
Institute of Formal Methods in Computer Science

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Integration of CH/HL-based Route
Planning in OSCAR

Sokol Makolli

Course of Study: Informatik

Examiner: Prof. Dr. Stefan Funke

Supervisor: Prof. Dr. Stefan Funke

Commenced: May 19, 2020

Completed: November 19, 2020

Abstract

Efficient and fast shortest path routing on road networks is required to meet the demands of millions
of users every day. In this work we document an implementation, which combines two popular
speed up techniques. The results show that with little space overhead a speed up of one order of
magnitude to conventional techniques is achievable, while also giving the choice of using either
disk or RAM storage. The routing application is also integrated into the search engine OSCAR,
which then allows for interactive exploration of locations along the route.

2

Contents

1 Introduction 8

2 Basics 10
2.1 Efficient data structures for graphs . 11
2.2 Shortest path with Dijkstra’s Algorithm . 12
2.3 Shortest path speedup schemes . 13

3 Interpolating between CH and HL 17
3.1 Pre-processing Stage . 18
3.2 Query Stage . 22
3.3 Storing and searching on disk . 23
3.4 Benchmarks . 24

4 OSCAR Integration 27
4.1 OSCAR basics . 27
4.2 Backend implementation . 28
4.3 Frontend implementation . 30

5 Conclusion and Outlook 33

Bibliography 34

3

List of Figures

2.1 Visual representation of a graph according to the definition 2.0.1 11

3.1 Example graph with shortcuts in blue and contraction order/level in green. 20
3.2 Example up-graph with contraction order/level in green. 20
3.3 Hub Labels (with corresponding nodes in bold) for up-graph 3.2. 21

4.1 OSCAR cell arrangement of regions (left) and their resulting hierarchy (right).
Source: [BF15] Page 159 . 28

4.2 Visualisation of the gas stations in Germany displayed by oscar web. 29
4.3 Oscar side-bar after the route has been drawn. 31
4.4 Route from Stuttgart to Würzburg drawn in orange. 31
4.5 Search engine result after querying for gas stations along the route. 32

4

List of Tables

3.1 Comparison of Space Consumption of Hub Labels calculated for different Levels.
Graph: Germany(Nodes: 24608237, Edges: 90097053, Max. Level: 341). 17

3.2 Detailed comparison of the query speed between level. 25
3.3 Comparison of query speed based on how many Hub Labels have been calculated. 25
3.4 Comparison between main memory and disk. 26

5

List of Listings

2.1 Textual representation of the example graph in figure 2.1 10
2.2 Graph data structure in C++ . 12
2.3 Dijkstra’s Algorithm . 13
2.4 Dijkstra’s Algorithm modified to make use of Contraction Hierarchies 15
4.1 An example request and reply for the OSCAR routing API. 30

6

List of Algorithms

3.1 Calculating hub labels for a node in pre-processing 19
3.2 Merging Labels for pre-processing . 19

7

1 Introduction

The problem of finding the shortest path in road networks is required to be solved by millions of
people on a daily basis.

The most famous algorithms to find shortest paths is Dijkstra’s Algorithm [Dij+59]. Given a graph
� (+, �, 3) such that V is a set of vertices, � = {(D, E) |D, E ∈ +} is a set of edges and 3 : � → R+
a function which maps a non-negative distance to each edge. Dijkstra’s Algorithm finds the shortest
paths from one node to all other nodes in $ (|+ | + |� |) time [Gol08]. It is theoretically the most
efficient algorithm, since it considers every node and edge just once. In the specific case of road
network routing, the graphs are known in advance. For that reason routing applications usually
consist of two steps: a pre-processing step and a query step. In the pre-processing step one tries to
efficiently compute and store information about the graph, so that the query step, given the stored
information, can perform as fast as possible.

Considering that, a program could try to pre-compute all shortest paths of a graph with Dijkstra’s
algorithm and then just perform a look up in the query step. Computing all shortest paths between
all node pairs takes a lot of time and requires |+ |2 · " (?) of memory space, with " (?) being
the amount of space one path occupies. Even on small road network graphs, that is not feasible,
since most graphs contain well above one million nodes. Other approaches are needed. Given that
example it becomes evident, though, that there is a trade off between query speed and memory
usage.

