
Formal Knowledge Representations for
Textual Automotive System
Requirements and Tests

A thesis accepted by the Faculty of Aerospace Engineering and Geodesy of the
University of Stuttgart in partial fulfilment of the requirements for the degree

of Doctor of Engineering Sciences (Dr.-Ing.)

by

M.Sc. Benedikt Walter

born in Ellwangen (Jagst)

main referee: Priv.-Doz. Dr.-Ing. Stephan Rudolph

co-referee: Prof. Dr. Andreas Vogelsang

co-referee: Prof. Dr.-Ing. Andreas Strohmayer

Date of defence: 03.12.2020

Institute of Aircraft Design
University of Stuttgart

2021

“Whenever you find yourself on the

side of the majority, it is time to pause

and reflect.”

Mark Twain

Preamble

This thesis is based on the research conducted during my time as an industrial PhD

student at Daimler AG, Mercedes-Benz car development between June 2015 and April

2018. It was finalized during my time as a development engineer in the Department of

Automated Driving from May 2018 until the end of 2020. The research took place in

the E/E System Testing and Validation Department where I worked for 1.5 years in the

Team ‘Testing Process’ and 1.5 years in the Team ‘Requirements Validation and Testing

Methodology’. In particular I want to thank Dirk Johanson (Lead of the Team ‘Testing

Process’) for providing me with this opportunity and the freedom to pursue my research

into any direction I was interested in. Further, I want to thank Dr. Frank Houdek (Lead

of the Team ‘Requirements Validation and Testing Methodology’) for his support and

helpful guidance in the art of writing scientific papers.

Many thanks go to all students that worked along side me throughout the time: Ivan

Vishev, Jakob Hammes, Marco Piechotta, Melf Zeymer, Jonathan Schmidt and Hannah

Dettki. This work would have not been possible without all your effort and dedica-

tion. In the same way I want to thank the young researchers that were brave enough

to perform their bachelor or master thesis under my supervision: Mohammed Salah Ben

Slimen, Maximilian Schilling, Jan Martin and Payal Sood. Your ideas, propositions and

solutions to difficult problems were a big help in publishing the conducted research and

putting this work together.

The research was supported in big parts by the University of Stuttgart, in particular by

Priv-Doz. Dr. Stephan Rudolph at the Institute of Aircraft Design. I can not thank

you enough for all the hours spent with white paper, pencil and coffee, sketching out

and constructing this research and guiding me through emotional and intellectual high

mountains and deep valleys during my time as a PhD student. Without your help this

work would have not happened!

Further, my thanks goes to Prof. Dr. Andreas Vogelsang at the Berlin Institute of

Technology for ideas, comments and critics that helped shaping this work. In addition,

I want to thank Robin Loose from the Department of Mathematics at the University of

Münster for his effort and help with the mathematical foundation of the work.

Last, I want to thank my family for their support, help and advice throughout the almost

six years that this project consumed. Thanks to my parents Andrea & Ulrich Walter for

everything they supported me with during this time. Thanks to my siblings Jonas & Lea

Walter which were always curious and interested in what I did. Finally, I want to thank

my wife Christina Colondres Walter for her patience, kindness and support whenever it

was needed.

This said, I let the reader now explore this work and hope that it sparks some inspira-

tion and discussion. It hopefully resolves some questions and might raise some additional

ones, but this is what science is all about.

Benedikt Walter

Contents i

Contents

List of Figures v

List of Tables vi

List of Abbreviations viii

Abstract x

Kurzfassung xii

1. Introduction 1
1.1. Automotive Knowledge Representations 4
1.2. Objective and Vision . 6
1.3. Contributions . 7
1.4. Structure . 8

2. Background and State of the Art 11
2.1. Graph-Based Design Assumptions . 12

2.1.1. Graph-Based Design Languages 13
2.1.2. Graph-Based Design Language Applications 15
2.1.3. Requirements and Tests in Graph-Based Design 21

2.2. Automotive Systems Engineering Methodology 22
2.2.1. Requirements Engineering . 25
2.2.2. Testing - Verification and Validation 27

2.3. Knowledge Representations in Systems Engineering 33
2.3.1. Natural Language . 34
2.3.2. Language Patterns . 36
2.3.3. Finite State Machines . 42
2.3.4. First Order and Temporal Logic 49
2.3.5. Deterministic versus Non-Deterministic Systems 58
2.3.6. Modeling Structures: Trees versus Graphs 60

3. Requirements Formalization Process Chain 63
3.1. Model Overview - Full Process Chain . 64
3.2. Natural Language to Specification Patterns 65

3.2.1. Selecting Dwyer’s Specification Pattern Systems (SPS) 66
3.2.2. Elicitation and Documentation as Text and Conversion to Patterns 70
3.2.3. Elicitation and Documentation as Patterns 74

ii Contents

3.3. Specification Patterns to Linear Temporal Logic 76
3.3.1. Empirical Validation of SPS to LTL Mappings 77
3.3.2. Qualitative Conversion of Patterns to Logic 79

3.4. First Order Logic - Special Modeling Structures 84
3.4.1. Data Structure as an Enabler to Map LTL Expressions to FOL . 86
3.4.2. Mapping LTL on Directed One-Branch Trees 91

3.5. First Order Logic - Generalized Modeling Structures 95
3.5.1. Extending Modeling Structures from Trees to Graphs 95
3.5.2. Mapping Linear Temporal Logic on Directed Cyclic Graphs . . . 97

3.6. First Order Logic - Conjunctive Normal Form 100

4. Formalization Process Chain Application 105
4.1. Formalization of Test Cases . 106

4.1.1. Assumptions . 107
4.1.2. Setup . 107
4.1.3. Processing Methods . 108
4.1.4. Application: Test Case Redundancy 110
4.1.5. Evaluation . 112

4.2. Post-processing of Formalized Test Cases 113
4.2.1. Assumptions . 114
4.2.2. Setup . 116
4.2.3. Processing Methods . 117
4.2.4. Application: Test Set Restructuring 121
4.2.5. Evaluation . 122

4.3. Requirements Formalization - State Machines 124
4.3.1. Assumptions . 125
4.3.2. Setup . 126
4.3.3. Processing Methods . 126
4.3.4. Application: State Machine Representation 131
4.3.5. Evaluation . 133

4.4. Requirement Models - Executable State Machines 136
4.4.1. Assumptions . 137
4.4.2. Setup . 138
4.4.3. Processing Methods . 138
4.4.4. Application: C-Code Generation 141
4.4.5. Evaluation . 143

5. Conclusion and Outlook 147
5.1. Conclusion . 147
5.2. Limitations . 149
5.3. Outlook . 152

5.3.1. Deriving Requirements Directly from Physics 153
5.3.2. Automated System Design and Executable V-Model 153
5.3.3. Further Analysis of Formalized Test Cases and Requirements . . . 154

Contents iii

5.3.4. Extension of Case-Based LTL to FOL Mapping 155

A. Mapping SPS to LTL (full) 157

B. Mapping LTL to FSM (full) 163

C. Publications 183

D. Bibliography 185

E. Curriculum Vitae 195

List of Figures v

List of Figures

1.1. Development Process: V-Model (MBC) 2
1.2. Knowledge Representation: Language and Logic Space 5

2.1. Graph-Based Design: Primitives, Rules and Design Graph Adaptation . . 16
2.2. Graph-Based Design: Process Overview 17
2.3. Graph-Based Design: Design Graph Adaptations 18
2.4. Graph-Based Design: System Design (Example) 20
2.5. Product Development Process: Function 23
2.6. Product Development Process . 24
2.7. Knowledge Representation: Knowledge Levels 33
2.8. Knowledge Representation: Informal and Formal 35
2.9. Knowledge Transfer: Inference (Example) 36
2.10. Automata: Overview - Automata classes 43
2.11. Automata: Finite State Machine Structure 45
2.12. Automata: State Machine Classification 46
2.13. Graph Representation: State-Transition Relation 53
2.14. Graph Representation: Time Dependent Systems 54
2.15. Graph Representation: Sequence-Based Order - Edge Path 56
2.16. Logic Representation: LTL Operator ‘Next’ ◦ (Example) 57
2.17. Logic Representation: LTL Operator ‘Global’ � (Example) 57
2.18. Graph Representation: Directed Tree and Directed Cyclic Graph Structure 60

3.1. Formalization Process Chain: NL to CNF 64
3.2. Requirements Engineering: Elicitation and Documentation 65
3.3. Testing: Test Case Structure and Description 70
3.4. Testing: Test Step Structure and Description 71
3.5. Graph Representation: One Branch Directed Tree - General Structure . . 86
3.6. Testing: Test Case Structure - Link-Extension 86
3.7. Logic Representation: Operator ‘Next’ ◦ (Time-Discrete) 87
3.8. Logic Representation: Operator ‘Global’ � (Time-Discrete) 88
3.9. Logic Representation: Operator ‘Until’ U (Time-Discrete) 89
3.10. Logic Representation: Operator ‘Future’ � (Time-Discrete) 90
3.11. System Specification Approaches: Top-Down and Bottom-Up 96
3.12. System Graph Representation: Test . 96
3.13. System Graph Representation: Requirement 97

4.1. System Representation: Class Diagram (Generic) 110

vi List of Tables

4.2. System Representation: Execution Diagram (Generic) 111
4.3. System Representation: Design Graph 111
4.4. State Space: Parameter Representation (Example) 115
4.5. State Space: Cost Metric - Test Case (Example) 116
4.6. Test Set Reordering: Redundancy Detection (Example) 117
4.7. Test Set Reordering: Clustering Test Steps (Example) 118
4.8. Test Set Reordering: Clustering Test Steps (Example) 120
4.9. Test Set Reordering: Overall Process (Example) 120
4.10. Test Set Reordering: Execution Diagram (Extension) 121
4.11. Test Set Reordering: Evaluation - Overall Cost 123
4.12. State Machine Generation: Execution Diagram (Extension) 131
4.13. State Machine Generation: Overall Process 132
4.14. State Machine Validation: Comparison (Manual / Automatic) 133
4.15. Formalization Process Chain: NL to System FSM 138
4.16. Dynamic State Machine Generation: Input / Output Layer 140
4.17. Dynamic State Machine Generation: Overview (Example) 141
4.18. Dynamic State Machine Generation: Communication Layer 142
4.19. Dynamic State Machine Generation: Execution Diagram (Extended) . . 143

5.1. Formalization Process Chain: NL to CNF 148

List of Tables

3.1. Conversion: Text to Patterns (Example) 72
3.2. Case Study: SPS Patterns and Scopes 78
3.3. Logic Operators: Nomenclature . 79
3.4. Mapping: SPS to LTL (all Patterns - Scope: ‘Globally’) 80
3.5. Mapping: SPS to LTL (all Scopes - Pattern: ‘Universality’) 81
3.6. Conversion: SPS to LTL - Test Case (Example) 82
3.7. Conversion: SPS to LTL - Requirement (Example) 84
3.8. Conversion: LTL to FOL - Test Case, Step 1 + 2 (Example) 92
3.9. Conversion: LTL to FOL - Test Case, Step 3 + 4 (Example) 93
3.10. Conversion: LTL to FOL - Test Case, All Steps (Example) 94
3.11. Conversion: SPS to LTL (Operator: ‘Global’ �) 98
3.12. Conversion: SPS to LTL (Operator: ‘Until’ U) 98
3.13. Conversion: SPS to LTL (Operator: ‘Next’ X) 99
3.14. Conversion: SPS to LTL (Operator: ‘Future’ �) 99
3.15. Conversion: SPS to LTL to FSM - Requirement (Example) 100
3.16. Conversion: FOL to CNF - Test Case (Example) 103

List of Tables vii

4.1. Chapter Structure - Publication Overview 105
4.2. Case Study: System Metrics I (OLC / ILS) 108
4.3. Conversion: Full Process Chain - Test Step (Example) 109
4.4. Case Study: Review Findings (Manual / Automated) 112
4.5. State Space: Parameter Representation (Example) 114
4.6. Case Study: System Metrics II (OLC / ILS) 116
4.7. Case Study: Evaluation (Clustering + Similarity) 122
4.8. Case Study: Evaluation (Path Finding) 122
4.9. Case Study: System Metrics I (AOLC) 126
4.10. Conversion: SPS to Requirement FSM 128
4.11. Case Study: Evaluation I (System FSM) 134
4.12. Case Study: System Metrics II (AOLC) 137
4.13. Conversion: SPS to System FSM (Example) 139
4.14. Case Study: Evaluation II (System FSM) 144

A.1. Mapping: SPS to LTL (Pattern: ‘Universality’) 157
A.2. Mapping: SPS to LTL (Pattern: ‘Absence’) 158
A.3. Mapping: SPS to LTL (Pattern: ‘Existence’) 158
A.4. Mapping: SPS to LTL (Pattern: ‘Bounded Existence’) 158
A.5. Mapping: SPS to LTL (Pattern: ‘Response’) 159
A.6. Mapping: SPS to LTL (Pattern: ‘Response Chain I’) 159
A.7. Mapping: SPS to LTL (Pattern: ‘Response Chain II’) 159
A.8. Mapping: SPS to LTL (Pattern: ‘Precedence’) 160
A.9. Mapping: SPS to LTL (Pattern: ‘Precedence Chain I’) 160
A.10.Mapping: SPS to LTL (Pattern: ‘Precedence Chain II’) 160
A.11.Mapping: SPS to LTL (Pattern: ‘Constrained Chain Pattern’) 161

viii Abbreviations

Acronyms

AOLC Adaptive Outside Light Control

Atomic FSM Atomic Finite State Machine

Atomic Requirement FSM Atomic Requirement Finite State Machine

CAD Computer-Aided Design

CFD Computational Fluid Dynamics

C-HIL Compoenent-HIL

CNF Conjunctive Normal Form

CTL Computational Tree Logic

DBSCAN Density-Based Spatial Clustering

DC43 Design Cockpit 43

DNF Disjunctive Normal Form

E/E electric/electronic

FEM Fintite Element Analysis

FMU Functional Mock-Up

FOL First Order Logic

FSM Finite State Machine

GIL Graphical Interval Logic

GUI Graphical User Interface

HIL Hardware-in-the-Loop

ICSFSM Incomplete Specified Finite State Machine

IEEE Institute of Electrical and Electronics Engineers

ILS Intelligent Light System

ISO International Organization for Standardization

ISTQB International Software Testing Qualifications Board

K-Means Centroid Based

Abbreviations ix

LHS Left-Hand Side

LTL Linear Temporal Logic

M2M Model-to-Model

M2T Model-to-Text

MBC Mercedes-Benz Passenger Cars

Mealy DFSM Mealy Deterministic FSM

Mealy FSM Mealy Finite State Machine

MIL Model-in-the-Loop

Moore DFSM Moore Deterministic FSM

Moore FSM Moore Finite State Machine

NFR Non-Functional Requirement

NL Natural Language

OEM Original Equipment Manufacturer

OLC Outside Light Control

PDP Product Development Process

PNDFSM Partially Non-Deterministic Finite State Machine

ReqIF Requirements Interchange Format

Requirement FSM Requirement Finite State Machine

RHS Right-Hand Side

SIL Software-in-the-Loop

SLINK Hierarchical Single-Linkage

SPS Specification Pattern Systems

STG State-Transition Graph

System FSM System Finite State Machine

T2M Text-to-Model

UML Unified Modeling Language

x Abstract

Abstract

The current control systems in the automotive domain exceed more and more often

the size where engineers can manually perform certain tasks in the field of requirements

engineering. Even for humans it is hardly possible to compare 2000 or more requirements

in natural language form for correctness, consistency or completeness. One solution to

this problem is to achieve a machine-readable representation form of the requirements

in order to automate these tasks. This approach results in a knowledge transformation

process that can be applied to automotive requirements and tests. With this process,

requirements can be converted from textual representation into a machine-readable form.

Such a representation shall here be called ‘formalized’ representation.

The most important result of this work is an approach which allows to process such for-

malized representations. The processing of formalized representations can be automated

to perform decision making for system design decisions, analytical processing and rea-

soning about the system and code generation within in the system design process. The

derived formalization process can be broken down into the following parts: The initial

natural language representations of requirements and tests are at first converted manu-

ally (by an engineer) to logic expressions with the use of specification patterns. These

patterns are re-used from preexisting work. Logic expressions allow sequential boolean

transformations and all further transformations can therefore be proven to be analytically

correct. The initial logic representation occurs in linear temporal logic, which is compact

but not explicit for a particular state in a system. Transformation to first order logic

and reordering in conjunctive normal form achieves a state-wise explicit normal form.

A representation of requirements and tests in state-wise conjunctive normal form allows

for reasoning about redundancy and consistency for a given set of requirements or tests.

These state-wise represented requirements can be merged into one single state machine

which represents the overall system. The derived system state machine is analytically

correct and provides the basis for further analysis.

The consequences of the existence of such an analytical correct conversion process is,

that the problems of correctness, consistency and completeness are closely connected

to a representation problem. These problems may be solved whenever an initial semi-

Abstract xi

formal, pattern-based representation can be established. The introduced processing chain

is described with a step-wise conversion, illustrated with examples for requirements and

tests. Correctness, consistency and completeness of requirements or tests for a system

can be shown with a system representation in form of state machines. This work shows a

solution to convert logic expressions into dynamic finite state machines. The correctness

and applicability of this approach are illustrated with industrial case studies. The for-

malized representation form shown in the approach allows to addresses the problems of

requirements with respect to correctness, consistency and transformation between equiv-

alent representation forms. In addition, the effects of scalability through application to

industrial systems are investigated and discussed.

Overall, this approach achieves a formalization process for requirements and tests. It

shows the correctness, applicability and scalability of the process and its conversion

steps in industrial contexts. Therefore this approach represents a solution approach to

the problem of automated requirements processing. This approach represents one solu-

tion to integrate the domain of requirements engineering within a fully digital system

design process.

xii Kurzfassung

Kurzfassung

Die Systeme im Automotivbereich überschreiten mehr und mehr eine Größe, bei der In-

genieure in der Lage sind, bestimmte Tätigkeiten im Requirements-Engineering manuell

durchzuführen. Es ist nur schwer möglich oder übersteigt sogar die menschlichen Fähig-

keiten 2000 oder mehr Anforderungen in natürlicher Sprache auf Korrektheit, Konsistenz

und Vollständigkeit zu prüfen. Eine Lösung für dieses Problem ist ein Ansatz zur For-

malisierung der Anforderungen, um diese Tätigkeiten zu automatisieren. Daher wird in

dieser Arbeit ein Ansatz entwickelt, der zur Wissensformalisierung von Anforderungs-

und Testdaten im Automotivbereich genutzt werden kann. Mit diesem Prozess können

die textuellen Anforderungen in maschinenlesbare Form gebracht werden. Solch eine

Darstellung soll hier als ‘formalisiert’ bezeichnet werden.

Das wichtigste Ergebnis dieser Arbeit ist ein Ansatz, der es ermöglicht, solche formal-

isierten Darstellungen zu verarbeiten. Das Verarbeiten formaler Darstellungen kann au-

tomatisiert werden, um Entscheidungen im Entwurfsprozess zu treffen, das Ziehen und

Verarbeiten von logischen Schlussfolgerungen über das System zu unterstützen und Code-

Generierung im Systementwurf zu ermöglichen. Der entwickelte Formalisierungsprozess

kann in die folgenden Schritte aufgeteilt werden: Die ursprünglich in natürlicher Sprache

dargestellten Anforderungen und Tests werden zunächst manuell (von einem Ingenieur) in

logische Ausdrücke überführt. Hierzu werden bereits existierender ‘Specification Patterns’

genutzt. Logische Ausdrücke ermöglichen sequenzielle boolesche Umformungen, daher

sind alle folgenden Umformungen mathematische beweisbar und somit korrekt. Die erste

Darstellung in logischen Ausdrücken erfolgt in Form von Linear Temporal Logik. Diese

Darstellungsform ist kompakt, aber nicht für jeden Zustand explizit, da zeitliche Ab-

hängigkeiten in innerhalb eines Statements enthalten sind. Umformungen in Prädikaten-

logik und Sortieren in Konjunktiver Normalform erzeugt eine zustandsweise explizite

Normalform. Darstellung von Anforderungen und Tests in zustandsweiser Konjunktiver

Normalform ermöglicht damit logische Schlussfolgerungen über Redundanz und Konsis-

tenz eines Datensatzes von Anforderungen oder Tests. Die Darstellung von Anforderun-

gen in einzelnen Zuständen kann in einen einzelnen Zustandsautomaten überführt wer-

den. Dieser Zustandsautomat stellt damit das gesamte System dar und ist analytisch

korrekt. Dies bildet die Grundlage für weitere Untersuchungen.

Kurzfassung xiii

Die Konsequenz der Existenz eines solchen analytisch korrekten Transformationsprozesses

ist, dass die Fragen nach Korrektheit, Konsistenz und Vollständigkeit eng mit einem

Darstellungsproblem verknüpft ist. Die genannten Fragen können mit diesem Ansatz

beantwortet werden, wenn eine initiale, teil-formale, schablonen-basierte Darstellung

erzeugt werden kann. Die eingeführte Prozesskette ist mit einer schrittweisen Trans-

formation anhand von Beispielen für Anforderungen und Tests dargestellt. Korrektheit,

Konsistenz und Vollständigkeit von Anforderungen und Tests für ein System können mit

einer Darstellung dieses System in Form eines Zustandsautomaten gezeigt werden. Diese

Arbeit zeigt eine Lösung zur Transformation von logischen Ausdrücken in finiten Zus-

tandsautomaten. Die Korrektheit und Anwendbarkeit dieses Ansatzes wird mit indus-

triellen Fallstudien gezeigt. Die im Ansatz gezeigte formale Repräsentation ermöglicht es,

die Fragen nach Korrektheit, Konsistenz und Umformung zwischen verschiedenen äquiv-

alenten Repräsentationsformen zu adressieren. Zusätzlich wurden die durch Skalierung

entstehenden Effekte in industriellen Anwendungen untersucht und diskutiert.

Zusammenfassend wird in dieser Arbeit ein Ansatz zur Formalisierung von Anforderun-

gen und Tests eingeführt. Es werden Korrektheit, Anwendbarkeit und Skalierbarkeit des

eingeführten Prozesses und der einzelnen Verarbeitungsschritte im industriellen Kontext

gezeigt. Daher kann der gezeigte Ansatz als eine Lösung zur automatisierten Verar-

beitung von Anforderungen betrachtet werden. Der Ansatz stellt eine Lösung dar, die

Disziplin des ‘Requirements Engineerings’ in den Kontext des digitalen Produktentwurfs

zu integrieren.

1. Introduction

”Complexity increases when variety

(distinction) and dependency (con-

nection) of parts or aspects increase”

Francis Heylighen [Hey99]

There is a trend in the automotive industry towards a rising number of components with

a technological contribution to the car functionality. This is perceivable in technolo-

gies like autonomous driving, which is based on a strongly connected interplay between

many hardware and software elements. Sensors such as lidar, radar and camera deliver

input and feed a prediction algorithm based on a neuronal network. Neuronal networks

are already in use for object detection in today’s car while prediction algorithms are

in development. Another example is the connected car in an ‘internet of things’ -like

surrounding with constant interaction between car, passengers, environment, other local

cars and global traffic flows. Autonomous driving and connected cars are just two of

many examples for this trend towards increasing technological complexity increase. In

addition, customers expect to choose between many model variants and expect the car

of choice to be customizable based on personal preferences. Heylighen [Hey99] defined

complexity through a combination of two factors: Increase in variety and increase in

dependency. Extension of model lines and the mentioned desire for customization affects

the variety of designed and produced variants. This increase leads to bigger systems

with increased dependencies. It is therefore fair to say that automotive development

is experiencing a tremendous increase in complexity. In addition, pressure from other

industries, e.g. mobile communications, requires faster technology introduction times.

Shorter time-to-market causes development cycles to drop. This puts high demands on

the automotive development processes and challenges existing development paradigms.

The state-of-the-art development process in the automotive industry is the V-model

shown in Figure 1.1. It was adapted from the waterfall model, which can be seen as

1

2

the first formally described development process. It contains phases for specification,

development and testing of a product. While the waterfall model creates a structure for

all listed development steps, it lacks flexibility in case of changes and arising problems.

For complex systems, the waterfall model is rather slow and static. It cannot adjust to

today’s challenges and required flexibility.

Figure 1.1.: Development Process: V-Model (MBC)

In contrast, the V-model (with the same lack of flexibility), while providing the same

vertical continuity as the waterfall model, adds horizontal continuity. All levels (compo-

nent, system and vehicle) create a link between tests and the corresponding requirements.

While the V-model seems generally appropriate for the given challenges in automotive

system development, the representation of its requirements and tests, as observed in

current industrial projects, is clearly outdated. The standard as of today is the rep-

resentation of requirements and tests in the form of textual (test) specification docu-

ments. This is not a particular characteristic. In industrial projects, the V-model and

textual representation of requirements and tests are, in fact, bundled. Textual repre-

sentations of requirements are easier to create and are needed in non-technical contexts

(e.g. management, law, marketing), yet limited ambiguity and limited consistency of

the representation structure prevents machine-based inference to a high degree. The

increased complexity (more product variants and higher degree of inter-dependencies)

CHAPTER 1. INTRODUCTION 3

requires a more suitable representation form that can express the system complexity

and allows computer-based assistance in the form of knowledge inference on the data

set in use. Model-based representations fulfill the inference capability for requirements.

While this resolves an existing problem, a new problem has to be addressed: the still

needed textual representation and the model representation require consistency. The

logical solution is a Text-to-Model (T2M) or Model-to-Text (M2T) transformation (see

Section 3.2). Another challenge arises from the development model in common use of

today for automotive systems. The state-of-the-art method in the automotive industry

is that, after requirements are elicited and documented in a system specification, Orig-

inal Equipment Manufacturers (OEMs) outsource part of their system development to

suppliers and service providers. After the component development is finished by the

supplier, the system must be integrated within the existing system. Simply said: OEMs

specify systems but development is (in part) done outside the company and the OEMs

only integrate and test the development afterwards. The number of participants, the

challenges associated with correct interface definitions between systems, and the efforts

to achieve consistency during system integration put high demands on (test) specification

and system verification and validation. Therefore, the field of verification and validation

is burdened by the same problems as the domain of requirements engineering.

This work is concerned with the challenge to provide a sufficient method to bridge the

gap between textual and model-based specification. It assists automotive systems engi-

neering in two ways: First, it supports development by providing a consistent conversion

of textual requirements into executable system state machines. This supports model-

based system development efforts. Second, it benefits the system integration process due

to the formal representation of test specifications. The derived formalism allows detec-

tion of redundancy, inconsistency and unambiguity of test statements. Post-processing

of detected redundancies significantly reduces test efforts by reducing overall test loads.

Textual representation of requirements occurs mostly on the system and product level.

Similarly, the integration problem of externally developed components and systems into a

final product (system of systems) occurs on the system level. Therefore, the scope of this

work is limited to the higher development levels, particularly the system level. The scope

is further limited since model-based representations are suited for functional requirements

but might lack the ability to represent Non-Functional Requirements (NFR). An average

system specification at Mercedes-Benz Passenger Cars (MBC) contains about 2000 state-

ments, of which about 1100 are functional requirements, 500 are NFR and 400 are head-

4 1.1. AUTOMOTIVE KNOWLEDGE REPRESENTATIONS

ings and information statements. Subsection 2.2.1 contains an in-depth discussion about

requirements and the differentiation between functional and non-functional requirements.

NFR and their tests commonly maintain their textual representation throughout the de-

velopment process due to the non-existence of a more formal expression. Therefore,

this work is limited to functional requirements and its tests. Functional requirements

are validated through functional tests and integration tests. Empirically observed, an

average system at MBC contains, as previously mentioned, about 1100 functional re-

quirements where on average for one functional requirement about 1.7 test cases are

designed [WHPR17]. The intention of this work is to improve such systems designs in

regards to their functional requirements and test representations in order to assist spec-

ification and integration efforts.

1.1. Automotive Knowledge Representations

State-of-the-art in automotive system development at MBC is that the majority of

functional requirements and tests on the system level are described in textual form.

While different approaches exist to describe systems and their requirements via models

(e.g.: state machines), as of today, the vast majority of system descriptions for require-

ments and tests at MBC exist in natural language form. Projects that use v-model-based

approaches do not provide a consistent textual representation. There exists no widely

used approach to maintain both forms (text and model) in a consistent coexistence with-

out manual conversion and updating. At the same time, natural language expressions

are prone to contain subjective meaning. Natural language is ambiguous. For knowledge

representations, specifically in the domain of engineering design, this turns out to be

problematic. One approach to reduce this problem is grammar limitation (reduced syn-

tax) in combination with a reduced description vocabulary. Knowledge represented in

natural language is transformed through surjective mapping into limited grammar repre-

sentation in the limited grammar and syntax space as shown in Figure 1.2. Because the

mapping occurs in a non-mathematical domain (language space), rules and operations

that apply in mathematical domains cannot necessarily be used to perform or validate

the mapping. This is a language-related problem which is beyond the scope of this work

and therefore will not be discussed further. Such a representation will from now on be

called structured language.

CHAPTER 1. INTRODUCTION 5

From structured language representation and its language space, expressions can be

transferred to the mathematical space, specifically logic space (see Figure 1.2). In that

space, objective rules apply and mathematical operations can be performed. System

descriptions may contain time-dependent elements represented in temporal logic. By

applying time-related boundary conditions, these elements can be represented in a time-

discrete form. For such a representation, the number of operators can be reduced. All

time-dependent operators are obsolete and only time-independent operators remain in

the local representation. This reduction is a surjective mapping from first order and

temporal logic space to First Order Logic (FOL) space. For an unambiguous representa-

tion form, the knowledge can be represented in a standardized form. This standard form

opens up the possibility for a formal system representation that allows knowledge in-

ference and general machine-based data processing. The described transformation from

natural language to restricted grammar, mapping to logic space and reduction of tempo-

ral elements towards a time-independent local representation is the core principle derived

and discussed in this work.

Figure 1.2.: Knowledge Representation: Language and Logic Space

The practical implementation of such a formalization model can be realized through

a central graph-based data model. To derive such a model, existing data has to be

preprocessed. Two forms of preprocessing shall be distinguished in this work: Prepro-

cessing of the modeling structure and content processing via description formalization.

Subsection 2.1 discusses modeling structure while Section 2.3 explains the principles of

data formalization in detail. The raw data for general automotive system descriptions

consists of a decentralized collection of documents. These documents contain system-

related data sets including requirement and test descriptions. All data is stored in a

requirement management tool in a tool-specific data format. System modeling must ful-

6 1.2. OBJECTIVE AND VISION

fill two needs. First, data has to be transformed into a tool-independent data format.

This allows use of a variety of tools and secures data accessibility for a long time pe-

riod. (This es becoming increasingly relevant, for example in context of the functional

safety, where car manufacturers are required to provide long-term proof for certain sys-

tem development and testing procedures to ensure quality standards). In addition, an

integral, central data model provides further advantages in terms of data optimization.

This generates visibility for data dependencies, increases traceability and simplifies data

re-usability (manipulation, deriving domain-specific and tool-specific models). Graph-

based design languages are used for data modeling. The building blocks of graph-based

design languages are defined axioms (vocabulary) and execution rules (data manipu-

lation). Starting with one axiom, rules are applied in sequential order to manipulate

the axiom and its mutation. The result can be represented in a design graph. Such a

design graph therefore contains all design decisions in an abstract form. The abstract

representation can generate domain-specific models for domain-specific analysis.

1.2. Objective and Vision

This work intends to provide a formalization method for requirements and test rep-

resentations to improve requirements management methods in terms of requirements

engineering. The approach intends to solve two problems: It bridges the gap between

textual and model-based requirement expressions during specification and downstream

development steps. In addition, formalization for tests improves system integration ef-

forts by reducing redundancies, inconsistencies and ambiguities in test expressions. This

significantly reduces test loads and supports the system integration process.

Any form of data formalization requires an underlying ontology for data representation.

The ontology used in this work is a so-called graph-based design language. Graph-based

design languages in Unified Modeling Language (UML) can be used to generate fully (or

partially) automated product designs. Rudolph et al. propose one particular approach

[AR03, AR04] which includes an underlying graph-based design methodology and a soft-

ware called Design Cockpit 43 (DC43) [IIL17a, IIL17b]. This work intends to show how

formalization of system descriptions, particular requirements and test data can support

industrial system design. To achieve this, the goal of this work is to derive a require-

ments and test formalization methodology consistent with the given graph-based design

approach by Rudolph et al. [AR03, AR04]. The developed methodology in this work

CHAPTER 1. INTRODUCTION 7

allows system specification engineers to specify requirements in structured textual form

and derive consistent model representations. Adjustments to the requirements lead to

changes in the model which can be observed in real-time during the specification phase

by executing the derived model. In order to prove the correctness and usefulness of the

derived models, case studies are performed and evaluated at MBC development. Simi-

lar to the improvements for requirements engineering, the proposed approach can assist

test efforts during system integration. The formal representation of test cases and its

test steps enables machine-based analysis of redundancies, inconsistencies and ambigui-

ties for test data. Particular the occurrence of redundant test steps is investigated and

evaluated in industrial case studies. This includes a heuristic post processing to remove

redundant test steps inside a forward directed chain of test steps. A case study evaluates

the heuristic approach and shows potential a test load reduction. Overall, requirements

engineering and system integration efforts will be assisted by a formalization method.

The vision for this work is that the derived formalization approach bridges the gap be-

tween (informal) requirements engineering and digital product development via a manual

transformation step. The conversion T2M shown in this work provides a basis for model-

based systems engineering and model-based product design. The Model-to-Model (M2M)

transformations make it possible to derive a model of the digital product based on its

(formalized) requirements. Therefore, the approach described in this work, leads the way

to a formal and closed process chain for digital product development along the V-model.

Consequently this leads to the vision of a ‘machine-executable V-model’.

1.3. Contributions

The main contribution of this work is the creation of a formalization process chain for

(automotive) requirements and tests. The creation of the formalization process chain is

achieved by combining three separately preexisting approaches into one:

- Specification patterns [DAC98] (conversion of language patterns to temporal logic)

- State-wise representation of linear temporal logic into first order logic [AF00]

- Transformation of logic expressions to state machines [LL12],[KVBSV12]

Each approach existed in isolation for a subset of the overall problem. The combination

of these approaches is performed in this work and leads to a single overall approach.

8 1.4. STRUCTURE

Further, this approach is validated against industrial data from MBC. It shows the

reduction in time effort and effort needed for specific requirements engineering tasks. In

addition, it addresses the possibility of automated data analysis.

1.4. Structure

This work consists of three core chapters and two framing chapters. The three core

chapters are a chapter about the theoretical background, a chapter on the new modeling

approach developed throughout this work and a chapter on industrial applications to

validate the model. These three chapters represent the center piece of this work while

the introduction and summary tie the overall idea and approach together.

Chapter 2 discusses the theoretical background and state of the art of the field. It is

separated into three blocks: Section 2.1 discusses the methodology and general idea of

graph-based design. This is used as the underlying modeling structure of the later de-

rived model. In Section 2.2, the state of the art for requirements engineering and testing

is shown. This is the particular industrial field in which this work takes place. The third

block consists of different forms of knowledge representation. Section 2.3 lays out all

knowledge representation forms relevant during the data processing as well as two brief

discussions about determinism in systems and modeling structures.

Chapter 3 derives a new approach to formalize requirements and test data. This chapter

is the center piece of the work. Section 3.1 provides the big picture with an overview of

the model. The following sections show and discuss the particular conversions between

representation forms. Section 3.2 addresses the mapping between natural language or

textual representations and structured textual representations in the form of language

patterns. In Section 3.3 mapping from language to logic space, particularly to temporal

logic, is shown. The next two sections discuss mapping from temporal logic to simple

and more complex structures. In Section 3.4, mapping for forward-directed chains is

shown. This is required to model and formalize test data. Section 3.5 is concerned with

the generalized case, e.g. mapping from temporal logic onto cyclic directed graphs. Such

structures mimic state machines. This allows requirements to be modeled and formal-

ized. In the last section, the transformation of local FOL representations into a normal

form is presented. This is shown in Section 3.6.

CHAPTER 1. INTRODUCTION 9

Chapter 4 provides four case studies to validate the derived model. Section 4.1 validates

the model for test cases which represent the most simple structural form, a forward

connected chain. To apply the model towards test cases in industrial contexts, a post-

processing is necessary. This is covered in Section 4.2. These two sections show the

potential improvements that can be achieved by the derived model in the field of system

testing. In Section 4.3, the approach is validated for more complex structures, in this

case, cyclic directed graphs. Requirements represented as finite state machines can be

represented in such structures. This application is the core application of this work. The

initially static finite state machine can be extended towards an executable state machine.

Section 4.4 extends the derived approach and makes it possible to dynamically control

the derived state machine.

Chapter 5 summarizes this work and closes with a conclusion. Relevant results are

discussed and put in context. The derived formalization method and its industrial ap-

plications are evaluated in Section 5.1. Limitations of the approach are addressed in

Section 5.2. Section 5.3 provides a brief outlook on related fields, further potential re-

search topics and remaining open questions.

2. Background and State of the Art

“The answer to the ultimate ques-

tion of life, the universe and every-

thing is forty-two.”

Douglas Adams,

The Hitchhiker’s Guide to the Galaxy

The goal of this work is “To derive a formalization process for requirements and test data

and to apply it to electric/electronic Systems (E/E Systems) at Mercedes-Benz passsenger

car development”. This shall be done to reduce the required time effort for requirements

engineering and to allow automated analysis of the data. In order to achieve such a

formalization process, existing principles and state-of-the-art work shall be considered.

There are three primary topics that build the foundation of this work: Graph-based de-

sign as the ontology, automotive systems engineering in regards to existing requirements

engineering and testing, and (selected) knowledge representation forms for the field of

system engineering.

Graph-based design in Section 2.1 introduces the underlying principles of the data model.

It includes a general discussion about the principles of design languages and outlines in

detail the approach used in this work to create, update and optimize the data model.

The work takes place in the context of requirements engineering and testing. Section 2.2

discusses the state of the art for systems engineering and, in particular, requirements

engineering and testing (verification and validation). This includes specific references

to the development model used, the definition and differentiation between forms of re-

quirements and the definition of test-related terms. The premise of this work is data

optimization through inference from formalized data. Data formalization for inference

is rooted in (formal) data representation. Section 2.3 includes an in-depth discussion of

the four representation forms used in this work. It is evaluated why natural language

is used as the state-of-the-art representation form and what problems arise from that.

11

12 2.1. GRAPH-BASED DESIGN ASSUMPTIONS

Different forms of specification patterns are introduced. It is shown how systems can

be represented in the form of state machines. In addition, two particular problems (de-

terministic versus non-deterministic) and modeling structures (chains versus divergent

forms) are discussed.

2.1. Graph-Based Design Assumptions

Graph-based design as a discipline is not naturally connected to requirements engineer-

ing. When requirements are represented in a formal representation form, an ontology

is needed. Therefore, in this work, graph-based design is used as the ontology for the

representation of the formalized data. Designing and building products is a difficult task.

It is obvious that in order to build the best or at least the most suitable product, even-

tually other design solutions have to be abandoned. The question is now rather: “How

do we assure that the most suitable solution becomes visible to us?” Design starts with

the whole solution space where in principle all designs are valid solutions. Every design

decision limits the solution space and with that the number of potentially valid solutions

is reduced. This continues, eventually to the point where “the most suitable” solution

lies outside the solution space. This happens not because of the wrong assumption that

the best solution, is actually not the best solution but because the solution space is con-

strained in an incorrect order (or with an unwise prioritization). To avoid such a scenario,

it is essential to select the order of design decisions carefully. It must be analyzed which

design decisions are necessary or inevitable (e.g. physical laws) and which decisions are

secondary because they are only based on personal taste or subjective metrics. A solu-

tion to the prioritization of design choices can be derived from the concept of abstraction.

“It is a fundamental idea in Piaget’s work on the development of logical and mathemat-

ical thinking that ideal objects such as abstract mathematical ideas have their origin in

the closure of such systems. Once a system is closed, the properties of the constituted

ideal object are no longer dependent on empirical experience. Rather, they are deter-

mined by the structure as a whole and can be elaborated by the operations of logical

and mathematical thinking”, as quoted by Damerow [Dam96] based on Piaget [Pia52].

The term closure in this context represents an assumed and established solution space.

Piaget points out that mathematical abstraction removes real world object influences,

perceived through empirical experience from the system described or envisioned. Re-

moving certain aspects increases the focus on the remaining aspects. Abstraction directs

CHAPTER 2. BACKGROUND AND STATE OF THE ART 13

attention to underlying inherent structure, dependencies and limitations put on a design

by physical laws and mathematical constraints. It becomes obvious, that in order to

prioritize design choices, an abstract representation can lead to the true solution space.

True solution space here is defined in the sense of a formally complete design space.

Such space remains once the initial solution space is reduced and limited by considering

underlying, non-negotiable constraints. It reveals the true solution space in which design

decisions, based on a personal chosen optimization metric (or simply personal taste) can

be made. To derive this true solution space, a design approach with a degree of abstrac-

tion seems suitable. One such approach are string-based, shape-based and graph-based

design languages. Design and creation take place in an abstract form. Interpretation of

symbolic representations performed by a compiler turns abstract symbols into concrete

design objects. While the abstract design approach includes underlying constraints and,

with that, limits the solution space, it reveals the left-over solution space (here called true

solution space). This true solution space is consistent with all non-negotiable constraints.

An example could be the use of a certain part which is made of a specific material. Any

material has a temperature range in which it can function properly. Therefore, the solu-

tion space is limited in the temperature dimension. All designs inside this space are valid

and can be chosen from. In Subsection 2.1.1, the general principles of design languages

are investigated, while Subsection 2.1.2 shows the particular approach that is used in

this work. Subsection 2.1.3 takes a first step in assessing how graph-based design can

support the task of improving requirement and test data.

2.1.1. Graph-Based Design Languages

It was discussed that abstraction includes the idea of revealing the underlying structure

or functionality of a design. Another aspect of abstraction is therefore analogy. Two ini-

tially seemingly different objects share commonalities that are revealed when analyzing

the abstract form of its inherent structure and functionality. One potential engineering

approach is to achieve design solutions by reasoning from analogies between the design

envisioned and an existing solution observed in another, already existing domain (or

product). The solution from the implementation layer in one domain can be abstracted.

In the abstraction layers, both domains share the abstracted problem and its abstract

solution. This analogy can be used to transfer the existing solution from the initial do-

main to the new domain, where it is transferred to the implementation layer.

