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Atomistic migration mechanisms of atomically flat, stepped, and kinked grain boundaries
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We studied the migration behavior of mixed tilt and twist grain boundaries in the vicinity of a symmetric tilt
〈111〉 �7 grain boundary in aluminum. We show that these grain boundaries fall into two main categories of
stepped and kinked grain boundaries around the atomically flat symmetric tilt boundary. Using these structures
together with size converged molecular dynamics simulations and investigating snapshots of the boundaries
during migration, we obtain an intuitive and quantitative description of the kinetic and atomistic mechanisms
of the migration of general mixed grain boundaries. This description is closely related to well-known concepts
in surface growth such as step and kink-flow mechanisms and allows us to derive analytical kinetic models that
explain the dependence of the migration barrier on the driving force. Using this insight we are able to extract
energy barrier data for the experimentally relevant case of vanishing driving forces that are not accessible from
direct molecular dynamics simulations and to classify arbitrary boundaries based on their mesoscopic structures.

DOI: 10.1103/PhysRevB.94.165413

I. MOTIVATION

The migration of grain boundaries plays a pivotal role
in the evolution of materials microstructures, which strongly
impacts the mechanical, chemical, or electronic response of a
material. Thus, for designing optimized materials with tailored
microstructures, a detailed understanding of grain boundary
kinetics and of the underlying atomistic mechanisms is crucial.
Identifying these fundamental mechanisms and understanding
their impact on grain boundary migration has been a key topic
both from an experimental as well as a theoretical perspective
for several decades.

In 1948 Mott [1] proposed that the migration is a thermally
activated process. In his model for migration, the energy barrier
that the boundary must overcome is related to an island nucle-
ation mechanism where atoms melt on one side of the boundary
and solidify on the other crystalline side. In 1969 Gleiter
portrayed a general grain boundary as a 3D stepped structure
by interpreting diffraction contrast microscopy images [2,3].
He proposed that general nonsymmetric grain boundaries are
not atomically flat but are rather comprised of atomic steps
and kinks, similar to the well-known structural elements on
surfaces. He also pointed out that the boundary moves via the
emission and absorption of atoms at step kinks.

The picture of both Mott [1] and Gleiter [2,3] that grain
boundaries consist of an intermediate layer changed with the
advent of high-resolution electron microscopy which showed
that the interface region is rather sharp [4]. In the late 1970s
several electron microscopic studies analyzed grain boundary
migration in terms of the motion of secondary grain boundary
dislocations [5–7]. However a more recent in situ electron
microscopy work by Babcock and Balluffi [8] in 1989 showed
the contribution from the dislocation motion to be negligible.
In their study [8] of curvature-driven grain boundary migration
in near �5 boundaries the authors proposed that migration
mainly takes place by atomic shuffling around pure steps
in the boundary.

*Corresponding author: r.hadian@mpie.de

In the last 20 years theoretical simulations have become
increasingly useful to supplement and interpret the experimen-
tal studies. Due to computational constraints the first studies
employed Monte Carlo simulations in the framework of a two-
dimensional Ising model which allowed the study of motion of
model boundaries. Despite being rather idealized these models
highlighted the importance of island and kink nucleation and
propagation on the motion of grain boundaries [9–11]. As
more powerful computers emerged, the theoretical efforts
were extended to three-dimensional molecular dynamics (MD)
simulations providing a more realistic description of boundary
migration. These tools led to the identification of cooperative
motion of atom clusters in the migration of high angle grain
boundaries [12,13], confirming the experimental results of
Babcock and Balluffi [8].

Generally, the focus of the MD studies was on cooperative
mechanisms rather than on mesoscopic features and mech-
anisms such as kinks or steps that had been highlighted in
the earlier experimental and theoretical papers. One reason
may be that the computational constraints have limited
these calculations to rather small supercells. As has been
discussed in a recent study [14] small supercell sizes may
inhibit the formation of the correct dynamical mesostructure
with the consequence that unphysical mechanisms prevail
and determine the rate of boundary migration, particularly
when approaching the comparatively small driving forces
characteristic of experimental cases. Another typical limitation
of MD simulations has been the restriction to symmetric tilt
boundaries. Recent studies showed that such symmetric grain
boundaries are only partly representative of experimentally ob-
served grain boundaries in polycrystalline materials [15–17].
The migration of grain boundaries with general, nonsymmetric
planes has not been intensively studied, and only very recent
theoretical works have established the significance of grain
boundary plane orientation in migration [18–20].

The aim of the present study is to employ MD simulations
to study the atomistic mechanisms involved in the migration
of grain boundaries with nonsymmetric plane orientations
in the vicinity of a symmetric tilt one. We will show that
these nonsymmetric grain boundaries relax into nanofaceted
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structures [21–24]. As a consequence only two distinct
categories of stepped structures result: straight steps without
any kinks or steps with periodic arrays of kinks. For both
categories we investigate the velocity of these boundaries
along with the atomically flat symmetric tilt grain boundary
and probe the time evolution of their mesoscopic features.
We thereby combine the two major research directions in
modeling grain boundary migration by reintroducing and
studying the concepts of mesoscopic migration mechanisms
in realistic grain boundaries. Based on these results we show
qualitatively different migration morphologies of the three
boundary types (flat, stepped, and kinked) and link them to
well-known growth modes in surface science (see Sec. IV A).
Using this insight we are able to derive the asymptotic behavior
of the grain boundaries (see Sec. IV B), which allows us to
connect the much faster time scale of the MD simulations with
the experimental time scale.

