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Abstract

The formation and lifetime of point defects is governed by an interplay
of kinetics and thermodynamic stability. To evaluate the stability under
process conditions, empirical potentials and ab initio calculations at T=0K
are often not su�cient. Therefore, various concepts to determine the full
temperature dependence of the free energy of point defects with ab initio
accuracy are reviewed. Examples for the importance of accurately describing
defect properties include the stabilization of vacancies by impurities and the
non-Arrhenius behaviour of vacancy formation energies due to anharmonic
lattice vibrations.
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1. Introduction

Defects have been in the focus of experimental and theoretical research for
decades due to their decisive role for materials properties. A comprehensive
knowledge of defects’ behavior is of particular importance for controlling
radiation e↵ects and improving the performance of materials under irradia-
tion, which depends strongly on the evolution of radiation-induced defects [1].
Atoms are displaced by collision cascades, whereby the first “ballistic stage”
produces within a few picoseconds a significant number of point defects,
mainly Frenkel pairs. These defects evolve during the subsequent long-term
“recovery stage” through thermally-activated, di↵usion-controlled processes,
including migration and recombination, elimination or annihilation, critically
influencing the performance and lifetime of irradiated materials.

To understand defect evolution and reveal the relevant mechanisms,
calculations and simulations have become a common supplement to exper-
iment. The primary damage production process is typically addressed by
molecular dynamics (MD) simulations [2, 3, 4, 5], while the recovery stage
generally requires simulations going beyond the time scale accessible with
MD. To go to large time scales, rate theory [6], kinetic Monte Carlo [7, 8],
or cluster dynamics [9] are used. Applying these computational tools has
enabled the determination of critical guidelines in designing new and better
radiation tolerant materials. The predictive power of the simulations is
closely linked to the performance of the available interatomic potentials
which need to reproduce the fundamental quantum mechanical interactions.
The development of reliable potentials faces specific challenges for radiation
damage simulations as an accurate prediction of defect properties, e.g.,
formation/migration energies or defect-atom bonding energies, requires
special care [7].
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Due to their approximate nature, semi-empirical interatomic potentials
may su↵er from providing quantitatively (sometimes even qualitatively)
inaccurate defect properties. Therefore, new and advanced parametrizations
of interatomic potentials are desirable. However, due to the rather limited
number of experimental data on point defect properties, such potentials rely
strongly on ab initio derived input [7, 10, 11, 12, 13, 14, 15, 16], usually
computed by density functional theory (DFT). Extensive developments of
DFT-based techniques—several of which will be in the focus of the present
review—have lead to a wide variety of successful applications providing
highly-accurate defect formation energies often in exceptional agreement with
experimental data [17, 18, 19, 20, 21, 22].

Among the various types of defects, point defects (e.g., vacancies or
interstitials) are of primary concern in defect evolution [16]. Although
the number of point defects produced in the initial ballistic stage is far
above the equilibrium concentration, a prerequisite for correctly predicting
their evolution is an accurate understanding and description of the intrinsic
thermodynamic properties. Modern DFT based techniques can provide in
this respect highly accurate input for benchmarking empirical potentials.
The thermodynamics of defects becomes also important to understand
driving forces behind defect aggregation during the long-term recovery stage.

In the present review we focus on the methodology to accurately
determine DFT-based point defect thermodynamics. An essential charac-
teristic of point defects, i.e., 0D defects, is their substantial configurational
entropy. This is in obvious contrast to higher dimensional defects such as
dislocations (1D) and interfaces (2D). Beyond the fundamental interplay
between formation energy and configurational entropy that determines the
’usual’ equilibrium concentration, a topic of relevance for the recovery stage
is the stabilization of point defects, in particular vacancies, by forming
complexes / associates with extrinsic point defects such as hydrogen. These
issues will be addressed in Sec. 2. In Sec. 3, we formulate and describe
techniques to assess entropy contributions beyond the configurational one.
A main focus will be on the anharmonic contribution, i.e., phonon-phonon
interactions. This contribution requires advanced computational techniques
to be accurately captured. As exemplified in Sec. 4, anharmonic contributions
are critical to properly describe the temperature dependent Gibbs energy of
vacancy formation and to link experimental data taken at high temperatures
with theoretical data commonly computed at T=0K.

At present a similarly well-developed methodology to address finite
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temperature contributions to point defect kinetics, i.e., migration free energy
barriers, is not available. In Sec. 5 we sketch the basics of calculating defect
barriers with ab initio and give a short outlook on possible extensions.

2. Configurational thermodynamics of defects

2.1. Defect formation energy

To arrive at an expression for the defect formation energy, we start
with the fundamental equation for the change of the system’s energy, dE,
according to the first law of thermodynamics:

dE =
X

k

Yk dXk

= T dS � P dV +
X

i

µi dNi +
X

d

Ed

f
dNd + . . . . (1)

Here, Yk represents a generic intensive, i.e., system size independent, variable
and Xk the corresponding conjugate extensive variable, being proportional
to the system size. The sum over k runs over all conjugate variable pairs
available to the system such as:

• temperature T and entropy S,

• pressure P and volume V ,

• chemical potential µi and number of atoms Ni of species i,

• defect formation energy Ed

f
and number of such defects Nd.

The dots in Eq. (1) indicate the possibility of adding further conjugate pairs.
It follows that the defect formation energy can be computed as

Ed

f
=

@E

@Nd

���
S,V,Ni,...

, (2)

where all extensive variables except for Nd, i.e., the “invariants”, are held
fixed. In a typical DFT supercell approach, the derivative in Eq. (2) is
replaced with a finite di↵erence:

Ed

f
= Esc+d({ni +�ni}) � Esc({ni}) �

X

i

�niµi, (3)
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where Esc+d and Esc are the total energies of a supercell with and without
the considered defect, �ni refers to the number of atoms of type i that have
been added to (�ni > 0) or removed from (�ni < 0) the supercell to form
the defect and µi is the corresponding chemical potential. To determine
the required size of the supercell convergence tests are required [15, 23].
Particular care has to be taken for magnetic materials, since magneto-elastic
coupling e↵ects yield long-range interactions [15]. Modifications of magnetic
moments around a point defect (vacancy, interstitial) extend over many more
shells than the relaxation e↵ects in non-magnetic materials [24]. It is also
important to note that the magnetic configuration as well as the magnetic
order have a strong impact on the defect formation energy [25, 26, 27].