Many pre-processing/query style algorithms have been invented to minimize the memory usage
while still greatly improving the query speed [DSSW09]. The speed up is commonly achieved by
either reducing the dijkstra search space or via a look up scheme, which does not require graph
traversal at all. This work uses a recently discovered method which combines two of those shortest
path speed up techniques [Fun20].

It combines Contraction Hierarchies(CH) [GSSD08] with Hub Labels [DGSW14]. Contraction
Hierarchies augment a graph with shortcuts so that at query time a dijkstra search can skip many
edges. While only roughly doubling the space consumption of a graph, queries require 3 orders of
magnitude less time.

Hub Labels(HL) pre-compute for each node a set of labels such that by only looking up the set
for the source node and for the target node, one can derive the shortest path. By omitting graph
traversal Hub Labels are around 2 to 3 orders of magnitude faster than Contraction Hierarchies,
but require a substational amount of additional space. For the road network of Europe Hub Labels
would require tens of TB of memory.

The combination of CH and HL enables the user to interpolate between space consumption and
speed. The more speed is consumed the faster the queries will be. Even with little overhead in
memory the implementation of this work allows for fast efficient continent scale routing in sub
millisecond time.

8

1 Introduction

Additionally, the result of this work allows users to query for items such as gas stations or rest
stops along the route. That is achived with the help of OSCAR [BF15]. OSCAR is a search engine
for open street map data. It structures all open street map items into so-called cells. This work
pre-computes the cell ids for every edge so that at query time all cells along the route can be
combined. By providing the cell ids, open street map items can be directly retrieved from the oscar
data structures.

9

2 Basics

The most basic description of a road network is that there are points, each with a position, connected
with each other by roads. It intuitively makes sense to describe such a system with the mathematical
structure of a graph. For a Graph � = (+, �), + is a set of vertices which represent the points on
the map and � is a set of edges which represent the roads. It is sufficient for routing purposes to
store the edges as a pair of nodes � = {(D, E) |D, E ∈ +}. Since one way roads exist, it is important
to note that (D, E) ≠ (E, D).

The time required to traverse two connected points can be very different on road networks. So, it
is also required to map the edges to some kind of distance unit. This can be the raw distance in
meters but usually for the users the travel time is more important. The travel time for a edge is
in practice calculated by taking the distance between the two connected points and dividing it by
the maximum speed that is allowed on that road in m/s. To incorporate the travel time or distance
into our graph definition, a cost function 2 : � → R+ is added. It is important to note that we only
allow non-negative cost values, because the main algorithm for routing used in this work, Dijkstra’s
Algorithm, is not always correct if edge costs are negative.

Usually a user also wants to display the found route and travel time onto a map of the world. To do
that we also need to add a function which maps each note to a pair of coordinates < : + → (G, H)
with G, H ∈ R.

Adding those extra functions our definition of a graph can be seen in Definition 2.0.1. Given that
definition we can draw a graph such as the one seen in Figure 2.1 with its textual representation in
Listing 2.1.

Definition 2.0.1 (Graph Formal Definition)

� = (+, �, 2, <) � = {(D, E) | D, E ∈ +} 2 : + → (G, H) | G, H ∈ R 3 : � → R+

Listing 2.1 Textual representation of the example graph in figure 2.1
+ = {E1, E2, E3, E4}
� = {(E1, E2), (E2, E3), (E2, E4), (E3, E2), (E3, E4), (E4, E1), (E4, E3)}
2((E1, E2)) = 3.5, 2((E2, E3)) = 10.0, 2((E2, E4)) = 0.3, 2((E3, E2)) = 12.5, 2((E3, E4)) =

1.4, 2((E4, E3)) = 0.2, 2((E4, E1)) = 0.2
<(E1) = (0, 1), <(E2) = (−1, 0), <(E3) = (1, 0), <(E4) = (0,−1)

10

2 Basics

Figure 2.1: Visual representation of a graph according to the definition 2.0.1

E1(0, 1)

E2(−1, 0)

E3(1, 0)

E4(0,−1)

3.5

0.3

10.0
12.5

1.4
0.2

0.2

2.1 Efficient data structures for graphs

To perform routing algorithms on a graph like described previously we need to store that in the
memory of a modern computer. Before we choose a data structure for our graph, we have to consider
the size of the graphs and the operations we want to support. The structure should, while minimizing
the memory consumption, allow for fast operations. These two requirements are usually in conflict
with one another.