II. SIMULATION METHODS

To study the above mentioned grain boundary types we
explored mixed tilt and twist grain boundaries in the vicinity
of the symmetric �7 tilt boundary in Al. Al was chosen
since, due to its high purity and high crystalline quality,
it is a preferred system for experimental grain boundary
studies [25] and because well established empirical potentials
are available [26]. The specific grain boundary system, �7
tilt, has been extensively investigated in previous theoretical

studies [18,27,28]. All calculations were performed using the
LAMMPS code [29]. The interatomic forces were modeled
by the aluminum embedded-atom-method (EAM) potential
developed by Zope and Mishin [26]. This potential has been
fitted to Al properties from both experiment and ab initio
calculations. Specifically, the calculated symmetrical twin
boundary energy using this potential agrees well with the
experimental value [26].

The grain boundary structures were constructed within a
coincident site lattice (CSL) approach. They were obtained
by introducing a small inclination to the symmetric boundary
plane as indicated in Figs. 1(a)–1(c), with the inclination axis
chosen to lie inside the boundary plane. Aside from the [11̄1]
direction (i.e., the �7 tilt axis), rotation around any other
inclination axis gives rise to a mixed tilt and twist grain
boundary. Periodic boundary conditions were employed in all
three dimensions due to which an image grain boundary is
introduced along the boundary normal in the supercell. After
running extensive convergence tests we chose a separation
distance of at least 20 nm between the boundary and its
periodic images to prevent any artificial interactions between
them. The periodic boundary conditions can also introduce
artificial correlations within the grain boundary plane. As
shown recently, these artificial correlations can alter the
migration mechanisms if the lateral supercell dimensions are
too small [14]. Extensive benchmarks showed that this is less
of a problem for our nonsymmetric grain boundary structures
where the small misorientation angles from the symmetric
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FIG. 1. Schematics of the investigated grain boundaries [(a) to (c)] and their static structures after T = 0 K relaxation [(d) to (h)]. (a)
Pure symmetric �7 tilt boundary with a misorientation angle of 38.21◦ around the [1 1̄ 1] axis, relaxing to an atomically flat structure as
displayed in (d). (b) Mixed boundary obtained by introducing a small rotation angle around the [12 1̄] direction in the grain boundary plane,
relaxing to a structure with straight steps as shown in (e) and (g). (c) Mixed boundary obtained by introducing a small inclination angle to
the symmetric boundary, around an arbitrary low symmetry rotation axis in the grain boundary plane as indicated by the black arrow. As a
specific representation the [54 1̄] rotation axis has been chosen. This boundary relaxes to a structure with kinked steps as shown in (f) and (h).
In (d) through (h) perfect bulk atoms have been removed for clarity, and the color indicates the position of the grain boundary atoms along the
boundary plane normal as indicated by the color bar.
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boundary result in large lateral dimensions of the CSL unit
cells. Nevertheless, we ensured that our grain boundary planes
are size converged. For the structures and driving forces
considered here we have therefore used areas of at least
20 nm×20 nm resulting in supercells of at least 500 000 atoms.

In general, the as-constructed grain boundaries could not
be directly utilized for migration simulations since they do
not correspond to the thermodynamic equilibrium structure.
To start the migration studies from an equilibrated grain
boundary structure we have utilized a two step procedure:
In the first step, the grain boundaries were subjected to a
T = 0 K relaxation using a conjugate gradient approach.
To detect the true energy minimum of the grain boundary
and not only the nearest local minimum, we have explicitly
investigated the microscopic degrees of freedom of each grain
boundary [30]. To this end, we have constructed various initial
configurations for the relaxation (≈100 per boundary) by
applying rigid body translations of magnitudes smaller than the
CSL repeat distance on the grain boundary plane (specifically,
the in-plane displacement-shift-complete vector). In a second
step, the lowest-energy grain boundary structures were then
subjected to an annealing procedure using molecular dynamics
simulations. In particular, the temperature of the system was
first ramped up within a time frame of 50 ps from T = 0 K
to the target temperature for the migration simulations, and
then the grain boundary was annealed for about 500 ps at that
temperature.

Migration simulations were then performed across a range
of temperatures (400–750 K) and driving forces (0.5–12 meV)
for a few nanoseconds. To trigger grain boundary migration,
we used a synthetic driving force that applies a potential energy
bias to one of the grains determined by a misorientation-based
order parameter [18,28]. This potential bias exerts forces
of small magnitude (as compared to forces due to thermal
fluctuations) on atoms in the vicinity of the grain boundary,
which statistically favor the growth of one grain at the expense
of the other. During the application of the driving force, a
thermostat kept the temperature constant. It has been shown
[31] that in the limit of small driving forces the synthetic force
induces the same mobilities as an elastic strain driving force.