2.2. Configurational entropy and defect concentration

In thermodynamic equilibrium, defects with a positive formation en-
ergy Ed

f
are stabilized by their configurational entropy Sconf = kB lnW

(kB =Boltzmann constant), where the number of microstates W for n point
defects on N lattice sites is given by

W =
(gN)!

(gN � n)!n!
⇡ (gN)n/n! . (4)

Here, g is a geometry factor, which is e.g., g = 1 for monovacancies and
g = 6 for divacancies in fcc lattices. The approximation in Eq. (4) applies
for small defect concentrations cd = n/N and the resulting configurational
contribution of the defects to the free energy of the system reads

F conf(cd, T ) = cdEd

f
� kBT [c

d � cd ln(cd) + cd ln(g)], (5)

where the Stirling approximation has been applied. The corresponding defect
concentration at thermodynamic equilibrium (@F conf/@cd ⌘ 0) is given by

cdeq(T ) = g exp
⇣

�
Ed

f

kBT

⌘
. (6)

For larger defect concentrations the approximation in Eq. (4) may be less
appropriate. Assuming non-interacting point defects, it is possible to derive
an expression that takes into account the reduced number of defect free sites.
For g=1 the configurational free energy then reads

F conf(cd, T ) = cdEd

f
+ kBT [c

d ln(cd) + (1 � cd) ln(1 � cd)], (7)
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and the concentration

cdeq(T ) =

"
exp

⇣ Ed

f

kBT

⌘
+ 1

#�1

, (8)

which follows a Fermi-Dirac distribution that reduces in the dilute limit to
the Boltzmann distribution in Eq. (6). Note that large defect concentrations
also modify the chemical potentials µi of the species forming the material
[28], which needs to be self-consistently taken into account in Eq. (3).

2.3. Stabilization of vacancies by other defects

In contrast to the situation in structurally perfect, unary bulk materials,
the defect concentration in real materials is inhomogeneous and depends on
the local environment. This applies in particular to the situation in radiation
damage, where multiple point defects such as vacancies, self-interstitials and
impurity interstitials are expected to occur simultaneously. Whenever their
interaction has a positive energy (i.e., is attractive), they stabilize each other
and may form defect complexes [15, 29, 30].

An important phenomenon related to this interplay is the so-called
superabundant vacancy formation [31], which is observed in various metallic
materials and steels. A particularly omnipresent element is hydrogen. Con-
sequently, the role of interstitial H atoms on the formation and concentration
of intrinsic defects such as vacancies has been the subject of intensive
experimental [32, 33] and theoretical [24, 34] investigations.

Using the example of hydrogen-vacancy complexes, we discuss in the
following the formalism to treat complexes consisting of two or more point
defects. We do not call it a substitutional defect, since H is sitting closer to
the former interstitial position than to the empty lattice site of the vacancy.
Even more importantly, the vacancy can host not only a single H atom but
several H atoms. In some metals a vacancy can be occupied with up to 15
H atoms [34]. If H-vacancy complexes form, the defect formation energy in
Eq. (3) needs to be modified to

Ed

f
= Esc+d+H � Esc � �nMµM � �nHµH, (9)

where �nM < 0 stands for the number of removed metal atoms and �nH > 0
for the number of added hydrogen atoms. The expression now contains the
total energy Esc+d+H of the supercell with the defect-H complex, which can
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Figure 1: (Color online) Schematic diagram introducing the key concepts of hydrogen-
vacancy interactions. The energies of formation of a vacancy (brown line), of H-vacancy
complexes (blue lines), and of interstitial hydrogen (green line) are plotted as a function of
the H chemical potential. The formation energy of thermodynamically stable H-vacancy
complexes is shown by the red line. The H chemical potentials µint,0

H
and µSAV

H
denote

the vanishing formation energy of an interstitial H atom and the onset of superabundant
vacancy formation, respectively. Eb is the binding energy of a single H atom to a vacancy.
The fact that the energy of the vacancy occupied with a single H atom is at this point
energetically higher in energy than the vacancy implies a negative (endothermic) binding
energy (i.e., the complex shown in this example is energetically unfavorable). Figure
adapted from Ref. [34].

be lower or higher than Esc+d. The hydrogen chemical potential µH, however,
o↵ers the system another degree of freedom. While the chemical potential
µM of the host is fixed by the condition to be in thermodynamic equilibrium
with the bulk phases, the chemical potential µH depends on the environment
of the system. Increasing, for example, the H partial pressure will yield an
energy change dEd

f
that reduces the complex formation energy.

The dependence on the H chemical potential is visualized in Fig. 1 for
T=0K. Figure 1 demonstrates that the individual interstitial H atom has
the lowest formation energy (green line) and will thus be in thermodynamic
equilibrium the most abundant point defect. The intersection of the green
line with the zero axis, labelled by the chemical potential µint,0

H , defines
a reference point for the system, at which removing an H atom from the
chemical reservoir and adding it as interstitial to the system is energetically
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neutral. This reference level is conceptionally important: it marks the onset
of hydride formation when going to higher (more H-rich) chemical potentials.
It also gives direct access to the H-vacancy binding energy Eb. In the example
shown in Fig. 1 the binding energy of a single H atom is endothermic, i.e.,
adding a single H atom to a vacancy is energetically less favorable than
having an H atom and a vacancy apart. The figure also reveals that among
all possible nH-vacancy complexes (where n is the number of H atoms inside
the vacancy) not all are thermodynamically stable. The formation of a
complex with one H atom, for example, can be unstable against the formation
of vacancies that contain zero or two H atoms. With increasing chemical
potential, vacancy complexes with larger H occupations become more stable.
An upper thermodynamic limit in the H concentration (chemical potential)
is achieved if any of the complex formation energies becomes negative.

