicate a change of slope if a linear function (dashed line)
was fitted to correlate the data.
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Gas hold up was furthermore correlated to the impeller power consumption (PG/V ) per unit volume
and superficial gas velocity vS (Rushton & Bmbinet, 1968; Shewale & Pandit, 2006).

εG = K
(
PG

V

)γ
vζS (4.20)

Values for the constants K, γ and ζ were obtained by regression of experimental data in the com-
plete dispersion regime (N ≥ 300 rpm) with K = 0.250 [0.020, 0.522], γ = 0.201 [0.104, 0.298]
and ζ = 0.625 [0.537, 0.713]. Values in brackets indicate the 95 % confidence interval. The small
amount of data points results in a wide parameter range. The goodness of fit was calculated with
R2 = 0.99. The results are displayed in figure 4.6. Moucha et al. (2003) reported a correlation for
εG with a value for γ (γ = 0.54) higher compared to this study but a value for ζ (ζ = 0.58) , which
is in good agreement with the results presented here. Differences may result from deviations in
sparger geometry or the significant bigger impeller spacing chosen by Moucha et al. (2003).
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Figure 4.6: Gas hold-up as function of power consumption. The gas hold up is shown for different gassing rates
expressed as superficial gas velocity (0.25 vvm =̂ 0.0044 m s−1, 0.5 vvm =̂ 0.0087 m s−1, 1 vvm =̂ 0.0175 m s−1). As
the first six data points did not lie in a complete dispersion regime, they were excluded from parameter fitting.

Mixing time

The results of mixing time measurements are displayed in figure 4.7 as function of the Re. For
non aerated experiments (black circle) the mixing time decreases with increasing Re due to better
dispersion and diffusion at higher turbulence. At 100 rpm (Re≈ 8.4 ·104) the mixing time is about
37 s and decreases up to 7 s at 500 rpm (Re ≈ 4.1 · 105) before it slowly reaches a constant value
independent of Re. Similar behaviour was obtained for a superficial gas velocity of 0.0044 m s−1

(0.25 vvm, black squares). The influence of gassing becomes evident at higher superficial gas ve-
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Figure 4.7: Mixing time as function ofRe. The mixing time of the different gassing rates expressed as superficial gas
velocity (0.25 vvm =̂ 0.0044 m s−1, 0.5 vvm =̂ 0.0087 m s−1, 1 vvm =̂ 0.0175 m s−1) is shown for different agitation
rates (100 rpm - 500 rpm) expressed as Re.

locities of 0.0087 m s−1 and 0.0175 m s−1 (0.5 vvm and 1 vvm). Clearly mixing time increases from
about 24 s to 35 s for 0.5 vvm and from 18 s to 40 s for 1 vvm when switching from 100 rpm to
200 rpm (Re ≈ 1.7 · 105). In fact the mixing time at Re ≈ 1.7 · 105 is even higher than in the
non-aerated case. At higher Re, a decrease in mixing time was observed, converging to the same
mixing time as the other cases. Considering the results from the gas hold up measurements, the
transition point from flooding to loading regime was at an agitation rate between Re ≈ 1.7 · 105

and Re ≈ 2.5 · 105 (200 rpm and 300 rpm) for higher gassing rates and about 200 rpm for smaller
gassing rates. From most of the correlations in table 4.4 a bit smaller transition point was pre-
dicted. This behaviour is reflected in the mixing time experiments as well. For 0.0087 m s−1 and
0.0175 m s−1 impeller flooding leads to smaller mixing times for an agitation rate of 100 rpm (Re
≈ 8.4·104) compared to the lower gassing rates. Under these conditions, the flow field is dominated
by the momentum induced by the rising gas fraction, forming large scale vortices. The reactor al-
most behaves like a bubble column leading to decreased mixing times. As the momentum induced
by the impeller becomes stronger due to increasing stirrer frequency, the inhomogeneous flow of
the gaseous phase is homogenised by the Rushton turbines. The flow field transforms from large
scale vortices to the well-known radial flow pattern with circulation loops above and below the im-
peller of a Rushton turbine. Less large scale vortices first lead to poor mixing performance. With
increasingRe, however, the momentum induced by the impeller is dominant and the gaseous phase
plays a minor role. Mixing performance in this regime is almost independent from the Reynolds
number. Similar results were obtained by Rosseburg et al. (2018) and Groen (1994). Rosseburg
et al. (2018) presented a thorough mixing study in a large scale acrylic reactor operating at higher
Re and smaller gassing rates than in this study. There are not many correlations to determine mix-
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Table 4.5: Comparison with mixing time correlation. Experimental data of this study are compared to the mixing
time correlation of Vasconcelos et al. (1995), choosing the geometric similarity as 100. The percentage error is shown.

Agitation 0 vvm 0.25 vvm 0.5 vvm 1 vvm

100 rpm -16.35 23.13 59.18 374.52
200 rpm 4.57 30.29 40.95 85.76
300 rpm 11.83 -4.65 -17.98 46.28
400 rpm 7.55 -5.12 -19.96 -8.70
500 rpm -25.99 -32.44 -15.36 -12.10

ing time in a multi impeller multiphase system. Vasconcelos et al. (1995) provided a correlation
for a pilot scale dual impeller system operated in the loading regime. A comparison of the data in
this study and the data obtained by the correlation are displayed in table 4.5 as percentage error.
With up to 16 % the results of this study are in fair agreement with the calculated values for single
phase mixing time. Only the percentage error at 500 rpm is quite high, but considering that small
measurement errors at these short mixing times already have a big impact, the results are still com-
parable. As the gassing rate increases the deviations increase as well. While for higher agitation
rates the differences are still acceptable even for high gassing rates, a substantial difference is visi-
ble at smaller agitation rates. These operational conditions were shown to cause a flooding regime.
However, the correlation of Vasconcelos et al. (1995) is not suitable to predict mixing times for
flooding regimes, leading to this huge differences.

If the mixing time is plotted as function of the actual power consumption the flooding effect be-
comes more obvious. In figure 4.8 a decrease in mixing time with increasing power consumption
is observed for every superficial gas velocity. Only for the smallest power consumption of about
0.07 kW m−3 - 0.1 kW m−3 at 100 rpm mixing performance is better in the aerated case compared
to a higher power consumption. As the agitation rate increases, power consumption gets higher
and mixing performance first deteriorates, especially for the higher gassing rates. After a certain
power consumption is reached mixing performance improves converging into the same value for
all cases for higher power consumptions. Again this shows that the transition point from flooding
to loading lies between 100 rpm and 300 rpm depending on the gassing rate. The obtained results
are in good agreement with the single phase mixing experiments of Bach et al. (2017). In his study,
several mixing experiments were performed in a 200 L reactor, geometrical similar to the one in
this study. He furthermore stated, that mixing time is rather dependent on the power input, than
on the type of fluid, meaning less dependent on the viscosity or density of the fluid. This is also
reflected in the data of this study, provided, that the reactor is operating in the loading regime.
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Figure 4.8: Mixing time as function of the power consumption. The mixing time for various agitation and gassing
rates is presented.

Mass transfer coefficient

The mass transfer coefficient is shown as a function of power consumption in figure 4.9 in double
logarithmic scale. As expected, the mass transfer coefficient increases with increasing agitation
rate, as well as with increasing superficial gas velocity. Values for kLa range from 0.008 s−1 to
0.056 s−1 for 0.25 vvm and from 0.01 s−1 to 0.086 s−1 for 0.5 vvm. Highest kLa were obtained for
1 vvm with 0.022 s−1 for the smallest power consumption and 0.114 s−1 for the highest agitation
rate.
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Figure 4.9: Volumetric mass transfer coefficient as function of power consumption. The volumetric mass trans-
fer coefficient for oxygen is shown for different gassing rates expressed as superficial gas velocity (0.25 vvm =̂
0.0044 m s−1, 0.5 vvm =̂ 0.0087 m s−1, 1 vvm =̂ 0.0175 m s−1).
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Dashed lines in figure 4.9 indicate fitted correlations according to the equation:

kLa = K
(
PG
V

)γ
vζS (4.21)

with PG/V as volumetric power consumption in W m−3 and vS as superficial gas velocity in m s−1.
The parameters K, γ and ζ were fitted with K =0.0287 [0.0179, 0.0395], γ =0.466 [0.441, 0.491]
and ζ =0.638 [0.549, 0.727]. Values in brackets indicate the 95 % confidence interval. The good-
ness of fit was calculated with R2 = 0.985. The parameters are in good agreement with the values
for ion-free water obtained by Van’T Riet (1979) with K = 0.026, γ = 0.4 and ζ = 0.5.

Summarising, a multi-impeller 300 L pilot scale bioreactor was characterised in terms of power
consumption, gas hold up, mixing time and oxygen mass transfer rate at various gassing and
agitation rates. Critical flow numbers for the transition from loading to flooding regime were
determined. Knowledge of these parameters is a prerequisite for optimal process performance, es-
pecially during scale up. Low power consumption, short mixing times, sufficient gas hold up and
proper gas dispersion to obtain high kLa values are favourable operating conditions for a fermen-
tation process with C. glutamicum. As discussed in this section, impeller flooding was expected
for all gassing rates at 100 rpm and for most gassing rates at 200 rpm. Although flooding leads
to shorter mixing times at smaller power consumption (see figure 4.8), poor gas dispersion leads
to insufficient kLa values. Generally, the reactor should be operated in a loading regime, prefer-
ably at low power consumption. Therefore, in this study a agitation rate of 300 rpm and 0.25 vvm
is suggested. At this conditions, power consumption and mixing time are in a reasonable range.
Moreover, kLa is sufficient to supply the culture with enough oxygen, but produce local limitation
zones, reflecting the scenario of a late fed-batch fermentation. The experimental data furthermore
served for validation purposes of numerical simulations.

4.4.2 Numerical simulations

Numerical simulations were performed in single and in multiphase as described in 4.3. A single
phase mesh study was conducted to evaluate the dependency of the simulation result on the grid
size, as well as to compare model results of the current setup with experimental data. The same re-
actor setup was furthermore used for multiphase simulations with different simulation setups (see
4.3.3) in order to achieve the best agreement with experimental data. The effect of grid size was
also evaluated throughout the study.
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4.4.2.1 Single phase simulations

In order to examine when mesh independence was reached a mesh study was performed for single
phase simulations. The simulations were carried out at N = 5 s−1 with MRF model to account for
agitation as explained in 4.3.2. Flow variables like radial velocity urad and turbulent dissipation
rate ε were tracked for 15 s at several positions indicated in figure 4.10.

Figure 4.10: Position of the lines for tracking flow variables. (A, B) The flow variables urad and ε were tracked for
15 s at the indicated positions (shaft to baffle) I: Line 1 - 6, II: Line 7 - 14. (C) Tangentially averaged profiles were
recorded at each stirrer plane as indicated (bottom to top): plane 1-3. With modifications to Kuschel & Takors (2020).

Lines 1-6 were positioned in the impeller discharge stream between impeller blade and baffle,
whereas lines 7-14 were shifted 45° towards the middle between two impeller blades. The lines
in figure 4.10 (C) indicate a plane at each impeller height. The axial profiles of the normalised
radial velocity at the 12 different lines are displayed in figure 4.11. Highest radial velocities were
obtained in the impeller discharge stream at a height of about 0.2 m, 0.4 m and 0.6 m. A ratio of
urad/utip of≈ 0.4 or≈ 0.5 is only reached in the near impeller region at r/R of 0.307 or 0.410. The
ratio between radial (rad) velocity and tip speed (tip) is rather small compared to single impeller
profiles of 0.7 - 0.8 from literature (Murthy & Joshi, 2008; Chara et al., 2016). In multi-impeller
systems the radial velocity might be underestimated by the current turbulence model to some extent
(Devi & Kumar, 2013), yet a slightly merging flow field affects the radial velocity in the discharge
stream. Figure 4.12 (A) clearly shows the typical flow field of radially pumping Rushton turbines
with circulation loops above and below the impeller. However, if 90° offset of the plane in 4.12
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Figure 4.11: Normalised radial velocity at various positions (SP). The position of the different lines is indicated in
figure 4.10 (A, B). The normalised radial velocity urad/utip is shown for different mesh densities: SPM1 , SPM2

, SPM3 , SPM4 (see table 4.2).

(A) (see figure 4.12 (B)) is regarded, no distinct flow field of separate radial pumping Rushton
turbines is visible, but rather an overlap of the vortices caused by each impeller. The current
stirrer spacing lies in the transition from merging to parallel flow (Chunmei et al., 2008) and will
lead to reduced radial velocities compared to a single Rushton turbine or a complete parallel flow.
Reduced velocity ratios have also been shown in other studies of a dual Rushton turbine system
(Micale et al., 1999; Li et al., 2012). With the exception of line 1, the axial profiles at various
positions indicate that mesh independence for radial velocity is already reached for SPM1.

Figure 4.13 shows the tangentially averaged profiles of the radial velocity at each stirrer plane.
As already mentioned for the axial profiles, the velocity in the discharge stream for this case is
much smaller than the tip speed. Additionally, by tangentially averaging the velocity, the velocity
profile of the whole 360° geometry was taken into account. Compared to distinct position of the
axial profiles, this shows that the velocities differ depending on the examined angle. This might
be caused by the nature of the MRF model in combination with the asymmetric reactor geometry
(four baffles but six impeller blades). Velocity profiles are higher close to the impeller vicinity.
Also the bottom impeller seems to cause larger velocities in the discharge stream than the middle
and the top impeller. The profiles of each grid size are comparable for the bottom and the middle
impeller, however for the top impeller some deviations especially for the finest mesh are visible. No
significant differences were detectable for the axial profiles. However, if absolute radial velocities
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Figure 4.12: Merging flow field. Exemplary flow field of SPM3. (A) Parallel flow field. (B) Merging flow field at
90◦ offset from the plane in (A).

Figure 4.13: Tangentially averaged profiles of the normalised radial velocity (SP). The position of the different
stirrer planes is indicated in figure 4.10 (C). The normalised radial velocity urad/utip is shown for different mesh
densities: SPM1 , SPM2 , SPM3 , SPM4 (see table 4.2). Plane 1-3: bottom, middle, top impeller.

are averaged for 360°, differences may occur due to partly opposing flow directions of the irregular
merging flow field. In general, this also leads to smaller overall radial velocities. Still deviations
between the meshes are in an acceptable range.

Obviously, mesh dependence is more severe for the turbulent dissipation rate ε (Haringa et al.,
2018b). Figure 4.14 shows ε normalised to the agitation rate and the impeller diameter. Huge dif-
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Figure 4.14: Normalised turbulent dissipation rate at various positions (SP). The position of the different lines
is indicated in figure 4.10 (A, B). The normalised turbulent dissipation rate ε/ N3D2 is shown for different mesh
densities: SPM1 , SPM2 , SPM3 , SPM4 (see table 4.2).

Figure 4.15: Tangentially averaged profiles of the normalised turbulent dissipation rate (SP). The position of the
different stirrer planes is indicated in figure 4.10 (C). The normalized turbulent dissipation rate ε/ N3D2 is shown for
different mesh densities: SPM1 , SPM2 , SPM3 , SPM4 (see table 4.2). Plane 1-3: bottom, middle,
top impeller.

ferences between the meshes are visible, especially in the near impeller zone within the impeller
discharge stream. So locally, mesh independence is not reached with mesh SPM3 and an additional
mesh would be necessary to see if SPM4 results in mesh independent values for ε. However, pro-
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files of the tangentially averaged turbulent dissipation rate seem to be more in accordance between
the individual meshes (see figure 4.15), indicating that the URANS model is capable to predict the
overall dissipation rate (Delafosse et al., 2008).

Table 4.6: Comparison of integral predicted energy dissipation with expected power input in single phase. Power
draw from torque and power from dissipation were calculated according to equation 4.18 and 4.5. The grid size can
be found in table 4.2.

Mesh NP,t,top NP,t,mid NP,t,bot NP,t,tot NP,ε dev. [%]

SPM1 3.80 2.52 2.72 9.04 7.50 16.97
SPM2 4.04 3.57 3.65 11.26 10.28 8.71
SPM3 4.24 3.71 3.82 11.77 11.26 4.36
SPM4 4.67 4.06 4.23 12.96 12.76 1.48

A comparison of the power consumption reflects these results. Table 4.6 lists the calculated power
number obtained by torque (t) for the top, middle and bottom impeller of each mesh and compares
the total power number with the power number by integral predicted energy dissipation. Already
for mesh SPM3 the deviation between the two values is less than 5 %. So even if the mesh shows
some deviations in ε locally, the global power consumption calculated by torque is in good agree-
ment with the power calculated from energy dissipation.

The predicted values are also consistent with the experimental data. As shown in figure 4.3, the
power number obtained for Re ≈ 2.5 · 105 (300 rpm) is ≈ 13.6 yielding a deviation of only 5 %
to the simulated values. So the current setup was suitable to represent the experimental data. The
potential of numerical simulation to represent power consumption measurements by torque have
been reported before (Taghavi et al., 2011).

Mixing time simulations were performed by introducing a tracer in a predefined volume as ex-
plained in 4.3.2. The profile of the normalised tracer concentration is exemplarily shown for SPM4
in figure 4.16. The tracer concentration was measured at three fixed points. Before mixing is com-
plete, a relatively high concentration will be detected every time the bulk passes the measurement
point. These concentration peaks are separated periodically with the circulation time as period
(Nienow, 1997). Accordingly, the circulation time can be estimated as depicted in figure 4.16. A
comparison of all meshes is given in table 4.7.

Differences between the mixing times obtained by SPM1 to SPM4 are rather small with maximal
7 %. Unlike reported by Haringa et al. (2018b), there is no trend visible in increasing mixing time
depending on the grid size. A reason for this discrepancy could be, that compartmentalisation in
this reactor setup is less severe than reported by Haringa et al. (2018b), due to smaller impeller
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Figure 4.16: Mixing time profile. Profile of the normalized tracer concen-
tration at the indicated positions P1-3 (see chapter 4.3.2) for mesh SPM4.
Calculated circulation time ≈ 1.7 s.

Table 4.7: Mixing time in single
phase. The grid size can be found
in table 4.2. The variable τ95 is the
time reaching 95% homogeneity.

Mesh τ95 [s]

SPM1 19.6
SPM2 18.8
SPM3 20.3
SPM4 19.2

spacing and therefore the slightly merging flow field. Consequently, the formation of an inter-
compartment zone between the vortices of two Rushton turbines is less pronounced. Additionally,
this effect is emphasised by the tracer injection point. The injection point was chosen at medium
height between two intercompartment zones, rather than at the reactor top, to make it comparable
to experimental data. This may have led to a less mesh dependent distribution of the tracer because
only one instead of two intercompartment zones had to be passed by the tracer solution.

With about 20 s, simulated mixing time is in general a bit higher than the experimental mixing
time (≈ 16.5 s). Overshooting of mixing time by the current turbulence models was reported
by Haringa et al. (2018b) due to the previously described intercompartment zones. So even if
compartmentalisation is less pronounced in this case, the mixing time is still overpredicted by ≈
20 %. To reduce that overshooting, tuning of the turbulent Schmidt number is recommended in
literature (Delafosse et al., 2014; Haringa et al., 2017b; Montante et al., 2005).

4.4.2.2 Multiphase simulations

A range for an appropriate grid size was obtained from single phase simulations. In the further
analysis similar mesh densities were used for multiphase simulations. Multiphase simulations were
conducted with the Eulerian model including a PBM approach as explained in 4.3.3. To overcome
the underprediction of turbulent energy dissipation due to insufficient grid resolution but still keep
reasonable computational costs a scaling factor for ε was introduced in breakup, coalescence, drag
and mass transfer functions. The functions were implemented as user defined functions. Different
models were tested to find a suitable setup to properly display experimental data.
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Figure 4.17: Drag dependent gas volume fraction. (A) Tomiyama drag model slightly contaminated (Tomiyama et
al., 1998). (B) Tomiyama drag model slightly contaminated including turbulent and swarm effects (Bakker & Akker,
1994; Brucato et al., 1998). MPM2 is shown exemplarily.

Bubble break up was simulated with the model by Laakkonen et al. (2006). However, for stability
reasons and simplicity not the original break up function but a simple sine function was imple-
mented to fit the error function. The results of both functions are almost identical with a root mean
square of R2 = 0.99. Slight differences were only visible for small bubble diameters and small
values for ε, where the original function predicts a bit higher values than the substitute function.

Unfortunately, the drag coefficients in the drag closures of the current Fluent version are derived
from measurements in stagnant laminar flows where bubbles are isolated due to the extreme di-
lution (Ishii & Zuber, 1979; Tomiyama et al., 1998). In turbulent flows with larger gas fractions
the momentum boundary layers of bubbles interact, which results in crowding effects (Buffo et
al., 2013) or the layer is affected by smaller eddies leading to decreasing bubble rise velocities
(Bakker & Akker, 1994; Brucato et al., 1998). Therefore, a drag closure containing effective vis-
cosity, swarm effects and the previously described scaling factor was implemented (see section
4.3.3). A comparison of the simulated gas volume fraction using the drag closure by Tomiyama
et al. (1998) (A) and the closure used in this study (B) for MPM2 is shown in figure 4.17.

By neglecting the impact of effective viscosity on drag force, bubbles left the impeller discharge
stream too early (see figure 4.17 (A)). In this case, the gas volume fraction accumulated mainly
in the trailing vortices of the impellers, whereas a better gas distribution was reached by including
turbulent effects (see figure 4.17 (B)). The replacement of the molecular viscosity by the effective
viscosity in the drag closure leads to smaller effective Reynolds numbers Reeff and thereby to
higher drag coefficients. Higher drag coefficients furthermore result in better gas retention and
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Table 4.8: Determination of the scaling factor in multiphase. The scaling factor was calculated from total power
input Ptotal and Pε according to equation 4.2. The grid size can be found in table 4.3.

Setup Ptotal
V

[
kW
m3

]
Pε
V

[
kW
m3

]
fsc [-]

MPM1 1.864 0.980 1.90
MPM2 2.321 1.521 1.53
MPM3 2.190 1.687 1.30

Table 4.9: Comparison of different kLa models. Different models for the mass transfer coefficient kL as described
in section 4.3.4 were tested and compared to the experimental value of 125±4 h−1. The constants for the kL model
were taken from [1] (Kawase et al., 1992), [2] (Linek et al., 2004), [3] (Laakkonen et al., 2007b), [4] (Laakkonen
et al., 2006), [5] (Linek et al., 2004) and [6] (Prasher & Wills, 1973)). All values are displayed in [h−1].

Setup kLa [1] kLa [2] kLa [3] kLa [4] kLa [5] kLa [6]

MPM1 116 155 178 203 229 437
MPM2 115 154 177 201 227 433
MPM3 122 163 187 213 241 459

distributions. By optical assessment during gas hold up measurements the scenario in figure 4.17
(B) was considered as more realistic. However, complete optical access to the reactor was difficult.

Multiphase simulations including all user defined functions were conducted until convergence of
the flow field (residuals remained < 10−4 within each time step) and a steady gas volume fraction
was reached. The scaling factor was calculated according to the ratio of total power consumption
and integral power due to energy dissipation. The results are depicted in table 4.8. The scaling
factor was included in all UDFs by fsc and all flow equations were solved again till convergence
criteria were reached. Power consumption did change less than 3 % after inclusion of fsc.

To account for the volumetric mass transfer coefficient kLa, different values for the constant CkL in
the kL model are proposed as described in 4.3.4. After inclusion of the calculated factor (table 4.8),
scaled kLa values were simulated. The results are displayed in table 4.9. The constant CkL = 0.301
of Kawase et al. (1992) showed the best agreement with the experimental value of 125±4 h−1 and
was therefore chosen for all further simulations.

The third mesh used in multiphase simulations still showed a deviation of ≈ 30 % between Ptotal

and Pε (see table 4.8), whereas for a comparable mesh density the ’power gap’ in single phase
was less than 8 %. Pε is mostly dependent on the turbulent dissipation rate, so sensitive flow
variables such as urad and ε were checked for mesh dependency in multiphase, equally to single
phase simulations.
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Figure 4.18: Normalised radial velocity at various positions (MP). The position of the different lines is indicated in
figure 4.10 (A, B). The normalised radial velocity urad/utip is shown for different mesh densities: MPM1 , MPM2

, MPM3 (see table 4.3). With modifications to Kuschel & Takors (2020).

