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 Abstract In developing the next generation of Calphad databases, new models are used in 
which each term contributing to the Gibbs energy has a physical meaning. To continue the 
development, finite temperature density-functional-theory (DFT) results are used in the present work 
to discuss and suggest the most applicable and physically based model for Calphad assessments of 
solid phases above the melting point (the breakpoint for modeling the solid phase in previous 
assessments). These results are applied to investigate the properties of a solid in the superheated 
temperature region and to replace the melting temperature as the breakpoint with a more physically 
based temperature, i.e., where the superheated solid collapses into the liquid. The advantages and 
limitations of such an approach are presented in terms of a new assessment for unary aluminum. 
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1 Introduction 
New models have been suggested and used during recent years [1-7] for re-modeling 

thermodynamic properties of pure elements (unaries). The goal is to develop the next generation of 
Calphad databases, i.e., databases that are valid down to 0 K and have a more physical meaning 
compared to the earlier descriptions. For example, the approach suggested in Ref. [1] for modeling 
thermodynamic properties of pure Fe was already successfully applied to unaries, e.g., Cr, Ni [2] Mn 
[3], metastable phases of Mn and Fe [4], pure Co [5] and [6], and  Pb [7]. In this approach, the Einstein 
model is used for modeling harmonic vibrations of atoms. Anharmonic vibrations and electronic 
contributions are taken into account by polynomials fitted to experimental data. Although these 
models are still governed by efficiency, they provide a first step towards a more physical description 
over the previous phenomenological models [8], and they have been shown [2-7] to describe 
thermodynamic properties from 0 K to above the melting point in good agreement with experimental 
data. 

The special properties of Al, such as its light weight, low melting point (934 K), high strength-to-
weight ratio and corrosion resistance of its alloys, have made this metal a key element for many 
different applications. Al is expected to have simple thermophysical properties, since it is non-
magnetic and in the solid state only observed in the fcc crystal structure. It therefore belongs to one 
of the best studied metals. The main interest, however, lies in using Al as an alloying element as well 
as a base element for many light-weight alloys. Therefore, an improvement of the thermodynamic 
description of Al is mainly done with the goal to achieve a more reliable design of multicomponent 
materials. In this respect, a proper description of the heat capacity Cp of the solid phase is crucial also 
above the melting point of Al. Polynomial basis functions used in a previous assessment of this 
element in Ref. [8] result however in an artificial kink in Cp at the melting point. This kink is 
unphysical and causes problems for higher order systems with elements with a higher melting 
temperature than Al [9]. Possible solutions to this problem are given in the present work employing 
results from atomistic first principles methods, i.e., density-functional-theory (DFT), as well as 
Calphad.  

An extensive literature overview of experimental measurements, DFT calculations and Calphad 
modeling of pure Al is presented in the next section, Sec. 2. In Sec. 3 a new description of Al is 



presented along the lines of previous assessments within the third generation of database development 
[1-7]. In Sec. 4, the physical behavior of the solid phase above the melting point is discussed 
employing DFT-based results and calculations. Based on the insights gained from the atomistic 
simulations, an alternative description of this temperature regime is suggested in Sec. 5 and compared 
with the approach discussed in Sec. 3. 

2 Literature review 
 There has been an enormous interest in experimentally investigating pure Al. Regarding 

thermodynamic properties, Refs. [10] [11] [12] [13] [14] [15] [16] [17] [18] [19]measured the heat 
capacity of pure Al at low temperatures, and Brooks and Bingham [20] and Dosch and Wendlandt 
[21] at high temperatures. Brooks and Bingham [20] derived the different contributions to the heat 
capacity, e.g., electronic, anharmonic and vacancy formation, with the help of experimental thermal 
expansion data from Refs. [22] and [23]. Leadbetter [24] investigated anharmonic and electronic 
effects in Al utilizing the theoretical heat capacity at constant volume. Awbery and Griffiths [25] and 
Speros and Woodhouse [26] measured the heat of fusion and melting temperature of pure Al by drop 
calorimetry and differential scanning calorimetry, respectively.  