2.4. Defect phase diagrams

The question whether these complexes will exist under real conditions,
depends not only on the binding energy, but also on the configurational
entropy, which is now given by [24]

Sconf = kB ln(W vac
M W int

H W vac
H ). (10)

Here, W vac
M is the number of configurations related to the removal of metal

atoms M and the creation of vacancies or H-vacancy complexes. W int
H labels

the configurations of H-interstitials formed in the metal, and W vac
H gives the

number of configurations of H within H-vacancy complexes.
Due to the possibly large defect concentrations (> 10%), the numbers

should again be determined such that the occupation of a single (substitu-
tional or interstitial) site with more than one defect is excluded. Similar
to Eq. (7), this makes the statistics slightly more complex. To avoid
further complications, the modification of probabilities by the interaction
of vacancies is not taken into account. The resulting number of vacancies is
given by [24]

Nvac =
Nsites

1 +


C
P
i

nvac
i

N conf
i

exp
⇣
� E

i
f

kBT

⌘��1 . (11)

This expression contains besides the number of sites available for vacancies
Nsites also the number of distinguishable configurations for a single cluster
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N conf
i

. The number of vacancies that are forming this cluster is denoted by
nvac
i

and the formation energy of the cluster by Ei

f
. The correction term

C =

{nvac
i =0}Y

i

0

@ 1

1 + exp
⇣
� E

i
f

kBT

⌘

1

A
z
vac
i

(12)

takes into account that a vacancy can only be formed if all the involved
interstitial sites of type i, denoted by zvac

i
, are not already occupied by an H

atom.
An evaluation of the statistics underlying Eq. (11) for the case of fcc Fe

is shown in Fig. 2. The calculations have been done for an antiferromagnetic
double-layer (AFMD) structure [24]. The figure highlights the total vacancy
concentration as a function of temperature and chemical potential by colors.
The increase of vacancy concentration as a function of temperature up
to melting (at about 1800 K) follows the expected statistical behaviour
(compare Fig. 4). Remarkable is the fact that even for a fixed temperature
of, for example 500 K, a similarly dramatic increase in vacancy concentration
can be caused by the addition of hydrogen, so called superabundant vacancy
formation. While an H chemical potential of �0.8 eV corresponds to an
H free sample, typical values in a real environment are between �0.47 eV
(sea water) and �0.33 eV (rain water) at ambient conditions. At higher
pressure or in chemically more reactive environments even larger H chemical
potentials become possible.

Figure 2 indicates the stability regions of the dominant H-vacancy
complexes as a function of temperature and composition. These defect
diagrams can be interpreted like the well-established bulk phase diagrams.
The boundaries between the regions for complexes a and b are described by
the expression

µa,b

H (T ) =
Esc�a � Esc�b + kBT lnRab

nH
a

� nH
b

, (13)

where Rab is the ratio of total configuration numbers for nH
b
with respect to nH

a

hydrogen atoms [24]. Figure 2 also nicely shows that H-vacancy complexes
that may not be relevant at low temperatures can be stabilized at higher
temperatures by configurational entropy. This applies in particular to the
complex containing a single H atom, which becomes for realistic H chemical
potentials the most important defect complex. The above described concepts
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Figure 2: Vacancy concentration as a function of temperature and hydrogen chemical
potential for fcc Fe. The dominant nH-vacancy complexes are separated by dashed lines.
Figure taken from Ref. [24].

are not restricted to the specific example shown here, but can be easily
generalized to other defects and materials [35, 36].

3. Contributions beyond the configurational entropy

So far we have only considered the e↵ect of the configurational entropy on
defect properties. With increasing temperature other entropy contributions,
related for example to electronic excitations or atomic vibrations, may
become important. The preceding discussion needs then to be adapted.
Specifically, it is convenient to consider the Gibbs energy of formation,

Gd

f
(P, T ) = Gsc+d(P, T ) � Gsc(P, T ) �

X

i

�niµi, (14)

rather than the formation energy Ed

f
. A main advantage of the Gibbs

energy of formation is its direct relation to experimental quantities that are
typically measured at constant pressure and temperature. Eq. (14) implicitly
includes a PV term arising from the defect formation volume as well as all
entropy contributions except for the configurational one. Since within a
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DFT framework it is usually more convenient to work with fixed volume
conditions, the Helmholtz free energy surface F (V, T ) is typically calculated
first and G(P, T ) is obtained by a Legendre transformation:

G(P, T ) = F (V, T ) + PV. (15)

To compute the various thermal excitations, a convenient starting
point is the free-energy Born-Oppenheimer approximation [21, 37]. This
approximation states that the ionic movement is governed by the total
electronic free energy surface F el

tot({RI}, V, T ), where {RI} denotes the set of
atomic coordinates. A Taylor expansion around equilibrium positions {R0

I
}

gives:

F el
tot({RI}) = F el

tot({R0
I
}) + 1

2

X

k,l

ukul


@2F el

tot

@Rk@Rl

�

{R0
I}
+O(u3), (16)

where k and l run over all nuclei as well as over the three spatial dimensions,
and uk = Rk � R0

k
is the displacement out of equilibrium. While the first-

order term vanishes from Eq. (16) due to the equilibrium condition, the other
orders can be related to di↵erent thermal contributions. The zeroth order
term contains the electronic free energy of the static lattice, F el; the second
order term determines the quasiharmonic free energy, F qh; and the higher
order terms enter the anharmonic free energy F ah. Considering additionally
spin degrees-of-freedom in case of magnetic materials and denoting the
corresponding free energy as Fmag, we can express the complete free energy
of the system as a sum of the di↵erent contributions:

F (V, T ) = E0K(V )+F el(V, T )+F qh(V, T )+F ah(V, T )+Fmag(V, T )+F cpl(V, T ).
(17)

Here, we have separated out the T=0K total energy E0K from the total
electronic free energy. This contribution is commonly parametrized by an
analytical expression such as the Vinet equation of state [38]. Further, we
have added a term F cpl that represents possible coupling contributions among
the di↵erent excitation mechanisms.