The flow variables were recorded for 15 s at several positions (see figure 4.10). Averaged profiles
of the radial velocity are displayed in figure 4.18 for the three meshes. As discussed previously
for SP simulations, the ratio of radial velocity and tip speed is much smaller compared to single
impeller measurements. The current turbulence model tends to underestimate the radial velocity
for the multi impeller system (Devi & Kumar, 2013), yet the presence of a gas phase as well as
the slightly merging flow field affect the radial velocity in the discharge stream (Chunmei et al.,
2008).

Already MPM1 shows good agreement with the finer meshes, except for some regions in the
impeller discharge stream. Here, MPM3 exhibits slightly higher values than the other meshes.
However, tangentially averaged profiles of the radial velocity at the three stirrer planes show good
conformity (see figure 4.19). Profiles diverge only in the near wall zone.

Obviously, mesh dependency is more significant for the turbulent dissipation rate ε (Haringa et al.,
2018b). Huge differences between the meshes in the normalised turbulent dissipation rate exist
especially in the near impeller zone (see figure 4.20). Unlike SP simulations also tangentially av-
eraged profiles differ (see figure 4.21). To diminish the dependency of ε on grid size in the current
models for breakage, coalescence, drag and mass transfer due to insufficient mesh resolution, the
above mentioned scaling factor was introduced.
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Figure 4.19: Tangentially averaged profiles of the normalised radial velocity (MP). The position of the different
stirrer planes is indicated in figure 4.10 (C). The normalised radial velocity urad/utip is shown for different mesh densi-
ties: MPM1 , MPM2 , MPM3 (see table 4.3). Plane 1-3: bottom, middle, top impeller. With modifications
to Kuschel & Takors (2020).

Figure 4.20: Normalised turbulent dissipation rate at various positions (MP). The position of the different lines
is indicated in 4.10 (A, B). The normalised turbulent dissipation rate ε/ N3D2 is shown for different mesh densities:
MPM1 , MPM2 , MPM3 (see table 4.3). With modifications to Kuschel & Takors (2020).

The results of the simulation with the complete setup are exemplarily shown for mesh MPM3 in
figure 4.22. As concluded from single phase simulations and the radial velocity profile, vortices
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Figure 4.21: Tangentially averaged profiles of the normalised turbulent dissipation rate (MP). The position of
the different stirrer planes is indicated in 4.10 (C). The normalized turbulent dissipation rate ε/ N3D2 is shown for
different mesh densities: MPM1 , MPM2 , MPM3 (see table 4.3). Plane 1-3: bottom, middle, top impeller.
With modifications to Kuschel & Takors (2020).

Figure 4.22: Results of multiphase simulations of MPM3. (A) Flow field, (B) gas volume distribution, (C) BSD
and (D) distribution of kLa values for MPM3 are shown exemplarily. With modifications to Kuschel & Takors (2020).

caused by each impeller overlap also in multiphase due to proximate impeller spacing (see fig-
ure 4.22 (A)). Additionally, the effect is enhanced by the upwards motion of the gas, leading to
no distinct flow fields of separate radial pumping Rushton turbines. With a Froude number of
N2D/g = 0.52 and a Flow number of Qg/ND

3 = 0.02, no flooding was expected according
to critical Flow numbers of Rosseburg et al. (2018) and others (Wiedmann, 1983) as discussed in
section 4.4.1. The presumption is confirmed by the simulated gas volume fraction, showing a load-
ing regime for the first impeller (see 4.22 (B)). Bubbles with the initial diameter of 10 mm were
disrupted by the first impeller and broke into smaller bubbles of about 4 – 5 mm (see 4.22 (C)).
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Smallest bubbles (2 – 3 mm) were observed in the impeller discharge stream of the middle and
upper impeller. As they moved upwards to the liquid surface bubble diameter increased. Largest
bubbles were found around the impeller shaft close to the reactor top, where coalescing effects
are dominant. Experimental data by Laakkonen et al. (2007b) revealed a similar tendency. The
distribution of local kLa values mirror the results of gas volume fraction and bubble size distri-
bution. Highest values of over 500 h−1 were obtained in the impeller discharge stream, where the
combination of a large gas volume fraction and a small bubble diameter lead to an enhanced mass
transfer exchange area (see 4.22 (D)).

The experimental values of the power number, gas hold up, kLa and mixing time were extensively
discussed in section 4.4.1 and compared to data from literature. Table 4.10 shows the results of
multiphase simulations with the complete setup compared to the experimental data. The power
input by torque is well predicted by the simulation, especially mesh 3 shows a deviation of no
more than 2.8 %.

The experimental (3.6 %) and simulated (3.2 %, mesh MPM3) gas hold up are in good comparison,
especially if experimental noise is considered. Predictions by mesh MPM1 (2.7 %) and 2 (2.6 %)
are still acceptable. As fsc scales ε proportionally, deviations between the prediction precision of
the three meshes may exist due to the non-linear character of the breakage, coalescence, drag and
kLa function. Additionally, gas hold up is directly dependent on the velocity profile which was
shown to differ slightly in close proximity to the impeller. Compared to literature, Laakkonen et
al. (2007b) presented with 2.4 % a smaller gas hold up than results obtained by simulation of this
study. However, the authors used only one instead of three Rushton turbines. Therefore, smaller
power input and gas hold up can be expected.

Table 4.10: Simulated and experimental data in multiphase. Comparison of simulated data and experimental
validation. Experimental bubble diameter was taken from Laakkonen et al. (2007b). With modifications to Kuschel &
Takors (2020).

Setup NP [-] αG [%] kLa [h−1] τ95[s] db [mm]

MPM1 9.50 2.7 116 17 3
MPM2 11.82 2.6 115 13.9 3
MPM3 11.18 3.2 122 13.1 3.4
exp 10.88±0.11 3.6±0.3 125±4 15.2±4 1.2 - 4.1

Highly accurate values for kLa prediction were obtained. In fact, even mesh MPM1 reached a
prediction quality no less than 92.8 %. The non-linear nature of the kLa closure may also serve as
explanation for deviations between the meshes in this case.
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Figure 4.23: Gas volume distribution of MPM4.

Table 4.11: Simulated and experimental data of MPM4.
Comparison of simulated parameters and experimental val-
idation. Experimental bubble diameter was taken from
Laakkonen et al. (2007b).

Parameter MPM4 exp

NP [-] 11.6 10.88±0.11
αG [%] 2.8 3.6±0.3
kLa [h−1] 94 125±4
τ95[s] 13.4 5.2±4
db [mm] 3.7 1.2 -4.1

Results from SP simulations showed that mixing time was overestimated by ≈ 20 %. Mixing
time was simulated by tuning Sc from 0.7 to 0.2, which is a common choice in single phase
(Delafosse et al., 2014; Montante et al., 2005). However, the effect is less incisive in MP, where the
upwards motion of the gas breaks the mass-exchange barrier of the inter impeller zone (Haringa
et al., 2017b). Mixing time between mesh MPM2 and mesh MPM3 does not change anymore.
Considering the standard deviation of mixing experiments every mesh gives acceptable results.

Bubble diameter was not measured experimentally. Comparison is therefore performed with a
study by Laakkonen et al. (2007b) testing different operating conditions. Laakkonen et al. (2007b)
measured sauter mean diameters of about 1.2 mm - 4.1 mm for similar settings, which is in good
agreement with the results of this study.

To check if finer grid sizes would result in the same values, a fourth mesh was simulated with the
mesh size described in table 4.3. The simulation turned out to be very unstable, so time step size
was adjusted resulting in high computational demand to reach a steady gas volume fraction. The
gas volume fraction is depicted in figure 4.23. Clearly, the second stirrer shows a flooding regime,
which could not be confirmed optically for the experimental setup. However, as described before,
a complete optical access was difficult. The standard wall function for the realisable RANS k-ε
model assumes a suitable size for the first layer of grid cells. The dimensionless wall distance
y+

w needs to be in the range 30 < y+
w < 300 according to the Fluent user guide. If the distance

is too high, the wall is not properly resolved, whereas the model is invalid for too low distances.
Calculating the actual wall distance yw according to equations 2.20 and 2.23 for that range and
taking 1.5 m s−1 as average velocity for the gas phase around the reactor shaft results in a minimal
wall distance of yw = 4.5 mm. With 4 mm the actual distance of MPM4 is already smaller than the
valid range, leading to the conclusion that results from MPM4 may be false. This is furthermore
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supported by the bad agreement of simulation results with experimental data as shown in table
4.11. Differences may be caused by the predicted flooding regime, which could not be observed
experimentally, leading to a smaller overall gas hold up and an underprediction of the kLa value
by 25 %.

Summarising, simulated values fit the experimental data very well. Even for mesh MPM1 devia-
tions are acceptable.

4.5 Conclusion

A multi impeller pilot scale bioreactor was characterised in terms of power consumption, gas hold
up, mixing time and oxygen mass transfer rate at agitation rates of 100 - 500 rpm and gassing
rates between 0 - 1 vvm. Complete dispersion regimes were only obtained for Fr > 0.3. Reactor
flooding occurred for 100 - 200 rpm at 0.5 - 1 vvm. While shorter mixing times in this scenario are
beneficial, small kLa values may lead to a complete oxygen limitation of a fermentation process. To
account for operation conditions within a loading regime an agitation rate of 300 rpm and 0.25 vvm
was chosen for numerical simulations. Under these conditions a culture of C. glutamicum will not
be oxygen limited but local limitation zones will arise, reflecting a late fed-batch scenario. First
single phase simulations (SP) were performed. Flow fields of different mesh sizes revealed the
occurrence of merging circulation loops, caused by each radial pumping Rushton turbine for the
current setup. Locally, mesh dependency was more severe for the turbulent dissipation rate ε
than for the radial velocity urad, but SPM3 and SPM4 were in good agreement considering global
values for ε. This is mirrored by the comparison of power consumption by torque and power from
dissipation rate which is < 5 % already for SPM3. Mixing time was underpredicted in SP by
20 % suggesting a tuning of the turbulent Schmidt number. A similar grid size range was chosen
for multiphase (MP) simulations. Amongst several models for the description of a two-phase
flow of a stirred, multi-impeller bioreactor a suitable approach was implemented and validated by
experimental data. Considering experimental noise, the influence of mesh granularity for the given
simulation setup was shown to be less than 12 % (except for αG of MPM1 and 2 with < 21 %) for
the prediction of process relevant parameter by defining a scaling factor for epsilon. This factor
was simply based on the power gap of the power introduced to the reactor and integral dissipated
energy. Experimental data were only needed for validation purposes. Consequently, a grid size of
1.12 · 105 #/m3 is suggested to be sufficient to represent the actual conditions in the bioreactor.
Likewise, similar mesh densities have been used in stirred two-phase flow simulations (Bach et
al., 2017; Haringa et al., 2017a). The obtained model setup was furthermore used to simulate a
multiphase double gradient as described in the next chapter.
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5 Simulated oxygen and glucose gradient

The successful transfer of a fermentation process from lab to industrial scale requires the preven-
tion of any performance losses. No general approach to accurately predict process performance
exists but there are excellent methods like bacterial lifeline analysis that could help to understand
the microbial environment and to unravel potential risks. In the previous chapter (4) a multiphase
multi-impeller stirred tank in pilot scale was simulated and process relevant parameters were val-
idated by experimental data. This chapter focuses on the depiction of a pseudo-stationary double
gradient of a late fed-batch scenario of C. glutamicum where oxygen is not process limiting, albeit
present only in small concentrations. The same pilot scale reactor setup and settings described in
the previous chapter were used. So-called lifelines, records of bacterial cells experiencing different
levels of glucose and oxygen were identified and used to design SD devices. To tackle the problem
of computational costs, grid size was evaluated throughout the different simulation stages. Most
remarkably, by using the introduced scaling factor also the coarsest approach of chapter 4 with a
mesh density of 1.12 · 105 #/m3 was sufficient to properly resolve the double gradient and predict
biological readouts.

5.1 Introduction

The increasing environmental consciousness of our society has created the need to switch to sus-
tainable circular processes using renewable resources. Low-value, high volume products like
amino or organic acids are mostly produced by microorganisms with Corynebacterium glutam-

icum beeing an established host. However, for the production in industrial bioreactors the scale-up
from smaller laboratory scales is crucial and usually suffers from limited mixing and mass trans-
fer. Diminished productivities, conversion yields or product purities are often recorded as a result
of emerging substrate or gas gradients (Bylund et al., 1998; Enfors et al., 2001; Garcia-Ochoa &
Gomez, 2009; Hewitt & Nienow, 2007; Junker, 2004; Junne et al., 2012; Neubauer et al., 2013;
Schmidt, 2005; Vrábel et al., 2001). Population heterogeneities may occur, which could be the
reason for underperformance of the bioprocess. To tackle this problem, several scale down anal-
ysers, laboratory scale systems mimicking the heterogeneous environment, have been developed
(Käß et al., 2014; Löffler et al., 2016). However, they often rely on industrial mixing times and
the assumption of certain concentration profiles. Computational fluid dynamics has proven to be
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a valuable tool to provide detailed information on environmental conditions inside a fermenter
(Lapin et al., 2006; Morchain et al., 2014; Pigou & Morchain, 2015). In the recent years, substrate
gradients in fed-batch production scale have successfully been simulated and the influence of con-
centration fluctuations on microorganisms has been evaluated in comprehensive statistical analysis
(Haringa et al., 2016; Haringa et al., 2017a; Kuschel et al., 2017). Coupled with kinetic or mecha-
nistic models, an approach to determine the degree of heterogeneity and to design scale-down (SD)
analysers is provided, thereby enabling predictions about productivity in large-scale bioreactors.
Yet the influence of oxygen as substrate is often neglected due to the complexity of two-phase flow
simulations.

The previous chapter provides a detailed, validated study on multiphase simulations in a stirred pi-
lot scale bioreactor. In the current chapter (a) a pseudo-stationary double gradient occurring during
a late fed-batch fermentation of a C. glutamicum is depicted using the multiple substrate kinetic
proposed by Roels (1983). Furthermore, (b) microbial responses to fluctuating environmental con-
ditions were evaluated by cellular lifelines analysis and (c) the influence of grid size is assessed
throughout every simulation state to get proper physical and biological readouts. Moreover, (d)
lessons learned are drawn for optimised design of scale down devices.

5.2 Simulation setup

The setup from chapter 4.3.3 was used to simulate a multiphase substrate and oxygen gradient.
To evaluate the impact of micro-environmental heterogeneities, a bacterial lifeline analysis was
performed. The effect of grid size was assessed for the three different meshes MPM1, MPM2 and
MPM3 introduced in the previous chapter.

5.2.1 Inclusion of the reaction

Glucose feed, oxygen mass transfer and bacterial reaction were included in setup 4.3.3 after con-
vergence criteria and a steady gas volume fraction were reached. Glucose feed was enabled by
a source term in a small region at the fermenter top with a feeding rate F = 0.076 gS g−1

CDW h−1,
assuming a cell concentration of cX = 36.5 gCDW L−1 and an average growth rate of µ = 0.035 h−1.

Oxygen mass transfer was included via UDF with the volumetric mass transfer coefficient kLa

calculated by equation 4.17. The transfer rate was then obtained by:

dcO2

dt
= kLa (c∗O2 − cO2) (5.1)
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with cO2,L as liquid oxygen concentration and c∗O2 as oxygen saturation concentration calculated
by the Henry’s law. The Henry constant Hcp

O2 = 1.2 · 105 mol m−3 Pa−1 at 30 ◦C was calculated by :

Hcp
O2 = Hcp,Θ

O2 exp
(
CSander

( 1
T
− 1
TΘ

))
(5.2)

with Hcp,Θ as reference value at 25 ◦C taken from Sander (2015).

The kinetic proposed by Roels (1983) was used to account for multisubstrate consumption:

µ = µmax min

(
cS

cS +KS
; cO2

cO2 +KO2

)
(5.3)

with µ as growth rate and KS and KO2 as half saturation concentrations. Glucose and oxygen con-
sumption were implemented via UDF. Specific growth parameters of C. glutamicum ATCC13032
were obtained from batch experiments (see chapter 3.3.1) resulting in a maximal growth rate
of µmax = 0.441h−1, a biomass glucose yield of YXS = 0.474 gCDW gS−1 and a biomass oxy-
gen yield of YXO2 = 0.043 gCDW mmol−1

O2 . The KS value for C. glutamicum KS = 3.6 · 10−3

gS L−1 was taken from Lindner et al. (2011). Since similar cytochrome bd activity has been re-
ported (Kita et al., 1984; Kusumoto et al., 2000), the value for KO2 was taken from E.coli with
KO2 = 2 ·10−3 mmolO2 L−1. Transient simulations were performed until a steady-state concentra-
tion profile of glucose and oxygen was reached, thereby reflecting a ’snap-shot’ of a late fed-batch
scenario in pilot-scale. Because the rate of mixing and mass transfer is an order of magnitude
higher than the reaction, the reaction was coupled to the continuous liquid phase. This simplifica-
tion will be discussed in section 5.3.1. Although steady-state concentration was reached, the flow
field showed a periodically changing behaviour. To facilitate comparability between the meshes,
power input by torque, velocity profiles and turbulent dissipation rate were tracked at several posi-
tions. The simulation was stopped when average values of the examined parameters were reached.

Classification of the glucose and oxygen gradients into specific regimes followed the growth rate
substrate dependency depicted in figure 5.1. The growth rate is shown as function of the dimen-
sionless substrate concentration cM/KM of a single substrate Monod kinetic for either glucose
or oxygen. If cM/KM ≤ 0.5 (corresponding to x = cM/(cMKM) ≤ 0.33) µ is proportional to
cM, which refers to a low concentration (LS for low glucose or LO2 for low oxygen) regime. If
cM/KM > 9, µ reaches 90 % of µmax and the function can be approximated by a function of zero
order. This regime was defined as HS and HO2 , because µ was independent of a change in substrate
concentration. The range in between refers to a transient regime (TS and TO2).
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Figure 5.1: Single substrate Monod kinetic. Single substrate Monod kinetic µ = f(cM/KM) to define regimes
(solid line). M can either stand for glucose or oxygen. If cM/KM ≤ 0.5 the Monod kinetic was approximated by a
function of first order, if cM/KM > 9 the Monod kinetic can be replaced by a function of zero order defining low and
high concentration regimes respectively (dashed lines). The region in between was defined as transient regime. With
modifications to Kuschel & Takors (2020).

5.2.2 Particle tracking

Bacteria were introduced as massless Lagrange particles (St << 1). The discrete random walk
model was enabled. For each mesh 120,000 bacteria were tracked for 260 s. Average growth rates
of Euler and Lagrange simulation were compared to proof statistical relevance. During particle
tracking concentrations and flow field were fixed. The position, the encountered glucose and oxy-
gen concentration for each bacterium were recorded every 15 ms. Further analysis was performed
in MATLAB® (MATLAB R2019a, The MathWorks, Inc., USA). This so called lifeline analysis is
used to analyse heterogeneities within the bioreactor and was published in various papers (Haringa
et al., 2016; Haringa et al., 2017a; Kuschel et al., 2017)

5.2.3 Statistical evaluation

The recorded signal was smoothed by applying a moving average filter with a filter window
based on the Lagrangian timescale as recommended by Haringa et al. (2017a). This filtering
step was necessary to filter out unrealistic turbulent fluctuations, caused by the discrete random
walk model. Haringa et al. (2017a) also suggested a second filter step to remove rapid consecutive
low-amplitude crossings which was enabled by a median filter. The processed trajectories were
then analysed according to their regime transitions. Regime classification of glucose and oxygen
gradients into low, transient and high concentration regimes was explained in section 5.2.1. By
overlapping concentration profiles of glucose and oxygen (see figure 5.4) it is obvious, that high
glucose concentrations are located within a low oxygen regime and vice versa. As the multisub-
strate kinetic by Roels (1983) suggests that the growth rate is determined by the limiting substrate,
regimes for the double gradient were defined as follows: LS for low glucose regime, LO2 for low
oxygen regime and a transient regime T. The regime T includes higher concentrations of both
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Figure 5.2: Regime transition patterns. LO2 TLO2 : Particle starts and ends in low oxygen regime with a dwelling
time in the transient area. TLO2 T: Reverse event starting in the transient area with retention in low oxygen regime.
LO2 TLS: Particle traverses all regimes from low oxygen to low glucose. LSTLO2 : Reverse movement from low
glucose to low oxygen. TLST: Circulation from transient over low glucose back to transient area. LSTLS: Reverse
event from low glucose to transient back to low glucose regime. The second capital letter always indicates the area in
which the retention time τ was measured and x = cM/(cMKM). With modifications to Kuschel & Takors (2020)

substrates and therefore higher growth rates can be expected. Each bacterium will linger in such
a regime for a specific time and will traverse the regime borders with a specific frequency. The
frequency and duration of these transitions were then further analysed according to the transition
patterns displayed in figure 5.2.

5.3 Results and discussion

5.3.1 Pseudo-stationary double gradient

A pseudo-stationary double gradient of a late fed-batch scenario was obtained by coupling the re-
action to the continuous liquid phase. The compartmentalisation arises due to different timescales
of the simulation. The time τdep needed to shift a half-saturated culture to substrate depletion was
estimated to be τdep = KS/(qS,max cX) = 0.38 s for either oxygen or glucose by assuming a sub-
strate limited single Monod kinetic (cS → 0). Since the timescale for the reaction rate is an order
of magnitude smaller than mixing (τ95 = 15.2 ± 4s) or circulation time (τ95 = 2.9 ± 0.75 s), the
formation of a substrate gradient is likely to occur. Figure 5.3 shows the spatial distribution of the
growth rate for all three meshes resulting in an average growth rate of about 0.0335 h−1. Strikingly
high growth rates (µ > 0.24 h−1) were attained proximate to the top impeller, whereas the rest
of the reactor exhibited rather growth limited zones. The reason for spatially distributed growth
rates is elucidated in figure 5.4 (A) and (B). Glucose and oxygen gradients of MPM3 are displayed
exemplarily. Gradients of MPM1 and MPM2 were similar. Small differences in gradient formation
between the meshes result from slight deviations in the overall physical parameters like kLa or τ95.
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Figure 5.3: Local distribution of simulated growth rates. (A) MPM1, (B) MPM2 and (C) MPM3. With modifica-
tions to Kuschel & Takors (2020).

Figure 5.4: Spatial concentration profiles of glucose and oxygen. Concentration profiles derived from MPM3 of
(A) glucose, fed from the top and (B) oxygen, introduced by a ring sparger close to reactor bottom. Colouration
from dark to light colours indicate high, transient or low concentrations. Overlapping both gradients results in (C)
the regimes with low glucose LS , transient T and low oxygen LO2 concentrations. With modifications to Kuschel &
Takors (2020)
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Regime discretisation was dependent on growth rate – substrate correlation as explained in sec-
tion 5.2.1. High glucose (HS) concentrations were only detectable close to the feed port, the bulk
was glucose-poor (LS). A transient zone (TS) was defined in between. The opposite scenario
attuned for oxygen: a high oxygen concentration (HO2) was located in the bulk spreading from
reactor bottom to the top impeller, followed by a small transient zone (TO2) and an oxygen limited
zone in the upper part of the reactor (LO2) (see figure 5.4 (B)). This reverse gradient formation leads
to high growth rates around the first impeller. As the growth rate follows the limiting substrate and
high glucose or oxygen concentrations were rather tainted by limitation zones, the regime classi-
fication was reduced to a low oxygen LO2 , a transient T and a low glucose LS regime (see figure
5.4). The transient zone T was predicted to be less than 5 % of the of the total volume according
to the simulation with MPM3, which was in good agreement with the other two meshes (MPM1:
3.7 %; MPM2: 3.3 %).