The most prominent operations required by Dijkstra’s Algorithm is the traversal of all outgoing
edges of a node. Sequential memory access is usually faster than jumping around and collecting
all the data needed. So the outgoing edges of a node should be stored side by side in a continuous
block of memory.

In practice, we can accomplish that with a vector E that stores all the edges sorted by each source
node of the edge. Accompanying that we lay out an offset vector O which stores for each node
where the position of the first outgoing edge in E is. To iterate through the outgoing edges of E1 one
now retrieves the offset for E1 from O and iterates through E until the offset of E2 is hit.

Note that currently we are not storing any information on nodes. For real world applications you
need to store at least the coordinates of each node, so that one can support queries which go from
one point on the globe to another. For that to work some kind of nearest neighbor search needs to
happen to find the corresponding node to the given coordinates. In the implementation of this thesis
the search happens with a grid structure.

11

2 Basics

Listing 2.2 Graph data structure in C++

#include <vector>

struct Edge{

unsigned int source;

unsigned int target;

unsigned int cost;

}

struct Graph {

std::vector<Edge> edges;

std::vector<unsigned int> offset;

// returns the outgoing edges for node with id nodeId

std::vector<Edge> getOutgoingEdges(unsigned int nodeId) {

std::vector<Edge> result;

for(int i = offset[nodeId]; i < offset[nodeId + 1]; ++i) {

result.push_back(edges[i]);

}

return result;

}

}

2.2 Shortest path with Dijkstra’s Algorithm

Since one can obviously construct a graph that has a shortest path in it which visits every node and
every edge, the best algorithm you can find has the run time of $ (|+ |, |� |). One algorithm which
satisfies exactly that run time is Dijkstra’s Algorithm [Dij+59]. It works on all graphs which have
no negative edges. There are some optimizations you can make, but in Listing 2.3 you can see an
implementation of Dijkstra’s Algorithm in a C type language.

12

2 Basics

Listing 2.3 Dijkstra’s Algorithm

int[] findShortestDistances(int source, Graph g) {

int cost = int[numberOfNodes];

for(int i = 0; i < numberOfEdges; ++i) {

cost[i] = infinity;

}

cost[source] = 0;

// use minheap as queue

// the minheap always keeps the node at the top

// which has the smallest cost in the cost array

MinHeap minHeap;

minHeap.push(source);

while(!minHeap.empty()) {

int currentNode = minHeap.pop();

std::vector<Edge> edges = g.getOutgoingEdges(currentNode);

for(int i = 0; i < edges.size(), ++i) {

Edge currentEdge = edges[i];

int target = currentEdge.target;

if(cost[currentNode] + currentEdge.cost < cost[target]) {

cost[target] = cost[currentNode] + currentEdge.cost;

if(!minHeap.contains(target))

minHeap.push(target);

minHeap.reheap();

}

}

}

return cost;

}

2.3 Shortest path speedup schemes

Dijkstra’s algorithm while being correct and optimal for any graph [Gol08], is still to slow for
road networks. Performing a shortest path query with Dijkstra in decently sized graphs like for
instance the german road network takes a few seconds. To speed up queries, we can use the fact
that road networks do not change often. So we can collect auxiliary information about the graph
in a pre-processing stage and use that information later to our advantage. Note that for everyday
routing applications usually users only want to know the path from one point to another and not one
to all.

Contraction Hierarchies (CH)[GSSD08] are such a preprocessing/query scheme, which speed up
the query time on road networks significantly. Completing a shortest path query on the german
road network only takes a few milliseconds while roughly doubling the amount of edges of the
graph. That is a speedup in the order of 1000. The rough idea behind Contraction Hierarchies is
that we augment a graph by shortcuts. At query time we perform a slightly modified Dijkstra so
that we only traverse the constructed shortcuts instead of the actual paths. That reduces the amount
of visited nodes during the search time.