Eq. (17) allows us to compute a free energy surface F (V, T ) for both
the supercell with and without the defect. Each free energy surface is
then Legendre transformed according to Eq. (15) and finally employed in
Eq. (14). In the following sections approaches to compute the various free
energy contributions will be introduced.
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3.1. Electronic contribution of a static lattice

The temperature-dependent electronic free energy can be estimated by
the Sommerfeld (SOM) approximation [39]:

F el
SOM(T ) = �⇡2

6
k2
B
T 2D("F) +O(T 4), (18)

where D("F) denotes the electronic density of states (DOS) at the Fermi
level, "F. Although simplified, Eq. (18) reveals the essential relation that
the electronic free energy is governed by the electronic DOS. At higher
temperatures, the Sommerfeld approximation becomes less accurate since
it considers only the e↵ective, temperature independent DOS at the Fermi
level. More accurate methodologies are available and should be used, e.g.,
the fixed DOS approximation or the fully self-consistent finite temperature
DFT method [40]. The former computes the electronic internal energy and
entropy via the integration of the full electronic DOS at T=0K:

F el
DOS(T ) = U el

DOS(T ) � TSel
DOS(T ), (19)

U el
DOS(T ) =

Z 1

�1
D(") f " d" �

Z
"F

�1
D(") " d", (20)

Sel
DOS(T ) = �kB

Z 1

�1
D(") s(", T ) d", (21)

where � equals 1 for spin-polarized systems and 2 for spin-unpolarized
systems,

s(", T ) = � [f ln f + (1 � f) ln(1 � f)] . (22)

The occupation numbers f follow Fermi-Dirac statistics,

f(", T ) =


exp

✓
" � "F
kBT

◆
+ 1

��1

, (23)

where " is the electronic energy. Note that in practical calculations often
an artificial electronic temperature, such as for example in the Methfessel-
Paxton scheme [41], is used to stabilize the electronic charge self-consistency
when calculating the T=0K DOS. In the Methfessel-Paxton scheme an
artificial electronic temperature of 1000 K (⇡ 0.1 eV) can be typically used
without introducing any artefacts into the DOS.

As the impact of temperature on the profile of the electronic DOS is
for most systems small, electronic free energies obtained by the fixed DOS
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method show a very good agreement with self-consistent finite-temperature
DFT calculations—the most accurate but computationally (slightly) more
expensive approach. A detailed discussion and evaluation of these three
methods can be found in Ref. [42].

In principle in the formulation of finite temperature DFT also the
exchange-correlation function acquires a temperature dependence. Some
recent work [43, 44, 45] has addressed temperature dependent exchange-
correlation functionals focussing on very high temperatures and pressures
(> 5000K and > 50GPa). For normal solid state temperatures (up to the
melting point) we do not expect an influence.

3.2. Vibrations: Quasiharmonic contribution

The second-order term in Eq. (16) is related to the quasiharmonic
contribution resulting from non-interacting but volume-dependent phonons.
The quasiharmonic free energy is obtained by applying the Bose-Einstein
statistics to populate the phonon energy levels [46], i.e.,

F qh =
1

N

3NX

i

⇢
~!i

2
+ kBT ln


1 � exp

✓
� ~!i

kBT

◆��
, (24)

with the reduced Planck constant ~, phonon frequencies !i, and the number
of atoms N . The phonon frequencies can be obtained either by (i) the
finite-displacement supercell approach [47, 48, 49] or (ii) linear response
calculations within perturbation theory [50]. We focus here on the first
method which can be straightforwardly coupled with standard DFT codes.

Within the finite-displacement supercell approach, interatomic force
constants are computed by slightly (i.e., within the harmonic regime)
displacing atoms in a su�ciently large supercell from their T=0K equilibrium
positions. The force constants determine the key quantity within the
harmonic framework, i.e., the dynamical matrix D, which for a single species
with atomic mass M reads as

Dk,l(V, T ) :=
1

M


@2F el

tot({RI}, V, T )
@Rk@Rl

�

{R0
I}
. (25)

Phonon frequencies are then obtained by diagonalizing the dynamical matrix,
i.e.,

Dwi = !2
i
wi, (26)
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where wi are the corresponding eigenvectors. It should be noted that the
electronic free energy entering the dynamical matrix calculation in Eq. (25)
depends on the volume and the electronic temperature, T el, and hence
!i = !i(V, T el). Whereas the influence of the volume (as captured by the
Grüneisen parameter) is known to be important [51], the influence of the
electronic temperature on phonons has been found to be small [52]. Further
details on quasiharmonic calculations including results for various systems
can be found for example in Refs. [51, 52, 53].

3.3. Vibrations: Explicit anharmonic contribution

While calculations on the quasiharmonic level can nowadays be routinely
performed for bulk systems and also for point defects, studies of the explicit
anharmonic contribution, i.e., the higher-order terms in Eq. (16), are still
rare. The reason for this is the steep increase in computational and
methodological requirements compared to quasiharmonic calculations. The
situation is even more critical for calculating the Gibbs energy of point defects
than for bulk calculations alone. To get a well converged Gd

f
in Eq. (14), the

contributing Gibbs energies of the supercell with and without the defect,
Gsc+d and Gsc, need to be determined with an extreme precision. Assume
for example a target accuracy in Gd

f
of 10 meV/defect. To guarantee size-

converged results supercells with ⇡100 atoms are typically required, and
thus Gsc+d and Gsc need to be calculated with an accuracy of at least 0.1
meV per atom (= 10meV/defect

100 atoms/defect), a tremendous challenge for any anharmonic
calculation!

Anharmonic atomic vibrations can be captured by ab inito molecular
dynamic (AIMD) simulations [54]. However, computing the corresponding
anharmonic free energy brute-force by AIMD simulations is computationally
prohibitive due to the entropic contribution, and e�cient schemes to
coarse grain the configuration space are indispensable [53]. One class of
techniques, e.g., the TDEP technique [55] or the SCAILD method [56,
57], maps the anharmonicity of the system onto an e↵ective harmonic
Hamiltonian. The advantage of such a mapping is that the familiar
quasiharmonic expressions can be directly used to determine the free energy
of the system. It has been however recently shown [58] that a harmonic
nearest neighbour pair correlation—by construction symmetric in positive
and negative atomic displacements—is limited and unable to capture the
full anharmonic distribution. These methods are therefore well suited to
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describe the phonon spectra at the given temperature but are approximate
in describing the free energy.

Approaches that explicitly parametrize the higher orders in Eq. (16) have
been developed, e.g., in conjunction with cluster expansion method [59, 60].
A potential problem is the convergence of the expansion, specifically with
respect to the high demands of point defect formation energies on precision
as discussed above.