5.3.2 Statistical lifeline analysis

The Lagrangian analysis approach by Haringa et al. (2016) was applied as previously described.
So called lifelines, trajectories of 120,000 massless cells of a C. glutamicum population were stud-
ied. Therefore, concentration profiles of glucose and oxygen encountered by individual cells were
recorded for 260 s and the resulting potential growth rate was calculated applying the Roels multi-
substrate kinetic. The Lagrangian average growth rate (µ = 0.0291h−1) was comparable between
all meshes and is in good agreement with the Eulerian approach (µ = 0.0335h−1), ensuring that
a sufficient number of particles was used. A lifeline is displayed exemplarily for 25 s in figure
5.5 (D). The normalised glucose and oxygen concentrations are depicted in figure 5.5 (A) for
200 s. The profiles reflect the results of the previous section: High glucose concentrations are cou-
pled to low oxygen concentrations and vice versa. Elevated growth rates can only be obtained if
both substrates are present in moderate concentrations as demonstrated in figure 5.5 (B). The pro-
files were translated into regime transitions patterns for further analysis. Figure 5.5 (C) illustrates
several of these pattern marked in red. The pattern TLST may serve as an example for interpreta-
tion: After 18 s a bacterial cell moves from moderate glucose and oxygen concentrations (T) to low
glucose levels LS. It lingers there for about 40 s, before it traverses back to moderate levels (T).
In the following, the retention time τ refers to the residence period in the middle regime (second
capital letter, here LS). In general, the residence time in the transient regime (T) is quite short. All
bacterial lifelines were scanned for such transition patterns to obtain the frequency distribution as
a function of τ . Six transition strategies were evaluated and compared between the three meshes.
Total frequency of the event, average and maximal residence times (corresponding to the limit,
within which 99 % of the values were located) were calculated (see table 5.1).
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Figure 5.5: Time course of glucose and oxygen profiles. Profiles of (A) normalised (ĉ = cM/cMKM ) glucose and
oxygen concentration and (B) the resulting growth rate of a bacterial lifeline recorded for 200 s. (C) The profiles were
translated to low glucose LS , low oxygen LO2 and a transient regime T. (D) Bacterial lifeline in the bioreactor for 25 s.
With modifications to Kuschel & Takors (2020).

Table 5.1: Regime transition statistics. Total frequency, average τ̄ and maximal τmax retention time are listed for
each regime transition pattern for MPM3. With modifications to Kuschel & Takors (2020).

Regime frequency τ̄ τmax
transition [%] [s] [s]

LST LS 10.06 0.36 1.05
T LST 31.36 5.50 75.66
TLO2T 26.47 2.99 13.47
LO2TLO2 4.62 0.38 1.23
LSTLO2 15.99 0.20 0.81
LO2T LS 11.50 0.33 1.20

Additionally, the regime transitions distribution of MPM3 is presented in figure 5.6. Noteworthy,
long retention times are obtained for the pattern TLST. Bacteria can linger up to 76 s in LS, whereas
the average residence time in the glucose limited zone is only 5.5 s. With about 31 % TLST is also
the most frequent regime transition. A possible explanation can be concluded from figure 5.4.
Particles can be caught in the trailing vortices of the Rushton turbines causing a circulation within
the low glucose regime. TLO2T is the second most frequent pattern (26 %) with shorter residence
times than in TLST. Maximal and average residence times are only 13.5 s and 3 s respectively.
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Figure 5.6: Frequency distribution of regime transition strategy. Regime transition strategy as function of the
retention time τ . The six possible patterns are shown as semi-log plot. With modifications to Kuschel & Takors
(2020).

All patterns with the dwelling time in the transient regime exhibit a rapid decay after less than
1.5 s. On average bacteria spend less than 0.4 s within this regime, which is in the time scale of
τdep. Due to the nature of the fermentation setup the transient zone forms only in a small region at
the top impeller, where the velocity of the particles is very high. This leads to the fast crossings
of zone T. A comparison of average residence time prediction by the simulation with MPM3 for
transition LSTLS and LSTLO2 results in a deviation of about 1 % for MPM2 and about 7 % for
MPM1 (see figure 5.7). For the rapid transition LO2TLO2 differences between the meshes were in
the range of 14 - 17 % and up to 35 % for the transition LO2TLS. For the longer dwelling times,
the deviations of MPM1 and MPM2 compared to mesh MPM3 were around 10 - 14 % (TLST)
and 16 - 31 % (TLO2T), respectively. Such lifeline analyses provide valuable information about
concentration fluctuations encountered by microorganisms and are currently of high interest for
the design of SD analysers (Haringa et al., 2017a) in order to identify population heterogeneities
in bioreactors. As measurements from biological scale-down experiments are usually error-prone
a deviation of maximal 35 % between the meshes is considered tolerable. MPM1 only possess 1/10
of the grid size of MPM3. In other words, less computational power is required to qualify cellular
performance in large scale bioreactors.
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Figure 5.7: Comparison of residence time prediction. Comparison of average residence time prediction τ̄ for the
three simulated meshes. Deviations of MPM1 and MPM2 compared to MPM3. With modifications to Kuschel &
Takors (2020).

5.3.3 Simplified design of scale-down devices

The results for the current substrate limited fed-batch scenario show that the volume of moderate
substrate concentrations, here called transient zone, (see section 5.3.1) is with less than 5 % so
small that the influence on bacterial behaviour is questionable. This is furthermore confirmed by
rapid transitions through that regime with a dwelling time of maximal 1.2 s. Within this time in-
stantaneous metabolic responses may occur. However, profound effects on the bacterial population
are rather unlikely, since massive transcriptional responses after stress exposure periods >35 sec-
onds were observed for E. coli (Löffler et al., 2016). Still, the initiation of transcriptional response
may have started and will proceed upon transition into well-mixed zones of the bioreactor (Nieß
et al., 2017). In case of C. glutamicum, by-product formation (lactate) starts as metabolic response
to oxygen limitation. The later consumption of lactate in oxygen rich regimes, however, will cause
no change in the energetic state of the cell. Thereby, C. glutamicum has proven its robustness re-
garding the exposure to large scale stress conditions (Käß et al., 2014). Accordingly, the transient
zone may be excluded, considering only a glucose and oxygen limited regime for further analysis.
As such, the Euler-Lagrangian analysis was simplified by neglecting related regime patterns finally
yielding the two-compartment readouts LSLO2LS and LO2LSLO2 . For the first pattern an average
retention time of 3.4 s and a maximal retention time of 15 s was obtained. Longer residence times
in glucose limited regimes were found (5.7 s) for the second transition pattern, that can expand to
a maximal dwelling time of 80.5 s.

In general, these analyses serve as basis to design wet-lab scale-down devices, where the regimes
can be translated into a multi-compartment set-up. Figure 5.8 (A) and (B) illustrate simplified de-
signs of such devices. The first set-up consist of two stirred tanks, which are connected by a PFR.
As indicated key limitations are installed in the STR, whereas the PFR is used to realise the T zone.
Additionally, each STR is supplied by either substrate or oxygen to raise limiting levels. The fre-
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quency of the regime changes may be controlled by the ratio of the volumes of the different tanks.
Pumping between both STR and the PFR follows the travelling paths LSTLO2 , LSTLS, LO2TLS,
LO2TLO2 with the average dwelling times to determine the pumping rates. How many percent of
the frequency change are covered by the scale-down device may be optional to the experimentalist.
For instance, the case in figure 5.8 (B) illustrates the simplified version neglecting the impact of
the transient regime T. Furthermore, residence times and design volumes for industrial scale biore-
actors will differ.

Figure 5.8: Examples of simplified scale-down devices. (A) and (B) Examples of simplified scale down devices .
With modifications to Kuschel & Takors (2020).

5.4 Conclusion

The scaling factor approach by Laakkonen et al. (2007b), which was introduced in the previous
chapter, was successfully applied to simulate substrate and oxygen gradients for the three different
mesh sizes. This ’snap-shot’ double gradient may occur during a substrate limited late fed-batch
process of C. glutamicum, where oxygen is still present, albeit in low concentrations within specific
regions.

Interestingly, concentration profiles of relatively coarse mesh granularity were still in good agree-
ment with the finest mesh. Bacterial lifeline analysis further revealed that biologically relevant
readouts such as regime changes were based well on a mesh density of 1.12 · 105 #/m3, still giv-
ing accurate residence time distributions with mostly less than 15 % deviation compared to 10-fold
finer mesh resolution. Consequently, the use of this scaling approach opens the door for large scale
applications with less computational effort. In other words, the sensitivity of simulation results is
primarily decoupled not only for physical parameter but also for the readout of biological criteria
such as regime changes as part of lifeline analysis.
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The double gradient consisted of a glucose limited zone LS, a small regime of moderate concen-
trations T and an oxygen limited zone LO2 . It may be surprising that the inclusion of a second
substrate and thereby a second phase in a biotechnical setup finally leads to a rather simple com-
partmentalisation. In essence, this reflects the complex interplay of two phase mixing applications,
mass transfer and bacterial substrate consumption. Careful consideration is required for each indi-
vidual scenario. However, by introducing the gas phase in the lower reactor part and feeding at the
reactor top, the occurrence of a small T zone but large LS and LO2 zones is rather a common than
a rare event. Hence, the presented approach may serve as a representative example and deserves to
be tested for other cases.
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6 Cell cycle model

The physiological state of a bacterial cell is influenced by its surrounding environment. External
stress such as varying concentrations within a large scale bioreactor is a key factor to induce the
formation of population heterogeneity. The individual cells within a population can differ accord-
ing to growth phenotypes and cell cycle pattern (Müller et al., 2010). Hence, the heterogeneous
environment of a large scale fermenter might affect the homogeneity of a bacterial population,
yielding subpopulations that co-exist next to each other. To describe the formation of subpopula-
tions based on cell cycle dynamics a model is needed which depicts the bacterial replication pro-
cess. This study aimed to develop a cell cycle model for Corynebacterium glutamicum AC13032.
The replication phase duration was derived as a function of growth rate and partial pressure of
carbon dioxide (C. glutamicum). Additionally, based on the work of Lieder et al. (2016), a model
describing the replication phase as a function of the growth rate for Pseudomonas putida KT2440
was obtained. Combined with the CFD approach from the previous chapters, heterogeneity in
terms of subpolulations containing one, two or more chromosomes as described in chapter 7 can
be displayed.

6.1 Introduction

The bacterial cell cycle of a cell using binary fission can be divided into three parts; the initiation
of replication (Bc -phase), the time required for replication (Cc -Phase) and the time between repli-
cation and cell division (Dc -phase). The duration of those cell cycle phases varies with growth
conditions and nutrient availability (Bipatnath et al., 1998). The Cc and Dc period have been de-
scribed as decreasing with increasing growth rates and reach a constant value for well growing
cells. The Bc period minimises for increasing growth rates (Cooper & Helmstetter, 1968). Further-
more, the duration of the cell cycle phases seems to be adjusted up-on oxygen stress conditions.
The more severe the oxygen stress factor, the faster DNA replication takes place implying a re-
duced Cc phase, but prolonging Bc and Dc phases to cope with stress while maintaining a constant
growth rate (Lieder et al., 2016). In order to grow with shorter doubling times (shorter times than
the combined Cc and Dc phase duration), it has been shown for some bacteria that they are ca-
pable of multifork replication (Skarstad et al., 1986; Youngren et al., 2014; Lieder et al., 2016).
Then, initiation of replication already starts in the preceding generations. Also for C. glutam-
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icum uncoupled DNA synthesis has been suggested (Neumeyer et al., 2012). To determine the Cc

phase duration experimentally, the oriC / ter (origin of replication to terminus of replication) ratio
needs to be measured using quantitative PCR (Skarstad et al., 2012). As this method is quite time
consuming, fluorescence-activated cell scanning has proven to be a much faster approach. With
the help of single cell analysis, the DNA content of thousands of bacteria is measured to gener-
ate DNA content histograms of the population. Cooper & Helmstetter (1968) developed a model,
which describes bacterial replication and division cycle. Skarstad et al. (1985) extended this model
to determine the duration of the cell cycle phases as result of a specific DNA content distribution
for a population of E. coli B/r. Thus, the cell cycle durations can be determined by parameter es-
timation using the experimentally obtained DNA histograms. The model was successfully applied
for other organisms, too (Lieder et al., 2016).

In the following sections the dependency of cell cycle dynamics on environmental conditions for
Pseudomonas putida KT2440 and Corynebacterium glutamicum AC13032 is described. The case
dealing with P. putida is mainly dependent on the work of Lieder et al. (2016) and describes the
replication phase duration as function of the growth rate, whereas the cell cycle model obtained
for C. glutamicum considers an additional stress factor. The effect of elevated partial pressures
of carbon dioxide on cell cycle dynamics was also examined because carbon dioxide showed an
influence on the growth behaviour of C. glutamicum (Blombach et al., 2013). Data for C. glutam-

icum were obtained from chemostat experiments with several growth rates and partial pressure of
carbon dioxide which were analysed by flow cytometry. Cultivation and data analysis is described
in Eilingsfeld et al. (2020).

6.2 Model setup

An overview of the cell cycle model is given in figure 6.1. The method requires the measurement
of single cells via flow cytometry analysis. The DNA content of thousands of bacteria was detected
to obtain a distribution of cells containing a specific DNA content. Thereby, subpopulations with
one, two or more chromosomes were identified. The samples were derived from various chemostat
experiments, where different growth rates and partial pressures of carbon dioxide were installed.
Data acquisition, analysis and processing is described in Eilingsfeld et al. (2020). With the help of
the cell cycle model Cc and Dc phase duration was estimated by fitting the model to the experimen-
tally obtained DNA content distribution in MATLAB (MATLAB R2019a, The MathWorks, Inc.,
USA). The doubling time was set according to the installed growth rate. As the experimental data
contained some noise, the standard deviation for the frequency distribution was also estimated.
In the end a function for the replication phase duration dependent on the installed environmental
conditions was obtained.
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Figure 6.1: Cell cycle model overview. DNA histograms of several chemostat experiments installing different growth
rates µ and partial pressures of carbon dioxide pCO2 were measured and served as input for the cell cycle model.
Parameters were varied until the model fitted the experimental data best. In the end a function to describe replication
phase dependent on µ and pCO2 Cc = f(µ, pCO2 ) was derived.

A step by step description of the model is given in the following. The basic structure of the cell
cycle model is presented in figure 6.2. The upper row (A - C) describes the scheme for a standard
fork division cycle and the lower row (E - F) for a multifork division cycle. The model consists of
an age distribution n(a) (figure 6.2 A and D), giving the frequency of cells in an specific age as:

n(a) = ln2 21−a 0 ≤ a ≤ 1 (6.1)

It is assumed that cells grow from age zero to age one. For a standard fork division cycle, the
cell cycle starts with the Bc phase. At the cell age a1 the initiation of replication phase Cc begins
until the termination age a2 is reached. The time for cell division is denoted as Dc phase. For a
multifork cell division cycle overlapping Cc phases may lead to a termination event of the previous
generation within one doubling time before the initiation of the next cycle starts. As a consequence
of binary fission, there are twice as much new born cells (a = 0) compared to dividing cells (a = 1).
The function was normalised as follows:

1∫
0

n(a) da = 1 0 ≤ a ≤ 1 (6.2)

According to Cooper & Helmstetter (1968) the movement of the replication fork and therefore the
DNA accumulation rate dG(a)

da
is constant between initiation and termination. The DNA synthesis

is described as a step function with the discontinuities initiation and termination. The initiation
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and termination age is calculated by equation 6.3. Here a1 and a2 account for the events when
initiation and termination occur. The parameter x refers to the integral number of division cycles
in which replication Cc and division Dc (Cc + Dc) take place, τd describes the doubling time.

a1 = (x τd − (Cc +Dc))/τd (6.3a)

a2 = (τd −Dc)/τd (6.3b)

The theoretical chromosome content per cell G in the three intervals was calculated by equa-
tion 6.4.

G(a) = kd(F1a+ F3) + a1kd(F1 − F2) + a2kd(F2 − F3) 0 ≤ a ≤ a1 (6.4a)

G(a) = kd(F2a+ F3) + 2a1kd(F1 − F2) + a2kd(F2 − F3) a1 ≤ a ≤ a2 (6.4b)

G(a) = kd(F3a+ F3) + 2a1kd(F1 − F2) + 2a2kd(F2 − F3) a2 ≤ a ≤ 1 (6.4c)

With kd as DNA synthesis rate kd = τ
2C and Fi as number of replication forks in the ith interval

(Skarstad et al., 1985; Fossum et al., 2007). The course of the theoretical DNA content for standard
fork cell division is shown in figure 6.2 B. For a standard cell cycle division, the cells start with
one chromosome, then DNA replication follows until the cells contain two chromosomes. For a
multifork division cycle, initiation may already have started in the previous generation leading to
overlapping replication phases (see figure 6.2 E).

Figure 6.2: Principle of the cell cycle model. Upper row: standard fork division cycle. Lower row: multifork division
cycle. (A, D) Age distribution with the x-axis as cell age (from 0 up to τd) and the y-axis as frequency of cells in a
specific age n(a). Initiation a1 and termination a2 age are shown exemplarily. (B, E) Accumulated DNA G(a) per
cell as function of the cell age. (C, F) Frequency distribution of cells n(G) containing a specific chromosome number.
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Linking the age distribution n(a) to the cellular accumulation of DNA n(G) results in the theoret-
ical DNA histogram. In intervals of ongoing DNA synthesis, the fraction of a culture having an
age between a and a+ ∆a equals the fraction having DNA contents between G and ∆G.

n(G)dG = n(a)da (6.5a)

n(G) = n(a)
dG
da

(6.5b)

Substituting n(a) and dG
da

through equation 6.1 and the derivation of 6.4 results in equation 6.6.

n(G) = 2 ln2
kdF1

e
−ln2
kdF1

[G−kdF3−a1kd(F1−F2)−a2kd(F2−F3)]
G0 ≤ G ≤ G1 (6.6a)

n(G) = 2 ln2
kdF2

e
−ln2
kdF2

[G−kdF3−2a1kd(F1−F2)−a2k(F2−F3)]
G1 ≤ G ≤ G2 (6.6b)

n(G) = 2 ln2
kdF3

e
−ln2
kdF3

[G−kdF3−2a1kd(F1−F2)−2a2kd(F2−F3)]
G2 ≤ G ≤ G3 (6.6c)

Here, only the replicating cells are considered. Cells with constant DNA level (one chromosome
and two chromosomes) have to be calculated separately. In Skarstad et al. (1985) a delta function
δ(x) to depict the DNA distribution is used. The exponential function can be substituted by fi ·
δ(G − Gi), in which Gi is the cellular DNA content and fi the fraction of cells in the ith interval.
This fraction is calculated by equation 6.7.

ai∫
ai−1

n(a) da = 1 i = 1, 2, 3; a0 = 0; a3 = 1 (6.7)

In an exponentially growing culture there are slight differences of individual doubling times.
Therefore a biological variation of 5 % was considered, so that in total 30 individual cells with
individual doubling time were included (Skarstad et al., 1985). The histograms for the individual
cells were calculated, weighted and added up channel by channel to get a resulting DNA histogram
for the whole culture. The theoretical DNA distribution was then convoluted with a normal distri-
bution by assuming that the methodological variation of each DNA value can be represented by a
normal distribution (see equation 6.8). The methodological variation of each DNA (n(Gj)) value
can be represented by a normal distribution ysim(xi) in channel xi:

ysim(xi) =
m∑
j=1

n(Gj)
1

σ
√

2π
e
−0.5

(
xi−xj
σ

)2

(6.8)

with n(Gj) as number of cells in channel xj and m as the total number of channels taken into
account when calculating the convolution in channel xj .
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Parameter estimation was performed as least square fit by minimising the sum of the squares of the
residuals between experimental (yexp) and simulated histograms (ysim). The measure of goodness
of the fit was chosen referring to the work of Skarstad et al. (1985) with m individual data points
of yexp and ysim :

s =
√√√√ m∑
j=1

(√yexp −
√
ysim)2

m− 1 (6.9)

For the parameter estimation a patternsearch algorithm in MATLAB was applied upfront to narrow
the parameter space. Subsequently, a parameter estimation was performed by discretising the
obtained parameter space. The 99 % confidence interval was determined for each parameter.

Parameter estimation for cell cycle durations of P. putida was based on the work of Lieder et
al. (2016). Here, the replication phase Cc was determined for chemostat experiments installing
different growth rates (µ = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] h−1). Thus, the cell cycle duration was
determined as function of the growth rate.

The Cc-phase duration for C. glutamicum was determined for different growth rates (µ = [0,1,
0.2, 0.3, 0.4] h−1) as well as different partial pressure of carbon dioxide (pCO2 = [0.04%, 10%,
20%, 30%, 40%, 50%]) with pCO2 = 0.04% denoted as reference process. Data acquisition for the
C. glutamicum case is described in Eilingsfeld et al. (2020). Furthermore, a function Cc = f(µ,
pCO2) was determined.

6.3 Results and discussion

The results of replication phase estimation by the previously described cell cycle model are dis-
played for the following two cases. The first case shows the fitted histograms for P. putida based
on the work of Lieder et al. (2016). A function for the replication phase dependend on substrate
availability Cc = f(µ) was derived from flow cytometry data of chemostat experiments installing
six different growth rates as described in 6.2. The second case deals with the cell cycle modifica-
tion of C. glutamicum due to varying substrate availability and different partial pressures of carbon
dioxide. Data were obtained by chemostat experiments installing respective conditions. Bioreactor
cultivations and flow cytometry data analysis are described in Eilingsfeld et al. (2020). A function
was fitted to calculate the replication phase duration Cc = f(µ, pCO2).

6.3.1 Cell cycle phases of P. putida

The results of parameter estimation for replication phase duration of P. putida are displayed in
figure 6.3 (A). Here, the frequency distribution of a specific DNA content or number of chromo-
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some equivalents obtained by flow cytometry data analysis is shown for six distinct growth rates.
Experimental histograms are drawn as solid lines and fitted histograms as dashed lines. For small
growth rates (µ = 0.1 h−1) most cells within the population contain one chromosome. With in-
creasing growth rate (µ = 0.3 h−1) the distribution is shifted to a state where most cells within the
population are either replicating cells or contain two chromosomes. Multiphase replication started
for cells growing between µ = 0.3 h−1 and µ = 0.4 h−1 because the histograms showed a shift to-
wards more than two chromosomes equivalents and the estimated sum of Cc and Dc was higher
than the doubling time (for more information see Lieder et al. (2016)).
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Figure 6.3: Cell cycle phases for P. putida. A) Experimental (solid line) and simulated (dashed line) frequency
distribution of cells having a specific chromosome content chr (here one or two chromosomes). B) Replication phase
duration Cc as function of the growth rate µ. Transition between standard and multifork replication is marked with
two dashed lines.

Figure (B) displays the fitted correlation for the replication phase Cc dependent on the growth rate
µ. The function Cc = f(µ) was fitted by the following equation proposed by Keasling et al. (1995):

Cc = Cc,min

(
1 + afit e

bfit
τd

)
(6.10)

with Cc,min = 46.2 min as the minimal Cc-period and afit = 1.83 and bfit = 3.38 as parameter to fit
the experimental data (Kuschel et al., 2017). The fit resulted in a squared residual of R2 = 0.94. The
replication phase duration decreases from about 100 min with increasing growth rate and converges
to a constant value of 46.2 min. As the DNA polymerase activity is limited, DNA replication can
not be further accelerated and multifork replication starts in order to enable short doubling times
and thereby fast cell growth. The transition point between µ = 0.3 h−1 and µ = 0.4 h−1 is marked as
dashed lines. The minimal obtained replication phase duration for P. putida is longer compared to
E. coli (40 min) due to the 1.3 times higher genome size of P. putida. The obtained function can be
combined with CFD to describe heterogeneity within a large scale bioreactor. More information
are given in chapter 7.
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6.3.2 Cell cycle phases of C. glutamicum

The results of the parameter estimation for cell cycle phases of C. glutamicum are listed in table 6.1.
The replication (Cc) and division (Dc) phases were fitted for different environmental conditions as
described in 6.2. The standard deviation of the resulting Gaussian distribution was also fitted and
was less than 20 % except for two samples. The time prior to initiation of replication (Bc phase)
was calculated as Bc = τd - Cc - Dc. Irrespectively of the carbon dioxide content, all samples
showed decreasing duration of cell cycle phases with increasing growth rate. This trend was also
shown for E. coli and P. putida (Helmstetter, 1996; Lieder et al., 2016). In fact, the Bc period
diminished for higher doubling rates. The duration of the Bc phase is coupled to a critical cell
mass, which is reached much faster under nutrient rich conditions (Donachie, 1968). If the duration
of replication and cell division is longer than the actual doubling time, the cells start to perform
multifork replication as described in section 6.1. A stagnant replication duration and thereby the
start of multifork replication was shown to occur at a growth rate of µ = 0.4 h−1 for E. coli and
P. putida. As the doubling time under reference conditions for a growth rate of µ = 0.4 h−1 for
C. glutamicum is also slightly smaller than the sum of Cc and Dc phase, mulifork replication is
also suggested to start for τd < 1.7h for C. glutamicum. The generally shorter replication phases
of C. glutamicum (Cc(µ = 0.2 h−1) ≈ 0.62 h) compared to E. coli (Cc(µ = 0.2 h−1) ≈ 1.66 h) and
P. putida (Cc(µ = 0.2 h−1) ≈ 1.3 h) for identical doubling rates may be attributed to the smaller
genome size (Koppes et al., 1978). While the genome size for E. coli K12 is 4.6 Mb and 6.18 Mb
for P. putida KT2440, C. glutamicum possesses with 3.3 Mb a 1.4 times smaller genome than E.

coli K12. However the division phase of C. glutamicum (Dc(µ = 0.2 h−1) ≈ 2.28 h) seems to be
elevated compared to other organisms under reference conditions (E. coli (Dc(µ = 0.2 h−1) ≈ 0.28
h), P. putida (Cc(µ = 0.2 h−1) ≈ 1.0 h)). A possible explanation for this might be the occurrence of
the V-snapping division for C. glutamicum (Letek et al., 2008), where cells grow as pairs tending
to stick together for a long time period.