14 2.1. GRAPH-BASED DESIGN ASSUMPTIONS

One prominent occurrence of this principle is the field of biomimetics, where solutions

observed in nature and biology are abstracted from and transferred to engineering. Often

times biology provides solutions that seem unintuitive to engineering design. Problem so-

lution in engineering is most often approached by decomposition from high level to more

fine grained structure and functionality. Such a top-down approach is in contrast to the

incremental bottom-up approach in nature and biology. Combinations of basic building

blocks create more complex entities with higher functionality. Simple mutations create

design variants and natural selection (Darwin [Dar68]) evaluates the variants. Underlying

the principle of bottom-up approaches is the fact that each variant at every moment has

to be in a stable state. This means that e.g. mass, energy and static equilibrium must

exist at any moment. A top-down approach can (potentially) be in an unstable state

at any moment until finished. Difficulties for top-down approaches lay in the fulfillment

of requirements. It is necessary to refine requirements into more low level requirements

and divide a product into meaningful parts so that every part can fulfill a subtask that

contributes to the overall task. Therefore, complexity lies in the decomposition.

For bottom-up approaches, the opposite is the case. The challenging task here is in

the fact that the composition of parts has to lead to a meaningful, functional product.

Therefore, for bottom-up approaches, complexity lies in composition. Classic engineering

prefers a top-down approach to fulfill (high level) requirements. As shown, complexity

here lies in decomposition of overall functionality into controllable fractional parts of

functionality. The same level of complexity occurs again, once the envisioned parts are

integrated. Because a moderate increase in size for each part leads to an exponential

increase in interfaces, this process experiences a tremendous (exponential) rise in overall

complexity. Complexity increases to a level where it is questionable whether such an

approach is feasible in the future without adjusting affected manual process steps and

automating these to handle the increase in work load. Another potential path out of this

problem is bottom-up approaches where complexity roots in a totally different area. The

challenge is to assure that composition actually solves the given problem. Therefore, the

process of composition has to be steered and guided in the right direction. This problem

is discussed in Subsection 2.1.1 and Subsection 2.1.3.

One form of a bottom-up approach in engineering are formal language grammars. The

combination of a number of primitives (building blocks) and a set of rules creates a

so-called production system. This allows for the generation of syntactically correct sen-

CHAPTER 2. BACKGROUND AND STATE OF THE ART 15

tences belonging to this grammar [AR03]. Formal language grammars occur in the form

of natural language, programming languages and other forms (e.g. L-System grammars

by Lindenmayer and Prusinkiewicz to describe plants [PL12, PH13]).

The construction of sentences occurs by using and combining vocabulary (building blocks)

in ways defined in execution rules. This creates syntactically correct sentences. To create

a semantic meaning, an interpretation for each symbol is performed, where each symbol

is assigned a particular meaning. The idea of a formal grammar with its underlying

production system can be abstracted. Higher forms are shape grammars where build-

ing blocks are lines and shapes instead of words [Sti80, GS80]. Another form of design

grammars are graph-based design languages [SR16, AR03, AR04]. The abstraction level

is increased further in such a way that the building blocks are generic nodes. Rules con-

nect these nodes, generating a so-called design graph. The design graph is abstract and

its symbolic interpretation becomes a key process step. The same graph, based on its

interpretation, can represent different entities in different domains. The generic gestalt

of a graph in graph-based design, opens a variety of application fields (different domains,

multi-domains and increased complexity). Alber et al. [AR03] describe the representa-

tion of information for each entity and the ordering structure as the two requirements

for a design language. A graph can hold structure, ordering and hierarchical information

while symbolic interpretation converts information stored as an attribute of a node into

meaningful forms. These characteristics make graph-based design a suitable approach

for the given problem set.

2.1.2. Graph-Based Design Language Applications

In Subsection 2.1.1, the concept of design languages and grammars was explained.

Graph-based design languages are the most abstract form of design grammars. Their

purpose is the creation of complex systems in a reproducible, traceable way. At first a

production system has to be defined. A production system contains primitives (build-

ing blocks) and a rule set. Building blocks are instantiated, sequentially combined and

evolved from primitives into increasingly complex entities through a given set of execu-

tion rules. Each execution rule represents a design decision and is applied based on its

call in the sequence diagram. This is explained more in detail later. Figure 2.1 shows a

rule set with generic rules. An example for a specific rule would be the design decision

to always place a damper between a wheel and the steering axis. In rule 3, the white

16 2.1. GRAPH-BASED DESIGN ASSUMPTIONS

node represents the abstract wheel, the shaded node represents the abstract damper and

the filled node stands for the abstract axis. The left side shows the ‘before’ (without

damper), while the right side shows the ‘after’ (including damper).

Figure 2.1.: Graph-Based Design: Primitives, Rules and Design Graph Adaptation

Instantiated elements and their progressions are represented in the design graph. Each

element is represented by a node and its dependencies by links. These principles are

illustrated in Figure 2.1. Each primitive element and each generated complex element

hereby can serve one of two functions at a time. First it serves as a new primitive where it

can be potentially evolved further through additional execution rules. Rule execution is

followed by compilation. Generally, each entity serves in its second function as a syntac-

tical placeholder for an element with a corresponding meaning. Mapping from element

as placeholder to element representing a syntactical meaning is called interpretation and

is achieved during compilation. This principle allows grammars and its corresponding

graphs to represent entities in all kinds of (engineering) domains. Graph-based design

languages require the creation of a domain-specific definition of primitives and rules.

These can be stored in a domain library. The creation of more and more libraries makes

CHAPTER 2. BACKGROUND AND STATE OF THE ART 17

graph-based design a widely applicable system design approach and opens up a variety

of opportunities for the design of complex systems.

Figure 2.2.: Graph-Based Design: Process Overview, Rudolph [Rud06]

An existing problem in design is the natural opposition between domain-specific expres-

siveness and generality. Domain-specific design can describe one particular domain well.

It uses domain-specific vocabulary (building blocks) to optimize a design variant in the

particular domain and the specific design space. The problem here is, that overall con-

sistency for all design domains is required. Given the fact that each domain can have

a unique design space, it is intrinsically not guaranteed that there exists a design vari-

ant with overall consistency for all domains. The obvious solution to achieve overall

consistency therefore would be a shared design space with a general model. Yet, the

generality which allows for consistency, is too generic for domain-specific problems and

thus limits the general model in terms of its domain-specific expressiveness. Solution to

this dilemma is a combination of a shared general model with derivatives to all particular

domains. Given that principle, it can be said there are three overall constraints that a

design language has to satisfy in order to be capable of representing a sufficient solution

for designing complex systems:

- A given need for a ‘step-wise rule-based inference.’ [AR03]

- “Second, it is necessary to represent the information which is needed to directly

define a design object in a way which makes afterwards the necessary mapping

from the symbolic representation to a semantic processing of the description as

easy and straightforward as possible.” [AR03]

- The requirement that a general model achieves a consistent generic design with the

capability to derive domain-specific detailed models with increased expressiveness.

18 2.1. GRAPH-BASED DESIGN ASSUMPTIONS

One such approach is the graph-based design methodology by Rudolph et al. [AR03,

AR04, SR05, SR16]. The core principles are illustrated in Figure 2.2. Step-wise rule-

based inference is achieved through the production system, consisting of vocabulary

(primitive building blocks) and rule set (execution rules). The compiler provides the

capability for mapping from symbolic representation to semantic form. Its output is a

design graph which represents the design and all design information in a generic form.

Domain-specific models can be derived. Adjustments in the domain-specific graphs are

fed back to the generic design graph through ‘round trip engineering’.

Figure 2.3.: Graph-Based Design: Design Graph Adaptations

One software application for the shown methodology is DC43 [IIL17a]. DC43 represents

the abstract form of all primitives in a class diagram. This includes class attributes,

linking and inheritance of relationships to other classes. A sequence diagram contains

the rule set which instantiates objects from the given classes provided in the class dia-

gram to the design graph. These objects serve as the primitives and are manipulated

through the rule set. Each rule either consists of code (java rules) or is graph-based.

Instantiated objects and relations form a graph (design graph). Graph-based rules work

by the principle: Left-Hand Side (LHS) plus Right-Hand Side (RHS) (see: Figure 2.1

- Rule 3). Alber [AR03] lists three forms of graph-based modification rules (Addition,

Decomposition and Modification). In this work, two additional forms are added to the

listed to show the complete set of possible rules (Creation and Subtraction). Figure 2.3

illustrates the five rules while the following lists explains the setup and cause for each:

CHAPTER 2. BACKGROUND AND STATE OF THE ART 19

Creation

Setup: Empty LHS; entities at the RHS.

Cause: Entities occurring on the RHS are created. This can be seen as a

special form of Addition.

Addition/Embedding

Setup: Entities (and potentially links) on the left-hand side; the same entities

and additional entities and/or links at the RHS.

Cause: For every occurrence of the LHS pattern, the addition on the RHS is

added to the relevant part of the design graph.

Subtraction

Setup: Entities (and potentially links) on the left-hand side; an identical set

of entities and links, reduced by one (or more) links or entities on the RHS.

Cause: For every occurrence of the LHS pattern, the reduction between LHS

and RHS is performed on the relevant part of the design graph.

Decomposition/Refinement

Setup: One entity on LHS; identical entity and additional entities with links

to the existing entity on the RHS.

Cause: An entity is refined by additional entities. Special case of addition.

Modification/Adaptation

A combination of addition and subtraction rules to modify the design graph.

A rule is applied in the way that a certain configuration of instantiated objects and links

is searched for as the LHS. Once found in the overall design graph, it is manipulated

to what is shown at the RHS. The sequence in which objects are affected by the rule

might be relevant; if so, this must be encoded in the rule as well. Each rule is applied

once but can be applied in repetition when put in a loop with a termination condition

in the sequence diagram. Executing and applying rules is an iterative process which

eventually terminates, once all rules in the sequence diagram have been processed. If in

certain cases termination does not happen, the rules or the sequence diagram have to be

adjusted until termination is given. This is comparable with an infinite loop in coding.

Aside from the rule set, further information like physical laws, mathematical constraints

and boundary conditions are processed. This information is either stored in libraries (e.g.

20 2.1. GRAPH-BASED DESIGN ASSUMPTIONS

physical laws and boundary conditions) or in the class diagram (e.g. problem-specific

constraints and design-related equations). All these build a set of linear equations which

can be solved by the solution path generator. This can lead to no, one or many solutions

depending on the type of linear equation system (see Figure 2.4 bottom left box).

Car

has a

has a

Car CarDamper

CarWheel ...

+ nrOfWheels : int

+ model_id : long + comp_id : long

+ strength : float

+ diameter : float

+ width: float

+ type: string

...

1.

A

2.

3.

B

Additional Design

1.: Creation

2. Add Wheel

3. Add Damper

 A:

n = 0;

n < nrOfWheels;

n += 1

 B:

m = 0;

m < nrOfDampers;

m += 1

+ nrOfDampers : int

Class Design Sequence Design

Design Graph CAD

Car

Damper

Wheel

m = m n + ...
total wheel 1

Xpos = Xpos + depth
Damper

1
Wheel

1 Wheel
1

...
...

Solution
Path Generator

Figure 2.4.: Graph-Based Design: System Design (Example)

After solving the set of linear equations, the compiler creates the generic design model

in form of a design graph. Interfaces allow the generic model to be derived into the spe-

cific domain models (Computer-Aided Design (CAD), Fintite Element Analysis (FEM),

Computational Fluid Dynamics (CFD),. . .). In each specific domain, the abstract form

of the design graph is mapped to its corresponding syntactical meaning. (e.g. in the form

of geometry, stress and load forces or aerodynamic characteristics.) The domain model

can be optimized further and information and adaptations are fed back into the generic

model. This process was mentioned earlier as ‘round trip engineering’. Such optimiza-

tion is an iterative process between optimization of domain model and graph adaptation.

Figure 2.4 represents the five core elements of graph-based design as approached in DC43.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 21

The class diagram contains all classes with attributes and relations. The sequence dia-

gram contains the rule set which is sequentially executed. Class diagram and sequence

diagram are both initially defined in UML and adjusted to the graph-based design ap-

proach. The solution path generator processes all underlying constraints and equations.

The generic domain-independent model in the form of the design graph is created and

can be derived into domain-specific models. The general principle of modeling data in

such a graph-based process with the support of DC43 is used in this work. Subsection

2.1.3 addresses how this can be adjusted to the field of requirement and test data.

2.1.3. Requirements and Tests in Graph-Based Design

In the discussion about the top-down versus bottom-up approach it, was shown that

a downside of bottom-up approaches is the general problem of steering design towards

the required or envisioned product functionality. The empirically observed situation for

requirements elicitation and refinement for graph-based design, in particular DC43, shall

be discussed here. This might not be representative for all graph-based design approaches

but since DC43 is used in this work, this particular situation shall be laid out.

Graph-based design in this context serves as the underlying ontology to represent and

process the requirements and tests throughout the formalization process. The problem

to be solved here is that graph-based design usually uses a bottom-up approach while

requirements engineering in a V-model refines requirements top-down. Requirements

are initially defined on a high level (product or full system requirements, e.g. “The car

must run at all commonly accepted speeds.”) and then defined with more detail later on

(e.g. “The maximum temperature of the engine shall not exceed the maximum working

temperature of the material used for building it.”.) Thus, requirement refinement is not

naturally aligned with the bottom-up approach of graph-based design. Subsection 2.2.1

divides requirements into functional, performance, quality and constraints. It is observed

that refinement for constraints is intuitive when designing with DC43. Classes are con-

strained through boundary conditions of attributes in exactly that way (e.g. maximum

car mass = 2300 kg). Therefore, a need for mathematical equations and constraints

exists naturally. Problems arise with the other three forms of requirements (functional,

performance and quality). These requirements are usually complex to refine. It is per-

ceived that DC43 designs usually work with high-level requirements while refinement

for low-level requirements takes place informally through design decisions. This creates

22 2.2. AUTOMOTIVE SYSTEMS ENGINEERING METHODOLOGY

implicit assumptions and knowledge about the design and the product, without any for-

mal documentation or process. Such an approach is problematic for a variety of reasons

(requirements validation, design adjustments, hand-overs, . . .).

Chapter 3 shows a path that solves this problem by connecting requirements elicita-

tion and refinement with the DC43 design process naturally. Background and relevant

definitions in the field requirements and tests are given in Section 2.3.

2.2. Automotive Systems Engineering Methodology

The Mercedes-Benz E-Class released to market in 2016 contains about 200 systems. For

theses systems, complexity varies tremendously. Personal observation estimates the av-

erage system size at about 1500 requirements and 2500 test cases (system level). Product

complexity requires a systematic development approach. This section introduces Prod-

uct Development Process (PDP) as described in Pahl & Beitz [PBSJ13, PBFG14]. It is

aligned with the V-model, state of the art model in the automotive industry today. Spe-

cial focus is on requirements engineering (Subsection 2.2.1) and verification & validation

(Subsection 2.2.2). To define the scope of this discussion about system engineering, two

questions should be answered upfront:

What is a system (and a system of systems)?

What are the disciplines and tasks required to develop a system?

One answer to the above questions is within NASA’s definition for system engineering:

Definition 2.1. “Systems engineering is a methodical, disciplined approach for the

design, realization, technical management, operations, and retirement of a system. A

“system” is a construct or collection of different elements that together produce results

not obtainable by the elements alone.” [SA95]

The term ‘results’ NASA uses in its system definition is equivalent with the expression

‘functions’ used by Pahl & Beitz [PBSJ13] in its definition of product:

Definition 2.2. “Every product serves the purpose of fulfilling a function” [PBSJ13,

pp. 242, translated].

The definition of system given by NASA shall be extended in the sense that big systems

(e.g. a car) are often separated into sub-systems, thus a car is a system of (sub-)systems.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 23

All further discussions apply to systems and to systems of systems in the same way,

thus they are not differentiated in this work. Yet, all non-technical domains like market

analysis, marketing & sales strategy and customer satisfaction are beyond the scope of

this work and and will not be considered further. [PBSJ13] further states: “A solution for

a technical task including energy, material and signal transfer requires the existence of

an unambiguous, reproducible relation between input and output of a system.” [PBSJ13,

pp. 242, translated]. This leads to the conclusion that: “A function is the common and

sought relation between input and output of a system with the goal to fulfill its purpose”

[PBSJ13, pp. 242, translated] (see Figure 2.5).

Output

Material

Energy

Signals

Input

Energy

Material

Signals

Figure 2.5.:

Product Development Process: Function, Pahl and Beitz [PBSJ13, pp. 240, trans.]

Functions can be further divided into sub-functions to reduce complexity. (Sub-)functions

can be realized through physical effects or the combination of physical effects (work de-

pendencies). “To achieve the overall functionality, work dependencies of all sub-functions

are combined. The combination of multiple work dependencies leads to the work struc-

ture of a solution. Through a work structure, the interactions between work dependen-

cies are identified. It shows the solution principles that realize the overall functionality.”

[PBSJ13, pp. 249, translated] Functions require physical implementations. Components

serve as the physical structure for functional implementation. Usually functionality is

not implemented on one isolated component. Components in general consists of a control

unit with a CPU accommodated by an input layer (sensor or signal input) and an output

layer (actor or signal output). Function realization often requires contributions from mul-

tiple components. This causes complex dependencies between functions and components.

The state of the art in the automotive industry for system development is the V-model

(see Figure 1.1). It separates the development process in three major phases: Require-

ments specification with refinement from system to low-level (including architectural

design), development and verification & validation including the system integration from

low-level to high-level.

24 2.2. AUTOMOTIVE SYSTEMS ENGINEERING METHODOLOGY

V-model and Pahl & Beitz’s PDP can be mapped as shown in Figure 2.6. PDP and

V-model define the system at first. Requirements (≈ functions) are specified in detail

based on demanded system purpose. While there exists no formal solution generation

in the V-model development phase, the PDP provides a formal sequence of steps to

reach the demanded functionality. For all specified functionalities, solution principles

are selected. Solution principles are capable of physically transforming the system and

are implemented onto components. Functionality requires the interaction of components.

Integration including validation and verification of correct behavior against specification,

is the last phase of the product development. Components are aggregated to modules

and modules are aggregated to a system. It should be noted that since the Pahl and

Beitz approach in Figure 2.6 only contains one requirements specification phase, namely

an exact mapping to the V-model, this specification phase must contain the high-level

and low-level phases of requirements engineering.

Figure 2.6.:

Product Development Process (PDP), Pahl and Beitz [PBSJ13, pp. 240, translated]

The scope of this work for requirements specification as well as integration including

verification and validation is on the system level. System development is not discussed

in more detail. Pahl and Beitz was introduced to provide a connection between require-

ments engineering and testing to the overall product development. There exist formal

approaches (like the one shown) that allow requirements engineering and testing to be

embedded into overall system development. Subsection 2.2.1 contains a detailed intro-

duction to the state of the art for requirements engineering while Subsection 2.2.2 covers

integration and related testing.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 25

2.2.1. Requirements Engineering

In systems development, the first technical phase is concerned with the expression of all

required functionalities of the product envisioned to be built. This and additional tasks

take place in the domain of requirements engineering. The definition of requirements

engineering used in this work is provided by Rupp and Pohl:

Definition 2.3. “Requirements engineering is a systematic and disciplined approach

to specify and manage requirements [. . .]” [RP15].

The process of requirements engineering can be divided into four main phases: Elicitation

& analysis, documentation, verification & validation and management of requirements.

The future discussion mostly addresses the documentation process. For this purpose,

it is necessary to define the term requirement and its differentiation into functional

and non-functional. This provides the basis for a detailed discussion of requirements

documentation and representation forms. Zave and Jackson [ZJ97] point out that “[. . .]it

is not necessary or desirable to describe (however abstractly) the machine built”. Jackson

[Jac17] further concludes “Different possible behaviors can satisfy the requirements just

as more than one possible program can compute a desired result. So the requirement

[. . .] should not specify the behavior [. . .] directly, but only its desired properties,

effects and consequences.” Requirements therefore provide a rather abstract descriptions

of the behavior and system capabilities instead of an exact system design. The term

requirement from now on will be defined and used as:

Definition 2.4. Requirement: “A condition or capability that must be met or possessed

by a system or system component to satisfy a contract, standard, specification, or other

formally imposed documents.” [IEE90]

Requirements can be separated into Functional Requirements and Non-Functional Re-

quirements (NFR). While there exists a wide agreement on the definition of functional

requirements, “[. . .] there is still no consensus on the nature of non-functional require-

ments and how to document them in requirements specifications” [Gli07].

Glinz removes the term NFR in his taxonomy of requirements. He considers performance

(“restrictions about timing, processing or reaction speed, data volume, or throughput”)

and quality requirements (“a specific quality that the system or a component shall have”)

as attributes of the described system,“. . . while any other restriction about what the sys-

tem shall do, how it shall do it, or any prescribed solution or solution element” is con-

sidered a constraint. He remarks that it is possible to group performance requirements,

26 2.2. AUTOMOTIVE SYSTEMS ENGINEERING METHODOLOGY

quality requirements and constraints together as NFR. The definition proposed by Glinz

is the one used in this context while, as proposed, grouping all requirements other than

functional requirements as NFR.

Definition 2.5. Functional requirement: “A requirement that specifies a function

that a system or system component must be able to perform.” [IEE90]

Definition 2.6. Non-functional requirement: Non-functional requirements sum-

marize performance requirements, quality requirements and constraints. “A performance

requirement is a requirement that pertains to a performance concern. A specific qual-

ity requirement is a requirement that pertains to a quality concern other than quality of

meeting the functional requirements. A constraint is a requirement that constrains the

solution space beyond what is necessary for meeting the given functional, performance,

and specific quality requirements.” [Gli07]

By showing multiple representation forms of the same requirement, Glinz [Gli07] further

says: “[...] the kind of requirement depends on the way we represent it.” At MBC de-

velopment, a functional requirement describes a behavior that can either be experienced

by the customer or else is testable. From observation it can be said, that all such re-

quirements can be represented in the data formats used in later formalization steps. The

focus of further discussion will therefore be on all requirements that can be represented

in language patterns used later on. This sets the scope of this work to all functional

requirements and a selected set of other requirements. This selected set is exactly the

set of requirements that is not functional but can also be represented in the language

patterns. In addition, there is a set of non-functional requirements that constraint the

solution space but cannot be represented in language patterns. These requirements can

be processed directly to the state machine without language pattern processing. Thus,

the term operationalization of functional constraints shall be defined:

Definition 2.7. Operationalization of Functional Constraints: “The process to

manipulate functional constraints from its initial equation representation to be directly

included in the state machine representation.”

To ensure a high quality system specification, requirements should be based on the follow-

ing principles of the Institute of Electrical and Electronics Engineers (IEEE) and Interna-

tional Organization for Standardization (ISO). Specifically, the IEEE norm [CB98] and

ISO-29148 [ISO11] provide definitions under “characteristics of individual requirements”:

CHAPTER 2. BACKGROUND AND STATE OF THE ART 27

Definition 2.8. Characteristics of individual requirements

(2.8.1) Necessary: The requirement defines an essential capability, characteristic,

constraint, and/or quality factor.[. . .]

(2.8.2) Implementation Free: Objective is to be implementation-independent.

(2.8.3) Unambiguous: The requirement is stated in such a way so that it can be

interpreted in only one way.[. . .]

(2.8.4) Consistent: The requirement is free of conflicts with other requirements.

(2.8.5) Complete: The stated requirement needs no further amplification because

it is measurable and sufficiently describes the capability and characteristics to meet

the stakeholder’s need.

(2.8.6) Singular: The requirement statement includes only one requirement [. . .]

(2.8.7) Feasible: The requirement is technically achievable, [. . .]

(2.8.8) Traceable: The requirement is upwards traceable to specific documented

stakeholder statement(s) of need, higher tier requirement, or other source (e.g., a

trade or design study). The requirement is also downwards traceable to the specific

requirements in the lower tier requirements specification or other system definition

artifacts. [. . .]

(2.8.9) Verifiable: The requirement has the means to prove that the system

satisfies the specified requirement. Evidence may be collected that proves that the

system can satisfy the specified requirement. Verifiability is enhanced when the

requirement is measurable.

The given specification guidelines enable specification engineers to identify and document

requirements for any given system. The actual representation form is not defined. Section

2.3 discusses a variety of specification representation forms in the context of knowledge

representation.

2.2.2. Testing - Verification and Validation

Testing is concerned with assessing product quality during system development. The In-

ternational Software Testing Qualifications Board (ISTQB) and the Institute of Electrical

and Electronics Engineers (IEEE) differ in their definition focus.

28 2.2. AUTOMOTIVE SYSTEMS ENGINEERING METHODOLOGY

Definition 2.9. Testing[ISTQB15] “The process consisting of all life cycle activities,

both static and dynamic, concerned with planning, preparation and evaluation of software

products and related work products to determine that they satisfy specified requirements,

to demonstrate that they are fit for purpose and to detect defects.”

Definition 2.10. Testing[ISTQB15](1) “The process of operating a system or com-

ponent under specified conditions, observing or recording the results, and making an

evaluation of some aspect of the system or component.”

Definition 2.11. Testing[ISTQB15](2) “The process of analyzing a software item

to detect the differences between existing and required conditions (that is, bugs) and to

evaluate the features of the software items.”

ISTQB specifically states that scope of testing includes “all life cycle activities”. It

contains a list of specific tasks to be performed on the test object. This is not included

in either IEEE definitions. All three definitions share two common aspects:

Commonality 1. Specified behavior serves the purpose it is designed for

Commonality 2. Specified behavior is compared to observed behavior

This work will use Definition 2.11 of [IEE90] as its working definition. It shall be men-

tioned that this definition is generalized beyond the scope of software items towards

system items. Thus, testing shall be defined here as:

Definition 2.12. Testing (in this work): “The process of analyzing a system item

to detect the differences between existing and required conditions (that is, bugs) and to

evaluate the features of the system items.”

In this work, a feature is considered to be a functionality provided by the system. The

observation throughout the comparison of the given definitions for testing revealed that

all share the common goals of Commonality 1: Specification matches design purpose and

Commonality 2: Specification matches observed behavior. Commonality 1 and Common-

ality 2 are both reflected in ISO-9000 [ISO05] definitions of validation and verification.

Definition 2.13. Validation [ISO05]: “Confirmation, through the provision of objec-

tive evidence, that the requirements for a specific intended use or application have been

fulfilled.”

Definition 2.14. Verification [ISO05]: “Confirmation, through the provision of ob-

jective evidence, that specified requirements have been fulfilled.”

CHAPTER 2. BACKGROUND AND STATE OF THE ART 29

A more practical way of describing validation and verification is: “Did we design the

right product?” (Verification) and “Did we design the product right?” (Validation). Val-

idation takes a product-centered view from the customer perspective. It assures that the

requirements lead to the product that is useful to the customer. In contrast, verification

is concerned with the specification process. It confirms whether on a certain specifica-

tion level the generated (more detailed) specification is in alignment with the previous

(more high level) specification. “This is independent of any intended use or purpose.”

[SL12] In contrast, this can be achieved by testing the product behavior against the

defined (testable) requirements. In this work, the main focus is on verification rather

than validation and therefore from now on ‘verification’ will be used interchangeably

with ‘testing’. This bottom-up development is illustrated in the V-model in Figure 1.1.

It shows that verification efforts occur during all testing phases and levels of the integra-

tion. System integration includes all activities concerned with assembling and validating

components, systems and the final product. Components (or the smallest stand-alone

units in a product) are verified, afterwards merged into more complex structures and

validated as systems or systems of systems.

The V-model in Figure 1.1 illustrates the three core levels (component, system and prod-

uct) and the integration phases. In addition, the unit tests occur during development.

In general, costs to detect and fix a failure increase exponentially during the integration.

Thus, it can be said, that the saving potential during later validation phases is higher. It

is favorable to reduce test loads of later phases, either by removing unnecessary tests or

shifting test load to earlier phases. In this work, the focus is on identifying and removing

redundant tests. A redundant test is a test that has an equal description to another test

and therefore does not produce new or further test result information when executed.

Shifting tests to other (lower) test phases is not addressed further here; This is discussed

by Schwarzl and Herrmann [SH18]. Definitions in the context of testing shall be given:

Definition 2.15. Test Object [ISTQB15]: “The component or system to be tested.”

For the component level test, all component interfaces are simulated and tests are per-

formed only on each component in isolation. Similarly, system level tests are performed

for each system in isolation while system interfaces are simulated.

Definition 2.16. Test environment [ISTQB15]: “An environment containing hard-

ware, instrumentation, simulators, software tools, and other support elements needed to

conduct a test.”

30 2.2. AUTOMOTIVE SYSTEMS ENGINEERING METHODOLOGY

This work distinguishes five different test environments (or platforms) as used at MBC

development.

1. Software-in-the-Loop (SIL)

2. Hardware-in-the-Loop (HIL)

3. Compoenent-HIL (C-HIL)

4. Functional Mock-Up (FMU)

5. Vehicle

Remark. This list is selective, based on the purpose discussed and not complete

Definition 2.17. Test goal [SL12], all translated:

1. Finding failures as the general goal of testing

2. Finding specific failures through adjusted test cases

3. Proof of requirement fulfillment through the test object as the specific goal of one

or more test cases.

Remark. In this work, test goal shall be used as: “Proof of requirement fulfillment

through execution without failure detection of all linked test cases, whereas each require-

ment must have at least one linked test case.”

The test object (see Definition 2.15) depends on the current integration phase and de-

scribes the object under test as well as the parts excluded from validation. Tests are

performed in a test environment (see Definition 2.16). The test environment is selected

based on the integration phase, test object and test goal (see Definition 2.17). Test envi-

ronments are mentioned in this context to strengthen the argument that later test phases

are more costly. The degree of manual work required for a (testing) task and the in-

creased efforts for adjustment of the finding are the main drivers for costs. Software unit

tests are (mostly) automated, C-HIL tests require a tester for setup and critical moments

while vehicle tests are performed fully by a tester. The scope of a test is determined by

the test goal. Spillner [SL12] distinguishes four kinds of testing:

Definition 2.18. Functional Testing[ISTQB15]: “Testing based on an analysis of

the specification of the functionality of a component or system.”

CHAPTER 2. BACKGROUND AND STATE OF THE ART 31

Definition 2.19. Non-functional Testing[ISTQB15]: “Testing the attributes of

a component or system that do not relate to functionality, e.g., reliability, efficiency,

usability, maintainability and portability.”

Definition 2.20. Structural Testing[ISTQB15]: “Testing based on an analysis of

the internal structure of the component or system.” (Definition for white-box testing)

Definition 2.21. Regression Testing [ISTQB15]: “Testing of a previously tested

program following modification to ensure that defects have not been introduced or uncov-

ered in unchanged areas of the software, as a result of the changes made. It is performed

when the software or its environment is changed.”

According to the definition used for the test goal (see Definition 2.17), this work focuses

on functional tests. Change-related tests can include a selected set of tests for each of

the three other categories (dependent on performed system changes). Tests are often

repeated numerous times during product development. Thus, optimizing such tests con-

tains an enormous savings potential. Tests are defined, structured and documented in

the form of test set, test case and test step. The common definitions in standards and

norms differ from the terminology used at [MB17].

Definition 2.22. Test Set [ISTQB15]: “A set of several test cases for a component

or system under test, [. . .]”

Definition 2.23. Test Case [MB17]: “[. . .]. [A test case] is the aggregation of mutual

test steps. The test case result is the aggregation of its test step results.”

Both definitions contain the idea that the defined term is a set of elements. The elements

provide actual system tests. In this work, the term test case shall be used as defined

at MBC in Definition 2.23. The meaning of test case is closely related to the test set

Definition 2.22.

Definition 2.24. Test Case [IEE90]: “A set of input values, execution preconditions,

expected results and execution postconditions, developed for a particular objective or test

condition, such as to exercise a particular program path or to verify compliance with a

specific requirement.”

Definition 2.25. Test Step [MB17]: “A test step consists of a precondition, trigger

and postcondition [...]. A test step proves (pass) or disproves (fail) a transition from one

state (precondition) to another state (postcondition) caused by a specific trigger. Multiple

test steps aggregate to a test case.”

32 2.2. AUTOMOTIVE SYSTEMS ENGINEERING METHODOLOGY

The definitions for test case [IEE90] and test step [MB17] both contain precondition,

postcondition, input values (triggers) with the goal of verification of requirements (pre-

condition, trigger and postcondition). The term ‘test step’ shall be used as defined in

Definition 2.25. It is closely related to the definition of test case at [IEE90]. Further the

terms ‘precondition’, ‘trigger’ (state ‘transition’) and ‘postcondition’ shall be defined.

Definition 2.26. Precondition [ISTQB15]: “Environmental and state conditions

that must be fulfilled before the component or system can be executed with a particular

test or test procedure.”

Definition 2.27. State transition [ISTQB15]: “A variable (whether stored within

a component [or system] or outside) that is read by a component [or system].”

Definition 2.28. Postcondition [ISTQB15]: “Environmental and state conditions

that must be fulfilled after the execution of a test or test procedure.”

In this work, precondition and postcondition are seen as system states (as in a state

machine). To account for output verification, either the expected result must contain a

description of the outputs or postcondition includes output as one part of its description.

This second option might not be the most elegant form of representation but it makes

it possible to express test cases and test steps in the structure used in this work. The

combination of current state and input determines a transition path and transition time

(moment or period) where the system changes from the initial state (precondition) to the

final state (postcondition). In this work, ‘transition’ is used synonymously with ‘trigger’.

The comparison of expected to actual results is performed for the precondition, transi-

tion and postcondition. A test is passed when the test description for the initial state,

transition path and final state match the observed states and path in the actual system

at the relevant observation moment during test execution. Existing test specification

guidelines enable test specification engineers to derive and document tests and links to

requirements for any given test object. The actual representation for the test description

form is not defined. This specifically affects the description of precondition, transition

and postcondition. Section 2.3 discusses a variety of representation forms in the context

of knowledge representation as well as the possibility of applying these representation

forms to test descriptions.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 33

2.3. Knowledge Representations in Systems Engineering

Sharma and Biswas [MT13] make a strong statement that in order to make progress in

requirements engineering, knowledge representations must be understood first. That in-

cludes clarifying and defining knowledge and discussing the field of representation forms.

Knowledge is closely related to data and information. The three terms, knowledge, data

and information, are often used in overlapping or interchangeable ways. Closer analysis

makes it obvious that all three terms are related but build on each other rather than

have the similar or overlapping meanings.

Figure 2.7.: Knowledge Representation: Knowledge Levels, [NK98], adapted

“Data represents the unstructured facts and figures, [. . .] At the next level information is

structured data that is useful [. . .] in analyzing and resolving critical problems. [. . .] At

the third level is general knowledge, which is obtained from experts based upon actual

experience. While information is data about data, knowledge is basically information

about information”. [Thi99] Knowledge is either general (third level) or specific to a

given domain (forth level). This work focuses in particular on (automotive) systems en-

gineering knowledge (specifically requirements, development and test knowledge). The

term domain knowledge is defined here as:

Definition 2.29. “Domain Knowledge is the specific knowledge that exists about a

particular field or discipline.”

Further discussion will in particular be about knowledge in the specific domains of re-

quirement, development and testing. Data and all its evolving forms (information, knowl-

edge and domain knowledge) require representation forms. The choice of representation

34 2.3. KNOWLEDGE REPRESENTATIONS IN SYSTEMS ENGINEERING

form is implicitly based on the predominant factor that is intended to be incorporated

with this particular representation. This work shall discuss three attributes in this con-

text in particular:

(1): Relations between elements

(2): Order of elements

(3): Representation form of statements

This is an individual choice but leads to the relevant representation forms for this work.

Subsection 2.3.1 and Subsection 2.3.2 discuss knowledge representation in the form of

unstructured and structured texts. Subsection 2.3.4 contains FOL and Linear Temporal

Logic (LTL) operators. Here logic operators are used to structure expressions in terms of

order of elements. Subsection 2.3.3 describes relations between elements through FSM.

2.3.1. Natural Language

The most intuitive and most used representation form in this context is text or, in other

words, natural language. The goal of a knowledge representation form is mainly to

represent a certain meaning. In language representations and logic, this is referred to as

semantics.

Definition 2.30. Semantic [EO117]: “Relating to meaning in language or logic.”

Expressiveness of a given semantic varies over representation forms. Allowing transfor-

mations from natural language to any other representation form, all information repre-

sented in natural language must be expressible in the other representation form. This

characteristic shall be called expressiveness. The maximum expressiveness of natural

language is the minimum required expressiveness for any other representation form, that

natural language is transformed to. It is possible that a representation form has a higher

expressiveness (e.g. formula). This applies if in a practical approach all knowledge

is represented in natural language. In case other representation forms serve as input,

in analogy to requirements about natural language expressiveness, all following repre-

sentation forms must at least provide the expressiveness level of the alternative input

representation form. Any semantic requires a set of rules. This influences expressiveness.

In language and computer science, such a rule set is referred to as syntax. The English

Oxford Dictionary [EO117] provides two definitions for syntax.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 35

Definition 2.31. Syntax (1) [EO117]: “The arrangement of words and phrases to

create well-formed sentences in a language.”

Definition 2.32. Syntax (2) [EO117]: “The structure of statements in a computer

language.”

Natural language syntax overall is irregular, contains exceptions and is exposed to change

and adaptations over time. Its major purpose is human readability, also called natu-

ralness. Machine code decreases in readability (and naturalness) through an adjusted

syntax. This adapted syntax generally enables machines to reason from knowledge.

“There is often a tension between naturalness and suitability for inference.” [Cla96]

This is shown in Figure 2.8: Change from informal to formal representation leads to

an increase in machine readability and reasoning capability while it decreases human

readability.

Figure 2.8.: Knowledge Representation: Informal and Formal

“Inference is the act of drawing conclusions about something on the basis of information

that you already have.” [Col17] The purpose of an inference engine is to increase the

knowledge (about a system) by using the information (knowledge base) available. This

means an inference engine can in principal draw conclusions about requirements (and

tests) in a system and determine whether they are correct, complete and consistent. In

a practical approach, the knowledge base can draw two kinds of information:

(1) Model structural information about the system (e.g. relations, links, order).

This information is represented formally, thus in machine readable form and there-

fore generally suitable for inference without adjustment.

36 2.3. KNOWLEDGE REPRESENTATIONS IN SYSTEMS ENGINEERING

(2) Content information about the system (e.g. maximum car velocity). This

information is represented informally and therefore not suitable for inference. The

process to adapt such information is referred to as formalization.

Requirement1

Requirement2

: Link : Reasoning Dependency

TestCase : Description
1

TestCase : Description2

TestCase Description
1

TestCase Description2=

Figure 2.9.: Knowledge Transfer: Inference (Example)

The combination of structural and content-related information can be powerful for in-

ference. It is assumed that Requirement1 and TestCase1 are linked and Requirement2

and TestCase2 are linked while no other links exist. In addition, it is assumed that the

content of TestCase1 and TestCase2 is exactly identical (the most simple case for infer-

ence of informational data). Through inference it can be concluded that Requirement1

and Requirement2 are dependent without looking at the content of Requirement1 and

Requirement2. It is necessary to convert the knowledge base from a natural repre-

sentation form to a machine-readable form in order to enable such inference for more

complicated cases than comparison for two representations containing exactly identical

information. This process is referred to as formalization (see Section 3.3). An interme-

diate step from natural language to a final form that is fully suitable for inference is

language patterns.

2.3.2. Language Patterns

Alexander described the abstract form of a pattern in the following way: “Each pattern

describes a problem which occurs over and over again in our environment, and then

describes the core of the solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same way twice.” [Ale85] Lan-

guage patterns are becoming more common in requirements engineering. As Alexander

said: patterns are a way to reuse the knowledge about found solutions while maintaining

the capability to adjust for variations in the problem. Patterns provide a solution to a

problem occurring in a transition from informal to formal requirements engineering.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 37

Despite attempts in which requirements were documented solely in the form of models,

graphs or other higher forms of representation, the state of the art automotive indus-

try is still natural language text. This is driven by the fact that most projects include

non-technical people (managers, stakeholders, lawyers). In addition, legal representa-

tion alone requires textual requirements. While general formalization could be achieved

through various forms of representations like data bases, ontologies or semantic networks,

this work (for the listed reasons about requirements) is limited to representations that

can be derived from natural language. This can include the above listed representation

forms, as long as a mapping or transformation from natural language exists. However,

this work will now focus on representation forms that hold the potential to serve as such

a mapping or transformation carrier.

Representation of requirements in natural language leads to a number of problems. While

it is usually easier to write (and read) such requirements at first, textual descriptions

are rather impractical in scaled form and for more complex situations. Subsection 2.2.1

listed the nine characteristics good requirements should contain according to ISO-29148

[ISO11]. The majority of these characteristics are hard to follow when requirements are

textually stated. Mavin et al. [MWHN09] provide a list of possible problems: ambiguity,

vagueness, complexity, omission, duplication, wordiness, inappropriate implementation,

untestability. There exist many approaches that discuss ways to write natural language

requirements while avoiding or limiting the listed problems. Wiegers [Wie99] discusses six

of the nine characteristics and provides guidance about improving requirements quality.

Similar, Hooks [Hoo94] describes characteristics of good requirements, common problems

and provides advice, with practical examples on how to write better requirements. His

work deviates further from the stated ISO-29148 [ISO11] but includes practical details

(for example a discussion about critical words (e.g. shall), similar to the discussion in

Master [Gmb16].)

The Volere Template by Robertson [RR00] focuses on a much more extended approach for

writing requirements. It includes elicitation of requirements, different forms of project-

related information representation (e.g. use cases, scenarios) and describes in detail an

abstract method of representing functional and non-functional requirements. Lauesen

[Lau08] covers a similar scope in his guide to requirements. It includes elicitation, con-

siderations about testing as well as a limited discussion of requirements representation.

The requirements guideline [MB07] and test specification guideline [MB17] can be seen

38 2.3. KNOWLEDGE REPRESENTATIONS IN SYSTEMS ENGINEERING

as tutorials or workbooks that acts as a guide through the whole process of handling

requirements. However, neither document focuses on representation forms in particular.

The publications by Wiegers [Wie99], Hooks [Hoo94], Robertson [RR00] and Lauesen

[Lau08] are examples of qualitative advice in an abstract form. They all improve the

specification process to a certain degree but since all four are still using unstructured

text, the underlying problem is not addressed. Mavin states in [Mav12] “Herein lies

the dilemma: human beings want to write requirements in natural language, but it’s too

imprecise for the task.” He further concludes: “In my view, the solution is a gently

constrained application of English language.” Constrained language can be developed in

form of templates. This work discusses a number of approaches. Yet the listed templates

should be seen as examples, not as a complete representation of all existing work in the

field of requirement specification templates.