A general concept that enables the computation of numerically exact
anharmonic free energies from DFT is thermodynamic integration (TI) [61,
62, 63, 64, 65]. Since however a direct TI, for example from the quasiharmonic
system to the full DFT system, is computationally (too) expensive, additional
statistical sampling techniques are required. We will focus in the following
on two such techniques: the UP-TILD approach (upsampled thermodynamic
integration using Langevin dynamics) [53] and the subsequently developed
TU-TILD approach (two-stage upsampled thermodynamic integration using
Langevin dynamics) [66] that further improves the e�ciency for systems
exhibiting strong anharmonicity.

In general, the explicit anharmonic free energy F ah, i.e., the di↵erence
between the full vibrational free energy and the quasiharmonic free energy,
can be extracted by applying a TI along a predefined thermodynamic path
between the quasiharmonic potential, Eqh, and the full vibrational DFT
potential, EDFT. In practice, the thermodynamic path is usually established
by a linear interpolation, i.e.,

E� = (1 � �)Eqh + �EDFT, (27)

where � is a coupling parameter with value between 0 and 1. For di↵erent �,
the atomic movement in the MD simulations is driven by forces described by
either Eqh(� = 0) or EDFT(� = 1) or a linear mixing of both E�(0 < � < 1).
The anharmonic free energy then reads

F ah =

Z 1

0

d�
D@E�

@�

E

�

=

Z 1

0

d�hEDFT � Eqhi�, (28)

where h...i refers to the thermal average. If strong anharmonic vibrations
exist, the accuracy of F ah depends critically on the number of � values used
to calculate the integral and on the number of MD steps used to obtain the
thermal average.
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The main idea of the UP-TILD approach [53] is to replace the computa-
tionally heavy DFT MD runs (using high convergence parameters, e.g., cut-
o↵ energy, the number of k-points) by relatively inexpensive DFT MD runs
(using low convergence parameters) without loosing the desired accuracy.
The reason why this works so well is that the phase space distribution
obtained with the DFT-low runs is su�ciently well converged. Calculations
show a nearly configuration-independent energy o↵set with respect to the
DFT-high runs that can be easily captured by a perturbative approach. The
calculation of the anharmonic free energy in the UP-TILD procedure thus
proceeds via the steps “quasiharmonic ! DFT-low ! DFT-high”, or in
detail using

F ah =

Z 1

0

d�hEDFT
low � Eqhi� + h�EiUP, (29)

where EDFT
low and Eqh are the DFT energy with low convergence parameters

and the quasiharmonic energy given by the dynamical matrix, respectively.
The term h�EiUP is calculated using free energy perturbation theory1:

h�EiUP = �kBT ln

*
exp

 
�
EDFT

high � EDFT
low

kBT

!+

low

, (30)

where EDFT
high is the DFT energy with high convergence parameters. Typically,

h�EiUP converges quickly with the number of uncorrelated MD configu-
rations so that computationally expensive DFT-high runs are kept at a
minimum.

The computational e�ciency, in particular for materials exhibiting strong
anharmonicity, could be further improved within the TU-TILD approach [66].
In TU-TILD, the thermodynamic integration from the quasiharmonic to
the DFT-low system is split into two stages and an optimized empirical
interatomic potential (“pot”) is used as an e�cient bridge. The procedure
then becomes “quasiharmonic ! potential ! DFT-low ! DFT-high” and
the corresponding integration reads

F ah =

Z 1

0

d�1hEpot � Eqhi�1 +

Z 1

0

d�2hEDFT
low � Epoti�2 + h�EiUP, (31)

1We extended here the originally in Ref. [53] described UP-TILD approach by replacing
the first order expression of the free energy perturbation theory with the full free energy
perturbation expression, which provides a more rigorous way to derive the UP-TILD
formalism. Typically the first order expression is a good approximation.
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where Epot refers to the energy of the optimized potential. The first
integration in Eq. (31) gives the free energy di↵erence between the DFT
quasiharmonic potential and the empirical potential. The empirical potential
is parametrized utilizing the embedded- or modified embedded-atom method
and fitted by an optimized procedure [67] to a set of DFT MD energies. The
main anharmonic features of the system are well captured by the optimized
potential providing thereby a better starting point for the second integration
in Eq. (31) than that in the UP-TILD method. Most importantly, since the
first stage does not involve any explicit DFT runs the integration can be done
with minimal computational expense. This feature provides the possibility
to study materials showing significant anharmonicity at high temperature
because converging the anharmonic free energy for these systems requires a
dense grid of � as well as long simulation times. When it comes to the second
stage where the time-consuming AIMD runs are required, the convergence
of TI becomes much faster since the configuration space sampled by the
empirical potential is close to the full DFT potential. The TU-TILD method
has been found to increase the e�ciency by a factor of 50 over the UP-TILD
method [66].

3.4. Magnetic contribution

In contrast to the other finite-temperature free energy contributions,
there is a lack of a standard ab initio DFT method for self-consistently
computing magnetic excitations due to the complex coupled magnetic degrees
of freedom. So far one has to resort to model Hamiltonians for which
the model parameters can be determined from DFT calculations, e.g.,
the Anderson Hamiltonian [68], the Hubbard Hamiltonian [69], the Stoner
Hamiltonian [70], or the classical Heisenberg Hamiltonian [71]. Once the
magnetic internal energy is obtained from these model Hamiltonians, the
explicit free energy contribution, Fmag, is available via integration. The
diversity of the magnetic free energy calculations is, however, not only limited
to the various model Hamiltonians but extends also to the employed analytic
or numerical solutions where approximations are unavoidable. A variety
of mean-field approximations and random-phase approximations have been
developed [72, 73] while classical/quantum Monte Carlo simulations are
the typical numerical solutions [74, 75]. One can find the details of these
methodologies and a discussion of their pros and cons in Refs. [76] and [77].
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3.5. Interactions between di↵erent degrees of freedom
Contributions to the F cpl term in Eq. (17) can arise, e.g., from a coupling

of electronic or magnetic excitations to atomic vibrations.