13

2 Basics

Another speed up scheme are Hub Labels (HL)[DGSW14]. HL are a look up based technique.
Instead of traversing a graph one only needs to perform look ups for precomputed labels for each
node. Hub Labels closely relate to Contraction Hierarchies. A label of one node contains the path
and the distance information of one graph traversal in the CH query for that node. So we can omit
the graph traversal completely. With Hub Labels a one to one shortest path query on the german
road network takes only a few microseconds. The caveat is that Hub Labels require a lot of memory.
The memory usage is roughly 30 times higher then the that of the graph alone.

2.3.1 Contraction Hierarchies

Preprocessing Stage

Contraction Hierarchies are constructed from a graph given a hierarchical node ordering. The
ordering metric assigns some kind of importance to each node. The importance is also called level.
Then a hierarchy is constructed by contracting each node. Starting with the one of least importance.
While removing that node v from the graph, it is important that the shortest paths for all the other
nodes remain unchanged. That means that for each incoming edge <u,v> and each outgoing edge
<v,w> a shortcut <u,v> with the cost of 2(< D, E >) + 2(< E, F >) has to be added, if <u,v,w> is
the only shortest path from <u,w>. To retrieve the original edges from a shortcut, each shortcut is
stored together with pointers to the two edges it replaces. Given a graph � (+, �, 2) the computed
shortcuts (and the predefined hierarchy ; a new graph �∗(+, �∗, 2∗, ;) is then constructed, such
that �∗ = � ∪ (, 2∗ : �∗ → R+, with 2∗ incorporating all the original edge costs and the shortcut
costs. [GSSD08]

Query Stage

To retrieve the shortest path from a source node s to a destination node t two modified Dijkstra
queries 2.4 are required. One starts from s and operates on �∗ the other one starts from t and
operates on the reverse Graph of �∗A . The reverse graph is constructed by reversing each edge
< D, E >∈ �∗ to < E, D >. The speed up of this scheme comes from reducing the search space in
each of the modified dijkstras by incorporating the hierarchy that was previously constructed. Instead
of relaxing each outgoing edge <u, v> of a node u, edges for which ; (D) > ; (E) are ignored.

The result for each dijkstra is a set of distances for each node that was visited during the modified
search. Those two sets are then merged while adding the distances. The smallest distance of that set
is then also the shortest distance from s to t. The node v of the smallest distance represents the node
in which the two paths meet.

The shortest path can be retrieved if additionally to the costs, the previously visited node is stored.
Since the two paths both visit node v, one can backtrack and concatenate the path from v to s and
from v to t. Note that the path from v to s needs to be reversed first. To get the corresponding path
in the original Graph G each shortcut in the path has to be recursively unpacked.

The proof on why the query produces correct shortest paths would be out of the scope of this work.
You can find it in the original paper by Geisberger et al. [GSSD08].

14

2 Basics

Listing 2.4 Dijkstra’s Algorithm modified to make use of Contraction Hierarchies

int[] findShortestDistancesModified(int source, Graph g, int[] l) {

int cost = int[numberOfNodes];

for(int i = 0; i < numberOfEdges; ++i) {

cost[i] = infinity;

}

cost[source] = 0;

// use minheap as queue

// the minheap always keeps the node at the top

// which has the smallest cost in the cost array

MinHeap minHeap;

minHeap.push(source);

while(!minHeap.empty()) {

int currentNode = minHeap.pop();

std::vector<Edge> edges = g.getOutgoingEdges(currentNode);

for(int i = 0; i < edges.size(), ++i) {

Edge currentEdge = edges[i];

int target = currentEdge.target;

if(l[currentNode] < l[target])

continue;

if(cost[currentNode] + currentEdge.cost < cost[target]) {

cost[target] = cost[currentNode] + currentEdge.cost;

if(!minHeap.contains(target))

minHeap.push(target);

minHeap.reheap();

}

}

}

return cost;

}

Implementation Details

The implementation of this work uses an open source CH-constructor 1. It is important to note that
this CH-constructor assigns the same level to multiple nodes. As long two neighboring nodes do
not have the same level, which the constructor assures, the modified dijkstra query still works.