(BIG) EARS - Mavin et al. [MWHN09, MW10, Mav12, MWGU16]

Introduction of EARS was based on the identification of common problems with require-

ments: ambiguity, vagueness, complexity, omission, duplication, wordiness, inappropriate

implementation, untestability; (this list has already been stated above). EARS includes

five syntax structures with examples (full description of each structure and examples in

Mavin et al. [MWHN09]):

Ubiquitous: The <system name> shall <system response>

Example: The control system shall indicate the engine oil quality to the aircraft

Event-Driven: WHEN <optional precondition> <trigger> the <system name>

shall <system response>

Unwanted Behavior: IF <optional precondition> <trigger>, THEN the

<system name> shall <system response>

State-Driven: WHILE <in a specific state> the <system name> shall

<system response>

Optional Feature: WHERE <feature is included> the <system name>

shall <system response>

EARS concludes that the template addresses ambiguity, omission, duplication, wordi-

ness and inappropriate implementation but requirements specified in EARS still contain

problems in terms of untestability, complexity and vagueness.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 39

Master - Sophist [Gmb16]

The intention for Master comes from the basic idea to “improve the quality of natural

language requirements.” Its goal is to improve the cost-to-value ratio for requirements

specifications while maintaining a naturalness of language in the way requirements are

stated. Master is based on five rules: Active phrasing (no passive requirements), com-

plete sentences, main verbs, one process word entails exactly one requirement and the

degree of detailing supports analysis.

Master distinguishes syntax structures for functional requirements, non-functional re-

quirements and conditions. Non-functional requirements can be separated into quality,

technical, user interface, additional services, tasks and legal requirements. This leads to

three templates for non-functional requirements: property (all six), environment (techni-

cal) and process (tasks, legal). Condition specification is distinguished into logic, action

and time-related specifications. Conditions are used as an addition to the other syntax

structures.

Functional: <opt: condition> <System> (<shall> or <should> or <will>)

(<provide<actor> with the ability to> or<be able to>)<process verb><object>)

Example: The system should provide the user with the ability to search items

Non-functional - Property: <optional condition> <characteristics>

<subject matter> (<shall> or <should> or <will>) <be> <opt.: qualifying

expression> <value> <system name> shall <system response>

Non-functional - Technical: <(opt: component of the) subject matter> (<shall>

or <should> or <will>) <be designed in a way> <opt: condition> <object> <can

be operated> <characteristic> <(opt: qualifying expression)> <value>

Non-functional - Process: <optional condition><actor> (<shall> or<should>

or <will>) <process verb> <opt.: details on process verb> <object>

<opt: detailed definition of object>

Condition: ((<if> <logical expression>) or (<as soon as> <event>) or (<as

long as> <time period>))<requirements main clause>

(Conditions preclude any of the others requirements templates)

The Master template provides variations for each structure. Thus, the real multiplicity

for template patterns is much higher than the five initially given. It puts a special focus

on main verbs. EARS uses only shall, while Master distinguishes shall, should and will.

40 2.3. KNOWLEDGE REPRESENTATIONS IN SYSTEMS ENGINEERING

Specification Pattern Systems (SPS) - Dwyer et al. [DAC98, DAC99, DP117]

The development of Specification Pattern Systems (SPS) is driven by the need for for-

mal verification of requirements (e.g. model checking). A feasible approach therefore is

temporal logic. SPS includes many forms of logic. This work only considers the patterns

stated in LTL. Dwyer et al. argued that specification in LTL “requires knowledge of

several structured LTL idioms.” [DAC98] The templates therefore provide a natural lan-

guage expression and a mapping to LTL for each structure. SPS contains eight patterns

(two have multiple variants, so the total multiplicity is eleven). Each pattern is applica-

ble in five cases: ‘global’, ‘before R’, ‘after Q’, ‘between R and Q’ and ‘after Q until R’;

Universality: P is true

Example: P is true before R (‘global’ pattern with ‘before R’ case)

Server[off] is true before ElectricPowerSupply[on]

Absence: P is false

Existence: P becomes true

Bounded Existence: P becomes true

(P state occurs n-times)

Precedence: S precedes P

Precedence Chain: S, T precedes P

(2 causes 1 effect)

Precedence Chain: P precedes S, T

(1 cause 2 effects)

Response: S responds to P

Response Chain: P responds to S, T

(2 stimulus 1 response)

Response Chain: S, T respond to P

(1 stimulus 2 responses)

Constrained Chain Patterns: S, T without Z responds

(2-1 response chain with single proposition constraint)

The variations for SPS and with that its multiplicity are much wider than Master. The

focus in all patterns is on expressiveness in LTL. This limits the natural expressiveness

to a certain degree and compromises the implementation.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 41

Overall, EARS and Master, based on the historic reason for invention, are both almost

natural language implementations. SPS differs in so far, that it centers around the idea

of formalization. Figure 2.8 shows that formalizing a representation improves the rea-

soning capability. By limiting the specification to language patterns, the syntax is in

fact constrained in comparison to free text. This provides structure with the cost of

reduced creativity and expressiveness. Two kinds of patterns can be observed. Domain

independent templates and single domain templates. A domain-specific template tends

to be easier to use in a specific problem setting, which is why specification engineers tend

to prefer domain-specific templates. Due to the inherent domain limitation, the scope of

single domain templates is limited (e.g. Li et al. [LNHK11] and Shen et al. [SPZ12]).

General approaches are harder to fit to a given problem and implementation is less in-

tuitive, thus less favored by specification engineers. Yet domain independent approaches

by design provide a much broader scope. In addition, the problem of inconsistencies

between domain-specific models (or requirements) can be treated (see e.g. Helmig et al.

[HKS+10], Berenbach and Wolf [BW07]). This represents a trade-off with no objectively

superior solution but rather a subjective choice of preference. This work focuses on a

wide applicability with the downside of a more inconvenient implementation. All three

approaches shown (SPS, EARS and Master) fulfill this constraint. After selection of a

multi-domain approach, this work is limited further: It continues to use only SPS by

Dwyer [DAC98, DAC99]. In contrast to EARS and Master, SPS provides an empirical

researched mapping to LTL. The advantages and implications are discussed in more de-

tail in Section 3.3).

The initial intention for EARS and Master lies in the reduction or avoidance of common

problems during the requirements specification process. Dwyer mentions that verifica-

tion was one of the main drivers for developing SPS. Verification can be seen as a form

of inference in this case. In the discussion about knowledge inference in Section 2.3.1,

Figure 2.8 showed that a more formal representation is more suitable for inference. Using

a template with predefined syntax structure allows for a much better inference. Thus,

intended or not, all templates make it possible to reason about requirements through

their syntactically restricted description. This reasoning capability shall be improved

through further formalization. Subsection 2.3.4 addresses this specifically for logic while

Chapter 3 derives a generalized process. Subsection 2.3.2 discussed expressiveness of

representation forms. In the same context it can be asked, whether a particular repre-

42 2.3. KNOWLEDGE REPRESENTATIONS IN SYSTEMS ENGINEERING

sentation form can express a certain form of (domain) knowledge. Specifically here the

question is “Can tests be represented in the form of SPS?” Since tests are derived from

requirements, this must be possible. Every test description is based on the content of

the requirement. The required expressiveness for a test-representation thereby can only

decrease in relation to the required expressiveness of a requirements-representation. This

assumption was confirmed in the analysis performed later where “no incident was found,

where a test could not be represented in a SPS.” It can be said that the shown language

patterns (especially the SPS used later by Dwyer et al. [DAC98, DAC99]) can be used

to express tests in addition to requirements.

2.3.3. Finite State Machines

It is a necessity in systems engineering to represent complex systems through formal

models. Historically, requirements engineering was a primarily text-based discipline.

While textual requirements are still common, formal modeling is becoming increasingly

common. As discussed in Section 2.1, system structure and architecture can be repre-

sented best by class diagrams and functional representation is shown through sequence

diagrams. The third common form of system representation is concerned with system

behavior. Automata and specifically finite state machines serve well and are used most

often to model behavior in requirement engineering. Figure 2.10 shows the four forms of

machines included in automata theory. Turing machines are the most complex form of

automata. “Turing machines are capable of changing symbols and simulate computer ex-

ecution and storage.” [ST118] “Turing machines can simulate any computer algorithm,

no matter how complicated it is.” [CAM18]. “A linear bounded automaton is a non-

deterministic Turing machine.” [Ben18]

“A pushdown automata is a finite automation with a stack. A stack can contain any num-

ber of elements, but only the top element may be accessed.” [VIR10]. The simplest form

of automata are finite state machines. “Finite state machines are only able to compute

primitive functions.” [ST118]. The scope of this work is limited to finite state machines,

therefore pushdown automata, linear bounded automata and Turing machines will not

be discussed further. However it shall be noted, that automata theory is closely related

to formal language theory. This connection between language and model representations

is further examined in Chapter 3.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 43

Turing Machines

Linear Bounded Automata

Pushdown Automata

Finite State Machines

Figure 2.10.: Automata: Overview - Automata classes

A distinction is made between Finite State Machines (FSM) and infinite state machines

(or transition systems). Infinite state machines contain no start and end state and the

number of states and transitions can be infinite. In comparison to FSM, infinite state ma-

chines are more powerful. The characteristics of industrial systems (here specifically E/E

Systems) usually contains a finite number of states and transitions. The characteristics

of infinite states does not allow all conversions and analysis steps needed for the approach

discussed in this work, which is why finite state machines are better suited for modeling

systems in this context. We use the definition proposed by Cerny [Cer80] and used by

Kam et al. [KVBSV12] and Villa et al. [VKBSV13] as their basis for FSM. The gen-

eral definitions of Cerny [Cer80] include Definition 2.33 Characteristic Functions of S,

Definition 2.34 Characteristic Function of R, Definition 2.35 Non-Deterministic FSM,

Definition 2.36 State-Transition Graph, Definition 2.37 State Transition Relation T and

Definition 2.38 for MooreDFSM.

Definition 2.33. Characteristic Function of S [KVBSV12, VKBSV13]:

Given a subset S ⊆ U where U is some finite domain, Characteristic Function of

S, χS : U → B, is defined as follows, for sequel B = {0, 1}. For each element χ ∈ U ,

χS(x) =

0 if x /∈ S,

1 if x ∈ S
(1)

Definition 2.34 extends Definition 2.33 from one domain U to two domains X and Y .

44 2.3. KNOWLEDGE REPRESENTATIONS IN SYSTEMS ENGINEERING

Definition 2.34. Characteristic Function of R [KVBSV12, VKBSV13]:

Given a relation R ⊆ X×Y , where X and Y are finite domains, Characteristic Function

of RχR : X × Y → B is defined as follows. For each pair (x, y) ∈ X × Y ,

χR(x, y) =

0 if x and y are not in relation R,

1 if x and y are in relation R
. (2)

Definition 2.34 can be extended from two domains X and Y to n domains. Non-

deterministic state machines are the most general form of FSM. The classification will

distinguish the different forms of FSM and define the specific type that is used further

in more detail.

Definition 2.35. Non-Deterministic FSM MND [KVBSV12, VKBSV13]

A non-deterministic FSM shall be defined as a 5-tuple where S represents the finite state

space, I represents the finite input space and O represents the finite output space, T is

the transition relation defined as a characteristic function T = I × S × S ×O → B. On

an input i, the FSM at a present state p transits to a next state n and output o if and

only if T (i, p, n, o) = 1. There exists one or more transitions for each combination of

present state p and input i. R ⊆ S represents the set of reset states. Reset state for a

state machine represents the starting state in which a state machine remains until the

first input is given.

MND = {S, I, O, T,R} (3)

Definition 2.36. State-Transition Graph STG [KVBSV12, VKBSV13]

For a given FSM MND = S, I, O, T,R, the State-Transition Graph (STG) is defined as

(M) = {V,E}, where each state s ∈ S corresponds to a vertex in V labeled s and each

transition (i, p, n, o) ∈ T corresponds to a directed edge in E from vertex p to vertex n.

STG(M) = {V,E} (4)

Remark. This work deviates from Definition 2.27 in so far, that transitions are its

own class of vertex objects, not simply directed edges. It is required that two state vertex

elements are separated by a directed edge from the first state vertex to a transition vertex

and another directed edge from the given transition to the second state vertex.

Definition 2.37. State Transition Relation T [KVBSV12, VKBSV13]

State transition relation T must be complete with respect to i and p. This means there is

CHAPTER 2. BACKGROUND AND STATE OF THE ART 45

always at least one transition out of each state on each input. A state transition T = 1

is complete.

∀i ∈ I ∀p ∈ S ∃n ∈ S ∃o ∈ O such that T (i, p, n, o) = 1 (5)

The given definitions describe the most general form of a finite state machine: A non-

deterministic finite state machine. This leads to the general inner structure of a finite

state machine as shown in Figure 2.11.

S(tate)
λ
or
Λ

δ
or
Δ

I(nput) O(utput)next
State

current
State

Figure 2.11.: Automata: Finite State Machine Structure, Martin [Mar18]

Input and current state both affect the transition function (δ (Moore) or ∆ (Mealy)).

This function leads to the next state and the output logic (λ (Moore) or Λ (Mealy))

that generates output o. Depending on the exact type of state machine, further limita-

tions apply, mostly on the transition function. Figure 2.12 provides an overview over the

different classes of finite state machines. Generally, FSM can be distinguished into non-

deterministic (left branch) and deterministic (center branch) machines. Exceptions are

Partially Non-Deterministic Finite State Machine (PNDFSM) and Incomplete Specified

Finite State Machine (ICSFSM) (right branch). For PNDFSM, the next state is de-

terministic, but since the output is non-deterministic, it is overall pseudo-deterministic.

ICSFSM is incompletely specified for both, the next state and the output, and thus it

does not necessarily behave deterministically for a given next state or output. Inconsis-

tent behavior does not suit the models used in this work, which is why this branch (right

side) will not be discussed in more detail. Non-deterministic state machines are more

46 2.3. KNOWLEDGE REPRESENTATIONS IN SYSTEMS ENGINEERING

general than deterministic state machines. They contain a non-empty set of next states

and outputs for a given combination of current state and input. Since the multiplicity is

≥ 1, it is not deterministic which next state or output is chosen.

FSM

PNDFSM

ICSFM

MealyFSM

MooreFSM

MealyDFSM

MooreDFSM

u
n
iq

u
e
 n

e
x
t

s
ta

te
/o

u
p
tu

t

o
r a

ll s
ta

te
s
/o

u
tp

u
ts

n
o
t e

m
p
ty

 s
e
t o

f

n
e
x
t s

ta
te

s
/o

u
tp

u
ts

u
n
iq

u
e
 n

e
x
t s

ta
te

u
n
iq

u
e
 o

u
tp

u
t to

 s
ta

te
 &

 in
p
u
t

{
o
u
tp

u
t}

 =
 f(s

ta
te

)

{
o
u
tp

u
t}

 �
 f(s

ta
te

,in
p
u
t)

o
u
tp

u
t =

 f(s
ta

te
)

o
u
tp

u
t �

 f(s
ta

te
,in

p
u
t)

u
n
iq

u
e
 n

e
x
t s

ta
te

Figure 2.12.: Automata: State Machine Classification, Martin [Mar18]

Non-Deterministic states have transition function (δ or ∆) where each combination of

input and current state is mapped to one or more unique next states. In addition, states

have an output function (λ or Λ) where each combination of input and current state is

mapped to one or more unique outputs.

Deterministic states have transition function (δ or ∆) where each combination of input

and current state is mapped to a unique next state. In addition, states have an output

function (λ or Λ) where each combination of input and current state is mapped to a

unique output.

Besides determinism, finite state machines can be divided into Mealy Finite State Ma-

chines (Mealy FSM) and Moore Finite State Machine (Moore FSM). Mealy FSMs and

Moore FSM can be distinguished in their output function (λ (Moore) or Λ (Mealy)).

Output functions in Moore FSM only depend on the current state while Mealy FSM

output functions include current state and input. Figure 2.11 shows the difference.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 47

While Moore FSM is shown with continuous lines, Mealy FSM adds the dependency

between input and output functions shown with the dashed lines.

Mealy Deterministic FSM (Mealy DFSM) output(λ) = f(current state, input)

Moore Deterministic FSM (Moore DFSM) output(Λ) = f(current state)

Automotive systems are designed to behave in a predictable, repeatable way. Non-

deterministic models violate that principle. Therefore, only deterministic finite state

machines are considered further. To decide whether Mealy DFSM or Moore DFSM are

more suitable in this context, it has to be analyzed how output should be created. Con-

sidering the goal of using a state machine as a specification, it seems practical that a

given current state produces the same output every time, regardless of input. Input

(e.g. through pressing a button), might not affect output. Therefore, all further models

are performed on Moore DFSM. There are certainly situations and setups where a Mealy

DFSM would be more suitable, yet in the majority of use cases for specifying a system,

a Moore DFSM seems appropriate. Therefore, a Moore DFSM which depends only on

current state is chosen for this work.

Definition 2.38. Moore DFSM MMD[KVBSV12, VKBSV13] shall be defined as a

6-tuple MMD = {S, I, O, δ, λ, r}. In analogy to Definition 2.35, S represents the finite

state space, I represents the finite input space and O represents the finite output space.

δ is the next state function defined as δ : I × S → S where n ∈ S is the next state of

present state p ∈ S on input i ∈ I if and only if n = δ(i, p). λ is the output function

defined as λ : S → O where o ∈ O is the output of present state p ∈ S if and only if

o = λ(p). r ∈ S represents the reset state.

MMD = {S, I, O, δ, λ, r} (6)

Definition 2.39. Mealy DFSM shall be defined in the same way a Moore DFSM was

specified in Definition 2.38. The only adjustment is that for Mealy DFSM the output

function is defined as Λ : S → O where o ∈ O is the output of present state p ∈ S and

i ∈ I if and only if o(Λ) = (p, i).

Based on the above definitions of Kam et al. [KVBSV12] and Villa et al. [VKBSV13],

the general principles of FSM are shown and described. It is possible to categorize

FSM as non-deterministic and deterministic as well as distinguishing between Moore

48 2.3. KNOWLEDGE REPRESENTATIONS IN SYSTEMS ENGINEERING

DFSM and Mealy DFSM. Specific, more detailed definitions for State, Input, Output,

Transition Logic, Output Logic and reset state are needed for the Mealy DFSM used

in the given context. Definitions for all six Mealy DFSM variables are provided below.

This might deviate from the more detailed definitions in Kam et al. [KVBSV12] and

Villa et al. [VKBSV13].

Definition 2.40. State S shall be defined as a unique, valid and particular condition

that a system can be in. It is described through the sum of all system attributes, where

each attribute contains a particular value or value range. The combination of all possible

attributes with all possible values describes the upper limit of possible states. It is possible,

that in a given context not all theoretically existing states are correct and accepted system

states. There exists a start state, an end state and possible resetstates (in our case

reset state is equal to initial state). Current state and next state are elements of the

set of accepted system states.

Definition 2.41. Input I contains a limited number of symbols which are elements of a

predefined set of accepted symbols (input alphabet). Input and current state are inputs

to the transition logic. Input affects the system.

Definition 2.42. Output O contains a limited number of symbols which are elements

of a predefined set of accepted symbols (output alphabet). Output is generated by the

outputlogic and does not affect the system.

Definition 2.43. Transition Logic δ progresses the system from current state to

next state. It uses current state and input as incoming variables for the logic func-

tion to determine a unique next state. Multiple unique transitions can reach the same

next state. Occurring transitions can be distinguished into spontaneous, event driven,

counter driven and timer driven.

(2.43.1) Spontaneous Transition: Input does not need to meet a particular

conditions. Transition can occur instantaneously.

(2.43.2) Event Driven Transition: Input has to meet a given input condi-

tion. Fulfilling that conditions causes the transition. Counter and Event Driven

Transitions are special forms of Event Drive Transitions.

(2.43.3) Counter Driven Transition: Input contains a counter which has to

fulfill a given counter condition (number of repetitions where the counter is in-

creased). Meeting the condition causes the transition and resets the counter.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 49

(2.43.4) Timer Driven Transition: Input contains a timeout signal which

causes the transition to wait until fulfilled (wait for a given time span). Once

the timeout signal condition is met, transition takes place.

Definition 2.44. Output Logic λ generates an output based on current state. Outputlogic

does not affect the system.

Definition 2.45. Reset State R retires the system to a predefined state (e.g. system

shutdown or reaching an end state). In this case reset state is equal to initial state.

A system can be modeled through a start state which transitions to a next state based

on input. Next state becomes current state. It triggers outputlogic which generates an

output. New input or fulfillment of the relevant transition condition in combination with

current state leads to next state. Thus, the system can change between states through

different inputs and generate outputs. The described Mealy DFSM is used to generate

system models in Chapter 3 and Chapter 4.

2.3.4. First Order and Temporal Logic

This subsection contains the definition of a formal system under consideration of FOL

and temporal logic. The system is defined through states and transitions between these

states. The full set of system states can be reduced through requirements that invalidate

a number of system states. The remaining states represent the set of valid system states.

This is a subset of the total set of system states. Similarly, transitions can be inval-

idated through requirements, which reduces the set of transitions to valid transitions.

Requirements (from now on called conditions) are expressed through parameters and

logic quantifiers. Parameters are equal to a particular value for a given state. Quanti-

fiers (from now on called operators) consist of FOL operators (‘combination’ (AND) ∧,

‘alternative’ (OR) ∨, ‘negation’ (NOT) ¬, ‘implication’ (IMP) −→) as well as temporal

logic operators (‘next’ ◦, ‘future’ �, ‘global’ �, and ‘until’ U ,). The listed operators are

subsets of the total set of operators in first order, respectively LTL. All FOL operators

can be expressed through the given operators [BN13]. Temporal logic can be reduced

to expressions with the restrictive ‘until’ operator U∗[ST118]. Therefore, from now on,

wherever ‘until’ is mentioned, it refers to the restrictive version. For simplification the

restrictive version is represented as U instead of U∗.

50 2.3. KNOWLEDGE REPRESENTATIONS IN SYSTEMS ENGINEERING

Definition 2.46. System S
Let S be a system with the state space X , where X = {set of states}.

Remark. System S is seen here as an abstract representation of a system which is not

necessarily equal to the term system as used later in this work.

Definition 2.47. Parameter p

Let pi be a parameter where pi: X −→ Pi and Pi includes all values of the value set that

parameter pi can take. i ∈ I, where I = N = {1, . . . , n} since n ∈ N .

Information about two parameters p1 and p2 at the same time can be represented through

the cartesian product. The parameter p1 × p2 is defined as:

Theorem 2.1. Cartesian product

Let the cartesian product be defined as: p1 × p2 : X −→ Pi1(x)× Pi2(x); for i ∈ I.

Remark. Parameter p is seen here as an abstract representation of a parameter which

is not necessarily equal to the term parameter as used later in this work.

Definition 2.48. Condition C Conditions are requirements that a parameter must

obey. Conditions are subsets of the total value set of parameters. They translates to the

request that parameter p1 can only equal particular values v1, . . . , vk where v1, . . . , vk are

values of p1. Thus, let v1, . . . , vk ∈ P1. The subset Qi ∈ Pi consists exactly of all values,

that are valid values where pi = v and v ∈ {v1, . . . , vk}. Let Qi: = {v1, . . . , vk}. The

request that pi can take or equal any value from v1, . . . , vk translates to the demand for

the state x ∈ X : pi ∈ Qi.

Example:

Parameter pi can take whole-number values between 0 and 10.

Definition: Qi1: = {v ∈ Pi1 | 0 ≥ v ≥ 10}
Demand pi(x) ∈ Qi1, that means: 0 ≥ pi(x) ≥ 10. Let pi(x) ∈ Qi, for state x ∈ Xi

Remark. Condition C is seen here as an abstract representation of a requirement that

the abstract system S must fulfill. The condition is constraining the state space of a

parameter to its valid values. A requirement as used later can specify the system within

the remaining state space. The term requirement is therefore not equal to the term

requirement as used later in this work. To separate the different meanings of requirement,

requirements in the abstract context are called conditions.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 51

Multiple conditions for (different) parameters p1, . . . , pk with i1, . . . , ik ∈ I and k ∈
N can be combined. This leads to set-theoretic operations on the cartesian product

of the value set. The FOL operators (‘combination’ (AND) ∧; ‘alternative’ (OR) ∨,

‘negation’ (NOT) ¬ and ‘implication’ (IMP) −→) as well as temporal logic operators

(‘next’ ◦, ‘future’ �, ‘global’ � and ‘until’ U) will now be discussed one by one.

Definition 2.49. Operation ‘combination’ (AND) ∧
The combination of conditions can be represented through the given value ranges of the

given subsets Qi1 ∈ Pi1 ,Qi2 ∈ Pi2 for parameter pi1 : X −→ Pi1, pi2 : X −→ Pi2, where

both conditions must be fulfilled. Thus, for a condition (pi1(x) ∈ Qi1) ∧ (pi2(x) ∈ Qi2)

this translates into the set-theoretic union of both value sets: Qi1 × Pi2 and Pi1 ×Qi2.

It is given that:

(pi1(x)) ∈ Qi1

⇐⇒ (pi1(x), pi2(x)) ∈ Qi1 × Pi2

⇐⇒ (pi1(x), pi2(x)) ∈ Pi1 ×Qi2

therefore the condition can be expressed in logic form and as a set-theoretic expression:

(pi1(x) ∈ Qi1) ∧ (pi2(x) ∈ Qi2)

⇐⇒ (pi1(x), pi2(x)) ∈ Qi1 × Pi2 ∧ (pi1(x), pi2(x)) ∈ Pi1 ×Qi2

⇐⇒ (pi1(x), pi2(x)) ∈ Qi1 ×Qi2 = Qi1 × Pi2 ∩ Pi1 ×Qi2

Definition 2.50. Operation ‘alternative’ (OR) ∨
The representation of two alternative conditions, where at least one must be fulfilled, can

be represented through the value set of the subset Qi1 ∈ Pi1, Qi2 ∈ Pi2 for parameter

pi1 : X −→ Pi1, pi2 : X −→ Pi2. The condition therefore is that at least one of the

demanded requirements is met, thus:

(pi1(x) ∈ Qi1 ∨ pi2(x) ∈ Qi2

⇐⇒ (pi1(x), pi2(x)) ∈ Qi1 × Pi2 ∨ (pi1(x), pi2(x)) ∈ Pi1 ×Qi2

⇐⇒ (pi1(x), pi2(x)) ∈ Qi1 × Pi2 ∪ Pi1 ×Qi2

Definition 2.51. Operation ‘negation’ (NEG) ¬
Raising a condition based on the given value set through the subset Qi1 ∈ Pi1 for a

given parameter pi1 : X −→ Pi1 which shall not be fulfilled, can be represented in the

form of the negated condition: ¬(pi1(x)) ∈ Qi1. This translates to the set-theoretic

complement of the subset Qi1 ∈ Pi1. It represents the negation of a singular condition

against a state. For a given state x ∈ X , the condition that parameter pi equals values

52 2.3. KNOWLEDGE REPRESENTATIONS IN SYSTEMS ENGINEERING

in Qi ∈ Pi is represented as pi(x) ∈ Qi. If that condition is not fulfilled, it is represented

as ¬(pi(x) ∈ Qi). This is equivalent to:

pi(x) ∈ Qc
i = Pi \ Qi

= {v ∈ Pi|v /∈ Qi}
= {v ∈ Pi|¬(v ∈ Qi)}
Thus, there exists ¬(pi(x) ∈ Qi)⇐⇒ pi(x) ∈ Qc

i for a given state x ∈ X .

Definition 2.52. Operation ‘implication’ (IMP) −→
Let there be two conditions for a given state, where for each condition a parameter must

equal a certain value. Now let one of the given conditions cause the other condition.

This shall be represented through: 1 ⇐⇒ 2, where 1 represents the first condition

and 2 the second. Let pi1 be the first parameter with condition pi1(x) ∈ Qi1 for state

x ∈ X and let pi2 be the second parameter with condition pi2(x) ∈ Qi2 for state x ∈ X .

Thus (pi1(x) ∈ Qi1) −→ (pi2(x) ∈ Qi2)

⇐⇒ (pi1(x) ∈ Qi1 =⇒ pi2(x) ∈ Qi2)

Theorem 2.2. Transformation of implication into combination, alternative

and negation

‘Implication’ −→ shall be expressed through the previously defined operators ‘combina-

tion’ ∧, ‘alternative’ ∨ and ‘negation’ ¬.

Let pi1(x) ∈ Qi1 ∧ pi2(x) ∈ Qi2, so this statement is true based on the given condition of

pi1(x) ∈ Qi1 =⇒ pi2(x) ∈ Qi2 since pi1(x) ∈ Qi1 leads to pi2(x) ∈ Qi2.

Therefore it is given that:

pi1(x) ∈ Qi1 ∧ pi2(x) ∈ Qi2

⇐⇒ (pi1(x), pi2(x)) ∈ Qi1 ×Qi2

Let pi1(x) ∈ Qc
i1
∧ pi2(x) ∈ Qi2, which is true based on pi1(x) ∈ Qc

i1
being true. If

the first condition is not fulfilled, there follows no implication about the second condi-

tion. Let the statement pi1(x) ∈ Qc
i1
∧ pi2(x) ∈ Qc

i2
be true, it is implied that statement

pi1(x) ∈ Qc
i1
∧ pi2(x) ∈ Pi2 is true as well.

Let pi2(x) ∈ Qc
i2

, so pi1(x) ∈ Qi1 cannot be true, since that would imply that (pi1(x) ∈
Qi1 =⇒ pi2(x) ∈ Qi2) is true. If pi1(x) ∈ Qi1 is true, it implies that pi2(x) ∈ Qi2 is

true. In addition it follows that pi2(x) ∈ Qi2 ∩Qc
i2

= ∅ . Therefore, it must be true that

CHAPTER 2. BACKGROUND AND STATE OF THE ART 53

pi1(x) ∈ Qc
i1

as well as (pi1(x), pi2(x)) ∈ Qc
i1
× Qc

i2
. The correct statements shall be

aggregated into one overall statement.

Let (pi1(x) ∈ Qi1 −→ pi2(x) ∈ Qi2)

⇐⇒ (pi1(x), pi2(x)) ∈ (Qi1 ×Qi2)∨ (Qi1 ×Pi2)∨ (Qc
i1
×Qc

i2
) = (Qi1 ×Qi2)∨ (Qc

i1
×Pi2)

Theorem 2.3. Transitions between States

The System S shall be described in a way that it allows for dynamic examination. That

means that the system can transition from a given current state x1 ∈ X to a new current

state x2 ∈ X . It shall be considered which states x ∈ X are accepted in order to allow

the transition from x1 ∈ X to x ∈ X . This transition between states shall be described

with a graph.

Definition 2.53. Graph G
Graph G is defined as G = (N , E , f), a triple of

N = set of nodes;

E = set of edges;

f : E −→ N ×N , thus f is called assignment function f . Through assignment function

f , each edge e is assigned a start point s(e) and an end point (termination point) t(e),

therefore f(e) = (s(e), t(e)) and N = X .

E is the abstract set of edges. It consists of all possible transitions between states.

E := { set of all possible transitions between states of the system S}; The flexibility to

transition from one given state x1 ∈ X to a second given state x2 ∈ X through different

transitions e1, . . . , ek is shown in Figure 2.13.

x1 x2

e1

e2

ek

Figure 2.13.: Graph Representation: State-Transition Relation
(Transitions e1, . . . , ek between States x1 and x2)

54 2.3. KNOWLEDGE REPRESENTATIONS IN SYSTEMS ENGINEERING

Each particular transition ei contains a specific description which characterizes the tran-

sition in detail. Assignment function f assigns a start state and end state to each

transition:

f : E −→ N ×N and e :−→ (s(e), t(e)), where s(e) ∈ N represents the start state and

t(e) ∈ N represents the end state. Shown in Figure 2.13 is that s(ei) = x1 and t(e1) = x2

for all transitions e1, . . . , ek ∈ E .

Theorem 2.4. States in time-dependent systems

The system S can be in a current state x ∈ X at given point in time t0. From this

moment on, the system can change the current state from x ∈ X to x′ ∈ X through any

of the valid transitions. This is defined through Graph G = (N , E , f). Therefore function

α is defined:

α : T −→ N
α′ : T −→ G
T represents the set of points in time. For two consecutive points in time t1, t2 ∈ T with

t1 ≤ t2, for α the assignment is given that (α(t1), α(t2)) ∈ E. This represents that the

system transitions from current state α(t1) to current state α(t2). α′ can be understood

such a way that a given graph G, as shown in Figure 2.14, has a valid state α′ at any

point in time t ∈ T .

x1

x
2

x
4

x
5

x
3

e
12

e
14

e
25

e
35

e
54

e
43

e
23

Figure 2.14.: Graph Representation: Time Dependent Systems

This relates to timed automata. Further discussion and classification is given by Waez et

al. [WDR11]. The previously given definitions were FOL-related, and the second part of

this section is dedicated to definitions and theorems for LTL. The motivation for temporal

logic is founded in the need to describe time-related issues in a formal and mathemat-

ical form to represent time-based occurrences in an unambiguous way. The foundation

CHAPTER 2. BACKGROUND AND STATE OF THE ART 55

and first description for temporal logic was provided by Prior [Pri67, Pri03, PH03]. It

contained four initial temporal operators (see [GG16]).

‘past - eventually’ - It has at some time been the case that...

‘future - eventually’ � - It will at some point be the case that...

‘global past’ - It has always been the case that...

‘global future’ � - It will always be the case that...

Remark. The focus is only on forward-directed operators, therefore ‘past eventually’ and

‘global past’ will not be considered and discussed further.

One extension to Prior’s initial temporal logic operators are the operators ‘until’ and

‘since’, which allow conditions in time descriptions to be included.

ψ U φ: ψ will be true until a time when φ is true

µ S ϕ: µ has been true since a time when ϕ was true

The initial definition of ‘until’ and ‘since’ by Kamp [Kam68] is reflexive. It allows the

possibility of describing a past or future event and include the current state in this

description. The stricter version for ‘until’ and ‘since’ is called irreflexive.

ψ U∗ φ: ψ will be true until a time when φ is true (where φ is in the future)

µ S∗ ϕ: µ has been true since a time when ϕ was true (where ϕ is in the past)

In this irreflexive version, φ is strictly in the future for ‘until’. Similarly, ϕ has to be

strictly in the past for ‘since’. Kamp [Kam68] proved that all temporal logic operators

can be expressed and therefore reduced to U∗ and S∗.

Remark. In alignment with the previous statement, the ‘since’ operator will not be

considered further in this work.

In addition to the previously defined FOL operators, temporal operators shall be defined.

This allows the definition of time-based conditions, where the condition represented in

the current state, affects a future (or previous) current state. Two forms of orders exist

which must be distinguished: sequence-based orders and time-based orders.

56 2.3. KNOWLEDGE REPRESENTATIONS IN SYSTEMS ENGINEERING

Theorem 2.5. Sequence-based orders

For a precise definition of a sequence-based order, the term of an oriented or directed

edge path shall be defined. Figure 2.15 shows a representation of an edge path. Edge

path: Let graph G = (N , E , f) be a directed graph. A sequence e1, . . . , ek ∈ E ,K ∈ N of

edges e1, . . . , ek is called edge path of current state x1 ∈ X to current x2 ∈ X . This is

valid if s(e1) = x1, t(ek) = x2 and t(ei) = s(ei+1) where for all i = {1 ≥ i ≥ k − 1}.
k represents the length of the edge path.

Remark. Edge paths of length 1 represent exactly one edge.

x
1 x

2

t(e) = s(e)1 2

e1 e2 ek-1 ek

Figure 2.15.: Graph Representation: Sequence-Based Order - Edge Path

For the description of states and possible transitions between states, the edge path rep-

resents a sequence of transitions, where for two consecutive transitions the end state of

the first transition and the start state of the second transition must be identical. A

transition represents an atomic state change.

Theorem 2.6. Time-based orders

Operators for time-based orders are ‘next’ ◦, ‘global’ �, ‘future’ � and ‘until’ U .

Definition 2.54. Operator ‘next’ ◦ precedes a condition that, for a given current start

state, shall affect the state which is the next current state after a transition changed the

current state. This means that all states that can be reached from a given current state

through a transition must fulfill the given condition. For a given current state x ∈ X
and all states x′ ∈ X reachable through a transition, the parameter pi is defined with the

parameter value pi(x
′) ∈ Qi. pi(x

′) describes the situation, that all next current states x′

must fulfill the given condition. For a given state x ∈ X, let:

◦(pi(x)) ∈ Qi) be the condition

⇐⇒ for all x′ ∈ X
so that a given edge e ∈ E with s(e) = x, t(e) = x′ exists, thus pi(x

′) ∈ Qi.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 57

x x'
e

Figure 2.16.: Logic Representation: LTL Operator ‘Next’ ◦ (Example)

States x′ ∈ X are possible next current states. They can be reached through transitions

from the current state x ∈ X .

Definition 2.55. Operator ‘global’ �

Operator ‘global’ � or ‘for all’ represents a condition for all states x′ ∈ X that can be

reached from an edge paths starting at the current state x ∈ X . For all states x′ ∈ X , that

can be reached through a sequence of transitions on graph G = (N , E , f), this condition

applies and can be represented for a parameter pi(x
′) ∈ Qi through:

�(pi(x)) ∈ Qi

⇐⇒ for all x′ ∈ X
in the way that an edge path e1, . . . , ek ∈ E with s(e1) = x and t(ek) = x′ exists for

pi(x
′) ∈ Qi.

x x'
e1 e2 ek-1 ek

Figure 2.17.: Logic Representation: LTL Operator ‘Global’ � (Example)

Theorem 2.7. Example LTL Operator ‘Global’ �

(2.7.1) Graph G: Let G = (N , E , f) be a graph G.

(2.7.2) Edge e: ∈ E is called cycle when start and end point of an edge are

identical.

(2.7.3) Edge path e1, . . . , ek: ∈ E is called circle when s(e1) = t(ek)

(2.7.4) Incoming valence of an edge x: ∈ E with t(e) = x

(2.7.5) Outgoing val. of an edge x ∈ N is number of edges e ∈ E with s(e) = x

(2.7.6) Valence of an edge x ∈ N is the sum of incoming and outgoing valences

Definition 2.56. Operator ‘future’ �
Operator ‘future’ � describes conditions against all possible infinity edge paths of tran-

sitions with a given start value from a state x ∈ X . For a given edge ek on an infinite

58 2.3. KNOWLEDGE REPRESENTATIONS IN SYSTEMS ENGINEERING

edge path e1, e2, . . . ∈ E with s(e1) = x, both start and end states of the edge must fulfill

a condition. The condition is expressed through parameter pi of t(ek) with values of Qi.

This shall be represented as:

�(pi(x) ∈ Qi)

⇐⇒ for all infinite edge paths p = [e1, e2, . . .] in G there exists an edge ek in the way

that: pi(t(ek)) ∈ Qi

Definition 2.57. Operator ‘until’ U
Operator ‘until’ U describes conditions against all edges paths p = [e1, e2, . . .] with a start-

ing value from state x ∈ X . All states on all infinite edges paths p = [e1, e2, . . .] must

fulfill a condition until another condition is fulfilled. This means parameter p1 shall have

values in Qi1 until parameter p2 has values from Qi2. It is expressed as:

U(pi1() ∈ Qi1, pi2() ∈ Qi2)

⇐⇒ (pi1() ∈ Qi1) U (pi2() ∈ Qi1)

⇐⇒ (for all edge paths p = [e1, e2, . . .] with s(e1) = x, pi2(t(ek)) ∈ Qi2 and pi2(s(ei)) ∈ Qc
i2

for all i = {1, . . . , k}, let pi1(s(ei)) ∈ Qi1 for all i = 1, . . . , k) and (for all edge paths

p = [e1, e2, . . .] with s(e′1) = x and pi2(s(e
′
i)) ∈ Qc

i2
for all i = 1, 2, . . . let pi1(s(e

′
i)) ∈ Qi1).

The derived system S with graph G, its states x and transitions, is the basis to apply

the FOL operators ‘combination’ (AND) ∧, ‘alternative’ (OR) ∨, ‘negation’ (NOT) ¬,

‘implication’ (IMP) −→) as well as temporal logic operators (‘next’ ◦, ‘future’ �, ‘global’ �,

and ‘until’ U and describe conditions (requirements) against the system S.

2.3.5. Deterministic versus Non-Deterministic Systems

In this chapter, different forms of (automotive) knowledge representations have been

discussed. Motivation to look into more formal knowledge representations than natu-

ral language arises from the complexity increase in automotive system design. Fully

described or specified cars should behave as a deterministic systems. All methods and

processes are based on the assumption of an underlying deterministic system. Yet the

rising inner complexity often prevents a full description of every system variable. In

addition, informal natural language lacks the ability to express all aspects of the sys-

tem. Both lead to an under-specification of the system. This makes the resulting system

behavior appear to some extent non-deterministic when considering the existing specifi-

cation.

CHAPTER 2. BACKGROUND AND STATE OF THE ART 59

Natural language can hardly describe all aspects of a complex multi-domain system. Sys-

tem descriptions are often incomplete. Once a system variable, system state or behavior

is not fully described (under-specified), a certain degree of freedom for system behavior

occurs. It is unclear how the system should behave in a situation of under-specification,

thus it is non-deterministic in that sense. This phenomenon can be observed espe-

cially during system integration, particularly when two under-specified systems interact

through their interfaces. Integration tests often reveal such non-deterministic behaviors.

(e.g. tests at C-HIL or FMU show different system behavior than the same tests show

when performed in a vehicle.) There are two solutions to the problem of systems that

appear non-deterministic due to incomplete specification or under-specification. One is

to change our intrinsic view and accept cars as non-deterministic systems. A consequence

of this would be that all methods that build on the assumption of deterministic systems

would no longer be suitable. The better solution is to replace (or at least extend) the

incapable representation in the form of natural language by a more formal form. Such a

form is complex and difficult, making it likely that specification efforts for requirement

specification will increase. Through the representation of all relevant variables, a deter-

ministic description of the system is regained. Formal representation adds to the often

under-specified natural language specification and replaces this insufficient specification

with a more complete specification.

