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Fast anharmonic free energy method with an application to vacancies in ZrC
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We propose an approach to calculate the anharmonic part of the volumetric-strain and temperature-dependent
free energy of a crystal. The method strikes an effective balance between accuracy and computational efficiency,
showing a ×10 speedup on comparable free energy approaches at the level of density functional theory, with
average errors less than 1 meV/atom. As a demonstration we make predictions on the thermodynamics of
substoichiometric ZrCx , including vacancy concentration and heat capacity.
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I. INTRODUCTION

Thanks to recent advances in computational thermody-
namics, the thermal properties of metals such as aluminium
and gold have been investigated up to the melting point,
using thermodynamic integration (TI) with Langevin dynam-
ics [1–3] based on density functional theory (DFT). A two-
step TI approach increases computational efficiency further,
making predictions possible for more complex materials at the
DFT level of theory. Examples so far include the ultrahigh-
temperature ceramics ZrC (Tm = 3700 K) and HfC (Tm =
4160 K) [4,5], and recent attempts at tackling the emerging
class of multicomponent systems [6,7]. Such calculations are
not yet routine, but the course of our research and the recent
methodological developments of others [8–10] in this field are
in that direction. Here we present some developments that are
a step towards the goal of routinely computing accurate free
energies for hard matter systems, including binaries, ternaries,
and high-entropy alloys, across the range of temperatures,
pressures, and chemical potentials, up to and eventually be-
yond the melting point.

In this work we compute the concentration of vacancies
in ZrCx and associated ambient pressure thermodynamics for
small deviations from stoichiometry. The ZrCx free energy
and derivatives are analyzed in terms of the contributions [11]

F = E0 + Fel + Fqh + Fah + Fel-vib + Fconfig, (1)

in which E0 is the DFT energy of a static lattice at T = 0 K,
Fel is the Helmholtz free energy contribution from the thermal
excitations of electrons, Fqh is the quasiharmonic vibrational
contribution, Fah is the anharmonic vibrational contribution,
Fel-vib is the electron-vibration contribution, and Fconfig is the
contribution of configurational entropy due to the number
of distinct point-defect distributions. For each of the five
temperature-dependent terms we have calculated the depen-
dence on the independent variables volume and temperature
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up to the melting point. Considerable attention in this paper
is given to the method we use to compute the challenging
anharmonic term Fah. The method described achieves effective
DFT accuracy in Fah (1 meV per bulk atom) with only an
order of magnitude greater computational cost than ordinary
quasiharmonic free energy calculations.

This paper is set out as follows. Section II A gives the
context of our approach, with theoretical details in Sec. II B, a
description of the modified embedded atom method (MEAM)
potential fitting in Sec. II C, thermodynamic integration in
Sec. II D and DFT technical details in Sec. II E. Benchmarking
is described in terms of accuracy and precision in Sec. III A
and computational efficiency in Sec. III B. Application to
ZrCx provides insight into the nature of anharmonicity in
substoichiometric binary crystals in Sec. IV A, prediction of
vacancy concentration in Sec. IV B, and analysis of ZrCx heat
capacity in Sec. IV C.

II. METHODS

A. Background

There are a number of approaches in the literature to
calculate the anharmonic vibrational properties of crystals
[1–4,12–22], including thermodynamic integration [23] (TI),
which is the method used in this work. In TI the anhar-
monic part of the full Hamiltonian, E − Eqh, is switched on
with the parameter λ ∈ [0, 1], in this instance linearly as
Emix(λ) = Eqh + λ(E − Eqh). Classical averages of ∂λEmix(λ)
are obtained stochastically from molecular dynamics (MD),
and numerically integrated along the coupling path to give the
free energy due to Eah:

Fah =
∫ 1

0
dλ 〈∂λEmix(λ)〉λ. (2)

Note that ∂λEmix(λ) = E (R, V ) − Eqh(R, V ), where
E (R, V ) is the full potential-energy surface and Eqh(R, V ) is
the volume-dependent harmonic potential-energy surface in
Born-Oppenheimer nuclear coordinates R.
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The partitioning of the vibrational free energy Fvib = Fqh +
Fah divides the problem conveniently into a simple quantum-
mechanical part, in which the vibrations are quantized as
phonons, and an anharmonic part in which the vibrations
are treated classically. Thus Fvib has the appropriate low-
temperature quantum statistics. The anharmonicity is treated
classically but also nonperturbatively, which is important at
high temperatures as the melting point is approached. In
order to evaluate the anharmonic term, the expectation values
〈∂λEmix(λ)〉λ require between 103 and 107 configurations for
a typical λ ensemble at a typical supercell size. To produce
a free-energy surface Fah(V, T ) one must sample ensem-
bles across dimensions of strain (here volume), temperature,
and coupling parameter, Nλ × NV × NT ≈ 102 . . . 103. Thus
the ballpark number of total-energy calculations, between
105 and 1010 configurations, is prohibitive at the highly con-
verged DFT level of accuracy required.