1https://github.com/chaot4/ch_constructor

15

https://github.com/chaot4/ch_constructor

2 Basics

2.3.2 Hub Labels

Hub Labels were first introduced by Delling et al. in 2014 [DGSW14]. In pre-processing for each
node v two labels are computed: a forward label ! 5 (E) and a backward label !1 (E). The computed
labels have to fulfill the cover property, which states that the set ! 5 (B)∩!1 (C) contains one so-called
hub that is in the shortest path from s to t. If those labels are present, finding the shortest distance
s-t becomes a matter of looking up the labels ! 5 (B) and !1 (C) and finding the hub h. The shortest
distance is then the distance to h in ! 5 (B) added to the distance to h in !1 (C).

If we examine the contraction hierarchy query, we can see that the Dijkstra search spaces of s and t
obey the hub label cover property. So one can calculate the hub labels by doing one forward and
backward CH-search for each node and store the search results. That means that Hub labels speed
up the ch query by doing the graph search in pre-processing. At query time there is no need to do a
graph search anymore. Note that the search space of the CH-query does not only contain shortest
paths. That means some values in the labels are not required. To minimize the amount of memory
and the merge speed needed, those non-shortest distance values should be removed.

Hub labels speeds up the query time from a few milliseconds to a few microseconds in the example
of the german road network. But while contraction hierarchies roughly double the edge count of a
graph, hub labels require around 30 times as much memory as the graph itself. For the german road
network graph that means that fully computed hub labels require around 175 GB of data. For an
accurate road network of the whole planet over one TB of memory is required.

Implementation Details

Our implementation produces exactly the same labels as doing a CH-query for each node, but we do
it from top to bottom. We start at the top of the hierarchy and calculate the labels of all nodes which
have the same level at a time. The invariant is that, at the time we want to construct a label L(v) all
the labels of nodes with higher level than v have already been computed. So for each outgoing edge
<v, w> we look up the labels L(w) if the level of v is lower than the level of w and merge them into
a new label, while also adding to each hub the cost for <v. w>. Since this scheme also does not only
contain hubs with shortest distance, we do a self pruning scheme for each label after construction,
by comparing the actual shortest distance to the node in the hub with the distance of the hub and
removing the hub if necessary. To make use of multi-core processors we calculate the labels of one
level in parallel.

16

3 Interpolating between CH and HL

Funke [Fun20] has proposed the idea that if Hub Labels are only computed for some nodes one can
use these Hub Labels to then speed up the CH-query. The search space is reduced by stopping at
nodes for which hub labels already exist. The more Hub Labels we compute, the more the search
space is going to be reduced. Since we already have a kind of importance ordering given by the
contraction hierarchy, finding out for which nodes to compute the Hub Labels for becomes quite
trivial: we start with nodes of highest hierarchy level and stop at some level where we think that
the query speed has increased enough. As for memory consumption, the hope is that if we use the
contraction hierarchy, the search space is vastly reduced while only pre-processing a fraction of the
Hub Labels.

In Table 3.1 the space consumption is listed in relation to the levels from 0 to 14 (out of 341). Level
0 in the table means that the Hub Labels for all nodes have been computed. Level 1 means that all
Hub Labels have been computed, except for the nodes with level 0, etc. For the first few levels the
space consumption drops fast. Then the drop flattens out. We can see that just after a few levels it is
feasible to store the Hub Labels in main memory even on older and lower specced systems. The
goal is now to show that when omitting the Hub Labels for the first few levels, the speed up is still
significant.

Table 3.1: Comparison of Space Consumption of Hub Labels calculated for different Levels. Graph:
Germany(Nodes: 24608237, Edges: 90097053, Max. Level: 341).