Formal representations remove the degree of freedom that occurred in informal represen-

tation. Therefore, such a representation form requires the same or a higher expressiveness

than natural language representations. Language patterns, state machines and logic are

candidates for this. A feasible approach would be to represent systems in natural lan-

guage and convert it step-by-step to the highest representation form. In each represen-

tation form, certain under-specified system elements become visible. Either the formal

representation is adjusted or the informal form is extended and the result is mapped and

reviewed. Such an approach requires mapping between the representation forms. This

is discussed in detail in Chapter 3.

Remark. Comment towards requirements and tests in terms of expressiveness: All ap-

proaches are performed with representations feasible for requirements. It is assumed based

on empirical observation that tests generally have a lower expressiveness than require-

ments. Under that assumption, all representations that are suitable for requirements, are

suitable for tests as well.

60 2.3. KNOWLEDGE REPRESENTATIONS IN SYSTEMS ENGINEERING

2.3.6. Modeling Structures: Trees versus Graphs

In Subsection 2.3.1, the idea of separation between model structure and content infor-

mation was shown. It seems feasible to initially treat both independently. Analyzing

data structures shows two different problem classes that shall be defined:

Definition 2.58. Directed Cycle-Free Tree Structures (node valence ≤ 2):

“There exists a start and end node. The ‘maximum node valence’ for each node is two.

Based on this, each node (except the start and end node) has exactly one predecessor and

one successor. The nodes are connected, and the transitions between nodes provide an

order that makes the tree a directed tree without any forks. The maximum node valence

prevents the occurrence of cycles.”

Definition 2.59. Directed Cyclic Graph Structure: “There exists a start node.

Each node (except start and potential end nodes) has at least one predecessor and one

successor. The graph can have forks, junctions and ring closures. There is not necessarily

one particular end element. Transitions between nodes provide a direction. There can be

multiple transitions (with multiple directions) between two nodes or transitions starting

and ending on the same node. This shall be called a directed cyclic graph.”

Figure 2.18.: Graph Representation: Directed Tree and Directed Cyclic Graph Structure

Any directed tree structures can be seen as a special form of a forward-directed cyclic

graph structure. Inference combines model structure and information. Therefore, it is

relevant what form of structure is present for a given problem or data set. Chapter 3 and

Chapter 4 will use directed tree structures with one branch only (node valence ≤ 2) to

formalize test cases. This represents a special solution. The generalization of the solution

occurs when formalization for requirements is performed by using forward-directed cyclic

CHAPTER 2. BACKGROUND AND STATE OF THE ART 61

graphs. Directed tree structures without multiple branches have a clear order. Therefore,

moving information between elements (e.g. ‘next’ ◦ operator in LTL) is rather simple.

This becomes significantly more complex when forks, junctions and in particular ring

closures occur. It therefore seems useful to distinguish upfront the two problem classes

of directed tree structures and directed cyclic graph structures.

3. Novel Process Chain for Requirements

and Test Formalization

“The expression of a single requirement is a two-stage

process, [. . .]. First, you have to determine the need

and then you have to find a clear way to express it.”

Alistair Mavin [Mav12]

Requirements formalization is a wide field with a variety of approaches and solutions.

Yet there is not one continuous method or process that has fully solved the formalization

of automotive requirements and test data in a satisfying way. This chapter proposes a

novel approach for formalization of requirements and test data from textual represen-

tation to a formalized model form. An overview of all consecutive steps is provided in

Section 3.1. Section 3.2 discusses different representation forms during the requirements

elicitation and documentation phases. There exist two feasible ways: Classic documen-

tation in the form of Natural Language (NL) with subsequent conversion into SPS or

direct specification in SPS. Both forms allow processing from pattern representation to-

wards temporal logic form. This transformation is described in Section 3.3. Temporal

logic expressions are compact representations of globally occurring logic dependencies.

In order to achieve complete local representation, temporal logic has to be converted into

locally representable logic. This can be achieved by using the underlying data structure.

Section 3.4 discusses this mapping for directed one-branch trees, which are the simplest

form of data structure for such problems. A generalization of this problem is mapping

from temporal logic to FOL for directed cyclic graphs. This is covered in Section 3.5.

To achieve an unambiguous representation, FOL can be sorted in normal form. Sec-

tion 3.6 addresses this topic. The achieved formal and local representation of element

descriptions allows for various applications as shown in Chapter 4.

63

64 3.1. MODEL OVERVIEW - FULL PROCESS CHAIN

3.1. Model Overview - Full Process Chain

The need for a reproducible and continuous formalization process was described above.

The shown formalization approach focuses on functional requirements data and test de-

scriptions for automotive systems, particularly in the electric/electronics domain. Over-

all, the process considers five representation forms with four transitions as shown in

Figure 3.1. With the exception of the first transition (NL to SPS), all steps are auto-

mated. Automation requires a reproducible, consistent transformation rule set. Mapping

rules for ‘NL to SPS’ as well as ‘SPS to LTL’ can only be validated empirically. Argu-

mentation therefore lies in the informal domain space ‘NL to SPS’ (language space),

and in the mapping between two inconsistent spaces (language space and logic space)

for ‘SPS to LTL’. Empirical validation is paired with case-based mapping rules for both

steps. During all process steps, no distinction must be made between requirements and

test data must be made, except for the third transition (LTL to FOL). In this transition,

the underlying model data structure is considered. The structure differs for requirements

and test data. The complex case for requirements therefore is treated with a case-based

mapping while the special and more simple case of test data can be processed in a rule-

based manner. The last transition derives CNF representations from FOL, which is a

rule-based mathematical conversion.

Figure 3.1.: Formalization Process Chain: NL to CNF, Walter et al. [WHPR17]

Overall, this approach achieves a conversion and formalization of data that is almost

free of manual tasks. For a given set of requirements or tests as input with an initial

representation in a structured textual form, this allows machine-based automated data

optimization. This is important when considering scaled systems, particularly in indus-

trial contexts. While such quantitative analyses are covered in Chapter 4, the detailed

formalization approach is shown during the following sections of this chapter in a qual-

itative way. Each step is derived and explained in abstract form and performed with

qualitative examples from industrial data from a case study of MBC systems. The lim-

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 65

itations for the formalization do not lie in the boundaries of the described system but

in the expressiveness of all used representation forms. Specifically SPS was validated for

functional requirements only, while it is not focused on any particular domain. Further

discussion about the scope is provided in Section 3.2

3.2. Natural Language Expression Conversion to

Specification Pattern Systems

In this section, the initial representation of requirement and test case descriptions in-

cluding formalization towards specification patterns is addressed. There is no partic-

ular difference between requirements and test descriptions. For simplicity, all further

explanations focus on requirements but methodically include test cases. Specification

of requirements is mostly concerned with providing an accurate description of a given

system condition or a functionality and proper documentation of that condition or func-

tionality. Mavin [Mav12] expressed this as: “The expression of a single requirement is a

two-stage process, [. . .]. First, you have to determine the need and then you have to find

a clear way to express it.” Subsection 2.2.1 listed the four core activities of requirements

engineering as elicitation, documentation, verification & validation and management of

requirements. These are illustrated in Figure 3.2.

Elicitation Documentation
Verification

Validation
Maintenance

Pattern

Based

Initial Representation

Text

Based
Mapping

NL ⟼	SPS

Pattern

Based

... ...

Figure 3.2.: Requirements Engineering: Elicitation and Documentation

66 3.2. NATURAL LANGUAGE TO SPECIFICATION PATTERNS

Elicitation and documentation thereby occur in parallel in the form of a repetitive loop.

While elicitation is concerned with finding or deriving the needed requirements for a

system, documentation addresses the representation of these requirements. There are

generally two forms of formalization feasible to this approach. These are the initial

documentation in textual form and the manual conversion into patterns afterwards or

the straight specification in patterns without the need for a mapping. While both ap-

proaches result in the same representation form, they occur in different moments during

the specification process. Initial specification in natural language form takes place during

each requirements elicitation and documentation cycle. It is separated from the mapping

into specification patterns, which would naturally be performed after elicitation is com-

pleted. This approach allows finished specifications, that were initially not intended to be

formalized, to be converted into specification pattern form. Similar to initial documen-

tation in natural language, it is possible to specify requirements directly in specification

patterns. Specification in patterns is potentially more complex than unrestricted speci-

fication, thus this might affect elicitation in a negative way. The advantage of straight

pattern representation is that the mapping step is skipped, which reduces manual work

effort. In contrast, some requirement, development and test engineers might prefer a

natural language representation due to readability.

In Walter et al. [WHPR17], it was discussed, that no error introduction during man-

ual formalization efforts (natural language to specification patterns) was observed. For

the applications shown in Chapter 4, elicitation is already performed and a finished

specification documentation exists. Conversion from natural language to specification

patterns therefore occurs in a separate step after the elicitation. The general process of

requirements elicitation will not be discussed in further detail here. It will be shown in

Subsection 3.2.2 how initially textually represented requirements and tests can be con-

verted into specification pattern form. Subsection 3.2.3 discuses how requirements can

be directly documented in a specific set of specification patterns. Prior to these two ap-

proach variants, Dwyer’s SPS are chosen as the specification patterns used in the context

of this work. A more detailed assessment of SPS is performed in Subsection 3.2.1.

3.2.1. Selecting Dwyer’s Specification Pattern Systems (SPS)

The advantages of language patterns were briefly discussed in Subsection 2.3.2. Language

patterns assist the requirements documentation process by providing sentence structure,

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 67

limiting phrasings to particular words (e.g. verbs with legal bindings) and preventing

common documentation errors like incomplete sentences. Selection of a particular lan-

guage pattern for a given problem set must be based on the scope of the pattern with

regards to the problem domain and the required expressiveness of its descriptions. Many

language patterns are specified for a particular domain (e.g. static versus dynamic, soft-

ware versus hardware, aerospace versus automotive, . . .). Thus, a specific pattern might

not contain the expressiveness for a given problem domain.

This work takes place in the automotive E/E domain. Subsection 2.3.2 listed Vol-

ere, Sophist Master, EARS and SPS as common language patterns. All four lan-

guage patterns provide sufficient expressiveness to serve problems given in the auto-

motive E/E domain. Additional factors must be considered for a systematic selection.

The reason why SPS is chosen for this work is twofold. There exists previous work

by Konrad and Cheng [KC02, KC05a, KC05b] as well as Post et al. [PMP11, PHP11,

PH12, PMHP12] with SPS on embedded real-time automotive systems. While other

industrial work using Volere, Sophist Master or EARS certainly exists, the cited work

matches the problem domain of this work closely. This makes SPS the favorable choice.

Second, the later processing steps in this work include mapping from language to logic

space. It was discussed that such a mapping can only be based on empirical assign-

ment between given language pattern expression and specific temporal logic expression.

Dwyer et al. [DAC98, DAC99] provide such a mapping. This is discussed in more detail

in Section 3.3. No other language pattern includes such a mapping.

This mapping is one of the essential building blocks of this work, which makes SPS the

obvious language pattern of choice in this context. The intention to develop SPS as

an additional form of language patterns is rooted in the idea to allow programmers a

simple way to use finite state verification tools. Dwyer et al. [DAC17] argues that finite

state verification requires a particular form of input. Most programmers (in regards to

this work also requirements, development and test engineers) are unfamiliar with these

forms of inputs and can not acquire the necessary knowledge in a reasonable amount of

time in regards to the generated results. SPS assists practitioners by providing mapping

between commonly occurring properties and the formal representation of a specific lan-

guage required for a particular verification tool (based on Dwyer et al. [DAC17]). Dwyer

et al. differentiate all SPS into two categories (occurrence and order patterns). This

was discussed in short in Subsection 2.3.2 in order to provide an overview of common

68 3.2. NATURAL LANGUAGE TO SPECIFICATION PATTERNS

specification patterns. Since SPS is used throughout this work, it shall be discussed in

more detail here with domain-specific examples.

Occurrence patterns [DAC17]

“[. . .] the occurrence of a given event/state during system execution”

Universality, Absence, Existence (including Bounded Existence as a variation

of Existence pattern)

Order patterns [DAC17]

“[. . .] relative order in which multiple events occur during system execution”

Response, Precedence (including Response Chain and Precedence Chain as

variation of Response, and Precedence)

The five basic patterns are discussed in detail. All variations can be derived from these

by combining, extending or nesting the initial five patterns. Descriptions as provided by

Dwyer et al. [DAC98, DAC99, DAC17], examples are added for understanding.

Universality (‘Always’) - P is true

“To describe a portion of a system’s execution which contains only states that

have a desired property.” [DAC17]

Example: CountryCode[US] is true

Absence (‘Never’) - P is false

“To describe a portion of a system’s execution that is free of certain events or

states.” [DAC17]

Example: SystemVoltage[<0] is false

Existence (‘Eventually/Future’) - P becomes true

“To describe a portion of a system’s execution that contains an instance of

certain events or states.” [DAC17]

Example: IgnitionSwitch[on] becomes true

Response (‘Follows/Leads to’) - S responds to P

“To describe cause-effect relationships between a pair of events/states. An

occurrence of the first, the cause, must be followed by an occurrence of the

second, the effect.” [DAC17]

Example: LowBeamHeadlightLeft[on] responds to LightSwitchPos[on]

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 69

Precedence (‘Prior to’) - S precedes P

“To describe relationships between a pair of states where the occurrence of the

first is a necessary pre-condition for an occurrence of the second. We say that

an occurrence of the second is enabled by an occurrence of the first” [DAC17]

Example: IgnitionSwitch[on] precedes LowBeamHeadlightLeft[on]

Each of these patterns contains five cases which describes the scope of applicability.

Globally - P is true globally

Given condition is valid for all moments until the system terminates.

Example: CountryCode[US] is true globally

Before R - P is true before R

Given condition is valid for all moments until the condition ‘R is true’ occurs.

Example: VehicleVelocity[0] is true before HandBrake[Released]

After Q - P is true after Q

Given condition is valid for all moments after the condition ‘Q is true’ occurs.

Example: Radio[on] is true after IgnitionSwitchPosition[Radio]

Between Q and R - P is true between Q and R

Given condition is only valid for all moments that lie in between the occurrence

of ‘Q is true’ and the occurrence of ‘P is true’.

Example: BatteryMode[Charging] is true between ChargingCable[Connected]

and BatteryChargingLevel[Full]

After Q until R - P is true after Q until R

Given condition is valid for all moments after ‘Q is true’ until ‘R is true’ occurs

or if not, until the system terminates.

Example: DirectionIndicatorLeftFront[on] is true after PitManArmPosition[Left]

until PitManArmPosition[neutral]

(Remark: PitManArmPosition refers to the lever or button used in a car to activate

the lights for the turn signals.)

While the scope for ‘globally’, ‘before’ and ‘after’ is obvious, the difference between ‘be-

tween’ and ‘after until’ is more fine-grained. ‘Between’ necessarily requires the existence

70 3.2. NATURAL LANGUAGE TO SPECIFICATION PATTERNS

of both events, a moment where ‘Q is true’ and a moment where ‘R is true’, to occur.

‘Until’ necessarily starts with ‘Q is true’ but can occur without the existence of an event

where ‘R is true’. If this event never happens, the given condition remains until the

system terminates. The five basic patterns contain the variables P , S and T . The five

cases in regards to scope are described through the variables Q and R. There exists a

general difference between the two groups of variables. P , S and T are placeholders for

system parameters. These variables are attributes and properties of the described sys-

tem. Q and R are time-based parameters which provide occurrence order for events and

limit the scope of a pattern. This differentiation is used in Section 4.3 to generate state

machines and separate input parameters for states and transitions. Integration of SPS

into the requirements documentation process can be achieved by directly specifying re-

quirements in SPS or by conversion of textual requirements into SPS. These alternatives

are discussed in the next two subsections.

3.2.2. Elicitation and Documentation as Text and Conversion to

Patterns

This section discusses the process where elicitation and documentation as one task, are

separated from the process of conversion of a given textual requirements description

into patterns. Subsection 3.2.3 addresses the process of a straight one-step approach.

Separation seems beneficial under consideration of two different aspects. Separation of

documentation and conversion into two tasks makes both tasks simpler and therefore

reduces the risk of false or incorrect semantics in the derived representations. Separation

is also the suitable approach for already existing specification documents. In many cases,

requirements elicitation is already completed and textual descriptions exist. The urge

for formal representations of initial informal textual representations therefore requires

only conversion since elicitation and documentation were already performed upfront.

1.1.1 1.1.3 1.2.1 1.2.3 1.3.1 1.3.3

1.1.2

T

1.2.2

T

1.3.2

T

...

Test Case

Pre-

Condition

Post-

Condition

Pre-

Condition

Post-

Condition

Post-

Condition

Pre-

Condition

T: Transition

Figure 3.3.: Testing: Test Case Structure and Description, [WHPR17], adapted

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 71

Walter et al. [WHPR17] used the separation approach in a case study and found it

suitable for conversion of existing test descriptions without any observed occurrences of

error introduction. This section will discuss specifically the use case of conversion of

preexisting data from a textual form to patterns. The above mentioned case study was

performed on test cases. It is therefore suitable to use test cases in this subsection. The

data shown in this context stems from an MBC system test specification. By Definition

2.23, a test case consists of mutual test steps. Figure 3.3 shows one test case with

three test steps. This structure was characterized in Subsection 2.3.6 as a cycle-free

directed tree with ‘node valence’ ≤ 2. This means one directed branch without forks

or cycles. Descriptions discussed in this context do not occur at the test case level but

for each test step. Based on Definition 2.25, each test step consists of three elements

where each element contains its own description: precondition, trigger and postcondition.

Precondition and postcondition are states while trigger is a transition.

Remark. Nomenclature is: TestCase.TestStep.(State/Trigger)

(e.g. first state of fifth step in second test case 2.5.1.), Walter et al. [WHPR17].

State 1

Precondition

x.x.1

Test step

description

including all

preconditons

State 2

Postcondition

x.x.3

Test step

description

including all

postconditons

Trigger

x.x.2

Trigger

description

Test Step

Figure 3.4.: Testing: Test Step Structure and Description, [WHPR17], adapted

The detailed structure of a test step (as used in this example) is shown in Figure 3.4. The

precondition trigger and postcondition all contain a textual description. Precondition

as defined in Definiton 2.26 describes the state conditions that must be fulfilled by the

system before the test step can be executed. Similar, the postcondition, defined in

Definition 2.28, describes the state conditions that must be fulfilled after the test step

execution in order for the test step to ‘pass’. The trigger, defined in Definition 2.27,

72 3.2. NATURAL LANGUAGE TO SPECIFICATION PATTERNS

describes the cause of the transition between state1 and state2. Table 3.1 shows an

example from Walter et al. [WHPR17] for the Outside Light Control (OLC), an MBC

system. It contains three test steps from a test case for ‘Reverse light functionality’ in

textual and pattern form.

Table 3.1.: Conversion: Text to Patterns (Example), Walter et al. [WHPR17], adapted)

Natural Language Specification Pattern System
1.1.1 Country code is unknown CountryCode[Unknown] is true at this state∗

1.1.2 see ∗∗ see ∗∗

1.1.3 Country code is US CountryCode[US] is true globally

1.2.1
No reverse gear before gear
is on. Reverse lights are off
before reverse gear is on

Gear[Neutral] OR Gear[Forward] AND
ReverseLight[Off] are true before Gear[Reverse]

1.2.2 see ∗∗ see ∗∗

1.2.3 Reverse lights are off
Gear[Neutral] OR Gear[Forward] is true before
Gear[Reverse] AND ReverseLight[Off] are true at
this state

1.3.1 Ignition switch is off
IgnitionSwitch[Off] AND ReverseLight[Off] are
true at this state

1.3.2 see ∗∗ see ∗∗

1.3.3 Reverse lights stay off
IgnitionSwitch[Lock] AND ReverseLight[Off] are
true at this state OR IgnitionSwitch[Radio] AND
ReverseLight[Off] are true at this state

Remark. ∗ SPS was initially designed for requirements. Since tests are described in this

context, an additional pattern ‘P is true at this state’ is introduced in this work. This

new pattern does not contain temporal expressions. P has a scope of only one state or

transition and therefore only applies at one particular state in this example

Remark. ∗∗ Steps 1.1.2, 1.2.2 and 1.3.2 represent the transitions. For NL and SPS, the

transition information is included in x.x.1 and x.x.3 and therefore x.x.2 is not needed.

The conversion of textual representations into patterns can be performed in five steps.

It is shown with examples of the description for ‘1.2.1 - TestCase1.T estStep2.State
′
1.

1. Understanding the textual description on the semantic level

- Before any formalization can occur, the semantic meaning of a textual repre-

sentation has to be understood. This step is the most critical one in regard

to error introduction due to the ambiguous textual representation.

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 73

- ‘Not reverse gear and reverse lights are off before reverse gear is on’ is already

a precise description. It represents a condition where the vehicle shall not be

in reverse gear while at the same time the reverse lights are off.

2. Extracting system parameters and its particular values from the description.

- This step converts freely used textual expressions into system parameters. It

therefore represents the core formalization step during this process.

- ‘Reverse lights’ represents one parameter ‘ReverseLight′. It seems suitable to

selected the parameter type as enum. Its values are On and Off . The more

complicated case is ‘reverse gear’. While the parameter ‘ReverseGear’ could

be used, it is also feasible to use ‘Gear’. It depends on the system parameter

list and previous definitions.

3. Matching (and updating) of the existing system parameter list including values

- The existing system parameter list has to be checked for already existing,

similar parameters. It contains parameter name, type (boolean, enumeration

or discrete), physical unit and list of valid values or range.

Remark. Representation of system parameters occurs by selecting a param-

eter and one of its possible values, e.g. parameter = CountryCode; value =

US; thus CountryCode[US].

- ‘ReverseLight[Off]’ is the first ‘parameter/value’ pair checked with the sys-

tem parameter list. The second one is ‘Gear’. The scope of the list is limited

to the ‘OLC system’ domain. System reactions (front, rear and turn signal

lights) only differ for three situations: ‘forward gear’, ‘neutral’ and ‘reverse

gear’. Therefore, it seems feasible to define one parameter Gear of type ‘enu-

meration’ with entries Forward, Neutral and Reverse.

- Parameter: ReverseLight[On/Off], Gear[Forward/Neutral/Reverse]

4. Selection of an appropriate specification pattern

- In this example a suitable SPS pattern is ‘universality’: ‘P is true’ with scope

‘before R’.

- ‘P is true before R’

74 3.2. NATURAL LANGUAGE TO SPECIFICATION PATTERNS

5. Replacing the generic parameters of the pattern with the extracted parameters

from the system list

- After selecting the SPS pattern, it has to be adjusted to the desired expres-

sion. Any parameter can be substituted for a combination or alternation of

parameters, e.g. P −→ P1 AND P2; P1 −→ P1a ∨ P1b. In this case, P is

substituted into P1 AND P2. In addition, P1 is substituted into P1a ∨ P1b.

- P1a OR P1b AND P2 is true before R

- All abstract parameters P1a, P1b, P2 and R are replaced with the previously

derived parameters.

- Gear[Neutral] OR Gear[Forward] AND ReverseLight[Off] are true before

Gear[Reverse]

This process is performed for every description in isolation. Separation of elicitation

& documentation from conversion is suitable for data with high potential of error in-

troduction as well as data already documented textually. The case study showed that

separation was particularly useful for test data. Difficulty for test representations lies in

tasks which are covered here in step2 and step3 regarding the extraction of measurable

quantities and maintaining a list of consistent parameters. The majority of test steps

was represented with the ‘universality’ pattern which allows isolation of each description.

This is due to the observed low level of dependencies between steps. Step4 seems more

important in the context of requirements.

3.2.3. Elicitation and Documentation as Patterns

In contrast to Subsection 2.3.1, this subsection discusses elicitation with direct documen-

tation in patterns. While both approaches follow similar steps, there exists differences

that shall be pointed out. Direct documentation in patterns removes textual documen-

tation. Textual representations might be required for non-technical purposes (e.g. legal,

marketing, . . .). It is only feasible to use patterns as a single source of documentation

when they are accepted as appropriate documentation for such cases. The combina-

tion of multiple steps can affect the likelihood of error introduction negatively. It was

not observed in any of the case studies in Walter et al. [WHPR17, WSPR18, WMR18,

WMS+19], yet the possibility shall be mentioned.

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 75

One of the advantages of direct pattern representation without prior expression in nat-

ural language, is the reduction of the process by one step. This reduces the required

work effort since no conversion has to be performed. In addition, it allows for a better

suited and more tailored selection of patterns for a given technical context representa-

tion. This is particularly beneficial in the context of requirements where generally more

complex relations occur than in test environments. The steps for elicitation and direct

documentation in patterns can be broken down in analogy to the five steps of conversion

in the previous subsection. Step1 and Step2 differ while Step3, Step4 and Step5 are sim-

ilar. In this case, the process is shown with an example requirement from the Adaptive

Outside Light Control (AOLC), an MBC system. The case study used in this example

was initially shown in Walter et al. [WMR18].

1. Extracting the needed system condition or behavior (elicitation)

- Elicitation is not in the focus of this discussion. For more detailed explanation

see Franco [Fra15] and Wong et al. [WMR17].

- The needed system condition is that for turning the light switch into exterior

position, the left and right side low beams should turn on. This is only given

in situation where the ignition is turned on.

2. Defining relevant system parameters and values

- The understanding about the system condition or behavior derived in Step1

must be represented through measurable, controllable quantities. Quantities

in this context are parameters with values.

- Parameter: LowBeamHeadlightLeft[On], LowBeamHeadlightRight[On],

LightSwitchPos[Exterior], Ignition[On]

3. Matching (and updating) of the existing system parameter list including values

- See Step3 of Subsection 3.2.2. Matching new parameters against the existing

system parameter list. Boolean parameters usually are simple in processing.

Enumerations highly depend on system context and scope.

- Parameter: LowBeamHeadlightLeft[On/Off], LowBeamHeadlightRight[On/Off],

LightSwitchPos[Off, Parking, Exterior], Ignition[On/Off]

76 3.3. SPECIFICATION PATTERNS TO LINEAR TEMPORAL LOGIC

4. Selection of an appropriate specification pattern

- By selecting a particular pattern, the initially free and unrestricted represen-

tation is reduced in its expressiveness as mentioned in Subsection 2.3.1. It is

suitable for requirements not to split this core task over multiple tasks. In

contrast to tests, the variety of patterns and scopes used for requirements

is much wider. This step represents the most important step of the direct

pattern representation process.

- In this particular case, it is a design decision that the symmetrical behavior

for the left and right sides is combined in one requirement and therefore one

pattern in contrast to a separation into two requirements.

- ‘S responds to P after Q’

5. Replacing generic parameters S1, S2, P and Q with system list parameters

- See Step5 above. All abstract parameters are replaced with previously derived

parameters, therefore S is substituted with S1 AND S2.

- LowBeamHeadlightLeft[On] AND LowBeamHeadlightRight[On] responds to

LightSwitchPos[Exterior] after Ignition[On]

The direct documentation in patterns seems more suitable for complex requirements.

Step4 is the key step in this process. The selection and scope of a pattern significantly

influences the way requirements are structured, combined and aligned. In its basic form,

SPS can certainly be considered a natural language specification, yet combining multiple

parameters with AND and OR certainly reduces readability. Overall it can be said that

the two shown specification approaches (conversion from text and direct documentation

in SPS) both successfully derive work items (requirements and test steps) with structured

textual descriptions. This is the foundation for all further steps and serves as the input for

the mapping of specification patterns to LTL, which is discussed in the next subsection.

3.3. Specification Patterns to Linear Temporal Logic

Expressions

The mapping of (unstructured or structured) text to logic expressions represents a sig-

nificant step during the formalization process. In Section 2.3, it was discussed that

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 77

machine-based inference requires formal representation to reason from the given data.

“Change from informal to formal representation leads to an increase in machine read-

ability and reasoning capability while it decreases human readability.” The inference

capabilities increase drastically once data is represented in mathematical (or logic) form.

The question can be raised, why a mapping is required at all. Would it not be feasible

to specify requirements in logic expressions directly? While this would work in principle,

there are two strong arguments for mapping and against direct specification in logic:

1. Specification in logic is complex. Dwyer et al. [DAC17] suspected that “most

programmers are unfamiliar with formal specification languages.” Programmers

can be seen as representatives for most groups of developers or engineers involved

in systems engineering. Therefore, the majority of participants would be excluded

from the requirements specification process.

2. Textual representation might be required for non-technical reasons (legal, market-

ing, . . .). In this work, NL and SPS specification shall be considered as textual

representations. This was mentioned in the previous section already. An increase

in machine readability leads to a decrease in human readability. Mapping solves

that problem by providing textual and formal representation, thus serving both

needs.

The solution therefore is a text-based specification followed by a formalization in form of

a mapping from language space to logic space. Figure 1.2 showed this in the introduction.

There is no possibility to derive a mathematical provable mapping between language and

logic space. Only heuristic or empirical proven approaches are possible. The following

two subsections discuss the case study for Dwyer’s SPS patterns with the validation.

In addition, abstract patterns and scopes are shown before MBC system examples are

introduced. This is combined with a discussion about the differences between test and

requirement data in context of ‘SPS to LTL’ mapping.

3.3.1. Empirical Validation of SPS to LTL Mappings

Dwyer et al. [DAC98, DAC99] performed a case study with an empirical analysis to

validate ‘SPS to LTL’ mappings for the specification patterns derived and developed

in their work. These patterns with their mappings are used in this work. The case

study contained 555 specifications (requirements) from 35 different sources. “For most

we had an expression of the requirement in a specific specification formalism (e.g. LTL).

78 3.3. SPECIFICATION PATTERNS TO LINEAR TEMPORAL LOGIC

For many we also had an informal prose description of the requirement.” [DAC98] All

specifications were manually analyzed and matched to existing SPS patterns in six cases:

A requirement was...

1. matched exactly to a mapping

2. formally equivalent to a mapping (e.g. ¬ � P = �¬P)

3. derived from mapping through substitution (e.g. combinations of propositions)

4. a known variant of one of the existing mappings

5. a new variant of an existing mapping (this served as input for extension of SPS)

6. formally described with a clear error; fixing the error led to one of the above cases.

The results in Table 3.2 show matches for all patterns and scopes. The common patterns

(‘response’, ‘universality’, ‘absence’) occurred in high numbers (245/119/85). ‘Prece-

dence’ and ‘existence’ were found in smaller numbers (26/26). Only the derivatives ‘re-

sponse chain’, ‘precedence chain’ and ‘bounded existence’ did occur in quantities (8/1/1)

that would not allow a generalized claim, that these patterns are validated completely

by the study.

Table 3.2.: Case Study: SPS Patterns and Scopes, Dwyer et al. [DAC98]

Pattern Global Before After Between Until Total
Absence 41 5 12 18 9 85
Universality 110 1 5 2 1 119
Existence 12 1 4 8 1 26
Bounded Existence 0 0 0 1 0 1
Response 241 1 3 0 0 245
Precedence 25 0 1 0 0 26
Response Chain 8 0 0 0 0 8
Precedence Chain 1 0 0 0 0 1
Unknown - - - - - 44
Total 438 8 25 29 11 555

The validation for the scopes showed that the overwhelming majority used ‘global’ (438).

‘Between’ and ‘after’ occurred in relative moderate numbers (29/25) while ‘until’ and ‘af-

ter’ only occurred in a few cases (11/8). Four observations towards the results of Dwyer’s

case study before Dwyer’s own conclusion is provided: (1) The majority of patterns was

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 79

well reviewed and matched; only the two ‘chain’ patterns and ‘bounded existence’ should

be treated as not necessarily validated. (2) The scopes are all validated; while ‘until’

and ‘before’ only occurred in few cases, these are intrinsically included in the validation

of between and after. All scopes except for ‘global’ are combinations of ‘before R’ and

‘after Q’. (3) The combinations ‘pattern × scope’ are often not validated. Intuitively

this might seem problematic but when investigated closely it becomes clear that pattern

and scope can be seen as a combination of two independent logic expressions. Therefore,

the isolated validation for each pattern and each scope combined with the argument that

addition is unproblematic resolves that problem. (4) The occurrence of unknown is not

described in detail. Dwyer et al. [DAC98] mentions errors in specifications. In addition,

it is likely that certain requirements (e.g. Non-Functional Requirements) are out of scope

for these patterns, which focus on functional requirements.

Table 3.3.: Logic Operators: Nomenclature

Combi-
nation

Alter-
native

Negation Implication Global Future Next Until

Walter
AND OR NOT IMP G F N U
∧ ∨ ¬ −→ � � ◦ U

Dwyer & | ! -> [] <> ◦ U

Remark. The original representation of all mappings at [DAC17] contains alternative

representations for most logic operators. Mapping between logic operators were intro-

duced in Subsection 2.3.4 and logic operators from Dwyer et al. [DAC17] are shown in

Table 3.3.

Dwyer et al. [DAC98] concluded that from the results of the case study “the answer

to [the] question ‘Are the specifications generated from the patterns [. . .] correct?’ is

yes”. In addition “[. . .] the mappings also underwent testing by running existing finite

state verification tools to analyze finite-state transition systems [. . .].” [DAC17] The case

study verified the general mapping of SPS to LTL and the next subsection shows the

qualitative mapping with examples from MBC systems.

3.3.2. Qualitative Conversion of Patterns to Logic

This subsection contains ‘SPS to LTL’ mapping derived by Dwyer et al. and validated

through the case study mentioned in Subsection 3.3.1. Mapping for all eleven patterns

is shown with the first scope ‘globally’ in Table 3.4. Mapping ‘SPS to LTL’ for all five

80 3.3. SPECIFICATION PATTERNS TO LINEAR TEMPORAL LOGIC

scopes with pattern ‘universality’ is shown in Table 3.5. Representation of logic opera-

tors in this work differs from the representation used in Dwyer et al. [DAC98, DAC99],

which is why a translation table is given in Table 3.3. Mapping ‘SPS to LTL’ represents

the conversion from language to logic space. Figure 1.2 showed that this conversion rep-

resents a core step in the formalization process. The different gestalt of the elements in

both spaces prevents rule-based mapping. The only feasible approach is an empirical so-

lution with case-based mapping and manual validation. Table 3.4 contains the resulting

case-based mappings for one case of each pattern in its structural form and its temporal

expression. It can be discussed now which transformation ‘NL to SPS’ or ‘SPS to LTL’

is the true conversion from language to logic. In the author’s opinion SPS is still con-

sidered textual (since it maintains a high readability) and mostly uses free text symbols

(exceptions are the logic symbols AND, OR and NOT). In addition, the transformation

from ‘SPS to LTL’ can only be performed based on empirically derived mappings. This

indicates a change from one domain (language) to another domain (logic). Therefore,

this transformation shall be considered the core transition from language to logic.

Table 3.4.: Mapping: SPS to LTL (all Patterns - Scope: ‘Globally’), Dwyer [DAC17]

Pattern SPS LTL
Universality P is true globally �P
Absence P is false globally �¬P
Existence P becomes true �P
Bounded Existence P becomes true while transitions

to P -state occur at most 2 times
(¬PW (PW (¬PW (PW�¬P)))
where PWQ = �P ∨ (PUQ)

Response S responds to P globally �(P −→ �S)
Response Chain
(2 stimulus, 1 resp.)

P responds to S, T �(S ∧ ◦ � T −→ ◦(�(T ∧ �P)))

Response Chain
(1 stimulus, 2 resp.)

S, T responds to P globally �(P −→ �(S ∧ ◦ � T))

Precedence S precedes P globally �P −→ (¬PU(S ∧ ¬P))
Precedence
(2 causes, 1 effect)

S, T precedes P globally �P −→ (¬PU(S ∧ ¬P∧
◦(¬PUT)))

Precedence
(1 cause, 2 effects)

P precedes (S, T) globally (�(S ∧ ◦ � T)) −→ ((¬S)UP)

Constrained Chain
Patterns

S, T without Z
responds to P globally

�(P −→ �(S∧¬Z∧◦(¬ZUT)))

The full list of all 55 mappings (11 patterns × 5 scopes) can be found in Appendix A as

well as the original source website by Dwyer et al. [DAC17]

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 81

When investigating LTL expressions in Table 3.4, a couple of observations can be made.

‘Universality’, ‘absence’ and ‘existence’ each contain one atomic temporal expression (�

global / � future) (in case of ‘absence’ an additional negation) combined with a single

parameter. Patterns are used to express single conditions against the system for a certain

time frame defined through the scope. ‘Response’ and ‘precedence’ put two parameters in

a time-relation. Both are still relatively simple and only contain two temporal operators

(� global and � future, and � future and U until). ‘Response’ and ‘precedence’ are the

basic patterns that serve as building blocks for the more complex patterns ‘response

chain’, ‘precedence chain’ and ‘constrained chain patterns’. All of these put three or

four parameters in relation and repeat complex temporal logic constraints. In contrast

to structural relation between ‘response’ and ‘precedence’ with its more complex chain

derivatives, the case for ‘existence’ is different. ‘Existence’ and ‘bounded existence’ share

only commonalities in its name, semantic meaning and pattern expression. Its temporal

expressions vary tremendously. In temporal logic, ‘bounded existence’ should be treated

as an independent pattern, not as a derivative.

Table 3.5.:
Mapping: SPS to LTL (all Scopes - Pattern: ‘Universality’), Dwyer et al. [DAC17]

SPS LTL
Globally P is true globally �P
Before R P is true before R � R −→ (P U R)
After Q P is true after Q � (Q −→ � (P))
Between Q and R P is true between Q and R � ((Q ∧ � R) −→ P U R)
After Q until R P is true after Q until R � (Q −→ P U (R ∨ � (P)))

Scope related logic occurs before and after the logic expression, generated based on each

particular pattern. The pattern is constant and the scope can be adjusted and exchanged

accordingly. This was used as an argument in the previous subsection to justify why the

validation of patterns and scopes in Table 3.2 does not require all combinations (pattern

times scope) that can be performed in isolation. (Validation of all patterns, validation

of all scopes and argumentation that all combination arise from addition of a valid pat-

tern and a valid scope.) ‘Before R’ and ‘After Q’ are the basic scopes while ‘between Q

and R’ and ‘after Q until R’ represent derivatives of the combination of these two basic

patterns. It was discussed beforehand that representations in SPS and LTL differ for

tests and requirements. Therefore, both shall be addressed separately. The example of

tests from Subsection 3.2.2 is continued in Table 3.6.

82 3.3. SPECIFICATION PATTERNS TO LINEAR TEMPORAL LOGIC

Table 3.6.:
Conversion: SPS to LTL - Test Case (Example), Walter et al. [WHPR17], adapted

Specification Pattern System Linear Temporal Logic

1.1.1
CountryCode[Unknown] is true at
this state ∗

CountryCode[Unknown]

1.1.2 see ∗∗ CountryCode[US]
1.1.3 CountryCode[US] is true globally � CountryCode[US]

1.2.1
(Gear[Neutral] OR Gear[Forward])
∧ ReverseLight[Off] are true before
Gear[Reverse]

� Gear[Reverse] −→ (((Gear[Neutral] ∨
Gear[Forward]) ∧ ReverseLight[Off]) U
Gear[Reverse])

1.2.2 see ∗∗ Gear[Reverse] U ¬ Gear[Reverse]

1.2.3
Gear[Neutral] OR Gear[Forward] is
true before Gear[Reverse] AND Re-
verseLight[Off] are true at this state

� (Gear[Reverse] ∧ ReverseLight[Off])
−→ ((Gear[Neutral] ∨ Gear[Forward]) U
(Gear[Reverse] ∧ ReverseLight[Off]))

1.3.1
IgnitionSwitch[Off] AND
ReverseLight[Off] are true at
this state∗

IgnitionSwitch[Off] ∧ ReverseLight[Off]

1.3.2 see ∗∗
IgnitionSwitch[Lock] ∨
IgnitionSwitch[Radio]

1.3.3

IgnitionSwitch[Lock] AND Reverse-
Light[Off] are true at this state
OR IgnitionSwitch[Radio] AND Re-
verseLight[Off] are true at this state

(IgnitionSwitch[Lock] ∧
ReverseLight[Off]) ∨
(IgnitionSwitch[Radio] ∧
ReverseLight[Off])

Remark. ∗ SPS was initially designed for requirements. Since tests are described in this
context, an additional pattern ‘P is true at this state’ is introduced in this work. This
new pattern does not contain temporal expressions. P has a scope of only one state or
transition and therefore only applies to one particular state in this example

Remark. ∗∗ Steps 1.1.2, 1.2.2 and 1.3.2 represent the transitions. For NL and SPS, the
transition information is included in x.x.1 and x.x.3 and therefore x.x.2 is not needed.

The requirement example from Subsection 3.2.3 is further developed below the test exam-

ples. Test cases commonly consists of isolated simple statements without many complex

dependencies. The isolation of statements becomes particularly obvious when investigat-

ing the transitions 1.1.2, 1.2.2 and 1.3.2. Methodically, a transition represents a condition

that must be fulfilled to change the current system state. Generally such a condition

consists of one or multiple time-independent, isolated parameters. If a transition condi-

tion contains time-dependent relations between parameters, this transition is not atomic.

Such transitions should be adjusted from one transition to a transition-state-transition

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 83

structure. While time-related dependencies between multiple parameters in a transition

are methodically not correct, the parameter that is adjusted to transition the system re-

mains in this particular value until defined otherwise. Therefore, the LTL expression for

a single parameter in a transition is commonly: ‘parameter[value] U ¬ parameter[value]’.

Overall, test data tends to contain less complicated relations. In Table 3.6, three exam-

ples of LTL occur: (1) State 1.1.3 contains a global condition for CountryCode[US]. This

is a common use case for test data. The first test step provides an initializing setup for the

consecutive test steps. To achieve this, postcondition x.1.3 contains conditions that apply

globally as boundary conditions for all test steps of the test case. CountryCode[US] is an

example for such initializing. Conditions that are stable over all consecutive test steps

contain a ‘� global’ operator. Conditions that change eventually are usually expressed

through ‘U until’ operator combined with an ending condition. (2) Second occurrence of

temporal logic is state 1.2.1. It describes a condition that, besides the current state, is af-

fecting the consecutive transition and the following postcondition. In case Gear[Reverse]

is occurring, certain conditions must be fulfilled beforehand. (3) The third occurrence

of temporal logic is state 1.2.3. The ‘global universality’ pattern is used and extended

for P = P1 ∨ P2 as well as R = R1 ∧ R2. The condition is also related to the previous

transition. In case the transition Gear[Reverse] is performed and ReverseLight[Off] is

true, implications for Gear[Neutral] ∨ Gear[Forward] follow.