All molecular dynamics simulations were performed within
an NPT ensemble. The Nosé-Hoover thermostat [32,33] and
the Parrinello-Rahman barostat [34] were used for controlling
temperature and pressure, respectively. The time step for
integrating the equations of motion was 1 fs.

To detect the grain boundary position, atomic coordinates
were recorded every 100 fs during the migration simulations.
For each snapshot, a Gaussian broadening was applied to each
atomic position to produce a smooth distribution F (x⊥):

F (x⊥) =
∑

i

word
i exp

[
− (x⊥ − x⊥

i )2

σ 2

]
. (1)

Here, x⊥ is the position normal to the grain boundary plane, the
index i runs over all atoms, x⊥

i is the coordinate of the ith atom
normal to the grain boundary, word

i the corresponding weight
given by the centrosymmetry order parameter (which equals
zero for perfect fcc), and σ a smoothing parameter. A value of
σ = 0.05 Å provided a smooth distribution F (x⊥) with a well
defined maximum at the boundary where the centrosymmetry
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FIG. 2. Position versus time dependence of the three representa-
tive grain boundaries at (a) 500 K, (b) 600 K, and (c) 700 K subjected
to a driving force of 5 meV per atom. At 700 K all three boundaries
have similar kinetics and the curves overlap.

parameter becomes the largest. Using the above equation we
extracted the grain boundary position Xt at time t according
to

Xt = {x⊥| max[F (x⊥)]}. (2)

Calculating Xt as a function of simulation time provides an
accurate dependence of grain boundary position versus time
(cf. Fig. 2). The boundary velocity was then determined by
means of linear regression.

To allow for a detailed investigation of the evolution of
the mesoscopic structure, snapshots were recorded during
the migration calculations. Each snapshot was subjected to a
conjugate gradient minimization to remove thermal disorder.
The resulting atomic configurations were analyzed using the
visualization software Ovito [35].

III. RESULTS

A. Flat, stepped, and kinked grain boundary structures

Various mixed grain boundaries were constructed and
relaxed at T = 0 K according to the procedure described in
Sec. II. As opposed to the atomically-flat symmetric tilt grain
boundary depicted in Fig. 1(d), the mixed grain boundaries
form nanofacets/steps along the direction of the inclination
axis [red features in Figs. 1(e) and 1(f)]. After an extensive
search in the mixed grain boundaries around the symmetric tilt
orientation, we found only two distinct categories of stepped
structures, based on their structure and geometry. One category
[Fig. 1(e)] is characterized by steps that lie along a high
symmetry direction in the bicrystal, such as [1 2 1̄] in fcc and
remain straight during minimization as shown in Fig. 1(g).
In the other category [Fig. 1(f)] steps are lying along a low
symmetry, rough direction such as [5 4 1̄] and are subfaceted
(kinked) along high symmetry directions as shown in Fig. 1(h).
In this case subfacets develop along the [1 2 1̄] and [1 1̄ 0]
directions. In the following we focus on the two representative
mixed grain boundaries in comparison with the symmetric tilt
one. Henceforth, we refer to the boundaries that are symmetric
tilt, mixed with straight steps and mixed with kinked steps as
flat, stepped, and kinked for brevity.

The stepped and kinked boundaries consist of terrace planes
of the symmetric plane orientation {1 2 3} (green areas) and
steps of three atomic layers (≈3 Å; red areas). The steps
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are oriented along the direction of the inclination axis. The
spacing between the nanofacets, i.e., their density, depends on
the magnitude of the inclination angle. Similar nanofaceted
structures have been previously observed in asymmetric tilt
boundaries in the proximity of a symmetric boundary [21,22]
as well. The stepped and kinked boundaries shown in Fig. 1
correspond to an inclination angle of about 6◦ leading to a
nanofacet spacing of about 40 Å. With increasing inclination
angle, the spacing decreases such that at about 9◦ such
nanofaceted structures cannot be resolved anymore. Faceting
will then happen on a low energy/high symmetry plane other
than {1 2 3}.

It has been discussed [30] that grain boundary steps
may contain a dislocation component. A recently developed
extraction method [36] identifies defects by mapping the atoms
from the nanofaceted grain boundary structures to a reference
structure. Using this method and the ideal symmetric tilt
configuration as reference, we have investigated whether the
steps/nanofacets of this study have dislocation character. Our
results show that the mixed grain boundaries discussed above
exhibit no dislocation character.

In some nonsymmetric grain boundaries in Al, facet
coarsening has been observed after annealing for several
nanoseconds [37]. We have therefore performed long-time
annealing simulations to test whether our mixed boundaries
are stable with respect to facet coarsening. The results show
that even after 2 ns of annealing the facet lengths remain
unchanged except for thermally induced fluctuations. We have
also monitored the grain boundary energy as a function of
annealing time. Corresponding changes are below 1 mJ/m2

indicating that the original structure is indeed stable.