Labels calculated until level Space Consumption
0 173, 6�8�

1 96, 1�8�

2 55, 0�8�

3 33, 6�8�

4 22, 7�8�

5 17, 3�8�

6 15, 63�8�

7 10, 4�8�

8 7, 28�8�

9 5, 3�8�

10 4, 04�8�

11 3, 19�8�

12 2, 63�8�

13 2, 23�8�

14 1, 95�8�

17

3 Interpolating between CH and HL

3.1 Pre-processing Stage

Pre-processing is just a slight deviation from the normal HL pre-processing. The CH pre-processing
remains the same. Since our implementation operates on a given CH-graph, we will only focus on
the HL construction.

The idea is that we go through the nodes from highest level to lowest. For every node v we construct
a set of hubs (=, 2(=), ?), with = being the node which is located at the hub, 2(=) being the cost
of the path E → = and ? being the node that is located right before = on the path E → =. ? is
needed to reconstruct the path from the hub label set. For a node v we then calculate the hub
labels as seen in algorithm 3.1. Then we go through the up-graph �↑ of the CH-graph �, with
�↑ = {(D, E) ∈ � | ; (D) < ; (E)}. So �↑ only contains edges which have their origin at a lower
hierarchy node than their destination. When calculating the Hub Labels for a node n, we collect the
Labels from all the neighbors in �↑ and merge them together into a new Label. The merge routine
can be seen in algorithm 3.2.

For the contraction hierarchy query to work, we need to perform two graph-searches: one on the
actual graph starting from the source and one on the backward graph starting from the target. And
since at query time we want to omit the graph search, we also need to calculate the Hub Labels of
the backward graph. The used algorithms are the same as for the forward hub labels.

18

3 Interpolating between CH and HL

Algorithm 3.1 Calculating hub labels for a node in pre-processing
procedure CalcHubLabels(node, HubLabelStore)

! ← {(=>34, 0,∞)} //We set the distance to the node itself to zero
for all (D, E, 2>BC) ∈ OutgoingEdges(node) do

if level(u) < level(v) then
" ← HubLabelStore(v)
! ← "4A64(!, ", =>34, 2>BC)

end if
end for
HubLabelStore(node)← !

end procedure

Algorithm 3.2 Merging Labels for pre-processing
procedure Merge(!, ", =>34, 2>BC)

8, 9 ← 0
← ∅
while 8 < |! | ∧ 9 < |" | do
(=8 , 28 , ?8) ← !8

(= 9 , 2 9 , ? 9) ← " 9

if =8 < = 9 then
if ?8 < ∞ then

N.insert(=8 , 28 + 2>BC, ?8)
else

N.insert(=8 , 28 + 2>BC, =>34)
end if
8 ← 8 + 1

else if =8 < = 9 then
analog to first if just with (= 9 , 2 9 , ? 9)
9 ← 9 + 1

else if =8 = = 9 then
analog to first if but take the element with smaller 2G
9 ← 9 + 1
8 ← 8 + 1

end if
end while
return N

end procedure

To visualize the results of the Hub Label construction, we have given an example graph 3.1, its
up-graph 3.2 and its hub labels 3.3.

19

3 Interpolating between CH and HL

Figure 3.1: Example graph with shortcuts in blue and contraction order/level in green.

0 1

2

3

4

5

6

0

0

1
2

3

4

5
2

2

2

Figure 3.2: Example up-graph with contraction order/level in green.
0

2

1

3

6

54 00

1

2

3

4

5

2

2

3.1.1 Implementation Details on Pre-processing

While we construct the Hub Labels, we go from highest level to level 0. The novelty of the
interpolation approach is that we can stop at any level ℓ and still enable a query speed up. For the
nodes with level < ℓ, the Hub Labels will be generated at query time.

The used CH-construction contracts nodes of one independent set at a time and assigns all of the
nodes contained in the set the same level. It starts at level 0 and tries to find a large independent set
(usually containing around half of the nodes). The graph gets roughly halved by each level. That
means that 1/2 of nodes have level 0, 1/4 of nodes have level 1, 1/8 level 2 and so on. So if we
only calculate the hublabels for the maximum level to level 1, we consume only half of the memory

20

3 Interpolating between CH and HL

Figure 3.3: Hub Labels (with corresponding nodes in bold) for up-graph 3.2.