The case study of Walter et al. [WHPR17] used four patterns to express all test cases:

(a) Global Setup Condition - Case (1) is a typical temporal occurrence of a setup con-

dition that persists during all test steps, or when expressed with ‘U until’ operator

instead of ‘� global’ operator, persists until actively changed.

(b) Transition - A transition occurs with α U ¬ α, a system parameter is changed and

remains until specified otherwise.

(c) Test Scenario (local) - Precondition and postcondition are expressed in a logic

statement without temporal expressions and thus only affecting the local state

(d) Test Scenario (global) - A complex test scenario is expressed at one state (precondi-

tion or postcondition of a test step). In this case, the relations and system reactions

are expressed without direct consideration of the test case structure. Case (2) and

(3) are examples for more complex conditions that affect multiple states.

84 3.4. FIRST ORDER LOGIC - SPECIAL MODELING STRUCTURES

The common forms of use of patterns differs for test cases and requirements. Form (b)

does not occur in requirements. In general, requirements express global conditions or

define rather complex relations between parameters. As described in Subsection 2.2.1,

requirements therefore can be separated into two common forms. This separation man-

ifests itself in the choice of specification patterns that seem suitable for the description

of these types of requirements.

(a) Non-functional requirements in form of constraints that provide a static condition

without complex time relations for a certain scope. These are similar to case (1)

for tests. These are usually described with ‘universality’, ‘absence’ and ‘existence’.

(b) Functional requirements which describe a variety of time-related constraints and

conditions. These are expressed through ‘response’, ‘precedence’, all its derivatives

as well as ‘bounded existence’.

The example for a functional requirement (case (b)) shown in Subsection 3.2.3 with its

mapping into LTL is represented in the following way:

Table 3.7.:
Conversion: SPS to LTL - Requirement (Example), Walter et al. [WHPR17], adapted

Pattern LTL
Abstract S responds to P after Q �(Q −→ � (P −→ � S))

Concrete
LowBeamHeadlightLeft[On] ∧
LowBeamHeadlightRight[On]
responds to LightSwitchPos[Exterior]
after Ignition[On]

�(Ignition[On]
−→ � (LightSwitchPos[Exterior]
−→ � (LowBeamHeadlightLeft[On]
∧LowBeamHeadlightRight[On])))

The ‘response’ pattern with scope ‘after Q’ puts three or four parameters (since parameter

S is separated into S1 ∧ S2) in relation to each other. The temporal logic that describes

the relations represents a compact representation of the requirement. For analysis and

consecutive work steps, a less compact, more explicit representation is often beneficial.

Section 3.4 and Section 3.5 discuss the conversion from LTL to local FOL for a more

explicit representation.

3.4. First Order Logic - Special Modeling Structures

This section discusses the mapping of temporal logic expressions towards FOL under

consideration of the underlying modeling data structure. A special focus is on directed

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 85

cycle-free tree structures while Section 3.5 generalizes this approach to directed cyclic

graphs. The reasoning behind the reduction of temporal logic to FOL is explained first.

In Subsection 3.4.1, the core idea of this processing step is shown. This centers around

consideration of the underlying modeling data structure when converting temporal logic

into FOL. For directed cycle-free tree structures, a rule-based mapping is shown for

all occurring temporal logic operators. Examples from the case study performed on

the formalization of test data by Walter et al. [WHPR17] are shown and discussed in

Subsection 3.4.2.

The representation of data in form of LTL is useful as a means of formalization. LTL

expressions can be derived from SPS patterns through case-based mappings as shown in

Section 3.3. LTL descriptions are generally compact. One statement can affect many or

all existing states in a system, e.g. � CountryCode[US]. While the scope of a ‘global’

statement is easy to process, statements including ‘next’ require knowledge about the

sequential order of states. It is necessary to know which state from a given ‘current’

state is in fact the ‘next’ state. The situation is similar for the operators ‘until’ and

‘future’: Particular knowledge about the path in a ‘state-transition-state-. . . ’ structure

is required. Description of the ‘current’ state depends on its surrounding states. For

example if B is not true when the current state is reached, in a situation where ‘A U B’

is given, A is true at the current state. In situations where B is fulfilled beforehand, the

condition ‘A U B’ is not relevant for the current state.

The complex, recursive construction of local state descriptions does not cooperate well

with the need to perform data analysis. To derive meaningful knowledge about the sys-

tem, each state description is required. A fully local representation seems suitable. FSM

by its definition provides a time-independent local representation. For temporal logic

representations, stateDescription is a function of ‘local description’ and all occurring

‘global descriptions’. Global descriptions in this case are structure-dependent. Structure

dependency therefore is one of the key factors to consider for decoupled, independent

local descriptions. Subsection 2.3.6 described the structures that exist in this context.

The special form of directed cycle-free one-branch trees is used in the next subsection

to derive a rule-based set of mappings from LTL to decoupled local FOL descriptions.

Such descriptions are not compact but locally complete and independent of all other

local descriptions. This improves analysis capabilities tremendously.

86 3.4. FIRST ORDER LOGIC - SPECIAL MODELING STRUCTURES

3.4.1. Data Structure as an Enabler to Map LTL Expressions to FOL

It became obvious why local representations in FOL are more suitable for analysis pur-

poses. To achieve local representations, temporal logic has to be removed and replaced by

a FOL. It was described that temporal logic representations are tightly connected to data

structure of the underling model. The key to decoupled, local representations is therefore

the consideration and inclusion of the underlying model data structure. This subsection

explains the approach for the special case of forward-directed cycle-free one-branch trees

with a rule-based mapping for each temporal logic operator. Subsection 3.5.1 generalizes

this for directed cyclic graphs with a case-based mapping ‘LTL expression to FOL’. The

structure of a directed tree with only one branch is shown in Figure 3.5.

T T T T TS S S S S S

Figure 3.5.: Graph Representation: One Branch Directed Tree - General Structure

Each element in Figure 3.5 represents a node or a state, while the connections represent

edges or transitions. The simple structure shall be adapted slightly to the data structure

actually occurring in test data. Figure 3.3 showed the methodical structure of one test

case, consisting of n test steps. A test step contains two states (precondition (x.x1) and

postcondition (x.x.3). Precondition and postcondition are connected through a transi-

tion (x.x.2). In real data sets, postcondition of test stepi (x.i.3) and precondition of

test stepi+1 (x.(i+1).1) are often identical. This is methodically useful but not necessar-

ily given for all data sets. Therefore, a non-methodical link is added in the structure as

shown in Figure 3.6. In fact, this converts the structure in fact back into the structure

shown in Figure 3.5, which is a simple ‘state-transition-. . . ’-repetition.

1.1.1 1.1.3 1.2.1 1.2.3 1.3.1 1.3.3

1.1.2

T T*

1.2.2

T T*

1.3.2

T

...

Test Case

Pre-

Condition

Post-

Condition

Pre-

Condition

Post-

Condition

Post-

Condition

Pre-

Condition

T: Transition

T*: Additional Transition

Figure 3.6.: Testing: Test Case Structure - Link-Extension, [WHPR17], adapted]

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 87

Remark. The graphs discussed in Chapter 4 are adapted further. An edge in a UML-

graph cannot contain attributes the same way nodes can, which is why transitions are

modeled as ‘transition-node-transition’ structures where the node contains the transition

description and further attributes.

Based on the given structure of a directed cycle-free one-branch tree, a rule-based map-

ping for each of the selected temporal logic operators is shown. The general definition for

� ‘global’, ◦ ‘next’, � ‘future’ and U ‘until’ was provided in Subsection 2.3.4. The princi-

ples of the mapping from LTL to FOL are described in various sources. The description

of Artale [Art10] is the one considered in particular for this work. Each temporal logic

operator is converted into FOL through a time-discrete state-wise representation. All

states are ordered through the directed tree structure. This structural order includes a

temporal order which is the basis for the conversion of LTL to FOL.

Remark. Generally all LTL can be expressed with S∗ (strict ‘since’) and U∗ (strict

‘until’) defined by Kamp [Kam68]. If only forward-directed events are considered, this

reduces to U∗ only. For minimal mathematical representation of LTL, U∗ is sufficient

and complete, yet for practical reasons the three other operators are shown as well. All

further operators can be used as long as conversion to a representation with U∗ exists.

For simplification, U∗ will be expressed as U from now on.

Conversion of ◦ ‘next’

‘Next’ affects the next consecutive state from the current state forward. Figure 3.7 shows

the LTL representation with its equivalent time-discrete representation in FOL.

1 2 3 4 5 6

1 2 3 4 5 6

LTL

FOL

○	α

α

Figure 3.7.:

Logic Representation: Operator ‘Next’ ◦ (Time-Discrete), Artale [Art10], adapted

88 3.4. FIRST ORDER LOGIC - SPECIAL MODELING STRUCTURES

State2 contains the expression of ‘◦ α’. The methodical meaning is that from state2, the

next consecutive state contains expression α. Considering conversion of ‘next’, the data

structure must be static. In dynamic and non-time-discrete structures, the next state is

not clearly defined, which is why use of ‘next’ is often avoided. For the given structure

and the premise that the structure cannot be changed by adding additional states in

between or rearranging the order, ‘next’ is unproblematic. One formal description of a

logic expression is to show each state with its occurring partial expression in FOL. A

terminology to order and express all states in one formula is shown. X is introduced

to indicate the next step from the given state. Recursively applying this principle with

‘X (X α)’, ‘X (X (X α))’, . . . enables an unambiguous structuring of all states. This

is equivalent to the expression ◦, but a structural representation with X is preferred to

explain the rule-based mapping.

◦ α = Xα (7)

Representation in equation 7 allows a state-wise expression in FOL. This becomes more

obvious when considering equation 8. X alpha represents the condition that applies at

the state that is ‘next’ state from the ‘current’ state while X (X alpha) would represent

a condition for ‘next’ state from the perspective of ‘next’ state from the ‘current’ state.

Conversion of � ‘global’

‘Global’ affects the current state as well as all consecutive (or future) states. Figure 3.8

shows the LTL representation with its equivalent time-discrete representation in FOL.

1 2 3 4 5 6

1 2 3 4 5 6

LTL

FOL

□	β

β β β β β

Figure 3.8.:

Logic Representation: Operator ‘Global’ � (Time-Discrete), Artale [Art10], adapted

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 89

State2 contains the expression of ‘� β’. The methodical meaning is that from state2 on,

all consecutive states contain the expression β. The explicit local representation in FOL

makes it possible for the isolated consideration of a single state representation to contain

the full expression. No other states or structural considerations are required.

�β = β ∧ (X(β ∧X(β ∧X(β ∧ . . .)))) (8)

For n states, n− 1 recursive occurrences of ‘X(β ∧ . . .)’ are needed.

β ∧ (X(β ∧X(β ∧X(β ∧ . . .)))) = β ∧Xβ ∧XXβ ∧XXXβ ∧ . . . (9)

In Equation 9 the recursive representation is converted into a less compact form with

improved readability. The state-wise structure becomes visible.

Conversion of U ‘until’

‘Until’ affects the current state and all consecutive states until the stop condition occurs.

Figure 3.9 shows the LTL representation with its equivalent time-discrete representation

in FOL.

1 2 3 4 5 6

1 2 3 4 5 6

LTL

FOL

δ	 	γ γ

δ δ γ

Figure 3.9.:

Logic Representation: Operator ‘Until’ U (Time-Discrete), Artale [Art10], adapted

State2 contains the expression of ‘δ U γ’. The methodical meaning is that state2 and all

consecutive states contain the expression v until the expression γ occurs. γ appears in

state4 thus state2 and state3 contain δ while state4 contains γ.

90 3.4. FIRST ORDER LOGIC - SPECIAL MODELING STRUCTURES

δUγ = δ ∧Xδ ∧X(Xγ) (10)

The formula shown in Equation 10 represents the particular example shown in Figure 3.9.

The current state contains δ, the next step (X) contains δ as well, while the next consec-

utive step (indicated through XX) fulfills the stop condition gamma. For cases where

γ never occurs, δ will hold for all times (until the last state). Another special case for

‘until’ is represented with δ U ¬δ. Methodically, such a condition represents a ‘global’

condition which can be actively adjusted and therefore is only valid until actively changed.

Conversion of � ‘future’

‘Future’ affects one of the consecutive state from the current state to the end state.

Figure 3.9 shows the LTL representation with its equivalent time-discrete representation

in FOL. The complication for the ‘future’ operator is that by its definition it is unclear,

when exactly the condition is fulfilled. The operator only describes the fact that for n

states, the condition will be true at the latest at staten (last state). Further conditions

are required to allow a specific mapping of the operator to the particular state where

it is true at first. The definition in this context is, unless otherwise specified, the last

possible state (end state) will be the state were the condition occurs.

1 2 3 4 5 6

1 2 3 4 5 6

LTL

FOL

◇ ζ

ζ

Figure 3.10.:

Logic Representation: Operator ‘Future’ � (Time-Discrete), Artale [Art10], adapted

State2 contains the expression of � ζ. The methodical meaning is that from the current

state (here state2) on, at least one state fulfills the condition. Since no further states are

defined and no additional conditions exist, the last state (staten) (here state6) contains

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 91

ζ. For simplification of representation, Figure 3.10 shows ζ at state 6. Yet only further

conditions can determine whether the condition is already fulfilled at state 3, 4 or 5. In

this case, ζ is true at that particular state but not necessarily at state 6.

� ζ = X(X(X(Xζ))) (11)

The formula shown in Equation 11 represents the example from Figure 3.10. ζ occurs at

the last state X(X(X(X))). There exists no additional condition that would influence

the occurrence of ζ in a previous state. As mentioned, ‘future’ is specifically defined in

this context. When no additional information is given, ‘future’ affects the last state in

a particular structure, shown here as X(X(X(Xζ))). The given reduction rules for the

isolated LTL expressions can be extended through conjunctures ∧ AND, ∨ OR, ¬ NOT
and −→ IMP . In particular ∧ AND, ∨ OR and −→ IMP allow the combination of

multiple LTL expressions into more complex expressions. While the conversion of such

complex LTL expressions requires more steps, it can always be resolved by recursively

applying the four conversion rules for � ‘global’, ◦ ‘next’, � ‘future’ and U ‘until’. This

subsection showed locally complete FOL expressions and examples for the reduction of

LTL to FOL are shown in Subsection 3.4.2 with a case study initially published in Walter

et al. [WHPR17].

3.4.2. Mapping LTL on Directed One-Branch Trees

Subsection 3.4.1 provides abstract rule-based mappings for all four temporal logic op-

erators previously defined for this work. � ‘global’, ◦ ‘next’ and U ‘until’ can fully

describe a condition, while a stand alone expression with � ‘future’ is generally ambigu-

ous. Abstract mappings are now applied against the data from the case study (Walter

et al. [WHPR17]). This process contains four steps. At first, (if possible) each tem-

poral expression is locally simplified. This means ‘next’ and ‘global’ expressions are

converted into FOL. The underlying model data structure in form of all consecutive

steps is considered. Separation between different states occurs through X (as introduced

in Subsection 3.4.1). The second step removes all X expressions and moves each expres-

sion to its correct local state. This creates independent local representations in FOL.

Conditions containing ‘next’ and ‘global’ are independent of other expressions and thus

can be processed and moved without further consideration.

92 3.4. FIRST ORDER LOGIC - SPECIAL MODELING STRUCTURES

Table 3.8.:
Conversion: LTL to FOL - Test Case, Step 1 + 2 (Example), Walter et al. [WHPR17])

LTL FOL (Concatenation) FOL (local)
.

1.1.3 � CountryCode[US]

CountryCode[US] ∧
X CountryCode[US] ∧
XX CountryCode[US] ∧
XXX CountryCode[US] ∧
XXXX CountryCode[US] ∧
XXXXX CountryCode[US] ∧
XXXXXX CountryCode[US]

CountryCode[US]

1.2.1 CountryCode[US]
1.2.2 CountryCode[US]
1.2.3 CountryCode[US]
1.3.1 CountryCode[US]
1.3.2 CountryCode[US]
1.3.3 CountryCode[US]

In contrast to ‘next’ and ‘global’, ‘until’ and ‘future’ are affected by existing conditions

or state expressions. Conditions containing ‘until’ and ‘future’ are processed in step 3,

after comparison to the derived local statements from step 2. The processing is shown

with the examples from Subsection 3.3.2. Step 1 and step 2 (shown in Table 3.8) convert

‘next’ and ‘global’ expressions into a concatenation of FOL expressions and further into

local FOL statements. State 1.1.3. contains the ‘global’ condition � CountryCode[US]

which can be separated into a state-wise concatenation of FOL expressions shown in

Column ‘FOL concatenation’. The example contains nine states and transitions. For the

remaining states and transitions from 1.1.3 to 1.3.3, seven statements are required, thus

CountryCode[US] occurs seven times in the state-wise representation. Column ‘FOL

local’ processes the state-wise expressions from column ‘FOL concatenation’ to its re-

spective state. Each X moves a statement one state or transition further. The meaning

of � CountryCode[US] is to be a valid condition for every consecutive step. This meaning

is maintained throughout the representation given with the state-wise FOL expressions.

When step 1 and step 2 are completed, ‘until’ and ‘future’ expressions can be processed.

Step 3 as well as step 4 are context related.

The scope of any ‘until’ or ‘future’ statement depends on the surrounding conditions.

‘Until’ statements must be processed before ‘future’ statements. The reason therefore lies

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 93

in the meaning of the two operators ‘until’ and ‘future’. While ‘until’ describes conditions,

statements including ‘future’ methodically serve as an ‘if this then that’ statement. Thus

‘future’ requires all other statements to exist prior to its check up for the ‘if’ part.

Table 3.9.:
Conversion: LTL to FOL - Test Case, Step 3 + 4 (Example), Walter et al. [WHPR17])

LTL FOL (U local) FOL (� local)
.
1.1.3

1.2.1
� Gear[Reverse] −→ (((Gear[Neutral]
∨ Gear[Forward]) ∧ ReverseLight[Off])
U Gear[Reverse])

. . .
(Gear[Neutral] ∨
Gear[Forward]) ∧
ReverseLight[Off]

1.2.2 Gear[Reverse] U ¬ Gear[Reverse] Gear[Reverse] Gear[Reverse]
1.2.3 . . . Gear[Reverse] Gear[Reverse]
1.3.1 . . . Gear[Reverse] Gear[Reverse]
1.3.2 . . . Gear[Reverse] Gear[Reverse]
1.3.3 . . . Gear[Reverse] Gear[Reverse]

Examples are shown in Table 3.9. The LTL expression for transition 1.2.2 can be pro-

cessed in step 3 similar to the ‘global’ CountryCode[US] statement in Table 3.8. Since no

‘¬Gear[Reverse]’ occurs, Gear[Reverse] is valid for all consecutive states. Step 4 considers

the ‘future’ statement. Based on the occurrence of Gear[Reverse], the ‘future’ condition

in state 1.2.1 is fulfilled and can therefore be converted to a local statement at the correct

state. ‘(Gear[Neutral] ∨ Gear[Forward]) ∧ ReverseLight[Off]’ occurs from the given state

1.2.1 until Gear[Reverse] is given. If there would exist additional states between 1.2.1

and 1.2.2, ‘(Gear[Neutral] ∨ Gear[Forward]) ∧ ReverseLight[Off]’ would be maintained

throughout all in-between states. Conversion of all states and transitions considering all

four steps is shown in Table 3.10 when showing the full process example. In this example,

the FOL representation is in fact a propositional logic since no qualifies are used. The

shown example continues the example from Subsection 3.3.2. Processing for each partic-

ular temporal logic operator was shown in Table 3.8 and Table 3.9. State 1.1.2 contains

an adjustable condition CountryCode[US]. Since state 1.1.3 overrules the ‘until’ condition

with a ‘global’ condition, each consecutive state contains CountryCode[US]. State 1.2.1

contained a ‘future’ condition which is fulfilled in transition 1.2.2. Therefore, the implica-

tion for state 1.2.1 follows as: ‘Gear[Neutral] ∨ Gear[Forward]’. Transition 1.2.2 contains

an ‘until’ condition and since Gear[Reverse] is never changed afterwards, it affects all con-

secutive states. The ‘future’ condition ‘Gear[Reverse] ∧ ReverseLight[Off]’ in state 1.2.3

94 3.4. FIRST ORDER LOGIC - SPECIAL MODELING STRUCTURES

is fulfilled in state 1.3.1 but the resulting condition ‘Gear[Neutral] ∨ Gear[Forward]’ is

contradicting and overruled by the previously applied ‘until’ condition Gear[Reverse]. As

a result, ‘Gear[Neutral] ∨ Gear[Forward]’ has no consequence. Transition 1.3.2. contains

an alternation of ‘IgnitionSwitch[Lock] ∨ IgnitionSwitch[Radio]’, each with a singular

‘until’ contingency. Since neither parameter is changed afterwards, the ‘until’ condition

only affects 1.3.3 where the two alternative conditions are maintained.

Table 3.10.:
Conversion: LTL to FOL - Test Case, All Steps (Example), Walter et al. [WHPR17])

Linear Temporal Logic First Order Logic
1.1.1 CountryCode[Unknown] CountryCode[Unknown]
1.1.2 CountryCode[US] U ¬ CountryCode[US] CountryCode[US]
1.1.3 � CountryCode[US] CountryCode[US]

1.2.1
� Gear[Reverse] −→ (((Gear[Neutral] ∨
Gear[Forward]) ∧ ReverseLight[Off]) U
Gear[Reverse])

(Gear[Neutral] ∨ Gear[Forward]) ∧
ReverseLight[Off] ∧ CountryCode[US]

1.2.2 Gear[Reverse] U ¬ Gear[Reverse] CountryCode[US] ∧ Gear[Reverse]

1.2.3
� (Gear[Reverse] ∧ ReverseLight[Off])
−→ ((Gear[Neutral] ∨ Gear[Forward])
U (Gear[Reverse] ∧ ReverseLight[Off]))

CountryCode[US] ∧ Gear[Reverse]

1.3.1 IgnitionSwitch[Off] ∧ ReverseLight[Off]
IgnitionSwitch[Off] ∧
ReverseLight[Off] ∧
CountryCode[US] ∧ Gear[Reverse]

1.3.2

(IgnitionSwitch[Lock] U
¬ IgnitionSwitch[Lock]) ∨
IgnitionSwitch[Radio]) U
¬ IgnitionSwitch[Radio])

(IgnitionSwitch[Lock] ∨
IgnitionSwitch[Radio]) ∧
CountryCode[US] ∧ Gear[Reverse]

1.3.3

(IgnitionSwitch[Lock] ∧
ReverseLight[Off]) ∨
(IgnitionSwitch[Radio] ∧
ReverseLight[Off])

(IgnitionSwitch[Lock] ∨
IgnitionSwitch[Radio]) ∧
ReverseLight[Off] ∧
CountryCode[US] ∧ Gear[Reverse]

Overall, conversion of LTL expressions to FOL achieved a local representation of all con-

ditions for states and transitions. Each representation is locally complete. There exist

no structure-related contingencies. All recursive dependencies that existed in LTL form,

are resolved in FOL. It is obvious that generally such representations are not compact,

yet local representation allows for a much better postprocessing and data analysis. The

data represents each state and transition with an (almost) unambiguous statement.The

last step towards an unambiguous representation is to convert the FOL to a normal form.

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 95

This is described in Section 3.6. Prior to the conversion to a normal form, the general-

ization of ‘LTL to FOL’ conversion is given in Section 3.5. This discusses the case-based

mapping for LTL expressions in directed cyclic graph structures to FOL expressions.

3.5. First Order Logic Expressions - Generalized

Modeling Structures

The usefulness of FOL representations was laid out in the previous section. While test

cases can be represented in directed cycle-free structures, requirements need more com-

plex modeling structures. From a graph and data structure standpoint, the differences

were discussed in Subsection 2.3.6. Subsection 3.5.1 will address the methodical differ-

ences between test and requirements data. A formal representation for requirements are

finite state machines (FSM). Detailed implications on the data structure and possible

mapping approaches for FSM are addressed. The goal of this section is to provide a

mapping from temporal logic to FOL for directed cyclic graphs. While the mapping

for directed cycle-free one-branch trees was rule-based, the generalized approach will be

case-based for all occurring LTL expressions derived from SPS.

3.5.1. Extending Modeling Structures from Trees to Graphs

The solution space for a system is initially represented through all possible states the

system can be in. States arise from the combination of all parameters with all its possible

values. Each state represents a node in the system graph as described in Subsection 2.3.4.

Nodes are connected through edges which methodically represent transitions that allow

the system to change the ‘current state’ of the system to a new ‘current state’. The

goal now is to reduce the solution space and with it, the number of system states and

transitions to a useful size. This can be achieved by defining requirements that constrain

the system in a way that particular states and transitions are no longer valid for the

specified system. Such an approach limits solution space and a number of states with

every additional requirement. Eventually, a meaningful, well-sized graph remains which

represents the valid states and transitions for the specified system. Constraining the

solution space and therefore reducing the system incrementally is a top-down approach.

96 3.5. FIRST ORDER LOGIC - GENERALIZED MODELING STRUCTURES

Figure 3.11.: System Specification Approaches: Top-Down and Bottom-Up

For this section, a top-down approach will be the one considered, while Section 4.3

uses a bottom-up variant for practical applications. The methodical implication for

this description is, that requirements and tests affect states and transitions. Tests are

commonly performed by using one path through the system and comparing the actual

system states and transitions with the previously envisioned and defined state (and

transition) description. Therefore, a test is represented in form of a forward-directed

one-chain tree, as shown in Figure 3.12.

Figure 3.12.: System Graph Representation: Test

In contrast, requirements do not necessarily affect only one path through a system but

a multitude of states and transitions. Figure 3.13 illustrates an example. The operating

area of a requirement can include structures with forks (one state with two or more out-

going transitions), merges (one state with two or more incoming transitions) and loops

(one state occurs two or more times as the ‘current state’ during a constraint description).

Therefore, a more complex structure for descriptions is required - precisely a directed

cyclic graph structure. This methodically caused structural difference between tests and

requirements leads to a more complex processing for requirements data. It is specifically

needed when LTL is mapped onto the structure to derive FOL.

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 97

Figure 3.13.: System Graph Representation: Requirement

Because of the increased complexity for structures in combination with the logic expres-

sions, this work only contains a case-based mapping for ‘LTL to FOL’ for directed cyclic

graphs. A rule-based mapping is possible. Gastin et al. [GO01], Lu et al. [LL12] and

others showed that for mapping of ‘LTL to FOL’ for Büchi automata, a complete rule

set exists. MooreDFSMs, as defined in Subsection 2.3.3, are a special case of Büchi au-

tomata. The embedding theory “A general theory must formally include a special theory

as a special case, else the special theory is falsified through the general theory or vice

versa.” [Rud02] can be applied. From there it can be concluded, that such a rule-based

mapping must exist for ‘LTL to FOL’ for Moore DFSMs. However, this remains an open

topic and will not be discussed and addressed further in this work.

The case-based mapping is defined for all SPS patterns. The next section contains further

discussion and qualitative examples while Section 4.3 addresses the industrial application.

3.5.2. Mapping Linear Temporal Logic on Directed Cyclic Graphs

To derive case-based mappings, a practical approach is to map the simplest occurring

operators and elements and incrementally extend the mapping by adding additional logic

operators. The four basic LTL operators are ‘global’ �, ‘until’ U , ‘next’ X and ‘future’

�. Each operator is shown and explained in a basic mapping. These mappings can be

combined for more complex structures. The mapping shows direct LTL to FSM mapping

without explicit statements of FOL. The representation in FOL is an implicit represen-

tation in the states and transitions of the FSM. Each state and each transition is one

particular FOL expression. For the basic operators it is trivial to represent FOL and for

the complex operators it is not needed since these are aggregations of the basic operators.

Therefore, no FOL is provided in the following mappings. Table 3.11 shows the operator

98 3.5. FIRST ORDER LOGIC - GENERALIZED MODELING STRUCTURES

‘global’ �. There exists a state P with a transition into and out of this state. Because

there is no further definition of the transition, it remains generic with no particular tran-

sition condition. To include ‘P is true’ in a system state machine, all states for the given

system are extended with P . In addition, for each state (if not existent yet) an incoming

and outgoing transition is added. This means it is generally possible to transition to and

from the state but it is still unknown, what the exact transitions conditions are.

Table 3.11.: Conversion: SPS to LTL (Operator: ‘Global’ �), Walter et al. ([WHPR17])

Pattern LTL
P is true globally � P

In Table 3.12, the example for the operator ‘until’ U is given. The state is expressed as ‘P

is true before R’. Therefore a state P exists. P remains until a transition with condition

R occurs. As before, the state P can be reached by a generic transition. This condition

can have all input conditions other than R, thus certainly !R. ‘Current state’ can cycle

in and out of P until R is fulfilled. The transition with R equals true leads out of state P .

Table 3.12.: Conversion: SPS to LTL (Operator: ‘Until’ U), Walter et al. ([WHPR17])

Pattern LTL
P is true before R � R −→ (P U R)

The example for operator ‘next’ ◦ is given in Table 3.13. ‘P is true between Q and R’.

The state P is reached when the input Q is given and R is not true (yet). From the next

step after P is reached, the behavior is identical to that in the example given in Table

3.12. It can cycle in and out of the state P through the generic transition, and whenever

R is true, it leaves the state P permanently.

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 99

Table 3.13.: Conversion: SPS to LTL (Operator: ‘Next’ X), Walter et al. ([WHPR17])

Pattern LTL
P is true between Q and R � ((Q ∧ � R) −→ P U R)

The last example shows the operator ‘future’ �. Table 3.14 includes an example and

representations. ‘P becomes true’ means that eventually a state P exists. This state P

is reached by a transition which again is not specific and therefore contains no transi-

tion condition. For P becoming true, P must be untrue (!P) beforehand, therefore the

previous state is !P . While eventually P becomes true, the state !P might not directly

transition to state P and therefore contains a generic transition condition.

Table 3.14.: Conversion: SPS to LTL (Operator: ‘Future’ �), Walter et al. ([WHPR17])

Pattern LTL
P becomes true globally � P

All these mappings show case-based solutions for single relations that occur within the

SPS patterns. To illustrate the mapping with an applied example, Table 3.15 contains

a concrete example with SPS, LTL and abstract FSM representation. Visualization of

the concrete FSM can be achieved by replacing S with LowBeamHeadlightLeft[On]

AND LowBeamHeadlightRight[On], P with LightSwitchPos[Exterior] and Q with

Ignition[On] in the state machine. Since this would significantly reduce readability, it

is just shown in abstract form.

100 3.6. FIRST ORDER LOGIC - CONJUNCTIVE NORMAL FORM

Table 3.15.:
Conversion: SPS to LTL to FSM - Req. (Example), Walter et al. [WHPR17], adapted

Pattern LTL
Abstract S responds to P after Q �(Q −→ � (P −→ � S))

Concrete
LowBeamHeadlightLeft[On] ∧
LowBeamHeadlightRight[On]
responds to LightSwitchPos[Exterior]
after Ignition[On]

�(Ignition[On]
−→ � (LightSwitchPos[Exterior]
−→ � (LowBeamHeadlightLeft[On]
∧LowBeamHeadlightRight[On])))

The last step for an unambiguous representation requires each expression at a state or

transition to be shown in normal form. For a given FOL expression, this is a standard

conversion. It is addressed with examples in the next section.

3.6. First Order Logic - Conjunctive Normal Form

Independent of the given modeling structure, each occurring state (node) contains a local

expression. This expression consists of parameters (here: literal) and FOL operators

(particular: ∧ (AND), ∨ (OR) and ¬ (NOT)). For a comparable representation, each

expression must be converted in standard form. Bergmann et al. [BN13] characterizes

such form as ‘regular’, ‘easy to test’ and with ‘regular occurrence of quantifiers’, all

translated. Disjunctive Normal Form (DNF) and Conjunctive Normal Form (CNF) fulfill

these characterizations.

CNF =
k∧

i=1

di∨
j=1

(¬)Lij (12)

Lij in Equation 12 stands for any literal.

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 101

A DNF consists of literals which are connected through ∧ operators (AND) (A ∧ B).

Each particular literal can be negated with ¬ (NOT) (¬ A). A concatenation of literals

is called a maxterm. Each maxterm contains any literal only once. Maxterms are con-

nected through ∨ operators (OR) ((A ∧ B) ∨ (C ∧ D)). In contrast, a CNF connects

literals through ∨ (OR) operators. These connections are again connected by ∧ (AND)

operators (A ∧ (B ∨ C)). This is in analogy to maxterms for DNF and therefore shall

be called maxterm equivalent. Each literal only occurs once in the overall conjunctive

normal form expression. Therefore, CNF is more compact than DNF, which is the reason

why from here on CNF is used as the standard form.

Equation 12 defines CNF formally. “For every formula that is free of quantifiers, one

conjunctive normal form can be derived” [BN13], translated. ‘Free of quantifiers’ is

in this case defined as ‘only consisting of ∧ (AND), ∨ (OR) and ¬ (NOT)’. “Replace

all occurrences of −→ and ←→ with occurrences of ¬, ∨ and ∧.” [BN13], translated.

Bergmann et al. further state that for a given CNF, its DNF can be derived and vice

versa. “Dual to [the conjunctive normal form] is a type of normal form [. . .], which is

called DNF.” [BN13], translated. To illustrate the conversion to conjunctive normal form,

a test step state description is converted in the below example from unprocessed FOL

to DNF and CNF. To achieve CNF, a sequence of conversion steps must be performed

against the statement.

1. Reduction of logic operators to ∧ (AND), ∨ (OR) and ¬ (NOT) This specifically

means to remove operators ←− (Implication) and ←→ (strong Implication)

2. Reduction of the affected area for negations. One negation ¬ can only affect a

single literal)

3. Resolving combination connections of single literals towards maxterm equivalents.

Single literals can only be connected to other literals through an alternation (OR)

operator.

4. Connecting each maxterm equivalent through a connection (AND) operator. This

leads to the form shown in Equation 12.

These four steps are applied to the expression shown in FOL. There exist no other

logic operators than ∧ (AND), ∨ (OR) and ¬ (NOT), thus step 1 does not change the

expression. Step 2 adjust the expression ¬ (TurnLightLeftFront[On] ∧ TurnLightRight-

Front[On]) towards two single statements with a negation each: ¬ TurnLightLeftFront[On]

102 3.6. FIRST ORDER LOGIC - CONJUNCTIVE NORMAL FORM

∧ ¬ TurnLightRightFront[On]. In step 3 the alternation on the top level is removed on

the literal level: CountryCode[US] ∨ CountryCode[EU]. In the last step, all single literals,

negated literals and the two literals with alternation are considered maxterm equivalents

and are connected through combination operators. When comparing the derived expres-

sion for CNF with the equivalent DNF in the given example, it is obvious that CNF is

significantly more compact. (DNF: nine literals; CNF: six literals). In addition to con-

version into CNF, the resulting expression must be (when possible) sorted alphabetical

to fulfill the ‘regular’ characteristics.

FOL (CountryCode[US] ∧ ReverseLight[Off] ∧ Gear[Reverse] ∧
¬ (TurnLightLeftFront[On] ∧ TurnLightRightFront[On]))

∨ (CountryCode[EU] ∧ ReverseLight[Off] ∧ Gear[Reverse] ∧
¬ (TurnLightLeftFront[On] ∧ TurnLightRightFront[On]))

DNF (CountryCode[US] ∧ ReverseLight[Off] ∧ Gear[Reverse] ∧
¬ TurnLightLeftFront[On] ∧ ¬ TurnLightRightFront[On])) ∨
(CountryCode[EU] ∧ ReverseLight[Off] ∧ Gear[Reverse] ∧
¬ TurnLightLeftFront[On] ∧ ¬ TurnLightRightFront[On]))

CNF CountryCode[US] ∨ CountryCode[EU] ∧ Gear[Reverse] ∧ ReverseLight[Off] ∧
¬ TurnLightLeftFront[On] ∧ ¬ TurnLightRightFront[On]

The example data from Walter et al. [WHPR17] is processed in Table 3.16 in accordance

with the conjunctive normal form and the alphabetical sorting. The first three lines of

the initial example (1.1.1, 1.1.2 and 1.1.3) contain only single statements, therefore no

sorting is needed. Further, all given examples do not contain logical structures that need

adjustment to appear in CNF. It can be argued that therefore this example does not suit

its purpose. The reason why the given example is still shown, lies in the bigger picture.

Applying CNF in this context includes alphabetical sorting. Applying alphabetical sort-

ing to the given examples, adjusts each particular statement. This is required for a fully

unambiguous representation. When such a representation is achieved, the initial goal

of the formalization process, namely: “[. . .] formalization of requirements and test data

from textual representation to a formalized model form.” given in Chapter 3, is fulfilled.

The example from Table 3.16 therefore contains the final and most useful representation

for each particular statement. To comprehend the overall process shown in Figure 3.1,

conversion to CNF and alphabetical sorting represent the last and final step.

CHAPTER 3. REQUIREMENTS FORMALIZATION PROCESS CHAIN 103

Table 3.16.:
Conversion: FOL to CNF - Test Case (Example), Walter et al. [WHPR17], adapted

First Order Logic Conjunctive Normal Form
.

1.2.1
(Gear[Neutral] ∨ Gear[Forward]) ∧
ReverseLight[Off] ∧ CountryCode[US]

CountryCode[US] ∧ (Gear[Forward] ∨
Gear[Neutral]) ∧ ReverseLight[Off]

1.2.2 CountryCode[US] ∧ Gear[Reverse] CountryCode[US] ∧ Gear[Reverse]
1.2.3 CountryCode[US] ∧ Gear[Reverse] CountryCode[US] ∧ Gear[Reverse]

1.3.1
IgnitionSwitch[Off] ∧ ReverseLight[Off]
∧ CountryCode[US] ∧ Gear[Reverse]

CountryCode[US] ∧ Gear[Reverse] ∧
IgnitionSwitch[Off] ∧ ReverseLight[Off]

1.3.2
(IgnitionSwitch[Lock] ∨
IgnitionSwitch[Radio]) ∧
CountryCode[US] ∧ Gear[Reverse]

CountryCode[US] ∧ Gear[Reverse] ∧
(IgnitionSwitch[Lock] ∨
IgnitionSwitch[Radio])

1.3.3

(IgnitionSwitch[Lock] ∨
(IgnitionSwitch[Radio]) ∧
ReverseLight[Off] ∧
CountryCode[US] ∧ Gear[Reverse]

CountryCode[US] ∧ Gear[Reverse] ∧
(IgnitionSwitch[Lock] ∨
(IgnitionSwitch[Radio]) ∧
ReverseLight[Off]

Throughout this chapter requirements documentation (including elicitation) and in par-

ticular all steps of the formalization process were shown. This included the documenta-

tion in NL with conversion to SPS or direct documentation in SPS. From SPS to LTL,

the empirical mapping investigated by Dwyer et al. [DAC98] was shown. Walter et al.

used the underlying modeling data structure to convert test data [WHPR17] and re-

quirements data [WMR18] into FOL representation. To finalize the processing, all FOL

expressions are put in CNF with alphabetical order, which means all data is represented

in locally complete, unambiguous form. The derived data representation allows for fur-

ther analysis and data optimization. Chapter 4 will apply the given formalization onto

industrial data. This validates the formalization methodically by showing the impact

and improvement in industrial setups.

4. Formalization Process Chain

Applied to E/E Systems

“Pure logical thinking cannot yield us any

knowledge of the empirical world; all knowledge

of reality starts from experience and ends in it.”

Albert Einstein, Ideas and Opinions

To solve a given engineering problem (in industrial context), an abstract approach (even if

provable and correct) is only useful if it can be applied and adjusted to the given problem.

This chapter applies the given formalization model of Chapter 3 to the industrial context.

The correctness of each modeling step was previously shown. This allows the conclusion,

that the results are generally correct on the syntactical level.

Table 4.1.: Chapter Structure - Publication Overview

Formalization Optimization

Testing

[WHPR17] - Section 4.1
Walter et al. - A Formaliza-
tion Method to Process Struc-
tured Natural Language Require-
ments to Logic Expressions to De-
tect Redundant Specification and
Test Statements

[WSPR18] - Section 4.2
Walter et al. - Test Cases Opti-
mization through Removing Re-
dundancies, Clustering and Re-
ordering of Independent Test
Steps

Requirements
Engineering

[WMR18] - Section 4.3
Walter et al. - A Method to Auto-
matically Derive the System State
Machine from Structured Natural
Language Requirements through
Requirements Formalization

[WMS+19] - Section 4.4
Walter et al. - Executable State
Machines Derived from Struc-
tured Textual Requirements:
Connecting Requirements and
Formal System Design

This chapter shows that the resulting data is meaningful and solves practical engineering

problems. Four case studies are presented, two in the field of (system) testing and

105

106 4.1. FORMALIZATION OF TEST CASES

two in the field of (system) requirements engineering. For both fields, one case study

covers the general formalization while the follow-up case study presents an optimization,

built on the initial formalization. Table 4.1 shows the classification of the four case

studies, each with its primary publication. This leads to the overall structure of this

chapter. For each case study, given application and research questions are laid out.

The setup (system description and data set) is presented. Required processing methods

are introduced before the application section shows the transformation (formalization or

optimization) of the data set. Finally, achieved results are discussed and put in context.

4.1. Formalization of Test Cases

A common problem in the field of system testing is test load. The available time and

resources require a reduction of all possible tests towards the most useful ones, or so

to speak removing unnecessary tests. Unnecessary tests are tests which do not provide

new information when executed. This is given when tests are redundant to each other

or are a subset of the other test. For test cases represented in textual form, it is hard to

evaluate (manual or machine-based) whether such a redundancy exists between multiple

test cases. A data formalization can resolve the problem. This is shown with an industrial

case study. The section is strongly based on the publication Walter et al. [WHPR17].

It cites the case study with its given data and generated results. The research questions

raised in this context are paraphrased from that publication.

RQ I: Can the formalization be shown with a qualitative example?

RQ II: Can the formalization of textually represented test cases improve the

detection of redundant test cases?

In order to answer these research questions, the assumptions and the industrial systems

used are described in Subsection 4.1.1 and Subsection 4.1.2. A qualitative example is

given in Subsection 4.1.3. Modeling and transformation are presented in Subsection 4.1.4

while Subsection 4.1.5 shows the resulting data set and closes with a discussion of these

results. The term qualitative example refers to an example of a single test case with a

step-by-step conversion. In contrast, quantitative examples will be used later as a term

to show the approach in a scaled system.