In one approach to reduce computational complexity, Fah

is obtained by cumulating a sequence of thermodynamic
integrations. In an implementation of this approach referred
to as TU-TILD [4] which is expressed by Eq. (3), much of
Fah is captured using an inexpensive MEAM potential. This
results in faster convergence of the expensive TI from MEAM
to DFT, expressed in the last term of Eq. (3):

F TU-TILD
ah =

∫ 1

0
dλ

〈
EDFT(R,V ) − EDFT

qh (R,V )
〉
λ

=
∫ 1

0
dλ

〈
EMEAM(R,V ) − EDFT

qh (R,V )
〉
λ

+
∫ 1

0
dλ

〈
EDFT(R,V ) − EMEAM(R,V )

〉
λ
. (3)

In practice to save computation time, the DFT MD calcula-
tions in a TU-TILD procedure were usually performed with
a low-converged expansion of the wave functions, using a
reduced number of plane waves, and fewer k points than
required for maximum accuracy. The maximum accuracy was
then obtained by up-sampling, as in the original UP-TILD
method [1]. The methodology we introduce below, inspired
by these approaches, was devised in order to make significant
further savings in computation time without sacrificing accu-
racy.

B. MEAM thermodynamic integration approach

The approach we propose in this work can be
summarized by

Fah =
∫ 1

0
dλ

〈
EMEAM(R, V ) − EDFT

qh (R, V )
〉
λ
. (4)

The harmonic contribution to free energy is always larger in
magnitude than the anharmonic part, and unfortunately no
MEAM potential captures the DFT potential energy around
the minimum with sufficient accuracy for calculating the
entire harmonic plus anharmonic free energy. Our approach
therefore is to calculate the anharmonic free energy of a
MEAM crystal referenced to a harmonic DFT crystal, which
is formally the first stage in Eq. (3). In the present method the
quasiharmonic Helmholtz free energy at each volume is still

explicitly represented by the volume-dependent dynamical
matrix calculated with DFT, which captures much of the
thermal expansion, but the anharmonic terms are now entirely
described by the MEAM potential. It is by no means obvious
a priori that this is possible, or if it is, that the process of
generating the potential is not too expensive to warrant the
effort.

From the potential terms in Eq. (4) it is clear that Fah can
be evaluated by this method to a high level of precision using
modest computational resources, but the MEAM TI approxi-
mation introduces systematic potential errors with respect to
DFT TI. Accuracy must be carefully controlled by generating
custom MEAM potentials from high-quality DFT MD. Gen-
erating the training and validation data is time consuming,
so fitting the potentials becomes the primary computational
cost in predicting Fah in our TI approach. These costs incurred
before doing the MEAM TI will be shown in Sec. III A to
be comfortably small enough. Details of potential fitting and
error control are presented in the following section.

C. Potential fitting

Interatomic potentials have been fitted using the reference-
free modified embedded atom method (RF-MEAM) [24]. The
MEAM potentials fitted in this work lack transferability and
are specialized to perform for the intended application. For
instance, to model Fah(V, T ) we fit a separate potential at
each volume considered, which minimizes the possibility of
strain-dependent errors. Obtaining the correct implicit volume
dependence of a potential is important, as explicit anharmonic
effects depend sensitively on the degree of lattice expansion,
as demonstrated in Sec. IV A.

Potentials for Zr32C32 and Zr32C31 have been fitted at
the cell lattice parameters a = {4.685, 4.730, 4.759, 4.801,

4.850} Å. In crystals of lower than cubic symmetry, thermal
expansion may involve other modes of strain, but in our case
only volumetric strain need be considered. At each volume
the potential is fitted to configurations sampled from DFT
MD runs between T = 200 K and T = 3800 K. The fitting
set for each volume comprises 103 Zr32C31 configurations,
which supply energies and forces to the objective function,
for minimizing force residuals and energy-residual variances.
Fitting to the forces on each atom allows the potential to
be specified by fewer distinct configurations than fitting to
energies, as Nforces = 3NatomNenergies. To generate the fitting
data points efficiently, low-quality DFT can be up-sampled to
high-quality DFT to produce high-quality target forces and
total energies.

The interatomic potentials are generated using a genetic-
algorithm conjugate-gradient fitting procedure implemented
and publicly available in the MEAMFIT2 code [24–26]. The
code fits an RF-MEAM potential that permits locally positive
and negative density terms in order to increase variational
freedom, subject to a net positive background. The fitted po-
tential has three embedding and three pairwise terms, within
a radial cutoff of 4.8Å, which includes interactions up to
third-nearest neighbor. These potential parameters provide a
satisfactory compromise between accuracy and complexity,
in terms of minimizing residual variances on hold-out data
using the fewest degrees of freedom (78 parameters for the
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FIG. 1. Quality of interatomic potential: MEAM vs DFT forces and energies shown for training and hold-out Zr32C31 data sets.

3-3 potential). The quality of fits for energy and forces is
presented in Fig. 1 for Zr32C31.

In this RF-MEAM application a different potential is fitted
at each volume but we require a potential to be transfer-
able across composition, i.e., we want the same potential
to describe both Zr32C31 and Zr32C32, for a given volume
at any temperature. This transferability ensures a systematic
error cancellation in Fah for Zr32C31 and Zr32C32 that helps
in calculating accurate fully anharmonic vacancy formation
energies.