Remarkably, replication phases of the carbon dioxide stressed samples are significantly higher
compared to the reference sample. While the replication phases for pCO2 = 0.04% range from
Cc = 1 h to Cc = 0.5 h for µ = 0.1 to µ = 0.4 h−1, replication phases are prolonged by factor two
for partial pressures of carbon dioxide of 10%. With increasing pCO2 , the duration of replication
phase increases furthermore up to Cc = 2.3 h for pCO2 = 50% and µ = 0.1 h−1. For higher growth
rates at elevated pCO2 , the replication reached a minimal time of Cc ≈ 1 h. As a consequence,
carbon dioxide stress seems to decelerate the DNA synthesis process. Carbon dioxide can diffuse
into the cells and lower the intracellular pH value (Gutknecht et al., 1977). A reduced pH may
inhibit the speed of the DNA polymerase to some extent (Eckert & Kunkel, 1993; Sabatino et al.,
1988). This would furthermore explain the occurrence of multifork replication already at a growth
rate of µ = 0.2 h−1 (here Cc + Dc > τd).
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Table 6.1: Results of cell cycle phases for C. glutamicum. Replication (Cc) and division (Dc) phase for different
growth rates (µ = [0.1, 0.2, 0.3, 0.4] h−1) and partial pressures of carbon dioxide (pCO2 = [0.04%, 10%, 20%, 30%,
40% 50%]) with pCO2 = 0.04% as reference determined by the model. The time before initiation of replication Bc
was calculated accordingly. The parameter s is a measure of goodness of fit (Skarstad et al., 1985).

Sample Cc,fit [Cc,min, Cc,max] Dc,fit [Dc,min, Dc,max] Bcalc [Bmin, Bmax] s
in [h] in [h] in [h]

REF_0.1 1.06 [0.99, 1.08] 5.37 [5.23, 5.44] 0.51 [0.40, 0.71] 1.26
REF_0.2 0.62 [0.52, 0.71] 2.28 [2.24, 2.39] 0.56 [0.37, 0.71] 3.01
REF_0.3 0.48 [0.48, 0.48] 1.81 [0.80, 1.81] 0.02 [0.02, 1.03] 1.42
REF_0.4 0.48 [0.48, 0.48] 1.28 [1.28, 1.40] 0.00 [0.00, 0.00] 1.23

p10_0.1 1.57 [1.52, 1.68] 4.91 [4.79, 4.99] 0.45 [0.26, 0.62] 3.53
p10_0.2 1.01 [0.98, 1.10] 2.48 [2.45, 2.51] 0.00 [0.00, 0.03] 1.98
p10_0.3 0.97 [0.92, 1.02] 1.36 [1.32, 1.39] 0.00 [0.00, 0.08] 3.55
p10_0.4 1.02 [0.95, 1.07] 1.15 [1.13, 1.21] 0.00 [0.00, 0.00] 3.57

p20_0.1 1.69 [1.61, 1.81] 3.82 [3.75, 3.87] 1.42 [1.26, 1.58] 3.17
p20_0.2 1.62 [1.51, 1.62] 1.76 [1.71, 1.82] 0.09 [0.02, 0.24] 2.44
p20_0.3 1.40 [1.35, 1.40] 1.42 [1.40, 1.48] 0.00 [0.00, 0.00] 2.89
p20_0.4 0.80 [0.79, 0.85] 1.38 [1.36, 1.42] 0.00 [0.00, 0.00] 2.00

p30_0.1 1.87 [1.87, 1.87] 3.99 [3.99, 3.99] 1.07 [1.07, 1.07] 1.19
p30_0.2 1.37 [1.36, 1.45] 2.24 [2.21, 2.30] 0.00 [0.00, 0.00] 1.62
p30_0.3 1.91 [1.78, 2.00] 1.18 [1.12, 1.27] 0.00 [0.00, 0.00] 5.24
p30_0.4 0.80 [0.80, 0.87] 1.22 [1.18, 1.24] 0.00 [0.00, 0.00] 3.01

p40_0.1 2.05 [1.89, 2.07] 4.44 [4.35, 4.50] 0.44 [0.37, 0.69] 1.86
p40_0.2 1.50 [1.50, 1.53] 2.40 [2.37, 2.40] 0.00 [0.00, 0.00] 1.91
p40_0.3 0.74 [0.68, 0.79] 1.95 [1.95, 2.06] 0.00 [0.00, 0.00] 2.26
p40_0.4 0.67 [0.63, 0.74] 1.51 [1.46, 1.55] 0.00 [0.00, 0.00] 3.25

p50_0.1 2.31 [2.20, 2.47] 4.29 [4.16, 4.40] 0.33 [0.06, 0.56] 2.28
p50_0.2 1.70 [1.57, 1.78] 2.19 [2.14, 2.24] 0.00 [0.00, 0.00] 2.53
p50_0.3 0.94 [0.84, 1.00] 2.09 [2.00, 2.15] 0.00 [0.00, 0.00] 5.35
p50_0.4 1.00 [0.98, 1.00] 1.09 [1.07, 1.12] 0.00 [0.00, 0.00] 2.11

Alternatively, cells might increase ATP consuming transporter activity to apply countermeasures
against decreasing intracellular pH values. Consequently, maintaining constant intracellular pH
could also lead to increased cellular maintenance demands (Eigenstetter & Takors, 2017).
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Figure 6.4: Cell cycle phases for C. glutamicum. A) Experimental (solid line) and simulated (dashed line) frequency
distributions of cells having a specific chromosome content chr (here one or two chromosomes). Histograms for
pCO2 = 0.04% (reference), pCO2 = 10% and pCO2 = 50% are exemplarily shown for all growth rates. B) Replication
phase duration Cc as function of the growth rate µ and partial pressure of carbon dioxide pCO2 . Black dots indicate
fitted values of table 6.1.

The parameter fit is depicted in figure 6.4 (A). Experimental and theoretical histograms for three
different partial pressure of carbon dioxide pCO2 = 0.04% (reference), pCO2 = 10% and pCO2 = 50%
are exemplarily shown for all growth rates. The parameter s in table 6.1 describes the goodness of
each fit. The values for s are in the same range as shown in Skarstad et al. (1985). So the model
reflects the experimental histograms very well.

A function for the replication phase dependent on growth rate and partial pressure of carbon diox-
ide Cc = f(µ, pCO2) was fitted to the values in table 6.1 via weighted least square fit with the pa-
rameter s as weighting factor. The surface plot of the obtained phenomenological model is shown
in figure 6.4 B. The following function was obtained:

Cc = afit
1
µ

+ bfit
1

pCO2
cfit

(6.11)

with afit = 0.1228 [0.09999, 0.1455], bfit = -0.422 [-0.7584, -0.0857] and cfit = 0.1546 [-0.04751,
0.3567] as fitted parameter and a squared residual of R2 = 0.9. Numbers in brackets indicate the
95 % confidence interval of the fit. As already discussed above, the Cc period decreases with
increasing growth rate but increases with increasing pCO2 .
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6.4 Conclusion

External stress may lead to the division of a population into subpopulations possessing different
properties. With the help of the cell cycle model subpopulations differing in their DNA content
have been described for two cases. For P. putida the replication phase duration as function of
growth rate was obtained on basis of the work of Lieder et al. (2016). The replication phase Cc

was shown to decrease with increasing growth rate. Furthermore, the occurrence of multifork
replication was shown to start for growth rates between 0.3 h−1 < µ ≤ 0.4 h−1. Similar results
were obtained for C. glutamicum. The Cc period also showed a decrease with increasing growth
rate but an increase with increasing partial pressures of carbon dioxide pCO2 , showing that pCO2

stress slows down the replication process. Noteworthy, in order to cope with the installed growth
rate, multifork replication for C. glutamicum under elevated pCO2 conditions was initiated already
for growth rates of µ = 0.2 h−1 whereas under reference conditions C. glutamicum showed similar
behaviour compared to P. putida. Combined with CFD the derived functions for the Cc period may
help to describe population heterogeneity in large scale bioreactors.
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7 Heterogeneity analysis in large scale

The occurrence of spatial substrate distribution triggers cellular adaptions to changing environmen-
tal conditions and may finally lead to the formation of a heterogeneous culture within an industrial
scale bioreactor. Yet, this complex topic is not completely understood and improvements in strain
engineering, reactor design and fermenter operation can be achieved if more information about
cellular response towards concentration gradients in large scale reactors becomes available. In this
chapter, heterogeneity in a single and multiphase scenario of an industrial fed-batch fermentation
was examined in two separate case studies performed with the help of computational fluid dynam-
ics. The first case depicts a glucose gradient in a 54 m3 bioreactor occurring during a fed-batch
scenario of Pseudomonas putida KT2440. A bacterial lifeline analysis combined with the cell cy-
cle model of chapter 6 resulted in at least 72 % of the bacterial population showing quick metabolic
responses and 10 % being likely to undergo massive transcriptional changes. Moreover, two types
of responses were formulated: a short term response in terms of altered ATP consumption leading
to 52.9 % with higher ATP maintenance demands than the average and a long term response of
cells possessing different cell cycle strategies. For the latter subpopulations of cells with distinct
replication phase durations were identified. The second case deals with a scale-up of the multi-
phase simulation from chapter 4 and 5 up to a total volume of 22 m3, where a late fed-batch phase
of Corynebacterium glutamicum ATCC13032 was examined. Identical compartmentalisation was
found for large scale, which suggest similar scale-down devices to examine the influence of limi-
tation zones in large scale on bacterial behaviour. Furthermore, first approaches for carbon dioxide
balancing were considered. Both cases show exemplarily the importance of the integration of bio-
logical readouts into scale-up considerations.

7.1 Introduction

The conservative strategy of scale-up relies on the calculation of physical parameters according
to previously determined correlations (Mersmann et al., 1975; Van’T Riet, 1979; Nienow, 1997;
Moucha et al., 2003). In single phase, these predictions are usually very precise, whereas in
multiphase special considerations have to be taken into account. For instance, mixing times in
loading regimes will quite differ from mixing times in flooding regimes (Vasconcelos et al., 1995;
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Alves & Vasconcelos, 1995). Additionally, the correct prediction of overall physical parameter
does not necessarily lead to consistent process performance. In fact a simple “1:1 approach”,
keeping all parameters constant at the same time is typically not possible. Due to decreased mixing
quality vertical and radial oxygen gradients as well as carbon source gradients might arise causing
local limitations zones and thereby reduced production performance. Only few industrial scale
data are available owing to high experimental costs or because data are intellectual property of the
companies. A brief summary is given in chapter 2 section 2.2.

To shed light on the complex interplay of physical, chemical and biological factors, approaches in
the recent years include computational fluid dynamics as aiding tool for scale-up considerations
(Haringa et al., 2016; Haringa et al., 2017a). In the previous chapters organism specific param-
eters as well as physical parameters of a fermentation process have been collected to setup such
simulations or to validate the results. A pilot scale reactor was examined in multiphase, a suitable
simulation setup was found and a gradient of oxygen and glucose occurring during a late fed-batch
of C. glutamicum was depicted (Kuschel & Takors, 2020). Furthermore, a sufficient grid density
was determined not only to describe physical parameters but also biological readouts. The chapter
aims to display techniques to include the influence of organisms specific behaviour into scale-up
considerations exemplarily for two distinct case studies. The first case deals with a single phase
simulation of a fermentation process of P. putida in a 54 m3 bioreactor. It presents an example to in-
clude a biological response towards changing substrate availability in form of modified replication
phase durations. This case combines computational fluid dynamics with the cell cycle model from
chapter 6 to account for substrate induced population heterogeneity within a large scale fermenta-
tion and is based on Kuschel et al. (2017). The second case presents a scale-up of the multiphase
pilot scale simulation of chapter 4 and 5. The compartmentalisation for identical biological kinetic
but slightly different operational conditions is described and the basis of carbon dioxide mass bal-
ance is included.

7.2 Material and methods

The reactor setup for two case studies is described in the following. The first case study was con-
ducted for a fermentation scenario of Pseudomonas putida KT2440 in a 54 m3 bioreactor and
is based on Kuschel et al. (2017). The second case study describes a fed-batch process with
Corynebacterium glutamicum ATCC13032 and results from the scale-up of the pilot scale reac-
tor in chapter 4 and 5 up to a volume of 22 m3.
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7.2.1 Case 1: Single phase with P. putida

Geometry and reactor setup

Figure 7.1: Geometry of the 54 m3

reactor. Tank was equipped with four
baffles and two turbines containing
eight (bottom) and six blades (top).

Table 7.1: Setup of the 54 m3 reactor. Geometry of the 54 m3, operational
conditions, media properties and organism specific parameters are listed in the
table. Measures are displayed in figure 7.1. Modified to Kuschel et al. (2017).

Description Symbol Unit

Liquid height HL 7.7 m
Tank diameter TD 3 m

Impeller diameter DI 1.3 m
Off-bot. impeller clearance C 0.9 m

Impeller clearance ∆C 3 m
Bafflle diameter BD 0.3 m
Impeller height IH 0.27 m
Media density ρL 995.7 kg m−3

Media viscosity ηL 0.0008 Pa s
Temperature ϑ 30 ◦C
Agitation rate N 100 rpm
Feeding rate F 0.738 kgS kg−1

CDW h−1

Biomass concentration cX 10 kgCDW m−3

Yield (biomass/substrate) YXS 0.4 kgCDW kg−1
S

Half saturation constant KS 0.01 kgS m−3

Growth rate (max) µ 0.59 h−1

The reactor geometry was originally derived from Haringa et al. (2016) and was slightly modi-
fied for this study. A schematic diagram is depicted in figure 7.1, dimensions are listed in table
7.1. With a total volume of 54 m3 the setup consisted of four baffles and two Rushton impellers
equipped with eight (bottom) and six blades (top) blades. The feeding rate was set to half of the
maximum uptake rate qS,max. Media properties as well as operational conditions are also listed in
table 7.1. This study deals with a large scale single phase simulation, therefore no gassing was in-
stalled and aeration, gas transfer as well as oxygen uptake were neglected. A simple Monod kinetic
served to mimic substrate consumption in the liquid phase. Growth parameters of Pseudomonas

putida can be extracted from table 7.1.
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Simulation setup

Numerical simulations were conducted using the commercial software ANSYS® Fluent 17.0 . A
grid size of 445,000 polyhedral cells resulted in the same circulation times as achieved by Haringa
et al. (2016), therefore no further mesh refinement was performed. Inner geometries were mod-
elled in 3D. The flow field was approximated by the RANS standard k-ε model including sliding
mesh motion to account for the impeller rotation. Standard wall functions were employed. All
surfaces were set to no-slip boundary conditions, except for the frictionless top area, which mim-
icked a free surface. Simulations were performed in transient mode with a time step size of ∆t
= 0.01 s. Glucose was fed from the reactor top until a steady glucose concentration was reached.
Transport, turbulence and glucose concentration equation were disabled, and further analysis was
performed on frozen flow field similar to chapter 5.2.2. In total, 120,000 bacterial cells were in-
troduced as massless Lagrangian particles and tracked over 260 s. Based on the ergodic theorem,
tracking 1,560,000 bacteria for 20 s (the approximate circulation time) results in the same average
values. The discrete random walk (DRW) model was enabled. The position and encountered glu-
cose concentration were recorded every 30 ms.

Statistical evaluation

Potential growth profiles of each bacterium were calculated from recorded glucose profiles and
smoothed by a moving average filter as well as an additional 1D filter to remove rapid sequential
regime transitions smaller than 0.09 s. Both filtering steps caused deviations from the raw data of
less than 5 %. The filtered signal was translated into regime transitions. Regimes were classified
according to the replication strategy of P. putida at a specific growth rate. For further information
on growth specific cell cycle dynamics see chapter 6. Following regimes were defined: a standard
forked replication regime S for µ ≤ 0.3 h−1, the transition area T (0.3 < µ < 0.4 h−1), and a mul-
tifork replication regime M for µ ≥ 0.4 h−1. Six specific regime transition patterns were defined
as indicated in figure 7.2. A growth rate distribution was derived by averaging the obtained growth
rates of each lifeline for 20 s. Combined with the cell cycle model described in chapter 6 (equation
6.10) the growth profiles were translated into a distribution of potential Cc-phase duration. Addi-
tionally, Adenosine triphosphate (ATP) consumption was estimated according to Pirt’s law (Pirt,
1965):

qATP = µ

YXATP
+mATP (7.1)

with mATP = 3.96 mmolATP g−1
CDW h−1 as nongrowth-associated maintenance and YATP = 0.0118

gCDW mmol−1
ATP as growth associated maintenance for P. putida (Duuren et al., 2013).
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Figure 7.2: Regime transition patterns for the 54 m3 reactor. MTM: Particle starts and ends in multifork regime
with a dwelling time in the transition area. TMT: Reverse event starting in the transition area with retention in
multifork regime. MTS: transition from multi to standard fork regime with retention time in transition area. STM:
Particle traverses all regimes from low standard to multifork. TST: Circulation from transition over standard fork back
to transition area. STS: Reverse movement from standard to transition back to standard fork regime. The second
capital letter always indicates the area in which the retention time τ was measured.

7.2.2 Case 2: Multiphase with C. glutamicum

Scale-up of reactor geometry and gradient simulation

The volume of the pilot scale bioreactor from chapter 4 was scaled by factor 100. Scale-up criteria
were chosen to be a constant height to diameter (HL/TD = 2.17) ratio as well as the same impeller
diameter to reactor diameter (DI/TD = 0.41) ratio. The gas volume flow per liquid volume per
minute was kept to 0.25 vvm. Choosing superficial gas velocity as scale-up criterium would have
resulted in a gas volume flow per liquid volume per minute of 0.05 vvm which was considered too
low for a large scale C. glutamicum fermentation. A comparison between both setups is provided
in table 7.2. The agitation rate was set to 100 rpm allowing for low power consumption but no
flooding according to the critical flow numbers of Rosseburg et al. (2018) and Gezork et al. (2000)
as well as Zlokarnik and Mikulcova summarized in Wiedmann (1983) with Fl being 0.062.

As no experimental gas hold up measurements for the industrial scale were available, a simulation
with a very coarse mesh was conducted upfront to determine the gas hold up. Consequently, the
liquid volume was increased by 9.16 %. The number of numerical cells with 1.12 · 105 #/m3 was
chosen according to chapter 4 and 5. All other settings were exactly as described in chapter 4.4.2
(Multiphase Simulations). However, for stability reasons simulations were performed with the first
order upwind scheme and a time step size of ∆t = 0.0001 s. Before switching to transient mode
a steady solution was obtained until residuals were < 10−4 to accelerate simulation procedure.
Transient simulations were performed until a steady overall gas volume fraction was reached. A
scaling factor for the turbulent dissipation rate ε (see chapter 4.3.3) was included and the simulation
was run until steady overall values were reached again. The reactions were included according to
the guidelines described in chapter 5.2.1. Additionally to oxygen mass transfer and consumption,
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carbon dioxide production and mass transfer was considered. Because the respiratory quotient
(RQ) of C. glutamicum was almost equal to one (see chapter 3.3.1), carbon dioxide production
was implemented equally to oxygen consumption. Carbon dioxide mass transfer was implemented
similar to oxygen mass transfer. A Henry coefficient of Hcp

CO2 = 2.89 · 104 mol m−3 Pa−1 at 30 ◦C
was calculated from equation 5.2 taking the reference value at 25 ◦C from Sander (2015). The
mass transfer coefficient for carbon dioxide kLaCO2 could be estimated from kLaO2 according to
the penetration theory of Higbie (1935) and the surface renewable model of Danckwerts (1951):

kLaCO2 = kLaO2

√
DCO2

DO2

(7.2)

with DCO2 = 2.0 · 10−9 m2 s−1 and DO2 = 2.4 · 10−9 m2 s−1. Reaction was initially simulated
on steady flow field until a steady average concentration was reached. Then a transient solution
was obtained until the average concentration reached a constant value and local values showed an
oscillating behaviour.

Table 7.2: Measures of the different scales. Pilot scale and industrial scale conditions are listed.

Scale VL [m3] T [m] H [m] D [m]

Pilot (exp) 0.198 0.488 1.06 0.2
Industrial 19.8 2.265 4.915 0.93

7.3 Results and discussion

The following results are divided in two case studies. The first study investigates a single phase
large scale fed-batch fermentation with P. putida. Possible bacterial responses to environmental
conditions are formulated by the inclusion of the cell cycle model. This case is based on Kuschel
et al. (2017). The second case depicts a large scale multiphase gradient of a fed-batch scenario
with C. glutamicum by scaling-up the bioreactor from chapter 4. Here, also the carbon dioxide
balance is included.

7.3.1 Case 1: P. putida

A pseudostationary glucose gradient with an average glucose concentration of 20 mg L−1 was ob-
tained. Theoretical growth rates for every numerical cell (Eulerian approach) were calculated
resulting in an average growth rate of µ̄ = 0.294 h−1. This is identical to expected growth rate
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for the set feed rate (µ̄ = 0.295 h−1) ensuring no occurrence of mass imbalances. The glucose
gradient depicted in figure 7.3 (A) is coloured by the potential cell cycle strategy of P. putida at a
specific growth rate. Higher potential growth rates and therefore complexer replication strategies
are obtained close to the feed port, whereas low glucose concentrations close to the reactor bottom
lead to possible standard fork regimes. The corresponding flow field is presented in figure 7.3
(B). Around each impeller the typical flow field of a radial pumping Rusthon turbine is visible.
Compared to previous studies (chapter 4 and 5), the impeller spacing is high enough to obtain a
parallel flow field, with the distinct inter impeller zone between the turbines. Figure 7.3 (C) shows
two exemplary lifelines for 20 s with L1 crossing all regimes and L2 remaining in the standard
fork regime. As the effect of oxygen was neglected in this study for simplicity, the underlying
gradient was not expected to perfectly reflect the real experiment. However, with the help of such
lifeline analysis it is possible to examine the effect of cell history or lag phases of the bacteria and
thereby to determine a degree of heterogeneity within the reactor. The following section provides
a statistical analysis of such lifelines.

Figure 7.3: Large scale (54 m3) single phase gradient and lifelines. A) Average glucose gradient calculated for
150 s, colored by regime classification strategy: standard forked replication regime S (µ ≤ 0.3 h−1) in light grey,
transition area T (0.3 < µ < 0.4 h−1) in grey, and multifork replication regime M for (µ ≥ 0.4h−1) in dark grey, B)
Average flow field. C) Exemplary lifelines. Modified to Kuschel et al. (2017).
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Figure 7.4: Frequency distribution of regime transition strategy for the 54 m3 reactor. Regime transition strategy
as function of the retention time τ . The six possible patterns are shown as semi-log plot. The second capital letter
always indicates in which regime τ was measured. With modifications to Kuschel et al. (2017).

