Eisenkatalysierte Aminierungsreaktionen von C-H- und C-C-Bindungen und ihre Anwendung in der Naturstoffsynthese

Von der Fakultät Chemie der Universität Stuttgart

zur Erlangung der Würde eines

Doktors der Naturwissenschaft (Dr. rer. nat.)

genehmigte Abhandlung

vorgelegt von Aslihan K. Eisele geb. Baykal

geboren am 01.12.1990 in Flensburg

Hauptberichter:

Prof. Dr. Bernd Plietker

Mitberichter:

Prof. Dr. René Peters

Tag der mündlichen Prüfung: 10. November 2020

Institut für Organische Chemie der Universität Stuttgart

2020

Die vorliegende Arbeit entstand auf Anregung und unter Anleitung von Herrn Prof. Dr. Bernd Plietker in der Zeit von März 2016 bis Juli 2020 an der Universität Stuttgart.

Teile der vorliegenden Dissertation wurden in folgenden Publikationen vorab veröffentlicht:

- "A Bu₄N[Fe(CO)₃(NO)]-Catalyzed Hemetsberger-Knittel-Indole Synthesis"
 A. Baykal, B. Plietker, Eur. J. Org. Chem. 2020, 2020, 1145-1147.
- "Nucleophilic Iron Complexes in Proton-Transfer Catalysis: An Iron-Catalyzed Dimroth Cyclocondensation"

A. Baykal, D. Zhang, J. Knelles, I. T. Alt, B. Plietker, Chem. Asian J. 2019, 14, 3003-3010.

- "The Polycyclic Polyprenylated Acylphloroglucinol Antibiotic PPAP 23 Targets the Membrane and Iron Metabolism in Staphylococcus aureus"
 H. Wang, F. Kraus, P. Popella, A. Baykal, C. Guttroff, P. François, P. Sass, B. Plietker, F. Götz, Front. Microbiol. 2019, 10, 14.
- "Polycyclic Polyprenylated Acylphloroglucinols: An Emerging Class of Non-Peptide-Based MRSA- and VRE-Active Antibiotics"
 C. Guttroff⁺, A. Baykal⁺, H. Wang, P. Popella⁺, F. Kraus, N. Biber, S. Krauss, F. Götz, B. Plietker, Angew. Chem. Int. Ed. **2017**, 56, 15852-15856.

 $\left[^{*}\right]$ Diese Autoren haben zu gleichen Teilen zu der Arbeit beigetragen.

Danksagung

An dieser Stelle möchte ich mich bei *Herrn Prof. Dr. Bernd Plietker* für die Aufnahme in den Arbeitskreis, die interessante Themenstellung, die hervorragenden Arbeitsbedingungen und die konstruktiven Gespräche, die zum Gelingen dieser Arbeit beigetragen haben, herzlich bedanken.

Außerdem bin ich dankbar für die Möglichkeit eines dreimonatigen Auslandsaufenthalts im Arbeitskreis von *Herrn Prof. Dr. Kilian Muñiz*, der leider viel zu früh verstorben ist. Ich werde seine Unterstützung sowie die zahlreichen Gespräche stets in positiver Erinnerung behalten.

Des Weiteren danke ich *Herrn Prof. Dr. René Peters* für die freundliche Übernahme des Koreferats und *Herrn Prof. Dr. Bernhard Hauer* für die Übernahme des Prüfungsvorsitzes.

Bei allen ehemaligen und aktuellen Kollegen des Arbeitskreises möchte ich mich für ein gutes Arbeitsklima und zahlreiche Aktivitäten außerhalb der Labore bedanken.

Ein großes Dankeschön geht an *Claudia Guttroff, Franziska Bächtle* und *Marie-Idrissa Picher* für die wunderbare Zeit im Großraumlabor mit passender musikalischer Untermalung.

Pascal Eisele, Fabian Rami, Johannes Teske und *Franziska Bächtle* danke ich für die sorgfältige Durchsicht dieser Arbeit und *Maria Luburic* sowie *Marina Fuhrer* und *Nicolai Bier* für die tatkräftige Unterstützung im Rahmen von Bachelor- und Forschungsarbeiten.

Weiterhin bedanke ich mich bei allen Analytikabteilungen der Universität Stuttgart, namentlich *Frau Dr. Garnier, Frau Twiehaus-Heynhold, Herr Wegner*, und *Herrn Trinkner* für die Messung unzähliger NMR- und Massenspektren. *Herrn Dr. Wolfgang Frey* danke ich für die Messungen meiner Röntgenstrukturen und *Herrn Dr. Johannes Lang* für die DFT-Berechnungen.

Besorders möchte ich mich bei meinen *Eltern* für ihre Unterstützung und ihren Rückhalt in allen Lebenslagen bedanken.

Abschließend danke ich *Pascal*, der alle Höhen und Tiefen dieses Studiums mit mir durchlebt hat. Danke für all deine Unterstützung und deine unendliche Geduld.

Meinen Eltern und Pascal

in Liebe und Dankbarkeit

"It always seems impossible until it's done."

Nelson Mandela

Inhaltsverzeichnis

Т	eil I		. 7
ΤI	heore	tischer Teil	. 7
1	Ein	leitung	19
	1.1	Vorkommen und Bedeutung stickstoffhaltiger Verbindungen	.19
	1.2	C-N-Bindungsbildung ausgehend von Aziden	.20
	1.3	Übergangsmetallkatalysierte Aminierung von C-H-Bindungen ausgehend von	
		Aziden	.23
	1.4	Übergangsmetallkatalysierte Aminierung von C-C-Bindungen ausgehend von	
		Aziden	.28
2	Dree	hlemetellung.	71
Z	Pro	blemstellung	31
3	TBA	A[Fe]-katalysierte Hemetsberger-Knittel-Reaktion	33
	3.1	Optimierung der Reaktionsbedingungen	.33
	3.2	Darstellung verschiedener Vinylazide	.37
	3.3	Substratspektrum der TBA[Fe]-katalysierten Hemetsberger-Knittel-Reaktion	
		ausgehend von Vinylaziden	.38
	3.4	Untersuchungen zum Reaktionsmechanismus	.42
	3.4.1	Umsetzung von Azirin 54 unter verschiedenen Reaktionsbedingungen	42
	3.4.2	Untersuchungen zum kinetischen Isotopeneffekt	. 43
	3.4.3	DFT-Berechnungen zur Aufklärung des Reaktionsmechanismus	. 45
	3.5	Zusammenfassung	.47
4	An	wendung der TBA[Fe]-katalysierten C-H-Aminierung in der	
	Nat	curstoffsynthese	49
	4.1	Stand der Forschung	.50
	4.2	Untersuchungen zur Anwendung der TBA[Fe]-katalysierten Hemetsberger-Knittel-	
		Reaktion in der Synthese von (+)-Catharanthin 105	.52
	4.2.1	Retrosynthesekonzept	52
	4.2.2	Untersuchungen zur Darstellung von Vinylazid 116	. 53

	4.3	Anwendung der TBA[Fe]-katalysierten C(sp ²)-H-Aminierung ausgehend von
		Arylaziden in der Synthese von (+)-Catharanthin 10558
	4.3.1	Retrosynthesekonzept
	4.3.2	Darstellung und TBA[Fe]-katalysierte C-H-Aminierung von Arylazid 153
	4.3.3	Studien zur direkten Vinylierung von Indol 15561
	4.3.4	Die Vinylierung vom vereinfachten Indol 15564
	4.4	Zusammenfassung
5	ТВ	A[Fe]-katalysierte Aminierung von C-C-Bindungen67
	5.1	TBA[Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von Iodaziden67
	5.1.1	Erste Überlegungen und Wahl des Testsubstrats67
	5.1.2	Optimierung der Reaktionsbedingungen70
	5.1.3	Vergleich mit anderen Systemen75
	5.1.4	Darstellung verschiedener Iodazide77
	5.1.5	Substratspektrum der TBA[Fe]-katalysierten Aminierung von C-C-Bindungen ausgehend von
		lodaziden
	5.1.6	Untersuchung der Wanderung des Methylethers zur Aufklärung des Reaktionsmechanismus 85
	5.1.7	Vorgeschlagener Mechanismus
	5.2	TBA[Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von Bromaziden 88
	5.2.1	Darstellung verschiedener Bromazide
	5.2.2	Substratspektrum der TBA[Fe]-katalysierten Aminierung von C-C-Bindungen ausgehend von
		Bromaziden
	5.2.3	Unterdrückung der Bildung von Chloroxazin-2-on
	5.3	Zusammenfassung97
6	ТВ	A[Fe]-katalysierte Dimroth-Cyclokondensation-C(sp ³)-H-
	Am	inierungssequenz99
	6.1	Stand der Forschung
	6.2	Vergleich der TBA[Fe]-katalysierten Dimroth-Cyclokondensation mit der
		1,3-dipolaren Cycloaddition
	6.3	Entwicklung der TBA[Fe]-katalysierten Dimroth-Cyclokondensation-C(sp ³)-H-
		Aminierungssequenz
	631	Optimierung der Reaktionsbedingungen
	6.3.2	Darstellung geeigneter Diazide
	6.3 3	Anwendung der TBA[Fe]-katalysierte Dimroth-Cyclokondensation-C(sn ³)-H-
	0.0.0	Aminierungsseguenz
	6.4	Zusammenfassung 111
	.	111

7	Dai	rstellung nicht-natürlicher PPAPs und erste Untersuch	ungen
	zur	Anwendung der Dimroth-Cyclokondensation	112
	7.1	Polycyclische Polyprenylierte Acylphloroglucinole (PPAPs)	112
	7.2	Darstellung nicht-natürlicher PPAPs und Untersuchungen ihrer biologisch	ien
		Eigenschaften	114
	7.2.1	Erste Überlegungen und Untersuchungen	
	7.2.2	Synthese nicht-natürlicher PPAPs und Untersuchung ihrer biologischen Eigenschaf	ften 115
	7.3	Untersuchungen zur Anwendung der TBA[Fe]-katalysierten Dimroth-	
		Cyclokondensation an PPAPs	121
	7.4	Zusammenfassung	122
~	_		
8	Zus	ammenfassung und Ausblick	124
Т	eil II		131
-			
E	xperir	nenteller Teil	131
0	٨Щ	romaina Informationan	122
9	Alle		
	9.1	Arbeitstechnik	133
	9.2	Lösungsmittel und allgemeine Chemikalien	
	9.3	Chromatographie	133
	9.3.1	Säulenchromatographie	
	9.3.2	Hochleistungsflüssigkeitschromatographie (HPLC)	134
	9.4	Verwendete Geräte	134
	9.4.1	NMR-Spektroskopie	134
	9.4.2	IR-Spektroskopie	
	9.4.3	Massenspektrometrie	
	9.4.4	Einkristallröntgendiffraktometrie	
	9.4.5	Photoreaktor	
1	о тр/	NEOl kotolyciarta Hamatabargar Knittal Baaktian	126
T,		A[rej-katalysielte Hemetsberger-Kinttel-Keaktion	150
	10.1	Darstellung von [Bu ₄ N][Fe(CO) ₃ (NO)] – TBA[Fe] 26 ^[35,128]	136
	10.2	Optimierung der TBA[Fe]-katalysierten Hemetsberger-Knittel-Reaktion	136
	10.3	Darstellung verschiedener α-Azide	138
	10.4	Darstellung verschiedener Vinylazide	140

10.5	Substratspektrum der TBA[Fe]-katalysierten Hemetsberger-Knittel-Reaktion				
	ausge	hend von Vinylaziden	154		
10.6	Unter	suchungen zum Reaktionsmechanismus	165		
10.6	5.1 U	msetzung von Azirin 54 unter verschiedenen Reaktionsbedingungen	165		
1	LO.6.1.1	Darstellung von Azirin 54 ^[31]	166		
1	LO.6.1.2	TBA[Fe]-katalysierte Umsetzung von Azirin 54	166		
1	LO.6.1.3	Rh2(O2CC3F7)4-katalysierte Umsetzung von Azirin 54	166		
1	LO.6.1.4	Fe(OTf) ₂ –katalysierte Umsetzung von Azirin 54	167		
10.6	5.2 U	ntersuchungen zum kinetischen Isotopeneffekt	167		
1	10.6.2.1	Darstellung von (Z)-2-Azid-3-(phenyl-2-d)methylacrylat 51-d ₁	167		
1	10.6.2.2	TBA[Fe]-katalysierte Hemetsberger-Knittel-Reaktion von Azid 51-d ₁	169		

11 Anwendung der TBA[Fe]-katalysierten C-H-Aminierung in der

Natur	stoffsynthese	171
1.1 Un	ersuchungen zur Darstellung von Vinylazid 116	171
11.1.1	Darstellung von 3-Brom-1-phenylpropan-1-on 122	171
11.1.2	Weiterführende Untersuchungungen zur Darstellung des Modellsubstrats 124	172
1.2 Anv	vendung der TBA[Fe]-katalysierten C(sp ²)-H-Aminierung ausgehend von	
Ary	laziden in der Synthese von (+)-Catharanthin 105	176
11.2.1	Darstellung und TBA[Fe]-katalysierte C-H-Aminierung von Arylazid 153	176
11.2.2	Studien zur direkten Vinylierung von Indol 155	184
11.2.2.	1 Darstellung verschiedener Alkine	184
11.2.2.	2 Studien zur Hg(OTf) ₂ -katalysierten Vinylierung von Indol 155	187
11.2.2.	3 Studien zur Pd-katalysierten Vinylierung von Indol 155	191
11.2.3	Die Vinylierung vom vereinfachten Indol 155	192
TBA[F	e]-katalysierte Aminierung von C-C-Bindungen	194
TBA[F 2.1 TB/	e]-katalysierte Aminierung von C-C-Bindungen	 194 194
TBA[F 2.1 TBA 12.1.1	e]-katalysierte Aminierung von C-C-Bindungen [Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von Iodaziden. Optimierung der Reaktionsbedingungen	 194 194 194
TBA[F 2.1 TBA 12.1.1 12.1.2	e]-katalysierte Aminierung von C-C-Bindungen [Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von Iodaziden. Optimierung der Reaktionsbedingungen Vergleich mit anderen Systemen	 194 194 194 195
TBA[F 2.1 TBA 12.1.1 12.1.2 12.1.3	e]-katalysierte Aminierung von C-C-Bindungen [Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von Iodaziden. Optimierung der Reaktionsbedingungen Vergleich mit anderen Systemen Darstellung verschiedener terminaler Alkine	194 194 194 195 196
TBA[F 2.1 TBA 12.1.1 12.1.2 12.1.3 12.1.3.	e]-katalysierte Aminierung von C-C-Bindungen [Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von Iodaziden. Optimierung der Reaktionsbedingungen Vergleich mit anderen Systemen Darstellung verschiedener terminaler Alkine	194 194 194 195 196 196
TBA[F 2.1 TBA 12.1.1 12.1.2 12.1.3 12.1.3. 12.1.3.	e]-katalysierte Aminierung von C-C-Bindungen [Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von Iodaziden. Optimierung der Reaktionsbedingungen Vergleich mit anderen Systemen Darstellung verschiedener terminaler Alkine 1 Darstellung der Trimethylsilylalkine 2 Darstellung der terminalen Alkine	
TBA[F 2.1 TBA 12.1.1 12.1.2 12.1.3 12.1.3. 12.1.3. 12.1.4	e]-katalysierte Aminierung von C-C-Bindungen [Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von Iodaziden. Optimierung der Reaktionsbedingungen Vergleich mit anderen Systemen. Darstellung verschiedener terminaler Alkine Darstellung der Trimethylsilylalkine Darstellung der terminalen Alkine Darstellung verschiedener Ketoester	
TBA[F 2.1 TBA 12.1.1 12.1.2 12.1.3 12.1.3 12.1.3 12.1.4 12.1.5	e]-katalysierte Aminierung von C-C-Bindungen [Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von Iodaziden. Optimierung der Reaktionsbedingungen Vergleich mit anderen Systemen Darstellung verschiedener terminaler Alkine Darstellung der Trimethylsilylalkine Darstellung der terminalen Alkine Darstellung verschiedener Ketoester Optimierung der Iodazidierung	
TBA[F 2.1 TBA 12.1.1 12.1.2 12.1.3 12.1.3 12.1.3 12.1.4 12.1.5 12.1.6	e]-katalysierte Aminierung von C-C-Bindungen [Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von Iodaziden. Optimierung der Reaktionsbedingungen Vergleich mit anderen Systemen Darstellung verschiedener terminaler Alkine Darstellung der Trimethylsilylalkine Darstellung der terminalen Alkine Darstellung verschiedener Ketoester Optimierung der Iodazidierung Darstellung verschiedener Iodazide	
TBA[F 2.1 TBA 12.1.1 12.1.2 12.1.3 12.1.3. 12.1.3. 12.1.4 12.1.5 12.1.6 12.1.7	e]-katalysierte Aminierung von C-C-Bindungen ausgehend von Iodaziden. [Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von Iodaziden. Optimierung der Reaktionsbedingungen	
	Naturs 1.1 Unt 11.1.1 11.1.2 1.2 Anv Ary 11.2.1 11.2.2 11.2.2.3 11.2.2.3	 Naturstoffsynthese 1.1 Untersuchungen zur Darstellung von Vinylazid 116 11.1 Darstellung von 3-Brom-1-phenylpropan-1-on 122 11.1.2 Weiterführende Untersuchungungen zur Darstellung des Modellsubstrats 124 1.2 Anwendung der TBA[Fe]-katalysierten C(sp²)-H-Aminierung ausgehend von Arylaziden in der Synthese von (+)-Catharanthin 105 11.2.1 Darstellung und TBA[Fe]-katalysierte C-H-Aminierung von Arylazid 153 11.2.2 Studien zur direkten Vinylierung von Indol 155 11.2.2.1 Darstellung verschiedener Alkine 11.2.2 Studien zur Hg(OTf)₂-katalysierten Vinylierung von Indol 155 11.2.3 Studien zur Pd-katalysierten Vinylierung von Indol 155 11.2.3 Die Vinylierung vom vereinfachten Indol 155

12.2	ТВА	[Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von Bromazide	n229
12	.2.1	Darstellung verschiedener Monoalkyloxalylchloride	229
12	.2.2	Darstellung verschiedener terminaler Alkine	231
	12.2.2.1	Darstellung der Trimethylsilylalkine	231
	12.2.2.2	Darstellung der terminalen Alkine	232
12	.2.3	Darstellung verschiedener Ketoester	234
12	.2.4	Darstellung verschiedener Bromazid	239
12	.2.5	Substratspektrum der TBA[Fe]-katalysierten Aminierung von C-C-Bindungen ausgehend v	on
		Bromaziden	244
12	.2.6	Unterdrückung der Bildung von Chloroxazin-2-on	249
13 TI	BA[Fe	e]-katalysierte Dimroth-Cyclokondensation-C(sp ³)-H-	
A	minie	erungssequenz	. 251
13.1	Ver	gleich der TBA[Fe]-katalysierten Dimroth-Cyclokondensation mit der	
	1,3-	dipolaren Cycloaddition	251
13.2	Entv	wicklung der TBA[Fe]-katalysierten Dimroth-Cyclokondensation-C(sp ³)-H-	
	Ami	nierungssequenz	252
13	.2.1	Darstellung verschiedener Azide	252
13	.2.2	Optimierung der Reaktionsbedingungen	253
13	.2.3	Darstellung geeigneter Diazide	255
	13.2.3.1	Darstellung von Diazid 266	255
	13.2.3.2	Darstellung von Diazid 268	257
	13.2.3.3	Untersuchungen zur Darstellung von Diazid 270	
13	.2.4	Darstellung von Keton 283	262
13	.2.5	Anwendung der TBA[Fe]-katalysierten Dimroth-Cyclokondensation-C(sp ³)-H-	
		Aminierungssequenz	263
14 D	arste	llung nicht-natürlicher PPAPs und erste Untersuchunge	n
Ζl	ır An	wendung der Dimroth-Cyclokondensation	. 266
14.1	Dars	stellung des Cyclisierungsvorläufers <i>cis</i> -299	266
14.2	Dars	stellung nicht-natürlicher PPAPs	272
14	.2.1	Dieckmann-Kondensation und anschließende C-Acvlierung	272
14	.2.2	Kreuzmetathese der nicht-natürlichen PPAPs	
14.3	Unt	ersuchungen zur Anwendung der TBA[Fe]-katalysierten Dimroth-	
	Cucl	okondensation an PPAPs	200
	Cyci		

Teil III				
Anhan	g			
15 Ab	stract (deutsch)			
16 Ab	stract (english)			
17 Ab	kürzungsverzeichnis			
18 DF	T-Berechnungen	292		
18.1	Methoden			
18.2	XYZ-Koordinaten			
19 Rö	ntgenstrukturanalysen	298		
19.1	Röntgenstrukturdaten von Indol 155			
19.2	Röntgenstrukturdaten von Triazol 174			
19.3	Röntgenstrukturdaten von Iodoxazin-2-on 175-A			
19.4	Röntgenstrukturdaten von Iodoxazin-4-on 175-B			
19.5	Röntgentrukturdaten von Iodoxazindion 175-C			
19.6	Röntgenstrukturdaten von Iod-/Chloroxazin-2-on 175-A & 178			
19.7	Röntgenstrukturdaten von Iodoxazindion 215			
19.8	Röntgenstrukturdaten von Alkin 216			
19.9	Röntgenstrukturdaten von Bromazid 227	351		
19.10	Röntgenstrukturdaten von Bromazid 231	354		
19.11	Röntgenstrukturdaten von Brom-/Chloroxazin-2-on 248 & 249			
19.12	Röntgenstrukturdaten von Bromoxazin-4-on 252			
19.13	Röntgenstrukturdaten von Triazolindolin 284			
20 Lit	eratur			

TEIL I

Theoretischer Teil

1 Einleitung

1.1 Vorkommen und Bedeutung stickstoffhaltiger Verbindungen

Stickstoffatome kommen in einer Vielzahl von natürlich vorkommenden sowie synthetisch hergestellten Verbindungen vor (siehe Schema 1.1).^[1] So ist das Auftreten von stickstoffhaltigen Verbindungen in Aminosäuren oder Nukleobasen und deren Verwendung in der Biosynthese von Nukleinsäuren oder Proteinen für alle lebenden Organismen essenziell.^[2]

Schema 1.1: Vorkommen und Anwendung von stickstoffhaltigen Verbindungen.

Auch in Naturstoffen sind Stickstoffatome allgegenwärtig und stehen in Zusammenhang mit den oft interessanten biologischen Eigenschaften dieser Verbindungen.^[2a] Ein Beispiel ist die Naturstofffamilie der Vincaalkaloide **3**, die für ihre antikanzerogenen Eigenschaften bekannt sind.^[3] Synthetisch hergestellte stickstoffhaltige Verbindungen finden außerdem Anwendung in Pharmaka wie der Triazolverbindung Rufinamid **4**, die als Wirkstoff für die Behandlung von Epilepsie eingesetzt wird.^[4] Auch in der Agrochemie sind diese Verbindungen nicht mehr wegzudenken und werden beispielsweise, wie etwa das Herbizid Fenquinotrion **5**, zur Verbesserung der Agrarwirtschaft verwendet.^[5] Die breite Anwendbarkeit dieser Verbindungen kann auf zwei wichtige Eigenschaften des Stickstoffatoms zurückgeführt werden. Zum einen kann der Stickstoff aufgrund seines freien Elektronenpaares eine positive Ladung gut stabilisieren. Diese Eigenschaft ermöglicht es ihm außerdem als Wasserstoffbrückenakzeptor, aber auch als Wasserstoffbrückendonor zu fungieren.^[2a] Die Suche nach neuen Methoden zur Knüpfung einer C-N-Bindung ist daher von großer Bedeutung.^[6] Neben der Verwendung von Aminen und Amiden

in Anwesenheit von starken Oxidationsmitteln haben sich Nitrenvorläufer wie Iminoiodinane und vor allem Azide für die C-N-Bindungsbildung als überaus effektive Stickstoffquellen erwiesen.^[7]

1.2 C-N-Bindungsbildung ausgehend von Aziden

Azide sind seit der ersten Synthese eines organischen Azids im Jahr 1864 durch *Grieß*^[8] als vielseitige Verbindungen nicht mehr aus der organischen Chemie wegzudenken.^[9] Vor allem ihre Anwendung zur Darstellung von 1,2,3-Triazolen durch die sogenannte Click-Chemie ist z. B. in der Wirkstoffforschung von großer Bedeutung.^[10] Früh stellte sich außerdem heraus, dass Azide unter thermischer oder photochemischer Zersetzung als Nitrenvorläufer eingesetzt werden können, wobei als einziges Nebenprodukt Stickstoffgas entsteht.^[7b,9,11] Diese Eigenschaft ist, neben der einfachen Synthese von organischen Aziden, von Vorteil bei der Verwendung von Aziden als Nitrenvorläufer. Dabei stellte man fest, dass Nitrene in Singulett- und Triplettnitrene unterteilt werden können (siehe Schema 1.2).^[9] Erstere zeichnen sich durch zwei gepaarte Elektronen in einem p-Orbital aus, wodurch ein p-Orbital unbesetzt ist. Triplettnitrene hingegen besitzen zwei ungepaarte Elektronen in zwei verschiedenen p-Orbitalen.^[12]

Schema 1.2: Thermolyse oder Photolyse von Aziden zur Darstellung von Nitrenen.^[7b,12b]

Die Hemetsberger-Knittel-Reaktion beschreibt die Möglichkeit unter thermischen Bedingungen ausgehend von Vinylaziden **6** substituierte Indole **8** zu synthetisieren (siehe Schema 1.3).^[13] Wie von *Hemetsberger* und *Knittel* beschrieben, erfolgt die Umsetzung von Vinylazid **6** zum entsprechenden Indol **8** in einem zweistufigen Prozess, in dem zunächst Azirin **7** bei 80 °C über das entsprechende Nitren gebildet wird, welches anschließend bei 140 °C zu Indol **8** umgewandelt wird.^[13] Auch bei Arylaziden konnte die Nitrenbildung ausgenutzt werden, um diese unter harschen Bedingungen (ca. 190 °C oder *hv*) in die entsprechenden Indole, Carbazole und Indoline zu überführen.^[14]

Schema 1.3: Thermische Umsetzung von Vinylazid 6 zu Indol 8 nach Hemetsberger^[13a] und Knittel^[13b].

Neben C-H-Bindungen konnten auch C-C-Bindungen unter Zersetzung von Aziden aminiert werden.^[9] Die Photolyse von Phenylazid **9** führt beispielsweise zur Bildung des Singulett-Phenylnitrens **10**, das zu einer Vielzahl möglicher Produkte umgewandelt werden kann.^[9,15] Unter anderem kann durch eine Umlagerung und nukleophilen Angriff ein Azepin **13** gebildet werden (siehe Schema 1.4).^[16] Durch Intersystemcrossing kann das Singulett-Phenylnitren **10** in das Triplettnitren umgewandelt werden. Eine anschließende Dimerisierung liefert das entsprechende Diazen.^[9,17]

Schema 1.4: Darstellung von Azepin 13 ausgehend von Phenylazid 9.^[9]

Ein weiteres Beispiel konnte *Bock* durch die Thermolyse bzw. Pyrolyse von Alkylaziden aufzeigen.^[18] Diese Variante der Schmidt-Reaktion führt zur Darstellung von Iminen (siehe Schema 1.5).^[9] Die Reaktion verläuft entweder über die Bildung eines Nitrens **15**, das durch eine 1,2-Migration des Restes R¹ zum Imin umgelagert wird, oder über einen konzertierten Reaktionsverlauf, in welchem die Migration und die Bildung des Stickstoffgases gleichzeitig erfolgen.^[9,18]

Schema 1.5: Darstellung von Iminen durch die Gasphasenpyrolyse von Alkylaziden 14 nach Bock.^[9,18]

Diese intramolekulare Schmidt-Reaktion konnte beispielsweise in der Totalsynthese von (-)-Indolactam V **19** von *Moody* eingesetzt werden (siehe Schema 1.6).^[19] Hierbei wurde als Schlüsselschritt der Synthese Azid **17** durch Lichtbestrahlung in Imin **18** überführt.

Schema 1.6: Anwendung der Schmidt-Reaktion in der Totalsynthese von (-)-Indolactam V 19.^[9,19]

Diese traditionellen Methoden benötigen jedoch oft harsche Reaktionsbedingungen. Aufgrund der hohen Reaktivität von Nitrenen treten unter thermischen bzw. photochemischen Bedingungen außerdem oft Produktgemische oder Zersetzungen auf.^[7b,11c]

Abhilfe schafft seit einigen Jahren die Verwendung von Übergangsmetallkatalysatoren zur Stabilisierung des Nitrens.^[7b,11c,20] Dabei wird unter Stickstoffextrusion in einem intra- oder intermolekularen Reaktionsverlauf eine C-H- oder C-C-Bindung aminiert (siehe Schema 1.7).^[7b]

Schema 1.7: Übergangsmetallkatalysierte C-N-Bindungsbildung ausgehend von Aziden.

Hauptsächlich wurden dafür zunächst Edelmetalle wie Rhodium^[21], Iridium^[22] oder Ruthenium^[23] verwendet. Doch in den letzten Jahren wurden Aminierungen entwickelt, in denen statt eines Edelmetallkatalysators ein Eisenkatalysator verwendet wurde.^[7c,24] Die Verwendung von Eisenkatalysatoren hat dabei einige Vorteile.^[25] Zum einen ist Eisen nach Aluminium das am häufigsten auftretende Metall in der Erdkruste, weshalb der Preis deutlich unter dem der Edelmetalle

liegt.^[25,26] Zum anderen weisen Eisenverbindungen oft eine höhere Biokompatibilität auf, da Eisen ein wichtiger Bestandteil vieler biologischer Systeme wie z. B. Häm oder Porphyrin ist.^[25-27] Doch längst ist, neben der Verwendung von Eisenkatalysatoren zur Verbesserung bestehender Prozesse, auch die Suche nach neuen Anwendungsmöglichkeiten von Eisenkatalysatoren unter milden Reaktionsbedingungen in den Fokus gerückt.

1.3 Übergangsmetallkatalysierte Aminierung von C-H-Bindungen ausgehend von Aziden

Die übergangsmetallkatalysierte C-H-Aminierung basiert auf zwei Hauptstrategien: der C-H-Insertion und der C-H-Aktivierung (siehe Schema 1.8).^[7a,7c] Bei der Verwendung von Aziden als Nitrenvorläufer findet vor allem die C-H-Insertion Anwendung. Die C-H-Aktivierung wurde hingegen nur in wenigen Beispielen untersucht.^[20b] Hervorzuheben ist hierbei die Arbeitsgruppe um *Chang*, die herausragende Arbeit auf dem Gebiet der intermolekularen übergangsmetallkatalysierten C-H-Aminierungen ausgehend von Aziden geleistet hat.^[20b,28]

Schema 1.8: Hauptstrategien der übergangsmetallkatalysierten C-H-Aminierung ausgehend von Aziden.^[7]

Der mechanistische Verauf dieser Reaktion sieht zunächst die Aktivierung einer C-H-Bindung durch eine oxidative Insertion des Katalysator vor, wodurch in Anwesenheit einer dirigierenden

Gruppe ein metallacyclisches Intermediat ausgebildet wird. Dieses Intermediat reagiert mit dem Azid unter Ausbildung einer neuen C-N-Bindung. Bei der C-H-Insertion wird hingegen erst eine Metall-Nitren-Spezies gebildet, die anschließend unter Insertion in eine C-H-Bindung die neue C-N-Bindung ausbildet.^[20b]

Die Arbeitsgruppe um *Driver* ist führend auf dem Gebiet der übergangsmetallkatalysierten Aminierung von C-H-Bindungen ausgehend von Aziden. Hierbei wurden vor allem Rhodiumdimer-^[21a-d,29] oder Eisenkatalysatoren^[30] für die C-H-Aminierung verwendet.

2007 veröffentlichte *Driver* die rhodiumdimerkatalysierte Hemetsberger-Knittel-Reaktion (siehe Schema 1.9 a)).^[21a] Unter milden Bedingungen konnte unter Verwendung von 3 - 5 mol-% des Katalysators Rh₂(O₂CC₃F₇)₄ verschiedene Indole **21** in guten bis sehr guten Ausbeuten, ausgehend von Vinylaziden **20**, erhalten werden.

a) *Driver* (2007): Rh₂(O₂CC₃F₇)₄ (3 - 5 mol-%), Toluol, 30 - 60 °C, 16 h

b) <u>Che</u> (2010): [Fe(F₂₀TPP)CI] (2 mol-%), 1,2-Dichlorethan, Rückfluss, 18 - 48 h

c) *Bolm* (2011): Fe(OTf)₂ (10 mol-%), THF, 80 °C, 24 h

Schema 1.9: Übergangsmetallkatalysierte Aminierung von C(sp²)-H-Bindungen ausgehend von Vinylaziden **20**.^[31]

Schon drei Jahre später entwickelte *Che* die erste eisenkatalysierte Variante der Hemetsberger-Knittel-Reaktion.^[32] Dabei konnte ein Eisen-Porphyrin-Komplex für die Aminierung erfolgreich an neun Beispielen mit sehr guten Ausbeuten, wenn auch mit einer Reaktionszeit von bis zu 48 Stunden, angewendet werden (siehe Schema 1.9 b)). Im darauffolgenden Jahr konnte *Bolm* das elektrophile Fe(OTf)₂ in der Synthese von 16 Indolen einsetzen (siehe Schema 1.9 c)).^[33] Hierbei zeichnete sich diese Methode durch einen kommerziell erhältlichen Katalysator, eine hohe Toleranz gegenüber funktionellen Gruppen und eine zum Teil kürzere Reaktionszeit im Vergleich zu dem von *Che*^[32] entwickelten System aus.^[33] Nach der Anwendung der rhodiumdimerkatalysierten Hemetsberger-Knittel-Reaktion, konnte *Driver* das System auf die intramolekulare Bildung einer C-N-Bindung ausgehend von Arylaziden **22** ausweiten (siehe Schema 1.10 a)).^[21b,29a] Dabei wurden Indole und Carbazole unter milden Reaktionsbedingungen mit bis zu 98 % Ausbeute erhalten. *Che* konnte auch für diese Reaktion das [Fe(F₂₀TPP)Cl]-System verwenden.^[32] Jedoch wurden dabei nur *o*-Azidzimtsäuremethylester in die entsprechenden Indole umgewandelt.

2016 gelang es *Alt* und *Plietker* eine eisenkatalysierte Variante zur Darstellung von Carbazolen zu entwickeln.^[34] Erstmals wurde dabei ein nukleophiler Eisenkatalysator für die intramolekulare Aminierung von C-H-Bindungen verwendet. Hierbei konnte ausgehend von Arylaziden **22** unter Mikrowellenstrahlung in Anwesenheit von Tetra-*n*-butylammonium-*tris*-carbonylnitrosylferrat [Bu₄N][Fe(CO)₃(NO)] **26**, kurz TBA[Fe], eine intramolekulare C(sp²)-H-Aminierung durchgeführt werden (siehe Schema 1.10 b)). Dabei wurden neben Carbazolen auch Indole erhalten. Die Methode zeichnete sich durch eine hohe Toleranz gegenüber verschiedensten funktionellen Gruppen, milde Reaktionsbedingungen und einen einfach herzustellenden Katalysator aus.^[34,35]

Schema 1.10: Übergangsmetallkatalysierte C(sp²)-H-Aminierung von Arylaziden 22.^[21b,29a,34,36]

Untersuchungen zur Aufklärung des Reaktionsmechanismus zeigten, dass beide Systeme einem ähnlichen Mechanismus folgen.^[34,36] Dabei wird zunächst unter Freisetzung von Stickstoffgas eine Metall-Nitren-Spezies gebildet, die durch die zwitterionische mesomere Grenzstruktur **24** dargestellt werden kann. Durch einen Metall-zu-Ligand-Ladungstransfer kommt es zur Cyclisierung und zur Bildung von Intermediat **25**, welches nach einer 1,5-Hydrid-Verschiebung in Carbazol **23** überführt wird.^[34]

Driver gelang als einem der Ersten eine Aminierung von unreaktiven aliphatischen $C(sp^3)$ -H-Bindungen durch die Verwendung katalytischer Mengen an $Rh_2(esp)_2$ zur Darstellung von Indolinen **28** (siehe Schema 1.11 a)).^[29c] Im Jahr 2009 war es ihm bereits gelungen eine iridiumkatalysierte Variante zu entwickeln.^[22a] Dabei war das Substratspektrum auf benzylische C-H-Bindungen mit R⁴ = Aryl begrenzt. Durch die Veröffentlichung des Rhodiumdimersystems konnte das Susbstratspektrum auf aliphatische Reste erweitert werden.^[29c] Es folgte 2010 die [Fe(F₂₀TPP)CI]-katalysierte Methode von *Che*^[32] und 2015 die cobaltkatalysierte Methode von *MacBeth*^[37]. Doch auch diese Methoden sind auf benzylische C-H-Bindungen beschränkt.

Nach dem erfolgreichen Einsatz des nukleophilen Eisenkatalysators TBA[Fe] **26** in der C(sp²)-H-Aminierung konnten *Alt* und *Plietker* das System in abgewandelter Form in der intramolekularen Aminierung von C(sp³)-H-Bindungen anwenden (siehe Schema 1.11 b)).^[38] Es konnten hochsubstituierte Indoline **28** aus den entsprechenden Arylaziden **27** in sehr guten Ausbeuten synthetisiert werden. Außerdem konnte bei der Aminierung benzylischer C-H-Bindungen die bevorzugte Bildung von Tetrahydrochinolinen **29** beobachtet werden.^[39]

a) <u>Driver</u> (2012): Rh₂(esp)₂ (5 mol-%), Boc₂O (1 Äq.), Toluol, 120 °C, 16 h
b) <u>Plietker</u> (2017): 1) TBA[Fe] **26** (2.5 mol-%), 1,2-Dichlorethan (20 mol-%), DMF, 120 °C (MW, 200 W), 1 h
2) Boc₂O (1.2 Äq.), RT, ü. N.

Neben der Verwendung von Eisenkatalysatoren in bereits bekannten Prozessen konnte *Betley* 2013 eine neuartige Anwendungsmöglichkeit eines Eisenkatalysators aufzeigen.^[40] Ausgehend von aliphatischen Aziden **30** konnte in Anwesenheit eines high-spin Eisen-Dipyrinato-Komplexes **32** selektiv die C(sp³)-H-Aminierung beobachtet werden (siehe Schema 1.12 a)). Es wurde postuliert, dass durch die Oxidation des Katalysators **32**, herbeigeführt durch das Alkylazid **30**, ein Eisen(III)-Imido-Radikal gebildet wird, welches in einer Hoffman-Löffler-Freytagartigen Reaktion zum 1,5-HAT führt. Nach einer Rekombination der Radikale wird schließlich das Pyrrolidin **31** gebildet.^[40]

a) <u>Betley</u> (2013): [Fe] **32** (20 mol-%), Boc₂O (1 Äq.), Benzol, 65 °C, 12 h b) <u>Lin</u> (2016): [Fe] **33** (5 mol-%), Boc₂O (10 Äq.), Benzol, 90 °C, 48 h c) <u>de Bruin/van der Vlugt</u> (2017): [Fe] **34** (5 mol-%), Boc₂O (1 Äq.), Benzol, 100 °C, 24 h

Schema 1.12: Eisenkatalysierte Aminierung von C(sp³)-H-Bindungen ausgehend von aliphatischen Aziden **30**.^[40,41]

Es folgten weitere eisenkatalysierte Varianten dieser Reaktion wie die MOF-immobilisierte Variante von *Lin*^[41a], mit der eine bessere TON im Vergleich zu *Betleys* System^[40] erhalten wurde oder das System von *de Bruin/van der Vlugt*^[41b], das sich durch einen luftstabilen Fe(III)-Komplex mit redoxaktivem NNO-Liganden auszeichnet (siehe Schema 1.12 b) und c)). Außerdem gelang *Betley* durch die Weiterentwicklung seines Katalysators die Veröffentlichung einer eisenkatalysierten, diastereoselektiven C(sp³)-H-Aminierung.^[42] Im Vergleich zu den später entwickelten Varianten der C(sp³)-H-Aminierung von *van der Vlugt* (Pd(II)-Komplex)^[43] und

de Bruin (Cobalt-Porphyrin-Komplex)^[44] wurde deutlich, dass die eisenbasierten Systeme den edleren Übergangsmetallen in nichts nachstehen.

Neben der intramolekularen C-H-Aminierung gelang *Betley* auch die intermolekulare C-H-Aminierung in Anwesenheit von Eisenkatalysator **32** oder **38** zur Ausbildung von benzylischen Aminen **37** (siehe Schema 1.13).^[45] Zuvor waren nur Edelmetallkomplexe als Katalysatoren für diese Aminierung verwendet worden.^[46] Damit konnte *Betley* eine weitere eisenkatalysierte C-H-Aminierung als Alternative für ein edelmetallbasiertes System aufzeigen.

Schema 1.13: Intermolekulare eisenkatalysierte Aminierung von benzylischen C-H-Bindungen nach Betley.^[45]

1.4 Übergangsmetallkatalysierte Aminierung von C-C-Bindungen ausgehend von Aziden

Eine der ersten übergangsmetallkatalysierten Aminierungen von C-C-Bindungen konnte *Bach* bereits 2001 in einer intramolekularen eisenkatalysierten Aminochlorierung von C-C-Doppelbindungen ausgehend von Alkenoxycarbonylaziden aufzeigen (siehe Schema 1.14).^[47] Es wurde postuliert, dass eine eisenvermittelte Zersetzung des Azidoformats **39** das Eisen-Nitren **41** bildete, das nach einer 5-*exo*-trig Cyclisierung in Radikal **42** überführt wurde. Es wurde angenommen, dass die darauffolgende Chlorierung intramolekular erfolgte, wobei diese langsamer war als die Rotation der Bindung. In Anwesenheit von Trimethylsilylchlorid wurde der Katalysator regeneriert und ein Gemsich aus 4,5-disubstituierten Oxazolidinonen *cis*-**40** und *trans*-**40** erhalten. ^[11c,47]

Das in der Literatur am stärksten untersuchte Teilgebiet der übergangsmetallkatalysierten Aminierung von C-C-Bindungen ausgehend von Aziden, ist die Aziridinierung von C-C-Doppelbindungen.^[11c] Hierbei wurden vor allem ruthenium- und eisenkatalysierte Methoden entwickelt, in denen die Ausbildung einer Metall-Nitren-Spezies postuliert wird.^[48]

Schema 1.14: Intramolekulare eisenkatalysierte Aminochlorierung von C-C-Doppelbindungen nach Bach.^[11c,47]

Die Arbeitsgruppe um *Cenini* entwickelte 2008 eine Ru(TPP)CO-katalysierte Methode zur Aziridinierung von Styrolen mit Arylaziden (siehe Schema 1.15 a)).^[49] Dabei zeichnete sich dieses System durch eine geringe Katalysatorladung und eine überwiegend schnelle Reaktionszeit aus. Im Jahr 2011 konnte *Betley* den high-spin Eisenkomplex **32** für die Aziridinierung verschiedener Styrole einsetzen (siehe Schema 1.15 b)).^[45b] Dabei wurden neben Arylaziden auch Alkylazide in guten bis sehr guten Ausbeuten erfolgreich in der Reaktion verwendet. Im Vergleich zum rutheniumkatalysierten System von *Cenini*^[49] wurde zwar eine erhöhte Katalysatorladung benötigt, jedoch konnten deutlich mildere Reaktionsbedingungen verwendet werden.^[45b]

Im selben Jahr konnte *Jenkins* die Aziridinbildung ausgehend von unreaktiven, aliphatischen Alkenen durch den Einsatz eines Tetracarben-Eisen-Komplexes **46** erreichen (siehe Schema 1.15 c)).^[50] Hierbei wurde nicht nur eine deutlich geringere Katalysatorladung benötigt, der Katalysator konnte außerdem nach vollständigem Umsatz des Substrats bis zu drei Mal mit nur geringem Rückgang der Aktivität in der Ausbeute wiederverwendet werden. Des Weiteren konnte die Arbeitsgruppe um *Che* eine eisenkatalysierte Aziridinierung von Olefinen mit Sulfonylaziden entwickeln.^[51] Dabei wurde durch Zufuhr von Wärme bzw. Mikrowellenstrahlung

die Aziridinierung durch den Eisen-Porphyrin-Komplex [Fe(F₂₀TPP)Cl] katalysiert und Ausbeuten bis zu 95 % erzielt.

Schema 1.15: Übergangsmetallkatalysierte Aziridinierung von Styrolen und Olefinen.^[45b,49]

Eine neue Anwendungsmöglichkeit eines Eisenkatalysators in der Aminierung von C-C-Bindungen konnte die Arbeitsgruppe um *Yu* 2018 aufzeigen.^[52] In Anwesenheit von FeBr₂ und Ligand L1 konnte ausgehend von verschiedenen α -Azidketonen **47** unter Stickstoffextrusion eine Aminierung von C-C-Bindungen durch 1,2-Migration beobachtet werden (siehe Schema 1.16). Dabei wurde zunächst die Ausbildung der Eisen-Nitren-Spezies **49** postuliert, die durch eine Migration des endocyclischen Acylrestes vom Kohlenstoff- zum Stickstoffatom über Intermediat **50** zum entsprechenden Isochinolin **48** umgewandelt wurde. Neben dieser Anwendung konnte die Methode außerdem zur Synthese verschiedener linearer und cyclischer Enamide und 2-Benzazepin-1-one genutzt werden.^[52]

Schema 1.16: Intramolekulare FeBr₂-katalysierte Aminierung von C-C-Bindungen nach Yu.^[52]

2 Problemstellung

Wie in der Einleitung dargestellt, gewinnen eisenkatalysierte Aminierungsreaktionen, aufgrund ihrer umweltfreundlichen und kostengünstigen Eigenschaften, an immer größerer Bedeutung.^[24] Dabei wurden vor allem elektrophile Eisenkatalysatoren in Aminierungsreaktionen verwendet.^[7c,24-27] Der Einsatz eines nukleophilen Eisenkatalysators in C-H-Aminierungen konnte erstmals im Arbeitskreis *Plietker* entwickelt werden.^[34,38]

Aufbauend auf diesen Vorarbeiten soll das Anwendungsspektrum des nukleophilen Eisen-Katalysators TBA[Fe] **26** weiter ausgebaut werden. Dazu soll die Aminierung durch die Entwicklung einer TBA[Fe]-katalysierten Hemetsberger-Knittel-Reaktion ausgehend von Vinylaziden ausgeweitet werden. Hierbei soll neben der Toleranz gegenüber funktionellen Gruppen auch die mechanistische Untersuchung im Fokus stehen. Darüber hinaus soll die Anwendbarkeit der TBA[Fe]-katalysierten C-H-Aminierung veranschaulicht werden. Dazu soll eine Naturstoffsynthese mit dieser Aminierung als Schlüsselschritt entwickelt werden.

Schema 2.1: Ausweitung der Anwendbarkeit von TBA[Fe] 26.

Anschließend soll die Verwendung von TBA[Fe] **26** in einer Aminierung von C-C-Bindungen zur Ausbildung einer neuen C-N-C-Bindung untersucht werden. Neben der Untersuchung des Substratspektrums sollen Rückschlüsse auf den Reaktionsmechanismus gezogen werden. Außerdem soll die entwickelte Methode mit literaturbekannten Systemen verglichen werden.

Des Weiteren soll die Aminierung von C(sp³)-H-Bindungen mit der TBA[Fe]-katalysierten Dimroth-Cyclokondensation kombiniert werden. Hierdurch soll ein Zugang zu hochfunktionalisierten Triazolindolinen eröffnet werden.

Abschließend soll die Anwendbarkeit der TBA[Fe]-katalysierten Dimroth-Cyclokondensation an Naturstoffvorläufern untersucht werden. Da die Synthese von polycyclischen, polyprenylierten Acylphloroglucinolen (PPAPs) im Arbeitskreis *Plietker* im Fokus steht, soll die Triazolbildung an einem Vorläufer dieser Naturstofffamilie erfolgen. Zusätzlich soll eine Bibliothek an nichtnatürlichen PPAPs synthetisiert werden, um das Wirkungsspektrum im Vergleich zu den natürlichen Vertretern zu verbessern.

3 TBA[Fe]-katalysierte Hemetsberger-Knittel-Reaktion

Aufbauend auf den Arbeiten der TBA[Fe]-katalysierten C-H-Aminierung von Arylaziden^[34,38] sollte erstmals die Verwendung des nukleophilen Eisenkatalysators TBA[Fe] **26** in der Aminierung von C(sp²)-H-Bindungen ausgehend von Vinylaziden in einer Hemetsberger-Knittel-Reaktion untersucht werden.

3.1 Optimierung der Reaktionsbedingungen

Wie in den erfolgreichen Arbeiten von *Driver*^[21a], *Che*^[32] und *Bolm*^[33] wurde Vinylazid **51** als Testsubstrat für die Optimierung der Reaktionsbedingungen gewählt. Zunächst sollte mithilfe einer Untersuchung des Lösungsmitteleinflusses ein geeignetes Lösungsmittel gefunden werden (siehe Tabelle 3.1). Hierbei wurde eine Katalysatorladung von 5 mol-% und eine Reaktionstemperatur von 80 °C gewählt. Da die Reaktionsführung unter Mikrowelleneinstrahlung (200 W) in vorigen Arbeiten erfolgreich war, wurde diese auch für die Variation des Lösungsmittels beibehalten.^[34,38]

Fintrag ^[a]	Lösungsmittel	T (°C)	Ausbeute (%) ^[b]		
Ellitidger		7 (C)	52	53	
1	Toluol	80 (200 W)	<5	10	-
2	DMSO	80 (200 W)	-	9	
3	Dichlormethan	80 (200 W)	7	7	
4	MeCN	80 (200 W)	5	11	
5	DMF	80 (200 W)	9	20	
6	Ethanol	80 (200 W)	-	<5	

F !	1 % *** - 1	T (%c)	Ausbe	ute (%) ^[b]	
Eintrag	ag ^{ion} Losungsmittei i	7 (C)	52	53	
7	1,2-Dichlorbenzol	80 (200 W)	9	16	
8	1,2-Dichlorethan	80 (200 W)	30	7	
9	1,2-Dichlorethan	100 (200 W)	34	8	
10	Chloroform	80 (200 W)	38	5	
11	Chloroform	90 (200 W)	48	<5	
12	Chloroform	90 (300 W)	52	-	

[a] Alle Reaktionen wurden im 0.5 mmol-Maßstab unter Mikrowellenbedingungen und N₂-Atmosphäre durchgeführt. [b] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit Mesitylen (1 Äq.) als internem Standard bestimmt.

Die Ergebnisse der ersten Lösungsmittel (Eintrag 1 – 7, Tabelle 3.1) führten zur Bildung eines Produktgemisches aus Indol **52** und Amin **53**, wobei das Indol **52** in geringerer Ausbeute gebildet wurde. Beim Einsatz von 1,2-Dichlorethan wurde erstmals Indol **52** als Hauptprodukt und in einer moderaten Ausbeute gebildet (Eintrag 8, Tabelle 3.1). In den vorigen TBA[Fe]-katalysierten C-H-Aminierungen hatte sich 1,2-Dichlorethan bereits als geeignetes Lösungsmittel herausgestellt.^[34,38] Die Erhöhung der Reaktionstemperatur auf 100 °C zog jedoch keine signifikante Erhöhung der Ausbeute nach sich (Eintrag 9, Tabelle 3.1). Statt 1,2-Dichlorethan wurde als Nächstes Chloroform als Lösungsmittel getestet, wobei darauf geachtet wurde Ethanol, welches in Chloroform als Stabilisator vorhanden ist, vor der Reaktion durch Filtration über basisches Al₂O₃ zu entfernen. Erfreulicherweise konnte in Chloroform die Ausbeute von Indol **52** weiter erhöht werden, jedoch wurde Amin **53** nach wie vor als Nebenprodukt gebildet (Eintrag 10, Tabelle 3.1). Die Bildung von Amin **53** konnte durch die Erhöhung der Reaktionstemperatur auf 90 °C (Eintrag 11, Tabelle 3.1) und einer anschließenden Leistungserhöhung auf 300 W (Eintrag 12, Tabelle 3.1) vollständig unterdrückt werden. Dabei konnte die Ausbeute von Indol **52** auf 52 % erhöht werden.

Dieses Ergebnis wurde anschließend durch Variation der Katalysatorladung und der Konzentration bei einer Reaktionstemperatur von 90 °C weiter optimiert (siehe Tabelle 3.2).

Tabelle 3.2:Variation der Katalysatorladung und Konzentration bei einer Reaktionstemperatur von
90 °C.

Eintrag ^[a]	TBA[Fe] 26 (mol-%)	Konzentration (M)	Ausbe	ute (%) ^[b]	
			52	53	
1	5	0.5	52	-	
2	2.5	0.5	39	<5	
3	10	0.5	55	-	
4	10	0.25	65	-	
5	5	0.25	69	-	
6	2.5	0.25	58	<5	

[a] Alle Reaktionen wurden im 0.5 mmol-Maßstab unter Mikrowellenbedingungen und N₂-Atmosphäre durchgeführt. [b] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit Mesitylen (1 Äq.) als internem Standard bestimmt.

Es zeigte sich, dass eine Verringerung der Katalysatorladung auf 2.5 mol-% keine Verbesserung der Ausbeute von Indol **52** ergab (Eintrag 2, Tabelle 3.2). Die Verwendung von 10 mol-% Katalysator **26** bei einer Konzentration von 0.5 M hatte im Vergleich zu 5 mol-% Katalysator keine signifikante Erhöhung der Ausbeute zur Folge (Eintrag 3, Tabelle 3.2). Durch die Verringerung der Konzentration auf 0.25 M wurde die Ausbeute von Indol **52** auf 65 % erhöht (Eintrag 4, Tabelle 3.2). Der Einsatz von nur 5 mol-% TBA[Fe] **26** bei dieser Konzentration führte zur Bildung von 69 % Indol **52** (Eintrag 5, Tabelle 3.2). Ein Senken der Katalysatorladung auf 2.5 mol-% ergab dagegen keine weitere Erhöhung der Ausbeute (Eintrag 6, Tabelle 3.2).

Mit diesem Ergebnis sollte erneut der Temperatureinfluss und die Katalysatorladung bei einer Konzentration von 0.25 M untersucht werden (siehe Tabelle 3.3).

0

Tabelle 3.3:Untersuchung des Temperatureinflusses und der Katalysatorladung bei einer
Konzentration von 0.25 M.

N ₃ 51	OMe Chloroform (0.25 M), <i>T</i> (MW, 300 W), 1 h	N OME	e + N 54	OMe
Fintrag ^[a]	TRA[50] 26 (mol %)	τ (°C)	Ausbeute (%) ^[b]	
Linting		, (),	52	54
1	5	90	69	-
2	5	70	23	-
3	10	70	56	-
4	5	80	61	-
5	10	80	70 (70) ^[c]	-
6 ^[d]	10	80	67	-
7	0	80	<3	68

[a] Alle Reaktionen wurden im 0.5 mmol-Maßstab unter Mikrowellenbedingungen und N₂-Atmosphäre durchgeführt. [b] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit Mesitylen (1 Äq.) als internem Standard bestimmt. [c] Isolierte Ausbeute. [d] Thermische Bedingungen in einem fest verschlossenen 10 mL Schlenkrohr bei einer Reaktionszeit von 24 h.

Bei einer abgesenkten Reaktionstemperatur von 70 °C wurde die Ausbeute von Indol **52** um mehr als die Hälfte reduziert (Eintrag 2, Tabelle 3.3). Dies konnte durch eine Erhöhung der Katalysatorladung kompensiert werden (Eintrag 3, Tabelle 3.3). Eine Reaktionstemperatur von 80 °C führte mit 5 mol-% Katalysator **26** zu einer höheren Ausbeute (Eintrag 4, Tabelle 3.3), welche durch die Verwendung von 10 mol-% Katalysator auf 70 % stieg (Eintrag 5, Tabelle 3.3). Erfreulicherweise konnte eine ähnliche Ausbeute unter thermischen Bedingungen erzielt werden (Eintrag 6, Tabelle 3.3). Außerdem wurden in Abwesenheit des Katalysators nur Spuren des Indols **52** detektiert (Eintrag 7, Tabelle 3.3). Stattdessen wurde Azirin **54** mit einer Ausbeute von 68 % gebildet.

 \cap
3.2 Darstellung verschiedener Vinylazide

Für die TBA[Fe]-katalysierten Hemetsberger-Knittel-Reaktion sollten weitere Substrate dargestellt werden. Dazu wurden verschiedene Vinylazide über eine Knoevenagel-Kondensation, ausgehend von den entsprechenden Aldehyden, nach einer abgewandelten Methode von *Driver*^[21a] synthetisiert (siehe Tabelle 3.4).

[[]a] Isolierte Ausbeute.

Des Weiteren wurden die Isomere *E*-74 und *Z*-74 nach *Murakami*^[53] in zwei Stufen ausgehend von Epoxid **73** dargestellt (siehe Schema 3.1).

Schema 3.1: Stufenweise Darstellung von Vinylazid E-74 und Z-74 nach Murakami.^[53]

Zusätzlich zu den Esterresten sollten Substrate mit einem Keto- bzw. Amidrest synthetisiert werden. Hierzu wurde Vinylazid **77** durch die Kondensation von Benzaldehyd **75** mit Azid **76** nach *Knittel*^[54] in einer guten Ausbeute dargestellt. Außerdem konnte Verbindung **78** mithilfe einer Methode von *Szostak*^[55] erhalten werden (siehe Schema 3.2).

Schema 3.2: Darstellung der Vinylazide 77 und 78 nach Knittel^[54] und Szostak^[55].

3.3 Substratspektrum der TBA[Fe]-katalysierten Hemetsberger-Knittel-Reaktion ausgehend von Vinylaziden

Die zuvor dargestellten Vinylazide wurden unter den optimierten Reaktionsbedingungen zu den entsprechenden Indolen umgesetzt. Die erhaltenen Produkte und entsprechenden Ausbeuten sind in Tabelle 3.5 veranschaulicht.

Tabelle 3.5:Substratspektrum der TBA[Fe]-katalysierten Hemetsberger-Knittel-Reaktion ausgehend
von Vinylaziden.

Eintrag ^[a]	Substrat Produkt		Ausbeute (%) ^[b]
	X N3	X N OMe	
1	51 (X = H)	52 (X = H)	70
2	55 (X = F)	79 (X = F)	65
3	56 (X = Cl)	80 (X = CI)	50
4	57 (X = Br)	81 (X = Br)	58
5	58 (X = CN)	82 (X = CN)	23
6	59 (X = NMe ₂)	83 (X = NMe ₂)	18
7	60 (X = OMe) 84 (X = OMe		74
8	61 (X = <i>tert</i> -Bu)	85 (X = <i>tert</i> -Bu)	73
9	Br N ₃ 62	Br N H OMe 86	46
	X O OMe N ₃	X N M H O Me	
10	63 (X = Br)	87 (X = Br)	78
11	64 (X = OMe)	88 (X = OMe)	82
12	65 (X = Me)	89 (X = Me)	76

Eintrag ^[a]	Substrat	Produkt	Ausbeute (%) ^[b]
13	MeO MeO 66	MeO MeO 90	86
14	O N ₃ 67	O H 91	94
15	OEt N ₃ 74	O N H OEt 92	79 (für <i>Z</i> -Isomer) 78 (für <i>E</i> -Isomer)
16	O N ₃ 68	O N H 93	41
17	O N N 69	0 N-N 94	47
18	O N N 70	N N OMe 95	-
19	$N = N_3$ 71	N N OMe H 96	-

Eintrag ^[a]	Substrat	Produkt	Ausbeute (%) ^[b]
	N ₃	C H X	
20	72 (X = OEt)	97 (X = OEt)	80
21	77 (X = Ph)	98 (X = Ph)	50
22 ^[c]	78 (X = <i>N</i> -Morpholin)	99 (X = <i>N</i> -Morpholin)	41

[a] Alle Reaktionen wurden im 0.5 mmol-Maßstab unter Mikrowellenbedingungen und N₂-Atmosphäre durchgeführt. [b] Isolierte Ausbeute. [c] Die Reaktion wurde im 0.2 mmol-Maßstab unter Mikrowellenbedingungen und N₂-Atmosphäre durchgeführt.

Wie aus Tabelle 3.5 ersichtlich, kann die optimierte Aminierung auf eine Vielzahl von Substraten angewendet werden und weist eine hohe Toleranz gegenüber verschiedensten funktionellen Gruppen auf. Es wurden sowohl Halogenide als auch Alkoxy- und Alkylsubstituenten toleriert. Das Substitutionsmuster am Aromaten hatte dabei einen großen Einfluss auf die Gesamtausbeute der entsprechenden Reaktionen. So konnte gezeigt werden, dass durch einen Bromsubstituent in para- und ortho-Position eine Erhöhung der Ausbeute erfolgte, wohingegen ein meta-Bromsubstituent eine Erniedrigung zur Folge hatte (Eintrag 4 und 10 vs. 9, Tabelle 3.5). Außerdem konnte gezeigt werden, dass +I- und/oder +M-Substituenten zu hohen Ausbeuten führten (Eintrag 13 und 14, Tabelle 3.5). Auch die Verwendung eines +I-Substituenten in Position R¹ führte zu hohen Ausbeuten (Eintrag 15, Tabelle 3.5). Hierbei konnten beide Isomere in guten Ausbeuten umgesetzt werden. Bei elektronenreichen stickstoffhaltigen Substituenten wurden jedoch nur geringen Ausbeuten der entsprechenden Indole 82 und 83 erhalten (Eintrag 5 und 6, Tabelle 3.5). Eine Erklärung dieser Limitierung konnte durch den Einsatz eines pyridylsubstituierten Vinylazids 69 gefunden werden, da sich zeigte, dass das Stickstoffatom im Pyridylrest als reaktives Motiv in der Aminierung beteiligt ist (Eintrag 17, Tabelle 3.5). Dieses Ergebnis verdeutlicht, dass elektronenreiche Stickstoffatome in der TBA[Fe]-katalysierten Hemetsberger-Knittel-Reaktion reaktiv gegenüber dem in-situ aktivierten Azid sind. Die erfolglose Umsetzung von Pyridin-3-yl-azid **70** und Pyridin-4-yl-azid **71** bekräftigte diese Vermutung (Eintrag 18 und 19, Tabelle 3.5). Trotzdem stellt nach bestem Wissen die TBA[Fe]- katalysierte Umsetzung von Vinylazid **69** die erste metallkatalysierte Möglichkeit zur Darstellung von 3-Azoindol **94** dar.^[56] Auch konnte Furanindol **93** unter diesen Bedingungen in moderater Ausbeute dargestellt werden (Eintrag 16, Tabelle 3.5). Es war außerdem möglich Vinylazide mit Keton- **77** bzw. Amidgruppe **78** erfolgreich in das entsprechende Indol **98** bzw. **99** umzusetzen (Eintrag 21 und 22, Tabelle 3.5). Dies verdeutlichte erneut die hohe Toleranz der TBA[Fe]katalysierten Hemetsberger-Knittel-Reaktion gegenüber unterschiedlichen funktionellen Gruppen.

Eine Hammett-Analyse der Umsetzung der Substrate **51**, **55** - **58** und **60** - **61** veranschaulicht deutlich, dass elektronenreichere Azide eine höhere Reaktivität in der Katalyse aufweisen (siehe Abbildung 3.1).

Abbildung 3.1: Hammett-Diagramm der TBA[Fe]-katalysierten Hemetsberger-Knittel-Reaktion.^[31]

3.4 Untersuchungen zum Reaktionsmechanismus

3.4.1 Umsetzung von Azirin 54 unter verschiedenen Reaktionsbedingungen

Um herauszufinden, ob die TBA[Fe]-katalysierte Hemetsberger-Knittel-Reaktion, wie die ursprüngliche Reaktion, über eine Azirinbildung erfolgt, sollte Azirin **54** als Substrat unter den optimierten Reaktionsbedingungen in Anwesenheit von TBA[Fe] **26** umgesetzt werden. Darüber hinaus sollte getestet werden, ob die Bildung des Indols **52** bei den übergangsmetallkatalysierten

Methoden von *Driver*^[21a] und *Bolm*^[33] über die Azirinbildung erfolgt. Azirin **54** wurde deshalb unter thermischen Bedingungen in Chloroform ohne Katalysator synthetisiert.^[31] Anschließend wurde Azirin **54** unter den TBA[Fe]-katalysierten Bedingungen^[31] (Bedingung A), den Bedingungen nach *Driver*^[21a] (Bedingung B) und den Bedingungen nach *Bolm*^[33] (Bedingung C) umgesetzt (siehe Schema 3.3).

Schema 3.3: Umsetzung von Azirin 54 unter verschiedenen Bedingungen.^[31]

Erstaunlicherweise wurde bei der Umsetzung von Azirin **54** unter den TBA[Fe]-katalysierten Bedingungen (Bedingung A) kein Indol **52** gebildet, wohingegen Indol **52** sowohl unter den Bedingungen nach *Driver*^[21a] (Bedingung B) als auch nach *Bolm*^[33] (Bedingung C) in moderaten bis guten Ausbeuten isoliert werden konnte. Dies bekräftigt die Vermutung, dass Azirin **54** nicht bei der Bildung der TBA[Fe]-katalysierten Aminierung von Vinylaziden als Zwischenstufe gebildet wird.^[31]

3.4.2 Untersuchungen zum kinetischen Isotopeneffekt

Zur Aufklärung des Reaktionsmechanismus sollte außerdem der kinetische Isotopeneffekt untersucht werden. Dazu wurde zunächst Benzaldehyd-2-*d* **75**-*d*₁ nach *Gao*^[57], ausgehend von 2-Brombenzaldehyd **100**, in drei Stufen synthetisiert. Anschließend wurde das monodeuterierte Azid **51**-*d*₁ wie zuvor beschrieben über eine Knoevenagel-Kondensation nach *Driver*^[21a] dargestellt (siehe Schema 3.4).

Der primäre kinetische Isotopeneffekt entspricht dem Verhältnis $k_{\rm H}/k_{\rm D}$, den Geschwindigkeitskonstanten der Reaktion mit dem Substrat 51 und dem entsprechenden isotopenmarkierten Substrat 51-d₁. Der Unterschied dieser beiden Geschwindigkeitskonstanten wird durch die Änderung der C-H-Aktivierungsenergie mittels Deuterierung erzeugt. Wenn das Verhältnis von $k_{\rm H}/k_{\rm D}$ deutlich größer als 1 ist, ist der Reaktionsschritt, in dem die Spaltung der C-H-/C-D-Bindung erfolgt, der geschwindigkeitsbestimmende Schritt. Für ein Verhältnis von $k_{\rm H}/k_{\rm D} \cong 1$ bedeutet dies, dass sich die Reaktionsgeschwindigkeit nicht ändert und die Spaltung der C-H-/C-D-Bindung nicht der geschwindigkeitsbestimmende Schritt ist.^[36,39,58]

Zur Untersuchung des primären kinetischen Isotopeneffekts wurde Azid **51-** d_1 unter den optimierten Bedingungen umgesetzt (siehe Schema 3.5). Es konnten 70 % Indol **52-** d_1 isoliert werden, wobei ein geringer kinetischer Isotopeneffekt von $k_H/k_D = 1.2$ beobachtet wurde. Folglich handelt es sich bei dem C-H-Bindungsbruch nicht um den geschwindigkeitsbestimmenden Schritt der Reaktion.

Schema 3.5: Untersuchung zum kinetischen Isotopeneffekt in der TBA[Fe]-katalysierten Hemetsberger-Knittel-Reaktion.

3.4.3 DFT-Berechnungen zur Aufklärung des Reaktionsmechanismus

Aufbauend auf den experimentellen Ergebnissen wurden in Zusammenarbeit mit Dr. Johannes Lang am Institut für Organische Chemie der Universität Stuttgart erste DFT-Berechnungen (D3-TPSS^[59]/def2tzvp^[60]) zu möglichen katalytischen Intermediaten durchgeführt (siehe Schema 3.6). Unter den berechneten Strukturen konnten zwei mögliche Cyclen identifiziert werden, der [Fe(CO)₃(NO)]- (A) und der [Fe(CO)₂(NO)]-Cyclus (B). Die hierbei angegebenen Gibbs-Energien (bei 300 K) sind relativ auf die Energiesumme des Azids 51 und des Katalysators [Fe(CO)₃(NO)]⁻ bezogen. Im [Fe(CO)₃(NO)]-Cyclus koordiniert das [Fe(CO)₃(NO)]-Anion an Azid **51** in einer leicht exergonischen Reaktion zu Intermediat A1. Es folgt eine endergonische "Fe-NO-Click"-Reaktion des Azids mit der Fe-N-O-Einheit, wodurch Metallatetrazol A2 gebildet wird. Die migratorische Insertion eines CO-Liganden in die neue Fe-N-Bindung führt zur Ringöffnung des Eisentetrazols A2 und zur exergonischen Freisetzung von Stickstoffgas und einer damit einhergehenden Decarbonylierung. Das dadurch gebildete Ferralactam AB kann, wie anhand der Hammett-Analyse verdeutlicht, durch die starke Resonanzstabilisierung von p-Substitutenten am Aromaten stabilisiert werden. Hierbei handelt es sich möglicherweise um ein gemeinsames Intermediat der beiden katalytischen Cyclen. Rekoordination des CO-Liganden führt zu einer Ringöffnung des Ferralactams AB. Dieser stark exergonische Prozess (37 kcal/mol) führt dabei zu Nitren A3. Dieses wird anschließend durch eine schnelle C-H-Aminierung-Hydrideliminierung zu A4 überführt. Dieser exergonische Prozess lässt den Schluss ziehen, dass es sich bei der C-H-Aktivierung bzw. der C-N-Bindungsbildung nicht um den geschwindigkeitsbestimmenden Schritt handelt, eine Schlussfolgerung, die durch den schwachen kinetischen Isotopeneffekt bekräftigt wird. Die nachfolgende stark exergonische reduktive Eliminierung (76 kcal/mol) bildet Komplex A5 aus, in welchem das elektronenreiche [Fe(CO)₃(NO)]-Anion eine starke Wasserstoffbrückenbindung zur N-H-Einheit des Indols ausbildet. Durch Freisetzung des Indols 52 wird der Katalysecyclus geschlossen.

Schema 3.6: DFT-Berechnung von möglichen Intermediaten der TBA[Fe]-katalysierten Hemetsberger-Knittel-Reaktion.

Im [Fe(CO)₂(NO)]-Cyclus koordiniert das Metallzentrum in einem endergonischen Prozess an das Azid **51**, was zur Ausbildung von Komplex **B1** führt. Eine nachfolgende "Fe-NO-Click"-Reaktion bildet Metallatetrazol **B2** aus. Nach einer Freisetzung von Stickstoffgas wird **AB** ausgebildet, welches die Eisen-Nitrene-Spezies **B3** in einem leicht exergonischen Prozess bildet. Nach einer 6π -elektrocyclischen Reaktion und Bildung einer C-N-Bindung wird **B4** gebildet, das über einen β -Hydrid-Shift zu Produkt **B5** überführt wird. Nach anschließender reduktiver Eliminierung wird Komplex **B6** erhalten. Dabei ist das Indol über eine π -Koordination an das Metall gebunden. Eine anschließende Freisetzung des Indols **52** schließt den Katalysecyclus.

Es wurden alle Strukturen sowohl in ihrem Singulett- als auch in ihrem Triplett-Zustand berechnet. Jedoch waren die Berechnungen der Triplett-Zustände energetisch nicht begünstigt, wodurch ein radikalischer Prozess als bevorzugter Reaktionsweg ausgeschlossen werden kann. Die "Fe-NO-Click"-Reaktion, die in beiden Cyclen postuliert wird, macht wie in vorigen Arbeiten deutlich, dass das Fe-NO-Motiv eine wichtige Rolle in den TBA[Fe]-katalysierten Reaktionen spielt.^[61]

3.5 Zusammenfassung

Im vorliegenden Kapitel wurde die TBA[Fe]-katalysierte Hemetsberger-Knittel-Reaktion von Vinylaziden untersucht. Nach intensiver Optimierung konnten die Bedingungen auf verschiedene Substrate angewendet werden, wodurch die entsprechenden Indole in guten Ausbeuten erhalten wurden. Durch Vergleichsexperimente und Untersuchungen des kinetischen Isotopeneffekts, konnten erste Rückschlüsse auf einen möglichen Mechanismus gezogen werden. Diese wurden duch DFT-Berechnungen weiter gestützt. Anhand der berechneten Intermediate konnten zwei mögliche Reaktionscyclen postuliert werden, in denen die Azidaktivierung durch eine neuartige 1,3-dipolare Cycloaddition des Azids mit einem der beiden Fe-NO- π -Bindungen des [Fe(CO)₃(NO)]-Anions erfolgt.

Schema 3.7: TBA[Fe]-katalysierte Hemetsberger-Knittel-Reaktion von Vinylaziden.

4 Anwendung der TBA[Fe]-katalysierten C-H-Aminierung in der Naturstoffsynthese

Die Gruppe der Indolalkaloide besteht aus Naturstoffen mit einem Indol- oder Indolingrundgerüst als zentralem Strukturmotiv. Diese Naturstoffe weisen aufgrund ihrer vielfältigen Substitutionsmuster häufig ein breites Wirkungsspektrum auf, weshalb die Suche nach effizienten Synthesekonzepten zur Darstellung von Indolalkaloiden im Fokus der Naturstoffsynthese liegt.^[62]

Eine wichtige Familie der Indolalkaloide stellen die Vincaalkaloide dar, die seit der Entdeckung von Vinblastin **102** und Vincristin **103** in den 1950ern aufgrund ihrer interessanten Struktur und der damit verbundenen biologischen Aktivitäten das Interesse der Forschung geweckt haben.^[63] Außerdem werden Vincaalkaloide in der Krebstherapie verwendet, da sie die Zellteilung inhibieren. Dies geschieht, indem sie Tubulin binden und die Polymerisation zu Mikrotubuli verhindern.^[64] Die mühsame Isolierung und Aufreinigung dieser Alkaloide stellt jedoch eine Herausforderung dar, da nur begrenzte Mengen der reinen Verbindungen aus der madagassischen Pflanze *Catharantus roseus* (L.) G. Don isoliert werden können. Aus diesem Grund wird nach alternativen Darstellungsmöglichkeiten gesucht.^[65]

Eine Möglichkeit stellt die Kupplung des Iboga-Typ-Alkaloids (+)-Catharanthin **105** mit (-)-Vindolin **106** dar (siehe Schema 4.1). Dadurch kann (+)-Anhydrovinblastin **104** gebildet werden, das durch weitere Transformationen in Vinblastin **102** und Vincristin **103** umgewandelt wird.^[66] Die Entwicklung neuer Prozesse zur Darstellung von (+)-Catharanthin **105** und (-)-Vindolin **106** kann daher neue Möglichkeiten für die Synthese der Vincaalkaloide eröffnen.^[63b,67]

Aufgrund der breiten Anwendbarkeit der TBA[Fe]-katalysierten C-H-Aminierung, sollte die Methode in der Naturstoffsynthese von Catharanthin **105** angewendet werden.

Vinblastin **102**: R = Me, X = OHVincristin **103**: R = CHO, X = OHAnhydrovinblastin **104**: R = Me, X = Doppelbindung zu C15

Schema 4.1: Retrosynthesekonzept zur Darstellung von Vinblastin 102, Vincristin 103 und Anhydrovinblastin 104.^[68]

4.1 Stand der Forschung

Eine Gemeinsamkeit aller bisherigen Total- oder Formalsynthesen von Catharanthin **105** ist die Verwendung von bereits präformierten *N*-Heterocyclen wie Indol oder Chinolin. Ausgehend von diesen *N*-Heterocyclen erfolgten Transformationen zur Darstellung des Naturstoffs.^[65a,69]

Die erste racemische Synthese von (±)-Catharanthin **105** konnte die Arbeitsgruppe um *Büchi* 1969 veröffentlichen (siehe Schema 4.2).^[69h] Ausgehend von Isochinuclidin **107** wurde zunächst Keton **108** aufgebaut. Dieses wurde in das entsprechende Hydrochlorid überführt und über eine Debenzylierung und anschließende Kondensation mit Natriumindol-3-acetat zu Amid **109** umgewandelt. Durch weitere Funktionalisierungen konnte schließlich (±)-Catharanthin **105** in einer Gesamtausbeute von 1 % über 18 Stufen erhalten werden.

(±)-Catharanthin 105

Schema 4.2: Synthese von (±)-Catharanthin 105 nach Büchi.^[69h]

Weitere racemische Formal- und Totalsynthesen konnten in den darauffolgenden Jahren in verschiedenen Arbeitsgruppen entwickelt werden.^[65a,69a-g] Das enantiomerenreine (+)-Catharanthin **105** konnte in einer Totalsynthese von *Gács-Baitz*^[69i] und in Formalsynthesen von *Doris*^[63b] sowie von Nemoto und Harada^[69j] enantiomerenrein synthetisiert werden. Oguri veröffentlichte 2013 die Darstellung von Intermediat 112, das für die Synthese verschiedener Indolalkaloide genutzt werden konnte (siehe Schema 4.3).^[69k] Hierbei wurde Tryptamin Hydrochlorid **110** in fünf Stufen in Verbindung 111 überführt. Durch eine anschließende Cu-katalysierte Dihydropyridinbildung wurde Intermediat **112** erhalten, das durch entsprechende Reaktionsbedingungen in verschiedene Indolalkaloid-Grundgerüste umgewandelt wurde. Beispielsweise konnte Iboga-Typ-Verbindung 113 mittels [4+2]-Cyclisierung erhalten wurde. Die entwickelte Methode konnte außerdem für die Synthese von (-)-Catharanthin 105 genutzt werden.

Schema 4.3: Synthese des Iboga-Typ Grunderüsts 113 nach Oguri.^[69k]

4.2 Untersuchungen zur Anwendung der TBA[Fe]-katalysierten Hemetsberger-Knittel-Reaktion in der Synthese von (+)-Catharanthin 105

4.2.1 Retrosynthesekonzept

Zur Darstellung von (+)-Catharanthin **105** sollte das in Schema 4.4 dargestellte Retrosynthesekonzept verfolgt werden. Hierbei sollte ausgehend von Brompropionsäure **119** und Methylbrompyruvat **120** die Vorstufen **118** und **117** synthetisiert werden. Diese sollten in einer anschließenden Knoevenagel-Kondensation in Vinylazid **116** überführt werden und mithilfe der TBA[Fe]-katalysierten Hemetsberger-Knittel-Reaktion zu Indol **115** umgewandelt werden. Eine Substitution mit einem 1,2-Dihydropyridin-Derivat, gefolgt von einer Wittig-Reaktion sollte zu Intermediat **114** führen und durch eine [4+2]-Cycloaddition (+)-Catharanthin **105** erhalten werden. Aufgrund der guten Abgangsgruppentendenz des Bromids war eine vorgezogene Substitution zur Einführung des 1,2-Dihydropyridinrestes denkbar.

Schema 4.4: Retrosynthetische Analyse zur Darstellung von (+)-Catharanthin **105** mithilfe der TBA[Fe]katalysierten Hemetsberger-Knittel-Reaktion.

4.2.2 Untersuchungen zur Darstellung von Vinylazid 116

Zunächst sollten die beiden Vorläufer **117** und **118** der Knoevenagel-Kondensation synthetisiert werden. Hierfür wurde Brompropionsäure **119** in Thionylchlorid refluxiert. Das entstandene Säurechlorid **121** wurde anschließend in einer Friedel-Crafts-Acylierung zu Vorläufer **118** überführt (siehe Schema 4.5).^[70]

Schema 4.5: Darstellung von Vorläufer 118 ausgehend von Brompropionsäure 119.

Im nächsten Schritt sollte Azid **117** dargestellt werden. Es wurde 3-Brom-2-oxopropansäuremethylester **120** unter verschiedenen Bedingungen umgesetzt (siehe Tabelle 4.1). Jedoch wurde unter diesen Bedingungen das gewünschte Azid **117** nicht gebildet.

Tabelle 4.1:Untersuchungen zur Darstellung von Azid117 aus3-Brom-2-oxopropansäure-methylester 120.

Eintrag	Bedingungen	Ausbeute (%) ^[a]
1 ^[b]	NaN₃ (1.2 Äq.), MeOH/H₂O, RT – 80 °C, 2.5 h	-
2 ^[c]	NaN₃ (1.1 Äq.), DMSO, RT, ü. N.	-
3 ^[d]	NaN₃ (2 Äq.), Aceton- <i>d</i> ₆ , RT, 4 h	-

[a] Isolierte Ausbeute. [b] Die Reaktion wurde im 20 mmol-Maßstab durchgeführt. [c] Die Reaktion wurde im 5 mmol-Maßstab durchgeführt. [d] Die Reaktion wurde im 0.2 mmol-Maßstab durchgeführt.

Um Zersetzungen des Azids **117** durch die Aufarbeitung auszuschließen, wurde die Bildung des Azids und die direkte Umsetzung via Knoevenagel-Kondensation angestrebt (siehe Schema 4.6). Hierfür wurde ausgehend von 3-Brompyruvat **122**, Azidpropansäure **123** nach einer Literaturvorschrift^[71] gebildet. Diese sollte anschließend unter zwei verschiedenen Bedingungen verestert und zu Modellsubstrat **124** umgesetzt werden. Zur Vereinfachung wurde anstelle des Vorläufers **118** Benzaldehyd **75** als Reaktionspartner gewählt. Leider konnte in beiden Fällen die Bildung des gewünschten Produktes **124** unter den verwendeten Bedingungen nicht beobachtet werden.

Schema 4.6: Untersuchung zur Darstellung von Modellsubstrat 124 aus 3-Brompyruvat 122.

Außerdem wurde untersucht, ob die Umsetzung von Azidpropansäure **123** mit CDI zur Bildung des Aktivesters **125** führt, der im nächsten Schritt durch die Anwesenheit von NaOMe an der α -aziden Position deprotoniert sowie mit Benzaldehyd **75** in einer Knoevengel-Kondensation zu Modellsubstrat **124** umgewandelt werden sollte (siehe Scheme 4.7). Leider wurde auch unter diesen Bedingungen kein Produkt **124** gebildet.

Schema 4.7: Untersuchung zur Bildung von Aktivester 125 und zur anschließenden Umsetzung zu Modellsubstrat 124.

Aufgrund der erfolglosen Versuche Azid **124** zu synthetisieren, wurde angenommen, dass das Ketoester-Motiv möglicherweise ein Problem darstellen könnte. Aus diesem Grund sollte der Ester durch eine Oxazolingruppe maskiert und erst in einem späteren Schritt zum Methylester umgewandelt werden. Dazu sollte das maskierte Azid **126** in wenigen Stufen aus Brenztraubensäureethylester **129** zugänglich gemacht werden (siehe Schema 4.8).

Schema 4.8: Retrosynthetische Analyse zur Darstellung von Azid 126.

Es wurde Brenztraubensäureethylester **129** mit 2-Amin-2-methyl-propan-1-ol in Toluol über Nacht refluxiert (siehe Schema 4.9). Interessanterweise wurde jedoch nicht Amid **128** erhalten, sondern 1,4-Oxazin-2-on **130**, welches sich durch die Kondensation des freien Amins mit der Carbonylgruppe des Brenztraubensäureethylesters **129** bildete.

Schema 4.9: Darstellung von 1,4-Oxazin-2-on 130.

Nichtsdestotrotz wurde das Retrosynthesekonzept weiter verfolgt. Es sollte anstelle der Oxazolingruppe nun das Oxazin-2-on-Motiv zur Maskierung verwendet werden. Dazu wurde 1,4-Oxazin-2-on **130** mithilfe von Brom in Chloroform bromiert (siehe Schema 4.10). Es wurde das gewünschte Produkt **131** als trennbares Gemisch mit dem dibromierten Nebenprodukt **132** erhalten. Das abgetrennte Bromoxazin-2-on **131** sollte anschließend in einer Finkelstein-Reaktion in Azid **133** überführt werden. Die Bildung des gewünschten Produkts konnte nachgewiesen werden. Jedoch trat eine Zersetzung durch die Aufreinigung mittels Säulenchromatographie an Kieselgel auf, wodurch das Produkt nicht sauber isoliert werden konnte.

Schema 4.10: Darstellung vom maskierten Azid 133 ausgehend von 1,4-Oxazin-2-on 130.

Aufgrund der moderaten Ausbeuten und der Aufreinigungsschwierigkeiten von Azid **133** wurde diese Syntheseroute nicht weiter verfolgt. Stattdessen sollte das maskierte Azid **126** mithilfe der Methode nach *Florio*^[72] synthetisiert werden (siehe Schema 4.11). Hierfür wurde 2-Azidacetylchlorid **135** nach einer Literaturvorschrift^[73] in zwei Stufen ausgehend von Bromessigsäure hergestellt. Anschließend wurde ausgehend von 4,4-Dimethyl-2-oxazolin **134** und 2-Azidacetylchlorid **135** das gewünschte Produkt **126** isoliert.

Schema 4.11: Darstellung von Azid 126.

Azid **126** wurde anschließend wieder zur Vereinfachung mit Benzaldehyd **75** unter den Knoevenagel-Kondensationsbedingungen^[36] umgesetzt, um Modelsubstrat **136** zu erhalten (siehe Schema 4.12). Jedoch konnte die Bildung des Produkts **136** nicht beobachtet werden. Stattdessen konnte Vinylazid **51** mit 16 % Ausbeute isoliert werden, dessen Bildung auf die Methoxid-Anionen zurückzuführen ist.

Schema 4.12: Knoevenagel-Kondensation von Benzaldehyd 75 mit Azid 126.

Aufgrund der Schwierigkeiten bei der Darstellung des Azids **117** und bei der Synthese des Modellsubstrats **124** wurde das in Schema 4.4 veranschaulichte Retrosynthesekonzept nicht weiter verfolgt.

4.3 Anwendung der TBA[Fe]-katalysierten C(sp²)-H-Aminierung ausgehend von Arylaziden in der Synthese von (+)-Catharanthin 105

Da die Synthese des Modellsubstrats nicht erfolgreich war und nur moderate Ausbeuten der Vorstufen erhalten wurden, sollte ein neues Retrosynthesekonzept verfolgt werden. In diesem sollte die im Arbeitskreis *Plietker* etablierte TBA[Fe]-katalysierte C(sp²)-H-Aminierung ausgehend von Arylaziden^[34] angewendet werden.

4.3.1 Retrosynthesekonzept

Für die Synthese von (+)-Catharanthin **105** sollte, wie in Schema 4.13 dargestellt, Triflat **142** und Pyridon **141** als Ausgangsmaterialien verwendet werden. Diese sollten in einer Heck-Reaktion zunächst in Verbindung **140** und anschließend in Arylazid **139** überführt werden. Die TBA[Fe]-katalysierte C(sp²)-H-Aminierung^[34] sollte anschließend an Arylazid **139** durchgeführt werden, um Indol **138** zu generieren. Dieses sollte mithilfe einer Vinylierung in Verbindung **137** umgewandelt werden. Nach einer Diels-Alder-Reaktion und einer Reduktion des Amids sollte schließlich (+)-Catharanthin **105** erhalten werden.

Schema 4.13: Retrosynthetische Analyse zur Darstellung von (+)-Catharanthin **105** mithilfe der TBA[Fe]katalysierten C(sp²)-H-Aminierung ausgehend von Arylaziden.

4.3.2 Darstellung und TBA[Fe]-katalysierte C-H-Aminierung von Arylazid 153

Es sollten zunächst die Ausgangsverbindungen für die Heck-Reaktion dargestellt werden. Hierbei sollte, um die Syntheseroute an einem vereinfachten Modellsubstrat zu testen, statt Pyridon **141** das vereinfachte Pyridon **144** dargestellt werden. Dafür wurde 2-Hydroxypyridin **143** in Gegenwart von K₂CO₃ und 4-Brom-1-buten in guter Ausbeute zum gewünschten Produkt **144** umgewandelt (siehe Schema 4.14).^[74] Als Nebenprodukt wurde das *O*-alkylierte Pyridin **145** erhalten.

Schema 4.14: Darstellung von Pyridon 144 ausgehend von 2-Hydroxypyridin 143.^[74]

Anschließend wurde Phenol **146** nach einer Literaturvorschrift^[75] in sehr guter Ausbeute in Aryltriflat **142** umgewandelt (siehe Schema 4.15). Außerdem wurde mit der gleichen Methode Aryltriflat **149** und **150** synthetisiert, um diese als mögliche Ausgangsverbindungen für die Kreuzkupplung zu testen.

Schema 4.15: Darstellung der Aryltriflate 142, 149 und 150.

Die synthetisierten Ausgangsverbindungen sollten als Nächstes in einer Heck-Reaktion verwendet werden. Um eine hohe Regioselektivität an der Doppelbindung zu erhalten, wurde eine Methode von *Zhou*^[76] und *Zhu*^[77] getestet (siehe Schema 4.16). Das Nitrostyrol **151** wurde nach dieser Methode in guter Ausbeute erhalten. Die Ausbeuten des Brom- und Azidstyrols **152** und **153** waren jedoch sehr gering. Dies kann auf eine oxidative Insertion des Katalysators in das Arylbromid **149** bzw. Arylazid **150** zurückgeführt werden.

Schema 4.16: Darstellung der Styrole 151, 152 und 153 nach einer Methode von Zhou^[76] und Zhu^[77].

Da nur das Nitrostyrol **151** in guter Ausbeute erhalten wurde, sollte es in einem nächsten Reaktionsschritt zu Arylazid **153** umgewandelt werden (siehe Schema 4.17). Dafür wurde Nitrostyrol zunächst zu Amin **154** reduziert und über eine Diazotierung die Azidgruppe eingeführt.

Schema 4.17: Darstellung von Arylazid 153 ausgehend von Nitrostyrol 151.

Anschließend sollte Arylazid **153** unter den Bedingungen der TBA[Fe]-katalysierten C(sp²)-H-Aminierung^[34] umgesetzt werden (siehe Schema 4.18). Dazu wurde Arylazid **153** mit TBA[Fe] **26** in 1,2-Dichlorethan gelöst und für eine Stunde unter Mikrowellenbedingungen bei 100 °C gerührt. Erfreulicherweise konnte das gewünschte Indol **155** in sehr guter Ausbeute isoliert werden. Zudem war es möglich, Kristalle des Indols **155** zu erhalten und die Struktur röntgenographisch zu beweisen.

Schema 4.18: Synthese und Röntgenstruktur von Indol 155.

Die erfolgreiche TBA[Fe]-katalysierte C(sp²)-H-Aminierung zur Generierung von Indol **155** verdeutlicht, dass diese Methode auch auf komplexere Strukturen angewendet werden kann. Im Nachfolgenden sollte die Vinylierung von Indol **155** als Modellsubstrat untersucht werden.

4.3.3 Studien zur direkten Vinylierung von Indol 155

Im Retrosynthesekonzept zur Darstellung von (+)-Catharanthin **105** sollte nach der C-H-Aminierung eine Vinylierung des erhaltenen Indols **155** erfolgen. Um diese Vinylierung zu realisieren, sollte die Hg(OTf)₂-katalyiserte Methode von *Oguri*^[78] verwendet werden. Da diese Methode in der Literatur jedoch nur mit Arylalkinen durchgeführt wurde,^[78] sollte zunächst getestet werden, ob eine direkte Vinylierung von Modellsubstrat **156** mit verschiedenen Alkinen möglich ist (siehe Tabelle 4.2).

Tabelle 4.2:Untersuchungen zur Hg(OTf)2-katalysierten direkten Vinylierung nach Oguri^[78] mit
verschiedenen Alkinen.

Eintrag ^[a]	Alkin	<i>t</i> (h)	Produkt (%) ^[b]
1	──CO ₂ Me 157	3	-
2	≡− СО ₂ Ме 157	24	-
3	≡−СО ₂ ^t Bu 158	24	159b (X = ^{<i>t</i>} Bu) (22)
4	ОРМВ 160	24	-
5 ^[c]	ОРМВ 160	70	161b (X = PMB) (16)

[a] Alle Reaktionen wurden im 0.2 mmol-Maßstab unter N₂-Atmosphäre durchgeführt. [b] Isolierte Ausbeuten. [c] Die Reaktion wurde mit 1.5 Äq. Alkin in 1,2-Dichlorethan bei einer Temperatur von RT - 70 °C gerührt.

Bei der Verwendung von Methylpropiolat **157** anstelle eines Arylalkins konnte kein Umsatz von Modellsubstrat **156** beobachtet werden (Eintrag 1, Tabelle 4.2). Auch die Erhöhung der Reaktionszeit auf 24 Stunden konnte dies nicht ändern (Eintrag 2, Tabelle 4.2). Durch den Wechsel zu *tert*-Butylpropiolat **158** konnte nach einer Reaktionszeit von 24 Stunden die Bildung eines neuen Produkts beobachtet werden. Dabei fand jedoch keine Vinylierung, sondern eine decarboxylierende Alkylierung zu Produkt **159b** statt (Eintrag 3, Tabelle 4.2). Da das Estermotiv unter diesen Bedingungen nicht toleriert wurde, wurde Ether **160** als Reaktionspartner getestet. Jedoch konnte die Vinylierung von Modellsubstrat **156** nach 24 Stunden nicht beobachtet werden (Eintrag 4, Tabelle 4.2). Daher wurden 1.5 Äq. des Alkins **160** zugegeben, 1,2-Dichlorethan als Lösungsmittel verwendet und die Reaktionstemperatur auf 70 °C erhöht (Eintrag 5, Tabelle 4.2). Unerfreulicherweise führte der Wechsel der Reaktionsbedingungen aber nur zur Bildung von Produkt **161b**.

Da kein Beispiel gefunden wurde, in welchem die direkte Vinylierung unter den Bedingungen von *Oguri*^[78] beobachtet wurde, sollte Alkin **162** verwendet und der Furanring in späteren Transformationen zum Methylester umgewandelt werden. Dazu wurde Alkin **162** in zwei Stufen aus Furfural synthetisiert.^[79] Anschießend wurde Modellsubstrat **156** mit Alkin **162** und Hg(OTf)₂ umgesetzt (siehe Schema 4.19). Es konnte das gewünschte 2-Vinylierungsprodukt **163a** isoliert werden, jedoch nur als Nebenprodukt. Als Hauptprodukt konnte das 3-Vinylierungsprodukt **163b** identifiziert werden.

Schema 4.19: Umsetzung von Modellsubstrat **156** mit Alkin **162** in der Hg(OTf)₂-katalysierten Vinylierung nach *Oguri*^[78].

Da kein erfolgreicher Zugang zur Hg(OTf)₂-katalysierten direkten Vinylierung des Modellsubstrats **156** mit nicht-aromatischen Alkinen eröffnet werden konnte, sollte als Nächstes eine Pd-katalysierte Heck-Reaktion getestet werden. Hierfür wurde als Modellsubstrat das Bocgeschütze Indol **164** und das Iodacrylat **165** unter verschiedenen Bedingungen^[34,80] umgesetzt (siehe Tabelle 4.3). Trotz der Verwendung unterschiedlicher Bedingungen konnte in keinem Fall die Bildung des Produkts **166** beobachtet werden (Eintrag 1 – 3, Tabelle 4.3). Stattdessen wurde nur das Modellsubstrat **164** reisoliert.

^{(1.2} Äq.), NEt₃ (1 M), 125 °C, 20 h

Eintrag ^[a]	Bedingungen	Ausbeute (%) ^[b]
2	PdCl ₂ (2 mol-%), TBAB (1 Äq.), Na ₂ CO ₃ (4 Äq.), Acrylat 165 (4 Äq.), H ₂ O (0.33 M), 80 °C, 6 h	-
3	Pd(OAc) ₂ (20 mol-%), Cu(OAc) ₂ (1.8 Äq.), Acrylat 165 (2 Äq.) DMF/AcOH (3:1, 0.4 M), 70 °C, 16 h	-

[a] Alle Reaktionen wurden im 0.3 mmol-Maßstab unter N₂-Atmosphäre durchgeführt.

Da auch die getesteten Pd-katalysierten Varianten zu keiner Vinylierung des Indols **164** führten, wurde auf weitere Reaktionen zur direkten Vinylierung verzichtet. Stattdessen sollte die Vinylierung über eine Suzuki-Kupplung erfolgen.

4.3.4 Die Vinylierung vom vereinfachten Indol 155

Um die Vinylierung über eine Suzuki-Kupplung zu erreichen, musste das entsprechende Indol zunächst boryliert werden. Da die Vinylierungsversuche an den Modellsubstraten **156** und **164** weniger erfolgreich verlaufen waren, wurden die nachfolgenden Reaktionen direkt an Indol **155** durchgeführt. Hierzu wurde die von *Miyaura*^[81] entwickelte iridiumkatalysierte aromatische C-H-Borylierung an Indol **155** getestet (siehe Tabelle 4.4).

Eintrag	Lösungsmittel (M)	<i>Т</i> (°С)	<i>t</i> (h)	Ausbeute (%) ^[a]
1 ^[b]	<i>n</i> -Hexan/CH ₂ Cl ₂ (1 : 1.2, 0.15 M)	RT	29	15
2 ^[c]	1,4-Dioxan (0.26 M)	100	24	34

[a] Isolierte Ausbeuten. [b] Die Reaktion wurde im 0.3 mmol-Maßstab unter N_2 -Atmosphäre durchgeführt. [c] Die Reaktion wurde im 0.15 mmol-Maßstab unter N_2 -Atmosphäre durchgeführt.

Es zeigte sich, dass unter den Standardbedingungen 15 % des gewünschten Produkts **167** isoliert werden konnten (Eintrag 1, Tabelle 4.4). Aufgrund der schlechten Löslichkeit des Indols **155** in *n*-Hexan musste CH₂Cl₂ zugegeben werden. Hierdurch wurde das Indol **155** trotzdem nicht vollständig gelöst, was die geringe Ausbeute erklären kann. In einem weiteren Versuch wurde 1,4-Dioxan als Lösungsmittel verwendet, wodurch die Löslichkeit verbessert wurde (Eintrag 2, Tabelle 4.4). Die Ausbeute konnte durch den Wechsel des Lösungsmittels und die Erhöhung der Reaktionstemperatur mehr als verdoppelt werden, jedoch blieb sie mit 34 % noch gering. Trotzdem sollte mit der Syntheseroute fortgefahren werden und die Optimierung der Borylierung zu einem späteren Zeitpunkt erfolgen.

Mit der Synthese des borylierten Indols **167** sollte die Vinylierung über eine Suzuki-Kupplung erfolgen. Dazu wurde das borylierte Indol **167** und Acrylat **165** unter basischen Bedingungen mit Pd(PPh₃)₄ umgesetzt (siehe Schema 4.20). Erfreulicherweise konnte das gewünschte Produkt **168** mit 13 % Ausbeute isoliert werden. Die nachfolgende Diels-Alder-Reaktion konnte nicht beobachtet werden. Dies könnte durch eine vorherige Reduktion der Amidgruppe zum Amin geändert werden.

Schema 4.20: Darstellung des vinylierten Indols 168 über eine Suzuki-Kupplung.

Trotz der geringen Ausbeute konnte bewiesen werden, dass die Vinylierung von Indol **167** möglich ist und in der Synthese von (+)-Catharanthin **105** verwendet werden kann. Im Rahmen dieser Arbeit konnte die Synthese nur an Modellsubstrat **153** angewendet und die Darstellung des Naturstoffes nicht finalisiert werden. Nichtsdestotrotz kann diese Syntheseroute nach vollständiger Optimierung als neue Möglichkeit für die Darstellung von (+)-Catharanthin **105** dienen.

4.4 Zusammenfassung

In diesem Teil der Arbeit ist es gelungen, die TBA[Fe]-katalysierte C-H-Aminierung an einem Modellsubstrat für die mögliche Naturstoffsynthese von (+)-Catharanthin **105** einzusetzen. Die Synthese eines geeigneten Vinylazids **124** für die TBA[Fe]-katalysierte Hemetsberger-Knittel-Reaktion erwies sich als unerwartet schwierig. Jedoch konnte durch den Wechsel der Syntheseroute ein geeignetes Modellsubstrat **153** für die Verwendung der TBA[Fe]-katalysierten C-H-Aminierung von Arylaziden synthetisiert werden. Dieses konnte in einem darauffolgenden Schritt erfolgreich in Indol **155** überführt werden. Durch weitere Transformationen konnte das vinylierte Indol **168** erhalten werden, welches in nachfolgenden Studien in einer Diels-Alder-Reaktion zu Produkt **169** überführt werden kann. Durch die Anwendung, der durch Modellsubstrat **153** erhaltenen Informationen über den Reaktionsverlauf, ist es möglich in zukünftigen Arbeiten die Synthese von (+)-Catharanthin **105** zu finalisieren.

Schema 4.21: Anwendung der TBA[Fe]-katalysierten C-H-Aminierung an Modellsubstrat 153 zur Synthese von (+)-Catharanthin 105.

5 TBA[Fe]-katalysierte Aminierung von C-C-Bindungen

Nach den erfreulichen Ergebnissen der TBA[Fe]-katalysierten Hemetsberger-Knittel-Reaktion und den vielversprechenden Ergebnissen bei der Anwendung der TBA[Fe]-katalysierten C-H-Aminierung in der Naturstoffsynthese sollte untersucht werden, ob das Konzept auch auf C-C-Bindungen übertragen werden kann.

5.1 TBA[Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von Iodaziden

5.1.1 Erste Überlegungen und Wahl des Testsubstrats

Für die ersten Untersuchungen sollte die C-C-Bindung eines elektronenarmen Ringsystems gebrochen werden. Hierzu wurde Iodazid **173** als Testsubstrat gewählt und in zwei Stufen aus Phenylacetylen **170** dargestellt (siehe Schema 5.1). Zunächst wurde Ketoester **172** nach *Zhang*^[82] und *Ma*^[83] synthetisiert und in einer anschließenden Iodazidierung in Testsubstrat **173** überführt. Die ausführliche Optimierung der Iodazidierung ist in Abschnitt 5.1.4 erläutert.

Schema 5.1: Darstellung des Testsubstrats 173 ausgehend von Phenylacetylen 170.

Um die Struktur von Iodazid **173** zu verifizieren, wurde eine Huisgen-Cycloaddition von Iodazid **173** mit Phenylacetylen **170** durchgeführt (siehe Schema 5.2). Hierbei konnte Triazol **174** in kristalliner Form erhalten werden und dessen Struktur durch eine Röntgenstruktur aufgeklärt werden.

Schema 5.2: Synthese und Röntgenstruktur von Triazol 174.

Das verifizierte lodazid **173** wurde anschließend unter den Bedingungen der TBA[Fe]katalysierten C-H-Aminierung^[34] umgesetzt, um die möglichen Aminierungsprodukte zu identifizieren (siehe Schema 5.3).

Schema 5.3: TBA[Fe]-katalysierte Aminierung von C-C-Bindungen an Iodazid 173.

Es konnten zwei Produkte der Reaktion von Iodazid in Anwesenheit von TBA[Fe] **26** isoliert und charakterisiert werden. Als Hauptprodukt konnte Iodoxazin-2-on **175-A** identifiziert werden. Zur Darstellung dieser Verbindung musste Bindung **A** gebrochen werden. Außerdem wurde als Nebenprodukt dieser Reaktion das Iodoxazin-4-on **175-B** isoliert, welches höchstwahrscheinlich durch den Bruch von Bindung **B** im Testsubstrat **173** gebildet wurde. Die Strukturen beider Verbindungen konnten durch eine Röntgenstruktur belegt werden (siehe Abbildung 5.1). Dabei konnten bei der Umsetzung von Iodazid **173** unter diesen Bedingungen keine Produkte, die auf eine C-H-Aminierung schließen lassen würden, erhalten werden.

Abbildung 5.1: Röntgenstrukturen der Aminierungsprodukte 175-A und 175-B.

Interessanterweise handelt es sich sowohl bei Iodazid **173** als auch bei den beiden erhaltenen Produkten **175-A** und **175-B** um nicht literaturbekannte Verbindungen. Einzig die Synthese und Verwendung der Chloroxazin-2-one wurden veröffentlicht.^[84] Diese konnten, wie in Schema 5.4 anhand Chloroxazin-2-on **178** verdeutlicht, ausgehend von Mandelonitril **176** in zwei Stufen synthetisiert werden.^[84f] Hierbei wurde zunächst das Dichloroxazin-2-on **177** mithilfe eines Überschusses an Oxalylchlorid erhalten. Dibromoxazin-2-on **180** konnte von *Hoornaert*^[84b] ausgehend von Lactonitril **179** in Anwesenheit von Oxalylbromid in geringer Ausbeute dargestellt werden, wurde jedoch nicht in einer nachfolgenden Reaktion in das entsprechende Bromoxazin-2-on umgewandelt.

Daher wurde neben der Synthese neuer Iodoxazinone **175-A** und **175-B**, durch die Verwendung von TBA[Fe] **26**, ein neuartiger Zugang zur Aminierung von C-C-Bindungen eröffnet, der bis dato nicht literaturbekannt war. Dieser sollte im Folgenden optimiert werden.

5.1.2 Optimierung der Reaktionsbedingungen

Aufbauend auf den vielversprechenden Ergebnissen der Testreaktion wurde das Testsubstrat **173** in Gegenwart von 2.5 mol-% TBA[Fe] **26** in unterschiedlichen Lösungsmitteln unter Mikrowellenbedingungen erhitzt (siehe Tabelle 5.1). Hierbei sollte die Reaktion hinsichtlich der Bildung des neuartigen Iodoxazin-2-ons **175-A** optimiert werden.

Tabelle 5.1:	Variation des	Lösungsmittels.
--------------	---------------	-----------------

Fintrada	Läcungsmittal	Au	Ausbeute (%) ^[b]			
Ellitidg.	Losungsmitter	175-A	175-B	175-C		
1	1,2-Dichlorethan	31	12	-		
2	1,2-Dichlorbenzol	5	10	6		
3	Chloroform	5	<5	-		
4	1,4-Dioxan	-	-	<5		
5	MeCN	5	7	-		
6	DMF	-	-	5		
7	Toluol	13	17	9		

[a] Alle Reaktionen wurden im 0.5 mmol-Maßstab unter Mikrowellenbedingungen und N₂-Atmosphäre durchgeführt.
 [b] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit Mesitylen (1 Äq.) als internem Standard bestimmt.

Es stellte sich heraus, dass die höchste Ausbeute von Iodoxazin-2-on **175-A** mit 1,2-Dichlorethan als Lösungsmittel erhalten wurde (Eintrag 1, Tabelle 5.1). Der Austausch durch andere chlorierte Lösungsmittel wie 1,2-Dichlorbenzol oder Chloroform, das sich bei der TBA[Fe]-katalysierten Hemetsberger-Knittel-Reaktion als bestes Lösungsmittel erwiesen hatte, war nicht erfolgreich (Eintrag 2 und 3, Tabelle 5.1). Durch polare Lösungsmittel wie 1,4-Dioxan, MeCN oder DMF wurden nur geringe bis keine Ausbeuten erzielt und es wurde eine weitere Verbindung **175-C** erhalten (Eintrag 4 – 6, Tabelle 5.1). Dessen Struktur konnte anhand der Röntgenstrukturanalyse

aufgeklärt werden (siehe Abbildung 5.2). Die Verwendung von Toluol als Lösungsmittel erhöhte die Bildung von Iodoxazin-4-on **175-B**, wobei auch hier Iodoxazindion **175-C** gebildet wurde (Eintrag 7, Tabelle 5.1).

Abbildung 5.2: Röntgenstruktur des Aminierungsprodukts 175-C.

Als Nächstes sollte untersucht werden, ob die Reaktion auch im Photoreaktor durchgeführt werden kann, da die Photolyse zur Aminierung von C-C-Bindungen in der Literatur bereits beschrieben war (siehe Schema 5.5). ^[9,17,19] Es zeigte sich, dass auch nach 24 Stunden Iodazid **173** nicht umgesetzt wurde. Daher wurde im Folgenden die Verwendung von Mikrowellenstrahlung als Energiequelle fortgeführt.

Schema 5.5: Umsetzung von Iodazid 173 im Photoreaktor.

Als Nächstes wurde die Reaktion hinsichtlich der Temperatur sowie der Katalysatorladung unter Mikrowellenbedingungen optimiert. Dabei wurde 1,2-Dichlorethan als Lösungsmittel verwendet. Da in diesem Lösungsmittel zwei Produkte gebildet wurden, sollte die Optimierung weiterhin auf die Bildung von Produkt **175-A** abzielen. Die Ergebnisse sind in Tabelle 5.2 zusammengefasst.

17:	$ \begin{array}{c} $	l-%) 0.5 M), h	INC O_C 175-A	PMe	о N О О О О Ме 175-В
Eintrag ^[a]	TBA[Fe] 26 (mol-%)	<i>Т</i> (°С)	Ausbei	ıte (%) ^[b]	Verhältnis
	. 2[. 0] 20 (. ()	175-A	175-B	A : B
1	2.5	100	31	12	2.6 : 1
2	2.5	80	10	<5	>2:1
3	2.5	120	41	19	2.2 : 1
4	2.5	110	35	15	2.3 : 1
5	1.25	110	32	19	1.7 : 1
6	5	110	37	10	3.7 : 1
7	10	110	27	<5	>5.4 : 1

Tabelle 5.2: Variation der Temperatur und Katalysatorladung.

[a] Alle Reaktionen wurden im 0.5 mmol-Maßstab unter Mikrowellenbedingungen und N₂-Atmosphäre durchgeführt. [b] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit Mesitylen (1 Äq.) als internem Standard bestimmt.

Mit Absenken der Temperatur auf 80 °C kam es auch zur Verringerung der Ausbeute (Eintrag 2, Tabelle 5.2). Deshalb wurde eine Reaktionstemperatur von 120 °C eingestellt (Eintrag 3, Tabelle 5.2). Es zeigte sich, dass die Ausbeuten beider Verbindungen erhöht wurden, jedoch hatte dies eine Verschlechterung des Verhältnisses von Iodoxazin-2-on **175-A** zu Iodoxazin-4-on **175-B** zur Folge. Bei einer Reaktionstemperatur von 110 °C konnte die Ausbeute im Vergleich zu einer Reaktionstemperatur von 100 °C erhöht werden, wobei das Verhältnis der Produkte nicht allzu stark verringert wurde (Eintrag 4, Tabelle 5.2). Aus diesem Grund wurde die Reaktionstemperatur von 110 °C beibehalten. Als Nächstes wurde die Katalysatorladung optimiert. Bei einer Katalysatorladung von 1.25 mol-% wurde die Ausbeute des Iodoxazin-4-ons **175-B** erhöht, wodurch das Verhältnis auf 1.7 : 1 absank (Eintrag 5, Tabelle 5.2). Bei der Verwendung von 5 mol-% Katalysator wurde zum ersten Mal eine deutliche Erhöhung des Verhältnisses von **175-A** zu **175-B** beobachtet, wobei die Ausbeute von Iodoxazin-2-on **175-A** auf 37 % anstieg (Eintrag 6,
Tabelle 5.2). Das beste Verhältnis der Produkte wurde mit 10 mol-% Katalysator erhalten (Eintrag 7, Tabelle 5.2). Da hierbei aber deutlich weniger Iodoxazin-2-on **175-A** gebildet wurde, wurde für den weiteren Verlauf der Optimierung eine Katalysatorladung von 5 mol-% verwendet.

Abschließend sollten die Bedingungen bezüglich der Reaktionszeit und der Konzentration optimiert werden. Die Optimierungen wurden in 1,2-Dichlorethan bei 110 °C und einer Katalysatorladung von 5 mol-% durchgeführt und sind in Tabelle 5.3 zusammengefasst.

	N ₃ TBA[Fe] 1,2-Dich 110°C (N	26 (5 mol-%) → lorethan (X M), MW. 200 W), t		Me +	O N O O O Me ⁺	CI_N_OMe
173		,,, .	́ 175-А	17	5-B	َ 178
			Au	sbeute (%) ^[b]		Verhältnis
Eintrag ^[a]	c (M)	<i>t</i> (h)	175-A	175-B	178	A : B
1	0.5	1	37	10	-	3.7 : 1
2	0.5	1.5	37	10	-	3.7 : 1
3	0.5	0.5	37 (35) ^[c]	7 (6) ^[c]	-	5.3 : 1
4 ^[d]	0.5	16	33	6	-	5.5 : 1
5 ^[e]	0.5	0.5	< 5	19	-	1:>3.8
6	0.5	0.25	34	7	-	4.9:1
7	0.75	0.5	32	12	-	2.7 : 1
8	0.25	0.5	46	10	< 5	4.6:1

[a] Alle Reaktionen wurden im 0.5 mmol-Maßstab unter Mikrowellenbedingungen und N₂-Atmosphäre durchgeführt. [b] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit Mesitylen (1 Äq.) als internem Standard bestimmt. [c] Isolierte Ausbeute. [d] Die Reaktion wurde unter thermischen Bedingungen in einem geschlossenen Schlenkrohr durchgeführt. [e] Die Reaktion wurde ohne Zugabe von TBA[Fe] **26** durchgeführt.

Eine Verlängerung der Reaktionszeit auf 1.5 Stunden ergab keine Veränderung, wohingegen eine Reaktionszeit von 0.5 h zu einem deutlich besseren Verhältnis von **175-A** zu **175-B** führte (Eintrag 2 und 3, Tabelle 5.3). Bei einer weiteren Verringerung der Reaktionszeit auf 15 Minuten wurde jedoch weniger Iodoxazin-2-on 175-A gebildet (Eintrag 6, Tabelle 5.3). Anschließend wurde eine Konzentration von 0.75 M eingestellt (Eintrag 7, Tabelle 5.3). Hierbei wurde weniger des gewünschten Produktes 175-A und mehr von Produkt 175-B gebildet. Bei einer 0.25 M Reaktionslösung konnte die Ausbeute von Iodoxazin-2-on 175-A zwar erhöht werden, jedoch wurde das Verhältnis von 175-A zu 175-B insgesamt verringert (Eintrag 8, Tabelle 5.3). Außerdem wurde erstmals das Chloroxazin-2-on 178 gebildet, dessen Struktur mittels Röntgenstrukturanalyse eines cokristallisierten Gemisches aus Iod- 175-A und Chloroxazin-2-on **178** bestimmt werden konnte (siehe Abbildung 5.3).

Erfreulicherweise konnte festgestellt werden, dass die Reaktion auch unter thermischen Bedingungen durchgeführt werden kann (Eintrag 4, Tabelle 5.3). Zwar wurde hierbei weniger der Produkte **175-A** und **175-B** gebildet, das Verhältnis dieser zueinander war jedoch ähnlich wie unter den Mikrowellenbedingungen. Außerdem konnte festgestellt werden, dass sich in der Reaktion ohne Katalysator nur Spuren des Iodoxazin-2-ons **175-A** bildeten (Eintrag 5, Tabelle 5.3), wobei 19 % des Iodoxazin-4-ons **175-B** gebildet wurden.

Abbildung 5.3: Röntgenstruktur eines cokristallisierten Gemisches aus Iod- und Chloroxazin-2-on 175-A und 178.

Da im Arbeitskreis neben TBA[Fe] **26** weitere Eisenkatalysatoren erfolgreich in unterschiedlichen Reaktionen angewendet wurden,^[85] sollte untersucht werden, ob diese zur Aminierung von C-C-Bindungen eingesetzt werden könnten. Dazu wurde Iodazid **173** mit FeH(CO)(NO)(PPh₃)₂ und K^tAmylat bzw. [Fe(CO)(NO)(PPh₃)₂][BF₄] unter den thermischen Reaktionsbedingungen umgesetzt (siehe Tabelle 5.4).

Tabelle 5.4: Vergleich unterschiedlicher Eisenkatalysatoren in der Aminierung von C-C-Bindungen.

Fintrog		T (°C) / + (b)	Ausbeute (%) ^[a]		
Emuag			175-A	175-B	
1 ^[b]	TBA[Fe] 26	110 (MW) / 0.5	37	7	
2 ^[c]	TBA[Fe] 26	110 / 16	33	6	
3 [c]	FeH(CO)(NO)(PPh ₃) ₂ + K ^t Amylat (1.7 M in Toluol, 5.5 mol-%)	110/16	15	30	
4 ^[c]	[Fe(CO)(NO)(PPh ₃) ₂][BF ₄]	110 / 16	<5	<5	

[a] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit Mesitylen (1 Äq.) als internem Standard bestimmt. [b] Die Reaktion wurde im 0.5 mmol-Maßstab unter Mikrowellenbedingungen und N₂-Atmosphäre durchgeführt [c] Die Reaktionen wurden im 0.5 mmol-Maßstab in einem verschlossenen Schlenkrohr unter N₂-Atmosphäre durchgeführt.

Die erhaltenen Ergebnisse sollten mit den optimierten Ergebnissen der TBA[Fe]-Katalyse unter Mikrowellenbedingungen bzw. unter thermischen Bedingungen verglichen werden (Eintrag 1 und 2, Tabelle 5.4). Es zeigte sich, dass mit FeH(CO)(NO)(PPh₃)₂ 15 % des Iodoxazin-2-ons **175-A** gebildet wurden, Hauptprodukt war jedoch Iodoxazin-4-on **175-B** (Eintrag 3, Tabelle 5.4). Der kationische Eisenkomplex [Fe(CO)(NO)(PPh₃)₂][BF₄] zeigte unter diesen Reaktionsbedingungen nur die Bildung von Spuren beider Produkte **175-A** und **175-B** (Eintrag 4, Tabelle 5.4). Da die Verwendung von TBA[Fe] **26** als Katalysator die besseren Ergebnisse erzielte, wurde auf weitere Optimierungen verzichtet.

5.1.3 Vergleich mit anderen Systemen

Die vielversprechenden Ergebnisse sollten mit anderen übergangsmetallkatalysierten Systemen verglichen werden, die bei unterschiedlichen Aminierungen verwendet werden können. Dabei wurden die Systeme von *Driver*,^[21a,36,86] von $Yu^{[52]}$ und von *Che*^[51] sowohl unter den

ursprünglichen Bedingungen als auch unter Bedingungen der TBA[Fe]-Katalyse auf Iodazid 173 angewendet (siehe Tabelle 5.5).

Tabelle 5.5: Vergleich der TBA[Fe]-Katalyse mit anderen Systemen.

I 173	$ \begin{array}{c} $	nittel,	OMe 0 0 + 0 175-B	⁺ `OMe 〔	175-	
Fintrag ^[a]	Kat (5 mol-%)	Lösungsmittel	τ (°C) /	Au	sbeute (%	%) ^[b]
Lintiag		Losungsmitter	/ (C/ / t (ii)	175-A	175-B	175-C
1	TBA[Fe] 26	1,2-Dichlorethan	110 (MW) / 0.5	37	7	-
2	-	1,2-Dichlorethan	110 (MW) / 0.5	<5	19	-
3	$Rh_2(O_2CC_3F_7)_4$	1,2-Dichlorethan	110 (MW) / 0.5	-	20	9
4 ^[c]	Rh ₂ (O ₂ CC ₃ F ₇) ₄	Toluol	60 / 16	-	12	-
5	Rh ₂ (esp) ₂	1,2-Dichlorethan	110 (MW) / 0.5	-	26	21
6 ^[c]	Rh ₂ (esp) ₂	Toluol	80 / 16	-	<5	-
7	FeBr ₂	1,2-Dichlorethan	110 (MW) / 0.5	<5	8	-
8 ^[d]	FeBr ₂	DMF	100 / 8	<5	-	-
9	[Fe(TPP)Cl]	1,2-Dichlorethan	110 (MW) / 0.5	<5	12	-
10 ^[e]	[Fe(TPP)Cl]	1,2-Dichlorethan	95 / 16	<5	10	-

[a] Die Reaktionen wurden im 0.5 mmol-Maßstab unter N₂-Atmosphäre durchgeführt. [b] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit Mesitylen (1 Äq.) als internem Standard bestimmt. [c] Die Reaktionen wurden im 0.2 mmol-Maßstab unter N2-Atmosphäre durchgeführt. [d] Die Reaktion wurde im 0.2 mmol-Maßstab unter N₂-Atmosphäre unter Verwendung von 20 mol-% des Katalysators durchgeführt. [e] Die Reaktion wurde im 0.2 mmol-Maßstab unter N₂-Atmosphäre unter Verwendung von 2 mol-% des Katalysators durchgeführt.

Die Umsetzung des Iodazids 173 mit TBA[Fe] 26 ergab unter den optimierten Bedingungen eine Ausbeute von 37 % von Iodoxazin-2-on 175-A und 7 % von Iodoxazin-4-on 175-B (Eintrag 1, Tabelle 5.5). In Abwesenheit des Katalysators 26 wurde Produkt 175-A in Spuren gebildet. Das Hauptprodukt war in diesem Fall 175-B (Eintrag 2, Tabelle 5.5). Der erste Katalysator, der anstelle von TBA[Fe] 26 untersucht wurde, war Rh₂(O₂CC₃F₇)₄, der sowohl unter den optimierten

(Eintrag 3, Bedingungen statt TBA[Fe] 26 Tabelle 5.5), als auch unter den Aminierungsbedingungen nach Driver^[36] (Eintrag 4, Tabelle 5.5) verwendet wurde. In Eintrag 3 wird ersichtlich, dass Rh₂(O₂CC₃F₇)₄ unter den Mikrowellenbedingungen nicht zur Darstellung von Produkt 175-A verwendet werden kann. Stattdessen wurde ein Gemisch aus den Produkten **175-B** und **175-C** gebildet. Unter den Aminierungsbedingungen nach *Driver*^[36] wurden 7 % von Iodoxazin-4-on **175-B** gebildet. Zum Vergleich sollte die Rh₂(esp)₂-Aminierung nach Driver^[86] angewendet werden. Durch den Austausch von TBA[Fe] **26** durch $Rh_2(esp)_2$ unter Mikrowellenbedingungen wurde die Reaktivität zugunsten der Produkte 175-B und 175-C verschoben (Eintrag 5, Tabelle 5.5). Dieser Trend wurde auch unter den Rh₂(esp)₂-katalysierten Bedingungen nach *Driver*^[86] beobachtet (Eintrag 6, Tablle 5.5). Bei der Verwendung von FeBr₂ wurden sowohl unter den Mikrowellenbedingungen als auch unter den Bedingungen nach Yu^[52] nur Spuren von Produkt 175-A gebildet (Eintrag 7 und 8, Tablle 5.5). Auch die Verwendung des Katalysators [Fe(TPP)CI], welcher in der Aminierung nach Che^[51] erfolgreich eingesetzt werden konnte, führte nur zur minimalen Bildung von Ioxoxazin-2-on 175-A (Eintrag 9 und 10, Tablle 5.5). Der Vergleich der verschiedenen Systeme verdeutlicht, dass die TBA[Fe]-katalysierte Aminierung von C-C-Bindungen eine neuartige Methode zur Synthese hochfunktionalisierter Iodxazin-2-one darstellt. Mit keiner der verwendeten Katalysatoren bzw. Systeme war die Bildung von Iodoxazin-2-on **175-A** in mehr als Spuren zu beobachten.

5.1.4 Darstellung verschiedener Iodazide

Um den Einfluss verschiedener Substituenten auf die entwickelte TBA[Fe]-katalysierte Aminierung von C-C-Bindungen zu untersuchen, wurden verschiedene Iodazide in zwei Stufen ausgehend von den entsprechenden Arylalkinen dargestellt. Diese wurden entweder kommerziell erworben oder nach einer Literaturvorschrift^[87] synthetisiert. Die Alkine wurden anschließend nach einer Methode von *Zhang*^[82] und *Ma*^[83] in die entsprechenden Ketoester überführt (Tabelle 5.6).

Tabelle 5.6: Darstellung verschiedener Ketoester nach einer Methode von Zhang^[82] und Ma^{[83],[a]}

[a] Isolierte Ausbeute.

Hierbei zeigte sich, dass aromatische Alkine in guten bis sehr guten Ausbeuten in die entsprechenden Ketoester umgewandelt werden konnten. Auch der Cyclohexenrest wurde toleriert, wodurch Ketoester **188** erhalten wurde. Über diese Methode konnten aber nicht die Ketoester **189**, **190** und **192** mit Alkylrest synthetisiert werden. Auch ein Ethylester oder ein Pyridinrest wurde unter diesen Bedingungen nicht toleriert.

Die synthetisierten Ketoester sollten anschließend in die entsprechenden lodazide umgewandelt werden. Trotz ausgiebiger Literaturrecherche konnte keine Methode zur Darstellung dieser Art von lodaziden gefunden werden. *Yanada*^[88] konnte 2015 eine Methode entwickeln mit der, ausgehend von Arylalkinen **194**, in Anwesenheit von NIS und TMSN₃ eine Vielzahl von α, α -Diazidoketonen **196** dargestellt werden konnten (siehe Schema 5.6). Dabei wurde Alken **195** als Intermediat der Reaktion charakterisiert.

Schema 5.6: Darstellung verschiedener α, α -Diazidoketone **196** mittels einer Iodazidierung nach Yanada.^[88]

Auch die lodcyclisierung wurde in einigen Veröffentlichungen untersucht.^[89] So konnte *Kirsch* zwei Protokolle veröffentlichen, durch die hochsubstituierte lodfuranone **198** über eine lodinduzierte Cyclisierung und eine anschließende 1,2-Migration ausgehend von Silyloxycarbonylverbindungen **197** zugänglich gemacht wurden (siehe Schema 5.7).^[90]

Schema 5.7: Darstellung verschiedener lodfuranone 198 mithilfe einer lodcyclisierung nach Kirsch.^[90]

Aufbauend auf diesen Veröffentlichungen sollte eine neuartige Kombination aus einer Iodinduzierten Cyclisierung und anschließenden Azidierung entwickelt werden. Hierfür wurde Alkin **172** als Standardsubstrat verwendet und unter verschiedenen Bedingungen umgesetzt (siehe Tabelle 5.7).

 Tabelle 5.7:
 Untersuchungen zur Iodazidierung von Alkin 172.

Eintrag ^[a]	NIS (Äq.)	Lösungsmittel / Konzentration (M)	Ausbeute (%) ^[b]
1	2.2	Toluol / 0.1	-
2	2.2	MeOH / 0.1	5
3	2.2	THF / 0.1	22

Eintrag ^[a]	NIS (Äq.)	Lösungsmittel / Konzentration (M)	Ausbeute (%) ^[b]
4	2.2	1,2-Dichlorethan / 0.1	63
5	2.2	MeCN / 0.1	83
6	1.1	MeCN / 0.1	83
7 ^[c]	1.1	MeCN / 0.2	88
8	2.2	MeCN / 1,2-Dichlorethan (1:1) / 0.1	87
9	1.1	MeCN / 1,2-Dichlorethan (1:1) / 0.1	85
10 ^[c]	1.1	MeCN / 1,2-Dichlorethan (1:1) / 0.2	81

[a] Alle Reaktionen wurden im 0.3 mmol-Maßstab unter N₂-Atmosphäre durchgeführt. [b] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit Mesitylen (1 Äq.) als internem Standard bestimmt. [c] Die Reaktion wurde im 1 mmol-Maßstab unter N₂-Atmosphäre durchgeführt.

Es wurden zunächst verschiedene Lösungsmittel getestet (Eintrag 1 – 5, Tabelle 5.7). Dabei zeigte sich, dass in 1,2-Dichlorethan und MeCN gute bis sehr gute Ausbeuten erzielt werden konnten. Durch die Variation der NIS-Menge sowie der Konzentration konnte in MeCN eine Ausbeute von 88 % des gewünschten Produktes **173** erhalten werden (Eintrag 5 – 6, Tabelle 5.7). Auch in einem Lösungsmittelgemisch von MeCN/1,2-Dichlorethan konnte eine Ausbeute von 87 % erreicht werden (Eintrag 8, Tabelle 5.7). Weitere Variationen konnten die Ausbeute nicht erhöhen.

Ein plausibler Reaktionsmechanismus zur Darstellung von Iodazid **173** ist in Schema 5.8 veranschaulicht. Zunächst koordiniert das Iod-Elektrophil an die Dreifachbindung des Ketoesters **172** und bildet Iodonium-Intermediat **A**, das durch einen nukleophilen Angriff des Carbonyl der Estergruppe Oxonium-Ion **B** generiert. Durch den anschließenden Angriff des Azid-Anions kommt es zur Bildung des Iodazids **173**.

Schema 5.8: Mechanismusvorschlag der Iod-induzierten Cyclisierungs-Azidierungs-Tandemreaktion.

Die optimierten Bedingungen wurden anschließend auf die zuvor synthetisierten Ketoester angewendet. In Tabelle 5.8 sind die dadurch erhaltenen Produkte und die entsprechenden Ausbeuten zusammengefasst.

[a] Isolierte Ausbeute. [b] Das Produkt wurde nach Vorschrift A synthetisiert. [c] Das Produkt wurde nach Vorschrift B synthetisiert.