D. Thermodynamic integration

Fah is estimated by computing 〈�E〉λ, with �E =
EMEAM − EDFT

qh , for a series of 11 ensembles at equal incre-
ments of λ, λi = i/10. In Fig. 2 we show the dependence of
〈�E〉λ on λ across a series of temperatures. We see that at

E

E

FIG. 2. Thermodynamic integrand 〈�E〉λ(λ) for Zr32C31 at a =
4.801 Å. Inset: Convergence of 〈�E〉λ(t ) with MD time step, at
ensembles λi = i/10.

each temperature, ∂λ〈�E〉λ � 0, a necessary condition that is
easy to prove, as in a derivation of the Gibbs-Bogoliubov in-
equality. In Fig. 2 inset the convergence of 〈�E〉λ is shown for
the first 60 000 time steps of a simulation. Expectation values
are generated using Langevin MD, with a one femtosecond
time step [4], and a friction parameter of γ = 0.05 fs−1 for
Zr32C31 and γ = 0.01 fs−1 for Zr32C32. At each pair, {Vi Ti},
the expectation value 〈�E〉λ is fitted in λ by least squares to
the truncated power series

〈�E〉λ(λ) =
i=5∑
i=0

aiλ
i , λ ∈ [0, 1], (5)

for which the coefficients are alternating in sign and con-
verging. If intrinsic defects form and migrate on the atomic
vibration time scale this series is expected to converge poorly.
In this work we exclude any system configurations in which
Frenkel defects have spontaneously formed, for example at
the melting point, in order to ensure well-converged ther-
modynamic integrations of the anharmonic free energy of
defect-free ZrCx.

Errors in predicting Fah are considered from two primary
sources, namely statistical convergence and a systematic po-
tential error. The DFT benchmark also has a small conver-
gence error which is accounted for, but other sources of error,
such as from DFT exchange correlation, electron-phonon
scattering, and other quantum effects beyond the harmonic
approximation, are beyond the scope of this paper. The three
countable contributions are shown schematically in Fig. 3, and
give the total expected error of

δ =
√

δ2
sys + δ2

rand + δ2
ref. (6)

Precision error δrand arises from evaluating an observable
from a finite number of samples in the MEAM MD, and the
systematic error δsys is due to the energy difference between
a MEAM potential and DFT. The convergence error in the
benchmark Fah value from TU-TILD is δref = 0.1 meV/atom
[4].
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Pred.

FIG. 3. Schematic relating precision (δrand) and accuracy (δsys)
errors in our predicted Fah value to a reference Fah value. The
benchmark value is from TU-TILD [4] and is converged to
δref = 0.1 meV/atom. Precision δrand can easily be reduced to
0.1 meV/atom or less, minimizing the systematic potential error. δsys

is the main challenge.

The statistical convergence δrand is computed using strati-
fied systematic sampling [27]. In the simulation the precision
error scales as [28]

δrand ∼
√

σ 2
λ

Nλ

τ

t
, (7)

where Nλ is the number of integration path points sampled
(with Nλ = 11 in our case), σ 2

λ is the variance of the ther-
modynamic integration, τ is the �E autocorrelation time
(approximately 11 fs; see the Appendix), and t is the sim-
ulation time (approximately 0.1 ns). We emphasize that the
TI method described differs from other approaches in that
statistical convergence is not accuracy limiting; for example,
nanosecond simulations can comfortably be performed in a
day on a low-performance computing platform.

The systematic potential error in the anharmonic free en-
ergy δsys can be computed by thermodynamic integration

δsys =
∫ 1

0
dλ 〈EDFT(R, V ) − EMEAM(R, V )〉λ. (8)

δsys is the primary error source in the method we describe to
compute Fah. Accuracy benchmarks in Sec. III A show δsys

can be sufficiently controlled to satisfy 1 meV/atom bulk
convergence across the Fah(V, T ) surface.

E. Technical details

Periodic plane-wave DFT calculations were performed
using the VASP software [29,30], with the local-density ap-
proximation (LDA) exchange-correlation function [31]. The
projector-augmented wave (PAW) method was used [32], with
4s- and 4p-Zr electrons included as valence states.

E0 was computed on a mesh of 11 volumes, and at each
volume the internal coordinates have been relaxed to give

residual forces under 10−6 eV/Å. Self-consistent field (SCF)
total energies and energy eigenvalues have been resolved to
10−9 eV. Methfessel-Paxton smearing has been used with a
width of 0.1 eV [33]. The kinetic-energy cutoff has been set
to 700 eV and k-point mesh 12 × 12 × 12 for the 2 × 2 ×
2 supercell. The E0 vacancy formation energy contribution
is extrapolated to the dilute limit, using data points from
Zr32C31, Zr108C107, and Zr256C255.

For the quasiharmonic Helmholtz free energy Fqh, the
kinetic-energy cutoff has been set to 700 eV and k-point mesh
to 6 × 6 × 6 for the 2 × 2 × 2 supercell. Phonons were calcu-
lated using the small displacement supercell method with the
PHONOPY code [34]. At each of the 11 2 × 2 × 2 supercells
that span the range of lattice parameters [4.575, 4.875] Å,
sets of 18 displacements were made for Zr32C31 and sets of
four displacements for Zr32C32. The phonon q points were
sampled by a mesh of 25 × 25 × 25 points for the 2 × 2 × 2
supercells.