The thermal expansion of this element has also attracted attention of many researchers; Refs. [27] 
[28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] 
measured the expansion of pure Al by different techniques. Further, Kamm and Alers [49] measured 
the change of elastic moduli of pure Al with temperature and from these results, determined the Debye 
temperature of Al to be 430.3 K. Gerlich and Fisher [50] calculated the Grüneisen parameter from 
similar measurements at high temperatures. The Grüneisen parameter was also calculated by Thomas 
[51] and Ho and Ruoff [52] from measurements of the sound velocity in different directions and at 
several temperatures in pure Al. 

Since electronic contributions are small in Al compared to other metallic elements, they can be 
neglected when separating different contributions to the heat capacity and this makes it possible to 
evaluate the thermal vacancy contribution to the heat capacity by direct or indirect techniques. Feder 
and Nowick [53] estimated the variation of the thermal vacancy concentration in this element with 
temperature by measuring the thermal expansion of pure Al by X-ray diffraction and dilatometry. It 
was concluded that the large increase of thermal expansion near the melting point is due to 
anharmonicity rather than thermal vacancies. However, Refs. [54], [55], [56], [57] and [58] showed 
that the thermal vacancy concentration increases exponentially with temperature and although the 
absolute contribution is rather small, it has an effect on the shape of the heat capacity curve close to 
the melting point. This has been confirmed more recently by highly accurate DFT calculations [59]. 
Hehenkamp [60] measured the vacancy concentration of pure Al using a Debye-Scherrer technique 
and predicted a linear Arrhenius behavior for this contribution. The conclusion was however shown 
to be invalid at lower temperatures by Glensk et al. [61] using DFT calculations.  

The fast progress in computational resources and techniques in the last two decades triggered 
many investigations on thermodynamic properties calculated with DFT. Al in particular has been used 
as a case study for different techniques due to its simple properties, e.g., having only one allotropic 
structure (fcc), absence of magnetism and low melting point. Refs. [62] [63] [64] [65] [66] [67] [68] 
[69] [70] [71] [72] [73] [74] [75] used used different techniques based on quantum theory (DFT) for 
calculating mechanical and thermodynamic properties of fcc and/or liquid Al. Results of these 
investigations have been validated by experimental measurements of the phonon dispersion using the 
neutron diffraction method by Refs. [76-78].  

The pressure-volume phase diagram of Al was experimentally investigated by Hänström and 
Lazor [76], while Refs [77], [78] and [79] used ab initio molecular dynamics simulations to calculate 
this phase diagram. Boehler and Ross [80] investigated melting of Al under high pressure and reported 
a transition from fcc to hcp at 2 Mbar. The molar volume as a function of temperature at atmospheric 
pressure was assessed using the Calphad approach by Lu et al. [81] and Hallstedt et al. [82].  

  



3 Calphad modeling 
For Calphad modeling of the solid phase (fcc) below the melting temperature we have applied the 

approach suggested in Ref. [1]. In this approach, each term contributing to the Gibbs energy has a 
physical meaning according to: 

𝐺 = 𝐸0 + 3
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where 𝛩𝐸  is the Einstein temperature of the solid phase representing the contribution due to harmonic 
vibrations of the atoms and the parameters a and b represent the Sommerfeld-temperature contribution 
to the electronic heat capacity and a higher order correction due to anharmonicity, respectively. R is 
the gas constant and E0 is the cohesive energy at 0 K.  These parameters were fitted to the experimental 
heat capacity and enthalpy data up to the melting point, 𝑇 .  

To model the solid phase above the melting point, Ref. [1] suggests the expression: 
 