• Impact of thermal vibrations on F el

A recent study on transition metals has revealed a strong adiabatic cou-
pling between electrons and atomic vibrations. At high temperatures,
the e↵ective electronic DOS, which according to Eqs. (19)-(21) has a
direct impact on the electronic free energy, is significantly smoothened
as the inset in Fig. 3 exemplifies for bcc W [42]. The sharp peaks of the
T=0K DOS (black line) are smeared out and damped, and valleys are
filled up with electronic states as temperature increases (cf. red DOS at
3687 K). The corresponding electronic free energy changes non-linearly
with temperature by as much as �50 meV/atom (black circles), due
to an increase of the e↵ective DOS at the Fermi level. The adiabatic
coupling can be computed within the TU-TILD method. Besides the
adiabatic coupling which is relevant at high temperatures, at very
low temperatures (< 5K) non-adiabatic electron-phonon interactions
contribute to the low temperature heat capacity [78].

• Coupling between magnetic and atomic degrees of freedom

For magnetic elements, magnetic states at finite temperatures have
a considerable impact on the interatomic forces and thus the nuclear
motion. A number of computational techniques has been developed
to describe this interplay, e.g., spin molecular dynamics [79], the spin-
wave method [80], dynamical mean-field theory (DMFT) [81] and a
spin space averaging (SSA) approach [82]. On the other hand, lattice
vibrations can also a↵ect the magnetic states, which has been recently
revealed in a study on paramagnetic Fe [83].

These coupling e↵ects have been until now investigated only for bulk
systems and future studies are required to reveal a possible impact on point
defect properties.

4. Case studies of high accuracy free energies

4.1. Vacancy formation Gibbs energies: The case of Al and Cu
Ab initio calculations of the defect formation energy have been generally

performed at T=0K according to Eq. (3), either by employing the supercell
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Figure 3: (Color online) Temperature dependence of the change in the electronic free
energy due to thermal lattice vibrations for bcc W (black circles), fcc Pt (blue triangles)
and hcp Ru (red squares). The temperature axis has been normalized by the respective
melting temperature. The inset shows the temperature dependence of the e↵ective
electronic DOS (in units of states/eV· atom) for bcc W from the AIMD simulations. Figure
taken from Ref. [42].

approach in pure elements [18, 20, 22, 84] or the cluster expansion method
in concentrated alloys [85]. The neglect of the finite-temperature entropy
contributions introduced here in Sec. 3 has been generally motivated by (a)
the assumption that defect formation energies are basically temperature in-
dependent and, in practice, by (b) the reduced computational cost for T=0K
calculations. In clear contrast, experimental formation energies of thermally
stabilized defects, e.g., vacancy formation energies from positron annihilation
spectroscopy (PAS) or di↵erential dilatometry (DD), are necessarily obtained
at very high temperatures, at least above 50% of the melting point, to ensure
a su�cient number of defects. Such a large temperature mismatch impedes a
direct comparison between theory and experiment [86]. A roundabout route
is to extract a temperature-independent defect formation enthalpy (Hd

f
) and

entropy (Sd

f
) from a linear fit to the experimental defect formation Gibbs

energy Gd

f
via an Arrhenius ansatz:

Gd

f
(T ) = Hd

f
� TSd

f
. (32)

Applying such an Arrhenius fit to PAS and DD data, which operate in
distinct temperature windows, results in di↵erences in the obtained Hd

f
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Figure 4: (Color online) Experimental (black symbols) and DFT [blue/orange
(LDA/GGA-PBE [92]) lines] Gibbs energy of formation of vacancies in (a) Al and (b)
Cu. Experiments (PAS = positron annihilation spectroscopy [87], DD = di↵erential
dilatometry [87, 93]) are limited to a region (gray shaded) close to the melting point,
Tmelt. Formation energies computed by common ab initio approximations such as the
T =0K (dotted line) and the electronic-plus-quasiharmonic (el + qh; dashed line) approach
are shown. The full curve (el + qh + ah) includes all free-energy contributions in
particular anharmonicity. The error resulting when assuming the Arrhenius extrapolation,
�Arr, is marked by the orange arrow at T =0K. The insets show the corresponding
equilibrium vacancy concentrations as a function of inverse temperature scaled by the
melting temperature, and they additionally contain T =0K results for the GGA-PW91
[94] and the AM05 [95] exchange-correlation functionals. Figure taken from Ref. [86].

and Sd

f
values putting the validity of the Arrhenius behavior into question

[17, 87, 88, 89, 90, 91]. Progress on resolving this issue was hampered because
an accurate theoretical description of the defect formation Gibbs energy as a
function of temperature was missing. Only recently, with the advent of the
computationally e�cient techniques to compute anharmonic contributions
discussed here in Sec. 3, it became possible to reveal the underlying physics
and resolve this issue.

Figure 4 shows results from Ref. [86] for the temperature dependent
vacancy formation Gibbs energies for two prototype elements (a) Al and (b)
Cu. Both of the standard exchange-correlation functionals were used, LDA
(solid blue lines) and GGA (PBE; solid orange lines). Besides an excellent
agreement with experiment within the experimentally accessible temperature
range for the GGA calculations, strong and clearly non-negligible deviations
from linearity are observed for both elements and both functionals. An
Arrhenius fit through the high-temperature GGA data (Arrhenius lines in
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Figure 5: (Color online) Entropy of formation, Sf = �dGf/dT , for the Cu monovacancy
(solid line) and divacancy (dashed line). The thinner lines indicate the entropy of
formation considering only the electronic and quasiharmonic free-energy contribution (el
+ qh). The thick curves include all contributions in particular anharmonicity (el + qh +
ah). Green lines represent numbers suggested in Ref. [97] for explaining non-Arrhenius
behavior within a monovacancy + divacancy model. Experimental PAS and DD entropies
(filled/empty black bars) are derived from the experimental data shown in Fig. 4. Figure
taken from Ref. [86].

Fig. 4) shows a non-negligible error in the T=0K energies (�Arr) of 0.15
(0.22) eV for Al (Cu), i.e., errors of 10-20%, introduced by the linear
extrapolation.

An important consequence of this finding is that all compiled T=0K
experimental values that were based on the Arrhenius dependence in Eq. (32)
(and this applies to most of the data) should be corrected. It becomes
also immediately clear why the linear extrapolations of the PAS and DD
data (filled/empty black bars) di↵er from each other: they probe the slope
of the non-Arrhenius curve in di↵erent temperature regions. A further
consequence relates to benchmarking exchange-correlation functionals using
defect properties. For example, previously LDA was believed to describe
vacancy formation energies better than GGA [22, 96]. However, we can now
see that this is solely related to an extrapolation error, whereas using the
fully anharmonic non-linear dependence GGA outperforms LDA.