The electronic Helmholtz free energy Fel(V, T ) has been
calculated using the Mermin finite-temperature formulation
of DFT [35], on a mesh of ten temperatures and eight vol-
umes sampled between Veq(T = 0 K) and Veq(Tm). Electron
states are self-consistent to at least 10−7 eV/atom. We used
384 bands, which was sufficient to span all states with partial
occupation up to the melting point Tm. A kinetic cutoff energy
of 700 eV was used, with k-point sampling at 12 × 12 × 12
for the 2 × 2 × 2 supercells.

The electron-vibration Helmholtz free energy Fel-vib(V, T ),
has been calculated from low-converged MD configurations
that are subsequently up-sampled, as in the procedure re-
cently performed for a number of transition metals [36]. The
electronic free energy is calculated for each MD configura-
tion, using the Mermin formulation at electronic temperature
corresponding to the MD ensemble temperature. At each
volume-temperature mesh point, the electronic free energies
are averaged over the ensemble configurations, and referenced
to the perfect crystal, in order to find the electron-vibration
coupling contribution to the Helmholtz free energy.

The anharmonic Helmholtz free energy Fah(V, T ) was de-
termined using a mesh of six temperatures and five volumes.
Temperatures span 0 K to Tm, and volumes Veq(T = 0 K) to
1.15Veq(Tm). Potentials were fitted to MD configurations from
DFT that used a 700-eV cutoff and k-point sampling mesh of
6 × 6 × 6 for the 2 × 2 × 2 supercell.

III. BENCHMARKS

A. Accuracy and precision

Our MEAM TI approach predicts Fah(V, T ) to within a
target accuracy of 1 meV/atom compared to DFT endpoint
TI. This is demonstrated in Fig. 4(a). Perfect Zr32C32 is
shown with error bars (TU-TILD reference) for 25 volumes
and temperatures up to the melting point. Fah(V, T ) energies
are converged to sufficient precision that the error bars are
in effect systematic potential error bars. The mean abso-
lute error (MAE) is 0.5 meV/atom, with a mean signed
deviation of 0.05 meV/atom. The MAE values at the lat-
tice parameters {4.685, 4.730, 4.759, 4.801, 4.850} Å are
{0.72, 0.38, 0.35, 0.46, 0.64} meV/atom. Errors resolved at

024303-4



FAST ANHARMONIC FREE ENERGY METHOD WITH AN … PHYSICAL REVIEW B 100, 024303 (2019)

MEAM-DFT TI 
error bar

MEAM-DFT TI 
error bar

(a)

(b)

(c)

FIG. 4. (a) Anharmonic Helmholtz free energy Fah for perfect
Zr32C32. (b) Fah for Zr32C31. In each figure, error bars represent the
deviation of Fah from a DFT TI method reference (TU-TILD [4]).
(c) Vacancy anharmonicity, specified as an excess Gibbs free energy
at ambient pressure.

the temperatures {760, 1900, 2500, 3200, 3805} K have the
MAE values {0.39, 0.48, 0.43, 0.59, 0.66} meV/atom.

On the basis of adequately small errors for bulk ZrC,
we propose using the MEAM thermodynamic integration
approach for more complex systems. In this regard Zr32C31

is a useful test case for two reasons. The carbon vacancy
introduces complexity in terms of physical interactions. It
removes inversion symmetry at sites around the vacancy, so
there are terms in the energy of odd order in atomic dis-
placements, previously excluded by symmetry in perfect ZrC.
Second, making free energy predictions per vacancy increases
computational complexity considerably due to the nature of
statistical error scaling for TI predictions on a per-vacancy
basis.

For the vacancy system Zr32C31, Fah(V, T ) is shown in
Fig. 4(b). Obtaining comparable DFT TI values for systems
with vacancies like Zr32C31 is prohibitively expensive in
general but we have computed a DFT benchmark for Zr32C31

TABLE I. Computer resources consumption for Zr32C32 test case
calculation of Fah(V, T ) on a 5 × 5{Vi, Ti} mesh. Timings listed in
CPU core hours and quasiharmonic-free-energy-job units [1/t (Fqh)]
using the reference value t (Fqh) = 4800 core hours.

t (Fah) (core hours) t (Fah)/t (Fqh)

Contributions this work TU-TILD this work TU-TILD

Fit set DFT MD 104 103 10 0.6
MEAM fitting 103 102 0.4 0.03
MEAM TI 103 102 0.4 0.1
DFT TI 105 110
DFT up-sampling 104 6
Total 105 106 11 117

at a = 4.801 Å and T = 3200 K. The MEAM thermodynamic
integration is found to overestimate the DFT TI reference Fah

value by 0.4 meV/atom, which is comparable to the MAE in
the perfect bulk ZrC.