𝐺 = 3
2

𝑅𝜃𝐸 + 3𝑅𝑇 ln 1 − exp (− 𝜃𝐸
𝑇

) + 𝐻 − 𝑆 𝑇 + 𝑎 𝑇(1 − ln𝑇) −
𝑏
30

𝑇−5 − 𝑐
132

𝑇−11                                                                              𝑇 ≥ 𝑇  ,   
 

                         
(2) 

where additional terms are present compared to Eq. (1) that cannot be directly linked to physical 
mechanisms. Instead, According to Ref. [1], the parameters, 𝑎 , 𝑏  and 𝑐  are calculated assuming that 
the heat capacity and its first derivative should have identical values at the melting point when 
calculated from Eqs. (1) and (2). The heat capacity of the solid calculated form Eq. (2) should give a 
value equal to the heat capacity of the liquid phase at an arbitrary temperature much beyond the 
melting point, e.g., ≈ 3000 K. 𝐻  and 𝑆  are the enthalpy and entropy of melting of the solid phase 
respectively. Validating these assumptions is the main purpose of this article, for which the ab initio 
calculations were used to investigate the behavior of superheated solid at high temperatures. The 
results for the solid phase presented below in the present section are based on Eq. (2). In Sec. 5 
alternative descriptions will be investigated. 

The experimental data recommended by Desai [83] were used for optimization in the present 
work. The resulting Gibbs energy descriptions for both phases are presented in Table 1. The liquid 
phase was not assessed in the present work, since we mainly focused on modeling the solid phase at 
high temperatures.  

 
Table 1 Summary of the Gibbs energy expressions for Al at 1 bar (105 Pa). 

FCC   -8205 -2.225×10 -3T2 -3.706×10 -8 T3-2.846×10 -13T5+GEIN(287)         
 
 -13613+65.574T-9.0754 . Tln(T) -6.335 ×10 16T-5+1.087×1034T-11+GEIN(287)                                                                                                      

0.0<T<934  
934<T<6000 

Functions GEIN(θ)=1.5Rθ+3RTln (1-exp (θ /T)  

 
Figure 1 shows the heat capacity calculated from the description in Table 1, compared with the 

experimental data and previous assessment from SGTE [8] (red dashed curve). The results from the 
present work show a good agreement with the experimental data used for the optimization (Desai 
[86]) and also change smoothly at the melting point in contrast to the SGTE description [8] where an 
artificial kink is observed at the melting temperature. Below 100 K (inset picture in the lower left 
corner), the agreement between the present work and the experimental data is better than for SGTE 
but still not perfect, due to the limitations of the Einstein model. Since no significant phase 
transformation occurs in this region and since our focus here is on high temperatures, a further 
optimization beyond the suggestions in Ref. [1] was not performed. It should be mentioned that the 



SGTE function is not valid at a temperature below 298.15 K and the red curve in this figure was 
extrapolated outside its validity range just for comparison. 

 
Fig. 1. Heat capacity of fcc Al, calculated from the description given in Table 1 (black curve) compared to experimental 

data and SGTE [8] (red dashed curve). 

4 Ab initio calculations up to and beyond the melting point 
We have shown in the previous section that, if the method suggested in Ref. [1] is used for 

modeling the solid phase, a good agreement with experimental data can be obtained and the model is 
physically more sound for low temperatures as compared to the SGTE description [8]. In addition, 
the artificial kink in the heat capacity curve from SGTE for the solid at the melting point (Fig. 1) can 
be avoided.  

However, modeling the solid phase above the melting point according to Eq. (2) is not 
underpinned by physical consideration and therefore does not necessarily reflect reality. In principle, 
an (overheated) solid phase can also be metastable in this temperature regime, while the stability of 
the liquid phase is mainly due to its entropy. Thus, we have attempted to use DFT results as the basis 
for the Calphad modeling of the solid phase above the melting point, since this allows a description 
of the correct physics while suppressing the occurrence of the liquid state.  

Thermodynamic properties of pure Al were previously calculated in Refs. [59] and [61] using 
highly accurate DFT-based methods, including all relevant excitations up to the melting point. In Ref. 
[59], the UP-TILD (upsampled thermodynamic integration using Langevin dynamics) method was 
introduced and applied to calculate anharmonic contributions to the Gibbs energy for fcc-Al from 0 K 
up to the (experimental) melting temperature. This methodology was subsequently used in Ref. [61] 
to investigate the contribution of the vacancies in Al and Cu in more detail. In the present work, the 
heat capacity data from Grabowski et al. [59] in combination with the vacancy data from Ref. [61] 
(using in particular the GGA-PBE data) have been utilized for the Calphad modeling in Sec. 5. To be 
able to investigate the behavior of the solid phase beyond the experimental melting point, the different 



contributions, i.e., quasiharmonic, electronic, anharmonic and vacancies have been extrapolated into 
this high temperature region, as described in the following.  