B. Migration kinetics

Using the equilibrated grain boundary structures we com-
puted the migration kinetics as a function of temperature.
Figure 2 shows the position versus time dependence of the
representative grain boundaries for three relevant tempera-
tures at 5 meV/atom. Three qualitatively different modes of
migration can be observed: (i) immobile, (ii) stop-and-go,
and (iii) continuous. Table I gives an additional overview of
the migration modes and their correspondence to the grain
boundary type and temperature.

The atomically-flat symmetric tilt boundary shows all three
modes at the temperatures investigated. At low temperatures
[500 K; Fig. 2(a)] this boundary is indeed immobile. At
intermediate temperatures [600 K; Fig. 2(b)] a stop-and-go
mode appears. A stop-and-go migration mode with increasing
temperature is a characteristic of an activation/nucleation-

TABLE I. Migration modes as observed for the grain boundaries
and temperatures in Fig. 2. “Immobile” refers to grain boundaries not
moving within the accessible simulation time frame.

500 K 600 K 700 K

Flat immobile stop-and-go continuous
Stepped stop-and-go continuous continuous
Kinked continuous continuous continuous

based migration mechanism: The boundary is stationary until
the nucleation event occurs and moves until the next nucleation
event is required. As nucleation is a stochastic process the
stop periods in Fig. 2(b) are irregular. It was shown in
Ref. [14] that the nucleation mechanism for a flat boundary is
the formation of islands of atoms with the orientation of the
growing grain. At higher temperatures [700 K; Fig. 2(c)] the
flat boundary is above its roughening temperature, i.e., islands
form spontaneously and the migration is no longer limited
by island nucleation. It thus migrates in a continuous linear
fashion.

The stop-and-go mode at 500 K observed for the stepped
boundary implies that its migration is controlled by a nu-
cleation mechanism [Fig. 2(a)]. This nucleation mechanism is
different from the one active for the flat boundary: The stepped
boundary is mobile at the lower temperature of 500 K which
implies a lower energy barrier for the nucleation mechanism.
The stop-and-go mode for this boundary appears to be less
well defined than the one for the flat boundary. A stop-and-go
mode of motion has also been observed in the literature of
shear coupled motion [38]. Compared to the flat and stepped
interfaces, the kinked boundary has a distinctly different
migration behavior. The migration mode is continuous at all
the temperatures shown, and it remains continuous even down
to 400 K and at all driving forces. The absence of a stop-and-go
migration mode is a clear indication that the migration of the
kinked boundary is not controlled by nucleation but rather by
an activation/nucleation-free mechanism.

These observations are a first indication of the qualitatively
different migration behavior of the three grain boundaries. To
gain further insight into the migration kinetics and identify
the underlying mechanisms we performed an extensive study
at various temperatures and driving forces. Figure 3 shows
the corresponding results in an Arrhenius representation, i.e.,
logarithm of the velocity versus inverse temperature.

The flat boundary [Fig. 3(a)] shows a strongly non-
Arrhenius (nonlinear) relationship with temperature at all
studied driving forces. The mesoscale island nucleation model
proposed in Ref. [14] accurately reproduces the temperature
dependence of the velocity below the roughening temperature
using only two fitting parameters [see the dashed lines in
Fig. 3(a)]. The dynamical roughening temperature (dotted
line bounding the gray triangle) can be seen to increase with
decreasing the driving force. This behavior has also been
reported in Ref. [31].

For the stepped and kinked boundaries we find likewise
a roughening transition temperature [black dotted lines in
Figs. 3(b) and 3(c)] at which the temperature dependence of
the velocity changes. While the transition temperatures of all
three boundaries are similar, the Arrhenius dependence below
this temperature shows a qualitatively different dependence
for the stepped and kinked boundaries: In clear contrast to the
quadratic dependence found for the flat boundary, the stepped
and kinked boundaries show a linear behavior at all driving
forces, except for some numerical scatter at low velocities
due to the limited simulation times. This linear Arrhenius
behavior for the migration of the mixed boundaries resembles
the reported experimental migration kinetics for planar grain
boundaries [25] and was also observed in our preliminary
simulations of a nonplanar boundary [24].
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FIG. 3. Arrhenius representation of the grain boundary velocity as a function of inverse temperature at various driving forces for (a) flat,
(b) stepped, and (c) kinked boundaries. The squares indicate the calculated data and the dashed lines are fits, quadratic for the flat boundary
according to the island nucleation model [14] and linear for the stepped and kinked boundaries. The dotted black line indicates the roughening
transition temperature of the grain boundaries, and the gray area marks the region above the transition temperature.

The linear Arrhenius dependence of the stepped bound-
ary provides an additional argument that the nucleation
mechanism of this boundary is markedly different from the
island nucleation mechanism found for the flat boundary.
The kinked grain boundary also shows a linear dependence
in the Arrhenius representation as the stepped boundary.
However, there is an important difference between the kinetics
of the two boundaries: The slope of the fitted lines for the
stepped boundary becomes steeper with decreasing driving
force [Fig. 3(b)], whereas for the kinked boundary the slopes
remain roughly the same [Fig. 3(c)]. The slopes represent
an averaged migration energy barrier, and this difference in
behavior indicates distinctly different migration mechanisms
for the two mixed grain boundaries.