The non-Arrhenius behavior observed in Fig. 4 is dominated by the
anharmonic contribution to the formation Gibbs energy of monovacancies.
Earlier works had assumed that the formation of multiple types of point
defects, in particular divacancies in addition to monovacancies, would
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contribute to a non-Arrhenius behavior [90, 97]. To clarify this issue, the
high accuracy finite temperature study [86] was extended to compute the
complete thermodynamics of divacancies in both Al and Cu. Previous
expectations had been that for Al (Cu) about 40% (20%) of vacancy type
defects at the melting point are divacancies. Such a high concentration of
divacancies would require a much larger formation entropy for the divacancies
than for monovacancies in the whole temperature range (light green lines in
Fig. 5). In contrast, as shown in Fig. 5 for the example of Cu, the entropy
of divacancy formation (orange dashed line) is only slightly higher than that
of the monovacancy (orange solid line). As a result, divacancies occur in
much smaller concentrations than expected (well below 1%) and cannot be
a source of the non-Arrhenius behavior.

Another finding from Fig. 5 is that the formation entropy of a point
defect is not a temperature independent constant, as assumed in Eq. (32),
but linearly dependent on temperature. The origin of this can be understood
with the so-called local Grüneisen theory (LGT) [86], which states that
anharmonicity in the bonds surrounding the defects gives rise to a mech-
anism equivalent to local quasi-anharmonicity. Specifically the temperature
dependent shift of the atoms neighboring the defect can be described by a
model that is formally equivalent to that used to describe the lattice constant
or the volume used in conventional Grüneisen theory. The corresponding
relation for fitting experimental point-defect formation energies based on the
LGT reads

Gd

f
(T ) = Hd

f
(T ) � TSd

f
(T ) (33)

= (Hd

f,0K +
1

2
S 0T 2)

| {z }
=H

d
f (T )

�T (S 0T )| {z }
=S

d
f (T )

= Hd

f,0K � 1

2
S 0T 2, (34)

where Hd

f,0K and S 0 are constants, rather than Eq. (32).

4.2. Accurate bulk thermodynamics with vacancy contribution

Once an accurate Gibbs energy of point defect formation Gd

f
has

been obtained as exemplified in the previous section for vacancies, the
thermodynamic contribution of the point defects to the total Gibbs energy
of the system can be computed as

Gd(T, P ) = �kBTc
d

eq(T, P ), (35)
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where the point defect concentration cdeq is given by Eq. (6) (replacing Ed

f

with Gd

f
). Adding Gd to the Gibbs energy resulting from the other finite tem-

perature contributions (cf. Fig. 6), one obtains a complete thermodynamic
description of the investigated system with DFT accuracy, limited only by
the inherent approximation related to the exchange-correlation functional.

With an accurate description of the Gibbs energy at hand, all related
thermodynamic quantities, e.g., thermal expansion coe�cient, heat capac-
ities at constant pressure, temperature dependent bulk moduli, become
straightforwardly available. These quantities correspond to first- or second-
order derivatives of the free-energy surface. Since these derivatives are highly
sensitive to even small deviations in the free energy, they provide critical
benchmark response functions for evaluating the accuracy of the computed
free energy surface. The required error bar at the melting point in the free
energy calculations has to be systematically kept below 1 meV/atom.

Figure 7(a) illustrates the performance of the finite-temperature DFT
methodology for Al [53]. The thermal expansion coe�cients calculated with
the two standard exchange-correlation functionals, LDA and GGA, agree
well with each other and with experiment even up to the melting point.
Systematic studies showed that a similar accuracy can be achieved for a wider
range of elements and thermodynamic properties [51]. It was further shown
that LDA and GGA provide an ab initio computable confidence interval for
the prediction of experimental data.

The di↵erent finite temperature contributions to the expansion coe�cient
of Al are displayed in Fig. 7(b). The vacancy contribution [resulting
from Eq. (35)] is exponentially increasing with temperature and becomes
therefore appreciable close to the melting point (dash-dotted lines). For
materials exposed to high radiation, defect concentrations may be orders
of magnitude higher and may thus have a significantly stronger impact.
The methods outlined here allow to include these e↵ects on a fully ab
initio level. Anharmonicity enhances this e↵ect because the anharmonic
contribution lowers the Gibbs energy of vacancy formation (cf. Fig. 4),
thus favoring the formation of vacancies and increasing their concentration.
Anharmonicity gives also an appreciable contribution to the perfect bulk
thermodynamics (dashed lines), with an opposite sign as compared to the
vacancy contribution. Anharmonicity can in fact be significantly stronger for
other elements [58] and, thus, should be in general considered.
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Figure 6: Summary of the finite temperature DFT methodology. The background
colors indicate the computational and methodological e↵ort involved (green=small,
yellow=middle, red=high).

5. Defect kinetics

We have concentrated in this review on the thermodynamics of point de-
fects, where e�cient high-accuracy ab initio techniques have been advanced
to a mature stage by now. Corresponding studies provide valuable physical
insights and input for potential development, but for defect evolution,
the kinetics of defects is obviously of high importance as well. Defect
evolution at the recovery stage determines the performance of materials
under radiation. Point defects can migrate or precipitate through thermally
activated processes. It would be thus highly desirable to have a similar ab
initio toolbox available to determine migration barriers including all relevant
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Figure 7: (Color online) (a) Thermal expansion coe�cient of aluminum obtained with
LDA (blue) and GGA (orange) including electronic, quasiharmonic, anharmonic, and
vacancy contributions. Experimental values are included for comparison; see Ref. [53]
for experimental references. (b) Explicit contribution of the electronic (el, dotted lines),
explicitly anharmonic (ah, dash-dotted lines), and vacancy (vac, dashed lines) excitations
to the thermal expansion coe�cient. The right axis is scaled with respect to the “full”
GGA value [the orange line in (a)] at the melting temperature Tm. At Tm, the crosses
in (a) indicate the sum of all numerical errors (e.g., pseudopotential error, statistical
inaccuracy, etc.) in all contributions for the GGA. Figure adapted from Ref. [53].

excitation mechanisms with high accuracy. This is presently not the case.
We sketch in the following the basics of defect kinetics and indicate a possible
route for extension.