Alle Ketoester konnten mithilfe der optimierten Bedingungen in moderaten bis sehr guten Ausbeuten in die entsprechenden lodazide überführt werden. Dabei wurden sowohl elektronenziehende elektronenschiebende Substituenten als auch toleriert, wobei +I-Substituenten bzw. +M-Substituenten im Allgemeinen zu einer Erhöhung der Ausbeute führten. Außerdem konnte festgestellt werden, dass die Position des Substituenten am Aromaten einen Einfluss auf die Ausbeute hat. Wird die Ausbeute der p-substituierten Bromverbindung 200 mit dem des entsprechenden m- bzw. o-substituierten Produktes 203 und 204 verglichen, fällt auf, dass die Ausbeute sinkt. Dies kann auf die Größe des Substituenten zurückgeführt werden, da die Ausbeute des Iodazids 205 mit dem kleineren Ethylsubstituenten in o-Position hoch ist.

5.1.5 Substratspektrum der TBA[Fe]-katalysierten Aminierung von C-C-Bindungen ausgehend von Iodaziden

Die dargestellten Iodazide wurden anschließend unter den optimierten Reaktionsbedingungen zu den entsprechenden Iodoxazin-2-onen bzw. Iodoxazin-4-onen umgesetzt. Die Ergebnisse sind in Tabelle 5.9 zusammengefasst.

Tabelle 5.9:Substratspektrum der TBA[Fe]-katalysierten Aminierung von C-C-Bindungen ausgehend
von lodaziden.

[a] Alle Reaktionen wurden im 0.5 mmol-Maßstab unter Mikrowellenbedingungen und N₂-Atmosphäre durchgeführt. [b] Isolierte Ausbeute.

Wie aus Tabelle 5.9 ersichtlich, konnte eine Vielzahl von unterschiedlich substituierten Iodaziden unter den optimierten Bedingungen der TBA[Fe]-katalysierten Aminierung von C-C-Bindungen in die entsprechenden Oxazinone überführt werden. Neben Halogeniden, Estern und Ethern wurden auch Alkylsubstituenten toleriert. Die Position des Substituenten hatte dabei einen Einfluss auf die Ausbeute des entsprechenden Iodoxazin-2-ons. So konnten ausgehend von den p- und o-Bromsubstituierten lodaziden 200 und 204 höhere Ausbeuten der entsprechenden Oxazin-2-one 208-A und 212-A im Vergleich zu dem m-substituierten Derivat 203 erzielt werden (Eintrag 3 und 7 vs. 6, Tabelle 5.9). Dabei wurde deutlich, dass ein Substituent in o-Position die Reaktivität noch mehr steigerte als ein p-Substituent und dabei auch ein +I-Substituent die Ausbeute des entsprechenden Iodoxazin-2-ons **213-A** erhöhte (Eintrag 7 und 8, Tabelle 5.9). Dies ist vermutlich auf die bessere Möglichkeit der Stabilisierung durch die Nähe zur reaktiven C-C-Bindung zurückzuführen. Beim Wechsel eines aromatischen Systems zum Cyclohexensubstituenten kam es zum Einbruch der Reaktivität und es wurde nur eine Ausbeute von 11 % des Iodoxazin-2-ons **214-A** erhalten (Eintrag 9, Tabelle 5.9). Erstmals wurde die Bildung des demethylierten Oxazindions 215 beobachtet, dessen Röntgenstrukur in Abbildung 5.4 veranschaulicht ist.

Abbildung 5.4: Röntgenstruktur von 215.

Über eine Folgereaktion sollte die Anwendbarkeit der Iodoxazin-2-one in der organischen Synthese verdeutlicht werden. Dazu wurde Iodoxazin-2-on **175-A** mit Phenylacetylen **170** in einer Sonogashira-Kupplung in Verbindung **216** überführt und die Struktur mittels Röntgenstruktur aufgeklärt (Schema 5.9).

Schema 5.9: Synthese und Struktur von Alkin 216 ausgehend von Iodoxazin-2-on 175-A.

5.1.6 Untersuchung der Wanderung des Methylethers zur Aufklärung des Reaktionsmechanismus

Um herauszufinden, ob es sich bei der TBA[Fe]-katalysierten Aminierung von C-C-Bindungen um eine inter- oder intramolekulare Reaktion handelt, sollte die Wanderungstendenz des Methylethers untersucht werden. Dazu wurde zunächst das deuterierte Iodazid **200-d**₃ analog zu der ausgearbeiteten Synthese in zwei Stufen synthetisiert (siehe Schema 5.10).

Schema 5.10: Darstellung des deuterierten Iodazids 200-d₃.

Eine äquimolare Mischung aus dem deuterierten Iodazid **200**-*d*₃ und Iodazid **201** wurde anschließend unter den optimierten Bedingungen umgesetzt und der Deuterierungsgrad der beiden Oxazin-2-one **208**-*d*₃-A und **209**-A bestimmt (siehe Schema 5.11). Die gebildeten Iodoxazin-4-one wurden nicht betrachtet. Es zeigte sich, dass beide Produkte noch über denselben Deuterierungsgrad wie in den Ausgangsverbindungen verfügten. Daher kann ein intramolekularer Reaktionsverlauf angenommen werden.

Schema 5.11: TBA[Fe]-katalysierte Aminierung von C-C-Bindungen einer äquimolaren Mischung von Iodazid 200-d₃ und 201.

5.1.7 Vorgeschlagener Mechanismus

Basierend auf den durchgeführten Untersuchungen und unter Einbeziehung literaturbekannter Aminierungen von C-C-Bindungen^[18,19,52] wurden zwei mögliche Reaktionsverläufe postuliert. Durch die erhaltenen Resultate wurde davon ausgegangen, dass beide Produkte über einen unterschiedlichen Reaktionsmechanismus gebildet werden. Der mechanistische Vorschlag zur Darstellung des Hauptprodukts Iodoxazin-2-on **175-A** ist in Schema 5.12 veranschaulicht.

Ferrat I reagiert mit lodazid **173** unter Freisetzung von Stickstoff zur Eisen-Nitren-Spezies II. Durch einen Ladungstransfer von Metall zum Liganden wird der Furanring geöffnet, wodurch Anion III gebildet wird. Dieses reagiert zu Cyclopropan IV weiter, welches durch die starke Ringspannung in Furanon V überführt wird. Es folgt eine 1,2-Migration des Restes vom Kohlenstoff zum Stickstoff, wodurch Sechsring VI aufgebaut wird. Abschließend wird durch die Bildung des Iodoxazin-2-ons **175-A** unter Freisetzung des Ferrats I der Katalysecyclus geschlossen.

Schema 5.12: Mechanistischer Vorschlag der TBA[Fe]-katalysierten Aminierung von C-C-Bindungen.

Da die Bildung des Iodoxazin-4-ons **175-B** in Abwesenheit des Katalysators **26** begünstigt ist, verläuft diese Reaktion höchstwahrscheinlich nur unter thermischen Bedingungen. Wie Schema 5.13 entnommen werden kann, kommt es zunächst zur Bildung des Nitrens. Hierbei ist trotzdem eine Stabilisierung des Nitrens durch TBA[Fe] **26** denkbar. Das gebildete Nitren **218** reagiert in einer Schmidt-Reaktion durch 1,2-Migration in das entsprechende Iodoxazin-4-on **175-B**.

Schema 5.13: Mechanistischer Vorschlag der thermischen Schmidt-Reaktion von Iodazid 173 zur Darstellung von Iodoxazin-4-on 175-B.

5.2 TBA[Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von Bromaziden

Die vielversprechenden Ergebnisse, die in der TBA[Fe]-katalysierten Aminierung von C-C-Bindungen ausgehend von Iodaziden erzielt werden konnten, sollten im Anschluss auf Bromazide ausgeweitet werden.

5.2.1 Darstellung verschiedener Bromazide

Die Bromazide sollten nicht nur verschiedene Substituenten am Aromaten tragen, sondern auch unterschiedliche Ester. Dazu wurden zusätzliche Ketoester wie zuvor über die Cu-katalysierte Methode nach *Zhang*^[82] und *Ma*^[83] synthetisiert (siehe Tabelle 5.10).

[a] Isolierte Ausbeute.

Im nächsten Schritt sollten die Bedingungen der Iodazidierung durch den Austausch von NIS mit NBS auf die Bromazide angewendet werden (siehe Tabelle 5.11). Hierbei wurde auf den Ausschluss von Licht während der Reaktionszeit geachtet.

	O O 0 172	NBS (X Äq.), TMSN ₃ (1.1 Äq.) Lösungsmittel (Y M), unter Lichtausschluss, RT, <i>t</i>	Br	0 N ₃ OMe 227
Eintrag ^[a]	NBS (Äq.)	Lösungsmittel / Konzentration (M)	<i>t</i> (h)	Ausbeute (%) ^[b]
1	2.2	MeCN/1,2-Dichlorethan (1:1)/ 0.1	24	17
2	2.2	MeCN/1,2-Dichlorethan (1:1)/ 0.1	48	51
3	2.2	MeCN / 0.1	24	58
4	2.2	MeCN / 0.1	48	74
5	1.1	MeCN / 0.1	48	60
6	1.1	MeCN / 0.2	48	83 (83) ^[c]
7	1.1	MeCN / 0.4	48	79

Tabelle 5.11:Untersuchungen zur Bromazidierung von Alkin 172.

[a] Alle Reaktionen wurden im 0.3 mmol-Maßstab unter Lichtausschluss und N₂-Atmosphäre durchgeführt.
 [b] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit Mesitylen (1 Äq.) als internem Standard bestimmt.
 [c] Isolierte Ausbeute.

Wie der Tabelle zu entnehmen ist, inhibierte die Anwesenheit von 1,2-Dichlorethan die Bromazidierung, da nur 17 % des gewünschten Produkts **227** gebildet wurden (Eintrag 1, Tabelle 5.11). Auch durch die Verdopplung der Reaktionszeit konnte nur eine moderate Ausbeute erhalten werden (Eintrag 2, Tabelle 5.11). Durch die Verwendung von MeCN als Lösungsmittel konnte nach 24 Stunden eine Ausbeute von 58 % erhalten werden (Eintrag 3, Tabelle 5.11). Diese konnte durch eine Erhöhung der Reaktionszeit auf 48 Stunden, eine geringere Zugabe von NBS und einer Konzentration von 0.2 M auf 83 % erhöht werden (Eintrag 4 – 6, Tabelle 5.11). Mit einer konzentrierteren Reaktionslösung konnte die Ausbeute nicht weiter erhöht werden (Eintrag 7, Tabelle 5.11).

Die optimierten Bedingungen der Bromazidierung sollten anschließend in größerem Maßstab auf verschiedene Ketoester angewendet werden. In Tabelle 5.12 sind die erhaltenen Ergebnisse der Bromazidierung aufgelistet.

Tabelle 5.12: Darstellung verschiedener Bromazide.^[a]

[a] Isolierte Ausbeute.

Wie die lodazidierung konnte auch die Bromazidierung auf unterschiedliche Substrate angewendet werden. Wie auch bei der lodazidierung zeigte sich, dass durch -M-Substituenten in *p*-Position, wie ein Methylester, geringere Ausbeuten erhalten wurden. Nur 5 % des *o*substituierten Bromazids **231** konnten isoliert werden, wobei hier auch sterische Effekte eine Rolle spielen können. Erfreulicherweise wurde für R² neben dem Methyl- auch ein Ethyl- und *iso*-Propylrest toleriert. Es zeigte sich jedoch, dass die Reaktivität bereits durch den sterisch anspruchsvolleren *iso*-Propylrest verringert wurde. Durch die Verwendung eines Benzylrestes konnte schließlich keine Bildung des gewünschten Produkts **235** beobachtet werden. Auch mit einem Crotyl- bzw. Allylrest konnte kein Produkt gebildet werden. Zwei der synthetisierten Bromazide wurden kristallisiert und ihre Struktur durch eine Röntgenkristallstruktur bestätigt (siehe Abbildung 5.5).

Abbildung 5.5: Röntgenstrukturen der Bromazide 227 und 231.

Die erhaltenen Bromazide sollten als Nächstes in der Katalyse verwendet werden. Da nur geringe Mengen an **231** und **238** erhalten wurden, konnten beide Bromazide im Nachfolgenden nicht weiter untersucht werden.

5.2.2 Substratspektrum der TBA[Fe]-katalysierten Aminierung von C-C-Bindungen ausgehend von Bromaziden

Die erhaltenen Bromazide wurden als Nächstes unter den Bedingungen der TBA[Fe]katalysierten Aminierung von C-C-Bindungen umgesetzt. Im Gegensatz zu den Iodaziden konnte nicht die Bildung von Oxazinonisomeren beobachtet werden, sondern die Bildung eines Gemisches aus Brom- und Chloroxazin-2-onen (siehe Tabelle 5.13). Das Chloratom muss hierbei vom Lösungsmittel stammen, da nur 1,2-Dichlorethan als chlorhaltige Verbindung in der Reaktionslösung vorhanden war. Methoden in denen 1,2-Dichlorethan als Chlorierungsmittel verwendet wurden, konnten beispielsweise von den Arbeitsgruppen um *Ogilvie*^[91], *Xie*^[92] und *Xu*^[93] entwickelt werden.

Tabelle 5.13:Substratspektrum der TBA[Fe]-katalysierten Aminierung von C-C-Bindungen ausgehend
von Bromaziden.

Ausbeute (%)^[b], Eintrag^[a] Substrat Produkte Verhältnis Br/Cl^[c] OMe OMe Br Ν CI Ν R N_3 OMe 1 227 (X =H) 239 178 56 %, 7.4 : 1

241

46 %, 12.1 : 1

240

2

228 (X = Br)

				Ausbeute (%) ^[b] ,
Eintrag ^[a]	Substrat	Produkte		Verhältnis Br/Cl ^[c]
3	229 (X = CO ₂ Me)	242	243	27 %, 8.7 : 1
4	230 (X = Me)	244	245	29 %, 3.1 : 1
5	Br O O OMe 232	Br N OMe	CI N OMe	62 %, 2 : 1
	Br O O O O X	Br N OX		
6	233 (X = Et)	248	249	67 %, 2.9 : 1
7	234 (X = ^{<i>i</i>} Pr)	250	251	72 %, 2.5 : 1

[a] Alle Reaktionen wurden im 0.5 mmol-Maßstab unter Mikrowellenbedingungen und N₂-Atmosphäre durchgeführt. [b] Isolierte Ausbeute. [c] Das Verhältnis wurde mittels GC bestimmt.

Wie aus Eintrag 1 - 4 in Tabelle 5.13 ersichtlich ist, haben Substituenten in p-Position des Aromaten einen großen Einfluss auf die Reaktion. Durch die Anwesenheit eines Substituenten sank die Reaktivität. Dabei wurde deutlich, dass durch elektronenziehende Substituenten wie Halogene oder Methylester die Bildung des Chloroxazin-2-ons unterdrückt wurde. +I-Substituenten wie ein Methylrest förderten die Bildung des Chloroxazin-2-ons, jedoch wurde die Ausbeute deutlich reduziert (Eintrag 4, Tabelle 5.13). Die Verschiebung des Methylrestes in o-Position des Aromaten bewirkte hingegen eine Erhöhung der Ausbeute auf 62 %. Jedoch wurde eine deutlich schlechtere Selektivität bezüglich des gebildeten Bromoxazin-2-ons 246 erhalten (Eintrag 5, Tabelle 5.13). Die Verwendung verschiedener Alkoxygruppen mit elektronenschiebenden Resten erhöhte die Reaktivität deutlich. Hierbei wurde eine Gesamtausbeute von 67 % für den Ethoxy- und 72 % für den iso-Propoxyrest erhalten. Dabei kam es auch zu einem Abfall der Selektivität zwischen Brom- und Chloroxazin-2-on (Eintrag 6 und 7, Tabelle 5.13). Anhand der Röntgenstruktur des cokristallisierten Gemisches aus Brom- 248 und

Chloroxazin-2-on **249** wurde außerdem die Struktur dieser Verbindungen erneut bestätigt (siehe Abbildung 5.6).

Abbildung 5.6: Röntgenstruktur des cokristallisierten Gemisches aus Brom- und Chloroxazin-2-on 248 und 249.

Um sicherzugehen, dass die Aminierung von Bromaziden TBA[Fe]-katalysiert ist, wurde das Substrat **227** ohne TBA[Fe] unter Mikrowellenbedingungen umgesetzt (siehe Schema 5.14). Es wurden nur Spuren des Bromoxazin-2-ons **239** gebildet. Als Hauptprodukt wurde Bromoxazin-4-on **252** gebildet, dessen Struktur mithilfe einer Röntgenstruktur eindeutig aufgeklärt werden konnte. Dies bekräftigt erneut, dass die Aminierung zur Bildung von Oxazin-4-on ohne Katalysator abläuft.

[a] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit Mesitylen (1 Äq.) als internem Standard bestimmt.
 [b] Isolierte Ausbeute.

Schema 5.14: Umsetzung von Bromazid 227 in Abwesenheit von TBA[Fe] 26.

5.2.3 Unterdrückung der Bildung von Chloroxazin-2-on

Die Entstehung von Chloroxazin-2-onen als Nebenprodukt bei der Umsetzung von Bromaziden unter den optimierten Bedingungen ließ sich auf die Verwendung von 1,2-Dichlorethan als Lösungsmittel zurückführen. Dieses kann durch Eliminierung zur Bildung von Chlorwasserstoff führen.^[93] Um die Bildung von Chlorwasserstoff und die anschließende Chlorierung zu vermeiden, sollte anstelle von 1,2-Dichlorethan als Lösungsmittel 1,2-Dibromethan verwendet werden (siehe Schema 5.15).

Schema 5.15: TBA[Fe]-katalysierte Aminierung von Bromazid 227 in 1,2-Dibromethan.

Die Verwendung von 1,2-Dibromethan führte ausschließlich zur Bildung von Produkt **239**. Leider wurde hierbei aber eine deutlich geringere Ausbeute als in 1,2-Dichlorethan erhalten, was 1,2-Dibromethan als Lösungsmittel disqualifizierte. Daher sollte untersucht werden, ob die Bildung der Chloroxazin-2-one durch die Zugabe von Bromwasserstoff unterdrückt werden konnte. Da zur Vereinfachung eine wässrige Bromwasserstofflösung verwendet werden sollte, wurde aktiviertes Molekularsieb (4 Å) zur Gewährleistung eines wasserfreien Reaktionsgemisches hinzugefügt. Die Ergebnisse dieser Untersuchung sind in Tabelle 5.14 zusammengefasst.

Eintrag ^[a]	HBr (mol-%)	Ausbeute (%) ^[b]	Verhältnis 239/178 ^[c]
1	5	49	6.7 : 1
2	10	66	34.8 : 1

Eintrag ^[a]	HBr (mol-%)	Ausbeute (%) ^[b]	Verhältnis 239/178 ^[c]
3	20	65	>99.5 % Br
4	20 ^[d]	<5	n. b.
5	30	41	38:1

[a] Alle Reaktionen wurden im 0.5 mmol-Maßstab unter Mikrowellenbedingungen und N₂-Atmosphäre durchgeführt. [b] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit Mesitylen (1 Äq.) als internem Standard bestimmt und geben die Gesamtausbeute beider Verbindungen an. [c] Das Verhältnis wurde mittels GC bestimmt. [d] Die Reaktion wurde ohne Zusatz von TBA[Fe] **26** durchgeführt.

Der Zusatz von 5 mol-% einer 48 %-igen HBr-Lösung hatte eine leichte Abnahme der Ausbeute sowie der Selektivität zur Folge (Eintrag 1, Tabelle 5.14). Bei der Zugabe von 10 mol-% konnte eine Erhöhung der Ausbeute beobachtet werden, die auch eine Verbesserung des Verhältnis auf 34.8 : 1 mit sich zog (Eintrag 2, Tabelle 5.14). Mit 20 mol-% konnte die Bildung des Chloroxazin-2-ons **178** unterdrückt werden, wobei eine bessere Ausbeute erzielt wurde als ohne den Zusatz der HBr-Lösung (Eintrag 3, Tabelle 5.14). Dabei konnte gezeigt werden, dass ohne den Katalysator **26** weiterhin nur Spuren des Produkts **239** gebildet wurden (Eintrag 4, Tabelle 5.14). Eine weitere Erhöhung der HBr-Zugabe konnte keine weitere Verbesserung erbringen. Deshalb wurde im Folgenden diese Variante (**B**) anhand weiterer Beispiele mit der ursprünglichen Variante (**A**) verglichen und in Tabelle 5.15 zusammengefasst.

Tabelle 5.15:SubstratspektrumderTBA[Fe]-katalysiertenAminierungvonC-C-BindungeninAnwesenheit von HBr.

Variante A: TBA[Fe] 26 (5 mol-%), 1,2-Dichlorethan (0.5 M), 110 °C (MW, 200 W), 0.5 h

Variante B: Variante A + HBr (48 %-ig in H₂O, 20 mol-%), MS (4 Å)

.OMe OMe

[a] Alle Reaktionen wurden im 0.5 mmol-Maßstab unter Mikrowellenbedingungen und N_{2} -Atmosphäre durchgeführt. [b] Isolierte Ausbeute. [c] Das Verhältnis wurde mittels GC bestimmt.

Wie aus Tabelle 5.15 ersichtlich wird, konnten für alle Beispiele bessere Ausbeuten bei Verwendung von Variante **B** erhalten werden (Eintrag 1 – 3, Tabelle 5.15). Dabei konnte vor allem bei Bromazid **230** die Reaktivität durch die Zugabe der HBr-Lösung mehr als verdoppelt werden, wobei die Selektivität zugunsten des Bromoxazin-2-ons **244** verschoben wurde. Die neue Variante der TBA[Fe]-katalysierten Aminierung konnte außerdem erfolgreich auf das *o*-methylierte Bromazid **232** angewendet werden. Dabei wurde die Bildung des Bromoxazin-2-ons **246** um den Faktor 10 erhöht.

Das erhaltene Bromoxazin-2-on **239** wurde anschließend in einer Folgereaktion mit Propargylbromid in das hochsubstituierte 2-Brompyridin **253** überführt (siehe Schema 5.16). Damit wurde die Möglichkeit zur Darstellung hochfunktionalisierter 2-Brompyridine durch die Verwendung von Bromoxazin-2-onen als Startmaterialien aufgezeigt.

Schema 5.16: Darstellung des hochfunktionalisierten 2-Brompyridins 253 ausgehend von Bromoxazin-2-on 239.

5.3 Zusammenfassung

Im vorliegenden Kapitel wurde die erste TBA[Fe]-katalysierte Aminierung von C-C-Bindungen entwickelt, in welcher lodazide in die entsprechenden lodoxazin-2-one und lodoxazin-4-one umgewandelt werden konnten (siehe Schema 5.17). Durch den Vergleich mit bekannten Aminierungssystemen wurde deutlich, dass es sich bei dieser Reaktion um eine neuartige Variante einer Aminierung von C-C-Bindungen handelt. Dabei wurde eine Vielzahl an funktionellen Gruppen wie Halogenide, Ester oder Alkoxide toleriert. In einer ersten Untersuchung mit einer isotopenmarkierten Methylethergruppe konnte ein intermolekularer Reaktionsverlauf ausgeschlossen werden. Im Einklang mit den durchgeführten Reaktionen, konnte darüber hinaus ein mechanistischer Vorschlag zur Bildung der Produkte entwickelt werden.

Das Substratspektrum der entwickelten Methode konnte außerdem auf Bromazide erweitert werden. Hierbei wurde ein Gemisch aus Brom- und Chloroxazin-2-onen in guten Ausbeuten erhalten (siehe Schema 5.18). Dies deutete darauf hin, dass 1,2-Dichlorethan als Lösungsmittel für die Chlorierung verantwortlich ist.

Schema 5.18: TBA[Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von Bromaziden.

Die Bildung des Chloroxazin-2-ons konnte durch die Zugabe einer HBr-Lösung unterdrückt werden. Diese Weiterentwicklung der TBA[Fe]-katalysierten Aminierung erzielte nicht nur bessere Ausbeuten, sondern auch eine höhere Selektivität gegenüber dem Bromoxazin-2-on.

6 TBA[Fe]-katalysierte Dimroth-Cyclokondensation-C(sp³)-H-Aminierungssequenz

Neben den TBA[Fe]-katalysierten C-H-Aminierungen konnten Azide auch in der im Arbeitskreis *Plietker* entwickelten TBA[Fe]-katalysierten Dimroth-Cyclokondensation eingesetzt werden.^[94] Im Folgenden sollte die TBA[Fe]-katalysierte Dimroth-Cyclokondensation mit der rutheniumkatalysierten 1,3-Cycloaddition verglichen und anschließend untersucht werden, ob die Kombination der TBA[Fe]-katalysierten Dimroth-Cyclokondensation mit einer C-H-Aminierung möglich ist (siehe Schema 6.1).

Schema 6.1: Kombination der TBA[Fe]-katalysierten Dimroth-Cyclokondensation mit der C(sp³)-H-Aminierung.

6.1 Stand der Forschung

Für die Synthese von Triazolen wird in den meisten Fällen ein Azid als Ausgangsverbindung gewählt.^[95] Hierbei haben sich zwei klassische Methoden durchgesetzt. Die erste Methode ist die von *Dimroth* entdeckte Triazolsynthese durch die Cycloaddition eines Enolats an ein Azid und einer späteren Kondensation.^[96] Bei der zweiten Methode handelt es sich um die 1,3-dipolare Cycloaddition von Alkinen mit Aziden nach *Huisgen*.^[97] Diese fand durch die Verwendung von Kupfer- und Rutheniumkatalysatoren eine breite Anwendung in der sogenannten Click-Chemie.^[98] Auch die Anwendbarkeit der Dimroth-Cyclokondensation konnte durch die Verwendung von Organokatalysatoren verbreitert werden.^[99]

Im Rahmen seines PostDoc-Aufenthalts im Arbeitskreis *Plietker* konnte *Dihan Zhang* die erste metallkatalysierte Dimroth-Cyclokondensation entwickeln. Dabei wurden durch eine TBA[Fe]-katalysierte Kondensationsreaktion zwischen Ketonen **254** und Aziden **255** verschieden substituierte Triazole **256** in guten bis sehr guten Ausbeuten erhalten (siehe Schema 6.2).^[94]

Schema 6.2: Die TBA[Fe]-katalysierte Dimroth-Cyclokondensation.^[94]

In Zusammenarbeit mit *Jakob Knelles* konnte dabei gezeigt werden, dass die Verwendung von *o*-substituierten Arylaziden zu geringen Ausbeuten der entsprechenden Triazole und zu Produktgemischen führte. Bei sterisch anspruchsvollen Resten wie einem *tert*-Butylrest in Azid **258** wurde die Bildung von Triazol **259** unterdrückt (siehe Schema 6.3).^[94,100] Wurde ein Phenylrest in *o*-Position des Azids verwendet, wurde die TBA[Fe]-katalysierte C(sp²)-Aminierung trotz der ähnlichen Reaktionsbedingungen nicht als Konkurrenzreaktion erhalten.^[39,94]

Schema 6.3: Unterdrückung der Bildung von Triazol 259 durch Verwendung von Azid 258.^[94]

Aus diesem Grund wurde gefolgert, dass die Protonierung des Ferrats I deutlich schneller verläuft als die Bildung der Eisen-Nitren-Spezies VII (siehe Schema 6.4). Anschließend erfolgt ein schneller Protonentranfer vom H-Fe-Komplex II auf das freie Azid, das mit Enolat III zu Triazen IV umgewandelt wird. Dieses wird in einer anschließenden 1,2-Addition und Kondensation unter Regeneration des Katalysators in das Triazol **256** überführt.^[94]

Schema 6.4: Mechanistischer Vorschlag der TBA[Fe]-katalysierten Dimroth-Cyclokondensation.^[94]

6.2 Vergleich der TBA[Fe]-katalysierten Dimroth-Cyclokondensation mit der 1,3-dipolaren Cycloaddition

Zunächst sollte der Nutzen der entwickelten TBA[Fe]-katalysierten Dimroth-Cyclokondensation durch den Vergleich mit den ausgiebig untersuchten und verwendeten Ru-katalysierten Cycloadditionen von *Folkin*^[101] verdeutlicht werden. Die in Anwesenheit von TBA[Fe] **26** synthetisierten Triazole **260 – 263** konnten mit Ausbeuten von 77 – 88 % erhalten werden.^[94] Zum Vergleich sollten diese Triazole, ausgehend von den entsprechenden Alkinen und Phenylazid **9**, in einer rutheniumkatalysierten 1,3-dipolaren Cycloaddition dargestellt werden. Dazu wurden die Alkine mit Cp*RuCl(cod) bzw. Cp*RuCl(PPh₃)₂ als Katalysator nach der in der Literatur beschriebenen Methode^[101] umgesetzt. Die Ergebnisse sind in den Tabellen 6.1 und 6.2 zusammengefasst.

R-	+ N ₃	Cp*RuCl(cod) (2 mol-%) Toluol (0.1 M), RT, 30 min	R R Ph N N N N Ph
Eintrag ^[a]	R	Ausbeute (%) ^[b]	GC-MS
1	H (260)	-	Spuren
2 ^[c]	H (260)	Spuren	Spuren
3	Me (261)	-	Spuren
4	OMe (262)	-	Spuren
5	Cl (263)	-	Spuren

Tabelle 6.1:Ergebnisse der 1,3-dipolaren Cycloaddition mit Cp*RuCl(cod).

[a] Alle Reaktionen wurden im 0.4 mmol-Maßstab unter N₂-Atmosphäre durchgeführt. [b] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit Mesitylen (1 Äq.) als internem Standard bestimmt. [c] Die Reaktion wurde über Nacht gerührt.

Erstaunlicherweise konnten durch die Cp*RuCl(cod)-katalysierte Cycloaddition nach *Folkin*^[101] nur Spuren des gewünschten Triazols **260** mithilfe der GC-MS-Analyse nachgewiesen werden (Eintrag 1, Tabelle 6.1). Die Verlängerung der Reaktionszeit bewirkte keinen signifikanten Unterschied in der Ausbeute (Eintrag 2, Tabelle 6.1). Auch durch die Verwendung von Resten in *p*-Position konnten die gewünschten Produkte **261 – 262** nur in Spuren nachgewiesen werden (Eintrag 3 – 5, Tabelle 6.1). Der Wechsel zur Cp*RuCl(PPh₃)₂-katalysierten Methode^[101] erbrachte keine Veränderung in den Ausbeuten (siehe Tabelle 6.2). Bei allen getesteten Reaktionen konnten die entsprechenden Cycloadditionsprodukte **260 – 263** nicht nachgewiesen werden (Eintrag 1 – 4, Tabelle 6.2).

Dieser Vergleich verdeutlicht die Limitierung der 1,3-dipolaren Cycloaddition und die Anwendbarkeit der TBA[Fe]-katalysierten Triazolsynthese zur Darstellung hochsubstituierter Triazole.

R—⟨	Ph +	9 9	Cp*RuCl(PPh ₃) ₂ (2.5 mol-%) → 1,4-Dioxan (0.13 M), 60 °C, 16 h		1
	Eintrag ^[a]	R	Ausbeute (%) ^[b]	GC-MS	
	1	H (260)	-	-	
	2	Me (261)	-	-	
	3	OMe (262)	-	-	
	4	CI (263)	-	-	

Tabelle 6.2:Ergebnisse der 1,3-dipolaren Cycloaddtion mit Cp*RuCl(PPh₃)₂.

[a] Alle Reaktionen wurden im 0.4 mmol-Maßstab unter N₂-Atmosphäre durchgeführt. [b] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit Mesitylen (1 Äq.) als internem Standard bestimmt.

6.3 Entwicklung der TBA[Fe]-katalysierten Dimroth-Cyclokondensation-C(sp³)-H-Aminierungssequenz

6.3.1 Optimierung der Reaktionsbedingungen

Trotz der ähnlichen Reaktionsbedingungen und der Verwendung desselben Katalysators konnte in Vorarbeiten^[39,94] gezeigt werden, dass aufgrund der Protonierung von TBA[Fe] **26** keine C-H-Aminierung während der Dimroth-Cyclokondensation stattfand. Um die TBA[Fe]-katalysierte Dimroth-Cyclokondensation mit der C-H-Aminierung zu verknüpfen, musste daher zunächst nach geeigneten Reaktionsbedingungen gesucht werden. Diese Bedingungen sollten sowohl eine Dimroth-Cyclokondensation, als auch eine C-H-Aminierung am selben Substrat ermöglichen. Zur Vereinfachung sollte statt eines Substrats zunächst ein Gemisch aus Desoxybenzoin **264** und *tert*-Butylphenylazid **258** verwendet werden. Letzteres konnte in Vorarbeiten mit der TBA[Fe]katalysierten C(sp³)-H-Aminierung erfolgreich zum entsprechenden Indolin **265** umgewandelt werden.^[38] Außerdem wurde gezeigt, dass bei der Verwendung von *tert*-Butylphenylazid **258** kein Triazol erhalten wurde.^[94] Da beide Reaktionen jedoch in unterschiedlichen Lösungsmitteln stattfinden, sollte zunächst untersucht werden, ob MeCN als Lösungsmittel für die TBA[Fe]-katalysierte C(sp³)-H-Aminierung verwendet werden konnte. Dazu wurde *tert*-Butylphenylazid **258** unter den optimierten Bedingungen^[38] mit MeCN umgesetzt (Eintrag 1, Tabelle 6.3).

Tabelle 6.3:Ergebnisse der Verwendung von MeCN als Lösungsmittel in der TBA[Fe]-katalysierten
C(sp³)-H-Aminierung.

Eintrag ^[a]	1,2-Dichlorethan (mol-%)	Desoxybenzoin (Äq.)	<i>c</i> (M)	Ausbeute (%) ^[b]
1	20	-	0.5	69 (64) ^[c]
2	-	-	0.5	42
3	20	0.83	0.5	69
4	20	-	0.4	54

[a] Alle Reaktionen wurden im 0.5 mmol-Maßstab unter Mikrowellenbedingungen und N₂-Atmosphäre durchgeführt. [b] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit 1,3,5-Trimethoxybenzol (1 Äq.) als internem Standard bestimmt. [c] Isolierte Ausbeute.

Erfreulicherweise wurden 69 % des Indolins **265** gebildet und damit ein ähnliches Ergebnis wie in DMF erhalten. Der Zusatz von 1,2-Dichlorethan war jedoch immer noch wichtig, da nur 42 % Indolin **265** in Abwesenheit von 1,2-Dichlorethan gebildet wurden (Eintrag 2, Tabelle 6.3). Es konnte außerdem gezeigt werden, dass die Anwesenheit von Desoxybenzoin **264** im Reaktionsgemisch keinen negativen Einfluss auf die C(sp³)-H-Aminierung hat und damit für die weitere Optimierung verwendet werden kann (Eintrag 3, Tabelle 6.3). Da die Dimroth-Cyclokondensation in einer 0.4 M Reaktionslösung stattfindet, wurde außerdem getestet, ob die Aminierung in einer 0.4 M Lösung möglich ist (Eintrag 4, Tabelle 6.3). Auch unter diesen Bedingungen wurde Indolin **265** in guter Ausbeute gebildet, wenn auch mit 15 % weniger als im Vergleich zu einer 0.5 M Lösung (Eintrag 4, Tabelle 6.3).

Als Nächstes sollte getestet werden, ob die Triazolbildung von Desoxybenzoin **265** mit Phenylazid **9** und die C-H-Aminierung von *tert*-Butylphenylazid **258** parallel stattfinden können. Dazu wurde Desoxybenzoin **264** und *tert*-Butylphenylazid **258** mit TBA[Fe] **26** in MeCN unter Mikrowellenbedingungen umgesetzt (siehe Tabelle 6.4).

Tabelle 6.4:Untersuchungen zur parallelen TBA[Fe]-katalysierten Umsetzung von Desoxybenzoin 264und tert-Butylphenylazid 258.

o ↓	+ , N ₃ 258	TBA[Fe] 26 (2 mol-%), 1,2-Dichlorethan (<i>X</i> mol-%), Phenylazid 9 (1.2 Äq.)			\checkmark
Ph Pl Pl 264		MeCN (0.4 M), <i>T</i> (MW, 200 W), <i>t</i>	Ph Ph 260	+	265
Eintrag ^[a]	1,2-Dichlorethan (mol	-%) <i>T</i> (°C)	<i>t</i> (h)	Ausbeute (%) ^[b]	
				260	265
1	20	80	1	10	-
2	20 ^[c]	120	1	15	65
3	-	120	1	45	8
4	20	80 (1 h), 120 (1 h) ^[d]	2	12	62
5	20	120 (1 h), 80 (1 h) ^[d]	2	19	63

[a] Alle Reaktionen wurden im 0.4 mmol-Maßstab unter Mikrowellenbedingungen und N₂-Atmosphäre durchgeführt. [b] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit 1,3,5-Trimethoxybenzol (1 Äq.) als internem Standard bestimmt. [c] Es wurden 2.5 mol-% TBA[Fe] **26** verwendet. [d] Die Temperaturprogramme wurden nacheinander durchlaufen.

Erstaunlicherweise wurden nur 10 % Triazol **260** unter den Dimroth-Cyclokondensationsbedingungen in Anwesenheit von *tert*-Butylphenylazid **258** und 1,2-Dichlorethan gebildet (Eintrag 1, Tabelle 6.4). Auch Indolin **265** wurde nicht gebildet. Durch Erhöhung der Temperatur auf 120 °C wurden 65 % Indolin **265**, jedoch nur 15 % des Triazols **260** gebildet. Da angenommen wurde, dass das Cosolvens 1,2-Dichlorethan die Triazolbildung inhibierte, wurde die Reaktion bei 120 °C ohne den Zusatz von 1,2-Dichlorethan durchgeführt (Eintrag 3, Tabelle 6.4). Hierbei konnte die Ausbeute des Triazols **260** auf 45 % erhöht werden, wodurch gezeigt werden konnte, dass die Anwesenheit von 1,2-Dichlorethan die TBA[Fe]-katalysierten DimrothCyclokondensation inhibiert. Leider zeigte sich jedoch, dass unter diesen Bedingungen nur 8 % Indolin **265** gebildet wurden. Auch die Verwendung von zwei Reaktionstemperaturen und die damit verbundene Verlängerung der Reaktionszeit führten nicht zur deutlichen Erhöhung der Triazolausbeute **260** (Eintrag 4 und 5, Tabelle 6.4).

Aus diesen Ergebnissen wurde gefolgert, dass beide Reaktionen zwar in einer Reaktionsmischung ablaufen können, die Dimroth-Cyclokondensation jedoch durch die Anwesenheit des Cosolvens 1,2-Dichlorethan gestört wird. Daher wurde eine sequenzielle Kombination aus Dimroth-Cyclokondensation und C-H-Aminierung angestrebt, in der zunächst die Triazolbildung bei 80 °C erfolgen sollte. Anschließend sollte durch die Zugabe von 1,2-Dichlorethan unter Erhöhung der Reaktionstemperatur auf 120 °C die C-H-Aminierung erfolgen (siehe Tabelle 6.5).

 [a] Alle Reaktionen wurden im 0.4 mmol-Maßstab unter Mikrowellenbedingungen und N₂-Atmosphäre durchgeführt.
 [b] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit 1,3,5-Trimethoxybenzol (1 Äq.) als internem Standard bestimmt.

Die sequenzielle Reaktion mit einer späteren Zugabe von 1,2-Dichlorethan führte zwar zu 43 % Triazol **260**, jedoch wurde keine Indolinbildung beobachtet (Eintrag 1, Tabelle 6.5). Daraus wurde gefolgert, dass der Katalysator nach der erfolgreichen Dimroth-Cyclokondensation nicht mehr in der C(sp³)-H-Aminierung verwendet werden kann. Die Sequenz wurde wiederholt und im zweiten Teilschritt 2.5 mol-% TBA[Fe] **26** zusätzlich zugegeben (Eintrag 2, Tabelle 6.5). Erfreulicherweise konnten unter diesen Bedingungen beide Produkte **260** und **265** in guten Ausbeuten erhalten werden und dadurch ein Zugang zur sequenziellen TBA[Fe]-katalysierten Dimroth-Cyclokondensation-C(sp³)-H-Aminierung eröffnet werden.

6.3.2 Darstellung geeigneter Diazide

Um die optimierten Bedingungen der TBA[Fe]-katalysierten Dimroth-Cyclokondensation-C(sp³)-H-Aminierungssequenz auf komplexe Azide anzuwenden, sollten verschiedene Diazide synthetisiert werden (siehe Schema 6.5).

Schema 6.5: Verwendung von Diaziden bei der sequenziellen TBA[Fe]-katalysierten Dimroth-Cyclokondensation-C(sp³)-H-Aminierung.

Zu Darstellung von Diazid **266** wurde 2-*tert*-Butylanilin **272** nach *Jiao*^[102] in einer Cu-katalysierten Azidierung in Verbindung **273** überführt (siehe Schema 6.6). Diese wurde anschließend erneut azidiert, wodurch Diazid **266** in sehr guter Ausbeute erhalten wurde.

Schema 6.6: Darstellung von Diazid 266 ausgehend von 2-*tert*-Butylanilin 272.

Als Nächstes sollte Diazid **268** dargestellt werden. Dazu wurde *tert*-Butylbenzol **274** über eine Nitrierung und anschließende Bromierung in Verbindung **276** überführt. Diese wurde daraufhin durch eine Reduktion der Nitrogruppe in Amin **277** umgewandelt. Als Nächstes folgte eine Cukatalysierte Azidierung des Bromsubstituenten und eine anschließende Azidierung des Amins, wodurch das gewünschte Diazid **268** isoliert werden konnte (siehe Schema 6.7).

Schema 6.7: Darstellung von Diazid 268 ausgehend von tert-Butylbenzol 274.

Zum Schluss sollte Diazid **270** ausgehend von 2-*tert*-Butylanilin **272** synthetisiert werden. Hierzu wurde 2-*tert*-Butylanilin **272** zunächst bromiert und anschließend unter den Cu-katalysierten Azidierungsbedingungen umgesetzt (siehe Schema 6.8). Jedoch konnte nicht das Monoazid **280**, sondern das Diamin **281** mit 33 % Ausbeute erhalten werden. Auch durch die Verkürzung der Reaktionszeit auf 8 Stunden konnte die Bildung des Monoazids **280** nicht beobachtet werden.

Schema 6.8: Untersuchungen zur Darstellung von Monoazid 280 ausgehend von *tert*-Butylanilin 272.
Das Diamin **281** sollte mithilfe einer Diazidierung in das gewünschte Produkt **270** überführt werden. Dazu wurde Diamin **281** mit *tert*-Butylnitrit und Trimethylsilylazid umgesetzt (siehe Schema 6.9). Jedoch konnte auch nach einer Reaktionszeit von 7 Stunden nur das Monoazid **280** erhalten werden. Aufgrund der moderaten Ausbeuten der beiden letzten Stufen wurde darauf verzichtet, die Synthese von Diazid **270** weiter zu verfolgen und die weiterführenden Untersuchungen wurden mit den beiden erfolgreich synthetisierten Diaziden **266** und **268** durchgeführt.

Schema 6.9: Umsetzung des Diamins 281 mit tert-Butylnitrit und Trimethylsilylazid.

6.3.3 Anwendung der TBA[Fe]-katalysierte Dimroth-Cyclokondensation-C(sp³)-H-Aminierungssequenz

Die Diazide **266** und **268** wurden im Anschluss unter den optimierten Bedingungen der TBA[Fe]katalysierten Dimroth-Cyclokondensation-C(sp³)-H-Aminierungssequenz umgesetzt (siehe Tabelle 6.6).

Tabelle 6.6:SubstratspektrumderTBA[Fe]-katalysiertenDimroth-Cyclokondensation-C(sp³)-H-Aminierungssequenz.

[a] Alle Reaktionen wurden im 0.4 mmol-Maßstab unter Mikrowellenbedingungen und N₂-Atmosphäre durchgeführt. [b] Isolierte Ausbeute.

Bei der Umsetzung von Desoxybenzoin **264** mit Diazid **266** wurde das gewünschte Triazolindolin **267** nicht gebildet (Eintrag 1, Tabelle 6.6). Dieser negative Befund kann durch Diazid **265** hervorgerufen werden, da dieses durch das Substitutionsmuster des Aromaten und der damit verbundenen räumlichen Nähe der Substituenten eine Reaktion erschwert. Um diesen Effekt zu minimieren wurde Diazid **268** in der nächsten Reaktion verwendet (Eintrag 2, Tabelle 6.6). Erfreulicherweise konnte beim Einsatz von Diazid **268** die sequenzielle Cyclokondensation-C-H-Aminierung erhalten und das Produkt **269** isoliert werden. Hierbei wurde außerdem Amin **282** in 10 % Ausbeute isoliert, in welchem nur der Cyclokondensationsschritt stattfand. Beim Einsatz von Keton **283** war die Sequenz auch erfolgreich, wobei auch hier neben dem gewünschten Produkt **284** das Nebenprodukt **285** gebildet wurde (Eintrag 3, Tabelle 6.6). Triazolindolin **284** konnte außerdem kristallisiert und die Struktur röntgenographisch belegt werden (siehe Abbildung 6.1).

Abbildung 6.1: Röntgenstruktur von Triazolindolin 284.

Anhand dieser Beispiele konnte gezeigt werden, dass die TBA[Fe]-katalysierte Dimroth-Cyclokondensation-C-H-Aminierungssequenz eine einfache und schnelle Möglichkeit bietet, hochfunktionalisierte stickstoffreiche Verbindungen aufzubauen.

6.4 Zusammenfassung

In diesem Kapitel wurde zum einen der Nutzen der TBA[Fe]-katalysierten Dimroth-Cyclokondensation durch den Vergleich mit bekannten Ru-katalysierten Triazolsynthesen aufgezeigt. Außerdem konnte eine TBA[Fe]-katalysierte Dimroth-Cyclokondensation-C-H-Aminierung entwickelt und anhand zweier Beispiele erfolgreich angewendet werden, wodurch hochfunktionalisierte stickstoffreiche Verbindungen synthetisiert wurden. Diese einfache Methode ermöglicht die sequenzielle Kombination zweier Reaktionen ohne Wechsel des Katalysators oder des Lösungsmittels, wobei als Nebenprodukte nur Wasser und Stickstoff gebildet werden.

7 Darstellung nicht-natürlicher PPAPs und erste Untersuchungen zur Anwendung der Dimroth-Cyclokondensation

7.1 Polycyclische Polyprenylierte Acylphloroglucinole (PPAPs)

Die Naturstofffamilie der polycyclischen polyprenylierten Acylphloroglucinole (PPAPs) umfasst über 400 Vertreter, die vor allem für ihr breites biologisches Wirkungsspektrum bekannt sind.^[103] Sie kommen in der Pflanzengattung *Guttiferae* vor und weisen ein Bicyclo[3.3.1]nonatrion-Grundgerüst als gemeinsames Strukturmotiv auf.^[103,104] Durch verschiedene Klassifizierungen wird diese Naturstofffamilie in Untergruppen aufgeteilt. Hierbei wird zum einen durch die Stellung der Acylgruppe zwischen Typ-A- und Typ-B-PPAPs unterschieden, zum anderen lassen sie sich anhand der Konfiguration des Substituenten an C-7 in *exo-* und *endo-*PPAPs unterteilen (siehe Schema 7.1).^[103] Die Vielzahl an biologischen Eigenschaften der PPAPs wird auf das unterschiedliche Substituentenmuster am Grundgerüst zurückgeführt, das vor allem mit Prenyloder Geranylseitenketten dekoriert ist.^[104,105] So konnten unter anderem antidepressive, antikanzerogene und antibakterielle Eigenschaften nachgewiesen werden.^[106]

Unterschiedliche Totalsynthesen verschiedener PPAP-Vertreter konnten z. B. von den Arbeitsgruppen um *Shibasaki*^[107], *Danishefsky*^[108] oder *Porco*^[109] beschrieben werden. Im Jahr 2011 gelang es *Plietker* einen Algorithmus für die Darstellung von *endo*-Typ-B-PPAPs zu entwickeln.^[110] Hierbei gelang die Synthese von fünf PPAPs durch die Trennung von gerüstaufbauenden und gerüstdekorierenden Schritten ausgehend von Acetylaceton **286**.^[110] Der Algorithmus konnte in den darauffolgenden Jahren weiterentwickelt und zur Synthese einer

Vielzahl natürlicher PPAPs wie Garcinol **290**^[111], Guttiferon A **293**^[112] oder Hyperibon I **294**^[113] angewendet werden (siehe Schema 7.2). Nichtsdestotrotz lag der Fokus im Arbeitskreis bis dato nur auf der Synthese der natürlichen PPAPs, nicht jedoch auf der Verbesserung der biologischen Aktivitäten dieser Verbindungen.

Schema 7.2: Algorithmus zur Darstellung von *trans*-Typ-B-PPAPs nach *Plietker*.^[110]

7.2 Darstellung nicht-natürlicher PPAPs und Untersuchungen ihrer biologischen Eigenschaften

7.2.1 Erste Überlegungen und Untersuchungen

Nach der erfolgreichen Synthese einer Vielzahl an natürlichen PPAPs **287 – 294** sollte ihre biologische Aktivität genauer untersucht werden. Da einige Vertreter der PPAPs wie Garcinol **290** für ihre antibakterielle Wirkung^[114] bekannt sind, sollten die im Arbeitskreis *Plietker* synthetisierten natürlichen PPAPs **287 – 294** zunächst auf ihre Aktivität gegen den Gramnegativen Erreger *Pseudomonas aeruginosa* und gegen den Gram-positiven, Methicillinresistenten Erreger *Staphylococcus aureus* USA300 getestet werden. Da Vancomycin als Antibiotikum gegen MRSA eingesetzt wird, sollte außerdem untersucht werden, ob ein PPAP mit einer geringeren minimalen Hemmkonzentration, kurz: MIC, als Vancomycin gefunden werden kann.^[115] Die biologischen Tests wurden in Zusammenarbeit mit dem *Interfakultären Institut für Mikrobiologie und Infektionsmedizin Tübingen* durchgeführt und sind in Tabelle 7.1 zusammengefasst.^[116]

Tabelle 7.1:MIC-Werte der natürlichen PPAPs287 – 294 gegen den Gram-negativen ErregerPseudomonas aeruginosa und gegen den Gram-positiven Erreger Staphylococcus aureusUSA300.[116]

Eintrag PPAP		MIC-Wert (µg/mL) Pseudomonas aeruginosa	MIC-Wert (μg/mL) Staphylococcus aureus USA300		
1	287	>32	1-2		
2	288	>32	2 – 4		
3	289	>32	>32		
4	290	>32	4 – 8		
5	291	>32	>32		
6	292	>32	>32		
7	293	>32	8-16		
8	294	>32	4		

Es zeigte sich, dass die PPAPs **287** – **294** mit Konzentrationen von bis zu 32 µg/mL keine biologische Aktivität gegenüber *Pseudomonas aeruginosa* zeigten. Beim Gram-positiven Erreger *Staphylococcus aureus* USA300 hingegen konnte für *epi*-Clusianon **287**, Hyperpapuanon **288**, Garcinol **290** und Hyperibon I **294** ein MIC-Wert von unter 10 µg/mL nachgewiesen werden (Eintrag 1, 2, 4 und 8, Tabelle 7.1). Interessanterweise zeigte dabei Garcinol **290**, dessen MRSA-Aktivität zuvor berichtet wurde, die geringste Aktivität gegenüber *Staphylococcus aureus* USA300.^[114a] Diese vielversprechenden Ergebnisse sollten als Nächstes dazu genutzt werden, ein Modell der Struktur-Aktivitätsbeziehungen, kurz: SAR-Modell, zu generieren. Dabei sollten weitere nicht-natürliche PPAPs synthetisiert werden, um ein aussagekräftiges SAR-Modell anzufertigen und die MRSA-Aktivität zu steigern.

7.2.2 Synthese nicht-natürlicher PPAPs und Untersuchung ihrer biologischen Eigenschaften

Zur Ausarbeitung eines SAR-Modells sollten PPAPs mit unterschiedlichen Resten synthetisiert werden. Da sich in Studien gezeigt hatte, dass das vierfach prenylierte PPAP Hyperforin den Pregnan-X-Rezeptor aktiviert, der für die Detektierung toxischer und körperfremder Substanzen zuständig ist, sollten PPAPs mit einer geringeren Anzahl an Prenylresten synthetisiert werden.^[117] Aus diesem Grund sollten PPAPs mit einem Benzylrest an C-5 des Grundgerüsts versehen werden. Für die Darstellung dieser nicht-natürlicher PPAPs wurden die Erkenntnisse der Synthesen der natürlichen PPAPs genutzt (siehe Schema 7.2).

Ausgehend von Diester **295** wurde in einer 1,2-Addition mit Methyllithium und einer anschließenden Einführung des Benzylrestes Cyclohexenon **296** erhalten. Dieses wurde über eine kupfervermittelte 1,4-Addition von Methylmagnesiumbromid in sehr guter Ausbeute in Cyclohexan **297** umgewandelt.^[118] Anschließend wurde erfolgreich der Allylrest durch eine decarboxylierende Tsuji-Trost-Allylierung^[112,113] eingeführt und Cyclisierungsvorläufer *cis-299* in guter Ausbeute erhalten (siehe Schema 7.3).

Schema 7.3: Darstellung des Cyclisierungsvorläufers *cis*-299.

Als Nächstes sollte die erste Differenzierung durch den Einbau unterschiedlicher Reste in Position C-3 erfolgen (siehe Schema 7.4). Dazu wurde Cyclisierungsvorläufer *cis*-299 entweder in einer Dieckmann-Kondensation zu Bicyclus **300** oder durch anschließende C-Acylierung in die PPAPs **301**, **302** und **303** überführt. Durch eine Kreuzmetathese wurden die zuvor gewonnenen Verbindungen in die Prenylverbindungen **304**, **306** und **307** überführt. PPAP **305** wurde hierbei durch *Nicole Biber* unter Verwendung einer anderen Syntheseroute dargestellt, ist aber zur weiteren Verdeutlichung der Ergebnisse in Schema 7.4 aufgenommen.^[118]

a) KO^tBu (2 Äq.), THF, 0 °C, 30 min; b) KO^tBu (2 Äq.), R⁴(C=O)CN (3.3 - 10 Äq.), THF, 0 °C - RT, 16 - 48 h; c) Amylen (100 Äq.), Grubbs II (15 mol-%), CH₂Cl₂, Rückfluss, ü. N.; d) von *Nicole Biber* über eine andere Route synthetisiert.^[118]

Schema 7.4:Darstellung der Bicyclen 300 und 304 und der nicht-natürlichen PPAPs 301 – 303, 306 –307.

Die synthetisierten Verbindungen wurden, wie ihre natürlichen Vorgänger, auf ihre Aktivität gegenüber *Staphylococcus aureus* USA300 getestet (siehe Tabelle 7.2). Es zeigte sich, dass die Bicyclen **300** und **304** ohne Substituenten an Position C-3 keine MRSA-Aktivität aufweisen (Eintrag 1 und 5, Tabelle 7.2). Durch einen Acylsubstituenten an C-3 konnte die MRSA-Aktivität erheblich gesteigert werden. Dabei wurde deutlich, dass die synthetisierten nicht-natürlichen PPAPs mit Benzylrest in Position C-5 bereits eine höhere Aktivität gegenüber MRSA zeigten als die meisten getesteten natürlichen PPAPs. Auch der Allylrest in Position C-1 wurde toleriert. Mit einem Benzoylrest in Position C-3 in PPAP **301** konnte dabei ein MIC-Wert von 4 µg/mL erhalten werden (Eintrag 2, Tabelle 7.2). Durch den Wechsel zu einem *iso*-Butyrylrest konnte die MRSA-

Aktivität auf einen MIC-Wert von 1 µg/mL verbessert werden (Eintrag 3, Tabelle 7.2). Auch ein Acylrest lieferte einen ähnlichen Wert (Eintrag 4, Tabelle 7.2). Der Wechsel des Allylrestes in C-1 zu einem Prenylrest konnte für PPAP **305** und **306** die MRSA-Aktivität weiter steigern. Dabei wurde für PPAP **307** ein MIC-Wert von $0.5 - 1 \mu g/mL$. Im Vergleich dazu zeigte Vancomycin einen MIC-Wert von 1 µg/mL.

Eintrag	РРАР	MIC- Wert (µg/mL)
1	300	>32
2	301	4
3	302	1
4	303	1 – 2
5	304	>32
6	305	1 – 2
7	306	2
8	307	0.5 – 1

Tabelle 7.2:MIC-Werte der Bicyclen 300 und 304 und der nicht-natürlichen PPAPs 301 – 303, 305 –307 gegen den Gram-positiven Erreger Staphylococcus aureus USA300.^[116]

Die erhaltenen Ergebnisse wurden mit den Ergebnissen weiterer nicht-natürlicher PPAPs, die von *Claudia Guttroff* und *Nicole Biber* synthetisiert wurden, verglichen und in einem SAR-Modell zusammengefasst (siehe Abbildung 7.1).

Abbildung 7.1: SAR-Modell der PPAPs.^[116]

Es zeigte sich, dass die Reste R¹ und R² einen geringen Einfluss auf die antimikrobielle Wirkung haben. Diese Schlussfolgerung konnte anhand der MIC-Werte der benzylierten PPAPs bereits gezogen werden. Im Gegensatz dazu zeigte sich, dass R⁴ einen Einfluss auf die antimikrobielle Wirkung hat. PPAPs mit Allyl- oder Prenylgruppen zeigen deutlich stärkere MRSA-Aktivitäten als Methylgruppen, wie in Hyperibon L **289** mit einem MIC-Wert von >32 µg/mL. Am meisten wird die Aktivität aber durch R³ beeinflusst. Es konnte gezeigt werden, dass der Austausch des aromatischen Restes durch einen aliphatischen Rest die MRSA-Aktivität zusätzlich steigert, was besonders durch einen Acylrest verdeutlicht wird.

Anschließend wurde die cytotoxische Aktivität aller PPAPs mit einem MIC-Wert unter 4 μ g/mL gegenüber menschlichen, monocytischen HL-60-Zellen ermittelt.^[116] Die dabei erhaltenen mittleren inhibitorischen Konzentrationen, kurz: IC₅₀, der benzylierten Verbindungen sind in Tabelle 7.3 zusammengefasst.

Eintrag	РРАР	MIC- Wert ^[a] (µg/mL)	IC₅₀-Wert ^[b] (µg/mL)	IC ₅₀ /MIC ^[c]
1	302	1	20.0	20.0
2	303	1 – 2	10.8	5.4
3	305	1 – 2	11.8	5.9
4	306	2	13.1	6.6
5	307	0.5 – 1	7.7	7.7

 Tabelle 7.3:
 Cytotoxizitätsprofil der aktivsten benzylierten PPAPs.

[a] Die MIC-Werte wurden mit dem Methicillin-resistenten *Staphylococcus aureus* USA300 bestimmt. [b] Die cytotoxische Aktivität wurde mit der menschlichen, monocytischen HL-60-Zelllinie bestimmt und als IC₅₀-Wert angegeben. [c] Das Verhältnis ist ein Maß für das therapeutische Fenster und beschreibt den Bereich der Dosis zwischen Wirksamkeit und Toxizität.

Unglücklicherweise zeigten alle getesteten benzylierten PPAPs einen niedrigen IC₅₀-Wert und damit eine höhere Cytotoxizität gegenüber den HL-60-Zellen. So war das aktivste PPAP **307** gleichzeitig auch das cytotoxischste (Eintrag 5, Tabelle 7.3). Durch das Verhältnis von IC₅₀-Wert/MIC-Wert kann das sogenannte therapeutische Fenster ermittelt werden. Dieses beschreibt den Bereich zwischen Wirksamkeit einer Verbindung ohne mögliche Nebenwirkungen. Die ermittelten therapeutischen Fenster für die benzylierten PPAPs stellten

sich als eng heraus. Dies stellte jedoch kein Ausschlusskriterium dar, da auch einige verwendete Wirkstoffe in der Krebstherapie oder der Behandlung von Herzinsuffizienz ein enges therapeutisches Fenster aufweisen.^[120]

Wie bereits erwähnt, ist Vancomycin für seine hohe MRSA-Aktivität bekannt. Jedoch ist die Anzahl an *Staphylococcus aureus*-Stämmen mit verminderter Empfindlichkeit gegenüber Vancomycin, sogenannte VISA-Stämme, oder Vancomycin-resistenter *Staphylococcus aureus*-Stämme, sogenannte VRSA-Stämme, gewachsen.^[121] Auch Vancomycin-resistente *Enterococcus*-Stämme, kurz: VRE-Stämme, wie *Enterococcus faecalis* VRE366 oder *Enterococcus faecium* VRE392 treten immer häufiger auf. ^[121d,122] Um das Wirkungsspektrum der PPAPs genauer zu untersuchen, sollte die antibakterielle Wirkung anhand weiterer Stämme, wie VISA und VRE-Stämme, untersucht werden. In Tabelle 7.4 sind die Ergebnisse vom aktivsten PPAP **307** zusammengefasst.

Eintrag	Stamm	Resistenztyp	PPAP 307 ^[a]	Vancomycin ^[b]
1	Staphylococcus aureus USA300 LAC	MRSA	0.5 – 1	1
2	Staphylococcus aureus Mu50	VISA	2	8
3	Listeria monocytogenes ATCC 19118	-	2	1
4	Enterococcus faecalis VRE366	VRE	2	>32
5	Enterococcus faecium 4147	-	1	1
6	Enterococcus faecium VRE392	VRE	2	>32
7	Streptotococcus pneumoniae ATCC 49619	-	0.5	0.25

 Tabelle 7.4:
 Aktivitätsprofil von PPAP 307 und Vancomycin gegenüber verschiedenen Stämmen.

[a] MIC-Werte von PPAP **307** gegenüber den einzelnen Stämmen. [b] MIC-Werte von Vancomycin gegenüber den einzelnen Stämmen.

Es zeigte sich, dass PPAP **307** neben einer hohen Aktivität gegen MRSA auch eine höhere Wirksamkeit gegenüber dem VISA-Stamm *Staphylococcus aureus* Mu50 aufweist (Eintrag 2, Tabelle 7.4). Interessanterweise konnten außerdem MIC-Werte von 2 µg/mL gegen *Enterococcus faecalis* VRE366 und *Enterococcus faecium* VRE392 erhalten werden (Eintrag 4 und 6, Tabelle

7.4). Diese MIC-Werte sind fast identisch mit den MIC-Werten der VRE-Antibiotika Linezolid und Quinipristin-Dalfopristin.^[123] Außerdem wurden ähnliche Aktivitäten gegenüber *Listeria monocytogenes* ATCC 19118 und *Streptotococcus pneumoniae* ATCC 49619 wie für Vancomycin erhalten (Eintrag 3 und 5, Tabelle 7.4). Dieses breite Wirkungsspektrum könnte einen Zugang zu nicht-peptidbasierten Wirkstoffen mit PPAP-Strukturmotiv eröffnen. Durch die Einführung weiterer Seitenketten, die nicht in den natürlichen PPAPs vorkommen, könnte die Wirksamkeit zusätzlich erweitert werden und neue Aktivitäten erhalten werden.

7.3 Untersuchungen zur Anwendung der TBA[Fe]-katalysierten Dimroth-Cyclokondensation an PPAPs

Nach der erfolgreichen Darstellung sehr aktiver, nicht-natürlicher PPAPs sollten weitere Modifikationen am PPAP-Grundgerüst durchgeführt werden. Da viele Verbindungen mit Triazolmotiv eine Vielzahl an biologischen Aktivitäten aufweisen, sollte untersucht werden, ob dieses Motiv auch an das PPAP-Grundgerüst angebracht werden kann.^[124] Dabei sollte die TBA[Fe]-katalysierte Dimroth-Cyclokondensation eingesetzt werden. Die Triazolbildung sollte an Bicyclus **309** erfolgen. Hierzu wurde der Bicyclus **309**, ausgehend von dem von *Cecilia Socolsky* synthetisierten Vorläufer *cis*-**308**, mithilfe der Dieckmann-Kondensation dargestellt (siehe Schema 7.5).^[125]

Schema 7.5: Darstellung des Bicyclus 309.

Der Bicyclus **309** wurde daraufhin unter den optimierten Bedingungen der TBA[Fe]-katalysierten Dimroth-Cyclokondensation umgesetzt (siehe Tabelle 7.5). Dazu wurde Bicyclus **309** in Anwesenheit von TBA[Fe] **26** und Phenylazid **9** unter Mikrowellenbedingungen in MeCN gerührt (Eintrag 1, Tabelle 7.5). Leider konnte die Bildung von Triazol **310** nicht beobachtet werden. Auch durch die Verwendung von DMSO anstelle von MeCN als Lösungsmittel konnte nicht das gewünschte Produkt **310** gebildet werden (Eintrag 2, Tabelle 7.5).

Tabelle 7.5:Untersuchungen zur Anwendung der TBA[Fe]-katalysierten Dimroth-Cyclokondensation
an Bicyclus 309.

[a] Alle Reaktionen wurden im 0.2 mmol-Maßstab unter Mikrowellenbedingungen und N₂-Atmosphäre durchgeführt. [b] Die Ausbeuten wurden aus dem Rohgemisch über ¹H-NMR-Integration mit Mesitylen (1 Äq.) als internem Standard bestimmt.

Die nicht erfolgte Dimroth-Cyclokondensation konnte durch weitere Untersuchungen der PPAPs erklärt werden. Es konnte festgestellt werden, dass das Diketonmotiv an Eisenionen chelatisieren kann, wodurch ein Fe-PPAP-Komplex ausgebildet wird.^[126] Durch diese Erkenntnis kann der negative Verlauf der TBA[Fe]-katalysierten Dimroth-Cyclokondensation erklärt werden, da auch der Bicyclus **309** über ein Diketonmotiv verfügt. Es scheint, dass durch diese Chelatisierung die Triazolbildung nicht mehr möglich ist und die Bildung von Verbindung **310** nicht erfolgt.

7.4 Zusammenfassung

In diesem Teil der Arbeit konnten verschiedene nicht-natürliche PPAPs synthetisiert werden, die eine gute bis sehr gute Aktivität gegenüber MRSA aufwiesen. In Zusammenarbeit mit *Claudia Guttroff* und *Nicole Biber* konnte ein SAR-Modell entwickelt werden, das für die Synthese weiterer PPAPs genutzt werden kann. Es konnte ein PPAP **307** synthetisiert werden, das im Vergleich zu Vancomycin eine höhere Aktivität gegenüber dem Methicillin-resistenten Erreger *Staphylococcus aureus* USA300 zeigt. Diese Verbindung konnte außerdem erfolgreich gegenüber anderer VISA- und VRE-Stämme getestet werden und zeigt vielversprechende Ergebnisse hinsichtlich der Aktivität. Um weitere Modifikationen der PPAPs zu erhalten, wurde die Einführung eines Triazolmotivs an das PPAP-Grundgerüst mithilfe der TBA[Fe]-katalysierten Dimroth-Cyclokondensation untersucht.

8 Zusammenfassung und Ausblick

Im ersten Teil dieser Arbeit konnte das Konzept der TBA[Fe]-katalysierten Aminierung von C-H-Bindungen um die TBA[Fe]-katalysierte Hemetsberger-Knittel-Reaktion erweitert werden. Die optimierten Reaktionsbedingungen konnten auf insgesamt 21 Vinylazide mit guten bis sehr guten Ausbeuten angewendet werden (siehe Schema 8.1). Um den Reaktionsmechanismus aufzuklären, wurde die entwickelte Methode mit der ursprünglichen Hemetsberger-Knittel-Reaktion verglichen. Es zeigte sich, dass die in der ursprünglichen Hemetsberger-Knittel-Reaktion angenommene Azirinbildung als Zwischenstufe für die TBA[Fe]-katalysierte Variante ausgeschlossen werden kann. Vergleiche mit anderen Systemen zeigten jedoch, dass diese Zwischenstufe in diesen Systemen auftreten kann. Durch die Untersuchung des kinetischen Isotopeneffekts konnte außerdem festgestellt werden, dass der C-H-Bindungsbruch nicht der geschwindigkeitsbestimmende Schritt der Reaktion ist. Schließlich konnte durch DFT-Berechnungen möglicher Intermediate ein Reaktionsmechanismus für die TBA[Fe]-katalysierte Hemetsberger-Knittel-Reaktion beschrieben werden. Dabei wurden zwei mögliche Cyclen erhalten, die beide eine "Fe-NO-Click"-Reaktion aufweisen. Das dadurch gebildete Metallatetrazol verdeutlichte, dass das Fe-NO-Motiv essenziell für die TBA[Fe]-katalysierte Hemetsberger-Knittel-Reaktion ist.

Schema 8.1: Entwickelte TBA[Fe]-katalysierte Hemetsberger-Knittel-Reaktion mit möglichem Reaktionsintermediat.

Anschließend wurde die Anwendbarkeit der TBA[Fe]-katalysierten Aminierung von C-H-Bindungen in der Naturstoffsynthese demonstriert (siehe Schema 8.2). Hierzu wurde Arylazid **153** als Modellsubstrat in wenigen Stufen aus kommerziell erhältlichen Ausgangsverbindungen dargestellt. Dieses konnte mithilfe der TBA[Fe]-katalysierten C(sp²)-H-Aminierung in sehr guter Ausbeute in das Indol **155** überführt werden. Durch weitere Transformationen konnte Vinylindol **168** erhalten werden, welches in einer nachfolgenden Diels-Alder-Reaktion cyclisiert werden kann. Das so erhaltene Produkt **169** würde sich nur noch um einen fehlenden Ethylrest von (+)-Catharanthin **105** unterscheiden. Die Anwendung dieses Route auf das entsprechende Startmaterial zur Totalsynthese von (+)-Catharanthin **105** wird Teil weiterführender Arbeiten sein.

Schema 8.2: Anwendung der TBA[Fe]-katalysierten C-H-Aminierung an Modellsubstrat 153 zur Synthese von (+)-Catharanthin 105.

Im weiteren Verlauf konnte erstmals eine TBA[Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von Iodaziden entwickelt werden (siehe Schema 8.3). Dabei wurden zwei Aminierungsprodukte erhalten: das entsprechende Iodoxazin-2-on als Hauptprodukt und Iodoxazin-4-on als Nebenprodukt. Es wurde die Annahme getroffen, dass beide Produkte durch unterschiedliche Reaktionsmechanismen gebildet werden, einem TBA[Fe]-katalysierten Prozess, der zur Bildung von Iodoxazin-2-on führt und einem thermischen Prozess, wodurch Iodoxazin-4-on gebildet wird. Die entwickelte Methode wurde auf insgesamt 9 Verbindungen angewendet und es konnte aufgezeigt werden, dass verschiedene funktionelle Gruppen toleriert werden. Erstaunlicherweise zeigte sich, dass die Bildung von Iodoxazin-2-on nicht mit literaturbekannten Aminierungssystemen herbeigeführt werden konnte.

Schema 8.3: Entwickelte TBA[Fe]-katalysierte Aminierung von C-C-Bindungen zur Darstellung von Iodoxazin-2-onen und Iodoxazin-4-onen.

Zur Darstellung der Substrate wurde ein Zugang zur Iodazidierung von Ketoestern eröffnet. Dieser konnte zur Erweiterung des Substratspektrums weiterentwickelt und zur Darstellung von Bromaziden genutzt werden. Es zeigte sich, dass auch Bromazide in der TBA[Fe]-katalysierten Aminierung von C-C-Bindungen eingesetzt werden konnten (siehe Schema 8.4). Dabei wurde ein Gemisch aus Brom- und Chloroxazin-2-on in guten bis sehr guten Ausbeuten erhalten. Diese Chlorierung wurde auf das Lösungsmittel 1,2-Dichlorethan zurückgeführt. Durch die Zugabe einer wässrigen HBr-Lösung und Molekularsieb konnte die Chlorierung fast vollständig unterdrückt werden. Außerdem konnten die Katalyseprodukte in Folgereaktionen zum Aufbau hochfunktionalisierter Alkine und 2-Brompyridine genutzt werden.

Schema 8.4: Erweiterung des Substratspektrums der TBA[Fe]-katalysierten Aminierung von C-C-Bindungen durch Bromazide.

Im Anschluss wurde die TBA[Fe]-katalysierte C-H-Aminierung mit der TBA[Fe]-katalysierten Dimroth-Cyclokondensation in einer sequenziellen Reaktionsführung kombiniert. Anschließend konnte das dargestellte Diazid **51** in der optimierten Sequenz in hochfunktionalisierte Triazolindoline überführt werden.

Schema 8.5: Entwickelte TBA[Fe]-katalysierte Dimroth-Cyclokondensation-Aminierungssequenz.

Abschließend wurde eine Bibliothek an benzylierten, nicht-natürlichen polycyclischen polyprenylierten Acylphloroglucinolen (PPAPs) synthetisiert (siehe Schema 8.6). Untersuchungen des Wirkungsspektrums zeigten gute bis sehr gute Aktivitäten der benzylierten PPAPs gegenüber dem Methicillin-resistenten Erreger *Staphylococcus aureus* USA300. Aufbauend auf diesen Ergebnissen konnte in Zusammenarbeit mit *Claudia Guttroff* und *Nicole Biber* ein SAR-Modell erarbeitet werden, dass für die Darstellung noch aktiverer PPAPs genutzt werden kann.

a) NaH (1.1 Äq.), MeLi (2.3 Äq.), THF, 0 °C, 4 h; b) NaH (1.1 Äq.), BnBr (2 Äq.), THF, 0 °C, ü. N., 57 % über zwei Stufen; c) LiCl (2.02 Äq.), Cul (2 Äq.), MeMgBr (2 Äq.), TMSCI (2 Äq.), THF, -78 °C, 5 h; d) NaH (1.2 Äq.), Allylchlorformiat (1.2 Äq.), DMF, 0 °C - RT, ü. N.; e) Pd₂(dba)₃*CHCl₃ (5 mol-%), P(*p*-Tol)₃, 1,4-Dioxan, 60 °C , 1 h; f) KO^tBu (2 Äq.), R⁴(C=O)CN (3.3 - 10 Äq.), THF, 0 °C - RT, 16 - 48 h; g) Amylen (100 Äq.), Grubbs II (15 mol-%), CH₂Cl₂, Rückfluss, ü. N.

Schema 8.6: Darstellung nicht-natürlicher PPAPs 301 – 303, 306 und 307 ausgehend von Diester 295.

Unter den synthetisierten PPAPs zeigte PPAP **307** eine höhere Aktivität gegenüber MRSA als Vancomycin. Im weiteren Verlauf konnte außerdem eine hohe Aktivität gegenüber unterschiedlichen VISA- und VRE-Stämmen beobachtet werden (siehe Abbildung 8.1). Erste Untersuchungen zur Einführung eines Triazolrestes mithilfe der TBA[Fe]-katalysierten Dimroth-Cyclokondensation zeigten keine Reaktivität. Dies wurde auf die Chelatisierung des Eisenions durch das AcAc-Motiv des PPAP-Grundgerüstes zur Ausbildung eines Fe-PPAP-Komplex zurückgeführt.

Abbildung 8.1: MIC-Werte von PPAP 307 und Vancomycin gegenüber verschiedener Stämme.

TEIL II

Experimenteller Teil

9 Allgemeine Informationen

9.1 Arbeitstechnik

Alle Reaktionen wurden, falls nicht anders beschrieben, unter Standard Schlenktechnik und einer inerten Stickstoffatmosphäre durchgeführt.

9.2 Lösungsmittel und allgemeine Chemikalien

Die verwendeten Lösungsmittelzusammensetzungen stellen Volumenverhältnisse dar.

Im Allgemeinen wurden die verwendeten Lösungsmittel vor Gebrauch destilliert. Tetrahydrofuran wurde über Natrium mit Benzophenon als Indikator destilliert, um Wasser- und Sauerstoffspuren zu entfernen. Triethylamin und 1,2-Dichlorethan wurden über Calciumhydrid getrocknet. Methanol wurde über Magnesium und Dimethylformamid über P₂O₅ getrocknet. Dichlormethan, Toluol und Acetonitril wurden aus einer Lösungsmitteltrocknungsanlage *MB-SPS-800* der Firma *MBraun* entnommen. Das in der Katalyse verwendete Chloroform (min. 99 %, mit 0.6 –1 % Ethanol stabilisiert) wurde von *Bernd Kraft* bezogen und vor Gebrauch in der Katalyse über basisches Al₂O₃90 der Firma *Macherey-Nagel* filtriert (10 g Al₂O₃ pro 14 mL Chloroform^[127]), um Ethanol- und Wasserspuren zu entfernen. Die eingesetzten Chemikalien wurden von *Sigma Aldrich, Fluka, TCI, Acros, Alfa Aesar, ChemPUR* oder *Merck* bezogen und soweit nicht anders beschrieben, ohne weitere Aufreinigung eingesetzt. Alle verwendeten Katalysatoren, deren Synthese nicht im experimentellen Teil beschrieben ist, sind kommerziell erhältlich oder waren bereits im Arbeitskreis *Plietker* vorhanden. FeOTf₂ (98 %-ig) wurde von *ChemPur* und Rh₂(O₂CC₃F₇)₄ (97 %-ig) von *Sigma Aldrich* bezogen.

9.3 Chromatographie

9.3.1 Säulenchromatographie

Die säulenchromatographischen Auftrennungen wurden mit Kieselgel (60, Dm 0.04 – 0.063 mm) der Firma *Macherey-Nagel* durchgeführt. Für die analytische Dünnschichtchromatographie wurden die mit Kieselgel beschichteten Aluminiumfolien (Kieselgel 60, F₂₅₄) der Firma *Macherey-* *Nagel* verwendet. Nach Betrachtung unter UV-Licht wurden die DC-Platten entweder mit einer 2%-igen Kaliumpermanganatlösung in 0.2 M Schwefelsäure und anschließendem Wässern oder einer 10%-igen Molybdatophosphorsäurelösung in Ethanol und anschließendem Erwärmen mit einem Heißluftfön angefärbt.

9.3.2 Hochleistungsflüssigkeitschromatographie (HPLC)

Die Auftrennung mittels semi-präperativer Hochleistungsflüssigkeitschromatographie (HPLC) wurde mit einer Pumpe *K-501* und einem RI-Detektor *K-2400* der Firma *Knauer* an einer Säule vom Typ *VP 250/21 Nucleodur 100-5* der Firma *Macherey-Nagel* durchgeführt. Als Laufmittelgemisch wurde eine Mischung aus Petrolether und Essigsäureethylester verwendet und ein Fluss von 10 mL/ min eingestellt.

9.4 Verwendete Geräte

9.4.1 NMR-Spektroskopie

Kernresonanzspektren der Proben wurden an den Geräten *Avance 300, Ascend 400, Avance 500* und *Avance 700* der Firma *Bruker* aufgenommen. Mithilfe des Computerprogramms TopSpin der Firma *Bruker* erfolgte die Auswertung. Die chemischen Verschiebungen der Signale sind in ppm angegeben und beziehen sich auf das in Klammern angegebene Lösungsmittel. Die Angaben der Signale sind wie folgt abgekürzt: s (Singulett), bs (breites Singulett), d (Dublett), t (Triplett), q (Quartett), quint (Quintett), sept (Septett), m (Multiplett). Die Kopplungskonstanten *J* sind in Hertz (Hz) angegeben. Zur Bestimmung spektroskopischer Ausbeuten mithilfe ¹H-NMR Spektroskopie wurde Mesitylen oder 1,3,5-Trimethoxybenzol als interner Standard verwendet.

9.4.2 IR-Spektroskopie

Infrarotspektren wurden am FT-IR Spektrometer *Vector 22* der Firma *Bruker* mit *Specac Golden Gate Single Reflection Diamant* ATR System aufgenommen. Die Proben wurden entweder in fester Form oder in Lösung aufgetragen und die Messung erst nach Abdampfen des Lösungsmittels gestartet. Die erhaltenen Messwerte sind in reziproker Wellenlänge (cm⁻¹) angegeben. Die Angaben der Bandenintensitäten sind wie folgt abgekürzt: b (breit), vs (sehr stark), s (stark), m (mittelstark), w (schwach).

9.4.3 Massenspektrometrie

Die Aufnahme der GC-MS-Spektren erfolgte an einem Gaschromatograph *5890 Series II* der Firma *Hewlett Packard* (Trägergas: He, Säule: HP-5MS, 30 m x 0.25 mm ID, Phasendicke 0.25 μm), gekoppelt an einen massenselektiven Detektor Modell *MAT 95* der Firma *Finnigan Mat*. Massenspektren wurden an den Geräten *Mat 95* der *Firma Finnigan* (EI) und *micro-TOF-Q* der Firma *Bruker* (ESI) gemessen, an denen auch die hochaufgelösten Massenspektren aufgenommen wurden.

9.4.4 Einkristallröntgendiffraktometrie

Die Röntgenstrukturanalysen wurden von *Dr. Wolfgang Frey* am Gerät *Kappa APEXII Duo* Spektrometer der Firma *Bruker* aufgenommen.

9.4.5 Mikrowelle

Die Mikrowellenreaktionen wurden in einer Mikrowelle des Typs *Discover* mit Autosampler *Explorer* und geeigneter Software der Firma *CEM* durchgeführt. Die Temperatur wurde mit einem am Boden montierten IR-Temperatursensor gemessen.

9.4.6 Photoreaktor

Reaktionen unter UV-Bestrahlung wurden unter Verwendung einer 180 W Hg-Lampe der Firma *Heraeus* in einer abgeschirmten Metallbox durchgeführt.

10 TBA[Fe]-katalysierte Hemetsberger-Knittel-Reaktion

10.1 Darstellung von [Bu₄N][Fe(CO)₃(NO)] – TBA[Fe] 26^[35,128]

Natriumnitrit (1.38 g, 20 mmol, 1 Äq.) und Tetrabutylammoniumbromid (6.447 g, 20 mmol, 1 Äq.) wurden in entgastem demin. H₂O gelöst. Eine Lösung von Eisenpentacarbonyl (2.7 mL, 20 mmol, 1 Äq.) in entgastem Dichlormethan (6.7 mL) wurde über einen Tropftrichter unter Lichtausschluss bei Raumtemperatur zugetropft und das Reaktionsgemisch für 4 Stunden bei Raumtemperatur unter Lichtausschluss gerührt. Anschließend wurde die organische Phase abgetrennt, mit demin. H₂O (2 x 10 mL) gewaschen und das Lösungsmittel ohne Trocknung am Rotationsverdampfer (Wasserbadtemperatur: 30 °C) entfernt. Der ölige Rückstand wurde vier Mal in Methanol (10 mL) aufgenommen und das Lösungsmittel am Rotationsverdampfer entfernt bis ein farbloses Destillat erhalten wurde. Das braune Rohprodukt wurde erneut in Methanol (8 mL) gelöst und unter kräftigem Rühren in entgastes demin. H₂O (100 mL) getropft. Nach ca. 30 Minuten schied sich ein Feststoff ab, der abfiltriert und 3 Tage im Hochvakuum getrocknet wurde. Das Produkt **26** wurde als ockerfarbener Feststoff (5.855 g, 14.2 mmol, 71 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[35,128]

¹**H-NMR** (400 MHz, CDCl₃): δ 3.23 (bs, 2H), 1.67 (bs, 2H), 1.48 (bs, 2H), 1.03 (bs, 3H) ppm. **IR** (Film): *v* 2963 (w), 2935 (w), 1981 (m), 1858 (vs), 1656 (m), 1632 (s), 1461 (m), 625 (s) cm⁻¹.

10.2 Optimierung der TBA[Fe]-katalysierten Hemetsberger-Knittel-Reaktion

Die Optimierung wurde nach den allgemeinen Arbeitsvorschriften **AAV-1** und **AAV-2** durchgeführt.

Allgemeine Arbeitsvorschrift 1 unter Mikrowellenbedingungen (AAV-1):

Ein ausgeheiztes 10 mL Mikrowellengefäß mit Kreuzkopfrührfisch wurde unter N₂-Atmosphäre mit dem Katalysator TBA[Fe] **26** und trockenem Lösungsmittel befüllt. Anschließend wurde das Azid **51** (0.5 mmol) zugegeben, das Mikrowellengefäß verschlossen und das Reaktionsgemisch unter Mikrowelleneinstrahlung bei entsprechender Temperatur gerührt. Nach Abkühlen auf Raumtemperatur und Flash-Säulenchromatographie an Kieselgel (Essigsäureethylester) wurde das Rohprodukt mittels ¹H-NMR mit Mesitylen als internem Standard analysiert.

Allgemeine Arbeitsvorschrift 2 unter thermischen Bedingungen (AAV-2):

Ein ausgeheiztes 10 mL Schlenkrohr mit Kreuzkopfrührfisch wurde unter N₂-Atmosphäre mit dem Katalysator TBA[Fe] **26** und Chloroform (0.25 M) befüllt. Anschließend wurde das Azid **51** (0.5 mmol) zugegeben, das Schlenkrohr dicht verschlossen und das Reaktionsgemisch bei 80 °C für 24 Stunden gerührt. Nach Abkühlen auf Raumtemperatur und Flash-Säulenchromatographie an Kieselgel (Essigsäureethylester) wurde das Rohprodukt mittels ¹H-NMR mit Mesitylen als internem Standard analysiert.

(Z)-2-Amin-3-phenylmethylacrylat 53

Die analytischen Daten stimmen mit der Literatur überein.^[129]

R_f-Wert: 0.59 (Petrolether / Essigsäureethylester; 6:1). ¹H-NMR (300 MHz, CDCl₃): δ 7.45 (d, J = 7.8 Hz, 2H), 7.38 (t, J = 7.7 Hz, 2H), 7.22 (t, J = 7.4 Hz, 1H), 6.48 (s, 1H), 4.22 (bs, 2H), 3.87 (s, 3H) ppm. ¹³C-NMR (176 MHz, CDCl₃): δ 166.5, 136.4, 132.3, 129.0, 128.5, 127.0, 109.4, 52.7 ppm. IR (Film): v 3446 (b), 3369 (b), 2952 (w), 1709 (vs), 1633 (m), 1438 (m), 1275 (s), 1227 (s), 770 (m) cm⁻¹. MS (GC): m/z (%) 177 (100), 117 (72), 91 (26).

Methyl-2-phenyl-2H-azirin-3-carboxylat 54

Die analytischen Daten stimmen mit der Literatur überein.^[13b]

R_f-**Wert**: 0.59 (Petrolether / Essigsäureethylester; 4:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.36 – 7.27 (m, 3H), 7.17 – 7.09 (m, 2H), 4.02 (s, 3H), 3.48 (s, 1H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 163.2, 159.2, 138.3, 128.6, 128.3, 126.6, 53.8, 39.0 ppm. **IR** (Film): *v* 2956 (w), 1756 (vs), 1720 (vs), 1436 (w), 1227 (vs), 1171 (m), 698 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 175 (13), 143 (13), 131 (19), 116 (100), 89 (40), 59 (21).

10.3 Darstellung verschiedener α-Azide

2-Azidessigsäuremethylester 101^[56b]

Eine Lösung von 2-Bromessigsäuremethylester (5 mL, 54.3 mmol, 1 Äq.) in Methanol (4 mL) wurde unter Wasserkühlung mit in demin. H₂O (3 mL) suspendiertem Natriumazid (4.34 g, 66.8 mmol, 1.2 Äq.) versetzt und für 20 Minuten bei Raumtemperatur gerührt. Anschließend wurde die Suspension für zwei Stunden bei 80 °C gerührt. Nach Abkühlen auf Raumtemperatur wurde das Reaktionsgemisch im Vakuum aufkonzentriert, der Rückstand in demin. H₂O (50 mL) gegeben und mit Diethylether (3 x 80 mL) extrahiert. Die vereinten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer (Wasserbadtemperatur \leq 25 °C) entfernt. Das Produkt **101** wurde als farblose Flüssigkeit (5.959 g, 51.8 mmol, 95 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[56b]

¹**H-NMR** (300 MHz, CDCl₃): δ 3.89 (s, 2H), 3.81 (s, 3H) ppm. ¹³**C-NMR** (75 MHz, CDCl₃): δ 168.9, 52.8, 50.4 ppm. **IR** (Film): *v* 2958 (w), 2102 (vs), 1743 (vs), 1438 (m), 1357 (m), 1203 (vs), 1180 (s), 1000 (m) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 115 (74), 59 (100), 56 (10), 45 (17).

2-Azidessigsäureethylester 311^[130]

Zu einer Lösung von 2-Bromessigsäureethylester (1.45 mL, 13 mmol, 1 Äq.) in einem demin. H₂O/Aceton-Gemisch (1:4, 26 mL) wurde Natriumazid (1.268 g, 19.5 mmol, 1.5 Äq.) zugegeben und für 24 Stunden bei Raumtemperatur gerührt. Anschließend wurde Dichlormethan (20 mL) zugegeben und die organische Phase abgetrennt. Die wässrige Phase wurde mit Dichlormethan (3 x 20 mL) extrahiert. Die vereinten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **311** wurde als farblose Flüssigkeit (1.65 g, 12.8 mmol, 98 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[130]

¹**H-NMR** (300 MHz, CDCl₃): δ 4.26 (q, *J* = 7.1 Hz, 2H), 3.86 (s, 2H), 1.31 (t, *J* = 7.2 Hz, 3H) ppm. ¹³**C-NMR** (75 MHz, CDCl₃): δ 168.4, 62.0, 50.5, 14.3 ppm. **IR** (Film): *v* 2986 (w), 2105 (vs), 1743 (vs), 1196 (vs), 1027 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 129 (22), 56 (5), 42 (5), 29 (100).

2-Azid-1-phenylethan-1-on 76^[131]

2-Brom-1-phenylethanon (995 mg, 5 mmol, 1 Äq.) wurde in Aceton (30 mL) gelöst und mit Natriumazid (650 mg, 10 mmol, 2 Äq.) versetzt. Das Reaktionsgemisch wurde für 5 Stunden bei Raumtemperatur gerührt. Anschließend wurde demin. H_2O (10 mL) zugegeben und mit Essigsäureethylester (3 x 20 mL) extrahiert. Die vereinten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **76** wurde als gelbe Flüssigkeit (776 mg, 4.8 mmol, 96 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[131]

R_f-Wert: 0.28 (Petrolether / Essigsäureethylester; 5:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.91 (dd, J = 8.4, 1.2 Hz, 2H), 7.66 – 7-60 (m, 1 H), 7.50 (t, J = 7.7 Hz, 2H), 4.56 (s, 2H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 193.3, 134.6, 134.3, 129.1, 128.1, 55.1 ppm. **IR** (Film): v 2103 (vs), 1696 (m), 1217 (s), 755 (m), 689 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 161 (3), 133 (4), 105 (100), 77 (52), 51 (18).

10.4 Darstellung verschiedener Vinylazide

Allgemeine Arbeitsvorschrift 3 (AAV-3):

Nach einer abgewandelten Methode nach Lit.^[21a] wurde eine Lösung von NaOMe (405 mg, 7.5 mmol, 1.5 Äq.) in MeOH (6.3 mL) auf -20 °C gekühlt und mit einer Lösung des Aldehyds (5 mmol, 1 Äq.) in entsprechendem Azid (12.5 mmol, 1.5 Äq.) über 20 Minuten zugetropft. Das Reaktionsgemisch wurde auf -10 °C erwärmt und für 16 Stunden bei dieser Temperatur gerührt. Es wurde durch die Zugabe von demin. H₂O (20 mL) gequencht und mit Diethylether (2 x 20 mL) extrahiert. Die vereinten organischen Phasen wurden mit demin. H₂O (2 x 20 mL) sowie mit einer gesättigten NaCl-Lösung (20 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels Flash-Säulenchromatographie aufgereinigt.

(Z)-2-Azid-3-phenylmethylacrylat 51

Gemäß **AAV-3** wurde das Azid **51** ausgehend von Benzaldehyd **75** (1 mL, 10 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (2.877 g, 25 mmol, 2.5 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 90:1) als gelbe

Flüssigkeit (1.475 g, 7.3 mmol, 73 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a]

R_f-**Wert**: 0.38 (Petrolether / Essigsäureethylester; 90:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 7.81 (d, J = 7.2 Hz, 2H), 7.43 – 7.31 (m, 3H), 6.92 (s, 1H), 3.92 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 164.2, 133.3, 130.7, 129.6, 128.6, 125.8, 125.5, 53.1 ppm. **IR** (Film): v 2116 (vs), 1714 (s), 1377 (m), 1258 (s), 1087 (m), 769 (m), 690 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 203 (14), 131 (14), 116 (100), 89 (26), 59 (23).

(Z)-2-Azid-3-(4-fluorphenyl)methylacrylat 55

Gemäß **AAV-3** wurde das Azid **55** ausgehend von *p*-Fluorbenzaldehyd (0.32 mL, 3 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (863 mg, 7.5 mmol, 2.5 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als gelbe Flüssigkeit (526 mg, 2.38 mmol, 79 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[33]

R_f-**Wert**: 0.57 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 7.88 – 7.77 (m, 2H), 7.13 – 7.03 (m, 2H), 6.88 (s, 1H), 3.91 (s, 3H) ppm. ¹³**C**-**NMR** (75 MHz, CDCl₃): δ 164.4 (d, J = 54.2 Hz), 161.5, 132.7 (d, J = 8.3 Hz), 129.5 (d, J = 3.4 Hz), 125.1 (d, J = 2.6 Hz), 124.4, 115.7 (d, J = 21.7 Hz), 53.1 ppm. **IR** (Film): v 2116 (vs), 1713 (s), 1600 (m), 1506 (s), 1376 (m), 1255 (s), 1225 (vs), 1079 (m), 823 (s) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 221 (12), 193 (3), 149 (12), 134 (100), 107 (23), 59 (25).

(Z)-2-Azid-3-(4-chlorphenyl)methylacrylat 56

Gemäß **AAV-3** wurde das Azid **56** ausgehend von *p*-Chlorbenzaldehyd (703 mg, 5 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (1.439 g, 12.5 mmol, 2.5 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 40:1) als gelbes Öl (834 mg, 3.5 mmol, 70 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a]

R_f-Wert: 0.37 (Petrolether / Essigsäureethylester; 40:1). ¹**H**-NMR (500 MHz, CDCl₃): δ 7.75 (d, J = 8.6 Hz, 2H), 7.35 (d, J = 8.6 Hz, 2H), 6.85 (s, 1H), 3.92 (s, 3H) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 164.0, 135.3, 131.9, 131.8, 128.9, 125.9, 124.1, 53.2 ppm. **IR** (Film): v 2954 (w), 2124 (vs), 1717 (s), 1255 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 237 (18), 165 (16), 150 (100), 123 (14), 89 (15), 59 (44). **HRMS** (EI, m/z): berechnet für C₁₀H₈ClN₃O₂: 237.0305, gefunden: 237.0304.

(Z)-2-Azid-3-(4-bromphenyl)methylacrylat 57

Gemäß **AAV-3** wurde das Azid **57** ausgehend von *p*-Brombenzaldehyd (925 mg, 5 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (1.439 g, 12.5 mmol, 2.5 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 90:1) als gelbes Öl (1.05 g, 3.7 mmol, 74 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a]

R_f-Wert: 0.36 (Petrolether / Essigsäureethylester; 90:1). ¹**H**-NMR (300 MHz, CDCl₃): δ 7.68 (d, *J* = 8.5 Hz, 2H), 7.50 (d, *J* = 8.6 Hz, 2H), 6.83 (s, 1H), 3.91 (s, 3H) ppm. ¹³**C**-NMR (75 MHz, CDCl₃): δ 163.9, 132.2, 132.1, 131.8, 126.1, 124.1, 123.7, 53.2 ppm. **IR** (Film): *v* 2953 (w), 2114 (vs), 1714

(s), 1378 (s), 1245 (vs), 1034 (s), 818 (m) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 283 (12), 281 (12), 211 (13), 209 (13), 196 (100), 194 (100), 115 (642), 89 (23), 59 (48).

(Z)-2-Azid-3-(4-cyanophenyl)methylacrylat 58

Gemäß **AAV-3** wurde das Azid **58** ausgehend von *p*-Cyanobenzaldehyd (393 mg, 3 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (0.863 g, 7.5 mmol, 2.5 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als gelber Feststoff (393 mg, 1.7 mmol, 57 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[132]

R_f-Wert: 0.25 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-NMR (300 MHz, CDCl₃): δ 7.89 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 6.84 (s, 1H), 3.94 (s, 3H) ppm. ¹³**C**-NMR (75 MHz, CDCl₃): δ 163.5, 137.6, 132.3, 130.9, 128.6, 122.5, 118.7, 112.3, 53.4 ppm. **IR** (Film): v 2956 (w), 2119 (vs), 1717 (s), 1380 (m), 1260 (s), 1081 (s) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 228 (8), 156 (34), 141 (100), 114 (36), 59 (59).

(Z)-2-Azid-3-(4-(dimethylamin)phenyl)methylacrylat 59

Gemäß **AAV-3** wurde das Azid **59** ausgehend von *p*-Dimethylaminbenzaldehyd (746 mg, 5 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (1.439 g, 12.5 mmol, 2.5 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 4:1) als roter Feststoff (0.518 g, 2.1 mmol, 42 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[133]

R_f-**Wert**: 0.58 (Petrolether / Essigsäureethylester; 4:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.75 (d, J = 8.8 Hz, 2H), 6.89 (s, 1H), 6.68 (d, J = 8.8 Hz, 2H), 3.88 (s, 3H), 3.03 (s, 6H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 164.8, 151.1, 132.6, 127.3, 121.3, 120.6, 111.6, 52.7, 40.2 ppm. **IR** (Film): v 2950 (w), 2118 (s), 1704 (s), 1597 (vs), 1524 (s), 1361 (m), 1189 (s), 1031 (m), 831 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 246 (13), 218 (10), 159 (100), 150 (11).

Gemäß **AAV-3** wurde das Azid **60** ausgehend von *p*-Anisaldehyd (0.61 mL, 5 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (1.439 g, 12.5 mmol, 2.5 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als gelber Feststoff (1.005 g, 4.3 mmol, 86 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a]

R_f-Wert: 0.48 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.9 Hz, 2H), 6.89 (s, 1H), 3.90 (s, 3H), 3.84 (s, 3H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 164.4, 160.7, 132.6, 126.1, 125.9, 123.3, 114.1, 55.5, 52.9 ppm. **IR** (Film): v 2118 (vs), 1712 (s), 1601 (s), 1510 (s), 1251 (vs), 1175 (s), 1031 (m), 831 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 233 (6), 205 (9), 173 (5), 146 (100), 10 (5), 91 (4).

(Z)-2-Azid-3-(4-(tert-butyl)phenyl)methylacrylat 61

Gemäß **AAV-3** wurde das Azid **61** ausgehend von *p-tert*-Butylbenzaldehyd (0.42 mL, 2.5 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (719 mg, 6.25 mmol, 2.5 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 90:1) als
gelbes Öl (408 mg, 1.57 mmol, 63 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a]

R_f-Wert: 0.53 (Petrolether / Essigsäureethylester; 90:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.75 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 6.92 (s, 1H), 3.91 (s, 3H), 1.33 (s, 9H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 164.3, 153.2, 130.60, 130.56, 125.9, 125.6, 124.8, 53.0, 35.0, 31.3 ppm. **IR** (Film): v 2961 (m), 2122 (vs), 1716 (s), 1265 (m), 1080 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 259 (10), 216 (18), 172 (100), 157 (36), 142 (14), 129 (23), 115 (14), 77 (3), 59 (21).

(Z)-2-Azid-3-(3-bromphenyl)methylacrylat 62

Gemäß **AAV-3** wurde das Azid **62** ausgehend von *m*-Brombenzaldehyd (0.58 mL, 5 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (1.439 g, 12.5 mmol, 2.5 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 90:1) als gelber Feststoff (1.061 g, 3.76 mmol, 75 %) erhalten.

R_f-Wert: 0.26 (Petrolether / Essigsäureethylester; 90:1). ¹H-NMR (400 MHz, CDCl₃): δ 8.01 (s, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.25 (t, *J* = 7.9 Hz, 1H), 6.81 (s, 1H), 3.92 (s, 3H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 163.8, 135.3, 133.2, 132.4, 130.1, 129.3, 126.8, 123.6, 122.7, 53.2 ppm. IR (Film): *v* 2129 (vs), 1718 (s), 1377 (m), 1252 (m), 1078 (w) cm⁻¹. MS (EI, 70 eV): *m/z* (%) 283 (20), 281 (20), 223 (8), 221 (8), 211 (24), 209 (24), 196 (100), 194 (100), 174 (19), 130 (10), 115 (63), 89 (31), 59 (74). HRMS (ESI, *m/z*): berechnet für C₁₀H₈BrN₃O₂Na⁺: 303.9692, gefunden: 303.9695.

(Z)-2-Azid-3-(2-bromphenyl)methylacrylat 63

Gemäß **AAV-3** wurde das Azid **63** ausgehend von *o*-Brombenzaldehyd (0.58 mL, 5 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (1.439 g, 12.5 mmol, 2.5 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 40:1) als gelber Feststoff (901 mg, 3.2 mmol, 64 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[134]

R_f-**Wert**: 0.45 (Petrolether / Essigsäureethylester; 40:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 8.11 (d, J = 7.9 Hz, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.35 (dt, J = 7.7, 1.2 Hz, 1H), 7.25 (s, 1H), 7.17 (dt, J = 7.7, 1.7 Hz, 1H), 3.94 (s, 3H) ppm. ¹³**C**-**NMR** (75 MHz, CDCl₃): δ 163.9, 133.09, 133.05, 131.4, 130.5. 127.4, 127.3, 125.4, 123.7, 53.3 ppm. **IR** (Film): v 2110 (vs), 1711 (vs), 1432 (v), 1244 (vs), 1080 (w), 760 (s) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 283 (12), 281 (12), 211 (25), 209 (25), 196 (100), 115 (57), 89 (41), 59 (56).

(Z)-2-Azid-3-(2-methoxyphenyl)methylacrylat 64

Gemäß **AAV-3** wurde das Azid **64** ausgehend von *o*-Anisaldehyd (0.60 mL, 5 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (1.439 g, 12.5 mmol, 2.5 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 40:1) als gelber Feststoff (780 mg, 3.3 mmol, 66 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a]

R_f-**Wert**: 0.25 (Petrolether / Essigsäureethylester; 40:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 8.19 (d, J = 7.8 Hz, 1H), 7.39 (s, 1H), 7.32 (t, J = 7.6 Hz, 1H), 6.99 (t, J = 7.6 Hz, 1H), 6.89 (d, J = 8.3 Hz, 1H), 3.91 (s, 3H), 3.87 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 164.4, 157.8, 131.0, 130.7, 125.3, 122.2, 120.5, 119.8, 110.6, 55.8, 53.0 ppm. **IR** (Film): v 2119 (s), 1711 (s), 1484 (m), 1261 (vs), 1119 (w), 764 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 233 (27), 205 (18), 173 (16), 146 (100), 116 (79), 103 (17), 91 (40), 76 (13), 59 (24).

(Z)-2-Azid-3-(o-tolyl)methylacrylat 65

Gemäß **AAV-3** wurde das Azid **65** ausgehend von *o*-Tolualdehyd (0.58 mL, 5 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (1.439 g, 12.5 mmol, 2.5 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 40:1) als gelber Feststoff (851 mg, 3.9 mmol, 78 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a]

R_f-**Wert**: 0.42 (Petrolether / Essigsäureethylester; 40:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 8.00 –7.92 (m, 1H), 7.26 – 7.18 (m, 3H), 7.14 (s, 1H), 3.93 (s, 3H), 2.37 (s, 3H) ppm. ¹³**C**-**NMR** (75 MHz, CDCl₃): δ 164.2, 137.7, 132.0, 130.4, 129.8, 129.4, 126.2, 126.0, 123.7, 53.1, 20.3 ppm. **IR** (Film): *v* 2116 (vs), 1714 (s), 1436 (m), 1247 (s), 1078 (m), 764 (m) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 217 (13), 189 (24), 157 (21), 130 (66), 103 (100), 77 (33), 59 (36).

(Z)-2-Azid-3-(3,4-dimethoxyphenyl)methylacrylat 66

Gemäß **AAV-3** wurde das Azid **66** ausgehend von Veratrumaldehyd (831 mg, 5 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (1.439 g, 12.5 mmol, 2.5 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 4:1) als gelber Feststoff (863 mg, 3.3 mmol, 66 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a]

R_f-Wert: 0.35 (Petrolether / Essigsäureethylester; 4:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.51 (s, 1H), 7.34 (dd, J = 8.5, 1.7 Hz, 1H), 6.90 – 6.84 (m, 2H), 3.92 (s, 3H), 3.92 (s, 3H), 3.90 (s, 3H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 164.4, 150.4, 148.8, 126.4, 126.0, 125.1, 123.4, 113.2, 110.9, 56.1, 56.0, 52.6 ppm. **IR** (Film): v 2117 (s), 1707 (s), 1511 (s), 1232 (vs), 1141 (s), 1023 (s) cm⁻¹. **MS** (EI, m/z): 263 (6), 235 (16), 176 (100). **HRMS** (EI, *m/z*): berechnet für C₁₂H₁₃N₃O₄: 263.0906, gefunden: 263.0905.

(Z)-2-Azid-3-(naphthalen-1-yl)methylacrylat 67

Gemäß **AAV-3** wurde das Azid **67** ausgehend von 1-Naphtaldehyd (0.68 mL, 5 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (1.439 g, 12.5 mmol, 2.5 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 90:1 \rightarrow 40:1) als gelber Feststoff (948 mg, 3.7 mmol, 74 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a]

R_f-Wert: 0.30 (Petrolether / Essigsäureethylester; 40:1). ¹H-NMR (400 MHz, CDCl₃): δ 8.11 (d, J = 7.3 Hz, 1H), 8.04 (d, J = 8.2 Hz, 1H), 7.90 – 7.83 (m, 2H), 7.69 (s, 1H), 7.60 – 7.49 (m, 3H), 3.99 (s, 3H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 164.1, 133.7, 131.8, 130.0, 129.6, 129.0, 128.4, 127.4, 126.8, 126.2, 125.4, 123.6, 122.7, 53.2 ppm. **IR** (Film): v 2125 (vs), 1713 (s), 1251 (s), 1093 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 253 (9), 225 (26), 166 (100), 139 (28). **HRMS** (EI, m/z): berechnet für C₁₄H₁₁N₃O₂: 253.0851, gefunden: 253.0853.

(Z)-2-Azid-3-(4,5-dimethylfuran-2-yl)methylacrylat 68

Gemäß **AAV-3** wurde das Azid **68** ausgehend von 4,5-Dimethyl-2-formylfuran (0.37 mL, 3 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (863 mg, 7.5 mmol, 2.5 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 40:1) als orangefarbenes Öl (502 mg, 2.3 mmol, 76 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[135]

R_f-**Wert**: 0.36 (Petrolether / Essigsäureethylester; 40:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 6.93 (s, 1H), 6.78 (s, 1H), 3.86 (s, 3H), 2.24 (s, 3H), 1.99 (s, 3H) ppm. ¹³**C**-**NMR** (75 MHz, CDCl₃): δ 164.1, 150.7, 146.8, 120.6, 119.4, 118.1, 114.4, 52.8, 11.8, 10.0 ppm. **IR** (Film): *v* 2120 (vs), 1709 (m), 1522 (m), 1294 (s), 1200 (s), 1078 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 221 (18), 193 (99), 161 (73), 134 (100), 91 (17), 43 (32).

(Z)-2-Azid-3-(pyridin-2-yl)methylacrylat 69

Gemäß **AAV-3** wurde das Azid **69** ausgehend von 2-Pyridincarbaldehyd (0.48 mL, 5 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (1.439 g, 12.5 mmol, 2.5 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 2:1) als beiger Feststoff (556 mg, 2.7 mmol, 54 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[56b]

R_f-Wert: 0.39 (Petrolether / Essigsäureethylester; 2:1). ¹H-NMR (400 MHz, CDCl₃): δ 8.65 (d, J = 4.7 Hz, 1H), 8.18 (d, J = 8.0 Hz, 1H), 7.72 (dt, J = 7.8, 1.5 Hz, 1H), 7.19 (dd, J = 7.4, 4.9 Hz, 1H), 7.08 (s, 1H), 3.92 (s, 3H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 164.0, 152.6, 149.9, 136.4, 128.3, 125.6, 125.5, 123.2, 53.3 ppm. IR (Film): v 2949 (w), 2120 (vs), 1717 (s), 1615 (m), 1380 (s), 1264 (s), 783 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) 204 (10), 176 (36), 145 (27), 131 (35), 118 (100), 104 (14), 90 (74), 79 (21), 63 (41), 59 (64), 51 (16).

(Z)-2-Azid-3-(pyridin-3-yl) methylacrylat 70

Gemäß **AAV-3** wurde das Azid **70** ausgehend von 3-Pyridincarbaldehyd (0.44 mL, 5 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (1.439 g, 12.5 mmol, 2.5 Äq.) nach Aufreinigung mittels

Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; $2:1 \rightarrow 1:1$) als braune Flüssigkeit (503 mg, 2.5 mmol, 50 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[56b]

R_f-**Wert**: 0.34 (Petrolether / Essigsäureethylester; 1:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 8.82 (s, 1H), 8.53 (d, *J* = 4.2 Hz, 1H), 8.32 (d, *J* = 8.1 Hz, 1H), 7.33 (dd, *J* = 8.0, 4.8 Hz, 1H), 6.86 (s, 1H), 3.94 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 163.6, 151.7, 149.9, 136.9, 129.5, 127.8, 123.5, 121.4, 53.3 ppm. **IR** (Film): *v* 2126 (vs), 1718 (s), 1379 (m), 1279 (s) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 204 (47), 132 (41), 117 (100), 90 (33). **HRMS** (EI, *m/z*): berechnet für C₉H₈N₄O₂: 204.0647, gefunden: 204.0643.

(Z)-2-Azid-3-(pyridin-4-yl) methylacrylat 71

Gemäß **AAV-3** wurde das Azid **71** ausgehend von 4-Pyridincarbaldehyd (0.47 mL, 5 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (1.439 g, 12.5 mmol, 2.5 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 1:1) als braunes Öl (473 mg, 2.3 mmol, 46 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[56b]

R_f-**Wert**: 0.31 (Petrolether / Essigsäureethylester; 1:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 8.64 (d, J = 5.6 Hz, 2H), 7.63 (d, J = 5.5 Hz, 2H), 6.77 (s, 1H), 3.94 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 163.4, 150.2, 140.4, 130.0, 124.1, 121.8, 53.4 ppm. **IR** (Film): v 2955 (w), 2126 (s), 1720 (m), 1619 (m), 1595 (m), 1381 (m), 1274 (m), 1076 (w), 815 (w) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 204 (34), 173 (6), 144 (17), 132 (50), 117 (51), 104 (7), 90 (30), 63 (36), 59 (100), 39 (8).

(Z)-2-Azid-3-phenylethylacrylat 72

Gemäß **AAV-3** wurde das Azid **72** ausgehend von Benzaldehyd **75** (0.51 mL, 5 mmol, 1 Äq.), 2-Azidessigsäureethylester **101** (968 mg, 7.5 mmol, 1.5 Äq.) und Natriumethanolat (510 mg, 7.5 mmol, 1.5 Äq.) in EtOH (6.3 mL) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 90:1) als gelber Feststoff (275 mg, 1.3 mmol, 26 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[136]

R_f-Wert: 0.26 (Petrolether / Essigsäureethylester; 90:1). ¹**H**-NMR (300 MHz, CDCl₃): δ 7.86 – 7.78 (m, 2H), 7.43 – 7.30 (m, 3H), 6.92 (s, 1H), 4.38 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H) ppm. ¹³**C**-NMR (75 MHz, CDCl₃): δ 163.7, 133.4, 130.7, 129.5, 128.6, 125.7, 125.5, 62.4, 14.4 ppm. **IR** (Film): *v* 2118 (vs), 1711 (s), 1378 (m), 1254 (s), 1086 (m), 769 (m), 690 (m) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 217 (16), 117 (100), 90 (32), 63 (11).

Ethy-(E)-2-azid-3-phenylbut-2-enoat E-74 & Ethyl-(Z)-2-azid-3-phenylbut-2-enoat Z-74^[53]

Zu einer Lösung von 2,3-Epoxy-3-methyl-3-phenylpropionat **73** (2.28 mL, 12 mmol, 1 Äq.) in DMSO (60 mL) wurde Natriumazid (7.801 g, 120 mmol, 10 Äq.) und konzentrierte Schwefelsäure (0.45 mL, 8.4 mmol, 0.7 Äq.) bei Raumtemperatur zugegeben und das Reaktionsgemisch bei 90 °C für zwei Stunden gerührt. Das Reaktionsgemisch wurde auf Raumtemperatur abgekühlt, in Eiswasser gegeben und mit Diethylether (3 x 100 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten NaCl-Lösung (100 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt.

Das Rohprodukt (2.842 g, 11.4 mmol, 1 Äq.) wurde in Dichlormethan (69 mL) gelöst und mit trockenem Molekularsieb (4 Å) versetzt. Das Reaktionsgemisch wurde auf 0 °C gekühlt und Thionylchlorid (2.48 mL, 34 mmol, 3 Äq.) gefolgt von NEt₃ (15.8 mL, 114 mmol, 10 Äq.) zugetropft. Anschließend wurde das Reaktionsgemisch auf Raumtemperatur erwärmt und für 24 Stunden bei dieser Temperatur gerührt. Das Reaktionsgemisch wurde in Eiswasser gegeben und mit Dichlormethan (3 x 30 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer wässrigen HCl-Lösung (5% in H₂O, 50 mL), einer gesättigten NaHCO₃-Lösung (50 mL) sowie einer gesättigten NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels Säulenchromatographie (Petrolether / Essigsäureethylester; an Kieselgel 20:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 40:1) aufgereinigt und das Vinylazid E-74 als gelbes Öl (138 mg, 0.6 mmol, 5 %) sowie das Vinylazid Z-74 als gelbes Öl (157 mg, 0.68 mmol, 6 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[53]

E-74:

R_f-Wert: 0.47 (Petrolether / Essigsäureethylester; 20:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.34 – 7.27 (m, 3H), 7.15 – 7.09 (m, 2H), 3.97 (q, *J* = 7.1 Hz, 2H), 2.14 (s, 3H), 0.87 (t, *J* = 7.2 Hz, 3H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 163.2, 141.4, 137.1, 128.2, 127.7, 127.4, 125.8, 61.5, 21.6, 13.5 ppm. **IR** (Film): *v* 2984 (w), 2116 (vs), 1708 (s), 1304 (m), 1235 (m), 700 (m) cm⁻¹. HRMS (EI, *m/z*): berechnet für C₁₂H₁₃N₃O₂: 231.1008, gefunden: 231.1007.

Z-74:

R_f-**Wert**: 0.47 (Petrolether / Essigsäureethylester; 20:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.41 – 7.26 (m, 5H), 4.40 (q, *J* = 7.1 Hz, 2H), 2.35 (s, 3H), 1.41 (t, *J* = 7.2 Hz, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 163.4, 140.9, 138.6, 128.3, 128.1, 127.8, 124.6, 62.0, 21.7, 14.4 ppm. **IR** (Film): *v* 2983 (w), 2111 (vs), 1720 (m), 1323 (m), 1235 (s), 1109 (m), 698 (m) cm⁻¹. **HRMS** (EI, *m/z*): berechnet für C₁₂H₁₃N₃O₂: 231.1008, gefunden: 231.1005.

(Z)-2-Azid-1,3-diphenylprop-2-en-1-on 77

Nach einer abgewandelten Methode nach Lit.^[54] wurde zu einer Lösung von 2-Azid-1-phenylethan-1-on **76** (484 mg, 3 mmol, 1 Äq.) und Benzaldehyd **75** (0.30 mL, 3 mmol, 1 Äq.) in EtOH (6 mL) Essigsäure (86 μL, 1.5 mmol, 0.5 Äq.) und Piperidin (0.15 mL, 1.5 mmol, 0.5 Äq.) bei Raumtemperatur zugetropft und das Reaktionsgemisch über Nacht bei dieser Temperatur gerührt. Anschließend wurde das Lösungsmittel unter vermindertem Druck entfernt. Das Rohprodukt wurde mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 15:1) aufgereinigt und das Azid **77** als gelbes Öl (473 mg, 1.9 mmol, 63 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[137]

R_f-**Wert**: 0.52 (Petrolether / Essigsäureethylester; 15:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 7.86 – 7.74 (m, 4H), 7.66 – 7.57 (m, 1H), 7.55 – 7.46 (m, 2H), 7.44 – 7.31 (m, 3H), 6.47 (s, 1H) ppm. ¹³**C**-**NMR** (75 MHz, CDCl₃): δ 192.4, 137.0, 133.9, 133.3, 132.8, 130.8, 129.92, 129.89, 129.8, 128.71, 128.66 ppm. **IR** (Film): *v* 3057 (w), 2105 (vs), 1646 (s), 1597 (m), 1447 (s), 1373 (s), 1250 (s), 939 (s), 688 (vs) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 249 (3), 221 (17), 105 (100), 77 (41), 51 (11). **HRMS** (EI, m/z): berechnet für C₁₅H₁₁N₃O: 249.0902, gefunden: 249.0900.

(Z)-2-Azid-1-morpholin-3-phenylprop-2-en-1-on 78

Nach einer abgewandelten Methode nach Lit.^[55] wurde Azid **51** (264 mg, 1.3 mmol, 1 Äq.) und Morpholin (0.14 mL, 1.56 mmol, 1.2 Äq.) in Toluol (5.2 mL) gelöst und LiHMDS (1.0 M in THF, 2.6 mL, 2.6 mmol, 2 Äq.) langsam bei Raumtemperatur zugetropft. Das Reaktionsgemisch wurde für 16 Stunden bei Raumtemperatur gerührt und anschließend durch die Zugabe einer gesättigten NH₄Cl-Lösung (1.0 M) gequencht. Es wurde Essigsäureethylester (10 mL) zugegeben und die Phasen getrennt. Die organische Phase wurde mit demin. H₂O (10 mL) sowie einer gesättigten NaCl-Lösung (10 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 2:1) aufgereinigt und das Azid **78** als gelbes Öl (64 mg, 0.25 mmol, 19 %) isoliert.

R_f-**Wert**: 0.31 (Petrolether / Essigsäureethylester; 2:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.67 (d, J = 7.4 Hz, 2H), 7.39 – 7-33 (m, 2H), 7.31 – 7.27 (m, 1H), 5.91 (s, 1H), 3.74 (s, 8H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 164.4, 133.4, 129.7, 129.0, 128.64, 128.61, 119.5, 67.0 ppm. **IR** (Film): v 2858 (w), 2113 (vs), 1628 (s), 1430 (m), 1114 (s), 694 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₃H₁₄N₄O₂Na⁺: 281.1009, gefunden: 281.1002.

10.5 Substratspektrum der TBA[Fe]-katalysierten Hemetsberger-Knittel-Reaktion ausgehend von Vinylaziden

Allgemeine Arbeitsvorschrift 4 (AAV-4):

Ein ausgeheiztes 10 mL Mikrowellengefäß mit Kreuzkopfrührfisch wurde unter N₂-Atmosphäre mit dem Katalysator TBA[Fe] **26** (10 mol-%) und Chloroform (0.25 M, davor über basisches Al₂O₃ filtriert) versetzt. Anschließend wurde das entsprechende Azid (0.5 mmol) zugegeben, das Mikrowellengefäß verschlossen und das Reaktionsgemisch bei 80 °C für 60 Minuten unter Mikrowelleneinstrahlung (300 W, gepulst) gerührt. Das Reaktionsgemisch wurde auf Raumtemperatur gekühlt und das Rohprodukt mittels Säulenchromatographie an Kieselgel aufgereinigt.

Methyl-1-indol-2-carboxylat 52

Gemäß **AAV-4** wurde das Indol **52** ausgehend von Azid **51** (101.6 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester;

6:1) als hellgelber Feststoff (60.9 mg, 0.35 mmol, 70 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a]

R_f-Wert: 0.40 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-NMR (300 MHz, CDCl₃): δ 8.87 (bs, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.43 (d, J = 8.1 Hz, 1H), 7.33 (t, J = 7.3 Hz, 1H), 7.23 (s, 1H), 7.16 (t, J = 7.3 Hz, 1H), 3.95 (s, 3H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 162.5, 137.0, 127.7, 127.3, 125.6, 122.8, 121.0, 112.0, 109.0, 52.1 ppm. **IR** (Film): v 3331 (s), 3317 (s), 1688 (vs), 1528 (m), 1313 (m), 1253 (s), 748 (s) cm⁻¹. **MS** (GC): m/z (%) 175 (62), 143 (100), 115 (53), 89 (30), 63 (8).

Methyl-6-fluor-1H-indol-2-carboxylat 79

Gemäß **AAV-4** wurde das Indol **79** ausgehend von Azid **55** (106.1 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als hellgelber Feststoff (62.6 mg, 0.324 mmol, 65 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[33]

R_f-**Wert**: 0.42 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-**NMR** (500 MHz, CDCl₃): δ 8.87 (bs, 1H), 7.62 (dd, J = 8.8, 5.3 Hz, 1H), 7.20 (s, 1H), 7.09 (dd, J = 9.5, 2.0 Hz, 1H), 6.94 (dt, 9.3, 2.1 Hz, 1H), 3.94 (s, 3H) ppm. ¹³**C**-**NMR** (126 MHz, CDCl₃): δ 162.2, 161.9 (d, J = 242.9 Hz), 137.1, 127.9, 124.3, 124.0 (d, J = 10.7 Hz), 110.7 (d, J = 25.6 Hz), 109.1, 97.9 (d, J = 26.3 Hz), 52.2 ppm. **IR** (Film): v3316 (s), 1702 (vs), 1528 (m), 1251(vs), 1211 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₀H₇FNO₂⁺: 192.0455, gefunden: 192.0463.

6-Chlor-1H-indol-2-methylcarboxylat 80

Gemäß AAV-4 wurde das Indol 80 ausgehend von Azid 56 (118.8 mg, 0.5 mmol, 1 Äq.) nach

Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 4:1) als hellgelber Feststoff (53.0 mg, 0.25 mmol, 50 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[33]

R_f-**Wert**: 0.29 (Petrolether / Essigsäureethylester; 4:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 8.89 (bs, 1H), 7.60 (d, *J* = 8.6 Hz, 1H), 7.42 (s, 1H), 7.19 (d, *J* = 1.2 Hz, 1H), 7.13 (dd, *J* = 8.6, 1.8 Hz, 1H), 3.95 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 162.2, 137.2, 131.6, 128.0, 126.2, 123.7, 122.1, 111.8, 108.9, 52.3 ppm. **IR** (Film): *v* 3318 (m), 1695 (vs), 1519 (m), 1319 (m), 1239 (s), 768 (m) cm⁻¹. **MS** (ESI): m/z (%) 210 (33) [M-H]⁻, 208 (100) [M-H]⁻. **HRMS** (ESI, m/z): berechnet für C₁₀H₇CINO₂⁻: 208.0171, gefunden: 208.0171.

6-Brom-1H-indol-2-methylcarboxylat 81

Gemäß **AAV-4** wurde das Indol **81** ausgehend von Azid **57** (141 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 4:1) als gelber Feststoff (73.6 mg, 0.29 mmol, 58 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[33]

R_f-Wert: 0.53 (Petrolether / Essigsäureethylester; 4:1). ¹**H**-NMR (500 MHz, CDCl₃): δ 8.89 (bs, 1H), 7.59 (s, 1H), 7.55 (d, *J* = 8.6 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.20 – 7-17 (m, 1H), 3.95 (s, 3H) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 162.2, 137.5, 127.9, 126.4, 124.6, 124.0, 119.4, 114.9, 108.9, 52.3 ppm. **IR** (Film): *v* 3316 (m), 3302 (m), 1699 (vs), 1319 (m) cm⁻¹. **MS** (ESI, *m/z*): 253 (97) [M-H]⁻, 251 (100) [M-H]⁻.

6-Cyano-1*H*-indol-2- methylcarboxylat 82

Gemäß **AAV-4** wurde das Indol **82** ausgehend von Azid **58** (114.1 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 4:1) und Fällung aus Petrolether / Essisäureethylester (10:1) als farbloser Feststoff (23 mg, 0.12 mmol, 23 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[33]

R_f-**Wert**: 0.28 (Petrolether / Essigsäureethylester; 4:1). ¹**H**-**NMR** (400 MHz, CD₂Cl₂): δ 9.23 (bs, 1H), 7.80 (s, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.36 (dd, J = 8.3, 1.3 Hz, 1H), 7.24 (d, J = 1.2 Hz, 1H), 3.94 (s, 3H) ppm. ¹³**C**-**NMR** (126 MHz, CDCl₃): δ 161.8, 135.4, 130.7, 130.5, 123.8, 123.5, 119.9, 117.1, 108.8, 108.2, 52.6 ppm. **IR** (Film): v 3321 (s), 2226 (w), 1698 (vs), 1438 (m), 1339 (m), 1267 (s) cm⁻¹. **MS** (ESI): m/z (%) 199 (100) [M-H]⁻. **HRMS** (ESI, m/z): berechnet für C₁₁H₇N₂O₂⁻: 199.0513, gefunden: 199.0521.

Methyl-5-(dimethylamin)-1H-indol-2-carboxylat 83

Gemäß **AAV-4** wurde das Indol **83** ausgehend von Azid **59** (123.1 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 2:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 2:1) als grüner Feststoff (20.1 mg, 0.09 mmol, 18 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[133]

R_f-Wert: 0.42 (Petrolether / Essigsäureethylester; 2:1). ¹H-NMR (500 MHz, CDCl₃): δ 8.63 (bs, 1H), 7.51 (d, J = 8.9 Hz, 1H), 7.12 (d, J = 1.4 Hz, 1H), 6.79 (dd, J = 8.8, 2.1 Hz, 1H), 6.58 (s, 1H), 3.91 (s, 3H), 3.00 (s, 6H) ppm. ¹³C-NMR (126 MHz, CDCl₃): δ 162.7, 150.0, 139.1, 125.0, 123.1, 119.7, 110.9, 109.5, 93.2, 51.8, 41.3 ppm. **IR** (Film): v 3304 (s), 1677 (vs), 1625 (vs), 1519 (vs), 1204 (vs), 767 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₂H₁₅N₂O₂⁺: 219.1128, gefunden: 219.1127.

Methyl-6-methoxy-1H-indol-2-carboxylat 84

Gemäß **AAV-4** wurde das Indol **84** ausgehend von Azid **60** (116.6 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 2:1) als gelber Feststoff (75.8 mg, 0.37 mmol, 74 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a]

R_f-**Wert**: 0.53 (Petrolether / Essigsäureethylester; 2:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 8.76 (bs, 1H), 7.57 – 7.52 (m, 1H), 7.16 (dd, J = 2.2, 0.7 Hz, 1H), 6.85 – 6.80 (m, 2H), 3.92 (s, 3H), 3.86 (s, 3H) ppm. ¹³**C**-**NMR** (126 MHz, CDCl₃): δ 162.5, 159.1, 138.1, 126.2, 123.6, 122.0, 112.5, 109.3, 93.8, 55.6, 52.0 ppm. **IR** (Film): v 3325 (s), 1686 (vs), 1627 (m), 1525 (m), 1253 (vs), 1202 (m), 828 (m), 766 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₁H₁₁NO₃Na⁺: 228.0631, gefunden: 228.0630.

Methyl-6-tert-butyl-1H-indol-2-carboxylat 85

Gemäß **AAV-4** wurde das Indol **85** ausgehend von Azid **61** (129.7 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als gelber Feststoff (84.6 mg, 0.366 mmol, 73 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a]

R_f-**Wert**: 0.45 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 8.90 (bs, 1H), 7.62 (d, *J* = 8.6 Hz, 1H), 7.44 – 7.36 (m, 1H), 7.26 (dd, *J* = 8.6 Hz, 1.8 Hz, 1H), 7.18 (dd, *J* = 2.3 Hz, 1.1 Hz, 1H), 3.95 (s, 3H), 1.39 (s, 9H) ppm. ¹³**C**-**NMR** (75 MHz, CDCl₃): δ 162.7, 149.3, 137.3, 127.0, 125.3, 122.2, 119.8, 108.7, 107.9, 52.1, 35.1, 31.7 ppm. **IR** (Film): *v* 3304 (s), 2954 (m), 1694 (vs), 1527 (m), 1442 (m), 1337 (m), 1232 (m), 829 (w), 772 (m), 655 (m) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₁₄H₁₇NO₂Na⁺: 254.1151, gefunden: 254.1141.