Figure 4 summarizes the extracted energy barriers for
all three grain boundaries as a function of driving force.
Figure 4(a) reveals a dramatic difference between the en-
ergy barriers for the flat boundary and the barriers for the
stepped/kinked boundaries. As pointed out in Ref. [14] the
divergent behavior of the energy barrier for the flat boundary
at vanishing driving forces implies that this boundary becomes
immobile at experimentally accessible driving forces (<1
MPa = 0.1 meV/atom from Ref. [25]). In contrast for both
stepped and kinked boundaries we find well defined limits
towards zero driving forces, implying that they are indeed
mobile at experimental driving force limits.

C. Atomistic mechanisms of migration

Figures 5(a)–5(c) display representative migration snap-
shots for the three grain boundaries. Only grain boundary
atoms are shown for clarity, and the color code is based on
the distance to the grain boundary plane. On the flat boundary
plane multiple islands are clearly visible [red areas in Fig. 5(a)]
consistent with the kinetic behavior of this boundary discussed
in the previous section. The snapshots in Figs. 5(b) and 5(c) for
the stepped and kinked boundaries show instead a qualitatively
different appearance.

For the stepped boundary with the steps along the high sym-
metry direction [1 2 1̄], steps remain straight across the grain

boundary plane and can propagate only through nucleation and
propagation of double kinks. The magnified region in Fig. 5(e)
reveals a stable double kink nucleus on the triatomic steps
(described in Sec. III A) along the [1 2 1̄] direction. An analysis
of all our simulation runs for the stepped boundary shows
that these double kinks frequently nucleate. Some of them are
short-lived and quickly disappear (i.e., they are below their
critical size), but many grow and coalesce. On the displayed
stepped boundary [Fig. 5(b)] there exist four steps that advance
by the nucleation, growth, and coalescence of double kinks.

(a) 

(b) 

Flat 

Stepped 

Kinked 

Experiment 

FIG. 4. Energy barriers extracted from the Arrhenius representa-
tion of Fig. 3 shown at (a) a small energy scale to capture all grain
boundaries and (b) a larger scale to emphasize the dependence for the
stepped and kinked boundaries. For the flat boundary, the fitted curve
(red dashed line) was obtained using the island nucleation model [14].
The fit for the stepped boundary (green dashed line) is based on the
model developed in Sec. IV A, and for the kinked boundary the fit is
a constant (blue dashed line). The range of experimentally observed
energy barriers [25] is indicated by the black bar at low driving forces.
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FIG. 5. (a), (b), and (c) are snapshots of migration in the three grain boundaries [(a) flat, (b) stepped, and (c) kinked] at 500 ps, 3 meV, and
450 K where the bulk atoms have been removed and the atoms belonging to the shrinking grain have been made invisible to help resolve the
atomistic details on the growing side of the boundaries. (d), (e), and (f) are the magnified views of the areas indicated in the snapshots. The
black arrows indicate the [1 2 1̄] direction in all grain boundaries.

For the stepped boundary, step flow via double kink
nucleation and propagation is the fundamental migration
mechanism. It naturally explains the stop-and-go mode of this
boundary shown in Fig. 2(a) and discussed in Sec. III B. The
propagation of this grain boundary corresponds to a total of
many such events on different steps explaining the smeared
out behavior of the stop-and-go mode in Fig. 2(a).

One can intuitively understand that a double kink nucleation
process has a lower energy barrier compared with the island
nucleation on the flat boundary as suggested in Sec. III B.
In fact, a careful analysis of the islands on the flat boundary
[see Fig. 5(d)] reveals that an island nucleus can be perceived
as an island of monoatomic double kinks nucleating on the
{1 1 1} planes elongating in the [1 2 1̄] direction. These double
kinks are thermodynamically unstable until they accumulate
and form an island of a critical size, above which they can
grow.

The fact that on the kinked boundary the originally [5 4 1̄]
oriented steps subfacet into [1 2 1̄] and [1 1 0] directions
implies that these directions are low in energy and form cusps
in the Wulff shape of possible steps on this boundary. The
propagation of this boundary occurs via a kink flow mechanism
through the geometrically necessary single kinks as opposed
to the double kinks of the stepped boundary. In contrast to
the other two boundaries, the flat and the stepped one, no
nucleation mechanism is required.

This atomistic insight immediately explains the migration
behavior shown and discussed in Sec. III B, i.e., a migration
event with an activation barrier that is independent of temper-

ature and driving force. We can quantitatively describe this
mechanism using the harmonic-transition-state equation [39],

ν = ν0 exp(−Ebarrier/kBT ). (3)

Assuming a typical attempt frequency ν0 = 1013s−1 and
temperature T = 500 K, a single kink flow event occurs with
a rate of ν ≈ ps−1. Multiplying this number with the number
of available kink sites for the kinked boundary (≈200), kink
flow events are frequent on the simulation time scale of a
few hundred ps. This explains why the overall position versus
time dependence of the kinked boundary shows a smooth,
continuous dependence [cf. Fig. 2(a)] even down to very low
temperatures.