The key quantities for defect kinetics are the probabilities (frequencies),
⌫, of individual thermal processes such as vacancy or interstitial jumps. Once
available, these probabilities can be used for example in kinetic Monte Carlo
(kMC) simulations [75] to determine the long term defect evolution. Based
on transition state theory [98], one has

⌫(V, T ) =
kBT

h
exp
⇣

� �F act(V, T )

kBT

⌘
, (36)

where �F act(V, T ) is the thermal activation free energy, i.e., the free energy
di↵erence between the saddle point and the end point, and h is the Planck
constant. To facilitate standard T=0K DFT calculations, it is generally
preferred to separate the activation energy at T=0K from �F act(V, T ) in
the exponential and to put all relevant thermal excitations (mainly the
vibrational contribution) into a prefactor ⌫0(V, T ) [99]. Eq. (36) then
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becomes

⌫(V, T ) = ⌫0(V, T ) exp
⇣

� �Eact
0K(V )

kBT

⌘
, (37)

where ⌫0(V, T ) is the so-called e↵ective attempt frequency. The activation
energies at T=0K in Eq. (37) are nowadays routinely calculated with ab initio
via the climbing image nudged elastic band (CI-NEB) method [100, 101].
The saddle point is found by minimizing the total energy of the elastic band
with respect to atomic displacements of several image configurations along
the reaction path. To perform CI-NEB calculations, the initial and final
structures should be fully relaxed beforehand. More information about the
CI-NEB method can be found in Refs. [100, 101].

Several approaches are available for evaluating ⌫0(V, T ). A simplified
estimation is based on an Einstein frequency which is the frequency of the
jumping atom when all the atoms are at their equilibrium positions:

⌫Ein
0 =

1

2⇡

p
k/M, (38)

where M is the mass and k the spring constant of the jumping atom at the
equilibrium position. A more accurate description using a high-temperature
approximation of phonon modes at the � point is to employ the Vineyard
formula [102, 103],

⌫Vin
0 =

Q
N

j
⌫j

Q
N�1
j

⌫ 0
j

, (39)

where ⌫j (⌫ 0
j
) are normal frequencies at the � point in the equilibrium

(transition) state.
The challenge is to go beyond Eq. (39) and to introduce higher order

contributions such as anharmonic vibrations into the activation free energy.
In principle anharmonicity can be fully captured, if running long MD
simulations is not an issue as for the case of empirical potentials. For example
the finite temperature string method [104, 105] has been developed to include
the full vibrational contribution to the activation free energy. Applying this
method brute-force to ab initio is computationally not feasible, but we expect
that a combination with the TU-TILD technique [66] introduced above for
the thermodynamics could be a possible direction to circumvent the long
simulation times in the future.
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6. Summary and Outlook

In this review we have provided an overview of state-of-the-art method-
ologies and recent advances in computing thermodynamic properties of
point defects at finite temperatures using density-functional-theory. The
techniques outlined here enable a highly accurate determination of point
defect properties. The only limits are the unavoidable approximations in
the exchange-correlation functional. This opens the opportunity to generate
accurate databases for benchmarking existing semi-empirical potentials or
creating and optimizing new and better potentials. Such potentials that
faithfully reproduce finite temperature defect properties are indispensable for
future large scale molecular dynamics or Monte Carlo simulations of radiation
e↵ects.

Defect evolution and stabilization due to radiation damage is an in-
herently complex and multi-faceted phenomenon. Configurational entropy
naturally plays an important role in stabilizing point defects. However, as we
have shown, point defects such as vacancies can be additionally stabilized by
secondary point defects such as hydrogen. Examining the bonding energetics
of the H-vacancy complexes and the corresponding configurational entropy
gives access to defect phase diagrams as a function of temperature and
H-chemical potential which highlight the stability regions of the di↵erent
complexes. These concepts are general and corresponding fully ab initio
based phase diagrams can be derived for materials and intrinsic defects
relevant for radiation resistant materials.

Entropic contributions beyond the configurational entropy become im-
portant at higher temperatures. State-of-the-art approaches are readily
available to determine the electronic and quasiharmonic free energy, the
latter representing the entropy contribution due to non-interacting volume
dependent phonons. Going beyond to include explicit anharmonicity, i.e.,
phonon-phonon interactions, comes along with a significant increase in
methodological and computational requirements. The field is very active
developing new and improved approaches. One technique that enables a
highly e�cient, yet accurate determination of anharmonic contributions has
been introduced here, the TU-TILD (two-stage upsampled thermodynamic
integration using Langevin dynamics) technique. The core idea is to use
a “de-tour” via an optimized empirical potential for the thermodynamic
integration from the quasiharmonic to the fully anharmonic system. With
this method even strongly anharmonic systems become computationally
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accessible.
Anharmonicity can have a strong e↵ect on the Gibbs energy of formation

of vacancies, as reviewed here for the case of Al and Cu. The Gibbs
energy of formation decreases in a strongly non-linear way with increasing
temperature leading to increased vacancy concentrations. This finding is
of considerable importance, as it was previously universally assumed that
the Arrhenius law based upon a constant entropy of formation accurately
reproduces the temperature dependence of the defect concentrations. To
capture these contributions, the linear Arrhenius relation has to be replaced
by a quadratic temperature dependence of the Gibbs energy of formation
and a linear dependence in the entropy of formation. The local Grüneisen
theory (LGT) provides a close analogy to the usual Grüneisen theory of
quasi-anharmonicity.

Recent studies indicate that high chemical complexity, as present,
e.g., in high entropy alloys, can significantly enhance the performance of
materials under radiation [2, 106, 107]. Studies for point defect properties
in concentrated alloys becomes then of great importance [85, 107, 108].
Extension of the present free energy calculations to concentrated alloys will
benefit the corresponding studies for alloys and the search for new radiation-
tolerant materials. Another desirable extension of the presented methodology
concerns the inclusion of all finite temperature excitations into the ab initio
calculation of migration barriers.
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