Methyl-5-brom-1H-indol-2-carboxylat 86

Gemäß **AAV-4** wurde das Indol **86** ausgehend von Azid **62** (141 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 4:1) als gelber Feststoff (58 mg, 0.23 mmol, 46 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[138]

R_f-**Wert**: 0.47 (Petrolether / Essigsäureethylester; 4:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 8.95 (bs, 1H), 7.83 (d, J = 1.7 Hz, 1H), 7.41 (dd, J = 8.8, 1.9 Hz, 1H), 7.30 (d, J = 8.9 Hz, 1H), 7.15 (dd, J = 2.8, 1.1 Hz, 1H), 3.95 (s, 3H) ppm. ¹³**C**-**NMR** (75 MHz, CDCl₃): δ 162.2, 135.4, 129.2, 128.6, 128.4, 125.1, 114.2, 113.5, 108.1, 52.3 ppm. **IR** (Film): v 3323 (m), 2922 (m), 1692 (vs), 1521 (m), 1436 (m), 1259 (vs), 1204 (m), 1016 (m), 793 (vs), 765 (s) cm⁻¹. **MS** (ESI): m/z (%) 254 (97) [M-H]⁺, 252 (100) [M-H]⁺.

4-Brom-1H-indol-2- methylcarboxylat 87

Gemäß **AAV-4** wurde das Indol **87** ausgehend von Azid **63** (141 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 4:1) als gelber Feststoff (99.6 mg, 0.39 mmol, 78 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[134]

R_f-**Wert**: 0.39 (Petrolether / Essigsäureethylester; 4:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 9.07 (bs, 1H), 7.41 – 7-31 (m, 2H), 7.28 (dd, *J* = 2.3, 0.9 Hz, 1H), 7.21 – 7.14 (m, 1H), 3.97 (s, 3H) ppm. ¹³**C**-**NMR** (75 MHz, CDCl₃): δ 162.2, 137.0, 128.6, 127.6, 126.3, 123.9, 116.6, 111.2, 109.0, 52.4 ppm. **IR** (Film): *v* 3320 (m), 1693 (vs), 1441 (m), 1254 (s), 1212 (m), 759 (s) cm⁻¹. **MS** (ESI): *m/z* (%) 253 (97) [M-H]⁻, 251 (100) [M-H]⁻.

Methyl-4-methoxy-1H-indol-2-carboxylat 88

Gemäß **AAV-4** wurde das Indol **88** ausgehend von Azid **64** (116.6 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 2:1) als hellgelber Feststoff (84.9 mg, 0.41 mmol, 82 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a]

R_f-**Wert**: 0.62 (Petrolether / Essigsäureethylester; 2:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 8.90 (bs, 1H), 7.34 (dd, J = 2.2, 0.8 Hz, 1H), 7.28 – 7-20 (m, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.51 (d, J = 7.7 Hz, 1H), 3.96 (s, 3H), 3.94 (s, 3H), ppm. ¹³**C**-**NMR** (75 MHz, CDCl₃): δ 162.5, 154.8, 138.3, 126.6, 126.0, 119.1, 106.7, 104.9, 99.9, 55.5, 52.1 ppm. **IR** (Film): v 3314 (s), 2946 (w), 1699 (vs), 1581 (m), 1524 (m), 1444 (m), 1362 (m), 1253 (s), 1208 (m), 755 (s) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 205 (72), 173 (100), 158 (12), 144 (10), 130 (10), 102 (7), 76 (5). **HRMS** (EI, m/z): berechnet für C₁₁H₁₁NO₃: 205.0739, gefunden: 205.0739.

4-Methyl-1H-indol-2-methylcarboxylat 89

Gemäß **AAV-4** wurde das Indol **89** ausgehend von Azid **65** (108.6 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als hellgelber Feststoff (71.9 mg, 0.38 mmol, 76 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a] R_f-Wert: 0.30 (Petrolether / Essigsäureethylester; 10:1). ¹H-NMR (300 MHz, CDCl₃): δ 8.86 (bs, 1H), 7.28 – 7-27(m, 1H), 7.26 – 7-19 (m, 2H), 6.98 – 6.92 (m, 1H), 3.95 (s, 3H), 2.57 (s, 3H) ppm.
¹³C-NMR (126 MHz, CDCl₃): δ 162.5, 136.8, 132.5, 127.9, 126.6, 125.8, 120.9, 109.5, 107.6, 52.1, 18.8 ppm. IR (Film): v 3312 (vs), 2966 (w), 1690 (vs), 1269 (m), 759 (m) cm⁻¹. MS (ESI): *m/z* (%) 212 (22), [M+Na]⁺, 190 (6), 176 (20), 158 (100).

5,6-Dimethoxy-1H-indol-2-methylcarboxylat 90

Gemäß **AAV-4** wurde das Indol **90** ausgehend von Azid **66** (131.6 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 2:1) als hellgelber Feststoff (101.9 mg, 0.43 mmol, 86 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a]

R_f-Wert: 0.25 (Petrolether / Essigsäureethylester; 2:1). ¹H-NMR (400 MHz, CDCl₃): δ 8.75 (bs, 1H),
7.12 (s, 1H), 7.05 (s, 1H), 6.85 (s, 1H), 3.94 (s, 3H), 3.92 (s, 3H), 3.92 (s, 3H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 162.4, 150.3, 146.4, 132.2, 125.8, 120.6, 109.0, 102.8, 93.9, 56.3, 56.2, 51.9 ppm.
IR (Film): v 3323 (b), 2949 (w), 1692 (s), 1245 (vs), 1214 (vs) cm⁻¹. MS (ESI): *m/z* (%) 258 (100) [M+Na]⁺.

3H-Benzo[e]indol-2-methylcarboxylat 91

Gemäß **AAV-4** wurde das Indol **91** ausgehend von Azid **67** (126.6 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester;

4:1) als hellbeiger Feststoff (105.4 mg, 0.47 mmol, 94 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a]

R_f-**Wert**: 0.43 (Petrolether / Essigsäureethylester; 4:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 9.29 (bs, 1H), 8.24 (d, *J* = 8.1 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 1.9 Hz, 1H), 7.71 (d, *J* = 8.9 Hz, 1H), 7.60 (t, *J* = 7.1 Hz, 1H), 7.51 (d, 8.9 Hz, 1H), 7.47 (t, *J* = 7.1 Hz, 1H), 3.99 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 162.4, 134.3, 129.6, 129.0, 128.8, 127.3, 126.9, 125.5, 124.5, 123.2, 123.0, 113.0, 108.1, 52.1 ppm. **IR** (Film): *v* 3311 (s), 1686 (vs), 1245 (m), 754 (m) cm⁻¹. **MS** (ESI): *m/z* (%) 226 (56) [M+H]⁺, 194 (100).

3-Methyl-1H-indol-2-methylcarboxylat 92

Gemäß **AAV-4** wurde das Indol **92** ausgehend von Azid **74** (46.3 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 4:1) als farbloser Feststoff (für (*Z*)-Azid: 32.1 mg, 0.157 mmol, 79 %, für (*E*)-Azid: 31.7 mg, 0.156 mmol, 78 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[53]

R_f-**Wert**: 0.30 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 8.65 (bs, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.39 – 7-30 (m, 2H), 7.18 – 7.11 (m, 1H), 4.42 (q, J = 7.1 Hz, 2H), 2.62 (s, 3H), 1.43 (t, J = 7.1 Hz, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 162.8, 136.0, 128.7, 125.7, 123.6, 120.9, 120.4, 120.1, 111.7, 60.8, 14.6, 10.0 ppm. **IR** (Film): v 3327 (vs), 2986 (w), 1674 (vs), 1256 (s), 745 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₂H₁₂NO₂⁺: 202.0863, gefunden: 202.0866.

2,3-Dimethyl-4H-furo[3,2-b]pyrrol-5-methylcarboxylat 93

Gemäß **AAV-4** wurde das Indol **93** ausgehend von Azid **68** (110.6 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 2:1) als hellbeiger Feststoff (40.0 mg, 0.21 mmol, 41 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[135]

R_f-Wert: 0.66 (Petrolether / Essigsäureethylester; 2:1). ¹H-NMR (500 MHz, CDCl₃): δ 8.61 (bs, 1H), 6.69 (s, 1H), 3.86 (s, 3H), 2.32 (s, 3H), 2.08 (s, 3H) ppm. ¹³C-NMR (126 MHz, CDCl₃): δ 162.8, 155.4, 145.6, 131.9, 121.9, 103.7, 97.0, 51.6, 12.8, 8.3 ppm. **IR** (Film): v 3300 (m), 1671 (vs), 1447 (vs), 1269 (vs), 1212 (vs), 763 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 193 (100), 161 (75), 133 (12), 91 (15). **HRMS** (EI, m/z): berechnet für C₁₀H₁₁NO₃: 193.0739, gefunden: 193.0741.

Methyl-pyrazol[1,5-a]pyridin-2-carboxylat 94

Gemäß **AAV-4** wurde das Indol **94** ausgehend von Azid **69** (102.1 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 1:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 1:1) als hellgelber Feststoff (41.4 mg, 0.235 mmol, 47 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[56b]

R_f-**Wert**: 0.45 (Petrolether / Essigsäureethylester; 1:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 8.52 (d, J = 7.1 Hz, 1H), 7.60 (td, J = 9.0, 1.1 Hz, 1H), 7.21 – 7-14 (m, 1H), 7.04 (d, J = 0.7 Hz, 1H), 7.09 (dt, J = 6.9, 1.3 Hz, 1H), 4.00 (s, 3H) ppm. ¹³**C**-**NMR** (75 MHz, CDCl₃): δ 163.3, 144.8, 141.0, 129.1, 124.2, 119.4, 114.3, 100.3, 52.5 ppm. **IR** (Film): v 3082 (w), 1731 (vs), 1485 (m), 1245 (s), 1208 (vs), 772 (vs) cm⁻¹. **MS** (ESI): m/z (%) 199 (100) [M+Na]⁺, 177 (5), 163 (16), 145 (24). **HRMS** (ESI, m/z): berechnet für C₉H₈N₂O₂Na⁺: 199.0478, gefunden: 199.0477.

Ethyl-1-indol-2-carboxylat 97

Gemäß **AAV-4** wurde das Indol **97** ausgehend von Azid **72** (108.6 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als gelber Feststoff (76.1 mg, 0.4 mmol, 80 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[139]

R_f-**Wert**: 0.47 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 8.94 (bs, 1H), 7.70 (dd, J = 8.0, 0.8 Hz, 1H), 7.43 (dd, J = 8.3, 0.7 Hz, 1H), 7.32 (dt, J = 7.1, 1.1 Hz, 1H), 7.23 (dd, J = 2.2, 1.0 Hz, 1H), 7.16 (t, J = 7.4 Hz, 1H), 4.42 (q, J = 7.1 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H) ppm. ¹³**C**-**NMR** (75 MHz, CDCl₃): δ 162.2, 136.9, 127.7, 125.5, 122.8, 120.9, 112.0, 108.8, 61.2, 14.5 ppm. **IR** (Film): v 3310 (m), 2982 (w), 1686 (vs), 1531 (w), 1265 (m), 1206 (w), 772 (m), 745 (m) cm⁻¹. **MS** (ESI): m/z (%) 212 (100) [M+Na]⁺, 199 (88), 196 (46), 170 (37).

2-Benzoylindol 98

Gemäß **AAV-4** wurde das Indol **98** ausgehend von Azid **77** (124.6 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als gelber Feststoff (54.4 mg, 0.25 mmol, 50 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[140]

R_f-Wert: 0.31 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-NMR (300 MHz, CDCl₃): δ 9.24 (bs, 1H), 8.03 – 7.95 (m, 2H), 7.75 – 7.70 (m, 1H), 7.66 – 7.60 (m, 1H), 7.57 – 7.46 (m, 3H), 7.38 (t, J = 8.2 Hz, 1H), 7.21 – 7.15 (m, 2H) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 187.3, 138.1, 137.6, 134.5, 132.5, 129.3, 128.6, 127.9, 126.7, 123.4, 121.2, 112.9, 112.3 ppm. **IR** (Film): v 3317 (m), 1618 (vs),

1519 (s), 1342 (m), 1262 (m), 728 (m) cm⁻¹. **MS** (ESI): *m/z* (%) 244 (100) [M+Na]⁺, 222 (18) [M+H]⁺, 105 (22). **HRMS** (ESI, *m/z*): berechnet für C₁₅H₁₁NONa⁺: 244.0733, gefunden: 244.0733.

(1H-Indol-2-yl)(morpholino)methanon 99

Gemäß **AAV-4** wurde das Indol **99** ausgehend von Azid **78** (51.7 mg, 0.2 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Essigsäureethylester) als hellgelber Feststoff (18.8 mg, 0.082 mmol, 41 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[141]

R_f-**Wert**: 0.59 (Essigsäureethylester). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 9.11 (bs, 1H), 7.65 (d, J = 8.1 Hz, 1H), 7.43 (d, J = 8.2 Hz, 1H), 7.29 (t, J = 7.5 Hz, 1H), 7.14 (t, J = 7.5 Hz, 1H), 6.78 (d, J = 1.6 Hz, 1H), 4.04 – 3.88 (m, 4H), 3.81 – 3.77 (m, 4H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 162.5, 135.7, 129.1, 127.7, 124.8, 122.1, 120.9, 111.8, 105.5, 67.0 ppm. **IR** (Film): v 3260 (b), 2858 (w), 1601 (vs), 1528 (m), 1436 (m), 1248 (m), 1114 (m), 747 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₃H₁₄N₂O₂Na⁺: 253.0947, gefunden: 253.0945.

10.6 Untersuchungen zum Reaktionsmechanismus

10.6.1 Umsetzung von Azirin 54 unter verschiedenen Reaktionsbedingungen

10.6.1.1 Darstellung von Azirin 54^[31]

In einem Druckgefäß mit Schraubdeckel wurde Azid **51** (0.813 g, 4 mmol, 1 Äq.) in Chloroform (16 mL) gelöst. Das verschlossene Gefäß wurde in einem Ölbad (80 °C) für 24 Stunden gerührt. Nach Abkühlen auf Raumtemperatur und Entfernen des Lösungsmittels am Rotationsverdampfer wurde das Azirin **54** nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als gelbes Öl (151 mg, 0.86 mmol, 22 %) erhalten. Die analytischen Daten (siehe 8.4.2) stimmen mit der Literatur überein.^[13b]

10.6.1.2 TBA[Fe]-katalysierte Umsetzung von Azirin 54

Bedingung A^[31]: Ein ausgeheiztes 10 mL Mikrowellengefäß mit Kreuzkopfrührfisch wurde unter N₂-Atmosphäre mit dem Katalysator TBA[Fe] **26** (8.2 mg, 0.02 mmol, 10 mol-%) und Chloroform (0.8 mL, über basischem Al₂O₃ filtriert) befüllt. Anschließend wurde das Azirin **54** (35 mg, 0.2 mmol, 1 Äq.) zugegeben, das Mikrowellengefäß verschlossen und das Reaktionsgemisch unter Mikrowelleneinstrahlung (300 W, gepulst) bei 80 °C für eine Stunde gerührt. Nach Abkühlen auf Raumtemperatur und Flash-Säulenchromatographie an Kieselgel (Essigsäureethylester) wurde das Rohprodukt mittels ¹H-NMR mit Mesitylen als internem Standard analysiert.

10.6.1.3 Rh₂(O₂CC₃F₇)₄-katalysierte Umsetzung von Azirin 54

Bedingung B^[21a]: Ein ausgeheiztes Schlenkrohr mit Kreuzkopfrührfisch wurde unter N₂-Atmosphäre mit Azirin **54** (35 mg, 0.2 mmol, 1 Äq.) und Rh₂(O₂CC₃F₇)₄ (10.6 mg, 0.01 mmol, 5 mol-%.) befüllt. Anschließend wurde Toluol (0.2 mL) zugegeben, das Schlenkrohr dicht verschlossen und in einem Ölbad (60 °C) für 16 Stunden gerührt. Nach Abkühlen auf Raumtemperatur und Filtration über Kieselgel (Essigsäureethylester) wurde das Lösungsmittel am Rotationsverdampfer entfernt. Indol **54** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als hellgelber Feststoff (17.1 mg, 0.098 mmol, 49 %) erhalten.

10.6.1.4 Fe(OTf)₂-katalysierte Umsetzung von Azirin 54

Bedingung C^[33]: Ein Schlenkrohr mit Kreuzkopfrührfisch wurde mit Azirin **54** (35 mg, 0.2 mmol, 1 Äq.) und Fe(OTf)₂ (7.2 mg, 0.02 mmol, 10 mol-%) befüllt. Der Schraubverschluss wurde mit einem Septum bedeckt und und die Atmosphäre durch Argon ausgetauscht. Anschließend wurde THF (0.4 mL) zugegeben, das Schlenkrohr dicht verschlossen und in einem Ölbad (80 °C) für 24 Stunden gerührt. Nach Abkühlen auf Raumtemperatur wurde das Rohgemisch über Celite[®] (Dichlormethan) filtriert, mit demin. H₂O gewaschen, mit Dichlormethan extrahiert und das Lösungsmittel am Rotationsverdampfer entfernt. Indol **52** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als hellgelber Feststoff (7.4 mg, 0.04 mmol, 21 %) erhalten.

10.6.2 Untersuchungen zum kinetischen Isotopeneffekt

10.6.2.1 Darstellung von (Z)-2-Azid-3-(phenyl-2-d)methylacrylat 51-d₁

2-(2-Bromphenyl)-1,3-dioxolan 312^[57]

Zu einer Lösung von 2-Brombenzaldehyd **100** (0.82 mL, 7 mmol, 1 Äq.) in Toluol (28 mL) wurde bei Raumtemperatur Ethylenglycol (0.78 mL, 14 mmol, 2 Äq.) und *p*-Toluolsulfonsäure (0.133 g, 0.7 mmol, 0.1 Äq.) zugegeben. Das Reaktionsgemisch wurde über Nacht refluxiert und das entstehende Wasser mittels Dean-Stark-Apparat entfernt. Nach Abkühlen auf Raumtemperatur wurde demin. H₂O (20 mL) zugegeben und mit Essigsäureethylester (3 x 25 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **312** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als gelbe Flüssigkeit (1.429 g, 6.2 mmol, 89 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[142] **R**_f-**Wert**: 0.47 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.58 (dd, J = 14.3, 7.8 Hz, 2H), 7.34 (t, J = 7.5 Hz, 1H), 7.22 (t, J = 7.2 Hz, 1H), 6.10 (s, 1H), 4.21 – 4.03 (m, 4H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 136.7, 133.0, 130.6, 127.8, 127.4, 123.0, 102.7, 65.5 ppm. **IR** (Film): v 2957 (w), 2888 (m), 1472 (m), 1388 (m), 1211 (m), 1125 (m), 1088 (vs), 1023 (s), 943 (s), 757 (vs) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₉H₉BrO₂Na⁺: 250.9678, gefunden: 250.9664.

Benzaldehyd-2-*d* 75-*d*₁^[57]

Eine Lösung von 2-(2-Bromphenyl)-1,3-dioxolan **312** (1.42 g, 6.2 mmol, 1 Äq.) in Diethylether (13 mL) wurde auf -78 °C gekühlt und *n*-BuLi (2.5 M in *n*-Hexan, 2.7 mL, 6.82 mmol, 1.1 Äq.) langsam zugetropft. Das Reaktionsgemisch wurde für eine Stunde bei -78 °C gerührt. Anschließend wurde MeOH- d_4 (0.66 mL, 16.1 mmol, 2.6 Äq.) langsam zugetropft, auf Raumtemperatur erwärmt und für eine Stunde bei dieser Temperatur gerührt. Es wurde demin. H₂O (15 mL) und Diethylether (15 mL) zugegeben und die Phasen getrennt. Die organische Phase wurde mit einer HCI-Lösung (3 N, 15 mL) versetzt und für 15 Stunden bei Raumtemperatur gerührt. Anschließend wurde die organische Phase abgetrennt, mit einer gesättigten NaCI-Lösung (15 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **75-d_1** wurde ohne weitere Aufreinigung als hellgelbe Flüssigkeit (609 mg, 5.7 mmol, 92 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a]

¹**H-NMR** (300 MHz, CDCl₃): δ 10.03 (s, 1H), 7.94 – 7.85 (m, 1H), 7.69 – 7.60 (m, 1H), 7.58 – 7.48 (m, 2H) ppm. ¹³**C-NMR** (75 MHz, CDCl₃): δ 192.1, 136.1, 134.2, 129.5, 129.0 (*J* = 25 Hz), 128.7, 128.6 ppm. **IR** (Film): *v* 3072 (b), 2928 (b), 1693 (vs), 1291 (m), 628 (m) cm⁻¹. **MS** (GC): *m/z* (%) 107 (100), 78 (72), 51 (15).

(Z)-2-Azid-3-(phenyl-2-d)methylacrylat 51-d1

Gemäß **AAV-1** wurde das Azid **51-***d*₁ ausgehend von Benzaldehyd-2-*d* **75-***d*₁ (536 mg, 5 mmol, 1 Äq.) und 2-Azidessigsäuremethylester **101** (1.439 g, 12.5 mmol, 2.5 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 100:1) als hellgelbes Öl (668 mg, 3.3 mmol, 65 %) erhalten. Das ¹H-NMR zeigte einen Deuteriumgehalt von 95 %. Die analytischen Daten stimmen mit der Literatur überein.^[21a]

R_f-**Wert**: 0.30 (Petrolether / Essigsäureethylester; 100:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.82 – 7.73 (m, 1H), 7.42 – 7.32 (m, 3H), 6.92 (s, 1H), 3.92 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 164.2, 133.2, 130.8, 130.4, 130.2, 129.6, 128.6, 125.7, 125.5, 53.1 ppm. **IR** (Film): *v* 2126 (vs), 1716 (s), 1379 (m), 1250 (s), 1079 (m), 769 (m), 628 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 204 (17), 144 (9), 117 (100), 90 (29), 59 (24). **HRMS** (EI, m/z): berechnet für C₁₀H₈DN₃O₂: 204.0758, gefunden: 204.0757.

10.6.2.2 TBA[Fe]-katalysierte Hemetsberger-Knittel-Reaktion von Azid 51-d₁

Gemäß **AAV-4** wurde das Indol **52-***d*₁ ausgehend von Azid **51-***d*₁ (102.1 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als hellgelber Feststoff (62.5 mg, 0.35 mmol, 70 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[21a] **R**_f-**Wert**: 0.40 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 8.85 (bs, 1H), 7.70 (d, *J* = 8.1 Hz, 0.51H), 7.43 (d, *J* = 8.4 Hz, 1H), 7.33 (t, *J* = 7.3 Hz, 1H), 7.24 − 7.21 (m, 1H), 7.19 − 7.13 (m, 1H), 3.95 (s, 3H) ppm. **HRMS** (EI, *m/z*): berechnet für C₁₀H₈D₁N₁O₂: 176.0696, gefunden: 176.0692.

Der kinetische Isotopeneffekt wurde durch den Vergleich der Integrale des Dubletts bei 7.70 ppm (0.51 H) und des Dubletts bei 7.42 ppm (1 H) ermittelt.

¹H-NMR (300 MHz, CDCl₃): Indol **52**-*d*₁

11 Anwendung der TBA[Fe]-katalysierten C-H-Aminierung in der Naturstoffsynthese

11.1 Untersuchungen zur Darstellung von Vinylazid 116

11.1.1 Darstellung von 3-Brom-1-phenylpropan-1-on 122

3-Brompropanoylchlorid 121^[70a]

Brompropionsäure **119** (4.589 g, 30 mmol, 1 Äq.) wurde mit Thionylchlorid (10 mL) versetzt und für 8 Stunden refluxiert. Nach Abkühlen auf Raumtemperatur wurde das überschüssige Thionylchlorid im Vakuum entfernt. Das Produkt **121** wurde ohne weitere Aufarbeitung als orangefarbene Flüssigkeit (4.702 g, 27.4 mmol, 91 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[143]

¹**H-NMR** (300 MHz, CDCl₃): δ 3.60 – 3.54 (m, 2H), 3.51 – 5.44 (m, 2H) ppm. ¹³**C-NMR** (75 MHz, CDCl₃): δ 171.4, 49.4, 23.8 ppm. **IR** (Film): *v* 1788 (s), 1035 (m), 955 (m), 681 (m) cm⁻¹. **MS** (GC): *m/z* (%) 172 (1), 135 (100), 107 (56), 84 (84).

3-Brom-1-phenylpropan-1-on 118^[70b]

3-Brompropanoylchlorid **121** (3.171 g, 18.5 mmol, 1 Äq.) und Benzol (8.2 mL, 92.5 mmol, 5 Äq.) wurden in Dichlormethan (31 mL) gelöst und auf 0 °C gekühlt. Anschließend wurde Aluminiumchlorid (2.96 g, 22.2 mmol, 1.2 Äq.) zugegeben, das Reaktionsgemisch auf Raumtemperatur erwärmt und für 3 Stunden gerührt. Das Reaktionsgemisch wurde in ein Eis/Wasser-Gemisch gegeben, die Phasen getrennt und die wässrige Phase mit Dichlormethan

Teil II

(2 x 30 mL) extrahiert. Die vereinten organischen Phasen wurde mit demin. H₂O (30 mL) sowie einer gesättigten NaCl-Lösung (30 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **118** wurde nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether/Essigsäureethylester; 20:1) als farbloser Feststoff (3.727 g, 17.5 mmol, 95 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[70b]

R_f-Wert: 0.43 (Petrolether / Essigsäureethylester; 20:1). ¹**H**-NMR (300 MHz, CDCl₃): δ 7.99 – 7.92 (m, 2H), 7.63 – 7.56 (m, 1H), 7.52 – 7.45 (m, 2H), 3.78 – 3.72 (m, 2H), 3.61 – 3.55 (m, 2H) ppm. ¹³**C**-NMR (75 MHz, CDCl₃): δ 197.1, 136.4, 133.7, 128.9, 128.2, 41.7, 25.9 ppm. **IR** (Film): *v* 1683 (vs), 1229 (m), 689 (m) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 214 (2), 212 (2), 133 (10), 105 (100), 77 (22).

11.1.2 Weiterführende Untersuchungungen zur Darstellung des Modellsubstrats 124

3-Azid-2-oxopropansäure 123^[71]

Natriumazid (715 mg, 11 mmol, 1 Äq.) wurde bei Raumtemperatur in DMSO (20 mL) für 40 Minuten bis zum vollständigen Lösen des Natriumazids gerührt. Es wurde 3-Brompyruvat **122** (1.67 g, 10 mmol, 1 Äq.) zugegeben und das Reaktionsgemisch für 2 Stunden bei Raumtemperatur gerührt. Anschließend wurde demin. H₂O zugegeben (50 mL) und mit Diethylether (3 x 100 mL) extrahiert. Die vereinten organischen Phasen wurden mit demin. H₂O (50 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **123** wurde ohne weitere Aufarbeitung als hellgelber Feststoff (699 mg, 5.4 mmol, 54 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[71]

¹H-NMR (400 MHz, DMSO-*d₆*): δ 8.88 (bs, 1H), 6.32 (s, 2H) ppm. ¹³C-NMR (101 MHz, DMSO-*d₆*):
δ 164.6, 135.7, 112.8 ppm. IR (fest): *v* 3447 (m), 3112 (b), 2109 (s), 1651 (s), 1454 (s), 1251 (vs),
972 (s), 757 (s) cm⁻¹. HRMS (ESI, *m/z*): berechnet für C₃H₂N₃O₃⁺: 128.0091, gefunden: 128.0127.

3,5,5-Trimethyl-5,6-dihydro-2H-1,4-oxazin-2-on 130

Gemäß einer Methode nach Lit.^[144] wurde Brenztraubensäureethylester **129** (5.5 mL, 50 mmol, 1 Äq.) und 2-Amino-2-methyl-propan-1-ol (4.48 g, 52.5 mmol, 1.05 Äq.) in Toluol (125 mL) gelöst und bei 90 °C für 16 Stunden gerührt. Das Reaktionsgemisch wurde auf Raumtemperatur abgekühlt und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **130** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 1:1) als hellbraune Flüssigkeit (2.941 g, 20.8 mmol, 42 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[145]

R_f-Wert: 0.48 (Petrolether / Essigsäureethylester; 1:1). ¹**H**-NMR (300 MHz, CDCl₃): δ 4.19 (s, 2H), 2.24 (s, 3H), 1.28 (s, 6H) ppm. ¹³**C**-NMR (75 MHz, CDCl₃): δ 157.3, 155.9, 74.9, 54.5, 24.9, 21.8 ppm. IR (Film): *v* 2975 (m), 1731 (vs), 1640 (m), 1122 (s), 1045 (s), 807 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 141 (35), 83 (41), 56 (100), 42 (94). HRMS (ESI, m/z): berechnet für C₇H₁₂NO₂⁺: 142.0863, gefunden: 142.0876.

3-Brommethyl-5,5-dimethyl-5,6-dihydro-2*H*-1,4-oxazin-2-on 131 & (3-Dibrommethyl)-5,5dimethyl-5,6-dihydro-2*H*-1,4-oxazin-2-on 132

1,4-Oxazin-2-on **130** (706 mg, 5 mmol, 1 Äq.) wurde in Chloroform (4 mL) gelöst und bei Raumtemperatur eine Lösung von Brom (0.26 mL, 5 mmol, 1 Äq.) in Chloroform (1 mL) über einen Zeitraum von 30 Minuten zugetropft. Das Reaktionsgemisch wurde für eine Stunde bei Raumtemperatur gerührt. Anschließend wurde das Lösungsmittel unter vermindertem Druck entfernt. Das Produkt **131** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 2:1) als braunes Öl (282 mg, 1.28 mmol, 26 %) sowie das dibromierte Nebenprodukt **132** als farbloser Feststoff (157 mg, 0.53 mmol, 11 %) erhalten.

131:

R_f-Wert: 0.61 (Petrolether / Essigsäureethylester; 2:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 4.24 (s, 2H), 4.23 (s, 2H), 1.31 (s, 6H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 155.8, 154.4, 74.6, 55.5, 28.7, 24.6 ppm. **IR** (Film): *v* 2976 (m), 1737 (vs), 1258 (m), 1041 (m), 803 (m) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₇H₁₁BrNO₂⁺: 219.9968, gefunden: 219.9957.

132:

R_f-Wert: 0.60 (Petrolether / Essigsäureethylester; 2:1). ¹**H**-NMR (300 MHz, CDCl₃): δ 6.66 (s, 1H), 4.25 (s, 2H), 1.36 (s, 6H) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 154.7, 152.5, 74.6, 56.1, 36.9, 24.4 ppm. **IR** (Film): *v* 2977 (m), 1738 (vs), 1090 (m), 1040 (m), 801 (m) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₇H₉Br₂NO₂Na⁺: 319.8892, gefunden: 319.8894.

2-Azidessigsäure 313^[73]

Eine Lösung von Natriumazid (1.872 g, 28.8 mmol, 2 Äq.) in demin. H₂O (16 mL) wurde auf 0 °C gekühlt und Bromessigsäure (2.0 g, 14.4 mmol, 1 Äq.) langsam zugetropft. Das Reaktionsgemisch wurde auf Raumtemperatur erwärmt und für 24 Stunden bei dieser Temperatur gerührt. Anschließend wurde durch die Zugabe von 2 N HCl ein pH-Wert von 2 eingestellt und mit Diethylether (5 x 200 mL) extrahiert. Die vereinten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **313**

wurde ohne weitere Aufreinigung als leicht rote Flüssigkeit (1.404 g, 13.9 mmol, 96 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[73]

¹**H-NMR** (300 MHz, CDCl₃): δ 8. 18 (bs, 1H), 3.98 (s, 2H) ppm. ¹³**C-NMR** (75 MHz, CDCl₃): δ 173.9, 50.1 ppm. **IR** (Film): *v* 3055 (b), 2112 (vs), 1726 (s) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 101 (100), 56 (8), 45 (78).

2-Azidacetylchlorid 135^[73]

2-Azidessigsäure **313** (1.011 g, 10 mmol, 1 Äq.) wurde in Dichlormethan (12.5 mL) gelöst, auf 0 °C gekühlt und DMF (20 μL) sowie Oxalylchlorid (1.03 mL, 12 mmol, 1.2 Äq.) langsam zugetropft. Das Reaktionsgemisch wurde für 24 h bei Raumtemperatur gerührt. Anschließend wurde das Lösungsmittel über eine Etherbrücke abkondensiert. Das Produkt **135** wurde ohne weitere Aufreinigung als gelbe Flüssigkeit (1.067 g, 8.9 mmol, 89 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[73]

¹**H-NMR** (300 MHz, CDCl₃): δ 4.29 (s, 2H) ppm. ¹³**C-NMR** (75 MHz, CDCl₃): δ 169.7, 59.3 ppm. **IR** (Film): *v* 2918 (w), 2107 (vs), 1729 (m), 1639 (m), 1279 (m), 1191 (m), 1060 (m) cm⁻¹.

2-Azid-1-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)ethan-1-on 126

Gemäß einer Methode nach Lit.^[72] wurde 4,4-Dimethyl-2-oxazolin **134** (53 μ L, 0.5 mmol, 1 Äq.) in THF (3.75 mL) gelöst, auf -78 °C gekühlt und *n*-BuLi (2.5 M in *n*-Hexan, 0.22 mL, 0.55 mmol, 1.1 Äq.) zugetropft. Das Reaktionsgemisch wurde für 30 Minuten bei -78 °C gerührt. Es wurde eine ZnCl₂-Lösung (0.7 M in THF, 1.43 mL, 1 mmol, 2 Äq.) zugetropft, auf 0 °C erwärmt und für

45 Minuten gerührt. Anschließend wurde Kupfer(I)iodid (95.2 mg, 0.5 mmol, 1Äq.) zugegeben, für 10 Minuten bei 0 °C gerührt, das Säurechlorid **135** (59.8 mg, 0.5 mmol, 1 Äq.) zugetropft und für eine Stunde bei 0 °C gerührt. Es wurde Diethylether (10 mL) zugegeben und mit einer demin. $H_2O/25$ % NH₃-Lösung (1:1, 5 mL), demin. H_2O (5 mL) und einer gesättigten NaCl-Lösung (5 mL) gewaschen. Die organische Phase wurde über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **126** wurde ohne weitere Aufreinigung als hellbraunes Öl (32 mg, 0.18 mmol, 35 %) erhalten.

¹**H-NMR** (400 MHz, CDCl₃): δ 4.33 (s, 2H), 3.91 (s, 2H), 1.40 (s, 6H) ppm. ¹³**C-NMR** (101 MHz, CDCl₃): δ 188.4, 160.8, 68.1, 53.6, 53.2, 24.7, 24.2 ppm. **IR** (Film): *v* 2971 (w), 2106 (vs), 1727 (m), 1668 (m), 1269 (m), 1179 (m) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₇H₁₁N₄O₂⁺: 183.0877, gefunden: 183.0877.

(Z)-2-Azid-3-phenylmethylacrylat 51

Gemäß **AAV-3** wurde das Azid **51** ausgehend von Benzaldehyd **75** (10 μL, 0.1 mmol, 1 Äq.), Azid **126** (45.5 mg, 0.25 mmol, 2.5 Äq.) und Natriummethanolat (13.5 mg, 0.25 mmol, 2.5 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 15:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 20:1) als gelbe Flüssigkeit (3.2 mg, 0.016 mmol, 16 %) erhalten. Die analytischen Daten stimmen mit den in Abschnitt 10.5 erhaltenen Ergebnissen und mit der Literatur überein.^[21a]

11.2 Anwendung der TBA[Fe]-katalysierten C(sp²)-H-Aminierung ausgehend von Arylaziden in der Synthese von (+)-Catharanthin 105

11.2.1 Darstellung und TBA[Fe]-katalysierte C-H-Aminierung von Arylazid 153

Allgemeine Arbeitsvorschrift 5 (AAV-5)^[75]:

Das entsprechende Phenol (10 mmol, 1 Äq.) wurde in Dichlormethan (30 mL) gelöst, mit Pyridin (15 mmol, 1.5 Äq.) versetzt und auf 0 °C gekühlt. Es wurde tropfenweise Trifluormethansulfonsäureanhydrid (12 mmol, 1.2 Äq.) zugegeben, das Reaktionsgemisch langsam auf Raumtemperatur erwärmt und für 5 Stunden bei dieser Temperatur gerührt. Anschließend wurde das Reaktionsgemisch über Kieselgel filtriert (Petrolether / Essigsäureethylester) und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels Säulenchromatographie an Kieselgel aufgereingt.

Allgemeine Arbeitsvorschrift 6 (AAV-6):

Gemäß einer abgewandelten Methode nach Lit.^[77] wurden in einem ausgeheizten und mit N₂-Atmosphäre gefüllten Hochdruckgefäß Pd₂(dba)₃*CHCl₃ (25.8 mg, 0.025 mmol, 5 mol-%) und dppf (33.3 mg, 0.06 mmol, 12 mol-%) in THF (3 mL) gelöst und für 10 Minuten bei Raumtemperatur gerührt. Das entsprechende Aryltriflat (0.5 mmol, 1 Äq.), das Pyridon **144** (140 mg, 1 mmol, 2 Äq.) und Urotropin (140 mg, 1 mmol, 2 Äq.) wurden nacheinander zugegeben. Das Gefäß wurde fest verschlossen und das Reaktionsgemisch bei 80 °C für 48 - 50 Stunden gerührt. Anschließend wurde das Reaktionsgemisch auf Raumtermperatur abgekühlt und über Kieselgel (Essigsäureethylester) filtriert. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das Rohprodukt mittels Säulenchromatographie an Kieselgel aufgereingt.

1-But-3-en-1-yl-pyridin-2(1*H*)-on 144 & 2-But-3-en-1-yloxy-pyridin 145^[74]

2-Hydroxypyridin **143** (0.4755 g, 5 mmol, 1 Äq.) und K_2CO_3 (1.935 g, 14 mmol, 2.8 Äq.) wurden in MeCN (12.4 mL) suspendiert, auf 70 °C erhitzt und über einen Zeitraum von 30 Minuten mit 4-Brom-1-buten (0.91 mL, 9 mmol, 1.8 Äq.) versetzt. Das Reaktionsgemisch wurde für 15 Stunden bei 70 °C gerührt. Anschließend wurde das Reaktionsgemisch auf Raumtemperatur

abgekühlt und das Lösungsmittel am Rotationsverdampfer entfernt. Der Rückstand wurde in Toluol (40 mL) gelöst, über Celite[®] filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **144** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Essigsäureethylester) als farblose Flüssigkeit (586 mg, 3.93 mmol, 79 %) sowie das *O*-alkylierte Nebenprodukt **145** als farblose Flüssigkeit (115 mg, 0.77 mmol, 15 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[146]

144:

R_f-**Wert**: 0.41 (Essigsäureethylester). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.33 – 7.27 (m, 1H), 7.21 (dd, *J* = 6.8, 2.0 Hz, 1H), 6.56 (d, *J* = 9.1 Hz, 1H), 6.12 (dd, *J* = 6.7, 1.1 Hz, 1H), 5.85 - 5.72 (m, 1H), 5.11 – 5.06 (m, 1H), 5.05 (s, 1H), 3.99 (t, *J* = 7.1 Hz, 2H), 2.51 (q, *J* = 7.1 Hz, 2H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 162.7, 139.5, 137.9, 134.2, 121.3, 118.1, 105.8, 49.6, 33.5 ppm. **IR** (Film): *v* 3433 (bs), 1655 (vs), 1578 (s), 1539 (m), 1152 (w), 768 (m) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₉H₁₂NO⁺: 150.0913, gefunden: 150.0914.

145:

R_f-**Wert**: 0.85 (Essigsäureethylester). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 8.14 (dd, J = 5.0, 1.5 Hz, 1H), 7.58 – 7.51 (m, 1H), 6.88 – 6.81 (m, 1H), 6.73 (d, J = 8.4 Hz, 1H), 5.99 – 5.83 (m, 1H), 5.16 (dd, J = 17.2, 1.6 Hz, 1H), 5.08 (dd, J = 10.2, 0.8 Hz, 1H), 4.35 (t, J = 6.8 Hz, 2H), 2.54 (q, J = 6.7 Hz, 2H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 164.0, 147.0, 138.6, 134.9, 116.9, 116.7, 111.3, 65.1, 33.6 ppm. **IR** (Film): v 2949 (w), 1595 (m), 1468 (s), 1432 (vs), 1287 (vs), 778 (s) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₉H₁₂NO⁺: 150.0913, gefunden: 150.0907.

2-Nitrophenyltrifluormethansulfonat 142^[75]

Gemäß **AAV-5** wurde das Produkt **142** ausgehend von 2-Nitrophenol **146** (1.391 g, 10 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel

(Petrolether / Essigsäureethylester; 5:1) als gelbes Öl (2.63 g, 9.7 mmol, 97 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[75]

R_f-Wert: 0.34 (Petrolether/Essigsäureethylester; 5:1). ¹**H**-NMR (500 MHz, CDCl₃): δ 8.18 (dd, J = 8.2, 1.5 Hz, 1H), 7.76 (dt, J = 8.2, 1.5 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.48 (d, J = 8.2 Hz, 1H) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 141.7, 135.3, 129.3, 126.9, 126.4, 120.0, 117.5 ppm. **IR** (Film): v1602 (m), 1538 (s), 1430 (s), 1349 (s), 1211 (vs), 1134 (vs), 894 (s) cm⁻¹. **HRMS** (EI, m/z): berechnet für C₇H₄F₃NO₅S: 270.9762, gefunden: 270.9763.

2-Bromphenyltrifluormethansulfonat 149

Gemäß **AAV-5** wurde das Produkt **149** ausgehend von 2-Bromphenol **147** (0.35 mL, 3 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als gelbe Flüssigkeit (906 mg, 2.97 mmol, 99 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[147]

R_f-Wert: 0.63 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.70 (dd, J = 8.0, 1.5 Hz, 1H), 7.44 – 7.33 (m, 2H), 7.29 – 7.23 (m, 1H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 147.2, 134.7, 129.6, 129.2, 123.1, 120.4, 116.2 ppm. **IR** (Film): v 1468 (m), 1426 (s), 1209 (vs), 1136 (s), 885 (s), 764 (m) cm⁻¹. **HRMS** (EI, m/z): berechnet für C₇H₄BrF₃O₃S: 303.9017, gefunden: 303.9022.

2-Azidophenol 148

Gemäß einer Methode nach Lit.^[148] wurde 2-Aminophenol (1.091 g, 10 mmol, 1 Äq.) in demin. H₂O (20 mL) gelöst, auf 0 °C gekühlt und unter starkem Rühren konz. HCl (10 mL) zugeben. Das Reaktionsgemisch wurde bei 0 °C für 30 Minuten gerührt. Anschließend wurde eine kalte Lösung aus Nariumnitrit (1.035 g, 15 mmol, 1.5 Äq.) in demin. H₂O (5 mL) dazugetropft und für weitere 20 Minuten bei 0 °C gerührt. Natriumazid (975 mg, 15 mmol, 1.5 Äq.) wurde in demin. H₂O (10 mL) gelöst und zum Reaktionsgemisch zugetropft (Innentemperatur nicht über 5 °C). Das Reaktionsgemisch wurde für 30 Minuten bei 0 °C und anschließend für eine Stunde bei Raumtemperatur gerührt. Es wurde mit einer gesättigten NaHCO₃-Lösung (40 mL) hydrolysiert und mit Diethylether (3 x 100 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten NaCl-Lösung (2 x 100 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **148** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Diethylether) als braunes Öl (454 mg, 3.4 mmol, 34 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[149]

R_f-**Wert**: 0.84 (Diethylether). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 7.12 – 7.01 (m, 2H), 6.99 – 6.90 (m, 2H), 5.27 (s, 1H) ppm. ¹³**C**-**NMR** (75 MHz, CDCl₃): δ 147.4, 126.2, 126.1, 121.3, 118.4, 116.1 ppm. **IR** (Film): *v* 3423 (b), 2118 (vs), 1493 (vs), 1293 (s), 1206 (s), 744 (s) cm⁻¹. **HRMS** (EI, *m/z*): berechnet für C₆H₅N₃O: 135.0433, gefunden: 135.0435.

2-Azidophenyltrifluormethansulfonat 150

Gemäß **AAV-5** wurde das Produkt **150** ausgehend von 2-Azidophenol **148** (405 mg, 3 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als hellbraune Flüssigkeit (772 mg, 2.89 mmol, 96 %) erhalten.

R_f-Wert: 0.53 (Petrolether / Essigsäureethylester; 5:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.44 – 7.38 (m, 1H), 7.31 – 7.26 (m, 2H), 7.23 – 7.17 (m, 1H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 140.0, 133.8, 129.5, 125.9, 123.3, 120.4, 117.2 ppm. **IR** (Film): *v* 2137 (s), 1493 (s), 1424 (s), 1208 (vs), 1136 (vs), 887 (s) cm⁻¹. **HRMS** (EI, *m/z*): berechnet für C₇H₄F₃N₃O₃S: 266.9925, gefunden: 266.9923.
1-(3-(2-Nitrophenyl)but-3-en-1-yl)pyridin-2(1H)-on 151

Gemäß **AAV-6** wurde das Produkt **151** ausgehend von Aryltriflat **142** (136 g, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Essigsäureethylester) und anschließender HPLC (Petrolether/Essigsäureethylester; 1:3) als hellgelbes Öl (78.7 mg, 0.29 mmol, 58 %) erhalten.

R_f-Wert: 0.43 (Essigsäureethylester). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.88 (dd, J = 8.1, 0.9 Hz, 1H), 7.56 (dt, J = 7.6, 1.2 Hz, 1H), 7.43 (dt, J = 7.9, 1.4 Hz, 1H), 7.37 (dd, J = 7.6, 1.2 Hz, 1H), 7.31 – 7.22 (m, 1H), 7.26 – 7.23 (m, 1H), 6.53 (d, J = 9.0 Hz, 1H), 6.12 (dd, J = 6.7, 1.3 Hz, 1H), 5.23 (s, 1H), 5.08 (s, 1H), 4.09 (t, J = 15.2 Hz, 2H), 2.84 (t, J = 7.6 Hz, 2H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 162.7, 148.5, 143.2, 139.6, 137.6, 137.4, 133.0, 131.1, 128.5, 124.4, 121.2, 116.9, 106.2, 48.9, 35.9 ppm. **IR** (Film): v 3447 (b), 1655 (s), 1581(m), 1521 (vs), 1345 (m), 764 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₅H₁₄N₂O₃Na⁺: 293.0897, gefunden: 293.0896.

1-(3-(2-Bromphenyl)but-3-en-1-yl)pyridin-2(1H)-on 152

Gemäß **AAV-6** wurde das Produkt **152** ausgehend von Aryltriflat **149** (153 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; $10:1 \rightarrow 0:100$) und anschließender HPLC (Petrolether / Essigsäureethylester, 3:1) als farbloses Öl (12.7 mg, 0.04 mmol, 8 %) erhalten. **R**_f-Wert: 0.36 (Petrolether / Essigsäureethylester; 1:3). ¹H-NMR (400 MHz, CDCl₃): δ 7.56 (dd, J = 8.1, 0.9 Hz, 1H), 7.31 –7.26 (m, 2H), 7.22 – 7.10 (m, 3H), 6.54 (d, J = 9.1 Hz, 1H), 6.11 (dd, J = 6.7, 1.2 Hz, 1H), 5.29 (d, J = 1.1 Hz, 1H), 5.10 (s, 1H), 3.99 (t, J = 7.5 Hz, 2H), 2.92 (t, J = 7.5 Hz, 2H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 162.7, 145.8, 142.8, 139.5, 137.7, 133.2, 130.6, 129.0, 127.5, 122.0, 121.2, 118.3, 106.1, 48.7, 35.9 ppm. IR (Film): v 3439 (b), 1653 (vs), 1582 (s), 1536 (s), 1466 (m), 1023 (m), 760 (s), 732 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) 305 (14), 203 (14), 224 (27), 129 (100). HRMS (EI, m/z): berechnet für C₁₅H₁₄BrNO: 303.0259, gefunden: 303.0252.

1-(3-(2-Aminophenyl)but-3-en-1-yl)pyridin-2(1H)-on 154

Die Nitroverbindung **151** (135 mg, 0.5 mmol, 1 Äq.) wurde in EtOH (1.5 mL) gelöst und für eine Minute bei Raumtemperatur gerührt. Es wurde Eisen-Pulver (88.5 mg, 1.5 mmol, 3 Äq.) und eine HCl-Lösung (0.15 M, 0.5 mL, 0.075 mmol, 0.15 Äq.) zugegeben und für eine Stunde refluxiert. Nach Abkühlen auf Raumtemperatur wurde das Reaktionsgemisch für weitere 30 Minuten bei dieser Temperatur gerührt. Es wurde Essigsäureethylester (5 mL) zugegeben und über Celite[®] filtriert. Das Lösungsmittel wurde am Rotationsverdampfer entfernt und das Produkt **154** nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Essigsäureethylester) als hellgelbes Öl (111 mg, 0.46 mmol, 92 %) erhalten.

R_f-Wert: 0.16 (Essigsäureethylester). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.33 – 7.27 (m, 1H), 7.15 – 7.02 (m, 3H), 6.84 – 6.74 (m, 2H), 6.56 (d, *J* = 9.1 Hz, 1H), 6.10 (t, *J* = 6.7 Hz, 1H), 5.28 (s, 1H), 5.20 (d, *J* = 4.4 Hz, 1H), 4.62 (bs, 2H), 3.97 (t, *J* = 7.1 Hz, 2H), 2.90 (t, *J* = 7.1 Hz, 2H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 162.9, 143.5, 142.7, 139.6, 138.0, 128.8, 128.6, 127.5, 121.2, 119.1, 118.0, 116.6, 106.1, 49.1, 36.5 ppm. **IR** (Film): *v* 3336 (b), 1654 (vs), 1576 (s), 1538 (m), 763 (m) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 240 (55), 144 (100), 130 (37), 123 (30), 117 (29). **HRMS** (ESI, *m/z*): berechnet für C₁₅H₁₆N₂ONa⁺: 263.1155, gefunden: 263.1150.

1-(3-(2-Azidophenyl)but-3-en-1-yl)pyridin-2(1H)-on 153

Gemäß einer Methode nach Lit.^[38] wurde Amin **154** (96.1 mg, 0.4 mmol, 1 Äq.) in MeCN (2 mL) gelöst, auf 0 °C gekühlt und bei dieser Temperatur tropfenweise mit *tert*-Butylnitrit (0.19 mL, 1.6 mmol, 4 Äq.) und Trimethylsilylazid (0.16 mL, 1.2 mmol, 3 Äq.) versetzt. Das Reaktionsgemisch wurde auf Raumtemperatur erwärmt und für eine Stunde bei dieser Temperatur gerührt. Anschließend wurde demin. H₂O (5 mL) zugegeben und die wässrige Phase mit Dichlormethan (2 x 10 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten NaCl-Lösung (10 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **153** wurde nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Essigsäureethylester) als hellgelbes Öl (88 mg, 0.33 mmol, 83 %) erhalten.

R_f-**Wert**: 0.52 (Essigsäureethylester). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.37 – 7-26 (m, 2H), 7.22 –7.09 (m, 4H), 6.56 (d, *J* = 9.0 Hz, 1H), 6.10 (dt, *J* = 6.7, 1.2 Hz, 1H), 5.21 (d, *J* = 1.2 Hz, 1H), 5.11 (d, *J* = 1.1 Hz, 1H), 3.95 (t, *J* = 7.2 Hz, 2H), 2.97 (t, *J* = 7.1 Hz, 2H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 162.7, 143.8, 139.5, 138.0, 137.2, 133.8, 130.7, 129.1, 125.1, 121.1, 118.7, 118.6, 105.8, 49.2, 35.8 ppm. **IR** (Film): *v* 2127 (s), 1658 (vs), 1588 (s), 762 (m) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 266 (7), 143 (100), 130 (12). **HRMS** (EI, *m/z*): berechnet für C₁₅H₁₄N₄O: 266.1168, gefunden: 266.1168.

1-(2-(1H-Indol-3-yl)ethyl)pyridin-2(1H)-on 155

Gemäß einer Methode nach Lit.^[34] wurde ein ausgeheiztes 10 mL Mikrowellengefäß mit Rührfisch unter N₂-Atmosphäre mit dem Katalysator TBA[Fe] **26** (5.2 mg, 13 µmol, 2.5 mol-%) und 1,2-Dichlorethan (1 mL) versetzt. Anschließend wurde Azid **153** (133.1 mg, 0.5 mmol, 1 Äq.) zugegeben, das Mikrowellengefäß verschlossen und das Reaktionsgemisch bei 100 °C für 60 Minuten unter Mikrowelleneinstrahlung (200 W) gerührt. Das Reaktionsgemisch wurde auf Raumtemperatur gekühlt, das Lösungsmittel am Rotationsverdampfer entfernt und das Indol **155** nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Essigsäureethylester) als beiger Feststoff (101.9 mg, 0.43 mmol, 86 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[150]

R_f-**Wert**: 0.31 (Essigsäureethylester). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 8.13 (bs, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.24 – 7.18 (m, 1H), 7.16 – 7.10 (m, 1H), 6.91 (d, J = 2.2 Hz, 1H), 6.86 (dd, J = 6.7, 1.6 Hz, 1H), 6.60 (d, J = 8.9 Hz, 1H), 5.93 (dt, J = 6.7, 1.3 Hz, 1H), 4.23 (t, J = 6.9 Hz, 2H) 3.23 (t, J = 6.9 Hz, 2H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 162.8, 139.6, 138.2, 136.5, 127.3, 122.8, 122.3, 121.0, 119.7, 118.7, 112.1, 111.4, 105.4, 51.0, 24.9 ppm. **IR** (Film): v 3222 (b), 2921 (w), 1650 (vs), 1568 (s), 1539 (s), 1147 (m), 731 (s) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₅H₁₄N₂ONa⁺: 261.0998, gefunden: 261.0994.

11.2.2 Studien zur direkten Vinylierung von Indol 155

11.2.2.1 Darstellung verschiedener Alkine

tert-Butylpropiolat 158^[151]

Propiolsäure (0.62 mL, 10 mmol, 1 Äq.) wurde in CH₂Cl₂ (95 mL) gelöst, auf 0 °C gekühlt und mit *tert*-Butylacetat (13.5 mL, 100 mmol, 10 Äq.) und Trifluormethansulfonsäure (0.09 mL, 1 mmol, 0.1 Äq.) versetzt. Das Reaktionsgemisch wurde auf Raumtemperatur erwärmt, und für 2 Stunden bei dieser Temperatur gerührt. Anschließend wurde eine gesättigte NaHCO₃-Lösung (50 mL) zugegeben, die Phasen getrennt und die wässrige Phase mit CH₂Cl₂ (3 x 70 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten NaCl-Lösung (100 mL) gewaschen,

über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **158** wurde ohne weitere Aufreinigung als farbloses Öl (782 mg, 6.2 mmol, 62 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[151]

¹**H-NMR** (300 MHz, CDCl₃): δ 2.75 (s, 1H), 1.51 (s, 9H) ppm. ¹³**C-NMR** (75 MHz, CDCl₃): δ 151.9, 84.3, 76.2, 72.3, 28.1 ppm. **IR** (Film): *v* 2958 (m), 1718 (s), 1256 (s), 1157 (s) cm⁻¹.

Zu einer auf 0 °C gekühlten Suspension von Natriumhydrid (60 %-ig in Mineralöl, 0.44 g, 11 mmol, 1.1 Äq.) in DMF (8.3 mL) wurde Anisalkohol (1.24 mL, 10 mmol, 1 Äq.) zugegeben und für 25 Minuten gerührt. Es wurde 3-Brompropin (0.83 mL, 11 mmol, 1.1 Äq.) zugetropft und für 2.5 Stunden bei 0 °C und eine weitere Stunde bei Raumtemperatur gerüht. Anschließend wurde das Reaktionsgemisch auf 0 °C gekühlt, durch Zugabe einer wässrigen Kaliumcarbonat-Lösung (0.65 M, 7 mL) gequencht und mit Diethylether (3 x 20 mL) extrahiert. Die vereinten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **160** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (*n*-Pentan / Diethylether; 9:1) als gelbes Öl (1.675 g, 9.5 mmol, 95 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[152]

R_f-Wert: 0.41 (*n*-Pentan / Diethylether; 9:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.29 (d, J = 8.7 Hz, 2H), 6.89 (d, J = 8.7 Hz, 2H), 4.55 (s, 2H), 4.14 (d, J = 2.4 Hz, 2H), 3.81 (s, 3H), 2.45 (t, J = 2.4 Hz, 1H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 159.6, 130.0, 129.5, 114.0, 79.9, 74.8, 71.3, 56.9, 55.4 ppm. IR (Film): v 3287 (b), 2838 (w), 1537 (s), 1512 (s), 1246 (vs), 1075 (s), 818 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) 176 (60), 135 (57), 121 (100), 77 (21).

2-(2,2-Dibromvinyl)furan 314^[79a]

Triphenylphosphin (10.491 g, 40 mmol, 4 Äq.) wurde in CH₂Cl₂ (66 mL) gelöst, auf 0 °C gekühlt und Tetrabrommethan (6.633 g, 20 mmol, 2 Äq.) zugegeben. Das Reaktionsgemisch wurde bei 0 °C für 30 Minuten gerührt. Es wurde Furfural (961 mg, 10 mmol, 1 Äq.) innerhalb von 5 Minuten zugegeben und das Reaktionsgemisch für eine weitere Stunde bei 0 °C gerührt. Anschließend wurde demin. H₂O (50 mL) zugegeben, die Phasen getrennt und die wässrige Phase mit CH₂Cl₂ (3 x 50 mL) extrahiert. Die vereinten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **314** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (*n*-Pentan) als hellgelbe Flüssigkeit (2.469 g, 9.8 mmol, 98 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[153]

R_f-Wert: 0.71 (*n*-Pentan). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.44 (dd, J = 1.7, 0.5 Hz, 1H), 7.40 (s. 1H), 6.94 (d, J = 3.5 Hz, 1H), 6.48 – 6.43 (m, 1H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 150.2, 142.7, 126.6, 111.7, 111.6, 87.3 ppm. **IR** (Film): v 1807 (w), 1481 (m), 1020 (s), 947 (s), 740 (vs) cm⁻¹. **MS** (GC): m/z (%) 254 (49), 252 (100), 250 (52), 145 (35), 143 (38), 92 (19).

2-Ethinylfuran 162^[79b]

2-(2,2-Dibromvinyl)furan **314** (1.26 g, 5 mmol, 1 Äq.) wurde in Diethylether (50 mL) gelöst, auf -78 °C gekühlt und MeLi (1.6 M in Diethylether, 8.75 mL, 14 mmol, 2.8 Äq.) zugetropft. Das Reaktionsgemisch wurde bei -78 °C für eine Stunde gerührt. Es wurde auf Raumtemperatur erwärmt und das Reaktionsgemisch über Nacht gerührt. Anschließend wurde mit einer halbgesättigten NH₄Cl-Lösung (50 mL) gequencht, die Phasen getrennt und die wässrige Phase mit Diethylether (3 x 50 mL) extrahiert. Die vereinten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **162** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (*n*-Pentan) als braune Flüssigkeit (235 mg, 2.6 mmol, 52 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[79b]

R_f-Wert: 0.56 (*n*-Pentan). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.38 (dd, J = 1.8, 0.7 Hz, 1H), 6.65 (d, J = 3.4 Hz, 1H), 6.38 (dd, J = 3.4, 1.9 Hz, 1H), 3.38 (s, 1H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 143.9, 136.7, 116.3, 110.9, 81.9, 74.0 ppm. **IR** (Film): v 2924 (m), 1727 (s), 1467 (s), 1259 (s), 1018 (vs), 811 (vs) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 92 (100), 63 (38).

11.2.2.2 Studien zur Hg(OTf)₂-katalysierten Vinylierung von Indol 155

Allgemeine Arbeitsvorschrift 7 (AAV-7):

Gemäß einer Methode nach Lit.^[78] wurde bei Raumtemperatur zu einer Lösung des Tryptaminderivats **156** (0.2 mmol, 1 Äq.) und des Alkins (0.2 mmol, 1 Äq.) in CH₂Cl₂ (1.94 mL) Hg(OTf)₂ (5 mg, 0.01 mmol, 5 mol-%) zugegeben und die angegebene Zeit bei dieser Temperatur gerührt. Anschließend wurde mit einer gesättigten NaHCO₃-Lösung (2 mL) hydrolysiert und mit Essigsäureethylester (3 x 5 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten NaCl-Lösung (5 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels Säulenchromatographie an Kieselgel aufgereingt.

N-(2-(1H-Indol-3-yl)ethyl)-2-nitrobenzolsulfonamid 156^[154]

Zu einer Suspension von Tryptamin (481 mg, 3 mmol, 1 Äq.) in CH₂Cl₂ (15 mL) wurde bei 0 °C nacheinander Triethylamin (0.5 mL, 3.6 mmol, 1.2 Äq.) und *o*-Nosylchlorid (665 mg, 3 mmol,

1 Äq.) zugegeben. Das Reaktionsgemisch wurde auf Raumtemperatur erwärmt und für 1.5 Stunden bei dieser Temperatur gerührt. Anschließend wurde demin. H₂O (20 mL) zugegeben und mit Chloroform (3 x 20 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer aq. HCl-Lösung (0.2 N, 2 x 40 mL) sowie einer gesättigten NaCl-Lösung (40 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **156** wurde nach Aufreinigung mittels Umkristallisation (Diethylether) als farbloser Feststoff (892 mg, 2.58 mmol, 86 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[154]

R_f-**Wert**: 0.47 (Petrolether / Essigsäureethylester; 1:1). ¹**H**-**NMR** (500 MHz, CDCl₃): δ 8.04 – 7.99 (m, 1H), 7.98 (bs, 1H), 7.68 – 7.55 (m, 3H), 7.30 (dd, J = 16.9, 8.1 Hz, 2H), 7.13 (t, J = 7.6 Hz, 1H), 7.01 (d, J = 2.0 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 5.32 (t, J = 5.1 Hz, 1H), 3.44 (q, J = 6.3 Hz, 2H), 3.00 (t, J = 6.6 Hz, 2H) ppm. ¹³**C**-**NMR** (126 MHz, CDCl₃): δ 147.6, 136.6, 133.5, 133.4, 132.7, 131.0, 126.8, 125.5, 123.0, 122.4, 119.7, 118.4, 111.5, 111.4, 43.8, 25.6 ppm. **IR** (Film): v 3417 (b), 1538 (vs), 1339 (m), 1165 (s), 740 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 345 (18), 130 (100).

N-(2-(1-(tert-Butyl)-1H-indol-3-yl)ethyl)-2-nitrobenzolsulfonamid 159b

Gemäß **AAV-7** wurde das Produkt **159b** ausgehend von Tryptaminderivat **156** (69.1 mg, 0.2 mmol, 1 Äq.) und *tert*-Butylpropiolat **158** (25.2 mg, 0.2 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 1:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 4:1) als gelbes Öl (17.7 mg, 0.044 mmol, 22 %) erhalten.

R_f-Wert: 0.68 (Petrolether / Essigsäureethylester; 1:1). ¹H-NMR (400 MHz, CDCl₃): δ 8.07 (d, J = 7.6 Hz, 1H), 7.67 – 7.58 (m, 3H), 7.55 (d, J = 8.5 Hz, 1H), 7.28 (s, 1H), 7.13 – 7.06 (m, 2H), 6.90 (t, J = 7.5 Hz, 1H), 5.36 (t, J = 5.2 Hz, 1H), 3.41 (q, J = 6.2 Hz, 2H), 2.98 (t, J = 6.6 Hz, 2H), 1.70 (s, 9H)

ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 147.7, 135.7, 133.42, 133.36, 132.7, 131.1, 128.8, 125.5, 124.4, 121.0, 118.7, 118.6, 113.6, 108.3, 55.9, 43.8, 29.9, 25.4 ppm. **IR** (Film): *v* 3331 (b), 2978 (w), 1537 (s), 1346 (s), 1166 (vs), 735 (vs) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 447 (28), 261 (26), 232 (100). **HRMS** (ESI, *m/z*): berechnet für C₂₀H₂₃N₃O₄S: 424.1301, gefunden: 424.1287.

N-(2-(1-(4-Methoxybenzyl)-1H-indol-3-yl)ethyl)-2-nitrobenzolsulfonamid 161b

Gemäß **AAV-7** wurde das Produkt **161b** ausgehend von Tryptaminderivat **156** (69.1 mg, 0.2 mmol, 1 Äq.) und Alkin **160** (52.9 mg, 0.2 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 2:1 \rightarrow 1:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 2:1) als gelbes Öl (15.2 mg, 0.032 mmol, 16 %) erhalten.

R_f-**Wert**: 0.34 (Petrolether / Essigsäureethylester; 2:1). ¹**H**-**NMR** (500 MHz, CDCl₃): δ 8.03 – 7.97 (m, 1H), 7.70 – 7.57 (m, 4H), 7.29 (d, J = 7.9 Hz, 1H), 7.15 (d, J = 8.0 Hz, 1H), 7.09 (d, J = 8.6 Hz, 2H), 7.06 (t, J = 7.5 Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.84 (d, J = 8.7 Hz, 2H), 5.31 (t, J = 5.6 Hz, 1H), 4.05 (s, 2H), 3.79 (s, 3H), 3.38 (q, J = 6.5 Hz, 2H), 3.04 (t, J = 6.9 Hz, 2H) ppm. ¹³C-NMR (126 MHz, CDCl₃): δ 158.7, 147.6, 135.59, 135.56, 133.4, 132.7, 131.0, 130.2, 129.8, 128.0, 127.3, 125.5, 121.7, 119.6, 117.9, 114.4, 110.8, 107.4, 55.5, 44.0, 31.5, 24.8 ppm. IR (Film): v 3397 (b), 2935 (w), 1538 (vs), 1166 (vs), 738 (s) cm⁻¹. HRMS (ESI, m/z): berechnet für C₂₄H₂₃N₃O₅SNa⁺: 488.1251, gefunden: 488.1254.

N-(2-(2-(1-(Furan-2-yl)vinyl)-1*H*-indol-3-yl)ethyl)-2-nitrobenzolsulfonamid 163a & *N*-(2-(3-(1-(Furan-2-yl)vinyl)-3*H*-indol-3-yl)ethyl)-2-nitrobenzolsulfonamid 163b

Gemäß **AAV-7** wurden die Produkte **163a** und **163b** ausgehend von Tryptaminderivat **156** (69.1 mg, 0.2 mmol, 1 Äq.) und 2-Ethinylfuran **162** (18.4 mg, 0.2 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 2:1) als gelbes Öl (19.2 mg, 44 µmol, 22 %) und als Gemisch aus Isomeren (**a/b** 1:2.7) erhalten. Die Isomere wurden durch anschließende HPLC (Petrolether / Essigsäureethylester; 4:1) getrennt.

163a:

R_f-**Wert**: 0.37 (Petrolether / Essigsäureethylester; 2:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 8.11 – 7.99 (m, 2H), 7.69 -7.59 (m, 3H), 7.45 (s, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.30 (d, J = 8.2 Hz, 1H), 7.16 (t, J = 7.6 Hz, 1H), 6.98 (t, J = 7.3 Hz, 1H), 6.41 (dd, J = 3.2, 1.8 Hz, 1H), 6.24 (d, J = 3.2 Hz, 1H), 5.92 (s, 1H), 5.36 (s, 1H), 5.27 (t, J = 5.5 Hz, 1H), 3.39 (q, J = 6.6 Hz, 2H), 3.01 (t, J = 7.1 Hz, 2H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 152.8, 143.1, 135.5, 133.7, 133.44, 133.39, 132.7, 131.1, 129.9, 128.0, 125.6, 122.8, 120.0, 118.7, 115.4, 111.8, 111.2, 110.0, 109.6, 43.8, 25.0 ppm. **IR** (Film): v 3392 (b), 1537 (m), 1163 (s), 907 (m), 729 (s) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₂₂H₁₉N₃O₅SNa⁺: 460.0938, gefunden: 460.0937.

163b:

R_f-Wert: 0.37 (Petrolether / Essigsäureethylester; 2:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 8.05 – 7.99 (m, 1H), 7.75 -7.61 (m, 3H), 7.16 (d, J = 1.1 Hz, 1H), 7.12 (dt, J = 7.3, 1.1 Hz, 1H), 7.05 (d, J = 7.0 Hz, 1H), 6.78 (dt, J = 7.5, 0.8 Hz, 1H), 6.65 (d, J = 7.8 Hz, 1H), 6.26 – 6.19 (m, 2H), 5.80 (s, 1H), 5.64 (s, 1H), 5.07 (s, 1H), 4.99 (bs, 1H), 3.86 – 3.77 (m, 1H), 3.27 (dt, J = 10.6, 5.6 Hz, 1H), 2.76 – 2.65 (m, 1H), 2.31 – 2.24 (m, 1H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 152.9, 148.9, 148.4, 141.8, 138.8, 133.7, 133.3, 131.9, 130.8, 130.0, 129.3, 124.7, 124.3, 119.6, 114.4, 111.3, 109.8, 107.9, 82.6,

62.3, 48.2, 37.1 ppm. **IR** (Film): *v* 3408 (b), 1542 (vs), 1347 (m), 1162 (s), 908 (m), 729 (vs) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₂₂H₁₉N₃O₅SNa⁺: 460.0938, gefunden: 460.0929.

11.2.2.3 Studien zur Pd-katalysierten Vinylierung von Indol 155

2-Iodmethylacrylat 165^[155]

lod (2.64 g, 10.4 mmol, 1.04 Äq.) und DABCO (1.346 g, 12 mmol, 1.2 Äq.) wurden in DMF (25 mL) gelöst und für 30 Minuten bei Raumtemperatur gerührt. Es wurde Acrylsäuremethylester (0.91 mL, 10 mmol, 1 Äq.) zugetropft und für weitere 30 Minuten bei Raumtemperatur gerührt. Es wurde durch Zugabe von demin. H₂O (25 mL) gequencht, anschließend unter starkem Rühren in *n*-Pentan (50 mL) gegeben und mit einer gesättigten Natriumthiosulfatlösung (30 mL) versetzt. Die Phasen wurden getrennt und die wässrige Phase mit *n*-Pentan (2 x 50 mL) extrahiert. Die vereinten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **165** wurde ohne weitere Aufarbeitung als gelbe Flüssigkeit (1.213 g, 5.7 mmol, 57 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[156]

R_f-Wert: 0.69 (Petrolether / Essigsäureethylester; 6:1). ¹H-NMR (300 MHz, CDCl₃): δ 7.44 (d, J = 1.4 Hz, 1H), 6.59 (d, J = 1.3 Hz, 1H), 3.83 (s, 3H) ppm. ¹³C-NMR (75 MHz, CDCl₃): δ 163.1, 140.1, 96.0, 53.9 ppm. IR (Film): v 1732 (s), 1261 (m), 1107 (m) cm⁻¹. MS (GC): m/z (%) 212 (100), 181 (46), 153 (32), 127 (22), 85 (17), 59 (22).

tert-Butyl (2-(1H-indol-3-yl)ethyl)carbamat 164^[157]

Zu einer Suspension von Tryptamin (801 mg, 5 mmol, 1 Äq.) in 1,4-Dioxan (4 mL) wurde bei Raumtemperatur nacheinander Triethylamin (1.4 mL, 10 mmol, 2 Äq.) und eine Lösung von Boc₂O (1.2 g, 5.5 mmol, 1.1 Äq.) in 1,4-Dioxan (4 mL) zugegeben. Das Reaktionsgemisch wurde für eine Stunde bei dieser Temperatur gerührt. Anschließend wurde das Lösungsmittel mithilfe einer Etherbrücke entfernt. Das Produkt **164** wurde nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 1:1) als hellbeiger Feststoff (1.302 g, 5 mmol, quant.) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[158]

R_f-**Wert**: 0.61 (Petrolether / Essigsäureethylester; 1:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 8.06 (bs, 1H), 7.61 (d, J = 7.9 Hz, 1H), 7.37 (d, J = 8.1 Hz, 1H), 7.21 (t, J = 8.1 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 7.03(s, 1H), 4.60 (bs, 1H), 3.46 (s, 2H), 2.69 (t, J = 6.8 Hz, 2H), 1.44 (s, 9H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 156.1, 136.5, 127.6, 122.3, 122.1, 119.6, 119.0, 113.4, 111.3, 41.0, 28.6, 27.6, 26.0 ppm. **IR** (Film): v 3411 (b), 3330 (b), 2977 (w), 1690 (vs), 1168 (s), 740 (s) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₅H₂₀N₂O₂Na⁺: 281.1417, gefunden: 283.1415.

11.2.3 Die Vinylierung vom vereinfachten Indol 155

1-(2-(2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)ethyl)pyridin-2(1H)-on 167

In einem Schlenkrohr wurde [Ir(OMe)(cod)]₂ (0.7 mg, 1.1 μmol, 0.015 Äq.), 4,4'-Di-*tert*-butyl-2,2'dipyridyl (0.6 mg, 2.25 μmol, 0.03 Äq.) und B₂pin₂ (19 mg, 75 μmol, 1 Äq.) in 1,4-Dioxan (0.45 mL) gelöst. Anschließend wurde das Indol **155** (35 mg, 0.15 mmol, 2 Äq.) zugegeben, das Schlenkrohr verschlossen und das Reaktionsgemisch bei 100 °C für 24 gerührt. Das Reaktionsgemisch wurde auf Raumtemperatur gekühlt, das Lösungsmittel am Rotationsverdampfer entfernt und das Indol **167** nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Essigsäureethylester) und anschließender HPLC (Essigsäureethylester) als farbloser Schaum (18.8 mg, 0.052 mmol, 34 %) erhalten.

R_f-**Wert**: 0.46 (Essigsäureethylester). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 8.45 (bs, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.34 (d, *J* = 8.2 Hz, 1H), 7.25 – 7.19 (m, 2H), 7.07 (t, *J* = 7.4 Hz, 1H), 6.84 (dd, *J* = 6.6, 1.3 Hz, 1H), 6.59 (d, *J* = 9.1 Hz, 1H), 5.87 (t, *J* = 6.5 Hz, 1H), 4.23 (t, *J* = 6.9 Hz, 2H), 3.45 (t, *J* = 6.9 Hz, 2H), 1.33 (s, 12H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 162.8, 139.2, 138.3, 138.2, 128.2, 125.0, 124.1, 121.0, 119.84, 119.75, 111.4, 105.1, 84.1, 51.4, 25.1, 25.0 ppm. **IR** (Film): *v* 3234 (b), 2976 (w), 1656 (vs), 1541 (s), 1142 (m), 730 (s) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₂₁H₂₅BN₂O₃Na⁺: 387.1854, gefunden: 387.1858.

2-(3-(2-(2-Oxopyridin-1(2H)-yl)ethyl)-1H-indol-2-yl) methylacrylat 168

In einem Schlenkrohr wurde das Acrylat **165** (11.7 mg, 55 µmol, 1.1 Äq.), Pd(PPh₃)₄ (5.8 mg, 5 µmol, 0.1 Äq.) und das Indol **167** (18.2 mg, 50 µmol, 1 Äq.) in Ethylenglycoldimethylether (0.5 mL) gelöst. Anschließend wurde eine gesättigte NaHCO₃-Lösung (0.1 mL) zugegeben, das Schlenkrohr verschlossen und das Reaktionsgemisch bei 100 °C für 2 Stunden gerührt. Das Reaktionsgemisch wurde auf Raumtemperatur gekühlt, mit demin. H₂O (2 mL) versetzt und mit Essigsäureethylester (3 x 5 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten NaCl-Lösung (5 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **168** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Essigsäureethylester) und anschließender HPLC (Essigsäureethylester) als gelbes Öl (2.1 mg, 6.5 µmol, 13 %) erhalten.

R_f-**Wert**: 0.38 (Essigsäureethylester). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 9.27 (bs, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 8.2 Hz, 1H), 7.31 – 7.27 (m, 1H), 7.23 (t, J = 7.0 Hz, 1H), 7.13 (t, J = 7.4 Hz, 1H), 6.92 (dd, J = 6.8, 1.7 Hz, 1H), 6.58 (d, J = 9.2 Hz, 1H), 6.52 (s, 1H), 6.23 (s, 1H), 5.98 (t, J = 6.6 Hz,

1H), 4.19 (t, *J* = 7.3 Hz, 2H), 3.85 (s, 3H), 3.31 (t, *J* = 7.3 Hz, 2H) ppm. **HRMS** (ESI, *m/z*): berechnet für C₁₉H₁₈N₂O₃Na⁺: 345.1210, gefunden: 345.1205.

12 TBA[Fe]-katalysierte Aminierung von C-C-Bindungen

12.1 TBA[Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von lodaziden

12.1.1 Optimierung der Reaktionsbedingungen

Die Optimierung wurde nach den allgemeinen Arbeitsvorschriften **AAV-8** und **AAV-9** durchgeführt.

Allgemeine Arbeitsvorschrift 8 unter Mikrowellenbedingungen (AAV-8):

Ein ausgeheiztes 10 mL Mikrowellengefäß mit Rührfisch wurde unter N₂-Atmosphäre mit TBA[Fe] **26** und trockenem Lösungsmittel befüllt. Anschließend wurde Azid **173** (0.5 mmol) zugegeben, das Mikrowellengefäß verschlossen und unter Mikrowelleneinstrahlung bei entsprechender Temperatur gerührt. Nach Abkühlen auf Raumtemperatur und Flash-Säulenchromatographie an Kieselgel (Essigsäureethylester) wurde das Rohprodukt mittels ¹H-NMR mit Mesitylen als internem Standard analysiert.

Allgemeine Arbeitsvorschrift 9 unter thermischen Bedingungen (AAV-9):

Ein ausgeheiztes 10 mL Schlenkrohr mit Rührfisch wurde unter N₂-Atmosphäre mit TBA[Fe] **26** und 1,2-Dichlorethan (0.5 M) befüllt. Anschließend wurde Azid **173** (0.5 mmol) zugegeben, das Schlenkrohr dicht verschlossen und das Reaktionsgemisch bei 110 °C für 16 Stunden gerührt. Nach Abkühlen auf Raumtemperatur und Flash-Säulenchromatographie an Kieselgel (Essigsäureethylester) wurde das Rohprodukt mittels ¹H-NMR mit Mesitylen als internem Standard analysiert.

5-Iod-3-methyl-6-phenyl-2H-1,3-oxazin-2,4(3H)-dion 175-C

R_f-Wert: 0.42 (Petrolether / Essigsäureethylester; 7:1). ¹**H**-NMR (500 MHz, CDCl₃): δ 7.83 – 7.76 (m, 2H), 7.57 – 7.53 (m, 1H), 7.52 – 7.47 (m, 2H), 3.48 (s, 3H) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 162.2, 160.0, 148.5, 132.1, 131.8, 129.5, 128.5, 73.2, 30.4 ppm. **IR** (Film): *v* 2956 (w), 1756 (s), 1679 (vs), 1618 (m), 1423 (m), 1359 (m), 1329 (m), 1066 (m), 753 (m) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 329 (58), 271 (38), 105 (100), 77 (20), 51 (5). **HRMS** (EI, *m/z*): berechnet für C₁₁H₈INO₃: 328.9549, gefunden: 328.9550.

5-Chlor-3-methoxy-6-phenyl-2H-1,4-oxazin-2-on 178

Die analytischen Daten stimmen mit der Literatur überein.^[84f]

R_f-**Wert**: 0.47 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.86 – 7.76 (m, 2H), 7.50 – 7.44 (m, 3H), 4.08 (s, 3H) ppm.¹³**C**-**NMR** (101 MHz, CDCl₃): δ 150.01, 150.00, 142.7, 130.4, 129.4, 128.6, 128.5, 121.7, 56.1 ppm. **IR** (Film): *v* 2947 (w), 1761 (vs), 1608 (m), 1351 (s), 1135 (m), 1094 (m), 951 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 237 (40), 209 (18), 194 (15), 105 (100). **HRMS** (EI m/z): berechnet für C₁₁H₈ClN₁O₃ 237.0193, gefunden: 237.0192.

12.1.2 Vergleich mit anderen Systemen

Die Vergleichsreaktionen wurden nach den allgemeinen Arbeitsvorschriften **AAV-10** und **AAV-10** durchgeführt.

Allgemeine Arbeitsvorschrift 10 unter Mikrowellenbedingungen (AAV-10):

Ein ausgeheiztes 10 mL Mikrowellengefäß mit Rührfisch wurde unter N₂-Atmosphäre mit dem entsprechenden Katalysator und trockenem Lösungsmittel befüllt. Anschließend wurde Azid **173** (0.5 mmol) zugegeben, das Mikrowellengefäß verschlossen und unter Mikrowelleneinstrahlung bei entsprechender Temperatur gerührt. Nach Abkühlen auf Raumtemperatur und Flash-Säulenchromatographie an Kieselgel (Essigsäureethylester) wurde das Rohprodukt mittels ¹H-NMR mit Mesitylen als internem Standard analysiert.

Allgemeine Arbeitsvorschrift 11 unter thermischen Bedingungen (AAV-11):

Ein ausgeheiztes 10 mL Schlenkrohr mit Rührfisch wurde unter N₂-Atmosphäre mit dem entsprechenden Katalysator und trockenem Lösungsmittel befüllt. Anschließend wurde Azid **173** (0.5 mmol) zugegeben, das Schlenkrohr dicht verschlossen und das Reaktionsgemisch bei entsprechender Temperatur gerührt. Nach Abkühlen auf Raumtemperatur und Flash-Säulenchromatographie an Kieselgel (Essigsäureethylester) wurde das Rohprodukt mittels ¹H-NMR mit Mesitylen als internem Standard analysiert.

12.1.3 Darstellung verschiedener terminaler Alkine

Die verschiedenen terminalen Alkine wurden ausgehend von den entsprechenden lodverbindungen in zwei Stufen nach Schema 12.1 synthetisiert.

Schema 12.1: Darstellung verschiedener terminaler Alkine.^[87]

12.1.3.1 Darstellung der Trimethylsilylalkine

Allgemeine Arbeitsvorschrift 12 (AAV-12):^[87]

Kupfer(I)iodid (6 mol-%) und PdCl₂(PPh₃)₂ (2 mol-%) wurden unter Stickstoffstrom in NEt₃ (45 mL) vorgelegt. Die entsprechende lodverbindung (15 mmol, 1 Äq.) wurde zugegeben und bei Raumtemperatur 5 Minuten gerührt. Es wurde Trimethylsilylacetylen (1.2 Äq.) langsam zugetropft und das Reaktionsgemisch bei Raumtemperatur für 16 Stunden gerührt. Anschließend wurde das Reaktionsgemisch über Celite[®] (Essigsäureethylester, 150 mL) filtriert und mit 1 N HCl (150 mL) gequencht. Die Phasen wurden getrennt und die wässrige Phase mit Essigsäureethylester (3 x 100 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten NaCl-Lösung (100 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels Säulenchromatographie an Kieselgel aufgereingt.

((4-Chlorphenyl)ethinyl)trimethylsilan 315

Gemäß **AAV-12** wurde das Trimethylsilylalkin **315** ausgehend von 1-Chlor-4-iodbenzol (3.485 g, 10 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether) als gelber Feststoff (2.088 g, 10 mmol, quant.) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[159]

R_f-Wert: 0.61 (Petrolether). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.38 (d, J = 8.6 Hz, 2H), 7.27 (d, J = 7.9 Hz, 2H), 0.25 (s, 9H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 134.7, 133.3, 128.7, 121.8, 104.0, 95.5, 0.0 ppm. **IR** (Film): v 2960 (w), 2160 (m), 1488 (m), 1250 (m), 1091 (m), 861 (vs), 842 (vs) cm⁻¹. **MS** (GC): m/z (%) 208 (29), 193 (100), 163 (12).

((4-Bromphenyl)ethinyl)trimethylsilan 316

Gemäß **AAV-12** wurde das Trimethylsilylalkin **316** ausgehend von 1-Brom-4-iodbenzol (2.829 g, 10 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 90:1) als farbloser Feststoff (2.452 g, 9.7 mmol, 97 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[160]

R_f-Wert: 0.71 (Petrolether / Essigsäureethylester; 90:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.43 (d, J = 8.6 Hz, 2H), 7.31 (d, J = 8.6 Hz, 2H), 0.24 (s, 9H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 133.5, 131.9, 131.6, 122.9, 104.0, 95.7, 0.0 ppm. **IR** (Film): v 2959 (w), 2160 (m), 1486 (m), 1250 (m), 862 (s), 842 (vs) cm⁻¹. **MS** (GC): m/z (%) 254 (21), 252 (21), 239 (100), 237 (100).

4-((Trimethylsilyl)ethinyl)benzoesäuremethylester 317

Gemäß **AAV-12** wurde das Trimethylsilylalkin **317** ausgehend von 4-Iodbenzoesäuremethylester (2.620 g, 10 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als hellbeiger Feststoff (2.302 g, 9.9 mmol, 99 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[161]

R_f-**Wert**: 0.68 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 7.97 (d, J = 8.5 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H), 3.91 (s, 3H), 0.26 (s, 9H) ppm. ¹³**C**-**NMR** (75 MHz, CDCl₃): δ 166.7, 132.0, 129.8, 129.5, 127.9, 104.2, 97.8, 52.4, 0.0 ppm. **IR** (Film): v 2956 (w), 2159 (w), 1725 (vs), 1274 (vs), 1107 (m), 859 (vs), 843 (vs) cm⁻¹. **MS** (GC): m/z (%) 232 (17), 217 (100), 201 (6), 158 (5), 143 (8).

((4-Methoxyphenyl)ethinyl)trimethylsilan 318

Gemäß **AAV-12** wurde das Trimethylsilylalkin **318** ausgehend von 4-Iodanisol (1.17 g, 5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 20:1) als gelbe Flüssigkeit (1.04 g, 5 mmol, quant.) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[159]

R_f-Wert: 0.52 (Petrolether / Essigsäureethylester; 20:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.40 (d, J = 8.9 Hz, 2H), 6.81 (d, J = 8.9 Hz, 2H), 3.80 (s, 3H), 0.24 (s, 9H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 159.9, 133.6, 115.5, 114.0, 105.3, 92.6, 55.4, 0.2 ppm. **IR** (Film): v 2958 (w), 2155 (m), 1606 (m), 1507 (s), 1248 (vs), 863 (s), 833 (vs) cm⁻¹. **MS** (GC): m/z (%) 204 (31), 189 (100), 174 (8).

((3-Bromphenyl)ethinyl)trimethylsilan 319

Gemäß **AAV-12** wurde das Trimethylsilylalkin **319** ausgehend von 1-Brom-3-iodbenzol (1.415 g, 5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 90:1) als hellgelbe Flüssigkeit (1.264 g, 5 mmol, quant.) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[160]

R_f-Wert: 0.67 (Petrolether / Essigsäureethylester; 90:1). ¹H-NMR (300 MHz, CDCl₃): δ 7.61 (t, *J* = 1.7 Hz, 1H), 7.47 – 7.41 (m, 1H), 7.40 – 7.35 (m, 1H), 7.16 (t, *J* = 7.9 Hz, 1H), 0.24 (s, 9H) ppm. ¹³C-NMR (75 MHz, CDCl₃): δ 134.9, 131.8, 130.6, 129.8, 125.3, 122.2, 103.4, 96.0, 0.0 ppm. **IR** (Film): *v* 2960 (w), 2162 (w), 1250 (m), 874 (s), 842 (vs) cm⁻¹. **MS** (GC): *m/z* (%) 254 (19), 252 (19), 239 (100), 237 (100).

((2-Bromphenyl)ethinyl)trimethylsilan 320

Gemäß **AAV-12** wurde das Trimethylsilylalkin **320** ausgehend von 1-Brom-2-iodbenzol (1.28 mL, 10 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 90:1) als gelbes Öl (2.605 g, 10 mmol, quant.) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[160]

R_f-Wert: 0.59 (Petrolether / Essigsäureethylester; 90:1). ¹H-NMR (400 MHz, CDCl₃): δ 7.57 (dd, J = 8.0, 0.9 Hz, 1H), 7.49 (dd, J = 7.7, 1.5 Hz, 1H), 7.26 – 7.20 (m, 1H), 7.15 (dt, J = 7.7, 1.7 Hz, 1H), 0.28 (s, 9H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 133.9, 132.6, 129.8, 127.1, 126.0, 125.5, 103.3, 99.9, 0.1 ppm. IR (Film): v 2960 (w), 2163 (m), 1466 (m), 1249 (m), 863 (s), 841 (vs), 753 (s) cm⁻¹. MS (GC): m/z (%) 254 (23), 252 (23), 239 (100), 237 (100).

((2-Ethylphenyl)ethinyl)trimethylsilan 321

Gemäß **AAV-12** wurde das Trimethylsilylalkin **321** ausgehend von 1-Ethyl-2-iodbenzol (2.321 g, 10 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether) als farblose Flüssigkeit (2.046 g, 10 mmol, quant.) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[162]

R_f-Wert: 0.58 (Petrolether). ¹**H**-NMR (300 MHz, CDCl₃): δ 7.43 (dd, *J* = 7.6, 1.1 Hz, 1H), 7.28 – 7.17 (m, 2H), 7.15 – 7.08 (m, 1H), 2.81 (q, *J* = 7.6 Hz, 2H), 1.24 (t, *J* = 7.5 Hz, 3H), 0.26 (s, 9H) ppm. ¹³**C**-NMR (75 MHz, CDCl₃): δ 146.9, 132.5, 128.8, 128.0, 125.6, 122.4, 104.0, 97.9, 27.9, 14.8, 0.1 ppm. **IR** (Film): *v* 2964 (w), 2156 (m), 1249 (m), 865 (vs), 841 (vs), 756 (s) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 202 (40), 187 (100), 86 (12), 59 (15).

12.1.3.2 Darstellung der terminalen Alkine

Allgemeine Arbeitsvorschrift 13 (AAV-13):[87]

Das entsprechende Trimethylsilylalkin (15 mmol, 1 Äq.) wurde in Methanol (0.5 M) gelöst, mit Kaliumcarbonat (1.5 Äq.) versetzt und für zwei Stunden bei Raumtemperatur gerührt. Anschließend wurde demin. H₂O (40 mL) zugegeben und die wässrige Phase mit Essigsäureethylester (3 x 50 mL) extrahiert. Die vereinten organischen Phasen wurden über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels Säulenchromatographie an Kieselgel aufgereingt.

1-Chlor-4-ethinylbenzol 322

Gemäß **AAV-13** wurde das Alkin **322** ausgehend von Trimethylsilylalkin **315** (2.088 g, 10 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether) als farbloser Feststoff (1.21 g, 8.9 mmol, 89 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[163]

R_f-Wert: 0.71 (Petrolether). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.42 (d, *J* = 8.6 Hz, 2H), 7.30 (d, *J* = 8.6 Hz, 2H), 3. 10 (s, 1H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 135.1, 133.5, 128.8, 120.7, 82.7, 78.3 ppm. IR (Film): *v* 1091 (w), 903 (s), 725 (vs) cm⁻¹. MS (GC): *m/z* (%) 138 (32), 136 (100), 101 (22), 75 (14).

1-Brom-4-ethinylbenzol 217

Gemäß **AAV-13** wurde das Alkin **217** ausgehend von Trimethylsilylalkin **316** (2.431 g, 9.6 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether) als farbloser Feststoff (1.2 g, 6.6 mmol, 69 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[160]

R_f-Wert: 0.27 (Petrolether). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.46 (d, *J* = 8.6 Hz, 2H), 7.35 (d, *J* = 8.5 Hz, 2H), 3.12 (s, 1H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 133.7, 131.8, 123.3, 121.2, 82.7, 78.5 ppm. **IR** (Film): *v* 3260 (m), 1482 (m), 1066 (m), 1008 (m), 818 (s), 631 (s), 522 (s) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 182 (97), 180 (100), 101 (34), 75 (15).

4-Ethinylbenzoesäuremethylester 323

Gemäß **AAV-13** wurde das Alkin **323** ausgehend von Trimethylsilylalkin **317** (2.939 g, 12.65 mmol, 1 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 1:1) als gold-brauner Feststoff (1.729 g, 10.7 mmol, 85 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[161]

R_f-Wert: 0.67 (Petrolether/ Essigsäureethylester; 10:1). ¹H-NMR (300 MHz, CDCl₃): δ 7.99 (d, J = 8.5 Hz, 2H), 7.55 (d, J = 8.5 Hz, 2H), 3.92 (s, 3H), 3.22 (s, 1H) ppm. ¹³C-NMR (126 MHz, CDCl₃): δ 166.6, 132.2, 130.3, 129.6, 126.9, 82.9, 80.2, 52.4 ppm. **IR** (Film): v 3243 (s), 1704 (vs), 1280 (s), 1109 (m), 773 (m) cm⁻¹. **MS** (GC): m/z (%) 160 (49), 129 (100), 101 (48), 75 (19), 51 (8). **HRMS** (EI, m/z): berechnet für C₁₀H₈O₂: 160.0524, gefunden: 160.0520.

1-Ethinyl-4-methoxybenzol 324

Gemäß **AAV-13** wurde das Alkin **324** ausgehend von Trimethylsilylalkin **318** (1.02 g, 5 mmol, 1 Äq.) ohne weitere Aufreinigung als farblose Flüssigkeit (593 mg, 4.5 mmol, 90 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[163]

R_f-Wert: 0.46 (*n*-Pentan). ¹H-NMR (400 MHz, CDCl₃): δ 7.43 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.9 Hz, 2H), 3.81 (s, 3H), 2.99 (s, 1H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 160.1, 133.7, 114.3, 114.1, 83.8,

75.9, 55.4 ppm. **IR** (Film): *v* 3286 (m), 1606 (m), 1507 (s), 1249 (vs), 1031 (m), 832 (s) cm⁻¹. **MS** (GC): *m/z* (%) 132 (100), 117 (35), 89 (48).

1-Brom-3-ethinylbenzol 325

Gemäß **AAV-13** wurde das Alkin **325** ausgehend von Trimethylsilylalkin **319** (1.266 g, 5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether) als farblose Flüssigkeit (0.687 g, 3.8 mmol, 76 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[160]

R_f-**Wert**: 0.52 (Petrolether). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.64 (s, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 7.7 Hz, 1H), 7.19 (t, J = 7.9 Hz, 1H), 3.11 (s, 1H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 135.0, 132.2, 130.8, 129.9, 124.3, 122.3, 82.2, 78.7 ppm. **IR** (Film): v 3291 (m), 2926 (w), 1471 (m), 818 (s), 782 (vs), 622 (s) cm⁻¹. **MS** (GC): m/z (%) 182 (98), 180 (100), 101 (52), 75 (23).

1-Brom-2-ethinylbenzol 326

Gemäß **AAV-13** wurde das Alkin **326** ausgehend von Trimethylsilylalkin **320** (2.532 g, 10 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (*n*-Pentan) als hellgelbe Flüssigkeit (1.649 g, 9.1 mmol, 91 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[160]

R_f-Wert: 0.52 (*n*-Pentan). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.59 (dd, J = 8.0, 1.0 Hz, 1H), 7.53 (dd, J = 7.6, 1.7 Hz, 1H), 7.30 – 7.25 (m, 1H), 7.20 (dt, J = 7.7, 1.7 Hz, 1H), 3.37 (s, 1H) ppm. ¹³**C**-NMR (101

MHz, CDCl₃): δ 134.3, 132.6, 130.1, 127.2, 125.7, 124.5, 82.1, 81.9 ppm. **IR** (Film): v 3287 (m), 1466 (m), 1027 (m), 753 (s) cm⁻¹. **MS** (GC): *m/z* (%) 182 (97), 180 (100), 101 (60), 75 (36).

1-Ethyl-2-ethinylbenzol 327

Gemäß **AAV-13** wurde das Alkin **327** ausgehend von Trimethylsilylalkin **321** (2.024 g, 10 mmol, 1 Äq.) ohne weitere Aufreinigung als farblose Flüssigkeit (1.27 g, 9.8 mmol, 98 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[162]

R_f-Wert: 0.85 (*n*-Pentan). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 7.6 Hz, 1H), 7.31 – 7.26 (m, 1H), 7.24 – 7.19 (m, 1H), 7.14 (t, J = 7.6 Hz, 1H), 3.24 (s, 1H), 2.83 (q, J = 7.6 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 147.0, 133.0, 129.1, 128.1, 125.7, 121.4, 82.5, 80.6, 27.7, 14.9 ppm. **IR** (Film): v 3298 (m), 2967 (m), 1483 (m), 757 (vs) cm⁻¹. **MS** (GC): m/z (%) 130 (66), 115 (100).

12.1.4 Darstellung verschiedener Ketoester

Allgemeine Arbeitsvorschrift 14 (AAV-14): [82,83]

Eine Lösung von Kupfer(I)iodid (0.05 Äq.) und Triethylamin (2 Äq.) in THF (25 mL) wurde bei Raumtemperatur mit dem entsprechenden Alkin (5 mmol, 1 Äq.) versetzt. Das entsprechende Monoalkyloxalylchlorid (10 mmol, 2 Äq.) wurde langsam zugetropft und das Reaktionsgemisch bei Raumtemperatur für 48 Stunden gerührt. Anschließend wurde eine gesättigte NaHCO₃-Lösung (30 mL) und Essigsäureethylester (50 mL) zugegeben, die Phasen getrennt und die wässrige Phase mit Essigsäureethylester (2 x 30 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten NaCl-Lösung (75 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels Säulenchromatographie an Kieselgel aufgereingt.

Allgemeine Arbeitsvorschrift 15 (AAV-15): [82,83]

Eine Lösung von Kupfer(I)iodid (0.1 Äq.) und Triethylamin (2 Äq.) in THF (25 mL) wurde bei Raumtemperatur mit dem entsprechenden Alkin (5 mmol, 1 Äq.) versetzt. Das entsprechende Monoalkyloxalylchlorid (10 mmol, 2 Äq.) wurde langsam zugetropft und das Reaktionsgemisch bei Raumtemperatur für 24 Stunden gerührt. Anschließend wurde eine gesättigte NaHCO₃-Lösung (30 mL) und Essigsäureethylester (50 mL) zugegeben, die Phasen getrennt und die wässrige Phase mit Essigsäureethylester (2 x 30 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten NaCl-Lösung (75 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels Säulenchromatographie an Kieselgel aufgereingt.

Methyloxalylchlorid 171^[164]

Oxalylchlorid (9 mL, 105 mmol, 1.05 Äq.) wurde in Diethylether (6 mL) gelöst und auf 0 °C gekühlt. Es wurde eine Lösung von Methanol (4.06 mL, 100 mmol, 1 Äq.) in Diethylether (7 mL) langsam zugetropft und das Reaktionsgemisch für drei Stunden bei 0 °C gerührt. Das Produkt **171** wurde nach fraktionierter Destillation als farblose Flüssigkeit (9.108 g, 74.3 mmol, 74 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[164]

Sdp.: 116 – 117 °C. ¹**H-NMR** (400 MHz, CDCl₃): δ 3.99 (s, 3H) ppm. ¹³**C-NMR** (100 MHz, CDCl₃): δ 161.0, 156.3, 55.1 ppm. **IR** (Film): *v* 1742 (vs), 1448 (w), 1221 (m), 1175 (m), 968 (w) cm⁻¹.

Methyl-2-oxo-4-phenylbut-3-inoat 172

Gemäß **AAV-15** wurde der Ketoester **172** ausgehend von Phenylacetylen **170** (0.55 mL, 5 mmol, 1 Äq.) und Methyloxalylchlorid **171** (0.92 mL, 10 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als gelborangefarbenes Öl (596 mg, 3.2 mmol, 63 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[83]

R_f-**Wert**: 0.37 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 7.72 – 7.64 (m, 2H), 7.57 -7.49 (m, 1H), 7.46 – 7.39 (m, 2H), 3.97 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 169.2, 159.8, 134.0, 132.0, 129.0, 119.2, 98.3, 87.3, 53.8 ppm. **IR** (Film): *v* 2923 (w), 2197 (s), 1744 (m), 1676 (s), 1251 (m), 1081 (vs), 761 (m) cm⁻¹. **MS** (GC): *m/z* (%) 188 (2), 160 (2), 129 (100), 101 (6), 75 (14), 51 (5).

Methyl-4-(4-chlorphenyl)-2-oxobut-3-inoat 181

Gemäß **AAV-14** wurde der Ketoester **181** ausgehend von Alkin **322** (683 mg, 5 mmol, 1 Äq.) und Methyloxalylchlorid **171** (0.92 mL, 10 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als hellbrauner Feststoff (503 mg, 2.26 mmol, 45 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[165]

R_f-**Wert**: 0.47 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.61 (d, J = 8.6 Hz, 2H), 7.41 (d, J = 8.6 Hz, 2H), 3.97 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 169.2, 159.7, 138.7, 135.1, 129.5, 117.6, 96.7, 87.9, 53.9. **IR** (Film): v 2207 (s), 1740 (vs), 1676 (vs), 1589 (m), 1262 (m), 1082 (s), 829 (m) cm⁻¹. **MS** (GC): m/z (%) 222 (7), 163 (100), 135 (3), 99 (9). **HRMS** (EI, m/z): berechnet für C₁₁H₇ClO₃: 222.0084, gefunden: 222.0082.

Methyl-4-(4-bromphenyl)-2-oxobut-3-inoat 182

Gemäß **AAV-14** wurde der Ketoester **182** ausgehend von Alkin **217** (905 mg, 5 mmol, 1 Äq.) und Methyloxalylchlorid **171** (0.92 mL, 10 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als orangefarbener Feststoff (832 mg, 3.1 mmol, 62 %) erhalten.

R_f-**Wert**: 0.45 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.58 (d, J = 8.7 Hz, 2H), 7.53 (d, J = 8.7 Hz, 2H), 3.92 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 169.1, 159.7, 135.2, 132.4, 127.2, 118.1, 96.7, 87.9, 53.9 ppm. **IR** (Film): v 2207 (s), 1739 (vs), 1677 (vs), 1580 (m), 1261 (s), 1090 (s), 826 (s) cm⁻¹. **MS** (GC): m/z (%) 268 (5), 266 (5), 210 (98), 207 (100), 128 (22), 100 (19), 74 (20). **HRMS** (EI, m/z): berechnet für C₁₁H₇BrO₃: 265.9579, gefunden: 265.9581.

Methyl-4-(4-methoxy-3,4-dioxobut-1-in-1-yl)benzoat 183

Gemäß **AAV-15** wurde der Ketoester **183** ausgehend von Alkin **323** (801 mg, 5 mmol, 1 Äq.) und Methyloxalylchlorid **171** (0.92 mL, 10 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 4:1) als gelber Feststoff (667 mg, 2.7 mmol, 54 %) erhalten.

R_f-**Wert**: 0.39 (Petrolether / Essigsäureethylester; 4:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 8.08 (d, *J* = 8.5 Hz, 2H), 7.73 (d, *J* = 8.6 Hz, 2H), 3.97 (s, 3H), 3.95 (s, 3H) ppm. ¹³**C**-**NMR** (176 MHz, CDCl₃): δ 169.1, 166.1, 159.6, 133.7, 132.8, 129.9, 123.5, 96.1, 88.4, 54.0, 52.7 ppm. **IR** (Film): *v* 2958 (w),

2208 (m), 1734 (s), 1682 (s), 1281 (m), 1081 (vs) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 246 (4), 215 (6), 187 (100), 128 (13). **HRMS** (EI, *m/z*): berechnet für C₁₃H₁₀O₅: 246.0528, gefunden: 246.0518.

Methyl-4-(4-methoxyphenyl)-2-oxobut-3-inoat 184

Gemäß **AAV-14** wurde der Ketoester **184** ausgehend von Alkin **324** (529 mg, 4 mmol, 1 Äq.) und Methyloxalylchlorid **171** (0.74 mL, 8 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1 \rightarrow 4:1) als orangefarbener Feststoff (463 mg, 2.1 mmol, 53 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[165]

R_f-Wert: 0.29 (Petrolether / Essigsäureethylester; 6:1). ¹H-NMR (400 MHz, CDCl₃): δ 7.64 (d, J = 9.0 Hz, 2H), 6.93 (d, J = 9.0 Hz, 2H), 3.95 (s, 3H), 3.87 (s, 3H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 169.0, 162.9, 160.1, 136.3, 114.8, 110.9, 100.1, 88.0, 55.7, 53.7 ppm. **IR** (Film): v 2177 (s), 1746 (s), 1663 (s), 1600 (s), 1254 (s), 1085 (vs), 832 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₂H₁₀O₄Na⁺: 241.0471, gefunden: 241.0467.

Methyl-4-(3-bromphenyl)-2-oxobut-3-inoat 185

Gemäß **AAV-15** wurde der Ketoester **185** ausgehend von Alkin **325** (670 mg, 3.7 mmol, 1 Äq.) und Methyloxalylchlorid **171** (0.68 mL, 7.4 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als brauner Feststoff (438 mg, 1.64 mmol, 44 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[165]

R_f-Wert: 0.36 (Petrolether / Essigsäureethylester; 10:1). ¹H-NMR (400 MHz, CDCl₃): δ 7.82 (s, 1H), 7.66 (d, J = 8.1 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.30 (t, J = 7.9 Hz, 1H), 3.97 (s, 3H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 169.0, 159.6, 136.3, 135.1, 132.3, 130.4, 122.7, 121.2, 95.7, 87.6, 53.9 ppm. IR (Film): v 2205 (s), 1743 (s), 1680 (vs), 1081 (vs), 679 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) 268 (8), 266 (8), 209 (98), 207 (100), 128 (17). HRMS (EI, m/z): berechnet für C₁₁H₇BrO₃: 265.9579, gefunden: 265.9583.

Methyl-4-(2-bromphenyl)-2-oxobut-3-inoat 186

Gemäß **AAV-14** wurde der Ketoester **186** ausgehend von Alkin **326** (905 mg, 5 mmol, 1 Äq.) und Methyloxalylchlorid **171** (0.92 mL, 10 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als gelborangefarbener Feststoff (1.1367 g, 4.3 mmol, 86 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[165]

R_f-Wert: 0.33 (Petrolether / Essigsäureethylester; 6:1). ¹H-NMR (400 MHz, CDCl₃): δ 7.71 – 7.64 (m, 2H), 7.40 – 7.34 (m, 2H), 3.97 (s, 3H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 169.1, 159.6, 135.8, 133.2, 133.0, 127.7, 127.6, 121.9, 95.6, 90.2, 53.9 ppm. **IR** (Film): *v* 2201 (s), 1747 (s), 1671 (vs), 1091 (s), 759 (m) cm⁻¹. **MS** (GC): *m/z* (%) 268 (2), 266 (2), 209 (97), 207 (100), 128 (20). **HRMS** (EI, *m/z*): berechnet für C₁₁H₇BrO₃: 265.9579, gefunden: 265.9588.

Methyl-4-(2-ethylphenyl)-2-oxobut-3-inoat 187

Gemäß **AAV-14** wurde der Ketoester **187** ausgehend von Alkin **327** (652 mg, 5 mmol, 1 Äq.) und Methyloxalylchlorid **171** (0.92 mL, 10 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als gelbes Öl (667 mg, 3.1 mmol, 62 %) erhalten.

R_f-**Wert**: 0.34 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.63 (d, J = 7.6 Hz, 1H), 7.49 – 7.43 (m, 1H), 7.31 (d, J = 7.7 Hz, 1H), 7.26 – 7.21 (m, 1H), 3.97 (s, 3H), 2.92 (q, J = 7.6 Hz, 2H), 1.29 (t, J = 7.6 Hz, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 169.1, 159.8, 150.0, 134.9, 132.4, 128.7, 126.3, 118.3, 97.8, 90.8, 53.8, 27.8, 15.3 ppm. **IR** (Film): v 2970 (w), 2192 (s), 1759 (m), 1675 (vs), 1076 (vs), 762 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₃H₁₂O₃Na⁺: 239.0679, gefunden: 239.0664.

Methyl-4-(cyclohex-1-en-1-yl)-2-oxobut-3-inoat 188

Gemäß **AAV-14** wurde der Ketoester **188** ausgehend von 1-Ethinylcyclohexen (531 g, 5 mmol, 1 Äq.) und Methyloxalylchlorid **171** (0.92 mL, 10 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als braunes Öl (417 mg, 2.2 mmol, 44 %) erhalten.

R_f-Wert: 0.48 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-NMR (500 MHz, CDCl₃): δ 6.67 (quint, J = 2.1 Hz, 1H), 3.91 (s, 3H), 2.25 – 2.19 (m, 4H), 1.71 – 1.61 (m, 4H) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 169.4, 160.1, 146.6, 119.1, 101.3, 86.1, 53.8, 28.1, 26.7, 22.0, 21.2 ppm. **IR** (Film): v 2937

(m), 2180 (vs), 1744 (s), 1673 (vs), 1219 (s), 1066 (s) cm⁻¹. **HRMS** (EI, *m/z*): berechnet für C₁₁H₁₂O₃: 192.0786, gefunden: 192.0786.

Methyl-2-oxo-6-phenylhex-3-inoat 189

Gemäß **AAV-14** wurde der Ketoester **189** ausgehend von 4-Phenyl-1-butin (0.70 mL, 5 mmol, 1 Äq.) und Methyloxalylchlorid **171** (0.92 mL, 10 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; $6:1 \rightarrow 2:1$) und anschließender HPLC (Petrolether / Essigsäureethylester; 6:1) als hellbraunes Öl (7 mg, 0.032 mmol, Spuren) erhalten.

R_f-**Wert**: 0.40 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 7.36 – 7.28 (m, 2H), 7.26 – 7.28 (m, 3H), 3.90 (s, 3H), 2.95 (t, *J* = 7.4 Hz, 2H), 2.78 (t, *J* = 7.3 Hz, 2H) ppm. ¹³**C**-**NMR** (126 MHz, CDCl₃): δ 169.2, 159.7, 139.4, 128.8, 128.5, 126.9, 101.4, 80.3, 53.7, 33.7, 21.8 ppm. **IR** (Film): *v* 2955 (w), 2214 (s), 1744 (s), 1681 (vs), 1159 (vs), 700 (m) cm⁻¹. **HRMS** (EI, *m/z*): berechnet für C₁₃H₁₂O₃: 216.0786, gefunden: 216.0781.

Methyl-2-oxodec-3-inoat 192

Gemäß **AAV-14** wurde der Ketoester **192** ausgehend von 1-Octin (551 mg, 5 mmol, 1 Äq.) und Methyloxalylchlorid **171** (0.92 mL, 10 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als orangefarbene Flüssigkeit (28.6 mg, 0.15 mmol, 3 %) erhalten. **R**_f-Wert: 0.43 (Petrolether / Essigsäureethylester; 10:1). ¹H-NMR (400 MHz, CDCl₃): δ 3.91 (s, 3H), 2.48 (t, J = 7.1 Hz, 2H), 1.68 – 1.59 (m, 2H), 1.47 – 1.39 (m, 2H), 1.34 – 1.27 (m, 4H), 0.90 (t, J =6.7 Hz, 3H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 169.4, 159.9, 103.1, 79.9, 53.7, 31.3, 28.6, 27.5, 22.6, 19.7, 14.1 ppm. IR (Film): v 2930 (m), 2211 (s), 1745 (s), 1682 (vs), 1158 (vs), 1003 (w) cm⁻¹. MS (GC): m/z (%) 197 (59), 137 (100). HRMS (ESI, m/z): berechnet für C₁₁H₁₆O₃Na⁺: 219.0992, gefunden: 219.0991.

12.1.5 Optimierung der lodazidierung

Die Optimierung wurde nach der allgemeinen Arbeitsvorschrift AAV-16 durchgeführt.

Allgemeine Arbeitsvorschrift 16 (AAV-16):

Eine Lösung des Ketoesters **172** (0.3 mmol, 1 Äq.) in trockenem Lösungsmittel wurde mit TMSN₃ (1.1 Äq.) sowie NIS versetzt und für 16 Stunden bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde mit einer 10 %-igen Na₂S₂O₃-Lösung versetzt und mit Essigsäureethylester (3 x 5 mL) extrahiert. Die vereinten organischen Phasen wurden mit demin. H₂O (10 mL) sowie einer gesättigten NaCl-Lösung (10 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels ¹H-NMR mit Mesitylen als internem Standard analysiert.

12.1.6 Darstellung verschiedener Iodazide

Allgemeine Arbeitsvorschrift 17 (AAV-17):

Eine Lösung des Ketoesters (1 mmol, 1 Äq.) in MeCN (0.2 M) wurde mit TMSN₃ (1.1 Äq.) sowie NIS (1.1 Äq.) versetzt und für 16 Stunden bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde mit einer 10 %-igen Na₂S₂O₃-Lösung versetzt und mit Essigsäureethylester (3 x 15 mL) extrahiert. Die vereinten organischen Phasen wurden mit demin. H₂O (30 mL) sowie einer gesättigten NaCl-Lösung (30 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels Säulenchromatographie an Kieselgel aufgereingt.

Allgemeine Arbeitsvorschrift 18 (AAV-18):

Eine Lösung des Ketoesters (2 mmol, 1 Äq.) in 1,2-Dichlorethan/MeCN (1:1, 0.1 M) wurde mit TMSN₃ (1.1 Äq.) sowie NIS (2.2 Äq.) versetzt und für 16 Stunden bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde mit einer 10 %-igen Na₂S₂O₃-Lösung versetzt und mit Essigsäureethylester (3 x 30 mL) extrahiert. Die vereinten organischen Phasen wurden mit demin. H₂O (60 mL) sowie einer gesättigten NaCl-Lösung (60 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels Säulenchromatographie an Kieselgel aufgereingt.

2-Azid-4-iod-2-methoxy-5-phenylfuran-3(2H)-on 173

Gemäß **AAV-17** wurde das Iodazid **173** ausgehend von Ketoester **172** (188 mg, 1 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als gelb-orangefarbenes Öl (310 mg, 0.87 mmol, 87 %) erhalten.

R_f-**Wert**: 0.51 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 8.32 – 8.23 (m, 2H), 7.67 – 7.64 (m, 1H), 7.60 – 7.51 (m, 2H), 3.63 (s, 3H) ppm. ¹³**C**-**NMR** (176 MHz, CDCl₃): δ 191.2, 179.2, 134.1, 129.4, 128.9, 128.1, 104.6, 63.3, 53.1 ppm. **IR** (Film): *v* 2948 (w), 2124 (vs), 1725 (s), 1551 (s), 1238 (m), 968 (m), 687 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 357 (13), 272 (20), 129 (33), 105 (100), 77 (24). **HRMS** (EI, m/z): berechnet für C₁₁H₈IN₃O₃: 356.9610, gefunden: 356.9613.

2-Azid-5-(4-chlorphenyl)-4-iod-2-methoxyfuran-3(2H)-on 199

Gemäß AAV-18 wurde das Iodazid 199 ausgehend von Ketoester 181 (445 mg, 2 mmol, 1 Äq.)nachAufreinigungmittelsSäulenchromatographieanKieselgel(Petrolether / Essigsäureethylester; 10:1) als gelbes Öl (522 mg, 1.33 mmol, 67 %) erhalten.

R_f-Wert: 0.54 (Petrolether / Essigsäureethylester; 10:1). ¹H-NMR (500 MHz, CDCl₃): δ 8.23 (d, J = 8.7 Hz, 2H), 7.53 (d, J = 8.8 Hz, 2H), 3.63 (s, 3H) ppm. ¹³C-NMR (126 MHz, CDCl₃): δ 191.0, 177.9, 140.6, 130.6, 129.4, 126.5, 104.6, 63.6, 53.2 ppm. **IR** (Film): v 2124 (vs), 1727 (s), 1593 (m), 1548 (m), 1483 (s), 1225 (m), 1092 (s), 967 (m), 837(m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 391 (7), 305 (20), 163 (26), 139 (100), 111 (16), 75 (8). **HRMS** (EI, m/z): berechnet für C₁₁H₇ClN₃IO₃: 390.9221, gefunden: 390.9219.

2-Azid-5-(4-bromphenyl)-4-iod-2-methoxyfuran-3(2H)-on 200

Gemäß **AAV-18** wurde das Iodazid **200** ausgehend von Ketoester **182** (534 mg, 2 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als gelb-orangefarbenes Öl (593 mg, 1.4 mmol, 70 %) erhalten.

R_f-Wert: 0.61 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-NMR (300 MHz, CDCl₃): δ 8.14 (d, J = 8.7 Hz, 2H), 7.70 (d, J = 8.7 Hz, 2H), 3.62 (s, 3H) ppm. ¹³**C**-NMR (75 MHz, CDCl₃): δ 191.0, 178.0, 132.4, 130.6, 129.3, 126.9, 104.6, 63.7, 53.2 ppm. **IR** (Film): v 2126 (vs), 1728 (s), 1589 (s), 1480 (m), 1244 (m), 1069 (m), 833 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 437 (5), 435 (5), 352 (20), 350 (20),

209 (20), 207 (21), 185 (98), 183 (100). **HRMS** (EI, *m/z*): berechnet für C₁₁H₇BrIN₃O₃: 434.8715, gefunden: 434.8717.

4-(5-Azid-3-iod-5-methoxy-4-oxo-4,5-dihydrofuran-2-yl)benzoesäuremethylester 201

Gemäß **AAV-18** wurde das Iodazid **201** ausgehend von Ketoester **183** (369 mg, 1.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 4:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 5:1) als gelbes Öl (304 mg, 0.73 mmol, 49 %) erhalten.

R_f-Wert: 0.47 (Petrolether / Essigsäureethylester; 4:1). ¹**H**-NMR (500 MHz, CDCl₃,): δ 8.31 (d, J = 8.5 Hz, 2H), 8.19 (d, J = 8.6 Hz, 2H), 3.97 (s, 3H), 3.64 (s, 3H) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 191.1, 178.0, 165.9, 134.6, 131.9, 129.9, 129.3, 104.6, 65.1, 53.2, 52.8 ppm. **IR** (Film): v 2952 (w), 2126 (s), 1725 (vs), 1280 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 415 (6), 329 (14), 187 (27), 163 (100), 138 (9). **HRMS** (EI, m/z): berechnet für C₁₃H₁₀IN₃O₅: 414.9665, gefunden: 414.9655.

2-Azid-4-iod-2-methoxy-5-(4-methoxyphenyl)furan-3(2H)-on 202

Gemäß **AAV-18** wurde das Iodazid **202** ausgehend von Ketoester **184** (436 mg, 2 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als gelbes Öl (557 mg, 1.4 mmol, 70 %) erhalten.

R_f-**Wert**: 0.38 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-**NMR** (400 MHz, CDCl₃,): δ 8.33 (d, J = 9.1 Hz, 2H), 7.04 (d, J = 9.1 Hz, 2H), 3.92 (s, 3H), 3.61 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ

190.8, 178.3, 164.5, 131.8, 120.3, 114.4, 104.6, 60.9, 55.8, 53.1 ppm. **IR** (Film): *v* 2125 (s), 1721 (m), 1602 (s), 1498 (vs), 1267 (m), 1178 (s), 839 (m) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 387 (8), 159 (19), 135 (100). **HRMS** (EI, *m/z*): berechnet für C₁₂H₁₀IN₃O₄: 386.9716, gefunden: 386.9710.

2-Azid-5-(3-bromophenyl)-4-iod-2-methoxyfuran-3(2H)-on 203

Gemäß **AAV-17** wurde das Iodazid **203** ausgehend von Ketoester **185** (401 mg, 1.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als gelbes Öl (373 mg, 0.86 mmol, 57 %) erhalten.

R_f-Wert: 0.38 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 8.34 (t, J = 1.8 Hz, 1H), 8.34 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.44 (t, J = 8.0 Hz, 1H), 3.64 (s, 3H). ¹³**C**-NMR (101 MHz, CDCl₃): δ 191.0, 177.4, 136.8, 131.8, 130.4, 130.0, 128.0, 123.1, 104.6, 64.4, 53.2 ppm. **IR** (Film): v 2121 (vs), 1722 (s), 1546 (s), 1236 (s), 914 (m), 692 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₁H₇BrIN₃O₃Na⁺: 457.8608, gefunden: 457.8607.

2-Azid-5-(2-bromphenyl)-4-iod-2-methoxyfuran-3(2H)-on 204

Gemäß AAV-18 wurde das Iodazid 204 ausgehend von Ketoester 186 (534 mg, 2 mmol, 1 Äq.)nachAufreinigungmittelsSäulenchromatographieanKieselgel(Petrolether / Essigsäureethylester; 8:1) als gelbes Öl (217 mg, 0.5 mmol, 25 %) erhalten.

R_f-Wert: 0.38 (Petrolether / Essigsäureethylester; 8:1). ¹H-NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 7.6 Hz, 1H), 7.51 – 7.41 (m, 3H), 3.67 (s, 3H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 190.7, 183.9,
133.9, 133.3, 131.1, 130.7, 127.7, 121.3, 105.7, 68.5, 53.5 ppm. **IR** (Film): *v* 2125 (vs), 1735 (s), 1604 (m), 1242 (m), 961 (m), 768 (m) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 437 (2), 435 (2), 352 (21), 350 (22), 209 (26), 207 (27), 185 (99), 183 (100). **HRMS** (EI, *m/z*): berechnet für C₁₁H₇BrIN₃O₃: 434.8715, gefunden: 434.8716.

2-Azid-5-(2-ethylphenyl)-4-iod-2-methoxyfuran-3(2H)-on 205

Gemäß **AAV-18** wurde das Iodazid **205** ausgehend von Ketoester **187** (433 mg, 2 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als hellbraunes Öl (635 mg, 1.65 mmol, 83 %) erhalten.

R_f-Wert: 0.53 (Petrolether / Essigsäureethylester; 10:1). ¹H-NMR (500 MHz, CDCl₃): δ 7.54 – 7.48 (m, 2H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.36 – 7.32 (m, 1H), 3.65 (s, 3H), 2.74 (q, *J* = 7.6 Hz, 2H), 1.25 (t, *J* = 7.6 Hz, 3H) ppm. ¹³C-NMR (126 MHz, CDCl₃): δ 190.7, 185.9, 143.7, 132.5, 130.2, 129.9, 127.9, 126.0, 105.5, 67.2, 53.2, 27.1, 15.9 ppm. IR (Film): *v* 2971 (w), 2122 (vs), 1732 (s), 1581 (m), 1223 (s), 962 (s), 904 (m), 770 (m) cm⁻¹. MS (EI, 70 eV): *m/z* (%) 385 (10), 300 (30), 173 (20), 157 (29), 133 (100), 105 (12). HRMS (EI, *m/z*): berechnet C₁₃H₁₂IN₃O₃: 384.9923, gefunden: 384.9925.

2-Azid-5-(cyclohex-1-en-1-yl)-4-iod-2-methoxyfuran-3(2H)-on 206

Gemäß **AAV-18** wurde das Iodazid **206** ausgehend von Ketoester **188** (352 mg, 1.836 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als orangefarbenes Öl (434 mg, 1.2 mmol, 66 %) erhalten.

R_f-Wert: 0.60 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.35 – 7.28 (m, 1H), 3.55 (s, 3H), 2.57 – 2.49 (m, 2H), 2.37 – 2.31 (m, 2H), 1.78 – 1.65 (m, 4H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 191.2, 180.2, 143.9, 128.8, 104.0, 61.3, 52.9, 26.6, 25.9, 22.1, 21.1 ppm. **IR** (Film): *v* 2940 (w), 2123 (vs), 1723 (m), 1533 (s), 1233 (m) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 361 (17), 276 (9), 133 (24), 109 (100). **HRMS** (EI, *m/z*): berechnet für C₁₁H₁₂IN₃O₃: 360.9923, gefunden: 360.9919.

4-Iod-2-methoxy-5-phenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)furan-3(2H)-on 174

Zu einer Lösung des Iodazids **173** (143 mg, 0.4 mmol, 1 Äq.) in MeCN (2 mL) wurde *N*,*N*-Diisopropylethylamin (7 μL, 0.04 mmol, 0.1 Äq.), CuI (7.6 mg, 0.04 mmol, 0.1 Äq.) und Phenylacetylen **170** (66 μL, 0.6 mmol, 1.5 Äq.) zugegeben und bei Raumtemperatur für 96 Stunden gerührt. Das Reaktionsgemisch wurde über Kieselgel (Essigsäureethylester) filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Triazol **174** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 4:1) als gelbes Öl (79 mg, 0.17 mmol, 43 %) erhalten.

R_f-Wert: 0.19 (Petrolether / Essigsäureethylester; 4:1). ¹H-NMR (400 MHz, CDCl₃): δ 8.41 – 8.36 (m, 2H), 8.24 (s, 1H), 7.88 – 7.84 (m, 2H), 7.70 (t, J = 7.5 Hz, 1H), 7.59 (t, J = 7.7 Hz, 2H), 7.44 (t, J = 7.5 Hz, 2H), 7.36 (t, J = 7.4 Hz, 1H), 3.66 (s, 3H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 190.1, 180.5, 148.1, 134.5, 130.0, 129.7, 129.03, 129.02, 128.7, 127.9, 126.1, 118.2, 102.9, 63.3, 53.5 ppm. IR (Film): v 2946 (w), 1729 (vs), 1551 (s), 1446 (m), 1334 (m), 1195 (s), 1149 (m), 1012 (m), 901 (m), 765 (m), 689 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) 459 (3), 431 (57), 304 (31), 287 (31), 227 (10), 159 (19), 145 (52), 129 (100), 105 (67), 77 (27). HRMS (EI, m/z): berechnet für C₁₉H₁₄IN₃O₃: 459.0080, gefunden: 459.0084.

12.1.7 Substratspektrum der TBA[Fe]-katalysierten Aminierung von C-C-Bindungen

Allgemeine Arbeitsvorschrift 19 (AAV-19):

Ein ausgeheiztes 10 mL Mikrowellengefäß mit Rührfisch wurde unter N₂-Atmosphäre mit TBA[Fe] **26** (5 mol-%) und 1,2-Dichlorethan (0.5 M) befüllt. Anschließend wurde das entsprechende Azid (0.5 mmol) zugegeben, das Mikrowellengefäß verschlossen und das Reaktionsgemisch bei 110 °C für 30 Minuten unter Mikrowelleneinstrahlung (200 W) gerührt. Das Reaktionsgemisch wurde auf Raumtemperatur gekühlt und das Rohprodukt mittels Säulenchromatographie an Kieselgel aufgereinigt.

5-Iod-3-methoxy-6-phenyl-2*H*-1,4-oxazin-2-on 175-A & 5-Iod-2-methoxy-6-phenyl-4*H*-1,3oxazin-4-on 175-B

Gemäß **AAV-19** wurde ausgehend von Iodazid **173** (178.6 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; $6:1 \rightarrow 2:1$) Produkt **175-A** als gelber Feststoff (57.6 mg, 0.175 mmol, 35 %) und Produkt **175-B** als gelber orangefarbenes Öl (9.9 mg, 0.03 mmol, 6 %) erhalten.

175-A:

R_f-Wert: 0.51 (Petrolether / Essigsäureethylester; 6:1). ¹H-NMR (500 MHz, CDCl₃): δ 7.73 – 7.66 (m, 2H), 7.47 – 7.43 (m, 3H), 4.03 (s, 3H) ppm. ¹³C-NMR (126 MHz, CDCl₃): δ 150.1, 149.7, 146.7, 131.5, 130.6, 129.6, 128.5, 80.5, 56.0 ppm. **IR** (Film): *v* 2946 (w), 1756 (vs), 1589 (s), 1346 (m), 1135 (m), 943 (m) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 329 (100), 301 (35), 241 (6), 146 (6), 105 (93), 77 (26), 51(6). **HRMS** (ESI, *m/z*): berechnet für C₁₁H₈INO₃Na⁺: 351.9441, gefunden: 351.9451.

175-B:

R_f-**Wert**: 0.19 (Petrolether / Essigsäureethylester; 2:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.81 – 7.73 (m, 2H), 7.59 – 7.47 (m, 3H), 4.12 (s, 3H) ppm. ¹³**C**-**NMR** (126 MHz, CDCl₃): δ 166.6, 161.7, 131.9,

131.6, 129.5, 129.2, 128.6, 82.6, 57.9 ppm. **IR** (Film): *v* 3275 (w), 2956 (w), 1781 (m), 1685 (m), 1626 (vs), 1491 (m), 1337 (vs), 1229 (m), 953 (m), 771 (m), 690 (m) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 329 (91), 272 (48), 228 (13), 105 (100), 77 (21). **HRMS** (EI, *m/z*): berechnet für C₁₁H₈INO₃: 328.9549, gefunden: 328.9549.

6-(4-Chlorphenyl)-5-iod-3-methoxy-2*H*-1,4-oxazin-2-on 207-A & 6-(4-Chlorphenyl)-5-iod-2methoxy-4*H*-1,3-oxazin-4-on 207-B

Gemäß **AAV-19** wurde ausgehend von Iodazid **199** (195.8 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; $10:1 \rightarrow 2:1$) Produkt **207-A** als hellbeiger Feststoff (51.2 mg, 0.14 mmol, 28 %) und Produkt **207-B** als gelbes Öl (8.7 mg, 0.024 mmol, 5 %) erhalten.