IV. DISCUSSION

Table II summarizes the characteristic features of the
migration behavior of the three representative grain boundaries
as discussed in Sec. III. Additionally, the last column of Table II
indicates the probability that these grain boundary structures
exist in the vicinity of the �7 symmetric tilt boundary.
According to our simulation results the majority of mixed grain
boundaries contain geometrically kinked steps and follow a
qualitatively similar kinetics to the studied kinked boundary
in this study. The stepped boundary consisting of straight steps
is a rare case. Straight steps are only stable if the inclination
axis lies along high symmetry directions such as 〈1 2 1〉.

The structure of the kinked boundary closely resembles
the terrace-ledge-kink model for a general high-angle grain
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TABLE II. Characteristic features of the three representative grain boundaries. “Asymptotic barrier” is the migration barrier height at the
limit of zero driving forces. “Occurrence” indicates how frequently such a grain boundary is observed among the studied grain boundaries.

Type Structure Atomistic feature Nucleation Arrhenius Asymptotic barrier Occurrence

Flat symmetric tilt islands of double kinks yes no singular 1
Stepped mixed〈121〉 double kinks yes yes ≈ 0.3 eV rare
Kinked mixed〈541〉 single kinks no yes ≈ 0.1 eV frequent

boundary originally introduced by Gleiter [2,3]. In contrast to
the original model of Gleiter, the explicit calculations show that
emission and absorption of atoms does not occur through an
intermediate layer but rather they occur simultaneously by the
rearrangement of a few atoms at the kink sites. Gleiter’s notion
of the crystallography of the steps does not fully resemble our
observation of nanofaceted structures, but his emphasis on the
role of {1 1 1} planes in the migration of an fcc metal is
corroborated by the results in Sec. III C.

The double kink nucleation process, as revealed here for the
stepped boundary, has not been reported as a rate determining
process in the motion of realistic grain boundaries so far.
However, as mentioned in the introductory section it has been
extensively discussed in the dynamics of two-dimensional
extended defects: for example the motion of model grain
boundaries and dislocations [10,11,40]. Double kink nucle-
ation and propagation has also been repeatedly observed and
reported in studies of surface growth [41]. A recent detailed
3D analysis of molecular dynamics simulations showed that
crack propagation in brittle materials and at low temperatures
occurs via double kink nucleation and subsequent kink
propagation [42].

A. Kinetic model for double kink nucleation on steps

For a grain boundary migrating via step propagation, the
kinetics is determined by the nucleation and subsequent growth
of double kinks. To develop a kinetic model of this mechanism,
let us first consider an idealized geometry of the formation
of a double kink [Fig. 6(a)]. The green part schematically
represents the grain boundary area before the formation of the
double kink, while the double kink is indicated by the red area.
For the following discussion we approximate the formation
energy Edk

f of a single double kink as

Edk
f = Ecost + Egain, (4)

where Ecost represents the energy increase due to the two newly
formed surfaces each with an area A as indicated in Fig. 6(a),
and where Egain is the gain in energy due to transforming a
portion of the crystal volume into the grain favored by the
driving force. The latter term depends on the volume of the
double kink. In the following we specifically use

Egain = pAd, (5)

where p is the driving force and d the length of the double
kink. To derive an expression for Ecost as a function of d we
first note that Ecost(d) should obey the following conditions

Ecost(d) =
{

0 for d = 0
const. for d → ∞,

(6)

which reflect that at d = 0 no double kink exists and that for
large separations the interaction energy between the two kinks
vanishes. Next we derive a functional dependence between
these two limits. A simple −1/d term does not satisfy the
d = 0 limit and introduces an unphysical, singular behavior.
To satisfy these conditions we use a Fermi-Dirac-like function.
From a number of possible functions, Fermi Dirac was chosen
because it has the correct asymptotic limits and its smoothness
can be easily controlled:

Ecost(d) = E∞

( −2

1 + exp(ad)
+ 1

)
. (7)

Here, E∞ is the constant energy cost to which Eq. (7)
converges for d → ∞ and a is a parameter that determines
the smoothness of the Fermi-Dirac function. The black dashed
line in Fig. 6(b) shows an example for the dependence of
Ecost(d). Using Eqs. (5) and (7) in Eq. (4) we obtain

Edk
f (d,p) = E∞

( −2

1 + exp(ad)
+ 1

)
+ pdA. (8)

The solid lines in Fig. 6(b) show examples of the dependence
of Edk

f (d) for three different driving forces p. Similar to a
classical 3d-nucleation model there exists a critical distance
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FIG. 6. Geometry and energy barrier of the double kink nucle-
ation process. (a) A double kink of length d on a stepped grain
boundary and with a kink area A. (b) The formation free energy
of the double kink as a function of kink separation as derived with
the nucleation model [Eq. (8)] at different driving forces. The black
dotted line shows the dependence in the absence of any driving
force. (c) Compares the activation barrier as derived from the MD
simulations at different driving forces (filled green squares) and the
analytic nucleation model (green dashed line). The arrows mark the
driving forces for which the explicit energy curves are shown in (b).
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dcrit, above which the double kinks become thermodynami-
cally stable and below which they are subcritical, i.e., they
are likely to annihilate. The resulting maximum of each curve
corresponds to the nucleation barrier at the given driving force
as indicated by the three arrows in Fig. 6(c).