B. Computational cost

In Table I timings are reported for the MEAM-based TI
in this work and TU-TILD (DFT) calculations. Both methods
compute the Fah(V, T ) surface across 25 mesh points for a
Zr32C32 test case. The MEAM approach does not have DFT TI
and DFT TI up-sampling steps, which account for the majority
of the TU-TILD Fah cost. In the MEAM approach, most
CPU time is spent performing high-quality DFT calculations
on selected MD configurations, creating data to which the
MEAM potentials are fitted. Furthermore the time required
to optimize [25] the MEAM potential with a large fitting
set is substantially longer (approximately ×10), compared
to a MEAM potential used in the intermediate TI steps in
TU-TILD. Despite this the former scheme still gains a fac-
tor of at least ×10 in efficiency overall due to having no
DFT TI or DFT TI up-sample. For anharmonic predictions
where 1 meV/atom convergence is sufficient, the TI method
described in this work is likely to be a cost effective choice
for metals and alloys. It would be of interest to compare
the efficiency of less specialized machine learning potentials
[7,37,38] to the MEAM type as applied here, in terms of pa-
rameter fitting time, required training DFT data, and potential
compute time.

IV. APPLICATION OF TI METHOD TO ZrCx

A. Character of anharmonicity in ZrCx

Prior to discussing the substoichiometric crystal, consider
the anharmonic contribution to the Helmholtz free energy of
perfect ZrC, shown in Fig. 4(a). Fah(V, T ) in Zr32C32 tends
to be positive and increase with temperature. This is because
the anharmonic phase space has a smaller volume within a
given potential-energy surface, reducing the configurational
entropy. A positive anharmonic contribution is similarly ob-
served in other extended systems [3,39,40], and is expected
to be dependent on the presence of inversion symmetry. This
contrasts with the result of harmonic force constants, which
typically become softer under tensile strain, increasing the
entropy and decreasing the free energy. In terms of effective
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FIG. 5. Thermal expansion of ZrC, V (T ), and inset, the vacancy
formation volume v f (T ).

frequencies in perfect ZrC, quasiharmonicity reduces frequen-
cies with volume expansion whereas anharmonicity increases
frequencies.

The anharmonic free energy of the Zr32C31 crystal is given
in Fig. 4(b). Fah(V, T ) for Zr32C31 naturally appears similar
to Zr32C32, since most atoms are fully coordinated, but the
anharmonic free energy is less positive, for example, Fah(V, T )
is lower by approximately 4 meV/atom at a = 4.759 Å and
T = 3800 K.

To directly identify vacant-site anharmonicity we compute

F excess
ah = Fah(Zr32C31) − Fah(Zr32C32), (9)

which isolates the vacancy anharmonic contribution by can-
celing common contributions in Zr32C32 and Zr32C31. The
anharmonicity of a single vacant site F excess

ah is stronger and
qualitatively different in character to the anharmonicity per
site in Fah for Zr32C32. F excess

ah for example typically exceeds
Fah by more than an order of magnitude (approximately ×20),
and F excess

ah is negative whereas Fah is almost always positive.
As we are typically interested in ambient pressure ther-

modynamics, we can consider the nature of the excess an-
harmonic Gibbs free energy Gexcess

ah rather than Helmholtz
F excess

ah . Gexcess
ah (T ) in Fig. 4(c) illustrates the strength and

sign of vacancy anharmonicity at ambient pressure. The large
negative values of Gexcess

ah at high temperature can be simply
rationalized. At high temperature the change in thermal excur-
sions, when atoms are near a vacancy, is larger than predicted
by harmonic springs, so the entropy is greater and free energy
less. In terms of the change in the anharmonic potential, the
magnitude and sign of Gexcess

ah are attributed to terms that start
from third order in the potential Taylor expansion, rather than
fourth order as in the perfect crystal with inversion symmetry.

B. Vacancy volume, formation energy, and concentration

The thermal expansion of the ZrC atomic volume (V ) is
shown in Fig. 5, alongside the vacancy formation volume,
v f (T ) = 	 − NV , where 	 is the volume of an N atom

defective ZrCx cell. For ZrC, predictions at the qh + el + ah
level of theory reproduce the thermal expansion reported
in an earlier theoretical work [4], while including electron-
vibration coupling provides a small-to-negligible additional
enhancement, evident in Fig. 5.

The volume of a vacant carbon site at T = 298 K is v f =
13.1 Å

3
/vac, which is +3.2 % or +0.40 Å

3
/site larger than

the corresponding atomic volume V for the perfect crystal.
This means the lattice of a ZrCx crystal initially expands for
x < 1, with the lattice parameter a increasing by +0.001 Å
from x = 1 to x = 0.97 in our 298-K calculations. The in-
crease is at odds with recent measurements by Nakayama et al.
[41] who report a monotonic decreasing trend, but is sup-
ported by other experimental work in which the ZrCx lattice
parameter is a concave function of carbon substoichiometry
[42–45]. For example according to Sara [42], the maximum
volume occurs at composition ZrC0.90 with an a value some
+0.004 Å greater than in ZrC0.98. To first order, the gra-
dient is approximately +0.0011 Å/C atom %, compared to
+0.0005 Å/C atom % in our work. It is important to stress
that this is quite a subtle effect, and that it is temperature
dependent. For T > 2200 K our computed lattice constant
decreases from x = 1 to x = 0.97.

As a final comment on thermal expansion, we note the
temperature dependence of v f is somewhat complicated
(Fig. 5 inset). Quasiharmonic volume-dependent frequencies
and electron-vibration coupling make the vacancy volume
smaller generally, whereas anharmonic and electron thermal
excitations increase it. In each instance, at high temperature
such as T � 0.75Tm, these effects are comparable in size to
the 0-K outward relaxation of the Zr atoms around the va-
cancy; ZrC bonds normal to the vacancy surface are squeezed
by −0.08 Å compared to bonds of length d(Zr-C) = 2.328 Å
in the perfect crystal.