207-A:

R_f-Wert: 0.38 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 4.04 (s, 3H) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 149.9, 149.8, 145.6, 136.8, 130.9, 129.9, 128.8, 80.8, 56.2 ppm. **IR** (Film): v 2947 (w), 1757 (vs), 1602 (s), 1350 (s), 1134 (m), 941 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 363 (70), 335 (28), 139 (100), 111 (26), 75 (13). **HRMS** (EI, m/z): berechnet für C₁₁H₇ICINO₃: 362.9159, gefunden: 362.9154.

207-B:

R_f-Wert: 0.32 (Petrolether / Essigsäureethylester; 2:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 8.7 Hz, 2H), 7.49 (d, J = 8.7 Hz, 2H), 4.12 (s, 3H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 166.3, 161.5, 160.6, 138.3, 130.9, 130.0, 129.0, 83.0, 57.9 ppm. **IR** (Film): v 2956 (w), 1691 (m), 1626 (vs), 1333 (s), 952 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 363 (60), 306 (37), 262 (9), 139 (100), 111 (21). **HRMS** (EI, m/z): berechnet für C₁₁H₇ICINO₃: 362.9159, gefunden: 362.9151.

6-(4-Bromphenyl)-5-iod-3-methoxy-2*H*-1,4-oxazin-2-on 208-A & 6-(4-Bromphenyl)-5-iod-2methoxy-4*H*-1,3-oxazin-4-on 208-B

Gemäß **AAV-19** wurde ausgehend von Iodazid **200** (218 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; $6:1 \rightarrow 2:1$) Produkt **208-A** als gelber Feststoff (75.8 mg, 0.186 mmol, 37 %) und Produkt **208-B** als hellgelber Feststoff (12.6 mg, 0.031 mmol, 6 %) erhalten.

208-A:

R_f-Wert: 0.47 (Petrolether / Essigsäureethylester; 6:1). ¹H-NMR (400 MHz, CDCl₃): δ 7.59 (s, 4H), 4.03 (s, 3H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 149.84, 149.81, 145.7, 131.8, 131.1, 130.4, 125.2, 80.7, 56.2 ppm. IR (Film): v 2944 (w), 1757 (vs), 1601 (m), 1348 (m), 1076 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) 408 (99), 406 (100), 381 (36), 379 (36), 185 (89), 183 (92). HRMS (EI, m/z): berechnet für C₁₁H₇BrINO₃: 406.8654, gefunden: 406.8657.

208-B:

R_f-Wert: 0.22 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.69 – 7.63 (m, 4H), 4.12 (s, 3H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 166.2, 161.5, 160.7, 132.0, 131.0, 130.5, 126.7, 83.0, 57.9 ppm. IR (Film): *v* 2957 (w), 1627 (vs), 1335 (s), 952 (m) cm⁻¹. HRMS (ESI, *m/z*): berechnet für C₁₁H₇BrINO₃Na⁺: 429.8546, gefunden: 429.8541.

4-(5-lod-3-methoxy-2-oxo-2*H*-1,4-oxazin-6-yl)benzoesäuremethylester 209-A & 4-(5-lod-2methoxy-4-oxo-4*H*-1,3-oxazin-6-yl)benzoesäuremethylester 209-B

Gemäß **AAV-19** wurde ausgehend von Iodazid **201** (207.6 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; $4:1 \rightarrow 1:1$) Produkt **209-A** als hellgelber Feststoff (75.8 mg, 0.195 mmol, 39 %) und Produkt **209-B** als orange-roter Feststoff (8.6 mg, 0.022 mmol, 4 %) erhalten.

209-A:

R_f-Wert: 0.43 (Petrolether / Essigsäureethylester; 4:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 8.12 (d, J = 8.6 Hz, 2H), 7.81 (d, J = 8.6 Hz, 2H), 4.05 (s, 3H), 3.95 (s, 3H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃,): δ 166.3, 150.0, 149.7, 145.6, 135.6, 131.8, 129.7, 129.6, 81.3, 56.2, 52.6 ppm. **IR** (Film): v 2952 (w), 1760 (s), 1723 (vs), 1592 (m), 1281 (vs), 1113 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 387 (68), 359 (25), 163 (100). **HRMS** (EI, m/z): berechnet für C₁₃H₁₀INO₅: 386.9604, gefunden: 386.9602.

209-B:

R_f-**Wert**: 0.40 (Petrolether / Essigsäureethylester; 1:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 8.16 (d, J = 8.6 Hz, 2H), 7.85 (d, J = 8.6 Hz, 2H), 4.12 (s, 3H), 3.96 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃,): δ 166.1, 166.0, 161.5, 160.7, 135.6, 133.1, 129.8, 129.6, 83.7, 58.0, 52.7 ppm. **IR** (Film): v 2954 (w), 1723 (s), 1628 (s), 1336 (s), 1279 (vs), 774 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₃H₁₀INO₅Na⁺: 409.9496, gefunden: 409.9495.

5-Iod-3-methoxy-6-(4-methoxyphenyl)-2*H*-1,4-oxazin-2-on 210-A & 5-Iod-2-methoxy-6-(4methoxyphenyl)-4*H*-1,3-oxazin-4-on 210-B

Gemäß **AAV-19** wurde ausgehend von Iodazid **202** (193.6 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; $4:1 \rightarrow 1:1$) Produkt **210-A** als gelber Feststoff (37.8 mg, 0.105 mmol, 21 %) und Produkt **210-B** als gelbes Öl (12.5 g, 0.035 mmol, 7 %) erhalten.

210-A:

R_f-Wert: 0.58 (Petrolether / Essigsäureethylester; 4:1). ¹**H**-NMR (500 MHz, CDCl₃): δ 7.66 (d, J = 8.9 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 4.02 (s, 3H), 3.86 (s, 3H) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 161.3, 150.4, 149.3, 146.8, 131.2, 123.7, 113.9, 79.6, 56.0, 55.6 ppm. **IR** (Film): v 1753 (vs), 1609 (s), 1507 (m), 1350 (m), 1257 (s), 1134 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 360 (14), 359 (100), 331 (20), 135 (95). **HRMS** (EI, m/z): berechnet für C₁₂H₁₀INO₄: 358.9655, gefunden: 358.9655.

210-B:

R_f-**Wert**: 0.38 (Petrolether / Essigsäureethylester; 1:1). ¹**H**-**NMR** (500 MHz, CDCl₃): δ 7.80 (d, J = 8.9 Hz, 2H), 6.99 (d, J = 8.9 Hz, 2H), 4.11 (s, 3H), 3.89 (s, 3H) ppm. ¹³**C**-**NMR** (126 MHz, CDCl₃): δ 166.9, 162.4, 161.7, 161.5, 131.4, 123.6, 113.9, 81.1, 57.8, 55.7 ppm. **IR** (Film): v 2954 (w), 1627 (vs), 1606 (s), 1338 (s), 1260 (s), 1178 (m), 838 (w) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₂H₁₁INO₄⁺: 359.9727, gefunden: 359.9743.

6-(3-Bromphenyl)-5-iod-3-methoxy-2*H*-1,4-oxazin-2-on 211-A & 6-(3-Bromphenyl)-5-iod-2methoxy-4*H*-1,3-oxazin-4-on 211-B

Gemäß **AAV-19** wurde ausgehend von Iodazid **203** (218 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) Produkt **211-A** als gelber Feststoff (54.5 mg, 0.13 mmol, 26 %) und Produkt **211-B** als gelbes Öl (6.7 mg, 0.02 mmol, 4 %) erhalten.

211-A:

R_f-**Wert**: 0.44 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.86 (t, J = 1.7 Hz, 1H), 7.66 (d, J = 7.8 Hz, 1H), 7.59 (d, J = 8.7 Hz, 1H), 7.32 (t, J = 7.9 Hz, 1H), 4.04 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 150.0, 149.7, 145.1, 133.6, 133.4, 132.5, 130.0, 128.3, 122.5,

81.1, 56.2 ppm. **IR** (Film): *v* 2946 (w), 1757 (vs), 1584 (s), 1346 (m), 1134 (m) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₁₁H₇BrINO₃Na⁺: 429.8546, gefunden: 429.8537.

211-B:

R_f-Wert: 0.34 (Petrolether / Essigsäureethylester; 2:1). ¹H-NMR (400 MHz, CDCl₃): δ 7.90 (t, J = 1.7 Hz, 1H), 7.73 (d, J = 7.8 Hz, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 4.12 (s, 3H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 166.1, 161.5, 160.1, 134.9, 133.5, 132.2, 130.2, 128.2, 122.6, 83.5, 58.0 ppm. IR (Film): v 2955 (w), 1628 (vs), 1569 (m), 1337 (s), 953 (m), cm⁻¹. HRMS (ESI, m/z): berechnet für C₁₁H₇BrINO₃Na⁺: 429.8546, gefunden: 429.8553.

6-(2-Bromphenyl)-5-iod-3-methoxy-2*H*-1,4-oxazin-2-on 212-A & 6-(2-Bromphenyl)-5-iod-2methoxy-4*H*-1,3-oxazin-4-on 212-B

Gemäß **AAV-19** wurde ausgehend von Iodazid **204** (218 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; $10:1 \rightarrow 2:1$) Produkt **212-A** als gelbes Öl (87.6 mg, 0.21 mmol, 43 %) und Produkt **212-B** als gelbes Öl (13.1 mg, 0.032 mmol, 6 %) erhalten.

212-A:

R_f-**Wert**: 0.32 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.69 (dt, *J* = 7.9 Hz, 1H), 7.44 – 7.33 (m, 3H), 4.06 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 150.6, 149.8, 146.2, 133.4, 133.3, 132.3, 132.2, 127.7, 124.2, 84.2, 56.2 ppm. **IR** (Film): *v* 2946 (w), 1759 (vs), 1610 (m), 1347 (m), 1133 (m), 946 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 409 (90), 407 (92), 381 (46), 379 (47), 226 (16), 224 (17), 185 (94), 183 (100), 156 (25), 155 (26). **HRMS** (EI, *m/z*): berechnet für C₁₁H₇BrINO₃: 406.8654, gefunden: 406.8653.

212-B:

R_f-**Wert**: 0.56 (Petrolether / Essigsäureethylester; 2:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 7.71 (d, J = 8.0 Hz, 1H), 7.47 – 7.39 (m, 3H), 4.12 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 165.9, 162.2, 161.6, 133.8, 133.5, 132.7, 131.1, 127.9, 122.2, 86.3, 58.0 ppm. **IR** (Film): v 3269 (w), 2956 (w), 1693 (m), 1637 (s), 1593 (s), 1492 (s), 1323 (vs), 1225 (s), 945 (m), 763 (s) cm⁻¹. **HRMS** (EI, m/z): berechnet für C₁₁H₇BrINO₃: 406.8654, gefunden: 406.8640.

6-(2-Ethylphenyl)-5-iod-3-methoxy-2*H*-1,4-oxazin-2-on 213-A & 6-(2-Ethylphenyl)-5-iod-2methoxy-4*H*-1,3-oxazin-4-on 213-B

Gemäß **AAV-19** wurde ausgehend von Iodazid **205** (192.6 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; $10:1 \rightarrow 2:1$) Produkt **213-A** als hellgelbes Öl (83.4 mg, 0.23 mmol, 46 %) und Produkt **213-B** als braunes Öl (15.8 mg, 0.044 mmol, 9 %) erhalten.

213-A:

R_f-**Wert**: 0.43 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-**NMR** (500 MHz, CDCl₃): δ 7.43 (dt, J = 7.7, 3.3 Hz, 1H), 7.35 – 7.27 (m, 3H), 4.05 (s, 3H), 2.62 (q, J = 7.6 Hz, 2H), 1.23 (t, J = 7.6 Hz, 3H) ppm. ¹³**C**-**NMR** (126 MHz, CDCl₃): δ 150.3, 150.2, 147.6, 143.8, 131.2, 131.1, 131.0, 129.0, 126.1, 83.7, 56.0, 26.5, 15.3 ppm. **IR** (Film): v 2968 (w), 1755 (vs), 1608 (m), 1593 (s), 1345 (s), 1130 (s), 944 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 357 (100), 158 (14), 133 (79), 117 (29). **HRMS** (ESI, m/z): berechnet für C₁₃H₁₃INO₃⁺: 357.9935, gefunden: 357.9936.

213-B:

R_f-Wert: 0.59 (Petrolether / Essigsäureethylester; 2:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.52 – 7.45 (m, 1H), 7.37 (d, *J* = 7.8 Hz, 1H), 7.35 – 7.30 (m, 2H), 4.11 (s, 3H), 2.61 (q, *J* = 7.6 Hz, 2H), 1.23 (t, *J* = 7.6 Hz, 3H) ppm. ¹³**C**-NMR (176 MHz, CDCl₃): δ 166.2, 164.1, 161.7, 142.6, 131.66, 131.65, 129.8, 129.2, 126.3, 85.6, 57.9, 26.5, 15.3 ppm. **IR** (Film): *v* 2967 (w), 1755 (m), 1631 (vs), 1580

(m), 1321 (vs), 952 (m), 773 (m) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 357 (71), 300 (49), 173 (53), 133 (100). **HRMS** (EI, *m/z*): berechnet für C₁₃H₁₂INO₃: 356.9862, gefunden: 356.9861.

6-(Cyclohex-1-en-1-yl)-5-iod-3-methoxy-2*H*-1,4-oxazin-2-on 214-A & 6-(Cyclohex-1-en-1-yl)-5iod-2*H*-1,3-oxazin-2,4(3*H*)-dion 215

Gemäß **AAV-19** wurde ausgehend von Iodazid **206** (181 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 6:1) Produkt **214-A** als orangefarbenes Öl (17.5 mg, 0.053 mmol, 11 %) und Produkt **215** als orangefarbener Feststoff (14.3 mg, 0.045 mmol, 9 %) erhalten.

214-A:

R_f-Wert: 0.60 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-NMR (500 MHz, CDCl₃): δ 6.31 – 6.36 (m, 1H), 3.97 (s, 3H), 2.27 – 2.23 (m, 2H), 2.22 – 2.17 (m, 2H), 1.75 – 1.70 (m, 2H), 1.68 – 1.63 (m, 2H). ¹³**C**-NMR (126 MHz, CDCl₃): δ 150.5, 149.4, 149.0, 136.6, 130.3, 79.1, 55.9, 26.4, 25.5, 22.4, 21.6 ppm. **IR** (Film): *v* 2936 (w), 1756 (vs), 1589 (s), 1336 (m), 1129 (m), 1062 (w), cm⁻¹. **MS** (GC): m/z (%) 333 (100), 305 (30), 290 (8), 277 (18), 150 (6), 134 (9), 119 (9), 109 (82), 91 (15), 81 (38), 53 (17). **HRMS** (ESI, m/z): berechnet für C₁₁H₁₂INO₃Na⁺: 355.9754, gefunden: 355.9759.

215:

R_f-Wert: 0.17 (Petrolether / Essigsäureethylester; 6:1). ¹H-NMR (400 MHz, CDCl₃): δ 8.08 (bs, 1H), 6.53 – 6.46 (m, 1H), 4.35-2.22 (m, 4H), 1.80-1.64 (m, 4H) ppm. ¹³C-NMR (126 MHz, CDCl₃): δ 166.5, 159.8, 146.8, 139.0, 131.3, 70.9, 25.6, 25.3, 22.0, 21.3 ppm. **IR** (Film): v 3228 (w), 2931 (w), 1775 (vs), 1711 (s), 1366 (s), 1030 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₀H₁₀INO₃Na⁺: 341.9598, gefunden: 341.9594.

3-Methoxy-6-phenyl-5-(phenylethinyl)-2H-1,4-oxazin-2-on 216

Nach einer abgewandelten Methode nach Lit.^[166] wurden in einem 10 mL Schlenkrohr unter N₂-Atmosphäre Pd(PPh₃)₂Cl₂ (14 mg, 0.02 mmol, 0.1 Äq.) und Kupfer(I)iodid (5.7 mg, 0.03 mmol, 0.15 Äq.) mit CH₂Cl₂ (2 mL) und DIPEA (0.14 mL, 0.8 mmol, 4 Äq.) versetzt. Das Iodoxazin-2on **175-A** (65.8 mg, 0.2 mmol, 1 Äq.) wurde bei Raumtemperatur zugegeben und 5 Minuten gerührt. Phenylacetylen **170** (66 µL, 0.6 mmol, 3 Äq.) wurde über eine Spritze zugegeben und das Reaktionsgemisch 24 Stunden bei Raumtemperatur gerührt. Anschließend wurden demin. H₂O (5 mL) und Essigsäureethylester (10 mL) zugegeben und die Phasen getrennt. Die organische Phase wurde über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **216** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 20:1 \rightarrow 6:1) als farbloser Feststoff (24.8 mg, 0.082 mmol, **41** %) erhalten.

R_f-Wert: 0.42 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-NMR (500 MHz, CDCl₃): δ 8.09 (dd, J = 7.8, 1.6 Hz, 2H), 7.51 – 7.56 (m, 5H), 7.39 – 7.34 (m, 3H), 4.11 (s, 3H) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 150.5, 149.7, 149.6, 131.7, 130.6, 130.1, 129.2, 128.62, 128.57, 127.9, 122.4, 111.9, 93.5, 85.0, 55.7 ppm. **IR** (Film): v 2947 (w), 1763 (vs), 1606 (m), 1123 (m), 691 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₉H₁₃NO₃Na⁺: 326.0788, gefunden: 326.0794.

12.1.8 Untersuchung der Wanderung des Methylethers zur Aufklärung des Reaktionsmechanismus

Methyloxalylchlorid-d₃ 171-d₃

Oxalylchlorid (4.5 mL, 52.5 mmol, 1.05 Äq.) wurde in Diethylether (3 mL) gelöst und auf 0 °C gekühlt. Es wurde eine Lösung von Methanol- d_4 (2.0 mL, 50 mmol, 1 Äq.) in Diethylether (3.5 mL) langsam zugetropft und das Reaktionsgemisch für drei Stunden bei 0 °C gerührt. Das Produkt **171-d_3** wurde nach fraktionierter Destillation als farblose Flüssigkeit (4.328 g, 34.5 mmol, 69 %) erhalten.

Sdp.: 116-117 °C. ¹³**C-NMR** (300 MHz, CDCl₃): *δ* 161.0, 156.3 ppm.

Gemäß **AAV-15** wurde der Ketoester **182-** d_3 ausgehend von Alkin **217** (634 mg, 3.5 mmol, 1 Äq.) und Methyloxalylchlorid- d_3 **171-** d_3 (879 mg, 7 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als orangefarbener Feststoff (444 mg, 1.65 mmol, 47 %) erhalten.

R_f-Wert: 0.43 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 169.1, 159.7, 135.2, 132.4, 127.2, 118.1, 96.7, 87.9 ppm. **IR** (Film): v 2206 (m), 1737 (vs), 1678 (vs), 1266 (m), 1102 (m), 826 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₁H₄D₃BrO₃Na⁺: 291.9659, gefunden: 291.9651.

2-Azid-5-(4-bromphenyl)-4-iod-2-(methoxy-d₃)furan-3(2H)-on 200-d₃

Gemäß **AAV-17** wurde das Iodazid **200-***d*₃ ausgehend von Ketoester **182-***d*₃ (405 mg, 1.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als gelbes Öl (231 mg, 0.53 mmol, 35 %) erhalten.

R_f-Wert: 0.60 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 8.14 (d, J = 8.7 Hz, 2H), 7.70 (d, J = 8.7 Hz, 2H) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 191.0, 178.0, 132.4, 130.6, 129.3, 126.9, 104.6, 63.7 ppm. **IR** (Film): v 3093 (w), 2122 (vs), 1726 (s), 1589 (s), 1479 (s), 1239 (s), 1071 (m), 833 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₁H₄D₃BrIN₃O₃Na⁺: 460.8796, gefunden: 460.8793.

6-(4-Bromphenyl)-5-iod-3-(methoxy-d₃)-2H-1,4-oxazin-2-on 208-d₃-A

Gemäß **AAV-19** wurde ausgehend von Iodazid **200**-*d*₃ (110 mg, 0.25 mmol, 0.5 Äq.) und Iodazid **201** (104 mg, 0.25 mmol, 0.5 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) ein Gemisch aus Produkt **208**-*d*₃-**A** und Produkt **209**-**A** im Verhältnis 1:1.1 als gelber Feststoff (NMR-Ausbeute: 32 %) erhalten.

208-*d*₃-A:

R_f-**Wert**: 0.47 (Petrolether/Essigsäureethylester; 6:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.59 (s, 4H) ppm. **IR** (Film): *v* 2920 (w), 1756 (s), 1598 (m), 1348 (m), 1081 (m) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₁₁H₄D₃BrINO₃Na⁺: 432.8735, gefunden: 432.8718.

12.2 TBA[Fe]-katalysierte Aminierung von C-C-Bindungen ausgehend von Bromaziden

12.2.1 Darstellung verschiedener Monoalkyloxalylchloride

Allgemeine Arbeitsvorschrift 20 (AAV-20):[164]

Oxalylchlorid (105 mmol, 1.05 Äq.) wurde in Diethylether (6 mL) gelöst und auf 0 °C gekühlt. Es wurde eine Lösung aus dem entsprechenden Alkohol (100 mmol, 1 Äq.) in Diethylether (7 mL) langsam zugetropft und das Reaktionsgemisch für drei Stunden bei 0 °C gerührt. Anschließend wurde das Rohprodukt über fraktionierte Destillation aufgereinigt.

i-Propyloxalylchlorid 328

Gemäß **AAV-20** wurde das Säurechlorid **328** ausgehend von *i*-Propanol (2.31 mL, 30 mmol, 1 Äq.) nach fraktionierter Destillation als farblose Flüssigkeit (3.56 g, 22 mmol, 73 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[167]

Sdp.: 139 °C. ¹**H-NMR** (300 MHz, CDCl₃): δ 5.19 (sept, *J* = 6.3 Hz, 1H), 1.41 (s, 3H), 1.39 (s, 3H) ppm. ¹³**C-NMR** (75 MHz, CDCl₃,): δ 161.6, 155.4, 74.2, 21.6 ppm. **IR** (Film): *v* 1788 (w), 1753 (m), 1270 (m), 903 (s), 726 (vs) cm⁻¹.

Benzyloxalylchlorid 329

Gemäß **AAV-20** wurde das Säurechlorid **329** ausgehend von Benzylalkohol (3.12 mL, 30 mmol, 1 Äq.) nach fraktionierter Destillation im Vakuum als farblose Flüssigkeit (4.185 g, 21.1 mmol, 70 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[168]

Sdp.: 114 °C (29 mbar). ¹H-NMR (300 MHz, CDCl₃): δ 7.46 – 7.36 (m, 5H), 5.37 (s, 2H) ppm. ¹³C-NMR (75 MHz, CDCl₃): δ 161.1, 155.7, 133.4, 129.5, 129.03, 129.01, 70.5 ppm. IR (Film): v 3037 (w), 1753 (vs), 1456 (m), 1264 (vs), 995 (s), 963 (s), 746 (s), 695 (vs) cm⁻¹. MS (EI, 70 eV): m/z (%) 198 (19), 107 (16), 91 (100), 77 (9), 65 (12), 46 (9).

Crotyloxalylchlorid 330

Gemäß **AAV-20** wurde das Säurechlorid **330** ausgehend von Crotylalkohol (2.55 mL, 30 mmol, 1 Äq.) nach fraktionierter Destillation als farblose Flüssigkeit (3.415 g, 21 mmol, 70 %) erhalten.

Sdp.: $61 - 62 \degree C. \degree$ **H-NMR** (400 MHz, CDCl₃): δ 7.01 - 6.90 (m, 1H), 5.70 - 5.57 (m, 1H), 4.77 (d, J = 6.8 Hz, 2H), 1.76 (d, J = 6.6 Hz, 3H) ppm. \degree **C-NMR** (101 MHz, CDCl₃): δ 161.3, 155.7, 135.2, 122.9, 69.6, 18.0. **IR** (Film): v 1786 (m), 1758 (s), 1265 (m), 966 (s) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 162 (13), 71 (8), 63 (13), 55 (100), 39 (16). **HRMS** (EI, m/z): berechnet für C₆H₇ClO₃: 162.0084, gefunden: 162.0084.

Allyloxalylchlorid 331

Gemäß **AAV-20** wurde das Säurechlorid **331** ausgehend von Allylalkohol (2.05 mL, 30 mmol, 1 Äq.) nach fraktionierter Destillation als farblose Flüssigkeit (3.343 g, 22.5 mmol, 75 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[169]

Sdp.: 56 °C (29 mbar). ¹**H-NMR** (300 MHz, CDCl₃): δ 6.56 – 5.89 (m, 1H), 5.53 – 5.36 (m, 2H), 4.83 (td, *J* = 6.0, 2.4 Hz, 2H) ppm. ¹³**C-NMR** (75 MHz, CDCl₃): δ 161.1, 155.6, 129.8, 121.3, 69.2 ppm. **IR** (Film): *v* 1758 (vs), 1195 (m), 943 (w) cm⁻¹.

12.2.2 Darstellung verschiedener terminaler Alkine

12.2.2.1 Darstellung der Trimethylsilylalkine

Trimethyl(p-tolylethinyl)silan 332

Gemäß **AAV-12** wurde das Trimethylsilylalkin **332** ausgehend von 4-lodtoluol (2.18 g, 10 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether) als farblose Flüssigkeit (919 mg, 4.9 mmol, 98 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[160]

R_f-Wert: 0.78 (Petrolether). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.35 (d, *J* = 8.1 Hz, 2H), 7.09 (d, *J* = 7.9 Hz, 2H), 2.34 (s, 3H), 0.24 (s, 9H) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 138.8, 132.0, 129.1, 120.2, 105.4, 93.4, 21.7, 0.2 ppm. **IR** (Film): *v* 2958 (w), 2158 (m), 1251 (m), 865 (s), 842 (vs) cm⁻¹. **MS** (GC): *m/z* (%) 188 (22), 173 (100).

Trimethyl(o-tolylethinyl)silan 333

Gemäß **AAV-12** wurde das Trimethylsilylalkin **333** ausgehend von 2-lodtoluol (1.28 mL, 10 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether) als hellgelbe Flüssigkeit (1.558 g, 8.3 mmol, 83 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[162]

R_f-**Wert**: 0.67 (Petrolether). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 7.42 (d, *J* = 7.6 Hz, 1H), 7.25 – 7.07 (m, 3H), 2.43 (s, 3H), 0.26 (s, 9H) ppm. ¹³**C**-**NMR** (75 MHz, CDCl₃): δ 140.8, 132.2, 129.5, 128.6, 125.6, 123.1, 104.2, 98.3, 20.8, 0.2 ppm. **IR** (Film): *v* 2959 (w), 2155 (m), 1249 (m), 868 (vs), 840 (vs), 757 (vs) cm⁻¹. **MS** (GC): *m/z* (%) 188 (24), 173 (100), 145 (12).

12.2.2.2 Darstellung der terminalen Alkine

1-Ethinyl-4-methylbenzol 334

Gemäß **AAV-13** wurde das Alkin **334** ausgehend von Trimethylsilylalkin **332** (904 mg, 4.8 mmol, 1 Äq.) ohne weitere Aufreinigung als hellgelbe Flüssigkeit (486 mg, 4.2 mmol, 88 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[160]

R_f-**Wert**: 0.58 (*n*-Pentan). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.39 (d, *J* = 8.1 Hz, 2H), 7.13 (d, *J* = 7.8 Hz, 2H), 3.02 (s, 1H), 2.35 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 139.1, 132.2, 129.2, 119.2, 84.0, 76.6, 21.6 ppm. **IR** (Film): *v* 2919 (w), 2851 (w), 1251 (w) cm⁻¹. **MS** (GC): *m/z* (%) 116 (79), 115 (100), 89 (14), 74 (4), 63 (9), 50 (3).

1-Ethinyl-2-methylbenzol 335

Gemäß **AAV-13** wurde das Alkin **335** ausgehend von Trimethylsilylalkin **333** (1.883 g, 10 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether) als hellgelbe Flüssigkeit (1.062 g, 9.1 mmol, 91 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[162]

R_f-Wert: 0.55 (Petrolether). ¹**H**-NMR (300 MHz, CDCl₃): δ 7.46 (d, *J* = 7.5 Hz, 1H), 7.28 – 7.10 (m, 3H), 3.27 (s, 1H), 2.46 (s, 3H) ppm. ¹³**C**-NMR (75 MHz, CDCl₃): δ 140.9, 132.7, 129.6, 128.9, 125.7, 122.1, 82.7, 81.1, 20.7 ppm. **IR** (Film): *v* 3308 (w), 2957 (w), 1249 (m), 838 (s), 756 (m) cm⁻¹. **MS** (GC): *m/z* (%) 116 (72), 115 (100), 89 (9).

(((2-Methylbut-3-in-2-yl)oxy)methyl)benzol 336^[170]

Zu einer Suspension von NaH (60 %-ig in Mineralöl, 0.96 g, 24 mmol, 1.2 Äq.) in THF (96 mL) wurde bei Raumtemperatur 2-Methyl-3-butin-2-ol (1.682 g, 20 mmol, 1 Äq.) zugegeben und das Reaktionsgemisch für eine Stunde bei Raumtemperatur gerührt. Anschließend wurde Tetrabutylammoniumiodid (0.369 g, 1 mmol, 0.05 Äq.) sowie Benzylbromid (2.85 mL, 24 mmol, 1.2 Äq.) zugegeben und das Reaktionsgemisch für weitere 16 Stunden gerührt. Es wurde Diethylether (50 mL) zugegeben und mit demin. H_2O (3 x 20 mL) und einer gesättigten NaCl-Lösung (20 mL) gewaschen. Die organischen Phase wurde über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Alkin **336** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 40:1) als farbloses Öl (3.056 g, 17.5 mmol, 88 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[170]

R_f-Wert: 0.33 (Petrolether / Essigsäureethylester; 40:1). ¹**H**-NMR (300 MHz, CDCl₃): δ 7.40 – 7.26 (m, 5H), 4.64 (s, 2H), 2.48 (s, 1H), 1.56 (s, 6H) ppm. ¹³**C**-NMR (75 MHz, CDCl₃): δ 139.1, 128.5, 127.9, 127.5, 86.3, 72.4, 70.6, 66.7, 29.0 ppm. **IR** (Film): *v* 3293 (m), 2985 (m), 1380 (m), 1158 (vs), 1053 (s), 735 (s), 695 (s), 653 (m) cm⁻¹. **MS** (GC): m/z (%) 174 (1), 159 (12), 144 (15), 107 (15), 91 (100), 79 (17), 67 (24).

12.2.3 Darstellung verschiedener Ketoester

Methyl-2-oxo-4-(p-tolyl)but-3-inoat 219

Gemäß **AAV-14** wurde der Ketoester **219** ausgehend von Alkin **334** (465 mg, 4 mmol, 1 Äq.) und Methyloxalylchlorid **171** (0.74 mL, 8 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als gelborangefarbener Feststoff (415 mg, 2.1 mmol, 53 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[165]

R_f-**Wert**: 0.50 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.58 (d, J = 8.1 Hz, 2H), 7.23 (d, J = 7.9 Hz, 2H), 3.96 (s, 3H), 2.41 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 169.2, 160.0, 143.1, 134.1, 129.8, 116.1, 99.3, 87.4, 53.8, 22.1 ppm. **IR** (Film): v 2198 (s), 1738 (s), 1671 (s), 1260 (s), 1082 (vs), 820 (m), 733 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 202 (10), 143 (100), 115 (4), 89 (4). **HRMS** (EI, m/z): berechnet für C₁₂H₁₀O₃: 202.0630, gefunden: 202.0633.

Methyl-2-oxo-4-(o-tolyl)but-3-inoat 220

Gemäß **AAV-15** wurde der Ketoester **220** ausgehend von Alkin **335** (1.057 g, 9.1 mmol, 1 Äq.) und Methyloxalylchlorid **171** (1.68 mL, 18.2 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als orangefarbener Feststoff (1.027 g, 5.1 mmol, 56 %) erhalten.

R_f-Wert: 0.47 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.62 (d, J = 7.7 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 7.7 Hz, 1H), 7.22 (t, J = 7.6 Hz, 1H), 3.96 (s, 3H), 2.55 (s, 3H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 169.1, 159.8, 143.9, 134.5, 132.2, 130.2, 126.2, 119.0, 97.8, 91.1, 53.8, 20.6. **IR** (Film): v 2193 (s), 1743 (s), 1674 (vs), 1247 (m), 1075 (vs), 762 (m) cm⁻¹. **MS** (GC): m/z (%) 202 (5), 143 (100), 115 (44). **HRMS** (EI, m/z): berechnet für C₁₂H₁₀O₃: 202.0630, gefunden: 202.0631.

Ethyl-2-oxo-4-phenylbut-3-inoat 221

Gemäß **AAV-14** wurde der Ketoester **221** ausgehend von Phenylacetylen **170** (1.65 mL, 15 mmol, 1 Äq.) und Ethyloxalylchlorid (3.3 mL, 30 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als gelborangefarbenes Öl (1.907 g, 9.4 mmol, 63 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[171]

R_f-**Wert**: 0.47 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-**NMR** (300 MHz, CDCl₃): δ 7.70 – 7.64 (m, 2H), 7.56 – 7.49 (m, 1H), 7.46 – 7.39 (m, 2H), 4.41 (q, *J* = 7.2 Hz, 2H), 1.43 (t, *J* = 7.2 Hz, 3H) ppm. ¹³**C**-**NMR** (75 MHz, CDCl₃): δ 169.8, 159.4, 134.0, 132.0, 128.9, 119.3, 98.2, 87.3, 63.5, 14.1 ppm. **IR** (Film): *v* 2985 (w), 2199 (s), 1738 (m), 1674 (s), 1241 (m), 1077 (vs), 760 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 202 (1), 158 (4), 129 (100), 102 (4), 75 (7), 51 (3). **HRMS** (ESI, m/z): berechnet für C₁₂H₁₀O₃Na⁺: 225.0522, gefunden: 225.0517.

Isopropyl-2-oxo-4-phenylbut-3-inoat 222

Gemäß **AAV-15** wurde der Ketoester **222** ausgehend von Phenylacetylen **170** (1.10 mL, 10mmol, 1 Äq.) und *i*-Propyloxalylchlorid **328** (3.0112 g, 20 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als gelborangefarbenes Öl (1.527 g, 7.1 mmol, 71 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[82]

R_f-Wert: 0.55 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.70 – 7.64 (m, 2H), 7.55 – 7.50 (m, 1H), 7.45 – 7.40 (m, 2H), 4.41 (sept, *J* = 6.3 Hz, 1H), 1.41 (s, 3H), 1.40 (s,

3H) ppm. ¹³**C-NMR** (101 MHz, CDCl₃): δ 170.2, 159.0, 133.9, 131.9, 128.9, 119.4, 98.0, 87.4, 71.8, 21.7 ppm. **IR** (Film): *v* 2985 (w), 2199 (s), 1736 (m), 1676 (s), 1252 (m), 1074 (vs), 759 (m) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₁₃H₁₂O₃Na⁺: 239.0679, gefunden: 239.0674.

Benzyl-2-oxo-4-phenylbut-3-inoat 223

Gemäß **AAV-15** wurde der Ketoester **223** ausgehend von Phenylacetylen **170** (1.10 mL, 10 mmol, 1 Äq.) und Benzyloxalylchlorid **329** (3.972 g, 20 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als gelborangefarbener Feststoff (1.724 g, 6.5 mmol, 65 %) erhalten.

R_f-**Wert**: 0.34 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.64 (d, J = 7.3 Hz, 2H), 7.56 – 7.49 (m, 1H), 7.48 – 7.33 (m, 7H), 5.37 (s, 2H). ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 169.4, 159.1, 134.5, 134.0, 132.0, 129.0, 128.94, 128.90, 128.8, 119.2, 98.4, 87.4, 68.8 ppm. **IR** (Film): v 2195 (vs), 1741 (m), 1676 (s), 1234 (m), 1073 (vs), 760 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₇H₁₂O₃Na⁺: 287.0679, gefunden: 287.0670.

(E)-But-2-en-1-yl 2-oxo-4-phenylbut-3-inoat 224

Gemäß **AAV-14** wurde der Ketoester **224** ausgehend von Phenylacetylen **170** (1.10 mL, 10 mmol, 1 Äq.) und Crotyloxalylchlorid **330** (3.251 g, 20 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als gelbes Öl (1.221 g, 5.35 mmol, 53 %) erhalten.

R_f-Wert: 0.50 (Petrolether / Essigsäureethylester; 10:1). ¹H-NMR (300 MHz, CDCl₃): δ 7.70 – 7.64 (m, 2H), 7.57 – 7.48 (m, 1H), 7.47 – 7.38 (m, 2H), 6.02 – 5.86 (m, 1H), 5.76 – 5.62 (m, 1H), 4.76 (dd, *J* = 6.7, 1.9 Hz, 2H), 1.76 (dd, *J* = 6.4, 1.4 Hz, 3H) ppm. ¹³C-NMR (75 MHz, CDCl₃): δ 169.7, 159.2, 134.0, 133.9, 132.0, 128.9, 123.7, 119.3, 98.2, 87.3, 67.9, 18.0 ppm. IR (Film): *v* 2943 (w), 2197 (vs), 1739 (s), 1675 (vs), 1239 (m), 1072 (vs), 760 (m) cm⁻¹. HRMS (EI, *m/z*): berechnet für C₁₄H₁₂O₃: 228.0786, gefunden: 228.0791.

Allyl 2-oxo-4-phenylbut-3-inoat 225

Gemäß **AAV-15** wurde der Ketoester **225** ausgehend von Phenylacetylen **170** (1.10 mL, 10 mmol, 1 Äq.) und Allyloxalylchlorid **331** (2.971 g, 20 mmol, 2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als gelbes Öl (1.364 g, 6.4 mmol, 64 %) erhalten.

R_f-Wert: 0.53 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 7.3 Hz, 2H), 7.56 – 7.50 (m, 1H), 7.46 – 7.39 (m, 2H), 6.07 – 5.95 (m, 1H), 5.47 (d, J = 17.2 Hz, 1H), 5.36 (d, J = 10.4 Hz, 1H), 4.83 (d, 5.9 Hz, 2H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 169.2, 158.9, 133.8, 131.9, 130.5, 128.8, 120.1, 119.1, 98.2, 87.2, 67.5 ppm. **IR** (Film): v 2198 (vs), 1743 (s), 1676 (vs), 1235 (m), 1076 (vs), 760 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₃H₁₀O₃Na⁺: 237.0522, gefunden: 237.0512.

Methyl-5-(benzyloxy)-5-methyl-2-oxohex-3-inoat 226

Gemäß AAV-14 wurde der Ketoester 226 ausgehend von Alkin 336 (871 mg, 5 mmol, 1 Åq.) und Methyloxalylchlorid (0.92 mL, 10 mmol, 2 Äq.) Aufreinigung 171 nach mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 6:1) als gelbe Flüssigkeit (395 mg, 1.52 mmol, 30 %) erhalten.

R_f-**Wert**: 0.41 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-**NMR** (500 MHz, CDCl₃): δ 7.41 – 7.26 (m, 5H), 4.68 (s, 2H), 3.91 (s, 3H), 1.64 (s, 6H) ppm. ¹³**C**-**NMR** (126 MHz, CDCl₃): δ 169.0, 159.3, 138.2, 128.6, 128.0, 127.9, 101.5, 82.3, 70.9, 67.5, 53.9, 28.1 ppm. **IR** (Film): *v* 2988 (w), 2207 (m), 1745 (s), 1688 (vs), 1232 (m), 1117 (vs), 738 (m) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₁₅H₁₆O₄Na⁺: 283.0941, gefunden: 283.0930.

12.2.4 Darstellung verschiedener Bromazid

Allgemeine Arbeitsvorschrift 21 (AAV-21):

Eine Lösung des entsprechenden Kestoesters (1 mmol, 1 Äq.) in MeCN (0.2 M) wurde mit TMSN₃ (1.1 Äq.) sowie NBS (1.1 Äq.) versetzt und für 48 Stunden unter Lichtausschluss bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde mit einer 10 %-igen Na₂S₂O₃-Lösung versetzt und mit Essigsäureethylester (3 x 15 mL) extrahiert. Die vereinten organischen Phasen wurden mit demin. H₂O (30 mL) sowie einer gesättigten NaCl-Lösung (30 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels Säulenchromatographie an Kieselgel aufgereingt.

2-Azid-4-brom-2-methoxy-5-phenylfuran-3(2H)-on 227

Gemäß AAV-21 wurde das Bromazid 227 ausgehend von Ketoester 172 (188 mg, 1 mmol, 1 Äq.)nachAufreinigungmittelsSäulenchromatographieanKieselgel(Petrolether / Essigsäureethylester; 6:1) als gelbes Öl (243 mg, 0.78 mmol, 78 %) erhalten.

R_f-Wert: 0.54 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 8.29 – 8.23 (m, 2H), 7.67 (t, J = 7.5 Hz, 1H), 7.56 (t, J = 7.7 Hz, 2H), 3.64 (s, 3H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 188.6, 176.9, 134.2, 129.08, 129.06, 127.5, 105.1, 93.4, 53.1 ppm. **IR** (Film): v 2949 (w), 2126 (vs), 1733 (s), 1562 (s), 1227 (m), 908 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 311 (5), 309 (5), 226 (9), 224 (9), 129 (19), 105 (100). **HRMS** (EI, m/z): berechnet für C₁₁H₈BrN₃O₃: 308.9749, gefunden: 308.9754.

2-Azid-4-brom-5-(4-bromphenyl)-2-methoxyfuran-3(2H)-on 228

Gemäß AAV-21 wurde das Bromazid 228 ausgehend von Ketoester 182 (267 mg, 1 mmol, 1 Äq.)nachAufreinigungmittelsSäulenchromatographieanKieselgel(Petrolether / Essigsäureethylester; 6:1) als gelbes Öl (248 mg, 0.64 mmol, 64 %) erhalten.

R_f-Wert: 0.61 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-NMR (500 MHz, CDCl₃): δ 8.13 (d, J = 8.6 Hz, 2H), 7.70 (d, J = 8.7 Hz, 2H), 3.64 (s, 3H) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 188.4, 175.7, 132.5, 130.3, 129.5, 126.3, 105.1, 93.7, 53.2 ppm. **IR** (Film): v 2948 (w), 2126 (vs), 1735 (s), 1589 (s), 1227 (m), 1009 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 391 (3), 389 (5), 387 (3), 306 (7), 304 (14), 302 (7), 185 (97), 183 (100). **HRMS** (EI, m/z): berechnet für C₁₁H₇Br₂N₃O₃: 386.8854, gefunden: 386.8849.

Methyl-4-(5-azid-3-brom-5-methoxy-4-oxo-4,5-dihydrofuran-2-yl)benzoat 229

Gemäß **AAV-21** wurde das Bromazid **229** ausgehend von Ketoester **183** (345 mg, 1.4 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 4:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 6:1) als hellgelbes Öl (114 mg, 0.31 mmol, 22 %) erhalten.

R_f-Wert: 0.56 (Petrolether / Essigsäureethylester; 4:1). ¹**H**-NMR (500 MHz, CDCl₃): δ 8.31 (d, J = 8.6 Hz, 2H), 8.20 (d, J = 8.6 Hz, 2H), 3.98 (s, 3H), 3.66 (s, 3H) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 188.6, 175.7, 165.9, 134.7, 131.2, 130.0, 128.9, 105.0, 94.9, 53.2, 52.8 ppm. **IR** (Film): v 2953 (w), 2125 (s), 1724 (vs), 1582 (m), 1279 (s), 1106 (s) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 369 (2), 367 (2), 240 (5), 238 (5), 163 (100). **HRMS** (EI, m/z): berechnet für C₁₃H₁₀BrN₃O₅: 366.9804, gefunden: 366.9802.

2-Azid-4-brom-2-methoxy-5-(p-tolyl)furan-3(2H)-on 230

Gemäß **AAV-21** wurde das Bromazid **230** ausgehend von Ketoester **219** (607 mg, 3 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als gelb-orangefarbenes Öl (700 mg, 2.2 mmol, 72 %) erhalten.

R_f-**Wert**: 0.41 (Petrolether/ Essigsäureethylester; 10:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 8.17 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 3.63 (s, 3H), 2.47 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 188.4, 177.0, 145.6, 129.8, 129.1, 124.7, 105.1, 92.6, 53.1, 22.1 ppm. **IR** (Film): v 2123 (vs), 1723 (s), 1579 (s), 1557 (s), 1503 (m), 1226 (m), 970 (m), 824 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₂H₁₀BrN₃O₃Na⁺: 345.9798, gefunden: 345.9804.

Gemäß **AAV-21** wurde das Bromazid **231** ausgehend von Ketoester **186** (481 mg, 1.8 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 4:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 40:1) als hellgelbes Öl (33.1 mg, 0.09 mmol, 5 %) erhalten.

R_f-Wert: 0.60 (Petrolether / Essigsäureethylester; 4:1). ¹**H**-NMR (500 MHz, CDCl₃): δ 7.74 (dd, J = 8.1, 0.9 Hz, 1H), 7.54 (dd, J = 7.6, 1.8 Hz, 1H), 7.49 (dt, J = 7.5, 1.1 Hz, 1H), 7.47 – 7.43 (m, 1H), 3.68 (s, 3H) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 188.3, 180.8, 134.1, 133.5, 131.1, 129.4, 127.6, 121.5, 106.1, 97.1, 53.5 ppm. **IR** (Film): v 2949 (w), 2124 (vs), 1739 (s), 1606 (m), 1224 (s), 962 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₁H₇Br₂N₃O₃Na⁺: 409.8746, gefunden: 409.8745.

2-Azid-4-brom-2-methoxy-5-(o-tolyl)furan-3(2H)-on 232

Gemäß **AAV-21** wurde das Bromazid **232** ausgehend von Ketoester **220** (809 mg, 4 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als gelbes Öl (1.061 g, 3.3 mmol, 82 %) erhalten.

R_f-Wert: 0.41 (Petrolether/ Essigsäureethylester; 10:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 7.7 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.37 – 7.31 (m, 2H), 3.66 (s, 3H), 2.46 (s, 3H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 188.3, 182.6, 137.8, 132.6, 131.6, 129.9, 127.2, 126.0, 105.7, 95.8, 53.2, 20.5 ppm. **IR** (Film): v 2122 (vs), 1736 (s), 1582 (s), 1222 (s), 1123 (s), 962 (vs), 908 (vs), 772 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₂H₁₀BrN₃O₃Na⁺: 345.9798, gefunden: 345.9796.

2-Azid-4-brom-2-ethoxy-5-phenylfuran-3(2H)-on 233

Gemäß **AAV-21** wurde das Bromazid **233** ausgehend von Ketoester **221** (404 mg, 2 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) als farbloser Feststoff (483 mg, 1.5 mmol, 74 %) erhalten.

R_f-**Wert**: 0.67 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-**NMR** (500 MHz, CDCl₃): δ 8.25 (d, J = 7.7 Hz, 2H), 7.66 (t, J = 7.5 Hz, 1H), 7.56 (t, J = 7.9 Hz, 2H), 4.00 – 3.86 (m, 2H), 1.34 (t, J = 7.2 Hz, 3H) ppm. ¹³**C**-**NMR** (126 MHz, CDCl₃): δ 188.8, 176.8, 134.2, 129.1, 129.0, 127.5, 104.9, 93.3, 62.3, 15.1 ppm. **IR** (Film): v 2984 (w), 2125 (vs), 1733 (vs), 1561 (s), 1227 (m), 911 (m), 687 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 325 (15), 232 (16), 226 (7), 224 (8), 129 (15), 105 (100), 77 (19). **HRMS** (EI, m/z): berechnet für C₁₂H₁₀BrN₃O₃: 322.9906, gefunden: 322.9906.

2-Azid-4-brom-2-isopropoxy-5-phenylfuran-3(2H)-on 234

Gemäß **AAV-21** wurde das Bromazid **234** ausgehend von Ketoester **222** (649 mg, 3 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 10:1) als hellgelbe Flüssigkeit (270 mg, 0.8 mmol, 27 %) erhalten.

R_f-Wert: 0.40 (Petrolether / Essigsäureethylester; 20:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 8.24 (d, J = 7.5 Hz, 2H), 7.65 (t, J = 7.7 Hz, 1H), 7.53 – 7.53 (m, 2H), 4.41 (sept, J = 6.2 Hz, 1H), 1.36 (d, J = 6.2 Hz, 3H), 1.31 (d, J = 6.2 Hz, 3H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 188.9, 176.5, 134.1, 129.04,

129.01, 127.7, 105.1, 93.3, 71.4, 23.8, 23.7 ppm. **IR** (Film): *v* 2981 (w), 2123 (vs), 1731 (vs), 1561 (s), 1228 (s), 907 (m), 687 (m) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₁₃H₁₂BrN₃O₃Na⁺: 359.9954, gefunden: 359.9944.

2-Azid-5-(2-(benzyloxy)propan-2-yl)-4-brom-2-methoxyfuran-3(2H)-on 238

Gemäß **AAV-21** wurde das Bromazid **238** ausgehend von Ketoester **226** (390 mg, 1.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 10:1) als farbloses Öl (136 mg, 0.356 mmol, 24 %) erhalten.

R_f-Wert: 0.59 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-NMR (700 MHz, CDCl₃): δ 7.38 (d, J = 7.6 Hz, 2H), 7.35 (t, J = 7.5 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 4.45 (s, 2H), 3.59 (s, 3H), 1.69 (d, J = 7.3 Hz, 6H) ppm. ¹³**C**-NMR (176 MHz, CDCl₃): δ 188.9, 187.5, 137.7, 128.6, 127.94, 127.87, 105.2, 94.3, 67.0, 53.1, 24.93, 24.85 ppm. **IR** (Film): v 2990 (w), 2127 (vs), 1739 (s), 1573 (m), 1166 (s), 956 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 383 (10), 381 (10), 354 (21), 542 (21), 341 (98), 339 (100), 302 (70). **HRMS** (EI, m/z): berechnet für C₁₅H₁₆BrN₃O₄: 381.0324, gefunden: 381.0325.

12.2.5 Substratspektrum der TBA[Fe]-katalysierten Aminierung von C-C-Bindungen ausgehend von Bromaziden

5-Brom-3-methoxy-6-phenyl-2*H*-1,4-oxazin-2-on 239 & 5-Chlor-3-methoxy-6-phenyl-2*H*-1,4oxazin-2-on 178

Gemäß **AAV-19** wurde ausgehend von Bromazid **227** (155.1 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) ein Gemisch (Verhältnis **Br**:**Cl**; 7.4:1) aus Produkt **239** und Produkt **178** als hellgelber Feststoff (77.3 mg, 0.28 mmol, 56 %) erhalten.

R_f-Wert: 0.48 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.83 – 7.80 (m, 0.3H, Cl), 7.80 – 7.74 (m, 2H, **B**r), 7.48 – 7.44 (m, 3.4 H, **B**r+Cl), 4.08 (s, 0.4H, Cl), 4.07 (s, 3H, **B**r) ppm.¹³**C**-NMR (101 MHz, CDCl₃): δ 150.1, 149.9, 144.2, 130.5, 130.2, 129.0, 128.5, 110.1, 56.1 ppm. **IR** (Film): *v* 2948 (w), 1758 (vs), 1594 (s), 1349 (s), 1135 (m), 1085 (m), 946 (m) cm⁻¹. **MS** (GC): *m/z* (%) 283 (18), 281 (18), 253 (12), 238 (5), 105 (100), 77 (34), 51 (9). **HRMS** (EI *m/z*): berechnet für C₁₁H₈BrNO₃ 280.9688, gefunden: 280.9693; **HRMS** (ESI, *m/z*): berechnet für C₁₁H₈ClNO₃ 237.0193, gefunden: 237.0190.

5-Brom-6-(4-bromphenyl)-3-methoxy-2*H*-1,4-oxazin-2-on 240 & 6-(4-Bromphenyl)-5-chlor-3methoxy-2*H*-1,4-oxazin-2-on 241

Gemäß **AAV-19** wurde ausgehend von Bromazid **228** (195mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; $10:1 \rightarrow 2:1$) ein Gemisch (Verhältnis **Br:Cl**; 12.1:1) aus Produkt **240** und Produkt **241** als gelber Feststoff (82.3 mg, 0.23 mmol, 46 %) erhalten.

R_f-Wert: 0.37 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-NMR (500 MHz, CDCl₃): δ 7.70 (d, J = 8.6 Hz, 0.2H, **Cl**), 7.66 (d, J = 8.6 Hz, 2H, **B**r), 7.63 – 7.56 (m, 2.3H, **B**r+**Cl**), 4.08 (s, 0.3H, **Cl**), 4.07 (s, 3H, **B**r) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 150.0, 149.8, 143.1, 131.8, 130.5, 129.0, 125.1, 110.4, 56.3 ppm. **IR** (Film): v 2947 (w), 1760 (vs), 1604 (s), 1351 (s), 1083 (m), 945 (m), cm⁻¹. **HRMS** (EI, m/z): berechnet für C₁₁H₇Br₂NO₃: 358.8793, gefunden: 358.8798; HRMS von **241** wurde durch **240** überlagert.

Methyl-4-(5-brom-3-methoxy-2-oxo-2*H*-1,4-oxazin-6-yl)benzoat 242 & Methyl-4-(5-chlor-3methoxy-2-oxo-2*H*-1,4-oxazin-6-yl)benzoat 243

Gemäß **AAV-19** wurde ausgehend von Bromazid **229** (184 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) ein Gemisch (Verhältnis **Br:Cl**; 8.7:1) aus Produkt **242** und Produkt **243** als farbloser Feststoff (45.2 mg, 0.135 mmol, 27 %) erhalten.

R_f-Wert: 0.33 (Petrolether / Essigsäureethylester; 10:1). ¹H-NMR (500 MHz, CDCl₃): δ 8.13 – 8.10 (m, 2.2H, **Br+Cl**), 7.91 (d, J = 8.6 Hz, 0.2H, **Cl**), 7.88 (d, J = 8.4 Hz, 2H, **Br**), 4.10 (s, 0.3H, **Cl**), 4.08 (s, 3H, **Br**), 3.95 (s, 3.3H, **Br+Cl**) ppm. ¹³C-NMR (126 MHz, CDCl₃): δ 166.3, 150.2, 149.6, 143.1, 134.2, 131.7, 129.8, 129.7, 129.0, 128.4, 111.1, 56.3, 52.6 ppm. **IR** (Film): v 2952 (w), 1759 (vs), 1597 (s), 1352 (s), 1279 (vs), 1111 (s), 946 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₃H₁₀BrNO₅Na⁺: 361.9635, gefunden: 361.9632; **HRMS** (ESI, m/z): berechnet für C₁₃H₁₀ClNO₅Na⁺: 318.0140, gefunden: 318.0144.

5-Brom-3-methoxy-6-(*p*-tolyl)-2*H*-1,4-oxazin-2-on 244 & 5-Chlor-3-methoxy-6-(*p*-tolyl)-2*H*-1,4-oxazin-2-on 245

Gemäß **AAV-19** wurde ausgehend von Bromazid **230** (162 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als Gemisch (Verhältnis **Br:Cl**; 3.1:1) aus Produkt **244** und Produkt **245** als gelborangefarbenes Öl (40.9 mg, 0.143 mmol, 29 %) erhalten.

R_f-Wert: 0.36 (Petrolether / Essigsäureethylester; 10:1). ¹H-NMR (400 MHz, CD₂Cl₂): δ 7.73 (d, J = 8.3 Hz, 0.6H, **Cl**), 7.69 (d, J = 8.2 Hz, 2H, **B**r), 7.30 – 7.27 (m, 2.6H, **Br+Cl**), 4.09 (s, 1H, **Cl**), 4.08 (s, 3H, **B**r), 2.43 (s, 4H,**Br+Cl**) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 150.2, 150.1, 149.8, 149.6, 144.4, 142.9, 140.9, 140.8, 129.3, 129.2, 128.9, 128.4, 127.3, 126.5, 121.2, 109.7, 56.1, 21.6 ppm. **IR** (Film): v 2947 (w), 1752 (vs), 1597 (s), 1573 (m), 1344 (s), 1131 (s), 1080 (s), 946 (s), 818 (s) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₂H₁₀BrNO₃Na⁺: 317.9736, gefunden: 317.9733; **HRMS** (ESI, m/z): berechnet für C₁₂H₁₀ClNO₃Na⁺: 274.0241, gefunden: 274.0247.

5-Brom-3-methoxy-6-(*o*-tolyl)-2*H*-1,4-oxazin-2-on 246 & 5-Chlor-3-methoxy-6-(*o*-tolyl)-2*H*-1,4oxazin-2-on 247

Gemäß **AAV-19** wurde ausgehend von Bromazid **232** (162 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) ein Gemisch (Verhältnis **Br:Cl**; 2:1) aus Produkt **246** und Produkt **247** als gelborangefarbenes Öl (86.7 mg, 0.31 mmol, 62 %) erhalten.

R_f-Wert: 0.35 (Petrolether/ Essigsäureethylester; 10:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.44 – 7.35 (m, 3H, **B**r+Cl), 7.35 – 7.26 (m, 3H, **B**r+Cl), 4.06 (s, 1.5H, Cl), 4.05 (s, 3H, **B**r), 2.34 (s, 1.5H, Cl), 2.33 (s, 3H, **B**r) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 150.6, 150.4, 150.20, 150.17, 144.6, 143.1, 138.0, 137.8, 130.82, 130.75, 130.7, 130.5, 130.4, 129.9, 128.9, 126.0, 123.2, 112.0, 56.1, 19.8, 19.7 ppm. **IR** (Film): *v* 2946 (w), 1753 (vs), 1610 (s), 1596 (s), 1574 (s), 1343 (vs), 1129 (vs), 1119 (vs), 1080 (s), 946 (vs), 767 (vs), 728 (vs) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₁₂H₁₀BrNO₃Na⁺: 317.9736, gefunden: 317.9745; **HRMS** (ESI, *m/z*): berechnet für C₁₂H₁₀ClNO₃Na⁺: 274.0241, gefunden: 274.0245.

5-Brom-3-ethoxy-6-phenyl-2*H*-1,4-oxazin-2-on 248 & 5-Chlor-3-ethoxy-6-phenyl-2*H*-1,4oxazin-2-on 249

Gemäß **AAV-19** wurde ausgehend von Bromazid **233** (162 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1) ein Gemisch (Verhältnis **Br**:**Cl**; 2.9:1) aus Produkt **248** und Produkt **249** als gelber Feststoff (95.4 mg, 0.335 mmol, 67 %) erhalten.

R_f-Wert: 0.59 (Petrolether/ Essigsäureethylester; 6:1). ¹H-NMR (700 MHz, CDCl₃): δ 7.82 – 7.80 (m, 0.7H, **Cl**), 7.79 – 7.76 (m, 2H, **Br**), 7.47 – 7.44 (m, 4.1H, **Br+Cl**), 4.50 – 4.46 (m, 4.7H, **Br+Cl**), 1.50 – 1.47 (m, 4.1H, **Br+Cl**) ppm. ¹³C-NMR (176 MHz, CDCl₃): δ 150.2, 150.1, 149.6, 149.4, 143.8, 142.4, 130.5, 130.4, 130.2, 129.03, 129.0, 128.6, 128.49, 128.48, 121.7, 110.2, 65.6, 62.3, 15.1, 14.0 ppm. **IR** (Film): *v* 2984 (w), 1760 (vs), 1593 (m), 1338 (s), 1129 (s) cm⁻¹. **HRMS** (EI, *m/z*): berechnet für C₁₂H₁₀BrNO₃: 294.9844, gefunden: 294.9853; **HRMS** (ESI, *m/z*): berechnet für C₁₂H₁₀ClNO₃Na⁺: 274.0241, gefunden: 274.0237.

5-Brom-3-isopropoxy-6-phenyl-2*H*-1,4-oxazin-2-on 250 & 5-Chlor-3-isopropoxy-6-phenyl-2*H*-1,4-oxazin-2-on 251

Gemäß **AAV-19** wurden ausgehend von Brom-Azid **234** (169.1 mg, 0.5 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 15:1) als Gemisch (Verhältnis **Br:Cl**; 2.5:1) aus Produkt **250** und Produkt **251** als gelber Feststoff (107 mg, 0.36 mmol, 72 %) erhalten. **R**_f-Wert: 0.42 (Petrolether / Essigsäureethylester; 15:1). ¹H-NMR (400 MHz, CDCl₃): δ 7.83 – 7.79 (m, 0.8H, **Cl**), 7.79 – 7.74 (m, 2H, **Br**), 7.47 – 7.42 (m, 4.2H, **Br**+**Cl**), 5.38 – 5.29 (m, 1.4H, **Br**+**Cl**), 1.43 (s, 1.2H, **Cl**), 1.46 (s, 3H, **Br**), 1.45 (s, 1.2H, **Cl**), 1.44 (s, 3H, **Br**) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 150.4, 150.3, 149.0, 148.9, 143.4, 142.0, 130.3, 130.2, 129.6, 129.0, 128.5, 128.5, 121.7, 110.2, 73.3, 21.5 ppm. **IR** (Film): *v* 2983 (w), 1754 (vs), 1592 (s), 1561 (m), 1372 (s), 1326 (s), 1129 (s), 1083 (s), 965 (m), 695 (m) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₁₃H₁₂BrNO₃Na⁺: 331.9893, gefunden: 331.9888; **HRMS** (ESI, *m/z*): berechnet für C₁₃H₁₂ClNO₃Na⁺: 288.0398.

5-Brom-2-methoxy-6-phenyl-4H-1,3-oxazin-4-on 252

Ein ausgeheiztes 10 mL Mikrowellengefäß mit Rührfisch wurde unter N₂-Atmosphäre mit Bromazid **227** (155.1 mg, 0.5 mmol, 1 Äq.) und 1,2-Dichlorethan (0.5 M) befüllt, das Mikrowellengefäß verschlossen und das Reaktionsgemisch bei 110 °C für 30 Minuten unter Mikrowelleneinstrahlung (200 W) gerührt. Das Reaktionsgemisch wurde auf Raumtemperatur gekühlt und das Produkt **252** nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 6:1 \rightarrow 2:1) als farbloser Feststoff (19.1 mg, 0.07 mmol, 14 %) erhalten.

R_f-Wert: 0.30 (Petrolether / Essigsäureethylester; 2:1). ¹**H**-NMR (300 MHz, CDCl₃): δ 7.88 – 7.79 (m, 2H), 7.57 – 7.48 (m, 3H), 4.12 (s, 3H) ppm. ¹³**C**-NMR (75 MHz, CDCl₃): δ 165.1, 160.8, 159.2, 132.0, 129.7, 129.2, 128.7, 105.7, 58.0 ppm. **IR** (Film): *v* 2957 (w), 1696 (m), 1627 (s), 1577 (s), 1327 (vs), 967 (s), 769 (s) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₁₁H₉BrNO₃⁺: 281.9760, gefunden: 281.9763.

12.2.6 Unterdrückung der Bildung von Chloroxazin-2-on

Die Unterdrückung der Bildung von Chloroxazin-2-on wurde nach der allgemeinen Arbeitsvorschrift **AAV-22** erhalten.

Allgemeine Arbeitsvorschrift 22 (AAV-22):

Ein 10 mL Mikrowellengefäß, befüllt mit Molekularsieb (4 Å, 25-30 mg), wurde unter Vakuum ausgeheizt und mit N₂-Atmosphäre befüllt. Es wurde TBA[Fe] **26** (5 mol-%) sowie 1,2-Dichlorethan (0.5 M) zugegeben und anschließend mit einer HBr-Lösung (48 %-ige Lösung in H₂O, 20 mol-%) versetzt. Das Reaktionsgemisch wurde für eine Minute gerührt, das entsprechende Azid zugegeben, das Mikrowellengefäß verschlossen und das Reaktionsgemisch bei 110 °C für 30 Minuten unter Mikrowelleneinstrahlung (200 W) gerührt. Das Reaktionsgemisch wurde auf Raumtemperatur gekühlt und das Rohprodukt mittels Säulenchromatographie an Kieselgel aufgereinigt.

2-Brom-5-(brommethyl)-6-methoxy-3-phenylpyridin 253

Nach einer abgewandelten Methode nach Lit.^[172] wurde in einem 4 mL Schlenkrohr mit Teflondeckel unter N₂-Atmosphäre eine Lösung von Oxazin-2-on **239** (31 mg, 0.1 mmol, 1 Äq.) in Toluol (0.4 mL) mit Propargylbromid (80%-ige Lösung in Toluol, 0.11 mL, 1 mmol, 10 Äq.) versetzt, das Gefäß fest verschlossen und das Reaktionsgemisch bei 90 °C für 48 Stunden gerührt. Anschließend wurde das Reaktionsgemisch auf Raumtemperatur abgekühlt und das Produkt **253** nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 20:1) als hellgelbes Öl (17.1 mg, 0.048 mmol, 48 %) erhalten.

R_f-Wert: 0.69 (Petrolether / Essigsäureethylester; 10:1). ¹H-NMR (400 MHz, CDCl₃): δ 7.55 (s, 1H),
7.46 – 7.38 (m, 5H), 4.46 (s, 2H), 4.07 (s, 3H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 159.8, 142.0,
138.6, 138.5, 132.6, 129.6, 128.4, 128.1, 119.5, 54.8, 26.7 ppm. IR (Film): v 2950 (w), 1595 (m),

1551 (m), 1466 (vs), 1403 (vs), 1370 (s), 1303 (vs), 1217 (m), 1096 (m), 927 (s), 768 (m), 699 (s) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₁₃H₁₂Br₂NO⁺: 355.9280, gefunden: 355.9286.

13 TBA[Fe]-katalysierte Dimroth-Cyclokondensation-C(sp³)-H-Aminierungssequenz

13.1 Vergleich der TBA[Fe]-katalysierten Dimroth-Cyclokondensation mit der 1,3-dipolaren Cycloaddition

Die Reaktionen wurden nach den allgemeinen Arbeitsvorschriften **AAV-23** und **AAV-24** durchgeführt.

Allgemeine Arbeitsvorschrift 23 unter Verwendung von Cp*RuCl(cod) als Katalysator (AAV-23): [101]

Ein ausgeheiztes 10 mL Schlenkrohr mit Rührfisch wurde unter N₂-Atmosphäre mit Cp*RuCl(cod) (3 mg, 8 µmol, 2 mol-%) versetzt. Das Schlenkrohr wurde fest verschlossen und die N₂-Atmosphäre (3 x) ausgetauscht. Trockenes Toluol (4 mL, zusätzlich für eine Stunde mit N₂-Strom entgast), gefolgt vom entsprechenden Alkin (0.4 mmol) und Phenylazid **9** (44 µL, 0.4 mmol, 1 Äq.) wurden zugegeben, das Schlenkrohr verschlossen und das Reaktionsgemisch bei Raumtemperatur für 30 Minuten gerührt. Die Reaktionslösung wurde mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 1:1) vom Katalysator befreit und das Rohprodukt mittels ¹H-NMR mit Mesitylen als internem Standard analysiert.

Allgemeine Arbeitsvorschrift 24 unter Verwendung von Cp*RuCl(PPh₃)₂als Katalysator (AAV-24): ^[101]

Ein ausgeheiztes 10 mL Schlenkrohr mit Rührfisch wurde unter N₂-Atmosphäre mit Cp*RuCl(PPh₃)₂ (8 mg, 10 μmol, 2.5 mol-%) und 1,4-Dioxan (2.5 mL) befüllt. Zu dieser Lösung wurde eine Lösung des entsprechenden Alkins (0.4 mmol) und Phenylazid **9** (44 μL, 0.4 mmol, 1 Äq.) in 1,4-Dioxan (0.5 mL) zugegeben, das Schlenkrohr verschlossen und das Reaktionsgemisch bei 60 °C für 16 Stunden gerührt. Nach Abkühlen auf Raumtemperatur wurde die Reaktionslösung mittels Flash-Säulenchromatographie an Kieselgel (Essigsäureethylester) vom

Katalysator befreit und das Rohprodukt mittels ¹H-NMR mit Mesitylen als internem Standard analysiert.

13.2 Entwicklung der TBA[Fe]-katalysierten Dimroth-Cyclokondensation-C(sp³)-H-Aminierungssequenz

13.2.1 Darstellung verschiedener Azide

Allgemeine Arbeitsvorschrift 25 (AAV-25):^[38]

Eine Lösung des entsprechenden Anilins (10 mL, 1 Äq.) in MeCN (0.2 M) wurde auf 0 °C gekühlt und bei dieser Temperatur tropfenweise mit *tert*-Butylnitrit (4 Äq.) und Trimethylsilylazid (3 Äq.) versetzt. Das Reaktionsgemisch wurde auf Raumtemperatur erwärmt und für eine Stunde bei dieser Temperatur gerührt. Anschließend wurde demin. H₂O (25 mL) zugegeben und die wässrige Phase mit CH₂Cl₂ (2 x 50 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten NaCl-Lösung (50 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels Säulenchromatographie an Kieselgel aufgereingt.

1-Azid-2-(tert-butyl)benzol 258

Gemäß **AAV-25** wurde das Azid **258** ausgehend von 2-*tert*-Butylanilin **272** (1.492 mL, 10 mmol, 1 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 40:1) als gelbes Öl (1.697 g, 9.7 mmol, 97 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[38]

R_f-Wert: 0.81 (Petrolether / Essigsäureethylester; 40:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.36 (dd, J = 7.9, 1.3 Hz, 1H), 7.25 (t, J = 7.4 Hz, 1H), 7.16 (dd, J = 7.9, 1.2 Hz, 1H), 7.08 (t, J = 6.9 Hz, 1H), 1.40 (s, 9H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 141.2, 138.0, 127.39, 127.36, 124.8, 119.7, 35.2, 30.1
ppm. **IR** (Film): *v* 2960 (w), 2122 (vs), 1286 (m), 751 (m) cm⁻¹. **MS** (GC): *m/z* (%) 175 (5), 132 (100), 117 (58), 105 (14).

Phenylazid 9

Gemäß einer Methode nach Lit.^[148] wurde Anilin (1.83 mL g, 20 mmol, 1 Äq.) in demin. H₂O (40 mL) gelöst, auf 0 °C gekühlt und unter starkem Rühren konz. HCl (20 mL) zugeben. Das Reaktionsgemisch wurde bei 0 °C für 30 Minuten gerührt. Anschließend wurde eine kalte Lösung aus Nariumnitrit (2.07 g, 30 mmol, 1.5 Äq.) in demin. H₂O (10 mL) zugetropft und für weitere 20 Minuten bei 0 °C gerührt. Natriumazid (1.95 g, 30 mmol, 1.5 Äq.) wurde in demin. H₂O (20 mL) gelöst und zum Reaktionsgemisch zugetropft (Innentemperatur \leq 5 °C). Das Reaktionsgemisch wurde für 30 Minuten bei 0 °C und anschließend für eine Stunde bei Raumtemperatur gerührt. Es wurde mit einer gesättigten NaHCO₃-Lösung (60 mL) hydrolysiert und mit Diethylether (3 x 150 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **9** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (*n*-Pentan) als gelbe Flüssigkeit (2.09 g, 17.5 mmol, 88 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[148]

R_f-Wert: 0.87 (*n*-Pentan). ¹**H**-NMR (300 MHz, CDCl₃): δ 7.40 – 7.31 (m, 2H), 7.14 (t, *J* = 7.5 Hz, 1H), 7.06 – 7.00 (m, 2H) ppm. ¹³**C**-NMR (75 MHz, CDCl₃): δ 140.2, 129.9, 125.0, 119.2 ppm. **IR** (Film): *v* 2128 (m), 1594 (w), 1492 (m), 903 (s), 724 (vs) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 119 (43), 91 (100), 64 (48).

13.2.2 Optimierung der Reaktionsbedingungen

Die Optimierung wurde nach den allgemeinen Arbeitsvorschriften **AAV-26** und **AAV-27** durchgeführt.

Allgemeine Arbeitsvorschrift 26 (AAV-26):

Ein ausgeheiztes 10 mL Mikrowellengefäß mit einem Rührfisch wurde unter N₂-Atmosphäre mit TBA[Fe] **26** und Desoxybenzoin **264** (1 Äq.) befüllt und in MeCN (+ 1,2-Dichlorethan) gelöst. Es wurden *tert*-Butylphenylazid **258** (1 Äq.) und Phenylazid **9** (1.2 Äq.) zugegeben, das Mikrowellengefäß verschlossen und das Reaktionsgemisch bei der entsprechenden Temperatur unter Mikrowellenbedingungen (200 W) gerührt. Nach Abkühlen auf Raumtemperatur wurde die Reaktionslösung in Dichlormethan gelöst, mittels Flash-Säulenchromatographie an Kieselgel

(Essigsäureethylester) vom Katalysator befreit und das Rohprodukt mittels ¹H-NMR mit 1,3,5-Trimethoxybenzol als internem Standard analysiert.

Allgemeine Arbeitsvorschrift 27 (AAV-27):

Ein ausgeheiztes 10 mL Mikrowellengefäß mit einem Rührfisch wurde unter N₂-Atmosphäre mit TBA[Fe] **26** (2 mol-%) und Desoxybenzoin **264** (1 Äq.) befüllt und in MeCN (0.4 M) gelöst. Es wurde *tert*-Butylphenylazid **258** (1 Äq.) und Phenylazid **9** (1.2 Äq.) zugegeben, das Mikrowellengefäß verschlossen und das Reaktionsgemisch bei 80 °C für eine Stunde unter Mikrowellenbedingungen (200 W) gerührt. Das Reaktionsgemisch wurde auf Raumtemperatur abgekühlt, mit TBA[Fe] **26** und 1,2-Dichlorethan (20 mol-%) versetzt und bei 120 °C für eine weitere Stunde unter Mikrowellenbedingungen (200 W) gerührt. Nach Abkühlen auf Raumtemperatur wurde die Reaktionslösung in Dichlormethan gelöst, mittels Flash-Säulenchromatographie an Kieselgel (Essigsäureethylester) vom Katalysator befreit und das Rohprodukt mittels ¹H-NMR mit 1,3,5-Trimethoxybenzol als internem Standard analysiert.

3,3-Dimethylindolin 265

Die analytischen Daten stimmen mit der Literatur überein.^[38]

R_f-Wert: 0.34 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.08 – 7.02 (m, 2H), 6.78 (t, *J* = 7.4 Hz, 1H), 6.70 (d, *J* = 7.6 Hz, 1H), 3.33 (s, 2H), 2.84 (bs, 1H), 1.32 (s, 6H)

ppm.¹³**C-NMR** (101 MHz, CDCl₃): δ 149.4, 138.9, 127.5, 122.2, 119.6, 110.4, 61.5, 41.9, 27.7 ppm. **IR** (Film): *v* 3379 (w), 2958 (s), 1608 (s), 1487 (vs), 743 (vs) cm⁻¹. **MS** (ESI): *m/z* (%) 148 [M+H]⁺.

1,4,5-Triphenyl-1H-1,2,3-triazol 260

Ph Ph Ph **260**

Die analytischen Daten stimmen mit der Literatur überein.^[99g]

R_f-Wert: 0.29 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.63 – 7.58 (m, 2H), 7.44-7.28 (m, 11H), 7.21 (dd, *J* = 8.1, 1.4 Hz, 2H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 144.9, 136.7, 133.8, 130.9, 130.3, 129.5, 129.3, 129.2, 129.1, 128.6, 128.1, 127.9, 127.5, 125.3 ppm. **IR** (Film): *v* 3060 (w), 1594 (m), 1496 (m), 995 (m), 773 (s), 729 (s), 603 (s) cm⁻¹. **MS** (GC): *m/z* (%) 297 (3), 269 (76), 190 (10), 165 (100).

13.2.3 Darstellung geeigneter Diazide

Allgemeine Arbeitsvorschrift 28 (AAV-28):

Gemäß einer Methode nach Lit.^[173] wurde eine Lösung der entsprechenden Bromverbindung (2.7 mmol, 1 Äq.), Natriumazid (351 mg, 5.4 mmol, 2 Äq.), Kupfer(I)iodid (51 mg, 0.27 mmol, 0.1 Äq.), L-Prolin (93 mg, 0.81 mmol, 0.3 Äq.) und Natriumhydroxid (32 mg, 0.81 mmol, 0.3 Äq.) in EtOH/H₂O (7:3, 5.4 mL) in einem Hochdruckgefäß bei 95 °C für 31 Stunden unter Argon-Atmosphäre gerührt. Das Reaktionsgemisch wurde auf Raumtemperatur abgekühlt und mit Essigsäureethylester (20 mL) und demin. H₂O (20 mL) versetzt. Die organische Phase wurde abgetrennt und die wässrige Phase mit Essigsäureethylester (2 x 20 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten NaCl-Lösung (30 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels Säulenchromatographie an Kieselgel aufgereinigt.

2-Azid-6-(tert-butyl)anilin 273^[102]

Es wurden 2-*tert*-Butylanilin **272** (1.56 mL, 10 mmol, 1 Äq.), Kupfer(I)bromid (72 mg, 0.5 mmol, 0.05 Äq.), TMSN₃ (1.33 mL, 10 mmol, 1 Äq.) und TBHP (5.08 M in Benzol, 1.97 mL, 10 mmol, 1 Äq.) in MeCN (40 mL) gelöst und über Nacht bei 30 °C gerührt. Anschließend wurde Essigsäureethylester (100 mL) zugegeben und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **273** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 40:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 40:1) als rote Flüssigkeit (685 mg, 3.6 mmol, 36 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[102]

R_f-**Wert**: 0.42 (Petrolether / Essigsäureethylester; 40:1). ¹**H**-**NMR** (500 MHz, CDCl₃): δ 7.05 (dd, J = 7.7, 1.4 Hz, 1H), 6.96 (dd, J = 7.8, 1.1 Hz, 1H), 6.76 (t, J = 7.9 Hz, 1H), 4.08 (bs, 2H), 1.41 (s, 9H) ppm. ¹³**C**-**NMR** (126 MHz, CDCl₃): δ 136.5, 134.9, 126.3, 123.2, 118.3, 116.2, 34.7, 29.6 ppm. **IR** (Film): *v* 3351 (b), 2966 (m), 2113 (vs), 1614 (m), 1446 (m), 1294 (m), 1266 (m), 732 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 190 (64), 162 (29), 147 (100), 106 (33). **HRMS** (EI, m/z): berechnet für C₁₀H₁₄N₄: 190.1218, gefunden: 190.1221.

1,2-Diazid-3-(tert-butyl)benzol 266

Gemäß **AAV-25** wurde das Produkt **266** ausgehend von 2-Azid-6-(*tert*-butyl)anilin **273** (685 mg, 3.6 mmol, 1 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (*n*-Pentan) als rote Flüssigkeit (705 mg, 3.3 mmol, 92 %) erhalten.

R_f-Wert: 0.74 (*n*-Pentan). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.16 – 7.11 (m, 2H), 7.08 – 7.02 (m, 1H), 1.40 (s, 9H). ¹³**C**-NMR (101 MHz, CDCl₃): δ 144.8, 135.4, 128.7, 126.1, 123.4, 117.1, 35.7, 30.2 ppm. IR (Film): *v* 2963 (m), 2118 (vs), 1436 (s), 1302 (s), 783 (m) cm⁻¹. **MS** (EI, 70 eV): *m/z* (%) 216 (72), 145 (64), 118 (100), 91 (57). **HRMS** (EI, *m/z*): berechnet für C₁₀H₁₂N₆: 216.1123, gefunden: 216.1120.

13.2.3.2 Darstellung von Diazid 268

```
4-tert-ButyInitrobenzol 275<sup>[174]</sup>
```


Bei 0 °C wurde ein Gemisch aus konz. Salpetersäure (65 %-ig, 2.77 mL, 40 mmol, 1 Äq.) und konz. Schwefelsäure (98 %-ig, 4.35 mL, 80 mmol, 2 Äq.) über einen Zeitraum von 1.5 Stunden zu *tert*-Butylbenzol **274** (6.17 mL, 40 mmol, 1 Äq.) zugetropft. Das Reaktionsgemisch wurde auf Raumtemperatur erwärmt und für 2 Stunden bei dieser Temperatur gerührt. Anschließend wurde das Reaktionsgemisch auf 40 °C erwärmt und für eine weitere Stunde gerührt. Nach Abkühlen auf Raumtemperatur wurde das Reaktionsgemisch zu Eis (200 g) gegeben und mit Toluol (3 x 40 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer wässrigen 5 %-igen NaHCO₃-Lösung (2 x 40 mL) und demin. H₂O (100 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmitel am Rotationsverdampfer entfernt. Das Produkt **275** wurde nach fraktionierter Destillation als gelbe Flüssigkeit (4.28 g, 23.9 mmol, 60 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[174]

Sdp.: 138 °C (20 mbar). ¹H-NMR (400 MHz, CDCl₃): δ 8.15 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 8.8 Hz, 2H), 1.36 (s, 9H). ¹³C-NMR (101 MHz, CDCl₃): δ 159.0, 146.1, 126.4, 123.5, 35.6, 31.2. IR (Film): v 2966 (w), 1524 (s), 1346 (vs), 1103 (w), 857 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) 179 (18), 164 (100), 136 (10), 118 (9), 91 (8), 77 (5).

2-Brom-1-tert-butyl-4-nitrobenzol 276

Gemäß einer abgewandelten Methode nach Lit.^[175] wurde *N*-Bromosuccinimid (4.895 g, 27.5 mmol, 1.1 Äq.) langsam bei Raumtemperatur zu einer Lösung von 4-*tert*-Butylnitrobenzol **275** (4.477 g, 25 mmol, 1 Äq.) in TFA/H₂SO₄ (5:1, 33.6 mL) zugegeben. Das Reaktionsgemisch wurde für 24 Stunden bei Raumtemperatur gerührt. Anschließend wurde das Reaktionsgemisch zu Eis (200 g) gegeben. Die Suspension wurde filtriert, mit einer MeOH/H₂O Lösung (1:1, 20 mL) gewaschen und das Lösungsmittel am Rotationsverdampfer entfernt. Das Startmaterial wurde abdestilliert (84 °C, 2.24 × 10⁻¹ mbar). Das Produkt **276** wurde nach Umkristallisation aus *n*-Pentan bei 8 °C als farbloses Pulver (3.716 g, 14.4 mmol, 58 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[176]

R_f-Wert: 0.75 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 8.47 (d, J = 2.5 Hz, 1H), 8.11 (dd, J = 8.8 Hz, 2.5 Hz, 1H), 7.63 (d, J = 8.8 Hz, 1H), 1.57 (s, 9H). ¹³**C**-NMR (176 MHz, CDCl₃): δ 155.6, 146.3, 130.7, 128.7, 122.8, 122.1, 37.5, 29.5. **IR** (Film): v 2967 (w), 1523 (vs), 1349 (vs), 1247 (w), 747 (m) cm⁻¹. **HRMS** (EI, m/z): berechnet für C₁₀H₁₂BrNO₂: 257.0051, gefunden: 257.0051.

3-Brom-4-(tert-butyl)anilin 277

Gemäß einer abgewandelten Methode nach Lit.^[177] wurde 2-Brom-1-*tert*-butyl-4nitrobenzol **276** (870 mg, 3.37 mmol, 1 Äq.) in EtOH (9 mL) gelöst und mit Eisen-Pulver (597 mg, 10.1 mmol, 3 Äq.) und aq. HCl (0.15 M, 3.37 mL, 0.15 Äq.) versetzt. Das Reaktionsgemisch wurde für 2 Stunden refluxiert und anschließend auf Raumtemperatur abgekühlt. Essigsäureethylester (60 mL) wurde zugegeben, für 5 Minuten bei Raumtemperatur gerührt, über Celite[®] filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **277** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; $10:1 \rightarrow 4:1$) als gelbe Flüssigkeit (619 mg, 2.7 mmol, 80 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[178]

R_f-Wert: 0.32 (Petrolether / Essigsäureethylester; 10:1). ¹H-NMR (300 MHz, CDCl₃): δ 7.20 (d, J = 8.5 Hz, 1H), 6.96 (d, J = 2.6 Hz, 1H), 6.55 (dd, J = 8.5 Hz, 2.6 Hz, 1H), 3.57 (bs, 2H), 1.46 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃): δ 145.3, 137.7, 128.6, 123.1, 122.1, 113.9, 35.9, 30.2. IR (Film): v 3351 (b), 2960 (m), 1621 (s), 1602 (s), 1489 (vs), 1273 (s), 1255 (s), 815 (m) cm⁻¹. HRMS (ESI, m/z): berechnet für C₁₀H₁₅BrN⁺: 228.0382, gefunden: 228.0373.

3-Azid-4-(tert-butyl)anilin 278

Gemäß **AAV-28** wurde das Azid **278** ausgehend von 3-Brom-4-(*tert*-butyl)anilin **277** (616 mg, 2.7 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 2:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 4:1) als gelbe Flüssigkeit (370 mg, 1.94 mmol, 72 %) erhalten.

R_f-**Wert**: 0.67 (Petrolether / Essigsäureethylester; 2:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.11 (d, J = 8.4 Hz, 1H), 6.48 (d, J = 2.4 Hz, 1H), 6.40 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 3.64 (bs, 2H), 1.35 (s, 9H). ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 145.7, 138.6, 131.5, 128.3, 111.7, 106.2, 34.5, 30.4. **IR** (Film): v 2957 (w), 2110 (vs), 1505 (m), 1294 (m), 836 (w) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₀H₁₅N₄⁺: 191.1291, gefunden: 191.1300.

2,4-Diazid-1-(tert-butyl)benzol 268

Gemäß **AAV-25** wurde das Produkt **268** ausgehend von 3-Azid-4-(*tert*-butyl)anilin **278** (495 mg, 2.6 mmol, 1 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (*n*-Pentan) als hellgelbe Flüssigkeit (522 mg, 2.4 mmol, 93 %) erhalten.

R_f-Wert: 0.86 (*n*-Pentan). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.31 (d, J = 9.1 Hz, 1H), 6.80 – 6.74 (m, 2H), 1.38 (s, 9H) ppm. ¹³**C**-NMR (101 MHz, CDCl₃): δ 139.5, 139.1, 138.1, 128.7, 115.0, 110.3, 35.1, 30.1 ppm. **IR** (Film): v 2960 (w), 2113 (vs), 1496 (m), 1312 (w), 1288 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 216 (100), 159 (11), 145 (79), 118 (40), 104 (16), 91 (35), 77 (17), 57 (14). HRMS (EI, m/z): berechnet für C₁₀H₁₂N₆: 216.1123, gefunden: 216.1122.

13.2.3.3 Untersuchungen zur Darstellung von Diazid 270

4-Brom-2-(tert-butyl)anilin 279^[38]

Zu einer auf 0 °C gekühlten Lösung von 2-*tert*-Butylanilin **272** (1.56 mL, 10 mmol, 1 Äq.) in THF (16 mL) wurde portionsweise Tetrabutylammoniumtribromid (4.822 g, 10 mmol, 1 Äq.) zugegeben, wobei die Temperatur 5 °C nicht überschreiten durfte. Anschließend wurd das Reaktionsgemisch auf Raumtemperatur erwärmt und für 20 Minuten gerührt. Es wurde demin. H₂O (40 mL) und Essigsäureethylester (100 mL) zugegeben und die Phasen getrennt. Die organische Phase wurde mit einer gesättigten NaHCO₃-Lösung (100 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **279** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel

(Petrolether / Essigsäureethylester; 10:1) als braunes Öl (2.04 g, 8.9 mmol, 89 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[38]

R_f-**Wert**: 0.29 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.31 (d, J = 2.3 Hz, 1H), 7.11 (dd, J = 8.4, 2.3 Hz, 1H), 6.53 (d, J = 8.4 Hz, 1H), 3.95 (bs, 2H), 1.40 (s, 9H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 143.6, 136.2, 129.72, 129.69, 119.5, 111.1, 34.5, 29.5 ppm. **IR** (Film): v 3393 (b), 2964 (m), 1619 (s), 1485 (vs), 1249 (s), 810 (s) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 229 (70), 227 (72), 214 (97), 212 (100), 186 (15), 184 (15), 133 (27). **HRMS** (EI, m/z): berechnet für $C_{10}H_{14}$ BrN: 227.0310, gefunden: 227.0310.

2-(tert-Butyl)benzol-1,4-diamin 281

Gemäß **AAV-28** wurde das Diamin **281** ausgehend von 4-Brom-2-(*tert*-butyl)anilin **279** (2.030 g, 8.9 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 1:1) als braunes Öl (474 mg, 2.9 mmol, 33 %) erhalten.

R_f-Wert: 0.29 (Petrolether / Essigsäureethylester; 1:1). ¹**H**-NMR (300 MHz, CDCl₃): δ 6.68 (s, 1H), 6.57 – 6.42 (m, 2H), 3.49 (bs, 4H), 1.40 (s, 9H) ppm. ¹³**C**-NMR (126 MHz, CDCl₃): δ 137.4 (2C), 160.0, 119.6, 115.4, 115.0, 34.5, 29.7 ppm. **IR** (Film): v 3342 (b), 2956 (m), 1616 (m), 1503 (s), 819 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₁₀H₁₇BrN₂: 165.1386, gefunden: 165.1393.

4-Azid-2-(tert-butyl)anilin 280

Gemäß **AAV-25** wurde das Produkt **280** ausgehend von 2-(*tert*-Butyl)benzol-1,4-diamin **281** (181 mg, 1.1 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel

(Petrolether / Essigsäureethylester; 10:1) als rotbraune Flüssigkeit (61.3 mg, 0.32 mmol, 29 %) erhalten.

R_f-Wert: 0.27 (Petrolether / Essigsäureethylester; 10:1). ¹H-NMR (400 MHz, CDCl₃): δ 6.88 (d, J = 2.6 Hz, 1H), 6.74 (dd, J = 8.4, 2.6 Hz, 1H), 6.63 (d, J = 8.4 Hz, 1H), 3.79 (bs, 2H), 1.41 (s, 9H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 142.1, 135.6, 130.2, 119.0, 117.9, 117.5, 34.6, 29.5 ppm. **IR** (Film): v 3389 (b), 2961 (m), 2106 (vs), 1499 (s), 1290 (m), 1255 (m), 811 (m) cm⁻¹. **MS** (EI, 70 eV): m/z (%) 190 (71), 162 (92), 147 (100), 132 (32). **HRMS** (EI, m/z): berechnet für C₁₀H₁₄N₄: 190.1218, gefunden: 190.1216.

13.2.4 Darstellung von Keton 283

N-Methoxy-N-methyl-2-phenylacetamid 337^[179]

Eine Lösung von *N,O*-Dimethylhydroxylaminhydrochlorid (4.292 g, 44 mmol, 1.1 Äq.) in CH₂Cl₂ (80 mL) wurde auf 0 °C gekühlt und mit 2-Phenylacetylchlorid (5.29 mL, 40 mmol, 1 Äq.) und Pyridin (9.9 mL, 100 mmol, 2.5 Äq.) versetzt. Das Reaktionsgemisch wurde für 30 Minuten bei 0 °C und für weitere 30 Minuten bei Raumtemperatur gerührt. Es wurde Essigsäureethylester (400 mL) zugegeben und die organische Phase mit einer HCl-Lösung (1 N, 250 mL), einer gesättigten NaHCO₃-Lösung (250 mL) sowie einer gesättigten NaCl-Lösung (250 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **337** wurde nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 2:1) als gelbe Flüssigkeit (6.629 g, 37 mmol, 93 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[180]

R_f-Wert: 0.32 (Petrolether / Essigsäureethylester; 2:1). ¹H-NMR (300 MHz, CDCl₃): δ 7.36 – 7.20 (m, 5H), 3.77 (s, 2H), 3.60 (s, 3H), 3.19 (s, 3H) ppm. ¹³C-NMR (176 MHz, CDCl₃): δ 172.6, 135.1, 129.9, 129.4, 126.9, 61.4, 39.5, 32.4 ppm. **IR** (Film): *v* 2967 (w), 1660 (vs), 1455 (m), 1382 (m), 1001 (m), 729 (m), 698 (m) cm⁻¹. **MS** (ESI): *m/z* (%) 202 (100) [M+Na]⁺.

1-(1-Methyl-1H-imidazol-2-yl)-2-phenylethan-1-on 283^[179]

Eine Lösung von *N*-Methylimidazol (0.22 mL, 2.75 mmol, 1.1 Äq.) in THF (6.25 mL) wurde auf -78 °C gekühlt und tropfenweise mit *n*-BuLi (1.6 M, 1.72 mL, 2.75 mmol, 1.1 Äq.) versetzt. Das Reaktionsgemisch wurde für 30 Minuten bei -78 °C und für weitere 30 Minuten bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde wieder auf -78 °C gekühlt, mit dem Weinrebamid **337** (448 mg, 2.5 mmol, 1 Äq.) gelöst in THF (1.75 mL) versetzt. Anschließend wurde das Reaktionsgemisch über einen Zeitraum von 3 – 4 Stunden auf Raumtemperatur erwärmt und über Nacht bei dieser Temperatur gerührt. Es wurde durch die Zugabe von Essigsäure (0.86 mL, 15 mmol, 6 Äq.) gequencht und mit Essigsäureethylester (20 mL) extrahiert. Die organische Phase wurde mit einer gesättigten NaHCO₃-Lösung (3 x 20 mL) sowie einer gesättigten NaCl-Lösung (20 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Produkt **283** wurde nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 1:1) als farbloses Öl (314 mg, 1.7 mmol, 68 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[179]

R_f-Wert: 0.52 (Petrolether / Essigsäureethylester; 1:1). ¹**H**-NMR (700 MHz, CDCl₃): δ 7.36 – 7.31 (m, 4H), 7.26 – 7.22 (m, 1H), 7.19 (d, *J* = 0.8 Hz, 1H), 7.04 (s, 1H), 4.43 (s, 2H), 3.97 (s, 3H) ppm. ¹³**C**-NMR (176 MHz, CDCl₃): δ 190.3, 142.9, 134.7, 130.1, 129.4, 128.6, 127.5, 127.0, 45.5, 36.4 ppm. **IR** (Film): *v* 1673 (s), 1454 (m), 1402 (vs), 1290 (w), 992 (m), 734 (m), 699 (m) cm⁻¹. **MS** (ESI): *m/z* (%) 202 (100) [M+2H]⁺, 201 (57) [M+H]⁺.

13.2.5 Anwendung der TBA[Fe]-katalysierten Dimroth-Cyclokondensation-C(sp³)-H-Aminierungssequenz

Allgemeine Arbeitsvorschrift 29 (AAV-29):

Ein ausgeheiztes 10 mL Mikrowellengefäß mit einem Rührfisch wurde unter N₂-Atmosphäre mit TBA[Fe] **26** (2 mol-%) und dem entsprechenden Keton (1 Äq.) befüllt und in MeCN (0.4 M) gelöst. Es wurde das entsprechende Diazid (1.2 Äq.) zugegeben, das Mikrowellengefäß verschlossen und das Reaktionsgemisch bei 80 °C für eine Stunde unter Mikrowellenbedingungen (200 W) gerührt. Das Reaktionsgemisch wurde auf Raumtemperatur abgekühlt, mit TBA[Fe] **26** (2.5 mol-%) und 1,2-Dichlorethan (20 mol-%) versetzt und bei 120 °C für eine weitere Stunde unter Mikrowellenbedingungen (200 W) gerührt. Das Reaktionsgemisch wurde auf Raumtemperatur gekühlt und das Rohprodukt mittels Säulenchromatographie an Kieselgel aufgereinigt.

6-(4,5-Diphenyl-1*H*-1,2,3-triazol-1-yl)-3,3-dimethylindolin 269 & 2-(*tert*-Butyl)-5-(4,5diphenyl-1*H*-1,2,3-triazol-1-yl)anilin 282

Gemäß **AAV-29** wurde ausgehend von Desoxybenzoin **264** (78.5 mg, 0.4 mmol, 1 Äq.) und Diazid **268** (104 mg, 0.48 mmol, 1.2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 2:1) Produkt **269** als brauner Feststoff (46.3 mg, 0.126 mmol, 32 %) und Produkt **282** als hellbrauner Schaum (14.1 mg, 0.038 mmol, 10 %) erhalten.

269:

R_f-Wert: 0.52 (Petrolether / Essigsäureethylester; 2:1). ¹H-NMR (400 MHz, CDCl₃): δ 7.64 – 7.58 (m, 2H), 7.42 – 7.36 (m, 3H), 7.34 – 7.29 (m, 3H), 7.27 – 7.23 (m, 2H), 6.94 (d, *J* = 7.8 Hz, 1H), 6.62 (d, *J* = 1.7 Hz, 1H), 6.55 (dd, *J* = 7.8, 1.9 Hz, 1H), 3.82 (bs, 1H), 3.36 (s, 2H), 1.31 (s, 6H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 151.0, 144.7, 139.4, 136.0, 133.8, 131.2, 130.4, 129.3, 129.0, 128.6, 128.2, 127.9, 127.5, 122.2, 115.7, 106.4, 61.9, 41.6, 27.7 ppm. IR (Film): *v* 3337 (bs), 2958 (m), 1613 (s), 1505 (s), 772 (m), 732 (s), 697 (vs) cm⁻¹. MS (GC): *m/z* (%) 366 (13), 338 (45), 323 (100),

308 (23), 192 (28), 165 (68), 130 (43). **HRMS** (EI, *m/z*): berechnet für C₂₄H₂₂N₄: 366.1844, gefunden: 366.1832.

282:

R_f-**Wert**: 0.61 (Petrolether / Essigsäureethylester; 2:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.61 – 7.57 (m, 2H), 7.42 – 7.36 (m, 3H), 7.31 – 7.27 (m, 3H), 7.25 – 7.22 (m, 2H), 7.12 (d, *J* = 8.4 Hz, 1H), 6.73 (d, *J* = 2.3 Hz, 1H), 6.48 (dd, *J* = 8.4, 2.2 Hz, 1H), 3.91 (bs, 2H), 1.39 (s, 9H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 145.6, 144.8, 135.4, 134.5, 133.6, 131.1, 130.4, 129.4, 129.1, 128.6, 128.2, 127.9, 127.5, 127.3, 114.7, 113.8, 34.4, 29.6 ppm. **IR** (Film): *v* 3494 (bs), 3365 (bs), 2964 (m), 1623 (m), 1509 (m), 1258 (w), 908 (m), 731 (s), 697 (vs) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₂₄H₂₅N₄⁺ : 369.2074, gefunden: 369.2058.

3,3-Dimethyl-6-(5-(1-methyl-4,5-dihydro-1*H*-imidazol-2-yl)-4-phenyl-1*H*-1,2,3-triazol-1yl)indolin 284 & 2-(*tert*-Butyl)-5-(5-(1-methyl-1*H*-imidazol-2-yl)-4-phenyl-1*H*-1,2,3-triazol-1yl)anilin 285

Gemäß **AAV-29** wurde ausgehend von Keton **283** (80.1 mg, 0.4 mmol, 1 Äq.) und Diazid **268** (104 mg, 0.48 mmol, 1.2 Äq.) nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 1:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 1:1) Produkt **284** als hellbrauner Feststoff (38.6 mg, 0.1 mmol, 26 %) und Produkt **285** als hellbrauner Schaum (13.4 mg, 0.036 mmol, 9 %) erhalten.

284:

R_f-**Wert**: 0.16 (Petrolether / Essigsäureethylester; 1:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.68 – 7.62 (m, 2H), 7.38 – 7.30 (m, 3H), 7.29 (s, 1H), 7.00 (s, 1H), 6.97 (d, *J* = 7.9 Hz, 1H), 6.76 (s, 1H), 6.70

(dd, J = 7.8, 1.6 Hz, 1H), 3.34 (s, 2H), 3.15 (s, 3H), 3.10 (bs, 1H), 1.30 (s, 6H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 151.3, 147.8, 139.7, 135.9, 135.4, 130.4, 130.3, 128.9, 128.6, 126.8, 123.4, 122.6, 122.4, 113.7, 104.7, 61.9, 41.6, 33.2, 27.7 ppm. **IR** (Film): v 3322 (b), 2957 (w), 2864 (w), 1612 (m), 1498 (m), 1464 (m), 1247 (m), 989 (m), 909 (m), 729 (s), 695 (m) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₂₂H₂₃N₆⁺: 371.1979, gefunden: 371.1980.

285:

R_f-**Wert**: 0.20 (Petrolether / Essigsäureethylester; 1:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.68 – 7.62 (m, 2H), 7.39 – 7.28 (m, 4H), 7.18 (d, J = 8.5 Hz, 1H), 7.01 (s, 1H), 6.87 (d, J = 2.2 Hz, 1H), 6.64 (dd, J = 8.5, 2.2 Hz, 1H), 3.96 (bs, 2H), 3.14 (s, 3H), 1.39 (s, 9H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 147.9, 145.8, 135.4, 135.3, 134.7, 130.4, 130.2, 128.9, 128.7, 127.6, 126.8, 123.2, 122.7, 112.7, 112.1, 34.4, 33.2, 29.5 ppm. **IR** (Film): v 3366 (b), 2960 (w), 2873 (w), 1624 (m), 1508 (m), 1252 (m), 907 (m), 779 (m), 732 (vs), 696 (s) cm⁻¹. **HRMS** (ESI, m/z): berechnet für C₂₂H₂₅N₆⁺: 373.2135, gefunden: 371.2135.

14 Darstellung nicht-natürlicher PPAPs und erste Untersuchungen zur Anwendung der Dimroth-Cyclokondensation

14.1 Darstellung des Cyclisierungsvorläufers *cis*-299

(1*R*,5*R*)-3-Acetyl-1-benzyl-4-methyl-5-(3-methylbut-2-en-1-yl)-2-oxocyclohex-3-en-1methylcarboxylat 296^[118]

Der Diester **295** (1.398 g, 4.75 mmol, 1 Äq.) wurde in THF (14 mL) gelöst, auf 0 °C gekühlt und NaH (60 %-ig in Mineralöl, 209 mg, 5.23 mmol, 1.1 Äq.) portionsweise zugegeben. Das Reaktionsgemisch wurde eine Stunde bei 0 °C gerührt. Es wurde Methyllithium (1.6 M in THF, 6.8 mL, 10.93 mmol, 2.3 Äq.) zugetropft und für weitere drei Stunden bei 0 °C gerührt. Das Reaktionsgemisch wurde durch die Zugabe einer gesättigten NH₄Cl-Lösung gequencht und mit Essigsäureethylester (3 x 15 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten NaCl-Lösung (20 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt.

Das Rohprodukt (1.322 g, 4.75 mmol, 1 Äq.) wurde in THF (14 mL) gelöst, auf 0 °C gekühlt und NaH (60 %-ig in Mineralöl, 209 mg, 5.23 mmol, 1.1 Äq.) portionsweise zugegeben. Das Reaktionsgemisch wurde eine Stunde bei 0 °C gerührt. Es wurde Benzylbromid (1.13 mL, 9.5 mmol, 2 Äq.) zugetropft, auf Raumtemperatur erwärmt und über Nacht bei dieser Temperatur gerührt. Das Reaktionsgemisch wurde durch die Zugabe einer gesättigten NH₄Cl-Lösung gequencht und mit Essigsäureethylester (3 x 15 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten NaCl-Lösung (20 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Cyclohexen **296** wurde nach Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) als gelbes Öl (998 mg, 2.7 mmol, 57 %) und als Diastereomerengemisch (95:5) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[118]

R_f-**Wert**: 0.37 (Petrolether / Essigsäureethylester; 6:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.28 – 7.18 (m, 5H), 5.07 – 5.00 (m, 1H), 3.75 (s, 3H), 3.3 (s, 2H), 2.43 – 2.34 (m, 2H), 2.33 – 2.26 (m, 1H), 2.30 (s, 3H), 2.04 – 1.95 (m, 2H), 1.91 (s, 3H), 1.70 (s, 3H), 1.59 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 204.1, 194.1, 172.9, 160.6, 139.3, 136.1, 134.9, 130.7, 128.4, 127.1, 120.7, 57.4, 52.7, 39.0, 38.8, 32.6, 31.5, 30.4, 25.9, 19.6, 18.1 ppm. **IR** (Film): *v* 2930 (m), 1736 (s), 1705 (vs), 1663 (s), 1437 (m), 1207 (s), 1083 (m), 703 (s) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₂₃H₂₈O₄Na⁺: 391.1880, gefunden: 391.1867.

(1*R*,5*R*)-3-Acetyl-1-benzyl-4,4-dimethyl-5-(3-methylbut-2-en-1-yl)-2-oxocyclohexan-1methylcarboxylat 297^[118]

Lithiumchlorid (471 mg, 11.1 mmol, 2.02 Äq.) und Kupfer(I)iodid (2.095 g, 11 mmol, 2 Äq.) wurden in THF (20 mL) suspendiert und für 5 Minuten bei Raumtemperatur gerührt. Die Suspension wurde auf -78 °C gekühlt und Methylmagnesiumbromid (3 M in Et₂O, 3.66 mL, 11 mmol, 2 Äq.), TMSCI (1.40 mL, 11 mmol, 2 Äq.) und eine Lösung von Cyclohexen **296** (2.027 g, 5.5 mmol, 1 Äq.) in THF (40 mL) nacheinander zugegeben. Das Reaktionsgemisch wurde für 5 Stunden bei -78 °C gerührt. Anschließend wurde durch die Zugabe einer NH₄Cl/2 N HCl-Lösung (1:1, 100 mL) gequencht und mit Essigsäureethylester (3 x 100 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer NH₄Cl/NH₃-Lösung (1:1, bis die organische Phase farblos ist) und einer gesättigten NaCl-Lösung (100 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Cyclohexan **297** wurde nach Aufreinigung mittels Flash-Säulenchromatographie (Petrolether / Essigsäureethylester; 5:1) als hellgelbes Öl (1.978 g, 5.1 mmol, 93 %) und als Diastereomerengemisch (**a**:**b** / 3.8:1) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[118]

Diastereomer a:

R_f-**Wert**: 0.52 (Petrolether / Essigsäureethylester; 5:1).¹**H**-**NMR** (400 MHz, CDCl₃):δ 7.30 – 7.21 (m, 5H), 5.08 – 5.03 (m, 1H), 3.77 (s, 3H), 3.58 (s, 1H), 3.37 (d, *J*= 13.7 Hz, 1H), 3.31 (d, *J*=13.7 Hz, 1H), 2.29 – 2.22 (m, 1H), 2.11 – 2.03 (m, 1H), 2.07 – 1.94 (m, 1H), 1.98 (s, 3H), 1.74 – 1.67 (m, 5H), 1.58 (s, 3H), 1.12 (s, 3H), 1.10 (s, 3H) ppm. ¹³C-NMR (126 MHz, CDCl₃): δ 206.5, 204.7, 172.0, 135.6, 133.6, 130.8, 128.5, 127.4, 122.6, 70.3, 63.3, 52.6, 44.2, 43.2, 39.3, 33.7, 32.7, 27.3, 26.8, 26.0, 18.0, 16.2 ppm. **IR** (Film): *v* 2967 (m), 1726 (s), 1700 (s), 1453 (m), 1356 (m), 1219 (s), 989 (w), 703 (s) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₂₄H₃₂O₄Na⁺: 407.2193, gefunden: 407.2192.

Diastereomer b:

R_f-**Wert**: 0.52 (Petrolether / Essigsäureethylester; 5:1). ¹**H**-**NMR** (500 MHz, CDCl₃): δ 7.25 – 7.17 (m, 5H), 5.15 – 5.08 (m, 1H), 3.70 (s, 1H), 3.67 (s, 3H), 3.22 (d, *J* = 13.7 Hz, 1H), 2.96 (d, *J* = 13.7 Hz, 1H), 2.28 – 2.25 (m, 2H), 2.19 (s, 3H), 1.96 – 1.89 (m, 1H), 1.77 – 1.67 (m, 5H), 1.58 (s, 3H), 1.06 (s, 3H), 1.02 (s, 3H) ppm. ¹³C-NMR (126 MHz, CDCl₃): δ 204.7, 204.4, 172.4, 136.2, 133.3, 131.1, 128.2, 127.0, 123.0, 70.5, 62.2, 52.6, 41.6, 39.0, 32.5, 32.2, 27.0, 26.0, 24.8, 24.3, 18.0, 16.2 ppm. **IR** (Film): *v* 2922 (m), 1722 (vs), 1688 (s), 1454 (m), 1355 (m), 1218 (s), 1080 (s), 801 (s), 701 (vs) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₂₄H₃₂O₄Na⁺: 407.2193, gefunden: 407.2184.

(1*R*,5*R*)-3-Acetyl-2-(((allyloxy)carbonyl)oxy)-1-benzyl-4,4-dimethyl-5-(3-methylbut-2-en-1yl)cyclohex-2-en-1-methylcarboxylat 298a & methyl (1*R*,5*R*,*Z*)-3-(1-(((Allyloxy)carbonyl)oxy)ethyliden)-1-benzyl-4,4-dimethyl-5-(3-methylbut-2-en-1-yl)-2oxocyclohexan-1-carboxylat 298b

Gemäß einer Methode nach Lit.^[181] wurde das Cyclohexanon **297** (961 mg, 2.5 mmol, 1 Äq.) in DMF (12.5 mL) gelöst und auf 0 °C gekühlt. Es wurde NaH (60%-ig in Mineralöl, 120 mg, 3 mmol, 1.2 Äq.) portionsweise zugegeben und eine Stunde bei 0 °C gerührt. Allylchlorformiat (0.32 mL, 3 mmol, 1.2 Äq.) wurde zugegeben, das Reaktionsgemisch auf Raumtemperatur erwärmt und über Nacht bei dieser Temperatur gerührt. Anschließend wurde durch die Zugabe einer gesättigten NH₄Cl-Lösung (10 mL) hydrolysiert und mit Essigsäureethylester (3 x 30 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten NaCl-Lösung (30 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Die Carbonate 298a und 298b wurden nach Aufreinigung mittels Säulenchromatographie Kieselgel (Petrolether / Essigsäureethylester; 10:1) und an

anschließender HPLC (Petrolether / Essigsäureethylester; 10:1) als gelbes Öl (917 mg, 1.96 mmol, 78 %) und als Regioisomerengemisch (**298a:298b** / 1:1.5) erhalten.

298a:

R_f-**Wert**: 0.45 (Petrolether / Essigsäureethylester; 10:1).¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.25 – 7.18 (m, 3H), 7.12 – 7.08 (m, 2H), 6.01 – 5.89 (m, 1H), 5.43 – 5.36 (m, 1H), 5.34 – 5.29 (m, 1H), 4.90 – 4.82 (m, 1H), 4.68 (td, *J* = 5.8, 2.5 Hz, 2H), 3.71 (s, 3H), 3.36 (d, *J* = 13.7 Hz, 1H), 3.02 (d, *J* = 13.7 Hz, 1H), 2.28 – 2.19 (m, 1H), 2.07 – 2.01 (m, 1H), 2.00 (s, 3H), 1.90 (dd, *J* = 14.7, 2.9 Hz, 1H), 1.73 (s, 3H), 1.69 – 1.63 (m, 1H), 1.54 (s, 3H), 1.18 (s, 3H), 1.13 (s, 3H), 1.12 – 1.07 (m, 1H) ppm.¹³**C**-**NMR** (101 MHz, CDCl₃): δ 202.6, 171.3, 151.9, 150.3, 136.5, 135.5, 133.4, 131.2, 130.7, 128.3, 126.9, 123.1, 119.7, 69.2, 62.0, 52.6, 43.9, 42.0, 39.4, 30.8, 27.5, 26.6, 26.0, 19.0, 18.5, 18.0 ppm. **IR** (Film): *v* 2966 (w), 1759 (m), 1703 (m), 1230 (s), 1172 (s), 947 (w), 702 (w) cm⁻¹. **MS** (ESI): *m/z* (%) 491 (76) [M+Na]⁺, 389 (100). **HRMS** (ESI, *m/z*): berechnet für C₂₈H₃₆O₆Na⁺: 491.2404, gefunden: 491.2424.

298b:

R_f-**Wert**: 0.30 (Petrolether / Essigsäureethylester; 10:1).¹**H**-**NMR** (400 MHz,CDCl₃): δ 7.28 – 7.20 (m, 3H), 7.19 – 7.15 (m, 2H), 6.00 – 5.87 (m, 1H), 5.42 – 5.34 (m, 1H), 5.34 – 5.28 (m, 1H), 5.03 – 4.94 (m, 1H), 4.65 – 4.59 (m, 2H), 3.63 (s, 3H), 3.27 (d, *J* = 13.6 Hz, 1H), 3.17 (d, *J* = 13.6 Hz, 1H), 2.32 (s, 3 H), 2.11 – 1.98 (m, 2H), 1.86 (dd, *J* = 14.5, 3.1 Hz, 1H), 1.76 (s, 3H), 1.64 – 1.57 (m, 1H), 1.55 (s, 3H), 1.14 (s, 3H), 1.00 – 0.92 (m, 1H), 0.90 (s, 3H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 203.9, 173.0, 152.5, 143.2, 141.8, 136.6, 133.1, 131.2, 131.0, 128.1, 127.0, 123.3, 119.7, 69.5, 52.8, 51.2, 41.1, 40.3, 38.0, 32.3, 30.4, 28.0, 26.1, 24.9, 21.1, 17.9 ppm. IR (Film): *v* 2970 (w), 1768 (m), 1732 (m), 1699 (w), 1453 (w), 1236 (s), 1175 (s), 946 (w), 703 (w) cm⁻¹. MS (ESI): *m/z* (%) 491 (100) [M+Na]⁺, 389 (51), 131 (29). HRMS (ESI, *m/z*): berechnet für C₂₈H₃₆O₆Na⁺: 491.2404, gefunden: 491.2419.

(1*R*,3*S*,5*R*)-3-Acetyl-3-allyl-1-benzyl-4,4-dimethyl-5-(3-methylbut-2-en-1-yl)-2-oxocyclohexan-1-methylcarboxylat *cis*-299 & (1*R*,3*R*,5*R*)-3-Acetyl-3-allyl-1-benzyl-4,4-dimethyl-5-(3methylbut-2-en-1-yl)-2-oxocyclohexan-1-methylcarboxylat *trans*-299

Gemäß einer Methode nach Lit.^[181] wurde Tris(dibenzylidenaceton)dipalladium(0)-Chloroform-Addukt (52 mg, 0.05 mmol, 0.05 Äq.) und Tri(*p*-tolyl)phosphin (76 mg, 0.25 mmol, 0.25 Äq.) in 1,4-Dioxan (10 mL) gelöst und für 15 Minuten bei 60 °C gerührt. Die Carbonate **298a** und **298b** (0.469 g, 1 mmol, 1 Äq.) wurden in 1,4-Dioxan (2 mL) gelöst, zum Reaktionsgemisch zugegeben und bei 60 °C für eine Stunde gerührt. Nach Abkühlen auf Raumtemperatur wurden die Produkte *cis*-**299** und *trans*-**299** nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 5:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 10:1) als hellgelber Feststoff (283 mg, 0.67 mmol, 67 %) und als Diastereomerengemisch (*cis*-**299**:*trans*-**299** / 93:7) erhalten.

cis-299:

R_f-Wert: 0.42 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-NMR (400 MHz, CDCl₃): δ 7.33 – 7.21 (m, 5H), 5.44 – 5.31 (m, 1H), 5.02 – 4.91 (m, 3H), 3.77 (s, 3H), 3.38 (d, *J* = 14.1 Hz, 1H), 3.29 – 3.21 (m, 1H), 2.74 (d, *J* = 14.2 Hz, 1H), 2.35 (dd, *J* = 14.3, 8.7 Hz, 1H), 2.26 – 2.18 (m, 1H), 2.13 (s, 3H), 2.06 (d, *J* = 14.8 Hz, 1H), 1.96 – 1.88 (m, 2H), 1.78 – 1.71 (m, 1H), 1.67 (s, 3H), 1.53 (s, 3H), 1.07 (s, 3H), 1.03 (s, 3H) ppm. ¹³C-NMR (101 MHz, CDCl₃): δ 208.6, 206.2, 172.6, 136.0, 134.0, 133.5, 131.7, 128.2, 127.2, 122.7, 117.7, 73.9, 61.2, 52.7, 40.8, 38.8, 37.9, 37.7, 32.9, 29.8, 27.8, 26.1, 22.4, 21.9, 17.9 ppm. IR (Film): *v* 2973 (w), 1748 (s), 1724 (m), 1686 (s), 1434 (m), 1354 (m), 1258 (m) 1210 (s), 917 (m), 701 (s) cm⁻¹. MS (ESI): *m/z* (%) 447 (100) [M+Na]⁺, 391 (48), 363 (10). HRMS (ESI, *m/z*): berechnet für C₂₇H₃₆O₄Na⁺: 447.2506, gefunden: 447.2506.

trans-299:

R_f-**Wert**: 0.50 (Petrolether / Essigsäureethylester; 10:1). ¹**H**-**NMR** (500 MHz, CDCl₃): δ 7.25 – 7.17 (m, 5H), 5.73 – 5.62 (m, 1H), 5.14 – 5.01 (m, 3H), 3.74 (s, 3H), 3.29 (d, *J* = 13.3 Hz, 1H), 3.04 (dd, *J* = 16.2, 5.7 Hz, 1H), 2.90 (d, *J* = 13.3 Hz, 1H), 2.70 (dd, *J* = 16.2, 8.1 Hz, 1H), 2.45 – 2.36 (m, 1H), 2.34 – 2.27 (m, 1H), 2.10 (s, 3H), 2.08 – 2.00 (m, 1H), 1.89 (dd, *J* = 14.7, 3.5 Hz, 1H), 1.74 – 1.70 (m, 1H), 1.69 (s, 3H), 1.56 (s, 3H), 1.28 (s, 3H), 0.88 (s, 3H) ppm. ¹³**C**-**NMR** (126 MHz, CDCl₃): δ 207.6, 205.3, 171.7, 135.5, 135.3, 133.2, 131.4, 128.2, 127.2, 123.2, 117.5, 75.1, 64.1, 52.5, 43.1, 38.54, 38.46, 35.8, 30.5, 30.1, 28.0, 26.1, 24.5, 20.3, 17.9 ppm. **IR** (Film): *v* 2971 (w), 1742 (m), 1688 (s), 1435 (w), 1215 (m), 984 (w), 702 (m) cm⁻¹. **MS** (ESI): *m/z* (%) 447 (100) [M+Na]⁺, 413 (24). **HRMS** (ESI, *m/z*): berechnet für C₂₇H₃₆O₄Na⁺: 447.2506, gefunden: 447.2521.

14.2 Darstellung nicht-natürlicher PPAPs

14.2.1 Dieckmann-Kondensation und anschließende C-Acylierung

Allgemeine Arbeitsvorschrift 30 (AAV-30):

Gemäß einer Methode nach Lit.^[181] wurde das entsprechende Cyclohexanon (0.15 mmol, 1 Äq.) in THF (4.5 mL) gelöst, auf 0 °C gekühlt und mit KO^tBu (34 mg, 0.3 mmol, 2 Äq.) versetzt. Das Reaktionsgemisch wurde für 30 Minuten bei 0 °C gerührt. Anschließend wurde das Reaktionsgemisch durch die Zugabe einer gesättigten NH₄Cl-Lösung hydrolysiert und mit Essigsäureethylester (3 x 30 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten NaCl-Lösung (30 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels Säulenchromatographie an Kieselgel aufgereinigt.

Allgemeine Arbeitsvorschrift 31 (AAV-31):

Gemäß einer Methode nach Lit.^[110,181] wurde das entsprechende Cyclohexanon (0.2 mmol, 1 Äq.) in THF (3 mL) gelöst, auf 0 °C gekühlt und mit KO^tBu (45 mg, 0.4 mmol, 2 Äq.) versetzt. Das Reaktionsgemisch wurde für 30 Minuten bei 0 °C gerührt. Das entsprechende Cyanid (3.3 – 10 Äq.) wurde zugegeben, auf 40 °C erwärmt und das Reaktionsgemisch für 16 – 48 Stunden bei dieser Temperatur gerührt. Anschließend wurde das Reaktionsgemisch durch die Zugabe von einer gesättigten NH₄Cl-Lösung hydrolysiert und mit Essigsäureethylester (3 x 30 mL) extrahiert. Die vereinten organischen Phasen wurden mit einer gesättigten NaCl-Lösung (30 mL) gewaschen, über Na₂SO₄ getrocknet, filtriert und das Lösungsmittel am Rotationsverdampfer entfernt. Das Rohprodukt wurde mittels Säulenchromatographie an Kieselgel aufgereinigt.

(1*S*,5*S*,7*R*)-5-Allyl-1-benzyl-6,6-dimethyl-7-(3-methylbut-2-en-1-yl)bicyclo[3.3.1]nonan-2,4,9trion 300

Gemäß **AAV-30** wurde Bicyclus **300** ausgehend von Cyclohexanon *cis*-299 (64 mg, 0.15 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie an (Petrolether / Essigsäureethylester; 2:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 6:1) als farbloser Feststoff (47 mg, 0.12 mmol, 86 %) erhalten.

R_f-**Wert**: 0.41 (Petrolether / Essigsäureethylester; 2:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 7.34 – 7.27 (m, 2H), 7.24 – 7.12 (m, 3H), 5.65 – 5.48 (m, 1H), 5.08 – 5.01 (m, 1H), 5.01 – 4.95 (m, 1H), 4.84 – 4.76 (m, 1H), 3.51 (d, J = 17.0 Hz, 1H), 3.34 (d, J = 13.4 Hz, 1H), 3.02 (d, J = 13.5 Hz, 1H), 2.83 – 2.75 (m, 1H), 2.62 (d, J = 17.1 Hz, 1H), 2.44 (dd, J = 12.4, 8.9 Hz, 1H), 2.33 (dd, J = 14.0, 2.5 Hz, 1H), 2.18 – 2.06 (m, 2H), 1.69 (s, 3H), 1.52 (s, 3H), 1.48 – 1.39 (m, 1H), 1.34 – 1.27 (m, 1H), 1.23 (s, 3H), 0.96 (s, 3H) ppm. ¹³C-NMR (75 MHz, CDCl₃): δ 210.0, 202.4, 202.0, 136.6, 134.0, 132.1, 131.4, 128.2, 126.7, 122.5, 120.7, 71.1, 66.4, 63.6, 51.8, 46.5, 41.7, 37.6, 32.7, 29.2, 26.4, 26.0, 23.1, 18.1 ppm. IR (Film): v 3079 (m), 2977 (m), 2928 (m), 1729 (s), 1582 (s), 1454 (m), 1236 (s), 918 (w), 700 (w) cm⁻¹. MS (ESI): m/z (%) 415 (100) [M+Na]⁺, 346 (38), 331 (28). HRMS (ESI, m/z): berechnet für C₂₆H₃₂O₃Na⁺: 415.2244, gefunden: 415.2230.

PPAP 301

Gemäß **AAV-31** wurde PPAP **301** ausgehend von Cyclohexanon *cis-299* (85 mg, 0.2 mmol, 1 Äq.) und Benzoylcyanid (87 mg, 0.66 mmol, 3 Äq.) nach einer Reaktionszeit von 16 h und Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 20:1) als gelbes Öl (30.5 mg, 0.07 mmol, 33 %) erhalten.

R_F-Wert: 0.31 (Petrolether / Essigsäureethylester; 10:1). ¹H-NMR (300 MHz, CDCl₃, 3.8:1 Mischung Enol-Tautomere): δ 17.77 (s, 1H), 17.62 (s, 0.3H), 7.60 7.27 (m, 6.9H), 7.25 – 7.10 (m, 3.6H), 6.92 – 6.80 (m, 2H), 5.90 – 5.51 (m, 1.3H), 5.24 – 5.11 (m, 1.5H), 5.07 – 4.99 (m, 1H), 4.86 – 4.81 (m, 0.3H), 4.80 – 4.72 (m, 1H), 3.59 – 3.43 (m, 1.3H), 3.25 (d, *J* = 14.2 Hz, 0.3H), 3.01 – 2.91 (m, 1H), 2.86 (d, *J* 13.7 Hz, 1H), 2.76 – 2.58 (m, 1.5H), 2.40 – 2.06 (m, 3.9H), 2.02 – 1.86 (m, 1.3H), 1.69 (m, 0.8H), 1.60 (s, 3H), 1.51 (s, 0.8H), 1.48 – 1.44 (m, 1H), 1.39 (s, 3H), 1.31 (s, 3H), 1.10 – 1.05 (m, 3.8H), 0.93 (s, 0.8H) ppm. ¹³C-NMR (176 MHz, CDCl₃, 3.8:1 Mischung Enol-Tautomere): δ 207.5, 207.1, 196.1, 196.0, 195.7, 194.8, 192.0, 191.7, 137.3, 136.1, 135.6, 135.4, 133.4, 132.3, 132.2, 132.1, 132.0, 131.8, 130.4, 130.0, 128.3, 128.1, 127.3, 127.1, 127.0, 126.8, 125.4, 125.2, 123.0, 122.5, 118.8, 118.7, 115.7, 115.3, 68.4, 65.0, 63.9, 58.9, 48.6, 48.0, 45.8, 45.6, 41.1, 39.3, 36.4, 35.6, 31.1, 30.2, 28.1, 28.0, 26.1, 26.0, 25.0, 24.9, 22.1, 21.6, 17.0, 16.9 ppm. IR (Film): *v* 2924 (w), 1729 (m), 1668 (m), 1541 (m), 1395 (m), 909 (s), 801 (m), 730 (s), 699 (s) cm⁻¹. HRMS (ESI, *m/z*): berechnet für C₃₃H₃₅O₄^{-:} 495.2530, gefunden: 495.2532.

3-Methyl-2-oxo-butyronitril 338^[110]

Ein Gemisch aus Isobutyrylchlorid (2.1 mL, 20 mmol, 1 Äq.), TMSCN (2.5 mL, 20 mmol, 1 Äq.) und ZnI₂ (38 mg, 0.12 mmol, 0.006 Äq.) wurde für eine Stunde auf 120 °C erhitzt. Das Reakionsgemisch wurde auf Raumtemperatur abgekühlt und das Butyronitril **338** nach Aufreinigung mittels Destillation als orangefarbene Flüssigkeit (1.55 g, 16 mmol, 80 %) erhalten. Die analytischen Daten stimmen mit der Literatur überein.^[110]

Sdp.: 115 °C, ¹**H-NMR** (300 MHz, CDCl₃): δ 2.79 (sept, J = 7.0 Hz, 1H), 1.30 (d, J = 7.0 Hz, 6H) ppm.¹³**C-NMR** (101 MHz, CDCl₃): 181.0, 112.9, 43.1, 16.6 ppm. **IR** (Film): v 2927 (m), 1733 (s), 1461 (m), 1256 (s), 1172 (s), 850 (s) cm⁻¹.

PPAP 302

Gemäß **AAV-31** wurde PPAP **302** ausgehend von Cyclohexanon *cis-299* (85 mg, 0.2 mmol, 1 Äq.) und 3-Methyl-2-oxo-butyronitril **338** (194 mg, 2 mmol, 10 Äq.) nach einer Reaktionszeit von 24 h und Aufreinigung mittels Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 10:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 40:1) als hellgelbes Öl (32.3 mg, 0.07 mmol, 35 %) erhalten.

R_f-Wert: 0.53 (Petrolether / Essigsäureethylester; 20:1). ¹H-NMR (400 MHz, CDCl₃, 2:1 Mischung Enol-Tautomere): δ 18.8 (s, 1H), 18.43 (s, 0.5H), 7.33 – 7.27 (m, 2.9H), 7.24 – 7.10 (m, 4.6H), 5.60 – 5.40 (m, 1.5H), 5.14 – 5.05 (m, 1.5H), 5.00 – 4.93 (m, 1.5H), 4.72 – 4.66 (m, 0.5H), 4.63 – 4.56 (m, 1H), 3.92 – 3.76 (m, 1.5H), 3.38 – 3.24 (m, 2H), 3.21 (d, *J* = 14.1 Hz, 1H), 2.88 – 2.80 (m, 1H), 2.75 – 2.68 (m, 0.5H), 2.66 – 2.57 (m, 1.5H), 2.19 – 2.08 (m, 2.5 H), 2.07 – 1.91 (m, 2.5H), 1.85 – 1.74 (m, 1H), 1.66 – 1.60 (m, 4.5H), 1.44 (s, 3H), 1.42 (s, 1.5H), 1.32 – 1.24 (m, 1.5 1.22 (d, *J* = 6.7 Hz, 1.5H), 1.19 – 1.11 (m, 7.5H), 1.07 (d, *J* = 6.8 Hz, 1.5H), 0.97 – 0.92 (m, 6H), 0.88 (s, 1.5H) ppm. ¹³C-NMR (176 MHz, CDCl₃, 2:1 Mischung Enol-Tautomere): δ 208.5, 208.1, 207.8, 207.1, 200.0, 199.2, 194.2, 193.6, 137.9, 137.3, 134.1, 133.3, 133.2, 133.1, 131.4, 131.3, 128.1, 128.0, 126.3,

126.2, 123.9, 123.5, 119.4, 119.0, 114.8, 114.3, 69.7, 66.6, 65.4, 61.1, 49.0, 48.6, 46.5, 46.0, 40.7, 39.8, 35.8, 35.6, 35.5, 35.0, 32.3, 32.0, 29.32, 29.30, 26.8, 26.7, 25.93, 25.90, 22.32, 22.26, 19.4, 19.1, 18.9, 18.4, 17.9, 17.8 ppm. **IR** (Film): *v* 2974 (m), 2928 (m), 1730 (s), 1664 (s), 1547 (s), 1454 (m), 920 (m), 701 (m) cm⁻¹. **MS** (ESI): m/z (%) 507 (100), 485 (36), 416 (22), 394 (24). **HRMS** (ESI, m/z): berechnet für C₃₀H₃₇O₄Na₂⁺: 507.2482, gefunden: 507.2457.