To be able to use the developed model for fitting the
dependence of the nucleation barrier as a function of the
driving force, Eq. (8) needs to be transformed using an explicit
critical length. The latter is determined from ∂Edk

f /∂d = 0
giving

dcrit = f (x,p)

a
, f (x,p) = arcCosh

(
x

p
− 1

)
, (9)

with x = aE∞/A. Using dcrit in Eq. (8) gives

Edk
f (p) = E∞

( −2

1 + exp[f (x,p)]
− p

x
f (x,p)

)
. (10)

An important point is that only two free parameters, the kink
formation energy E∞ and the ratio x defined above, are needed
to obtain the activation barrier Edk

f (p) as a function of driving
force p. Applying the kink nucleation model [Eq. (10)] to our
computed migration data (see Fig. 4) we find that it accurately
fits the driving force dependence of the barriers for the stepped
boundary [Fig. 6(c)].

Using the fit shown in Fig. 6(c) we directly obtain the
parameters for the nucleation model. Specifically, we get the
asymptotic limit for the double kink formation E∞ =0.31 eV

and the ratio x = 0.005 eV/Å
2
. The fact that the asymptotic

value of the migration barrier at zero driving force is identical
to the double kink formation energy E∞ can be intuitively
understood—with decreasing the driving force the kink sepa-
ration distance increases to infinity and the nucleation barrier
approaches E∞ [see Fig. 6(b)].

Having the ratio x allows us to determine the other
parameters entering the model. We obtain the critical double
kink size dcrit from the MD simulations of the stepped
surface and use Eq. (9) to derive the kink-kink interaction
parameter a. To determine the critical size we analyzed
the probability distribution of the double kink length in the
migration snapshots. This distribution sharply increases from
low probability (which is expected for subcritical double
kinks) to high probability (thermodynamically stable double
kinks) when the double kink separation goes above the critical
length. At a driving force of 6 meV/atom we find a critical
value of dcrit ≈ 20 Å which corresponds to a double kink
consisting of ≈4 atoms. Using Eq. (9) and the fitted value for

x results in a = 0.15 Å
−1

and A = 9.3 Å
2
. As a cross-check,

the value of A can be compared to a square with side lengths
of the nearest neighbor distance in fcc resulting in an area

of ≈8 Å
2
.

B. Parallels to surface growth

Many of the structural and dynamical aspects that have
been identified and discussed in this study have a close

[1 -1 0] [1 1 -2] 

[1 1 1] 
(a) layer-by-layer  

 (b) vicinal-straight step  

(c) vicinal-general 

FIG. 7. (a), (b), and (c) are surface growth parallels to the grain
boundaries of Figs. 5(a), 5(b), and 5(c), respectively. (a) represents a
layer-by-layer growth and (b) and (c) are vicinal surfaces that grow
via a step flow mechanism.

resemblance to concepts well known in surface growth. In
fact, this similarity largely inspired our study. In the past this
close connection between grain boundary migration and the
growth of crystalline surfaces was rarely utilized. However, to
understand the importance of the mesoscale structure/surface
morphology on growth rates of grain boundaries it is helpful
to connect to the vast knowledge that has been accumulated in
surface science. In the following we will therefore provide
a brief discussion about similarities, but also differences,
between the concepts in these two fields.

Island nucleation [Fig. 7(a)] is observed in surface growth
when deposition happens on flat close-packed surfaces
[e.g., (1 1 1) or (1 0 0) in fcc] with no step character (zero
or low miscut angles). In the terminology of surface epitaxy
this growth mode is referred to as layer by layer growth. When
the surface is vicinal to a low energy cusp orientation such
as (1 1 1), it may contain straight (faceted) steps along high
symmetry directions and grow via double kink nucleation and
propagation as indicated in Fig. 7(b). A more general vicinal
surface can contain geometrically necessary kink sites and
grow via the flow of kinks on the steps as shown in Fig. 7(c).
The growth modes via double kink nucleation and propagation
and the flow of kinks [Figs. 7(b) and 7(c)] are referred to as step
flow in surface epitaxy. These types of vicinal surfaces have
been observed using scanning tunneling microscopy under
equilibrium conditions [43] or during growth [44].

From a structural point of view and based on our observa-
tions in this study we can conclude that the flat grain boundary
equivalent of Fig. 7(a) is the symmetric tilt grain boundary
plane, in other words the plane of mirror symmetry between the
two crystals [30]. The grain boundary equivalent of Fig. 7(b)
is rarely observed and occurs only when a high symmetry
direction such as 〈1 2 1〉 exists between the two crystals and
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finally the equivalent of Fig. 7(c) is a grain boundary with steps
along a low symmetry direction in the bicrystal. The latter
case constitutes the majority of the grain boundary geometries
inspected in this study.

Despite the apparent geometric parallels, there are also
important qualitative differences between surface epitaxy and
grain boundary migration. Surface growth can be deemed as
a process farther from equilibrium and therefore long range
diffusion on surfaces plays an important role in determining
the growth modes. The growth modes can change regardless
of the original surface geometry whereas in grain boundary
migration a long range diffusion process is nonexistent and
atomic shuffling near the boundary is responsible for the
motion.