Paths of 120,000 bacterial cells were tracked for 260 s and growth rates for the recorded glucose
profiles were calculated resulting in an average growth rate of µ̄ = 0.269 h−1 (Lagrangian approach).
A deviation of only 8.5 % compared to the Eulerian approach assures that an adequate amount of
particles was used. Processing of the lifelines is described only briefly. See also chapter 5 for
further explanation. The growth profiles were filtered and translated into replication modus curves
according to the regime thresholds as explained in section 7.2.1. Considering the previous example,
L1 in figure 7.3 (C) was exposed to high variations in glucose concentration, being likely to suffer
metabolic consequences. In contrast, metabolic shifts for L2 were small and effects on the cell
cycle could be excluded. Hence, within that given timescale bacteria sensed completely different
environmental conditions and may start different metabolic or even transcriptomic programs finally
initiating different replication strategies. Each adjustment will cost energy and could have an
impact on process performance.

To evaluate the exposure times in the different regimes and the frequency of these transitions, all
lifelines were evaluated according to the six regime transition patterns depicted in figure 7.2. The
frequency distribution as function of the retention time in this regime τ is presented in figure 7.4,
table 7.3 lists the corresponding average τ̄ and maximal τmax retention times. In general, a strong
decay after maximal 10 - 20 s and an average retention time of 1 - 3 s is visible for all transition
patterns except for TST which showed dwelling times up to 73.5 s. In fact, the reason can be
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Table 7.3: Regime transition statistics for the 54 m3 reactor. Average τ̄ and maximal τmax retention times are
listed for each regime transition pattern. The maximum τmax was defined as the limit, within which 99 % of the values
were located. With modifications to Kuschel et al. (2017).

Regime transition τ̄ [s] τmax [s]

STS 0.99 3.7
TST 8.54 73.5
TMT 3.53 16.25
MTM 2.45 13
STM 0.95 6.6
MTS 0.88 5.5

deduced from the flow field and the regime distribution (see figure 7.3). The radial pumping
Rushton turbines cause large circulation loops above and below each impeller. Consequently, cells
are trapped in the loops of the lower impeller provoking a long residence time in the substrate
limited zone. As a result average retention times for the TST pattern are the longest τ̄TST= 8.54 s.

The afore mentioned statistics provide valuable information about the cellular history enabling
the evaluation of the degree of heterogeneity within the fermentation process. When cells pass
regimes of different concentrations they will adapt accordingly. While metabolic adaptations are
known to be very rapid < 30 s, fundamental transcriptional changes were measured by plug flow
experiments after stress exposure times > 70 s (Löffler et al., 2016). Considering these findings
for regime analysis, all travellers from moderate to low substrate regimes were involved being
prepared to switch from multi to standard fork replication (TS). During the observation window,
72.6 % of all cells carried out that move once and lingered more than 30 s in regime S, whereas
14.7 % stayed more than 70 s in regime S. By analogy, the transition from maximal to moderate
substrate concentrations (MTS) resulted in 55.5 % to performing this move with retention times in
moderate concentrations (regime T and S) longer than 30 s and 10.4 % with dwelling times more
than 70 s respectively. Furthermore, two possible types of responses can be deduced.

Firstly, an instantaneous response occurring immediately after the stimulation such as a concentra-
tion fluctuation was considered. The response is assumed to be spatially coupled to the stimulus
and includes all metabolic responses for instance glucose uptake or ATP production. The distri-
bution of energy level is displayed in figure 7.5 (A). With an average ATP consumption rate of
qATP,mean = 29.31 mmolATP g−1

CDW h−1 the values are obviously not evenly distributed, but rather
exhibit an individual distribution according to the gradient. While only 6.3 % of all cells consumed
ATP with qATP,mean = 29.31 ± 2 mmolATP g−1

CDW h−1, 40.8 % showed an reduced and 52.9 % an
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Figure 7.5: Distribution of energy level and C-phase duration for the 54 m3 reactor. A) Frequency of cells with a
specific ATP consumption rate (qATP) tracked for 20 s. Average value of qATP,mean = 29.31 mmolATP g−1

CDW h−1. B)
Frequency of cells having a specific duration of replication (C-phase). Average C-phase duration of Cmean = 1.21 h.
Counts were divided into 300 bins. With modifications to Kuschel et al. (2017).

increased energy demand compared to the mean value. Moreover, the ATP consumption was 1.5
times the mean value for 12.2 %. The distribution will slightly differ if the effect of non-growth
associated maintenance on large scale fluctuations was considered (Löffler et al., 2016).

Secondly a delayed response several seconds till minutes after stimulation was examined. Al-
though spatially decoupled from the stimulus, a specific trigger time was assumed to initiate a
transcriptomic or proteomic program, in this case a modified growth rate or cell cycle duration.
Consequently, as described in section 7.2.1, a distribution for the replication phase duration was
derived ranging from Cc,min = 0.86 h to Cc,max = 2.05 h. With an average duration of Cc,mean =
1.21 h only 22.3 % possessed the mean replication phase of Cc,mean = 1.21±0.2 h, whereas about
30 % showed longer Cc-periods of more than 1.41 h. Shorter replications durations (<1.01 h) were
determined for 47.7 %. Moreover, about 56.1 % of the cells were identified to be rapidly growing
cells with growth rates µ > 0.3 h−1. These cells might have already started to adjust their cell
cycle to multifork replication. In fact, considering the different growth phenotypes from figure 7.5
(B), three subpopulations might be formulated: (i) short Cc-phase durations of 0.94 ± 0.08 h, (ii)
slow growing cells with Cc-phase durations of 1.68 ± 0.1 h and (iii) a transition state of Cc-phases
ranging from 1.1 to 1.5 h. In summary, an approach is presented to mimic the scenario of a (fed)-
batch fermentation by the superposition of subpopulations containing different growth rates and
Cc-phase durations.
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7.3.2 Case 2: C. glutamicum

A scale-up of the pilot scale reactor from chapter 4 was performed by numerical flow simulations.
Hereby, the reactor was scaled by a factor 100 up to 19.8 m3. Scale-up criteria and the setup
for the multiphase simulation is described in section 7.2.2. Criteria had been chosen in order to
have geometric similarity and an identical number of numerical cells per volume compared to the
pilot scale reactor, which has proofed good agreement with experimental data. Global physical
parameters of the pilot and large scale simulations are compared in table 7.4. The scaling factor
for the turbulent dissipation rate for industrial scale was calculated with 1.65.

Table 7.4: Results of the different scales in multiphase. Pilot scale (experimental and numerical) and industrial
scale results are listed.

Scale NP [-] αG [%] kLa [h−1] τ95[s] db [mm]

Pilot (exp) 10.88±0.11 3.6±0.3 125±4 15.2±4 1.2 -4.1
Pilot (num) 9.5 2.7 116 17 3
Industrial 9.0 8.8 225 55 5.85

The power number was calculated withNP = 9.0 for the large fermenter which is about 5 % smaller
than in the pilot scale. Since both scales were operated in the turbulent regime, power numbers
differ only slightly. Although P/V was not chosen as scale up criterium, pilot and large scale power
consumptions are in the range of typical industrial scale bioreactors of up to 5 kW m−3. Volumet-
ric power consumption of simulated pilot (1884 W m−3) and large scale (1441 W m−3) differed by
30 %.

Increased gassing rates result in a 3.26 times higher gas volume fraction of 8.8 % in large scale
compared to 2.7 % in pilot scale (num). Since the numerical value for pilot scale was underesti-
mated (see chapter 4.4.2.2), the comparison with experimental data is considered more appropriate.
Consequently, the large scale gas volume fraction is only 2.4 times higher compared to the experi-
mental gas volume fraction of 3.6 % in pilot scale. Differences in gas volume distribution for pilot
(A) and large (B) scale are depicted in figure 7.6, showing significant higher gas volume fraction
for large scale as reflected in the overall gas hold up. Furthermore, a flooding regime seems to
be predicted by CFD for the first impeller. While the correlations of Rosseburg et al. (2018) and
Gezork et al. (2000) as well as Zlokarnik and Mikulcova summarized in Wiedmann (1983) clearly
predict no flooding for a flow number of Fl = 0.062, impeller flooding is suggested by Zwietering
and Dickery (Wiedmann, 1983). Unfortunately, it is not possible to verify the predictions, due to
the lack of experimental data.
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Figure 7.6: Comparison of pilot and large scale gas hold up and mass transfer coefficient. A) Gas volume dis-
tribution of the pilot scale reactor, B) Gas volume distribution of the large scale reactor, C) Distribution of volumetric
mass transfer coefficient in pilot scale, D: Distribution of volumetric mass transfer coefficient in large scale. With
modifications to Kuschel & Takors (2020).

However, gas hold up for the large scale might be compared to pilot scale by calculating the
theoretical gas hold up from the correlation (equation 4.20) fitted in chapter 4.4.1.

εG = 0.25
(
PG
V

)0.2
(vvm H)0.625 (7.3)

With a power ratio of 1441 W m−3 and the increased liquid level for large scale, the correlation 7.3
predicts a gas hold up of 9.4 %. Compared to the numerical simulation with a gas hold up of 8.8 %,
only small deviation of 7 % is obtained.

Similar considerations can be made for the kLa value. Figure 7.6 shows, that local kLa values are
notably higher for large (D) compared to pilot (C) scale, which is reflected by the higher overall
kLa of 225 h−1 for industrial scale (see table 7.4). If large scale and the numerical simulation
with the pilot scale reactor are compared, the overall kLa is 1.94 times higher for large scale.
Likewise, a comparison between simulated large scale and experimental pilot scale values yields a
ratio of 1.80. Elevated kLa values in industrial scale result from significantly increased gas volume
fractions. To check the validity of numerical results for the industrial scale bioreactor, the overall
kLawas compared with values obtained by the correlation (see equation 7.4) fitted in chapter 4.4.1.
Thereby, a kLa value of 256 h−1 was calculated, resulting in minor deviation of 14 %.

kLa = 0.0287
(
PG
V

)0.466
(vvm H)0.638 (7.4)

Summarizing, εG and kLa calculated by CFD are in fair agreement to the values obtained by the
experimental correlation.
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Figure 7.7: Comparison of theoretical growth rates in pilot and large scale. A) Pilot scale growth distribution, B)
Large scale growth distribution. With modifications to Kuschel & Takors (2020)

Because of the high computational demand mixing time could only be determined on frozen flow
field. The simulation resulted in a τ95 = 55 s. As the flow field is transient this is only an approxi-
mation and the real value might differ. Unfortunately, no experimental data are available to verify
the results. The overall sauter diameter is with db = 5.85 mm almost twice as big as in pilot scale.
The higher gas volume fraction may lead to increased coalescing effects which results in increased
bubble diameters. However, due to the lack of experimental data validation is not possible.

The aim of this study was furthermore to simulate a double gradient consisting of inhomogeneous
glucose and oxygen concentrations, as already shown in chapter 5. The kinetic by Roels (1983)
was also applied in large scale to account for multisubstrate consumption. Even though kLa value
and mixing time differ significantly for pilot and industrial scale, the obtained growth profiles seem
to be very similar as presented in figure 7.7. The highest growth rates of 0.24 h−1 are obtained in
the previously mentioned transient area T (see chapter 5), whereas the conditions in the lower and
upper part of the reactor lead to almost no growth at all. As the glucose and oxygen profiles were
comparable to pilot scale they are not shown here or discussed in the following. Accordingly,
regime classification for the industrial scale reactor can be performed identically to the pilot scale
reactor, with a low oxygen regime in the upper part, a small transition area spreading cone shaped
from the upper impeller to the liquid surface and a low glucose regime in the lower part. Con-
sequently, scale-down devices might be designed likewise as proposed in chapter 5.3.3 only with
modified dwelling times which can be obtained by a thorough lifeline analysis in large scale.

Moreover, the simulation was extended by the carbon dioxide mass balance resulting in a triple
gradient of glucose, oxygen and carbon dioxide profiles. Oxygen and carbon dioxide profiles of
gas and liquid phase are shown in figure 7.8. The oxygen concentration in the gas phase is depicted
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Figure 7.8: Oxygen and carbon dioxide local distribution in large scale. A) Oxygen content in the gas phase, B)
Oxygen liquid concentration, C) Carbon dioxide content in the gas phase and D: Carbon dioxide liquid concentration.

in figure 7.8 (A). The entering gas contains the set oxygen content of ≈ 21 %. As the gas rises
from the reactor bottom to the liquid surface the oxygen content within the air reduces to a value
of ≈ 18 %. The liquid oxygen concentration profile is similar to the gas phase (B). Highest con-
centrations of 0.27 mmol L−1 are obtained in the lower part of the reactor around the first impeller,
where bubbles with high oxygen content leaving the sparger are disrupted. The concentration de-
creases with increasing reactor height and an oxygen limitation zone forms in the upper part of the
reactor. The glucose feed port is located in the upper part of the reactor, thus oxygen consumption
rates are elevated there causing an oxygen depletion. The carbon dioxide profile shows the re-
verse behaviour: the gas entering the reactor contains only 0.04 % carbon dioxide, whereas carbon
dioxide is transferred into the bubbles while they rise to the liquid surface until the carbon dioxide
content is about 2 %. Liquid carbon dioxide concentration profiles are similar to the gas profile.
In the lower part of the reactor the concentration is about 0.42 mmol L−1. Due to high volumetric
mass transfer rates proximate to the impeller, carbon dioxide is transferred into the uprising gas
fraction. The accumulation of carbon dioxide in the upper part of the reactor with concentrations
up to 0.7 mmol L−1 is caused by strongly decreased volumetric mass transfer rates in the respective
part (see figure 7.6) on the one hand and decreased driving force concentration differences on the
other hand.

A carbon dioxide content of 2 % in the exhaust gas and a concentration cCO2 of 0.7 mmol L−1

seems rather small for a large scale fermentation. Additionally, mass transfer at the liquid surface is
neglected here, which would furthermore reduce the carbon dioxide concentration in the upper part
of the reactor. Typically, exhaust gas contents with volumetric fractions of 5 - 20 % or higher are
expected for microbial or mammalian cultivations (Blombach & Takors, 2015). Dissolved cCO2,L

levels of about 8.18 mmol L−1 for an aerated (0.1 vvm), 1.5 bar pressured, stirred batch cultivation
of C. glutamicum were measured in the late exponential phase (Blombach et al., 2013; Blombach
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& Takors, 2015). Although the biomass concentration was only 7 gCDWL−1, which is about five
times smaller than the biomass concentration used in this study, the growth rate was determined
with µ = 0.4 h−1 which is about 12 times higher than the resulting average growth rate of this
process. Consequently, the overall cCO2 production was significantly higher compared to this
study. Furthermore, gassing rates of 0.1 vvm for the laboratory reactor are significantly smaller
than for large scale conditions with 0.25 vvm. The increased gas volume fraction in large scale
leads to stripping effects of carbon dioxide which prevented an accumulation of cCO2,L . On top of
that, this effect is enhanced by longer bubble dwelling times in large scale. For simplicity also pH
gradients were neglected. In fact, a pH shift towards acid conditions, could lead to elevated local
carbon dioxide concentrations. As cCO2,L concentrations were very low for the current feeding
strategy and operational conditions, a lifeline analysis analogous to case 1 by inclusion of the cell
cycle model of chapter 6 was not performed. However, a basis for the inclusion of carbon dioxide
as well as primary local carbon dioxide conditions within a industrial scale bioreactor are provided.

Summarizing, a large scale glucose, oxygen and carbon dioxide gradient was simulated by scaling-
up the pilot scale bioreactor of the validated study conducted in chapter 4 and 5. Glucose and
oxygen limitation zones were identified to be analogous to pilot scale compartmentalisation for
identical glucose feeding strategies, but different gassing and mixing conditions.

7.4 Conclusion

Two case studies to describe heterogeneity in an industrial scale fermenter were conducted with
the help of computational fluid dynamics.

In the first study a fed-batch scenario of P. putida was investigated assuming homogeneous oxy-
gen concentrations. Glucose feed and immediate substrate consumption in the liquid phase led to
spatial substrate heterogeneity. A previously developed cell cycle model was applied to classify
this heterogeneous environment within the bioreactor into regimes of different potential cell cycle
strategies such as standard (S), transient (T) and multifork (M) replication regimes. By bacterial
lifeline analysis, average retention times of 1 to 8.5 s and maximal retention times of 4 to 73.5 s in a
specific regime for certain regime transitions were approximated. Based on the findings of Löffler
et al. (2016) 72 % of all cells were identified to show quick metabolic responses and 10 % being
likely to undergo massive transcriptional changes. Linked to STR-PFR scale-down experiments
further investigations may be conducted. Moreover, a short and long term response was framed. A
distribution of different ATP consumption rates was obtained as instantaneous response resulting
in an inhomogeneous population of 40.8 % with reduced and 52.9 % with increased energy demand
compared to the mean value of qATP,mean = 29.31 ± 2 mmolATP g−1

CDW h−1. A delayed response in
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terms of replication phase distribution was defined, resulting in the formulation of three subpop-
ulations as follows: (i) short Cc-phase durations of 0.94 ± 0.08 h, (ii) slowly growing cells with
Cc-phase durations of 1.68 ± 0.1 h and (iii) a transition state of Cc-phases ranging from 1.1 to 1.5 h.

The second case dealt with the depiction of an industrial scale multiphase simulation of a fed-batch
scenario with C. glutamicum. As large scale data are rare, those studies are usually sole predictions
and not validated by experimental data. This approach however makes use of the simulation setup
as well as numerical requirements of a previously validated study in pilot scale to display glucose
and oxygen conditions for a snap-shot scenario of a large scale fed-batch fermentation. The large
scale overall gas hold up and kLa value showed minor deviations of only 7 % and 14 %, respec-
tively, compared to the calculated values of the experimentally obtained correlations. Even though
mixing and gassing conditions were different to pilot scale, growth profiles of the large scale sce-
nario exhibited high similarity to the pilot scale local growth rate distribution, suggesting the same
compartmentalisation strategy of low oxygen, transient and low glucose regimes for scale-down
designs. The simulation setup has been furthermore extended by the carbon dioxide balance lead-
ing to non-critical carbon dioxide concentrations of only 0.7 mmol L−1 for the current feeding and
operational setup, due to low growth and high gassing rates. However, the aim of this study was
to provide a basis for the inclusion of carbon dioxide mass balance and display environmental
heterogeneity in industrial scale fermentations. Additionally, it outlines the need to include organ-
ism specific considerations in terms of substrate consumption and regime formation into scale-up
strategies instead of solely focussing on scale up for physical parameter. By bacterial lifeline anal-
ysis this study could be furthermore extended for biological readouts to consider dwelling times in
critical concentration regimes for the scale-up strategy. Moreover, by the consideration of higher
growth rates, carbon dioxide concentrations may reach a critical level to function as stress factor
for a culture of C. glutamicum. Thus, the heterogeneity analysis may then be extended by carbon
dioxide induced cell cycle modifications. As such, the implementation could be performed analo-
gous to case 1 including the cell cycle model obtained for C. glutamicum as described in chapter
6.

The two cases reflect the need to not only scale a reactor for physical parameters, but integrate
biological readouts into scale-up considerations for individual cases. Only the combination of both
enables the detection of possible hot spots or limitation zones. A lifeline analysis may furthermore
serve as basis for the design of scale-down devices or as in silico method to directly investigate
biological readouts.
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8 Conclusion and outlook

This chapter summarizes all results that were achieved in the course of this thesis and provides
conclusions under consideration of the objectives and motivation formulated in chapter 1. Posed
research questions are addressed and future perspectives are given.

The main intention of this work was to provide supporting tools for large scale characterisation to
minimise the risk of suboptimal scale-up. Each chapter contributes to the prediction of industrial
scale performance a priori. A graphical overview is given in figure 8.1.

Chapter 3 - Characterisation of bioprocesses with C. glutamicum as model organism
In chapter 3 several batch fermentations of C. glutamicum were conducted to derive cell specific
rates and physical properties of the broth as indicated in figure 8.1. The maximal growth rate
µmax, the biomass substrate yield YXS and the biomass oxygen yield were determined in expo-
nential phase. Furthermore, the cell specific oxygen uptake rate qO2 and the cell specific carbon
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Figure 8.1: Schematic overview of workpackages achieved in this study. Explanations of the graphics are given in
the main text. The abbreviation ch indicates the respective chapter in which the results are found.
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dioxide emission rate qCO2 were calculated leading to a respiratory quotient (RQ) close to the
theoretical value of 1.0. A nearly closed C-balance excluded the formation of by-products and
confirmed the accuracy of the determined rates. The examination of the broth led to the answer of
the first research question:

RA3.1 For the investigated case of C. glutamicum viscosity and density were similar to water
and thereby chosen as such for further experiments and numerical simulations. Since
the surface tension was only slightly dependent on biomass, effects were not included
in numerical simulations.

Although biomass did have a minor impact, a significant drop in surface tension to 30 mN m−1 was
measured by the addition of antifoaming agents. However, due to contradictory effects on kLa

values, the sole simplification of the impact of antifoam to a surface tension reduction is invalid
and future research should focus on a thorough analysis to quantify and include these effects in
numerical simulations.

Chapter 4 - Characterisation of a pilot scale bioreactor
Using the findings of chapter 3 regarding the physical properties of the broth, a pilot scale biore-
actor was characterised in chapter 4. Since the simulation of turbulent two phase flows is rather
complex and large scale data were not available, the conducted experiments served for parameter
validation of the performed multiphase simulations (see figure 8.1). The measurement of power
consumption, mixing time, gas hold up and kLa values within a range of agitation rates of 100 to
500 rpm and gassing rates of 0 to 1 vvm was basis to decide on a suitable operating point:

RA4.1 An operating point of 300 rpm and 0.25 vvm was considered appropriate, as it reflects
a typical volumetric power consumption of 2.2 kW m−3 of large scale applications.

In addition to power considerations, no flooding was predicted to occur under these conditions and
the resulting kLa of 125 h−1 was sufficient to supply enough oxygen to a late fed-batch culture with
biomass concentrations of about 35 g L−1.

Furthermore, the chapter presents a numerical setup to simulate the pilot scale bioreactor, answer-
ing the question of a suitable setup:

RA4.2 The Eulerian PBM, as well as the RKE turbulence model including the MRF model
were suitable to simulate the polydispersed multiphase flow of the agitated tank. The
extension of the Tomiyama et al. (1998) drag model by turbulent drag modification
and swarm effects, finally resulted in good agreement of numerical simulations with
experimental data.

Moreover, the transferability of the bubble breakup, coalescence and daughter size model by
Laakkonen et al. (2007b) to a multiple impeller pilot scale reactor setup was shown.
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The reduction of computational costs was a central aspect of this thesis, as summarized by the
following answer:

RA4.3 The inclusion of a scaling factor showed good accordance of predicted to experimen-
tal process parameters already for a grid size of 1.12 · 105 #/m3, thereby reducing
computational costs.

Considering experimental noise, deviations of simulated values were < 12 % compared to experi-
mental data, with one exception. The difference between experimental and simulated gas hold up
was determined with < 21 % for the two coarser grid sizes. Still, since significant reduction of
computational costs is obtained, this deviation is acceptable. Nevertheless, coarser mesh densities
might cause higher deviations in the velocity profiles or incorrect prediction of the power con-
sumption by torque, which is not covered by the scaling approach and thereby not recommended.
As an increase in turbulence generally requires the refinement of grid size, further studies using
higher agitation rates should be conducted to determine minimal density.

Chapter 5 - Simulated oxygen and glucose gradient
The combination of cell specific rates from chapter 3 and multiphase setup from chapter 4 enabled
the simulation of a substrate and oxygen gradient in chapter 5 as indicated in figure 8.1. This
’snap-shot’ double gradient may occur during a substrate limited late fed-batch process of C. glu-

tamicum, where oxygen is still present, albeit in low concentrations within specific regions. These
regions can be classified into defined regimes, answering the first research question of this chapter:

RA5.1 A multi substrate gradient consisting of glucose and oxygen shows highest glucose
concentrations close to the feed port at the reactor top and lowest at the bottom, whereas
opposite profiles attune for oxygen. A double gradient can be classified in regimes of
low glucose (LS), a transient (T) and low oxygen regime (LO2).

The regimes of the double gradient resulted from a simplification by overlaying gradients for each
substrate. Before, regimes for a single substrate were classified in a regime of linear coupled
growth-substrate dependency, a transient regime and a regime where fluctuations in substrate con-
centrations show negligible effects on growth. The regimes were thereby denoted as low (L),
transient (T) and high (H) concentration regime for either glucose or oxygen, respectively.