PPAP 303

Gemäß **AAV-31** wurde PPAP **303** ausgehend von Cyclohexanon *cis-299* (85 mg, 0.2 mmol, 1 Äq.) und Pyruvonitril (0.14 mL, 2 mmol, 10 Äq.) nach einer Reaktionszeit von 48 h und Aufreinigung mittels HPLC (Petrolether / Essigsäureethylester; 20:1) als hellgelbes Öl (40.5 mg, 0.09 mmol, 45 %) erhalten.

R_F**Wert**: 0.44 (Petrolether / Essigsäureethylester; 20:1). ¹**H**-**NMR** (400 MHz, CDCl₃, 2.3:1 Mischung Enol-Tautomere): δ 18.58 (s, 1H), 18.06 (s, 0.4H), 7.35 – 7.29 (m, 2.9H), 7.25 – 7.11 (m, 4.3H), 5.59 – 5.38 (m, 1.4H), 5.15 – 5.04 (m, 1.4H), 4.98 – 4.93 (m, 1.4H), 4.70 – 4.64 (m, 0.4H), 4.59 – 4.52 (m, 1H), 3.37 – 3.23 (m, 2.9H), 2.87 – 2.80 (m, 1H), 2.74 – 2.68 (m, 0.4H), 2.64 – 2.57 (m, 1.4H), 2.56 (s, 1.3H), 2.54 (s, 3H), 2.18 – 2.05 (m, 2.9H), 2.02 – 1.92 (m, 1.4H), 1.92 – 1.75 (m, 1.4H), 1.65 (s, 1.3H), 1.63 (s, 3H), 1.44 (s, 3H), 1.43 (s, 1.3H), 1.34 – 1.18 (m, 1.9H), 1.16 (s, 3H), 1.14 (s, 1.3H), 0.95 (s, 3H),0.89 (s, 1.3H) ppm. ¹³C-NMR (101 MHz, CDCl₃, 2.3:1 Mischung Enol-Tautomere): δ 208.0, 207.6, 201.0, 199.5, 199.4, 199.2, 194.6, 193.7, 137.8, 137.2, 134.1, 133.4, 133.14, 133.12, 131.5, 131.4, 128.1, 128.0, 126.3, 126.2, 123.7, 123.4, 119.5, 119.0, 115.8, 115.3, 69.7, 66.6, 65.2, 61.4, 49.0, 48.6, 46.3, 46.0, 40.2, 40.1, 35.4, 32.3, 32.1, 29.32, 29.27, 27.8, 26.8, 26.74, 26.67, 25.9, 22.2, 22.1, 17.93, 17.86 ppm. **IR** (Film): *v* 2976 (m), 2929 (w), 1730 (m), 1667 (s), 1547 (s), 1436 (s), 920 (w), 702 (m) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₂₈H₃₄O₄Na⁺: 457.2349, gefunden: 457.2351.

14.2.2 Kreuzmetathese der nicht-natürlichen PPAPs

Allgemeine Arbeitsvorschrift 32 (AAV-32):

Gemäß einer Methode nach Lit.^[182] wurde das entsprechende Substrat (0.07 mmol, 1.0 Äq.), Amylen (7 mmol, 100.0 Äq.) und Grubb's II (10.5 µmol, 15 mol-%) in Dichlormethan (0.7 mL) gelöst und über Nacht refluxiert. Nach Abkühlen auf Raumtemperatur und Filtration über Kieselgel (Petrolether / Essigsäureethylester; 1:1) wurde das Rohprodukt mittels HPLC aufgereinigt.

(1S,5S,7R)-1-Benzyl-6,6-dimethyl-5,7-bis(3-methylbut-2-en-1-yl)bicyclo[3.3.1]nonan-2,4,9trion 304

Gemäß **AAV-32** wurde Bicyclus **304** ausgehend von Bicyclus **300** (28 mg, 0.07 mmol, 1 Äq.) nach Aufreinigung mittels Säulenchromatographie (Petrolether / Essigsäureethylester; 4:1) und anschließender HPLC (Petrolether / Essigsäureethylester; 10:1) als gelber Feststoff (24.7 mg, 0.059 mmol, 84 %) erhalten.

R_f-**Wert**: 0.30 (Petrolether / Essigsäureethylester; 4:1). ¹**H**-**NMR** (500 MHz, CDCl₃): δ 7.33 – 7.29 (m, 2H), 7.24 – 7.14 (m, 3H), 4.87-4.81 (m, 1H), 4.80 – 4.75 (m, 1H), 3.48 (d, *J* = 17.0 Hz, 1H), 3.35 (d, *J* = 13.5 Hz, 1H), 3.03 (d, *J* = 13.5 Hz, 1H), 2.67 (d, *J* = 17.0 Hz, 1H), 2.62 – 2.51 (m, 2H), 2.29 (dd, *J* = 14.2, 2.9 Hz, 1H), 2.15 – 2.05 (m, 2H), 1.68 (s, 3H), 1.61 (s, 3H), 1.56 (s, 3H), 1.51 (s, 3H), 1.47 – 1.40 (m, 1H), 1.28 – 1.25 (m, 1H), 1.24 (s, 3H), 0.94 (s, 3H) ppm. ¹³**C**-**NMR** (126 MHz, CDCl₃): δ 210.4, 202.6, 202.4, 136.7, 136.7, 133.8, 131.4, 128.1, 126.7, 122.6, 117.5, 70.5, 66.4, 63.2, 51.6, 46.4, 41.4, 37.3, 29.2, 27.4, 26.5, 26.2, 26.0, 23.0, 18.1, 18.0 ppm. **IR** (Film): *v* 2962 (m), 2922 (s), 2853 (m), 1729 (s), 1591 (m), 1453 (m), 1233 (s), 701 (m) cm⁻¹. **MS** (ESI): *m/z* (%) 443 (100) [M+Na]⁺, 385 (50), 229 (21). **HRMS** (ESI, *m/z*): berechnet für C₂₈H₃₆O₃Na⁺: 443.2557, gefunden: 443.2545.

Gemäß **AAV-32** wurde PPAP **306** ausgehend von PPAP **302** (9 mg, 0.02 mmol, 1 Äq.) nach Aufreinigung mittels HPLC (Petrolether / Essigsäureethylester; 40:1) als hellgelbes Öl (8 mg, 0.016 mmol, 80 %) erhalten.

R_f-**Wert**: 0.58 (Petrolether / Essigsäureethylester; 20:1). ¹**H**-**NMR** (400 MHz, CDCl₃, 2:1 Mischung Enol-Tautomere): δ 18.70 (s, 0.9H), 18.4 (s, 0.4H), 7.34 – 7.28 (m, 3H), 7.23 – 7.11 (m, 4.5H), 4.80 – 4.75 (m, 0.5H), 4.70 – 4.61 (m, 1.5H), 4.60 – 4.52 (m, 1H), 3.83 (sept, *J* = 6.8 Hz, 1.5H), 3.38 – 3.27 (m, 2H), 3.22 (d, *J* = 14.1 Hz, 1H), 2.72 – 2.60 (m, 2.5H), 2.55 – 2.49 (m, 0.5H), 2.18 – 2.05 (m, 3H), 2.04 – 1.86 (m, 2.5H), 1.82 – 1.70 (m, 1.5H), 1.69 – 1.66 (m, 4.5H), 1.65 (s, 1.5H), 1.63 (s, 3H), 1.55 (s, 4.5H), 1.44 (s, 3H), 1.42 (s, 1.5H), 1.22 – 1.19 (m, 2H), 1.17 (s, 3H), 1.16 (s, 1.5H), 1.14 (d, *J* = 6.7 Hz, 3H), 1.05 (d, *J* = 6.8 Hz, 1.5H), 0.98 – 0.92 (m, 6H), 0.87 (s, 1.5H) ppm. ¹³C-NMR (126 MHz, CDCl₃, 2:1 Mischung Enol-Tautomere): δ 208.5, 208.3, 208.1, 206.8, 200.1, 199.7, 195.0, 193.6, 138.0, 137.4, 135.0, 134.6, 133.1, 133.0, 131.40, 131.37, 128.03, 127.96, 126.3, 126.1, 123.9, 123.5, 119.7, 118.9, 114.6, 114.0, 69.3, 66.48, 66.46, 61.1, 48.8, 48.3, 46.3, 45.9, 40.5, 39.4, 35.53, 35.44, 35.3, 34.8, 29.3, 29.2, 27.1, 26.9, 26.8, 26.7, 26.1, 26.0, 25.93, 25.90, 22.2, 19.5, 19.0, 18.9, 18.4, 18.3, 17.9, 17.8 ppm. IR (Film): *v* 2965 (m), 2928 (m), 1729 (s), 1663 (m), 1574 (s), 1452 (m), 1374 (m), 965 (m), 732 (m), 701 (s) cm⁻¹. MS (ESI): *m/z* (%) 489 (37) [M-H]⁻, 475 (65), 419 (65), 405 (100). HRMS (ESI, *m/z*): berechnet für C₃₂H₄₁O₄: 489.2999, gefunden: 489.3005.

PPAP 307

Gemäß **AAV-32** wurde PPAP **307** ausgehend von PPAP **303** (13 mg, 0.03 mmol, 1 Äq.) nach Aufreinigung mittels HPLC (Petrolether / Essigsäureethylester; 20:1) als gelbes Öl (11 mg, 0.023 mmol, 79 %) erhalten.

R_F-**Wert**: 0.50 (Petrolether / Essigsäureethylester; 20:1). ¹**H**-**NMR** (400 MHz, CDCl₃, 2:1 Mischung Enol-Tautomere): δ 18.6 (s, 1H), 18.0 (s, 0.4H), 7.35 – 7.28 (m, 3H), 7.24 – 7.13 (m, 4.5H), 4.76 – 4.69 (m, 0.5H), 4.68 – 4.59 (m, 1.5H), 4.57 – 4.50 (m, 1H), 3.37 – 3.24 (m, 3H), 2.69 – 2.58 (m, 2.5H), 2.56 (s, 3H), 2.51 (s, 1.5H), 2.17 – 2.11 (m, 1H), 2.10 – 2.04 (m, 2H), 2.03 – 1.90 (m, 2H), 1.87 – 1.72 (m, 1.5H), 1.67 (s, 4.5H), 1.64 (s, 1.5H), 1.63 (s, 3H), 1.57 (s, 4.5H), 1.44 (s, 3H), 1.42 (s, 1.5H), 1.24 – 1.17 (m, 1.5H), 1.16 (s, 3H), 1.14 (s, 1.5H), 0.95 (s, 3H), 0.88 (s, 1.5H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃, 2:1 Mischung Enol-Tautomere): δ 208.3, 207.8, 200.9, 199.9, 199.3, 198.9, 195.3, 193.8, 137.8, 137.3, 134.9, 134.5, 133.0, 131.5, 128.0, 127.9, 126.3, 126.1, 123.7, 123.4, 119.4, 118.9, 115.6, 115.1, 69.3, 66.4, 65.2, 61.4, 48.9, 48.3, 46.3, 45.8, 40.1, 39.9, 35.3, 35.1, 29.8, 29.3, 27.8, 27.1, 26.9, 26.7, 26.3, 26.1, 25.9, 22.2, 22.0, 19.2, 18.3, 17.9 ppm. **IR** (Film): *v* 2971 (w), 2926 (m), 1729 (m), 1665 (s), 1544 (s), 1437 (s), 701 (s) cm⁻¹. **MS** (ESI): *m/z* (%) 507 (100) [M+Na₂]⁺, 485 (51), 416 (18), 238 (33). **HRMS** (ESI, *m/z*): berechnet für C₃₀H₃₇O₄Na₂⁺: 507.2482, gefunden: 507.2497.

14.3 Untersuchungen zur Anwendung der TBA[Fe]-katalysierten Dimroth-Cyclokondensation an PPAPs

(7R)-5-Allyl-6,6-dimethyl-1,7-bis(3-methylbut-2-en-1-yl)bicyclo[3.3.1]nonan-2,4,9-trion 309

Gemäß **AAV-30** wurde der Bicyclus **309** ausgehend von Cyclohexanon *cis*-**308** (443 g, 1.1 mmol, 1 Äq.) nach Aufreinigung mittels Flash-Säulenchromatographie an Kieselgel (Petrolether / Essigsäureethylester; 1:1) als hellgelbes Öl (356 g, 0.96 mmol, 87 %) erhalten.

R_f-**Wert**: 0.63 (Petrolether / Essigsäureethylester; 1:1). ¹**H**-**NMR** (400 MHz, CDCl₃): δ 5.74 – 5.60 (m, 1H), 5.12 – 5.00 (m, 3H), 4.87 (t, *J* = 6.7 Hz, 1H), 3.60 (d, *J* = 17.2 Hz, 1H), 2.91 (d, *J* = 17.2 Hz, 1H), 2.76 (dd, *J* = 12.5, 5.6 Hz, 1H), 2.51 – 3.39 (m, 3H), 2.24 – 2.16 (m, 2H), 2.10 – 2.04 (m, 1H), 1.68 (s, 3H), 1-65 (s, 6H), 1.52 (s, 3H), 1.50 - 1.41 (m, 1H), 1.37 – 1.30 (m, 1H), 1.25 (s, 3H), 0.98 (s, 3H) ppm. ¹³**C**-**NMR** (101 MHz, CDCl₃): δ 210.2, 202.7, 202.5, 135.8, 133.9, 132.4, 122.7, 120.6, 118.0, 70.9, 64.9, 63.2, 51.5, 46.6, 40.9, 32.7, 31.6, 29.4, 26.5, 26.1, 26.0, 23.1, 18.1, 18.0 ppm. **IR** (Film): *v* 2972 (m), 2918 (m), 1730 (s), 1584 (vs), 1237 (s), 917 (m) cm⁻¹. **HRMS** (ESI, *m/z*): berechnet für C₂₄H₃₄O₃Na⁺: 393.2400, gefunden: 393.2409.

TEIL III

Anhang

15 Abstract (deutsch)

In der vorliegenden Arbeit wurde das Anwendungsspektrum des nukleophilen Eisenkatalysators [Bu₄N][Fe(CO)₃NO], kurz TBA[Fe], auf dem Gebiet der eisenkatalysierten Aminierungsreaktionen erweitert.

Zunächst wurde eine TBA[Fe]-katalysierte Hemetsberger-Knittel-Reaktion, ausgehend von Vinylaziden, zur Darstellung verschiedener Indole entwickelt. Die optimierte Methode konnte auf eine Vielzahl verschiedener Substrate mit guten bis sehr guten Ausbeuten angewendet werden. Durch mechanistische Untersuchungen und DFT-Berechnungen konnte ein Reaktionsmechanismus postuliert werden. Die TBA[Fe]-katalysierte C-H-Aminierung konnte anschließend erfolgreich an einem Modellsubstrat zur Synthese des Naturstoffs Catharanthin eingesetzt werden.

Schema 15.1: Die im Rahmen dieser Arbeit entwickelten TBA[Fe]-katalysierten Aminierungen von C-Hund C-C-Bindungen.

Teil III

Darauf aufbauend konnte eine TBA[Fe]-katalysierte Aminierung von C-C-Bindungen entwickelt werden. Diese Methode erlaubt es, Iodazide in Iodoxazin-2-one und Iodoxazin-4-one umzuwandeln. Durch Vergleichsexperimente wurde deutlich, dass es sich hierbei um eine neuartige Aminierung handelt. Anhand erster mechanistischer Untersuchungen konnte ein Reaktionsmechanismus postuliert werden. In der Folge konnte diese Methode auch auf die entsprechenden Bromazide angewendet werden. Hierbei wurde ein Produktgemisch aus Bromund Chloroxazin-2-on erhalten. Durch weitere Optimierungen konnte die Bildung des Chloroxazin-2-ons fast vollständig unterdrückt werden.

Anschließend wurde eine TBA[Fe]-katalysierte Dimroth-Cyclokondensation-C(sp³)-H-Aminierungssequenz entwickelt, die zur Darstellung hochfunktionalisierter Triazolindoline genutzt werden kann. Außerdem konnte der Nutzen der TBA[Fe]-katalysierten Dimroth-Cyclokondensation aufgezeigt werden. Die Anwendung dieser in der Naturstoffsynthese wurde an einem Vorläufer der polycyclischen polyprenylierten Acylphloroglucinole (PPAPs) untersucht. Zusätzlich wurden nicht-natürliche PPAPs synthetisiert, deren biologische Aktivitäten im Vergleich zu den natürlichen Vertretern deutlich erhöht waren. Dabei stach ein PPAP, aufgrund einer höheren Aktivität gegenüber MRSA als Vancomycin, heraus. Im weiteren Verlauf zeigte dieses PPAP außerdem eine hohe Aktivität gegenüber unterschiedlichen VISA- und VRE-Stämmen.

16 Abstract (english)

In the present work, the catalytic activity of the nucleophilic iron catalyst [Bu₄N][Fe(CO)₃NO], in short TBA[Fe], was extended in the field of iron-catalyzed amination reactions.

First, a TBA[Fe]-catalyzed Hemetsberger-Knittel reaction based on vinyl azides was developed for the preparation of different indoles. The optimized procedure was applied to a variety of different substrates with good to excellent yields. By support of mechanistic investigations and DFT-calculations, a reaction mechanism was postulated. Subsequently, the TBA[Fe]-catalyzed C-H amination was successfully applied to a model substrate for the synthesis of the natural product catharanthine.

Schema 16.1: The TBA[Fe]-catalyzed aminations of C-H and C-C bonds developed in the present work. Based on this, a TBA[Fe]-catalyzed amination of C-C bonds was developed. This method enables the conversion of iodo azides into iodo oxazin-2-ones and iodo oxazin-4-ones. Comparative experiments have shown that this is a novel amination. Based on preliminary mechanistic investigations, a reaction mechanism was postulated. Subsequently, this method was also

applied to corresponding bromo azides and product mixtures of bromo and chloro oxazin-2-ones were obtained. By further optimization, the formation of the chloro oxazin-2-ones was almost completely suppressed.

Following this, a TBA[Fe]-catalyzed Dimroth cyclocondensation-C(sp³)-H amination sequence was developed, which can be used to synthesize highly functionalized triazole indolines. Furthermore, the benefits of the TBA[Fe]-catalyzed Dimroth cyclocondensation was demonstrated. The application of the Dimroth cyclocondensation in the synthesis of natural products was investigated by using a precursor of the polycyclic polyprenylated acylphloroglucinoles (PPAPs). In addition, non-natural PPAPs were synthesized, whose biological activities were significantly increased compared to natural PPAPs. One PPAP stood out due to its higher activity against MRSA than vancomycin. This PPAP also showed high activity against different VISA and VRE strains.

17 Abkürzungsverzeichnis

AAV	Allgemeine Arbeitsvorschrift
Ac	Acetyl
AcAc	Acetylacetonat
Ad	Adamantyl
aq.	wässrige
Äq.	Äquivalent(e)
Ar	Aryl
Bn	Benzyl
Вос	tert-Butyloxycarbonyl
Bu	Butyl
Bz	Benzoyl
bzw.	beziehungsweise
ca.	circa
CDI	N,N'-Carbonyldiimidazol
DC	Dünnschichtchromatographie
CDCl ₃	deuteriertes Chloroform
cod	1,5-Cyclooctadien
Ср	Cyclopentadienyl
δ	chemische Verschiebung
DABCO	1,4-Diazabicyclo[2.2.2]octan
dba	Dibenzylidenaceton
demin.	demineralisiert
DFT	Dichtefunktionaltheorie
DG	dirigierende Gruppe
DIPEA	N,N-Di <i>iso</i> propylethylamin
DME	Ethylenglycoldimethylether

DMF	N,N-Dimethylformamid
DMSO	Dimethylsulfoxid
dppf	1,1'-Bis(diphenylphosphino)ferrocen
dtbpy	4,4'-Di- <i>tert</i> -butyl-2,2'-dipyridyl
EDC	1-Ethyl-3-(3-dimethylaminopropyl)carbodiimid
EI	Elektronenstoßionisation
ESI	Elektronensprayionisation
esp	$\alpha, \alpha, \alpha', \alpha'$ -Tetramethyl-1,3-benzoldipropionsäure
Et	Etyhl
EtOH	Ethanol
eV	Elektronenvolt
GC	Gaschromatographie
h	Stunde(n)
НАТ	hydrogen atom transfer, Wasserstoffatomabstraktion
HMDS	Hexamethyldisilazan
hv	Lichtbestrahlung
HPLC	high-performance liquid chromatography, Hochleistungsflüssigchromatographie
HRMS	high resolution mass spectrometry, hochaufgelöste Massenspektrometrie
Hz	Hertz
IC ₅₀	half maximal inhibitory concentration, mittlere inhibitorische Konzentration
ⁱ Pr	<i>iso</i> -Propyl
IR	Infrarotspektroskopie
J	Kopplungskonstante
k	Geschwindigkeitskonstante
Kat.	Katalysator
konz.	Konzentriert
K ^t Amylat	Kalium- <i>tert</i> -Amylat
-----------------------	--
Lihmds	Lithiumhexamethyldisilazid
Lit.	Literaturangabe
т	meta
m/z (%)	Verhältnis Masse/Ladung
Μ	molar
[M]	Metallkomplex
Me	Methyl
MeCN	Acetonitril
MeOH	Methanol
Mes	Mesityl
MHz	Megahertz
MIC	minimal inhibitory concentration, minimale Hemmkonzentration
min	Minute(n)
min.	mindestens
MOF	metal-organic framework, metallorganisches Gerüst
MRSA	Methicillin-resistenter Staphylococcus aureus
MS	Massenspektrometrie
MS (4 Å)	Molekularsieb (4 Å)
MW	Mikrowelle
Ν	normal
n	linear
n. b.	nicht bestimmt
NBS	<i>N</i> -Bromsuccinimid
NIS	<i>N</i> -lodsuccinimid
NMR	nuclear magnetic resonance, Kern-Spin-Resonanz
Ns	Nosyl (2-Nitrobenzolsulfonyl)

Nu	Nukleophil
0	ortho
ρ	para
pin	pinacolato
Ph	Phenyl
РМВ	<i>p</i> -Methoxybenzyl
PPAPs	polycyclische polyprenylierte Acylphloroglucinole
ppm	parts per million
quant.	quantitativ
R	Rest
R _f	Retentionsfaktor (Dünnschichtchromatographie)
RT	Raumtemperatur
SAR	Struktur-Aktivitätsbeziehung
Sdp.	Siedepunkt
t	Zeit
t T	Zeit Temperatur
t T TBAB	Zeit Temperatur Tetrabutylammoniumbromid
t T TBAB TBA[Fe]	Zeit Temperatur Tetrabutylammoniumbromid Bu4N[Fe(CO)3NO]
t T TBAB TBA[Fe] TBHP	Zeit Temperatur Tetrabutylammoniumbromid Bu₄N[Fe(CO)₃NO] <i>tert</i> -Butylhydroperoxid
t T TBAB TBA[Fe] TBHP ^t Bu	Zeit Temperatur Tetrabutylammoniumbromid Bu4N[Fe(CO)3NO] <i>tert</i> -Butylhydroperoxid <i>tert</i> -Butyl
t T TBAB TBA[Fe] TBHP ^t Bu tert	Zeit Temperatur Tetrabutylammoniumbromid Bu₄N[Fe(CO)₃NO] <i>tert</i> -Butylhydroperoxid <i>tert</i> -Butyl tertiär
t T TBAB TBA[Fe] TBHP ^t Bu tert Tf	Zeit Temperatur Tetrabutylammoniumbromid Bu₄N[Fe(CO)₃NO] <i>tert</i> -Butylhydroperoxid <i>tert</i> -Butyl tertiär Trifluormethansulfonat
t T TBAB TBA[Fe] TBHP ^t Bu <i>tert</i> Tf	Zeit Temperatur Tetrabutylammoniumbromid Bu₄N[Fe(CO)₃NO] <i>tert</i> -Butylhydroperoxid <i>tert</i> -Butyl tertiär Trifluormethansulfonat
t T TBAB TBA[Fe] TBHP 'Bu tert Tf TFA THF	Zeit Temperatur Tetrabutylammoniumbromid Bu₄N[Fe(CO)₃NO] <i>tert</i> -Butylhydroperoxid <i>tert</i> -Butyl tertiär Trifluormethansulfonat Trifluoressigsäure Tetrahydrofuran
t T TBAB TBA[Fe] TBHP ^t Bu <i>tert</i> Tf TFA THF TMS	Zeit Temperatur Tetrabutylammoniumbromid Bu₄N[Fe(CO)₃NO] <i>tert</i> -Butylhydroperoxid <i>tert</i> -Butyl tertiär Trifluormethansulfonat Trifluoressigsäure Tetrahydrofuran Trimethylsilyl
t T TBAB TBA[Fe] TBHP 'Bu tert Tf TFA THF TMS TON	Zeit Temperatur Tetrabutylammoniumbromid Bu₄N[Fe(CO)₃NO] tert-Butylhydroperoxid tert-Butyl tertiär Trifluormethansulfonat Trifluoressigsäure Tetrahydrofuran Trimethylsilyl turnover number, katalytische Produktivität
t T TBAB TBA[Fe] TBHP ^t Bu <i>tert</i> Tf TFA THF TMS TON Tol	Zeit Temperatur Tetrabutylammoniumbromid Bu₄N[Fe(CO)₃NO] tert-Butylhydroperoxid tert-Butyl tertiär Trifluormethansulfonat Trifluoressigsäure Tetrahydrofuran Trimethylsilyl turnover number, katalytische Produktivität

UV	Ultraviolettstrahlung
ü. N.	über Nacht
VISA	Vancomycin-intermediate Staphylococcus aureus
VRE	Vancomycin-resistenter Enterococcus
VRSA	Vancomycin-resistenter Staphylococcus aureus
z. B.	zum Beispiel

18 DFT-Berechnungen

Die DFT-Berechnungen zu Abschnitt 3.4.3 wurden von *Dr. Johannes Lang* am Institut für Organische Chemie der Universität Stuttgart durchgeführt und sind der Vollständigkeit halber aufgeführt.

18.1 Methoden

Die DFT-Berechnungen wurden mit dem Funktional TPSS^[59] und dem def2tzvp^[60] Basissatz im Gaussian 16 Programm^[183] durchgeführt. Korrekturen der Dispersionswechselwirkungen wurden mit Hilfe von GD3BJ-damping^[184] ausgeführt. Es wurde das stabilste Konformer jeder Spezies gesucht und die jeweiligen relativen Gibbs-Energien bei 300 K angegeben. Die Strukturen wurden durch Frequenzberechnungen als tatsächliche Minima identifiziert. Es wurden Spin-Multiplizitäten des isolierten Katalysators sowie der Intermediate berücksichtigt. Dabei zeigte sich, dass die Triplett- und Quintett-Zustände um mehr als 60 kcal/mol weniger energetisch günstiger waren als die Singulett-Zustände, weshalb nur die Strukturen im Singulett-Zustand berücksichtigt wurden.

18.2 XYZ-Koordinaten

A2:

С	-5.12245	-0.61647	0.21101
С	-4.19864	0.40624	0.01788

С	-1.89235	-1.60636	0.00007
С	-3.21350	-2.10213	0.00091
С	-3.45138	-3.47288	0.00114
Н	-2.58287	-5.44942	0.00068
Н	-0.23972	-4.59871	-0.00070
Н	0.19131	-2.16178	-0.00095
Н	-4.04402	-1.40617	0.00143
Н	-4.47551	-3.83855	0.00182
С	-1.52418	-0.20404	-0.00005
Н	-0.45536	-0.01604	0.00017
С	-2.28815	0.92082	-0.00022
С	-1.65820	2.26944	0.00051
0	-2.29936	3.31160	0.00179
0	-0.31915	2.20002	-0.00021
С	0.39202	3.45832	0.00097
Н	1.44343	3.17818	-0.00014
Н	0.12883	4.03267	-0.89130
Н	0.13016	4.03022	0.89521
Ν	-4.41955	1.85528	-0.00125
Ν	-5.29276	2.59220	-0.00197
Ν	-3.69150	0.85313	-0.00064
Fe	2.84776	0.03729	-0.00013
С	1.81548	-0.27291	-1.41498
С	1.81521	-0.27241	1.41468
С	3.86827	-1.42315	0.00003
Ν	3.60670	1.50785	-0.00023
0	1.15331	-0.44243	-2.36574
0	1.15273	-0.44138	2.36529
0	4.55868	-2.36738	0.00016
0	4.13075	2.58308	-0.00020

AB:

С	2.93882	-3.61951	0.16370	
С	3.84236	-2.67934	-0.33894	
С	3.43588	-1.36691	-0.54917	
С	2.11605	-0.94320	-0.26737	
С	1.21874	-1.90801	0.24341	
С	1.63049	-3.21996	0.44991	
Н	3.24977	-4.64837	0.32791	
Н	4.86501	-2.97158	-0.56758	
Н	4.14362	-0.63776	-0.93941	
Н	0.19594	-1.62129	0.46242	
Н	0.91479	-3.94089	0.83765	
С	1.79833	0.45181	-0.50025	
Н	2.63792	1.05591	-0.83118	
С	0.62024	1.13348	-0.35208	
С	0.58694	2.59882	-0.66122	
0	-0.41112	3.24172	-0.91408	

С	-2.81193	0.15211	0.00189
С	-2.38073	-1.17474	0.21612
С	-3.30676	-2.18946	0.42847
Н	-5.39493	-2.72841	0.56732
Н	-6.18680	-0.39324	0.20608
Н	-4.54443	1.42726	-0.13118
Н	-1.32054	-1.40252	0.24136
Н	-2.95010	-3.20225	0.59658
С	-1.91639	1.29004	-0.15513
Н	-2.37743	2.26160	0.00312
С	-0.58755	1.30478	-0.43568
С	0.17945	2.57796	-0.43752
0	1.27694	2.74420	-0.93165
0	-0.49932	3.59602	0.18956
С	0.20866	4.84874	0.18167
Н	-0.43708	5.54682	0.71697
Н	1.17205	4.74164	0.68777
Н	0.38244	5.18619	-0.84466
Ν	-0.30196	-0.46642	-1.85984
Ν	0.25862	-1.59132	-2.12316
Ν	0.15104	0.15741	-0.77642
Fe	1.54375	-0.68919	0.22918
С	1.20033	0.31285	1.66396
С	3.07695	0.04918	-0.30457
С	2.14738	-1.99049	1.27957
Ν	1.20838	-1.96779	-1.14969
0	0.99699	0.96356	2.60966
0	4.10410	0.50221	-0.60114
0	2.53395	-2.84091	1.97072
0	1.76890	-3.05529	-1.37971

A3:

С	4.61834	-1.56295	-0.23139
С	4.99634	-0.23785	0.00698
С	4.05471	0.78106	-0.06571
С	2.69962	0.51861	-0.37984
С	2.34123	-0.82681	-0.63507
С	3.28720	-1.84271	-0.55262
Н	5.35087	-2.36388	-0.17103
Н	6.02880	-0.00112	0.25526
Н	4.35281	1.80875	0.13273
Н	1.31711	-1.06587	-0.89621
Н	2.97647	-2.86746	-0.73989
С	1.78213	1.63371	-0.42477
Н	2.23219	2.62187	-0.36757
С	0.40977	1.62706	-0.48195
С	-0.26127	2.96740	-0.44326
0	0.10991	3.96560	-1.03495

0	1.83719	3.17545	-0.64250
С	1.82718	4.57433	-0.97856
н	2.86847	4.89420	-0.90902
н	1.44055	4.72415	-1.99141
н	1.19992	5.12942	-0.27537
N	0.87540	-0.02299	3.22699
N	1.41418	0.91702	3.03627
N	-0.58298	0.59429	0.02534
Fe	-2.13825	-0.43527	-0.23234
С	-1.79840	-1.50808	-1.63743
С	-1.56853	1.03792	0.82844
N	-3.60617	-0.93613	0.25133
0	-1.62087	-2.20858	-2.55403
0	-1.70984	1.88928	1.69124
0	-4.65948	-1.32789	0.63748

A4:

С	1.19791	3.68087	-0.09525
С	2.59791	3.75991	0.03491
С	3.36945	2.60627	0.05121
С	2.73186	1.35944	-0.06033
С	1.30782	1.29325	-0.16933
С	0.53795	2.46135	-0.20429
Н	0.61004	4.59526	-0.10531
Н	3.07444	4.73351	0.12238
Н	4.45179	2.66003	0.14535
Н	-1.53393	0.73582	-1.44303
Н	-0.53750	2.40996	-0.29743
С	3.21744	0.01616	-0.09944
Н	4.23994	-0.32034	0.00656
С	2.12573	-0.80811	-0.21861
С	2.15103	-2.28249	-0.14974
0	2.92729	-2.99316	-0.76472
0	1.29001	-2.75330	0.79291
С	1.14330	-4.18501	0.80200
Н	0.42582	-4.39263	1.59653
Н	0.75649	-4.51905	-0.16471
Н	2.10336	-4.67032	1.00137
Ν	0.94935	-0.05221	-0.26366
Fe	-2.09089	0.07687	-0.15704
С	-2.95072	1.62366	-0.24680
С	-0.33685	-0.67095	-0.67087
С	-1.51342	0.35262	1.49823
Ν	-3.15829	-1.17489	-0.37564
0	-3.47074	2.66408	-0.34279
0	-0.19799	-1.71234	-1.28973

0	-1.29642	2.96689	0.43863
С	-2.05266	4.19016	0.47006
н	-2.83981	4.02003	1.20531
н	-1.41447	5.02865	0.76447
Н	-2.47963	4.38742	-0.51725
Ν	0.66402	-0.17166	2.77952
Ν	0.71490	0.92503	2.85751
Ν	-0.35178	0.49222	-0.42293
Fe	-1.46481	-1.29317	-0.13410
С	-0.59311	-2.63534	0.62976
С	-1.92792	-2.29823	-1.50768
0	0.01661	-3.49647	1.12403
0	-2.15822	1.26194	-1.57399
0	-2.34217	-3.01050	-2.33919
0	-3.54678	-1.23480	1.93041
Ν	-1.56944	0.41134	-0.89652
С	-2.67212	-1.17503	1.15517

A5:

С	-3.39963	-2.86471	0.00020
С	-4.66458	-2.23262	-0.00044
С	-4.77434	-0.85124	-0.00069
С	-3.59872	-0.07455	-0.00035
С	-2.32855	-0.73843	0.00024
С	-2.21905	-2.13555	0.00060
Н	-3.34939	-3.95045	0.00040
Н	-5.56269	-2.84548	-0.00076
Н	-5.74996	-0.37083	-0.00116
Н	-0.34392	0.06302	0.00068
Н	-1.25113	-2.62518	0.00114
С	-3.33136	1.32378	-0.00048
Н	-4.03923	2.14020	-0.00073
С	-1.95527	1.47368	-0.00006
С	-1.18773	2.72038	-0.00002
0	-1.66427	3.84572	-0.00058
0	0.13838	2.45345	0.00048
С	1.02327	3.58713	0.00037
Н	2.02361	3.15552	0.00064
Н	0.85422	4.19422	-0.89331
Н	0.85398	4.19461	0.89373
Ν	-1.35464	0.22596	0.00058
Fe	2.44319	-0.68203	0.00016
С	1.60739	-2.25004	0.00114
С	1.77865	0.14378	-1.43275
С	1.78085	0.14447	1.43375
Ν	4.09544	-0.77219	-0.00193
0	1.10286	-3.30780	0.00175
0	1.40978	0.67995	-2.40489

0	-1.16862	0.52917	2.59807
0	-4.03508	-1.96980	-0.38547

B1:

С	-5.04414	-0.51067	-0.06809
С	-4.92347	0.82606	0.32738
С	-3.67530	1.43299	0.36892
С	-2.49573	0.73504	0.00906
С	-2.63707	-0.62101	-0.37493
С	-3.89007	-1.22217	-0.41030
н	-6.01834	-0.99222	-0.09510
н	-5.80806	1.39369	0.60878
н	-3.58939	2.47229	0.68084
н	-1.75347	-1.20257	-0.60864
н	-3.96462	-2.26911	-0.69515
С	-1.24086	1.43761	0.07989
н	-1.26273	2.39406	0.59449
С	0.00205	1.07645	-0.37726
С	1.16576	1.98801	-0.30601
0	2.09464	2.00125	-1.09841
0	1.06285	2.87839	0.72464
С	2.20182	3.75367	0.84620
н	1.98091	4.38929	1.70506
н	3.10468	3.16311	1.01988
н	2.32597	4.35139	-0.06180
Ν	0.65818	-0.00906	-2.31280
Ν	0.98641	-0.11397	-3.40187
Ν	0.24499	-0.11814	-1.13845
Fe	1.09390	-1.19442	0.35644
С	2.16159	-2.32326	-0.48785
С	2.34950	-0.26943	1.19810
Ν	0.00013	-1.95450	1.33827
0	2.89448	-3.12043	-0.93829
0	3.19876	0.23207	1.83541
0	-0.56683	-2.62818	2.14633

O1.413040.681302.40594O5.28400-0.83710-0.00325

B2:

-4.88765	-0.26650	0.30175
-4.77924	1.10997	0.09442
-3.52643	1.68596	-0.08963
-2.34969	0.90796	-0.09077
-2.47730	-0.48071	0.12665
-3.73018	-1.04934	0.32633
-5.86313	-0.72428	0.44728
-5.66998	1.73387	0.08052
-3.44169	2.76022	-0.24198
-1.59399	-1.10655	0.16614
-3.80147	-2.12014	0.49820
-1.08238	1.60442	-0.25115
-1.13729	2.68365	-0.13018
0.15540	1.10805	-0.51453
1.32778	2.02060	-0.59661
2.33547	1.82014	-1.24398
1.14476	3.17041	0.13446
2.24529	4.09335	0.03524
1.97702	4.93087	0.68144
3.16886	3.61643	0.37431
2.37649	4.42556	-0.99932
-0.19518	-0.77807	-1.82749
-0.07245	-2.05951	-1.92169
0.43714	-0.23964	-0.78231
1.31350	-1.40048	0.41377
0.58492	-0.89428	1.95361
2.94093	-0.67946	0.57993
0.66554	-2.51218	-0.82854
0.05954	-0.50702	2.92571
3.99635	-0.18954	0.68057
0.89639	-3.74667	-0.66749
	-4.88765 -4.77924 -3.52643 -2.34969 -2.47730 -3.73018 -5.86313 -5.66998 -3.44169 -1.59399 -3.80147 -1.08238 -1.13729 0.15540 1.32778 2.33547 1.14476 2.24529 1.97702 3.16886 2.37649 -0.19518 -0.07245 0.43714 1.31350 0.58492 2.94093 0.66554 0.05954 3.99635 0.89639	-4.88765 -0.26650 -4.77924 1.10997 -3.52643 1.68596 -2.34969 0.90796 -2.47730 -0.48071 -3.73018 -1.04934 -5.86313 -0.72428 -5.66998 1.73387 -3.44169 2.76022 -1.59399 -1.10655 -3.80147 -2.12014 -1.08238 1.60442 -1.13729 2.68365 0.15540 1.10805 1.32778 2.02060 2.33547 1.82014 1.14476 3.17041 2.24529 4.09335 1.97702 4.93087 3.16886 3.61643 2.37649 4.42556 -0.19518 -0.7807 -0.07245 -2.05951 0.43714 -0.23964 1.31350 -1.40048 0.58492 -0.89428 2.94093 -0.67946 0.66554 -2.51218 0.05954 -0.50702

B4:

4.53562	-2.19586	-0.51955
4.97443	-0.87326	-0.66764
4.07165	0.17863	-0.61104
2.68127	-0.03467	-0.40549
2.25879	-1.38285	-0.26275
3.17217	-2.43055	-0.31676
5.24127	-3.02184	-0.56331
6.03138	-0.66587	-0.82661
4.42690	1.20191	-0.72277
1.20548	-1.58231	-0.10579
2.81150	-3.45086	-0.20013
1.80908	1.09907	-0.33980
2.27427	2.07039	-0.45988
0.42654	1.11090	-0.11770
-0.26505	2.45182	-0.05472
-1.39924	2.65450	0.33048
0.52935	3.48186	-0.50516
-0.10656	4.76934	-0.43447
0.62825	5.47398	-0.82875
-1.01979	4.77951	-1.03678
-0.36463	5.01514	0.60031
1.18999	-0.45942	2.93313
1.60301	0.56120	2.96309
-0.36014	0.07646	0.12684
-1.82122	-0.85282	-0.01748
-2.88627	0.11274	-1.00983
-2.16641	-2.26482	-1.04137
-2.61226	-1.27814	1.44168
-3.60600	0.73991	-1.67769
-2.37346	-3.15305	-1.76641
-3.60799	-1.62202	1.99776
	4.53562 4.97443 4.07165 2.68127 2.25879 3.17217 5.24127 6.03138 4.42690 1.20548 2.81150 1.80908 2.27427 0.42654 -0.26505 -1.39924 0.52935 -0.10656 0.62825 -1.01979 -0.36463 1.18999 1.60301 -0.36014 -1.82122 -2.88627 -2.16641 -2.61226 -3.60600 -2.37346 -3.60799	4.53562 -2.19586 4.97443 -0.87326 4.07165 0.17863 2.68127 -0.03467 2.25879 -1.38285 3.17217 -2.43055 5.24127 -3.02184 6.03138 -0.66587 4.42690 1.20191 1.20548 -1.58231 2.81150 -3.45086 1.80908 1.09907 2.27427 2.07039 0.42654 1.11090 -0.26505 2.45182 -1.39924 2.65450 0.52935 3.48186 -0.10656 4.76934 0.62825 5.47398 -1.01979 4.77951 -0.36463 5.01514 1.18999 -0.45942 1.60301 0.56120 -0.36014 0.07646 -1.82122 -0.85282 -2.8627 0.11274 -2.16641 -2.26482 -2.61226 -1.27814 -3.60600 0.73991 -2.37346 -3.15305 -3.60799 -1.62202

С	-3.68585	1.08775	0.40738
С	-3.65190	2.51174	0.16132
С	-2.46458	3.14361	-0.12923
С	-1.29366	2.36082	-0.28026
С	-1.41089	0.86678	-0.47349
С	-2.61441	0.28254	0.19795
н	-4.60122	0.65977	0.81226
Н	-4.55668	3.09373	0.31939
Н	-2.40201	4.23047	-0.14652
Н	-1.53434	0.69286	-1.56028
Н	-2.62644	-0.78103	0.40323
С	0.04817	2.62840	-0.18638
н	0.52107	3.59742	-0.09223
С	0.76201	1.38817	-0.14858
С	2.20720	1.30649	0.03731
0	2.90564	0.32113	0.19043
0	2.76564	2.58729	0.01852
С	4.18743	2.58406	0.20302
Н	4.48771	3.63349	0.16155
Н	4.45335	2.14388	1.16967
Н	4.68074	2.00868	-0.58712
Ν	-0.05268	0.29704	-0.20151
Fe	0.17863	-1.59615	-0.05913
С	-0.98675	-2.34332	-1.15070
С	-0.66682	-2.18790	1.37598
Ν	1.68395	-2.28476	-0.16066
0	-1.72245	-2.92341	-1.85853
0	-1.19782	-2.66885	2.30394
0	2.61583	-3.02119	-0.21604

B6:

С	4.04789	-0.57782	0.08775
С	4.54168	0.75128	0.06018
С	3.67421	1.82996	0.02517
С	2.28247	1.59290	0.01762
С	1.78973	0.23628	0.03879
С	2.68846	-0.84633	0.07918
н	4.75488	-1.40439	0.11621
Н	5.61686	0.91924	0.06771
Н	4.05826	2.84875	0.00676
Н	-0.03250	-1.52862	1.56258
Н	2.30960	-1.86324	0.10019
С	1.13620	2.41506	-0.00207
Н	1.08752	3.49459	-0.02340
С	0.03202	1.54851	-0.00187
С	-1.36222	1.97087	-0.03984
0	-2.36632	1.28868	-0.16909
0	-1.45995	3.35002	0.08474
С	-2.80874	3.83365	0.02239
Н	-2.73147	4.91768	0.13159
н	-3.27198	3.57349	-0.93504
Н	-3.41271	3.40557	0.82877
Ν	0.42191	0.22082	0.02075
Fe	-0.62578	-1.53526	0.14978
С	-2.00202	-1.39999	1.21806
С	-1.56603	-1.17377	-1.36641
Ν	-0.00687	-3.03785	-0.16140
0	-2.89686	-1.41332	1.96678
0	-2.19655	-1.00077	-2.32024
0	0.20275	-4.20095	-0.26202

С	4.36758	0.79908	0.17689
С	4.18047	0.16644	-1.05852
С	2.89343	-0.01742	-1.57687
С	1.79270	0.43411	-0.84964
С	2.00216	1.11352	0.38318
С	3.28091	1.27983	0.91527
н	5.37359	0.91923	0.57240
н	5.04295	-0.19601	-1.61264
н	2.74831	-0.53620	-2.52151
н	0.60604	1.75120	1.83283
н	3.43152	1.77613	1.87101
С	0.35331	0.35727	-1.07553
Н	-0.08875	0.31812	-2.06139
С	-0.26053	1.04226	0.03144
С	-1.53177	1.75449	0.09382
0	-1.89127	2.46371	1.02728
0	-2.29988	1.57324	-1.02966
С	-3.63852	2.08150	-0.90751
н	-4.11974	1.84924	-1.85942
н	-4.15695	1.58343	-0.08355
н	-3.62928	3.16171	-0.73003
Ν	0.78513	1.55825	0.85707
Fe	-0.56880	-1.06505	0.21804
С	-0.82483	-2.13538	-1.16383
С	-2.27376	-1.00256	0.67786
Ν	0.42072	-1.68230	1.39091
0	-1.00149	-2.86523	-2.06387
0	-3.40484	-1.03591	0.98702
0	0.98414	-2.29906	2.24273

19 Röntgenstrukturanalysen

19.1 Röntgenstrukturdaten von Indol 155

Abbildung 19.1: Röntgenstruktur von Indol 155.

Tabelle 19.1:	Kristalldaten und Strukturverfeinerungen von 155
Tabelle 13.1.	Kilstandaten und Strukturverreinerungen von 133

Identifikationsnummer	s2568lm
Empirische Formel	C15 H14 N2 O
Formelgewicht	238.28
Temperatur	130(2) K
Wellenlänge	0.71073 A
Kristallsystem, Raumgruppe	Triclinic, P-1
Gitterkonstante	a = 9.1600(15) A alpha = 67.709(7)°
	b = 10.9668(18) A beta = 86.828(8)°
	c = 12.881(2) A gamma = 85.215(8)°
Volumen	1192.7(3) A^3
Z, berechnete Dichte	4, 1.327 Mg/m^3
Absorptionskoeffizient	0.085 mm^-1
F(000)	504
Kristallgröße	0.33 x 0.26 x 0.10 mm
Theta-Bereich für Datensammlung	1.71 to 25.00 deg.
Bereich für Indizes -	9<=h<=10, -13<=k<=12, -15<=l<=15
Gesammelte/ unabhängige Reflexe	14863 / 4126 [R(int) = 0.0535]
Vollständigkeit für theta = 25.00	98.2 %
Korrektur Absorption	Semi-empirical from equivalents
Max. und min. Transmission	0.7300 and 0.6864
Verfeinerungsmethode	Full-matrix least-squares on F ²
Daten/ Einschränkung / Parameter	4126 / 0 / 334
Goodness-of-fit on F^2	1.029
Abschließende R Indizes [I>2sigma(I)]	R1 = 0.0930, wR2 = 0.2174
R Indizes (alle Daten)	R1 = 0.1281, wR2 = 0.2271
Absolute Strukturparameter	0.022(3)
Restelektronendichte	0.593 and -0.384 e.A^-3

Tabelle 19.2: Lageparameter (x 10⁴) und äquivalente isotrope Temperaturfaktoren (A² x 10³) von **155**.

U(eq) ist definiert als ein Drittel der Spur des orthogonalisierten U_{ij}-Tensors.

	х	У	Z	U(eq)
0(1/	A) 1203(4)	11816(4)	1872(3)	29(1)
N(1/	A) 3479(4)	12137(4)	2325(3)	21(1)
C(14	A) 2426(5)	12252(5)	1568(4)	22(1)
N(2/	A) 1159(5)	8624(4)	6509(3)	24(1)
C(24	A) 2841(6)	12957(5)	403(4)	24(1)

C(3A)	4205(6)	13381(5)	115(4)	26(1)
C(4A)	5247(6)	13200(5)	933(5)	30(1)
C(5A)	4856(6)	12567(5)	2029(4)	25(1)
C(6A)	3111(6)	11458(4)	3536(4)	21(1)
C(7A)	3449(6)	9964(5)	3919(4)	23(1)
C(8A)	2705(5)	9205(5)	5015(4)	20(1)
C(9A)	1628(5)	9659(5)	5588(4)	24(1)
C(10A)	1905(5)	7479(5)	6540(4)	23(1)
C(11A)	2912(5)	7805(5)	5612(4)	20(1)
C(12A)	3794(5)	6788(5)	5438(4)	24(1)
C(13A)	3650(6)	5500(5)	6169(4)	28(1)
C(14A)	2654(6)	5208(5)	7090(4)	31(1)
C(15A)	1791(6)	6179(5)	7292(4)	29(1)
O(1B)	6236(4)	7853(3)	3322(3)	27(1)
N(1B)	8444(4)	8732(4)	2709(3)	20(1)
C(1B)	7588(5)	7797(4)	3469(4)	18(1)
N(2B)	6037(5)	11929(4)	-1846(3)	26(1)
C(2B)	8332(6)	6833(5)	4417(4)	26(1)
C(3B)	9810(6)	6803(5)	4501(4)	26(1)
C(4B)	10632(6)	7725(5)	3664(4)	27(1)
C(5B)	9940(5)	8673(5)	2796(4)	22(1)
C(6B)	7758(6)	9829(5)	1761(4)	24(1)
C(7B)	7914(6)	9554(5)	682(4)	24(1)
C(8B)	7344(5)	10712(5)	-321(4)	21(1)
C(9B)	6281(5)	10698(5)	-1009(4)	24(1)
C(10B)	6948(5)	12768(5)	-1688(4)	22(1)
C(11B)	7796(5)	12043(5)	-731(4)	21(1)
C(12B)	8826(5)	12685(5)	-396(4)	23(1)
C(13B)	8979(6)	14019(5)	-999(5)	31(1)
C(14B)	8141(6)	14706(5)	-1954(5)	33(1)
C(15B)	7113(6)	14113(5)	-2309(4)	30(1)

Tabelle 19.3:Bindungslängen [Å] und Bindungswinkel [°] von **155**.

 O(1A)-C(1A)	1.240(6)
N(1A)-C(5A)	1.367(6)
N(1A)-C(1A)	1.373(6)
N(1A)-C(6A)	1.485(6)
C(1A)-C(2A)	1.450(7)
N(2A)-C(10A)	1.366(7)
N(2A)-C(9A)	1.373(7)
N(2A)-H(2AA)	0.88(6)
C(2A)-C(3A)	1.352(7)
C(2A)-H(2A)	0.9500
C(3A)-C(4A)	1.408(8)
С(ЗА)-Н(ЗА)	0.9500
C(4A)-C(5A)	1.359(7)
C(4A)-H(4A)	0.9500
С(5А)-Н(5А)	0.9500
C(6A)-C(7A)	1.531(7)
C(6A)-H(6A1)	0.9900
C(6A)-H(6A2)	0.9900
C(7A)-C(8A)	1.499(7)
C(7A)-H(7A1)	0.9900
С(7А)-Н(7А2)	0.9900
C(8A)-C(9A)	1.372(7)
C(8A)-C(11A)	1.435(7)
С(9А)-Н(9А)	0.9500
C(10A)-C(15A)	1.396(7)
C(10A)-C(11A)	1.420(7)
C(11A)-C(12A)	1.401(7)
C(12A)-C(13A)	1.381(7)
C(12A)-H(12A)	0.9500
C(13A)-C(14A)	1.408(8)
C(13A)-H(13A)	0.9500

C(14A)-C(15A)	1.369(8)
C(14A)-H(14A)	0.9500
C(15A)-H(15A)	0.9500
O(1B)-C(1B)	1.256(6)
N(1B)-C(5B)	1.375(6)
N(1B)-C(1B)	1.383(6)
N(1B)-C(6B)	1.4/6(6)
C(1B)- $C(2B)$	1.437(7)
N(2B)-C(9B)	1 381(7)
N(2B)-H(2BB)	0.94(7)
C(2B)-C(3B)	1.361(7)
С(2В)-Н(2В)	0.9500
C(3B)-C(4B)	1.401(7)
С(3В)-Н(3В)	0.9500
С(4В)-С(5В)	1.349(7)
C(4B)-H(4B)	0.9500
C(5B)-H(5B) C(5B) C(7B)	0.9500
C(BB) + U(BB1)	1.527(7)
C(6B)-H(6B2)	0.9900
C(7B)-C(8B)	1.508(7)
С(7В)-Н(7В1)	0.9900
С(7В)-Н(7В2)	0.9900
C(8B)-C(9B)	1.357(7)
C(8B)-C(11B)	1.439(7)
C(9B)-H(9B)	0.9500
C(10B)-C(15B)	1.403(7)
C(11B)-C(11B) C(11B)-C(12B)	1.419(7)
C(12B)-C(12B)	1.337(7)
C(12B)-H(12B)	0.9500
C(13B)-C(14B)	1.406(8)
C(13B)-H(13B)	0.9500
C(14B)-C(15B)	1.376(8)
C(14B)-H(14B)	0.9500
C(14B)-H(14B) C(15B)-H(15B)	0.9500 0.9500
C(14B)-H(14B) C(15B)-H(15B) C(5A)-N(1A)-C(1A)	0.9500 0.9500 124.0(4)
C(14B)-H(14B) C(15B)-H(15B) C(5A)-N(1A)-C(1A) C(5A)-N(1A)-C(6A)	0.9500 0.9500 124.0(4) 118.2(4)
C(14B)-H(14B) C(15B)-H(15B) C(5A)-N(1A)-C(1A) C(5A)-N(1A)-C(6A) C(1A)-N(1A)-C(6A)	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4)
C(14B)-H(14B) C(15B)-H(15B) C(5A)-N(1A)-C(1A) C(5A)-N(1A)-C(6A) C(1A)-N(1A)-C(6A) O(1A)-C(1A)-N(1A)	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4)
C(14B)-H(14B) C(15B)-H(15B) C(5A)-N(1A)-C(1A) C(5A)-N(1A)-C(6A) C(1A)-N(1A)-C(6A) O(1A)-C(1A)-N(1A) O(1A)-C(1A)-C(2A)	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4) 123.1(5)
C(14B)-H(14B) C(15B)-H(15B) C(5A)-N(1A)-C(1A) C(5A)-N(1A)-C(6A) C(1A)-N(1A)-C(6A) O(1A)-C(1A)-N(1A) O(1A)-C(1A)-C(2A) N(1A)-C(1A)-C(2A)	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4) 123.1(5) 114.9(4)
C(14B)-H(14B) C(15B)-H(15B) C(5A)-N(1A)-C(1A) C(5A)-N(1A)-C(6A) C(1A)-N(1A)-C(6A) O(1A)-C(1A)-N(1A) O(1A)-C(1A)-C(2A) N(1A)-C(1A)-C(2A) C(10A)-N(2A)-L(2AA)	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4) 123.1(5) 114.9(4) 109.3(4)
$C(14B)-H(14B) \\ C(15B)-H(15B) \\ \\ C(5A)-N(1A)-C(1A) \\ C(5A)-N(1A)-C(6A) \\ C(1A)-N(1A)-C(6A) \\ O(1A)-C(1A)-N(1A) \\ O(1A)-C(1A)-N(1A) \\ O(1A)-C(1A)-C(2A) \\ N(1A)-C(1A)-C(2A) \\ C(10A)-N(2A)-C(9A) \\ C(10A)-N(2A)-H(2AA) \\ C(10A)-N(2A)-H(2A) \\ C(10A)-N(2A)-H(2$	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 120(4)
$C(14B)-H(14B) \\ C(15B)-H(15B) \\ \\ C(5A)-N(1A)-C(1A) \\ C(5A)-N(1A)-C(6A) \\ C(1A)-N(1A)-C(6A) \\ O(1A)-C(1A)-N(1A) \\ O(1A)-C(1A)-C(2A) \\ N(1A)-C(1A)-C(2A) \\ C(10A)-N(2A)-C(9A) \\ C(10A)-N(2A)-H(2AA) \\ C(9A)-N(2A)-H(2AA) \\ C(3A)-C(2A)-C(1A) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 130(4) 120.7(5)
$C(14B)-H(14B) \\ C(15B)-H(15B) \\ \\ C(5A)-N(1A)-C(1A) \\ C(5A)-N(1A)-C(6A) \\ C(1A)-N(1A)-C(6A) \\ O(1A)-C(1A)-N(1A) \\ O(1A)-C(1A)-C(2A) \\ N(1A)-C(1A)-C(2A) \\ C(10A)-N(2A)-C(9A) \\ C(10A)-N(2A)-H(2AA) \\ C(9A)-N(2A)-H(2AA) \\ C(3A)-C(2A)-C(1A) \\ C(3A)-C(2A)-H(2A) \\ C(3A)-C(A)-H(A) \\ C(3A)-C(A)-H(A) \\ C(3A)-C(A)-H(A) \\ C(A)-H(A) \\ $	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 130(4) 120.7(5) 119.7
C(14B)-H(14B) C(15B)-H(15B) C(5A)-N(1A)-C(1A) C(5A)-N(1A)-C(6A) C(1A)-N(1A)-C(6A) O(1A)-C(1A)-N(1A) O(1A)-C(1A)-C(2A) N(1A)-C(1A)-C(2A) C(10A)-N(2A)-C(9A) C(10A)-N(2A)-H(2AA) C(10A)-N(2A)-H(2AA) C(3A)-C(2A)-H(2A) C(3A)-C(2A)-H(2A) C(1A)-C(2A)-H(2A)	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 130(4) 120.7(5) 119.7 119.7
$C(14B)-H(14B) \\ C(15B)-H(15B) \\ C(5A)-N(1A)-C(1A) \\ C(5A)-N(1A)-C(6A) \\ C(1A)-N(1A)-C(6A) \\ O(1A)-C(1A)-N(1A) \\ O(1A)-C(1A)-C(2A) \\ N(1A)-C(1A)-C(2A) \\ C(10A)-N(2A)-C(9A) \\ C(10A)-N(2A)-H(2AA) \\ C(10A)-N(2A)-H(2AA) \\ C(3A)-C(2A)-H(2A) \\ C(3A)-C(2A)-H(2A) \\ C(3A)-C(2A)-H(2A) \\ C(1A)-C(2A)-H(2A) \\ C(3A)-C(2A)-H(2A) \\ C(2A)-C(3A)-C(4A) \\ C(3A)-C(3A)-C(4A) \\ C(3A)-C(3A)-C(3A)-C(4A) \\ C(3A)-C(3A)-C(3A)-C(4A) \\ C(3A)-C(3A)-C(3A)-C(3A)-C(3A)-C(3A) \\ C(3A)-C(3$	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 130(4) 120.7(5) 119.7 119.7 121.4(5)
$C(14B)-H(14B) \\ C(15B)-H(15B) \\ C(5A)-N(1A)-C(1A) \\ C(5A)-N(1A)-C(6A) \\ C(1A)-N(1A)-C(6A) \\ O(1A)-C(1A)-N(1A) \\ O(1A)-C(1A)-C(2A) \\ N(1A)-C(1A)-C(2A) \\ C(10A)-N(2A)-C(9A) \\ C(10A)-N(2A)-H(2AA) \\ C(10A)-N(2A)-H(2AA) \\ C(3A)-C(2A)-H(2A) \\ C(2A)-C(3A)-H(2A) \\ C(2A)-C(3A)-H(3A) \\ C(2A)-C$	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 130(4) 120.7(5) 119.7 119.7 121.4(5) 119.3
$C(14B)-H(14B) \\ C(15B)-H(15B) \\ C(5A)-N(1A)-C(1A) \\ C(5A)-N(1A)-C(6A) \\ C(1A)-N(1A)-C(6A) \\ O(1A)-C(1A)-N(1A) \\ O(1A)-C(1A)-N(2A) \\ C(10A)-N(2A)-C(2A) \\ C(10A)-N(2A)-H(2AA) \\ C(10A)-N(2A)-H(2AA) \\ C(3A)-C(2A)-H(2A) \\ C(3A)-C(2A)-H(2A) \\ C(3A)-C(2A)-H(2A) \\ C(3A)-C(2A)-H(2A) \\ C(2A)-C(3A)-H(2A) \\ C(2A)-C(3A)-H(2A) \\ C(2A)-C(3A)-H(3A) \\ C(4A)-C(3A)-H(3A) \\ C(4A)-C(3A)-H(3A) \\ C(4A)-C(3A)-H(3A) \\ C(1A)-C(2A)-H(3A) \\ C(1A)-C(1A)-C(1A)-C(1A) \\ C(1A)-C(1A)-C(1A)-C(1A)-C(1A) \\ C(1A)-C(1A)-C(1A)-C(1A)-C(1A) \\ C(1A)-C(1A)-C(1A)-C(1A)-C(1A) \\ C(1A)-C(1$	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 130(4) 120.7(5) 119.7 119.7 121.4(5) 119.3 119.3
$C(14B)-H(14B) \\ C(15B)-H(15B) \\ C(5A)-N(1A)-C(1A) \\ C(5A)-N(1A)-C(6A) \\ C(1A)-N(1A)-C(6A) \\ O(1A)-C(1A)-N(1A) \\ O(1A)-C(1A)-N(2A) \\ C(1A)-N(2A)-C(2A) \\ C(10A)-N(2A)-C(2A) \\ C(10A)-N(2A)-H(2AA) \\ C(2A)-N(2A)-H(2AA) \\ C(3A)-C(2A)-H(2A) \\ C(3A)-C(2A)-H(2A) \\ C(3A)-C(2A)-H(2A) \\ C(2A)-C(3A)-H(2A) \\ C(2A)-C(3A)-H(2A) \\ C(2A)-C(3A)-H(3A) \\ C(4A)-C(3A)-H(3A) \\ C(5A)-C(4A)-C(3A) \\ C(5A)-C(4A)-C(3A) \\ C(5A)-C(5A)-H(5A) \\ C(5A)-H(5A)-H(5A) \\ C(5A)-H($	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 123.1(5) 114.9(4) 109.3(4) 120.7(5) 119.7 119.7 121.4(5) 119.3 119.3 119.3 118.2(5)
$C(14B)-H(14B) \\ C(15B)-H(15B) \\ C(5A)-N(1A)-C(1A) \\ C(5A)-N(1A)-C(6A) \\ C(1A)-N(1A)-C(6A) \\ O(1A)-C(1A)-N(1A) \\ O(1A)-C(1A)-N(2A) \\ C(1A)-N(2A)-C(2A) \\ C(10A)-N(2A)-C(2A) \\ C(10A)-N(2A)-H(2AA) \\ C(2A)-N(2A)-H(2AA) \\ C(3A)-C(2A)-H(2A) \\ C(3A)-C(2A)-H(2A) \\ C(3A)-C(2A)-H(2A) \\ C(2A)-C(3A)-C(4A) \\ C(2A)-C(3A)-H(3A) \\ C(4A)-C(3A)-C(3A) \\ C(5A)-C(4A)-H(4A) \\ C(5A)-C(4A)+H(4A) \\ C(5A)-L(A)+H(A) \\ C(5A)+L(A)+H(A) \\ C(5A)+L(A)+H(A) \\ C(5A)+L(A)+L(A) \\ C(5A)+L(A)+L(A)+L(A) \\ C(5A)+L(A)+L(A) \\ C(5A)+L(A)+L(A)+L(A) \\ C(5A)+L(A)+L(A)+L(A) \\ C(5A)+L(A)+L(A)+L(A)+L(A) \\ C(5A)+L(A)+L(A)+L(A)+L($	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 130(4) 120.7(5) 119.7 119.7 119.7 121.4(5) 119.3 118.2(5) 120.9
$C(14B)-H(14B) \\C(15B)-H(15B)$ $C(5A)-N(1A)-C(1A) \\C(5A)-N(1A)-C(6A) \\C(1A)-N(1A)-C(6A) \\O(1A)-C(1A)-N(1A) \\O(1A)-C(1A)-N(2A) \\C(1A)-C(2A) \\C(10A)-N(2A)-C(2A) \\C(10A)-N(2A)-H(2AA) \\C(10A)-N(2A)-H(2AA) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(1A)-C(2A)-H(2A) \\C(2A)-C(3A)-C(4A) \\C(2A)-C(3A)-H(3A) \\C(2A)-C(3A)-H(3A) \\C(5A)-C(4A)-H(3A) \\C(5A)-C(4A)-H(4A) \\C(3A)-C(5A)-N(1A) \\C(5A)-C(5A)-N(1A) \\C(5A)-N(1A) \\C(5A)-N(1A)$	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 130(4) 120.7(5) 119.7 119.7 121.4(5) 119.3 119.3 118.2(5) 120.9 120.9 (5)
$C(14B)-H(14B) \\C(15B)-H(15B) \\C(5A)-N(1A)-C(1A) \\C(5A)-N(1A)-C(6A) \\C(1A)-N(1A)-C(6A) \\O(1A)-C(1A)-N(1A) \\O(1A)-C(1A)-N(2A) \\C(10A)-N(2A)-C(2A) \\C(10A)-N(2A)-C(2A) \\C(10A)-N(2A)-H(2AA) \\C(10A)-N(2A)-H(2AA) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(2A)-C(3A)-C(4A) \\C(2A)-C(3A)-C(4A) \\C(2A)-C(3A)-H(3A) \\C(4A)-C(3A)-H(4A) \\C(5A)-C(4A)-H(4A) \\C(3A)-C(5A)-N(1A) \\C(4A)-C(5A)-H(4A) \\C(4A)-C(5A)-H$	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 130(4) 120.7(5) 119.7 119.7 121.4(5) 119.3 118.2(5) 120.9 120.6(5) 119.7
$C(14B)-H(14B) \\ C(15B)-H(15B) \\ C(5A)-N(1A)-C(1A) \\ C(5A)-N(1A)-C(6A) \\ C(1A)-N(1A)-C(6A) \\ O(1A)-C(1A)-N(1A) \\ O(1A)-C(1A)-N(2A) \\ C(1A)-C(2A) \\ C(10A)-N(2A)-C(2A) \\ C(10A)-N(2A)-H(2AA) \\ C(10A)-N(2A)-H(2AA) \\ C(3A)-C(2A)-H(2A) \\ C(3A)-C(2A)-H(2A) \\ C(3A)-C(2A)-H(2A) \\ C(2A)-C(3A)-C(4A) \\ C(2A)-C(3A)-C(4A) \\ C(2A)-C(3A)-H(3A) \\ C(2A)-C(3A)-H(3A) \\ C(5A)-C(4A)-H(3A) \\ C(5A)-C(4A)-H(4A) \\ C(3A)-C(5A)-H(4A) \\ C(4A)-C(5A)-H(4A) \\ C(4A)-C(5A)-H(5A) \\ N(1A)-C(5A)-H(5A) \\ N(1A)-C(5A)-H(1A) \\ N(1A)-C(5A)-H$	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 130(4) 120.7(5) 119.7 119.7 121.4(5) 119.3 118.2(5) 120.9 120.6(5) 119.7 119.7
$C(14B)-H(14B) \\C(15B)-H(15B) \\C(15B)-H(15B) \\C(15B)-H(15B) \\C(15B)-H(15B) \\C(14)-N(14)-C(6A) \\C(14)-N(14)-C(6A) \\O(14)-C(14)-N(1A) \\O(14)-C(14)-C(2A) \\N(14)-C(1A)-C(2A) \\C(10A)-N(2A)-C(9A) \\C(10A)-N(2A)-H(2AA) \\C(10A)-N(2A)-H(2AA) \\C(10A)-N(2A)-H(2AA) \\C(3A)-C(2A)-C(1A) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(2A)-C(3A)-C(4A) \\C(2A)-C(3A)-H(3A) \\C(2A)-C(3A)-H(3A) \\C(2A)-C(3A)-H(4A) \\C(3A)-C(4A)-H(4A) \\C(3A)-C(5A)-H(4A) \\C(4A)-C(5A)-H(5A) \\N(1A)-C(5A)-H(5A) \\N(1A)$	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 130(4) 120.7(5) 119.7 121.4(5) 119.3 118.2(5) 120.9 120.9 120.6(5) 119.7 119.7 119.7
$C(14B)-H(14B) \\C(15B)-H(15B)$ $C(5A)-N(1A)-C(1A) \\C(5A)-N(1A)-C(6A) \\C(1A)-N(1A)-C(6A) \\O(1A)-C(1A)-N(1A) \\O(1A)-C(1A)-N(2A) \\C(1A)-C(2A) \\C(10A)-N(2A)-C(2A) \\C(10A)-N(2A)-C(9A) \\C(10A)-N(2A)-H(2AA) \\C(9A)-N(2A)-H(2AA) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(2A)-C(3A)-C(4A) \\C(2A)-C(3A)-C(4A) \\C(2A)-C(3A)-H(3A) \\C(4A)-C(3A)-H(4A) \\C(5A)-C(4A)-H(4A) \\C(3A)-C(5A)-H(4A) \\C(4A)-C(5A)-H(5A) \\N(1A)-C(5A)-H(5A) \\N(1A)-C(6A)-H(6A1) \\C(1A)-C(6A)-H(6A) \\C(1A)-C(6A)-H(6A) \\C(1A)-C(1A) \\C(1A)-C(1A)-C(1A) \\C(1A)-C(1A)-C(1A) \\C(1A)-C(1A)-H(1A) \\C(1A)-L(1A)-L(1A) \\C(1A)$	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 120.7(5) 119.7 119.7 121.4(5) 119.3 119.3 118.2(5) 120.9 120.9 120.9 120.6(5) 119.7 119.7 119.7 119.7
$C(14B)-H(14B) \\C(15B)-H(15B)$ $C(5A)-N(1A)-C(1A) \\C(5A)-N(1A)-C(6A) \\C(1A)-N(1A)-C(6A) \\O(1A)-C(1A)-N(1A) \\O(1A)-C(1A)-N(2A) \\O(1A)-C(1A)-C(2A) \\C(10A)-N(2A)-C(9A) \\C(10A)-N(2A)-H(2AA) \\C(9A)-N(2A)-H(2AA) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(2A)-C(3A)-H(2A) \\C(2A)-C(3A)-H(2A) \\C(2A)-C(3A)-H(2A) \\C(2A)-C(3A)-H(2A) \\C(2A)-C(3A)-H(3A) \\C(2A)-C(3A)-H(3A) \\C(4A)-C(3A)-H(4A) \\C(5A)-C(4A)-H(4A) \\C(3A)-C(5A)-H(4A) \\C(4A)-C(5A)-H(5A) \\N(1A)-C(5A)-H(5A) \\N(1A)-C(6A)-H(6A1) \\C(7A)-C(6A)-H(6A1) \\C(7A)-C(6A)-H(6A) \\C(7A)-C(7A)-C(6A)-H(6A) \\C(7A)-C(7A)-C(7A)-C(7A) \\C(7A)-C(6A)-H(6A) \\C(7A)-C(7A)-C(7A)-C(7A) \\C(7A)-C(6A)-H(6A) \\C(7A)-C(7A)-C(7A)-C(7A) \\C(7A)-C(6A)-H(6A) \\C(7A)-C(7A)-C(7A)-C(7A)-C(7A) \\C(7A)-C(6A)-H(6A) \\C(7A)-C(7A)-C(7A)-C(7A)-C(7A)-C(7A) \\C(7A)-C(6A)-H(6A) \\C(7A)-C(7A)-C(7A)-C(7A)-C(7A)-C(7A)-C(7A)-C(7A)-C(7A)-C(7A)-C(7A) \\C(7A)-C($	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 120.7(5) 119.7 121.4(5) 119.3 119.3 119.3 118.2(5) 120.9 120.9 120.6(5) 119.7 119.7 119.7 119.7 119.7
$C(14B)-H(14B) \\C(15B)-H(15B)$ $C(5A)-N(1A)-C(1A) \\C(5A)-N(1A)-C(6A) \\C(1A)-N(1A)-C(6A) \\O(1A)-C(1A)-N(1A) \\O(1A)-C(1A)-N(2A) \\C(1A)-C(2A) \\N(1A)-C(1A)-C(2A) \\C(10A)-N(2A)-C(9A) \\C(10A)-N(2A)-H(2AA) \\C(9A)-N(2A)-H(2AA) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(2A)-C(3A)-H(2A) \\C(2A)-C(3A)-H(2A) \\C(2A)-C(3A)-H(2A) \\C(2A)-C(3A)-H(2A) \\C(2A)-C(3A)-H(2A) \\C(2A)-C(3A)-H(3A) \\C(4A)-C(3A)-H(3A) \\C(5A)-C(4A)-C(3A) \\C(5A)-C(4A)-H(4A) \\C(3A)-C(5A)-H(4A) \\C(3A)-C(5A)-H(5A) \\N(1A)-C(5A)-H(5A) \\N(1A)-C(6A)-H(6A1) \\C(7A)-C(6A)-H(6A1) \\N(1A)-C(6A)-H(6A2) \\C(1A)-C(6A)-H(6A) \\C(1A)-C(1A)-C(1A) \\C(1A)-C(1A)-C(1A)$	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 130(4) 120.7(5) 119.7 119.7 121.4(5) 119.3 119.3 119.3 118.2(5) 120.9 120.9 120.6(5) 119.7 119.7 119.7 119.7 119.7 119.7 119.7
$C(14B)-H(14B) \\C(15B)-H(15B)$ $C(5A)-N(1A)-C(1A) \\C(5A)-N(1A)-C(6A) \\C(1A)-N(1A)-C(6A) \\O(1A)-C(1A)-N(1A) \\O(1A)-C(1A)-N(2A) \\C(2A)-C(2A) \\C(10A)-N(2A)-C(2A) \\C(10A)-N(2A)-C(2A) \\C(10A)-N(2A)-H(2AA) \\C(3A)-C(2A)-H(2AA) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(2A)-C(3A)-H(2A) \\C(2A)-C(3A)-H(3A) \\C(4A)-C(5A)-H(4A) \\C(3A)-C(5A)-H(5A) \\N(1A)-C(5A)-H(5A) \\$	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 130(4) 120.7(5) 119.7 119.7 119.7 121.4(5) 119.3 118.2(5) 120.9 120.6(5) 119.7 120.6(5) 119.7 119.7 119.7 120.6(5) 119.7 120.6(5) 120.9 120.6(5) 120.9 120.6(5) 120.7 120.7 120.7 120.7 120.7 120.7 120.7 120.7 120.9
$C(14B)-H(14B) \\C(15B)-H(15B)$ $C(5A)-N(1A)-C(1A) \\C(5A)-N(1A)-C(6A) \\C(1A)-N(1A)-C(6A) \\O(1A)-C(1A)-N(1A) \\O(1A)-C(1A)-N(2A) \\C(10A)-N(2A)-C(9A) \\C(10A)-N(2A)-H(2AA) \\C(10A)-N(2A)-H(2AA) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(2A)-C(3A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(3A) \\C(3A)-C(2A)-H(3A) \\C(4A)-C(5A)-H(5A) \\N(1A)-C(5A)-H(5A) \\N(1A)-C(5A)-H$	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 130(4) 120.7(5) 119.7 121.4(5) 119.7 121.4(5) 119.3 118.2(5) 120.9 120.6(5) 119.7 110.2 (4) 109.4 1
C(14B)-H(14B) C(15B)-H(15B) C(5A)-N(1A)-C(1A) C(5A)-N(1A)-C(6A) C(1A)-N(1A)-C(6A) O(1A)-C(1A)-N(1A) O(1A)-C(1A)-N(2A)-C(9A) C(10A)-N(2A)-C(9A) C(10A)-N(2A)-H(2AA) C(9A)-N(2A)-H(2AA) C(3A)-C(2A)-H(2A) C(3A)-C(2A)-H(2A) C(3A)-C(2A)-H(2A) C(2A)-C(3A)-H(2A) C(2A)-C(3A)-H(2A) C(2A)-C(3A)-H(2A) C(2A)-C(3A)-H(2A) C(2A)-C(3A)-H(2A) C(2A)-C(3A)-H(2A) C(2A)-C(3A)-H(2A) C(2A)-C(3A)-H(3A) C(4A)-C(5A)-H(4A) C(5A)-C(4A)-H(5A) N(1A)-C(5A)-H(5A) N(1A)-C(5A)-H(6A2) C(7A)-C(6A)-H(6A2) C(7A)-C(7A)-H(6A2) C(7A)-C(7A)-H(6A) C(7A)-C(7A)-H(6A2) C(7A)-C(7A)-H(6A2) C(7A)-C(7A)-H(6A2) C(7A)-C(7A)-H(6A2) C(7A)-C(7A)-H(7A1)	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 123.1(5) 114.9(4) 109.3(4) 114(4) 130(4) 120.7(5) 119.7 119.7 121.4(5) 119.3 118.2(5) 120.9 120.6(5) 119.7 119.4 10
$C(14B)-H(14B) \\C(15B)-H(15B)$ $C(5A)-N(1A)-C(1A) \\C(5A)-N(1A)-C(6A) \\C(1A)-N(1A)-C(6A) \\O(1A)-C(1A)-N(1A) \\O(1A)-C(1A)-N(2A) \\O(1A)-C(1A)-C(2A) \\C(10A)-N(2A)-C(9A) \\C(10A)-N(2A)-H(2AA) \\C(9A)-N(2A)-H(2AA) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(2A)-C(3A)-H(2A) \\C(3A)-C(4A)-H(4A) \\C(3A)-C(5A)-H(5A) \\N(1A)-C(5A)-H(5A) \\N(1A)-C(6A)-H(6A2) \\C(7A)-C(6A)-H(6A2) \\C(7A)-C(6A)-H(6A2) \\C(8A)-C(7A)-H(7A1) \\C(6A)-C(7A)-H(7A1) \\C(6A)-C(7A)-H(7A) \\C(6A)-C(7$	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 123.1(5) 114.9(4) 109.3(4) 120.7(5) 119.7 119.7 121.4(5) 119.3 118.2(5) 120.9 120.6(5) 119.7 119.4 109.0 109.0
$C(14B)-H(14B) \\C(15B)-H(15B)$ $C(5A)-N(1A)-C(1A) \\C(5A)-N(1A)-C(6A) \\C(1A)-N(1A)-C(6A) \\O(1A)-C(1A)-N(1A) \\O(1A)-C(1A)-N(2A)-C(2A) \\C(10A)-N(2A)-C(2A) \\C(10A)-N(2A)-H(2AA) \\C(10A)-N(2A)-H(2AA) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(3A)-C(2A)-H(2A) \\C(2A)-C(3A)-H(2A) \\C(2A)-C(3A)-H(3A) \\C(4A)-C(5A)-H(4A) \\C(3A)-C(5A)-H(5A) \\N(1A)-C(6A)-H(6A2) \\C(7A)-C(6A)-H(6A2) \\C(7A)-C(6A)-H(6A2) \\C(7A)-C(6A)-H(6A2) \\C(7A)-C(6A)-H(7A1) \\C(6A)-C(7A)-H(7A1) \\C(6A)-C(7A)-H(7A1) \\C(8A)-C(7A)-H(7A1) \\C(8A)-C(7A)-H(7A2) \\C(8A)-C(7A)-H(7A) $	0.9500 0.9500 124.0(4) 118.2(4) 117.7(4) 121.9(4) 123.1(5) 114.9(4) 130(4) 120.7(5) 119.7 119.7 121.4(5) 119.3 118.2(5) 120.9 120.6(5) 119.7 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.0 109.0 109.0 109.0 109.0 109.0 109.0

H(7A1)-C(7A)-H(7A2)
C(9A)-C(8A)-C(11A)
$C(9\Lambda) - C(8\Lambda) - C(7\Lambda)$
C(3A) C(3A) C(7A)
C(IIA)-C(8A)-C(7A)
N(2A)-C(9A)-C(8A)
N(2A)-C(9A)-H(9A)
$C(8\Lambda) - C(0\Lambda) - H(0\Lambda)$
N(2A)-C(10A)-C(15A)
N(2A)-C(10A)-C(11A)
C(15A)-C(10A)-C(11A)
C(12A) C(11A) C(10A)
C(12A)-C(11A)-C(10A)
C(12A)-C(11A)-C(8A)
C(10A)-C(11A)-C(8A)
$C(13\Delta) - C(12\Delta) - C(11\Delta)$
C(12A) C(12A) U(12A)
C(13A)-C(12A)-H(12A)
C(11A)-C(12A)-H(12A)
C(12A)-C(13A)-C(14A)
$C(12A)_{-}C(13A)_{-}H(13A)$
C(12A) - C(13A) - II(13A)
C(14A)-C(13A)-H(13A)
C(15A)-C(14A)-C(13A)
C(15A)-C(14A)-H(14A)
$C(12\Lambda) - C(11\Lambda) - H(11\Lambda)$
C(13A) - C(14A) - T(14A)
C(14A)-C(15A)-C(10A)
C(14A)-C(15A)-H(15A)
C(10A)-C(15A)-H(15A)
$C(5R) \cdot N(1R) \cdot C(1R)$
C(5B)-N(1B)-C(6B)
C(1B)-N(1B)-C(6B)
O(1B)-C(1B)-N(1B)
O(1P) - C(1P) - C(2P)
O(1D) - C(1D) - C(2D)
N(1B)-C(1B)-C(2B)
C(10B)-N(2B)-C(9B)
C(10B)-N(2B)-H(2BB)
$C(OP) \cdot N(2P) \cdot H(2PP)$
C(3B)-C(2B)-C(1B)
C(3B)-C(2B)-H(2B)
C(1B)-C(2B)-H(2B)
C(2P) C(2P) C(4P)
С(2В)-С(3В)-Н(3В)
C(4B)-C(3B)-H(3B)
C(5B)-C(4B)-C(3B)
C(SP) - C(AP) - H(AP)
C(3D) - C(4D) - H(4D)
С(ЗВ)-С(4В)-Н(4В)
C(4B)-C(5B)-N(1B)
C(4B)-C(5B)-H(5B)
N(1B)-C(5B)-H(5B)
N(1B) C(CB) C(7B)
N(1B)-C(6B)-H(6B1)
C(7B)-C(6B)-H(6B1)
N(1B)-C(6B)-H(6B2)
C(7B)-C(6B)-H(6B2)
H(6B1)-C(6B)-H(6B2)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1) C(8B)-C(7B)-H(7B2)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1) C(8B)-C(7B)-H(7B2) C(6B)-C(7B)-H(7B2)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1) C(8B)-C(7B)-H(7B2) C(6B)-C(7B)-H(7B2) H(7B1)-C(7B)-H(7B2)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1) C(8B)-C(7B)-H(7B2) C(6B)-C(7B)-H(7B2) H(7B1)-C(7B)-H(7B2) C(9B)-C(8B)-C(11B)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1) C(8B)-C(7B)-H(7B2) C(6B)-C(7B)-H(7B2) H(7B1)-C(7B)-H(7B2) C(9B)-C(7B)-C(11B) C(2B)-C(2B)-C(2B)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1) C(8B)-C(7B)-H(7B2) C(6B)-C(7B)-H(7B2) H(7B1)-C(7B)-H(7B2) C(9B)-C(8B)-C(11B) C(9B)-C(8B)-C(7B)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1) C(8B)-C(7B)-H(7B2) C(6B)-C(7B)-H(7B2) H(7B1)-C(7B)-H(7B2) C(9B)-C(7B)-H(7B2) C(9B)-C(8B)-C(1B) C(9B)-C(8B)-C(7B)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1) C(8B)-C(7B)-H(7B2) C(6B)-C(7B)-H(7B2) H(7B1)-C(7B)-H(7B2) C(9B)-C(8B)-C(11B) C(9B)-C(8B)-C(7B) C(11B)-C(8B)-C(7B) C(8B)-C(9B)-N(2B)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1) C(8B)-C(7B)-H(7B2) C(6B)-C(7B)-H(7B2) H(7B1)-C(7B)-H(7B2) C(9B)-C(8B)-C(11B) C(9B)-C(8B)-C(7B) C(11B)-C(8B)-C(7B) C(8B)-C(9B)-N(2B) C(8B)-C(9B)-H(9B)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1) C(8B)-C(7B)-H(7B2) C(6B)-C(7B)-H(7B2) H(7B1)-C(7B)-H(7B2) C(9B)-C(7B)-H(7B2) C(9B)-C(7B)-C(7B) C(11B)-C(8B)-C(7B) C(11B)-C(8B)-C(7B) C(8B)-C(9B)-H(9B) N(2B) C(9B)-H(9B)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1) C(8B)-C(7B)-H(7B2) C(6B)-C(7B)-H(7B2) H(7B1)-C(7B)-H(7B2) C(9B)-C(8B)-C(11B) C(9B)-C(8B)-C(11B) C(9B)-C(8B)-C(7B) C(11B)-C(8B)-C(7B) C(11B)-C(8B)-C(7B) C(8B)-C(9B)-H(9B) N(2B)-C(9B)-H(9B) N(2B)-C(9B)-H(9B)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1) C(8B)-C(7B)-H(7B2) C(6B)-C(7B)-H(7B2) H(7B1)-C(7B)-H(7B2) C(9B)-C(8B)-C(11B) C(9B)-C(8B)-C(7B) C(11B)-C(8B)-C(7B) C(11B)-C(8B)-C(7B) C(8B)-C(9B)-N(2B) C(8B)-C(9B)-N(2B) C(8B)-C(9B)-H(9B) N(2B)-C(10B)-C(15B)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1) C(8B)-C(7B)-H(7B2) C(6B)-C(7B)-H(7B2) H(7B1)-C(7B)-H(7B2) C(9B)-C(8B)-C(11B) C(9B)-C(8B)-C(7B) C(11B)-C(8B)-C(7B) C(11B)-C(8B)-C(7B) C(8B)-C(9B)-N(2B) C(8B)-C(9B)-H(9B) N(2B)-C(9B)-H(9B) N(2B)-C(10B)-C(15B) N(2B)-C(10B)-C(11B)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1) C(8B)-C(7B)-H(7B2) C(6B)-C(7B)-H(7B2) H(7B1)-C(7B)-H(7B2) C(9B)-C(8B)-C(11B) C(9B)-C(8B)-C(7B) C(11B)-C(8B)-C(7B) C(8B)-C(9B)-N(2B) C(8B)-C(9B)-N(2B) C(8B)-C(9B)-H(9B) N(2B)-C(10B)-C(15B) N(2B)-C(10B)-C(11B) C(15B)-C(10B)-C(11B)
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1) C(8B)-C(7B)-H(7B2) C(6B)-C(7B)-H(7B2) H(7B1)-C(7B)-H(7B2) C(9B)-C(8B)-C(11B) C(9B)-C(8B)-C(7B) C(11B)-C(8B)-C(7B) C(11B)-C(8B)-C(7B) C(8B)-C(9B)-H(9B) N(2B)-C(9B)-H(9B) N(2B)-C(10B)-C(15B) N(2B)-C(10B)-C(11B) C(12B)-C(10B)-C(11B) C(12B)-C(10B)-C(11B) C(12B)-C(10B)-C(11B) C(12B)-C(10B)-C(11B) C(12B)-C(10B)-C(11B) C(12B)-C(10B)-C(11B) C(12B)-C(10B)-C(11B) C(12B)-C(10B)-C(11B) C(12B)-C(10B)-C(11B) C(12B)-C(10B)-C(11B) C(12B)-C(10B)-C(11B) C(12B)-C(10B)-C(11B) C(12B)-C(10B)-C(11B) C(12B)-C(10B)-C(11B) C(12B)-C(10B)-C(11B) C(12B)-C(10B)-C(11B) C(12B)-C(10B)-C(10B)-C(10B) C(12B)-C(10
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B1) C(8B)-C(7B)-H(7B2) C(6B)-C(7B)-H(7B2) C(6B)-C(7B)-H(7B2) C(9B)-C(8B)-C(1B) C(9B)-C(8B)-C(7B) C(11B)-C(8B)-C(7B) C(11B)-C(8B)-C(7B) C(8B)-C(9B)-N(2B) C(8B)-C(9B)-N(2B) C(8B)-C(9B)-H(9B) N(2B)-C(10B)-C(15B) N(2B)-C(10B)-C(15B) N(2B)-C(10B)-C(11B) C(15B)-C(10B)-C(11B) C(12B)-C(11B)-C(10B) C(12B)-C(11B)-C(10B) C(12B)-C(11B)-C(10B) C(12B)-C(11B)-C(10B) C(12B)-C(11B)-C(10B) C(12B)-C(11B)-C(10B) C(12B)-C(10B)-C(11B) C(12B)-C(11B)-C(10B) C(12B)-C(10B)-C(10B)-C(10B) C(12B)-C(10B)-
H(6B1)-C(6B)-H(6B2) C(8B)-C(7B)-C(6B) C(8B)-C(7B)-H(7B1) C(6B)-C(7B)-H(7B2) C(6B)-C(7B)-H(7B2) H(7B1)-C(7B)-H(7B2) C(9B)-C(8B)-C(11B) C(9B)-C(8B)-C(7B) C(11B)-C(8B)-C(7B) C(11B)-C(8B)-C(7B) C(8B)-C(9B)-N(2B) C(8B)-C(9B)-N(2B) C(8B)-C(9B)-H(9B) N(2B)-C(10B)-C(15B) N(2B)-C(10B)-C(11B) C(12B)-C(10B)-C(11B) C(12B)-C(11B)-C(10B) C(12B)-C(11B)-C(10B) C(12B)-C(11B)-C(8B)

107.8

106.8(4)

128.1(5)

124.9(4)

109.7(4)

130.6(5)

107.7(4)

121.7(5)

119.0(4)

134.5(5)

106.5(4)

119.1(5)

120.5

120.5

119.6

119.6

119.2

119.2

121.1

121.1

122.1(4)

117.9(4)

120.0(4)

119.8(4)

124.1(4)

116.0(4)

108.2(4)

125(4)

125(4)

119.5

119.9

119.9

120.3

120.3

119.5 119.5

109.4

109.4

109.4

109.4

108.0

109.1

109.1

109.1

109.1

107.9

106.6(4)

126.1(5)

127.3(4)

110.7(5)

124.7

124.7

130.0(5)

108.2(4)

121.8(5)

119.2(4)

134.5(5) 106.3(4)

112.3(4)

120.2(5)

119.5(5)

121.0(5)

111.3(4)

120.9(5) 119.5

120.8(5)

121.6(5)

117.8(5)

125.2

125.2

C(13B)-C(12B)-C(11B)	119.2(5)
C(13B)-C(12B)-H(12B)	120.4
C(11B)-C(12B)-H(12B)	120.4
C(12B)-C(13B)-C(14B)	120.3(5)
C(12B)-C(13B)-H(13B)	119.9
C(14B)-C(13B)-H(13B)	119.9
C(15B)-C(14B)-C(13B)	122.3(5)
C(15B)-C(14B)-H(14B)	118.8
C(13B)-C(14B)-H(14B)	118.8
C(14B)-C(15B)-C(10B)	117.1(5)
C(14B)-C(15B)-H(15B)	121.4
C(10B)-C(15B)-H(15B)	121.4

Tabelle 19.4: Anisotrope Temperaturfaktoren (A² x 10³) von 155.

	U11	U22	U33	U23	U13	U12
O(1A)	24(2)	39(2)	22(2)	-9(2)	5(2)	-10(2)
N(1A)	23(2)	18(2)	19(2)	-5(2)	3(2)	-7(2)
C(1A)	24(3)	22(3)	20(3)	-8(2)	1(2)	-1(2)
N(2A)	27(2)	28(3)	17(2)	-10(2)	6(2)	-8(2)
C(2A)	31(3)	24(3)	16(3)	-8(2)	1(2)	-2(2)
C(3A)	36(3)	22(3)	22(3)	-13(2)	8(2)	-4(2)
C(4A)	22(3)	29(3)	38(3)	-11(3)	7(2)	-7(2)
C(5A)	26(3)	23(3)	28(3)	-10(2)	2(2)	-8(2)
C(6A)	33(3)	14(2)	12(2)	-2(2)	-1(2)	-3(2)
C(7A)	30(3)	18(3)	20(3)	-9(2)	5(2)	-1(2)
C(8A)	23(2)	20(3)	16(2)	-6(2)	-3(2)	-3(2)
C(9A)	28(3)	26(3)	21(3)	-13(2)	-1(2)	-2(2)
C(10A)	22(3)	28(3)	16(3)	-5(2)	-5(2)	-6(2)
C(11A)	23(2)	22(3)	14(2)	-7(2)	-5(2)	-3(2)
C(12A)	27(3)	24(3)	18(3)	-6(2)	-2(2)	-4(2)
C(13A)	36(3)	23(3)	23(3)	-6(2)	-8(2)	2(2)
C(14A)	42(3)	23(3)	23(3)	-1(2)	-9(2)	-7(2)
C(15A)	32(3)	37(3)	15(3)	-3(2)	1(2)	-15(2)
O(1B)	24(2)	30(2)	24(2)	-6(2)	-4(2)	-4(2)
N(1B)	28(2)	18(2)	15(2)	-8(2)	-2(2)	0(2)
C(1B)	32(3)	10(2)	12(2)	-4(2)	2(2)	-5(2)
N(2B)	29(2)	31(3)	15(2)	-4(2)	-2(2)	-4(2)
C(2B)	37(3)	19(3)	22(3)	-7(2)	-8(2)	-2(2)
C(3B)	42(3)	17(3)	20(3)	-8(2)	-10(2)	3(2)
C(4B)	25(3)	33(3)	29(3)	-19(3)	-2(2)	2(2)
C(5B)	28(3)	22(3)	19(3)	-10(2)	3(2)	-7(2)
C(6B)	31(3)	19(3)	19(3)	-5(2)	-2(2)	0(2)
C(7B)	31(3)	20(3)	17(3)	-4(2)	0(2)	-5(2)
C(8B)	23(3)	20(3)	16(2)	-3(2)	1(2)	-1(2)
C(9B)	28(3)	26(3)	18(3)	-8(2)	2(2)	-5(2)
C(10B)	20(2)	27(3)	17(3)	-7(2)	3(2)	-2(2)
C(11B)	23(2)	20(3)	16(2)	-4(2)	4(2)	-3(2)
C(12B)	24(3)	25(3)	18(3)	-6(2)	1(2)	-2(2)
C(13B)	32(3)	29(3)	30(3)	-9(3)	1(2)	-5(2)
C(14B)	36(3)	18(3)	34(3)	2(2)	1(3)	0(2)
C(15B)	30(3)	27(3)	24(3)	-2(2)	-3(2)	6(2)

Der Exponent des anisotropen Temperaturfaktors ist definiert als: $-2\pi^2$ [$h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12$]

	x	У	Z	U(eq)
H(2AA)	300(70)	8500(60)	6860(50)	36(17)
H(2A)	2148	13122	-165	28
H(3A)	4465	13811	-656	31
H(4A)	6199	13511	724	36
H(5A)	5545	12421	2596	31
H(6A1)	2057	11643	3674	25
H(6A2)	3682	11806	3981	25
H(7A1)	3135	9664	3337	27
H(7A2)	4522	9768	3995	27
H(9A)	1262	10554	5379	28
H(12A)	4480	6982	4826	28
H(13A)	4230	4803	6050	34
H(14A)	2578	4314	7583	37
H(15A)	1136	5975	7924	35
H(2BB)	5230(70)	12200(70)	-2320(60)	50(20)
H(2B)	7784	6207	4992	31
H(3B)	10286	6155	5131	31
H(4B)	11668	7682	3706	32
H(5B)	10494	9311	2237	27
H(6B1)	8226	10654	1647	28
H(6B2)	6706	9957	1941	28
H(7B1)	8961	9342	544	28
H(7B2)	7370	8774	777	28
H(9B)	5774	9944	-927	29
H(12B)	9414	12213	236	27
H(13B)	9653	14471	-765	37
H(14B)	8290	15611	-2369	40
(1 I B)				

Tabelle 19.5:Lageparameter der Wasserstoffatome (x 10⁴) und isotrope Temperaturfaktoren (A² x 10³)
von **155**.

Tabelle 19.6:	Torsionswinkel	[°] von 155 .
---------------	----------------	----------------------

C(5A)-N(1A)-C(1A)-O(1A)	177.9(5)
C(6A)-N(1A)-C(1A)-O(1A)	0.3(7)
C(5A)-N(1A)-C(1A)-C(2A)	-4.0(7)
C(6A)-N(1A)-C(1A)-C(2A)	178.4(4)
O(1A)-C(1A)-C(2A)-C(3A)	-178.2(5)
N(1A)-C(1A)-C(2A)-C(3A)	3.8(7)
C(1A)-C(2A)-C(3A)-C(4A)	-2.4(8)
C(2A)-C(3A)-C(4A)-C(5A)	0.8(8)
C(3A)-C(4A)-C(5A)-N(1A)	-0.9(8)
C(1A)-N(1A)-C(5A)-C(4A)	2.7(8)
C(6A)-N(1A)-C(5A)-C(4A)	-179.7(5)
C(5A)-N(1A)-C(6A)-C(7A)	-90.6(5)
C(1A)-N(1A)-C(6A)-C(7A)	87.1(5)
N(1A)-C(6A)-C(7A)-C(8A)	-163.0(4)
C(6A)-C(7A)-C(8A)-C(9A)	11.0(7)
C(6A)-C(7A)-C(8A)-C(11A)	-175.1(4)
C(10A)-N(2A)-C(9A)-C(8A)	-1.0(6)
C(11A)-C(8A)-C(9A)-N(2A)	0.3(5)
C(7A)-C(8A)-C(9A)-N(2A)	175.0(5)
C(9A)-N(2A)-C(10A)-C(15A)	-178.4(5)
C(9A)-N(2A)-C(10A)-C(11A)	1.2(5)
N(2A)-C(10A)-C(11A)-C(12A	-178.5(4)
C(15A)-C(10A)-C(11A)-C(12A	A) 1.2(7)
N(2A)-C(10A)-C(11A)-C(8A)	-1.0(5)
C(15A)-C(10A)-C(11A)-C(8A)	178.6(4)
C(9A)-C(8A)-C(11A)-C(12A)	177.3(5)
C(7A)-C(8A)-C(11A)-C(12A)	2.4(9)

C(9A)-C(8A)-C(11A)-C(10A)	0.5(5)
C(7A)-C(8A)-C(11A)-C(10A)	-174.5(4)
C(10A)-C(11A)-C(12A)-C(13A)	0.4(7)
C(8A)-C(11A)-C(12A)-C(13A)	-176.1(5)
C(11A)-C(12A)-C(13A)-C(14A)	-1.2(7)
C(12A)-C(13A)-C(14A)-C(15A)	0.3(8)
C(13A)-C(14A)-C(15A)-C(10A)	1.3(8)
N(2A)-C(10A)-C(15A)-C(14A)	177.5(5)
C(11A)-C(10A)-C(15A)-C(14A)	-2.0(7)
C(5B)-N(1B)-C(1B)-O(1B)	-176.3(4)
C(6B)-N(1B)-C(1B)-O(1B)	3.1(6)
C(5B)-N(1B)-C(1B)-C(2B)	5.8(6)
C(6B)-N(1B)-C(1B)-C(2B)	-174.8(4)
O(1B)-C(1B)-C(2B)-C(3B)	177.7(5)
N(1B)-C(1B)-C(2B)-C(3B)	-4.5(7)
C(1B)-C(2B)-C(3B)-C(4B)	0.5(7)
C(2B)-C(3B)-C(4B)-C(5B)	2.6(7)
C(3B)-C(4B)-C(5B)-N(1B)	-1.5(7)
C(1B)-N(1B)-C(5B)-C(4B)	-3.0(7)
C(6B)-N(1B)-C(5B)-C(4B)	177.6(4)
C(5B)-N(1B)-C(6B)-C(7B)	80.1(5)
C(1B)-N(1B)-C(6B)-C(7B)	-99.3(5)
N(1B)-C(6B)-C(7B)-C(8B)	-174.8(4)
C(6B)-C(7B)-C(8B)-C(9B)	-122.6(5)
C(6B)-C(7B)-C(8B)-C(11B)	56.5(7)
C(11B)-C(8B)-C(9B)-N(2B)	1.0(6)
C(7B)-C(8B)-C(9B)-N(2B)	-179.7(4)
C(10B)-N(2B)-C(9B)-C(8B)	-0.9(6)
C(9B)-N(2B)-C(10B)-C(15B)	-179.9(5)
C(9B)-N(2B)-C(10B)-C(11B)	0.4(5)
N(2B)-C(10B)-C(11B)-C(12B)	179.6(4)
C(15B)-C(10B)-C(11B)-C(12B)	-0.1(7)
N(2B)-C(10B)-C(11B)-C(8B)	0.1(5)
C(15B)-C(10B)-C(11B)-C(8B)	-179.5(4)
C(9B)-C(8B)-C(11B)-C(12B)	180.0(5)
C(7B)-C(8B)-C(11B)-C(12B)	0.7(9)
C(9B)-C(8B)-C(11B)-C(10B)	-0.7(5)
C(7B)-C(8B)-C(11B)-C(10B)	-180.0(5)
C(10B)-C(11B)-C(12B)-C(13B)	0.9(7)
C(8B)-C(11B)-C(12B)-C(13B)	-179.8(5)
C(11B)-C(12B)-C(13B)-C(14B)	-2.0(8)
C(12B)-C(13B)-C(14B)-C(15B)	2.3(8)
C(13B)-C(14B)-C(15B)-C(10B)	-1.4(8)
N(2B)-C(10B)-C(15B)-C(14B)	-179.3(5)
C(11B)-C(10B)-C(15B)-C(14B)	0.3(7)

19.2 Röntgenstrukturdaten von Triazol 174

Abbildung 19.2: Röntgenstruktur von Triazol 174.

Tabelle 19.7: Kristalldaten und Strukturverfeinerungen für 174.

s2401lc
C19 H14 I N3 O3
459.23
130(2) K
1.54178 A
Monoclinic, P 21/n
a = 11.3498(10) A alpha = 90°
b = 5.7029(5) A beta = 97.016(6)°
c = 27.104(2) A gamma = 90°
1741.2(3) A^3
4, 1.752 Mg/m^3
14.667 mm^-1
904
0.25 x 0.06 x 0.03 mm
3.29 to 65.59 deg.
-9<=h<=13, -6<=k<=6, -32<=l<=21
15476 / 2942 [R(int) = 0.0730]
98.0 %
Numerical
0.8978 und 0.2654
Full-matrix least-squares on F^2
2942 / 0 / 236
1.030
R1 = 0.0444, wR2 = 0.1066
R1 = 0.0609, wR2 = 0.1143
0.871 und -0.953 e.A^-3

Tabelle 19.8: Lageparameter (x 10⁴) und äquivalente isotrope Temperaturfaktoren (A² x 10³) von **174**.

U(eq) ist definiert als ein Drittel der Spur des orthogonalisierten U_{ij}-Tensors.

	х	V	z	U(ea)
		1		- (1)
l(1)	1239(1)	9175(1)	2493(1)	38(1)
N(1)	1577(4)	10745(8)	4437(2)	22(1)
O(1)	-112(3)	9750(7)	3901(1)	25(1)
C(1)	-71(5)	8817(9)	3433(2)	19(1)
O(2)	346(4)	13667(6)	4052(1)	26(1)
C(2)	800(5)	9759(10)	3198(2)	22(1)
N(2)	1711(5)	8466(8)	4571(2)	28(1)

N(3)	2542(5)	8401(8)	4948(2)	28(1)
O(3)	2246(4)	12809(7)	3463(1)	31(1)
C(3)	1436(5)	11496(10)	3522(2)	25(1)
C(4)	791(5)	11471(9)	3990(2)	22(1)
C(5)	-522(6)	13822(11)	4396(2)	34(1)
C(6)	2339(5)	12127(9)	4730(2)	23(1)
C(7)	2951(5)	10613(9)	5057(2)	23(1)
C(8)	-1004(5)	7089(9)	3292(2)	23(1)
C(9)	-831(5)	5230(10)	2974(2)	28(1)
C(10)	-1702(6)	3550(10)	2872(2)	34(2)
C(11)	-2750(5)	3710(10)	3076(2)	30(1)
C(12)	-2944(5)	5588(11)	3382(2)	33(1)
C(13)	-2080(5)	7269(10)	3495(2)	28(1)
C(14)	3910(5)	11078(9)	5457(2)	25(1)
C(15)	4258(6)	9393(10)	5821(2)	34(1)
C(16)	5192(7)	9825(12)	6185(2)	41(2)
C(17)	5824(6)	11900(12)	6195(2)	37(2)
C(18)	5471(6)	13582(11)	5845(2)	35(2)
C(19)	4526(5)	13204(10)	5483(2)	29(1)

 Tabelle 19.9:
 Bindungslängen [Å] und Bindungswinkel [°] von 174.

l(1)-C(2)	2.060(5)
N(1)-N(2)	1.353(6)
N(1)-C(6)	1.353(7)
N(1)-C(4)	1.474(7)
O(1)-C(1)	1.382(6)
O(1)-C(4)	1.418(7)
C(1)-C(2)	1.351(8)
C(1)-C(8)	1.463(8)
O(2)-C(4)	1.369(6)
O(2)-C(5)	1.438(7)
C(2)-C(3)	1.455(8)
N(2)-N(3)	1.304(7)
N(3)-C(7)	1.364(7)
O(3)-C(3)	1.210(7)
C(3)-C(4)	1.541(8)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-C(7)	1.365(8)
C(6)-H(6)	0.9500
C(7)-C(14)	1.465(8)
C(8)-C(9)	1.395(8)
C(8)-C(13)	1.404(8)
C(9)-C(10)	1.380(9)
C(9)-H(9)	0.9500
C(10)-C(11)	1.376(9)
C(10)-H(10)	0.9500
C(11)-C(12)	1.389(9)
C(11)-H(11)	0.9500
C(12)-C(13)	1.378(8)
C(12)-H(12)	0.9500
C(13)-H(13)	0.9500
C(14)-C(19)	1.396(8)
C(14)-C(15)	1.398(8)
C(15)-C(16)	1.379(9)
C(15)-H(15)	0.9500
C(16)-C(17)	1.382(10)
C(16)-H(16)	0.9500
C(17)-C(18)	1.374(9)
С(17)-Н(17)	0.9500
C(18)-C(19)	1.380(9)
C(18)-H(18)	0.9500
С(19)-Н(19)	0.9500

N(2)-N(1)-C(6)	111
N(2)-N(1)-C(4)	121
	121
C(6)-N(1)-C(4)	126
C(1)-O(1)-C(4)	108
C(2) C(1) C(1)	110
C(2)-C(1)-O(1)	112
C(2)-C(1)-C(8)	133
O(1) C(1) C(0)	110
O(1) - C(1) - C(8)	113
C(4)-O(2)-C(5)	115
(1) (2) (2)	100
	100
C(1)-C(2)-I(1)	130
C(3)-C(2)-I(1)	120
V(2) V(2) V(1)	100
N(3)-N(2)-N(1)	106
N(2)-N(3)-C(7)	109
	122
	152
O(3)-C(3)-C(4)	123
(2)-(3)-(4)	103
	100
O(2)-C(4)-O(1)	112
O(2)-C(4)-N(1)	110
O(1) C(4) N(1)	107
O(1) - C(4) - N(1)	107
O(2)-C(4)-C(3)	108
O(1)-C(4)-C(3)	105
	100
N(1)-C(4)-C(3)	112
Q(2)-C(5)-H(5A)	109
O(2) C(F) U(FP)	100
О(2)-С(5)-П(5В)	109
H(5A)-C(5)-H(5B)	109
O(2)-C(5)-H(5C)	109
	105
H(5A)-C(5)-H(5C)	109
H(5B)-C(5)-H(5C)	109
N(1) C(2) C(3)	104
N(1) - C(0) - C(7)	104
N(1)-C(6)-H(6)	127
C(7)-C(6)-H(6)	127
	127
N(3)-C(7)-C(6)	108
N(3)-C(7)-C(14)	122
C(G) C(T) C(TA)	120
C(0) - C(1) - C(14)	129
C(9)-C(8)-C(13)	119
C(9)-C(8)-C(1)	121
C(13)-C(8)-C(1)	119
C(10)-C(9)-C(8)	120
	120
C(10)-C(9)-H(9)	120
C(8)-C(9)-H(9)	120
C(11)-C(10)-C(9)	120
C(12) C(10) U(10)	440
C(11)-C(10)-H(10)	119
C(9)-C(10)-H(10)	119
C(10) - C(11) - C(12)	120
	120
C(10)-C(11)-H(11)	120
C(12)-C(11)-H(11)	120
C(12) C(12) C(11)	120
C(13)-C(12)-C(11)	120
C(13)-C(12)-H(12)	119
C(11)-C(12)-H(12)	119
	115
C(12)-C(13)-C(8)	119
C(12)-C(13)-H(13)	120
C(9) C(12) U(12)	120
C(0)-C(15)-H(15)	120
C(19)-C(14)-C(15)	117
C(19)-C(14)-C(7)	121
C(15) C(11) C(7)	121
C(15)-C(14)-C(7)	171
C(16)-C(15)-C(14)	120
C(16)-C(15)-H(15)	110
	119
C(14)-C(15)-H(15)	119
C(15)-C(16)-C(17)	171
C(1E) C(1E) U(1E)	110
С(тэ)-С(то)-П(то)	119
C(17)-C(16)-H(16)	119
C(18)-C(17)-C(16)	110
	110
C(18)-C(17)-H(17)	120
C(16)-C(17)-H(17)	120
C(17) - C(18) - C(10)	101
	171
C(17)-C(18)-H(18)	119

C(19)-C(18)-H(18) C(18)-C(19)-C(14) C(18)-C(19)-H(19)

111.1(4)
121.8(4)
126.7(4)
108.5(4)
133.8(5)
113.3(4)
115.4(4)
108.9(5)
130.3(4)
120.7(4)
106.5(4)
109.7(5)
122.1(5)
103.9(4)
112.6(5)
110.5(4)
107.3(4)
108.3(4)
105.8(4)
112.3(4)
109.5
109.5
109.5
109.5
109.5
104.5(4)
127.7
127.7
108.2(5)
122.0(5)
129.8(5)
119.5(5)
119.5(5) 121.4(5) 119.0(5)
119.5(5) 121.4(5) 119.0(5) 120.0(6)
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6)
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 119.8
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 119.8 120.0(5) 120.0
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 119.8 120.0(5) 120.0 120.0
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 119.8 120.0(5) 120.0 120.0 120.0 120.0
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 119.8 120.0(5) 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0 120.0
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 119.8 120.0(5) 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 120.0 120.0 19.8 120.0 19.8 120.0
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 120.0(5) 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 120.
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 120.0(5) 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 19.8 120.0 12
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 119.8 120.0(5) 120.0 120.0 120.0 120.0 120.0 120.6(6) 119.7 119.7 119.7 119.4(5) 120.3 120.3
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 119.8 120.0(5) 120.0 120.0 120.0 120.0 120.0 120.0 120.6(6) 119.7 119.7 119.4(5) 120.3 120.3 117.7(5)
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 119.8 120.0(5) 120.0 120.0 120.0 120.0 120.0 120.0 120.6(6) 119.7 119.7 119.7 119.4(5) 120.3 117.7(5) 121.1(5)
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 119.8 120.0(5) 120.0 120.0 120.0 120.0 120.6(6) 119.7 119.7 119.7 119.4(5) 120.3 117.7(5) 121.1(5) 121.2(5) 120.5(6)
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.0 120.4(6) 119.8 119.8 120.0(5) 120.0 120.0 120.0 120.6(6) 119.7 119.7 119.7 119.4(5) 120.3 117.7(5) 121.1(5) 121.2(5) 120.5(6) 119.8
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.0 120.4(6) 119.8 119.8 120.0(5) 120.0 120.0 120.0 120.6(6) 119.7 119.7 119.7 119.4(5) 120.3 117.7(5) 121.1(5) 121.2(5) 120.5(6) 119.8 119.8
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 119.8 120.0(5) 120.0 120.0 120.0 120.0 120.0 120.6(6) 119.7 119.7 119.4(5) 120.3 117.7(5) 121.1(5) 121.2(5) 120.5(6) 119.8 119.8 121.3(6)
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 119.8 120.0(5) 120.0 120.0 120.0 120.0 120.0 120.6(6) 119.7 119.7 119.4(5) 120.3 117.7(5) 121.1(5) 121.2(5) 120.5(6) 119.8 119.8 121.3(6) 119.4
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 119.8 120.0(5) 120.0 120.5 120.0 120.5 120.0 120.5 120.5 120.0 120.5
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.0 120.4(6) 119.8 119.8 120.0(5) 120.0 120.5 120.0 120.5 120.0 120.5 120.5 120.0 120.5 120.5 120.5 120.3 121.1(5) 121.2(5) 120.5(6) 119.8 121.2(5) 120.5(6) 119.8 121.2(5) 120.5(6) 119.8 121.2(5) 120.5(6) 119.8 121.2(5) 120.5(6) 119.8 121.2(5) 120.5(6) 119.8 121.3(6) 119.4 119.4 119.4 119.8 121.3(6) 119.4 119.4 119.4 119.8 121.3(6) 119.4 119.4 119.4 119.4 119.8 121.3(6) 119.4 119
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 119.8 120.0(5) 120.0 120.5 120.3 121.1(5) 121.2(5) 120.5(6) 119.8 121.3(6) 119.4 119.4 119.4 119.4 119.4 119.4 119.4 119.4 119.4 119.8 121.3(6) 119.4 119.4 120.3 120.5(6) 119.8 121.3(6) 119.4 119.4 120.3 120.5(6) 119.8 121.3(6) 119.4 120.8 120.3 120.3 120.5(6) 119.8 121.3(6) 120.8 1
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 120.0(5) 120.0 120.5 120.3 121.1(5) 121.2(5) 121.3(6) 119.8 121.3(6) 119.4 119.4 120.8 120.8 120.8 120.8 121.2(5)
119.5(5) 121.4(5) 120.0(6) 120.0 120.0 120.0 120.4(6) 119.8 120.0(5) 120.0 120.5 120.3 121.1(5) 121.2(5) 120.5(6) 119.8 121.3(6) 119.4 119.4 120.8 120.8 120.8 121.2(6) 120.8 120.8 121.2(6) 119.4 120.8 120.8 120.8 120.8 121.2(6) 119.4 120.8 120.8 120.8 120.8 121.2(6) 119.4 120.8 120.8 120.8 120.8 121.2(6) 119.4 120.8 120.8 120.8 121.2(6) 119.4 120.8 120.8 120.8 121.2(6) 119.4 120.8 120.8 120.8 120.2(6) 119.4 120.8 120.8 120.8 120.8 120.2(6) 119.4 120.8 120.8 120.8 120.8 120.2(6) 119.4 120.8 120.8 120.2(6) 120.8 120.8 120.2(6) 119.4 120.8 120.8 120.2(6) 120.8 120.8 120.4 120.4 120.4 120.8 120.8 120.4 120.4 120.8 120.8 120.4 120.8
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 120.0(5) 120.0 120.5 120.3 121.1(5) 121.2(5) 120.5(6) 119.8 121.3(6) 119.4 119.4 120.8 120.8 120.8 121.2(6) 119.4 120.8 120.8 121.2(6) 119.4 120.8 120.8 120.8 121.2(6) 119.4 120.8 120.8 121.2(6) 119.4 120.8 120.8 121.2(6) 119.4 120.8 120.8 121.2(6) 119.4 120.8 120.8 121.2(6) 119.4 120.8 121.2(6) 119.4 120.8 121.2(6) 119.4 120.8 121.2(6) 119.4 120.8 121.2(6) 119.4 120.8 121.2(6) 119.4 119.4 119.4 119.4
119.5(5) 121.4(5) 119.0(5) 120.0(6) 120.0 120.0 120.4(6) 119.8 120.0(5) 120.0 120.5 120.3 121.1(5) 121.2(5) 120.5(6) 119.8 121.3(6) 119.4 120.8 120.8 120.8 120.2 19.4 19.4 120.8 12

C(14)-C(19)-H(19)

119.6

Symmetrie-Transformationen wurden verwendet, um äquivalente Atome zu erzeugen.

Tabelle 19.10: Anisotrope Temperaturfaktoren (A² x 10³) von 174.

Der Exponent des anisotropen Temperaturfaktors ist definiert als: $-2\pi^2$ [$h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12$]

	U11	U22	U33	U23	U13	U12
 I(1)	37(1)	54(1)	24(1)	-8(1)	10(1)	-9(1)
N(1)	28(2)	18(2)	20(2)	2(2)	2(2)	-3(2)
O(1)	33(2)	24(2)	19(2)	-3(2)	6(2)	-5(2)
C(1)	22(3)	20(3)	15(2)	-3(2)	-3(2)	4(2)
O(2)	36(2)	18(2)	23(2)	-2(2)	2(2)	4(2)
C(2)	21(3)	24(3)	21(3)	-2(2)	2(2)	2(2)
N(2)	40(3)	11(2)	32(3)	3(2)	0(2)	-4(2)
N(3)	35(3)	18(2)	31(3)	0(2)	1(2)	-2(2)
O(3)	31(2)	33(2)	30(2)	2(2)	0(2)	-12(2)
C(3)	31(3)	24(3)	20(3)	3(2)	-2(2)	2(3)
C(4)	24(3)	23(3)	17(3)	-4(2)	-2(2)	-4(2)
C(5)	38(4)	33(4)	32(3)	-11(3)	8(3)	3(3)
C(6)	30(3)	12(3)	28(3)	-2(2)	4(2)	-4(2)
C(7)	26(3)	22(3)	21(3)	-1(2)	6(2)	-6(2)
C(8)	28(3)	18(3)	21(3)	-2(2)	0(2)	2(2)
C(9)	28(3)	20(3)	33(3)	4(2)	-1(3)	4(2)
C(10)	44(4)	19(3)	34(3)	-2(2)	-13(3)	1(3)
C(11)	31(3)	23(3)	33(3)	0(2)	-8(3)	-9(3)
C(12)	27(3)	42(4)	31(3)	6(3)	1(3)	-5(3)
C(13)	32(3)	23(3)	29(3)	-1(2)	1(3)	1(3)
C(14)	25(3)	25(3)	24(3)	-2(2)	5(2)	1(2)
C(15)	44(4)	21(3)	34(3)	8(2)	-2(3)	1(3)
C(16)	58(5)	36(4)	27(3)	5(3)	-3(3)	12(3)
C(17)	35(4)	47(4)	27(3)	-7(3)	-6(3)	12(3)
C(18)	34(4)	35(4)	36(3)	-6(3)	6(3)	-8(3)
C(19)	33(3)	30(3)	23(3)	3(2)	1(2)	-1(3)

Tabelle 19.11: Lageparameter der Wasserstoffatome (x 10⁴) und isotrope Temperaturfaktoren (A² x 10³)von 174.

	x	У	Z	U(eq)
H(5A)	-1278	13177	4241	51
H(5B)	-631	15468	4484	51
H(5C)	-247	12927	4697	51
H(6)	2428	13780	4712	28
H(9)	-113	5120	2828	33
H(10)	-1577	2276	2658	41
H(11)	-3341	2535	3008	36
H(12)	-3678	5716	3515	40
H(13)	-2212	8537	3709	34
H(15)	3848	7939	5817	41
H(16)	5405	8674	6433	49
H(17)	6487	12157	6439	45
H(18)	5885	15032	5853	42
H(19)	4290	14404	5248	35

Tabelle 19.12: Torsionswinkel [°] von 174.

C(4)-O(1)-C(1)-C(2)	0.6(6)
C(4)-O(1)-C(1)-C(8)	-177.4(4)
O(1)-C(1)-C(2)-C(3)	0.2(6)
C(8)-C(1)-C(2)-C(3)	177.6(6)
O(1)-C(1)-C(2)-I(1)	-177.1(4)
C(8)-C(1)-C(2)-I(1)	0.3(9)
C(6)-N(1)-N(2)-N(3)	0.7(6)
C(4)-N(1)-N(2)-N(3)	173.8(5)
N(1)-N(2)-N(3)-C(7)	-0.5(6)
C(1)-C(2)-C(3)-O(3)	-1/7.5(6)
I(1)-C(2)-C(3)-O(3)	0.1(9)
C(1)-C(2)-C(3)-C(4)	-0.8(0)
(1) - C(2) - C(3) - C(4)	170.0(5)
C(5)-O(2)-C(4)-O(1)	-71 2(6)
C(5)-O(2)-C(4)-C(3)	165 4(4)
C(1)-O(1)-C(4)-O(2)	117 0(5)
C(1)-O(1)-C(4)-N(1)	-121.1(4)
C(1)-O(1)-C(4)-C(3)	-1.0(5)
N(2)-N(1)-C(4)-O(2)	150.5(5)
C(6)-N(1)-C(4)-O(2)	-37.5(7)
N(2)-N(1)-C(4)-O(1)	27.3(6)
C(6)-N(1)-C(4)-O(1)	-160.6(5)
N(2)-N(1)-C(4)-C(3)	-88.5(6)
C(6)-N(1)-C(4)-C(3)	83.5(6)
O(3)-C(3)-C(4)-O(2)	57.2(7)
C(2)-C(3)-C(4)-O(2)	-119.8(5)
O(3)-C(3)-C(4)-O(1)	178.1(5)
C(2)-C(3)-C(4)-O(1)	1.1(5)
O(3)-C(3)-C(4)-N(1)	-65.1(7)
C(2)-C(3)-C(4)-N(1)	117.8(5)
N(2)-N(1)-C(6)-C(7)	-0.6(6)
C(4)-N(1)-C(6)-C(7)	-1/3.3(5)
N(2) - N(3) - C(7) - C(6)	0.1(6)
N(2)-N(3)-C(7)-C(14)	-1/8.5(5)
N(1) - C(0) - C(7) - N(3) N(1) - C(6) - C(7) - C(14)	0.3(0)
(1) - C(0) - C(1) - C(14)	1/0.0(5)
O(1)-C(1)-C(8)-C(9)	52.9(9) -1/9 7(5)
C(2)-C(1)-C(8)-C(13)	-149 2(6)
O(1)-C(1)-C(8)-C(13)	28 2(7)
C(13)-C(8)-C(9)-C(10)	-1.7(8)
C(1)-C(8)-C(9)-C(10)	176.2(5)
C(8)-C(9)-C(10)-C(11)	0.8(9)
C(9)-C(10)-C(11)-C(12)	1.0(9)
C(10)-C(11)-C(12)-C(13)	-1.9(9)
C(11)-C(12)-C(13)-C(8)	1.0(9)
C(9)-C(8)-C(13)-C(12)	0.8(8)
C(1)-C(8)-C(13)-C(12)	-177.1(5)
N(3)-C(7)-C(14)-C(19)	163.1(5)
C(6)-C(7)-C(14)-C(19)	-15.2(9)
N(3)-C(7)-C(14)-C(15)	-15.5(8)
C(6)-C(7)-C(14)-C(15)	166.2(6)
C(19)-C(14)-C(15)-C(16)	-1.1(9)
C(7)-C(14)-C(15)-C(16)	1//.6(6)
C(14)-C(15)-C(16)-C(17)	-1.4(10)
C(15) - C(10) - C(1/) - C(18)	2.7(10)
C(17) - C(17) - C(18) - C(19)	-1.5(10)
C(17) - C(10) - C(19) - C(14)	-1.0(10)
C(1)-C(14)-C(19)-C(18)	2.3(3)
0(1)-0(14)-0(13)-0(10)	-1/0.4(0)

Symmetrie-Transformationen wurden verwendet, um äquivalente Atome zu erzeugen.

19.3 Röntgenstrukturdaten von Iodoxazin-2-on 175-A

Abbildung 19.3: Röntgenstruktur von Iodoxazin-2-on 175-A.

Tabelle 19.13: Kristalldaten und Strukturverfeinerungen von 175-A.

Identifikationsnummer	s2368lm
Empirische Formel	C11 H8 I N O3
Formelgewicht	329.08
Temperatur	130(2) K
Wellenlänge	0.71073 A
Kristallsystem, Raumgruppe	Monoclinic, P 21/c
Gitterkonstante	a = 9.4488(11) A alpha = 90°
	b = 16.5485(18) A beta = 99.721(6)°
	c = 7.2501(9) A gamma = 90°
Volumen	1117.4(2) A^3
Z, berechnete Dichte	4, 1.956 Mg/m^3
Absorptionskoeffizient	2.856 mm^-1
F(000)	632
Kristallgröße	0.30 x 0.08 x 0.03 mm
Theta-Bereich für Datensammlung	2.19 to 26.50 deg.
Bereich für Indizes	-11<=h<=11, -20<=k<=20, -8<=l<=9
Gesammelte/ unabhängige Reflexe	7871 / 2292 [R(int) = 0.0491]
Vollständigkeit für theta = 26.50	99.1 %
Korrektur Absorption	Numerical
Max. und min. Transmission	0.9952 und 0.5682
Verfeinerungsmethode	Full-matrix least-squares on F^2
Daten/Einschränkung/Parameter	2292 / 0 / 146
Goodness-of-fit on F^2	1.002
Abschließende R Indizes [I>2sigma(I)]	R1 = 0.0289, wR2 = 0.0503
R Indizes (alle Daten)	R1 = 0.0560, wR2 = 0.0548
Restelektronendichte	0.665 und -0.571 e.A^-3

Tabelle 19.14: Lageparameter (x 10⁴) und äquivalente isotrope Temperaturfaktoren (A² x 10³) von **175-A**.

U(eq) ist definiert als ein Drittel der Spur des orthogonalisierten U_{ij}-Tensors.

		x	У	Z	U(eq)
I((1)	5490(1)	4109(1)	2283(1)	18(1)
C	2(1)	4582(4)	5245(2)	2587(5)	14(1)
C	D(1)	2651(3)	6090(2)	2868(4)	19(1)
Ν	I (1)	5548(3)	5884(2)	2793(4)	15(1)
C	D(2)	3035(3)	7393(2)	3478(4)	34(1)
C	2(2)	3181(4)	5320(2)	2571(5)	18(1)
C	D(3)	5804(3)	7259(2)	3159(4)	22(1)
C	2(3)	3513(4)	6750(2)	3177(6)	21(1)
C	2(4)	5036(4)	6587(2)	3026(5)	16(1)

C(5)	7243(4)	7186(3)	2750(6)	27(1)
C(6)	2018(4)	4725(2)	2219(6)	17(1)
C(7)	1239(4)	4512(3)	3591(6)	26(1)
C(8)	112(5)	3973(3)	3215(7)	32(1)
C(9)	-263(4)	3658(3)	1447(7)	31(1)
C(10)	498(4)	3861(3)	59(7)	27(1)
C(11)	1639(4)	4390(2)	444(6)	22(1)

 Tabelle 19.15:
 Bindungslängen [Å] und Bindungswinkel [°] von 175-A.