C. Comparison with experiment

Having an explicit analytical kinetic model for all three con-
sidered boundary types, i.e., flat, stepped, and kinked, enables
us to determine the migration barriers at the experimentally
relevant conditions (driving forces <1 MPa = 0.1 meV/atom).
Experimental studies of shear coupled motion on �7 bicrystals
in Al [25] resulted in activation energies in the range of 0.67
to 1.3 eV [black bar in Fig. 4(a)].

For the flat boundary the migration barriers are inversely
proportional to the driving forces as discussed in Sec. III B
and shown in Fig. 4(a) (red dashed line), i.e., they go to
infinity at vanishing driving forces. An extrapolation down
to 0.1 meV/atom yields a barrier of 90 eV. Having such a
barrier corresponds to one nucleation event per 101000 years
[using Eq. (3) with ν0 = 1013 1/s and T = 500 K]. Thus,
at experimental driving forces and below the roughening
temperature (above it the boundary would no longer be flat but
spontaneously form steps and kinks) a perfect flat boundary
would be completely immobile. The fact that this boundary is
found to migrate in experiments [25] indicates that the grain
boundary in the bicrystal is not perfectly symmetric down to
the atomistic scale but rather it contains structural defects such
as kinks or steps.

As derived in this study, for the stepped and kinked
boundaries the barriers at the experimental driving force limit
are ≈0.3 eV and ≈0.1 eV, respectively; Fig. 4. The former limit
is obtained from our double kink nucleation fit and the latter
from a constant linear fit (as the barrier does not depend on the
driving force). These barriers are substantially lower than the
experimental values, about a factor of 2 to 3 for the stepped
boundary and an order of magnitude for the kinked boundary.
Such large deviations are unlikely to be resolved by using
a better theoretical description (i.e., ab initio calculations).
However the impurity drag, as often speculated [45], can
contribute to this discrepancy. Even though the chemical purity
of experimental Al samples in Ref. [25] is close to 99.9995%,
segregation of impurity atoms to the boundary is not negligible.
They can pin the kink sites and alter the mechanisms and
barriers. A future avenue for this study is to investigate this
pinning effect in the motion of the kinked and stepped grain
boundaries.

Another possible explanation for the discrepancy has roots
in the theory of crystal growth: The kinked boundaries with
lower migration barriers grow fastest and thus are bound

to disappear first whereas the ones with high barriers will
prevail. A realistic macroscopic grain boundary plane contains
multiple plane inclinations and hence various step orientations.
The regions that contain a high kink density are expected to
quickly grow out of kinks. After some time the equilibrium
boundary will mainly consist of the steps with low kink
densities that require double kink nucleation with the highest
barriers to progress. The above picture provides an additional
source why the barriers for our fast moving kinked and stepped
boundaries are below the experimental data. Thus a more
systematic analysis of all relevant step configurations will be
an important topic for future studies.

V. CONCLUSIONS

We have investigated the migration kinetics of mixed tilt
and twist grain boundaries in the vicinity of a symmetric �7
tilt orientation. Performing a careful analysis we selected three
representative types of boundaries that, when relaxed, form
nanofacets/steps along different orientations. Steps along a
high symmetry direction in the bicrystal such as the 〈1 2 1〉 will
be straight whereas the ones along low symmetry directions
such as, e.g., 〈5 4 1〉 form geometrically necessary kinks. The
symmetric tilt grain boundary will have a step-free atomically-
flat structure.

We studied the migration behavior of these three boundary
types—atomically flat, stepped, and kinked—using size-
converged molecular dynamics simulations. Performing these
calculations for a wide range of driving-forces and tempera-
tures, we derived the dependence of the migration barrier as
a function of driving force. Our results show qualitatively dif-
ferent relations for the three grain boundaries. The respective
relations have been explained as a direct consequence of the
rate limiting atomic migration mechanisms: The nucleation of
islands or double kinks for the flat and stepped boundaries,
respectively, and propagation of the already existing kinks for
the kinked boundary. The absence of a nucleation mechanism
for the kinked boundary naturally explains its driving force-
independent migration barrier.

With the knowledge of the identified atomistic mechanisms,
we were able to analytically describe the driving force
dependence for the three representative boundaries. From the
analytic relations we obtained the asymptotic limits of the
migration barriers at zero driving force. While this value is
infinity for the flat boundary, we find finite values for the
two other interfaces, ≈0.3 eV for the stepped boundary and
≈0.1 eV for the kinked one. This knowledge enabled us to
discuss the migration barriers of grain boundaries at small
experimental driving forces without running prohibitively long
molecular dynamics simulations.

We have learned that inspecting the static mesoscale
structure of a specific boundary will be sufficient to identify
its structure, i.e., stepped or kinked, and therefore to predict
and model their respective migration behavior.

The approach introduced here to derive the asymptotic
behavior of the migration barrier for vanishing driving forces
based on the identification of the rate limiting atomistic
mechanism is general and can be applied to arbitrary grain
boundaries.
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