The energy to form a carbon vacancy in ZrC is considered
in terms of a Gibbs free energy, computed as follows:

Gform = G(Zr32C31) + μ(C) − G(Zr32C32). (10)

In this expression μ(C) is the chemical potential to remove an
atom of carbon from ZrC and place it in a carbon reservoir.
The reference state of carbon is taken to be that of graphite,
which for 0 to 298 K is computed by quasiharmonic DFT for
diamond, with a 0-K experimental correction to graphite. At
higher temperatures, the experimental parametrization of the
graphite free energy is used, in the form of the Gustafson [46]
assessment. This provides a diamond chemical potential that
includes all contributions (e.g., anharmonicity) and is consis-
tent with the DFT calculated free energies, while avoiding
expensive calculations for graphite. Further details and an
expression for μ(C) are given in the Appendix.

The error bar in Gform(Tm), due to TI statistical precision
and MEAM systematic potential error, is 60 meV/vacancy.
This value assumes no cancellation in the systematic potential
error between Zr32C32 and Zr32C31, and is therefore an upper
limit. As most sites in Zr32C31 are fully coordinated and bulk-
like, and the same MEAM potential is used to describe perfect
Zr32C32 and Zr32C31, partial cancellation of the systematic
potential error is expected. In the limit of anharmonicity being
a site-localized property, the systematic potential error would
only arise from the six undercoordinated nearest neighbors to
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FIG. 6. Gibbs free energy of carbon vacancy formation in ZrC
vs temperature. Inset: The onset temperature of non-negligible anhar-
monicity. The error bar shown is for the TI method used to determine
Fah, from MEAM-DFT potential errors (assuming no cancellation
between Zr32C32 and Zr32C31), and statistical convergence.

the vacancy in Zr32C31, and the corresponding nonmatching
seven sites in Zr32C32. In this case the total error is less than
10 meV/vacancy.

Gform(T ) is shown in Fig. 6, including quasiharmonic,
electronic, electron-vibration, and anharmonic contributions.
Above approximately 1000 K (T/Tm ≈ 0.3) the anharmonic
contribution can no longer be regarded as negligible, and
above approximately 2000 K (T/Tm ≈ 0.5) accounting for
anharmonicity is critical to qualitatively describe the ZrC va-
cancy formation energy. With respect to a quasiharmonic ref-
erence, Fig. 6 shows that electronic entropy lowers the forma-
tion energy, and that anharmonicity substantially lowers the
Gibbs formation energy further, while the electron-vibration
contribution is much smaller. In the final predictions, which
include the quasiharmonic, electronic, electron-vibration, and
anharmonic effects, Gform is almost linear in temperature,
and decreases by approximately 1 meV per 100 K. This rate
of decrease is similar to reports in other materials such as
aluminum and nickel [3,47].

The vacancy concentration in contact with graphite is
computed with an ideal solution model

cvac

1 − cvac
= exp

(
−Gform

kBT

)
, (11)

and is shown in Fig. 7. Anharmonicity favors vacancy forma-
tion by making Gform smaller, increasing cvac by a factor of
2 compared to predictions at the Fqh + Fel level. The effect
of electron-vibration coupling on vacancy concentration is
marginal in this material. Specific values of cvac(T ) are shown
in Table II, up to a temperature of T = 2200 K, which is when
the predicted concentration reaches our operative dilute limit
of one vacancy per supercell (cvac = 1/32 for ZrCx).

In Table II the cvac values from the CALPHAD assessment
are consistently lower than our cvac values [48]. Despite the
power of the CALPHAD method for ZrCx [48], uncertainties

FIG. 7. Carbon vacancy concentration in ZrCx (with reference to
pure graphite) vs temperature, up to a concentration of cvac = 1/32.
Inset: Log vacancy concentration vs Tm/T .

can arise from insufficient experimental data, and the limita-
tions that exist due to the nonphysical interaction terms the
methodology assumes. At T = 2000 K the CALPHAD value
is cvac = 0.3 C atom %, [48] compared to cvac = 1.9 C atom %
in this work.

Our predictions have quantum-mechanical many-body er-
rors from the LDA exchange-correlation treatment we use to
describe ZrC. While the generalized gradient approximation
(GGA) has been shown to be less suitable to describe ZrC at
high temperature than LDA [4], it is instructive to consider
the vacancy formation energy from both exchange-correlation
treatments, in order to gauge sensitivity. At T = 0 K the
GGA vacancy formation energy is less than the LDA value
by some 0.2 eV/vacancy (without zero-point corrections and
dilute limit supercell extrapolation), indicating that a GGA
predicted concentration is greater. Quantitative predictions of
the nonlocal quantum many-body error at high temperature is
beyond the scope of this work, but experience suggests that
the LDA and GGA (Perdew-Burke-Ernzerhof) functionals
bracket the exact result [2].