Besides regime classification, statistical evaluation of simulated bacterial trajectories or so-called
lifelines, records of bacterial cells experiencing different levels of glucose and oxygen, were focus
of this chapter and the advantage of this analysis was depicted:

RA5.2 The statistical lifelines analysis revealed the frequency of all regime transitions and
average dwelling times in specific regimes. The results may be well used to design
wet-lab scale-up simulators.
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Lacking detailed information on the environment inside a bioreactor, traditionally, these scale-
down (SD) devices are based on industrial mixing times. However, the imposed conditions may
not reflect the concentration fluctuations encountered by the microorganisms. For the current dou-
ble gradient a simplification was proposed as a result of the lifelines analysis: As both, the average
dwelling time in the transient regime (T) was very short (< 1 s) and the volume of T was rather
small (< 5 % of the total volume) compared to the other regimes, regime T can also be neglected
for the design of a SD. Two designs were proposed in section 5.3.3.

Since some deviations in process parameter for the examined grid densities were observed, a core
question of the thesis was how much the scaling approach for epsilon introduced in chapter 4
influences gradient and lifelines analysis:

RA5.3 Concentration profiles and therefore the growth rate distribution as shown in figure 5.3
were nearly equal based on a mesh density of 1.12 · 105 #/m3 compared to 10-fold
finer mesh resolution. Moreover, bacterial lifelines analysis revealed, that biological
readouts such as regime changes, still generated accurate dwelling time distributions
with mostly less than 15 % deviation between the meshes.

Consequently, the use of this scaling approach opens the door for large scale applications with
reduced computational effort.

Chapter 6 - Cell cycle model
As outlined in RA5.2 such analysis may be used to design SD, which can furthermore unravel
basic regulatory systems, mark the suitability of a strain for large scale and provide guidelines for
strain and process engineering. However, by coupling lifelines analysis to a biological response
model, further information on large scale heterogeneities can be retrieved. A cell cycle model
for C. glutamicum was developed in chapter 6 as displayed in figure 8.1. The model describes
cell cycle adaption as response towards varying substrate availability or potential growth rates and
partial pressure of carbon dioxide. The influence on C. glutamicum is summarized in the following:

RA6.1 The replication phase duration (Cc) of C. glutamicum decreased with increasing growth
rate, but higher partial pressures of carbon dioxide (pCO2) slowed down the replication
process.

In fact, the Cc period was doubled for pCO2 of 50% compared to the reference state (pCO2 = 0.04%).
Moreover, to cope with the installed growth rate, multifork replication for C. glutamicum was
initiated already for growth rates of µ = 0.2 h−1 under elevated pCO2 conditions, whereas multifork
replication did not start for growth rates µ < 0.4 h−1 under reference conditions.

As a preliminary study, a function for the Cc period was also determined for P. putida based on
the work of Lieder et al. (2016). The replication phase Cc for P. putida decreased with increasing
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growth rate and multifork replication started for growth rates between 0.3 h−1 < µ ≤ 0.4 h−1. The
obtained function was furthermore coupled to a large scale simulation as presented in chapter 7.

Chapter 7 - Heterogeneity analysis in large scale
Since a late fed-batch scenario of P. putida assuming homogeneous oxygen concentrations was
reflected, a single phase simulation was conducted. Based on the cell cycle model introduced in
chapter 6, the gradient was classified in regimes of potential cell cycle strategies such as standard
(S), transient (T) and multifork (M) replication regimes. Bacterial lifelines analysis for P. putida

was performed to answer the question of bacterial response towards fluctuating concentrations and
the formation of heterogeneity:

RA7.1 The lifelines analysis for P. putida resulted in average retention times up to 8.5 s and
maximal retention times up to 73.5 s in a specific regime for certain regime transitions.
A short and long term response was framed, resulting in an inhomogeneous ATP con-
sumption as well as the classification into subpopulations.

Inhomogeneous ATP consumption was depicted as instantaneous response showing 40.8 % with
reduced and 52.9 % with increased energy demand compared to the mean value of qATP,mean =
29.31 ± 2 mmolATP g−1

CDW h−1. Cell cycle adaption as delayed response resulted in the formula-
tion of three subpopulations as follows: (i) short Cc-phase durations of 0.94 ± 0.08 h, (ii) slowly
growing cells with Cc-phase durations of 1.68 ± 0.1 h and (iii) a transition state of Cc-phases
ranging from 1.1 to 1.5 h.

As indicated in figure 8.1 (dashed lines), a prospective would be to perform such lifelines analysis
for a culture of C. glutamicum in large scale. To provide a basis, the pilot scale setup of chapter 4
was adapted to simulate an industrial case of C. glutamicum including carbon dioxide balance,
which answers the question of suitability of the chosen approach for large scale:

RA7.2 Overall process parameters like gas hold up and kLa value were in fair comparison to
results obtained by the fitted correlation of chapter 4. Although gassing and mixing
conditions for pilot and large scale differed, regime assignments were identical to the
examined pilot scale case.

The results show the transferability of the numerical approach from chapter 4 to larger scales.
Since regime assignments were identical to the examined pilot scale case, the same SD design
as recommended in chapter 5 is suggested. Large scale dwelling times in the specific regimes,
however, are likely to be much longer. Additional to the design of a SD simulator, a large scale
simulation of C. glutamicum with elevated growth rates can be connected to the derived cell cy-
cle model to reveal further heterogeneities in large scale. In this case cell cycle adaptions upon
substrate and pCO2 stress for an industrial case can be displayed.
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In summary, this work facilitates the a priori predicition of large scale heterogeneities. A frame-
work is presented which includes validated multiphase simulations, the depiction of a glucose-
oxygen double gradient and the subsequent steps necessary to gain insights in large scale condi-
tions, namely the design of scale-down devices and the coupling of large scale simulations with
biological response models. Applicability was shown for case studies with C. glutamicum and
P. putida as major production hosts in industrial biotechnology. Although literature indicates only
small influence of glucose and oxygen variations on C. glutamicum, scale-down devices so far
focused on physical readouts like mixing times. In contrast, the presented methodology in this
work enables the use of biological readouts, meaning the frequency and duration of defined con-
centration fluctuations experienced by the microorganisms. Specific transition patters may be im-
plemented in scale-down devices which reflects a more realistic large scale scenario. Additionally,
compared to existing CFD studies yielding scale-down designs, for the first time a multiphase sys-
tem was considered. Furthermore, the given cell cycle model was connected to single phase simu-
lations with P. putida and adapted for the use with C. glutamicum. Similar modelling approaches
can be linked to multiphase simulations to retrieve in silico results in parallel to experimental eval-
uation by scale-down devices. Consequently, both paths can be adapted for the application with
different microorganisms used in large scale production and further occurring stress factors.
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A Tables

A.1 List of instruments

Table A.1: Instruments

Instrument Manufacturer

ATmega328 Arduino
Benchtop shaker AK85 Infors AG
Bioreactor KLF 2000 (3.7 L) Bioengineering
Centrifuge 5430 R; rotor F-35-6-30 Eppendorf
Centrifuge 5430 R; rotor FA 45-30-11 Eppendorf
Conductmeter LF521 Wissenschaftlich-Technische Werkstätten
Exhaust gas analyser BCP-O2 and BCP-CO2 BlueSens
Glas vials VWR
HC-SR04 Distance Sensor Module Arduino
Mass flowmeter, Model 3585 Analyt MTC Messtechnik
Microscope BH-2-RFCA Olympus
Nano V3 Arduino
Oxygen exchange capOEC-PSt3-NAU-OIW PreSens
Oxygen probe InPro 6800 Mettler-Toledo
Oxygen probe OXYBase WR-RS485-L5-OIW PreSens
pH probe 405-DPAS-SC-K8S, Mettler Toledo
Photometer DR 2800 (biomass) Hach Lange
Photometer Ultrospec 2100 pro (glucose) GE Healthcare
Pump 101U Watson-Marlow
Rheometer MCR 501 Anton Paar
Scale Combics 3 Sartorius
Scale Kern 572 Kern& Sohn
Syringe pump LA-30 HLL Landgraf Laborsysteme
Temperature sensor PT-100 Bioengineering
Tensiometer BP100 Krüss
Tensiometer STA1A SINTERFACE Technologies
Total carbon analyzer Multi N/C 2100s Analytik Jena
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Tables

A.2 List of software

Table A.2: Software

Software Manufacturer

Ansys Fluent Ansys Inc.
LabVIEW National Instruments, USA
(MATLAB R2019a The MathWorks, Inc.

A.3 List of chemicals

Table A.3: Chemicals

Chemical Manufacturer

4’,6-diamidino-2’-phenylindole (DAPI) Sigma Aldrich
Ammonium sulphate, (NH4)2SO4, ≥ 99 % Carl Roth GmbH&Co. KG
Biotin, D(+)-, ≥ 98.5 % Carl-Roth GmbH &Co. KG
Calcium chloride, CaCl2 Merck Chemicals GmbH
Copper(II) sulfate pentahydrate, CuSO4 · 5 H2O, ≥ 99 % Sigma-Aldrich Co. LLC.
Glucose, α-D(+)-, monohydrate, ≥ 99.5 % Carl-Roth GmbH &Co. KG
Hydrochloric acid, HCl, ≥ 32 % Sigma Aldrich Co. LLC.
Iron(II) sulfate heptahydrate, FeSO4 · 7 H2O, ≥ 99 % Sigma-Aldrich Co. LLC.
Magnesium sulphate heptahydrate, MgSO4 · 7 H2O, ≥ 99 % Carl Roth GmbH&Co. KG
Manganese(II) sulfate monohydrate, MnSO4·H2O, ≥ 98 % Carl Roth GmbH&Co. KG
Nickel(II) sulphate hexahydrate, NiSO4 · 6 H2O, ≥ 98 % Carl-Roth GmbH &Co. KG
Potassium dihydrogen phosphate, KH2PO4, ≥ 98 % Carl Roth GmbH&Co. KG
Potassium hydrogen phosphate, di-, K2HPO4, ≥ 98 % Carl Roth GmbH&Co. KG
Protocatechuic acid, 3,4-dihydroxybenzoic acid, ≥ 97 % Carl Roth GmbH&Co. KG
Sodium chloride, NaCl, ≥ 99.8 % Carl Roth GmbH&Co. KG
Struktol® J 647 Schill&Seilacher
TRIS PUFFERAN® ≥ 99.9 % Carl Roth GmbH&Co. KG
Tryptone BD
Yeast extract BD
Zinc sulfate heptahydrate, ZnSO4 · 7 H2O, ≥ 99 % Sigma-Aldrich Co. LLC.
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Abstract: Successful scale-up of bioprocesses requires that laboratory-scale performance is equally
achieved during large-scale production to meet economic constraints. In industry, heuristic
approaches are often applied, making use of physical scale-up criteria that do not consider cellular
needs or properties. As a consequence, large-scale productivities, conversion yields, or product
purities are often deteriorated, which may prevent economic success. The occurrence of population
heterogeneity in large-scale production may be the reason for underperformance. In this study,
an in silico method to predict the formation of population heterogeneity by combining computational
fluid dynamics (CFD) with a cell cycle model of Pseudomonas putida KT2440 was developed.
The glucose gradient and flow field of a 54,000 L stirred tank reactor were generated with the
Euler approach, and bacterial movement was simulated as Lagrange particles. The latter were
statistically evaluated using a cell cycle model. Accordingly, 72% of all cells were found to switch
between standard and multifork replication, and 10% were likely to undergo massive, transcriptional
adaptations to respond to extracellular starving conditions. At the same time, 56% of all cells
replicated very fast, with µ ≥ 0.3 h−1 performing multifork replication. The population showed
very strong heterogeneity, as indicated by the observation that 52.9% showed higher than average
adenosine triphosphate (ATP) maintenance demands (12.2%, up to 1.5 fold). These results underline
the potential of CFD linked to structured cell cycle models for predicting large-scale heterogeneity
in silico and ab initio.

Keywords: computational fluid dynamics; cell cycle model; Lagrange trajectory; scale-up; stirred
tank reactor; population dynamics; energy level

1. Introduction

The physiological state of bacterial cells is strongly dependent on the surrounding conditions.
As outlined in Müller et al. [1], external stress is a key factor inducing the formation of population
heterogeneity, which differs according to growth phenotypes and cell cycle patterns. Moreover,
concentration fluctuations occurring under large-scale mixing conditions have a measurable influence
on growth and production yield [2–4]. Accordingly, homogeneity of the bacterial population may
be affected, yielding subpopulations that co-exist next to each other [1]. Makinoshima et al. [5]
observed five and ten cell populations of Escherichia coli during exponential growth and the subsequent
stationary phase, respectively. For Pseudomonas putida, steady-state chemostat cultivation revealed that
industry-like stress conditions induced changes in the cell cycle process. Under stress, deoxyribonucleic
acid (DNA) replication was accelerated in a dose-dependent manner, yielding subpopulations with
different DNA contents [6].
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To investigate whether nutrient gradients of large-scale conditions foster the occurrence of
population heterogeneity, the following concept was formulated. First, large-scale substrate gradients
of a bioreactor should be simulated. Next, the path of bacterial cells through the gradients need to
be tracked, and the resulting growth phenotypes monitored. Then, a cell cycle model can be used
to translate changing growth conditions into cell cycle patterns. Apparently, this approach requires
(i) a sound simulation of large-scale substrate gradients that trigger ‘stress’ in the cells and (ii) the
translation of nutrient availability in growth patterns as a basis of cell cycle modelling. For the latter,
the findings of Cooper and Helmstetter [7] were applied. They specified a relationship between
chromosome content and cell cycle phase duration for E. coli B/r and showed that the amount of DNA
varies continuously with the growth rate and substrate availability. Consequently, the durations of the
cell cycle phases are strongly dependent on the environmental conditions.

The cell cycle of bacteria using binary fission can be divided into three parts: the time for initiation
of replication (B-period), the time required for replication (C-period), and the time between replication
and completed cell division (D-period). C-periods are the longest for slow-growing cells but decrease
to constant values under elevated growth conditions [8]. In order to grow faster, replication and
segregation are separated in time. Most bacteria initiate replication during a previous generation,
leading to multifork replication.

Single-cell analysis by fluorescence-activated cell scanning has proven to be a valuable method
to measure the DNA content from thousands of bacteria and to generate DNA content histograms
for the population [9]. Also, latest lab on a chip techniques are a feasible method for measuring
population heterogeneity [10,11]. Subpopulations with one, two, or more chromosomes can be
detected. Skarstad [12] extended the model of Cooper and Helmstetter to calculate the number of
individuals of E. coli B/r comprising a subpopulation with a specific DNA content from flow cytometry
data. Furthermore, Skarstad determined the duration of the cell cycle periods for various growth rates.
This was proven to be applicable for P. putida KT2440 as well [6].

It is still challenging to capture the magnitude and frequency of fluctuations in large scale
bioprocesses and to predict the extent of the intracellular response. Several authors have suggested
computational fluid dynamics (CFD) as a tool to provide detailed information of environmental
conditions inside a fermenter. The gas, liquid, and bio phases are often modeled as a continuum by the
Euler-Euler approach [13–15]. Typically, microorganisms react individually to different environmental
conditions; therefore, a continuum description may not be advantageous. An extension of the
Euler-Euler approach for the liquid phase is the use of population balance equations to model the
heterogeneity of a population [16,17]. The incorporation of a detailed intracellular reaction network,
however, demands a high computational effort to solve the complex distribution functions [18,19].

Since the pioneering work of Lapin et al. [20], environmental fluctuations have been studied
from the perspective of microorganisms. The applied Euler-Lagrange approach uses a continuous
representation of the fluid phase (Euler), combined with a segregated description of the cell population
(Lagrange). The bacteria are simulated as particles, which are tracked on their way through the reactor.
Statistical evaluation of these trajectories, denoted as bacterial lifelines, provide valuable information
about substrate fluctuation frequencies experienced by microorganisms [21].

The influence of these fluctuations on cell cycle dynamics and energy levels has not been
demonstrated yet. Thus, in this study, based on the work of Haringa et al. [21], an extensive statistical
evaluation of bacterial lifelines was performed. Rather conservative operating conditions for the
industrially relevant strain P. putida KT2440 were assumed to investigate the occurrence of and impact
on population homogeneity. The Euler-Lagrange approach was combined with a cell cycle model
of Lieder et al. [6] to gain deeper insights into the behaviors of cell cycle dynamics and individual
distributions during large-scale fermentation.

These findings present a method to better analyze and understand the heterogeneity caused by
scale up-induced stress stimuli.
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2. Materials and Methods

2.1. Cell Cycle Model

Flow cytometry data ranging from µ = 0.1 h−1 to 0.6 h−1 for P. putida KT2440 were obtained by
Lieder et al. [6] and processed as shown in Figure 1. The data were channeled and displayed as the
frequency distribution of DNA content. The durations of cell cycle phases C (DNA replication) and D
(period between replication and completed cell division) were determined iteratively by minimizing
the deviation between experimental and theoretical DNA histograms. The theoretical DNA content
of an asynchronous, ideal culture in which all cells have equal growth parameters was derived from
the age distribution according to Cooper and Helmstetter [7]. Using this probability density function
for cells of a specific cell age, Cooper and Helmstetter further calculated the theoretical chromosome
content per cell at a specific cell age. This model was extended by Skarstad et al. [12] to calculate
the frequency of the occurrence of a specific DNA content in an interval of ongoing DNA synthesis.
The durations of phases C and D are decisive for the distribution of DNA content. Different values for
C were obtained to fit the experimental histograms for various growth rates. Based on the work of
Lieder [22], a function for C-phase duration, dependent on the growth rate of P. putida KT2440, was
derived. A correlation for C proposed by Keasling et al. [23] was used.

C = Cmin

(
1 + a eb µ

)
(1)

where C is the length of the C period, Cmin is the minimal length of the C period, µ represents the
growth rate and a and b are parameters that fit the experimental data. Based on the experimental data
of Lieder et al. [6], the parameter estimation resulted in Cmin = 0.77 h, a = 1.83, and b = 4.88.
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Figure 1. Approach for the cell cycle dynamics model. (A) Representative flow cytometry scatter plot
for deoxyribonucleic acid (DNA) content of the growth rate µ = 0.3 h−1. (B) DNA content over counts
for growth rates ranging from µ = 0.1 h−1 up to µ = 0.6 h−1. A single genome is indicated by 1, and
double chromosomes by 2. Black lines present experimental data, and blue dashed lines present the
calculation of the cell cycle model. (C) Approximated C-phase duration over growth rate estimated by
the cell cycle model (1% parameter covariance). Black dashed lines indicate the transition regime from
single-forked to multiforked replication. Flow cytometry data obtained by Lieder et al. [6].
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2.2. Numerical Simulation

2.2.1. Geometry and Reactor Setup

In order to generate a pseudostationary glucose gradient of an industrial fed batch fermentation,
a large-scale stirred tank bioreactor was chosen. Precise dimensions and information about the inner
geometry can be found in Appendix A (Figure A1 and Table A1). The main geometry was derived
from Haringa et al. [21] and only slightly modified for the purpose of this study. With an H/D ratio of
2.57, the total volume was about 54,000 L. The reactor setup included four baffles and a stirrer with
two Rushton agitators. The lower stirring unit was equipped with eight blades, and the middle unit
with six blades. With a stirring rate of 100 rpm, a tip speed of 5–8 m s−1 was reached. The impeller
Reynolds number was 1.8 × 106, the power number 13.15, and the needed power was 226 kW.

The feeding rate was set as half of the maximum uptake rate qs,max of P. putida with
0.738 kgglc·kg−1

CDW·h−1. Aeration, gas transfer, and oxygen uptake were neglected in this study.
Therefore, no gassing system was installed. A cell concentration of 10 kgCDW·m−3 was assumed, and a
simple Monod-like kinetic was used to simulate the substrate uptake qs:

qs = qs,max·
cs

Ks + cs
(2)

where qs,max is the maximum uptake rate, cs is the glucose concentration, and the approximated
substrate specific uptake constant Ks with 10 mg·L−1. The maximum uptake rate was calculated with
the biomass substrate yield YXS = 0.40 gs·g−1

CDW and the maximum growth rate µ = 0.59 h−1 [22,24].

2.2.2. Simulation Setup

For the numerical simulation, the commercial calculation tool ANSYS Fluent version 17.0 was
used. Using this finite volume-based fluid dynamic analysis program, the virtual geometry was
built, and spatial discretization was performed. A total of 445,000 numerical cells yielded the same
circulation time as achieved by Haringa et al. [21]. The flow field was approximated by solving the
Reynolds-averaged Navier-Stokes (RANS) equations in combination with the standard k-ε model for
turbulence. All surfaces were set as slip boundaries, except for the frictionless top area, which implied
the reactor filling height. Both impeller units were set to sliding mesh motion to generate a more
realistic flow field.

For glucose feed, a separate volume at the top of the reactor was defined, and a constant
mass flow was set. The feed was inserted as mass percentage, with constant pressure and volume.
The hydrodynamic and kinetic was calculated every 10 ms until the overall glucose concentration was
constant and a pseudostationary gradient was reached. Finally, an average flow field and glucose
gradient were obtained over 150 s. In further simulations, the hydrodynamic and glucose gradient
were set as frozen.

Bacteria lifelines were simulated as massless Lagrangian particles with a discrete random walk
(DRW) model passing through the flow field. Every 30 ms, the position and glucose concentration
for each bacterium were recorded. In total, 120,000 bacterial cells were tracked over 260 s. According
to the ergodic theorem, the same average values are obtained by tracking 1,560,000 bacteria for
20 s (the approximate circulation time). The simulation would yield even more precise statistical
evaluations by increasing the number of lifelines.

2.3. Statistical Evaluation

All bacterial lifelines were evaluated statistically and grouped according to the regime borders.
The growth rate was calculated for each bacterial cell and each time interval. The regimes were classified
as follows: standard forked replication S for µ ≤ 0.3 h−1, the transition area T (0.3 < µ < 0.4 h−1), and
multifork replication M for µ ≥ 0.4 h−1 derived by the cell cycle model (see Section 2.1.). By evaluating
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the cell history, further classifications were made. Six regime transitions follow when two transitions
and one retention time were considered:

• STM: transition from standard forked to multiforked with a retention time in the transition area.
• STS: standard forked, retention in the transition area, and back to standard forked
• TST: starting from the transition area with retention in a single forked area and back to transition
• MTS: multiforked replication regime to single forked replication with a retention time in the

transition area
• MTM: beginning in the multifork regime with retention in the transition area and back to the

multifork regime
• TMT: circulation from transition back to transition area with retention time in the multifork

replication regime

The second capital letter always indicates the area in which the retention time τ was measured.
Before the bacterial lifelines were grouped in regimes, a moving-average filter was applied to filter
unrealistic, turbulent fluctuations caused by the standard DRW model (see Appendix B). A second
one-dimensional (1D) filter was conducted to erase rapid sequential regime transitions smaller than
0.09 s. Both filtering steps caused deviations from the raw data of less than 5%.

The distribution of the growth rates was derived by calculating the mean growth rate for the
whole reactor and the mean growth rate for 20 s for each bacterium. This distribution combined with
the cell cycle approach resulted in a distribution of different C-phase durations using Equation (1).
Additionally, the energy level distribution was obtained based on Pirt’s law [25]:

qATP =
µ

Yx/ATP
+ mATP (3)

with the Pseudomonas putida properties of nongrowth-associated maintenance mATP =

3.96 mmolATP·g−1
CDW·h−1 and the growth-associated maintenance YXATP = 1

85 gCDW·mmol−1
ATP [24].

3. Results and Discussion

In order to investigate heterogeneity in large-scale bioreactors, a pseudostationary glucose
gradient occurring during fed batch fermentation of P. putida was simulated. Therefore, a biomass
of 10 kg·m−3 was assumed, which remained constant within the time observed. For higher biomass
concentrations, stronger gradients can be expected.