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 107

4.1.1. Assumptions

The premise of this overall section is to answer the given questions RQ I and RQ II.

Therefore, an industrial case study with two MBC systems is performed. The two sys-

tems are the OLC and the Intelligent Light System (ILS). Both systems were selected

based on availability of the system data (tests and requirements) and willingness of the

responsible engineers to participate in the research. Tests for both systems are initially

given in textual form. Only test cases and test steps are considered for the later formal-

ization. All data is stored in a requirements management tool that allows the export of

data via Requirements Interchange Format (ReqIF). At Mercedes-Benz, the tool used

for requirements engineering and test case descriptions is IBM Rational Doors. All data

entries contain an attribute ‘object type’ with the value ‘test case’ or ‘test step’. All

other entries are excluded from this analysis. In addition, the father-child relation be-

tween particular test cases and test steps is known. Modeling of the data is performed

in DC43. The model is generated with the information about ‘object type’, object re-

lations and the processing descriptions given in Chapter 3. The test case description is

shown in Figure 3.3 while the more detailed description for test steps is represented in

Figure 3.4. This structure is exactly what is required for the intended processing. Data

transformation was described for the generic data structure of a forward-directed chain

in Figure 3.5. Therefore, the generic description must be aligned with the occurring data

structure of the given test cases. This is shown in Figure 3.6. Data is reviewed regularly

but not for redundancies. The given system data is described in the next subsection.

4.1.2. Setup

The two MBC systems investigated, can be described in the following way: “OLC controls

turn and break signals, ILS adjusts outer lights based on outside brightness, other cars

and pathway.” In order to detect redundant tests, the given textual expressions shall be

processed by the previously introduced process chain (see Figure 3.1). This includes a

manual conversion from text to specification patterns and an automated conversion from

these patterns to normal form. The representation in between specification patterns

and normal form is in the form of LTL and FOL. The manual conversion from text

to specification patterns is time consuming, which is why the analysis was limited to

a reduced set of test cases (‘random select’.) The selection was performed by choosing

nine/seven (OLC/ILS) vehicle functions. (A vehicle function is a car functionality which

can be directly experienced by the user. Vehicle functions contain requirements which are

108 4.1. FORMALIZATION OF TEST CASES

linked to test cases.) These vehicle functions contained 64/137 (OLC/ILS) requirements

and 35/52 test cases. 22/32 of these requirements have at least one test case linked while

43/103 requirements have no linked test cases. Requirements were initially not separated

into testable and not-testable requirements.

Table 4.2.: Case Study: System Metrics (OLC/ILS), Walter et al. [WHPR17]

Object Short
Total

(OLC/ILS)
Random

Select
Ratio[%]

Vehicle Function VF 400 389 9 7 2.25 1.80
Requirement RE 3082 3731 64 137 2.07 3.67

Test Case TC 1246 4228 35 52 2.81 1.23
Test Step TS 4443 7120 233 136 5.24 1.91

Base Scenario BS 21 25 6 8 28.57 32.00

Ratio equals number of ‘random select’ entries over total entries

“This leads to the seemingly high number of un-linked requirements which consist of

non-testable requirements and requirements not tested on the system level (thus without

links to system integration test cases).” [WHPR17] Table 4.2 shows both systems in full

as well as the data set selected for the case study. This selected set is used for all further

analysis. It is seen as representative for the overall systems and makes it possible to

draw conclusions with general applicability. In the selection process (‘random select’), a

set of 9/7 vehicle functions were chosen randomly. All requirements and tests that were

related to these functions were included as well.

4.1.3. Processing Methods

This subsection provides an example from the OLC system for step-by-step transforma-

tion. A test represented in NL is transformed into formal representation in CNF. This

answers RQ I. The example was shown in Chapter 3 in detail. At first the example and

the representation were shown in Walter et al. [WHPR17]. Table 4.3 shows the data for

three test steps. Three columns (e.g. (1.1.1 - 1.1.3)) represent each one test step with

precondition, action and postcondition. NL expressions are given initially. These are

converted into specification patterns. This is the only manual step; all further steps are

automated. For each pattern in SPS, a mapping in temporal logic is given and can be

applied. These mappings are documented in Dwyer et al. [DAC98, DAC99]. Temporal

logic can be mapped into state-wise FOL. This is described in Subsection 3.4.1 for a

particular data structure (here called: ‘directed one-branch trees’).

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 109

Table 4.3.: Conversion: Full Process Chain - Test Step (Example)

Natural
Language

Specification
Pattern System

Temporal Logic First Order Logic
Conjunctive Nor-
mal Form

1.1.1

BaseScenario:
Country
Code is
unknown

CCode[Unknown]
is true at this state

CCode[Unknown] CCode[Unknown] CCode[Unknown]

1.1.2
Check Coun-
try Code for
US

CCode[US] CCode[US] CCode[US] CCode[US]

1.1.3

BaseScenario
reached:
Country
Code is US

CCode[US] is true
globally

G CCode[US] CCode[US]
CCode[US]

1.2.1
Reverse gear
and reverse
lights are off

RGear[Off] AND
RLight[Off] are
true at this state

RGear[Off] AND
RLight[Off]

CCode[US] AND
RGear[Off] AND
RLight[Off]

CCode[US] AND
RGear[Off] AND
RLight[Off]

1.2.2
Go into re-
verse gear

RGear[On] RGear[On] RGear[On] RGear[On]

1.2.3
Reverse lights
are off

RGear[On] is true
before RGear[Off]
AND RLight[Off]
is true at this state

RGear[On] U
RGear[Off] AND
RLight[Off]

CCode[US] AND
RGear[On] AND
RLight[Off]

CCode[US] AND
RGear[On] AND
RLight[Off]

1.3.1
Ignition
switch is off

IgnSwitch[Off]
AND RLight[Off]
are true at this
state

IgnSwitch[Off]
AND
RLight[Off]

CCode[US] AND
RGear[On] AND
RLight[Off] AND
IgnSwitch[Off]

CCode[US] AND
IgnSwitch[Off]
AND
RGear[On] AND
RLight[Off]

1.3.2
Turn igni-
tion switch

IgnSwitch[Not Off]
IgnSwitch[Lock]
OR
IgnSwitch[Radio]

IgnSwitch[Lock]
OR
IgnSwitch[Radio]

IgnSwitch[Lock]
OR
IgnSwitch[Radio]

1.3.3
Reverse lights
stay off

IgnSwitch[Lock]
AND RLight[Off]
are true at
this state OR
IgnSwitch[Radio]
AND RLight[Off]
are true at this
state

(IgnSwitch[Lock]
AND
RLight[Off]) OR
(IgnSwitch[Radio]
AND
RLight[Off])

CCode[US] AND
RGear[On] AND
((IgnSwitch[Lock]
AND RLight[Off])
OR
(IgnSwitch[Radio]
AND RLight[Off]))

CCode[US] AND
(IgnSwitch[Lock]
OR
IgnSwitch[Radio])
AND RGear[On]
AND RLight[Off]

CCode - CountryCode; RGear - ReverseGear; RLight - ReverseLight; IgnSwitch - IgnitionSwitch

110 4.1. FORMALIZATION OF TEST CASES

Because test cases match this data structure, this case-based solution can be applied.

This is the only step were information is transferred from one state (one line in Table 4.3)

to another state. The resulting FOL is converted into CNF and sorted alphabetically.

Tables 4.3 shows conversion of three steps and thus sufficiently answers RQ 1.

4.1.4. Application: Test Case Redundancy

To perform the analysis for test case redundancy, the tests have to be prepared (for-

malization) and processed (modeling). This only applies to the automated processing.

Comments on the manual processing in regards to time effort are included in the next

subsection. For automated processing, all textual descriptions are manually converted

into specification patterns and exported via ReqIF from IBM Rational Doors to DC43.

Figure 4.1.: System Representation: Class Diagram (Generic), (DC43)

The given data ‘object type’ and known relations are encoded in the class diagram,

shown in Figure 4.1 in simplified form. It contains classes for system, vehicle function,

requirement, test case and test step as well as their relations. The rule set is encoded in

the execution diagram. This is shown in reduced form in Figure 4.2. The rule set contains

the mathematical conversions for the formalization. Rules are executed sequentially.

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 111

Figure 4.2.: System Representation: Execution Diagram (Generic), (DC43)

A rule either instantiates objects from the given classes (here performed by the ‘im-

porter’ and ‘preprocessing’ rules) or transforms objects (add or delete nodes and edges).

Transformations are performed in rules ‘SPStoLTL’,‘LTLtoFOL’ and ‘FOLtoCNF’. Rule

‘metrikFullData’ generates some output metrics while ‘compare’ rule performs in ac-

cordance to its name, the matching of redundant test steps. Full representation of the

system as instantiated objects in a graph is shown for the OLC sytems in Figure 4.3.

Separation of classes in layers is performed for improved visibility.

Figure 4.3.: System Representation: Design Graph (OLC), (DC43)

In regards to RQ II, the relevant analysis is, how well the machine-based approach

performs compared to a manual redundancy check. The total number of findings and

the required time effort are investigated. The reduced set given in Table 4.2 is used for

all further analysis and seen as representative for the overall systems.

112 4.1. FORMALIZATION OF TEST CASES

4.1.5. Evaluation

In this subsection, the raised research question RQ II is answered. The input for this is

the given formalization and modeling performed in the previous section. The intention

is to review the resulting data (test steps) in regards to detected redundancies and time

effort for processing. Detection is separated into ‘identical matches’ and ‘subset matches’.

Identical matches occur when test steps contain the exactly identical description. Subsets

differ in the sense that one test step fully includes the other test step description while

adding further description (constraints). The more specific test step has to be maintained

while the more general test step can be dropped. This is further elaborated on in Walter

et al. [WHPR17]. Time effort is considered as a combination of effort for manual data

formalization plus effort for manual redundancy checks. Walter et al. [WHPR17] writes:

“[The system experts] reported that it took about two hours per system to define a

parameter list for the statement descriptions. In addition 14/8 hours were needed to

convert 233/136 test step descriptions to SPS (3.5 min per test step). This can be

seen as the necessary additional work load required to prepare the system for further

automated analysis”. Walter et al. [WHPR17] further states: “[The] system experts

performed an 8/5 hours manual review for redundancy of the 233/136 informal test

steps.” In comparison, the automated review was calculated in under five minutes.

Table 4.4.: Case Study: Review Findings (Manual/Automated), Walter et al. [WHPR17]

Detection Time effort [hours]
Identical

(OLC/ILS)
Subset Total Formalization Detection

Manual 14 23 51 7 65 30 - - 8 5
Automatic 16 23 54 25 70 48 16 10 5 min 5 min

The findings (as given in Walter et al. [WHPR17]) are the following: Results for ‘identical

matches’ were almost the same for manual review and automated review (14/23 (manual)

versus 16/23 (automated) findings). In contrast for ‘subset matches’, the manual review

was outperformed by the automated review (51/7 (manual) versus 54/23 (automated)

findings). Yet it must be remarked, that the difference in findings was only significant

in the ILS, but not the OLC system. All findings were correct, but due to alternative

representations and other factors it cannot be proven, that all redundancies were reliably

detected. For the given system size, one manual overall system review takes about half

the time of the complete data formalization. Therefore, it can be concluded that if the

review is performed at least twice or the system size increases (n2 comparisons versus

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 113

n formalization), no additional time invest is needed for the automated approach. This

said, the results for matching indicate, that an automated approach is at least as good

and in many cases better (+2/0 identical findings and +3/+18 subset findings) than the

manual approach. The combination of formalization and redundancy check detects about

30% of statements (test steps) for an existing system as redundant. This alone might

already justify such an approach in certain test setups. Dependent on the execution

cost of a test, an additional advantage is the now existing formal representation of the

system(s). Further automated data optimizations can be performed. This is shown with

the example of test case restructuring as described in Walter et al. [WSPR18].

4.2. Post-processing of Formalized Test Cases

The possibility to detect redundant test steps through a formalization was previously

shown. While this resolves the redundancies in tests, another problem has not yet been

addressed: How can such redundant test steps be removed from an existing test set

when they occur in a concatenation of test steps? This section addresses this problem.

An industrial case study is provided along side with all needed processing steps. The

major source for this section is the publication Walter et al. [WSPR18]. To discuss this

problem, the following two research questions are raised:

RQ III: What steps, in addition to the given formalization, are necessary to

rearrange test steps into a more efficient set of test cases?

RQ IV: Can the rearrangement of test steps in a set of test cases reduce the

test load for a given system?

Both questions are based on the research questions provided in Walter et al. [WSPR18].

To answer these questions, the case study shown in Section 4.1 is continued. The under-

lying assumptions and additional information are provided in Subsection 4.2.1. Setup

and input data set are presented in Subsection 4.2.2. The optimization includes some

additional tasks which are not at the core of this work, which is why these shall be ex-

plained and shown with a qualitative example in Subsection 4.2.3. The application and

actual processing is shown in Subsection 4.2.4, while Subsection 4.2.5 closes with a brief

discussion of the results. All subsections are based on Walter et al. [WSPR18].

114 4.2. POST-PROCESSING OF FORMALIZED TEST CASES

4.2.1. Assumptions

In order to answer RQ III and RQ IV, a case study is performed. The previously intro-

duced MBC systems ‘OLC’ and ‘ILS’ are used. All premises introduced in the previous

case study must be fulfilled in this context as well. Data must be presented in a require-

ments management tool with an export possibility to ReqIF. All objects must contain

the attribute ‘object type’ with value ‘requirement’, ‘test case’ or ‘test step’. Hierarchical

relations between any objects and links between requirements and test cases must exist.

All descriptions are initially given in textual form. Test step descriptions are converted

manually from textual form to specification patterns. Further, it is assumed that: “The

sequence of test steps does not carry a meta meaning, thus splitting and rearranging

chains does not reduce information derived from executing all test steps.” [WSPR18] In

addition, it is assumed that information retrieved from the test set execution is constant

for the ‘initial’ data set and ‘optimized’ data set. There is not intention to adjust this.

The aim to optimize any execution ‘effort’. In Walter et al. [WSPR18], ‘effort’ is named

‘cost’.

Table 4.5.: State Space: Parameter Representation (Example), Walter et al. [WSPR18]

Parameter Range State 1 State 2 State 3 State 4

Par 1: Time [0, 1000] 0 0 800 [200,500]

Par 2: Velocity [0, 220] 180 0 0 [0, 50]

Par 3: Lightswitch [Off, Stand, Day, On] On [Stand, Day] Off Off

To define ‘cost’, a state space shall be introduced: “The sum of all parameters occurring

in at least one state defines the state space. Each parameter represents one dimension

in this space as shown in Figure 4.4. This space contains all valid system states. All

parameters listed in the description of a state must have either one specific value or a

value range assigned to it (for example: Par1[V alue1]). [. . .] A valid state therefore

can be a specific geometric point, line, area or n-dimensional volume in the given state

space.” [WSPR18] The example shown in Table 4.5 and Figure 4.4 contains points, lines

and areas. The case study in fact only includes precise points. The example is shown for

states with three parameters and therefore three dimensions.

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 115

Par 3 [max]

Par 2 [max]

Par 1 [max]

State 1

State 4

State 3

State 2

Figure 4.4.: State Space: Parameter Representation (Example), Walter et al. [WSPR18]

The state space is the basis for the cost metric. All costs are calculated through City-

Block distance. Walter et al. [WSPR18] defines the cost metric in the following way:

1. Initialization and Shutdown Costs - Costs to initialize and shutdown a test case

2. Test Step Execution Costs - Costs required to execute one specific test step

3. System Change Costs - Costs to adjust system between consecutive test steps

4. Total Test Case Costs - Sum off all costs for test step executions, system changes,

initialization and shutdown of a test case.

Ctc(n) = Cini +
∑n

i=1Ci,exe +
∑n−1

i=1 Ci,i+1,cha + Cshu

5. Total Test Set Costs - Sum of all costs for test case executions of a test set.

[Cts(m) =
∑m

j=1Cj,tc]

It is assumed that costs remain constant over time. This might not always be true

(e.g. System Change Cost). Such costs might in reality follow a learning curve, yet this

116 4.2. POST-PROCESSING OF FORMALIZED TEST CASES

simplification achieves to show the overall usefulness of the method and a potential small

error would not affect the overall results and is therefore accepted. An example for the

metric is shown in Figure 4.5. ‘Cost’ refers to the traveled distance in the state space

from the start (initialization) of a test case to the end (shutdown).

Test Step

2. Execution 3. Change1. Initialization 1. Shutdown

Test Step

2. Execution

4. Total Cost of Test Case

Figure 4.5.: State Space: Cost Metric - Test Case (Example), Walter et al. [WSPR18]

The overall premise of the optimization is to reduce cost while maintaining overall re-

trieved information from the test execution. The exact data set used from the case study

is shown in the next subsection.

4.2.2. Setup

The case study is performed on the data set given for OLC and ILS in Table 4.2. For

better visualization Table 4.6 shows the data specifically used for this application, as

provided in Walter et al. [WSPR18].

Table 4.6.: Case Study: System Metrics II (OLC / ILS), Walter et al. [WHPR17]

Object
Total

(OLC/ILS)

Random

Select

Random Select

Red. Removed

Test Case 1246 4228 35 52 35 43

Test Step 4443 7120 233 160 181 126
TestSteps
TestCases

3.57 1.68 6.66 3.08 5.17 2.93

Total numbers for both systems are shown: ‘random select’ represents the data initially

used in the case study, while ‘random select - redundancy reduced’ represents the formal-

ized system after all redundant test steps are removed. In this context, ‘random select’

is used as the given data set while ‘random select - redundancies removed’ represents

the optimized set of tests. The next section introduces clustering algorithms, similarity

measures and path finding algorithms. It additionally explains these in an example.

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 117

4.2.3. Processing Methods

This subsection serves two purposes: Application sequence explanation with a processing

example and introduction of three more processing methods needed for the application

(clustering, similarity measures and path finding). The qualitative example addresses

and answers RQ III. It was shown initially in Walter et al. [WSPR18].

Redundancy:
2=5; 3=8

A

1

2

3

B

4

5

6

C

7

8

9

TC={A, B, C, A', B', C'}
TS ={1, 2, 3,..., 9}

A'

1

2

3

B'

4

5

6

C'

7

8

9

Figure 4.6.:

Test Set Reordering: Redundancy Detection (Example), Walter et al. [WSPR18]

In Figure 4.6, the initial set of three test cases (A, B, C) with three test steps each is

given. Redundant test steps are marked in the set of test cases (A’, B’, C’). All remaining

test steps are placed in a state space (see Figure 4.4). Walter et al. [WSPR18] considered

three different algorithms to regroup test steps into test cases:

Centroid Based (K-Means): Clusters are formed by minimizing total distance of clus-

ter points to cluster center of gravity. The point (pre- or postcondition), whichever

is further away from the center of gravity, is used for determining that distance.

Density-Based Spatial Clustering (DBSCAN): Clusters are built through high den-

sity areas while borders emerge at areas of low density. Density is determined

through the number of points in between a certain distance. In this case, ‘distance’

is defined as the shortest path between a given postcondition and any precondition.

Hierarchical Single-Linkage (SLINK): Clusters are generated by merging the two clos-

est elements (points or arising clusters) into a new element (cluster). Here ‘closest’

is defined as the shortest distance between a given post- and any precondition.

118 4.2. POST-PROCESSING OF FORMALIZED TEST CASES

1

2

3
A'' B''

4

6

7

9

TC={A', B', C', A'', B''}
TS ={1, 2, 3, 4, 6, 7, 9 }

Clustering:
A''={1, 2, 3}
B'' ={4, 6, 7, 9}

A' B'

C'

Figure 4.7.:

Test Set Reordering: Clustering Test Steps (Example), Walter et al. [WSPR18]

For each of the clustering algorithms, the number of clusters must be defined. K-Means

and DBSCAN require an initial number of clusters to start while SLINK requires a goal

number of clusters to stop. In this case study, the number of clusters for each algorithm

is the number of test cases. Methodically each test case represents one cluster. A cluster

is only removed once all its elements were moved to another cluster. To determine

which elements are ‘similar’ to each other and therefore belong to the same cluster, three

different similarity measures are considered by Walter et al. [WSPR18]:

Euclidean distance:

dE(a, b) =

√√√√ n∑
i=1

(ai − bi)2

City-block distance:

dCB(a, b) =
n∑

i=1

|ai − bi|

Jaccard similarity (adapted):

simJ(a, b) =

∑n
i=1 1− |bi − ai|

ζ + η

Remark. Similarity can be determined for City-Blocks and Euclidean distance based on

coordinate distance for two points over all dimensions. a and b are two points in space.

n is the number of total dimensions. For Jaccard ζ is the number of identical values and

η the number of deviant values.

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 119

Applying the clustering algorithm with the similarity measures against the initially given

set of test cases (A’, B’,C’), a new set of test cases (A”, B”) with elements (test steps)

is created. The number of clusters is constant unless a cluster has no more elements.

The creation of the new arrangement of clusters can be seen in Figure 4.7. The derived

test cases contain test steps without a particular execution order. To find an optimal

execution order (lowest ‘cost’ as defined in Subsection 4.2.1), Walter et al. [WSPR18]

considered three path finding algorithms:

Brute Force Method: For small sets of test steps, Brute Force is sufficient. It calculates

all possible variants and therefore provides the optimal solution. For small sets

(n < 8 elements), this can be calculated in satisfactory execution time. For sets

with more than eight steps, execution time becomes inefficient. We observed test

cases from the industrial case study exceed the eight steps, thus making brute force

inefficient.

Genetic Algorithm: Initial sequences are crossbreed and potentially mutated. The

result is compared against the initial sequences through a fitness function. In case

of an improved sequence, the initial sequence is updated.

Ant Colony System: Initial sequences are compared. Favorable parts are reused and

combined with random exploration (see: Dorigo [DG97]).

When applying the path finding algorithm to the data set, an (optimal) execution order

is derived. Figure 4.8 shows a qualitative solution. The order for test cases A” remains

1, 2, 3. This seems logical since this set was not adjusted. The new test case B” has a

test step execution order 4, 7, 6, 9 which is, compared to the initial execution of 4,5,6

and 7,8,9, optimal in regards to cost. The assumption for such a restructuring is that

test steps are independent from each other and the execution order of test steps does

not affect the results of each single test step. In case this assumption cannot be fulfilled

(e.g. if the sequence of test steps 4,5,6 provides a meaningful result), the sequence can be

maintained by substituting sequence 4,5,6 by 4*,6*. This maintains the combination of

steps and sequence 4*,6* can be included as one end (4*) and start (6*) for connecting

other steps. A questions asked for this approach is whether test cases are generally

needed when test steps are independent from each other. By creating test cases with

test steps instead of one set with all test steps, specific subsets of test steps can be chosen

if it is not intended or possible to execute all tests. Therefore, test cases remain relevant

since they serve as a structuring element for test steps.

120 4.2. POST-PROCESSING OF FORMALIZED TEST CASES

1

2

3
A'' B''

4

6

7

9

TC={A'', B''}
TS ={1, 2, 3, 4, 6, 7, 9}

Pathfinding:
A'': 1→2→3
B'' : 4→7→6→9

Figure 4.8.: Test Set Reordering: Test Step Sequence (Example), Walter et al. [WSPR18]

These processing steps combined lead to an overall set of test cases without any redundant

test steps and a new execution sequence. Figure 4.9 represents the initial set (A, B, C)

and the newly derived set (A”, B”) with test steps and execution order.

Redundancy:
2=5; 3=8

Clustering:
A''={1, 2, 3}
B'' ={4, 6, 7, 9}

A

1

2

3

B

4

5

6

C

7

8

9

B''

4

7

6

9

Pathfinding:
A'': 1→2→3
B'' : 4→7→6→9

A''

1

2

3

TC={A, B, C, A'', B''}
TS ={1, 2, 3,..., 9}

Figure 4.9.: Test Set Reordering: Overall Process, Walter et al. [WSPR18]

The next subsection explains the adjustments made in DC43 as well as the overall ap-

plication for the case study.

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 121

4.2.4. Application: Test Set Restructuring

Data is imported via ReqIF from IBM Rational Doors to DC43. Data formalization is

performed as shown in the previous section. Redundant test steps are removed and the

minimal set remains as an input for test set optimization.

Figure 4.10.: Test Set Reordering: Execution Diagram (Extension), (DC43)

The class diagram remains the same as shown in Figure 4.1, while the rule set is extended

by ‘Clustering’ and ‘metrikRedundancyRemoved’. ‘Clustering’, includes the shown pro-

cessing steps needed for the optimization. First the remaining test steps are sorted into

new clusters. Second, the path finding is performed and the newly ordered test steps

are put in an order. The ‘metrikRedundancyRemoved’ rule shows and analyzes the new

retrieved data set. In regard to the design graph it can be said that no new objects

are instantiated. The number of test step objects remains constant while the test case

objects are reduced whenever a cluster (test case) is empty. The objects representing the

empty clusters in the design graph are removed. Rearrangement of test steps is reflected

in the design graph by adjusting the edges. The initial relations between test steps are

removed and the new execution order is included in the graph through new edges between

consecutive test steps. The optimization against the data set is achieved by applying

the steps introduced in the previous subsection: formalization (removing redundancies),

clustering (similarity measures) and clustering (path finding). In the next subsection,

analysis is performed for all combinations of the three selected clustering methods and

three similarity measures. All combinations are compared relative to each other and

the best combination is used further. In a similar analysis, three selected path finding

algorithms are compared relative to each other for improved test step order. All results

are measured and compared through the previously defined cost metric. Finally, the

total cost reduction for the applied method is shown for both systems. The results of

the optimization are discussed.

122 4.2. POST-PROCESSING OF FORMALIZED TEST CASES

4.2.5. Evaluation

The evaluation discusses results of the different clustering algorithms, similarity measures

and path finding algorithms when applied against the data set. This answers RQ IV. All

data is cited from Walter et al. [WSPR18]. In Table 4.7, the combinations for clustering

and similarity measure are shown.

Table 4.7.: Case Study: Evaluation (Clustering + Similarity), Walter et al. [WSPR18]

Euclidean City Blocks Jaccard

K-Means 99.6% 99.6% 100.0%

DBSCAN 87.3% 87.4% 90.4%

SLINK 89.6% 89.6% 87.5%

(All entries are represented in Total Costs [%] relative to the Total Costs of the worst combination.)

Walter et al. [WSPR18] concludes from this: “[. . .] all considered similarity measures

provide almost identical results. [. . .] there is not one preferred similarity measure but

preferred choices based on the selected clustering methods.” The three best combinations

are ‘DBSCAN + Euclidian Distance’, ‘DBSCAN + City Blocks’ and ‘SLINK + Jaccard’.

All three combinations achieve almost identical results.

Table 4.8.:
Case Study: Evaluation (Path Finding (min. & average)), Walter et al. [WSPR18]

Cluster size Brute Force
Genetic

Algorithm
Ant Colony

System

‘small cluster’ Ø 100.0% 117.2% 100.5%

(< 8 elements) min. 100.0% 101.1% 100.2%

‘big cluster’ Ø not possible 119.7% 100.5%

(≈ 20 elements) min. not possible 101.2% 100.0%

(All entries are represented in Total Costs [%] relative to the Total Costs of the best combination.)

The size of clusters (test cases) cannot be controlled directly in DBSCAN. There exist

parameters that impact the number of clusters indirectly but no explicit value for number

of clusters can be set. SLINK can set an exact number of clusters. Since both algorithms

(DBSCAN and SLINK) have a similar performance in regards to costs, SLINK is pre-

ferred since it allows direct controlling of the cluster size. The combination SLINK,

Jaccard provides identical TotalCosts results with the advantage of better controllability

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 123

of cluster size. With the combination ‘SLINK + Jaccard’, the path finding algorithm

can be analyzed. Data is shown in Table 4.8 with a separation for ‘small clusters (<8)’

and ‘big clusters’.

Figure 4.11.: Test Set Reordering: Evaluation - Overall Cost, Walter et al. [WSPR18]

“By considering all possible options, Brute Force provides optimal solutions when appli-

cable. Because Brute Force only provides a reasonable run time for clusters with less

than 8 elements, it should not be used on bigger clusters due to an enormous increase

in runtime. [. . .] Genetic algorithm and Ant Colony System do not achieve optimal

results since not all variants can be considered in a run. The advantage lies with the

scalability capabilities for increased cluster sizes. Ant Colony System provides (almost)

optimal results for ‘small’ clusters and is therefore an alternative to Brute Force. For

‘big’ clusters, the results are on average much better than the results of the Genetic Algo-

rithm.” [WSPR18] The conclusion is that for ‘big’ clusters, the Ant Colony System shall

be used. For small clusters, this can be handled the same way or Brute Force can be ap-

124 4.3. REQUIREMENTS FORMALIZATION - STATE MACHINES

plied. The selection of choice is ‘SLINK + Jaccard + Ant Colony System’. Both systems

are analyzed with this combination of algorithms, which is shown with overall results in

Figure 4.11. “[It] shows a significant potential for removing redundant test steps [limited

versus redundancies removed] (15.3% (OLC)/19.5% (ILS)).” [WSPR18] The problem

with the set of ‘redundancies removed’ test cases is, that it is not an executable set any-

more. Test steps within the test cases were removed and therefore the execution chain in

many test cases is broken. This is illustrated in Figure 4.6 with test step 4. Therefore,

further reduction from ‘redundancies removed’ to ‘improved’ in Figure 4.11 is necessary.

“The shown method of rearranging test steps into different test cases and changing the

execution order reduces test execution costs by (2.8%/16.0%). Savings from removing

redundant test steps (15.3%/19.5%) and reduction through rearrangement (2.8%/16.0%)

add up to the total cost reduction (18.1%/35.5%). This total cost reduction is stated

in Figure 4.11. In the author’s opinion, the significant difference is caused by the more

complex test step description for most of the ILS test steps. In addition, we see the

discussed ratio TestSteps
TestCases

(see Table 4.6) as another reason. The ratio for the OLC (5.17)

before clustering is much bigger than the ratio for the ILS (2.93) before clustering. Big-

ger test cases correlate with less execution costs. To answer [RQ IV], it can be said that

both systems can be optimized (2.8%/16.0%). [. . .] Overall improvement is achieved at

(18.1%/35%). Therefore, [it can be concluded], that [the] derived method is useful and

can be applied (at least) to test data at MBC development.” [WSPR18]. The combina-

tion of the two approaches in the previous section and this section provides a sufficient

solution to the formalization and optimization of textually described tests. This was

shown in analytical step-wise transformations and two quantitative case studies. The

next two sections address formalization in the field requirements, paired with FSM.

4.3. Requirements Formalization - State Machines

Complex systems can often not sufficiently be described in textual form (alone), which

is why model-based requirements engineering approaches become more relevant. One

form of model-based requirements representation are FSM. Certain disciplines (market-

ing, law, general management, . . .) often still require textual representations: A T2M

transformation can bridge these two needs. M2T conversion is also possible but it re-

quires initial specification in models. Because state of the art in the automotive industry

is textual specification, T2M seems more relevant and suitable in this context. A text-

to-logic conversion was shown in Section 4.1. This section introduces a logic-to-model

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 125

transformation. The combination achieves the proposed T2M conversion. To explain the

logic-to-model conversion, two research questions shall be raised:

RQ V: Which steps are required to formally derive a state machine from

textual requirements that describes the overall system?

RQ VI: Can the correctness of the derived ‘system state machine’ in regards

to the initial textual representation be shown?

Both research questions are based on research questions given in Walter et al. [WMR18].

RQ V is limited in scope: Requirements formalization is already covered in RQ II, thus

in RQ V only the transformation from logic representations to a system state machine

is covered. The research questions are discussed in context of a case study with a MBC

system: AOLC. AOLC is not related to the OLC system presented in the previous

case studies. This section will first introduce all given assumptions for the case study,

shown in Subsection 4.3.1. The setup for the case study is presented in Subsection 4.3.2.

Generic state machines were defined in Subsection 2.3.3 and a general mapping from

logic to state machines was previously introduced in Section 3.5. Yet the particular state

machines used in this context still must be defined. These definitions are given alongside a

qualitative example in Subsection 4.3.3. In Subsection 4.3.4, processing of the case study

data is shown and explained. A discussion on the results and the conclusion is given in

the evaluation in Subsection 4.3.5. This section is strongly based on the publication

Walter et al. [WMR18].

4.3.1. Assumptions

This section aims to answer the raised research questions. RQ V is mainly addressed

in Subsection 4.3.4 while RQ VI is discussed in Subsection 4.3.5. Both questions are

answered with the help of a case study. The system under investigation is the MBC

system AOLC. Data is provided in a requirement management tool with ReqIF export

possibility. Objects are tagged with the attribute ‘object type’ (requirement, test case,

. . .). Relations are given through hierarchical order and linking between objects. All

requirement descriptions are provided in SPS. SPS to LTL mapping is performed within

the case study while it is actually out of scope of the analysis since it was already dis-

cussed in the previous sections. Test cases and test steps remain in textual description.

These are not needed for formalization but to answer RQ VI with the validation in

Subsection 4.3.5.

126 4.3. REQUIREMENTS FORMALIZATION - STATE MACHINES

4.3.2. Setup

The case study is performed with data from the AOLC system. This data set was first

published by Föcker et al.[FHDW15]. It was used due to availability. Table 4.9 shows

the AOLC data set. The total set of requirements is reduced to functional requirements

for this case study. This is due to the fact that non-functional requirements cannot

always be represented in SPS. Therefore, it is not given that such requirements can

be processed to LTL and FSMs. Data processing (LTL to Requirement Finite State

Machine (Requirement FSM) and Requirement Finite State Machine (Requirement FSM)

to System FSM) is explained in the next subsection. “[The] approach to validate the

method is to validate the generated FSM through the given set of test cases and its

relations (links) to the set of requirements.” The assumption is, that if a manual match

between the test case and state is found and the existing (indirect) linking between test

case and state supports that same match, the state actually describes the requirement

correctly.” [WMR18] This is further discussed and analyzed in Subsection 4.3.5.

Table 4.9.: Case Study: System Metrics I (AOLC), Walter et al. [WMR18]

Function Total Req. Func. Req. Test Cases

Turn and Warning Signaling 21 15 20

Low Beam Headlights 9 6 7

Adaptive (HB) Headlights 9 9 2

Manual (HB) Headlights 2 2 2

Fault Detection 6 3 6

Headlight Technology 3 3 1

Total System 50 38 38

4.3.3. Processing Methods

In this subsection, an example for all processing steps is shown. All transformation

steps from logic representation towards representation in one system state machine are

provided. “It is obvious that automotive systems require unambiguous transition to state

relations. Therefore, all further discussions only consider deterministic state machines.”

[WMR18]. The extended definition of a Moore DFSM was given in Subsection 2.3.3.

The short definition given in Walter et al. [WMR18] shall be recaptured:

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 127

Remark. MooreDFSM (see full Definition 2.38): “Moore DFSM is a function with

five variables”: Moore DFSM = f(I;TL;S;OL;O), where I = Input, TL = Transition

Logic, S = State, OL = Output Logic, O = Output

This generic Moore DFSM is used as the basis for three specific state machines which

shall be defined in accordance to Walter et al. [WMR18]:

Definition 4.1. “A Requirement FSM: represents exactly one requirement in the form

of a state machine. Here a requirement stands for a requirement from the data set. Such

a requirement is not necessarily atomic and might contain multiple pieces of specification

information in it.”

Definition 4.2. “Atomic Requirement FSM: represents one atomic requirement as

a state machine. Here an atomic requirement either is equal to one requirement as de-

fined above or, whenever requirements can be separated into multiple requirements, these

resulting requirements shall be called atomic requirements. (For example, one require-

ments specifies a behavior for the left and right sides at once while this can be separated

into two atomic requirements).”

Definition 4.3. “System FSM: represents unity of all requirements for the system.”

“A Requirement FSM represents exactly one requirement initially. It is possible that

one requirement actually consists of multiple atomic requirements. Thus, a Requirement

FSM is converted into one or potentially multiple atomic Requirement FSM. The break

down into atomic requirements is necessary since the comparison and aggregation differs

in case of atomic requirements (correct result) compared to ‘pre-combined’ requirements

(not necessarily correct, (e.g. the detection of redundancies cannot be guaranteed in

non-atomic representations)). Aggregation of all Atomic Requirement FSM build the

System FSM.” [WMR18] The first state machine in the transformation process is the

Requirement FSM. Inputs are all logic expressions (concatenations of LTL and FOL ex-

pressions) that occur in Dwyer et al. [DAC98, DAC99] for SPS mappings. This is a

limited set of 55 expressions (eleven patterns each with five cases). The mapping from

logic to state machines for this approach can therefore be shown case by case.

It shall be noted here, that this work does not discuss LTL to FSM mapping in detail. A

case-based approach is shown. This shall indicate, that the approach is generally correct

and since a case-based approach exists, a generalized analytical solution is possible, yet

this generalization is beyond the scope of this work. Works like Gastin and Oddoux

128 4.3. REQUIREMENTS FORMALIZATION - STATE MACHINES

[GO01], Lu and Luo [LL12] and Villa et al. [VKBSV13] are referred to in order to

obtain a generalized analytical solution. These references show the general possibility

and correctness of such an approach but none of these references provide an applicable

solution that can be directly implemented in these specific examples.

Table 4.10.: Conversion: SPS to Requirement FSM (Example), Walter et al. [WMR18]

Case SPS LTL

Globally P is false G (NOT P)

!P
T
I:

Before R P is false before R M (R) I (NOT P U R)

!P
T

I: !R
T

I: R

After Q P is false after Q G (Q I G (NOT P))

T
I: Q

!P

G - Global, X - neXt, U - Until, T(Trigger)

I: (Input)
state

I - Implies, F - Future, ! - NOT

“During ‘LTL to FSM’ mapping, the mapping from ‘LTL to FOL’ occurs. The solution

for forward chains from Walter et al. [WR17] is adapted for this data structure. The

divergent form of a state machine contains a finite number of forward chains. A forward

chain is a single path through the state machine, where each state and transition occurs

at most once. All possible unique chains are extracted. The given solution for forward

chains is applied for each chain in isolation. The occurring LTL expression is converted

to CNF and represented in a FSM.” [WMR18] In Subsection 3.4.2, the mapping for ‘one

branch directed trees’ was provided. This can be generalized towards ‘directed cyclic

graphs’, which was shown in Subsection 3.5.2 and summarized in the above citation

from Walter et al. [WMR18]. “Mapping from ‘LTL to FSM’ is mostly concerned with

states and transitions. The reason for this is that Transition Logic and Output Logic are

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 129

simply functions that process a given input and generate a given output. The output

only depends on the current state and does not feed information back into the system.

In fact, Transition Logic, Output Logic and Output can be represented as attributes of a

given state.” [WMR18] Table 4.10 shows an example mapping for the ‘P is false’ pattern

in three cases (globally, before R and after Q). Appendix B provides mappings for all

SPS from ‘LTL to FSM’ with exception of ‘chain response’, which was never used in the

case studies of this work.

Requirement state machines describe exactly one requirement in the form of a state

machine. In general, a requirement shall be atomic in its description (see: ISO-29148

[ISO11]), yet there exist use cases where this principle can be at least questioned. For

example, a symmetric behavior of left and right sides can certainly be specified in one

requirement. To account for both situations (atomic and combined information), the sep-

aration of Requirement FSM and Atomic Finite State Machine (Atomic FSM) is made.

In principle, all SPS are atomic, yet it is possible to combine multiple parameters into one

substituted parameter. E.g. ‘P is false’ - ‘(P1ANDP2) is false’, where P = P1ANDP2.

This allows requirement engineers to specify multiple pieces of information at once, while

it is still possible to separate the requirements from one requirement state machine into

two atomic state machines. More discussion on this is given in the next subsection (sub-

stitution - atomization library and substitute database).

Representation of a system in one state machine (System FSM) can be achieved by

synthesis of all Atomic Requirement FSM. In alignment with the earlier comment on

generalized solutions, it shall be stated, that it is not intended to provide an optimized or

generalized solution for state machine synthesis. This work rather shows the principle

possibility with a selected non-optimal rule set, yet it solves the given problem. Further,

existing work like Kam et al. [KVBSV12], Villa et al. [VKBSV13] and Lu and Luo

[LL12] shall be mentioned in regards to generalized solutions. These works prove that

a general solution exists, yet no specific solution tailored to the particular problems in

this work are given. Therefore, a rule set for prove of concept is provided. Synthesis of

‘Atomic Requirement FSM’ towards one ‘System FSM’ can be achieved by an alternation

of a ‘minimization process’ and a ‘generalization process’ applied against the given set

of ‘Atomic Requirement FSM’. The intention is to minimize the occurring states and

transitions in the ‘System FSM’. Walter et al. [WMR18] described a rule set of three

rules for minimization:

130 4.3. REQUIREMENTS FORMALIZATION - STATE MACHINES

Rule Set - Minimization, from Walter et al. [WMR18]

(1) Merge Transitions

Two given transitions with identical start and target state and identical transition

conditions (input) can be merged.

T1((S1, S2), I1) = T2((S1, S2), I1) → T12((S1, S2), I1)

(2) Merge States

(a) Two given states with identical state descriptions (‘descr.’) can be merged.

S1(descr1) = S2(descr1) → S12(descr1)

(b) Two given states with different state descriptions but identical incoming and

outgoing transitions can be merged.

T1((∗, S1), I1) = T2((∗, S2), I1)

T3((S1, ∗), I2) = T4((S2, ∗), I2)

S1(descr1) 6= S2(descr2) → S12(descr1 + descr2)

(3) Add Links

For two given states, where S1 is a subset of S2, all outgoing transitions from S1

can be added to S2.

S1 ⊆ S2, T1((S1, S3), I1)→ T2((S2, S3), I1)

The minimization connects states and transitions of different ‘Atomic Requirement FSM’

to create the one ‘System FSM’. In the generalization, it is checked whether an ‘Atomic

Requirement FSM’ contains global information. In case that this is given, this informa-

tion is applied to all states and transitions in the ‘generalization’. Walter et al. [WMR18]

provides an example for generalization:

Example: S responds to P globally

‘Recognition pattern’: Find each occurrence of P

‘Adapt FSM to’: Add S to every consecutive state

“The synthesis process follows three overall goals. It minimizes occurring states and tran-

sitions, it connects related states and it shows potential inconsistencies through more ex-

act specification of particular states and transitions. In sum, this synthesis combined with

the previously described steps delivers the initially postulated System FSM.” [WMR18]

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 131

The next subsection addresses the application where the overall process is performed

against the data set of the case study.