In this work we confine our predictions to temperatures at
which concentrations do not exceed one vacancy per super-
cell. This should minimize lattice many-body errors, however

TABLE II. Concentration of vacancies (cvac) in ZrCx (with refer-
ence to pure graphite) in carbon atomic %.

cvac (C atom %)

T (K) this work CALPHAD [48]

300 9 × 10−13 1 × 10−15

500 6 × 10−7 1 × 10−9

1000 0.01 0.003
1500 0.33 0.06
2000 1.87 0.33
2200 3.03 0.51
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FIG. 8. ZrCx Gibbs free energy contributions with respect to
a quasiharmonic reference. Inset: Gibbs free energy shown from
1200 K to the dilute vacancy concentration (1/32) at 2200 K.

we note that vacancy-vacancy interactions are expected to be
mainly repulsive [49], and that other entities on the carbon
sublattice such as Frenkel defects will decrease the vacancy
configuration space [50]. These effects are expected to mod-
erate cvac, to values lower than ideal, to an extent that increases
with temperature.

C. Free energy and heat capacity of ZrCx

The basic excitation mechanisms that determine the ther-
mal properties of ZrCx are discussed relative to a quasihar-
monic reference system. Formulas for the referenced Gibbs
free energies at ambient pressure, Gel, Gel-vib, Gah, and Gvac,
are listed in the Appendix. Each is shown as a function of
temperature in Fig. 8.

At high temperature the magnitude of the electron-
vibration contribution to the Gibbs free energy is less than
the anharmonic contribution, which is in turn less than the
electronic contribution. Partial cancellation occurs as Gel and
Gel-vib are negative whereas Gah is positive in this material.
The vacancy contribution Gvac is the smallest of the four
contributions up to 1900 K, but beyond the dilute vacancy
concentration temperature of T = 2200 K, Gvac increases
considerably. Extrapolating to higher temperatures, the va-
cancy contribution appears to become the largest of all above
3000 K. Note however that above T = 2200 K the value of
Gvac is presented as indicative only, and is represented in
Fig. 8 with a dashed line, as it exceeds the thermodynamic
limitations of our dilute solution model.

The different ZrCx heat-capacity contributions, relative to
the quasiharmonic system, are shown in Fig. 9. The anhar-
monic term CP, ah is negative and the electronic one CP, el is
positive, with each similar in absolute value near Tm. It is
somewhat interesting to consider the extent to which CP, ah and
CP, el cancellation is coincidental in ZrCx or a manifestation of
a generic feature. In ordinary metals CP, el is a priori positive,
and for ordinary high-symmetry crystals, CP, ah is negative at

FIG. 9. ZrCx constant-pressure heat capacity relative to a quasi-
harmonic reference. Inset: heat capacity at different levels of theory,
shown from the Debye temperature [Cp(TDebye) = 3kB] to the melting
point (Tm = 3700 K).

high temperature [39]. Some cancellation of CP, ah and CP, el

is therefore regarded to be likely in conducting systems such
as the refractory ceramic ZrC. However, as the extent of
cancellation depends on the magnitude of each contribution,
for which we are unaware of a direct physical relation, we
conclude that cancellation is mostly coincidental.

In ZrCx, CP, ah, CP, el, and CP, el-vib are all individually
larger than the vacancy contribution. For example
at 2200 K, CP, vac = +0.06 kB/atom, compared to
CP, el = +0.16 kB/atom, CP, el-vib = +0.14 kB/atom and
CP, ah = −0.09 kB/atom. Extending the vacancy model
beyond the dilute limit with the dashed line in Fig. 9 indicates
CP, vac is comparable to the positive contributions of CP, el,
and CP, el-vib near Tm. Consequently we suggest that the
physical origin of the steep increase in heat capacity in
ZrCx [51] is a combination of electron thermal excitations,
electron-vibration coupling, and structural excitations on the
carbon sublattice, predominantly the constitutional carbon
vacancies that have been the focus of this paper, although
there are also stoichiometry conserving intrinsic carbon
Frenkel defects, which are beyond the scope of this work but
discussed elsewhere [50,51]. Finally, it is interesting to note
that while anharmonicity is the only term that suppresses CP

in Fig. 9, the enhancing effects of the vacancy contribution are
mainly due to the indirect effect of anharmonicity, insomuch
as anharmonicity by lowering Gform enhances the population
of vacancies (e.g., by a factor of ×2 at 2200 K as shown in
Fig. 7).

V. CONCLUSIONS

A. Thermodynamic integration approach

We have described a thermodynamic integration method
to calculate the anharmonic free energy of a crystal to DFT
accuracy. In our benchmark system of ZrC the approach
achieves average target precision better than 1 meV/atom and
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60 meV/vacancy, comparable to more expensive DFT-based
thermodynamic integration schemes. The method transfers the
burden of computation from converging random statistical
errors to minimizing systematic potential errors. With suffi-
cient care to minimize potential errors, precise calculations
can be made to compute quantities such as the anharmonic
vacancy formation energy, with modest computing resources.
A valuable future direction would be to develop MEAM po-
tentials capable of describing different defect configurations,
toward the goal of efficiently computing accurate anharmonic
thermodynamics for defective systems.