The quasiharmonic Helmholtz free energy was extrapolated analytically to temperatures above 
the melting point by employing the analytical dependencies derived for T<Tm [59]. The volume 
dependence of the quasiharmonic free energy was interpolated using a second order polynomial. The 
calculated electronic free energy points were parameterized using a linear and quadratic dependence 
in temperature and volume, respectively. The parameterization of the anharmonic contribution was 
based on renormalized frequencies ωah as described in Ref. [59]. The same procedure was used to 
obtain the anharmonic free energy surface above the melting point. To extrapolate the vacancy 
contribution, we have utilized the Gibbs energy of formation as computed previously in Ref. [61] 
containing all relevant excitation mechanisms. Since the inclusion of anharmonic vibrations leads to 
a breakdown of the Arrhenius prediction, i.e., to a strongly non-linear temperature dependence of the 
Gibbs energy of formation [61], it was necessary to employ a non-linear third-order polynomial to fit 
the data at T<Tm. This fit was then used for the extrapolation of the Gibbs energy of formation, from 
which the vacancy concentration and thus the vacancy contribution to the total bulk Gibbs energy 
could be calculated. 

 
Fig. 2. Heat capacity of fcc-Al based on DFT results from Refs. [59] and [59]. For T>934 K the low temperature data 

(T<934 K) have been extrapolated including different contributions (QHA=quasiharmonic, AH=anharmonic, EL=electronic, 
VAC=vacancies; see text for more details). The light blue line shows SGTE data [8]. 

 
The extrapolated DFT results shown in Fig. 2 reveal that the heat capacity of the solid increases 

moderately with temperature until the melting point, followed by a drastic increase above the melting 
point. The equilibrium volume shows a similar behavior (Fig. 3), suggesting that the solid “explodes” 
at high temperatures. The sharp increase in the volume and heat capacity goes along with a sharp 
decrease of the Gibbs energy of the solid, leading to a re-stabilization of the fcc phase above the 
melting point if these extrapolations are used as input to a Calphad assessment. However, one should 
be careful in interpreting these data above the melting temperature. At a certain temperature, the 
superheated solid will become unstable and inevitably collapse to the liquid phase. The reason why 



this is not observed in the DFT data is the fact that these data have been extrapolated from the stable 
regime and thus, they do not contain the notion of an instability.   

 
Fig. 3. Equilibrium volume of fcc-Al, data for T<934 K are from Ref. [59].  For T>934, the low temperature data 

(T<934 K) have been extrapolated (see text). 
 
Explicit simulations of the superheated solid are required to have a better understanding of when 

the unavoidable transition to the liquid phase occurs. Using direct DFT simulations for that purpose 
is not practical due to the finite time and length scale restrictions. We have therefore employed a DFT-
optimized embedded atom method (EAM) potential, fitted to a wide-range of DFT (GGA-PBE) 
molecular dynamics simulations of solid Al (fitting was performed with the MEAMfit code [84]) to 
simulate the superheated conditions. The approach taken is in the spirit of the TU-TILD (two-stage 
upsampled thermodynamic integration using Langevin dynamics) method as introduced in Ref. [85] 
where such optimized potentials were shown to be a highly efficient reference for free energy 
calculations of the solid phase. More recent work has shown that the TU-TILD method is also 
applicable to the liquid phase [86]. 

The obtained results show that the superheated solid collapses to the liquid at 1039 K. We will 
call that temperature, where the solid becomes intrinsically unstable Tinst, following Ref. [9]. Tinst is 
determined by the transition point from solid to liquid during the superheating simulation. However, 
we cannot directly transfer the absolute Tinst temperature to experiment because of a general 
underestimation of the experimental melting temperature. The melting point calculated from our fitted 
EAM potential, determined by the interface method [87], is 𝑇 = 819 K, which is lower than the 
experimentally measured one, 𝑇 = 933 K. This difference is only partially due to a discrepancy 
in the EAM potential itself. Another source of error comes from the exchange-correlation functional 
employed in the DFT simulations (GGA-PBE). Our previous work [94] showed that melting 
temperatures obtained with GGA-PBE underestimate the melting point, while the LDA functional 
tends to overestimate the melting point. For the present case, additional calculations with an EAM 
fitted to LDA energies confirm a higher melting point than with the GGA-PBE EAM. 