I(1)-C(1)	2.093(4)
C(1)-C(2)	1.327(5)
C(1)-N(1)	1.389(5)
O(1)-C(3)	1.358(5)
O(1)-C(2)	1.399(5)
N(1)-C(4)	1.283(5)
O(2)-C(3)	1.191(5)
C(2)-C(6)	1.465(5)
O(3)-C(4)	1.322(5)
O(3)-C(5)	1.444(5)
C(3)-C(4)	1.486(5)
C(5)-H(5A)	0.9800
С(5)-Н(5В)	0.9800
C(5)-H(5C)	0.9800
C(6)-C(7)	1.380(6)
C(6)-C(11)	1.392(5)
C(7)-C(8)	1.380(6)
C(7)-H(7)	0.9500
C(8)-C(9)	1.374(6)
C(8)-H(8)	0.9500
C(9)-C(10)	1.374(6)
C(9)-H(9)	0.9500
C(10)-C(11)	1.379(6)
C(10)-H(10)	0.9500
C(11)-H(11)	0.9500
C(2)-C(1)-N(1)	124.5(3)
C(2)-C(1)-I(1)	120.6(3)
N(1)-C(1)-I(1)	114.9(3)
C(3)-O(1)-C(2)	122.5(3)
C(4)-N(1)-C(1)	116.7(3)
C(1)-C(2)-O(1)	117.8(4)
C(1)-C(2)-C(6)	131.0(4)
O(1)-C(2)-C(6)	111.2(3)
C(4)-O(3)-C(5)	116.0(3)
O(2)-C(3)-O(1)	120.8(4)
O(2)-C(3)-C(4)	125.3(4)
O(1)-C(3)-C(4)	113.8(3)
N(1)-C(4)-O(3)	123.9(4)
N(1)-C(4)-C(3)	124.4(4)
O(3)-C(4)-C(3)	111.6(3)
O(3)-C(5)-H(5A)	109.5
O(3)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
O(3)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
C(7)-C(6)-C(11)	118.6(4)
C(7)-C(6)-C(2)	121.5(4)
C(11)-C(6)-C(2)	119.8(4)
C(6)-C(7)-C(8)	120.7(4)
C(6)-C(7)-H(7)	119.6
C(8)-C(7)-H(7)	119.6
C(9) - C(8) - C(7)	119 9(4)

С(9)-С(8)-Н(8)	120.1
С(7)-С(8)-Н(8)	120.1
C(8)-C(9)-C(10)	120.4(4)
С(8)-С(9)-Н(9)	119.8
С(10)-С(9)-Н(9)	119.8
C(9)-C(10)-C(11)	119.7(4)
C(9)-C(10)-H(10)	120.2
C(11)-C(10)-H(10)	120.2
C(10)-C(11)-C(6)	120.7(4)
C(10)-C(11)-H(11)	119.7
C(6)-C(11)-H(11)	119.7

Tabelle 19.16: Anisotrope Temperaturfaktoren (A² x 10³) von 175-A.

	U11	U22	U33	U23	U13	U12
l(1)	21(1)	11(1)	21(1)	0(1)	4(1)	1(1)
C(1)	16(2)	9(2)	14(2)	1(2)	0(2)	3(2)
O(1)	15(1)	12(2)	30(2)	-1(1)	2(1)	3(1)
N(1)	20(2)	13(2)	13(2)	1(2)	4(1)	1(2)
O(2)	28(2)	14(2)	60(2)	-8(2)	9(2)	9(1)
C(2)	23(2)	13(2)	16(2)	4(2)	1(2)	6(2)
O(3)	24(2)	9(1)	33(2)	-2(1)	7(1)	-2(1)
C(3)	22(2)	15(2)	26(2)	3(2)	2(2)	-1(2)
C(4)	18(2)	14(2)	15(2)	-2(2)	1(2)	1(2)
C(5)	26(2)	18(2)	39(3)	-2(2)	8(2)	-5(2)
C(6)	16(2)	13(2)	23(2)	1(2)	0(2)	3(2)
C(7)	25(2)	25(2)	29(3)	4(2)	4(2)	2(2)
C(8)	24(2)	28(3)	45(3)	10(2)	13(2)	0(2)
C(9)	12(2)	14(2)	66(4)	4(2)	3(2)	-1(2)
C(10)	17(2)	20(2)	39(3)	-2(2)	-5(2)	3(2)
C(11)	19(2)	18(2)	29(3)	-1(2)	3(2)	2(2)

Der Exponent des anisotropen Temperaturfaktors ist definiert als: $-2\pi^2$ [$h^2 a^{*2}$ U11 + ... + 2 h k a* b* U12]

Tabelle 19.17: Lageparameter der Wasserstoffatome (x 10⁴) und isotrope Temperaturfaktoren (A² x 10³)von 175-A.

	x	У	Z	U(eq)
H(5A)	7826	6860	3723	41
H(5B)	7669	7725	2719	41
H(5C)	7209	6923	1532	41
H(7)	1481	4738	4808	31
H(8)	-404	3822	4177	38
H(9)	-1052	3296	1184	37
H(10)	240	3639	-1159	32
H(11)	2171	4526	-513	27

_		
	C(2)-C(1)-N(1)-C(4)	1.7(6)
	I(1)-C(1)-N(1)-C(4)	-178.5(3)
	N(1)-C(1)-C(2)-O(1)	-3.1(6)
	I(1)-C(1)-C(2)-O(1)	177.1(2)
	N(1)-C(1)-C(2)-C(6)	174.3(4)
	I(1)-C(1)-C(2)-C(6)	-5.5(6)
	C(3)-O(1)-C(2)-C(1)	-0.4(6)
	C(3)-O(1)-C(2)-C(6)	-178.3(3)
	C(2)-O(1)-C(3)-O(2)	-177.8(4)
	C(2)-O(1)-C(3)-C(4)	4.4(5)
	C(1)-N(1)-C(4)-O(3)	-176.9(3)
	C(1)-N(1)-C(4)-C(3)	3.1(5)
	C(5)-O(3)-C(4)-N(1)	8.9(5)
	C(5)-O(3)-C(4)-C(3)	-171.1(3)
	O(2)-C(3)-C(4)-N(1)	176.4(4)
	O(1)-C(3)-C(4)-N(1)	-6.0(6)
	O(2)-C(3)-C(4)-O(3)	-3.7(6)
	O(1)-C(3)-C(4)-O(3)	173.9(3)
	C(1)-C(2)-C(6)-C(7)	115.7(5)
	O(1)-C(2)-C(6)-C(7)	-66.7(5)
	C(1)-C(2)-C(6)-C(11)	-67.1(6)
	O(1)-C(2)-C(6)-C(11)	110.5(4)
	C(11)-C(6)-C(7)-C(8)	0.3(6)
	C(2)-C(6)-C(7)-C(8)	177.5(4)
	C(6)-C(7)-C(8)-C(9)	-1.4(7)
	C(7)-C(8)-C(9)-C(10)	1.4(7)
	C(8)-C(9)-C(10)-C(11)	-0.4(6)
	C(9)-C(10)-C(11)-C(6)	-0.7(6)
	C(7)-C(6)-C(11)-C(10)	0.7(6)
	C(2)-C(6)-C(11)-C(10)	-176.6(4)

 Tabelle 19.18:
 Torsionswinkel [°] von 175-A.

19.4 Röntgenstrukturdaten von Iodoxazin-4-on 175-B

Abbildung 19.4: Röntgenstruktur von Iodoxazin-4-on 175-B.

Tabelle 19.19: Kristalldaten und Strukturverfeinerungen von 175-B.

Identifikationsnummer	s2415lc
Empirische Formel	C11 H8 I N O3
Formelgewicht	329.08
Temperatur	130(2) K
Wellenlänge	1.54178 A
Kristallsystem, Raumgruppe	Monoclinic, P 21/n
Gitterkonstante	a = 10.4727(12) A alpha = 90°
	b = 5.9628(8) A beta = 98.654(8)°
	c = 17.7161(17) A gamma = 90°
Volumen	1093.7(2) A^3
Z, berechnete Dichte	4, 1.999 Mg/m^3
Absorptionskoeffizient	22.960 mm^-1
F(000)	632
Kristallgröße	0.16 x 0.03 x 0.02 mm
Theta-Bereich für Datensammlung	4.62 to 65.49 deg.
Bereich für Indizes	-12<=h<=10, -6<=k<=6, -15<=l<=20
Gesammelte/ unabhängige Reflexe	6617 / 1816 [R(int) = 0.0796]
Vollständigkeit für theta = 65.49	96.5 %
Korrektur Absorption	Semi-empirical from equivalents
Max. und min. Transmission	0.7528 und 0.4135
Verfeinerungsmethode	Full-matrix least-squares on F^2
Daten/ Einschränkung / Parameter	1816 / 0 / 146
Goodness-of-fit on F^2	1.042
Abschließende R Indizes [I>2sigma(I)]	R1 = 0.0490, wR2 = 0.1034
R Indizes (alle Daten)	R1 = 0.0720, wR2 = 0.1099
Restelektronendichte	1.361 und -1.699 e.A^-3

Tabelle 19.20: Lageparameter (x 10⁴) und äquivalente isotrope Temperaturfaktoren (A² x 10³) von **175-B**.

	x	У	Z	U(eq)
l(1)	7239(1)	2234(1)	3196(1)	26(1)
N(1)	4426(7)	7594(11)	2966(4)	24(2)
O(1)	4948(6)	4828(10)	2193(3)	31(2)
C(1)	6340(8)	6063(13)	4113(4)	20(2)
O(2)	5621(5)	7956(9)	4209(3)	23(1)
C(2)	6129(8)	4969(14)	3437(5)	25(2)
O(3)	4176(6)	10428(9)	3821(3)	26(1)
C(3)	5147(8)	5736(14)	2816(5)	23(2)
C(4)	4731(8)	8615(14)	3613(5)	24(2)
C(5)	3227(9)	11463(16)	3228(5)	33(2)
C(6)	7331(8)	5649(14)	4777(5)	26(2)
C(7)	8235(8)	7315(13)	5030(5)	25(2)
C(8)	9180(9)	6905(15)	5642(5)	29(2)
C(9)	9257(9)	4877(14)	6012(5)	27(2)
C(10)	8367(9)	3236(15)	5773(5)	29(2)
C(11)	7395(9)	3605(14)	5155(5)	27(2)

U(eq) ist definiert als ein Drittel der Spur des orthogonalisierten $U_{ij}\mbox{-}Tensors.$

 Tabelle 19.21:
 Bindungslängen [Å] und Bindungswinkel [°] von 175-B.

I(1)-C(2)	2.085(8)
N(1)-C(4)	1.295(11)
N(1)-C(3)	1.389(11)
O(1)-C(3)	1.219(10)
C(1)-C(2)	1.353(11)
C(1)-O(2)	1.381(9)
C(1)-C(6)	1.468(12)
O(2)-C(4)	1.357(10)
C(2)-C(3)	1.461(12)
O(3)-C(4)	1.306(10)

O(3)-C(5) C(5)-H(5A) C(5)-H(5B) C(5)-H(5C) C(6)-C(11) C(6)-C(7) C(7)-C(8) C(7)-H(7) C(8)-C(9) C(8)-C(9) C(8)-H(8) C(9)-C(10) C(9)-H(9) C(10)-C(11) C(10)-H(10) C(11)-H(11)	1.469(10) 0.9800 0.9800 1.387(12) 1.398(11) 1.376(12) 0.9500 1.371(12) 0.9500 1.374(12) 0.9500 1.395(12) 0.9500 0.9500
C(4)-N(1)-C(3) C(2)-C(1)-O(2) C(2)-C(1)-C(6) O(2)-C(1)-C(6) C(4)-O(2)-C(1) C(1)-C(2)-C(3) C(1)-C(2)-I(1) C(3)-C(2)-I(1) C(4)-O(3)-C(5) O(1)-C(3)-N(1) O(1)-C(3)-C(2) N(1)-C(4)-O(2) O(3)-C(4)-O(2) O(3)-C(4)-O(2) O(3)-C(5)-H(5A) O(3)-C(5)-H(5B) H(5A)-C(5)-H(5C) H(5A)-C(5)-H(5C) H(5B)-C(5)-H(5C) H(5B)-C(5)-H(5C) H(5B)-C(5)-H(5C) C(11)-C(6)-C(1) C(7)-C(6)-C(1) C(8)-C(7)-H(7) C(6)-C(7)-H(7) C(6)-C(7)-H(7) C(9)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(9)-H(9) C(10)-C(9)-H(9) C(10)-C(9)-H(9) C(10)-C(1)-L(11) C(9)-C(10)-H(10) C(6)-C(11)-C(10)-H(10) C(6)-C(11)-C(10) C(6)-C(1)-C(10) C(1)-C(1)-C(10) C(1)-C(1)-C(10) C(1)-C(1)-C(10) C(1)-C(1)-C(10) C(1)-C(1)-C(1) C(1)-C(1)-C(1) C(1)-C(1)-C(1) C(1)-C(1)-C(1) C(1)-C(1)-C(1) C(1)-C(1)-C(1) C(1)-C(1)-C(1) C(1)-C(1)-C(1) C(1)-C(1)-C(1) C(1)-C(1)-C(1) C(118.4(7) 118.9(7) 129.0(8) 111.9(7) 117.7(6) 121.2(8) 122.5(7) 116.2(6) 115.4(7) 120.3(8) 123.2(8) 116.5(7) 125.3(8) 127.0(8) 107.7(7) 109.5 119.2(9) 120.7(8) 120.0(8) 119.9(8) 120.0 121.1(8) 119.5 119.5(9) 120.3 120.3 120.7(8) 119.6 119.6 119.6(9) 120.2
C(10)-C(11)-H(11)	120.2

Tabelle 19.22: Anisotrope Temperaturfaktoren (A² x 10³) von 175-B.

Der Exponent des anisotropen Temperaturfaktors ist definiert als: $-2\pi^2$ [$h^2 a^{*2}$ U11 + ... + 2 h k $a^* b^*$ U12]

	U11	U22	U33	U23	U13	U12
I(1)	32(1)	22(1)	25(1)	-1(1)	7(1)	2(1)
N(1)	25(4)	22(4)	24(4)	2(3)	2(3)	1(3)

O(1)	37(4)	31(4)	23(3)	-1(3)	-1(3)	-1(3)
C(1)	26(5)	14(4)	20(4)	2(3)	3(4)	2(3)
O(2)	27(3)	22(3)	18(3)	2(2)	1(3)	1(3)
C(2)	28(5)	26(5)	21(4)	-2(4)	3(4)	0(4)
O(3)	23(3)	27(3)	30(3)	1(3)	3(3)	3(3)
C(3)	19(5)	33(5)	16(4)	3(4)	1(4)	-10(4)
C(4)	22(5)	20(5)	28(5)	2(4)	0(4)	-1(4)
C(5)	25(5)	38(6)	33(5)	11(4)	-4(4)	9(4)
C(6)	27(5)	27(5)	26(5)	-4(4)	6(4)	-2(4)
C(7)	28(5)	21(5)	27(4)	-4(4)	3(4)	0(4)
C(8)	27(5)	34(5)	25(4)	-7(4)	-2(4)	-7(4)
C(9)	26(5)	34(5)	19(4)	2(4)	2(4)	7(4)
C(10)	33(5)	35(5)	18(4)	6(4)	4(4)	11(4)
C(11)	31(5)	26(5)	21(4)	0(4)	-1(4)	0(4)

Tabelle 19.23:Lageparameter der Wasserstoffatome (x 10⁴) und isotrope Temperaturfaktoren (A² x 10³)
von 175-B.

	x	у	Z	U(eq)
H(5A)	3631	11760	2774	49
H(5B)	2922	12876	3420	49
H(5C)	2494	10444	3094	49
H(7)	8196	8727	4780	30
H(8)	9790	8045	5812	35
H(9)	9921	4609	6430	32
H(10)	8414	1835	6030	34
H(11)	6782	2464	4994	32

 Tabelle 19.24:
 Torsionswinkel [°] von 175-B.

 C(2)-C(1)-O(2)-C(4)	0.2(11)
C(6)-C(1)-O(2)-C(4)	175.4(7)
O(2)-C(1)-C(2)-C(3)	-0.9(12)
C(6)-C(1)-C(2)-C(3)	-175.2(8)
O(2)-C(1)-C(2)-I(1)	175.5(5)
C(6)-C(1)-C(2)-I(1)	1.2(13)
C(4)-N(1)-C(3)-O(1)	-174.8(8)
C(4)-N(1)-C(3)-C(2)	5.2(11)
C(1)-C(2)-C(3)-O(1)	178.3(8)
I(1)-C(2)-C(3)-O(1)	1.6(11)
C(1)-C(2)-C(3)-N(1)	-1.7(12)
I(1)-C(2)-C(3)-N(1)	-178.4(5)
C(3)-N(1)-C(4)-O(3)	177.1(7)
C(3)-N(1)-C(4)-O(2)	-6.6(12)
C(5)-O(3)-C(4)-N(1)	-6.4(12)
C(5)-O(3)-C(4)-O(2)	176.7(6)
C(1)-O(2)-C(4)-N(1)	3.8(12)
C(1)-O(2)-C(4)-O(3)	-179.4(6)
C(2)-C(1)-C(6)-C(11)	-60.5(12)
O(2)-C(1)-C(6)-C(11)	124.9(8)
C(2)-C(1)-C(6)-C(7)	118.8(10)
O(2)-C(1)-C(6)-C(7)	-55.9(10)
C(11)-C(6)-C(7)-C(8)	0.7(12)
C(1)-C(6)-C(7)-C(8)	-178.6(7)
C(6)-C(7)-C(8)-C(9)	0.1(13)
C(7)-C(8)-C(9)-C(10)	-0.7(13)
C(8)-C(9)-C(10)-C(11)	0.6(12)
C(7)-C(6)-C(11)-C(10)	-0.8(12)
C(1)-C(6)-C(11)-C(10)	178.4(7)

C(9)-C(10)-C(11)-C(6)

0.2(12)

Symmetrie-Transformationen wurden verwendet, um äquivalente Atome zu erzeugen.

19.5 Röntgentrukturdaten von lodoxazindion 175-C

Abbildung 19.5: Röntgenstruktur von Iodoxazindion 175-C.

Tabelle 19.25: Kristalldaten und Strukturverfeinerungen von 175-C.

Identifikationsnummer **Empirische Formel** Formelgewicht Temperatur Wellenlänge Kristallsystem, Raumgruppe Gitterkonstante Volumen Z, berechnete Dichte Absorptionskoeffizient F(000) Kristallgröße Theta-Bereich für Datensammlung Bereich für Indizes Gesammelte/ unabhängige Reflexe Vollständigkeit für theta = 26.49 Korrektur Absorption Max. und min. Transmission Verfeinerungsmethode Daten/ Einschränkung / Parameter Goodness-of-fit on F^2 Abschließende R Indizes [I>2sigma(I)] R Indizes (alle Daten) Absolute structure parameter Restelektronendichte

s2369lm1 C11 H8 I N O3 329.08 130(2) K 0.71073 A Monoclinic, P 21 a = 10.2709(6) A alpha = 90° b = 6.0030(3) A beta = 94.026(3)° c = 17.8476(8) A gamma = 90° 1097.70(10) A^3 4, 1.991 Mg/m^3 2.907 mm^-1 632 0.23 x 0.07 x 0.03 mm 1.99 to 26.49 deg. -12<=h<=12, -7<=k<=7, -21<=l<=22 17901 / 4508 [R(int) = 0.0463] 99.8 % Numerical 0.9358 und 0.5908 Full-matrix least-squares on F^2 4508 / 1 / 291 1.004 R1 = 0.0296, wR2 = 0.0346 R1 = 0.0420, wR2 = 0.0363 0.001(15) 0.445 und -0.586 e.A^-3

Tabelle 19.26: Lageparameter (x 10⁴) und äquivalente isotrope Temperaturfaktoren (A² x 10³) von 175-C.

U(eq) ist definiert als ein Drittel o	der Spur des orthogonalisierten U _{ij} -Tensors.
---------------------------------------	---

	x	У	Z	U(eq)
I(1A)	1045(1)	5672(1)	2806(1)	17(1)
N(1A)	-389(3)	11502(5)	3906(2)	16(1)
C(1A)	872(4)	8440(7)	3502(2)	12(1)
O(1A)	1771(3)	11102(4)	4365(1)	15(1)
O(2A)	-1379(3)	8888(5)	3135(1)	24(1)
C(2A)	-399(5)	9533(7)	3490(2)	17(1)
O(3A)	584(3)	13819(5)	4787(2)	22(1)
C(3A)	622(5)	12231(7)	4377(2)	18(1)
C(4A)	1883(4)	9219(6)	3918(2)	15(1)
C(5A)	-1593(4)	12810(7)	3900(2)	24(1)
C(6A)	3263(4)	8478(7)	3956(2)	14(1)
C(7A)	4186(4)	9878(6)	3671(2)	19(1)
C(8A)	5487(5)	9239(7)	3709(2)	22(1)
C(9A)	5873(4)	7243(7)	4034(2)	24(1)
C(10A)	4944(4)	5850(9)	4322(2)	23(1)
C(11A)	3641(4)	6446(6)	4277(2)	16(1)
I(1B)	-3511(1)	-1620(1)	93(1)	32(1)
N(1B)	410(3)	-1007(5)	1074(2)	17(1)
C(1B)	-1910(4)	-606(7)	803(2)	19(1)
O(1B)	-759(3)	1661(4)	1681(1)	18(1)
O(2B)	-616(3)	-3267(5)	212(2)	34(1)
C(2B)	-705(4)	-1768(8)	655(2)	22(1)
O(3B)	1378(3)	1561(5)	1872(1)	26(1)
C(3B)	421(4)	771(9)	1550(2)	16(1)
C(4B)	-1926(4)	1033(7)	1316(2)	14(1)
C(5B)	1667(4)	-2020(8)	918(2)	22(1)
C(6B)	-3004(5)	2369(7)	1592(2)	16(1)
C(7B)	-2713(5)	4497(7)	1880(2)	21(1)
C(8B)	-3668(4)	5776(10)	2171(2)	23(1)
C(9B)	-4939(4)	4973(7)	2179(2)	25(1)
C(10B)	-5234(4)	2896(7)	1900(2)	25(1)
C(11B)	-4271(4)	1571(8)	1614(2)	22(1)

 Tabelle 19.27:
 Bindungslängen [Å] und Bindungswinkel [°]von 175-C.

I(1A)-C(1A)	2.090(4)
N(1A)-C(3A)	1.362(5)
N(1A)-C(2A)	1.395(5)
N(1A)-C(5A)	1.464(5)
C(1A)-C(4A)	1.320(5)
C(1A)-C(2A)	1.460(6)
O(1A)-C(3A)	1.363(5)
O(1A)-C(4A)	1.393(4)
O(2A)-C(2A)	1.215(5)
O(3A)-C(3A)	1.204(5)
C(4A)-C(6A)	1.483(5)
C(5A)-H(5A1)	0.9800
С(5А)-Н(5А2)	0.9800
С(5А)-Н(5АЗ)	0.9800
C(6A)-C(7A)	1.389(5)
C(6A)-C(11A)	1.392(5)
C(7A)-C(8A)	1.387(6)
С(7А)-Н(7А)	0.9500
C(8A)-C(9A)	1.377(5)
C(8A)-H(8A)	0.9500
C(9A)-C(10A)	1.394(6)
С(9А)-Н(9А)	0.9500
C(10A)-C(11A)	1.382(5)
C(10A)-H(10A)	0.9500
C(11A)-H(11A)	0.9500

I(1B)-C(1B)
N(1B)-C(3B)
N(1B)-C(2B)
N(1B)-C(5B)
C(1B)-C(4B)
C(1B)-C(2B)
O(1B)-C(3B)
O(1B)-C(4B)
O(2B)-C(2B)
O(3B)-C(3B)
C(4B)-C(6B)
C(5B)-H(5B1)
C(5B)-H(5B2)
C(5B)-H(5B3)
C(6B)-C(11B)
C(6B)-C(7B)
C(7B)-C(8B)
С(7В)-Н(7В)
C(8B)-C(9B)
С(8В)-Н(8В)
C(9B)-C(10B)
С(9В)-Н(9В)
C(10B)-C(11B)
C(10B)-H(10B)
C(11B)-H(11B)
C(3A)-N(1A)-C(2A)
C(3A)-N(1A)-C(5A)
C(2A)-N(1A)-C(5A)
C(4A)-C(1A)-C(2A)
C(4A)-C(1A)-I(1A)
C(2A)-C(1A)-I(1A)
C(3A)-O(1A)-C(4A)
O(2A)-C(2A)-N(1A)
O(2A)-C(2A)-C(1A)
N(1A)-C(2A)-C(1A)
O(3A)-C(3A)-N(1A)
O(3A)-C(3A)-O(1A)
N(1A)-C(3A)-O(1A)
C(1A)-C(4A)-O(1A)
C(1A)-C(4A)-C(6A)
U(1A)-U(4A)-U(6A)
N(1A)-C(5A)-H(5A1)
N(1A)-C(5A)-H(5A2)
H(3A1)-C(5A)-H(5A2)
$H(5A1)_{-C}(5A)_{-H}(5A3)$
$H(5A2)_{-}C(5A)_{-}H(5A3)$
$C(7\Delta)-C(5\Delta)-C(11\Delta)$
C(7A)-C(6A)-C(4A)
C(11A) - C(6A) - C(4A)
C(8A)-C(7A)-C(6A)
C(8A)-C(7A)-H(7A)
C(6A)-C(7A)-H(7A)
C(9A)-C(8A)-C(7A)
C(9A)-C(8A)-H(8A)
C(7A)-C(8A)-H(8A)
C(8A)-C(9A)-C(10A)
C(8A)-C(9A)-H(9A)
C(10A)-C(9A)-H(9A)
C(11A)-C(10A)-C(9A)
C(11A)-C(10A)-H(10A)
C(9A)-C(10A)-H(10A)
C(10A)-C(11A)-C(6A)
C(10A)-C(11A)-H(11A)
C(6A)-C(11A)-H(11A)
C(3B)-N(1B)-C(2B)
C(3B)-N(1B)-C(5B)
C(2B)-N(1B)-C(5B)
C(4B)-C(1B)-C(2B)

2.094(4) 1.363(6) 1.400(5) 1.472(5) 1.345(5) 1.460(6) 1.359(4) 1.377(4) 1.206(5) 1.201(5) 1.478(6) 0.9800 0.9800 0.9800 1.390(6) 1.401(5) 1.376(6) 0.9500 1.392(6) 0.9500 1.369(6) 0.9500 1.394(6) 0.9500 0.9500 125.3(4) 116.0(4) 118.4(4) 121.1(4) 121.3(3) 117.5(3) 121.3(3) 121.5(4) 124.8(4) 113.6(4) 125.0(4) 117.9(4) 117.0(4) 121.1(4) 129.2(4) 109.6(3) 109.5 109.5 109.5 109.5 109.5 109.5 120.3(4) 118.4(4) 121.3(4) 119.6(4) 120.2 120.2 120.6(4) 119.7 119.7 119.6(4) 120.2 120.2 120.6(5) 119.7 119.7 119.4(4) 120.3 120.3 124.0(4) 118.2(3) 117.4(3) 121.6(4)

C(4B)-C(1B)-I(1B)	125.3(3)
C(2B)-C(1B)-I(1B)	113.0(3)
C(3B)-O(1B)-C(4B)	124.6(3)
O(2B)-C(2B)-N(1B)	119.8(4)
O(2B)-C(2B)-C(1B)	125.4(4)
N(1B)-C(2B)-C(1B)	114.8(4)
O(3B)-C(3B)-O(1B)	118.1(4)
O(3B)-C(3B)-N(1B)	125.3(4)
O(1B)-C(3B)-N(1B)	116.5(4)
C(1B)-C(4B)-O(1B)	118.1(4)
C(1B)-C(4B)-C(6B)	132.0(4)
O(1B)-C(4B)-C(6B)	110.0(3)
N(1B)-C(5B)-H(5B1)	109.5
N(1B)-C(5B)-H(5B2)	109.5
H(5B1)-C(5B)-H(5B2)	109.5
N(1B)-C(5B)-H(5B3)	109.5
H(5B1)-C(5B)-H(5B3)	109.5
H(5B2)-C(5B)-H(5B3)	109.5
С(11В)-С(6В)-С(7В)	118.7(4)
C(11B)-C(6B)-C(4B)	123.1(4)
C(7B)-C(6B)-C(4B)	118.1(4)
C(8B)-C(7B)-C(6B)	120.5(5)
С(8В)-С(7В)-Н(7В)	119.8
С(6В)-С(7В)-Н(7В)	119.8
C(7B)-C(8B)-C(9B)	120.3(5)
С(7В)-С(8В)-Н(8В)	119.8
С(9В)-С(8В)-Н(8В)	119.8
C(10B)-C(9B)-C(8B)	119.7(4)
C(10B)-C(9B)-H(9B)	120.2
С(8В)-С(9В)-Н(9В)	120.2
C(9B)-C(10B)-C(11B)	120.5(4)
C(9B)-C(10B)-H(10B)	119.7
C(11B)-C(10B)-H(10B)	119.7
C(6B)-C(11B)-C(10B)	120.3(4)
C(6B)-C(11B)-H(11B)	119.9
C(10B)-C(11B)-H(11B)	119.9

Tabelle 19.28: Anisotrope Temperaturfaktoren (A² x 10³) von 175-C.

Der Exponent des anisotropen Temperaturfaktors ist definiert als: $-2\pi^2$ [$h^2 a^{*2}$ U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
I(1A)	18(1)	17(1)	16(1)	-2(1)	1(1)	-2(1)
N(1A)	12(2)	17(2)	19(2)	0(2)	2(2)	1(2)
C(1A)	15(2)	10(2)	10(2)	-1(2)	2(2)	-2(2)
O(1A)	15(2)	10(2)	18(1)	-7(1)	-1(1)	-3(1)
O(2A)	17(2)	24(2)	31(2)	-2(1)	-2(1)	-3(2)
C(2A)	20(3)	16(2)	15(2)	3(2)	4(2)	-5(2)
O(3A)	23(2)	16(2)	28(2)	-11(1)	4(1)	-2(2)
C(3A)	16(3)	18(3)	20(2)	6(2)	7(2)	1(2)
C(4A)	21(3)	10(2)	14(2)	4(2)	8(2)	1(2)
C(5A)	16(3)	20(3)	35(3)	1(2)	1(2)	1(2)
C(6A)	13(2)	19(2)	12(2)	-7(2)	-1(2)	-1(2)
C(7A)	18(3)	18(2)	20(2)	-2(2)	-1(2)	2(2)
C(8A)	16(3)	26(3)	25(3)	-3(2)	6(2)	-8(2)
C(9A)	13(3)	31(3)	28(3)	-10(2)	1(2)	8(2)
C(10A)	26(3)	22(2)	22(2)	-3(2)	-2(2)	10(3)
C(11A)	16(3)	20(3)	11(2)	-4(2)	-4(2)	-6(2)
I(1B)	26(1)	42(1)	28(1)	-10(1)	-6(1)	-6(1)
N(1B)	19(2)	15(2)	16(2)	-2(2)	0(2)	1(2)
C(1B)	16(3)	23(3)	17(2)	1(2)	-2(2)	-3(2)
O(1B)	17(2)	20(2)	19(2)	-5(1)	0(1)	-1(1)
O(2B)	33(2)	35(2)	35(2)	-22(2)	1(2)	0(2)
C(2B)	25(3)	22(2)	21(2)	2(2)	5(2)	-3(3)
O(3B)	16(2)	30(2)	30(2)	-10(1)	-5(1)	0(2)

C(3B)	15(2)	20(2)	13(2)	4(2)	3(2)	3(3)
C(4B)	12(2)	14(3)	18(2)	4(2)	1(2)	-8(2)
C(5B)	25(3)	23(3)	18(2)	-4(2)	0(2)	5(2)
C(6B)	21(3)	19(3)	7(2)	0(2)	2(2)	-2(2)
C(7B)	14(3)	27(3)	20(2)	3(2)	1(2)	3(2)
C(8B)	23(3)	19(2)	26(2)	-3(3)	-5(2)	4(3)
C(9B)	15(3)	37(3)	23(2)	1(2)	0(2)	11(2)
C(10B)	13(2)	35(3)	27(2)	2(2)	-4(2)	-4(2)
C(11B)	21(3)	28(3)	17(2)	2(2)	-3(2)	-4(2)

Tabelle 19.29: Lageparameter der Wasserstoffatome (x 10⁴) und isotrope Temperaturfaktoren (A² x 10³)von 175-C.

	х	У	Z	U(eq
H(5A1)	-1378	14371	4012	35
H(5A2)	-2146	12226	4280	35
H(5A3)	-2060	12708	3403	35
H(7A)	3927	11265	3452	22
H(8A)	6117	10187	3510	26
H(9A)	6766	6818	4061	29
H(10A)	5209	4481	4552	28
H(11A)	3008	5477	4464	19
H(5B1)	1938	-1467	436	33
H(5B2)	1573	-3643	895	33
H(5B3)	2328	-1623	1319	33
H(7B)	-1850	5062	1873	25
H(8B)	-3460	7213	2367	28
H(9B)	-5598	5863	2377	30
H(10B)	-6103	2353	1901	30
H(11B)	-4481	118	1433	27

Tabelle 19.30:Torsionswinkel [°] von 175-C.

C(3A)-N(1A)-C(2A)-	O(2A)	173.1(4)
C(5A)-N(1A)-C(2A)-	O(2A)	-0.7(5)
C(3A)-N(1A)-C(2A)-	C(1A)	-9.7(5)
C(5A)-N(1A)-C(2A)-	C(1A)	176.6(3)
C(4A)-C(1A)-C(2A)-C	D(2A)	-178.3(4)
I(1A)-C(1A)-C(2A)-C	(2A)	3.9(5)
C(4A)-C(1A)-C(2A)-I	N(1A)	4.5(5)
I(1A)-C(1A)-C(2A)-N	(1A)	-173.3(2)
C(2A)-N(1A)-C(3A)-	O(3A)	-172.7(4)
C(5A)-N(1A)-C(3A)-	O(3A)	1.2(6)
C(2A)-N(1A)-C(3A)-	O(1A)	9.2(6)
C(5A)-N(1A)-C(3A)-	O(1A)	-176.9(3)
C(4A)-O(1A)-C(3A)-	O(3A)	178.6(3)
C(4A)-O(1A)-C(3A)-	N(1A)	-3.2(5)
C(2A)-C(1A)-C(4A)-C	D(1A)	0.5(6)
I(1A)-C(1A)-C(4A)-C	(1A)	178.2(2)
C(2A)-C(1A)-C(4A)-C	C(6A)	-174.1(4)
I(1A)-C(1A)-C(4A)-C	(6A)	3.6(6)
C(3A)-O(1A)-C(4A)-	C(1A)	-1.4(5)
C(3A)-O(1A)-C(4A)-	C(6A)	174.2(3)
C(1A)-C(4A)-C(6A)-C	C(7A)	110.5(5)
O(1A)-C(4A)-C(6A)-	C(7A)	-64.6(4)
C(1A)-C(4A)-C(6A)-C	C(11A)	-70.5(5)
O(1A)-C(4A)-C(6A)-	C(11A)	114.4(4)
C(11A)-C(6A)-C(7A)	-C(8A)	0.0(6)
C(4A)-C(6A)-C(7A)-C	C(8A)	179.1(3)

C(6A)-C(7A)-C(8A)-C(9A)	-0.7(6)
C(7A)-C(8A)-C(9A)-C(10A)	0.4(6)
C(8A)-C(9A)-C(10A)-C(11A)	0.7(6)
C(9A)-C(10A)-C(11A)-C(6A)	-1.4(6)
C(7A)-C(6A)-C(11A)-C(10A)	1.0(6)
C(4A)-C(6A)-C(11A)-C(10A)	-178.0(3)
C(3B)-N(1B)-C(2B)-O(2B)	175.4(4)
C(5B)-N(1B)-C(2B)-O(2B)	3.2(6)
C(3B)-N(1B)-C(2B)-C(1B)	-4.2(6)
C(5B)-N(1B)-C(2B)-C(1B)	-176.4(4)
C(4B)-C(1B)-C(2B)-O(2B)	179.1(4)
I(1B)-C(1B)-C(2B)-O(2B)	-4.8(6)
C(4B)-C(1B)-C(2B)-N(1B)	-1.3(6)
I(1B)-C(1B)-C(2B)-N(1B)	174.8(3)
C(4B)-O(1B)-C(3B)-O(3B)	175.3(4)
C(4B)-O(1B)-C(3B)-N(1B)	-6.5(6)
C(2B)-N(1B)-C(3B)-O(3B)	-174.1(4)
C(5B)-N(1B)-C(3B)-O(3B)	-1.9(6)
C(2B)-N(1B)-C(3B)-O(1B)	7.9(6)
C(5B)-N(1B)-C(3B)-O(1B)	-180.0(3)
C(2B)-C(1B)-C(4B)-O(1B)	2.7(6)
I(1B)-C(1B)-C(4B)-O(1B)	-173.0(3)
C(2B)-C(1B)-C(4B)-C(6B)	-176.6(4)
I(1B)-C(1B)-C(4B)-C(6B)	7.7(7)
C(3B)-O(1B)-C(4B)-C(1B)	1.4(6)
C(3B)-O(1B)-C(4B)-C(6B)	-179.2(3)
C(1B)-C(4B)-C(6B)-C(11B)	29.5(7)
O(1B)-C(4B)-C(6B)-C(11B)	-149.9(4)
C(1B)-C(4B)-C(6B)-C(7B)	-153.9(4)
O(1B)-C(4B)-C(6B)-C(7B)	26.8(5)
C(11B)-C(6B)-C(7B)-C(8B)	-0.6(6)
C(4B)-C(6B)-C(7B)-C(8B)	-177.4(4)
C(6B)-C(7B)-C(8B)-C(9B)	-0.4(6)
C(7B)-C(8B)-C(9B)-C(10B)	0.4(6)
C(8B)-C(9B)-C(10B)-C(11B)	0.6(6)
C(7B)-C(6B)-C(11B)-C(10B)	1.6(6)
C(4B)-C(6B)-C(11B)-C(10B)	178.2(4)

C(9B)-C(10B)-C(11B)-C(6B)

19.6 Röntgenstrukturdaten von Iod-/Chloroxazin-2-on 175-A & 178

-1.6(6)

Abbildung 19.6: Röntgenstruktur von Iod-/Chloroxazin-2-on 175-A und 178.

Tabelle 19.31: Kristalldaten und Strukturverfeinerungen von 175-A und 178.

Identifikationsnummer Empirische Formel Formelgewicht Temperatur Wellenlänge Kristallsystem, Raumgruppe Gitterkonstante	s2613lc C11 H8 Cl0.84 I0.16 N O3 252.72 130(2) K 1.54178 A Monoclinic, P 21/c a = 18.6567(8) A alpha = 90° b = 6.8788(3) A beta = 119.804(2)° c = 18.6635(7) A gamma = 90°
Volumen	2078.38(15) A^3
Z, berechnete Dichte	8, 1.615 Mg/m^3
Absorptionskoeffizient	6.631 mm^-1
F(000)	1024
Kristallgröße	0.24 x 0.07 x 0.04 mm
Theta-Bereich für Datensammlung	2.73 to 65.57 deg.
Bereich für Indizes	-22<=h<=21, -7<=k<=8, -22<=l<=16
Gesammelte/ unabhängige Reflexe	26611 / 3503 [R(int) = 0.0642]
Vollständigkeit für theta = 65.57	97.8 %
Korrektur Absorption	Semi-empirical from equivalents
Max. und min. Transmission	0.7528 und 0.5283
Verfeinerungsmethode	Full-matrix least-squares on F^2
Daten/ Einschränkung / Parameter	3503 / 0 / 293
Goodness-of-fit on F^2	1.040
Abschließende R Indizes [I>2sigma(I)]	R1 = 0.0464, wR2 = 0.1033
R Indizes (alle Daten)	R1 = 0.0516, wR2 = 0.1081
Absolute Strukturparameter	0.00051(9)
Restelektronendichte	0.541 und -0.524 e.A^-3

Tabelle 19.32: Lageparameter (x 10⁴) und äquivalente isotrope Temperaturfaktoren (A² x 10³) von 175-
A und 178.

U(eq) ist definiert als ein Drittel der Spur des orthogonalisierten U_{ij}-Tensors.

	x	У	Z	U(eq)
CI(1 A)	2600(1)	2727(2)	726(1)	22(1)
	3690(1)	2/2/(2)	736(1)	32(1)
I(1A)	3690(1)	2/2/(2)	/36(1)	32(1)
N(1A)	5290(3)	3311(6)	1234(3)	23(1)
O(1A)	5781(2)	3916(5)	2869(2)	24(1)
C(1A)	4939(3)	3603(7)	2312(3)	23(1)
C(2A)	4732(3)	3286(7)	1517(3)	23(1)
O(2A)	7080(2)	4134(6)	3158(2)	36(1)
O(3A)	6645(2)	3782(5)	1550(2)	29(1)
C(3A)	6051(3)	3636(6)	1753(3)	23(1)
C(4A)	6367(3)	3917(8)	2642(3)	28(1)
C(5A)	6378(3)	3565(8)	685(3)	31(1)
C(6A)	4453(3)	3661(7)	2740(3)	22(1)
C(7A)	3618(3)	4188(8)	2336(3)	28(1)
C(8A)	3181(3)	4168(8)	2762(3)	33(1)
C(9A)	3559(3)	3687(8)	3585(4)	34(1)
C(10A)	4390(4)	3228(8)	3995(4)	32(1)
C(11A)	4841(3)	3227(7)	3582(3)	27(1)
CI(1B)	1345(1)	8097(1)	1918(1)	30(1)
I(1B)	1345(1)	8097(1)	1918(1)	30(1)
O(1B)	-756(2)	6733(5)	2046(2)	26(1)
N(1B)	-310(2)	7404(6)	859(3)	25(1)
C(1B)	65(3)	7043(7)	2286(3)	24(1)
O(2B)	-2075(2)	6604(6)	1078(2)	35(1)
C(2B)	-1371(4)	6796(7)	1242(3)	26(1)
C(3B)	-1071(3)	7118(7)	659(3)	26(1)
O(3B)	-1677(2)	7120(6)	-124(2)	31(1)
C(4B)	272(3)	7412(7)	1695(3)	24(1)
C(5B)	-1428(4)	7433(9)	-734(3)	37(1)
C(6B)	579(3)	6982(7)	3191(3)	24(1)
C(7B)	1417(4)	6438(7)	3593(3)	32(1)

C(9B)1502(4)6990(8)4908(3)C(10B)671(4)7492(8)4515(3)C(11B)213(3)7484(8)3670(3)	35(1) 33(1) 28(1)
--	-------------------------

Tabelle 19.33:	Bindungslängen [Å] und Bindungswinkel [°] v	von 175-A und 178 .
	1 708(5)	

 Cl(1A)-C(2A)	1.798(5)
N(1A)-C(3A)	1.279(6)
N(1A)-C(2A)	1.384(6)
O(1A)-C(4A)	1.357(6)
O(1A)-C(1A)	1.403(6)
C(1A)-C(2A)	1.351(7)
C(1A)-C(6A)	1.477(7)
O(2A)-C(4A)	1.202(6)
O(3A)-C(3A)	1.340(6)
O(3A)-C(5A)	1.442(7)
C(3A)-C(4A)	1.472(7)
C(5A)-H(5A1)	0.9800
С(5А)-Н(5А2)	0.9800
С(5А)-Н(5АЗ)	0.9800
C(6A)-C(11A)	1.397(7)
C(6A)-C(7A)	1.400(7)
C(7A)-C(8A)	1.395(7)
С(7А)-Н(7А)	0.9500
C(8A)-C(9A)	1.373(8)
C(8A)-H(8A)	0.9500
C(9A)-C(10A)	1.381(8)
С(9А)-Н(9А)	0.9500
C(10A)-C(11A)	1.396(8)
C(10A)-H(10A)	0.9500
C(11A)-H(11A)	0.9500
CI(1B)-C(4B)	1.891(5)
O(1B)-C(2B)	1.364(6)
O(1B)-C(1B)	1.382(6)
N(1B)-C(3B)	1.291(7)
N(1B)-C(4B)	1.388(6)
C(1B)-C(4B)	1.361(7)
C(1B)-C(6B)	1.471(7)
O(2B)-C(2B)	1.198(7)
C(2B)-C(3B)	1.468(7)
C(3B)-O(3B)	1.332(6)
O(3B)-C(5B)	1.442(7)
С(5В)-Н(5В1)	0.9800
С(5В)-Н(5В2)	0.9800
С(5В)-Н(5ВЗ)	0.9800
С(6В)-С(7В)	1.408(8)
C(6B)-C(11B)	1.411(7)
С(7В)-С(8В)	1.368(8)
С(7В)-Н(7В)	0.9500
C(8B)-C(9B)	1.399(9)
C(8B)-H(8B)	0.9500
C(9B)-C(10B)	1.391(8)
С(9В)-Н(9В)	0.9500
C(10B)-C(11B)	1.370(7)
C(10B)-H(10B)	0.9500
C(11B)-H(11B)	0.9500
C(3A)-N(1A)-C(2A)	118.5(4)
C(4A)-O(1A)-C(1A)	123.1(4)
C(2A)-C(1A)-O(1A)	116.3(4)
C(2A)-C(1A)-C(6A)	132.8(5)
O(1A)-C(1A)-C(6A)	110.8(4)
C(1A)-C(2A)-N(1A)	123.9(5)
C(1A)-C(2A)-Cl(1A)	122.0(4)
N(1A)-C(2A)-Cl(1A)	114.1(4)
C(3A)-O(3A)-C(5A)	115.7(4)
N(1A)-C(3A)-O(3A)	124.2(5)
N(1A)-C(3A)-C(4A)	123.3(5)
---	----------
O(3A)-C(3A)-C(4A)	112.6(4)
$O(2\Lambda)_{-}C(4\Lambda)_{-}O(1\Lambda)$	119 5(5)
$O(2\Lambda) C(4\Lambda) C(2\Lambda)$	125.5(5)
O(2A) - C(4A) - C(5A)	125.7(5)
O(1A)-C(4A)-C(3A)	114.8(4)
O(3A)-C(5A)-H(5A1)	109.5
O(3A)-C(5A)-H(5A2)	109.5
H(5A1)-C(5A)-H(5A2)	109.5
O(3A)-C(5A)-H(5A3)	109 5
$H(5\Lambda 1) - C(5\Lambda) - H(5\Lambda 2)$	100 5
H(5A2) - C(5A) - H(5A2)	105.5
H(SAZ)-C(SA)-H(SA3)	109.5
C(11A)-C(6A)-C(7A)	118.4(5)
C(11A)-C(6A)-C(1A)	119.3(4)
C(7A)-C(6A)-C(1A)	122.3(5)
C(8A)-C(7A)-C(6A)	120.1(5)
C(8A)-C(7A)-H(7A)	119.9
$C(6\Lambda) - C(7\Lambda) - H(7\Lambda)$	110.0
C(0A) = C(7A) = C(7A)	121.1(5)
C(9A)-C(8A)-C(7A)	121.1(5)
C(9A)-C(8A)-H(8A)	119.4
C(7A)-C(8A)-H(8A)	119.4
C(8A)-C(9A)-C(10A)	119.2(5)
C(8A)-C(9A)-H(9A)	120.4
C(10A)-C(9A)-H(9A)	120.4
C(PA) - C(10A) - C(11A)	120.1
C(0A) C(10A) H(10A)	110 6
C(3A) - C(10A) - H(10A)	119.0
C(11A)-C(10A)-H(10A)	119.6
C(10A)-C(11A)-C(6A)	120.2(5)
C(10A)-C(11A)-H(11A)	119.9
C(6A)-C(11A)-H(11A)	119.9
C(2B)-O(1B)-C(1B)	122.9(4)
C(3B)-N(1B)-C(4B)	117.3(5)
C(4B)-C(1B)-O(1B)	118.8(4)
C(4B)-C(1B)-C(6B)	130.6(5)
O(1B)-C(1B)-C(6B)	110.6(4)
O(2B)-O(2B)-O(1B)	119 6(5)
O(2B) - C(2B) - C(2B)	127.0(5)
O(1B) - C(2B) - C(3B)	112 /(5)
N(1D) - C(2D) - C(3D)	121.4(5)
N(1B)-C(3B)-O(3B)	121.9(5)
N(1B)-C(3B)-C(2B)	125.4(5)
O(3B)-C(3B)-C(2B)	112.7(4)
C(3B)-O(3B)-C(5B)	115.9(4)
C(1B)-C(4B)-N(1B)	122.1(5)
C(1B)-C(4B)-Cl(1B)	124.2(4)
N(1B)-C(4B)-Cl(1B)	113.6(4)
O(3B)-C(5B)-H(5B1)	109.5
O(3B)-C(5B)-H(5B2)	109 5
H(5D) = H(5D) + H(5D)	100.5
O(2P) C(2D) - II(2D2)	105.5
	109.5
H(5B1)-C(5B)-H(5B3)	109.5
H(5B2)-C(5B)-H(5B3)	109.5
C(7B)-C(6B)-C(11B)	119.0(5)
C(7B)-C(6B)-C(1B)	122.5(5)
C(11B)-C(6B)-C(1B)	118.5(5)
C(8B)-C(7B)-C(6B)	119.6(5)
C(8B)-C(7B)-H(7B)	120.2
C(6B)-C(7B)-H(7B)	120.2
$C(7B)_{-}C(8B)_{-}C(9B)$	121 1(5)
C(7B) - C(8B) - H(8B)	110 5
C(0R) - C(0R) + U(0R)	119.5
С(10D) С(0D) С(2D)	119.5
	119.7(5)
C(TOR)-C(3R)-H(3R)	120.2
С(8В)-С(9В)-Н(9В)	120.2
C(11B)-C(10B)-C(9B)	120.0(6)
C(11B)-C(10B)-H(10B)	120.0
C(9B)-C(10B)-H(10B)	120.0
C(10B)-C(11B)-C(6B)	120.6(5)
C(10B)-C(11B)-H(11B)	119.7
C(6B)-C(11B)-H(11B)	119.7
· · · · ·	

Teil III

Tabelle 19.34:	Anisotrope	Temperaturfaktoren	(A ² x 10 ³)³) von 175-A und 178 .
----------------	------------	--------------------	-----------------------------------	---------------------------------------

Der Exponent des anisotropen Temperaturfaktors ist definiert als: $-2\pi^2$ [$h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12$]

	U11	U22	U33	U23	U13	U12
Cl(1A)	37(1)	34(1)	28(1)	-1(1)	18(1)	-4(1)
I(1A)	37(1)	34(1)	28(1)	-1(1)	18(1)	-4(1)
N(1A)	24(2)	20(2)	27(2)	2(2)	14(2)	1(2)
O(1A)	18(2)	27(2)	24(2)	-2(2)	8(2)	1(1)
C(1A)	20(2)	16(3)	29(3)	1(2)	11(2)	1(2)
C(2A)	22(3)	20(3)	29(3)	2(2)	15(2)	0(2)
O(2A)	23(2)	43(2)	33(2)	-3(2)	6(2)	-1(2)
O(3A)	27(2)	32(2)	33(2)	1(2)	18(2)	-3(2)
C(3A)	22(3)	14(2)	31(3)	0(2)	12(2)	2(2)
C(4A)	26(3)	25(3)	35(3)	0(2)	17(3)	0(2)
C(5A)	31(3)	32(3)	39(3)	1(2)	25(3)	0(2)
C(6A)	25(3)	16(2)	27(3)	1(2)	14(2)	0(2)
C(7A)	26(3)	26(3)	28(3)	-3(2)	11(2)	1(2)
C(8A)	27(3)	32(3)	40(3)	-9(3)	18(3)	-1(2)
C(9A)	41(3)	26(3)	42(3)	-7(3)	26(3)	-6(2)
C(10A)	45(3)	27(3)	29(3)	4(2)	22(3)	1(3)
C(11A)	36(3)	17(2)	29(3)	1(2)	16(3)	2(2)
Cl(1B)	35(1)	30(1)	26(1)	5(1)	16(1)	7(1)
I(1B)	35(1)	30(1)	26(1)	5(1)	16(1)	7(1)
O(1B)	21(2)	28(2)	26(2)	1(2)	9(2)	-3(1)
N(1B)	23(2)	23(2)	24(2)	1(2)	8(2)	1(2)
C(1B)	22(3)	18(3)	25(3)	-1(2)	6(2)	2(2)
O(2B)	21(2)	42(2)	35(2)	2(2)	7(2)	-4(2)
C(2B)	21(3)	26(3)	19(3)	-1(2)	2(2)	1(2)
C(3B)	27(3)	23(3)	22(3)	-4(2)	7(2)	-1(2)
O(3B)	22(2)	37(2)	23(2)	-3(2)	3(2)	-2(2)
C(4B)	29(3)	14(2)	18(2)	-2(2)	4(2)	-2(2)
C(5B)	33(3)	49(3)	21(3)	-5(3)	7(3)	-2(3)
C(6B)	28(3)	18(3)	19(3)	3(2)	7(2)	-1(2)
C(7B)	34(3)	31(3)	28(3)	9(2)	13(3)	5(3)
C(8B)	27(3)	40(3)	28(3)	5(3)	0(3)	-1(3)
C(9B)	36(3)	37(3)	20(3)	5(2)	5(3)	-6(3)
C(10B)	43(3)	26(3)	26(3)	-1(2)	14(3)	-6(3)
C(11B)	30(3)	24(3)	26(3)	5(2)	11(2)	1(2)

Tabelle 19.35:Lageparameter der Wasserstoffatome (x 10⁴) und isotrope Temperaturfaktoren (A² x 10³)
von 175-A und 178.

	x			
	~	У	Z	U(eq)
H(5A1)	6854	3695	601	46
H(5A2)	5971	4574	369	46
H(5A3)	6127	2281	496	46
H(7A)	3349	4559	1771	33
H(8A)	2610	4494	2479	39
H(9A)	3254	3670	3868	41
H(10A)	4658	2910	4565	39
H(11A)	5415	2931	3874	33
H(5B1)	-1916	7397	-1287	55
H(5B2)	-1041	6411	-687	55
H(5B3)	-1159	8704	-643	55
H(7B)	1671	6075	3281	39
H(8B)	2426	6047	4709	45
H(9B)	1824	7025	5494	42
H(10B)	420	7840	4832	39
H(11B)	-356	7820	3405	34

Tabelle 19.36:Torsionswinkel [°] von **175-A** und **178**.

C(4A)-O(1A)-C(1A)-C(2A)	0.2(7)
C(4A)-O(1A)-C(1A)-C(6A)	179.3(4)
O(1A)-C(1A)-C(2A)-N(1A)	-1.9(7)
C(6A)-C(1A)-C(2A)-N(1A)	179.4(5)
O(1A)-C(1A)-C(2A)-Cl(1A)	176.5(3)
C(6A)-C(1A)-C(2A)-Cl(1A)	-2.2(8)
C(3A)-N(1A)-C(2A)-C(1A)	0.6(7)
C(3A)-N(1A)-C(2A)-Cl(1A)	-177.9(3)
C(2A)-N(1A)-C(3A)-O(3A)	-177.0(4)
C(2A)-N(1A)-C(3A)-C(4A)	2.2(7)
C(5A)-O(3A)-C(3A)-N(1A)	0.6(7)
C(5A)-O(3A)-C(3A)-C(4A)	-178.7(4)
C(1A)-O(1A)-C(4A)-O(2A)	-177.6(5)
C(1A)-O(1A)-C(4A)-C(3A)	2.2(7)
N(1A)-C(3A)-C(4A)-O(2A)	176.2(5)
O(3A)-C(3A)-C(4A)-O(2A)	-4.5(8)
N(1A)-C(3A)-C(4A)-O(1A)	-3.6(7)
O(3A)-C(3A)-C(4A)-O(1A)	175.7(4)
C(2A)-C(1A)-C(6A)-C(11A)	153.7(5)
O(1A)-C(1A)-C(6A)-C(11A)	-25.1(6)
C(2A)-C(1A)-C(6A)-C(7A)	-28.1(9)
O(1A)-C(1A)-C(6A)-C(7A)	153.1(5)
C(11A)-C(6A)-C(7A)-C(8A)	-3.5(7)
C(1A)-C(6A)-C(7A)-C(8A)	178.2(5)
C(6A)-C(7A)-C(8A)-C(9A)	1.7(8)
C(7A)-C(8A)-C(9A)-C(10A)	0.5(8)
C(8A)-C(9A)-C(10A)-C(11A)	-0.8(8)
C(9A)-C(10A)-C(11A)-C(6A)	-1.1(8)
C(7A)-C(6A)-C(11A)-C(10A)	3.2(7)
C(1A)-C(6A)-C(11A)-C(10A)	-178.5(5)
C(2B)-O(1B)-C(1B)-C(4B)	-0.5(7)
C(2B)-O(1B)-C(1B)-C(6B)	177.1(4)
C(1B)-O(1B)-C(2B)-O(2B)	-176.6(5)
C(1B)-O(1B)-C(2B)-C(3B)	3.1(6)
C(4B)-N(1B)-C(3B)-O(3B)	178.7(4)
C(4B)-N(1B)-C(3B)-C(2B)	-0.1(7)
O(2B)-C(2B)-C(3B)-N(1B)	176.8(5)
O(1B)-C(2B)-C(3B)-N(1B)	-2.9(7)
O(2B)-C(2B)-C(3B)-O(3B)	-2.1(8)
O(1B)-C(2B)-C(3B)-O(3B)	178.2(4)
N(1B)-C(3B)-O(3B)-C(5B)	0.9(7)
C(2B)-C(3B)-O(3B)-C(5B)	179.9(4)
O(1B)-C(1B)-C(4B)-N(1B)	-2.9(7)
C(6B)-C(1B)-C(4B)-N(1B)	-179.9(5)
O(1B)-C(1B)-C(4B)-Cl(1B)	174.1(3)
C(6B)-C(1B)-C(4B)-Cl(1B)	-3.0(8)
C(3B)-N(1B)-C(4B)-C(1B)	3.1(7)
C(3B)-N(1B)-C(4B)-Cl(1B)	-174.1(4)
C(4B)-C(1B)-C(6B)-C(7B)	-30.1(8)
O(1B)-C(1B)-C(6B)-C(7B)	152.6(5)
C(4B)-C(1B)-C(6B)-C(11B)	150.1(6)
O(1B)-C(1B)-C(6B)-C(11B)	-27.2(6)
C(11B)-C(6B)-C(7B)-C(8B)	-1.0(8)
C(1B)-C(6B)-C(7B)-C(8B)	179.2(5)
C(6B)-C(7B)-C(8B)-C(9B)	-0.9(9)
C(7B)-C(8B)-C(9B)-C(10B)	2.2(9)
C(8B)-C(9B)-C(10B)-C(11B)	-1.5(8)
C(9B)-C(10B)-C(11B)-C(6B)	-0.4(8)
C(7B)-C(6B)-C(11B)-C(10B)	1.7(8)
C(1B)-C(6B)-C(11B)-C(10B)	-178.5(5)

Symmetrie-Transformationen wurden verwendet, um äquivalente Atome zu erzeugen.

19.7 Röntgenstrukturdaten von lodoxazindion 215

Abbildung 19.7: Röntgenstruktur von Iodoxazindion 215.

Identifikationsnummer	s2566lm
Empirische Formel	C10 H10 I N O3
Formelgewicht	319.09
Temperatur	130(2) К
Wellenlänge	0.71073 A
Kristallsystem, Raumgruppe	Monoclinic, C 2/c
Gitterkonstante	a = 17.7551(16) A alpha = 90°
	b = 13.5388(10) A beta = 98.454(5)°
	c = 9.0141(8) A gamma = 90°
Volumen	2143.3(3) A^3
Z, berechnete Dichte	8, 1.978 Mg/m^3
Absorptionskoeffizient	2.974 mm^-1
F(000)	1232
Kristallgröße	0.24 x 0.23 x 0.13 mm
Theta-Bereich für Datensammlung	1.90 to 30.60 deg.
Bereich für Indizes	-25<=h<=25, -19<=k<=19, -12<=l<=12
Gesammelte/ unabhängige Reflexe	15726 / 3280 [R(int) = 0.0313]
Vollständigkeit für theta = 30.60	99.3 %
Korrektur Absorption	Numerical
Max. und min. Transmission	0.7532 und 0.5680
Verfeinerungsmethode	Full-matrix least-squares on F ²
Daten/ Einschränkung / Parameter	3280 / 29 / 169
Goodness-of-fit on F^2	1.046
Abschließende R Indizes [I>2sigma(I)]	R1 = 0.0207, wR2 = 0.0455
R Indizes (alle Daten)	R1 = 0.0282, wR2 = 0.0472
Absolute Strukturparameter	0.00157(8)
Restelektronendichte	0.516 und -0.362 e.A^-3

Tabelle 19.38: Lageparameter (x 10⁴) und äquivalente isotrope Temperaturfaktoren (A² x 10³) von **215**.

U(eq) ist definiert als ein Drittel der Spur des orthogonalisierten $U_{ij}\mbox{-}Tensors.$

	x	У	Z	U(eq)
I(1)	3882(1)	1924(1)	957(1)	19(1)
O(1)	3866(1)	2701(1)	5601(2)	22(1)
N(1)	4236(1)	1064(1)	5607(2)	20(1)
C(1)	3783(1)	2718(1)	4054(2)	16(1)
O(2)	4380(1)	254(1)	3472(2)	20(1)
C(2)	3931(1)	1914(1)	3277(2)	15(1)
O(3)	4148(1)	1921(1)	7752(2)	37(1)
C(3)	4200(1)	1009(1)	4069(2)	15(1)
C(4)	4097(1)	1878(1)	6424(2)	23(1)

C(5)	3553(1)	3712(1)	3502(2)	20(1)
C(6)	2824(2)	3880(2)	2872(3)	44(1)
C(7)	2632(3)	4926(3)	2287(5)	36(1)
C(8)	3133(2)	5734(2)	3091(6)	31(1)
C(9)	3961(3)	5464(3)	3073(7)	44(1)
C(7A)	2378(5)	4803(5)	2465(14)	29(2)
C(8A)	2999(5)	5560(6)	2322(13)	26(2)
C(9A)	3654(8)	5503(6)	3490(12)	33(3)
C(10)	4126(2)	4488(2)	3758(4)	44(1)

 Tabelle 19.39:
 Bindungslängen [Å] und Bindungswinkel [°] von 215.

I(1)-C(2)	2.0798(19)
O(1)-C(4)	1.367(2)
O(1)-C(1)	1.381(2)
N(1)-C(4)	1.368(2)
N(1)-C(3)	1.381(2)
N(1)-H(1)	0.831(17)
C(1)-C(2)	1.341(2)
C(1)-C(5)	1.471(3)
O(2)-C(3)	1.219(2)
C(2)-C(3)	1.463(2)
O(3)-C(4)	1.189(3)
C(5)-C(6)	1.354(3)
C(5)-C(10)	1.457(3)
C(6)-C(7A)	1.497(6)
C(6)-C(7)	1.533(4)
C(6)-H(6)	0.9753
C(6)-H(6A)	0.9734
C(7)-C(8)	1,525(5)
C(7) - H(7A)	0,9900
C(7)-H(7B)	0.9900
C(8)-C(9)	1 518(6)
$C(8) - H(8\Delta)$	0,9900
C(8) - H(8B)	0.9900
C(9) - C(10)	1 469(4)
$C(9) - H(9\Delta)$	0.9900
C(9) - H(9R)	0.9900
C(7A)- $C(8A)$	1 524(6)
C(7A) - H(7A1)	0.9900
C(7A) - H(7A2)	0.9900
$C(7A) = \Pi(7A2)$ C(8A) = C(9A)	1 451(14)
C(8A) - C(5A)	0.9900
C(8A) - H(8A2)	0.9900
C(0A) - C(10)	1,609(11)
C(9A) - U(9A1)	0.9900
$C(0A) \dashv (0A2)$	0.9900
C(3R) - H(3R2)	0.9900
C(10) - H(10A)	0.9045
C(10) - H(10B)	0.9700
C(10) - H(10C)	0.9375
C(10)-H(10D)	0.9780
C(4)-O(1)-C(1)	100 70/15\
C(4)-N(1)-C(3)	122.72(13)
C(4) - N(1) - H(1)	11/ 5/10
C(4) = H(1)	117 Q(10)
C(3) - N(1) - N(1)	117.5(15)
C(2) - C(1) - O(1)	120.95(10)
C(2) - C(1) - C(5)	100 96(15)
O(1)-C(2)-C(2)	110 08(17)
C(1) - C(2) - C(3)	119.98(17)
C(1)-C(2)-I(1)	122.52(13)
C(3)-C(2)-I(1)	117.29(12)
U(2)-U(3)-N(1)	120.81(16)
U(2)-C(3)-C(2)	125.08(17)
N(1)-C(3)-C(2)	114.12(15)
O(3)-C(4)-O(1)	118.66(16)

O(3)-C(4)-N(1)	125,98(17)
O(1) O(1) O(1)	115 25(17)
O(1)-C(4)-N(1)	115.35(17)
C(6)-C(5)-C(10)	123.17(19)
C(6)-C(5)-C(1)	119.72(19)
C(10) C(5) C(1)	116 00(10)
C(10)-C(3)-C(1)	110.99(19)
C(5)-C(6)-C(7A)	133.0(4)
C(5)-C(6)-C(7)	116.8(3)
C(ZA) C(E) C(Z)	20 0(2)
	20.0(3)
C(5)-C(6)-H(6)	121.4
C(7A)-C(6)-H(6)	104.5
	121 0
	121.0
С(5)-С(6)-Н(6А)	113.2
C(7A)-C(6)-H(6A)	113.7
C(7)-C(6)-H(6A)	127 5
	127.5
H(b)-C(b)-H(bA)	16.0
C(8)-C(7)-C(6)	114.5(3)
C(8)-C(7)-H(7A)	108.6
C(6) - C(7) - H(7A)	109.6
	108.0
C(8)-C(7)-H(7B)	108.6
C(6)-C(7)-H(7B)	108.6
H(7A)-C(7)-H(7B)	107.6
C(0) - C(2) - C(7)	109 7(1)
	108.7(4)
С(9)-С(8)-Н(8А)	109.9
C(7)-C(8)-H(8A)	109.9
C(9)-C(8)-H(8B)	109 9
	100.0
C(7)-C(8)-H(8B)	109.9
H(8A)-C(8)-H(8B)	108.3
C(10)-C(9)-C(8)	110.3(4)
C(10) - C(0) - H(0A)	100 6
	109.0
C(8)-C(9)-H(9A)	109.6
C(10)-C(9)-H(9B)	109.6
C(8)-C(9)-H(9B)	109.6
H(QA) = C(Q) + H(QB)	109 1
	100.1
C(6)-C(7A)-C(8A)	102.6(6)
C(6)-C(7A)-H(7A1)	111.2
C(8A)-C(7A)-H(7A1)	111.2
C(G) C(TA) U(TA2)	111 2
C(0)-C(7A)-FI(7A2)	111.2
C(8A)-C(7A)-H(7A2)	111.2
H(7A1)-C(7A)-H(7A2)	109.2
$C(0\Lambda) - C(8\Lambda) - C(7\Lambda)$	11/ 5/0)
C(3A) - C(3A) - C(7A)	114.3(3)
C(9A)-C(8A)-H(8A1)	108.6
C(7A)-C(8A)-H(8A1)	108.6
C(9A)-C(8A)-H(8A2)	108.6
C(3A) C(8A) U(8A2)	109.6
	100.0
H(8A1)-C(8A)-H(8A2)	107.6
C(8A)-C(9A)-C(10)	119.9(7)
C(8A)-C(9A)-H(9A1)	107 3
C(10) C(00) U(001)	107.3
C(10)-C(9A)-R(9A1)	107.5
C(8A)-C(9A)-H(9A2)	107.3
C(10)-C(9A)-H(9A2)	107.3
$H(QA1)_{-}C(QA)_{-}H(QA2)$	106.9
$((5A1)^{-}((5A)^{-}((5A2)^{-}))$	100.5
C(5)-C(10)-C(9)	119.4(3)
C(5)-C(10)-C(9A)	104.8(5)
C(9)-C(10)-C(9A)	26.1(4)
C(5) - C(10) - H(10A)	1070
C(3) - C(10) - H(10A)	107.5
C(9)-C(10)-H(10A)	107.6
C(9A)-C(10)-H(10A)	133.6
C(5)-C(10)-H(10B)	107.1
C(0) = C(10) = H(10R)	109.6
C(D) = C(TO) = I(TOD)	100.0
C(9A)-C(10)-H(10B)	95.2
H(10A)-C(10)-H(10B)	105.4
C(5)-C(10)-H(10C)	111.8
C(0) - C(10) - H(10C)	84.7
	04.7
C(9A)-C(10)-H(10C)	110.6
H(10A)-C(10)-H(10C)	25.5
H(10B)-C(10)-H(10C)	124.6
C(5) C(10) H(100)	110 5
	110.5
C(9)-C(10)-H(10D)	119.1
C(9A)-C(10)-H(10D)	111.5
H(10A)-C(10)-H(10D)	86.6

H(10B)-C(10)-H(10D)	19.1
H(10C)-C(10)-H(10D)	107.7

Tabelle 19.40: Anisotrope Temperaturfaktoren ($A^2 \times 10^3$) von **215**.

Der Exponent des anisotropen Temperaturfaktors ist definiert als	: -2π ² [h ² a* ² U11 +	+ 2 h k a* b* U12]
--	---	--------------------

	U11	U22	U33	U23	U13	U12
l(1)	26(1)	21(1)	11(1)	0(1)	2(1)	4(1)
O(1)	40(1)	15(1)	10(1)	1(1)	4(1)	10(1)
N(1)	34(1)	13(1)	12(1)	1(1)	2(1)	7(1)
C(1)	21(1)	17(1)	12(1)	2(1)	4(1)	2(1)
O(2)	26(1)	14(1)	17(1)	-4(1)	1(1)	2(1)
C(2)	18(1)	15(1)	12(1)	1(1)	2(1)	0(1)
O(3)	74(1)	24(1)	13(1)	3(1)	9(1)	17(1)
C(3)	16(1)	15(1)	13(1)	0(1)	1(1)	-1(1)
C(4)	38(1)	15(1)	16(1)	2(1)	4(1)	5(1)
C(5)	31(1)	17(1)	13(1)	3(1)	7(1)	8(1)
C(6)	44(2)	28(1)	52(2)	-3(1)	-17(1)	13(1)
C(7)	31(2)	37(2)	39(2)	8(2)	4(2)	20(2)
C(8)	35(2)	21(1)	39(2)	8(2)	13(2)	9(1)
C(9)	34(2)	24(2)	78(4)	28(2)	19(2)	7(2)
C(7A)	22(4)	31(3)	35(4)	0(3)	3(3)	13(3)
C(8A)	26(3)	22(3)	29(4)	6(3)	3(3)	5(2)
C(9A)	46(8)	16(4)	37(5)	0(3)	7(5)	-5(4)
C(10)	37(1)	26(1)	73(2)	19(1)	20(1)	4(1)

Tabelle 19.41:	Lageparameter der Wasserstoffatome (x 10 ⁴) und isotrope Temperaturfaktoren (A ² x 10 ³)
	von 215 .

	х	У	Z	U(eq)
H(1)	4430(15)	593(16)	6120(30)	47(8)
H(6)	2443	3356	2783	52
H(6A)	2538	3276	2606	52
H(7A)	2677	4948	1206	43
H(7B)	2095	5069	2386	43
H(8A)	3018	6375	2578	37
H(8B)	3033	5798	4138	37
H(9A)	4069	5455	2026	53
H(9B)	4294	5966	3635	53
H(7A1)	2076	4992	3261	35
H(7A2)	2032	4724	1506	35
H(8A1)	3174	5470	1338	31
H(8A2)	2776	6229	2336	31
H(9A1)	3478	5678	4448	40
H(9A2)	4016	6023	3282	40
H(10A)	4585	4245	3430	53
H(10B)	4253	4571	4842	53
H(10C)	4492	4438	3080	53
H(10D)	4402	4448	4779	53

Tabelle 19.42:Torsionswinkel [°] von 215.

C(4)-O(1)-C(1)-C(2)	
C(4)-O(1)-C(1)-C(5)	

-0.3(3) -178.13(18)

O(1)-C(1)-C(2)-C(3)	-1.3(3)
C(5)-C(1)-C(2)-C(3)	176.07(19)
O(1)-C(1)-C(2)-I(1)	-175.99(13)
C(5)-C(1)-C(2)-I(1)	1.4(3)
C(4)-N(1)-C(3)-O(2)	175.6(2)
C(4)-N(1)-C(3)-C(2)	-4.6(3)
C(1)-C(2)-C(3)-O(2)	-176.79(19)
I(1)-C(2)-C(3)-O(2)	-1.9(3)
C(1)-C(2)-C(3)-N(1)	3.5(3)
I(1)-C(2)-C(3)-N(1)	178.44(13)
C(1)-O(1)-C(4)-O(3)	-179.3(2)
C(1)-O(1)-C(4)-N(1)	-0.5(3)
C(3)-N(1)-C(4)-O(3)	-178.0(2)
C(3)-N(1)-C(4)-O(1)	3.2(3)
C(2)-C(1)-C(5)-C(6)	77.3(3)
O(1)-C(1)-C(5)-C(6)	-105.0(2)
C(2)-C(1)-C(5)-C(10)	-106.5(3)
O(1)-C(1)-C(5)-C(10)	71.2(2)
C(10)-C(5)-C(6)-C(7A)	-8.9(8)
C(1)-C(5)-C(6)-C(7A)	167.1(7)
C(10)-C(5)-C(6)-C(7)	5.5(4)
C(1)-C(5)-C(6)-C(7)	-178.5(3)
C(5)-C(6)-C(7)-C(8)	-27.4(5)
C(7A)-C(6)-C(7)-C(8)	120.5(18)
C(6)-C(7)-C(8)-C(9)	52.9(6)
C(7)-C(8)-C(9)-C(10)	-56.5(6)
C(5)-C(6)-C(7A)-C(8A)	22.5(13)
C(7)-C(6)-C(7A)-C(8A)	-18.0(11)
C(6)-C(7A)-C(8A)-C(9A)	-42.7(14)
C(7A)-C(8A)-C(9A)-C(10)	57.2(17)
C(6)-C(5)-C(10)-C(9)	-11.4(5)
C(1)-C(5)-C(10)-C(9)	172.5(4)
C(6)-C(5)-C(10)-C(9A)	12.1(5)
C(1)-C(5)-C(10)-C(9A)	-164.0(5)
C(8)-C(9)-C(10)-C(5)	37.5(7)
C(8)-C(9)-C(10)-C(9A)	-23.7(9)
C(8A)-C(9A)-C(10)-C(5)	-36.9(12)
C(8A)-C(9A)-C(10)-C(9)	91.0(14)

19.8 Röntgenstrukturdaten von Alkin 216

Abbildung 19.8: Röntgenstruktur von Alkin 216.

Tabelle 19.43:	Kristalldaten und	Strukturverfeinerungen von 216 .
Identifikationsnu	mmer	s2703lc

Identifikationsnummer	SZ 703IC				
Empirische Formel	C19 H13 N O3				
Formelgewicht	303.30				
Temperatur	135(2) K				
Wellenlänge	1.54178 A				
Kristallsystem, Raumgruppe	Triclinic, P-1				
Gitterkonstante	a = 13.8404(5) A alpha = 60.118(2)°				
	b = 19.3806(6) A beta = 86.004(2)°				
	c = 19.3910(6) A gamma = 78.442(3)°				
Volumen	4415.6(3) A^3				
Z, berechnete Dichte	12, 1.369 Mg/m^3				
Absorptionskoeffizient	0.761 mm^-1				
F(000)	1896				
Kristallgröße	0.168 x 0.130 x 0.068 mm				
Theta-Bereich für Datensammlung	2.630 to 65.596 deg.				
Bereich für Indizes	-16<=h<=16, -20<=k<=22, -22<=l<=22				
Gesammelte/ unabhängige Reflexe	50089 / 14717 [R(int) = 0.0623]				
Vollständigkeit für theta = 65.596	96.5 %				
Korrektur Absorption	Semi-empirical from equivalents				
Max. und min. Transmission	0.8642 und 0.7561				
Verfeinerungsmethode	Full-matrix least-squares on F^2				
Daten/ Einschränkung / Parameter	14717 / 0 / 1249				
Goodness-of-fit on F^2	1.028				
Abschließende R Indizes [I>2sigma(I)]	R1 = 0.0576, wR2 = 0.1372				
R Indizes (alle Daten)	R1 = 0.1049, wR2 = 0.1535				
Absolute Strukturparameter	n/a				
Restelektronendichte	0.244 und -0.195 e.A^-3				
***************************************	********				
BEMERKUNG:	BEMERKUNG:				

6 unabhängige Moleküle (Konformere) in der asymmetrischen Einheit.

Tabelle 19.44: Lageparameter (x 10⁴) und äquivalente isotrope Temperaturfaktoren (A² x 10³) von **216**.

U(eq) ist definiert als ein Drittel der Spur des orthogonalisierten U_{ij}-Tensors.

	х	У	Z	U(eq)
 O(1A)	9021(2)	3381(1)	5997(1)	48(1)
N(1A)	8758(2)	4581(1)	3891(1)	30(1)
C(1A)	8917(2)	3582(2)	5309(2)	36(1)
O(2A)	8862(1)	3005(1)	5112(1)	32(1)
C(2A)	8837(2)	4403(2)	4619(2)	30(1)
O(3A)	8863(2)	4949(1)	4841(1)	38(1)
C(3A)	8740(2)	3941(2)	3740(2)	31(1)
C(4A)	8761(2)	3164(2)	4337(2)	31(1)
C(5A)	8709(2)	4187(2)	2914(2)	32(1)
C(6A)	8695(2)	4392(2)	2218(2)	35(1)
C(7A)	8679(2)	4597(2)	1396(2)	35(1)
C(8A)	8503(2)	4032(2)	1198(2)	42(1)
C(9A)	8480(2)	4224(2)	412(2)	46(1)
C(10A)	8633(2)	4977(2)	-187(2)	43(1)
C(11A)	8795(2)	5538(2)	9(2)	42(1)
C(12A)	8813(2)	5359(2)	791(2)	37(1)
C(13A)	8674(2)	2432(2)	4321(2)	33(1)
C(14A)	8880(2)	1685(2)	5020(2)	44(1)
C(15A)	8793(3)	977(2)	5036(2)	55(1)
C(16A)	8480(3)	1003(2)	4362(2)	50(1)
C(17A)	8262(2)	1733(2)	3677(2)	45(1)
C(18A)	8352(2)	2442(2)	3651(2)	41(1)
C(19A)	8799(2)	5778(2)	4208(2)	40(1)
O(1B)	1355(2)	12703(1)	10282(1)	57(1)
N(1B)	1297(2)	11746(1)	9140(1)	32(1)
C(1B)	1332(2)	12195(2)	10105(2)	38(1)

C(2B)	1325(2)	12308(2)	9300(2)	32(1)
O(2B)	1305(2)	11424(1)	10694(1)	37(1)
C(2D)	1208(2)	10061(2)	0707(2)	22(1)
C(3B)	1298(2)	10961(2)	9787(2)	32(1)
O(3B)	1340(2)	13075(1)	8750(1)	38(1)
C(4B)	1278(2)	10800(2)	10554(2)	32(1)
C(5P)	1221(2)	10261(2)	0552(2)	21(1)
	1331(2)	10301(2)	9555(2)	51(1)
C(6B)	1353(2)	9877(2)	9340(2)	32(1)
C(7B)	1312(2)	9266(2)	9132(2)	32(1)
CIQDI	1207(2)	9479(2)	0720(2)	12(1)
	1297(2)	8478(2)	9730(2)	43(1)
C(9B)	1189(3)	7897(2)	9537(2)	50(1)
C(10B)	1102(2)	8100(2)	8750(2)	45(1)
C(11B)	1130(2)	8880(2)	8156(2)	11(1)
	1100(2)	0000(2)	0150(2)	+1(1)
C(12B)	1237(2)	9468(2)	8335(2)	36(1)
C(13B)	1248(2)	10042(2)	11306(2)	33(1)
C(14B)	1470(2)	10000(2)	12020(2)	38(1)
	1 1 2 0 (2)	20000(2)	12020(2)	30(1) 45(4)
C(15B)	1428(2)	9306(2)	12741(2)	45(1)
C(16B)	1158(2)	8643(2)	12768(2)	48(1)
C(17B)	926(2)	8689(2)	12056(2)	46(1)
C(17D)	072(2)	0005(2)	112030(2)	-0(1)
C(18B)	972(2)	9373(2)	11337(2)	37(1)
C(19B)	1364(2)	13261(2)	7929(2)	40(1)
C(1C)	6405(2)	5686(2)	2986(2)	31(1)
	(224(2)	5000(2)	2010(2)	20(1)
N(1C)	6224(2)	5274(1)	2010(1)	30(1)
O(1C)	6504(2)	6178(1)	3167(1)	44(1)
O(2C)	6368(1)	4920(1)	3565(1)	30(1)
c(2C)	6215(2)		2171(2)	20(1)
C(2C)	0315(2)	5822(2)	21/1(2)	30(1)
O(3C)	6323(2)	6591(1)	1622(1)	38(1)
C(3C)	6217(2)	4487(2)	2647(2)	27(1)
	6265(2)	1310(2)	3420(2)	27(1)
	6205(2)	2004(2)	2410(2)	20(1)
C(SC)	6185(2)	3904(2)	2410(2)	30(1)
C(6C)	6170(2)	3411(2)	2203(2)	31(1)
C(7C)	6158(2)	2803(2)	1996(2)	32(1)
	5961(2)	2049(2)	2583(2)	41(1)
C(0C)	5051(2)	2045(2)	2305(2)	4 (1)
C(9C)	5958(3)	1446(2)	2395(2)	46(1)
C(10C)	6160(2)	1588(2)	1629(2)	43(1)
C(11C)	6346(2)	2329(2)	1050(2)	40(1)
$\dot{(12)}$	6345(2)	2936(2)	1220(2)	35(1)
C(12C)	(2)	2550(2)	1223(2)	20(1)
C(13C)	6236(2)	3556(2)	41/2(2)	29(1)
C(14C)	6466(2)	3506(2)	4888(2)	38(1)
C(15C)	6462(3)	2806(2)	5604(2)	49(1)
C(16C)	6227(2)	2133(2)	5629(2)	46(1)
C(10C)	5000(2)	2100(2)	3025(2) 4025(2)	40(1)
C(1/C)	5999(2)	2168(2)	4935(2)	42(1)
C(18C)	5995(2)	2875(2)	4211(2)	37(1)
C(19C)	6249(2)	6790(2)	798(2)	42(1)
C(1D)	3789(2)	5507(2)	1209(2)	40(1)
	3765(2)	3307(2)	1205(2)	40(1)
N(1D)	3740(2)	4093(1)	1649(1)	32(1)
O(1D)	3811(2)	6189(1)	701(1)	62(1)
O(2D)	3744(2)	5321(1)	1983(1)	35(1)
	2780(2)	1912(2)	1000(2)	22(1)
C(2D)	3765(2)	4012(2)	1000(2)	52(1)
U(3D)	3853(2)	5023(1)	323(1)	39(1)
C(3D)	3718(2)	3952(2)	2434(2)	30(1)
C(4D)	3719(2)	4551(2)	2609(2)	31(1)
	2726(2)	2129(2)	2020(2)	22(1)
C(5D)	5720(2)	5120(2)	5020(2)	52(1)
C(6D)	3732(2)	2427(2)	3500(2)	32(1)
C(7D)	3729(2)	1606(2)	4113(2)	31(1)
	3836(2)	1391(2)	4907(2)	42(1)
C(0D)	2022(2)	£05(2)	FF01(2)	12(1)
C(9D)	3822(3)	606(2)	5501(2)	47(1)
C(10D)	3685(3)	31(2)	5316(2)	46(1)
C(11D)	3572(2)	243(2)	4531(2)	41(1)
C(12D)	3596(2)	1022(2)	3929(2)	37(1)
C(12D)	2721/21	AE07/01	227//2)	20(1)
	5/51(2)	4537(2)	55/4(2)	29(1)
C(14D)	3984(2)	5190(2)	3394(2)	34(1)
C(15D)	4011(2)	5196(2)	4098(2)	43(1)
C(16D)	3784(2)	4557(2)	4800(2)	49(1)
C(17D)	3520(2)	2012/21	1700(2)	AA(1)
	3520(2)	3912(2)	4/03(2)	44(I)
C(18D)	3503(2)	3895(2)	4085(2)	34(1)
C(19D)	3908(2)	4386(2)	128(2)	40(1)
O(1E)	1428(2)	295(1)	6393(1)	66(1)
N(1F)	1272/21	2/12/11	5477(1)	21/1)
- (1 E)	1250(2)	2712(1)	5477(1)	31(1)
C(IE)	1359(2)	990(2)	5896(2)	41(1)
C(2E)	1325(2)	1678(2)	6032(2)	33(1)

SEITE 3	335
---------	-----

O(2E)	1312(2)	1204(1)	5114(1)	41(1)
C(3E)	1228(2)	2582(2)	4684(2)	31(1)
O(3E)	1348(2)	1444(1)	6803(1)	38(1)
C(4E)	1236(2)	1991(2)	4498(2)	31(1)
C(5E)	1166(2)	3425(2)	4096(2)	35(1)
C(6E)	1134(2)	4122(2)	3613(2)	35(1)
C(7E)	1141(2)	4930(2)	2998(2)	33(1)
C(8E)	968(2)	5141(2)	2205(2)	42(1)
C(9E)	1027(3)	5910(2)	1599(2)	50(1)
C(10E)	1259(3)	6477(2)	1770(2)	48(1)
C(11E)	1407(2)	6277(2)	2547(2)	43(1)
C(12E)	1358(2)	5508(2)	3162(2)	36(1)
C(13E)	1154(2)	2033(2)	3726(2)	34(1)
C(14E)	904(3)	1386(2)	3708(2)	50(1)
C(15E)	828(3)	1402(2)	2986(2)	59(1)
C(16E)	992(3)	2051(2)	2287(2)	54(1)
C(17E)	1244(3)	2696(2)	2301(2)	63(1)
C(18E)	1325(3)	2692(2)	3014(2)	53(1)
C(19E)	1301(2)	2078(2)	7006(2)	38(1)
N(1F)	3725(2)	1124(1)	973(1)	32(1)
C(1F)	3862(2)	98(2)	2379(2)	37(1)
O(1F)	3937(2)	-108(1)	3070(1)	54(1)
O(2F)	3865(1)	-466(1)	2163(1)	34(1)
C(2F)	3762(2)	932(2)	1706(2)	32(1)
O(3F)	3712(2)	1472(1)	1951(1)	42(1)
C(3F)	3745(2)	496(2)	803(2)	28(1)
C(4F)	3791(2)	-284(2)	1377(2)	28(1)
C(5F)	3695(2)	756(2)	-31(2)	31(1)
C(6F)	3681(2)	969(2)	-726(2)	30(1)
C(7F)	3709(2)	1155(2)	-1541(2)	31(1)
C(8F)	3512(2)	586(2)	-1733(2)	36(1)
C(9F)	3600(2)	739(2)	-2510(2)	41(1)
C(10F)	3882(2)	1447(2)	-3094(2)	43(1)
C(11F)	4063(2)	2011(2)	-2905(2)	39(1)
C(12F)	3972(2)	1867(2)	-2134(2)	33(1)
C(13F)	3739(2)	-1014(2)	1338(2)	32(1)
C(14F)	3499(2)	-1687(2)	2017(2)	42(1)
C(15F)	3438(2)	-2384(2)	2005(2)	48(1)
C(16F)	3633(3)	-2430(2)	1319(2)	53(1)
C(17F)	3880(3)	-1775(2)	645(2)	50(1)
C(18F)	3935(2)	-1069(2)	652(2)	40(1)
C(19F)	3597(3)	2322(2)	1336(2)	45(1)

 Tabelle 19.45:
 Bindungslängen [Å] und Bindungswinkel [°] von 216.

O(1A)-C(1A)	1.198(3)
N(1A)-C(2A)	1.283(3)
N(1A)-C(3A)	1.413(3)
C(1A)-O(2A)	1.367(3)
C(1A)-C(2A)	1.471(4)
O(2A)-C(4A)	1.387(3)
C(2A)-O(3A)	1.332(3)
O(3A)-C(19A)	1.446(3)
C(3A)-C(4A)	1.364(4)
C(3A)-C(5A)	1.425(4)
C(4A)-C(13A)	1.463(4)
C(5A)-C(6A)	1.204(4)
C(6A)-C(7A)	1.439(4)
C(7A)-C(12A)	1.394(4)
C(7A)-C(8A)	1.396(4)
C(8A)-C(9A)	1.377(4)
C(8A)-H(8A)	0.9500
C(9A)-C(10A)	1.388(4)
C(9A)-H(9A)	0.9500
C(10A)-C(11A)	1.376(4)
C(10A)-H(10A)	0.9500

C(11A)-C(12A)	1.378(4)
C(11A)-H(11A)	0.9500
C(12A) - H(12A)	0.9500
C(13A) - C(18A)	1.392(4)
C(13A)-C(14A)	1 387(4)
C(14A) - H(14A)	0.9500
C(15A)-C(16A)	1.378(4)
C(15A)-H(15A)	0.9500
C(16A)-C(17A)	1.368(4)
C(16A)-H(16A)	0.9500
C(17A)-C(18A)	1.381(4)
C(17A)-H(17A)	0.9500
C(18A)-H(18A)	0.9500
C(19A)-H(19A)	0.9800
C(19A)-H(19B)	0.9800
C(19A)-H(19C)	0.9800
U(1B)-U(1B)	1.200(3)
N(1D) - C(2D)	1.279(5)
C(1B)-C(2B)	1 363(3)
C(1B)-C(2B)	1.303(3) 1 464(4)
C(2B)-O(3B)	1.332(3)
O(2B)-C(4B)	1.372(3)
C(3B)-C(4B)	1.358(4)
C(3B)-C(5B)	1.436(4)
O(3B)-C(19B)	1.448(3)
C(4B)-C(13B)	1.472(4)
C(5B)-C(6B)	1.194(4)
C(6B)-C(7B)	1.440(4)
C(7B)-C(8B)	1.386(4)
C(7B)-C(12B)	1.399(4)
	1.387(4)
C(0B)-C(10B)	1 381(1)
C(9B)-H(9B)	0.9500
C(10B)-C(11B)	1.376(4)
C(10B)-H(10B)	0.9500
C(11B)-C(12B)	1.384(4)
C(11B)-H(11B)	0.9500
С(12В)-Н(12В)	0.9500
C(13B)-C(18B)	1.396(4)
C(13B)-C(14B)	1.400(4)
C(14B)-C(15B)	1.383(4)
C(14B)-H(14B)	0.9500 1 20E(A)
C(15B)-C(10B)	1.363(4) 0.9500
C(16B)-C(17B)	1.393(4)
C(16B)-H(16B)	0.9500
C(17B)-C(18B)	1.373(4)
С(17В)-Н(17В)	0.9500
C(18B)-H(18B)	0.9500
C(19B)-H(19D)	0.9800
С(19В)-Н(19Е)	0.9800
C(19B)-H(19F)	0.9800
C(1C)-O(1C)	1.203(3)
C(1C) - O(2C)	1.352(3)
U(1C) - U(2C)	1.4/0(4)
N(1C)-C(2C)	1.277(3)
O(2C)-C(4C)	1.378(3)
C(2C)-O(3C)	1.333(3)
O(3C)-C(19C)	1.452(3)
C(3C)-C(4C)	1.364(4)
C(3C)-C(5C)	1.425(4)
C(4C)-C(13C)	1.468(4)
C(5C)-C(6C)	1.212(4)
C(6C)-C(7C)	1.424(4)
C(7C)-C(12C)	1.392(4)
し(ノレ)-し(おし)	1.401(4)

C(8C)-C(9C)	
C(8C)-H(8C)	
C(9C)-C(10C)	
C(9C)-H(9C)	
C(10C)-C(11C)	
C(10C) U(10C)	
C(10C)-H(10C)	
C(11C)-C(12C)	
С(11С)-Н(11С)	
C(12C)-H(12C)	
C(13C)-C(18C)	
C(13C)-C(14C)	
C(10C) C(1TC)	
C(14C)-C(15C)	
C(14C)-H(14C)	
C(15C)-C(16C)	
C(16C)-C(17C)	
C(16C)-H(16C)	
C(17C) - C(18C)	
C(1/C)-H(1/C)	
C(18C)-H(18C)	
C(19C)-H(19G)	
С(19С)-Н(19Н)	
C(19C)-H(19I)	
C(1D)-O(1D)	
C(1D) = O(2D)	
C(1D)-C(2D)	
N(1D)-C(2D)	
N(1D)-C(3D)	
O(2D) C(4D)	
0(2D)-C(4D)	
C(2D)-O(3D)	
O(3D)-C(19D)	
C(3D)-C(4D)	
C(2D) - C(5D)	
C(3D) - C(3D)	
C(4D)-C(13D)	
C(5D)-C(6D)	
C(6D)-C(7D)	
C(7D) - C(8D)	
C(7D)-C(12D)	
C(8D)-C(9D)	
C(8D)-H(8D)	
C(0D) C(10D)	
C(9D)-H(9D)	
C(10D)-C(11D)	
C(10D)-H(10D)	
C(11D) C(12D)	
C(11D)-C(12D)	
C(11D)-H(11D)	
C(12D)-H(12D)	
C(13D)-C(18D)	
C(12D) C(14D)	
C(15D) - C(14D)	
C(14D)-C(15D)	
C(14D)-H(14D)	
C(15D)-C(16D)	
C(15D) = C(15D)	
C(15D)-H(15D)	
C(16D)-C(17D)	
C(16D)-H(16D)	
C(10D) T(10D)	
C(17D)-H(17D)	
C(18D)-H(18D)	
C(19D)-H(191)	
C(10D) U(10V)	
С(ТЭП)-Ц(ТЭК)	
C(19D)-H(19L)	
O(1E)-C(1E)	
N(1E)-C(2E)	
N(1F)_C(3F)	
C(4E) = C(3E)	
C(1E)-O(2E)	
C(1E)-C(2E)	
C(2E)-O(3E)	
O(2E)-C(4F)	
U(3E)-U(4E)	

1.389(4)
=
0.0500
0.9500
1.387(4)
0 9500
0.5500
1.375(4)
0.9500
1 202(4)
1.382(4)
0.9500
0.0500
0.9500
1.389(4)
1 300(1)
1.355(4)
1.376(4)
0 9500
0.5500
1.384(4)
0.9500
4.200(4)
1.368(4)
0.9500
1 200/4)
1.389(4)
0.9500
0 9500
0.5500
0.9800
0 9800
0.0000
0.9800
1.196(3)
1 257(3)
1.357(3)
1.478(4)
1 20//2)
1.284(3)
1.406(3)
1 202(2)
1.382(3)
1.330(3)
1 1/10(2)
1.440(5)
1.362(4)
1 424(4)
1.424(4)
1.470(4)
1 203(4)
1.200(1)
1.436(4)
1.390(4)
1 204(4)
1.394(4)
1.380(4)
0.9500
1.380(4)
0 9500
0.9500
1 275(1)
1.373(4)
0.9500
0.9500
0.9500 1.380(4)
0.9500 1.380(4) 0.9500
1.375(4) 0.9500 1.380(4) 0.9500
0.9500 1.380(4) 0.9500 0.9500
1.373(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4)
1.373(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4)
1.373(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.399(4)
1.373(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.399(4) 1.374(4)
1.373(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.399(4) 1.374(4) 0.9500
1.373(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.399(4) 1.374(4) 0.9500
1.375(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.399(4) 1.374(4) 0.9500 1.380(4)
1.375(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.399(4) 1.374(4) 0.9500 1.380(4) 0.9500
1.375(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.374(4) 0.9500 1.380(4) 0.9500
1.375(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.374(4) 0.9500 1.380(4) 0.9500 1.379(4)
1.375(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.374(4) 0.9500 1.380(4) 0.9500 1.379(4) 0.9500
1.35(4) 0.9500 1.380(4) 0.9500 1.392(4) 1.399(4) 1.374(4) 0.9500 1.380(4) 0.9500 1.379(4) 0.9500
1.375(4) 0.9500 1.380(4) 0.9500 1.392(4) 1.374(4) 0.9500 1.380(4) 0.9500 1.379(4) 0.9500 1.384(4)
1.375(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.374(4) 0.9500 1.380(4) 0.9500 1.379(4) 0.9500 1.384(4) 0.9500
1.379(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.374(4) 0.9500 1.380(4) 0.9500 1.379(4) 0.9500 1.384(4) 0.9500
1.375(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.374(4) 0.9500 1.380(4) 0.9500 1.379(4) 0.9500 1.384(4) 0.9500 0.9500
1.375(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.374(4) 0.9500 1.380(4) 0.9500 1.379(4) 0.9500 1.384(4) 0.9500 0.9500 0.9500 0.9800
1.379(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.374(4) 0.9500 1.380(4) 0.9500 1.379(4) 0.9500 1.384(4) 0.9500 0.9500 0.9800 0.9800
1.379(4) 0.9500 1.380(4) 0.9500 1.392(4) 1.399(4) 1.374(4) 0.9500 1.380(4) 0.9500 1.379(4) 0.9500 1.384(4) 0.9500 0.9500 0.9500 0.9800
1.375(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.399(4) 1.374(4) 0.9500 1.380(4) 0.9500 1.379(4) 0.9500 1.384(4) 0.9500 0.9500 0.9500 0.9800 0.9800
1.379(4) 0.9500 1.380(4) 0.9500 1.392(4) 1.399(4) 1.374(4) 0.9500 1.380(4) 0.9500 1.379(4) 0.9500 1.384(4) 0.9500 0.9500 0.9800 0.9800 0.9800
1.375(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.374(4) 0.9500 1.374(4) 0.9500 1.379(4) 0.9500 1.379(4) 0.9500 0.9500 0.9500 0.9800 0.9800 0.9800 1.191(3)
1.375(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.374(4) 0.9500 1.380(4) 0.9500 1.379(4) 0.9500 1.379(4) 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9800 0.9800 0.9800 1.191(3) 1.277(3)
1.379(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.374(4) 0.9500 1.380(4) 0.9500 1.379(4) 0.9500 1.384(4) 0.9500 0.9500 0.9800 0.9800 0.9800 1.191(3) 1.277(3) 1.407(3)
1.375(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.399(4) 1.374(4) 0.9500 1.379(4) 0.9500 1.379(4) 0.9500 1.384(4) 0.9500 0.9500 0.9500 0.9800 0.9800 0.9800 1.191(3) 1.277(3) 1.407(3) 1.407(3)
1.37(4) 0.9500 1.380(4) 0.9500 1.392(4) 1.399(4) 1.374(4) 0.9500 1.380(4) 0.9500 1.379(4) 0.9500 1.384(4) 0.9500 0.9500 0.9800 0.9800 0.9800 0.9800 0.9800 1.191(3) 1.277(3) 1.407(3) 1.359(3)
1.379(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.374(4) 0.9500 1.379(4) 0.9500 1.379(4) 0.9500 1.384(4) 0.9500 0.9500 0.9800 0.9800 0.9800 1.191(3) 1.277(3) 1.475(4)
1.375(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.374(4) 0.9500 1.374(4) 0.9500 1.379(4) 0.9500 1.379(4) 0.9500 0.9500 0.9500 0.9800 0.9800 0.9800 0.9800 0.9800 1.191(3) 1.277(3) 1.407(3) 1.375(4)
1.37)(4) 0.9500 1.380(4) 0.9500 1.392(4) 1.399(4) 1.374(4) 0.9500 1.380(4) 0.9500 1.379(4) 0.9500 1.384(4) 0.9500 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.191(3) 1.277(3) 1.407(3) 1.359(3) 1.475(4) 1.330(3)
1.375(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.374(4) 0.9500 1.379(4) 0.9500 1.379(4) 0.9500 1.384(4) 0.9500 0.9500 0.9800 0.9800 0.9800 1.191(3) 1.277(3) 1.475(4) 1.330(3) 1.379(3)
1.379(4) 0.9500 1.380(4) 0.9500 0.9500 1.392(4) 1.374(4) 0.9500 1.374(4) 0.9500 1.379(4) 0.9500 1.379(4) 0.9500 0.9500 0.9500 0.9800 0.9800 0.9800 0.9800 1.191(3) 1.277(3) 1.407(3) 1.359(3) 1.379(3) 1.367(4)
1.37)(4) 0.9500 1.380(4) 0.9500 1.392(4) 1.399(4) 1.374(4) 0.9500 1.380(4) 0.9500 1.384(4) 0.9500 1.384(4) 0.9500 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.191(3) 1.277(3) 1.407(3) 1.359(3) 1.475(4) 1.330(3) 1.379(3) 1.360(4)

0/25) (/105)	1 45 4(2)
	1.454(3)
C(4E)-C(13E)	1.469(4)
C(5E)-C(6E)	1.194(4)
C(6E)-C(7E)	1.419(4)
C(7E)-C(12E)	1.397(4)
C(7E)-C(8E)	1.406(4)
C(8F)-C(9F)	1.377(4)
C(8E)_H(8E)	0.9500
C(0E) C(10E)	1 202(4)
C(9E) - C(10E)	1.595(4)
C(9E)-H(9E)	0.9500
C(10E)-C(11E)	1.375(4)
C(10E)-H(10E)	0.9500
C(11E)-C(12E)	1.381(4)
C(11E)-H(11E)	0.9500
C(12E)-H(12E)	0.9500
C(13E)-C(14E)	1 383(4)
C(13E) C(18E)	1 201(1)
C(13E) - C(18E)	1.304(4)
C(14E)-C(15E)	1.396(4)
C(14E) - H(14E)	0.9500
C(15E)-C(16E)	1.358(5)
C(15E)-H(15E)	0.9500
C(16E)-C(17E)	1.375(5)
C(16E)-H(16E)	0.9500
C(17E)-C(18E)	1.391(4)
C(17E)-H(17E)	0.9500
C(18E)-H(18E)	0.9500
C(19E)-H(19M)	0.9800
$C(19E)_{+}H(19N)$	0.9800
C(10E) + I(10O)	0.0000
$C(13E) - \Pi(13O)$	0.9600
N(1F) - C(2F)	1.279(3)
N(1F)-C(3F)	1.405(3)
C(1F)-O(1F)	1.197(3)
C(1F)-O(2F)	1.352(3)
C(1F)-C(2F)	1.473(4)
O(2F)-C(4F)	1.388(3)
C(2F)-O(3F)	1.336(3)
O(3F)-C(19F)	1.457(3)
C(3F)-C(4F)	1.351(4)
C(3E)-C(5E)	1 437(4)
C(AE) - C(12E)	1,437(4) 1,470(4)
	1.470(4)
	1.197(4)
C(bF)-C(7F)	1.435(4)
C(7F)-C(12F)	1.385(4)
C(7F)-C(8F)	1.404(4)
C(8F)-C(9F)	1.384(4)
C(8F)-H(8F)	0.9500
C(9F)-C(10F)	1.386(4)
C(9F)-H(9F)	0.9500
C(10F)-C(11F)	1.384(4)
C(10E)-H(10E)	0.9500
C(11E) - C(12E)	1 220(1)
C(111) - C(121)	1.360(4)
$C(11F) - \Pi(11F)$ C(12F) + U(12F)	0.9500
	0.9500
C(13F)-C(18F)	1.391(4)
C(13F)-C(14F)	1.394(4)
C(14F)-C(15F)	1.383(4)
C(14F)-H(14F)	0.9500
C(15F)-C(16F)	1.380(5)
C(15F)-H(15F)	0.9500
C(16F)-C(17F)	1.376(5)
C(16F)-H(16F)	0.9500
C(17F)-C(18F)	1.391(4)
C(17F)-H(17F)	1.331(4)
C(19E)_U(19E)	0.3300
	0.9300
	0.9800
C(19F)-H(19Q)	0.9800
C(19F)-H(19K)	0.9800
C(2A)-N(1A)-C(3A)	117.6(2)
O(1A)-C(1A)-O(2A)	118.9(3)

O(1A)-C(1A)-C(2A)	127 5(3)
O(2A) C(1A) C(2A)	112 6(2)
O(2R) - O(2R)	113.0(2)
C(1A)-O(2A)-C(4A)	124.0(2)
N(1A)-C(2A)-O(3A)	123.6(3)
N(1A)-C(2A)-C(1A)	124.9(3)
O(3A)-C(2A)-C(1A)	111.6(2)
C(2A)-O(3A)-C(19A)	116.3(2)
C(AA) C(AA) N(AA)	122 2(2)
C(4A) - C(3A) - N(1A)	122.3(2)
C(4A)-C(3A)-C(5A)	124.0(3)
N(1A)-C(3A)-C(5A)	113.7(2)
C(3A)-C(4A)-O(2A)	117.5(2)
C(3A)-C(4A)-C(13A)	131.5(3)
O(2A)-C(4A)-C(13A)	111.1(2)
$C(E\Lambda) - C(E\Lambda) - C(2\Lambda)$	170 2(2)
C(DA) - C(DA) - C(DA)	177.2(3)
	1/7.3(3)
C(12A)-C(7A)-C(8A)	119.3(3)
C(12A)-C(7A)-C(6A)	121.1(3)
C(8A)-C(7A)-C(6A)	119.5(3)
C(9A)-C(8A)-C(7A)	120.0(3)
$C(0\Lambda) - C(0\Lambda) - H(0\Lambda)$	120.0
C(3A) - C(0A) - H(0A)	120.0
C(7A)-C(8A)-H(8A)	120.0
C(8A)-C(9A)-C(10A)	120.5(3)
C(8A)-C(9A)-H(9A)	119.7
C(10A)-C(9A)-H(9A)	119.7
$C(11\Delta) - C(10\Delta) - C(9\Delta)$	119 5(3)
C(11A) C(10A) U(10A)	120.2
	120.3
C(9A)-C(10A)-H(10A)	120.3
C(10A)-C(11A)-C(12A)	120.9(3)
C(10A)-C(11A)-H(11A)	119.5
C(12A)-C(11A)-H(11A)	119.5
C(11A)-C(12A)-C(7A)	119 8(3)
$C(11A) C(12A) \square (12A)$	120.1
$C(11A)-C(12A)-\Pi(12A)$	120.1
C(7A)-C(12A)-H(12A)	120.1
C(18A)-C(13A)-C(14A)	117.8(3)
C(18A)-C(13A)-C(4A)	123.4(3)
C(14A)-C(13A)-C(4A)	118.8(3)
C(15A)-C(14A)-C(13A)	120.8(3)
C(15A) C(1AA) H(1AA)	110 6
$C(13A) - C(14A) - \Pi(14A)$	119.0
С(13А)-С(14А)-Н(14А)	119.6
C(16A)-C(15A)-C(14A)	120.3(3)
C(16A)-C(15A)-H(15A)	119.8
C(14A)-C(15A)-H(15A)	119.8
C(17A)-C(16A)-C(15A)	119 4(3)
C(17A) C(16A) H(16A)	120.2
C(17A) - C(10A) - H(10A)	120.5
С(15А)-С(16А)-Н(16А)	120.3
C(16A)-C(17A)-C(18A)	120.9(3)
C(16A)-C(17A)-H(17A)	119.5
C(18A)-C(17A)-H(17A)	119.5
C(17A)-C(18A)-C(13A)	120.8(3)
$C(17\Lambda) - C(18\Lambda) - H(18\Lambda)$	110.6
C(17R) - C(10R) - H(10R)	110.0
С(13А)-С(18А)-Н(18А)	119.6
O(3A)-C(19A)-H(19A)	109.5
O(3A)-C(19A)-H(19B)	109.5
H(19A)-C(19A)-H(19B)	109.5
O(3A)-C(19A)-H(19C)	109 5
$H(10A)_{-}(10A)_{-}H(10C)$	109.5
	109.5
Н(19В)-С(19А)-Н(19С)	109.5
C(2B)-N(1B)-C(3B)	117.5(2)
O(1B)-C(1B)-O(2B)	118.9(3)
O(1B)-C(1B)-C(2B)	126.8(3)
O(2B)-C(1B)-C(2B)	114.3(2)
N(1B)-C(2B)-O(3B)	12/ 0/2
N(1D) = C(2D) = C(3D)	124.0(3)
N(1B)-C(2B)-C(1B)	124.6(3)
O(3B)-C(2B)-C(1B)	111.4(2)
C(1B)-O(2B)-C(4B)	123.4(2)
C(4B)-C(3B)-N(1B)	122.3(3)
C(4B)-C(3B)-C(5B)	124 2(3)
N(1B)-C(3B)-C(5B)	113 6(2)
C(2P) = C(2P) = C(2P)	110.0(2)
C(2B)-O(3B)-C(19B)	116.8(2)
C(3B)-C(4B)-O(2B)	118.0(3)

C(3B)-C(4B)-C(13B)
O(2B)-C(4B)-C(13B)
C(6B)-C(5B)-C(3B)
C(5B)-C(6B)-C(7B)
C(2D) C(7D) C(12D)
C(8B)-C(7B)-C(12B)
C(8B)-C(7B)-C(6B)
C(12B)-C(7B)-C(6B)
С(7В)-С(8В)-С(9В)
C(7B)-C(8B)-H(8B)
$C(9B)_{-}C(8B)_{-}H(8B)$
C(10B)-C(9B)-C(8B)
C(10B)-C(9B)-H(9B)
$C(BB)_{-}C(QB)_{-}H(QB)$
C(11B)-C(10B)-C(9B)
C(11B)-C(10B)-H(10B)
$C(9B)_{-}C(10B)_{-}H(10B)$
C(10B)-C(11B)-C(12B)
C(10B)-C(11B)-H(11B)
C(12R) - C(11R) - H(11R)
C(11B)-C(12B)-C(7B)
C(11B)-C(12B)-H(12B)
C(7P) - C(12P) - H(12P)
C(18B)-C(13B)-C(14B)
C(18B)-C(13B)-C(4B)
$C(14R)_{-}C(13R)_{-}C(4R)$
C(15B)-C(14B)-C(13B)
C(15B)-C(14B)-H(14B)
C(12R) - C(14R) - H(14R)
C(14B)-C(15B)-C(16B)
C(14B)-C(15B)-H(15B)
C(16P) C(16P) H(16P)
C(15B)-C(16B)-C(17B)
C(15B)-C(16B)-H(16B)
C(17B)-C(16B)-H(16B)
C(100) C(170) C(100)
C(18B)-C(17B)-C(10B)
C(18B)-C(17B)-H(17B)
C(16B)-C(17B)-H(17B)
C(17P) - C(18P) - C(12P)
C(17D) - C(10D) - C(13D)
C(17B)-C(18B)-H(18B)
C(13B)-C(18B)-H(18B)
O(3B)-C(19B)-H(19D)
O(2P) C(10P) H(10P)
0(36)-0(196)-0(196)
H(19D)-C(19B)-H(19E)
O(3B)-C(19B)-H(19F)
H(19D)-C(19B)-H(19E)
H(19E)-C(19B)-H(19F)
O(1C)-C(1C)-O(2C)
O(1C)-C(1C)-C(2C)
O(2C) = O(2C)
O(2C)-C(1C)-C(2C)
C(2C)-N(1C)-C(3C)
C(1C)-O(2C)-C(4C)
N(1C) - C(2C) - O(3C)
N(10) C(20) C(10)
N(1C) - C(2C) - C(1C)
O(3C)-C(2C)-C(1C)
C(2C)-O(3C)-C(19C)
C(AC) C(2C) N(1C)
C(4C) - C(3C) - N(1C)
C(4C)-C(3C)-C(5C)
N(1C)-C(3C)-C(5C)
C(3C)-C(4C)-O(3C)
L(3L)-L(4L)-L(13C)
O(2C)-C(4C)-C(13C)
C(6C)-C(5C)-C(3C)
C(12C)-C(7C)-C(8C)
C(12C)-C(7C)-C(6C)
C(9C)-C(8C)-H(8C)
C(7C)-C(8C)-H(8C)
C(10C)-C(9C)-C(9C)

131 1(3)
1100(2)
110.9(2)
178.3(3)
1/4.8(3)
119.8(3)
119.5(3)
120.6(3)
120.0(3)
120.0
120.0
120.0
120.1(5)
119.9
119.9
119.9(3)
120.1
120.1
120.9(3)
119 5
110 5
110.2(2)
119.3(3)
120.4
120.4
118.6(3)
122.7(3)
118.7(3)
120.6(3)
119 7
110.7
119.7
120.5(3)
119.7
119.7
118.8(3)
120.6
120.6
121 2(3)
110 /
119.4
119.4
120.3(3)
119.9
119.9
109.5
109.5
109.5
109 5
109.5
109.5
109.5
119.3(2)
126.7(3)
114.0(2)
118.2(2)
123.8(2)
123.9(2)
174 2(2)
111 0/2)
11C (Z)
116.4(2)
121.7(2)
124.0(3)
114.3(2)
118.0(2)
131.6(3)
110 4(2)
170 0(2)
177.2(3)
110.2(3)
119.2(3)
121.7(3)
119.1(3)
119.8(3)
120.1
120.1
119 9(3)
±±2.2(3)

C(10C)-C(9C)-H(9C)	
C(8C)-C(9C)-H(9C)	
C(11C)-C(10C)-C(9C)	
C(11C)-C(10C)-H(10C)	
$C(9C)_{-}C(10C)_{-}H(10C)$	
C(10C)-C(11C)-C(12C)	
C(10C)-C(11C)-H(11C)	
C(12C)-C(11C)-H(11C)	
C(11C)-C(12C)-C(7C)	
C(11C) C(12C) U(12C)	
$C(11C)-C(12C)-\Pi(12C)$	
C(7C)-C(12C)-H(12C)	
C(18C)-C(13C)-C(14C)	
C(10C) - C(13C) - C(1+C)	
C(18C)-C(13C)-C(4C)	
C(14C)-C(13C)-C(4C)	
C(15C)-C(14C)-C(13C)	
C(15C)-C(14C)-H(14C)	
C(12C) - C(14C) - H(14C)	
$C(13C) - C(14C) - \Pi(14C)$	
C(14C)-C(15C)-C(16C)	
C(14C)-C(15C)-H(15C)	
C(16C)-C(15C)-H(15C)	
C(17C)-C(16C)-C(15C)	
C(1/C)-C(10C)-II(10C)	
C(15C)-C(16C)-H(16C)	
C(16C)-C(17C)-C(18C)	
C(100) = C(170) = U(170)	
C(16C)-C(17C)-H(17C)	
C(18C)-C(17C)-H(17C)	
C(12C) - C(12C) - C(17C)	
C(13C) - C(18C) - C(17C)	
C(13C)-C(18C)-H(18C)	
C(17C)-C(18C)-H(18C)	
O(2C) O(10C) U(10C)	
O(3C)-C(19C)-H(19G)	
O(3C)-C(19C)-H(19H)	
H(19G)-C(19C)-H(19H)	
O(3C)-C(19C)-H(19I)	
H(19G)-C(19C)-H(19I)	
U(10U) C(10C) U(10U)	
u(таu)-с(тас)-u(таі)	
O(1D)-C(1D)-O(2D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-C(1D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-C(1D) O(3D) C(2D)-C(1D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-O(3D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(1D) C(4D)-C(3D)-N(1D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-O(3D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(1D) C(4D)-C(3D)-N(1D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-O(3D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(1D) C(4D)-C(3D)-N(1D) C(4D)-C(3D)-C(5D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-N(1D) C(4D)-C(3D)-C(5D) N(1D)-C(5D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) O(3D)-C(4D)-O(2D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(1PD) C(4D)-C(3D)-C(1P) C(4D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) C(3D)-C(4D)-O(2D) C(3D)-C(4D)-O(2D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) C(3D)-C(4D)-O(2D) C(3D)-C(4D)-C(13D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(4D)-C(3D)-C(1P) C(3D)-C(4D)-C(5D) N(1D)-C(3D)-C(5D) C(3D)-C(4D)-O(2D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(1D) C(4D)-C(3D)-C(1D) C(4D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(6D)-C(5D)-C(3D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) C(3D)-C(4D)-O(2D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(6D)-C(5D)-C(3D) C(5D)-C(6D)-C(7D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(5D) C(3D)-C(4D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(6D)-C(5D)-C(3D) C(5D)-C(6D)-C(7D) C(8D)-C(7D)-C(12D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(1PD) C(4D)-C(3D)-C(1PD) C(4D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) C(3D)-C(4D)-C(2D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(5D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) C(3D)-C(4D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(12D) C(8D)-C(7D)-C(12D) C(8D)-C(7D)-C(6D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) C(3D)-C(4D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(7D)-C(12D) C(8D)-C(7D)-C(6D) C(12D)-C(7D)-C(6D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(8D)-C(7D)-C(6D) C(12D)-C(7D)-C(6D) C(12D)-C(7D)-C(6D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) C(3D)-C(4D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(6D)-C(5D)-C(3D) C(5D)-C(6D)-C(7D) C(8D)-C(7D)-C(12D) C(8D)-C(7D)-C(6D) C(12D)-C(7D)-C(6D) C(2D)-C(8D)-C(7D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) C(3D)-C(4D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(7D)-C(12D) C(8D)-C(7D)-C(12D) C(2D)-C(7D)-C(6D) C(12D)-C(7D)-C(6D) C(9D)-C(8D)-C(7D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-O(3D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(5D) C(4D)-C(3D)-C(5D) C(3D)-C(4D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(5D)-C(3D) C(5D)-C(6D)-C(7D) C(8D)-C(7D)-C(6D) C(12D)-C(7D)-C(6D) C(2D)-C(8D)-C(7D) C(9D)-C(8D)-H(8D) (C(7D)-C(8D)-H(8D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) C(3D)-C(4D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(6D)-C(5D)-C(3D) C(5D)-C(6D)-C(7D) C(8D)-C(7D)-C(12D) C(8D)-C(7D)-C(6D) C(12D)-C(7D)-C(6D) C(2D)-C(8D)-C(7D) C(9D)-C(8D)-H(8D) C(7D)-C(8D)-H(8D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) C(3D)-C(4D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(12D) C(8D)-C(7D)-C(12D) C(8D)-C(7D)-C(6D) C(12D)-C(8D)-H(8D) C(7D)-C(8D)-H(8D) C(10D)-C(9D)-C(8D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(1D) C(4D)-C(3D)-C(5D) C(4D)-C(3D)-C(5D) C(3D)-C(4D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(6D)-C(7D) C(8D)-C(7D)-C(6D) C(12D)-C(7D)-C(6D) C(2D)-C(8D)-H(8D) C(7D)-C(8D)-H(8D) C(10D)-C(9D)-H(9D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) C(3D)-C(4D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(6D)-C(3D) C(5D)-C(6D)-C(7D) C(8D)-C(7D)-C(6D) C(2D)-C(7D)-C(6D) C(2D)-C(7D)-C(6D) C(9D)-C(8D)-H(8D) C(10D)-C(9D)-H(9D) C(8D)-C(9D)-H(9D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) C(3D)-C(4D)-C(5D) C(3D)-C(4D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(6D)-C(7D) C(8D)-C(7D)-C(6D) C(12D)-C(7D)-C(6D) C(9D)-C(8D)-H(8D) C(7D)-C(8D)-H(8D) C(10D)-C(9D)-H(9D) C(8D)-C(9D)-H(9D) C(8D)-C(9D)-H(9D) C(8D)-C(9D)-H(9D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) C(3D)-C(4D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(6D)-C(7D) C(5D)-C(6D)-C(7D) C(8D)-C(7D)-C(6D) C(12D)-C(7D)-C(6D) C(2D)-C(8D)-H(8D) C(7D)-C(8D)-H(8D) C(10D)-C(9D)-H(9D) C(8D)-C(9D)-H(9D) C(8D)-C(9D)-H(9D) C(11D)-C(10D)-C(9D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(4D)-C(13D) C(5D)-C(6D)-C(7D) C(5D)-C(6D)-C(7D) C(8D)-C(7D)-C(6D) C(12D)-C(8D)-H(8D) C(10D)-C(9D)-H(9D) C(3D)-C(10D)-C(9D) C(11D)-C(10D)-C(9D) C(11D)-C(10D)-H(10D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) C(4D)-C(3D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(12D) C(8D)-C(7D)-C(12D) C(8D)-C(7D)-C(6D) C(9D)-C(8D)-H(8D) C(10D)-C(9D)-H(8D) C(10D)-C(9D)-H(9D) C(1D)-C(10D)-H(10D) C(10D)-C(10D)-H(10D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) C(3D)-C(4D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(6D)-C(7D) C(5D)-C(6D)-C(7D) C(8D)-C(7D)-C(6D) C(2D)-C(8D)-C(6D) C(2D)-C(8D)-C(7D) C(9D)-C(8D)-C(6D) C(7D)-C(8D)-H(8D) C(10D)-C(9D)-H(8D) C(10D)-C(9D)-H(9D) C(1D)-C(10D)-H(10D) C(9D)-C(10D)-H(10D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(6D)-C(7D) C(5D)-C(6D)-C(7D) C(5D)-C(6D)-C(7D) C(5D)-C(7D)-C(6D) C(2D)-C(7D)-C(6D) C(2D)-C(7D)-C(6D) C(9D)-C(8D)-H(8D) C(10D)-C(9D)-H(9D) C(11D)-C(10D)-H(10D) C(9D)-C(11D)-C(12D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) C(4D)-C(3D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(5D)-C(3D) C(5D)-C(5D)-C(3D) C(5D)-C(6D)-C(7D) C(8D)-C(7D)-C(6D) C(2D)-C(7D)-C(6D) C(9D)-C(8D)-H(8D) C(10D)-C(9D)-H(8D) C(10D)-C(9D)-H(9D) C(10D)-C(10D)-H(10D) C(10D)-C(11D)-C(12D) C(10D)-C(11D)-C(12D) C(10D)-C(11D)-C(12D) C(10D)-C(11D)-C(12D) C(10D)-C(11D)-C(12D) C(10D)-C(11D)-C(12D) C(10D)-C(11D)-C(12D) C(10D)-C(11D)-C(12D) C(10D)-C(11D)-C(12D) C(10D)-C(11D)-C(12D) C(10D)-C(11D)-C(12D) C(10D)-C(11D)-C(12D) C(10D)-C(11D)-U(11D) C(10D)-C(11D)-U(11D) C(10D)-C(11D)-U(11D) C(11D)-U(11D)-U(11D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) C(3D)-C(4D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(6D)-C(7D) C(5D)-C(6D) C(5D)-C(6D) C(12D)-C(7D)-C(6D) C(9D)-C(8D)-H(8D) C(7D)-C(8D)-H(8D) C(10D)-C(9D)-H(9D) C(1D)-C(9D)-H(9D) C(1D)-C(10D)-H(10D) C(3D)-C(11D)-H(10D) C(10D)-C(11D)-H(11D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-N(1D) C(4D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(6D)-C(7D) C(5D)-C(6D)-C(7D) C(5D)-C(6D)-C(7D) C(5D)-C(7D)-C(6D) C(2D)-C(7D)-C(6D) C(2D)-C(7D)-C(6D) C(9D)-C(8D)-H(8D) C(10D)-C(9D)-H(9D) C(11D)-C(10D)-H(10D) C(10D)-C(11D)-H(11D) C(12D)-C(11D)-H(11D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) C(4D)-C(3D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(6D)-C(7D) C(5D)-C(6D)-C(7D) C(8D)-C(7D)-C(6D) C(2D)-C(8D)-C(7D) C(9D)-C(8D)-H(8D) C(10D)-C(9D)-H(8D) C(10D)-C(9D)-H(9D) C(1D)-C(10D)-H(10D) C(10D)-C(11D)-H(11D) C(2D)-C(11D)-H(11D) C(2D)-C(11D)-H(11D) C(2D)-C(12D)-C(7D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-C(19D) C(4D)-C(3D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(6D)-C(7D) C(5D)-C(6D)-C(7D) C(5D)-C(6D)-C(7D) C(8D)-C(7D)-C(6D) C(2D)-C(7D)-C(6D) C(9D)-C(8D)-H(8D) C(7D)-C(8D)-H(8D) C(10D)-C(9D)-H(9D) C(1D)-C(10D)-H(10D) C(3D)-C(10D)-H(10D) C(10D)-C(11D)-H(11D) C(10D)-C(11D)-H(11D) C(10D)-C(11D)-H(11D) C(10D)-C(12D)-C(7D)	
O(1D)-C(1D)-O(2D) O(1D)-C(1D)-C(2D) O(2D)-C(1D)-C(2D) C(2D)-N(1D)-C(3D) C(1D)-O(2D)-C(4D) N(1D)-C(2D)-C(4D) N(1D)-C(2D)-C(1D) O(3D)-C(2D)-C(1D) C(2D)-O(3D)-C(19D) C(4D)-C(3D)-N(1D) C(4D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) N(1D)-C(3D)-C(5D) C(3D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) O(2D)-C(4D)-C(13D) C(5D)-C(6D)-C(7D) C(5D)-C(6D)-C(7D) C(5D)-C(6D)-C(7D) C(5D)-C(7D)-C(6D) C(12D)-C(7D)-C(6D) C(7D)-C(8D)-H(8D) C(10D)-C(9D)-H(9D) C(10D)-C(10D)-H(10D) C(10D)-C(11D)-C(12D) C(10D)-C(11D)-H(11D) C(12D)-C(12D)-C(7D) C(11D)-C(12D)-C(7D) C(11D)-C(12D)-C(7D) C(11D)-C(12D)-C(7D) C(11D)-C(12D)-C(7D) C(11D)-C(12D)-C(7D) C(11D)-C(12D)-C(7D) C(11D)-C(12D)-C(7D) C(11D)-C(12D)-C(7D) C(11D)-C(12D)-C(7D) C(11D)-C(12D)-C(7D) C(11D)-C(12D)-C(7D) C(11D)-C(12D)-H(12D)	

120.1 120.1 120.4(3) 119.8 119.8 120.2(3) 119.9 119.9 120.4(3) 119.8 119.8 117.5(3) 123.1(3) 119.4(2) 121.2(3) 119.4 119.4 120.3(3) 119.8 119.8 119.5(3) 120.3 120.3 120.5(3) 119.8 119.8 121.0(3) 119.5 119.5 109.5 109.5 109.5 109.5 109.5 109.5 119.7(3) 126.4(3) 113.9(2) 117.6(2) 123.7(2) 124.0(3) 124.5(3) 111.5(2) 117.0(2) 122.4(3) 123.9(2) 113.8(2) 117.8(2) 131.5(3) 110.6(2) 178.5(3) 176.2(3) 119.1(3) 119.7(3) 121.1(2) 120.2(3) 119.9 119.9 120.5(3) 119.7 119.7 119.5(3) 120.3 120.3 120.9(3) 119.6 119.6 119.8(3) 120.1 120.1

C(19D) C(13D) C(14D)	
C(18D)-C(13D)-C(14D)	
C(18D)-C(13D)-C(4D)	
C(14D)-C(13D)-C(4D)	
C(15D)-C(14D)-C(13D)	
C(15D)-C(14D)-H(14D)	
C(13D)-C(14D)-H(14D)	
$C(13D) - C(14D) - \Pi(14D)$	
C(14D)-C(15D)-C(16D)	
C(14D)-C(15D)-H(15D)	
C(16D)-C(15D)-H(15D)	
C(17D)-C(16D)-C(15D)	
C(17D)-C(16D)-H(16D)	
C(17D) - C(10D) - H(10D)	
C(15D)-C(16D)-H(16D)	
C(16D)-C(17D)-C(18D)	
C(16D)-C(17D)-H(17D)	
C(18D)-C(17D)-H(17D)	
C(17D)-C(18D)-C(13D)	
C(17D) - C(10D) - C(13D)	
C(17D)-C(18D)-H(18D)	
C(13D)-C(18D)-H(18D)	
O(3D)-C(19D)-H(19J)	
O(3D)-C(19D)-H(19K)	
H(19I)-C(19D)-H(19K)	
O(2D) C(10D) U(10U)	
O(3D)-C(19D)-H(19L)	
H(19J)-C(19D)-H(19L)	
H(19K)-C(19D)-H(19L)	
C(2E)-N(1E)-C(3E)	
O(1E)-C(1E)-O(2E)	
O(1E) C(1E) O(2E)	
O(1E)- $O(1E)$ - $O(2E)$	
O(2E)-C(1E)-C(2E)	
N(1E)-C(2E)-O(3E)	
N(1E)-C(2E)-C(1E)	
O(3E)-C(2E)-C(1E)	
C(1E) - O(2E) - C(4E)	
C(1L) - O(2L) - C(4L)	
C(4E)-C(3E)-N(1E)	
C(4E)-C(3E)-C(5E)	
N(1E)-C(3E)-C(5E)	
C(2E)-O(3E)-C(19E)	
C(3E)-C(4E)-O(2E)	
C(3E) C(4E) C(4E)	
C(3E)-C(4E)-C(13E)	
O(2E)-C(4E)-C(13E)	
C(6E)-C(5E)-C(3E)	
C(5E)-C(6E)-C(7E)	
C(12F)-C(7F)-C(8F)	
C(12E) - C(7E) - C(6E)	
C(8E)-C(7E)-C(6E)	
C(9E)-C(8E)-C(7E)	
C(9E)-C(8E)-H(8E)	
C(7E)-C(8E)-H(8E)	
C(8E)-C(9E)-C(10E)	
C(8E) C(0E) U(0E)	
C(10E)-C(9E)-H(9E)	
C(11E)-C(10E)-C(9E)	
C(11E)-C(10E)-H(10E)	
C(9E)-C(10E)-H(10E)	
C(10E) - C(11E) - C(12E)	
C(10L) - C(11L) - C(12L)	
C(10E)-C(11E)-H(11E)	
C(12E)-C(11E)-H(11E)	
C(11E)-C(12E)-C(7E)	
C(11E)-C(12E)-H(12E)	
C(7F)-C(12F)-H(12F)	
C(14E) C(12E) C(10E)	
C(14E) - C(13E) - C(18E)	
C(14E)-C(13E)-C(4E)	
C(18E)-C(13E)-C(4E)	
C(13E)-C(14E)-C(15E)	
C(13F)-C(14F)-H(14F)	
C(15E)_C(1AE) U(1AE)	
$C(13E) - C(14E) - \Pi(14E)$	
C(16E)-C(15E)-C(14E)	
C(16E)-C(15E)-H(15E)	
C(14E)-C(15E)-H(15E)	
C(15E)-C(16F)-C(17F)	
$C(15E)_C(16E) \sqcup (16E)$	

1	1	8	.2	(3)	
	2	2	6	i	2	1	
	2	~	.0	ļ	2	<u>,</u>	
1	1	9	.2	(3)	
1	2	0	9	(3)	
1	1	~	- -	`	Ū	'	
T	1	9	.6				
1	1	9	.6				
1	ъ	^	c	1	2	١.	
T	2	U	.5	l	2	,	
1	1	9	.8				
1	1	۵	Q				
	Ť	-	.0		_		
1	1	9	.4	(3)	
1	2	n	З				
	2	-					
1	2	0	.3				
1	2	0	.7	(3)	
1	1	~	_	`		<i>'</i>	
T	T	9	. /				
1	1	9	.7				
1	r	^	л	1	2	١.	
+	2	U.	. 4	l	5	,	
1	1	9	.8				
1	1	۵	Q				
	1		.0				
1	0	9	.5				
1	n	9	5				
-	č	_	-				
1	U	9	.5				
1	0	9	.5				
_	~	~	-				
T	U	9	.5				
1	0	9	.5				
1	4	0		,	۔	、	
T	T	ð	.4	(2)	
1	1	9	.6	(3)	
1	r	2	c	ì	2	ś	
T	2	0	.э	(3)	
1	1	3	.9	(3)	
1	2	2	۵	ì	2	Ń	
+	2	5	.9	ļ	5	/	
1	2	4	.2	(3)	
1	1	1	۵	i	2	1	
	-	÷.		ļ	-	<u>,</u>	
1	2	3	.7	(2)	
1	2	1	8	(ર)	
-	2	-	-	;	2	<u>'</u>	
1	2	3	.5	(2)	
1	1	4	7	(2)	
-	7	_	-	;	-	ζ.	
1	1	6	.5	(2)	
1	1	8	.0	(2)	
1	2	1	1	ì	م	Ś	
T	3	T.	. 1	(3)	
1	1	~	_				
_	т	υ.	.9	(2)	
1	17	0	9. ء	(2)	
1	7	8	.9 .6	(2 3))	
1	7	0 8 5	.9 .6 .4	((2 3 3)))	
1	1 7 7	0 8 5 9	.9 .6 .4	()()	2 3 3 3)))	
1	1 7 7	0 8 5 9	.9 .6 .4	()()	2 3 3 3)))	
1 1 1 1	1 7 7 1	0 8 5 9	.9 .6 .4 .3	()()()	2 3 3 3 3))))	
1 1 1 1	1 7 7 1 2 1	0 8 5 9 1 9	.9 .6 .4 .3 2	()()()	2 3 3 3 3 3 3 3))))	
	1 7 7 1 2	0 8 5 9 1 9	.9 .6 .4 .3 .2	((((((((((((((((((((((((((((((((((((2 3 3 3 3 3 3)))))	
1 1 1 1 1	1 7 7 1 2 1	0 8 5 9 1 9	.9 .6 .4 .3 .2 .7	((((((((((((((((((((((((((((((((((((2 3 3 3 3 3 3 3 3)))))))))	
1 1 1 1 1 1	17712112	0 8 5 9 1 9 0	.9 .6 .4 .3 .2 .7	((((((((((((((((((((((((((((((((((((2 3 3 3 3 3 3 3 3))))))))	
	17712122	0 8 5 9 1 9 0	.9 .6 .4 .3 .2 .7	((((((((((((((((((((((((((((((((((((2333333))))))))	
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	1 7 7 1 2 1 2 2	0 8 5 9 1 9 0 0	.9 .6 .4 .3 .2 .7 .1	((((((((((((((((((((((((((((((((((((2333333)))))))	
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	1 7 7 1 2 1 2 2 2	0 8 5 9 1 9 0 0 0	.9 .6 .4 .3 .2 .7 .1 .3	((((((((((((((((((((((((((((((((((((2 3 3 3 3 3 3 3 3 3 3 3 3))))))))	
	17712112221	0 8 5 9 1 9 0 0 0 0	.9 .4 .4 .3 .2 .7 .1 .3 .0	((((((((((((((((((((((((((((((((((((2 3 3 3 3 3 3 3 3 3 3 3))))))))	
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	17712112221	0 8 5 9 1 9 0 0 9 0 0 9	.9 .4 .4 .3 .2 .7 .1 .3 .8	((((((((((((((((((((((((((((((((((((2 3 3 3 3 3 3 3 3 3 3 3 3))))))))	
1 1 1 1 1 1 1 1 1 1 1 1	177121122211	0 8 5 9 1 9 0 0 9 9 0 0 9 9 9	.9.6.4.3.2.7.1.3.8.8	((((((((((((((((((((((((((((((((((((23333333333)))))))))))))))))))))))))))))))))))))	
1 1 1 1 1 1 1 1 1 1 1	17712112221112	0 8 5 9 1 9 9 0 0 9 9 0 0 9 9 0	9.6.4.3.2.7.1.3.8.8.1		23333333333))))))))))	
1 1 1 1 1 1 1 1 1 1 1	1771211222112	0 8 5 9 1 9 9 0 0 9 9 0 0 9 9 0	.9 .4 .4 .3 .2 .7 .1 .3 .8 .8 .1 .1	(((((((((233333333333333333333333333333333333333)))))))))))))))))))))))))))))))))))))	
1 1 1 1 1 1 1 1 1 1 1 1 1 1	177121122211222	0 8 5 9 1 9 0 0 9 0 0 9 0 0 0 9 0 0	.9 .4 .4 .3 .2 .7 .1 .3 .8 .8 .1 .0	()	2 3 3 3 3 3 3 3 3 3 3 3 3 3)))))))))))))))))))))))))))))))))))))))	
	177121122211222	0 8 5 9 1 9 9 0 0 9 9 0 0 0 9 0 0	.9.6.4.3.2.7.1.1.3.8.8.1.0.0		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3)))))))))))))))))))))))))))))))))))))))	
	177121122211222	0 8 5 9 1 9 9 0 0 9 0 0 9 0 0 0 0	9.64.43.27.11.38.81.00		2 3 3 3 3 3 3 3 3 3 3 3 3 3		
	1 7 7 1 2 1 1 2 2 2 1 1 2 2 2 2 2 2 2	0 8 5 9 1 9 9 0 0 9 0 0 9 0 0 0 0 0 0 0 0 0 0	9.644327113881005		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
	1 7 7 1 2 1 1 2 2 2 1 1 2 2 2 1		96443271138810057		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3)))))))))))))))))))))))))))))))))))))))	
	1 7 7 1 2 1 1 2 2 2 1 1 2 2 2 1		964432711388100577		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3)))))))))))))))))))))))))))))))))))))))	
	177121122211122221112222111	0 8 5 9 1 9 9 0 0 9 9 0 0 0 9 9 0 0 0 9 9 0 0 0 9 9 0 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 9 0 9 9 0 9 9 0 9 9 0 0 9 9 0 0 9 9 9 0 0 9 9 0 0 9 9 0 0 9 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 9 9 0 0 0 9 9 0 0 0 9 9 0 0 0 0 0 9 9 0 0 0 9 9 0 0 0 0 0 9 9 0 0 0 0 9 9 0	964432711388100577		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3)))))))))))))))))))))))))))))))))))))))	
	177121122211122221112	0 8 5 9 1 9 9 0 0 9 9 0 0 9 9 0 0 0 9 9 0 0 0 9 9 0 0 0 9 9 0 0 0 9 9 0 0 0 9 9 0 0 0 9 9 0 0 0 9 0 0 9 0 0 9 0 0 9 0 0 0 9 0 0 0 0 9 0	9.644327113881005770		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
	177121122211222211222		96443271138810057700		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
	17712112221112222111222		.9 .6 .4 .3 .2 .7 .1 .1 .3 .8 .8 .1 .0 .0 .5 .7 .7 .0 .0		2 3 3 3 3 3 3 3 3 3 3 3 3 3		
	177121122211122221112222		.9 .6 .4 .4 .3 .2 .7 .1 .1 .3 .8 .8 .1 .0 .0 .5 .7 .7 .0 .0 .0		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
	17712112221112222112222		9 6 4 4 3 2 7 1 1 3 8 8 1 0 0 5 7 7 0 0 0 5		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
	177121122211122221112221		964432711388100057700005		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
	177121122211222211122221112222111		9.6.4 4.3.2.7 1.1.3.8 8.1.0.0 5.7 7.0 0.0 0.5 9		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
	177121122211122221112221112		9.6.4.4.3.2.7.1.1.3.8.8.1.0.0.5.7.7.0.0.0.5.9.6		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
	1 7 7 1 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2 2 1 2		9.6.4.4.3.2.7.1.1.3.8.8.1.0.0.5.7.7.0.0.0.5.9.6		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
	177121122211222211222211222		9.6.4.4.3.2.7.1.1.3.8.8.1.0.0.5.7.7.0.0.0.5.9.6.4		233333 3333 3333 33333 33333		
	1771211222112222112222112221	0 8 5 9 1 9 9 0 0 0 9 9 0 0 0 9 9 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0	9.6.44.3.2.7.1.1.3.8.8.1.0.0.5.7.7.0.0.0.5.9.6.4.8		233333 33333 3333 33333 33333		
	1771211222112222112222112221		964432711388100577000059648		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
	17712112221122221122221122211		.9.6.4.4.3.2.7.1.1.3.8.8.1000.5.7.7.000.0.5.9.6.4.8.8		2333333 3 3 3 3 33333))))))))))))))))))))))))))))))))))))))	
	1771211222112222112222112221122	0.0 8.5 9.0 0.0 9.9 0.0 0.0 9.9 0.0 0.0 9.9 0.0 0.0	9.6 4.4 3.2 7.1 1.3 8.8 1.0 0.5 7.7 0.0 0.5 9.6 4.8 8.1 1.0 0.5 9.6 4.8 8.1 1.0 1.5 9.6 4.8 1.0 1.5 9.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		2333333 3 3 3 3 33333 3))))))))))))))))))))))))))))))))))))))	
	1771211222112222112222112221122	0.0 8.5 9.1 9.0 0.0 9.9 0.0 0.0 9.9 0.0 0.0 9.9 0.0 0.0	9.6 4.4 3.2 7.1 1.3 8.8 1.0 0.5 7.7 0.0 0.5 9.6 4.8 8.1		2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3))))))))))))))))))))))))))))))))))))))	
	17712112221122221122221122211221		9 6 4 4 3 2 7 1 1 3 8 8 1 0 0 5 7 7 0 0 0 5 9 6 4 8 8 1 5		2333333 3 3 3 33333 3))))))))))))))))))))))))))))))))))))))	
	1771211222112222112222112221122112211		9 6 4 4 3 2 7 1 1 3 8 8 1 0 0 5 7 7 0 0 0 5 9 6 4 8 8 1 5 5		233333 3 3 3 3 33333 3))))))))))))))))))))))))))))))))))))))	
	1771211222112222112222112221122112		9644327113881005770000596488155		2333333 3 3 3 33333 3))))))))))))))))))))))))))))))))))))))	
	177121122211222211222112221122112	0.8 5 9 1 9 9 0 0 0 9 9 0 0 0 9 9 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 0 9 9 0 0 0 0 9 9 0 0 0 0 0 9 9 0 0 0 0 0 0 9 9 0	96443271138810057700005964881558		2333333 3 3 3 3 33333 3 3))))))))))))))))))))))))))))))))))))))	
	1771211222112222112222112221122112112		9 6 4 4 3 2 7 1 1 3 8 8 1 0 0 5 7 7 0 0 0 5 9 6 4 8 8 1 5 5 8 6		2333333 3 3 3 33333 3 3))))))))))))))))))))))))))))))))))))))	

C(17F)-C(18F)-H(18F)

O(3F)-C(19F)-H(19P)

O(3F)-C(19F)-H(19Q)

O(3F)-C(19F)-H(19R)

H(19P)-C(19F)-H(19Q)

C(17E)-C(16E)-H(16E)	120.6
C(16E)-C(17E)-C(18E)	121.2(3)
C(16E)-C(17E)-H(17E)	119.4
C(18E)-C(17E)-H(17E)	119.4
C(13E)-C(18E)-C(17E)	120.1(3)
C(13E)-C(18E)-H(18E)	120.0
C(17E)-C(18E)-H(18E)	120.0
O(3E)-C(19E)-H(19M)	109.5
O(3E)-C(19E)-H(19N)	109.5
H(19M)-C(19E)-H(19N)	109.5
O(3E)-C(19E)-H(19O)	109.5
H(19M)-C(19E)-H(19O)	109.5
H(19N)-C(19E)-H(19O)	109.5
C(2F)-N(1F)-C(3F)	117.4(2)
O(1F)-C(1F)-O(2F)	119.5(3)
O(1F)-C(1F)-C(2F)	126.5(3)
O(2F)-C(1F)-C(2F)	114.0(2)
C(1F)-O(2F)-C(4F)	123.5(2)
N(1F)-C(2F)-O(3F)	123.6(3)
N(1F)-C(2F)-C(1F)	124.6(3)
O(3F)-C(2F)-C(1F)	111.8(2)
C(2F)-O(3F)-C(19F)	116.9(2)
C(4F)-C(3F)-N(1F)	122.7(2)
C(4F)-C(3F)-C(5F)	122.9(2)
N(1F)-C(3F)-C(5F)	114.4(2)
C(3F)-C(4F)-O(2F)	11/./(2)
C(3F)-C(4F)-C(13F)	131.7(2)
O(2F)-O(4F)-O(13F)	110.5(2)
C(5F)-C(5F)-C(3F)	175 0(2)
C(3F)-C(0F)-C(3F)	110 7(3)
C(12F)-C(7F)-C(6F)	121 2(3)
C(8E)-C(7E)-C(6E)	119.1(3)
C(9F)-C(8F)-C(7F)	119.4(3)
C(9F)-C(8F)-H(8F)	120.3
C(7F)-C(8F)-H(8F)	120.3
C(8F)-C(9F)-C(10F)	120.4(3)
C(8F)-C(9F)-H(9F)	119.8
C(10F)-C(9F)-H(9F)	119.8
C(11F)-C(10F)-C(9F)	120.0(3)
C(11F)-C(10F)-H(10F)	120.0
C(9F)-C(10F)-H(10F)	120.0
C(12F)-C(11F)-C(10F)	120.1(3)
C(12F)-C(11F)-H(11F)	120.0
C(10F)-C(11F)-H(11F)	120.0
C(11F)-C(12F)-C(7F)	120.4(3)
C(11F)-C(12F)-H(12F)	119.8
C(7F)-C(12F)-H(12F)	119.8
C(18F)-C(13F)-C(14F)	118.2(3)
C(13F)-C(13F)-C(4F)	122.6(3)
C(14F)-C(13F)-C(4F)	121 0(2)
C(15F)-C(14F)-H(14F)	119 5
C(13F)-C(14F)-H(14F)	119.5
C(16F)-C(15F)-C(14F)	120 2(3)
C(16F)-C(15F)-H(15F)	119.9
C(14F)-C(15F)-H(15F)	119.9
C(17F)-C(16F)-C(15F)	119.6(3)
C(17F)-C(16F)-H(16F)	120.2
C(15F)-C(16F)-H(16F)	120.2
C(16F)-C(17F)-C(18F)	120.5(3)
C(16F)-C(17F)-H(17F)	119.8
C(18F)-C(17F)-H(17F)	119.8
C(13F)-C(18F)-C(17F)	120.5(3)
C(13F)-C(18F)-H(18F)	119.7

119.7

109.5

109.5

109.5

109.5

H(19P)-C(19F)-H(19R)	109.5
H(19Q)-C(19F)-H(19R)	109.5

Tabelle 19.46: Anisotrope Temperaturfaktoren (A² x 10³) von **216**.