0 : (0, 0)

0 : (1, 2) | 2 : (0, 2)

0 : (2, 1) | 1 : (0, 1) | 2 : (1, 1)

0 : (1, 3) | 3 : (0, 3)

0 : (3, 3) | 3 : (2, 6) | 6 : (0, 6)

0 : (4, 3) | 3 : (3, 6) | 5 : (0, 5) | 6 : (1, 5)0 : (2, 3) | 3 : (1, 4) | 4 : (0, 4)

2

2

space (roughly). To speed up the construction process on multi-core CPU’s, the nodes of every
level can be processed in parallel, because hub label construction only depends on the labels of
nodes with higher level.

21

3 Interpolating between CH and HL

3.2 Query Stage

The query consists, just like the CH-query, of two different stages:

• graph traversal to generate the Hub Labels for the source and target node

• intersecting those two Hub Labels to find the common optimal hub

The goal of the graph traversal is to calculate the Hub Labels for a given node n. If the Hub Labels
already exist due to pre-processing we just use those labels and we are done. If they do not exist,
we perform a slightly modified ch-query, which makes use of the already generated Hub Labels.
If, while performing the search, we encounter a node for which the Hub Labels have already been
computed, we do not search on that path any further. We store that node in a temporary store. Now,
the result of the graph search is a Label with distances to nodes we have met on the path and a store,
which contains the nodes which we have not been investigated further. Keep in mind that the labels
of that store have all been computed in pre-processing. To then generate a complete hub labels for n,
we collect all the labels in the store and merge them with the incomplete label of the graph search.
When we have completed the graph traversal for the source and target node, we just need to find the
common hub with the lowest added cost.

3.2.1 Finding the shortest path

Until now, we have only calculated the shortest distance. But for our application, we also want
to find the path corresponding to that distance. To do that we store for each label (query and in
pre-processing) also the node that we visited previously in the path. Now given the source and
target labels and the hub which lies on the shortest path, we can find the path from the source to the
hub and from the hub to the target and merge those paths to get the path from source to target. The
algorithm traces the path from the hub back to the source/target. Because of that the resulting path
for the source node is in reverse order. The order for the target node is correct since the hub label
creation was performed on the back graph.

The resulting path is the shortest path from source to target on the contraction hierarchy graph �∗.
For that reason it might contain shortcuts. The used ch-implementation stores for each shortcut a
pointer to the child nodes it replaces. To now get the path in the original graph �, we need to unpack
each shortcut. The children of a shortcut might be shortcuts themself and every shortcut contains
exactly two children. Given those properties, we can think of a shortcut as a binary tree, with the
edges we need to unpack, as its root. The leafs of the tree are all original edges in �. Traversing
the leafs from ’left’ to ’right’ yields the desired original path. We can achieve that with an in-order
traversal, while only storing leafs. The traversal can be implemented recursively or iteratively using
a stack. We used the iterative approach, since we wanted to avoid additional method calls for each
recursion.

22

3 Interpolating between CH and HL

3.3 Storing and searching on disk

For this section it is important to note that the implementation is written in C++ and the most
commonly used data structures are implemented in the standard template library(stl) of C++. The
most prevalent data structure is a container called vector. The stl vector is stored in a continuous
block of memory and can contain data structures of any kind. Its size does not need to bee known
at compilation time and it can be resized dynamically at run-time. If, while adding a new element
to the vector, the allocated space is exceeded, the vector doubles its allocation space to avoid a
reallocation at each addition. Data access and input is of constant time. The stl even allows to store
vectors inside of vectors. That is realised by storing only the pointers to each inner vectors inside
the outer vector.

It seems that a vector of vectors is the perfect data structure for our Hub Labels. We can store
each of the Hub Labels in a separate vector and the store all the pointers to the node vectors inside
another vector. If we want to retrieve the Hub Labels of the node with id 8, we can just call vector[i].
The first prototype of this implementation was written exactly in that manner. That approach comes
with a number of problems which lead us to not use vectors for storage at all.