In order to determine an experimental Tinst we have to properly take into account the lower melting 
temperature of the EAM potential. One possibility would be to shift the computed  𝑇 = 1039 K 
by the difference 𝑇 − 𝑇 = 114 K giving  𝑇 ~1150 K. Another option is to rescale  𝑇 =

1039 K by the ratio of  𝑇

𝑇
= 1.14 giving 𝑇 ~1200 K.  It cannot be said whether one of these 

choices would reflect better the experimental Tinst. In any case we should expect an additional impact 
on the instability temperature due to the interatomic potential and due to the exchange-correlation 
functional. However, for our purposes an estimate of experimental Tinst is sufficient and we have 
decided to utilize 𝑇 ~1200 K in the following. 

Thus, the extrapolated DFT data shown in Fig. 2 should be used only up to a temperature of about 
1200 K in the Calphad modeling. The remaining question is how to model thermodynamic properties 
above this temperature. This will be discussed in the following section. 

It is worth mentioning that during the superheating simulations, the supercell size and vacancy 
effects on Tinst of Al were tested. The supercell sizes of 8×8×8, 10×10×10, 12×12×12, 14×14×14 and 
16×16×16 (in terms of the cubic fcc cell) were used and it was found that there is only a small variation 
of Tinst in the range of 20 K. As for the vacancy effect, a typical vacancy concentration of ~0.001 at 
the melting point, was simulated and only a small effect on Tinst (~10 K) was found. We increased the 
vacancy concentration further to 0.003 and still found a negligible impact on Tinst. 

We note also that a comparison of our computed Tinst temperature with experimental 
measurements should be done with care. Our calculations correspond to a homogenous melting which 
is hardly accessible in experiments. In general, measurements of a superheated solid are very difficult 
and have been mostly attempted for lower melting elements than Al (in fact, often using Al as a 
matrix) [88] The two available experiments for Al superheating show a large scatter: oxide-coated Al 
particles reveal a small pressure-induced overheating to about 960 K [88], while femtosecond electron 
diffraction can drive the bulk system to a highly unstable state at 1400 K [89]. The reason or the 
immense scatter in the overheating temperature is that the amount of overheating depends strongly 
on the experimental conditions and which mechanisms are available to initiate the melting process. 
The strong impact of boundary conditions (e.g., geometry of the nanoparticles) on the overheating 
temperature was also shown in a recent phase field modeling study [90]. 

5 Coupling DFT and Calphad for modeling the solid phase 
As mentioned in the beginning of the previous section, our goal is to use the DFT results as an 

input in the Calphad modeling to increase the physical content of the solid’s behavior above the 
melting point. To do that, firstly, the breakpoint for Eqs. (1) and (2) should change from Tm to Tinst, 
i.e., 1200 K (the transition of the superheated solid to the liquid). Secondly, the heat capacity data 
from the extrapolated DFT results or enthalpy data calculated by the method suggested in the previous 
section should be used to fit the Gibbs energy in the temperature range Tm to Tinst.  

It is, however, not enough to limit the description of the solid phase to temperatures below 1200 
K, since the Calphad method is based on the Gibbs energy minimization for finding the stable state 
under equilibrium conditions and each phase needs to have a description for making energy 
minimization possible [96]. Ideally the description of pure, solid Al above Tinst does not enter any 
result, since it does not describe proper physics. However, it should be done such that further 
corrections of artificial effects are avoided. This is particularly important in higher-order systems, i.e., 
Al-alloys with elements that have a melting point higher than Tinst of Al.  