B. Application to ZrCx

Anharmonicity increases the concentration of vacancies in
ZrCx. At 2000 K vacancies increase from 1.1 to 1.9 C atom %
due to explicit anharmonicity. The ZrCx heat capacity is
enhanced by electron thermal excitations, electron-vibration
coupling, and vacancies on the carbon sublattice, and sup-
pressed by anharmonicity. For example, CP, el(T = 2200 K) =
+0.16 kB/atom, CP, el-vib(T = 2200 K) = +0.14 kB/atom,
CP, vac(T = 2200 K) = +0.06 kB/atom, and CP, ah(T =
2200 K) = −0.09 kB/atom. The sharp increase in the heat
capacity at high temperature is attributed to electronic and
electron-vibration effects along with the thermal excitation of
structural defects.
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APPENDIX

1. Gibbs free energy contributions

To quantify different thermal excitations beyond the quasi-
harmonic level of theory, quasiharmonic-referenced Gibbs
free energies are reported as

Gah = min
V

[Fah + Fqh + E0 + pV ] − min
V

[Fqh + E0 + pV ],

Gel-vib = min
V

[Fel-vib+Fqh+E0 + pV ] − min
V

[Fqh + E0 + pV ],

and

Gel = min
V

[Fel + Fqh + E0 + pV ] − min
V

[Fqh + E0 + pV ].

Similarly Gvac is the Gibbs free energy associated with a
concentration of vacancies (cvac) in ZrCx, again referenced
to the quasiharmonic system. This is defined by writing
the total Gibbs free energy of ZrCx at the full level of
theory as G = Gperf − cvackBT . In this expression Gperf =
min

V
[Fah + Fel-vib + Fqh + Fel + E0 + pV ], and cvac is the equi-

librium concentration of vacancies, which has been com-
puted from the Arrhenius ideal solution model introduced in
Eq. (11). To compute Gvac, the vacancy part (G − Gperf) is
referenced to the quasiharmonic system:

Gvac = (G − Gperf ) − (
Gqh − Gperf

qh

)
= −(

cvac − cqh
vac

)
kBT,

which is equivalent to the difference in equilibrium va-
cancy concentrations at the full and quasiharmonic levels of
theory. Note for completeness, the quasiharmonic reference
system terms are defined as follows: Gqh = Gperf

qh − cqh
vackBT ,

with Gperf
qh = min

V
[Fqh + E0 + pV ], and cqh

vac is the ideal solu-

tion model equilibrium concentration, with exponent Gform

[Eq. (10)] calculated at the quasiharmonic level.

2. Graphite chemical potential

The ZrC vacancy formation energy has been calculated
with respect to a graphite chemical potential of the form

μ(C) =
{

Gdiamond(T ) + (Hgraphite − Hdiamond) 0 K < T � Tstn∑
−3�i�2 ai

(
T i − T i

stn

) + a3 [T ln (T ) − Tstn ln (Tstn)] + Gdiamond(Tstn) + (Hgraphite − Hdiamond) Tstn < T � Tm.

The coefficients for T > Tstn, which is the CALPHAD stan-
dard state temperature Tstn = 298.15 K, are set according to
the Gustafson experimental free energy parametrization [46]:

a[−3, 3] = {1.2 × 1010, −2.643 × 108, 2 562 600, −17 369,

170.73, −4.723 × 10−4, −24.3} .

At low temperatures (T � 298.15 K) where the graphite
parametrization is unavailable, μ(C) is continued using a
DFT-calculated diamond potential, Gdiamond(T ). This quasi-
harmonic diamond potential at low temperature is trans-
formed to a graphite chemical potential by a correction
equal to the 0 K enthalpy difference (Hgraphite − Hdiamond) =
−0.03 eV/atom.
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/
)

FIG. 10. Thermodynamic integration error in Fah as function of
the number of quadrature segments n in λi = i/n.

3. Correlation time

The correlation time τ , which is used to estimate error
scaling and determine statistical precision using stratified
systematic sampling, is the integrated correlation time [28]

τ (T,V, λ) ≡ τ�E ,int.

τ�E ,int is estimated by [28]

τ�E ,int =
(

1

2
+

N∑
k=1

A(k)

)
�t,

with time step �t = 1 fs, and autocorrelation function A(k),
given by

A(k) = 〈�Ei�Ei+k〉 − 〈�Ei〉〈�Ei〉
〈�E2

i 〉 − 〈�Ei〉〈�Ei〉 .

The calculated correlation time ranges from 9 to 13 fs, de-
pending weakly on the arguments of τ (T,V, λ).

4. TI quadrature error

The quadrature error in Fah as a function of the number
of integral sampling points (λi values) is shown in Fig. 10.
At low temperatures when the system is nearly harmonic, the
integrand 〈∂λEmix(λ)〉λ is small and almost independent of λ,
and therefore a large number of λi samples is unnecessary. At
high temperature when 〈∂λEmix(λ)〉λ is curvier (see nonlinear-
ity in Fig. 2), sufficient sampling of the integrand is critical to
obtain sub-meV/atom numerical precision. Fah is determined
in this work by sampling 〈∂λEmix(λ)〉λ at 10 intervals or 11
points (λi = i/10). The associated error shown in Fig. 10 is
less than 0.1 meV/atom for T � 3200 K, and approximately
0.2 meV/atom at Tm.
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