4.3.4. Application: State Machine Representation

This subsection shows the data processing from the initially given data set in Table 4.9

to the data set derived in the consecutive subsection. It intends to answer RQ V.

Figure 4.12 shows the execution diagram from DC43. Data is imported through ReqIF

and pre-processed. ‘SPS to LTL’ is adjusted from the initial rule (see: Figure 4.2). This

adjustment is related to the ‘substitution’ of parameters, which is explained when the

overall process is discussed. ‘LTL to FSM’ creates Requirement FSM from the given LTL

expressions. In the next rule ‘CreateAndLinkASM’, the Atomic Requirement FSM (in

the rule: ASM) are derived from the Requirement FSM. The last task, ‘synthesis’, applies

the previously described rules for ‘minimization’ and ‘generalization’ in alternation. This

creates the System FSM. The described steps serve as a brief summary of the processing.

A more detailed description is given now, alongside with the process overview.

Figure 4.12.:

State Machine Generation: Execution Diagram (Extension), (DC43)

The overall process is shown in Figure 4.13. It can be separated into three groups of tasks

and methods. The left side represents the ‘core process’. Requirements are converted

from NL representation to CNF form through the process steps introduced in Section

4.1. Subsection 4.3.3 discusses conversion from requirements in logic representation to a

System FSM. The five methods in the center are libraries and transformation algorithms.

The two mapping libraries ‘SPS to LTL’ and ‘LTL to FOL’ contain case-based mappings.

‘Sorting algorithm’ converts any FOL representation into a conjunctive normal form. Be-

fore ‘atomization’ is discussed, the remaining algorithm ‘synthesis’ is covered first. It has

the ‘minimization’ and ‘generalization’ rules (see: Subsection 4.3.3) encoded and applies

these in alternation until the System FSM is created and remains stable. ‘Atomization’

is the algorithm with most dependencies to other processing steps. Its inputs are the

requirement state machine and information from multiple helper classes. The right side

of the process overview contains supporting processes to mainly achieve atomization.

‘Atomization library’ (which could also be sorted into ‘library and algorithms’ group)

132 4.3. REQUIREMENTS FORMALIZATION - STATE MACHINES

contains all SPS in atomic form. This allows a comparison of actually used patterns

in ‘requirement SPS’ and generic patterns in ‘atomic SPS’. Comparison is performed in

‘atomization library’.

Requirement | NL

Requirement | SPS

Requirement | LTL

Atomization Library

Mapping Library:
SPS → LTL

Requirement State Machine | CNF

Atomic Requirement State Machine | CNF

System State Machine | CNF

Sorting Algorithm:
FOL → CNF

Manual Processing

Machine Based Processing

NL - Natural Language

SPS - Specification Pattern System

LTL - Linear Temporal Logic

FOL - First Order Logic

CNF - Conjunctive Normal Form

Mapping Library:
LTL → FOL

Substitution

Substitute Database

Parameter List

Atomic State Machine

Atomization

Synthesis

Figure 4.13.: State Machine Generation: Overall Process, Walter et al. [WMR18]

If any deviations occur, a substitution is made. Substitutions are calculated in ‘substi-

tutions’ and stored in ‘substitution database’. ‘Atomization database’ can be used for

another task. It contains all parameters with all values that occur within the system.

‘Parameter list’ collects these parameters and uses these entries to generate ‘atomic state

machine’ for each parameter. This aligns with the idea of graph-based design, where core

building blocks are used to create more complex structures. For each parameter a state

machine is created. This state machine contains all occurring values as states and allows

all transitions between these states. This is called ‘atomic state machine’. All complex

state machines are combinations of ‘atomic state machines’. This overall process is used

to transform the data set. In the next subsection, a validation for the approach is shown.

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 133

T

S

TC1

S

TC 1

T

T

T

S

TC 2

T

T

TC 2Req 2

T

S

TC1

S

TC 1

T

T

T

S

TC 2

T

T

ReqFSM 1

ReqFSM 2

ReqFSM 1

ReqFSM 2

SysFSM

T

S

TC1

S

TC 1, 2

T

T

T

SysFSM

T

S

TC1

S

TC 1, 2

T

T

T

T

SS

T

T

T

S

T

T

ReqFSM 1

ReqFSM 2

SysFSM

T

S

TC1

S

TC 1, 2

T

T

T

SysFSM

T

S

TC1

S

TC 1, 2

T

T

T

TC 1

TC 2

?
=

Step 1

Step 2

T

SS

T

T

T

S

T

T

ReqFSM 1

ReqFSM 2

TC 1Req 1

TC 2Req 2

TC 1Req 1

Step 3

Manual Processing

Machine Based Processing

Figure 4.14.:

State Machine Validation: Comparison (Manual / Automatic), Walter et al. [WMR18]

4.3.5. Evaluation

This subsection shows resulting data and provides validation for this generated System

FSM. It answers RQ VI. Validation is based on a comparison of existing and manually

drawn links for the existing set of test cases. AOLC system data is given in Table 4.11.

134 4.3. REQUIREMENTS FORMALIZATION - STATE MACHINES

The worst combination is represented with 100% and consequently the lowest number

equals the lowest cost. Costs were calculated as described in Subsection 4.2.1. Costs for

initialization, test step execution and system change are all based on the space distance.

Initialization costs equal the distance from O to the start of test step 1. Execution costs

are the the sum of the execution of each test step, where the distance from start to end

for each test step is used as its execution cost. Change costs are the remaining distances

between end of test step n and start of test step n1. Shutdown costs equal the costs from

the end of the last test step back to O.

Table 4.11.: Case Study: Evaluation I (System FSM), Walter et al. [WMR18]

Equal Add. Missing
Functions Total Links Links Links

States States States States
Turn and Warning Signaling 18 4* 14 0
Low Beam Headlights 5 0 5 0
Adaptive (HB) Headlights 7 0 7 0
Manual (HB) Headlights 4 1 3 0
Fault Detection 3 2 1 0
Headlight Technology 3 3 0 0
Reset 7 7 0 0
Total System 47 17 30 0

S = States; Total = Number of States; * = two functional requirements without link to
test cases; Equal = Case (1); Add = Case (2); Missing = Case (3)

From the initial 38 requirements, a System FSM with 47 states was created. Table 4.11

assigns each state to one particular function. This is done in order to avoid double con-

sideration of a state in the analysis. From a functional standpoint, a state is usually not

limited to serve only one function. The analysis is performed as shown in Figure 4.14.

Two System FSMs of the AOLC system are created. On the left side (FSM1), the re-

quirements contain links to the initially given test cases. This provides a trace from state

to requirement to test case. On the right side (FSM2), the links between requirements

and tests are removed. The created System FSM (FSM2) is now given to a system expert

alongside the set of test cases. The system expert links the test cases directly to states

in the System FSM (FSM2). The system experts were asked to only link test cases to

states that definitely validate that state. The resulting links can now be compared for

both System FSM (FSM1 and FSM2). Walter et al. [WMR18] discusses the classes of

resulting links:

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 135

Case (I) - Equal Links: IDsauto = IDsman

It has to be checked whether all elements for IDsauto and IDsman are identical. If

number of elements for IDsauto and IDsman are equal but differ in actual IDs, a

combination of case (II) and case (III) occurred.

Case (II) - Additional Links: IDsauto < IDsman

Manual review linked more test cases to the particular states than the automation.

It must be checked whether all IDsauto are included in the list of IDsman. In case

any element of IDsauto is not included in the list of IDsman, a special case of case

(III) occurs.

Case (III) - Missing Links: IDsauto > IDsman

Manual review failed to link at least one test case to a particular state that was

linked through automation.

The results from Table 4.11 shall now be discussed. The automated approach assigned

links based on the initially given structure without considering the content of the state.

Links from test to requirement are considered correct since these were used in the indus-

trial projects. These links are inherited from the requirements to the newly generated

states. Therefore, a link from test case to requirement to state is considered correct.

What shall be proven is that the content of the state actually matches the content of

the requirement. Therefore, without considering the content of the requirement, the

system expert directly links test cases to the created states. This proves that the con-

tent of the state matches the content of the test case. Since test case and requirement

are initially correctly connected, this now makes it possible to check whether the newly

created link (manual) and the content-based existing link match. This would prove con-

tent consistency between the requirement and the derived state. For states that have an

equal number of automated and manual links, it must be checked whether these links

are actually the same links (same test case to same state). This is the case for all 17

occurrences. Therefore, it can be concluded that these states are correctly derived from

their requirements. In the second case, where manual links were exceeded by automated

links, this same check has to be performed: Are all automated links also links that were

drawn manually? The check is positive. Therefore, all states can also be considered

correctly derived. The additional links can be seen as an improvement of the test set.

136 4.4. REQUIREMENT MODELS - EXECUTABLE STATE MACHINES

It is common that a test is specified for a particular requirement (or here a state) but

it is not crosschecked whether another requirement (or state) can also be tested with

this test case. Thus, it is not surprising that many states had additional tests linked

when this was checked for in particular. There were no states with missing links, which

further confirms the approach. Overall, it can be concluded, that the System FSM was

successfully derived and validated through the described approach. The next section will

discuss how this System FSM can be adjusted to be dynamic and controllable. In addi-

tion, a qualitative example of a requirement transformation from NL to ‘System FSM’

is shown.

4.4. Requirement Models - Executable State Machines

A formal requirements representation can explicitly express dependencies, prove con-

sistency and highlight redundancies between requirements. Another relevant piece of

information is the effect of a (new) requirement onto a given system. Often a require-

ment is specified but the exact constraints and implications on the system are unknown

or at least not fully clear. Engineers can judge a specified requirement much better when

its effect is observable in the system. An application that provides such a possibility is a

dynamic or executable System FSM controlled by the requirements engineer. Dynamic

and executable shall be used interchangeably within this context. This section introduces

the remaining steps to adjust the derived System FSM in a way that it is controllable

through inputs and behavior can be dynamically visualized and observed. Therefore, the

following research questions are presented:

RQ VII: What steps are necessary to make automatically generated System

FSM controllable through user input?

RQ VIII: Can the correctness of the conversion steps from static to derived

dynamic System FSM be shown?

Both research questions are strongly based on Walter et al. [WMS+19]. Both questions

shall be assessed with a case study. Subsection 4.4.1 shows the assumptions given for the

case study, while setup and data set are introduced in Subsection 4.4.2. Subsection 4.4.3

introduces all additional methods needed. In addition, it contains a qualitative example

of a requirement transformed from NL representation to System FSM. This is the basis on

which the execution layer for the dynamic System FSM can be applied. Data processing

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 137

is shown in Subsection 4.4.4. This includes adjustments in DC43 and ‘eTrice’, an Eclipse

extension to model dynamic state machines. The validation of the derived System FSM

is performed in Subsection 4.4.5, followed by a brief conclusion. This section is strongly

based on Walter et al. [WMS+19].

4.4.1. Assumptions

The section intends to answer RQ VII and RQ VIII. Therefore, an example and a case

study are performed in Subsection 4.4.4. The system used for the case study is the MBC

system AOLC. This system, with the same data set was used in the previous section

to derive System FSM from requirements in logic expressions. All data is stored in a

requirements management tool with a ReqIF export function. Objects must contain an

attribute ‘object type’, which classifies the object into ‘requirement’, ‘test case’ and other

types. Dependencies are given by hierarchy and links between objects. The scope of this

section is only on adjusting the process in order to improve a given (static) System FSM

towards a dynamic System FSM. Therefore, it is assumed that the ‘requirement to FSM’

conversion is given and the System FSM for the AOLC already exists. Requirements

and tests are still needed for the validation in Subsection 4.4.5.

Table 4.12.: Case Study: System Metrics II (AOLC), Table 4.9 + Table 4.11

Function States
Functional
Requirements

Test Cases

Turn and Warning Signaling 18 15 20

Low Beam Headlights 5 6 7

Adaptive (HB) Headlights 7 9 2

Manual (HB) Headlights 4 2 2

Fault Detection 3 3 6

Headlight Technology 3 3 1

Total System 40* 38 38

* Total number of states differs to Table 4.9 because reset states are excluded in this
representation. Reset states have to be included in the state machines, for a complete
representation but do not affect this analysis (no description on reset states) and are

therefore excluded for a better overview of the states relevant for the analysis.

138 4.4. REQUIREMENT MODELS - EXECUTABLE STATE MACHINES

4.4.2. Setup

The data set used for the case study is the AOLC system. To create a dynamic behavior

for the System FSM, the initially given data from Table 4.9 (requirements and test cases)

and Table 4.11 (states) are combined for better visibility. This is shown in Table 4.12.

The formalized requirements serve as the basis for the generation of the System FSM.

This FSM contains the listed states. The intention is now, to create a layer that makes

it possible to control the System FSM. This is described in the next subsection. The

validation of such a layer can be performed by testing the generated System FSM against

functional tests. “Linking between tests and requirement in addition to the traceabil-

ity between requirement and system states make it possible to locate the system states

related to a particular test case. Walter et al. [WMR18] showed correctness and practi-

cality of the generated static System FSMs. We intend to verify the executable machine

by execution of the related buttons at the Graphical User Interface (GUI) and comparing

output to specified tests in a black box test. The assumption is that the requirements

and test cases are correct. We do not intend to test the system specification but we show

that the executable machine represents the specification.” [WMS+19] This is shown in

Subsection 4.4.5.

4.4.3. Processing Methods

In this subsection, an example for the formalization of a requirement from NL to System

FSM is given. This answers RQ VII. It serves as a preparation for the execution layer

that is added for controllability. Additional methods introduced to control the state

machine are therefore explained in the next subsection to balance the subsections.

At.Req

FSM
LTL

Req

FSM
SPSNL

Step 1 Step 2 Step 3 Step 4 Step 5

At.Req

FSM

System

FSM

Figure 4.15.: Formalization Process Chain: NL to System FSM, Walter et al. [WMR18]

The example provided was given in Walter et al. [WMS+19] and is shown in Table 4.13.

The mapping is ‘SPS to LTL to FSM’. It is not bijective since multiple SPS patterns can

generate the same LTL expression and multiple LTL expressions can lead to the same

FSM. The mappings are further discussed in Appendix A. To make it easier to follow the

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 139

explanation in regard to the conversion steps, the processing chain shown in Figure 3.1

is extended and provided with step labels in Figure 4.15.

Table 4.13.: Conversion: SPS to System FSM (Example), Walter et al. [WMR18]

Representation
Form

Requirement Representation

NL
Low beam headlight left and right are activated by turning light switch
to position exterior lights

SPS
LowBeamHeadlightLeft[on] AND LowBeamHeadlightRight[on] is true
after LightSwitchPos[ExteriorLight]

LTL
G (LightSwitchPos[ExteriorLight] I G (LowBeamHeadlightLeft[on]
AND LowBeamHeadlightRight[on]))

Requirement
FSM

T

I: LightSwitchPos[ExteriorLight]

LowBeamHeadLightLeft[ON]
AND

LowBeamHeadLightRight[ON]

Atomic
Requirement
FSM

T

I: LightSwitchPos[ExteriorLight]
LowBeamHeadLightLeft[ON]]

T

I: LightSwitchPos[ExteriorLight]
LowBeamHeadLightRight[ON]]

Pairing FSM* T

I: PitmanArmPosition[Pulled]
LowBeamHeadLightLeft[ON]]

T

I: PitmanArmPosition[NOT Pulled]

System
FSM**

T

I: PitmanArmPosition[Pulled]
LowBeamHeadLightLeft[ON]]

T

I: PitmanArmPosition[NOT Pulled]

T

I: LightSwitchPos[ExteriorLight]

G - Globally, I - Implies
T(Trigger)

I: (Input)
state

* Pairing FSM is an additional FSM that is introduced in the example to illustrate the

generation of the System FSM

** For simplicity, System FSM representation is limited to LowBeamHeadlightLeft[on].

Therefore, no LowBeamHeadlightRight[on] is shown in the System FSM.

From the AOLC system data set, a requirement represented in NL is selected. The se-

mantical meaning has to be understood and an appropriate SPS pattern is selected in

step 1. “SPS should be represented with parameter names with syntax Par1[V alue1] e.g.

140 4.4. REQUIREMENT MODELS - EXECUTABLE STATE MACHINES

LowBeamHeadlightLeft[on]. Parameters in this example are: LightSwitchPos, LowBeam-

HeadlightLeft and LowBeamHeadlightRight. The selected pattern is ‘Universality - P is

true after Q’.” [WMR18] In step 2, the specific parameters are inserted for P and Q. P

is here substituted in P1ANDP2 to include both parameters LowBeamHeadlightLeft and

LowBeamHeadlightRight. The substitution is stored in the substitution database. This

representation can now be transformed into LTL, in accordance to the mapping in Dwyer

et al. [DAC98, DAC99]. For the conversion into ‘Requirement FSM’, the mapping ‘LTL

to FSM’ is used. Figure B.3 in Appendix B shows the particular conversion for the SPS

‘Universality - After Q’ needed for step 3. “In this case, LightSwitchPos[ExteriorLight]

serves as the input (trigger) for the transition which causes both LowBeamHeadlightLeft

and LowBeamHeadlightRight to turn from ‘off’ to ‘on’.” [WMR18] The specification

initially combined behavior from ‘left’ and ‘right’ into one requirement.

Figure 4.16.:

Dynamic State Machine Generation: Input / Output Layer, Walter et al. [WMS+19]

This is separated from one ‘Requirement FSM’ into two ‘Atomic Requirement FSM’ in

step 4. Substitution database is accessed to provide the separation data. Remaining is

the system synthesis in step 5. To illustrate a synthesis, a pairing requirement in the

form of another ‘Atomic Requirement FSM’ is introduced. The given synthesis rules are

applied. “[Identical] states can be merged. All incoming and outgoing transitions for

either one of these states are added as well. This leads to one state with two incoming

and one outgoing transition.” [WMR18]. Overall, this shows the transformation from

requirements in natural language to requirements as part of a System FSM. It is the

basis for the dynamic System FSM. The execution layer is added in the next subsection.

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 141

4.4.4. Application: C-Code Generation

This subsection explains the necessary adjustments for the execution layer. It first intro-

duces additional tasks and methods while later showing the adjustments at DC43 and

the modeling in ‘eTrice’. The dynamic behavior is encoded into the System FSM by in-

troducing an ‘execution layer’. This layer consists of “[an] external interaction layer with

a GUI and output console as well as an internal processing layer. This layer contains

the underlying logic and internal signal transfers. The FSM is exported to ‘eTrice’ and

both layers are added to the existing System FSM.” [WMS+19]. The external interaction

layer is shown with its input/output GUI in Figure 4.16.

HazardWarningSwitch

ON OFF

Input GUI

System FSM

S1 S2

T
I: HazardWarningSwitch[ON]

T
I: HazardWarningSwitch[ON]

Output GUI

DirectionIndicatorRearRight

ON OFF

DirectionIndicatorFrontRight

ON OFF

DirectionIndicatorRearLeft

ON OFF

DirectionIndicatorFrontLeft

ON OFF

Atomic FSM I
HazardWarningSwitch

OFF ON

State
Transition
I: (Input)

GUI triggered Transition

T
I: HazardWarningSwitch[ON]

Figure 4.17.:

Dynamic State Machine Generation: Overview (Example), Walter et al. [WMS+19]

This layer allows user input to the System FSM and returns system output. “The pa-

rameters displayed at the GUI, are all parameters that affect the system to transition

between states. The complete list of GUI entries is created by crawling all transition

inputs for unique Parameter[StateValue] combinations. [. . .] Through internal logic,

current state is transitioned to a new current state and a signal with an output message

is sent. This output has to be represented alongside the new current state. There-

fore, besides input control, the second purpose of the external layer is displaying output

142 4.4. REQUIREMENT MODELS - EXECUTABLE STATE MACHINES

messages.” [WMS+19] The parameters occurring at the input are transition parameters

while the parameters at the output are state parameters. The connection of System FSM

with the ‘external interaction layer’ is achieved with an ‘internal interaction layer’. The

system state is represented in ‘Atomic FSM’. Walter et al. [WMS+19] defined ‘Atomic

FSM’ in the following way:

Definition 4.4. “Atomic FSM: represents an FSM for one parameter with all pos-

sible occurring values (one state per value) and all possible transitions. All other FSM

(requirement, atomic requirement and system) consist of combinations of Atomic FSM.”

Therefore, each Atomic FSM is dedicated to exactly one system parameter and always

has one active value (one state). Communication of System FSM to ‘external interaction

layer’ is achieved with an ‘internal interaction layer’. This is shown in Figure 4.18.

Input
Layer

Output
Layer

GUI

Input State
Machine 1

Input State
Machine N

System State
Machine 1

System State
Machine N

Coded Connection
Binding
Replicated
Reference Port
Replicated Conjugated
Reference Port
Actor Reference

HazardWarningSwitch
ON OFF

ExteriorBrightness
ON OFF

VelocityIndicator

0 50 100 150

Figure 4.18.:

Dynamic State Machine Generation: Communication Layer, Walter et al. [WMS+19]

This layer receives changes from the input and communicates this change to the ‘Atomic

FSM’, where the input is used and the ‘current state’ is updated. This new ‘current

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 143

state’ is communicated to the System FSM, where the calculation of the new ‘current

state’ is performed based on input and transition condition. Output is generated based

on ‘current state’ and displayed in the ‘external interaction layer’.

Figure 4.19.:

Dynamic State Machine Generation: Execution Diagram (Extended), (DC43)

The design graph in DC43 is static. Therefore, the execution diagram in DC43 is ad-

justed with one additional rule: ‘eTriceGraphGen’. This is shown in Figure 4.19. The

System FSM is generated and the graph generation in ‘eTrice’ is triggered. This creates

the additional execution layer and allows control of the system via the GUI. System inter-

action can be illustrated with a qualitative example as shown in Walter et al. [WMS+19]

and represented in Figure 4.17. Input GUI, Atomic FSM, System FSM and output GUI

interact as described before.

Initially, the input is set to ‘HazardWarningSwitch[off]’, therefore Atomic FSM and

System FSM have ‘current state’ equal to ‘HazardWarningSwitch[off]’ (System FSM =

S1). All output parameters are set to ‘off’. To illustrate a system change, the input is

adjusted to ‘HazardWarningSwicht[on]’, which triggers Atomic FSM to ‘HazardWarn-

ingSwitch[on]’. Atomic FSM communicates the change to System FSM. The ‘current

state’ input and transition condition are considered and the new ‘current state’ is changed

to S2. An output is generated. It changes all parameters to ‘DirectionIndicator[on]’. The

transition condition is still fulfilled and therefore the new ‘current state’ is periodically

updated. This triggers a change of system output whenever it happens. It can be stopped

by providing new input (‘HazardWarningSwitch[off]’). Generally, such a system control

is used to validate the System FSM in the next subsection.

4.4.5. Evaluation

In order to evaluate the created execution layer and to answer RQ VIII, the given test

cases are executed. Each test case contains test steps where each step has to fulfill a

given precondition. Once met, an action is performed. The resulting system reaction is

compared to the pass condition.

144 4.4. REQUIREMENT MODELS - EXECUTABLE STATE MACHINES

Table 4.14.: Case Study: Evaluation II (System FSM), Walter et al. [WMS+19]

Function Passed TS Blocked TS Failed TS
Turn and Warning Signaling 36 8 2
Low Beam Headlights 17 0 2
Adaptive (HB) Headlights 4 0 2
Manual (HB) Headlights 4 0 0
Fault Detection 2 0 3
Headlight Technology 0 0 0

Total System 63 8 9

Remark. Table 4.14 contains the results. Test results are differentiated into three cate-
gories. Table 4.12 contains test cases (38) while Table 4.14 contains test steps (80)

Case (I) - Passed test steps - Passed test steps are successfully executed test

steps. These test steps validate a given functionality.

Case (II) - Blocked test steps - Blocked test steps could not be executed and

require further discussion. Test steps were blocked due to the missing implemen-

tation of the ‘bounded existence’ pattern and could therefore not be executed.

Further discussion is given below.

Case (III) - Failed test steps - Failed test steps did not execute with the

expected result but a different system reaction. Therefore, failed test steps require

analysis on the impact on the formalization approach. This is given below.

From 80 executed test steps, 63 test steps passed, eight were blocked and nine failed.

The blocked and failed test steps were analyzed and a justification for each was found

which does not challenge the overall formalization approach. The eight blocked test steps

could not be executed. All blocked test steps occurred in the ‘Turn and Warning Signal’

function. The reason for these test steps being blocked was a missing implementation for

the ‘bounded existence’ pattern (SPS). This pattern is needed to represent the correct

functionality for the ‘Turn and Warning Signal’ in a real-time setup and was not available

at time of the validation. The missing implementation was due to limited time available

for the code implementation of the conversion algorithm. This reduces the scope of

the validation to seven of the eight main patterns but it can be seen as a structural

error and is therefore not critical for the overall approach. “The nine failed test steps

are distributed among nearly all vehicle functions. A case-wise review and analysis is

required. Two failed tests were caused by imprecise structuring of requirements text

CHAPTER 4. FORMALIZATION PROCESS CHAIN APPLICATION 145

at the manual transformation from NL to SPS. The remaining seven test steps can be

traced back to incomplete specifications in the initial text form. Blocked tests are caused

by the lack of pattern implementation within the approach, yet this does not affect the

general validity of the formalization approach. Any incomplete specification prevents the

use in this approach. Incomplete specifications cannot be processed. Failed test steps are

therefore not caused by the developed formalization process. In addition, as described

earlier, blocked tests are caused by the lack of implementation for one specification

pattern within the approach, yet this does not affect the general validity.” In summary,

this shows the general correctness and applicability of the described approach. It allows

for an automatic generation of System FSM with an execution layer. The execution layer

lets a user control the System FSM and shows the particular effects of a given (added)

requirement on the System FSM and its functionality.

5. Conclusion and Outlook

The automotive industry faces a tremendous increase in system complexity. An exponen-

tially rising number of product variants and an increase in dependencies between existing

systems (or subsystems) puts pressure on the current state-of-the-art development pro-

cess. While natural language requirements and test representations must remain, it is

obvious, that the given complexity cannot be handled with such a textual representation

alone. This work intended to provide a T2M conversion from natural language repre-

sentation to state machines for automotive requirements and test representations. The

goal was set as: “To provide a requirements and test formalization methodology”. The

consolidation of the achieved results is given in Section 5.1. It summarizes the given

work and combines the different outputs towards an overall result. This addresses the

initial goal of deriving such a methodology. The limitations to the approach and given

results are addressed and discussed in Section 5.2. In Section 5.3, a brief outlook is given.

Four different areas of interest are mentioned as potential fields for further research and

investigations.

5.1. Conclusion

The central topic of this work was the field of knowledge representations and the trans-

formations between different forms. While the approach was in general a stand-alone

methodology, its impact is bigger when paired with other system engineering approaches

like digital product design or virtual integration. Therefore, this approach was embed-

ded in an existing graph-based design methodology. It was methodically integrated and

used graph-based design as the foundation for its code implementation in the case studies.

The work consolidated the state of the art for the field of graph-based design, automo-

tive requirements and testing as well as selected forms of knowledge representations in

Chapter 2. From these existing approaches, a novel requirements and test formalization

process chain was derived in Chapter 3. The core idea was presented in Figure 5.1.

147

148 5.1. CONCLUSION

An NL expression was converted manually into a specification pattern in SPS. This

representation allowed a fully automated further processing. SPS were mapped onto

LTL. It was shown how the given data structure can be used to convert LTL to state-

wise FOL. The conversion to a structured form like a conjunctive normal form allowed

a formalized and machine-readable representation.

Figure 5.1.: Formalization Process Chain: NL to CNF, Walter et al. [WHPR17]

This process chain was the basis for all derived results in Chapter 4. It was applied

in two fields (testing and requirements engineering). Testing data has a simple data

structure (here: ‘one branch directed graph’) while requirements data is more complex

(here: ‘directed cyclic graph’). Section 4.1 and Section 4.2 use the publications Walter

et al. [WHPR17] and Walter et al.[WSPR18] as their foundation while Section 4.3 and

Section 4.4 are based on Walter et al. [WMR18] and Walter et al. [WMS+19]. Every

section contained and discussed two research questions. The research questions and their

answers can be summarized into three general statements: First, it was shown that a

step-by-step processing method was derived for testing and requirements engineering.

The formalization for testing ends with CNF representation while requirements can be

represented in dynamically executable FSM. Second, both approaches were proven to

be correct. This was always performed in two separate ways: Each transformation

(with the exception of NL to SPS) was shown to be analytically correct. In addition,

each overall transformation was empirically tested for correctness and meaningfulness.

Third, within in both fields (testing and requirements engineering) practical applications

exist, where the presented process adds additional value: In testing, redundant tests

were detected, removed and the remaining tests were restructured into an improved test

set. The biggest advantage for requirements engineering can be seen in the real-time

creation of system state machines based on the given requirements. These derived state

machines are controllable and show the exact impact of a requirement onto the system

design. This improves the requirements elicitation, documentation and analysis (e.g.

through simulations). The approach was shown to be correct (mathematical equivalence

CHAPTER 5. CONCLUSION AND OUTLOOK 149

of transformations), applicable (applied to industrial systems) and useful (e.g. reduction

of tests in a set, automatic generation of state machines from textual requirements).

Certain limitations remain and shall be discussed in the next section.

5.2. Limitations

This section provides an overview of the existing limitations and whether these constrain

the approach or not. The most relevant aspect is the expressiveness of all representation

forms. SPS can only express relations and actions that can be expressed within the given

patterns. This includes all functional requirements and certain NFR (e.g. constraints).

Tests are usually in a simpler representation form and no particular problems were ob-

served with processing such tests. LTL constrains the approach in the same manner.

Whenever logic classes are required to represent a relation, this approach is not suffi-

cient. There exist further ‘SPS to logic’ mappings for other logic classes, yet it was not

investigated how a logic post-processing for such classes would be performed. Represen-

tation in FSM falls into the same category: While many systems can be represented in

FSM, certain aspects (e.g. a subset of the overall existing NFR-like requirements ad-

dressing the process, quality and regulations) cannot be expressed. No further forms of

representation-like activity diagrams and uses-case diagrams were investigated.

In this work, the conversion from LTL to FSM is shown in case-based mappings for par-

ticular patterns. A general solution is beyond the scope of this work. However, existing

literature like Kam et al. [KVBSV12], Villa et al. [VKBSV13] and Lu and Luo [LL12]

discuss general mappings and show that the problem in generality is solvable. Similar

to the case-based solution shown for mapping, the aggregation of (requirement) state

machines to (system) state machines is shown with a case-based solution through a set

of rules. This set is selective and certainly not optimal nor complete. It accomplishes

the task required but does not provide a generalized solution. The same sources as above

(Kam et al. [KVBSV12], Villa et al. [VKBSV13] and Lu and Luo [LL12]) include gener-

alized solutions for this problem. The case-based approach implemented at the moment

does not limit the approach in any noticeable way but might not provide optimal or

minimal state machines. The cited works show that in general a solution for the prob-

lems of conversion (logic to state machine) and aggregation of the state machines (to

system state machines) must exist. The solutions exist in theory but were not specifi-

cally derived for this work due to time constrains. A principal (non-optimal) solution

150 5.2. LIMITATIONS

through a rule set was used for the proof of concept. The generalized solutions therefore

remain an open research and implementation topic. One concern discussed in Walter

et al. [WHPR17] is error introduction. Whenever natural language representations are

manually converted into specification patterns, it is possible that the manually given in-

put or the conversion is faulty. Walter et al. [WHPR17] did not observe any occurrences

of error introduction in the first case study. Results were crosschecked with the initial

requirements from system experts and no errors were found. This does not guarantee the

absence of introduced errors since manual work is always prone to error and this work

is no exception. Therefore, an almost automated process rather reduces this problem.

In case errors are actually (unnoticed) introduced into specification patterns data, these

become visible once the System FSM is created and the functionality is observed. Any

deviation of observed and expected behavior should trigger a re-investigation of the input

data and manual conversion. Therefore, this does not affect the overall approach. Fur-

thermore, the traceability of the requirement specifications helps to identify such faulty

conversions enormously.

Error introduction must be addressed in addition for the pre-existing and defined map-

pings. Temporal logic to simple logic (LTL to FOL) or logic to state machine (FOL to

FSM) mappings are analytically provable and therefore the correctness is generally as-

sumed. For errors, it can be shown objectively whether or not an incorrect mapping was

provided. The more critical case is the SPS to LTL mapping. This is purely empirical-

based and therefore not analytically provable. Dwyer et al. [DAC98, DAC99] derived the

mapping and performed extensive empirical studies to validate these mappings. While

it is possible that SPS contains incorrect mappings, in the broader sense SPS seems well

researched and investigated. Therefore, this does not concern or affect this work in re-

gards to limitations.

The initial data set in NL is readable for non-technical participants. Therefore, a con-

cern is, whether the created expressions and state machines retain a certain readability.

Specification patterns are slightly reduced in expressiveness but follow a given structure

and therefore do not noticeably degrade in regards to readability. SPS maintains a cer-

tain readability while the logic, for example conjunctive normal form is much harder to

read. The overall structure must be considered and natural language is replaced with

parameters and logic operators. Therefore, readability at least for non-technical people is

reduced. Similarly, state machines might express functionality and dependencies better

CHAPTER 5. CONCLUSION AND OUTLOOK 151

than plain text, yet this is not readable like unrestricted text. The solution given to this

problem is, that the forward conversion can be performed in real-time. All data can be

stored in SPS and converted into the formal model with the shown T2M conversion when

needed for analysis. In this way, readability for non-technical participants remains while

machine-based analysis capability is given. Another concern in regard to readability is

scaled systems. This particularly applies for state machines with states and transitions

that contain many parameters. For such systems, readability certainly is limited, yet it

can be used for machine-based analysis. Classic approaches do not contain an explicit

representation of all parameters that affect a given state. The new approach therefore

only creates a visibility that was not available prior. Since the representations hold in-

formation much more condensed fashion, they were not actually designed for readability.

For certain analyses, it is also possible to reduce a state machine to relevant states and

relevant parameters. This yields an incomplete system picture but provides for certain

readability.

All systems investigated in the case studies were MBC systems. They were all from the

‘light’ domain. While it was discussed why these systems were chosen and that other do-

mains can be expressed as well, at least the empirical validation is limited to this domain.

This is not seen as critical since all conversion steps were performed analytically. It does

not affect the overall correctness but might limit the conclusions drawn in regards to the

semantic meaning. This was considered and discussed above. Another relevant point to

discuss is sample validity. Due to manual processing, only a selected number of tests

and requirements was formalized for each system. The first question is, whether this

reduced set provides general validity. This was discussed in Walter et al. [WMR18]. The

validation is seen as a proof of concept. How well this approach can be used for a given

system depends on its general representation capability rather than the selected sample.

Second is the concern that bigger systems might not be able to be represented. Scaled

systems are certainly even better suited for a formalization since all analyses can be

performed mostly in a machine-based rather than a manual manner. A limitation in the

reorganization of test cases is, that it must be assumed that no initial sequence contains

a given underlying meaning. This assumption is not explicitly expressed. Such meaning

would be lost in case of restructuring. It is possible to treat such meanings (if known) by

substituting the test steps (with that meaning) into one ‘macro’ test step. Restructuring

is performed and the ‘macro’ test step is re-substituted to the original multiple test steps.

152 5.3. OUTLOOK

In summary, the approach can be applied within the expression limits of SPS, LTL and

FSM. Mapping from temporal logic to state machines and state machine aggregations

are shown case-based for proof of concept. Overall solutions exist but are not expressed

explicitly. Error introduction is possible (as in any other manual task), yet not observed

in any case study and therefore not perceived as problematic. Readability is reduced for

representations in logic and state machine compared to initial representation in natural

language. The T2M conversion allows readability in SPS with a later conversion to

formal representation with analysis capabilities. Sample validity was discussed due to

the selected and reduced systems in the cases studies. Because the analytical proof

has been given, the empirical validation is useful for semantic meaningfulness but not

necessary for general correctness. Given limitations of the data set are therefore not

critical. Overall, the approach is applicable and can be continued in various directions.

This is addressed in the next section.

5.3. Outlook

The shown approach represents a theoretical model with applicable industrial use cases.

Further investigations can be taken from here in various directions. One relevant ques-

tion in context of requirements engineering is, how freely requirements can be chosen.

Many requirements are given based on physical constraints, while other requirements are

specified to achieve a technical solution. The first kind is forced onto a system by ne-

cessity while the second kind might be chosen between different technical options. This

is discussed in Subsection 5.3.1. Requirements engineering, development and testing are

the three big fields in system design. While requirements engineering and testing are

addressed in this approach, development is not included. A system design approach with

one consistent central model provides many advantages. Subsection 5.3.2 combines the

given approach with graph-based design and explores the possibilities of such a unifying

approach. The major focus of this work was on deriving a formalized representation. A

secondary goal was to perform model optimizations to improve the industrial systems

used in the case studies. The effort to create the model was relatively high while au-

tomated optimizations are relatively inexpensive. Therefore, further analysis and uses

cases for optimization could be investigated. This is briefly addressed in Subsection 5.3.3.

In this approach, the exclusive (temporal) logic classes are FOL and LTL. It is possi-

ble to extend work beyond these logic classes and consider, for example, ‘computational

tree logic’ (CTL) and ‘graphical interval logic’ (GIL) since these already have described

CHAPTER 5. CONCLUSION AND OUTLOOK 153

‘SPS to logic’ mappings from Dwyer et al [DAC17]. Other classes could be introduced

as well. Beside the extension of logic classes, many case-based mappings were used for

the shown approach. Generalized mappings exist but so far these were not explicitly ex-

pressed for this approach. Because this would generalize this work, it this is elaborated

in Subsection 5.3.4. These topics only represent a small selection of the seemingly most

interesting areas of research. This list is neither complete nor absolute, and many open

topics remain and could be investigated.

5.3.1. Deriving Requirements Directly from Physics

Features and attributes for an envisioned system can be represented in requirements.

These requirements constrain the solution space for the system design. Whenever another

requirement is added, this solution space is reduced. The remaining degrees of freedom

are the design choices available for the system design under the given requirements. It is

perceived, that requirements can be chosen freely, and while in certain cases this is true,

often it is a misconception. Let us assume the following: An envisioned functionality

might allow different design solutions, yet the only possibility to connect the required

geometrical parts is through a screw connection. There are physical limitations that this

connection can withstand and therefore the solution space is therefore affected. It is

possible to break this down further and to lay out the physical equations for this screw

connection. Let us now also assume a catalog with all available joining technologies and

its physical equations, and consequently its physical limits. This represents the envelope

within which all system designs must stay in order to work within a physical world.

The proposition of this topic is to investigate whether such physical limitations can be

expressed explicitly and therefore allow an upfront solution space limitation. It would

be expected, that this solution space reduction exceeds the reduction discussed in the

beginning since more information (underlying physical principles) is considered. This

would make it possible to rule out certain design choices and decisions up front, based

on given requirements derived from physical principles.

5.3.2. Automated System Design and Executable V-Model

In system design, the three major fields of engineering are requirements engineering,

development and testing. This approach covers requirements engineering and testing.

A unifying approach that connects system design in the development phase with the

approach shown in this work, would provide a variety of advantages. Walter et al.

154 5.3. OUTLOOK

[WKR18] proposed such approach in an extended abstract. This was elaborated on in

a white paper by Walter et al. [WKR19]. Graph-based design languages are the back-

bone for one form of digital system design. Knowledge is encoded in class diagram and

execution rules. Formalized requirements serve as input which constrains the solution

space for the designed system. System geometry is derived through optimization loops

against the current system design and the given constraints. Each engineering task has

its own design language in its particular domain. In Walter et al. [WKR18], this is shown

with the routing of cable wires. All domain languages are applied sequentially against

the current system design. When a stable and consistent system design is achieved,

graph-based design can verify system robustness through fault tree analysis. In addition,

the envisioned approach can perform a digital verification and validation. It verifies

consistency of requirements in a static analysis and validates functional correctness of

the system by executing the system state machine and compares the behavior to the

given requirements. Graph-based design further provides the capability to apply a FEM

for mechanical robustness. Such a unified digital development approach has tremendous

potential to shorten development cycles and to avoid many problems which occur in

classic system design. One digital model contains all system design decisions encoded in

a rule set alongside all formalized requirements and tests. This allows for fast adaptations

within the solution space and always generates a consistent system design model. Given

this, the combination of formal requirements engineering, graph-based system design and

formalized digital verification and validation will certainly be explored further.

5.3.3. Further Analysis of Formalized Test Cases and Requirements

In this work, data represented in natural language was formalized into logic expressions

and FSM representations. The initial effort necessary to convert the data is rather

high. The data was optimized for redundancies and execution order of test steps. The

improvements for the new data set were justified with a comparison of formalization effort

and manual optimization effort. Further optimizations would not require formalization

effort but would simply need a one-time implementation of the optimization method.

This effort is minor compared to the mentioned initial formalization effort. Therefore,

it seems practical to make use of the existing formal representation and include further

applications. Redundancy is already included and consistency is implicitly accounted

for. Whenever a state in a state machine has inconsistent parameters (e.g. Light[on]

AND Light[off]), an inconsistency is given. So far, no machine-based investigation is

CHAPTER 5. CONCLUSION AND OUTLOOK 155

undertaken to identify whether or not requirements are inconsistent. Another use case

would be to show the minimal set of requirements: removing redundant and inconsistent

requirements would provide such a set. A more challenging task would be to show

the completeness of requirements. Created state machines and envisioned functionality

must be compared by execution of the dynamic state machine and observation of the

system behavior. This might not be fully automatable, yet such approaches could show

completeness for given requirements. To show completeness for tests, on the other hand,

an automated approach is certainly possible. Existing tests must be linked to the states

and transitions (inheritance of dependencies through requirements). It must be checked

whether a given change criterion (state, branch or mc/dc coverage) is given and aimed

for. Missing tests could be pointed out (and could potentially be created). As shown with

this selection of applications, many useful data optimizations are possible and could be

included with rather small effort. This would certainly benefit the industrial applications.

5.3.4. Extension of Case-Based LTL to FOL Mapping

The major limitation to the formalization process is expansion of each representation

form. Linear temporal logic can express temporal relations on one ‘directed time branch’.

While this covers the majority of uses cases for the automotive system under investiga-

tion, other automotive domains and other industries might require further expressiveness.

Two of many candidates for further logic classes are Computational Tree Logic (CTL)

and Graphical Interval Logic (GIL). These are selected for this brief discussion due to

the fact that ‘SPS to logic’ mapping for CTL and GIL already exists within Dwyer et

al. [DAC17]. Computational tree logic is capable of representing branching time logic.