Der Exponent des anisotropen Temperaturfaktors ist definiert als: $-2\pi^2$ [$h^2 a^{*2}$ U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
O(1A)	89(2)	37(1)	24(1)	-17(1)	-1(1)	-19(1)
N(1A)	35(1)	34(1)	26(1)	-20(1)	2(1)	-7(1)
C(1A)	49(2)	35(2)	36(2)	-26(2)	1(1)	-11(1)
O(2A)	47(1)	30(1)	23(1)	-16(1)	3(1)	-12(1)
C(2A)	37(2)	30(2)	30(2)	-19(1)	5(1)	-11(1)
O(3A)	64(1)	28(1)	29(1)	-17(1)	-1(1)	-15(1)
C(3A)	36(2)	36(2)	30(2)	-23(1)	2(1)	-9(1)
C(4A)	39(2)	35(2)	27(2)	-20(1)	1(1)	-8(1)
C(5A)	38(2)	36(2)	30(2)	-22(1)	5(1)	-11(1)
C(6A)	40(2)	41(2)	36(2)	-26(2)	8(1)	-15(1)
C(7A)	42(2)	42(2)	30(2)	-23(2)	6(1)	-12(1)
C(8A)	69(2)	38(2)	29(2)	-20(2)	7(2)	-21(2)
C(9A)	70(2)	47(2)	39(2)	-32(2)	5(2)	-16(2)
C(10A)	64(2)	47(2)	28(2)	-25(2)	6(1)	-11(2)
C(11A)	62(2)	39(2)	28(2)	-19(2)	10(1)	-15(2)
C(12A)	48(2)	39(2)	34(2)	-25(2)	2(1)	-10(1)
C(13A)	35(2)	37(2)	38(2)	-26(2)	4(1)	-10(1)
C(14A)	75(2)	37(2)	33(2)	-23(2)	12(2)	-24(2)
C(15A)	97(3)	38(2)	44(2)	-26(2)	15(2)	-29(2)
C(16A)	70(2)	48(2)	55(2)	-39(2)	12(2)	-23(2)
C(17A)	49(2)	53(2)	55(2)	-42(2)	-2(2)	-12(2)
C(18A)	51(2)	41(2)	41(2)	-27(2)	-1(1)	-10(2)
C(19A)	60(2)	29(2)	37(2)	-18(2)	1(2)	-15(1)
O(1B)	112(2)	38(1)	34(1)	-24(1)	4(1)	-23(1)
N(1B)	39(1)	32(1)	27(1)	-1/(1)	0(1)	-6(1)
C(1B)	56(2)	32(2)	30(2)	-16(2)	1(1)	-12(1)
C(2B)	41(2)	29(2)	26(2)	-15(1)	1(1)	-6(1)
O(2B)	59(1) 25(2)	32(1)	20(1)	-10(1)	0(1)	-12(1)
C(3B)	35(Z) 66(1)	32(2) 20(1)	33(2) 22(1)	-19(1)	0(1)	-7(1) -12(1)
C(4B)	20(1)	29(1)	22(1)	-14(1)	1(1)	-12(1)
C(4B)	35(2)	32(2)	29(2)	-21(1)	1(1)	-7(1)
C(6B)	40(2)	32(2)	30(2)	-19(1)	$\frac{1}{4}(1)$	-10(1)
C(7B)	42(2)	28(2)	30(2)	-16(1)	6(1)	-10(1)
C(8B)	72(2)	37(2)	27(2)	-21(2)	7(2)	-16(2)
C(9B)	87(3)	29(2)	36(2)	-16(2)	7(2)	-18(2)
C(10B)	67(2)	38(2)	44(2)	-30(2)	4(2)	-14(2)
C(11B)	60(2)	35(2)	33(2)	-21(2)	-1(1)	-6(2)
C(12B)	54(2)	30(2)	26(2)	-14(1)	5(1)	-10(1)
C(13B)	33(2)	38(2)	30(2)	-19(1)	5(1)	-8(1)
C(14B)	46(2)	40(2)	30(2)	-19(2)	7(1)	-12(1)
C(15B)	58(2)	45(2)	31(2)	-17(2)	6(1)	-16(2)
C(16B)	61(2)	41(2)	33(2)	-12(2)	9(2)	-14(2)
C(17B)	49(2)	42(2)	47(2)	-21(2)	8(2)	-15(2)
C(18B)	43(2)	38(2)	31(2)	-16(2)	7(1)	-14(1)
C(19B)	68(2)	34(2)	18(2)	-12(1)	3(1)	-12(2)
C(1C)	47(2)	27(2)	25(2)	-15(1)	2(1)	-12(1)
N(1C)	40(1)	29(1)	28(1)	-18(1)	2(1)	-9(1)
O(1C)	82(2)	30(1)	24(1)	-14(1)	0(1)	-19(1)
O(2C)	48(1)	28(1)	22(1)	-15(1)	4(1)	-13(1)
C(2C)	41(2)	28(2)	22(1)	-13(1)	3(1)	-10(1)
O(3C)	66(1)	29(1)	22(1)	-13(1)	3(1)	-16(1)
C(3C)	34(2)	24(2)	25(1)	-12(1)	1(1)	-10(1)
C(4C)	31(2)	25(2)	30(2)	-1/(1)	2(1)	-6(1)
	40(2)	29(2)	22(1)	-12(1)	3(1)	-10(1)
	41(2)	33(Z) 21(2)	24(2)	-10(1)	4(1)	-11(1)
C(PC)	40(2)	3⊥(Z)	31(Z) 34(3)	-2U(1)	-1(1) 2(1)	-/(L) 14/2)
(oc)	01(2)	59(2)	2 4 (Z)	-13(1)	Z(1)	-14(2)

C(9C)	75(2)	31(2)	31(2)	-15(2)	1(2)	-16(2)
	75(2)	51(2)	54(2)	13(2)	+(<i>L</i>)	10(2)
C(10C)	73(2)	27(2)	34(2)	-18(1)	-3(2)	-8(2)
C(11C)	57(2)	40(2)	31(2)	-23(2)	2(1)	-10(2)
CIIIC	19(2)	22(2)	27(2)	_15(1)	-2(1)	12(1)
	40(2)	32(2)	27(2)	-13(1)	-2(1)	-12(1)
C(13C)	32(2)	30(2)	28(2)	-16(1)	3(1)	-8(1)
C(14C)	57(2)	33(2)	27(2)	-16(1)	5(1)	-14(1)
C(1EC)	- ()	12(2)	22(2)	11/2)	E(2)	10(2)
C(15C)	//(2)	43(Z)	22(2)	-11(2)	5(2)	-19(2)
C(16C)	63(2)	33(2)	33(2)	-9(2)	9(2)	-12(2)
C(17C)	56(2)	29(2)	43(2)	-16(2)	7(2)	-17(2)
C(1,C)	50(2)	25(2)	13(2)	10(2)	r(z)	4 - (4)
C(18C)	50(2)	36(2)	31(2)	-19(1)	6(1)	-15(1)
C(19C)	72(2)	32(2)	21(2)	-11(1)	2(1)	-15(2)
C(1D)	64(2)	36(2)	23(2)	-15(2)	1(1)	-14(2)
0(10)	01(<u>2</u>)	22(4)	25(2)	15(2)	-(-)	4 2 (4)
N(1D)	40(1)	33(1)	26(1)	-15(1)	1(1)	-13(1)
O(1D)	136(2)	28(1)	25(1)	-12(1)	7(1)	-30(1)
O(2D)	60(1)	27(1)	21(1)	-12(1)	4(1)	-16(1)
C(2D)	45(2)	27(1)	25(2)	45(4)	(-1)	42(4)
C(2D)	45(2)	31(2)	25(2)	-15(1)	2(1)	-13(1)
O(3D)	70(1)	32(1)	21(1)	-16(1)	1(1)	-15(1)
	27(2)	21(2)	22(1)	-1/(1)	2(1)	12(1)
	57(2)	51(2)	23(1)	-14(1)	2(1)	-12(1)
C(4D)	36(2)	32(2)	25(2)	-13(1)	2(1)	-11(1)
C(5D)	40(2)	37(2)	24(2)	-18(1)	2(1)	-12(1)
	11()	22(2)	20(1)	1/(1)	2(1)	11(1)
	44(2)	33(2)	20(1)	-14(1)	3(1)	-11(1)
C(7D)	44(2)	29(2)	21(1)	-12(1)	6(1)	-12(1)
C(8D)	74(2)	35(2)	24(2)	-17(1)	5(1)	-23(2)
C(0D)	96(2)	24(2)	20(2)	11(1)	6(2)	20(2)
C(9D)	00(5)	54(2)	20(2)	-11(1)	0(2)	-20(2)
C(10D)	79(2)	31(2)	25(2)	-9(1)	8(2)	-21(2)
C(11D)	69(2)	31(2)	28(2)	-16(1)	5(2)	-16(2)
C(12D)	(2)	22(2)	21(2)	1 - (1)	2(1)	12(2)
C(12D)	62(2)	33(2)	21(2)	-15(1)	2(1)	-13(2)
C(13D)	29(2)	36(2)	25(1)	-18(1)	2(1)	-6(1)
C(14D)	42(2)	35(2)	32(2)	-22(1)	5(1)	-9(1)
C(1 C)	·=(=)	40(2)	20(2)	22(2)	σ(=) Γ(2)	14(2)
C(15D)	55(2)	49(Z)	39(2)	-32(2)	5(2)	-14(2)
C(16D)	54(2)	69(2)	36(2)	-39(2)	2(2)	-5(2)
C(17D)	51(2)	52(2)	28(2)	-21(2)	10(1)	-8(2)
C(17D)	(2)	32(2)	20(2)		IO(I)	0(2)
C(18D)	42(2)	31(2)	27(2)	-15(1)	5(1)	-8(1)
C(19D)	66(2)	34(2)	31(2)	-22(1)	1(1)	-14(2)
O(1F)	1/0(2)	30(1)	20(1)	-1/(1)	2(1)	-20(1)
	140(2)	50(1)	23(1)	-14(1)	2(1)	-20(1)
N(1E)	43(1)	29(1)	25(1)	-14(1)	0(1)	-8(1)
C(1E)	73(2)	31(2)	24(2)	-16(2)	1(1)	-11(2)
	18(2)	31(2)	23(2)	-15(1)	-1(1)	_Q(1)
	40(2)	51(2)	23(2)	-13(1)	-4(1)	-9(1)
O(2E)	71(2)	31(1)	26(1)	-18(1)	-2(1)	-12(1)
C(3E)	42(2)	30(2)	21(1)	-14(1)	2(1)	-8(1)
	66(1)	20(1)	24(1)	_15(1)	-2(1)	-12(1)
0(3L)	00(1)	30(1)	24(1)	-13(1)	-2(1)	-12(1)
C(4E)	40(2)	28(2)	25(2)	-13(1)	2(1)	-10(1)
C(5E)	40(2)	40(2)	29(2)	-19(2)	3(1)	-14(1)
CIGE	38(2)	10(2)	36(2)	-24(2)	5(1)	-13(1)
	50(2)	+0(2)	50(2)	-24(2)	5(1)	-13(1)
C(7E)	34(2)	33(2)	34(2)	-18(1)	3(1)	-6(1)
C(8E)	59(2)	41(2)	36(2)	-24(2)	4(2)	-16(2)
	75(2)	52(2)	25(2)	-28(2)	6(2)	-20(2)
	75(2)	JJ(Z)	33(2)	-20(2)	0(2)	-20(2)
C(10E)	76(2)	39(2)	34(2)	-19(2)	13(2)	-24(2)
C(11E)	54(2)	40(2)	48(2)	-29(2)	7(2)	-16(2)
C(12F)	30(2)	A1(2)	37(2)	-26(2)	-1(1)	_1(1)
	55(2)	+1(2)	57(2)	20(2)	-(-)	-(1)
C(13E)	40(2)	41(2)	27(2)	-22(1)	1(1)	-6(1)
C(14E)	73(2)	57(2)	32(2)	-29(2)	4(2)	-22(2)
C(15F)	83(3)	74(3)	45(2)	-46(2)	5(2)	-22(2)
0(102)	72(2)	(3)	10(2)	10(2)	S(2)	
C(16E)	/2(2)	68(3)	29(2)	-29(2)	0(2)	-14(2)
C(17E)	105(3)	53(2)	27(2)	-18(2)	6(2)	-13(2)
C(18F)	79(3)	51(2)	32(2)	-25(2)	3(2)	-10(2)
C(10E)	(3)	24(2)	32(2)	20(2)	3(2)	2(2)
C(TAF)	01(2)	54(Z)	27(2)	-21(1)	-1(1)	-9(2)
N(1F)	47(1)	31(1)	23(1)	-15(1)	4(1)	-15(1)
C(1F)	63(2)	30(2)	25(2)	-17(1)	5(1)	-17(1)
-(-, -)	112/21	2 5 (-) 2 5 (1)	10(1)	1=(1)	-(-)	22/41
U(IF)	112(Z)	22(1)	TA(T)	-T2(T)	4(I)	-23(1)
O(2F)	56(1)	28(1)	24(1)	-15(1)	3(1)	-15(1)
C(2F)	55(2)	25(2)	22(2)	-13(1)	4(1)	-16(1)
0(25)	79(2)	20(1)	(-)	10(-)	A(1)	10(4)
U(3F)	/8(2)	5U(1)	∠4(⊥)	-12(1)	4(1)	-19(1)
C(3F)	39(2)	31(2)	20(1)	-15(1)	5(1)	-12(1)
C(4F)	36(2)	34(2)	23(1)	-17(1)	4(1)	-12(1)
C(EE)	20(2)	24(2)		17(1)	A(1)	11/1)
C(DF)	50(2)	54(2)	25(2)	-1/(1)	4(1)	-TT(T)
C(6F)	38(2)	28(2)	28(2)	-16(1)	5(1)	-10(1)
C(7F)	35(2)	35(2)	28(2)	-20(1)	-2(1)	-3(1)
C(8E)	10(2)	21(2)	22(2)	-19(1)	A(1)	-(-)
	43(2)	51(2)	35(2)	-10(1)	+(±)	-11(1)
C(9F)	61(2)	33(2)	38(2)	-24(2)	7(2)	-13(2)

C(10F)	67(2)	40(2)	27(2)	-20(2)	5(1)	-12(2)
C(11F)	60(2)	31(2)	26(2)	-13(1)	7(1)	-12(2)
C(12F)	44(2)	23(2)	33(2)	-14(1)	-2(1)	-6(1)
C(13F)	34(2)	34(2)	39(2)	-24(1)	1(1)	-7(1)
C(14F)	52(2)	42(2)	43(2)	-28(2)	12(2)	-18(2)
C(15F)	59(2)	40(2)	60(2)	-32(2)	11(2)	-18(2)
C(16F)	64(2)	41(2)	70(3)	-38(2)	-6(2)	-13(2)
C(17F)	76(2)	43(2)	46(2)	-35(2)	-10(2)	-5(2)
C(18F)	57(2)	35(2)	33(2)	-22(2)	-3(1)	-5(2)
C(19F)	82(2)	24(2)	32(2)	-13(1)	0(2)	-14(2)

Tabelle 19.47:	Lageparameter der Wasserstoffatome (x 10^4) und isotrope Temperaturfaktoren (A ² x 1	.0 ³)
	von 216 .	

	х	У	Z	U(eq)
H(8A)	8399	3514	1604	51
H(9A)	8358	3838	279	55
H(10A)	8627	5105	-728	52
H(11A)	8895	6055	-401	50
H(12A)	8917	5754	918	44
H(14A)	9084	1661	5490	53
H(15A)	8949	472	5513	66
H(16A)	8417	518	4374	60
H(17A)	8046	1752	3212	54
H(18A)	8192	2944	3170	49
H(19A)	9366	5816	3867	61
H(19B)	8801	6128	4438	61
H(19C)	8187	5953	3891	61
H(8B)	1360	8336	10272	51
H(9B)	1175	7358	9948	60
H(10B)	1023	7703	8619	54
H(11B)	1076	9015	7615	49
H(12B)	1259	10004	7921	43
H(14B)	1652	10452	12010	45
H(15B)	1585	9284	13221	54
H(16B)	1132	8165	13262	57
H(17B)	732	8240	12069	55
H(18B)	815	9391	10858	45
H(19D)	1970	12951	7848	60
H(19E)	1350	13842	7580	60
H(19F)	790	13115	7801	60
H(8C)	5830	1951	3109	49
H(9C)	5817	936	2790	56
H(10C)	6171	1171	1504	52
H(11C)	6474	2424	525	48
H(12C)	6473	3447	826	42
H(14C)	6628	3964	4880	45
H(15C)	6622	2785	6084	58
H(16C)	6223	1651	6124	55
H(17C)	5843	1706	4949	50
H(18C)	5824	2894	3736	44
H(19G)	6808	6465	685	63
H(19H)	6257	7367	448	63
H(19I)	5630	6671	704	63
H(8D)	3920	1786	5041	50
H(9D)	3906	461	6042	56
H(10D)	3670	-508	5726	55
H(11D)	3476	-153	4403	50
H(12D)	3522	1160	3389	44
H(14D)	4139	5636	2915	40
H(15D)	4187	5644	4102	51
H(16D)	3808	4560	5287	58
H(17D)	3349	3477	5269	53
H(18D)	3335	3441	4088	40

Seite 347

H(19J)	4517	3986	365	59
H(19K)	3906	4619	-451	59
H(19L)	3338	4121	340	59
H(8E)	810	4755	2086	51
H(9E)	908	6054	1063	61
H(10E)	1315	7002	1349	57
H(11E)	1544	6672	2661	52
H(12E)	1472	5372	3696	44
H(14E)	784	927	4191	60
H(15E)	659	952	2983	71
H(16E)	935	2060	1797	64
H(17E)	1364	3151	1815	76
H(18E)	1499	3144	3011	63
H(19M)	1861	2352	6782	57
H(19N)	1326	1838	7586	57
H(19O)	683	2472	6787	57
H(8F)	3320	101	-1333	43
H(9F)	3467	357	-2643	49
H(10F)	3951	1544	-3624	52
H(11F)	4250	2498	-3307	47
H(12F)	4090	2259	-2008	39
H(14F)	3376	-1666	2495	50
H(15F)	3262	-2833	2469	58
H(16F)	3598	-2911	1312	64
H(17F)	4013	-1804	173	59
H(18F)	4108	-621	184	48
H(19P)	4138	2391	967	68
H(19Q)	3610	2654	1583	68
H(19R)	2965	2492	1044	68

Tabelle 19.48: Torsionswinkel [°] von 216.

O(1A)-C(1A)-O(2A)-C(4A)	-178.8(3)
C(2A)-C(1A)-O(2A)-C(4A)	1.3(4)
C(3A)-N(1A)-C(2A)-O(3A)	179.9(2)
C(3A)-N(1A)-C(2A)-C(1A)	0.4(4)
O(1A)-C(1A)-C(2A)-N(1A)	177.7(3)
O(2A)-C(1A)-C(2A)-N(1A)	-2.4(4)
O(1A)-C(1A)-C(2A)-O(3A)	-1.8(4)
O(2A)-C(1A)-C(2A)-O(3A)	178.0(2)
N(1A)-C(2A)-O(3A)-C(19A)	-0.1(4)
C(1A)-C(2A)-O(3A)-C(19A)	179.4(2)
C(2A)-N(1A)-C(3A)-C(4A)	3.0(4)
C(2A)-N(1A)-C(3A)-C(5A)	-176.5(2)
N(1A)-C(3A)-C(4A)-O(2A)	-4.0(4)
C(5A)-C(3A)-C(4A)-O(2A)	175.5(2)
N(1A)-C(3A)-C(4A)-C(13A)	174.6(3)
C(5A)-C(3A)-C(4A)-C(13A)	-5.9(5)
C(1A)-O(2A)-C(4A)-C(3A)	1.7(4)
C(1A)-O(2A)-C(4A)-C(13A)	-177.2(2)
C(12A)-C(7A)-C(8A)-C(9A)	1.1(5)
C(6A)-C(7A)-C(8A)-C(9A)	179.6(3)
C(7A)-C(8A)-C(9A)-C(10A)	0.2(5)
C(8A)-C(9A)-C(10A)-C(11A)	-0.9(5)
C(9A)-C(10A)-C(11A)-C(12A)	0.5(5)
C(10A)-C(11A)-C(12A)-C(7A)	0.8(5)
C(8A)-C(7A)-C(12A)-C(11A)	-1.6(5)
C(6A)-C(7A)-C(12A)-C(11A)	180.0(3)
C(3A)-C(4A)-C(13A)-C(18A)	-13.2(5)
O(2A)-C(4A)-C(13A)-C(18A)	165.4(3)
C(3A)-C(4A)-C(13A)-C(14A)	169.7(3)
O(2A)-C(4A)-C(13A)-C(14A)	-11.6(4)
C(18A)-C(13A)-C(14A)-C(15A)	1.7(5)
C(4A)-C(13A)-C(14A)-C(15A)	179.0(3)
C(13A)-C(14A)-C(15A)-C(16A)	-1.3(5)

C(14A)-C(15A)-C(16A)-C(17A)	0.3(5)
	0.0(5)
C(15A)-C(16A)-C(17A)-C(18A)	0.0(5)
C(16A)-C(17A)-C(18A)-C(13A)	0 5(5)
	0.0(0)
C(14A)-C(13A)-C(18A)-C(17A)	-1.4(4)
C(4A)-C(13A)-C(18A)-C(17A)	-178.5(3)
	170.0(0)
C(3B)-N(1B)-C(2B)-O(3B)	1/9.2(2)
C(3B)-N(1B)-C(2B)-C(1B)	-1 6(4)
	1.0(+)
O(1B)-C(1B)-C(2B)-N(1B)	-179.8(3)
O(2R) - C(1R) - C(2R) - N(1R)	0 1(4)
0(20)-0(10)-0(20)-14(10)	-0.1(4)
O(1B)-C(1B)-C(2B)-O(3B)	-0.5(5)
O(2R) C(2R) C(2R) O(2R)	170 2(2)
0(20)-C(10)-C(20)-0(30)	1/9.2(2)
O(1B)-C(1B)-O(2B)-C(4B)	-179.9(3)
$C(2\mathbf{p}) C(2\mathbf{p}) C(2\mathbf{p}) C(2\mathbf{p})$	0 2(4)
C(2B)-C(1B)-O(2B)-C(4B)	0.3(4)
C(2B)-N(1B)-C(3B)-C(4B)	3.3(4)
	176 2(2)
C(2B)-N(1B)-C(3B)-C(5B)	-1/6.2(2)
N(1B)-C(2B)-O(3B)-C(19B)	-2 5(4)
	2.3(1)
C(1B)-C(2B)-O(3B)-C(19B)	178.2(2)
N(1R) C(2R) C(AR) O(2R)	2 1/4)
	-3.1(4)
C(5B)-C(3B)-C(4B)-O(2B)	176.3(2)
N(1P) C(2P) C(AP) C(12P)	179 1/2)
11(10)-C(30)-C(40)-C(130)	170.1(3)
C(5B)-C(3B)-C(4B)-C(13B)	-2.5(5)
C(1P) O(2P) C(AP) C(2P)	1 2/1
C(1D) - O(2D) - C(4D) - C(3D)	1.2(4)
C(1B)-O(2B)-C(4B)-C(13B)	-179.7(2)
C(12R) C(2R) C(0R) C(0R)	1 2/5
C(12B)-C(7B)-C(8B)-C(9B)	-1.2(5)
C(6B)-C(7B)-C(8B)-C(9B)	175.6(3)
	2/0/0(0)
C(7B)-C(8B)-C(9B)-C(10B)	0.3(5)
C(8B)-C(9B)-C(10B)-C(11B)	0 5(5)
	0.5(5)
C(9B)-C(10B)-C(11B)-C(12B)	-0.5(5)
C(10B)-C(11B)-C(12B)-C(7B)	-0 3(5)
	0.5(5)
C(8B)-C(7B)-C(12B)-C(11B)	1.2(5)
C(6B)_C(7B)_C(12B)_C(11B)	-175 6(3)
	-175.0(5)
C(3B)-C(4B)-C(13B)-C(18B)	-17.6(5)
O(2R) - C(AR) - C(12R) - C(12R)	162 5(2)
0(20)-0(40)-0(130)-0(100)	103.3(3)
C(3B)-C(4B)-C(13B)-C(14B)	164.8(3)
O(2R) C(4R) C(12R) C(14R)	1 1 1 1
O(2B) - C(4B) - C(13B) - C(14B)	-14.1(4)
C(18B)-C(13B)-C(14B)-C(15B)	0.8(4)
C(AD) C(ADD) C(AAD) C(AED)	470 5(2)
C(4B)-C(13B)-C(14B)-C(15B)	1/8.5(3)
C(13B)-C(14B)-C(15B)-C(16B)	-0.5(5)
C(10D) = C(1D) = C(1D)	0.0(5)
C(14B)-C(15B)-C(16B)-C(17B)	-0.3(5)
C(15B)-C(16B)-C(17B)-C(18B)	0 7(5)
	0.7(3)
C(16B)-C(17B)-C(18B)-C(13B)	-0.4(5)
C(1/B)_C(13B)_C(18B)_C(17B)	-0.3(4)
	-0.3(+)
	-177.9(3)
C(4B)-C(13B)-C(18B)-C(17B)	
C(4B)-C(13B)-C(18B)-C(17B)	-179 //3)
C(4B)-C(13B)-C(18B)-C(17B) O(1C)-C(1C)-O(2C)-C(4C)	-179.4(3)
C(4B)-C(13B)-C(18B)-C(17B) O(1C)-C(1C)-O(2C)-C(4C) C(2C)-C(1C)-O(2C)-C(4C)	-179.4(3) 0.5(4)
C(4B)-C(13B)-C(18B)-C(17B) O(1C)-C(1C)-O(2C)-C(4C) C(2C)-C(1C)-O(2C)-C(4C) C(2C)-D(1C)-O(2C)-C(4C)	-179.4(3) 0.5(4)
C(4B)-C(13B)-C(18B)-C(17B) O(1C)-C(1C)-O(2C)-C(4C) C(2C)-C(1C)-O(2C)-C(4C) C(3C)-N(1C)-C(2C)-O(3C)	-179.4(3) 0.5(4) -179.4(2)
C(4B)-C(13B)-C(18B)-C(17B) O(1C)-C(1C)-O(2C)-C(4C) C(2C)-C(1C)-O(2C)-C(4C) C(3C)-N(1C)-C(2C)-O(3C) C(3C)-N(1C)-C(2C)-C(1C)	-179.4(3) 0.5(4) -179.4(2) -0.6(4)
C(4B)-C(13B)-C(18B)-C(17B) O(1C)-C(1C)-O(2C)-C(4C) C(2C)-C(1C)-O(2C)-C(4C) C(3C)-N(1C)-C(2C)-O(3C) C(3C)-N(1C)-C(2C)-O(3C) C(3C)-N(1C)-C(2C)-C(1C)	-179.4(3) 0.5(4) -179.4(2) -0.6(4)
C(4B)-C(13B)-C(18B)-C(17B) O(1C)-C(1C)-O(2C)-C(4C) C(2C)-C(1C)-O(2C)-C(4C) C(3C)-N(1C)-C(2C)-O(3C) C(3C)-N(1C)-C(2C)-C(1C) O(1C)-C(1C)-C(2C)-N(1C)	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3)
C(4B)-C(13B)-C(18B)-C(17B) O(1C)-C(1C)-O(2C)-C(4C) C(2C)-C(1C)-O(2C)-C(4C) C(3C)-N(1C)-C(2C)-O(3C) C(3C)-N(1C)-C(2C)-C(1C) O(1C)-C(1C)-C(2C)-N(1C) O(2C)-C(1C)-C(2C)-N(1C)	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4)
$C(4B)-C(13B)-C(18B)-C(17B) \\ O(1C)-C(1C)-O(2C)-C(4C) \\ C(2C)-C(1C)-O(2C)-C(4C) \\ C(3C)-N(1C)-C(2C)-O(3C) \\ C(3C)-N(1C)-C(2C)-O(3C) \\ O(1C)-C(1C)-C(2C)-N(1C) \\ O(2C)-C(1C)-C(2C)-N(1C) \\ O(1C)-C(1C)-C(2C)-O(3C) \\ O(1C)-C(1C)-C(2C)-O(3C) \\ O(1C)-C(1C)-C(2C)-O(3C) \\ O(1C)-C(1C)-C(2C)-O(3C) \\ O(1C)-C(1C)-C(2C)-O(3C) \\ O(1C)-C(1C)-C(2C)-O(3C) \\ O(1C)-C(1C)-C(3C)-O(3C) \\ O(1C)-C(1C)-C(3C)-O(3C)-O(3C) \\ O(1C)-C(1C)-C(3C)-O(3C)-O(3C) \\ O(1C)-C(1C)-O(3C)-O(3C)-O(3C) \\ O(1C)-C(1C)-O(3C)-O(3C) \\ O(1C)-C(1C)-O(3C)-O(3C)-O(3C) \\ O(1C)-C(1C)-O(3C)-O(3C)-O(3C)-O(3C) \\ O(1C)-C(1C)-O(3$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4)
C(4B)-C(13B)-C(18B)-C(17B) O(1C)-C(1C)-O(2C)-C(4C) C(2C)-C(1C)-O(2C)-C(4C) C(3C)-N(1C)-C(2C)-O(3C) C(3C)-N(1C)-C(2C)-C(1C) O(1C)-C(1C)-C(2C)-N(1C) O(2C)-C(1C)-C(2C)-N(1C) O(1C)-C(1C)-C(2C)-O(3C)	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4)
C(4B)-C(13B)-C(18B)-C(17B) O(1C)-C(1C)-O(2C)-C(4C) C(2C)-C(1C)-O(2C)-C(4C) C(3C)-N(1C)-C(2C)-O(3C) C(3C)-N(1C)-C(2C)-C(1C) O(1C)-C(1C)-C(2C)-N(1C) O(2C)-C(1C)-C(2C)-N(1C) O(1C)-C(1C)-C(2C)-O(3C) O(2C)-C(1C)-C(2C)-O(3C)	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $C(3C)-N(1C)-C(2C)-C(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(2C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(1C)-C(1C)-C(2C)-O(3C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) 1,7(4)
C(4B)-C(13B)-C(18B)-C(17B) O(1C)-C(1C)-O(2C)-C(4C) C(2C)-C(1C)-O(2C)-C(4C) C(3C)-N(1C)-C(2C)-O(3C) C(3C)-N(1C)-C(2C)-C(1C) O(1C)-C(1C)-C(2C)-N(1C) O(2C)-C(1C)-C(2C)-N(1C) O(1C)-C(1C)-C(2C)-O(3C) O(2C)-C(1C)-C(2C)-O(3C) N(1C)-C(2C)-O(3C)-C(19C)	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $C(3C)-N(1C)-C(2C)-C(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(2C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $C(3C)-N(1C)-C(2C)-C(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(2C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4)
C(4B)-C(13B)-C(18B)-C(17B) O(1C)-C(1C)-O(2C)-C(4C) C(2C)-C(1C)-O(2C)-C(4C) C(3C)-N(1C)-C(2C)-O(3C) C(3C)-N(1C)-C(2C)-C(1C) O(1C)-C(1C)-C(2C)-N(1C) O(2C)-C(1C)-C(2C)-N(1C) O(2C)-C(1C)-C(2C)-O(3C) N(1C)-C(2C)-O(3C)-C(19C) C(1C)-C(2C)-O(3C)-C(19C) C(2C)-N(1C)-C(3C)-C(4C)	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(2C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $C(3C)-N(1C)-C(2C)-C(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(2C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(5C)$ $N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(5C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) 2.1(4)
$C(4B)-C(13B)-C(18B)-C(17B) \\ O(1C)-C(1C)-O(2C)-C(4C) \\ C(2C)-C(1C)-O(2C)-C(4C) \\ C(3C)-N(1C)-C(2C)-O(3C) \\ C(3C)-N(1C)-C(2C)-O(3C) \\ O(1C)-C(1C)-C(2C)-N(1C) \\ O(2C)-C(1C)-C(2C)-N(1C) \\ O(1C)-C(1C)-C(2C)-O(3C) \\ O(2C)-C(1C)-C(2C)-O(3C) \\ O(2C)-C(1C)-C(2C)-O(3C) \\ O(2C)-C(1C)-C(2C)-O(3C) \\ O(2C)-C(1C)-C(2C)-O(3C) \\ O(2C)-C(1C)-C(2C)-O(3C) \\ O(2C)-C(1C)-C(2C)-O(3C) \\ O(2C)-N(1C)-C(2C)-O(3C) \\ O(2C)-N(1C)-C(3C)-C(4C) \\ C(2C)-N(1C)-C(3C)-C(4C) \\ O(2C)-C(3C)-C(4C)-O(2C) \\ O(2C)-C(3C)-C(4C)-C(4C)-O(2C) \\ O(2C)-C(4$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $C(3C)-N(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $O(2C)-C(3C)-C(4C)-O(2C)$ $O(2C)-C(3C)-C(4C)-O(2C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 175.1(2)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $C(3C)-N(1C)-C(2C)-O(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(2C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-C(3C)-C(4C)-O(2C)$ $C(5C)-C(3C)-C(4C)-O(2C)$ $C(1C)-C(2C)-C(4C)-O(2C)$ $C(1C)-C(2C)-C(4C)-O(2C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 175.1(2)
$C(4B)-C(13B)-C(18B)-C(17B) \\ O(1C)-C(1C)-O(2C)-C(4C) \\ C(2C)-C(1C)-O(2C)-C(4C) \\ C(3C)-N(1C)-C(2C)-O(3C) \\ C(3C)-N(1C)-C(2C)-O(3C) \\ O(1C)-C(1C)-C(2C)-N(1C) \\ O(2C)-C(1C)-C(2C)-N(1C) \\ O(1C)-C(1C)-C(2C)-O(3C) \\ O(2C)-C(1C)-C(2C)-O(3C) \\ N(1C)-C(2C)-O(3C)-C(19C) \\ C(2C)-N(1C)-C(3C)-C(4C) \\ C(2C)-N(1C)-C(3C)-C(4C) \\ C(2C)-N(1C)-C(3C)-C(4C) \\ C(2C)-C(3C)-C(4C)-O(2C) \\ N(1C)-C(3C)-C(4C)-O(2C) \\ N(1C)-C(3C)-C(4C)-O(2C) \\ N(1C)-C(3C)-C(4C)-O(2C) \\ N(1C)-C(3C)-C(4C)-C(13C) \\ \end{array}$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 175.1(2) 177.6(3)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $C(3C)-N(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $O(2C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-C(13C)$ $C(5C)-C(3C)-C(4C)-C(13C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 177.6(3) -4.1(5)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $C(3C)-N(1C)-C(2C)-N(1C)$ $O(2C)-C(1C)-C(2C)-N(1C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(5C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-C(13C)$ $C(5C)-C(3C)-C(4C)-C(13C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 175.1(2) 177.6(3) -4.1(5)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $O(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-C(13C)$ $C(5C)-C(3C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(3C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -177.4(2) 2.7(4) -175.7(2) -3.1(4) 175.1(2) 177.6(3) -4.1(5) 1.4(4)
$C(4B)-C(13B)-C(18B)-C(17B) \\ O(1C)-C(1C)-O(2C)-C(4C) \\ C(2C)-C(1C)-O(2C)-C(4C) \\ C(3C)-N(1C)-C(2C)-O(3C) \\ C(3C)-N(1C)-C(2C)-O(3C) \\ O(1C)-C(1C)-C(2C)-N(1C) \\ O(2C)-C(1C)-C(2C)-N(1C) \\ O(1C)-C(1C)-C(2C)-O(3C) \\ O(1C)-C(1C)-C(2C)-O(3C) \\ O(2C)-C(1C)-C(2C)-O(3C) \\ O(2C)-C(1C)-C(2C)-O(3C) \\ O(1C)-C(2C)-O(3C)-C(19C) \\ C(1C)-C(2C)-O(3C)-C(19C) \\ C(1C)-C(2C)-O(3C)-C(19C) \\ C(2C)-N(1C)-C(3C)-C(4C) \\ C(2C)-N(1C)-C(3C)-C(4C) \\ C(2C)-N(1C)-C(3C)-C(4C) \\ C(2C)-N(1C)-C(3C)-C(4C) \\ C(2C)-N(1C)-C(3C)-C(4C) \\ C(2C)-N(1C)-C(3C)-C(4C) \\ O(1C)-C(3C)-C(4C)-O(2C) \\ N(1C)-C(3C)-C(4C)-C(13C) \\ C(5C)-C(3C)-C(4C)-C(13C) \\ C(1C)-O(2C)-C(4C)-C(13C) \\ C(1C)-O(2C)-C(13C) \\ C(1C)-C(12C)-C(13C) \\ $	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 175.1(2) 177.6(3) -4.1(5) 1.4(4) -179.2(2)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $C(3C)-N(1C)-C(2C)-O(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(5C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-C(13C)$ $C(5C)-C(3C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(12)-O(2C)-C(4C)-C(13C)$ $C(12)-O(2C)-C(4C)-C(13C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 175.1(2) 177.6(3) -4.1(5) 1.4(4) -179.2(2)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(5C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(12)-O(2C)-C(4C)-C(13C)$ $C(12)-O(2C)-C(4C)-C(13C)$ $C(12)-O(2C)-C(4C)-C(13C)$ $C(12)-C(2C)-C(4C)-C(13C)$ $C(12)-C(2C)-C(4C)-C(13C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 175.1(2) 177.6(3) -4.1(5) 1.4(4) -179.2(2) 0.2(5)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(5C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-C(13C)$ $C(5C)-C(3C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(12C)-C(7C)-C(8C)-C(9C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 175.1(2) 177.6(3) -4.1(5) 1.4(4) -179.2(2) 0.2(5) -179.3(3)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $C(3C)-N(1C)-C(2C)-O(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(2C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(2C)-N(1C)-C(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $O(2C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-C(13C)$ $C(5C)-C(3C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(12)-O(2C)-C(4C)-C(13C)$ $C(12)-O(2C)-C(4C)-C(12C)$ $C(12)-O(2C)-C(4C)-C(12C)$ $C(12)-O(2C)-C(4C)-C(12C)$ $C(12)-O(2C)-C(4C)-C(12C)$ $C(12)-O(2C)-C(4C)-C(12C)$ $C(12)-C(12)-C(12C)$ $C(12)-C(12)-C(12C)$ $C(12)-C(12)-C(12C)$ $C(12)-C(12)-C(12C)$ $C(12)-C(12)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 175.1(2) 177.6(3) -4.1(5) 1.4(4) -179.2(2) 0.2(5) -179.3(3)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $C(3C)-N(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(5C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-C(13C)$ $C(1C)-C(3C)-C(4C)-C(13C)$ $C(12)-O(2C)-C(4C)-C(13C)$ $C(12)-O(2C)-C(4C)-C(13C)$ $C(12)-O(2C)-C(4C)-C(9C)$ $C(12)-C(7C)-C(8C)-C(9C)$ $C(5C)-C(3C)-C(4C)-C(10C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) 3.1(4) 175.7(2) 177.6(3) -4.1(5) 1.4(4) -179.2(2) 0.2(5) -179.3(3) 0.7(5)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $C(3C)-N(1C)-C(2C)-O(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(5C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-C(13C)$ $C(5C)-C(3C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(12)-O(2C)-C(4C)-C(13C)$ $C(12)-O(2C)-C(4C)-C(13C)$ $C(12)-O(2C)-C(4C)-C(13C)$ $C(12)-O(2C)-C(4C)-C(13C)$ $C(12)-C(7C)-C(8C)-C(9C)$ $C(5C)-C(3C)-C(9C)-C(10C)$ $C(8C)-C(9C)-C(10C)-C(11C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 177.6(3) -4.1(5) 1.4(4) -179.2(2) 0.2(5) -179.3(3) 0.7(5) -1 3(5)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(2C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(5C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-C(13C)$ $C(5C)-C(3C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(12C)-C(7C)-C(8C)-C(9C)$ $C(5C)-C(7C)-C(8C)-C(9C)$ $C(7C)-C(8C)-C(9C)-C(10C)$ $C(8C)-C(9C)-C(10C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 175.1(2) 177.6(3) -4.1(5) 1.4(4) -179.2(2) 0.2(5) -179.3(3) 0.7(5) -1.3(5) -2.0(1)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-C(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(2C)-C(1C)-C(2C)-N(1C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(5C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-C(13C)$ $C(5C)-C(3C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(12C)-C(7C)-C(8C)-C(9C)$ $C(7C)-C(8C)-C(9C)$ $C(7C)-C(8C)-C(9C)-C(10C)$ $C(8C)-C(9C)-C(10C)-C(11C)$ $C(9C)-C(10C)-C(11C)-C(12C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 177.6(3) 1.4(4) -179.2(2) 0.2(5) -179.3(3) 0.7(5) -1.3(5) 0.9(5)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $C(3C)-N(1C)-C(2C)-O(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-C(13C)$ $C(5C)-C(3C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(12C)-C(7C)-C(8C)-C(9C)$ $C(5C)-C(7C)-C(8C)-C(9C)$ $C(7C)-C(8C)-C(9C)-C(11C)$ $C(9C)-C(11C)-C(11C)-C(12C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 175.1(2) 177.6(3) -4.1(5) 1.4(4) -179.2(2) 0.2(5) -179.3(3) 0.7(5) -1.3(5) 0.9(5) 0.1(5)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $C(3C)-N(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(5C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(12C)-C(7C)-C(8C)-C(9C)$ $C(5C)-C(3C)-C(9C)-C(10C)$ $C(8C)-C(9C)-C(10C)-C(11C)$ $C(3C)-C(11C)-C(12C)-C(7C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 177.6(3) -4.1(5) 1.4(4) -179.2(2) 0.2(5) -179.3(3) 0.7(5) -1.3(5) 0.9(5) 0.1(5)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $C(3C)-N(1C)-C(2C)-O(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)-C(19C)$ $C(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(5C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-C(13C)$ $C(5C)-C(3C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(12C)-C(7C)-C(8C)-C(9C)$ $C(5C)-C(3C)-C(4C)-C(13C)$ $C(12C)-C(7C)-C(8C)-C(9C)$ $C(5C)-C(3C)-C(10C)-C(11C)$ $C(8C)-C(9C)-C(11C)-C(12C)$ $C(10C)-C(11C)-C(12C)-C(11C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 175.1(2) 177.6(3) -4.1(5) 1.4(4) -179.2(2) 0.2(5) -179.3(3) 0.7(5) -1.3(5) 0.9(5) 0.1(5) -0.6(4)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $C(3C)-N(1C)-C(2C)-O(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $O(2C)-C(1C)-C(2C)-O(3C)$ $C(2C)-N(1C)-C(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-C(13C)$ $C(5C)-C(3C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(12C)-C(7C)-C(8C)-C(9C)$ $C(5C)-C(7C)-C(8C)-C(9C)$ $C(5C)-C(10C)-C(11C)-C(12C)$ $C(10C)-C(11C)-C(12C)-C(7C)$ $C(8C)-C(7C)-C(12C)-C(11C)$ $C(8C)-C(7C)-C(12C)-C(11C)$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 175.1(2) 177.6(3) -4.1(5) 1.4(4) -179.2(2) 0.2(5) -13.(5) 0.9(5) 0.1(5) -0.6(4) 178.9(2)
C(4B)-C(13B)-C(18B)-C(17B) $O(1C)-C(1C)-O(2C)-C(4C)$ $C(2C)-C(1C)-O(2C)-C(4C)$ $C(3C)-N(1C)-C(2C)-O(3C)$ $C(3C)-N(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-N(1C)$ $O(1C)-C(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)$ $N(1C)-C(2C)-O(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(19C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(2C)-N(1C)-C(3C)-C(4C)$ $C(5C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-O(2C)$ $N(1C)-C(3C)-C(4C)-C(13C)$ $C(5C)-C(3C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(1C)-O(2C)-C(4C)-C(13C)$ $C(12C)-C(7C)-C(8C)-C(9C)$ $C(5C)-C(3C)-C(10C)-C(11C)$ $C(8C)-C(9C)-C(10C)-C(11C)$ $C(9C)-C(11C)-C(12C)-C(7C)$ $C(8C)-C(7C)-C(12C)-C(11C)$ $C(8C)-C(7C)-C(1$	-179.4(3) 0.5(4) -179.4(2) -0.6(4) 179.0(3) -0.9(4) -2.0(4) 178.0(2) -1.7(4) 179.4(2) 2.7(4) -175.7(2) -3.1(4) 177.6(3) -4.1(5) 1.4(4) -179.2(2) 0.2(5) -179.3(3) 0.7(5) -1.3(5) 0.9(5) 0.1(5) -0.6(4) 178.9(3) 129.2(2)

O(2C)-C(4C)-C(13C)-C(18C)
C(3C)-C(4C)-C(13C)-C(14C)
O(2C)-C(4C)-C(13C)-C(14C)
C(18C)-C(13C)-C(14C)-C(15C)
C(4C)-C(13C)-C(14C)-C(15C)
C(13C)-C(14C)-C(15C)-C(16C)
C(1AC) C(1EC) C(1EC) C(17C)
C(15C)-C(16C)-C(17C)-C(18C)
C(14C)-C(13C)-C(18C)-C(17C)
C(1, C) = C(1, C) = C(1, C)
(40) - (130) - (180) - (170)
C(16C)-C(17C)-C(18C)-C(13C)
O(1D)-C(1D)-O(2D)-C(4D)
C(2D) C(2D) C(2D) C(4D)
(2D) - (1D) - 0(2D) - (4D)
C(3D)-N(1D)-C(2D)-O(3D)
C(3D)-N(1D)-C(2D)-C(1D)
O(1D) C(1D) C(2D) N(1D)
O(ID)-C(ID)-C(ZD)-N(ID)
O(2D)-C(1D)-C(2D)-N(1D)
O(1D)-C(1D)-C(2D)-O(3D)
O(2D) C(2D) C(2D) O(3D)
O(2D) - C(2D) - O(3D)
N(1D)-C(2D)-O(3D)-C(19D)
C(1D)-C(2D)-O(3D)-C(19D)
C(2D) N(1D) C(2D) C(4D)
$(2D)^{-1}(1D)^{-}(3D)^{-}(4D)$
C(2D)-N(1D)-C(3D)-C(5D)
N(1D)-C(3D)-C(4D)-O(2D)
C(ED) C(2D) C(4D) C(2D)
N(1D)-C(3D)-C(4D)-C(13D)
C(5D)-C(3D)-C(4D)-C(13D)
C(1D) O(2D) C(4D) C(2D)
C(1D) - O(2D) - C(4D) - C(3D)
C(1D)-O(2D)-C(4D)-C(13D)
C(12D)-C(7D)-C(8D)-C(9D)
C(7D)-C(8D)-C(9D)-C(10D)
C(8D)-C(9D)-C(10D)-C(11D)
C(9D)-C(10D)-C(11D)-C(12D)
C(10D) C(11D) C(12D) C(7D)
C(8D)-C(7D)-C(12D)-C(11D)
C(6D)-C(7D)-C(12D)-C(11D)
((3D)-C(4D)-C((13D)-C((18D)))
C(3D) = C(1D) = C(13D) = C(10D)
O(2D) - C(4D) - C(13D) - C(18D)
C(3D)-C(4D)-C(13D)-C(14D)
C(3D)-C(4D)-C(13D)-C(14D) O(2D)-C(4D)-C(13D)-C(14D)
C(3D)-C(4D)-C(13D)-C(14D) O(2D)-C(4D)-C(13D)-C(14D) C(14D) C(13D) C(14D)
C(3D)-C(4D)-C(13D)-C(14D) O(2D)-C(4D)-C(13D)-C(14D) C(18D)-C(13D)-C(14D)-C(15D)
C(3D)-C(4D)-C(13D)-C(14D) O(2D)-C(4D)-C(13D)-C(14D) C(18D)-C(13D)-C(14D)-C(15D) C(4D)-C(13D)-C(14D)-C(15D)
C(3D)-C(4D)-C(13D)-C(14D) O(2D)-C(4D)-C(13D)-C(14D) C(18D)-C(13D)-C(14D)-C(15D) C(4D)-C(13D)-C(14D)-C(15D) C(13D)-C(14D)-C(15D)-C(16D)
C(3D)-C(4D)-C(13D)-C(14D) O(2D)-C(4D)-C(13D)-C(14D) C(18D)-C(13D)-C(14D)-C(15D) C(4D)-C(13D)-C(14D)-C(15D) C(13D)-C(14D)-C(15D)-C(16D) C(14D)-C(15D)-C(15D)-C(15D)
C(3D)-C(4D)-C(13D)-C(14D) O(2D)-C(4D)-C(13D)-C(14D) C(18D)-C(13D)-C(14D)-C(15D) C(4D)-C(13D)-C(14D)-C(15D) C(13D)-C(14D)-C(15D) C(14D)-C(15D)-C(16D) C(14D)-C(15D)-C(16D)
C(3D)-C(4D)-C(13D)-C(14D) O(2D)-C(4D)-C(13D)-C(14D) C(18D)-C(13D)-C(14D)-C(15D) C(4D)-C(13D)-C(14D)-C(15D) C(13D)-C(14D)-C(15D)-C(16D) C(14D)-C(15D)-C(16D)-C(17D) C(15D)-C(16D)-C(17D)-C(18D)
C(3D)-C(4D)-C(13D)-C(14D) O(2D)-C(4D)-C(13D)-C(14D) C(18D)-C(13D)-C(14D)-C(15D) C(4D)-C(13D)-C(14D)-C(15D) C(13D)-C(14D)-C(15D)-C(16D) C(14D)-C(15D)-C(16D)-C(17D) C(15D)-C(16D)-C(17D)-C(18D) C(16D)-C(17D)-C(18D)-C(13D)
C(3D)-C(4D)-C(13D)-C(14D) O(2D)-C(4D)-C(13D)-C(14D) C(18D)-C(13D)-C(14D)-C(15D) C(4D)-C(13D)-C(14D)-C(15D) C(13D)-C(14D)-C(15D)-C(16D) C(14D)-C(15D)-C(16D)-C(17D) C(15D)-C(16D)-C(17D)-C(18D) C(16D)-C(17D)-C(18D)-C(13D) C(14D)-C(13D)-C(18D)-C(17D)
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(13D) \\ C(14D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(12D)-C(18D)-C(17D) \\ C(4D)-C(12D)-C(18D)-C(17D) \\ C(4D)-C(12D)-C(18D)-C(17D) \\ C(4D)-C(12D)-C(18D)-C(17D) \\ C(4D)-C(12D)-C(18D)-C(17D) \\ C(4D)-C(18D)-C(18D)-C(17D) \\ C(4D)-C(18D)-C(18D)-C(17D) \\ C(4D)-C(18D)-C(18D)-C(18D)-C(18D) \\ C(4D)-C(18D$
C(3D)-C(4D)-C(13D)-C(14D) O(2D)-C(4D)-C(13D)-C(14D) C(18D)-C(13D)-C(14D)-C(15D) C(4D)-C(13D)-C(14D)-C(15D) C(13D)-C(14D)-C(15D)-C(16D) C(14D)-C(15D)-C(16D)-C(17D) C(15D)-C(16D)-C(17D)-C(18D) C(16D)-C(17D)-C(18D)-C(13D) C(14D)-C(13D)-C(18D)-C(17D) C(4D)-C(13D)-C(18D)-C(17D) C(4D)-C(13D)-C(18D)-C(17D)
C(3D)-C(4D)-C(13D)-C(14D) O(2D)-C(4D)-C(13D)-C(14D) C(18D)-C(13D)-C(14D)-C(15D) C(4D)-C(13D)-C(14D)-C(15D) C(13D)-C(14D)-C(15D)-C(16D) C(14D)-C(15D)-C(16D)-C(17D) C(15D)-C(16D)-C(17D)-C(18D) C(16D)-C(17D)-C(18D)-C(13D) C(14D)-C(13D)-C(18D)-C(17D) C(4D)-C(13D)-C(18D)-C(17D) C(3E)-N(1E)-C(2E)-O(3E)
C(3D)-C(4D)-C(13D)-C(14D) O(2D)-C(4D)-C(13D)-C(14D) C(18D)-C(13D)-C(14D)-C(15D) C(4D)-C(13D)-C(14D)-C(15D) C(13D)-C(14D)-C(15D)-C(16D) C(14D)-C(15D)-C(16D)-C(17D) C(15D)-C(16D)-C(17D)-C(18D) C(16D)-C(17D)-C(18D)-C(13D) C(14D)-C(13D)-C(18D)-C(17D) C(4D)-C(13D)-C(18D)-C(17D) C(3E)-N(1E)-C(2E)-O(3E) C(3E)-N(1E)-C(2E)-C(1E)
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(13D) \\ C(14D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-O(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(1E) \\ O(1E)-C(1E)-C(1$
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(13D) \\ C(16D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-O(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(2E)-N(1E)-C(2E)-N(1E) \\ O(2E)-N(1E)-C(2E)-N(1E) \\ O(2E)-N(1E)-C(2E)-N(1E) \\ O(2E)-N(1E)-C(2E)-N(1E) \\ O(2E)-C(1E)-C(2E)-N(1E) \\ O(2E)-N(1E)-C(2E)-N(1E) \\ O(2E)-N($
C(3D)-C(4D)-C(13D)-C(14D) O(2D)-C(4D)-C(13D)-C(14D) C(18D)-C(13D)-C(14D)-C(15D) C(4D)-C(13D)-C(14D)-C(15D) C(13D)-C(14D)-C(15D)-C(16D) C(14D)-C(15D)-C(16D)-C(17D) C(15D)-C(16D)-C(17D)-C(18D) C(16D)-C(17D)-C(18D)-C(13D) C(14D)-C(13D)-C(18D)-C(17D) C(4D)-C(13D)-C(18D)-C(17D) C(4D)-C(13D)-C(18D)-C(17D) C(3E)-N(1E)-C(2E)-O(3E) C(3E)-N(1E)-C(2E)-O(3E) C(3E)-N(1E)-C(2E)-C(1E) O(1E)-C(1E)-C(2E)-N(1E) O(2E)-C(1E)-C(2E)-N(1E)
$\begin{array}{l} C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(13D) \\ C(16D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-N(1E) \\ O(2E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ \end{array}$
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(13D) \\ C(16D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-C(3E) \\ O(2E)$
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(13D) \\ C(16D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-C(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(2E)-C(1E)-C(2E)-N(1E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-C(4E) \\ O(1E)-C(1E)-C(1E)-C(1E) \\ O(1E)-C(1E)-C(1E) \\ O(1E)-C(1E)-C(1E) \\ O(1E)-C(1E)-C(1E) \\ $
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(13D) \\ C(14D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-O(2E)-C(4E) \\ O(1E)-C(1E)-C(1E)-O(1E) \\ O(1E)-C(1E)-C(1E)-C(1E) \\ O(1E)-C(1E)-C(1E)-C(1E) \\ O(1E)-C(1E)-C(1E)-C(1E) \\ O(1E)-C($
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(17D) \\ C(16D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-C(1E) \\ O(1E)-C(2E)-C(2E)-N(1E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-O(2E)-C(4E) \\ C(2E)-C(1E)-O(2E)-C(4E) \\ C(2E)-C(1E)-C(2E)-C(4E) \\ C(2E)$
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(13D) \\ C(14D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-O(2E)-C(4E) \\ C(2E)-C(1E)-O(2E)-C(4E) \\ C(2E)-C(1E)-O(2E)-C(4E) \\ C(2E)-N(1E)-C(2E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)$
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(13D) \\ C(16D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-C(4E) \\ C(2E)-N(1E)-C(2E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(5E) \\ \\ \end{array}$
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(13D) \\ C(16D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-C(4E) \\ C(2E)-C(1E)-O(2E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(3E) \\ C(2E)-N(1E)-C(3E)-C(3E) \\ C(2E)-N(1E)-C(3E)-C(3E) \\ C(2E)-N($
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(17D) \\ C(16D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-O(2E)-C(4E) \\ C(2E)-C(1E)-O(2E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(5E) \\ N(1E)-C(3E)-C(3E)-C(5E) \\ N(1E)-C(2E)-O(3E)-C(5E) \\ N(1E)-C(3E)-C(5E)-C(5E) \\ N(1E)-C($
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(13D) \\ C(14D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-C(4E) \\ C(2E)-N(1E)-C(2E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(5E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ C(1E)-C(2E)-O(3E)-C(19E) \\ C(1E)-C(1E)-C(1E)-C(1E) \\ C(1E)-C(1E)-C(1E) \\ C(1E)-C(1E)-C(1E)$
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(13D) \\ C(14D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(19E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ N(1E)-C(2E)-C(4E)-O(2E) \\ \end{array}$
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(13D) \\ C(16D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(2E)-C(1E)-C(2E)-N(1E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(5E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ C(1E)-C(2E)-O(3E) -C(19E) \\ N(1E)-C(3E)-C(4E) -O(2E) \\ C(3E)-C(3E)-C(4E) -O(2E) \\ C(5E)-C(3E)-C(4E) -O(2E) \\ C(5E)-C(3E)-C(4E) -O(2E) \\ C(5E)-C(3E)-C(4E)-O(2E) \\ C(5E)-C(3E)-C(3E)-C(4E)-O(2E) \\ C(5E)-C(3E)-C(3E)-C(3E)-C(3E) \\ C(5E)-C(3E)-C(3E)-C(3E)-C(3E) \\ C(5E)-C(3E)-C(3E)-C(3E)-C(3E) \\ C(5E)-C(3E)-C(3E)-C(3E) \\ C(5E)-C(3E)-C(3E)-C(3E) \\ C$
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(13D) \\ C(16D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-O(2E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(19E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ N(1E)-C(3E)-C(4E)-O(2E) \\ N(1E)-C(3E)-C(4E)-D(2E) \\ N(1E)-C(3E)-D(2E) \\ N(1E)-C(3E)-D(3E) \\ N(1E)-C($
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(17D) \\ C(16D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(19E) \\ N(1E)-C(2E)-O(3E) -C(19E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ N(1E)-C(3E)-C(4E)-O(2E) \\ C(5E)-C(3E)-C(4E)-O(2E) \\ N(1E)-C(3E)-C(4E)-O(2E) \\ C(5E)-C(3E)-C(4E)-O(2E) \\ N(1E)-C(3E)-C(4E)-O(2E) \\ N(1E)-C(3E)-C(4E)-O(2E) \\ N(1E)-C(3E)-C(4E)-O(2E) \\ N(1E)-C(3E)-C(4E)-O(2E) \\ N(1E)-C(3E)-C(4E)-O(2E) \\ N(1E)-C(3E)-C(4E)-O(2E) \\ N(1E)-C(3E)-C(4E)-C(3E) \\ C(5E)-C(3E)-C(4E)-C(3E) \\ C(5E)-C(3E)-C(3E) \\ C(5E)-$
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(17D) \\ C(16D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-C(4E) \\ C(2E)-N(1E)-C(2E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(19E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ N(1E)-C(3E)-C(4E)-O(2E) \\ C(5E)-C(3E)-C(4E)-O(2E) \\ N(1E)-C(3E)-C(4E)-C(13E) \\ C(5E)-C(3E)-C(4E)-C(13E) \\ C(5E)$
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(13D) \\ C(14D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(19E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ N(1E)-C(2E)-C(4E)-O(2E) \\ N(1E)-C(2E)-C(4E)-O(2E) \\ N(1E)-C(2E)-C(4E)-O(2E) \\ N(1E)-C(2E)-C(4E)-O(2E) \\ N(1E)-C(2E)-C(4E)-C(13E) \\ C(5E)-C(3E)-C(4E)-C(13E) \\ C(5E)-C(3E)-C(4E)-C(3E) \\ C(1E)-O(2E)-C(4E)-C(3E) \\ C(1E)-C(2E)-C(4E)-C(3E) \\ C(1E)-C(2E)-C(4E)-C(3E) \\ C($
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(17D) \\ C(16D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-O(2E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-O(3E)-C(19E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ N(1E)-C(3E)-C(4E)-O(2E) \\ N(1E)-C(3E)-C(4E)-C(13E) \\ C(5E)-C(3E)-C(4E)-C(13E) \\ C(1E)-O(2E)-C(4E)-C(13E) \\ C(1E)-O(2E)-C$
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(17D) \\ C(16D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(19E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ N(1E)-C(3E)-C(4E)-O(2E) \\ N(1E)-C(3E)-C(4E)-O(2E) \\ N(1E)-C(3E)-C(4E)-C(13E) \\ C(5E)-C(3E)-C(4E)-C(13E) \\ C(1E)-O(2E)-C(4E)-C(3E) \\ C(1E)-C(4E)-C(3E) \\ C(1E)-C(4E)-C(3E) \\ C(1E)-C(4E)-C$
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(13D) \\ C(16D)-C(17D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(1E)-C(1E)-C(2E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(19E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ N(1E)-C(3E)-C(4E)-O(2E) \\ C(5E)-C(3E)-C(4E)-O(2E) \\ C(5E)-C(3E)-C(4E)-C(13E) \\ C(5E)-C(3E)-C(4E)-C(13E) \\ C(1E)-O(2E)-C(4E)-C(3E) \\ C(1E)-C(2E)-C(4E)-C(3E) \\ C(1E)-C(2E)-C(4E)-C(3E) \\ C(1E)-C(2E)-C(4E)-C(3E) \\ $
$C(3D)-C(4D)-C(13D)-C(14D) \\ O(2D)-C(4D)-C(13D)-C(14D) \\ C(18D)-C(13D)-C(14D)-C(15D) \\ C(4D)-C(13D)-C(14D)-C(15D) \\ C(13D)-C(14D)-C(15D)-C(16D) \\ C(14D)-C(15D)-C(16D)-C(17D) \\ C(15D)-C(16D)-C(17D)-C(18D) \\ C(16D)-C(17D)-C(18D)-C(17D) \\ C(16D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(4D)-C(13D)-C(18D)-C(17D) \\ C(3E)-N(1E)-C(2E)-O(3E) \\ C(3E)-N(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-N(1E) \\ O(1E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-O(3E) \\ O(2E)-C(1E)-C(2E)-C(4E) \\ C(2E)-N(1E)-C(2E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(4E) \\ C(2E)-N(1E)-C(3E)-C(19E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ N(1E)-C(2E)-O(3E)-C(19E) \\ N(1E)-C(2E)-C(4E)-O(2E) \\ C(5E)-C(3E)-C(4E)-O(2E) \\ C(5E)-C(3E)-C(4E)-C(13E) \\ C(5E)-C(3E)-C(4E)-C(3E) \\ C(1E)-O(2E)-C(4E)-C(3E) \\ C(1E)-O(2E)-C(4E)-C(9E) \\ C(12E)-C(7E)-C(8E)-C(9E) \\ C(5E)-C(7E)-C(8E)-C(9E) \\ C(5E)-C(7E)-C(3E) \\ C(5E)-C(7E)-C(3E) \\ C(5E)-C(7E)-$

170.3(2)

169.3(3)

-10.1(4)

-179.0(3)

0.6(4)

-0.1(5)

0.1(5)

-0.6(5)

-1.1(4)

1.1(5)

1.2(4)

178.5(3)

-179.8(3)

177.3(3)

-178.2(3)

-178.8(2)

-2.5(4)

177.1(2)

1.9(4) -176.3(2)

0.0(4)

0.2(5)

-1.5(4)

0.7(5)

176.7(2)

179.1(3)

-1.0(5)

0.6(5)

0.2(5)

-0.5(5)

0.0(5)

-178.4(3)

-16.1(5)

166.0(2)

163.6(3)

-14.3(4)

-179.4(3)

0.3(4)

-0.3(5)

-0.5(5)

1.4(5)

-1.4(5)

0.6(4)

0.9(4)

178.4(3)

-1.0(5)

-2.1(5)

178.5(2)

-179.7(3)

-0.3(4)

0.4(4)

0.5(4)

179.8(3)

-179.0(2)

-1.5(4)

179.1(3)

176.9(3)

-177.3(3)

-2.4(5)

1.5(4)

0.9(5) -176.4(3)

0.1(5)

-179.7(3) -178.5(3)

177.9(2) -177.8(3)

-2.3(4)

0.8(4)

2.2(5)

C(8E)-C(9E)-C(10E)-C(11E)	-1.6(5)
C(9E)-C(10E)-C(11E)-C(12E)	2.1(5)
C(10E)-C(11E)-C(12E)-C(7E)	-1.0(5)
C(8E)-C(7E)-C(12E)-C(11E)	-0.4(4)
C(6E)-C(7E)-C(12E)-C(11E)	176.8(3)
C(3E)-C(4E)-C(13E)-C(14E)	-161.8(3)
O(2E)-C(4E)-C(13E)-C(14E)	16.7(4)
C(3E)-C(4E)-C(13E)-C(18E)	18.8(5)
O(2E)-C(4E)-C(13E)-C(18E)	-162.7(3)
C(18E)-C(13E)-C(14E)-C(15E)	0.0(5)
C(4E)-C(13E)-C(14E)-C(15E)	-179.4(3)
C(13E)-C(14E)-C(15E)-C(16E)	-0.3(6)
C(14E)-C(15E)-C(16E)-C(17E)	0.5(6)
C(15E)-C(16E)-C(17E)-C(18E)	-0.3(6)
C(14E)-C(13E)-C(18E)-C(17E)	0.1(5)
C(4E)-C(13E)-C(18E)-C(17E)	179.5(3)
C(16E)-C(17E)-C(18E)-C(13E)	0.1(6)
O(1F)-C(1F)-O(2F)-C(4F)	-179.4(3)
C(2F)-C(1F)-O(2F)-C(4F)	0.7(4)
C(3F)-N(1F)-C(2F)-O(3F)	-177.4(3)
C(3F)-N(1F)-C(2F)-C(1F)	2.5(4)
O(1F)-C(1F)-C(2F)-N(1F)	1/6.9(3)
O(2F)-C(1F)-C(2F)-N(1F)	-3.1(4)
O(1F)-C(1F)-C(2F)-O(3F)	-3.1(5)
U(2F)-U(1F)-U(2F)-U(3F)	1/6.8(2)
N(1F)-C(2F)-O(3F)-C(19F)	0.8(4)
C(1F)-C(2F)-O(3F)-C(19F)	-1/9.1(3)
C(2F) - N(1F) - C(3F) - C(4F)	0.7(4)
V(2F) - V(2F) - V(3F) - V(3F)	2 0(4)
N(1F) - C(3F) - C(4F) - O(2F)	-2.9(4) 170 2(2)
N(1E) - C(2E) - C(4E) - C(12E)	170.3(2)
C(5E) - C(3E) - C(4E) - C(13E)	-4 5(5)
C(1F)-C(2F)-C(4F)-C(3F)	-4.3(3) 2 1(4)
C(1F) - O(2F) - C(4F) - C(13F)	-175 7(2)
C(12F)-C(2F)-C(8F)-C(9F)	1 1(4)
C(6F)-C(7F)-C(8F)-C(9F)	-175.8(3)
C(7E)-C(8E)-C(9E)-C(10E)	0.1(5)
C(8E)-C(9E)-C(10E)-C(11E)	-1.0(5)
C(9F)-C(10F)-C(11F)-C(12F)	0.6(5)
C(10F)-C(11F)-C(12F)-C(7F)	0.7(5)
C(8F)-C(7F)-C(12F)-C(11F)	-1.5(4)
C(6F)-C(7F)-C(12F)-C(11F)	175.4(3)
C(3F)-C(4F)-C(13F)-C(18F)	20.9(5)
O(2F)-C(4F)-C(13F)-C(18F)	-161.7(3)
C(3F)-C(4F)-C(13F)-C(14F)	-160.1(3)
O(2F)-C(4F)-C(13F)-C(14F)	17.3(4)
C(18F)-C(13F)-C(14F)-C(15F)	-1.3(5)
C(4F)-C(13F)-C(14F)-C(15F)	179.7(3)
C(13F)-C(14F)-C(15F)-C(16F)	1.2(5)
C(14F)-C(15F)-C(16F)-C(17F)	-0.6(5)
C(15F)-C(16F)-C(17F)-C(18F)	0.1(5)
C(14F)-C(13F)-C(18F)-C(17F)	0.8(4)
C(4F)-C(13F)-C(18F)-C(17F)	179.7(3)
C(16F)-C(17F)-C(18F)-C(13F)	-0.2(5)

19.9 Röntgenstrukturdaten von Bromazid **227**

Abbildung 19.9: Röntgenstruktur von Bromazid 227.

Tabelle 19.49: Kristalldaten und Strukturverfeinerungen von 227.

Identifikationsnummer	s2533lc
Empirische Formel	C11 H8 Br N3 O3
Formelgewicht	310.11
Temperatur	130(2) K
Wellenlänge	1.54178 A
Kristallsystem, Raumgruppe	Orthorhombic, P c a 21
Gitterkonstante	a = 19.5080(16) A alpha = 90 deg.
	b = 8.3757(9) A beta = 90 deg.
	c = 7.1069(7) A gamma = 90 deg.
Volumen	1161.22(19) A^3
Z, berechnete Dichte	4, 1.774 Mg/m^3
Absorptionskoeffizient	4.900 mm^-1
F(000)	616
Kristallgröße	0.06 x 0.04 x 0.02 mm
Theta-Bereich für Datensammlung	5.28 to 65.79 deg.
Bereich für Indizes	-22<=h<=22, -9<=k<=9, -6<=l<=8
Gesammelte/ unabhängige Reflexe	16046 / 1710 [R(int) = 0.0983]
Vollständigkeit für theta = 65.79	98.5 %
Korrektur Absorption	Semi-empirical from equivalents
Max. und min. Transmission	0.7273 und 0.6141
Verfeinerungsmethode	Full-matrix least-squares on F^2
Daten/ Einschränkung / Parameter	1710 / 1 / 166
Goodness-of-fit on F^2	1.004
Abschließende R Indizes [I>2sigma(I)]	R1 = 0.0382, wR2 = 0.0814
R Indizes (alle Daten)	R1 = 0.0543, wR2 = 0.0874
Absolute structure parameter	0.00(7)
Absolute Strukturparameter	0.00087(19)
Restelektronendichte	0.484 und -0.429 e.A^-3

Tabelle 19.50: Lageparameter (x 10⁴) und äquivalente isotrope Temperaturfaktoren (A² x 10³) von **227**.

U(eq) ist definiert als ein Drittel der Spur des orthogonalisierten $U_{ij}\mbox{-}Tensors.$

	х	У	Z	U(eq)
 Br(1)	1999(1)	-262(1)	2221(1)	31(1)
C(1)	813(3)	1772(6)	3000(7)	23(1)
O(1)	2447(2)	3431(4)	3138(6)	31(1)
N(1)	1279(2)	4785(5)	5547(7)	31(1)
C(2)	1512(3)	1546(6)	2808(7)	23(1)
O(2)	639(2)	3342(4)	3424(6)	28(1)
N(2)	1766(2)	5756(6)	5802(7)	28(1)
O(3)	1231(2)	5607(4)	2465(7)	28(1)
C(3)	1838(3)	3065(7)	3147(8)	26(1)
N(3)	2175(3)	6635(7)	6228(8)	41(1)

C(4)	1255(3)	4265(7)	3598(8)	24(1)
C(5)	1205(3)	5307(8)	470(9)	37(2)
C(6)	227(3)	703(7)	2845(7)	26(1)
C(7)	-438(3)	1348(7)	2700(8)	30(2)
C(8)	-998(3)	384(6)	2622(8)	33(2)
C(9)	-926(3)	-1250(6)	2700(7)	30(2)
C(10)	-275(3)	-1928(7)	2797(7)	32(1)
C(11)	305(3)	-944(7)	2879(7)	27(1)

 Tabelle 19.51:
 Bindungslängen [Å] und Bindungswinkel [°] von 227.

Br(1)-C(2)	1.836(5)
C(1)-C(2)	1.384(8)
C(1)-O(2)	1.391(6)
C(1)-C(6)	1.455(7)
O(1)-C(3)	1.227(6)
N(1)-N(2)	1.264(7)
N(1)-C(4)	1.453(8)
C(2)-C(3)	1.442(8)
O(2)-C(4)	1.436(6)
N(2)-N(3)	1.127(7)
O(3)-C(4)	1.384(7)
O(3)-C(5)	1.441(8)
C(3)-C(4)	1.551(7)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-C(11)	1.389(8)
C(6)-C(7)	1.408(8)
C(7)-C(8)	1.360(8)
C(7)-H(7)	0.9500
C(8)-C(9)	1.377(8)
C(8)-H(8)	0.9500
C(9)-C(10)	1.393(8)
C(9)-H(9)	0.9500
C(10)-C(11)	1.400(8)
С(10)-Н(10)	0.9500
C(11)-H(11)	0.9500
C(2)-C(1)-O(2)	113.0(4)
C(2)-C(1)-C(6)	133.0(5)
O(2)-C(1)-C(6)	113.9(4)
N(2)-N(1)-C(4)	110.7(5)
C(1)-C(2)-C(3)	107.3(5)
C(1)-C(2)-Br(1)	130.2(4)
C(3)-C(2)-Br(1)	122.5(4)
C(1)-O(2)-C(4)	108.8(4)
N(3)-N(2)-N(1)	172.3(6)
C(4)-O(3)-C(5)	115.6(5)
O(1)-C(3)-C(2)	· · · ·
	130.3(5)
O(1)-C(3)-C(4)	130.3(5) 123.3(5)
O(1)-C(3)-C(4) C(2)-C(3)-C(4)	130.3(5) 123.3(5) 106.4(4)
O(1)-C(3)-C(4) C(2)-C(3)-C(4) O(3)-C(4)-O(2)	130.3(5) 123.3(5) 106.4(4) 111.0(4)
O(1)-C(3)-C(4) C(2)-C(3)-C(4) O(3)-C(4)-O(2) O(3)-C(4)-N(1)	130.3(5) 123.3(5) 106.4(4) 111.0(4) 108.2(4)
O(1)-C(3)-C(4) C(2)-C(3)-C(4) O(3)-C(4)-O(2) O(3)-C(4)-N(1) O(2)-C(4)-N(1)	130.3(5) 123.3(5) 106.4(4) 111.0(4) 108.2(4) 105.7(4)
O(1)-C(3)-C(4) C(2)-C(3)-C(4) O(3)-C(4)-O(2) O(3)-C(4)-N(1) O(2)-C(4)-N(1) O(3)-C(4)-C(3)	130.3(5) 123.3(5) 106.4(4) 111.0(4) 108.2(4) 105.7(4) 115.6(4)
O(1)-C(3)-C(4) C(2)-C(3)-C(4) O(3)-C(4)-O(2) O(3)-C(4)-N(1) O(2)-C(4)-N(1) O(3)-C(4)-C(3) O(2)-C(4)-C(3)	130.3(5) 123.3(5) 106.4(4) 111.0(4) 108.2(4) 105.7(4) 115.6(4) 104.3(4)
O(1)-C(3)-C(4) C(2)-C(3)-C(4) O(3)-C(4)-O(2) O(3)-C(4)-N(1) O(2)-C(4)-N(1) O(3)-C(4)-C(3) O(2)-C(4)-C(3) N(1)-C(4)-C(3)	130.3(5) 123.3(5) 106.4(4) 111.0(4) 108.2(4) 105.7(4) 115.6(4) 104.3(4) 111.6(4)
O(1)-C(3)-C(4) C(2)-C(3)-C(4) O(3)-C(4)-O(2) O(3)-C(4)-N(1) O(2)-C(4)-N(1) O(3)-C(4)-C(3) O(2)-C(4)-C(3) N(1)-C(4)-C(3) O(3)-C(5)-H(5A)	130.3(5) 123.3(5) 106.4(4) 111.0(4) 108.2(4) 105.7(4) 115.6(4) 104.3(4) 111.6(4) 109.5
O(1)-C(3)-C(4) C(2)-C(3)-C(4) O(3)-C(4)-O(2) O(3)-C(4)-N(1) O(2)-C(4)-N(1) O(3)-C(4)-C(3) O(2)-C(4)-C(3) N(1)-C(4)-C(3) O(3)-C(5)-H(5A) O(3)-C(5)-H(5B)	130.3(5) 123.3(5) 106.4(4) 111.0(4) 108.2(4) 105.7(4) 115.6(4) 104.3(4) 111.6(4) 109.5 109.5
O(1)-C(3)-C(4) C(2)-C(3)-C(4) O(3)-C(4)-O(2) O(3)-C(4)-N(1) O(2)-C(4)-N(1) O(3)-C(4)-C(3) O(2)-C(4)-C(3) N(1)-C(4)-C(3) O(3)-C(5)-H(5A) O(3)-C(5)-H(5B) H(5A)-C(5)-H(5B)	130.3(5) 123.3(5) 106.4(4) 111.0(4) 108.2(4) 105.7(4) 115.6(4) 104.3(4) 111.6(4) 109.5 109.5
O(1)-C(3)-C(4) C(2)-C(3)-C(4) O(3)-C(4)-O(2) O(3)-C(4)-N(1) O(2)-C(4)-N(1) O(3)-C(4)-C(3) O(2)-C(4)-C(3) O(2)-C(4)-C(3) O(3)-C(5)-H(5A) O(3)-C(5)-H(5B) H(5A)-C(5)-H(5B) O(3)-C(5)-H(5C)	130.3(5) 123.3(5) 106.4(4) 111.0(4) 108.2(4) 105.7(4) 115.6(4) 104.3(4) 111.6(4) 109.5 109.5 109.5 109.5
O(1)-C(3)-C(4) C(2)-C(3)-C(4) O(3)-C(4)-O(2) O(3)-C(4)-N(1) O(2)-C(4)-N(1) O(3)-C(4)-C(3) O(2)-C(4)-C(3) O(2)-C(4)-C(3) O(3)-C(5)-H(5A) O(3)-C(5)-H(5B) H(5A)-C(5)-H(5C) H(5A)-C(5)-H(5C)	130.3(5) 123.3(5) 106.4(4) 111.0(4) 108.2(4) 105.7(4) 115.6(4) 104.3(4) 111.6(4) 109.5 109.5 109.5 109.5 109.5
O(1)-C(3)-C(4) C(2)-C(3)-C(4) O(3)-C(4)-O(2) O(3)-C(4)-N(1) O(2)-C(4)-N(1) O(3)-C(4)-C(3) O(2)-C(4)-C(3) O(2)-C(4)-C(3) O(3)-C(5)-H(5A) O(3)-C(5)-H(5B) H(5A)-C(5)-H(5B) H(5A)-C(5)-H(5C) H(5B)-C(5)-H(5C) H(5B)-C(5)-H(5C)	130.3(5) 123.3(5) 106.4(4) 111.0(4) 108.2(4) 105.7(4) 115.6(4) 104.3(4) 111.6(4) 109.5 1
O(1)-C(3)-C(4) $C(2)-C(3)-C(4)$ $O(3)-C(4)-O(2)$ $O(3)-C(4)-N(1)$ $O(2)-C(4)-N(1)$ $O(3)-C(4)-C(3)$ $O(2)-C(4)-C(3)$ $O(2)-C(4)-C(3)$ $O(3)-C(5)-H(5A)$ $O(3)-C(5)-H(5B)$ $H(5A)-C(5)-H(5B)$ $H(5A)-C(5)-H(5C)$ $H(5B)-C(5)-H(5C)$ $H(5B)-C(5)-H(5C)$ $H(5B)-C(5)-H(5C)$ $C(11)-C(6)-C(7)$	130.3(5) 123.3(5) 106.4(4) 111.0(4) 108.2(4) 105.7(4) 115.6(4) 104.3(4) 111.6(4) 109.5 1
O(1)-C(3)-C(4) $C(2)-C(3)-C(4)$ $O(3)-C(4)-O(2)$ $O(3)-C(4)-N(1)$ $O(2)-C(4)-N(1)$ $O(3)-C(4)-C(3)$ $O(2)-C(4)-C(3)$ $O(3)-C(5)-H(5A)$ $O(3)-C(5)-H(5B)$ $H(5A)-C(5)-H(5B)$ $H(5A)-C(5)-H(5C)$ $H(5A)-C(5)-H(5C)$ $H(5B)-C(5)-H(5C)$ $H(5B)-C(5)-H(5C)$ $H(5B)-C(5)-H(5C)$ $C(11)-C(6)-C(7)$ $C(11)-C(6)-C(1)$	130.3(5) 123.3(5) 106.4(4) 111.0(4) 108.2(4) 105.7(4) 115.6(4) 104.3(4) 111.6(4) 109.5 1

C(8)-C(7)-C(6)	121.0(5)
C(8)-C(7)-H(7)	119.5
C(6)-C(7)-H(7)	119.5
C(7)-C(8)-C(9)	120.4(5)
С(7)-С(8)-Н(8)	119.8
C(9)-C(8)-H(8)	119.8
C(8)-C(9)-C(10)	120.0(5)
С(8)-С(9)-Н(9)	120.0
C(10)-C(9)-H(9)	120.0
C(9)-C(10)-C(11)	119.9(5)
C(9)-C(10)-H(10)	120.1
C(11)-C(10)-H(10)	120.1
C(6)-C(11)-C(10)	119.8(5)
C(6)-C(11)-H(11)	120.1
C(10)-C(11)-H(11)	120.1

Tabelle 19.52: Anisotrope Temperaturfaktoren ($A^2 \times 10^3$) von **227**.

	U11	U22	U33	U23	U13	U12
Br(1)	18(1)	32(1)	41(1)	-3(1)	0(1)	5(1)
C(1)	18(3)	28(3)	23(3)	1(2)	1(2)	-3(2)
O(1)	13(2)	37(2)	43(2)	-1(2)	-2(2)	-2(2)
N(1)	22(3)	35(3)	37(3)	-1(2)	0(2)	-7(2)
C(2)	15(3)	31(3)	23(3)	4(2)	0(2)	-1(2)
O(2)	16(2)	24(2)	43(2)	-2(2)	-4(2)	0(2)
N(2)	22(3)	31(3)	31(2)	1(2)	-1(2)	1(2)
O(3)	25(2)	26(2)	32(3)	2(2)	-4(2)	1(1)
C(3)	14(3)	34(3)	30(3)	2(2)	0(2)	-3(2)
N(3)	34(3)	40(3)	47(3)	-3(3)	-3(2)	-7(3)
C(4)	10(3)	23(3)	40(3)	-2(2)	0(2)	0(2)
C(5)	33(4)	40(4)	39(4)	0(3)	-6(3)	5(3)
C(6)	17(3)	33(3)	28(3)	3(2)	1(2)	-4(2)
C(7)	20(3)	30(3)	40(4)	1(2)	4(2)	2(2)
C(8)	21(3)	42(3)	37(5)	-1(3)	-1(3)	0(2)
C(9)	23(3)	39(3)	28(4)	3(2)	-1(2)	-10(2)
C(10)	31(3)	34(3)	32(4)	-4(2)	2(2)	-1(2)
C(11)	17(3)	35(3)	30(3)	-1(2)	2(2)	0(2)

Der Exponent des anisotropen Temperaturfaktors ist definiert als: $-2\pi^2$ [$h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12$]

Tabelle 19.53: Lageparameter der Wasserstoffatome (x 10⁴) und isotrope Temperaturfaktoren (A² x 10³)von 227.

	x	У	Z	U(eq)
H(5A)	1600	4659	98	56
H(5B)	1215	6325	-210	56
H(5C)	781	4735	164	56
H(7)	-495	2474	2657	36
H(8)	-1442	841	2513	40
H(9)	-1320	-1915	2688	36
H(10)	-224	-3056	2807	39
H(11)	749	-1402	2957	33

Tabelle 19.54: Torsionswinkel [°] von 227.

O(2)-C(1)-C(2)-C(3)	0.7(6)
C(6)-C(1)-C(2)-C(3)	-179.4(5)
O(2)-C(1)-C(2)-Br(1)	-178.8(4)
C(6)-C(1)-C(2)-Br(1)	1.1(9)
C(2)-C(1)-O(2)-C(4)	-1.9(6)
C(6)-C(1)-O(2)-C(4)	178.2(4)
C(4)-N(1)-N(2)-N(3)	177(4)
C(1)-C(2)-C(3)-O(1)	179.5(6)
Br(1)-C(2)-C(3)-O(1)	-0.9(9)
C(1)-C(2)-C(3)-C(4)	0.6(6)
Br(1)-C(2)-C(3)-C(4)	-179.8(4)
C(5)-O(3)-C(4)-O(2)	-64.4(6)
C(5)-O(3)-C(4)-N(1)	-180.0(5)
C(5)-O(3)-C(4)-C(3)	54.1(6)
C(1)-O(2)-C(4)-O(3)	127.2(5)
C(1)-O(2)-C(4)-N(1)	-115.7(4)
C(1)-O(2)-C(4)-C(3)	2.1(5)
N(2)-N(1)-C(4)-O(3)	-53.8(6)
N(2)-N(1)-C(4)-O(2)	-172.8(4)
N(2)-N(1)-C(4)-C(3)	74.4(6)
O(1)-C(3)-C(4)-O(3)	57.1(7)
C(2)-C(3)-C(4)-O(3)	-123.8(5)
O(1)-C(3)-C(4)-O(2)	179.3(5)
C(2)-C(3)-C(4)-O(2)	-1.7(6)
O(1)-C(3)-C(4)-N(1)	-67.0(7)
C(2)-C(3)-C(4)-N(1)	112.0(5)
C(2)-C(1)-C(6)-C(11)	15.8(9)
O(2)-C(1)-C(6)-C(11)	-164.4(4)
C(2)-C(1)-C(6)-C(7)	-165.7(6)
O(2)-C(1)-C(6)-C(7)	14.1(7)
C(11)-C(6)-C(7)-C(8)	1.0(8)
C(1)-C(6)-C(7)-C(8)	-177.6(5)
C(6)-C(7)-C(8)-C(9)	0.6(9)
C(7)-C(8)-C(9)-C(10)	-2.1(8)
C(8)-C(9)-C(10)-C(11)	2.1(8)
C(7)-C(6)-C(11)-C(10)	-0.9(8)
C(1)-C(6)-C(11)-C(10)	177.6(5)
C(9)-C(10)-C(11)-C(6)	-0.6(8)

Symmetrie-Transformationen wurden verwendet, um äquivalente Atome zu erzeugen.

19.10 Röntgenstrukturdaten von Bromazid 231

Abbildung 19.10: Röntgenstruktur von Bromazid 231.

Tabelle 19.55: Kristalldaten und Strukturverfeinerungen von 231.

Identifikationsnummer Empirische Formel Formelgewicht Temperatur Wellenlänge Kristallsystem, Raumgruppe Gitterkonstante	s2702lm C11 H7 Br2 N3 O3 389.02 135(2) K 0.71073 A Monoclinic, P2(1)/n a = 11.1068(6) A alpha = 90° b = 20.8638(11) A beta = 104.655(2)° c = 11.5270(6) A gamma = 90°
Volumen	2584.3(2) A^3
Z, berechnete Dichte	8, 2.000 Mg/m^3
Absorptionskoeffizient	6.280 mm^-1
F(000)	1504
Kristallgröße	0.581 x 0.304 x 0.291 mm
Theta-Bereich für Datensammlung	1.952 to 30.580 deg.
Bereich für Indizes	-15<=h<=12, -29<=k<=27, -11<=l<=16
Gesammelte/ unabhängige Reflexe	34265 / 7925 [R(int) = 0.0513]
Vollständigkeit für theta = 25.242	100.0 %
Korrektur Absorption	Numerical
Max. und min. Transmission	0.3002 und 0.1001
Verfeinerungsmethode	Full-matrix least-squares on F ²
Daten/ Einschränkung / Parameter	7925 / 0 / 346
Goodness-of-fit on F^2	1.019
Abschließende R Indizes [I>2sigma(I)]	R1 = 0.0335, wR2 = 0.0486
R Indizes (alle Daten)	R1 = 0.0703, wR2 = 0.0528
Absolute Strukturparameter	0.00031(6)
Restelektronendichte	0.528 und -0.604 e.A^-3

Tabelle 19.56: Lageparameter (x 10⁴) und äquivalente isotrope Temperaturfaktoren (A² x 10³) von **231**.

U(eq) ist definiert als ein Drittel der Spur des orthogonalisierten $U_{ij}\mbox{-}Tensors.$

	x	У	z	U(eq)
BR1A	4665(1)	1695(1)	8665(1)	19(1)
BR2A	1996(1)	-21(1)	5296(1)	27(1)
O(1A)	2527(1)	2697(1)	7142(1)	24(1)
N(1A)	40(2)	1991(1)	6792(2)	24(1)
C(1A)	3080(2)	1595(1)	7652(2)	14(1)
O(2A)	1257(1)	1145(1)	6617(1)	18(1)
N(2A)	-212(2)	2575(1)	6705(2)	22(1)
C(2A)	2338(2)	2129(1)	7085(2)	15(1)
O(3A)	1010(1)	1939(1)	5166(1)	20(1)
N(3A)	-564(2)	3077(1)	6675(2)	37(1)
C(3A)	1125(2)	1816(1)	6350(2)	17(1)
C(4A)	2421(2)	1050(1)	7363(2)	14(1)
C(5A)	3(2)	1607(1)	4336(2)	28(1)
C(6A)	2702(2)	389(1)	7760(2)	14(1)
C(7A)	2507(2)	-133(1)	6982(2)	15(1)
C(8A)	2766(2)	-747(1)	7416(2)	19(1)
C(9A)	3213(2)	-848(1)	8629(2)	20(1)
C(10A)	3419(2)	-339(1)	9418(2)	20(1)
C(11A)	3168(2)	275(1)	8988(2)	17(1)
BR1B	8362(1)	1835(1)	9548(1)	25(1)
BR2B	5508(1)	7(1)	7005(1)	27(1)
C(1B)	7565(2)	1704(1)	7940(2)	16(1)
O(1B)	6752(1)	2769(1)	7365(1)	25(1)
N(1B)	6827(2)	2104(1)	5013(2)	29(1)
O(2B)	6764(1)	1219(1)	6148(1)	23(1)
N(2B)	6673(2)	2696(1)	4855(2)	24(1)
C(2B)	6886(2)	2205(1)	7186(2)	17(1)
O(3B)	5048(1)	1893(1)	5763(1)	22(1)
N(3B)	6603(2)	3220(1)	4616(2)	33(1)

Teil III

C(3B)	6311(2)	1866(1)	5985(2)	20(1)
C(4B)	7456(2)	1160(1)	7311(2)	16(1)
C(5B)	4369(2)	1505(1)	4774(2)	33(1)
C(6B)	7986(2)	524(1)	7654(2)	15(1)
C(7B)	7268(2)	-33(1)	7533(2)	16(1)
C(8B)	7803(2)	-624(1)	7840(2)	22(1)
C(9B)	9080(2)	-670(1)	8283(2)	25(1)
C(10B)	9807(2)	-128(1)	8428(2)	25(1)
C(11B)	9267(2)	467(1)	8119(2)	21(1)

 Tabelle 19.57:
 Bindungslängen [Å] und Bindungswinkel [°] von 231.

BR1A-C(1A)	1.862(2)
BR2A-C(7A)	1.897(2)
O(1A)-C(2A)	1.203(2)
N(1A)-N(2A)	1.247(3)
N(1A)-C(3A)	1.468(3)
C(1A)-C(4A)	1.348(3)
C(1A)-C(2A)	1.440(3)
O(2A)-C(4A)	1.374(2)
O(2A)-C(3A)	1.431(2)
N(2A)-N(3A)	1.116(3)
C(2A)-C(3A)	1.543(3)
O(3A)-C(3A)	1.363(2)
O(3A)-C(5A)	1.451(3)
C(4A)-C(6A)	1.461(3)
C(5A)-H(5A1)	0.9800
C(5A)-H(5A2)	0.9800
C(5A)-H(5A3)	0.9800
C(6A)-C(7A)	1.392(3)
C(6A)-C(11A)	1.399(3)
C(7A)-C(8A)	1.379(3)
C(8A)-C(9A)	1.376(3)
C(8A)-H(8A)	0.9500
C(9A)-C(10A)	1.379(3)
C(9A)-H(9A)	0.9500
C(10A)-C(11A)	1.377(3)
C(10A)-H(10A)	0.9500
C(11A)-H(11A)	0.9500
BR1B-C(1B)	1.861(2)
BR2B-C(7B)	1.896(2)
C(1B)-C(4B)	1.336(3)
C(1B)-C(2B)	1.443(3)
O(1B)-C(2B)	1.211(2)
N(1B)-N(2B)	1.253(3)
N(1B)-C(3B)	1.468(3)
O(2B)-C(4B)	1.372(2)
O(2B)-C(3B)	1.437(3)
N(2B)-N(3B)	1.126(3)
C(2B)-C(3B)	1.542(3)
O(3B)-C(3B)	1.362(3)
O(3B)-C(5B)	1.445(3)
C(4B)-C(6B)	1.465(3)
C(5B)-H(5B1)	0.9800
C(5B)-H(5B2)	0.9800
C(5B)-H(5B3)	0.9800
C(6B)-C(11B)	1.392(3)
C(6B)-C(7B)	1.398(3)
C(7B)-C(8B)	1.374(3)
C(8B)-C(9B)	1.384(3)
C(8B)-H(8B)	0.9500
C(9B)-C(10B)	1.374(3)
C(9B)-H(9B)	0.9500
C(10B)-C(11B)	1.385(3)
C(10B)-H(10B)	0.9500
C(11B)-H(11B)	0.9500

C(4A)-C(1A)-C(2A)
C(4A)-C(1A)-BR1A
C(2A)-C(1A)-BK1A
V(3A) - V(2A) - V(3A)
$\Omega(3A) - \Omega(2A) - \Omega(1A)$
O(1A) - C(2A) - C(3A)
C(1A)-C(2A)-C(3A)
C(3A)-O(3A)-C(5A)
O(3A)-C(3A)-O(2A)
O(3A)-C(3A)-N(1A)
O(2A)-C(3A)-N(1A)
O(3A)-C(3A)-C(2A)
O(2A)-C(3A)-C(2A)
N(1A)-C(3A)-C(2A)
C(1A)-C(4A)-O(2A)
C(1A)-C(4A)-C(6A)
O(2A)-C(4A)-C(6A)
O(3A)-C(5A)-H(5A1)
O(3A)-C(5A)-H(5A2)
H(5A1)-C(5A)-H(5A2)
O(3A)-C(5A)-H(5A3)
H(5A1)-C(5A)-H(5A3)
H(5A2)-C(5A)-H(5A3)
C(7A) - C(6A) - C(11A)
C(7A)-C(0A)-C(4A)
$C(11A)^{-}C(0A)^{-}C(4A)$
C(8A)-C(7A)-BR2A
C(6A)-C(7A)-BR2A
C(9A)-C(8A)-C(7A)
C(9A)-C(8A)-H(8A)
C(7A)-C(8A)-H(8A)
C(8A)-C(9A)-C(10A)
C(8A)-C(9A)-H(9A)
C(10A)-C(9A)-H(9A)
C(11A)-C(10A)-C(9A)
C(11A)-C(10A)-H(10A)
C(9A)-C(10A)-H(10A)
C(10A)-C(11A)-C(6A)
C(10A)-C(11A)-C(6A) C(10A)-C(11A)-H(11A)
C(10A)-C(11A)-C(6A) C(10A)-C(11A)-H(11A) C(6A)-C(11A)-H(11A)
C(10A)-C(11A)-C(6A) C(10A)-C(11A)-H(11A) C(6A)-C(11A)-H(11A) C(4B)-C(1B)-C(2B) C(4D)-C(1D)-DD1D
C(10A)-C(11A)-C(6A) C(10A)-C(11A)-H(11A) C(6A)-C(11A)-H(11A) C(4B)-C(1B)-C(2B) C(4B)-C(1B)-BR1B C(2B)-C(1B)-BR1B
C(10A)-C(11A)-C(6A) C(10A)-C(11A)-H(11A) C(6A)-C(11A)-H(11A) C(4B)-C(1B)-C(2B) C(4B)-C(1B)-BR1B C(2B)-C(1B)-BR1B N(2B)-N(1B)-C(2B)
C(10A)-C(11A)-C(6A) C(10A)-C(11A)-H(11A) C(6A)-C(11A)-H(11A) C(4B)-C(1B)-C(2B) C(4B)-C(1B)-BR1B C(2B)-C(1B)-BR1B N(2B)-N(1B)-C(3B) C(4B)-O(2B)-C(3B)
C(10A)-C(11A)-C(6A) C(10A)-C(11A)-H(11A) C(6A)-C(11A)-H(11A) C(4B)-C(1B)-C(2B) C(4B)-C(1B)-BR1B C(2B)-C(1B)-BR1B N(2B)-N(1B)-C(3B) C(4B)-O(2B)-C(3B) N(3B)-N(2B)-N(1B)
C(10A)-C(11A)-C(6A) C(10A)-C(11A)-H(11A) C(6A)-C(11A)-H(11A) C(4B)-C(1B)-C(2B) C(4B)-C(1B)-BR1B C(2B)-C(1B)-BR1B N(2B)-N(1B)-C(3B) C(4B)-O(2B)-C(3B) N(3B)-N(2B)-N(1B) O(1B)-C(2B)-C(1B)
C(10A)-C(11A)-C(6A) C(10A)-C(11A)-H(11A) C(6A)-C(11A)-H(11A) C(4B)-C(1B)-C(2B) C(4B)-C(1B)-BR1B C(2B)-C(1B)-BR1B N(2B)-N(1B)-C(3B) C(4B)-O(2B)-C(3B) N(3B)-N(2B)-N(1B) O(1B)-C(2B)-C(1B) O(1B)-C(2B)-C(3B)
C(10A)-C(11A)-C(6A) C(10A)-C(11A)-H(11A) C(6A)-C(11A)-H(11A) C(4B)-C(1B)-C(2B) C(4B)-C(1B)-BR1B C(2B)-C(1B)-BR1B N(2B)-N(1B)-C(3B) C(4B)-O(2B)-C(3B) N(3B)-N(2B)-N(1B) O(1B)-C(2B)-C(1B) O(1B)-C(2B)-C(3B) C(1B)-C(2B)-C(3B)
C(10A)-C(11A)-C(6A) C(10A)-C(11A)-H(11A) C(6A)-C(11A)-H(11A) C(4B)-C(1B)-C(2B) C(4B)-C(1B)-BR1B C(2B)-C(1B)-BR1B N(2B)-N(1B)-C(3B) C(4B)-O(2B)-C(3B) N(3B)-N(2B)-N(1B) O(1B)-C(2B)-C(1B) O(1B)-C(2B)-C(3B) C(1B)-C(2B)-C(3B) C(3B)-O(3B)-C(5B)
C(10A)-C(11A)-C(6A) C(10A)-C(11A)-H(11A) C(6A)-C(11A)-H(11A) C(4B)-C(1B)-C(2B) C(4B)-C(1B)-BR1B C(2B)-C(1B)-BR1B N(2B)-N(1B)-C(3B) C(4B)-O(2B)-C(3B) N(3B)-N(2B)-N(1B) O(1B)-C(2B)-C(1B) O(1B)-C(2B)-C(3B) C(1B)-C(2B)-C(3B) C(3B)-O(3B)-C(5B) O(3B)-C(3B)-O(2B)
C(10A)-C(11A)-C(6A) C(10A)-C(11A)-H(11A) C(6A)-C(11A)-H(11A) C(4B)-C(1B)-C(2B) C(4B)-C(1B)-BR1B C(2B)-C(1B)-BR1B N(2B)-N(1B)-C(3B) C(4B)-O(2B)-C(3B) N(3B)-N(2B)-N(1B) O(1B)-C(2B)-C(3B) C(1B)-C(2B)-C(3B) C(3B)-O(3B)-C(2B) O(3B)-C(3B)-O(2B) O(3B)-C(3B)-N(1B)
C(10A)-C(11A)-C(6A) C(10A)-C(11A)-H(11A) C(6A)-C(11A)-H(11A) C(4B)-C(1B)-C(2B) C(4B)-C(1B)-BR1B C(2B)-C(1B)-BR1B N(2B)-N(1B)-C(3B) C(4B)-O(2B)-C(3B) N(3B)-N(2B)-N(1B) O(1B)-C(2B)-C(3B) C(1B)-C(2B)-C(3B) C(3B)-O(3B)-C(2B) O(3B)-C(3B)-O(2B) O(3B)-C(3B)-N(1B) O(2B)-C(3B)-N(1B)
C(10A)-C(11A)-C(6A) C(10A)-C(11A)-H(11A) C(6A)-C(11A)-H(11A) C(4B)-C(1B)-C(2B) C(4B)-C(1B)-BR1B C(2B)-C(1B)-BR1B N(2B)-N(1B)-C(3B) C(4B)-O(2B)-C(3B) N(3B)-N(2B)-N(1B) O(1B)-C(2B)-C(3B) C(1B)-C(2B)-C(3B) C(3B)-O(3B)-C(2B) O(3B)-C(3B)-O(2B) O(3B)-C(3B)-N(1B) O(2B)-C(3B)-N(1B) O(3B)-C(3B)-C(2B)
$\begin{array}{l} C(10A)-C(11A)-C(6A)\\ C(10A)-C(11A)-H(11A)\\ C(6A)-C(11A)-H(11A)\\ C(4B)-C(1B)-C(2B)\\ C(4B)-C(1B)-BR1B\\ C(2B)-C(1B)-BR1B\\ N(2B)-N(1B)-C(3B)\\ C(4B)-O(2B)-C(3B)\\ N(3B)-N(2B)-N(1B)\\ O(1B)-C(2B)-C(1B)\\ O(1B)-C(2B)-C(1B)\\ O(1B)-C(2B)-C(3B)\\ C(3B)-O(3B)-C(2B)\\ C(3B)-O(3B)-C(2B)\\ O(3B)-C(3B)-O(2B)\\ O(3B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(2B)-C(3B)-C(2B)\\ O(2B)-C(3B)-C(2B)\\ O(2B)-C(3B)-C(2B)\\ O(2B)-C(3B)-C(2B)\\ O(2B)-C(3B)-C(2B)\\ O(2B)-C(3B)-C(2B)\\ O(2B)-C(3B)-C(2B)\\ O(2B)-C(2B)-C(2B)\\ O(2B)-C(2B)-C(2B)\\ O(2B)-C(2B)-C(2B)\\ O(2B)-C(2B)\\ O(2B$
$\begin{array}{l} C(10A)-C(11A)-C(6A)\\ C(10A)-C(11A)-H(11A)\\ C(6A)-C(11A)-H(11A)\\ C(4B)-C(1B)-R(1B)\\ C(2B)-C(1B)-R(1B)\\ C(2B)-C(1B)-R(1B)\\ C(2B)-C(1B)-C(2B)\\ C(4B)-O(2B)-C(3B)\\ C(4B)-O(2B)-C(3B)\\ C(4B)-O(2B)-C(1B)\\ O(1B)-C(2B)-C(1B)\\ O(1B)-C(2B)-C(1B)\\ O(1B)-C(2B)-C(3B)\\ C(1B)-C(2B)-C(3B)\\ C(1B)-C(2B)-C(3B)\\ C(3B)-O(3B)-C(5B)\\ O(3B)-C(3B)-O(2B)\\ O(3B)-C(3B)-O(2B)\\ O(3B)-C(3B)-O(2B)\\ O(3B)-C(3B)-N(1B)\\ O(2B)-C(3B)-C(2B)\\ O(2B)-C(3B)-C(2B)\\ N(1B)-C(3B)-C(2B)\\ N(1B)-C(3B)-C(2B)\\ \end{array}$
$\begin{array}{l} C(10A)-C(11A)-C(6A)\\ C(10A)-C(11A)-H(11A)\\ C(6A)-C(11A)-H(11A)\\ C(4B)-C(1B)-C(2B)\\ C(4B)-C(1B)-BR1B\\ C(2B)-C(1B)-BR1B\\ N(2B)-N(1B)-C(3B)\\ C(4B)-O(2B)-C(3B)\\ C(4B)-O(2B)-C(3B)\\ O(1B)-C(2B)-C(1B)\\ O(1B)-C(2B)-C(1B)\\ O(1B)-C(2B)-C(3B)\\ C(1B)-C(2B)-C(3B)\\ C(3B)-O(3B)-C(2B)\\ O(3B)-C(3B)-O(2B)\\ O(3B)-C(3B)-O(2B)\\ O(3B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(2B)-C(3B)-C(2B)\\ O(2B)-C(3B)-C(2B)\\ C(1B)-C(4B)-O(2B)\\ \end{array}$
$\begin{array}{l} C(10A)-C(11A)-C(6A)\\ C(10A)-C(11A)-H(11A)\\ C(6A)-C(11A)-H(11A)\\ C(4B)-C(1B)-C(2B)\\ C(4B)-C(1B)-BR1B\\ C(2B)-C(1B)-BR1B\\ N(2B)-N(1B)-C(3B)\\ C(4B)-O(2B)-C(3B)\\ C(4B)-O(2B)-C(3B)\\ O(1B)-C(2B)-C(1B)\\ O(1B)-C(2B)-C(1B)\\ O(1B)-C(2B)-C(3B)\\ C(1B)-C(2B)-C(3B)\\ C(3B)-O(3B)-C(5B)\\ O(3B)-C(3B)-O(2B)\\ O(3B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(1B)-C(3B)-C(2B)\\ O(2B)-C(3B)-C(2B)\\ O(1B)-C(3B)-C(2B)\\ C(1B)-C(4B)-O(2B)\\ C(1B)-C(4B)-C(6B)\\ \hline \end{array}$
$C(10A)-C(11A)-C(6A) \\C(10A)-C(11A)-H(11A) \\C(6A)-C(11A)-H(11A) \\C(4B)-C(1B)-C(2B) \\C(4B)-C(1B)-BR1B \\C(2B)-C(1B)-BR1B \\N(2B)-N(1B)-C(3B) \\C(4B)-O(2B)-C(3B) \\C(4B)-O(2B)-C(3B) \\O(1B)-C(2B)-C(1B) \\O(1B)-C(2B)-C(1B) \\O(1B)-C(2B)-C(3B) \\C(1B)-C(2B)-C(3B) \\C(3B)-O(3B)-C(5B) \\O(3B)-C(3B)-O(2B) \\O(3B)-C(3B)-N(1B) \\O(3B)-C(3B)-N(1B) \\O(2B)-C(3B)-N(1B) \\O(2B)-C(3B)-N(1B) \\O(2B)-C(3B)-N(1B) \\O(2B)-C(3B)-N(1B) \\O(2B)-C(3B)-N(1B) \\O(2B)-C(3B)-C(2B) \\O(3B)-C(3B)-C(2B) \\O(3B)-C(3B)-C(2B) \\O(1B)-C(2B)-C(2B) \\O(2B)-C(3B)-C(2B) \\C(1B)-C(4B)-C(2B) \\C(1B)-C(4B)-C(6B) \\O(2B)-C(4B)-C(6B) \\O(2B)-C(4B)-C(4B)-C(6B) \\O(2B)-C(4B)-C(4B)-C(6B) \\O(2B)-C(4B)-C(4B)-C(6B) \\O(2B)-C(4B)-C(4B)-C(6B) \\O(2B)-C(4B)-C(4B)-C(6B) \\O(2B)-C(4B)-C(4B)-C(6B) \\O(2B)-C(4B)-C(4B)-C(6B) \\O(2B)-C(4B)-$
$\begin{array}{l} C(10A)-C(11A)-C(6A)\\ C(10A)-C(11A)-H(11A)\\ C(6A)-C(11A)-H(11A)\\ C(4B)-C(1B)-C(2B)\\ C(4B)-C(1B)-BR1B\\ C(2B)-C(1B)-BR1B\\ N(2B)-N(1B)-C(3B)\\ C(4B)-O(2B)-C(3B)\\ C(4B)-O(2B)-C(3B)\\ C(4B)-O(2B)-C(1B)\\ O(1B)-C(2B)-C(1B)\\ O(1B)-C(2B)-C(1B)\\ O(1B)-C(2B)-C(3B)\\ C(3B)-O(3B)-C(5B)\\ O(3B)-C(3B)-O(2B)\\ O(3B)-C(3B)-N(1B)\\ O(3B)-C(3B)-N(1B)\\ O(3B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(2B)-C(3B)-C(2B)\\ O(2B)-C(3B)-C(2B)\\ C(1B)-C(4B)-C(2B)\\ C(1B)-C(4B)-C(6B)\\ O(2B)-C(4B)-C(6B)\\ O(3B)-C(5B)-H(5B1)\\ O(2B)-C(5B)-H(5B)\\ O(2B)-C(5B)-H(5B)\\ O(2B)-C(2B)\\ C(2B)-C(2B)-C(2B)\\ C(2B)-C(4B)-C(6B)\\ O(2B)-C(4B)-C(6B)\\ O(2B)-C(5B)-H(5B)\\ O(2B)-$
$C(10A)-C(11A)-C(6A) \\C(10A)-C(11A)-H(11A) \\C(6A)-C(11A)-H(11A) \\C(4B)-C(1B)-C(2B) \\C(4B)-C(1B)-BR1B \\C(2B)-C(1B)-BR1B \\C(2B)-C(1B)-BR1B \\N(2B)-N(1B)-C(3B) \\C(4B)-O(2B)-C(3B) \\C(4B)-O(2B)-C(3B) \\C(4B)-O(2B)-C(1B) \\O(1B)-C(2B)-C(1B) \\O(1B)-C(2B)-C(3B) \\C(1B)-C(2B)-C(3B) \\C(3B)-O(3B)-C(5B) \\O(3B)-C(3B)-O(2B) \\O(3B)-C(3B)-N(1B) \\O(2B)-C(3B)-N(1B) \\O(2B)-C(3B)-N(1B) \\O(2B)-C(3B)-N(1B) \\O(3B)-C(3B)-C(2B) \\O(3B)-C(3B)-C(2B) \\O(3B)-C(3B)-C(2B) \\O(3B)-C(3B)-C(2B) \\O(3B)-C(3B)-C(2B) \\O(3B)-C(3B)-C(2B) \\O(2B)-C(3B)-C(2B) \\O(2B)-C(3B)-C(2B) \\C(1B)-C(4B)-C(2B) \\C(1B)-C(4B)-C(6B) \\O(2B)-C(4B)-C(6B) \\O(3B)-C(5B)-H(5B1) \\O(3B)-C(5B)-H(5D2) \\$
C(10A)-C(11A)-C(6A) C(10A)-C(11A)-H(11A) C(6A)-C(11A)-H(11A) C(4B)-C(1B)-C(2B) C(4B)-C(1B)-BR1B C(2B)-C(1B)-BR1B N(2B)-N(1B)-C(3B) C(4B)-O(2B)-C(3B) C(4B)-O(2B)-C(3B) O(1B)-C(2B)-C(1B) O(1B)-C(2B)-C(3B) C(3B)-O(3B)-C(2B) O(3B)-C(3B)-O(2B) O(3B)-C(3B)-N(1B) O(2B)-C(3B)-N(1B) O(2B)-C(3B)-N(1B) O(2B)-C(3B)-N(1B) O(2B)-C(3B)-N(1B) O(2B)-C(3B)-C(2B) O(3B)-C(3B)-C(2B) O(2B)-C(3B)-C(2B) O(1B)-C(4B)-C(2B) C(1B)-C(4B)-C(2B) C(1B)-C(4B)-C(6B) O(3B)-C(5B)-H(5B2) H(5B1)-C(5B)-H(5B2)
$\begin{array}{l} C(10A)-C(11A)-C(6A)\\ C(10A)-C(11A)-H(11A)\\ C(6A)-C(11A)-H(11A)\\ C(4B)-C(1B)-C(2B)\\ C(4B)-C(1B)-BR1B\\ C(2B)-C(1B)-BR1B\\ N(2B)-N(1B)-C(3B)\\ C(4B)-O(2B)-C(3B)\\ C(4B)-O(2B)-C(3B)\\ C(4B)-O(2B)-C(1B)\\ O(1B)-C(2B)-C(1B)\\ O(1B)-C(2B)-C(3B)\\ C(1B)-C(2B)-C(3B)\\ C(3B)-O(3B)-C(5B)\\ O(3B)-C(3B)-O(2B)\\ O(3B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(2B)-C(3B)-C(2B)\\ C(1B)-C(4B)-C(2B)\\ C(1B)-C(4B)-C(6B)\\ O(2B)-C(4B)-C(6B)\\ O(3B)-C(5B)-H(5B2)\\ H(5B1)-C(5B)-H(5B2)\\ O(3B)-C(5B)-H(5B3)\\ H(5B1)-C(5B)-H(5B3)\\ \end{array}$
$\begin{array}{l} C(10A)-C(11A)-C(6A)\\ C(10A)-C(11A)-H(11A)\\ C(6A)-C(11A)-H(11A)\\ C(4B)-C(1B)-C(2B)\\ C(4B)-C(1B)-BR1B\\ C(2B)-C(1B)-BR1B\\ N(2B)-N(1B)-C(3B)\\ C(4B)-O(2B)-C(3B)\\ C(4B)-O(2B)-C(3B)\\ C(4B)-O(2B)-C(1B)\\ O(1B)-C(2B)-C(1B)\\ O(1B)-C(2B)-C(3B)\\ C(1B)-C(2B)-C(3B)\\ C(3B)-O(3B)-C(5B)\\ O(3B)-C(3B)-O(2B)\\ O(3B)-C(3B)-O(2B)\\ O(3B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ C(1B)-C(4B)-C(2B)\\ C(1B)-C(4B)-C(6B)\\ O(2B)-C(4B)-C(6B)\\ O(3B)-C(5B)-H(5B2)\\ H(5B1)-C(5B)-H(5B2)\\ H(5B1)-C(5B)-H(5B3)\\ H(5B1)-C(5B)-H(5B3)\\ H(5B2)-C(5B)-H(5B3)\\ H(5B)-C(5B)-H(5B3)\\ H(5B)-C(5B)-H(5B3)\\ H(5B)-C(5B)-H(5B3)\\ H(5B)-C(5B)-H(5B3)\\ H(5B)-C(5B)-H(5B3)\\ H(5B)-C(5B)-H(5B)\\ H(5B)-C(5B)$
$\begin{array}{l} C(10A)-C(11A)-C(6A)\\ C(10A)-C(11A)-H(11A)\\ C(6A)-C(11A)-H(11A)\\ C(4B)-C(1B)-C(2B)\\ C(4B)-C(1B)-BR1B\\ C(2B)-C(1B)-BR1B\\ N(2B)-N(1B)-C(3B)\\ C(4B)-O(2B)-C(3B)\\ C(4B)-O(2B)-C(3B)\\ C(4B)-O(2B)-C(1B)\\ O(1B)-C(2B)-C(1B)\\ O(1B)-C(2B)-C(3B)\\ C(1B)-C(2B)-C(3B)\\ C(3B)-O(3B)-C(5B)\\ O(3B)-C(3B)-O(2B)\\ O(3B)-C(3B)-O(2B)\\ O(3B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-N(1B)\\ O(2B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ O(3B)-C(3B)-C(2B)\\ C(1B)-C(4B)-C(2B)\\ C(1B)-C(4B)-C(6B)\\ O(3B)-C(5B)-H(5B2)\\ H(5B1)-C(5B)-H(5B2)\\ H(5B1)-C(5B)-H(5B3)\\ H(5B1)-C(5B)-H(5B3)\\ H(5B2)-C(5B)-H(5B3)\\ H(5B2)-C(5B)-H(5B3)\\ C(1B)-C(4B)-C(7B)\\ \end{array}$

113.84(17)
109.16(18)
122.68(15)
107.78(15)
171.4(2)
131.7(2)
124.33(19)
103.95(17) 115.55(16)
112.26(17)
114.97(17)
102.59(16)
108.49(16)
105.58(16)
112.51(17)
113.43(18)
131.22(19)
109.5
109.5
109.5
109.5
109.5
109.5
118.47(19)
118.19(19)
120.59(19)
117.85(16)
121.41(15)
119.9(2)
120.0
120.0
1.10 21.10
120.7(2) 119 7
120.7(2) 119.7 119.7
120.7(2) 119.7 119.7 119.6(2)
120.7(2) 119.7 119.7 119.6(2) 120.2
120.7(2) 119.7 119.7 119.6(2) 120.2 120.2
120.7(2) 119.7 119.7 119.6(2) 120.2 120.2 120.8(2)
120.7(2) 119.7 119.7 119.6(2) 120.2 120.2 120.8(2) 119.6 119.6
120.7(2) 119.7 119.7 119.6(2) 120.2 120.2 120.8(2) 119.6 119.6 109.08(19)
120.7(2) 119.7 119.7 119.6(2) 120.2 120.2 120.8(2) 119.6 119.6 109.08(19) 128.31(17)
120.7(2) 119.7 119.7 119.6(2) 120.2 120.2 120.8(2) 119.6 119.6 109.08(19) 128.31(17) 122.53(15)
120.7(2) 119.7 119.6(2) 120.2 120.2 120.8(2) 119.6 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18)
120.7(2) 119.7 119.7 119.6(2) 120.2 120.2 120.8(2) 119.6 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15)
120.7(2) 119.7 119.7 119.6(2) 120.2 120.2 120.8(2) 119.6 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2)
120.7(2) 119.7 119.7 119.6(2) 120.2 120.2 120.8(2) 119.6 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2) 132.0(2) 123.87(19)
120.7(2) 119.7 119.7 119.6(2) 120.2 120.2 120.8(2) 119.6 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2) 132.0(2) 123.87(19) 104.09(17)
120.7(2) 119.7 119.7 119.6(2) 120.2 120.8(2) 119.6 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2) 132.0(2) 123.87(19) 104.09(17) 115.66(17)
120.7(2) 119.7 119.7 119.6(2) 120.2 120.8(2) 119.6 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2) 132.0(2) 123.87(19) 104.09(17) 115.66(17) 111.85(18)
120.7(2) 119.7 119.7 119.6(2) 120.2 120.8(2) 119.6 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2) 132.0(2) 123.87(19) 104.09(17) 115.66(17) 111.85(18) 115.17(18)
120.7(2) 119.7 119.7 119.6(2) 120.2 120.2 120.8(2) 119.6 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2) 132.0(2) 123.87(19) 104.09(17) 115.66(17) 111.85(18) 115.17(18) 103.03(16)
120.7(2) 119.7 119.7 119.6(2) 120.2 120.2 120.8(2) 119.6 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2) 132.0(2) 123.87(19) 104.09(17) 115.66(17) 111.85(18) 115.17(18) 103.03(16) 108.84(16) 105.10(16)
120.7(2) 119.7 119.7 119.6(2) 120.2 120.2 120.8(2) 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2) 132.0(2) 123.87(19) 104.09(17) 115.66(17) 111.85(18) 115.17(18) 103.03(16) 108.84(16) 105.19(16) 112.24(18)
120.7(2) 119.7 119.7 119.6(2) 120.2 120.2 120.8(2) 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2) 132.0(2) 123.87(19) 104.09(17) 115.66(17) 111.85(18) 105.19(16) 102.24(18) 113.94(19)
120.7(2) 119.7 119.7 119.6(2) 120.2 120.2 120.8(2) 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2) 132.0(2) 123.87(19) 104.09(17) 115.66(17) 111.85(18) 115.17(18) 103.03(16) 108.84(16) 105.19(16) 112.24(18) 113.94(19) 130.4(2)
120.7(2) 119.7 119.7 119.6(2) 120.2 120.8(2) 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2) 132.0(2) 132.0(2) 132.0(2) 132.0(2) 111.85(18) 115.17(18) 103.03(16) 108.84(16) 105.19(16) 112.24(18) 113.94(19) 130.4(2) 115.64(18)
120.7(2) 119.7 119.7 119.6(2) 120.2 120.8(2) 119.6 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2) 132.0(2) 132.0(2) 132.0(2) 132.87(19) 104.09(17) 115.66(17) 111.85(18) 115.17(18) 103.03(16) 108.84(16) 105.19(16) 112.24(18) 113.94(19) 130.4(2) 115.64(18) 109.5
120.7(2) 119.7 119.7 119.6(2) 120.2 120.8(2) 119.6 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2) 132.0(2) 133.87(19) 103.03(16) 105.19(16) 112.24(18) 113.04(2) 115.64(18) 109.5
120.7(2) 119.7 119.7 119.6(2) 120.2 120.2 120.8(2) 119.6 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2) 132.0(2) 123.87(19) 104.09(17) 115.66(17) 111.85(18) 115.17(18) 103.03(16) 108.84(16) 105.19(16) 112.24(18) 113.94(19) 130.4(2) 115.64(18) 109.5 109.5 109.5 109.5 109.5
120.7(2) 119.7 119.7 119.6(2) 120.2 120.2 120.8(2) 119.6 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2) 132.0(2) 123.87(19) 104.09(17) 115.66(17) 111.85(18) 115.17(18) 103.03(16) 108.84(16) 105.19(16) 112.24(18) 113.94(19) 130.4(2) 115.64(18) 109.5 109.5 109.5 109.5 109.5
120.7(2) 119.7 119.7 119.6(2) 120.2 120.8(2) 119.6 119.6 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2) 132.0(2) 123.87(19) 104.09(17) 115.66(17) 111.85(18) 115.17(18) 103.03(16) 108.84(16) 105.19(16) 112.24(18) 113.94(19) 130.4(2) 115.64(18) 109.5 109.5 109.5 109.5 109.5
120.7(2) 119.7 119.7 119.6(2) 120.2 120.8(2) 119.6 119.6 109.08(19) 128.31(17) 122.53(15) 112.19(18) 107.60(15) 172.3(2) 132.0(2) 123.87(19) 104.09(17) 115.66(17) 111.85(18) 115.17(18) 103.03(16) 108.84(16) 105.19(16) 112.24(18) 113.94(19) 130.4(2) 115.64(18) 109.5 10

C(7B)-C(6B)-C(4B)	123.13(19)
C(8B)-C(7B)-C(6B)	121.42(19)
C(8B)-C(7B)-BR2B	117.75(16)
C(6B)-C(7B)-BR2B	120.77(16)
C(7B)-C(8B)-C(9B)	119.6(2)
С(7В)-С(8В)-Н(8В)	120.2
С(9В)-С(8В)-Н(8В)	120.2
C(10B)-C(9B)-C(8B)	120.3(2)
C(10B)-C(9B)-H(9B)	119.9
С(8В)-С(9В)-Н(9В)	119.9
C(9B)-C(10B)-C(11B)	120.1(2)
C(9B)-C(10B)-H(10B)	119.9
C(11B)-C(10B)-H(10B)	119.9
C(10B)-C(11B)-C(6B)	120.7(2)
C(10B)-C(11B)-H(11B)	119.6
C(6B)-C(11B)-H(11B)	119.6

Tabelle 19.58: Anisotrope Temperaturfaktoren ($A^2 \times 10^3$) von **231**.