It therefore remains necessary to model the solid phase above Tinst. If the heat capacity of the solid 
is forced to reach the heat capacity value for liquid at very high temperatures, e.g., 3000 K, as was 
done for the Calphad modeling in Sec. 3, a very strong curvature appears at 1200 K, as shown in Fig. 
4 (black solid line). This treatment clearly does not improve the SGTE description [6] but worsens 
the kink problem in the solid phase at the melting point for this description (red dashed curve in Fig. 
1). Thus, such a treatment cannot be used. One way to avoid such a problem is to keep the heat 
capacity of the solid constant at 1200 K and not to force it back to the heat capacity of the liquid. 



Results for the heat capacity based on this treatment are shown in Fig. 5 in (curve I), compared to the 
model suggested in Sec. 3 (curve II) and SGTE [8] description (curve III).  

 
 

  
Fig. 4. Heat capacity of fcc pure Al, optimized based on the experimental results from [59], compared with experimental 

results from Desai [83]. The sharp kink in the fcc description makes this treatment inappropriate for improving SGTE 
description [8] and thus, cannot be used. 

 
The modeling up to 1200 K by Eq. (1) corresponds to a perfect superheated solid, i.e., without an 

explicit vacancy term. This contribution is negligible at low temperatures, but above ~600 K up to the 
melting point, it is significant, Ref. [56] and [57-59]. Therefore, the thermal vacancy contribution, 
calculated by ab initio [61], has been subtracted from the experimental data. In this way it is avoided 
that they indirectly enter the parameterization. This is the reason for the small difference between the 
experimental [83] and DFT [59] heat capacity when reaching the melting temperature in Fig. 5.  

Thermal vacancies should be treated separately as a structure-dependent contribution in Calphad 
modeling, but  a general approach that works for all materials systems equally well is still pending. 
We note that other practical relationships, for example those suggested in Refs. [61] and [91] can be 
used to treat the thermodynamic contribution of vacancies.  

 
 



 
Fig. 5. Heat capacity of different phases of pure Al: I) fcc phase modelled based on DFT data for the superheated solid, 

II) fcc phase based on the model of Ref. [1] and III) SGTE description [8]. Experimental data in red, from Desai [83], and Cp 
data from DFT [61] in black symbols. 

 
The thermodynamic description for the fcc phase (curve I in Fig. 5), which is based on the DFT 

results, is presented in Table 2.  
 

Table 2 Summary of the Gibbs energy expressions for Al at 1 bar (105 Pa), based on DFT data for fcc phase. 
 

FCC  -8135-1.232×10 -3T2 -8.337×10-7T3 -3.315×10-14T5+GEIN(281)      
    
 -17360+ +90.54T-12.07Tln(T)-2.742×1017T-5+ 2.217×1035T-11+GEIN(281)                                                                                                          

0.0<T<1200 

1200<T<6000 
Functions GEIN(θ)=1.5Rθ+3RTln (1-exp (θ /T))  

6 Conclusion 
Within the present work we have proposed a new model for the thermodynamic properties of pure 

Al, based on physically more sound assumptions than used in the original SGTE assessment [6]. The 
description of the solid phase below the melting point follows previously suggested methods [1]. We 
have here specifically tested the application of these methods beyond the melting point Tm up to an 
instability temperature Tinst of 1200 K.  

The extension has been done in three steps: First, DFT-based MD simulations have been utilized, 
to achieve an accurate, precise and consistent description of the heat capacity below the melting 
temperature, where these calculations are numerically feasible. Second, the analytical dependencies 
achieved in this approach have been extrapolated to 1200 K. Third, the resulting curve has been used 
to fit the Calphad model parameters [1] such that a description up to 1200 K was achieved.  

The temperature Tinst itself has been determined from MD simulations with an EAM potential that 
has been parameterized by DFT calculations. In the case of Al, it turns out that the instability 



temperature is only 250 K above the melting temperature and connected with a strong increase of the 
heat capacity. This makes the transition to a parameterization of the solid phase above Tinst 
challenging. In particular, the vacancy contribution tends to diverge very quickly and therefore needs 
to be treated separately. A systematic evaluation of the approach presented here requires the 
consideration of multicomponent alloys, in which solid phases exist above the melting temperature 
of Al. Despite the challenges in the case of Al, the new approach must be applied to other elements 
in order to evaluate its usefulness.  
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