3.1. Gradient and Flow Field

In a 54,000 L stirred tank reactor, a pseudostationary glucose gradient was obtained with CFD
simulations. The average glucose concentration was monitored until no further changes could be
observed. The residual steady state glucose concentration was 20.7 mg·L−1. The theoretical growth
rate for every numerical cell was computed (Eulerian approach), resulting in an average growth rate
of µ = 0.294 h−1. Ideal mixing was assured by comparing the average growth rate in the reactor
(Eulerian approach) and the expected growth rate for the set feed rate µ = 0.295 h−1. In the fed batch
fermentation, the feeding rate amounted to half the maximum uptake rate of P. putida. The objective of
the simulation was to generate a realistic glucose gradient with concentrations for which theoretical
growth rates ranging from 0.0 h−1 to 0.59 h−1 could be approximated. Moreover, the distribution
of bacteria that were introduced from different vertical positions in the reactor at the start of the
simulation is displayed.

In Figure 2, three reactor cross sections are depicted to describe (A) the growth rate regimes
(see also Section 2.3), (B) the flow field, and (C) the bacterial distribution. Due to asymmetric reactor
geometry (see Section 2.2.1), the mean flow field and mean glucose gradient showed periodic changes.
Accordingly, the averages of the flow field and gradients over 150 s were computed to track the bacteria
(Figure 2C) as lifelines. Bacteria moved faster when approaching the stirrer. This clearly indicated
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zones with different residence times. However, tracking the bacterial paths showed that they evenly
crossed every part in the reactor.

The underlying gradient was not expected to perfectly reflect the real experiment.
Several assumptions had to be made. For simplicity, bubbling flow and oxygen transfer were neglected.
The kinetic reaction of substrate consumption following a Monod-like kinetic was assumed to take
place in every numerical cell. This implied that the bacterial cells were distributed homogeneously at
each time step, which is only a simplified scenario (Figure 2C). However, to examine the effects of cell
history or lag phases of the bacteria on the gradient itself, an existing gradient had to be installed with
the stated simplifications. In the following sections, a detailed statistical analysis is provided to study
the influence of the gradient on the bacteria and reverse in a realistic manner.
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Figure 2. Simulation of gradients and bacterial lifelines. (A) Averaged substrate gradient calculated for
150 s, colored by regime classification: standard replication S (µ < 0.3) in light gray, transition regime
T (0.3 ≤ µ ≤ 0.4) in gray, and multifork replication M (µ > 0.4) in dark gray. (B) Average flow field
estimated for 150 s. (C) Representative magnified bacteria particles (around 2000) at a certain time step
(colored by particle ID; low numbers in dark gray represent a starting point close to the reactor bottom,
high numbers in light gray represent a starting point close to the reactor top). Horizontal section planes
are indicated by dashed red lines; otherwise, the top view is shown.

3.2. Lagrangian Trajectory

For 260 s, 120,000 bacteria were tracked on their paths crossing different substrate concentrations.
Figure 3 depicts growth rate profiles of two organisms for 20 s, referred to as lifelines L1 and L2.
Figure 3C shows the related paths.

According to the regime thresholds (see Section 2.3 and Figure 3A, dashed lines), the growth rate
trajectories could be transferred to replication modus curves, as described in Figure 3B). The lifeline L1
revealed high variations in glucose concentrations that were likely to induce strong metabolic changes.
In contrast, environmental shifts along L2 were moderate, and there were no effects on metabolism
or the cell cycle. The first lifeline L1 gave information regarding five regime transition strategies
(STS, TST, STM, TMT, and MTS) and the individual residence times. Lifelines L1 and L2 started from
different positions in the reactor and were unequal in length because they moved according to the
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predominant velocity field. Within 20 s, L2 did not approach the feed zone, remaining in an area of
reduced substrate concentration and increased shear stress, owing to the higher velocity of L2.

As shown in Figure 3B,C, within a defined timescale, bacteria completely sensed different
environmental conditions. Whereas L2 seemed to remain in the same environment, L1 passed different
glucose concentrations and performed several replication strategies. Each metabolic adjustment will
cost energy and could have an impact on the production yield.Bioengineering 2017, 4, 27  7 of 12 
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Figure 3. Bacterial lifeline and regime transition classification. (A) Two-dimensional (2D) bacterial
lifeline for different growth rates µ over time. The black line represents raw data, and the red line
represents filtered data (moving average filter to correct discrete random walk (DRW) fluctuations).
Black dashed lines indicate the transition regime from single-forked to multiforked replication.
(B) Translation of filtered (one-dimensional (1D) filter) growth rate curves for the three regimes:
multifork replication regime M, transition between standard forked and multiforked T, and standard
replication S. Examples for two bacterial lifelines L1 and L2 are depicted. For L1, five regime transitions
(STS, TST, STM, TMT, and MTS; see Section 2.3) were analyzed. (C) Bacterial movement patterns for
two bacterial lifelines (L1 in gray and L2 in black). Starting positions are indicated by black circles.

3.3. Statistical Evaluation

3.3.1. Regime Transition Frequency

All bacterial lifelines were scanned for regime transitions and retention times in order to obtain
the frequency distributions as a function of τ. Thus, six transition strategies were evaluated in a
statistical manner to gain insights into cell histories and possible cell behaviors (see also Section 2.3).

Figure 4 shows the counts for each regime transition at a certain retention time. All regime
transition statistics, except the TST transition, exhibited a decay after at least 10 s. Bacteria starting from
the transition regime T could remain in an area of low concentration for up to 73.5 s (data not shown),
where they could grow regularly (standard forked S), before changing back to the T regime. This could
be explained by the flow field and gradient pictured in Figure 2A,B. The critical concentrations
representing possible growth rates for the regime transition (µ ≥ 0.3 h−1 and µ > 0.4 h−1) were located
in the upper half of the reactor. Rushton turbines usually cause flow patterns moving away from the
blades to the wall, where they circulate up or down, thereby forming large eddies for each stirrer set
(Figure 2B). Consequently, cells will often circulate in this segment and do not pass other areas of the
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reactor. The lower part of the reactor, which does not provoke a regime transition and, therefore, badly
supplies the organisms with substrate, consisted of three segments. As a result, the average retention
time in the TST transition was the longest (τTST = 8.54 s). All other average and maximum retention
times are listed in Table 1. The shapes of the distributions follow a Poisson distribution. The maximal
retention time was defined as the limit, within which 99% of the values were located.Bioengineering 2017, 4, 27  8 of 12 
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Table 1. Average and maximal retention time in a specific regime. For the six regimes (STS, TST, TMT,
MTM, STM, and MTS), the average (τ) and maximal retention times (τmax) are displayed in seconds.
The maximum τ was defined as the limit, within which 99% of the values were located.

Regime Transition τ [s] τmax [s]

STS 0.99 3.7
TST 8.54 73.5
TMT 3.53 16.25
MTM 2.45 13
STM 0.95 6.6
MTS 0.88 5.5

Lifeline statistics provide insights into the frequency of regime transitions and residence times.
Depending on the cell history, i.e., the concentrations of bacteria encountered before the bacteria
passed the actual concentration, the cells will adapt accordingly. Although metabolic adaptation
is known to be very rapid, the initiation of regulatory programs involving transcriptional changes
is slower. Investigating the impact of large-scale conditions for E. coli, Löffler et al. [26] showed
that fundamental transcriptional programs were initiated after 70 s of glucose shortage. After 30 s,
metabolic consequences were measured, and the first transcriptional changes were detected. In total,
about 600 genes were found to be up- or downregulated repeatedly, indicating a strong adaption.

Considering this finding during the regime analysis, it is assumed that all cells travelling from
high (M) to low (S) substrate availability should be influenced. Being prepared for multifork replication
in M, the cells must adapt to standard replication (S). By analogy, this also includes travelers from T
to S. Such cells can have a growth rate of about 0.4 h−1 before they adapt to growth rates of less than
0.3 h−1. During the observation window of 260 s, 72.6% of all cells were expected to carry out this
move at least once and to linger more than 30 s in regime S. About 14.7% of all cells were expected
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to stay more than 70 s in regime S after experiencing higher glucose concentrations in regime T.
Furthermore, if a regime transition from maximal to moderate growth conditions (MTS) with the
retention time in regime T and S is assumed, 55.5% of all cells performed this move for more than
30 s. A retention time of 70 s was calculated for 10.4% of all cells. The time scales of 30 s and 70 s were
shown to significantly influence the transcriptional response of E. coli [26], leading to the assumption
that changes in adenosine triphosphate (ATP) and guanosine triphosphate (GTP) levels of P. putida
KT2440 could also be expected.

3.3.2. Energy and C-Phase Duration Distribution

For the observation window of 260 s, the growth rate profiles of 120,000 bacteria were calculated.
Given the set feed rate, the average µ of 0.295 h−1 was expected. Using the Lagrangian approach,
an average growth rate of µ = 0.269 h−1 was computed, indicating an adequate deviation of 8.5%
compared to the Eulerian approach with µ = 0.294 h−1 (see Section 3.1).

The distribution of the ATP consumption rate qATP is presented in Figure 5A. The growth rate
µ and qATP were not evenly distributed compared to the mean value, but exhibited individual
distributions according to the gradient. The ATP consumption rate was calculated applying
Pirt’s law (see Equation (3)). While only 6.3% of all cells had a mean ATP consumption
rate of qATP,mean = 29.31 ± 2 mmolATP·g−1

CDW·h−1, 40.8% showed a reduced consumption rate
of less than 27.31 mmolATP·g−1

CDW·h−1, and 52.9% showed an increased energy demand of
31.31 mmolATP·g−1

CDW·h−1 in comparison to the average consumption rate. Moreover, 12.2% show an
energy demand that was more than 1.5 times that of the mean value in the reactor.
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Figure 5. Distribution of C-phase duration and energy level. (A) Frequencies of cells with a specific
adenosine triphosphate (ATP) consumption rate (qATP) tracked for 20 s. Average value of qATP,mean =
29.31 mmolATP·g−1

CDW·h−1. Range of the x-axis from qATP,min = 5.57 mmolATP·g−1
CDW·h−1 to qATP,max =

52.98 mmolATP·g−1
CDW·h−1. (B) Frequency of cells having a specific duration of replication (C-phase).

Average C-phase duration of Cmean = 1.21 h. Range of the x-axis from Cmin = 0.86 h to Cmax = 2.05 h.
Counts were divided into 300 bins.

The distribution will differ if increased nongrowth-associated maintenance mATP is considered.
As outlined by Löffler et al. [26], mATP increases by 40–50% when cells are exposed to large-scale
substrate gradients.

The individual growth profiles of the cells are the basis for deducing cell cycle patterns using
the cell cycle model (see Section 2.3). Distributions of the C-length (encoding DNA replication)
could be derived for the population of 120,000 bacteria. Figure 5B shows the average duration of
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replication of 1.21 h and the frequency of cells with a C-phase duration ranging from Cmin = 0.86 h to
Cmax = 2.05 h. Clearly, the bacteria were not evenly distributed according to the mean value, and there
was a large heterogeneity in the reactor. Although only 22.3% of all cells had a replication phase of
1.21 ± 0.2 h, about 30% possessed a C-period of more than 1.41 h. In contrast, 47.7% displayed a shorter
replication phase than the average time for replication (less than 1.01 h). Moreover, approximately
56.1% of the cells were rapidly replicating cells with a growth rate higher than µ = 0.3 h−1. For these
cells, it can be assumed that they already started to completely adjust their metabolism to achieve
multifork replication. As shown in Figure 5B, the bioreactor population was strongly heterogeneous,
characterized by a nonequal distribution of bacteria in different cell cycle states. Three different
growth phenotypes are shown: C-phase durations of (i) 0.94 ± 0.08 h, (ii) 1.68 ± 0.1 h, and (iii) a
transition state of C-phases ranging from 1.1 to 1.5 h. Previously, subpopulations resulting from
chemostat experiments have been categorized in populations containing one, two, or more than
two chromosomes [27]. With this simulation setup, a model-based superposition of subpopulations
containing different growth rates to mimic the scenario in a (fed)batch fermentation was shown. For the
underlying gradient, new categories of subpopulations according to the C-phase durations mentioned
above can be formulated.

4. Conclusions

The existence of population heterogeneity in industrial fermenters has been demonstrated, but
it still not completely understood. Improvements in fermenter operation, reactor design, and strain
engineering can be achieved as more information of cell behaviors during large-scale production
becomes available. In this study, the formation of heterogeneity by combining CFD with a cell cycle
model of P. putida was investigated. With this method, heterogeneity can be interpreted from the
bacterial point of view, particularly with respect to the growth phase durations and energy demands
of the cell.

Average and maximum residence times for each transition strategy have been approximated and
can be linked to scale-down experiments using STR-PFR setups. Moreover, distributions of growth
rates, ATP consumptions, and C-phase durations could be generated. Such findings provide important
insights into the intracellular mechanisms that determine growth phenotypes. These mechanisms may
become a crucial part of strain and process engineering to predict ab initio and in silico whether and how
large-scale performance will meet expectations. Realistic large-scale cultivation can be simulated by
investigating the “subpopulations” individually. Specifically, it may be possible to elucidate whether
the total drop in production performance during large-scale production is caused by all cells or by
individual “subpopulations” that underperform.

To further investigate such problems, heterogeneity studies need to be coupled with single-cell
product kinetics. Moreover, research will need to focus on the quantitative measurement of the impact
of stress intensity on the mATP level. This will enable prediction of the total energy demand for a
given setup.
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Appendix A

More precise information of the reactor setup and geometry can be found in Table A1 and
Figure A1.
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Table A1. Dimensions of the reactor setup pictured in Figure A1.

Description Symbol Relation

Reactor diameter DR 3.00 m
Impeller diameter DI 0.43 DR

Impeller height HI 0.21 DI
Bottom clearance C1 0.30 DR
Impeller spacing ∆C 1.00 DR
Upper clearance C2 1.27 DR

Baffle width B 0.10 DR
Liquid height HL C1 + ∆C + C2Bioengineering 2017, 4, 27  11 of 12 
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Appendix B

The standard moving average filter of MATLAB is a linear filter (low pass filter), which removes
high frequency components such as fluctuations caused by the DRW model. It is formulated as:

m(t) =
q

∑
j=−q

yt+j q < t < N − q (A1)

with:
q =

τ − 1
2

(A2)

where N is the total number of measured time points and τ the filter timescale.
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Abstract

Transferring bioprocesses from lab to industrial scale without loss of performance is

key for the successful implementation of novel production approaches. Because

mixing and mass transfer is usually hampered in large scale, cells experience het-

erogeneities eventually causing deteriorated yields, that is, reduced titers,

productivities, and sugar‐to‐product conversions. Accordingly, reliable and easy‐to‐

implement tools for a priori prediction of large‐scale performance based on dry and

wet‐lab tests are heavily needed. This study makes use of computational fluid dy-

namic simulations of a multiphase multi‐impeller stirred tank in pilot scale. So‐called

lifelines, records of 120,000 Corynebacterium glutamicum cells experiencing fluctu-

ating environmental conditions, were identified and used to properly design wet‐lab

scale‐down (SD) devices. Physical parameters such as power input, gas hold up, k aL ,

and mixing time showed good agreement with experimental measurements. Ana-

lyzing the late fed‐batch cultivation revealed that the complex double gradient of

glucose and oxygen can be translated into a wet‐lab SD setup with only few com-

partments. Most remarkably, the comparison of different mesh sizes outlined that

even the coarsest approach with a mesh density of × #/1.12 10 m5 3 was sufficient to

properly predict physical and biological readouts. Accordingly, the approach offers

the potential for the thorough analysis of realistic industrial case scenarios.

K E YWORD S

cellular lifelines, CFD, double gradient, stirred tank

1 | INTRODUCTION

The transformation of current chemical industry into a sustainable,

circular economy demands the successful implementation of large‐

scale production processes accessing the low‐value, high‐volume

products of tomorrow. Emerging fields are the production of amino

acids and organic acids (Becker & Wittmann, 2012; Morrison &

Lähteenmäki, 2017). Typically, microbial hosts are the most im-

portant production platforms with Corynebacterium glutamicum being

one of the established producers (Leuchtenberger, Huthmacher, &

Drauz, 2005; Takors et al., 2007). Stirred tank reactors, still the

preferred choice of large‐scale production, show reduced power‐per‐

volume ratios with increasing reactor size (Junker, 2004). Conse-

quently, scale‐up from smaller laboratory scales is usually hampered

due to limited mixing and mass transfer, leading to the formation of

substrate and gas gradients. The repeated exposure of cells to these

fluctuating microenvironmental conditions cause unwanted reduc-

tion of productivities, conversion yields, and rising by‐product for-

mations (Bylund, Collet, Enfors, & Larsson, 1998; Enfors et al.,

2001; Garcia‐Ochoa & Gomez, 2009; Hewitt & Nienow, 2007;
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Junne, Klingner, Itzeck, Brand, & Neubauer, 2012; Neubauer

et al., 2013; Schmidt, 2005; Vrábel et al., 2001). Accordingly, tools are

needed to reliably predict large‐scale impacts while studying the

microbial system in lab‐scale. Different wet‐lab scale‐down (SD)

devices have been developed (Käß, Junne, Neubauer, Wiechert, &

Oldiges, 2014; Löffler et al., 2016). Commonly, their design is

motivated by mixing time studies of large tanks that tend to

overestimate the residence time of microbes in stressful zones of the

bioreactor.

On the other hand, computational fluid dynamics (CFD) gain

momentum to provide detailed information on environmental condi-

tions inside a fermenter (Morchain, Gabelle, & Cockx, 2014; Pigou &

Morchain, 2015) since the pioneering studies of Lapin, Schmid, and

Reuss (2006). In the recent years, substrate gradients in industrial

scale fed‐batch production were successfully simulated outlining the

impact of concentration fluctuations on microorganisms by compre-

hensive statistical analysis (Haringa, Deshmukh, Mudde, & Noorman,

2017; Haringa et al., 2016; Kuschel, Siebler, & Takors, 2017). Thereof,

principles of SD design may be derived. Yet, the influence of oxygen as

substrate in CFD simulations is often left aside. Instead, single‐phase

studies are performed assuming saturated dissolved oxygen levels in

the entire bioreactor.

Properly considering the additional oxygen impact in stirred tank

reactors (STRs) via a gaseous phase is a challenging task. Fundamental

problems need to be tackled that can be grouped in (a) momentum

balancing mimicked by proper drag force modeling (Bakker & Van den

Akker, 1994; Brucato, Grisafi, & Montante, 1998; Buffo, Vanni,

Renze, & Marchisio, 2016; Ishii & Zuber, 1979; Scargiali, D'Orazio,

Grisafi, & Brucato, 2007; Tomiyama, Kataoka, Zun, & Sakaguchi,

1998), (b) bubble size distribution modeling (Hagesaether, Jakobsen,

& Svendsen, 2002; Haringa et al., 2017; Kumar & Ramkrishna, 1996;

Laakkonen, Moilanen, Alopaeus, & Aittamaa, 2007b), (c) modeling of

bubble breakage and coalescence (Alopaeus, Koskinen, & Keskinen,

1999; Laakkonen, Alopaeus, & Aittamaa, 2006; Luo & Svendsen,

1996; Kálal, Jahoda, & Fort, 2014), and (d) mesh size impacts.

Regarding (d), all models have a strong dependency on the tur-

bulent dissipation rate in common. The Reynolds average

Navier–Stokes (RANS) k–ε model was found to underestimate the

local turbulent quantities both, in single and in multiphase conditions.

In contrast, large eddy simulations are known to allow best predic-

tion quality but are too computationally demanding for large‐scale

multiphase applications (Buffo et al., 2016). As a trade‐off, satisfac-

tory results of total dissipated energy simulation via RANS k–ε

models can be achieved (Kysela, Konfrst, Chara, Sulc, & Jasikova,

2017). However, the prediction of turbulent variables turned out to

be sensitive on the discretization schemes and grid size (Coroneo,

Montante, Paglianti, & Magelli, 2011). Interesting enough, velocity

field or power numberNp prediction by torque was less influenced by

either discretisation scheme or grid size. The observation was further

exploited by Laakkonen, Moilanen, Alopaeus, and Aittamaa (2007a)

who predicted turbulent dissipation rates ε to be independent on grid

size but depending on experimental torque measurements. Accord-

ingly, a novel scaling factor was introduced.

This study takes a typical late stage fed‐batch scenario with C.

glutamicum as a model case to investigate (a) the suitability of the

Laakkonen approach for multiphase modeling, (b) the minimum

computational efforts needed to get proper physical and biological

readouts, (c) the expected microbial responses on fluctuating en-

vironmental conditions, and (d) the lessons learned for properly de-

signing wet‐lab SD devices. Model predictions are validated by

experimental data measured in a 300‐L stirred tank bioreactor.

2 | MATERIALS AND METHODS

Measurements were carried out in a 300‐L multi‐impeller stirred

bioreactor, equipped with four baffles and three Rushton turbines.

Details of measurements, geometry, and parameter validation are

given in Supporting Information Material A. The agitation rate was

set to N = 5/s. Air was introduced through a ring sparger with a gas

feed of 0.25 vvm. Experiments were performed in water (ρL = 995.7

kg/m3, ηL = 0.0008 Pa·s, σL = 0.0712N/m) at 30°C and ambient

pressure.

2.1 | Numerical simulations

2.1.1 | Simulation setup

Three different grid sizes of the full 2 domain were adopted. Details

of the meshes and simulation time intervals are given in Supporting

Information Material B. Numerical simulations were conducted with

the commercial software ANSYS Fluent 18.1 using the realizable k–ε
RANS turbulence model and the Eulerian multiphase model including

mixture model for dispersed phase turbulence. The turbulent

Schmidt number was set to 0.2. Bubble size ranged from 0.1 to

16mm, divided in 23 classes according to Hagesaether et al. (2002).

The scaling factor fsc was introduced based on the assumption, that

mixing energy (power calculated from impeller torque Ptorque and

gassed power input Ppneum) converts to turbulent energy and dis-

sipates to heat in the liquid phase ( εP ). Hence local energy dissipation

εlocal was converted according to

ε
= +

f
P P

P
,sc

pneum torque (1)

ε ε= f .sc sc local
(2)

With Ppneum and εP ( )= ϕP RT
p

p
ln ,pneum G

0 (3)

α εε ∫=P dV ,L L
(4)

and with ϕG as molar flow, αL as liquid volume fraction, R as universal

gas constant, T as temperature, p0 and p as standard and actual
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pressure. For Ptorque, see Supporting Information Material A. Phase

interaction models were mainly based on the recommendations by

Laakkonen et al. (2007a) and implemented via user‐defined function

(UDF). To account for the bubble drag coefficient, the correlation of

Tomiyama for isolated bubbles in slightly contaminated systems

(Tomiyama et al., 1998) was used. As Tomiyama drag closureCD,0 was

obtained for bubbles in quiescent fluids, effective viscosity μeff and
swarm effects were included to consider drag modification under

turbulent conditions (Bakker & Van den Akker, 1994; Brucato

et al., 1998; Ishii & Zuber, 1979)

η
= | − |

Re
d u u

,eff
L L G

eff

(5)

η η ε= + C d ,eff L 5 L sc

1
3
4
3

(6)

with C5 as 0.02 proposed by Bakker and Van den Akker (1994).

Additionally, swarm effects were accounted for by

α= ( ) ( )C f C Re ,D DG ,0 eff
(7)

α α α
α

( ) = ( − ) ≤>f
1 0.8

1 0.8

C

G
G G

G

6 (8)

with C6 to be −1.3 as proposed by Buffo et al. (2016). Bubble break up

and coalescence were implemented as described by Laakkonen et al.

(2007a) replacing the original breakup function by a simple sine func-

tion. The moving reference frame model was applied to account for

agitation. All walls were set to no‐slip boundary conditions for the liquid

and free‐slip conditions for air with one exception—to account for gas

accumulation behind the blades, no‐slip boundary condition was applied

for air in the impeller region. The top surface of the sparger was set to

velocity inlet and the initial bubble diameter was calculated with 10mm

according to the correlation of Gaddis and Vogelpohl (1986). Degassing

boundary condition was applied at the liquid height of the reactor,

which has been increased before simulation according to the experi-

mental gas hold up. The second‐order upwind scheme was used for

spatial discretization of momentum, turbulent kinetic energy, and dis-

sipation rate. All simulations were performed in transient mode and

second‐order implicit formulation until a constant gas hold up was

reached. Radial velocity, turbulent dissipation rate, and mixing time

were compared between the three meshes. Further details on the so-

lution procedure and mixing time determination can be found in Sup-

porting Information Material D and E.