Der Exponent des anisotropen Temperaturfaktors ist definiert als: $-2\pi^2$ [$h^2 a^{*2}$ U11 + ... + 2 h k $a^* b^*$ U12]

	U11	U22	U33	U23	U13	U12
BR1A	16(1)	18(1)	20(1)	1(1)	1(1)	-2(1)
BR2A	39(1)	25(1)	16(1)	-2(1)	4(1)	4(1)
O(1A)	30(1)	12(1)	28(1)	1(1)	3(1)	0(1)
N(1A)	20(1)	20(1)	36(1)	6(1)	14(1)	4(1)
C(1A)	13(1)	15(1)	14(1)	0(1)	4(1)	-1(1)
O(2A)	14(1)	13(1)	24(1)	5(1)	0(1)	-1(1)
N(2A)	18(1)	28(1)	23(1)	2(1)	9(1)	4(1)
C(2A)	18(1)	14(1)	14(1)	1(1)	6(1)	1(1)
O(3A)	20(1)	22(1)	18(1)	4(1)	2(1)	-1(1)
N(3A)	36(1)	33(1)	47(1)	-1(1)	19(1)	12(1)
C(3A)	17(1)	15(1)	20(1)	5(1)	4(1)	2(1)
C(4A)	13(1)	16(1)	12(1)	2(1)	5(1)	2(1)
C(5A)	28(1)	25(1)	24(1)	1(1)	-5(1)	1(1)
C(6A)	11(1)	13(1)	20(1)	2(1)	5(1)	-1(1)
C(7A)	15(1)	15(1)	16(1)	1(1)	3(1)	-3(1)
C(8A)	19(1)	11(1)	28(1)	-2(1)	4(1)	-1(1)
C(9A)	18(1)	12(1)	29(1)	6(1)	4(1)	0(1)
C(10A)	19(1)	19(1)	20(1)	6(1)	3(1)	1(1)
C(11A)	17(1)	16(1)	18(1)	-3(1)	4(1)	-3(1)
BR1B	28(1)	23(1)	21(1)	-4(1)	0(1)	-1(1)
BR2B	16(1)	25(1)	40(1)	-5(1)	4(1)	-2(1)
C(1B)	14(1)	16(1)	18(1)	-1(1)	5(1)	-2(1)
O(1B)	36(1)	12(1)	28(1)	0(1)	11(1)	0(1)
N(1B)	44(1)	22(1)	27(1)	5(1)	18(1)	8(1)
O(2B)	33(1)	16(1)	17(1)	-1(1)	2(1)	9(1)
N(2B)	23(1)	32(1)	18(1)	4(1)	10(1)	1(1)
C(2B)	19(1)	15(1)	21(1)	2(1)	10(1)	-1(1)
O(3B)	24(1)	20(1)	21(1)	-1(1)	2(1)	4(1)
N(3B)	40(1)	31(1)	33(1)	11(1)	17(1)	0(1)
C(3B)	29(1)	15(1)	17(1)	1(1)	8(1)	6(1)
C(4B)	14(1)	19(1)	16(1)	1(1)	6(1)	0(1)
C(5B)	38(2)	29(2)	26(1)	-6(1)	-4(1)	0(1)
C(6B)	18(1)	15(1)	15(1)	1(1)	7(1)	2(1)
C(7B)	15(1)	19(1)	15(1)	-2(1)	3(1)	0(1)
C(8B)	26(1)	15(1)	25(1)	0(1)	7(1)	-3(1)
C(9B)	28(1)	19(1)	28(1)	7(1)	9(1)	8(1)
C(10B)	17(1)	28(2)	29(1)	6(1)	4(1)	5(1)
C(11B)	18(1)	20(1)	27(1)	3(1)	9(1)	-1(1)

Т	EIL	I	I	l

	х	У	Z	U(eq)
H(5A1)	137	1143	4422	42
H(5A2)	-18	1735	3513	42
H(5A3)	-789	1718	4512	42
H(8A)	2636	-1100	6878	23
H(9A)	3382	-1272	8925	24
H(10A)	3732	-412	10254	23
H(11A)	3312	626	9532	21
H(5B1)	4665	1597	4060	50
H(5B2)	3479	1604	4610	50
H(5B3)	4502	1050	4981	50
H(8B)	7300	-997	7749	26
H(9B)	9455	-1077	8487	29
H(10B)	10683	-162	8740	30
H(11B)	9775	839	8226	26

Tabelle 19.59: Lageparameter der Wasserstoffatome (x 10⁴) und isotrope Temperaturfaktoren (A² x 10³)von 231.

 Tabelle 19.60:
 Torsionswinkel [°] von 231.

C(4A)-C(1A)-C(2A)-O(1A)	175.9(2)
BR1A-C(1A)-C(2A)-O(1A)	-1.7(3)
C(4A)-C(1A)-C(2A)-C(3A)	-2.3(2)
BR1A-C(1A)-C(2A)-C(3A)	-179.89(13)
C(5A)-O(3A)-C(3A)-O(2A)	55.8(2)
C(5A)-O(3A)-C(3A)-N(1A)	-61.0(2)
C(5A)-O(3A)-C(3A)-C(2A)	172.10(17)
C(4A)-O(2A)-C(3A)-O(3A)	115.09(17)
C(4A)-O(2A)-C(3A)-N(1A)	-120.94(16)
C(4A)-O(2A)-C(3A)-C(2A)	-2.93(19)
N(2A)-N(1A)-C(3A)-O(3A)	-61.3(3)
N(2A)-N(1A)-C(3A)-O(2A)	176.51(17)
N(2A)-N(1A)-C(3A)-C(2A)	63.5(2)
O(1A)-C(2A)-C(3A)-O(3A)	64.3(2)
C(1A)-C(2A)-C(3A)-O(3A)	-117.34(18)
O(1A)-C(2A)-C(3A)-O(2A)	-175.18(18)
C(1A)-C(2A)-C(3A)-O(2A)	3.18(19)
O(1A)-C(2A)-C(3A)-N(1A)	-64.0(3)
C(1A)-C(2A)-C(3A)-N(1A)	114.31(18)
C(2A)-C(1A)-C(4A)-O(2A)	0.6(2)
BR1A-C(1A)-C(4A)-O(2A)	177.98(13)
C(2A)-C(1A)-C(4A)-C(6A)	-175.22(19)
BR1A-C(1A)-C(4A)-C(6A)	2.2(3)
C(3A)-O(2A)-C(4A)-C(1A)	1.6(2)
C(3A)-O(2A)-C(4A)-C(6A)	178.12(16)
C(1A)-C(4A)-C(6A)-C(7A)	-134.9(2)
O(2A)-C(4A)-C(6A)-C(7A)	49.4(3)
C(1A)-C(4A)-C(6A)-C(11A)	46.5(3)
O(2A)-C(4A)-C(6A)-C(11A)	-129.26(19)
C(11A)-C(6A)-C(7A)-C(8A)	0.1(3)
C(4A)-C(6A)-C(7A)-C(8A)	-178.58(19)
C(11A)-C(6A)-C(7A)-BR2A	-175.29(14)
C(4A)-C(6A)-C(7A)-BR2A	6.1(3)
C(6A)-C(7A)-C(8A)-C(9A)	0.5(3)
BR2A-C(7A)-C(8A)-C(9A)	176.01(15)
C(7A)-C(8A)-C(9A)-C(10A)	-0.7(3)
C(8A)-C(9A)-C(10A)-C(11A)	0.4(3)
C(9A)-C(10A)-C(11A)-C(6A)	0.2(3)
C(7A)-C(6A)-C(11A)-C(10A)	-0.4(3)
C(4A)-C(6A)-C(11A)-C(10A)	178.30(18)
C(4B)-C(1B)-C(2B)-O(1B)	-178.0(2)
BR1B-C(1B)-C(2B)-O(1B)	5.1(3)
C(4B)-C(1B)-C(2B)-C(3B)	1.3(2)

C(11B)-C(6B)-C(7B)-BR2B

C(4B)-C(6B)-C(7B)-BR2B C(6B)-C(7B)-C(8B)-C(9B)

BR2B-C(7B)-C(8B)-C(9B) C(7B)-C(8B)-C(9B)-C(10B)

C(8B)-C(9B)-C(10B)-C(11B)

C(9B)-C(10B)-C(11B)-C(6B)

C(7B)-C(6B)-C(11B)-C(10B)

C(4B)-C(6B)-C(11B)-C(10B)

BR1B-C(1B)-C(2B)-C(3B)	-175.63(14)
C(5B)-O(3B)-C(3B)-O(2B)	-54.2(2)
C(5B)-O(3B)-C(3B)-N(1B)	63.0(2)
C(5B)-O(3B)-C(3B)-C(2B)	-170.01(17)
C(4B)-O(2B)-C(3B)-O(3B)	-114.76(18)
C(4B)-O(2B)-C(3B)-N(1B)	120.97(17)
C(4B)-O(2B)-C(3B)-C(2B)	3.2(2)
N(2B)-N(1B)-C(3B)-O(3B)	67.3(3)
N(2B)-N(1B)-C(3B)-O(2B)	-170.68(18)
N(2B)-N(1B)-C(3B)-C(2B)	-58.0(2)
O(1B)-C(2B)-C(3B)-O(3B)	-63.4(3)
C(1B)-C(2B)-C(3B)-O(3B)	117.26(18)
O(1B)-C(2B)-C(3B)-O(2B)	176.62(19)
C(1B)-C(2B)-C(3B)-O(2B)	-2.7(2)
O(1B)-C(2B)-C(3B)-N(1B)	65.3(3)
C(1B)-C(2B)-C(3B)-N(1B)	-114.05(19)
C(2B)-C(1B)-C(4B)-O(2B)	0.8(2)
BR1B-C(1B)-C(4B)-O(2B)	177.47(14)
C(2B)-C(1B)-C(4B)-C(6B)	178.6(2)
BR1B-C(1B)-C(4B)-C(6B)	-4.7(3)
C(3B)-O(2B)-C(4B)-C(1B)	-2.7(2)
C(3B)-O(2B)-C(4B)-C(6B)	179.16(17)
C(1B)-C(4B)-C(6B)-C(11B)	-53.9(3)
O(2B)-C(4B)-C(6B)-C(11B)	123.9(2)
C(1B)-C(4B)-C(6B)-C(7B)	126.4(2)
O(2B)-C(4B)-C(6B)-C(7B)	-55.8(3)
C(11B)-C(6B)-C(7B)-C(8B)	-1.1(3)
C(4B)-C(6B)-C(7B)-C(8B)	178.51(19)

Symmetrie-Transformationen wurden verwendet, um äquivalente Atome zu erzeugen.

19.11 Röntgenstrukturdaten von Brom-/Chloroxazin-2-on 248 & 249

175.88(15) -4.5(3)

0.1(3) -176.97(16)

0.8(3)

-0.7(3)

-0.4(3)

1.2(3)

-178.42(19)

Abbildung 19.11: Röntgenstruktur von Brom/Chloroxazin-2-on 248 und 249.
Identifikationsnummer	s2636lm		
Empirische Formel	C12 H10 Br0./1 Cl0.29 N O3		
Formelgewicht	283.12		
Temperatur	130(2) K		
Wellenlänge	0.71073 A		
Kristallsystem, Raumgruppe	Monoclinic, P 21/n		
Gitterkonstante	a = 10.2304(8) A alpha = 90°		
	b = 6.8739(6) A beta = 96.214(3)°		
	c = 16.1601(14) A gamma = 90°		
Volumen	1129.75(16) A^3		
Z, berechnete Dichte	4, 1.665 Mg/m^3		
Absorptionskoeffizient	2.668 mm^-1		
F(000)	571		
Kristallgröße	0.10 x 0.08 x 0.05 mm		
Theta-Bereich für Datensammlung	2.25 to 26.41 deg.		
Bereich für Indizes	-10<=h<=12, -7<=k<=8, -20<=l<=19		
Gesammelte/ unabhängige Reflexe	8749 / 2327 [R(int) = 0.0577]		
Vollständigkeit für theta = 26.41	100.0 %		
Korrektur Absorption	Numerical		
Max. und min. Transmission	0.9560 und 0.8355		
Verfeinerungsmethode	Full-matrix least-squares on F^2		
Daten/ Einschränkung / Parameter	2327 / 2 / 159		
Goodness-of-fit on F [^] 2	1.020		
Abschließende R Indizes [I>2sigma(I)]	R1 = 0.0371, wR2 = 0.0590		
R Indizes (alle Daten)	R1 = 0.0740, wR2 = 0.0635		
Restelektronendichte	0.437 und -0.400 e.A^-3		
****	****		
Remarkung Prom (Chlor Austausch (71 zu 20) fraivarf	via ort		
benner kung. Bronn/Chiof Austausch (/1 zu 29) - frei Verfeinert.			

Tabelle 19.61: Kristalldaten und Strukturverfeinerungen von 248 und 249.

Tabelle 19.62: Lageparameter (x 10⁴) und äquivalente isotrope Temperaturfaktoren (A² x 10³) von **248** und **249**.

	x	У	Z	U(eq)
Br(1)	2016(3)	2123(5)	9383(2)	18(1)
Cl(1)	2120(18)	2320(30)	9329(11)	18(1)
N(1)	4445(2)	2961(3)	8903(1)	17(1)
O(1)	3617(2)	3822(3)	7262(1)	18(1)
C(1)	2688(3)	3429(4)	7807(2)	16(1)
C(2)	3143(2)	2975(4)	8593(2)	17(1)
O(2)	5691(2)	4085(3)	6989(1)	28(1)
O(3)	6579(2)	3389(3)	8618(1)	21(1)
C(3)	5289(3)	3355(4)	8389(2)	18(1)
C(4)	4950(3)	3786(4)	7497(2)	19(1)
C(5)	6989(3)	2953(5)	9489(2)	23(1)
C(6)	8462(2)	2875(5)	9588(2)	30(1)
C(7)	1346(3)	3518(4)	7377(2)	16(1)
C(8)	283(3)	4132(4)	7786(2)	20(1)
C(9)	-979(3)	4099(4)	7378(2)	21(1)
C(10)	-1192(3)	3489(4)	6559(2)	21(1)
C(11)	-142(3)	2942(4)	6143(2)	23(1)
C(12)	1125(2)	2960(4)	6552(2)	18(1)

U(eq) ist definiert als ein Drittel der Spur des orthogonalisierten U_{ij}-Tensors.

 Tabelle 19.63:
 Bindungslängen [Å] und Bindungswinkel [°] von 248 und 249.

Br(1)-C(2)	1.903(3)
Cl(1)-C(2)	1.727(9)
N(1)-C(3)	1.289(3)

N(1)-C(2)	
N(1)-C(2)	1 272(2)
	1.372(3)
O(1)-C(4)	1.375(3)
	1 2 2 2 (2)
O(1)-C(1)	1.390(3)
C(1)-C(2)	1341(4)
	1.3+1(+)
C(1)-C(7)	1.471(4)
O(2) - C(A)	1 102/2)
0(2)-0(4)	1.155(5)
O(3)-C(3)	1.333(3)
	1 455(2)
0(3)-0(5)	1.455(3)
C(3)-C(4)	1.476(4)
	4 500(4)
C(5)-C(6)	1.500(4)
C(5)-H(5A)	0 9900
	0.5500
C(5)-H(5B)	0.9900
C(E)- $H(EA)$	0 9800
	0.5600
C(6)-H(6B)	0.9800
	0 0000
C(b)-H(bC)	0.9800
C(7)-C(12)	1.383(4)
C(7)-C(8)	1.398(4)
$C(8)_{-}C(9)$	1 385(4)
	1.505(4)
C(8)-H(8)	0.9500
C(0) C(10)	1 201/1
C(9)-C(10)	1.364(4)
C(9)-H(9)	0.9500
	4.200(4)
C(10)-C(11)	1.380(4)
C(10)-H(10)	0 9500
	0.5500
C(11)-C(12)	1.390(4)
$C(11) \cup (11)$	
	0.9500
C(12)-H(12)	0.9500
	0.5500
C(3)-N(1)-C(2)	117 1(2)
	11/.1(2)
C(4)-O(1)-C(1)	123.2(2)
(12) (11) (11)	117 0(2)
C(2) - C(1) - O(1)	117.0(2)
C(2)-C(1)-C(7)	131.8(3)
O(1) O(1) O(7)	111 1()
O(1)-C(1)-C(7)	111.1(Z)
C(1)-C(2)-N(1)	124.8(2)
O(2) O(2) O(2)	122.00(2)
C(1)-C(2)-Cl(1)	122.6(8)
$N(1)_{-}C(2)_{-}C(1)$	112 6(7)
	112.0(7)
C(1)-C(2)-Br(1)	122.3(2)
N(1) C(2) Pr(1)	112 8(2)
$N(1)^{-C}(2)^{-D}(1)$	112.0(2)
Cl(1)-C(2)-Br(1)	2.9(8)
(-) (-) (-) (-) (-) (-) (-) (-) (-) (-)	110 (0)
C(3)-O(3)-C(5)	116.0(2)
N(1)-C(3)-O(3)	122 4(3)
N(1)-C(3)-O(3)	122.4(3)
N(1)-C(3)-O(3) N(1)-C(3)-C(4)	122.4(3) 124.6(2)
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(2) C(2) C(4)	122.4(3) 124.6(2)
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4)	122.4(3) 124.6(2) 112.9(2)
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1)	122.4(3) 124.6(2) 112.9(2) 119.5(3)
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-O(1)	122.4(3) 124.6(2) 112.9(2) 119.5(3)
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-O(1) O(2)-C(4)-C(3)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3)
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2)
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(1)-C(4)-C(3)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2)
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2)
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(2)-C(5)-H(5A)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5A)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5A) O(3)-C(5)-H(5B)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5A) O(3)-C(5)-H(5B) O(3)-C(5)-H(5B)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5A) O(3)-C(5)-H(5B) C(6)-C(5)-H(5B)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5B) C(6)-C(5)-H(5B) H(5A)-C(5)-H(5B)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5A) O(3)-C(5)-H(5B) C(6)-C(5)-H(5B) H(5A)-C(5)-H(5B)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 108.6
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5A) C(6)-C(5)-H(5B) C(6)-C(5)-H(5B) H(5A)-C(5)-H(5B) C(5)-C(6)-H(6A)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 108.6 109.5
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5B) C(6)-C(5)-H(5B) C(6)-C(5)-H(5B) C(5)-C(6)-H(5B) C(5)-C(6)-H(6A) C(5)-C(6)-H(6A)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 108.6 109.5
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5A) C(6)-C(5)-H(5B) C(6)-C(5)-H(5B) H(5A)-C(5)-H(5B) C(5)-C(6)-H(6A) C(5)-C(6)-H(6B)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 108.6 109.5 109.5
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5A) O(3)-C(5)-H(5B) C(6)-C(5)-H(5B) H(5A)-C(5)-H(5B) C(5)-C(6)-H(5B) C(5)-C(6)-H(6B) H(6A)-C(6)-H(6B)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 108.6 109.5 109.5
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5B) C(6)-C(5)-H(5B) H(5A)-C(5)-H(5B) C(5)-C(6)-H(6B) H(6A)-C(6)-H(6B) H(6A)-C(6)-H(6B)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 108.6 109.5 109.5 109.5
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5A) C(6)-C(5)-H(5B) C(6)-C(5)-H(5B) H(5A)-C(5)-H(5B) C(5)-C(6)-H(5B) C(5)-C(6)-H(6B) H(6A)-C(6)-H(6B) C(5)-C(6)-H(6C)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 108.6 109.5 109.5 109.5
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5A) O(3)-C(5)-H(5B) C(6)-C(5)-H(5B) C(6)-C(5)-H(5B) C(5)-C(6)-H(5B) C(5)-C(6)-H(6B) H(6A)-C(6)-H(6B) C(5)-C(6)-H(6C) H(6A)-C(6)-H(6C)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 108.6 109.5 109.5 109.5 109.5
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5B) C(6)-C(5)-H(5B) C(6)-C(5)-H(5B) C(5)-C(6)-H(5B) C(5)-C(6)-H(6B) H(6A)-C(6)-H(6B) H(6A)-C(6)-H(6C) H(6A)-C(6)-H(6C)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 109.5 109.5 109.5 109.5 109.5
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5A) O(3)-C(5)-H(5B) C(6)-C(5)-H(5B) H(5A)-C(5)-H(5B) C(5)-C(6)-H(6B) H(6A)-C(6)-H(6B) H(6A)-C(6)-H(6C) H(6B)-C(6)-H(6C)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 110.3 109.5 109.5 109.5 109.5 109.5
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5A) C(6)-C(5)-H(5B) C(6)-C(5)-H(5B) C(5)-C(6)-H(5B) C(5)-C(6)-H(6B) H(5A)-C(5)-H(5B) C(5)-C(6)-H(6B) H(6A)-C(6)-H(6C) H(6A)-C(6)-H(6C) H(6B)-C(6)-H(6C) H(6B)-C(6)-H(6C) H(6B)-C(6)-H(6C)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 109.5 109.5 109.5 109.5 109.5 109.5 109.5
$\begin{split} &N(1)-C(3)-O(3) \\ &N(1)-C(3)-C(4) \\ &O(3)-C(3)-C(4) \\ &O(2)-C(4)-O(1) \\ &O(2)-C(4)-O(3) \\ &O(1)-C(4)-C(3) \\ &O(3)-C(5)-C(6) \\ &O(3)-C(5)-H(5A) \\ &C(6)-C(5)-H(5A) \\ &C(6)-C(5)-H(5B) \\ &C(6)-C(5)-H(5B) \\ &C(6)-C(5)-H(5B) \\ &C(5)-C(6)-H(5B) \\ &C(5)-C(6)-H(6B) \\ &H(6A)-C(6)-H(6B) \\ &H(6A)-C(6)-H(6C) \\ &H(6A)-C(6)-H(6C) \\ &H(6B)-C(6)-H(6C) \\ &H(6B)-C(6)-H(6C) \\ &H(6B)-C(6)-H(6C) \\ &C(12)-C(7)-C(B) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
$\begin{split} &N(1)-C(3)-O(3) \\ &N(1)-C(3)-C(4) \\ &O(3)-C(3)-C(4) \\ &O(2)-C(4)-O(1) \\ &O(2)-C(4)-C(3) \\ &O(1)-C(4)-C(3) \\ &O(3)-C(5)-C(6) \\ &O(3)-C(5)-C(6) \\ &O(3)-C(5)-H(5A) \\ &C(6)-C(5)-H(5A) \\ &O(3)-C(5)-H(5B) \\ &C(6)-C(5)-H(5B) \\ &C(6)-C(5)-H(5B) \\ &C(5)-C(6)-H(5B) \\ &C(5)-C(6)-H(6B) \\ &H(6A)-C(6)-H(6B) \\ &H(6A)-C(6)-H(6C) \\ &H(6A)-C(6)-H(6C) \\ &H(6A)-C(6)-H(6C) \\ &H(6A)-C(6)-H(6C) \\ &C(12)-C(7)-C(B) \\ &C(12)-C(7)-C(1) \\ \end{split}$	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 108.6 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5
$\begin{split} &N(1)-C(3)-O(3) \\ &N(1)-C(3)-C(4) \\ &O(3)-C(3)-C(4) \\ &O(2)-C(4)-O(1) \\ &O(2)-C(4)-O(3) \\ &O(1)-C(4)-C(3) \\ &O(3)-C(5)-C(6) \\ &O(3)-C(5)-C(6) \\ &O(3)-C(5)-H(5A) \\ &C(6)-C(5)-H(5A) \\ &C(6)-C(5)-H(5B) \\ &C(6)-C(5)-H(5B) \\ &H(5A)-C(5)-H(5B) \\ &C(5)-C(6)-H(5B) \\ &H(5A)-C(5)-H(5B) \\ &C(5)-C(6)-H(6A) \\ &C(5)-C(6)-H(6B) \\ &H(6A)-C(6)-H(6C) \\ &H(6A)-C(6)-H(6C) \\ &H(6B)-C(6)-H(6C) \\ &H(6B)-C(6)-H(6C) \\ &C(12)-C(7)-C(8) \\ &C(12)-C(7)-C(1) \\ &C(8)-C(1)-C(1) \\ \\ &C(8)-C(1)-C(1) \\ &C(8)-C(1)-C(1) \\ &C(8)-C(8)-C(8) \\ \\ &C(8)-C(8)-C(1)-C(1) \\ \\ &C(8)-C(1)-C(1) \\ \\ \\ \\ &C(8)-C(1)-C(1) \\ \\ \\ \\ &C(1)-C(1)-C(1) \\ \\ \\ \\ \\ &C(1)-C(1)-C(1) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 110.3 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 119.1(3) 119.4(2)
$\begin{split} &N(1)-C(3)-O(3) \\ &N(1)-C(3)-C(4) \\ &O(3)-C(3)-C(4) \\ &O(2)-C(4)-O(1) \\ &O(2)-C(4)-C(3) \\ &O(1)-C(4)-C(3) \\ &O(3)-C(5)-C(6) \\ &O(3)-C(5)-C(6) \\ &O(3)-C(5)-H(5A) \\ &C(6)-C(5)-H(5A) \\ &C(6)-C(5)-H(5B) \\ &C(6)-C(5)-H(5B) \\ &C(5)-C(6)-H(5B) \\ &C(5)-C(6)-H(6B) \\ &H(6A)-C(6)-H(6B) \\ &C(5)-C(6)-H(6B) \\ &C(5)-C(6)-H(6C) \\ &H(6A)-C(6)-H(6C) \\ &H(6A)-C(6)-H(6C) \\ &H(6B)-C(6)-H(6C) \\ &H(6B)-C(6)-H(6C) \\ &C(12)-C(7)-C(B) \\ \\ &C(12)-C(7)-C(1) \\ \\ &C(8)-C(7)-C(1) \\ \end{split}$	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 110.3 109.5
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5A) C(6)-C(5)-H(5B) C(6)-C(5)-H(5B) H(5A)-C(5)-H(5B) C(5)-C(6)-H(6B) H(5A)-C(6)-H(6B) H(6A)-C(6)-H(6C) H(6A)-C(6)-H(6C) H(6B)-C(6)-H(6C) H(6B)-C(6)-H(6C) C(12)-C(7)-C(8) C(12)-C(7)-C(1) C(8)-C(7)-C(1) C(9)-C(8)-C(7)-C(1)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 100.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 119.1(3) 119.4(2) 121.5(3) 120.2(3)
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5A) O(3)-C(5)-H(5B) C(6)-C(5)-H(5B) C(6)-C(5)-H(5B) C(5)-C(6)-H(6B) H(5A)-C(6)-H(6B) H(6A)-C(6)-H(6C) H(6A)-C(6)-H(6C) H(6B)-C(6)-H(6C) H(6B)-C(6)-H(6C) H(6B)-C(6)-H(6C) C(12)-C(7)-C(1) C(8)-C(7)-C(1) C(9)-C(8)-U(9) C(9)-C(8)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 119.1(3) 119.4(2) 121.5(3) 120.2(3)
$\begin{split} &N(1)-C(3)-O(3) \\ &N(1)-C(3)-C(4) \\ &O(3)-C(3)-C(4) \\ &O(2)-C(4)-O(1) \\ &O(2)-C(4)-C(3) \\ &O(1)-C(4)-C(3) \\ &O(3)-C(5)-C(6) \\ &O(3)-C(5)-C(6) \\ &O(3)-C(5)-H(5A) \\ &C(6)-C(5)-H(5A) \\ &O(3)-C(5)-H(5B) \\ &C(6)-C(5)-H(5B) \\ &C(6)-C(5)-H(5B) \\ &C(5)-C(6)-H(5B) \\ &C(5)-C(6)-H(6B) \\ &H(6A)-C(6)-H(6B) \\ &H(6A)-C(6)-H(6B) \\ &H(6A)-C(6)-H(6C) \\ &H(6A)-C(6)-H(6C) \\ &H(6B)-C(6)-H(6C) \\ &H(6B)-C(6)-H(6C) \\ &C(12)-C(7)-C(1) \\ &C(3)-C(7)-C(1) \\ &C(9)-C(8)-C(7) \\ &C(9)-C(8)-H(8) \\ \end{split}$	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 108.6 109.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5B) C(6)-C(5)-H(5B) C(5)-C(6)-H(5B) C(5)-C(6)-H(6B) H(5A)-C(5)-H(5B) C(5)-C(6)-H(6B) H(6A)-C(6)-H(6C) H(6A)-C(6)-H(6C) H(6A)-C(6)-H(6C) H(6B)-C(6)-H(6C) C(12)-C(7)-C(8) C(12)-C(7)-C(1) C(9)-C(8)-C(7) C(9)-C(8)-H(8) C(7)-C(8)-H(8)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 110.3 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 119.1(3) 119.4(2) 121.5(3) 120.2(3) 119.9
$\begin{split} N(1)-C(3)-O(3) \\ N(1)-C(3)-C(4) \\ O(3)-C(3)-C(4) \\ O(2)-C(4)-O(1) \\ O(2)-C(4)-C(3) \\ O(1)-C(4)-C(3) \\ O(3)-C(5)-C(6) \\ O(3)-C(5)-C(6) \\ O(3)-C(5)-H(5A) \\ C(6)-C(5)-H(5A) \\ O(3)-C(5)-H(5B) \\ C(6)-C(5)-H(5B) \\ C(6)-C(5)-H(5B) \\ C(5)-C(6)-H(6B) \\ H(5A)-C(6)-H(6B) \\ H(6A)-C(6)-H(6B) \\ C(5)-C(6)-H(6C) \\ H(6B)-C(6)-H(6C) \\ H(6B)-C(6)-H(6C) \\ H(6B)-C(6)-H(6C) \\ C(12)-C(7)-C(1) \\ C(12)-C(7)-C(1) \\ C(9)-C(8)-C(7) \\ C(9)-C(8)-H(8) \\ C(7)-C(8)-H(8) \\ C(7)-C(8)-C(9)-C(8) \\ C(12)-C(9)-C(8)-C(9) \\ C(12)-C(9)-C(8)-C(9) \\ C(12)-C(9)-C(8)-C(9) \\ C(12)-C(9)-C(8)-C(9) \\ C(12)-C(9)-C(8)-C(9) \\ C(12)-C(9)-C(1) \\ C(12)-C(1)-C(1) \\ C(12)-C(1)-C(1)-C(1) \\ C(12)-C(1)-C(1)-C(1) \\ C(12)-C(1)-C(1)-C(1) \\ C(12)-C(1)-C(1)-C(1)-C(1) \\ C(12)-C(1)-C(1)-C(1)-C(1) \\ C(12)-C(1)-C(1)-C(1)-C(1) \\ C(12)-C(1)-C(1)-C(1)-C(1)-C(1) \\ C(12)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1) \\ C(12)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1$	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 119.1(3) 119.4(2) 121.5(3) 120.2(3) 119.9 119.9
$\begin{split} N(1)-C(3)-O(3) \\ N(1)-C(3)-C(4) \\ O(3)-C(3)-C(4) \\ O(2)-C(4)-O(1) \\ O(2)-C(4)-C(3) \\ O(1)-C(4)-C(3) \\ O(3)-C(5)-C(6) \\ O(3)-C(5)-C(6) \\ O(3)-C(5)-H(5A) \\ C(6)-C(5)-H(5A) \\ C(6)-C(5)-H(5B) \\ C(5)-C(5)-H(5B) \\ C(5)-C(6)-H(6B) \\ H(5A)-C(5)-H(5B) \\ C(5)-C(6)-H(6B) \\ H(6A)-C(6)-H(6C) \\ H(6A)-C(6)-H(6C) \\ H(6B)-C(6)-H(6C) \\ H(6B)-C(6)-H(6C) \\ C(12)-C(7)-C(1) \\ C(8)-C(7)-C(1) \\ C(9)-C(8)-H(8) \\ C(7)-C(8)-H(8) \\ C(10)-C(9)-C(8) \\ \end{split}$	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 108.6 109.5 100.5 100
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5A) O(3)-C(5)-H(5B) C(6)-C(5)-H(5B) C(6)-C(5)-H(5B) C(5)-C(6)-H(6B) H(5A)-C(6)-H(6B) H(6A)-C(6)-H(6C) H(6A)-C(6)-H(6C) H(6B)-C(6)-H(6C) H(6B)-C(6)-H(6C) H(6B)-C(6)-H(6C) C(12)-C(7)-C(1) C(8)-C(7)-C(1) C(9)-C(8)-C(7) C(9)-C(8)-H(8) C(7)-C(8)-H(8) C(10)-C(9)-H(9)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 119.1(3) 119.4(2) 121.5(3) 120.2(3) 119.9 120.2(3)
$\begin{split} N(1)-C(3)-O(3) \\ N(1)-C(3)-C(4) \\ O(3)-C(3)-C(4) \\ O(2)-C(4)-O(1) \\ O(2)-C(4)-C(3) \\ O(1)-C(4)-C(3) \\ O(3)-C(5)-C(6) \\ O(3)-C(5)-C(6) \\ O(3)-C(5)-H(5A) \\ C(6)-C(5)-H(5A) \\ O(3)-C(5)-H(5B) \\ C(6)-C(5)-H(5B) \\ C(5)-C(6)-H(5B) \\ C(5)-C(6)-H(6B) \\ C(5)-C(6)-H(6B) \\ C(5)-C(6)-H(6B) \\ C(5)-C(6)-H(6B) \\ C(5)-C(6)-H(6C) \\ H(6A)-C(6)-H(6C) \\ H(6B)-C(6)-H(6C) \\ C(12)-C(7)-C(1) \\ C(12)-C(7)-C(1) \\ C(8)-C(7)-C(1) \\ C(9)-C(8)-C(7) \\ C(9)-C(8)-H(8) \\ C(10)-C(9)-H(9) \\ (10)-C(9)-H(9) \\ (10)-C(9)-L(8) \\ C(10)-C(9)-L(8) \\ C(10)-L(9)-L(8) \\ C(10)-L(10)-L(10)-L(10) \\ C(10)-L(10)-L(10)-L(10) \\ C(10)-L(10)-L(10)-L(1$	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 108.6 109.5 100.5 100
$\begin{split} N(1)-C(3)-O(3) \\ N(1)-C(3)-C(4) \\ O(3)-C(3)-C(4) \\ O(2)-C(4)-O(1) \\ O(2)-C(4)-C(3) \\ O(1)-C(4)-C(3) \\ O(3)-C(5)-C(6) \\ O(3)-C(5)-H(5A) \\ C(6)-C(5)-H(5A) \\ C(6)-C(5)-H(5B) \\ C(5)-C(6)-H(5B) \\ H(5A)-C(5)-H(5B) \\ C(5)-C(6)-H(6A) \\ C(5)-C(6)-H(6B) \\ H(6A)-C(6)-H(6B) \\ H(6A)-C(6)-H(6C) \\ H(6B)-C(6)-H(6C) \\ H(6B)-C(6)-H(6C) \\ C(12)-C(7)-C(1) \\ C(12)-C(7)-C(1) \\ C(9)-C(8)-L(7) \\ C(9)-C(8)-H(8) \\ C(10)-C(9)-H(8) \\ C(10)-C(9)-H(9) \\ C(8)-C(9)-H(9) \\ L(2)-C(7)-C(1) \\ C(8)-C(9)-H(9) \\ L(2)-C(9)-H(9) \\ L(2)-C(9)-H(9) \\ L(2)-C(9)-L(8) \\ L(1)-C(9)-H(9) \\ L(2)-C(9)-L(8) \\ L(1)-C(9)-L(8) \\ L(1)-C(9)-H(9) \\ L(2)-C(1)-C(1) \\ L(2)-C(1)-L(1) \\ L(2)-C(1)-L(1) \\ L(2)-C(1)-L(1) \\ L(2)-L(1)-L(1) \\ L(2)-L(1)-L(1)-L(1) \\ L(2)-L(1)-L(1)-L(1) \\ L(2)-L(1)-L(1)-L(1) \\ L(2)-L(1)-L(1)-L(1) \\ L(2)-L(1)-L(1)-L(1)-L(1) \\ L(2)-L(1)-L(1)-L(1)-L(1) \\ L(2)-L(1)-L(1)-L(1)-L(1)-L(1) \\ L(2)-L(1)-L(1)-L(1)-L(1)-L(1)-L(1)-L(1) \\ L(2)-L(1)-L(1)-L(1)-L(1)-L(1)-L(1)-L(1)-L(1$	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 110.3 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 119.4(2) 121.5(3) 120.2(3) 119.9 120.2(3) 119.9
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) C(6)-C(5)-H(5A) O(3)-C(5)-H(5B) C(6)-C(5)-H(5B) C(5)-C(6)-H(5B) C(5)-C(6)-H(6B) H(5A)-C(6)-H(6B) H(6A)-C(6)-H(6B) H(6A)-C(6)-H(6C) H(6B)-C(6)-H(6C) H(6B)-C(6)-H(6C) H(6B)-C(6)-H(6C) C(12)-C(7)-C(1) C(12)-C(7)-C(1) C(9)-C(8)-C(7) C(9)-C(8)-H(8) C(10)-C(9)-H(8) C(10)-C(9)-H(9) C(8)-C(9)-H(9) C(11)-C(10)-C(9)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 110.3 110.3 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 119.1(3) 119.4(2) 121.5(3) 120.2(3) 119.9 119.9 119.9 119.9
$\begin{split} &N(1)-C(3)-O(3) \\ &N(1)-C(3)-C(4) \\ &O(3)-C(3)-C(4) \\ &O(2)-C(4)-O(1) \\ &O(2)-C(4)-C(3) \\ &O(1)-C(4)-C(3) \\ &O(3)-C(5)-C(6) \\ &O(3)-C(5)-C(6) \\ &O(3)-C(5)-H(5A) \\ &C(6)-C(5)-H(5A) \\ &C(6)-C(5)-H(5B) \\ &C(6)-C(5)-H(5B) \\ &C(5)-C(6)-H(5B) \\ &H(5A)-C(5)-H(5B) \\ &C(5)-C(6)-H(6A) \\ &C(5)-C(6)-H(6A) \\ &C(5)-C(6)-H(6B) \\ &H(6A)-C(6)-H(6B) \\ &H(6A)-C(6)-H(6C) \\ &H(6A)-C(6)-H(6C) \\ &H(6A)-C(6)-H(6C) \\ &H(6A)-C(6)-H(6C) \\ &C(12)-C(7)-C(1) \\ &C(12)-C(7)-C(1) \\ &C(9)-C(B)-C(7) \\ &C(9)-C(B)-H(B) \\ \\ &C(10)-C(9)-H(B) \\ \\ &C(10)-C(9)-H(9) \\ &C(11)-C(1)-C(9) \\ \\ &C(11)-C(1)-C(9)-H(9) \\ \\ &C(11)-C(1)-C(9)-H(9) \\ \\ &C(11)-C(1)-C(9)-H(B) \\ \\ &C(10)-C(9)-H(B) \\ \\ &C(11)-C(1)-C(9) \\ \\ \\ \\ \\ &C(11)-C(1)-C(9) \\ \\ \\ \\ \\ &C(11)-C(1)-C(9) \\ \\ \\ \\ \\ \\ &C(11)-C(1)-C(9) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 110.3 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 119.1(3) 119.4(2) 121.5(3) 120.2(3) 119.9 119.9 119.9 119.9 119.8(3)
N(1)-C(3)-O(3) N(1)-C(3)-C(4) O(3)-C(3)-C(4) O(2)-C(4)-O(1) O(2)-C(4)-C(3) O(1)-C(4)-C(3) O(3)-C(5)-C(6) O(3)-C(5)-H(5A) O(3)-C(5)-H(5A) O(3)-C(5)-H(5B) C(6)-C(5)-H(5B) C(6)-C(5)-H(5B) C(5)-C(6)-H(6B) H(5A)-C(6)-H(6B) H(6A)-C(6)-H(6C) H(6A)-C(6)-H(6C) H(6B)-C(6)-H(6C) H(6B)-C(6)-H(6C) H(6B)-C(6)-H(6C) H(6B)-C(6)-H(6C) C(12)-C(7)-C(1) C(12)-C(7)-C(1) C(9)-C(8)-C(7) C(9)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(8)-H(8) C(10)-C(9)-C(8) C(10)-C(9)-H(9) C(11)-C(10)-C(9) C(11)-C(10)-H(10)	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 109.5 100.5 100
$\begin{split} N(1)-C(3)-O(3) \\ N(1)-C(3)-C(4) \\ O(3)-C(3)-C(4) \\ O(2)-C(4)-O(1) \\ O(2)-C(4)-C(3) \\ O(1)-C(4)-C(3) \\ O(3)-C(5)-C(6) \\ O(3)-C(5)-H(5A) \\ O(3)-C(5)-H(5A) \\ O(3)-C(5)-H(5B) \\ C(6)-C(5)-H(5B) \\ C(6)-C(5)-H(5B) \\ C(5)-C(6)-H(6B) \\ H(5A)-C(6)-H(6B) \\ C(5)-C(6)-H(6B) \\ H(6A)-C(6)-H(6C) \\ H(6B)-C(6)-H(6C) \\ H(6B)-C(6)-H(6C) \\ C(12)-C(7)-C(1) \\ C(12)-C(7)-C(1) \\ C(9)-C(8)-C(7) \\ C(9)-C(8)-H(8) \\ C(10)-C(9)-H(8) \\ C(10)-C(9)-H(9) \\ C(11)-C(10)-H(10) \\ C(4)-C(10)-H(10) \\ C(4)-C(10)-H(10) \\ C(4)-C(10)-H(10) \\ C(4)-C(10)-C(10)-C(10) \\ C(10)-C(10)-C(10) \\ C(10)-C(10)-C$	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 108.6 109.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100
$\begin{split} N(1)-C(3)-O(3) \\ N(1)-C(3)-C(4) \\ O(3)-C(3)-C(4) \\ O(2)-C(4)-O(1) \\ O(2)-C(4)-C(3) \\ O(1)-C(4)-C(3) \\ O(3)-C(5)-C(6) \\ O(3)-C(5)-H(5A) \\ C(6)-C(5)-H(5A) \\ C(6)-C(5)-H(5B) \\ C(5)-C(5)-H(5B) \\ C(5)-C(6)-H(6B) \\ C(5)-C(6)-H(6B) \\ C(5)-C(6)-H(6B) \\ C(5)-C(6)-H(6C) \\ H(6A)-C(6)-H(6C) \\ C(12)-C(7)-C(1) \\ C(12)-C(7)-C(1) \\ C(9)-C(8)-C(7) \\ C(9)-C(8)-H(8) \\ C(10)-C(9)-H(8) \\ C(10)-C(9)-H(9) \\ C(11)-C(10)-C(9) \\ C(11)-C(10)-H(10) \\ C(9)-C(10)-H(10) \\ C(10)-C(10)-C(10)-C(10) \\ C(10)-C(10)-C(10)-C(10)-C(10) \\ C(10)-C($	122.4(3) 124.6(2) 112.9(2) 119.5(3) 127.3(3) 113.2(2) 106.9(2) 110.3 110.3 110.3 110.3 110.3 110.3 109.5 100.5 100

TEIL III

C(10)-C(11)-H(11)	119.9
C(12)-C(11)-H(11)	119.9
C(7)-C(12)-C(11)	120.5(3)
C(7)-C(12)-H(12)	119.7
C(11)-C(12)-H(12)	119.7

Symmetrie-Transformationen wurden verwendet, um äquivalente Atome zu erzeugen.

Tabelle 19.64: Anisotrope Temperaturfaktoren (A² x 10³) von 248 und 249.

Der Exponent des anisotropen Temperaturfaktors ist definiert als: $-2\pi^2$ [$h^2 a^{*2}$ U11 + ... + 2 h k $a^* b^*$ U12]

	U11	U22	U33	U23	U13	U12
Br(1)	13(1)	26(1)	15(1)	4(1)	3(1)	-3(1)
CI(1)	13(1)	26(1)	15(1)	4(1)	3(1)	-3(1)
N(1)	14(1)	19(1)	18(1)	-1(1)	-2(1)	-1(1)
O(1)	13(1)	25(1)	17(1)	3(1)	1(1)	0(1)
C(1)	12(2)	16(2)	20(2)	-3(1)	5(1)	-1(1)
C(2)	16(2)	18(2)	17(2)	-3(1)	3(1)	-1(1)
O(2)	17(1)	41(1)	26(1)	8(1)	7(1)	-1(1)
O(3)	11(1)	29(1)	22(1)	1(1)	0(1)	-2(1)
C(3)	16(2)	15(2)	24(2)	1(1)	1(1)	0(1)
C(4)	15(2)	14(2)	27(2)	2(1)	1(1)	2(1)
C(5)	17(2)	31(2)	20(2)	0(2)	-1(1)	0(2)
C(6)	18(2)	47(2)	24(2)	-1(2)	-2(1)	-1(2)
C(7)	14(2)	13(2)	21(2)	6(1)	2(1)	0(1)
C(8)	22(2)	22(2)	17(2)	2(1)	2(1)	1(1)
C(9)	16(2)	23(2)	25(2)	4(2)	6(1)	0(1)
C(10)	15(2)	26(2)	21(2)	7(1)	-1(1)	-1(1)
C(11)	25(2)	22(2)	19(2)	1(2)	-2(1)	0(2)
C(12)	13(2)	19(2)	21(2)	4(1)	2(1)	-1(1)

Tabelle 19.65:Lageparameter der Wasserstoffatome (x 10⁴) und isotrope Temperaturfaktoren (A² x 10³)
von 248 und 249.

			·····	
	x	У	Z	U(eq)
H(5A)	6621	1688	9643	27
H(5B)	6676	3976	9851	27
H(6A)	8758	1864	9223	45
H(6B)	8778	2573	10167	45
H(6C)	8813	4138	9437	45
H(8)	427	4573	8346	25
H(9)	-1700	4497	7662	25
H(10)	-2060	3447	6283	25
H(11)	-285	2552	5576	27
H(12)	1845	2587	6262	21

Tabelle 19.66:Torsionswinkel [°] von **248** und **249**.

C(4)-O(1)-C(1)-C(2)	-0.8(4)
C(4)-O(1)-C(1)-C(7)	-178.3(2)
O(1)-C(1)-C(2)-N(1)	3.2(4)
C(7)-C(1)-C(2)-N(1)	-180.0(3)
O(1)-C(1)-C(2)-Cl(1)	-176.3(9)
C(7)-C(1)-C(2)-Cl(1)	0.5(10)

O(1)-C(1)-C(2)-Br(1)	-173.0(2)
C(7)-C(1)-C(2)-Br(1)	3.8(5)
C(3)-N(1)-C(2)-C(1)	-2.4(4)
C(3)-N(1)-C(2)-Cl(1)	177.3(8)
C(3)-N(1)-C(2)-Br(1)	174.2(2)
C(2)-N(1)-C(3)-O(3)	179.9(2)
C(2)-N(1)-C(3)-C(4)	-0.9(4)
C(5)-O(3)-C(3)-N(1)	0.0(4)
C(5)-O(3)-C(3)-C(4)	-179.2(2)
C(1)-O(1)-C(4)-O(2)	177.9(2)
C(1)-O(1)-C(4)-C(3)	-2.0(4)
N(1)-C(3)-C(4)-O(2)	-176.9(3)
O(3)-C(3)-C(4)-O(2)	2.4(4)
N(1)-C(3)-C(4)-O(1)	3.0(4)
O(3)-C(3)-C(4)-O(1)	-177.8(2)
C(3)-O(3)-C(5)-C(6)	174.4(2)
C(2)-C(1)-C(7)-C(12)	-144.0(3)
O(1)-C(1)-C(7)-C(12)	32.9(3)
C(2)-C(1)-C(7)-C(8)	35.2(4)
O(1)-C(1)-C(7)-C(8)	-147.8(2)
C(12)-C(7)-C(8)-C(9)	2.8(4)
C(1)-C(7)-C(8)-C(9)	-176.5(3)
C(7)-C(8)-C(9)-C(10)	-1.1(4)
C(8)-C(9)-C(10)-C(11)	-1.1(4)
C(9)-C(10)-C(11)-C(12)	1.5(4)
C(8)-C(7)-C(12)-C(11)	-2.4(4)
C(1)-C(7)-C(12)-C(11)	176.9(3)
C(10)-C(11)-C(12)-C(7)	0.2(4)

19.12 Röntgenstrukturdaten von Bromoxazin-4-on 252

Abbildung 19.12: Röntgenstruktur von Bromoxazin-4-on 252.

Tabelle 19.67:	Kristalldaten und Struktu	urverfeinerungen vor	ו 252 .
----------------	---------------------------	----------------------	----------------

Identifikationsnummer	s2565lm
Empirische Formel	C11 H8 Br N O3
Formelgewicht	282.09
Temperatur	130(2) K
Wellenlänge	0.71073 A
Kristallsystem, Raumgruppe	Orthorhombic, P c a 21
Gitterkonstante	a = 13.0240(11) A alpha = 90 deg.
	b = 10.5176(9) A beta = 90 deg.
	c = 7.9607(8) A gamma = 90 deg.
Volumen	1090.47(17) A^3

Z, berechnete Dichte	4, 1.718 Mg/m^3
Absorptionskoeffizient	3.759 mm^-1
F(000)	560
Kristallgröße	0.50 x 0.08 x 0.07 mm
Theta-Bereich für Datensammlung	1.94 to 28.28 deg.
Bereich für Indizes	-17<=h<=17, -14<=k<=13, -10<=l<=10
Gesammelte/ unabhängige Reflexe	9495 / 2694 [R(int) = 0.0553]
Vollständigkeit für theta = 28.28	99.9 %
Korrektur Absorption	Numerical
Max. und min. Transmission	0.8633 und 0.2676
Verfeinerungsmethode	Full-matrix least-squares on F^2
Daten/ Einschränkung / Parameter	2694 / 1 / 147
Goodness-of-fit on F^2	0.939
Abschließende R Indizes [I>2sigma(I)]	R1 = 0.0316, wR2 = 0.0510
R Indizes (alle Daten)	R1 = 0.0577, wR2 = 0.0581
Absolute structure parameter	0.005(10)
Absolute Strukturparameter	0.0023(4)
Restelektronendichte	0.402 und -0.290 e.A^-3

Tabelle 19.68: Lageparameter (x 10⁴) und äquivalente isotrope Temperaturfaktoren (A² x 10³) von **252**.

	х	У	Z	U(eq)
Br(1)	8824(1)	6603(1)	4254(1)	22(1)
C(1)	8752(3)	6722(3)	7816(4)	17(1)
O(1)	8755(1)	6170(2)	9407(5)	16(1)
N(1)	8664(2)	4100(3)	8233(4)	16(1)
O(2)	8860(2)	3844(2)	5433(3)	25(1)
C(2)	8753(2)	5954(3)	6451(4)	18(1)
O(3)	8633(2)	4565(2)	11062(4)	21(1)
C(3)	8766(3)	4567(3)	6625(5)	18(1)
C(4)	8681(2)	4882(3)	9474(7)	17(1)
C(5)	8772(3)	8109(3)	7919(4)	21(1)
C(6)	8100(3)	8845(3)	6955(5)	26(1)
C(7)	8141(3)	10155(3)	7037(6)	36(1)
C(8)	8856(4)	10748(4)	8054(5)	38(1)
C(9)	9516(3)	10030(3)	9020(7)	32(1)
C(10)	9472(2)	8710(3)	8984(6)	25(1)
C(11)	8556(3)	3212(3)	11422(5)	22(1)

U(eq) ist definiert als ein Drittel der Spur des orthogonalisierten $U_{ij}\mbox{-}Tensors.$

Tabelle 19.69:	Bindungslängen [Å] und Bindungswinkel [°] von 252.

Br(1)-C(2)	1.881(3)
C(1)-C(2)	1.354(4)
C(1)-O(1)	1.393(5)
C(1)-C(5)	1.462(4)
O(1)-C(4)	1.359(3)
N(1)-C(4)	1.285(5)
N(1)-C(3)	1.378(4)
O(2)-C(3)	1.221(4)
C(2)-C(3)	1.466(5)
O(3)-C(4)	1.309(6)
O(3)-C(11)	1.455(4)
C(5)-C(10)	1.396(5)
C(5)-C(6)	1.398(5)
C(6)-C(7)	1.380(5)
C(6)-H(6)	0.9500
C(7)-C(8)	1.382(6)
С(7)-Н(7)	0.9500
C(8)-C(9)	1.378(6)
C(8)-H(8)	0.9500
C(9)-C(10)	1.390(4)
С(9)-Н(9)	0.9500
	$\begin{array}{c} Br(1)-C(2)\\ C(1)-C(2)\\ C(1)-C(2)\\ C(1)-C(3)\\ O(1)-C(4)\\ N(1)-C(4)\\ N(1)-C(4)\\ N(1)-C(3)\\ O(2)-C(3)\\ C(2)-C(3)\\ C(2)-C(3)\\ O(3)-C(4)\\ O(3)-C(1)\\ C(3)-C(4)\\ O(3)-C(1)\\ C(5)-C(10)\\ C(5)-C(10)\\ C(5)-C(6)\\ C(6)-C(7)\\ C(6)-H(6)\\ C(7)-C(8)\\ C(7)-H(7)\\ C(8)-C(9)\\ C(8)-H(8)\\ C(9)-C(10)\\ C(9)-H(9)\\ \end{array}$

C(10)-H(10)	0.9500
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
C(11)-H(11C)	0.9800
- / / / -/	
C(2)-C(1)-O(1)	118.8(3)
C(2)-C(1)-C(5)	129.8(3)
O(1)-C(1)-C(5)	111.4(3)
C(4)-O(1)-C(1)	116.7(4)
C(4)-N(1)-C(3)	119.0(3)
C(1)-C(2)-C(3)	121.2(3)
C(1)-C(2)-Br(1)	122.0(2)
C(3)-C(2)-Br(1)	116.7(3)
C(4)-O(3)-C(11)	116.3(3)
O(2)-C(3)-N(1)	120.6(3)
O(2)-C(3)-C(2)	123.2(3)
N(1)-C(3)-C(2)	116.2(3)
N(1)-C(4)-O(3)	125.3(3)
N(1)-C(4)-O(1)	127.5(5)
O(3)-C(4)-O(1)	107.1(4)
C(10)-C(5)-C(6)	119.4(3)
C(10)-C(5)-C(1)	119.8(3)
C(6)-C(5)-C(1)	120.7(3)
C(7)-C(6)-C(5)	120.2(4)
C(7)-C(6)-H(6)	119.9
C(5)-C(6)-H(6)	119.9
C(6)-C(7)-C(8)	120.3(4)
C(6)-C(7)-H(7)	119.9
C(8)-C(7)-H(7)	119.9
C(9)-C(8)-C(7)	120.0(3)
C(9)-C(8)-H(8)	120.0
C(7)-C(8)-H(8)	120.0
C(8)-C(9)-C(10)	120.6(4)
C(8)-C(9)-H(9)	119.7
С(10)-С(9)-Н(9)	119.7
C(9)-C(10)-C(5)	119.4(4)
C(9)-C(10)-H(10)	120.3
C(5)-C(10)-H(10)	120.3
O(3)-C(11)-H(11A)	109.5
O(3)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
O(3)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5

Tabelle 19.70: Anisotrope Temperaturfaktoren ($A^2 \times 10^3$) von **252**.

Der Exponent des anisotropen Temperaturfaktors ist definiert als: $-2\pi^2$ [$h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12$]

	U11	U22	U33	U23	U13	U12
Br(1)	21(1)	26(1)	18(1)	0(1)	0(1)	0(1)
C(1)	15(2)	17(2)	19(2)	2(1)	-4(1)	1(2)
O(1)	18(1)	14(1)	16(1)	-2(2)	0(2)	2(1)
N(1)	17(2)	13(1)	17(2)	-3(1)	-2(1)	2(1)
O(2)	32(1)	24(1)	20(1)	-9(1)	1(1)	3(1)
C(2)	15(2)	19(2)	19(2)	-3(1)	0(1)	-1(1)
O(3)	32(2)	14(1)	17(1)	-6(1)	1(1)	2(1)
C(3)	11(2)	21(2)	24(2)	-2(2)	-3(2)	-2(2)
C(4)	13(1)	17(1)	20(3)	-3(2)	-5(2)	2(1)
C(5)	22(2)	18(2)	22(2)	-5(1)	5(2)	1(2)
C(6)	29(2)	22(2)	26(2)	-3(2)	-4(2)	5(2)
C(7)	49(2)	24(2)	34(3)	3(2)	-1(2)	12(2)
C(8)	66(3)	14(2)	33(2)	-4(2)	8(2)	4(2)
C(9)	46(2)	18(2)	31(3)	-8(2)	-3(2)	-6(1)

C(10)	30(2)	15(2)	29(3)	-4(2)	-2(2)	0(1)
C(11)	28(2)	15(2)	23(2)	4(2)	2(2)	1(1)

Tabelle 19.71: Lageparameter der Wasserstoffatome (x 10⁴) und isotrope Temperaturfaktoren (A² x 10³)von 252.

	x	У	Z	U(eq)
H(6)	7614	8443	6242	31
H(7)	7677	10651	6392	43
H(8)	8892	11649	8087	45
H(9)	10006	10442	9717	38
H(10)	9914	8221	9680	30
H(11A)	7928	2872	10914	33
H(11B)	8534	3082	12640	33
H(11C)	9153	2770	10953	33

 Tabelle 19.72:
 Torsionswinkel [°] von 252.

C(2)-C(1)-O(1)-C(4)	-4.9(4)
C(5)-C(1)-O(1)-C(4)	176.5(2)
O(1)-C(1)-C(2)-C(3)	-0.4(5)
C(5)-C(1)-C(2)-C(3)	177.8(3)
O(1)-C(1)-C(2)-Br(1)	-176.5(2)
C(5)-C(1)-C(2)-Br(1)	1.8(6)
C(4)-N(1)-C(3)-O(2)	172.4(3)
C(4)-N(1)-C(3)-C(2)	-7.7(5)
C(1)-C(2)-C(3)-O(2)	-173.3(3)
Br(1)-C(2)-C(3)-O(2)	3.0(4)
C(1)-C(2)-C(3)-N(1)	6.8(5)
Br(1)-C(2)-C(3)-N(1)	-177.0(2)
C(3)-N(1)-C(4)-O(3)	-177.2(3)
C(3)-N(1)-C(4)-O(1)	2.5(5)
C(11)-O(3)-C(4)-N(1)	0.1(4)
C(11)-O(3)-C(4)-O(1)	-179.7(2)
C(1)-O(1)-C(4)-N(1)	4.2(4)
C(1)-O(1)-C(4)-O(3)	-176.1(3)
C(2)-C(1)-C(5)-C(10)	-131.1(4)
O(1)-C(1)-C(5)-C(10)	47.3(4)
C(2)-C(1)-C(5)-C(6)	48.7(6)
O(1)-C(1)-C(5)-C(6)	-132.9(3)
C(10)-C(5)-C(6)-C(7)	1.1(6)
C(1)-C(5)-C(6)-C(7)	-178.7(4)
C(5)-C(6)-C(7)-C(8)	0.9(6)
C(6)-C(7)-C(8)-C(9)	-1.4(7)
C(7)-C(8)-C(9)-C(10)	0.0(7)
C(8)-C(9)-C(10)-C(5)	2.0(7)
C(6)-C(5)-C(10)-C(9)	-2.6(6)
C(1)-C(5)-C(10)-C(9)	177.3(4)

19.13 Röntgenstrukturdaten von Triazolindolin 284

Abbildung 19.13: Röntgenstruktur von Triazolindolin 284.

Tabelle 19.73: Kristalldaten und Strukturverfeinerungen von 284.

Identifikationsnummer	s2567lm
Empirische Formel	C22 H22 N6
Formelgewicht	370.46
Temperatur	130(2) K
Wellenlänge	0.71073 A
Kristallsystem, Raumgruppe	Triclinic, P-1
Gitterkonstante	a = 7.8523(4) A alpha = 61.578(2)°
	b = 12.0078(6) A beta = 82.814(3)°
	c = 12.2448(6) A gamma = 75.035(3)°
Volumen	980.94(8) A^3
Z, berechnete Dichte	2, 1.254 Mg/m^3
Absorptionskoeffizient	0.078 mm^-1
F(000)	392
Kristallgröße	0.50 x 0.44 x 0.29 mm
Theta-Bereich für Datensammlung	1.89 to 26.00 deg.
Bereich für Indizes	-9<=h<=9, -14<=k<=14, -15<=l<=15
Gesammelte/ unabhängige Reflexe	13360 / 3816 [R(int) = 0.0248]
Vollständigkeit für theta = 26.00	99.1 %
Korrektur Absorption	Semi-empirical from equivalents
Max. und min. Transmission	0.7457 und 0.7267
Verfeinerungsmethode	Full-matrix least-squares on F^2
Daten/Einschränkung/Parameter	3816 / 10 / 265
Goodness-of-fit on F^2	1.028
Abschließende R Indizes [I>2sigma(I)]	R1 = 0.0532, wR2 = 0.1226
R Indizes (alle Daten)	R1 = 0.0651, wR2 = 0.1286
Absolute Strukturparameter	0.037(3)
Restelektronendichte	0.686 und -0.320 e.A^-3

Tabelle 19.74: Lageparameter (x 10⁴) und äquivalente isotrope Temperaturfaktoren (A² x 10³) von **284**.

U(eq) ist definiert als ein Drittel der Spur des orthogonalisierten U_{ij}-Tensors.

	x	У	Z	U(eq)
N(1)	9779(2)	7993(2)	4550(1)	21(1)
C(1)	9484(2)	9091(2)	3438(2)	19(1)
N(2)	11215(2)	7927(2)	5107(1)	26(1)
C(2)	10803(2)	9701(2)	3336(2)	21(1)

N(3)	11827(2)	8963(2)	4378(1)	25(1)
C(3)	8063(2)	9433(2)	2592(2)	19(1)
N(4)	6771(2)	10539(1)	2248(1)	21(1)
C(4)	5689(2)	10530(2)	1453(2)	23(1)
N(5)	7877(2)	8729(2)	2074(2)	25(1)
C(5)	6386(3)	9423(2)	1359(2)	27(1)
N(6)	9036(3)	3562(2)	7342(2)	36(1)
C(6)	6553(3)	11540(2)	2639(2)	34(1)
C(7)	8728(2)	7048(2)	5200(2)	22(1)
C(8)	6896(2)	7464(2)	5184(2)	24(1)
C(9)	5883(3)	6561(2)	5885(2)	27(1)
C(10)	6699(3)	5285(2)	6584(2)	28(1)
C(11)	8540(3)	4870(2)	6572(2)	28(1)
C(12)	9594(3)	5752(2)	5873(2)	25(1)
C(13)	5954(3)	4134(2)	7520(2)	33(1)
C(14)	7478(3)	2998(2)	7667(2)	41(1)
C(15)	5716(3)	4193(2)	8781(2)	45(1)
C(16)	4221(4)	4091(3)	7138(3)	54(1)
C(17)	11096(2)	10948(2)	2338(2)	22(1)
C(18)	10784(2)	11336(2)	1096(2)	27(1)
C(19)	10974(3)	12550(2)	182(2)	34(1)
C(20)	11478(3)	13389(2)	494(2)	35(1)
C(21)	11810(3)	13002(2)	1723(2)	34(1)
C(22)	11630(2)	11788(2)	2639(2)	27(1)

 Tabelle 19.75:
 Bindungslängen [Å] und Bindungswinkel [°] von 284.

N(1)-N(2)	1.356(2)
N(1)-C(1)	1.363(2)
N(1)-C(7)	1.436(2)
C(1)-C(2)	1.377(2)
C(1)-C(3)	1.461(2)
N(2)-N(3)	1.311(2)
C(2)-N(3)	1.368(2)
C(2)-C(17)	1.468(3)
C(3)-N(5)	1.319(2)
C(3)-N(4)	1.360(2)
N(4)-C(4)	1.375(2)
N(4)-C(6)	1.458(2)
C(4)-C(5)	1.355(3)
C(4)-H(4)	0.9500
N(5)-C(5)	1.375(2)
C(5)-H(5)	0.9500
N(6)-C(11)	1.369(3)
N(6)-C(14)	1.471(3)
N(6)-H(6)	0.96(3)
C(6)-H(6A)	0.9800
С(6)-Н(6В)	0.9800
C(6)-H(6C)	0.9800
C(7)-C(12)	1.391(3)
C(7)-C(8)	1.395(3)
C(8)-C(9)	1.391(3)
C(8)-H(8)	0.9500
C(9)-C(10)	1.368(3)
С(9)-Н(9)	0.932(13)
C(10)-C(11)	1.402(3)
C(10)-C(13)	1.520(3)
C(11)-C(12)	1.398(3)
C(12)-H(12)	0.9500
C(13)-C(16)	1.513(3)
C(13)-C(14)	1.518(3)
C(13)-C(15)	1.565(3)
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800

C(16)-H(16A)	0 9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(17)-C(22)	1.392(3)
C(17)-C(18)	1.396(3)
C(18)-C(19)	1.385(3)
C(18)-H(18)	0.9500
C(19)-C(20)	1.387(3)
C(19)-H(19)	0.9500
C(20)-C(21)	1.386(3)
$C(20)^{-11}(20)$	1 383(3)
C(21)-H(21)	0.9500
C(22)-H(22)	0.9500
N(2)-N(1)-C(1)	110.18(14)
N(2)-N(1)-C(7)	119.80(14)
C(1)-N(1)-C(7)	129.69(15)
N(1)-C(1)-C(2)	104.81(15)
N(1)-C(1)-C(3)	123.88(16)
U(2)-U(1)-U(3) N(3)-N(2)-N(1)	131.28(17)
N(3)-C(2)-C(1)	108.23(16)
N(3)-C(2)-C(17)	123.33(16)
C(1)-C(2)-C(17)	128.40(16)
N(2)-N(3)-C(2)	109.14(15)
N(5)-C(3)-N(4)	112.27(15)
N(5)-C(3)-C(1)	124.89(16)
N(4)-C(3)-C(1)	122.84(15)
C(3)-N(4)-C(4)	106.29(15)
C(3) - N(4) - C(6)	127.40(15)
C(4) - N(4) - C(0) C(5) - C(4) - N(4)	106.03(16)
C(5)-C(4)-H(4)	127.0
N(4)-C(4)-H(4)	127.0
C(3)-N(5)-C(5)	104.55(15)
C(4)-C(5)-N(5)	110.86(16)
C(4)-C(5)-H(5)	124.6
N(5)-C(5)-H(5)	124.6
C(11) - N(6) - C(14)	109.25(18)
C(11)-N(6)-H(6)	122.8(17)
N(4)-C(6)-H(6A)	109.5
N(4)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6B)	109.5
N(4)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
C(12) - C(7) - C(8)	122.58(17)
C(12) - C(7) - N(1)	119.09(10)
C(9)-C(8)-C(7)	119.25(17)
C(9)-C(8)-H(8)	120.4
C(7)-C(8)-H(8)	120.4
C(10)-C(9)-C(8)	119.52(18)
С(10)-С(9)-Н(9)	111.7(10)
C(8)-C(9)-H(9)	128.8(10)
C(9)-C(10)-C(11)	120.86(18)
C(3)-C(10)-C(13) C(11)-C(10)-C(13)	130.72(19) 108 27(17)
N(6)-C(11)-C(12)	129 09(19)
N(6)-C(11)-C(10)	109.90(18)
C(12)-C(11)-C(10)	120.98(18)
C(7)-C(12)-C(11)	116.77(18)
C(7)-C(12)-H(12)	121.6
C(11)-C(12)-H(12)	121.6
C(16)-C(13)-C(14)	115.3(2)
C(10)-C(13)-C(10)	114.22(19)
C(14)-C(13)-C(10) C(16)-C(13)-C(15)	101.63(17)
	103.7(2)

C(14)-C(13)-C(15)	107 75(19)
C(10)-C(13)-C(15)	107.65(17)
N(6)-C(14)-C(13)	107.03(17) 103.77(17)
N(6) - C(14) - H(14A)	111 0
C(13)-C(14)-H(14A)	111.0
N(6)-C(14)-H(14B)	111.0
C(13)-C(14)-H(14B)	111.0
H(14A)-C(14)-H(14B)	109.0
C(13)-C(15)-H(15A)	109.5
C(13)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
C(13)-C(15)-H(15C)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
C(13)-C(16)-H(16A)	109.5
C(13)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(13)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(22)-C(17)-C(18)	119.09(18)
C(22)-C(17)-C(2)	119.37(17)
C(18)-C(17)-C(2)	121.49(16)
C(19)-C(18)-C(17)	120.20(18)
C(19)-C(18)-H(18)	119.9
C(17)-C(18)-H(18)	119.9
C(18)-C(19)-C(20)	120.25(19)
C(18)-C(19)-H(19)	119.9
C(20)-C(19)-H(19)	119.9
C(21)-C(20)-C(19)	119.77(19)
C(21)-C(20)-H(20)	120.1
С(19)-С(20)-Н(20)	120.1
C(22)-C(21)-C(20)	120.19(19)
C(22)-C(21)-H(21)	119.9
C(20)-C(21)-H(21)	119.9
C(21)-C(22)-C(17)	120.49(19)
C(21)-C(22)-H(22)	119.8
C(17)-C(22)-H(22)	119.8

Tabelle 19.76: Anisotrope Temperaturfaktoren (A² x 10³) von 284.

Der Exponent des anisotropen Temperaturfaktors ist definiert als: $-2\pi^2$ [$h^2 a^{*2}$ U11 + ... + 2 h k $a^* b^*$ U12]

	U11	U22	U33	U23	U13	U12
N(1)	17(1)	26(1)	22(1)	-12(1)	-3(1)	-2(1)
C(1)	17(1)	23(1)	21(1)	-13(1)	-2(1)	-2(1)
N(2)	20(1)	34(1)	23(1)	-14(1)	-5(1)	-5(1)
C(2)	18(1)	27(1)	23(1)	-16(1)	-3(1)	-2(1)
N(3)	20(1)	35(1)	24(1)	-15(1)	-3(1)	-6(1)
C(3)	18(1)	20(1)	20(1)	-10(1)	-2(1)	-4(1)
N(4)	18(1)	22(1)	24(1)	-12(1)	-4(1)	-1(1)
C(4)	20(1)	25(1)	24(1)	-11(1)	-6(1)	-2(1)
N(5)	26(1)	23(1)	29(1)	-14(1)	-10(1)	0(1)
C(5)	28(1)	26(1)	29(1)	-14(1)	-13(1)	-2(1)
N(6)	33(1)	28(1)	39(1)	-12(1)	-2(1)	1(1)
C(6)	30(1)	34(1)	49(1)	-31(1)	-9(1)	3(1)
C(7)	25(1)	25(1)	19(1)	-12(1)	-1(1)	-6(1)
C(8)	23(1)	25(1)	26(1)	-14(1)	-1(1)	-4(1)
C(9)	25(1)	33(1)	29(1)	-19(1)	2(1)	-8(1)
C(10)	34(1)	32(1)	25(1)	-18(1)	2(1)	-11(1)
C(11)	42(1)	24(1)	21(1)	-13(1)	-5(1)	-3(1)
C(12)	26(1)	28(1)	22(1)	-14(1)	-3(1)	-1(1)
C(13)	33(1)	23(1)	38(1)	-11(1)	0(1)	-7(1)
C(14)	41(1)	29(1)	45(1)	-14(1)	-1(1)	-2(1)
C(15)	53(2)	43(1)	38(1)	-17(1)	12(1)	-20(1)
C(16)	46(2)	48(2)	68(2)	-24(1)	-6(1)	-14(1)
C(17)	15(1)	28(1)	26(1)	-16(1)	1(1)	-4(1)

C(18)	24(1)	35(1)	28(1)	-17(1)	-2(1)	-9(1)
C(19)	26(1)	42(1)	27(1)	-10(1)	-3(1)	-7(1)
C(20)	26(1)	26(1)	42(1)	-10(1)	4(1)	-4(1)
C(21)	29(1)	34(1)	49(1)	-28(1)	8(1)	-11(1)
C(22)	23(1)	35(1)	32(1)	-23(1)	5(1)	-10(1)

Tabelle 19.77: Lageparameter der Wasserstoffatome (x 104) und isotrope Temperaturfaktoren (A2 x 103)
von 284.

	х	У	Z	U(eq)
H(4)	4662	11171	1051	28
H(5)	5908	9161	865	32
H(6)	10200(40)	3050(30)	7330(30)	58(8)
H(6A)	7079	11154	3462	51
H(6B)	5295	11917	2677	51
H(6C)	7140	12224	2042	51
H(8)	6347	8354	4699	29
H(9)	4661(17)	6694(15)	5964(11)	25(5)
H(12)	10841	5481	5857	30
H(14A)	7554	2289	8531	49
H(14B)	7352	2653	7098	49
H(15A)	6861	4145	9061	67
H(15B)	5236	3459	9405	67
H(15C)	4902	5011	8667	67
H(16A)	3337	4882	7024	82
H(16B)	3823	3328	7787	82
H(16C)	4381	4036	6357	82
H(18)	10439	10766	878	32
H(19)	10759	12810	-661	41
H(20)	11594	14225	-133	41
H(21)	12163	13572	1938	41
H(22)	11873	11525	3478	32

Tabelle 19.78: Torsionswinkel [°] von 284.

N(2)-N(1)-C(1)-C(2)	-0.04(19)
C(7)-N(1)-C(1)-C(2)	173.22(16)
N(2)-N(1)-C(1)-C(3)	178.35(16)
C(7)-N(1)-C(1)-C(3)	-8.4(3)
C(1)-N(1)-N(2)-N(3)	0.42(19)
C(7)-N(1)-N(2)-N(3)	-173.61(15)
N(1)-C(1)-C(2)-N(3)	-0.33(19)
C(3)-C(1)-C(2)-N(3)	-178.56(18)
N(1)-C(1)-C(2)-C(17)	-177.96(17)
C(3)-C(1)-C(2)-C(17)	3.8(3)
N(1)-N(2)-N(3)-C(2)	-0.63(19)
C(1)-C(2)-N(3)-N(2)	0.6(2)
C(17)-C(2)-N(3)-N(2)	178.39(16)
N(1)-C(1)-C(3)-N(5)	-60.8(3)
C(2)-C(1)-C(3)-N(5)	117.2(2)
N(1)-C(1)-C(3)-N(4)	119.4(2)
C(2)-C(1)-C(3)-N(4)	-62.7(3)
N(5)-C(3)-N(4)-C(4)	0.0(2)
C(1)-C(3)-N(4)-C(4)	179.83(16)
N(5)-C(3)-N(4)-C(6)	179.78(18)
C(1)-C(3)-N(4)-C(6)	-0.4(3)
C(3)-N(4)-C(4)-C(5)	0.0(2)
C(6)-N(4)-C(4)-C(5)	-179.84(18)
N(4)-C(3)-N(5)-C(5)	0.1(2)
C(1)-C(3)-N(5)-C(5)	-179.78(17)

N(4)-C(4)-C(5)-N(5)	0.1(2)
C(3)-N(5)-C(5)-C(4)	-0.1(2)
N(2)-N(1)-C(7)-C(12)	-42.6(2)
C(1)-N(1)-C(7)-C(12)	144.68(18)
N(2)-N(1)-C(7)-C(8)	134.49(17)
C(1)-N(1)-C(7)-C(8)	-38.2(3)
C(12)-C(7)-C(8)-C(9)	1.5(3)
N(1)-C(7)-C(8)-C(9)	-175.47(15)
C(7)-C(8)-C(9)-C(10)	0.4(3)
C(8)-C(9)-C(10)-C(11)	-1.9(3)
C(8)-C(9)-C(10)-C(13)	173.22(19)
C(14)-N(6)-C(11)-C(12)	-168.19(19)
C(14)-N(6)-C(11)-C(10)	13.8(2)
C(9)-C(10)-C(11)-N(6)	179.83(18)
C(13)-C(10)-C(11)-N(6)	3.7(2)
C(9)-C(10)-C(11)-C(12)	1.7(3)
C(13)-C(10)-C(11)-C(12)	-174.45(17)
C(8)-C(7)-C(12)-C(11)	-1.7(3)
N(1)-C(7)-C(12)-C(11)	175.29(15)
N(6)-C(11)-C(12)-C(7)	-177.65(19)
C(10)-C(11)-C(12)-C(7)	0.1(3)
C(9)-C(10)-C(13)-C(16)	41.0(3)
C(11)-C(10)-C(13)-C(16)	-143.4(2)
C(9)-C(10)-C(13)-C(14)	165.8(2)
C(11)-C(10)-C(13)-C(14)	-18.6(2)
C(9)-C(10)-C(13)-C(15)	-81.1(3)
C(11)-C(10)-C(13)-C(15)	94.5(2)
C(11)-N(6)-C(14)-C(13)	-25.3(2)
C(16)-C(13)-C(14)-N(6)	149.6(2)
C(10)-C(13)-C(14)-N(6)	25.5(2)
C(15)-C(13)-C(14)-N(6)	-87.5(2)
N(3)-C(2)-C(17)-C(22)	-37.4(3)
C(1)-C(2)-C(17)-C(22)	139.86(19)
N(3)-C(2)-C(17)-C(18)	145.13(18)
C(1)-C(2)-C(17)-C(18)	-37.6(3)
C(22)-C(17)-C(18)-C(19)	-1.2(3)
C(2)-C(17)-C(18)-C(19)	176.27(18)
C(17)-C(18)-C(19)-C(20)	0.1(3)
C(18)-C(19)-C(20)-C(21)	0.7(3)
C(19)-C(20)-C(21)-C(22)	-0.4(3)
C(20)-C(21)-C(22)-C(17)	-0.7(3)
C(18)-C(17)-C(22)-C(21)	1.5(3)
C(2)-C(17)-C(22)-C(21)	-176.01(17)

20 Literatur

- [1] a) Y. Liang, Y.-F. Liang, N. Jiao, Org. Chem. Front. 2015, 2, 403–415; b) J. L. Jeffrey, R. Sarpong, Chem. Sci. 2013, 4, 4092–4106; c) R. Hili, A. K. Yudin, Nat. Chem. Biol. 2006, 2, 284–287.
- [2] a) F. Collet, R. H. Dodd, P. Dauban, *Chem. Commun.* 2009, 5061–5074; b) D. A. Dias, S. Urban, U. Roessner, *Metabolites* 2012, *2*, 303–336; c) G. Wu, Z. Wu, Z. Dai, Y. Yang, W. Wang, C. Liu, B. Wang, J. Wang, Y. Yin, *Amino acids* 2013, *44*, 1107–1113; d) A. Kornberg, *Rev. Mod. Phys.* 1959, *31*, 200–209.
- [3] S. E. O'Connor, J. J. Maresh, *Nat. Prod. Rep.* **2006**, *23*, 532–547.
- [4] a) J. W. Wheless, B. Vazquez, *Epilepsy Curr.* 2010, 10, 1–6; b) S. Kothare, G. Kluger, R. Sachdeo, B. Williams, O. Olhaye, C. Perdomo, F. Bibbiani, *Seizure* 2017, 47, 25–33.
- [5] S. Jeanmart, A. J. F. Edmunds, C. Lamberth, M. Pouliot, *Bioorg. Med. Chem.* 2016, 24, 317–341.
- [6] J. Bariwal, E. van der Eycken, *Chem. Soc. Rev.* **2013**, *42*, 9283–9303.
- [7] a) Y. Park, Y. Kim, S. Chang, *Chem. Rev.* 2017, *117*, 9247–9301; b) T. Shimbayashi, K. Sasakura, A. Eguchi, K. Okamoto, K. Ohe, *Chem. Eur. J.* 2019, *25*, 3156–3180; c) B. Plietker, A. Röske, *Catal. Sci. Technol.* 2019, *9*, 4188–4197.
- [8] P. Griess, Proc. R. Soc. Lond. 1864, 13, 375–384.
- [9] S. Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed. 2005, 44, 5188–5240.
- [10] a) S. G. Agalave, S. R. Maujan, V. S. Pore, *Chem. Asian J.* 2011, *6*, 2696–2718; b) X. Jiang,
 X. Hao, L. Jing, G. Wu, D. Kang, X. Liu, P. Zhan, *Expert. Opin. Drug. Discov.* 2019, *14*, 779–789.
- [11] a) E. F. V. Scriven, K. Turnbull, Chem. Rev. 1988, 88, 297–368; b) G. L'abbé, Angew. Chem.
 Int. Ed. 1975, 14, 775–782; c) T. G. Driver, Org. Biomol. Chem. 2010, 8, 3831–3846.
- [12] a) J. Mieres Pérez, *Dissertation*, Ruhr-Universität Bochum, **2017**; b) G. Dequirez, V. Pons,
 P. Dauban, *Angew. Chem. Int. Ed.* **2012**, *51*, 7384–7395.
- [13] a) H. Hemetsberger, D. Knittel, H. Weidmann, *Monatsh. Chem.* 1970, 101, 161–165; b) D.
 Knittel, *Synthesis* 1985, 1985, 186–188.
- [14] P. A. S. Smith, B. B. Brown, J. Am. Chem. Soc. **1951**, 73, 2435–2437.
- [15] A. Marcinek, E. Leyva, D. Whitt, M. S. Platz, J. Am. Chem. Soc. 1993, 115, 8609–8612.

- [16] a) W. L. Karney, W. T. Borden, J. Am. Chem. Soc. 1997, 119, 1378–1387; b) N. P. Gritsan,
 Z. Zhu, C. M. Hadad, M. S. Platz, J. Am. Chem. Soc. 1999, 121, 1202–1207.
- [17] B. A. DeGraff, D. W. Gillespie, R. J. Sundberg, J. Am. Chem. Soc. 1974, 96, 7491–7496.
- [18] H. Bock, R. Dammel, J. Am. Chem. Soc. **1988**, 110, 5261–5269.
- [19] M. Mascal, C. J. Moody, J. Chem. Soc., Chem. Commun. **1988**, 589–590.
- [20] a) T. Uchida, T. Katsuki, Chem. Rec. 2014, 14, 117–129; b) K. Shin, H. Kim, S. Chang, Acc.
 Chem. Res. 2015, 48, 1040–1052.
- [21] a) B. J. Stokes, H. Dong, B. E. Leslie, A. L. Pumphrey, T. G. Driver, J. Am. Chem. Soc. 2007, 129, 7500–7501; b) B. J. Stokes, B. Jovanović, H. Dong, K. J. Richert, R. D. Riell, T. G. Driver, J. Org. Chem. 2009, 74, 3225–3228; c) B. J. Stokes, S. Liu, T. G. Driver, J. Am. Chem. Soc. 2011, 133, 4702–4705; d) K. Sun, S. Liu, P. M. Bec, T. G. Driver, Angew. Chem. Int. Ed. 2011, 50, 1702–1706; e) C. Kong, N. Jana, T. G. Driver, Org. Lett. 2013, 15, 824–827.
- [22] a) K. Sun, R. Sachwani, K. J. Richert, T. G. Driver, Org. Lett. 2009, 11, 3598–3601; b) H.
 Suematsu, T. Katsuki, J. Am. Chem. Soc. 2009, 131, 14218–14219; c) M. Ichinose, H.
 Suematsu, Y. Yasutomi, Y. Nishioka, T. Uchida, T. Katsuki, Angew. Chem. Int. Ed. 2011, 50, 9884–9887.
- [23] a) K. Omura, M. Murakami, T. Uchida, R. Irie, T. Katsuki, *Chem. Lett.* 2003, *32*, 354–355; b)
 K. Omura, T. Uchida, R. Irie, T. Katsuki, *Chem. Commun.* 2004, 2060–2061; c) H. Kawabata,
 K. Omura, T. Katsuki, *Tetrahedron Lett.* 2006, *47*, 1571–1574; d) S. Cenini, S. Tollari, A.
 Penoni, C. Cereda, *J. Mol. Catal. A: Chem.* 1999, *137*, 135–146; e) W. G. Shou, J. Li, T. Guo,
 Z. Lin, G. Jia, *Organometallics* 2009, *28*, 6847–6854.
- [24] Y. Liu, T. You, T.-T. Wang, C.-M. Che, *Tetrahedron* **2019**, *75*, 130607.
- [25] I. Bauer, H.-J. Knölker, Chem. Rev. 2015, 115, 3170–3387.
- [26] P. Wang, L. Deng, *Chin. J. Chem.* **2018**, *36*, 1222–1240.
- [27] M. Mishra, S. Mohapatra, N. P. Mishra, B. K. Jena, P. Panda, S. Nayak, *Tetrahedron Lett.* **2019**, *60*, 150925.
- [28] J. Y. Kim, S. H. Park, J. Ryu, S. H. Cho, S. H. Kim, S. Chang, J. Am. Chem. Soc. 2012, 134, 9110–9113.
- [29] a) M. Shen, B. E. Leslie, T. G. Driver, *Angew. Chem. Int. Ed.* 2008, 47, 5056–5059; b) A. L.
 Pumphrey, H. Dong, T. G. Driver, *Angew. Chem. Int. Ed.* 2012, *51*, 5920–5923; c) Q. Nguyen,
 K. Sun, T. G. Driver, *J. Am. Chem. Soc.* 2012, *134*, 7262–7265; d) C. Kong, T. G. Driver, *Org.*

Lett. **2015**, *17*, 802–805; e) W. Mazumdar, N. Jana, B. T. Thurman, D. J. Wink, T. G. Driver, J. Am. Chem. Soc. **2017**, *139*, 5031–5034.

- [30] a) M. Shen, T. G. Driver, Org. Lett. 2008, 10, 3367–3370; b) Q. Nguyen, T. Nguyen, T. G.
 Driver, J. Am. Chem. Soc. 2013, 135, 620–623.
- [31] A. Baykal, B. Plietker, Eur. J. Org. Chem. 2020, 2020, 1145–1147.
- [32] Y. Liu, J. Wei, C.-M. Che, *Chem. Commun.* **2010**, *46*, 6926–6928.
- [33] J. Bonnamour, C. Bolm, Org. Lett. **2011**, *13*, 2012–2014.
- [34] I. T. Alt, B. Plietker, Angew. Chem. Int. Ed. 2016, 55, 1519–1522.
- [35] B. Plietker, *Eisen-katalysierte allylische Alkylierung*, Patentnummer: WO2008101683 (A2),
 2008.
- [36] B. J. Stokes, K. J. Richert, T. G. Driver, J. Org. Chem. 2009, 74, 6442–6451.
- [37] O. Villanueva, N. M. Weldy, S. B. Blakey, C. E. MacBeth, Chem. Sci. 2015, 6, 6672–6675.
- [38] I. T. Alt, C. Guttroff, B. Plietker, Angew. Chem. Int. Ed. 2017, 56, 10582–10586.
- [39] I. T. Alt, *Dissertation*, Universität Stuttgart, **2018**.
- [40] E. T. Hennessy, T. A. Betley, *Science* **2013**, *340*, 591–595.
- [41] a) N. C. Thacker, Z. Lin, T. Zhang, J. C. Gilhula, C. W. Abney, W. Lin, *J. Am. Chem. Soc.* 2016, *138*, 3501–3509; b) B. Bagh, D. L. J. Broere, V. Sinha, P. F. Kuijpers, N. P. van Leest, B. de Bruin, S. Demeshko, M. A. Siegler, J. I. van der Vlugt, *J. Am. Chem. Soc.* 2017, *139*, 5117–5124.
- [42] D. A. Iovan, M. J. T. Wilding, Y. Baek, E. T. Hennessy, T. A. Betley, *Angew. Chem. Int. Ed.* **2017**, *56*, 15599–15602.
- [43] D. L. J. Broere, B. de Bruin, J. N. H. Reek, M. Lutz, S. Dechert, J. I. van der Vlugt, J. Am.
 Chem. Soc. 2014, 136, 11574–11577.
- [44] M. Goswami, P. Geuijen, J. N. H. Reek, B. de Bruin, *Eur. J. Inorg. Chem.* 2018, 2018, 617–626.
- [45] a) E. R. King, E. T. Hennessy, T. A. Betley, J. Am. Chem. Soc. 2011, 133, 4917–4923; b) E. T. Hennessy, R. Y. Liu, D. A. Iovan, R. A. Duncan, T. A. Betley, Chemical science 2014, 5, 1526–1532; c) M. J. T. Wilding, D. A. Iovan, T. A. Betley, J. Am. Chem. Soc. 2017, 139, 12043–12049.
- [46] D. Intrieri, P. Zardi, A. Caselli, E. Gallo, *Chem. Commun.* **2014**, *50*, 11440–11453.
- [47] T. Bach, B. Schlummer, K. Harms, Chem. Eur. J. 2001, 7, 2581–2594.

- [48] a) C. Damiano, D. Intrieri, E. Gallo, *Inorg. Chim. Acta* 2018, 470, 51–67; b) N. Jung, S. Bräse,
 Angew. Chem. Int. Ed. 2012, 51, 5538–5540.
- [49] S. Fantauzzi, E. Gallo, A. Caselli, C. Piangiolino, F. Ragaini, S. Cenini, *Eur. J. Org. Chem.* 2007, 2007, 6053–6059.
- [50] S. A. Cramer, D. M. Jenkins, J. Am. Chem. Soc. 2011, 133, 19342–19345.
- [51] Y. Liu, C.-M. Che, *Chem. Eur. J.* **2010**, *16*, 10494–10501.
- [52] T. Yang, X. Fan, X. Zhao, W. Yu, Org. Lett. **2018**, 20, 1875–1879.
- Y. Murakami, T. Watanabe, H. Suzuki, N. Kotake, T. Takashi, K. Toyonari, M. Ohno, K. Takase, T. Suzuki, K. Kondo, *Chem. Pharm. Bull.* **1997**, *45*, 1739–1744.
- [54] D. Knittel, H. Hemetsberger, H. Weidmann, *Monatsh. Chem.* **1970**, *101*, 157–160.
- [55] G. Li, C.-L. Ji, X. Hong, M. Szostak, J. Am. Chem. Soc. **2019**, 141, 11161–11172.
- [56] a) P. Roy, C. Dufresne, N. Lachance, J.-P. Leclerc, M. Boisvert, Z. Wang, Y. Leblanc, Synthesis 2005, 2005, 2751–2757; b) A. G. O'Brien, F. Lévesque, P. H. Seeberger, Chem. Commun. 2011, 47, 2688–2690.
- [57] P. Gao, M. Fan, Z. Bai, Y. Wei, *Chin. J. Chem.* **2015**, *33*, 479–485.
- [58] H. Simon, D. Palm, *Angew. Chem.* **1966**, *78*, 993–1007.
- [59] a) J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, *Phys. Rev. Lett.* 2003, *91*, 146401;
 b) F. Allouti, L. Manceron, M. E. Alikhani, *J. Mol. Struc.* 2009, *903*, 4–10.
- [60] a) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297–3305; b) F. Weigend, *Phys. Chem. Chem. Phys.* 2006, *8*, 1057–1065.
- [61] a) J. E. M. N. Klein, B. Miehlich, M. S. Holzwarth, M. Bauer, M. Milek, M. M. Khusniyarov,
 G. Knizia, H.-J. Werner, B. Plietker, *Angew. Chem. Int. Ed.* 2014, *53*, 1790–1794; b) J. E. M.
 N. Klein, G. Knizia, B. Miehlich, J. Kästner, B. Plietker, *Chem. Eur. J.* 2014, *20*, 7254–7257.
- [62] a) M. Somei, F. Yamada, *Nat. Prod. Rep.* 2004, *21*, 278–311; b) L. F. Szabó, *Molecules* 2008, *13*, 1875–1896; c) Q. Pan, N. R. Mustafa, K. Tang, Y. H. Choi, R. Verpoorte, *Phytochem. Rev.* 2016, *15*, 221–250; d) M. Hesse, *Alkaloide. Fluch oder Segen der Natur* ?, Helvetica Chemica Acta, Zürich, 2000.
- [63] a) M. Moudi, R. Go, C. Y. S. Yien, M. Nazre, Int. J. Prev. Med. 2013, 4, 1231–1235; b) L.
 Moisan, P. Thuéry, M. Nicolas, E. Doris, B. Rousseau, Angew. Chem. Int. Ed. 2006, 45, 5334–5336.

- [64] a) P. M. Checchi, J. H. Nettles, J. Zhou, J. P. Snyder, H. C. Joshi, *Trends Pharmacol. Sci.* 2003, 24, 361–365; b) E. Martino, G. Casamassima, S. Castiglione, E. Cellupica, S. Pantalone, F. Papagni, M. Rui, A. M. Siciliano, S. Collina, *Bioorg. Med. Chem. Lett.* 2018, 28, 2816–2826.
- [65] a) S. Raucher, B. L. Bray, R. F. Lawrence, J. Am. Chem. Soc. 1987, 109, 442–446; b) E. Giovanelli, L. Moisan, S. Comesse, S. Leroux, B. Rousseau, P. Hellier, M. Nicolas, E. Doris, Org. Biomol. Chem. 2013, 11, 5885–5891.
- [66] a) P. Potier, J. Nat. Prod. 1980, 43, 72–86; b) J. P. Kutney, Nat. Prod. Rep. 1990, 7, 85; c) J.
 P. Kutney, Synlett 1991, 1991, 11–19.
- [67] a) S. Yokoshima, T. Ueda, S. Kobayashi, A. Sato, T. Kuboyama, H. Tokuyama, T. Fukuyama,
 J. Am. Chem. Soc. 2002, 124, 2137–2139; b) H. Ishikawa, D. A. Colby, S. Seto, P. Va, A. Tam,
 H. Kakei, T. J. Rayl, I. Hwang, D. L. Boger, J. Am. Chem. Soc. 2009, 131, 4904–4916.
- [68] R. J. Sundberg, J. Hong, S. Q. Smith, M. Sabat, I. Tabakovic, *Tetrahedron* 1998, 54, 6259–6292.
- [69] a) J. P. Kutney, F. Bylsma, J. Am. Chem. Soc. 1970, 92, 6090–6092; b) B. M. Trost, S. A. Godleski, J. L. Belletire, J. Org. Chem. 1979, 44, 2052–2054; c) T. Imanishi, H. Shin, N. Yagi, M. Hanaoka, *Tetrahedron Lett.* 1980, 21, 3285–3288; d) C. Marazano, M.-T. Le Goff, J.-L. Fourrey, B. C. Das, J. Chem. Soc., Chem. Commun. 1981, 389–391; e) S. Raucher, B. L. Bray, J. Org. Chem. 1985, 50, 3236–3237; f) M. T. Reding, T. Fukuyama, Org. Lett. 1999, 1, 973–976; g) N. Huang, T. Jiang, T. Wang, M. Soukri, R. Ganorkar, B. Deker, J.-M. Léger, J. Madalengoitia, M. E. Kuehne, *Tetrahedron* 2008, 64, 9850–9856; h) G. Büchi, P. Kulsa, K. Ogasawara, R. L. Rosati, J. Am. Chem. Soc. 1970, 92, 999–1005; i) C. Szántay, H. Bölcskei, E. Gács-Baitz, *Tetrahedron* 1990, 46, 1711–1732; j) M. Kono et al., Org. Lett. 2019, 21, 3750–3754; k) H. Mizoguchi, H. Oikawa, H. Oguri, Nat. Chem. 2014, 6, 57–64.
- [70] a) J. Kumar, C. S. Purohit, S. Verma, *Chem. Commun.* 2008, 2526–2528; b) Y.-W. Sun, X.-Y.
 Tang, M. Shi, *Chem. Commun.* 2015, *51*, 13937–13940.
- [71] President and Fellows of Harvard College, M. Chorev, B. H. Aktas, J. A. Halperin, G. Wagner,
 Compounds for the inhibition of cellular proliferation, Patentnummer: WO2012/6068 (A2),
 2012.
- [72] L. Degennaro, V. Capriati, C. Carlucci, S. Florio, R. Luisi, I. Nuzzo, C. Cuocci, *Tetrahedron* 2009, 65, 8745–8755.

- [73] V. Haridas, Y. K. Sharma, S. Sahu, R. P. Verma, S. Sadanandan, B. G. Kacheshwar, *Tetrahedron* 2011, 67, 1873–1884.
- [74] P. A. Donets, N. Cramer, Angew. Chem. Int. Ed. 2015, 54, 633–637.
- [75] Z. Huang, Z. Liu, J. S. Zhou, J. Am. Chem. Soc. 2011, 133, 15882–15885.
- [76] L. Qin, X. Ren, Y. Lu, Y. Li, J. Zhou, Angew. Chem. Int. Ed. 2012, 51, 5915–5919.
- [77] S. Tong, Z. Xu, M. Mamboury, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2015, 54, 11809– 11812.
- [78] H. Mizoguchi, H. Oikawa, H. Oguri, Org. Biomol. Chem. **2012**, *10*, 4236–4242.
- [79] a) D. Hack, P. Chauhan, K. Deckers, Y. Mizutani, G. Raabe, D. Enders, *Chem. Commun.* 2015, 51, 2266–2269; b) A. Carpita, R. Rossi, C. A. Veracini, *Tetrahedron* 1985, 41, 1919–1929.
- [80] a) B. C. Ranu, K. Chattopadhyay, Org. Lett. 2007, 9, 2409–2412; b) N. P. Grimster, C. Gauntlett, C. R. A. Godfrey, M. J. Gaunt, Angew. Chem. 2005, 117, 3185–3189.
- [81] T. Ishiyama, J. Takagi, J. F. Hartwig, N. Miyaura, *Angew. Chem. Int. Ed.* **2002**, *41*, 3056.
- [82] M. Guo, D. Li, Z. Zhang, J. Org. Chem. 2003, 68, 10172–10174.
- [83] W. Yao, L. Pan, Y. Zhang, G. Wang, X. Wang, C. Ma, Angew. Chem. Int. Ed. 2010, 49, 9210– 9214.
- [84] a) L. Meerpoel, G. Hoornaert, *Tetrahedron Lett.* 1989, *30*, 3183–3186; b) L. Meerpoel, G. Hoornaert, *Synthesis* 1990, *1990*, 905–908; c) K. J. van Aken, L. Meerpoel, G. J. Hoornaert, *Tetrahedron Lett.* 1992, *33*, 2713–2716; d) K. J. van Aken, G. M. Lux, G. G. Deroover, L. Meerpoel, G. J. Hoornaert, *Tetrahedron* 1994, *50*, 5211–5224; e) K. Afarinkia, A. Bahar, J. Neuss, M. Vyas, *Tetrahedron Lett.* 2004, *45*, 7121–7124; f) K. Afarinkia, A. Bahar, M. J. Bearpark, Y. Garcia-Ramos, A. Ruggiero, J. Neuss, M. Vyas, *J. Org. Chem.* 2005, *70*, 9529–9537.
- [85] a) C. Belger, B. Plietker, *Chem. Commun.* 2012, *48*, 5419–5421; b) S. Rommel, C. Belger, J.-M. Begouin, B. Plietker, *ChemCatChem* 2015, *7*, 1292–1301; c) J. Teske, B. Plietker, *ACS Catal.* 2016, *6*, 7148–7151; d) J. Teske, B. Plietker, *Org. Lett.* 2018, *20*, 2257–2260; e) F. Kramm, J. Teske, F. Ullwer, W. Frey, B. Plietker, *Angew. Chem. Int. Ed.* 2018, *57*, 13335–13338; f) F. Rami, F. Bächtle, B. Plietker, *Catal. Sci. Technol.* 2020, *10*, 1492–1497.
- [86] J. G. Harrison, O. Gutierrez, N. Jana, T. G. Driver, D. J. Tantillo, J. Am. Chem. Soc. 2016, 138, 487–490.
- [87] D. Nishikawa, K. Hirano, M. Miura, J. Am. Chem. Soc. 2015, 137, 15620–15623.

- [88] N. Okamoto, T. Sueda, H. Minami, Y. Miwa, R. Yanada, Org. Lett. 2015, 17, 1336–1339.
- [89] T. Khan, S. Yaragorla, Eur. J. Org. Chem. 2019, 2019, 3989–4012.
- [90] B. Crone, S. F. Kirsch, J. Org. Chem. 2007, 72, 5435–5438.
- [91] M. L. Ho, A. B. Flynn, W. W. Ogilvie, J. Org. Chem. 2007, 72, 977–983.
- [92] Y. Xie, L. Li, *Tetrahedron Lett.* **2014**, *55*, 3892–3895.
- [93] G. Qian, X. Hong, B. Liu, H. Mao, B. Xu, Org. Lett. **2014**, *16*, 5294–5297.
- [94] A. Baykal, D. Zhang, J. Knelles, I. T. Alt, B. Plietker, *Chem. Asian J.* **2019**, *14*, 3003–3010.
- [95] a) T. L. Gilchrist, G. E. Gymer, Adv. Heterocycl. Chem. 1974, 16, 33–85; b) J. Huo, H. Hu, M. Zhang, X. Hu, M. Chen, D. Chen, J. Liu, G. Xiao, Y. Wang, Z. Wen, RSC Adv. 2017, 7, 2281–2287; c) A. Jain, P. Piplani, Mini Rev. Med. Chem. 2019, 19, 1298–1368.
- [96] a) O. Dimroth, Ber. Dtsch. Chem. Ges. 1902, 35, 1029–1038; b) O. Dimroth, Ber. Dtsch.
 Chem. Ges. 1902, 35, 1038–1047.
- [97] R. Huisgen, Angew. Chem. Int. Ed. 1963, 2, 565–598.
- [98] a) L. Liang, D. Astruc, Coord. Chem. Rev. 2011, 255, 2933–2945; b) Z. Zhao, Z. Yao, X. Xu,
 Curr. Org. Chem. 2017, 21; c) J. R. Johansson, T. Beke-Somfai, A. Said Stålsmeden, N. Kann,
 Chem. Rev. 2016, 116, 14726–14768.
- [99] a) D. B. Ramachary, K. Ramakumar, V. V. Narayana, *Chem. Eur. J.* 2008, *14*, 9143–9147; b)
 L. J. T. Danence, Y. Gao, M. Li, Y. Huang, J. Wang, *Chem. Eur. J.* 2011, *17*, 3584–3587; c) L.
 Wang, S. Peng, L. J. T. Danence, Y. Gao, J. Wang, *Chem. Eur. J.* 2012, *18*, 6088–6093; d) M.
 Belkheira, D. El Abed, J.-M. Pons, C. Bressy, *Chem. Eur. J.* 2011, *17*, 12917–12921; e) N.
 Seus, L. C. Gonçalves, A. M. Deobald, L. Savegnago, D. Alves, M. W. Paixão, *Tetrahedron* 2012, *68*, 10456–10463; f) D. B. Ramachary, A. B. Shashank, *Chem. Eur. J.* 2013, *19*, 13175–13181; g) A. B. Shashank, S. Karthik, R. Madhavachary, D. B. Ramachary, *Chem. Eur. J.* 2014, *20*, 16877–16881; h) D. B. Ramachary, A. B. Shashank, S. Karthik, *Angew. Chem. Int. Ed.* 2014, *53*, 10420–10424.
- [100] J. Knelles, *Masterarbeit*, Universität Stuttgart, **2016**.
- [101] B. C. Boren, S. Narayan, L. K. Rasmussen, L. Zhang, H. Zhao, Z. Lin, G. Jia, V. V. Fokin, J. Am. Chem. Soc. 2008, 130, 8923–8930.
- [102] C. Tang, N. Jiao, J. Am. Chem. Soc. 2012, 134, 18924–18927.
- [103] X.-W. Yang, R. B. Grossman, G. Xu, Chem. Rev. 2018, 118, 3508–3558.
- [104] R. Ciochina, R. B. Grossman, *Chem. Rev.* **2006**, *106*, 3963–3986.

- [105] J.-A. Richard, R. H. Pouwer, D. Y.-K. Chen, Angew. Chem. Int. Ed. **2012**, *51*, 4536–4561.
- [106] a) I. Pal Singh, S. B. Bharate, *Nat. Prod. Rep.* 2006, *23*, 558–591; b) N. S. Simpkins, F. Holtrup, V. Rodeschini, J. D. Taylor, R. Wolf, *Bioorg. Med. Chem. Lett.* 2012, *22*, 6144–6147; c) C. Quiney, C. Billard, C. Salanoubat, J. D. Fourneron, J. P. Kolb, *Leukemia* 2006, *20*, 1519–1525; d) D. Díaz-Carballo, S. Malak, M. Freistühler, A. Elmaagacli, W. Bardenheuer, H. P. Reusch, *Int. J. Clin. Pharmacol. Ther.* 2008, *46*, 428–439; e) D. Díaz-Carballo, K. Ueberla, V. Kleff, S. Ergun, S. Malak, M. Freistuehler, S. Somogyi, C. Kücherer, W. Bardenheuer, D. Strumberg, *Int. J. Clin. Pharmacol. Ther.* 2010, *48*, 670–677; f) K. Winkelmann, J. Heilmann, O. Zerbe, T. Rali, O. Sticher, *J. Nat. Prod.* 2001, *64*, 701–706; g) A. J. Grenning, J. H. Boyce, J. A. Porco, *J. Am. Chem. Soc.* 2014, *136*, 11799–11804.
- [107] a) A. Kuramochi, H. Usuda, K. Yamatsugu, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2005, 127, 14200–14201; b) Y. Shimizu, S.-L. Shi, H. Usuda, M. Kanai, M. Shibasaki, Angew. Chem. Int. Ed. 2010, 49, 1103–1106.
- [108] a) C. Tsukano, D. R. Siegel, S. J. Danishefsky, *Angew. Chem. Int. Ed.* 2007, *46*, 8840–8844;
 b) D. R. Siegel, S. J. Danishefsky, *J. Am. Chem. Soc.* 2006, *128*, 1048–1049.
- [109] a) J. Qi, J. A. Porco, J. Am. Chem. Soc. 2007, 129, 12682–12683; b) J. H. Boyce, J. A. Porco,
 Angew. Chem. Int. Ed. 2014, 53, 7832–7837.
- [110] N. Biber, K. Möws, B. Plietker, *Nat. Chem.* **2011**, *3*, 938–942.
- [111] C. Socolsky, B. Plietker, *Chem. Eur. J.* **2015**, *21*, 3053–3061.
- [112] F. Horeischi, N. Biber, B. Plietker, J. Am. Chem. Soc. 2014, 136, 4026–4030.
- [113] K. Lindermayr, B. Plietker, Angew. Chem. Int. Ed. **2013**, 52, 12183–12186.
- [114] a) M. Iinuma, H. Tosa, T. Tanaka, S. Kanamaru, F. Asai, Y. Kobayashi, K. Miyauchi, R. Shimano, *Biol. Pharm. Bull.* 1996, *19*, 311–314; b) P. Avato, F. Raffo, G. Guglielmi, C. Vitali, A. Rosato, *Phytother. Res.* 2004, *18*, 230–232.
- [115] a) M. J. Rybak, B. M. Lomaestro, J. C. Rotschafer, R. C. Moellering, W. A. Craig, M. Billeter, J. R. Dalovisio, D. P. Levine, *Clin. Infect. Dis.* 2009, *49*, 325–327; b) E. J. Choo, H. F. Chambers, *Infect. Chemother.* 2016, *48*, 267–273; c) S. Gardete, A. Tomasz, *J. Clin. Invest.* 2014, *124*, 2836–2840.
- [116] C. Guttroff, A. Baykal, H. Wang, P. Popella, F. Kraus, N. Biber, S. Krauss, F. Götz, B. Plietker, Angew. Chem. Int. Ed. 2017, 56, 15852–15856.

- [117] a) L. B. Moore, B. Goodwin, S. A. Jones, G. B. Wisely, C. J. Serabjit-Singh, T. M. Willson, J. L. Collins, S. A. Kliewer, *Proc. Natl. Acad. Sci. USA* 2000, *97*, 7500–7502; b) S. A. Kliewer, B. Goodwin, T. M. Willson, *Endocr. Rev.* 2002, *23*, 687–702.
- [118] N. Biber, *Dissertation*, Universität Stuttgart, Mensch und Buch Verl., Berlin, **2012**.
- [119] a) P. R. Popella, *Dissertation*, Eberhard Karls Universität Tübingen, **2016**; b) H. Wang, *Dissertation*, Eberhard Karls Universität Tübingen, **2019**.
- [120] a) A. Felici, J. Verweij, A. Sparreboom, *Eur. J. Cancer* 2002, *38*, 1677–1684; b) M. Verschraagen, C. H. Koks, J. H. Schellens, J. H. Beijnen, *Pharmacol. Res. Commun.* 1999, *40*, 301–306; c) J. Tamargo, J.-Y. Le Heuzey, P. Mabo, *Eur. J. Clin. Pharmacol.* 2015, *71*, 549–567.
- [121] a) S. K. Fridkin, Arch. Clin. Infect. Dis. 2001, 32, 108–115; b) M. J. Rybak, B. M. Lomaestro, J. C. Rotschafer, R. C. Moellering, W. A. Craig, M. Billeter, J. R. Dalovisio, D. P. Levine, Clin. Infect. Dis. 2009, 49, 325–327; c) G. Taubes, Science 2008, 321, 356–361; d) C. A. Arias, B. E. Murray, N. Engl. J. Med. 2009, 360, 439–443; e) Y. Katayama, M. Sekine, T. Hishinuma, Y. Aiba, K. Hiramatsu, Antimicrob. Agents Chemother. 2016, 60, 3730–3742.
- [122] Y. Cetinkaya, P. Falk, C. G. Mayhall, *Clin. Microbiol. Rev.* **2000**, *13*, 686–707.
- [123] a) S. Swoboda, S. Fritz, M. E. Martignoni, R. A. Feldhues, T. Hoppe-Tichy, M. W. Buchler, H. K. Geiss, *J. Antimicrob. Chemother.* 2005, *56*, 787–789; b) P. K. Linden, *Drugs* 2002, *62*, 425–441; c) K. T. Luh, P. R. Hsueh, L. J. Teng, H. J. Pan, Y. C. Chen, J. J. Lu, J. J. Wu, S. W. Ho, *Antimicrob. Agents Chemother.* 2000, *44*, 3374–3380.
- [124] a) D. Dheer, V. Singh, R. Shankar, *Bioorg. Chem.* 2017, *71*, 30–54; b) R. Kharb, P. C. Sharma,
 M. S. Yar, *J. Enzyme Inhib. Med. Chem.* 2011, *26*, 1–21.
- [125] K. Minke, Dissertation, Universität Stuttgart, 2014.
- [126] H. Wang, F. Kraus, P. Popella, A. Baykal, C. Guttroff, P. François, P. Sass, B. Plietker, F. Götz, Front Microbiol. 2019, 10, 14.
- [127] B. S. Furniss, A. I. Vogel, A. R. Tatchell, A. J. Hannaford, P. W. G. Smith, *Vogel's textbook of practical organic chemistry*, 5th ed., Pearson/Prentice Hall, Harlow, **1989**.
- [128] M. S. Holzwarth, W. Frey, B. Plietker, Chem. Commun. 2011, 47, 11113–11115.
- [129] N. Zhou, T. Xie, L. Liu, Z. Xie, J. Org. Chem. 2014, 79, 6061–6068.
- [130] L. Campbell-Verduyn, P. H. Elsinga, L. Mirfeizi, R. A. Dierckx, B. L. Feringa, Org. Biomol. Chem. 2008, 6, 3461–3463.

- [131] N. Alvarenga, A. L. M. Porto, *Biocatal. Biotransform.* **2017**, *35*, 388–396.
- [132] A. S. Kiselyov, K. van Aken, Y. Gulevich, L. Strekowski, J. Heterocycl. Chem 1994, 31, 1299–
 1301.
- [133] The Upjohn Company, Anti-aids piperazines, Patentnummer: US 5489593, A, **1996**.
- [134] T. Fryatt, H. I. Pettersson, W. T. Gardipee, K. C. Bray, S. J. Green, A. M. Z. Slawin, H. D. Beall,
 C. J. Moody, *Bioorg. Med. Chem.* 2004, *12*, 1667–1687.
- [135] A. Krutošíková, M. Dandárová, V. Bobošík, *Collect. Czech. Chem. Commun.* 1994, *59*, 473–481.
- [136] M. R. Maddani, S. K. Moorthy, K. R. Prabhu, *Tetrahedron* **2010**, *66*, 329–333.
- [137] A. Hossain, S. Pagire, O. Reiser, Synlett **2017**, 28, 1707–1714.
- [138] X. Xiao, T.-Q. Chen, J. Ren, W.-D. Chen, B.-B. Zeng, *Tetrahedron Lett.* **2014**, *55*, 2056–2060.
- [139] D. Cantillo, B. Gutmann, C. Oliver Kappe, Org. Biomol. Chem. 2016, 14, 853–857.
- [140] W.-C. Gao, S. Jiang, R.-L. Wang, C. Zhang, *Chem. Commun.* **2013**, *49*, 4890–4892.
- [141] S. N. Mistry, J. Shonberg, C. J. Draper-Joyce, C. Klein Herenbrink, M. Michino, L. Shi, A. Christopoulos, B. Capuano, P. J. Scammells, J. R. Lane, J. Med. Chem. 2015, 58, 6819–6843.
- [142] C. Te Grotenhuis, N. van den Heuvel, J. I. van der Vlugt, B. de Bruin, Angew. Chem. Int. Ed.
 2018, 57, 140–145.
- [143] H. M. R. Hoffmann, K. Haase, *Synthesis* **1981**, *1981*, 715–719.
- [144] G. Altenhoff, R. Goddard, C. W. Lehmann, F. Glorius, J. Am. Chem. Soc. 2004, 126, 15195–
 15201.
- [145] T. H. Koch, J. A. Olesen, J. DeNiro, J. Org. Chem. **1975**, 40, 14–19.
- [146] a) Y. Nakao, H. Idei, K. S. Kanyiva, T. Hiyama, *J. Am. Chem. Soc.* 2009, *131*, 15996–15997;
 b) T. N. Gieshoff, M. Villa, A. Welther, M. Plois, U. Chakraborty, R. Wolf, A. Jacobi von Wangelin, *Green Chem.* 2015, *17*, 1408–1413.
- [147] Y. Ueta, K. Mikami, S. Ito, Angew. Chem. Int. Ed. 2016, 55, 7525–7529.
- [148] S. Xie, Y. Zhang, O. Ramström, M. Yan, *Chem. Sci.* **2016**, *7*, 713–718.
- [149] L. Ren, N. Jiao, Chem. Commun. 2014, 50, 3706–3709.
- [150] Y. Ban, R. Sakaguchi, M. Nagai, Chem. Pharm. Bull. 1965, 13, 931–934.
- [151] S. N. Karad, W.-K. Chung, R.-S. Liu, *Chem. Commun.* **2015**, *51*, 13004–13007.
- [152] D. Keck, S. Vanderheiden, S. Bräse, *Eur. J. Org. Chem.* **2006**, *2006*, 4916–4923.
- [153] Y. R. Bhorge, C.-T. Chang, S.-H. Chang, T.-H. Yan, Eur. J. Org. Chem. 2012, 2012, 4805–4810.

- [154] Y. Matsuda, M. Kitajima, H. Takayama, Org. Lett. **2008**, 10, 125–128.
- [155] S. Tripathi, A. C. Shaikh, C. Chen, Org. Biomol. Chem. **2011**, *9*, 7306–7308.
- [156] V. Pace, G. Vilkauskaitė, A. Šačkus, W. Holzer, Org. Biomol. Chem. 2013, 11, 1085–1088.
- [157] K. S. Feldman, P. Ngernmeesri, Org. Lett. 2010, 12, 4502–4505.
- [158] R. S. Shaikh, I. Ghosh, B. König, *Chem. Eur. J.* **2017**, *23*, 12120–12124.
- [159] Y. Lei, T. Hu, X. Wu, Y. Wu, H. Xiang, H. Sun, Q. You, X. Zhang, *Tetrahedron Lett.* 2016, 57, 1100–1103.
- [160] K. Kasten, A. M. Z. Slawin, A. D. Smith, Org. Lett. **2017**, *19*, 5182–5185.
- [161] R. J. Marshall, S. L. Griffin, C. Wilson, R. S. Forgan, Chem. Eur. J. 2016, 22, 4870–4877.
- [162] A. E. Koumbis, C. M. Kyzas, A. Savva, A. Varvoglis, *Molecules* **2005**, *10*, 1340–1350.
- [163] F. Pünner, G. Hilt, Chem. Commun. **2012**, 48, 3617–3619.
- [164] BASF SE, K. Massonne, K. Geyer, K. Schierle-Arndt, E. Seikel, F. Seeler, J. Sundermeyer, A. Braam, Patentnummer: EP2940010, A1, 2015.
- [165] W.-P. Ding, G.-P. Zhang, Y.-J. Jiang, J. Du, X.-Y. Liu, Di Chen, C.-H. Ding, Q.-H. Deng, X.-L.
 Hou, Org. Lett. 2019, 21, 6805–6810.
- [166] A. B. Lemay, K. S. Vulic, W. W. Ogilvie, J. Org. Chem. 2006, 71, 3615–3618.
- [167] Solvias AG, Patentnummer: WO2005/21562, A2, **2005**.
- [168] R. M. Denton, J. An, B. Adeniran, A. J. Blake, W. Lewis, A. M. Poulton, J. Org. Chem. 2011, 76, 6749–6767.
- [169] Y. Zhao, G. Wang, Y. Li, S. Wang, Z. Li, *Chin. J. Chem.* **2010**, *28*, 475–479.
- [170] B. M. Trost, D. R. Fandrick, D. C. Dinh, J. Am. Chem. Soc. 2005, 127, 14186–14187.
- [171] W. Yin, H. He, Y. Zhang, Di Luo, H. He, Synthesis **2014**, *46*, 2617–2621.
- [172] L. Meerpoel, G. J. Joly, G. J. Hoornaert, *Tetrahedron* **1993**, *49*, 4085–4098.
- [173] W. Zhu, D. Ma, Chem. Commun. **2004**, 888–889.
- [174] H. Langhals, New J. Chem. **2008**, *32*, 21–23.
- [175] AMGEN INC., Patentnummer: WO2006/12374, A1, 2006.
- [176] S. Hadida, F. van Goor, J. Zhou, V. Arumugam, J. McCartney, A. Hazlewood, C. Decker, P. Negulescu, P. D. J. Grootenhuis, J. Med. Chem. 2014, 57, 9776–9795.
- [177] J. B. Shoesmith, A. Mackie, J. Chem. Soc. 1928, 2334–2340.
- [178] ELAN PHARMACEUTICALS INC., Patentnummer: WO2005/70407, A1, 2005.
- [179] D.-H. Zhang, J. Knelles, B. Plietker, Adv. Synth. Catal. 2016, 358, 2469–2479.

- [180] D. M. Rudzinski, C. B. Kelly, N. E. Leadbeater, Chem. Commun. 2012, 48, 9610–9612.
- [181] F. Horeischi, *Dissertation*, Universität Stuttgart, **2015**.
- [182] F. Horeischi, C. Guttroff, B. Plietker, Chem. Commun. 2015, 51, 2259–2261.
- [183] Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, **2016**.
- [184] a) D. G. A. Smith, L. A. Burns, K. Patkowski, C. D. Sherrill, J. Phys. Chem. Lett. 2016, 7, 2197–2203; b) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456–1465.

Erklärung über die Eigenständigkeit der Dissertation

Ich versichere, dass ich die vorliegende Arbeit mit dem Titel

"Eisenkatalysierte Aminierungsreaktionen von C-H- und C-C-Bindungen und ihre Anwendung in der Naturstoffsynthese"

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe; aus fremden Quellen entnommene Passagen und Gedanken sind als solche kenntlich gemacht.

Stuttgart, den