It contains an uncertainty about a future event and therefore has a tree structure for

branching. Graphical interval logic can express sequential and parallel time relations.

Both extend the given approach in regards to overall expressiveness. The effects on state

machine representation must be analyzed and solved in order to include these in the

approach. Another extension for the given approach is the generalization of the ‘logic to

FSM’ mapping. The approach uses case-based mappings which are provided for all SPS

paths in the Appendix B. There exist generalized solutions, but this work only used the

given case-based mappings due to scope and time constraints. A generalized solution

provides a significant advantage. Any specification path that can be mapped to logic

can be used in the approach. This would extend the field of applications significantly.

Approaches that prefer any other pattern over SPS could define ‘pattern to logic’ map-

156 5.3. OUTLOOK

ping and apply all further steps of this approach. The optimization of the state machines

remains open as well. Aggregations of requirement state machines to a system state ma-

chine were performed with a small set of explicit rules (‘atomization’ and ‘minimization’

(including ‘merge states’, ‘merge transitions’ and ‘add links’)). This is a simple approach

that worked for the given problem set. This rule set is certainly not optimal. A gener-

alization exists, as described in abstract form in literature like Kam et al. [KVBSV12],

Villa et al. [VKBSV13] or Lu and Luo [LL12]. These abstract solutions need to be

adjusted to this particular problem. Such an adaptation would allow the derivation of

optimal (minimal) state machines, which would simplify and improve representation and

analysis. These four topics represent a selection of many open fields. These were chosen

for the following reason: Subsection 5.3.1 is the authors choice for further scientific re-

search. Subsection 5.3.2 connects this work with the graph-based design and particularly

with the work by Rudolph. The extension in Subsection 5.3.3 is the path to increase

the industrial impact on the particular projects where the case studies were performed.

The topic of Subsection 5.3.4 describes for the most part tasks that would strengthen

the approach without extending the scope but generalizing the given modeling. While

these represent a few out of many fields for potential further research, this section is the

closing section of this work. Therefore, it shall be used to summarize and close this work:

The overall premise of this work was to derive a formalization method for automotive

requirements and testing data. This was achieved and laid out in the previous chapters.

While many open questions remain, a small contribution to knowledge increase was made

with this work and therefore this work shall close with a quote:

“In a dark place we find ourselves, and a little more knowledge lights our way.” Yoda

A. Mapping SPS to LTL (full)

The appendix contains three parts. Appendix A describes all mappings made in Dwyer

et al. [DAC98, DAC99] for SPS to LTL. Appendix B provides case-based mappings for

all LTL expressions that arise from the SPS. For each LTL expression, its representation

in the form of a FSM is shown. Lastly, in Appendix E, the authors publications are

mentioned and aligned.

This chapter contains the full ‘SPS to LTL’ mapping as developed and validated by

Dwyer et al. [DAC98, DAC99, DAC17]. It represents the extension of Subsection 3.3.2

where a selected set of mappings is shown. Overall, there exist eleven patterns with five

scopes each.

Remark. SPS representation for each entry is created by adding the pattern (f.e. ‘P is true’)

with the scope (f.e. ‘between Q and R’). This creates the SPS representation ‘P is true

between Q and R’.

Universality - P is true

Table A.1.: Mapping: SPS to LTL (Pattern: ‘Universality’)

Scope Linear Temporal Logic
Globally � P
Before R � R −→ (P U R)
After Q � (Q −→ � (P))
Between Q and R � ((Q ∧ � R) −→ P U R)
After Q until R � (Q −→ P U (R ∨ � (P)))

157

158

Absence - P is false

Table A.2.: Mapping: SPS to LTL (Pattern: ‘Absence’)

Scope Linear Temporal Logic
Globally � ¬ P
Before R � R −→ (¬ P U R)
After Q � (Q −→ � (¬ P))
Between Q and R � ((Q ∧ � R) −→ ¬ P U R)
After Q until R � (Q −→ ¬ P U (R ∨ � (¬ P)))

Existence - P becomes true

Table A.3.: Mapping: SPS to LTL (Pattern: ‘Existence’)

Scope Linear Temporal Logic
Globally � P
Before R � R −→ (R U P)
After Q � (¬ Q ∨ � (Q ∧ � P))
Between Q and R � ((Q ∧ � R) −→ R U P)
After Q until R � (Q −→ (¬ R U P))

Bounded Existence - P becomes true

(Transitions to P -state occur at most 2 times)

Table A.4.: Mapping: SPS to LTL (Pattern: ‘Bounded Existence’)

Scope Linear Temporal Logic

Globally
(¬PW (PW (¬PW (PW�¬P)))
where PWQ = �P ∨ (PUQ)

Before R
�R −→ ((¬P ∧ ¬R)U(R ∨ ((P ∧ ¬R)U(R ∨ ((¬P ∧ ¬R)
U(R ∨ ((P ∧ ¬R)U(R ∨ (¬PUR)))))

After Q �Q −→ (¬QU(Q ∧ (¬PW (PW (¬PW (PW�¬P)))))

Between Q and R
�((Q ∧ �R) −→ ((¬P ∧ ¬R)U(R ∨ ((P ∧ ¬R)U(R∨
((¬P ∧ ¬R)U(R ∨ ((P ∧ ¬R)U(R ∨ (¬PUR))))))

After Q until R
�Q −→ ((¬P ∧ ¬R)U(R ∨ ((P ∧ ¬R)U(R ∨ ((¬P ∧ ¬R)
U(R ∨ ((P ∧ ¬R)U(R ∨ (¬PWR) ∨�P))))

APPENDIX A. MAPPING SPS TO LTL (FULL) 159

Response - S responds to P

Table A.5.: Mapping: SPS to LTL (Pattern: ‘Response’)

Scope Linear Temporal Logic
Globally �(P −→ �S)
Before R (P −→ (¬RUS))U(R ∨�(¬R))
After Q �(Q −→ �(P −→ �S))
Between Q and R �((Q ∧ �R) −→ (P −→ (¬RUS))UR)
After Q until R �(Q −→ ((P −→ (¬RUS))UR) ∨�(P −→ (¬RUS)))

Response Chain I - P responds to S,T

2 stimulus - 1 response chain

Table A.6.: Mapping: SPS to LTL (Pattern: ‘Response Chain I’)

Scope Linear Temporal Logic
Globally �(P −→ �S)
Before R �R −→ (S ∧ ◦(¬RUT) −→ ◦(¬RU(T ∧ �P)))UR
After Q �(Q −→ �(S ∧ ◦ � T −→ ◦(¬TU(T ∧ �P))))
Between Q and R �((Q ∧ �R) −→ (S ∧ ◦(¬RUT) −→ ◦(¬RU(T ∧ �P)))UR

After Q until R
�(Q −→ (S ∧ ◦(¬RUT) −→ ◦(¬RU(T ∧ �P)))
U(R ∨�(S ∧ ◦(¬RUT) −→ ◦(¬RU(T ∧ �P)))))

Response Chain II - S,T responds to P

1 stimulus - 2 response chain

Table A.7.: Mapping: SPS to LTL (Pattern: ‘Response Chain II’)

Scope Linear Temporal Logic
Globally �(P −→ �(S ∧ ◦ � T))
Before R �R −→ (P −→ (¬RU(S ∧ ¬R ∧ ◦((¬R ∧ UT))))UR
After Q �(Q −→ (P −→ (S ∧ ◦ � T)))
Between Q and R �((Q ∧ �R) −→ (P −→ (¬RU(S ∧ ¬R ∧ ◦((¬R ∧ UT))))UR)

After Q until R
�(Q −→ (P −→ (¬RU(S ∧ ¬R ∧ ◦((¬R ∧ UT))))U
(R ∨�(P −→ (S ∧ ◦ � T))))

160

Precedence S precedes P

Table A.8.: Mapping: SPS to LTL (Pattern: ‘Precedence’)

Scope Linear Temporal Logic
Globally �P −→ (¬PU(S ∧ ¬P))
Before R �P −→ (¬PU(S ∨R))
After Q �¬Q ∨ �(Q ∧ (¬PU(S ∨�¬P)))
Between Q and R �((Q ∧ �R) −→ (¬PU(S ∨R)))
After Q until R �Q −→ ((¬PU(S ∨R)) ∨�¬P))

Precedence Chain I - S,T precedes P

2 causes - 1 effect precedence chain

Table A.9.: Mapping: SPS to LTL (Pattern: ‘Precedence Chain I’)

Scope Linear Temporal Logic
Globally �P −→ (¬PU(S ∧ ¬P ∧ ◦(¬PUT)))
Before R �R −→ (¬PU(R ∨ (S ∧ ¬P ∧ ◦(¬PUT))))
After Q �¬Q ∨ (¬QU(Q ∧ �P −→ (¬PU(S ∧ ¬P ∧ ◦(¬PUT))))
Between Q and R �((Q ∧ �R) −→ (¬PU(R ∨ (S ∧ ◦(¬PUT)))))
After Q until R �(Q −→ (�P −→ (¬PU(R ∨ (S ∧ ◦(¬PUT)))))

Precedence Chain II - P precedes (S,T)

1 cause - 2 effects precedence chain

Table A.10.: Mapping: SPS to LTL (Pattern: ‘Precedence Chain II’)

Scope Linear Temporal Logic
Globally (�(S ∧ ◦ � T)) −→ ((¬S)UP)
Before R �R −→ ((¬(S ∧ (¬R)) ∧ ◦(¬RU(T ∧ ¬R))))U(R ∨ P))
After Q (�¬Q) ∨ ((¬Q)U(Q ∧ ((�(S ∧ ◦ � T)) −→ ((¬S)UP))

Between Q and R
�((Q ∧ �R) −→ ((¬(S ∧ (¬R)) ∧ ◦(¬RU
(T ∧ ¬R))))U(R ∨ P))

After Q until R
�(Q −→ (¬(S ∧ (¬R) ∧ ◦(¬R(T ∧ ¬R)))U
(R ∨ P) ∨�(¬(S ∧ ◦ � T))))

APPENDIX A. MAPPING SPS TO LTL (FULL) 161

Constrained Chain Patterns - S,T without Z responds to P

Table A.11.: Mapping: SPS to LTL (Pattern: ‘Constrained Chain Pattern’)

Scope Linear Temporal Logic
Globally �(P −→ �(S ∧ ¬Z ∧ ◦(¬ZUT)))

Before R
�R −→ (P −→ (¬RU(S ∧ ¬R ∧ ¬Z∧
◦((¬R ∧ ¬Z)UT))))UR

After Q �(Q −→ �(P −→ (S ∧ ¬Z ∧ ◦(¬ZUT))))

Between Q and R
�((Q ∧ �R) −→ (P −→ (¬RU(S ∧ ¬R ∧ ¬Z∧
◦((¬R ∧ ¬Z)UT))))UR)

After Q until R
�(Q −→ (P −→ (¬RU(S ∧ ¬R ∧ ¬Z ∧ ◦((¬R ∧ ¬Z)UT))))
U(R ∨�(P −→ (S ∧ ¬Z ∧ ◦(¬ZUT)))))

Remark: The different representation of logic operators in this work versus Dwyer’s

publications [DAC17, DAC98, DAC99] is shown in Table 3.3

B. Mapping LTL to FSM (full)

This chapter contains the full ‘LTL to FSM’ mapping as developed and validated by

Walter et al. [WMR18]. It represents the extension of Subsection 3.5.2 where a selected

set of mappings is shown. Overall, there exist mappings for ten patterns with five scopes

each (mapping for ‘Chain Response’ is not included.). The patterns are sorted in terms of

its textual description, which stands in a 1:1 relationship to the mapped LTL expressions.

Remark. : SPS representation for each entry is created by adding the pattern (f.e. ‘P is true’)

with the scope (f.e. ‘between Q and R’). This creates the SPS representation ‘P is true

between Q and R’.

Pattern: Universality - P is true

Globally

Figure B.1.: Mapping LTL to FOL conversion - Universality ‘Global’ [WMS+19]

Before R

Figure B.2.: Mapping LTL to FOL conversion - Universality ‘before R’ [WMS+19]

163

164

After Q

Figure B.3.: Mapping LTL to FOL conversion - Universality ‘After Q’ [WMS+19]

Between Q and R

Figure B.4.: Mapping LTL to FOL conversion - Universality ‘Between Q and R’
[WMS+19]

After Q until R

Figure B.5.: Mapping LTL to FOL conversion - Universality ‘After Q until R’ [WMS+19]

Pattern: Absence - P is false

Globally

Figure B.6.: Mapping LTL to FOL conversion - Absence ‘Global’ [WMS+19]

APPENDIX B. MAPPING LTL TO FSM (FULL) 165

Before R

Figure B.7.: Mapping LTL to FOL conversion - Absence ‘before R’ [WMS+19]

After Q

Figure B.8.: Mapping LTL to FOL conversion - Absence ‘After Q’ [WMS+19]

Between Q and R

Figure B.9.: Mapping LTL to FOL conversion - Absence ‘Between Q and R’ [WMS+19]

After Q until R

Figure B.10.: Mapping LTL to FOL conversion - Absence ‘After Q until R’ [WMS+19]

166

Pattern: Existence - P becomes true

Globally

Figure B.11.: Mapping LTL to FOL conversion - Existence ‘Global’ [WMS+19]

Before R

Figure B.12.: Mapping LTL to FOL conversion - Existence ‘before R’ [WMS+19]

After Q

Figure B.13.: Mapping LTL to FOL conversion - Existence ‘After Q’ [WMS+19]

Between Q and R

Figure B.14.: Mapping LTL to FOL conversion - Existence ‘Between Q and R’ [WMS+19]

APPENDIX B. MAPPING LTL TO FSM (FULL) 167

After Q until R

Figure B.15.: Mapping LTL to FOL conversion - Existence ‘After Q until R’ [WMS+19]

Pattern: Bounded Existence - P becomes true

(Transitions to P-state occur at most 2 times)

Globally

Figure B.16.: Mapping LTL to FOL conversion - Bounded Existence ‘Global’ [WMS+19]

168

Before R

Figure B.17.: Mapping LTL to FOL conversion - Bounded Existence ‘before R’
[WMS+19]

After Q

Figure B.18.: Mapping LTL to FOL conversion - Bounded Existence ‘After Q’ [WMS+19]

APPENDIX B. MAPPING LTL TO FSM (FULL) 169

Between Q and R

Figure B.19.: Mapping LTL to FOL conversion - Bounded Exist. ‘Between Q and R’
[WMS+19]

After Q until R

Figure B.20.: Mapping LTL to FOL conversion - Bounded Exist. ‘After Q until R’
[WMS+19]

170

Pattern: Response - S responds to P

Globally

Figure B.21.: Mapping LTL to FOL conversion - Response ‘Global’ [WMS+19]

Before R

Figure B.22.: Mapping LTL to FOL conversion - Response ‘before R’ [WMS+19]

APPENDIX B. MAPPING LTL TO FSM (FULL) 171

After Q

Figure B.23.: Mapping LTL to FOL conversion - Response ‘After Q’ [WMS+19]

Between Q and R

Figure B.24.: Mapping LTL to FOL conversion - Response ‘Between Q and R’ [WMS+19]

172

After Q until R

Figure B.25.: Mapping LTL to FOL conversion - Response ‘After Q until R’ [WMS+19]

Pattern: Response Chain I - S responds to P , T

2 stimulus - 1 response chain

Globally

Figure B.26.: Mapping LTL to FOL conversion - Response Chain I ‘Global’ [WMS+19]

APPENDIX B. MAPPING LTL TO FSM (FULL) 173

Before R

Figure B.27.: Mapping LTL to FOL conversion - Response Chain I ‘before R’ [WMS+19]

After Q

Figure B.28.: Mapping LTL to FOL conversion - Response Chain I ‘After Q’ [WMS+19]

174

Between Q and R

Figure B.29.: Mapping LTL to FOL conversion - Resp. Chain I ‘Between Q and R’
[WMS+19]

After Q until R

Figure B.30.: Mapping LTL to FOL conversion - Response Chain I ‘After Q until R’
[WMS+19]

APPENDIX B. MAPPING LTL TO FSM (FULL) 175

Pattern: Response Chain II - S responds to P , T

1 stimulus - 2 response chain

Globally

Figure B.31.: Mapping LTL to FOL conversion - Response Chain II ‘Global’ [WMS+19]

Before R

Figure B.32.: Mapping LTL to FOL conversion - Response Chain II ‘before R’ [WMS+19]

176

After Q

Figure B.33.: Mapping LTL to FOL conversion - Response Chain II ‘After Q’ [WMS+19]

Between Q and R

Figure B.34.: Mapping LTL to FOL conversion - Resp. Chain II ‘Between Q and R’
[WMS+19]

APPENDIX B. MAPPING LTL TO FSM (FULL) 177

After Q until R

Figure B.35.: Mapping LTL to FOL conversion - Response Chain II ‘After Q until R’
[WMS+19]

Pattern: Precedence - S precedes P

Globally

Figure B.36.: Mapping LTL to FOL conversion - Precedence ‘Global’ [WMS+19]

Before R

Figure B.37.: Mapping LTL to FOL conversion - Precedence ‘before R’ [WMS+19]

178

After Q

Figure B.38.: Mapping LTL to FOL conversion - Precedence ‘After Q’ [WMS+19]

Between Q and R

Figure B.39.: Mapping LTL to FOL conversion - Precedence ‘Between Q and R’
[WMS+19]

After Q until R

Figure B.40.: Mapping LTL to FOL conversion - Precedence ‘After Q until R’ [WMS+19]

APPENDIX B. MAPPING LTL TO FSM (FULL) 179

Pattern: Precedence Chain I - S,T precedes P

2 causes - 1 effect precedence chain

Globally

Figure B.41.: Mapping LTL to FOL conversion - Precedence Chain I ‘Global’ [WMS+19]

Before R

Figure B.42.: Mapping LTL to FOL conversion - Precedence Chain I ‘before R’
[WMS+19]

180

After Q

Figure B.43.: Mapping LTL to FOL conversion - Precedence Chain I ‘After Q’ [WMS+19]

Between Q and R

Figure B.44.: Mapping LTL to FOL conversion - Preced. Chain I ‘Between Q and R’
[WMS+19]

After Q until R

Figure B.45.: Mapping LTL to FOL conversion - Preced. Chain I ‘After Q until R’
[WMS+19]

APPENDIX B. MAPPING LTL TO FSM (FULL) 181

Pattern: Precedence Chain II - S,T precedes P

1 causes - 2 effect precedence chain

Globally

Figure B.46.: Mapping LTL to FOL conversion - Precedence Chain II ‘Global’ [WMS+19]

Before R

Figure B.47.: Mapping LTL to FOL conversion - Precedence Chain II ‘before R’
[WMS+19]

After Q

Figure B.48.: Mapping LTL to FOL conversion - Precedence Chain II ‘After Q’
[WMS+19]

182

Between Q and R

Figure B.49.: Mapping LTL to FOL conversion - Preced. Chain II ‘Between Q and R’
[WMS+19]

After Q until R

Figure B.50.: Mapping LTL to FOL conversion - Preced. Chain II ‘After Q until R’
[WMS+19]

C. Publications

In this work, a formalization process for test and requirements data was shown. This

was done in a step-wise qualitative form as well as with quantitative case studies. For

all formalization steps, qualitative and quantitative examples, a primary publication by

the author of this work exists. This section provides an overview of these publications

with a short description and connection to the other publications.

[WHPR17] Walter et al. - “A Formalization Method to Process Structured

Natural Language to Logic Expressions to Detect Redundant Specification

and Test Statements”

In this paper, the formalization process chain (see Figure 3.1) is introduced with exam-

ples of test cases. A qualitative study shows redundancy checks for test steps as one

industrial use case.

[WSPR18] Walter et al. - “Improving Test Execution Efficiency Through

Clustering and Reordering of Independent Test Steps”

The former introduced redundancy check requires post processing for industrial use. This

is shown with this work. Existing test sets are checked for redundancies and are rear-

ranged towards an efficient, redundancy-free test set.

[WMR18] Walter et al. - “A Method to Automatically Derive the System

State Machine from Structured Natural Language Requirements through

Requirements Formalization”

In this paper, the formalization process chain is applied to requirements. The formaliza-

tion is extended so that a consistent system state machine including all requirements is

derived.

183

184

[WMS+19] Walter et al. - “Executable State Machines Derived from Struc-

tured Textual Requirements - Connecting Requirements and Formal System

Design”

The former state machine representation is extended with an execution layer that allows

the user to interact and control the state machine through a GUI with input and to

observe the system reaction through its output.

[WKR18] Walter et al. - “Machine-Executable Model-Based Systems Engi-

neering with Graph-Based Design Languages”

This abstract is the summary of a poster that envisions a fully digital development pro-

cess. It introduces the term “Machine-Executable V-model’

[WKR19] Walter et al. - “From Manual to Machine-Executable Model-based

Systems Engineering via Graph-based Design Languages”

This paper represents the extension of paper [WKR18] from abstract to full paper. It

elaborates on the possibilities of digital development and showcases with qualitative

examples how an ‘Machine-Executable V-model’ can be envisioned

D. Bibliography

[AF00] Alessandro Artale and Enrico Franconi. A Survey of Temporal Extensions

of Description Logics. Annals of Mathematics and Artificial Intelligence,

30:pages 171–210, 2000.

[Ale85] Christopher Alexander. The Timeless Way of Building. Alexander, The

Production of Houses, 1985.

[AR03] Rolf Alber and Stephan Rudolph. ‘43’— A Generic Approach for Engineer-

ing Design Grammars. In Proceedings AAAI Spring Symposium “Computa-

tional Synthesis,” Stanford, CA, AAAI Technical Report SS-03-02, 2003.

[AR04] Rolf Alber and Stephan Rudolph. On a grammar-based design language

that supports automated design generation and creativity. In Knowledge

Intensive Design Technology, pages 19–35. Springer, 2004.

[Art10] Alessandro Artale. Formal Methods - Linear Temporal Logic. University of

Bolzano, 2010. Lecture Notes.

[Ben18] Bengaluru. Department of Computer Science and Automation,

https://drona.csa.iisc.ernet.in/ deepakd/atc-2011/lba.pdfl. Jan 2018.

[BN13] Eberhard Bergmann and Helga Noll. Mathematische Logik mit Informatik-

Anwendungen, volume 187. Springer-Verlag, 2013.

[BW07] Brian Berenbach and Timo Wolf. A Unified Requirements Model; Integrat-

ing Features, Use Cases, Requirements, Requirements Analysis and Hazard

Analysis. In Global Software Engineering, 2007. ICGSE 2007. Second IEEE

International Conference on, pages 197–203. IEEE, 2007.

[CAM18] University of Cambridge - Computer Laboratory,

https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/turing-

machine/one.html. Jan 2018.

185

186 REFERENCES

[CB98] IEEE Computer Society. Software Engineering Standards Committee and

IEEE-SA Standards Board. Recommended Practice for Software Require-

ments Specifications. Institute of Electrical and Electronics Engineers, 1998.

[Cer80] Eduard Cerny. Characteristic Functions in Multivalued Logic Systems. DIG-

ITAL PROC, 6(2):pages 167–174, 1980.

[Cla96] Peter Clark. Requirements for a Knowledge Representation System.

www.cs.utexas.edu/users/pclark/working notes/010.pdf, 1996.

[Col17] Collinsdictionary. Definition of ‘inference’,

https://www.collinsdictionary.com/dictionary/english/inference. 2017.

[DAC98] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property

Specification Patterns for Finite-state Verification. In Proceedings of the

second workshop on formal methods in software practice, pages 7–15. ACM,

1998.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns

in Property Specifications for Finite-state Verification. In Proceedings of

the 1999 International Conference on Software Engineering, pages 411–420.

IEEE, 1999.

[DAC17] Matthew B. Dwyer, George S. Avrunin, and

James C. Corbett. A Specification Pattern System,

http://people.cs.ksu.edu/scriptstyle/mathtt/sim/dwyer/SPAT/ltl.html.

2017.

[Dam96] Peter Damerow. Abstraction and Representation. In Abstraction and Rep-

resentation, pages 371–381. Springer, 1996.

[Dar68] Charles Darwin. On the Origin of Species by Means of Natural Selection.

1859. London: Murray Google Scholar, 1968.

[DG97] Marco Dorigo and Luca Maria Gambardella. Ant Colony System: A Co-

operative Learning Approach to the Traveling Salesman Problem. IEEE

Transactions on evolutionary computation, 1(1):pages 53–66, 1997.

[DP117] Sourcemaking Design Patterns, https://sourcemaking.com/design-patterns.

Sep 2017.

REFERENCES 187

[EO117] English Oxford Dictionaries, https://en.oxforddictionaries.com. Aug 2017.

[FHDW15] Felix Föcker, Frank Houdek, Marian Daun, and Thorsten Weyer. Model-

based Engineering of an Automotive Adaptive Exterior Lighting System:

Realistic Example Specifications of Behavioral Requirements and Fnctional

Design. Technical report, ICB-Research Report, 2015.

[Fra15] Aldrin Jaramillo Franco. Requirements Elicitation Approaches: A System-

atic Review. In 9th International Conference on Research Challenges in

Information Science (RCIS), pages 520–521. IEEE, 2015.

[GG16] Valentin Goranko and Antony Galton. Temporal Logic, Winter Edition

2015, The Stanford Encyclopedia of Philosophy, Edward N. Zalta (ed.).

Jul 2016. URL = http://plato.stanford.edu/archives/win2015/entries/logic-

temporal/.

[Gli07] Martin Glinz. On Non-functional Requirements. In 15th IEEE International

Requirements Engineering Conference, pages 21–26. IEEE, 2007.

[Gmb16] Sophist GmbH. “MASTeR” - Schablonen für alle Fälle, volume 3.

www.sophist.de, 2016.

[GO01] Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation.

In International Conference on Computer-Aided Verification, pages 53–65.

Springer, 2001.

[GS80] James Gips and George Stiny. Production Systems and Grammars: A Uni-

form Characterization. Environment and Planning B: Planning and Design,

7(4):pages 399–408, 1980.

[Hey99] Francis Heylighen. The Growth of Structural and Functional Complexity

During Evolution. The Evolution of Complexity, pages 17–44, 1999.

[HKS+10] Jonas Helming, Maximilian Koegel, Florian Schneider, Michael Haeger,

Christine Kaminski, Bernd Bruegge, and Brian Berenbach. Towards a Uni-

fied Requirements Modeling Language. In Fifth International Workshop on

Requirements Engineering Visualization (REV), pages 53–57. IEEE, 2010.

[Hoo94] Ivy Hooks. Writing good requirements. In INCOSE International Sympo-

sium, volume 4, pages 1247–1253. Wiley Online Library, 1994.

188 REFERENCES

[IEE90] Computer-Society IEEE. IEEE Standard Glossary of Software Engineering

Terminology. 1990.

[IIL17a] IILS mbh. Design Cockpit 43, https://www.iils.de. 2017.

[IIL17b] IILS mbh. https://www.iils.de/downloads/IILS-WhitePaper-

TotalEngineeringAutomation.pdf. 2017.

[ISO05] EN ISO. 9000: 2005. Quality management systems-Fundamentals and vo-

cabulary (ISO 9000: 2005), 2005.

[ISO11] ISO/IEC/IEEE 29148: 2011(E): ISO/IEC/IEEE International Standard -

Systems and Software Engineering - Life Cycle Processes - Requirements

Engineering. IEEE, 2011.

[ISTQB15] ISTQB International Software Testing Qualifications Board. Standard Glos-

sary of Terms used in Software Testing Version 3.1. 2015.

[Jac17] Michael Jackson. The Right-hand Side Problem: Research topics in RE. In

25th International Requirements Engineering Conference (RE), pages 474–

475. IEEE, 2017.

[Kam68] Johan Anthony Wilem Kamp. Tense Logic and the Theory of Linear Order.

1968.

[KC02] Sascha Konrad and Betty HC Cheng. Requirements Patterns for Embedded

Systems. In Joint International Conference on Requirements Engineering,

pages 127–136. IEEE, 2002.

[KC05a] Sascha Konrad and Betty HC Cheng. Automated Analysis of Natural Lan-

guage Properties for UML Models. In International Conference on Model

Driven Engineering Languages and Systems, pages 48–57. Springer, 2005.

[KC05b] Sascha Konrad and Betty HC Cheng. Real-time Specification Patterns. In

Proceedings of the 27th international conference on Software engineering,

pages 372–381. ACM, 2005.

[KVBSV12] Timothy Kam, Tiziano Villa, Robert K Brayton, and Alberto L

Sangiovanni-Vincentelli. Synthesis of Finite State Machines: Logic Opti-

mization. Springer Science & Business Media, 2012.

REFERENCES 189

[Lau08] Søren Lauesen. Guide to Requirements SL-07-Template with Examples.

Lauesen Publishing, 2008.

[LL12] Xinye Lu and Guiming Luo. Direct Translation of LTL Formulas to Büchi

Automata. In 11th International Conference on Cognitive Informatics and

Cognitive Computing (ICCI CC), pages 323–328. IEEE, 2012.

[LNHK11] Yang Li, Nitesh Narayan, Jonas Helming, and Maximilian Koegel. A

Domain-Specific Requirements Model for Scientific Computing (NIER

Track). In Proceedings of the 33rd International Conference on Software

Engineering, pages 848–851. ACM, 2011.

[Mar18] Jan Martin. Automatisches Generieren von Finite State Machines aus Struc-

tured Natural Language Requirements, 2018.

[Mav12] Alistair Mavin. Listen, then use EARS. IEEE software, 29(2):17–18, 2012.

[MB07] Mercedes-Benz. Requirements Guideline. 2007.

[MB17] Mercedes-Benz. Test Specification Guideline. 2017.

[MT13] Walid Maalej and Anil Kumar Thurimella. Managing Requirements Knowl-

edge. Springer, 2013.

[MW10] Alistair Mavin and Philip Wilkinson. Big Ears (The Return of ”Easy Ap-

proach to Requirements Engineering”). In 18th IEEE International Require-

ments Engineering Conference (RE), pages 277–282. IEEE, 2010.

[MWGU16] Alistair Mavin, Philip Wilksinson, Sarah Gregory, and Eero Uusitalo. Lis-

tens Learned (8 Lessons Learned Applying EARS). In 24th International

Requirements Engineering Conference (RE), pages 276–282. IEEE, 2016.

[MWHN09] Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak. Easy

Approach to Requirements Ryntax (EARS). In 17th International Require-

ments Engineering Conference (RE), pages 317–322. IEEE, 2009.

[NK98] Klaus North and Gita Kumta. Wissensorientierte Unternehmensführung.

Springer, 1998.

190 REFERENCES

[PBFG14] Gerhard Pahl, Wolfgang Beitz, Jörg Feldhusen, and Karl-Heinrich Grote.

Pahl/Beitz Konstruktionslehre: Grundlagen erfolgreicher Produktentwick-

lung. Methoden und Anwendung. Springer-Verlag, 2014.

[PBSJ13] Gerhard Pahl, Wolfgang Beitz, Hans-Joachim Schulz, and U Jarecki.

Pahl/Beitz Konstruktionslehre: Grundlagen erfolgreicher Produktentwick-

lung. Methoden und Anwendung. Springer-Verlag, 2013.

[PH03] Arthur N Prior and Per FV Hasle. Papers on Time and Tense. Oxford

University Press on Demand, 2003.

[PH12] Amalinda Post and Jochen Hoenicke. Formalization and Analysis of Real-

time Requirements: A Feasibility Study at Bosch. In International Con-

ference on Verified Software: Tools, Theories, Experiments, pages 225–240.

Springer, 2012.

[PH13] Przemyslaw Prusinkiewicz and James Hanan. Lindenmayer Systems, Frac-

tals, and Plants, volume 79. Springer Science & Business Media, 2013.

[PHP11] Amalinda Post, Jochen Hoenicke, and Andreas Podelski. Vacuous Real-time

Requirements. In 19th International Requirements Engineering Conference

(RE), pages 153–162. IEEE, 2011.

[Pia52] J Piaget. The Child’s Conception of Numbers (C. Gattegno & FM Hodgson,

Trans.), 1952.

[PL12] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic

Beauty of Plants. Springer Science & Business Media, 2012.

[PMHP12] Amalinda Post, Igor Menzel, Jochen Hoenicke, and Andreas Podelski. Auto-

motive Behavioral Requirements Expressed in a Specification Pattern Sys-

tem: a Case Study at Bosch. Requirements Engineering, 17(1):19–33, 2012.

[PMP11] Amalinda Post, Igor Menzel, and Andreas Podelski. Applying Restricted

English Grammar on Automotive Requirements — Does it Work? A Case

Study. In International Working Conference on Requirements Engineering:

Foundation for Software Quality, pages 166–180. Springer, 2011.

[Pri67] Arthur N Prior. Past, Present and Future, volume 154. Clarendon Press

Oxford, 1967.

REFERENCES 191

[Pri03] Arthur N Prior. Time and Modality. John Locke Lecture, 2003.

[RP15] Chris Rupp and Klaus Pohl. Basiswissen Requirements Engineering: Aus-

und Weiterbildung nach IREB-Standard zum Certified Professional for Re-

quirements Engineering Foundation Level. dpunkt. verlag, 2015.

[RR00] James Robertson and Suzanne Robertson. Volere. Requirements Specifica-

tion Templates, 2000.

[Rud02] Stephan Rudolph. Übertragung von Ähnlichkeitsbegriffen. Habilitation, In-

stitut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen,

Universität Stuttgart, 2002.

[Rud06] Stephan Rudolph. A Semantic Validation Scheme for Graph-based En-

gineering Design Grammars. In Design Computing and Cognition, pages

541–560. Springer, 2006.

[SA95] Robert Shishko and Robert Aster. NASA Systems Engineering Handbook.

NASA Special Publication, 6105, 1995.

[SH18] Christian Schwarzl and Jens Herrmann. Systematic Test Platform Selec-

tion: Reducing Costs for Testing Software-Based Automotive E/E Systems.

In 11th International Conference on Software Testing, Verification and Val-

idation (ICST), pages 374–383. IEEE, 2018.

[SL12] Andreas Spillner and Tilo Linz. Basiswissen Softwaretest. dpunkt, 2012.

[SPZ12] Liwei Shen, Xin Peng, and Wenyun Zhao. Software Product Line Engineer-

ing for Developing Self-Adaptive Systems: Towards the Domain Require-

ments. In 36th Annual Computer Software and Applications Conference

(COMPSAC), pages 289–296. IEEE, 2012.

[SR05] Jörg Schäfer and Stephan Rudolph. Satellite Design by Design Grammars.

Aerospace Science and Technology, 9(1):pages 81–91, 2005.

[SR16] Jens Schmidt and Stephan Rudolph. Graph-Based Design Languages: A

Lingua Franca for Product Design Including Abstract Geometry. Computer

Graphics and Applications, 36(5):88–93, 2016.

[ST118] StandfordEdu, https://cs.stanford.edu/people/eroberts/courses/soco/

projects/2004-05/automata-theory/basics.htm. Jan 2018.

192 REFERENCES

[Sti80] George Stiny. Introduction to Shape and Shape Grammars. Environment

and Planning B: Planning and Design, 7(3):pages 343–351, 1980.

[Thi99] Robert J Thierauf. Knowledge Management Systems for Business. Green-

wood Publishing Group, 1999.

[VIR10] University of Virgina - Theory of Computation. Feb 2010.

[VKBSV13] Tiziano Villa, Timothy Kam, Robert K Brayton, and Alberto L

Sangiovanni-Vincentelli. Synthesis of Finite State Machines: Functional

Optimization. Springer Science & Business Media, 2013.

[WDR11] Md Tawhid Bin Waez, Juergen Dingel, and Karen Rudie. Timed Automata

for the Development of Real-time Systems. Research Report 2011–579, 2011.

[WHPR17] Benedikt Walter, Jakob Hammes, Marco Piechotta, and Stephan Rudolph.

A Formalization Method to Process Structured Natural Language to Logic

Expressions to Detect Redundant Specification and Test Statements. In

IEEE 25th International Requirements Engineering Conference (RE), pages

263–272, 2017.

[Wie99] Karl E Wiegers. Writing Quality Requirements. Software Development,

7(5):pages 44–48, 1999.

[WKR18] Benedikt Walter, Dennis Kaiser, and Stephan Rudolph. Machine-

Executable Model-Based Systems Engineering via Graph-Based Design Lan-

guages. In Complex Systems Design & Management. In Conference proceed-

ings CSDM, page 239. Springer, 2018.

[WKR19] Benedikt Walter, Dennis Kaiser, and Stephan Rudolph. From Manual to

Machine-Executable Model-Based Systems Engineering via Graph-Based

Design Languages. In 7th International Conference on Model-Driven En-

gineering and Software Development (MODELSWARD), pages 203–210,

2019.

[WMR17] Lenis R Wong, David S Mauricio, and Glen D Rodriguez. A Systematic

Literature Review about Software Requirements Elicitation. Journal of En-

gineering Science and Technology, 12(2):296–317, 2017.

REFERENCES 193

[WMR18] Benedikt Walter, Jan Martin, and Stephan Rudolph. A Method to Au-

tomatically Derive the System State Machine from Structured Natural

Language Requirements through Requirements Formalization. In Incose

EMEASEC Conference, Tag des Systems Engineerings (TdSE), 2018.

[WMS+19] Benedikt Walter, Jan Martin, Jonathan Schmidt, Hanna Dettki, and

Stephan Rudolph. Executable State Machines Derived from Structured Tex-

tual Requirements - Connecting Requirements and Formal System Design.

In 7th International Conference on Model-Driven Engineering and Software

Development (MODELSWARD), pages 195–202, 2019.

[WSPR18] Benedikt Walter, Maximilian Schilling, Marco Piechotta, and Stephan

Rudolph. Improving Test Execution Efficiency Through Clustering and Re-

ordering of Independent Test Steps. In IEEE 11th International Conference

on Software Testing, Verification and Validation (ICST), pages 363–373,

2018.

[ZJ97] Pamela Zave and Michael Jackson. Four Dark Corners of Require-

ments Engineering. Transactions on Software Engineering and Methodology

(TOSEM), 6(1):pages 1–30, 1997.

E. Curriculum Vitae

Benedikt Walter

Personal Data

Born on 25th of August 1988 in Ellwangen (Jagst)
Parents: Ulrich and Andrea Walter
Marital Status: married to Christina Colondres Walter
Current Address: Kriegswiesenstrasse 14, 72131 Ofterdingen, Germany

Education

University of Stuttgart, DE Oct 2013 - Jun 2015
Master of Science, Aerospace Engineering

North Carolina State University, US Aug 2011 - Jun 2012
Study Abroad

University of Stuttgart, DE Oct 2009 - Sep 2013
Bachelor of Science, Aerospace Engineering

Quenstedt Gymnasium Mössingen, DE Sep 1999 - Jun 2008
German Abitur

Work Experience

Mercedes-Benz, Daimler AG May 2018 - today
Development Engineer, Highly Automated Driving

Mercedes-Benz, Daimler AG
PhD Student, E/E System Integration, Requirements Validation May 2017 - Apr 2018
PhD Student, E/E System Integration, Testing Process Jul 2015 - Apr 2017

195

	List of Figures
	List of Tables
	List of Abbreviations
	Abstract
	Kurzfassung
	1 Introduction
	1.1 Automotive Knowledge Representations
	1.2 Objective and Vision
	1.3 Contributions
	1.4 Structure

	2 Background and State of the Art
	2.1 Graph-Based Design Assumptions
	2.1.1 Graph-Based Design Languages
	2.1.2 Graph-Based Design Language Applications
	2.1.3 Requirements and Tests in Graph-Based Design

	2.2 Automotive Systems Engineering Methodology
	2.2.1 Requirements Engineering
	2.2.2 Testing - Verification and Validation

	2.3 Knowledge Representations in Systems Engineering
	2.3.1 Natural Language
	2.3.2 Language Patterns
	2.3.3 Finite State Machines
	2.3.4 First Order and Temporal Logic
	2.3.5 Deterministic versus Non-Deterministic Systems
	2.3.6 Modeling Structures: Trees versus Graphs

	3 Requirements Formalization Process Chain
	3.1 Model Overview - Full Process Chain
	3.2 Natural Language to Specification Patterns
	3.2.1 Selecting Dwyer's Specification Pattern Systems (SPS)
	3.2.2 Elicitation and Documentation as Text and Conversion to Patterns
	3.2.3 Elicitation and Documentation as Patterns

	3.3 Specification Patterns to Linear Temporal Logic
	3.3.1 Empirical Validation of SPS to LTL Mappings
	3.3.2 Qualitative Conversion of Patterns to Logic

	3.4 First Order Logic - Special Modeling Structures
	3.4.1 Data Structure as an Enabler to Map LTL Expressions to FOL
	3.4.2 Mapping LTL on Directed One-Branch Trees

	3.5 First Order Logic - Generalized Modeling Structures
	3.5.1 Extending Modeling Structures from Trees to Graphs
	3.5.2 Mapping Linear Temporal Logic on Directed Cyclic Graphs

	3.6 First Order Logic - Conjunctive Normal Form

	4 Formalization Process Chain Application
	4.1 Formalization of Test Cases
	4.1.1 Assumptions
	4.1.2 Setup
	4.1.3 Processing Methods
	4.1.4 Application: Test Case Redundancy
	4.1.5 Evaluation

	4.2 Post-processing of Formalized Test Cases
	4.2.1 Assumptions
	4.2.2 Setup
	4.2.3 Processing Methods
	4.2.4 Application: Test Set Restructuring
	4.2.5 Evaluation

	4.3 Requirements Formalization - State Machines
	4.3.1 Assumptions
	4.3.2 Setup
	4.3.3 Processing Methods
	4.3.4 Application: State Machine Representation
	4.3.5 Evaluation

	4.4 Requirement Models - Executable State Machines
	4.4.1 Assumptions
	4.4.2 Setup
	4.4.3 Processing Methods
	4.4.4 Application: C-Code Generation
	4.4.5 Evaluation

	5 Conclusion and Outlook
	5.1 Conclusion
	5.2 Limitations
	5.3 Outlook
	5.3.1 Deriving Requirements Directly from Physics
	5.3.2 Automated System Design and Executable V-Model
	5.3.3 Further Analysis of Formalized Test Cases and Requirements
	5.3.4 Extension of Case-Based LTL to FOL Mapping

	A Mapping SPS to LTL (full)
	B Mapping LTL to FSM (full)
	C Publications
	D Bibliography
	E Curriculum Vitae