2.1.2 | Inclusion of biological kinetics and regime

assignments

Starting from a constant gas volume fraction, glucose feed, oxygen

mass transfer, and bacterial reaction were included via UDFs. A

source term for glucose was defined in a small region at the fer-

menter top close to the shaft with a feeding rate = /F 560 g hrS ,

assuming a cell concentration of = /c 36.5 g LX CDW . Oxygen mass

transfer was included with the volumetric mass transfer coefficient

k aL according to

= ( − )⁎c
k c c

d

dt
a

O ,L
L O O ,L

2

2 2
(9)

with ⁎cO2 as oxygen saturation concentration calculated by Henry's

law and cO ,L2 as liquid oxygen concentration. A multisubstrate kinetic

suggested by Roels (1983) was used to account for substrate

consumption:

μ μ= + +c

c K

c

c K
min ;max

S

S S

O2

O O2 2

(10)

with μ as growth rate and KS and KO2 as half saturation concentra-

tion. Specific growth parameters of C. glutamicum ATCC13032 were

obtained from previous batch experiments (not published) resulting

in a maximal growth rate of μ = −0.441hrmax
1, a biomass glucose

yield of = /Y 0.474 g gXS CDW S and a biomass oxygen yield of= /Y 0.043 g mmolXO CDW O2 2
. The KS value for C. glutamicum= × /−K 3.6 10 g LS

3
S was taken from literature (Lindner, Seibold,

Henrich, Krämer, & Wendisch, 2011). The value for KO2 was taken

from Escherichia coli = × /−K 2 10 mmol LO2
3

O2 because similar cyto-

chrome bd activity has been reported (Kita, Konishi, & Anraku, 1984;

Kusumoto, Sakiyama, Sakamoto, Noguchi, & Sone, 2000). Simulation

ran in transient mode until steady‐state concentrations of glucose

and oxygen were reached. They mirror a so‐called “pseudo steady‐

state” characterized by short‐term stable gradients in turbulent flow

fields. This concentration profile reflects a “snap‐shot” of a late pilot‐

scale fed‐batch scenario. Coupling the reaction to the continuous

liquid phase was assumed, since mixing and mass transfer are an

order of magnitude higher than the reaction. However, the flow field

shows periodically changing behavior. To facilitate comparability

between the three meshes, power input by torque as well as velocity

profiles and turbulent dissipation rate were tracked at several posi-

tions and the simulation was stopped when average values of the

examined parameters were reached. Then, the glucose and oxygen

gradients were classified in specific regimes according to the growth

rate substrate dependency of a single substrate Monod kinetic for

either glucose or oxygen, respectively. If the dimensionless substrate

concentration /c KM M was smaller or equal to 0.5 (corresponding to/( + ) ≤c c K 0.33M M M ) a linear correlation between μ and cM exists,

referring to a low concentration regime (LS for low glucose or LO2 for

low oxygen). If / >c K 9M M , the growth rate μ reaches 90% of μmax and
the function can be approximated by a function of zero order making

μ independent of a change in substrate concentration (HS and HO2).

The range in between refers to a transient regime (TS and TO2).

2.1.3 | Particle tracking

The analysis of heterogeneities via cellular lifelines within a bior-

eactor was previously published in various papers (Haringa
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et al., 2017, 2016; Kuschel et al., 2017). The total amount of 120,000

bacteria was introduced as massless Lagrange particles (St<< 1) and

tracked for 260 s for each mesh. Euler and Lagrange average growth

rates were compared to proof for statistical relevance. The discrete

random walk model was enabled. The gradient and flow field were

fixed during particle tracking. The position and the encountered

glucose and oxygen concentrations for each bacterium were re-

corded every 15ms. Further analysis was performed in MATLAB®.

2.1.4 | Statistical evaluation of bacterial lifelines

The further processing of the trajectories included a smoothening

step by applying a moving average filter to remove unrealistic tur-

bulent fluctuations. The filter window was based on the Lagrangian

time scale as recommended by Haringa et al. (2017). Here, a second

filter step to filter out rapid consecutive low‐amplitude crossings is

suggested which was enabled by a median filter. Then, the filtered

trajectories were analyzed according to their regime transitions in-

cluding frequency and duration of residences.

3 | RESULTS AND DISCUSSION

3.1 | Validation of physical parameters for different

grid sizes

Multiphase simulations were performed using three different grid

sizes (Supporting Information Material B). Sufficient mesh granularity

is a critical aspect in CFD simulations especially for the proper es-

timation of the gas–liquid mass transfer. Typically, sensitive flow

variables such as radial velocity and turbulent dissipation rate are

checked for mesh independency. While urad already showed decent

results for Mesh 1, differences between the meshes are significant

for ε (Supporting Information Material D). Accordingly, the scaling

factor for ε was introduced into breakup, coalescence, drag and mass

transfer functions as described in Section 2.1.1. A similar scaling

factor has been reported to show good results in multiphase simu-

lations (Laakkonen et al., 2007a). Noteworthy, the scaling factor was

determined from simulation in our approach. Experimental data were

only required for validation purposes.

Figure 2a shows the flow field, Figure 2b shows the gas volume

distribution, and Figure 2c shows the bubble size distribution of the

simulation with Mesh 3. Clearly, no distinct separation of flow fields

from radial pumping Rushton turbines is visible, but an overlap of

vortices. The merged flow field is the result of the upward moving gas

phase in combination with rather proximate impeller setting. The

first impeller shows a loading regime (see Figure 2b). With the

Froude number / =N D g 0.522 and the Flow number / =Q ND 0.02g
3 ,

no flooding is expected according to critical flow numbers of Ros-

seburg, Fitschen, Wutz, Wucherpfennig, and Schlüter (2018) and

others (Wiedmann, 1983). Own studies outlined the need to consider

the impact of effective viscosity on the estimation of drag force.

Otherwise, bubbles left the impeller discharge streams too early

leading to nonrealistic bubble accumulation close to the blades. The

lower impeller disrupted entering bubbles to 4–5mm (see Figure 2c).

Smallest bubbles of 2–3mm were found in discharge streams of the

middle and the upper Rushton turbine gaining size when they moved

upwards to the liquid surface. Largest bubbles were observed at the

impeller shaft close to the reactor top where coalescing effects are

most dominant. This tendency is in good agreement with the ex-

perimental results by Laakkonen et al. (2007a).

Table 1 summarizes all experimental and simulated data of this

study. The power input by torque is predicted well by the simulation.

Especially, Mesh 3 shows less than 2.8% deviation from experimental

measurements. The power number = /N P N DP
3 5 of 10.88 for the

entire systems is rather low compared to expectedNP of 5 per Rushton

turbine in distinct turbulent flows (here ≈ ×Re 2.5 105) (Rushton,

Costich, & Everett, 1950). However, such high NP are only obtained for

multi‐impeller systems with complete parallel flow. By contrast, Figure 2

clearly depicts the nondistinct character of the flow field in agreement

with Chunmei, Jian, Xinhong, and Zhengming (2008) and Xueming,

Xiaoling, and Yulin (2008) which is further supported by the low velocity

ratio of the middle stirrer (Supporting Information Material D). Taking

an additional reduction of power number due to the gas phase into

account, Armenante and Chang (1998) found similar non‐gassed power

numbers for a comparable reactor configuration. Experimental (3.6%)

and simulated (3.2%) gas hold up are in fair comparison, considering the

experimental noise. The simulated gas hold up of 2.4% from Laakkonen

et al. (2007a) is smaller than the gas hold up presented here. Although

the authors chose a higher agitation rate, one instead of three Rushton

turbines was used. Therefore, smaller power input and gas hold up can

be expected. Highly accurate prediction of k aL values was achieved.

Even the coarse Mesh 1 still reached good prediction quality of 92.8%.

We qualify the very good prediction quality of k aL as a mirror of the

well suitability of the Laakkonen approach. Because fSC scales the tur-

bulent energy dissipation proportionally, small differences in the pre-

diction precision between the meshes may exist due to the nonlinear

character of k aL , breakage and drag function. Gas hold up is further-

more directly dependent on the velocity profile which is predicted

slightly different by Mesh 3 (Supporting Information Material D).

Following the approach of Vasconcelos, Alves, and Barata (1995)

and choosing the geometric similarity as 100, the mixing time is esti-

mated as τ95 =15.9 s fairly agreeing with the experimental findings.

Alternately, the mixing time was simulated by adjusting the Schmidt

number ScT from 0.7 to 0.2. Whereas this is a common choice for single‐

phase studies (Delafosse et al., 2014; Haringa et al., 2016; Montante,

Moštěk, Jahoda, & Magelli, 2005), the improvement is less incisive for

multiphase simulations where the upwards motion of the gas breaks the

mass‐exchange barrier of the inter impeller zone (Haringa et al., 2017).

Considering the experimental standard deviation of mixing experiments

all meshes allow satisfactory prediction quality.

Because the bubble diameter was not experimentally measured,

comparison is performed with measured Sauter mean diameters of

about 1.2–4.1 mm from Laakkonen et al. (2007a) testing similar

settings. Accordingly, fair agreement is observed.
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Summarizing, simulated values fit the experimental data very

well. Even for Mesh 1, deviations are acceptable.

3.2 | Pseudo‐stationary double gradients

Pseudo‐stationary double gradients of the late fed‐batch scenario

were obtained by embedding reactions into the continuous phase

containing the media. Estimating the time needed to shift a culture to

substrate depletion (τ = /( ) =K q c 0.38 sS Sdep ,max X ) reveals that τdep
is more than an order of magnitude smaller than mixing

(τ = ±15.2 4 s95 ) and circulation time (τ = ±2.9 0.75 scirc ). Accord-

ingly, the formation of substrate gradients is likely to occur. Figure 3

shows that spatial distributions of growth are fairly similar for each

simulation (average μ = 0.0335 hr−1) irrespective of the mesh quality

used. Highest growth rates were reached proximate to the top im-

peller whereas cell growth was strongly limited in the rest of the

reactor. Figure 4a,b elucidates the reasons for the growth distribu-

tion highlighting glucose and oxygen gradients exemplarily of Mesh 3.

Small differences between the meshes in the overall physical para-

meters like k aL or τ95 contributed to slight differences in the gradient

formation. High glucose (HS) concentrations only occur next to the

feed port, surrounded by a transition zone ( )TS , whereas the flow

fields of the three Rushton turbines is glucose‐limited (LS). Interest-

ingly, the opposite scenario attunes for oxygen showing high oxygen

concentrations (HO2) in the bulk ranging from the reactor bottom to

the top impeller (see Figure 4b). The overlay of glucose and oxygen

gradients leads to a scenario as shown in Figure 4c, the assignment of

low oxygen levels at the top (LO2), low glucose levels in the Rushton

mixing zone (LS) and a lean section of mid‐level concentrations (T)

located between LO2 and LS. It is exactly in T where highest growth

rates occur. Interesting enough, T only accounts for <5% of the of the

total volume according to Mesh 3. Notably, Meshes 1 and 2 provide

similar prediction with 3.7% and 3.3%, respectively.

3.2.1 | Statistical lifeline analysis

Applying the approach of Haringa et al. (2016) so‐called lifelines were

studied, that is, the fluctuating paths of 120,000 C. glutamicum

massless cells were recorded and analyzed with respect to the re-

gime changes according to Figure 1. Concentration profiles of glu-

cose and oxygen encountered by individual cells were used to

F IGURE 1 Regime transition patterns. L TLO O2 2
: Particle starts

and ends in low oxygen regime with a dwelling time in the transition

area. TL TO2 : Reverse event starting in the transition area with

residence in low oxygen regime. L TLO S2
: Particle traverses all regimes

from low oxygen to low glucose. L TLS O2: Reverse movement from low

glucose to low oxygen. TL TS : Circulation from transition over

low glucose back to transition area. L TLS S: Reverse event from low

glucose to transition back to low glucose regime. The second capital

letter always indicates the area in which the residence time τ was

measured [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

F IGURE 2 (a) Flow field, (b) gas volume

distribution, and (c) bubble size distribution of

the simulation with Mesh 3 [Color figure can be

viewed at wileyonlinelibrary.com]

TABLE 1 Comparison of simulated parameters and experimental

validation

Setup NP α ( )%G ( )−k a hrL
1 τ ( )−s95

1 ( )d mmb

Mesh 1 9.50 2.7 116 17 3

Mesh 2 11.82 2.6 115 13.9 3

Mesh 3 11.18 3.2 122 13.1 3.4

Exp 10.88 ± 0.11 3.6 ± 0.3 125 ± 4 15.2 ± 4 1.2–4.1

Note: Experimental bubble diameter was taken from Laakkonen et al.

(2007a).
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estimate growth rates applying the Roels multisubstrate kinetic. The

average growth rate (μ = −0.0291hr 1) was comparable for all me-

shes and is in good agreement with the Eulerian approach

(μ = −0.0335hr 1). Thereof, the conclusion was drawn that a suffi-

cient number of particles was used. Figure 5d shows an exemplary

lifeline for 25 s. The normalized glucose and oxygen concentrations

are displayed in Figure 5a for 200 s. The profiles are consistent with

the gradient depicted in the previous section. High glucose con-

centrations are coupled to low oxygen concentrations and vice versa.

Only if both substrates are present in moderate concentrations

higher growth rates can be obtained as demonstrated in Figure 5b.

The profiles were translated into regime transitions for further

analysis as illustrated in Figure 5c. Characteristic patterns are

marked in red. TL TS may serve as an example for interpretation:

After 18 s, the bacterial fluctuating path TL TS starts from moderate

glucose and oxygen levels (T), traverses quickly to low glucose

(a) (b) (c)

F IGURE 3 Local distribution of simulated growth rates for (a)

Mesh 1, (b) Mesh 2, and (c) Mesh 3 [Color figure can be viewed at

wileyonlinelibrary.com]

(a) (b) (c)F IGURE 4 Concentration profiles derived

from Mesh 3 of glucose (a) fed from the top and

oxygen (b) introduced by a ring sparger close to

the reactor bottom. Coloration from dark to light

colors indicates high, transient, or low

concentrations. Overlapping both gradients

results in the regimes (c) with low glucose LS,

transient T, and low oxygen LO2 concentrations

[Color figure can be viewed at

wileyonlinelibrary.com]

(a)
(d)

(b)

(c)

F IGURE 5 (a) Profiles of normalized (ˆ = /c c c KM M M) glucose and oxygen concentration and (b) the resulting growth rate of a bacterial lifeline

recorded for 200 s. (c) The profiles were translated to low glucose LS, low oxygen LO2, and a transient regime T. (d) Bacterial lifeline in the

bioreactor for 25 s [Color figure can be viewed at wileyonlinelibrary.com]
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concentrations (LS) where the cells stays for 40 s before cycling back

to moderate glucose and oxygen levels encoded as T. Notably, time τ
code for residence periods of the middle zone (mid‐capital letter)

because transition times are quite short.

Bacterial lifeline patterns were statistically evaluated to obtain

frequency distributions as a function of τ . Finally, six transition

strategies were evaluated and compared for the three meshes. Sta-

tistical readouts comprised the total frequency of the events, average

and maximal residence times (see Table 2). Maximal residence times

correspond to the limit, within which 99% of the values were located.

For example, Figure 6 depicts the regime transition distributions of

Mesh 3. Remarkably long residence times are assessed for the regime

transition TL TS . Some bacteria may linger up to 76 s in the glucose‐

limited zone before moving back to the transition area. However, the

average residence time in LS is about 5.5 s. With ~31% TL TS is the

most frequent regime transition. The following reason may be de-

duced from Figure 3: cells are trapped in the trailing vortices of the

three impellers causing circulation within the low glucose regime.

The second most frequent regime transition is TL TO2 with 26.5%.

Maximum (13.5 s) and average (3 s) residence times are clearly

shorter than in regime TL TS . Notably, all distribution patterns com-

prising T as key residence zone show rapid decays after <1.5 s.

Those regimes host cells less than 0.4 s in T which is in the magnitude

of τdep. In essence, the fast crossings of zone T reflect its small di-

mension and the high fluid velocities at the top impeller.

Using Mesh 3 as reference, Figure 7 depicts deviations of aver-

age regime residence times regarding Meshes 1 and 2. For instance,

results of L TLS S and L TLS O2 differ only about 1% and 7% for Meshes 2

and 1, respectively. Most important, the dominating transitions TL TS

and TL TO2 only differ by max 31% (Mesh 2), with Mesh 1 showing

fairly good agreement of −9.6% and +16% only. This finding is highly

remarkable as it means that biologically meaningful readouts (i.e.,

exposure to limiting regimes) can be predicted well with moderate

computational efforts. Mesh 1 only possesses 1/10 grid size of Mesh

3. In other words, less computation is needed to qualify cellular

performance in large‐scale industrial bioreactors.

3.2.2 | Simplified design of scale‐down devices

For the given model case scenario, the volumetric fraction of mod-

erate substrate supply (T) is less than 5% only. Transitions through

this zone take 1.2 s maximum. Hence, instantaneous metabolic re-

sponses may occur, but the initiation of transcriptional effects ap-

pears rather unlikely. For E. coli, Löffler et al. (2016) observed

massive transcriptional responses after stress exposure periods

>35 s. Still, the initiation of transcriptional response may have hap-

pened causing the propagation of the transcriptional response into

well‐mixed zones of the bioreactor (Nieß, Löffler, Simen, &

Takors, 2017). However, C. glutamicum has already proven its strong

robustness regarding the exposure to large‐scale stress conditions.

Accordingly, the transition zone may be excluded for SD design

leading to a simplified two‐compartment SD device similar to Käß

et al. (2014). As such, the Euler–Lagrangian analysis may be simpli-

fied by lumping related regime changes finally yielding the two‐

compartment readouts L L LS O S2 and L L LO S O2 2
. With 3.4 s for the first

and 5.7 s for the latter, longer residence times in glucose‐limited

regimes were found that may expand to maximum residence times of

15 and 80.5 s, respectively.

TABLE 2 Regime transition statistics

Regime transition Frequency (%) τ̄ (s) τmax (s)

L TLS S 10.06 0.36 1.05

TL TS 31.36 5.50 75.66

TL TO2 26.47 2.99 13.47

L TLO O2 2
4.62 0.38 1.23

L TLS O2
15.99 0.20 0.81

L TLO S2
11.50 0.33 1.20

Note: Total frequency, average (τ̄ ), and maximal (τmax) residence time are

listed for each regime transition pattern.

F IGURE 6 Regime transition pattern as

function of the residence time τ . The six possible

patterns are shown as semi‐log plot
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In general, the findings of residence time distributions may be

well used to design wet‐lab scale‐up simulators. Figure 7b illustrates

that the regimes are translated in a multicompartment setup com-

prising two STRs connected by a plug flow reactor (PFR). The PFR

may serve as the realization of the T zone. Key limitations are in-

stalled in the STR as indicated. Each STR requires additional supply of

substrate or oxygen to raise limiting levels. Pumping between PFR

and both STRs follows the mindset of L TLS O2, L TLS S, L TLO S2
, and

L TLO O2 2
traveling paths. Regime assignments and changes may be

controlled by the volume ratios of the different tanks with average

dwelling times set by pumping rates. By deciding on a particular

scale‐up design, experimentalists basically choose the percentage of

frequency changes covered by the experimental setup. For instance,

the showcase of Figure 7c neglects the impact of T for the sake of

simplicity. Noteworthy, the examples of Figure 7b,c mirror the 300‐L

pilot‐scale scenario. Mimicking large‐scale industrial bioreactors

likely requires longer dwelling times and different volume ratios.

3.2.3 | Sensitivity of regime size depending on

biological parameters

Given that kinetic parameters and process conditions differ from

organism to organism their impact on regime size and transitions may

be an important criterion for qualifying the suitability of scale‐up

simulators (such as Figure 7b,c) for studying the impact of liquid

nutrients and oxygen. Results of a sensitivity analysis varying kinetic

and operational parameters are summed in Table 3 and depicted in

Supporting Information Material F exemplarily for one scenario.

Doubling the biomass concentrations cX leads to smaller transient

regime T, but to bigger regimes of limited oxygen LO2 and glucose

concentrations LS. For organisms possessing higher specific maximal

substrate consumption rate, the size of LS increased, due to reduced

transient regime, whereas LO2 remains. The opposite scenario occurs

for organisms with higher specific maximal oxygen consumption rate

qO2, leaving LS unaffected but leading to decreased T and increased

LO2. RisingKS adapts regime classification leading to bigger substrate

limitation zone, smaller transient and oxygen limited zones. Higher

KO2 shows no effects on regime size. By doubling the feed the

transient regime spreads toward the second impeller, reducing LS

but leaving LO2 unaffected. Reverse behavior of the regime size

was observed by lowering the respective parameter.

(a)

(b) (c)

F IGURE 7 (a) Comparison of average residence time prediction τ̄ for the three simulated meshes. Deviations of Meshes 1 and 2 compared to

Mesh 3 are displayed. (b and c) Examples of simplified scale‐down devices [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Sensitivity of regime size

Parameter

Influence on regime size

LS T LO2↑cX ↑ ↓ ↑
qS,max ↑ ↑ ↓ →

↑qO ,max2
→ ↓ ↑

KS ↑ ↑ ↓ ↓
KO2 ↑ → → →
F ↑ ↓ ↑ →

Note: Variation of organism‐specific parameter or operating conditions.
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Summarizing, sensitivity analysis shows that ratios of LS:T:LO2 depend

on biological kinetics and process conditions while structural settings

of two‐phase scale‐up simulators remain. Indeed, the setup well re-

sembles conventional settings. However, the two‐phase CFD simu-

lations give a quantitative estimate about the degree of similarity

with the eyes of the microbes, now.

4 | CONCLUSION

The scaling factor approach (Laakkonen et al., 2007a, 2007b) was

successfully applied for a two‐phase flow Euler–Euler multi‐impeller

pilot‐scale bioreactor simulation. Although, the factor was simply

simulated and not derived from experimental measurements, physi-

cal properties such as power input, gas hold up, k aL value and mixing

time were estimated fairly good compared to experimental tests.

Interesting enough, statistical analysis of lifelines further revealed

that biologically relevant readouts such as regime changes can be

based well on relatively coarse mesh granularity, still giving accurate

residence time distribution of <15% deviation (mostly) compared to

10‐fold finer structured meshes. Consequently, a mesh density of× #/1.12 10 m5 3 is suggested to be sufficient to reflect the actual

situation within the bioreactor. Likewise, similar grid sizes have been

used in multiphase simulations (Bach et al., 2017; Haringa

et al., 2017). This finding opens the door for large‐scale applications

with least computational effort. Using the scaling factor not only

proper estimations of physical criteria but also biological readouts

such as regime changes are well predictable.

The study showcased the application for C. glutamicum. But

sensitivity analysis showed that design and structure of wet‐lab

scale‐up simulators should be well transferrable to other microbial

kinetics and process conditions. Notably, the approach intrinsically

offers an a priori quantitative assessment predicting how close lab

scale conditions will mimic large‐scale scenarios.
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NOMENCLATURE

CD drag coefficient

CO2 oxygen concentration (mmolo2/L)

cS glucose concentration (gS/L)

cX biomass concentration (gCDW/L)

F feeding rate (gs/hr)

fsc scaling factor

kLa volumetric mass transfer rate (hr−1)

KO2 affinity constant for oxygen (mmolo2/L)

KS affinity constant for glucose (gS/L)

N agitation rate (s−1)

Np power number

P power (W)

p pressure (Pa)

R universal gas constant (J·mol−1·K−1)

Re Reynolds number

ScT turbulent Schmidt number

St Stokes number

T temperature (K)

YXO2 biomass oxygen yield ( / )g mmolCDW O2

YXS biomass substrate yield (gCDW/gS)

ABBREVIATIONS

BSD bubble size distribution

LES large eddy simulation

PBE population balance model

RANS Reynolds average Navier–Stokes

SD scale down

UDF user defined function

GREEK SYMBOLS

α volume fraction

ε turbulent dissipation rate (m2/s3)

ηL media viscosity (Pa·s)

μ growth rate (hr−1)

ρL media density (kg/m3)

σL media surface tension (N/m)

τ95 mixing time (s)ϕG molar flow (mol/s)

SUBSCRIPTS

* equilibrium concentration

dep depletion

eff effective

G gas

L liquid

max maximal

sc scaled variable
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