Even though we try to minimize data consumption, some systems don’t provide enough memory
(ram) to store even the needed graph data let alone the hub labels. For that reason our implementation
also supports accessing the data directly from an external memory disk (preferably an SSD). Using an
stl vector is no feasible in that case, because it always uses the main memory as storage. Conveniently
Linux systems provide the system call mmap, which provides the programmer with a pointer into
the disk memory. It also allocates the specified amount of memory. With mremap the allocated
memory size can be adjusted at run time.

The need to use disk storage forces us to use pointers in our algorithms instead of vector references.
To avoid duplication of code we want to use the same data structure code for main memory and
external memory. To achieve that, instead of using vectors, we use alloc and realloc, which are
equivalent to mmap and mremap but operate on main memory. Now only the allocation part differs
and one can decide for each data structure if they want to use main memory or external memory
with only a configuration value.

To minimize the used pointer amount and to easier store the data on disk, we decided to use one
continuous block of memory for all Hub Labels. That requires an additional data structure which
stores for each node the location and size of its Hub Labels.

We implemented different executables for pre processing and query operations. The pre processing
executable calculates the desired amount of Hub Labels and stores all the graph and Hub Label
data into disk. Every data structure has its own file and the file names and sizes are stored into a
configuration file. That configuration file also contains the information for the query executable,
whether to load the given data structures into main memory or operate on them directly from the
disk. That decision can be made for each file individually. In Chapter 3.4 we will explore how disk
storage affects performance.

23

3 Interpolating between CH and HL

3.4 Benchmarks

For benchmarking we used the German road network. It was constructed with an open source
CH-constructor1 from the Open Street Map graph data2. Uncompresed in binary data, the graph
takes up 5.3 GB of storage. The used hardware was a Xeon E5-2650v4 with 768 GB RAM and
with an SSD(1,8 GB/s sequential read speed).

The benchmark data compares the speeds and space consumption for the Hub Labels on different
levels. Level 0 means that all Hub Labels have been constructed, level 1 means that all Hub Labels
except for nodes with level 0 have been constructed, etc. We decided to use the level range from 0
to 14, because after that the required space compared to actual graph becomes negligible. Each
level was benchmarked with 1000 random source target pairs and the caches were deleted after each
query.

In Table 3.2, you can see how the total time to get the distance of the shortest path is composed of.
As fewer Hub Labels are calculated, the graph search time rises and more Hub Labels have to be
pulled, so the merge time also rises.

1https://github.com/chaot4/ch_constructor
2https://download.geofabrik.de

24

3 Interpolating between CH and HL

Table 3.2: Detailed comparison of the query speed between level.
Level Search Time(µs) Look Up Time Merge Time(µs) Total Time(µs)

0 0 13 6 19
1 8 12 25 45
2 11 12 44 67
3 14 9 52 75
4 14 10 53 77
5 18 10 56 84
6 18 11 57 86
7 19 10 61 90
8 21 9 67 97
9 24 8 70 102
10 26 17 72 106
11 31 9 85 125
12 37 19 96 151
13 45 25 110 180
14 58 19 135 212

Table 3.3: Comparison of query speed based on how many Hub Labels have been calculated.
Level HL Space Consumption speed up to normal ch (3763µs)

0 173, 6�8� 19, 800%
1 96, 1�8� 8, 322%
2 55, 0�8� 5, 616%
3 33, 6�8� 5, 017%
4 22, 7�8� 4, 887%
5 17, 3�8� 4, 480%
6 15, 63�8� 4, 375%
7 10, 4�8� 4, 181%
8 7, 28�8� 3, 879%
9 5, 3�8� 3, 689%
10 4, 04�8� 3, 550%
11 3, 19�8� 3, 010%
12 2, 63�8� 2, 492%
13 2, 23�8� 2, 090%
14 1, 95�8� 1, 775%

In table 3.3 the required space for the Hub Labels if compared to the relative speed up from a normal
ch query, without HL-Interpolation. At level 14, even though only a fraction of the graph space is
used, the speed up is still by more than 1 order of magnitude.

25

3 Interpolating between CH and HL

Table 3.4: Comparison between main memory and disk.
Level HL on disk Graph on disk Graph & HL on disk

0 2584 891 3372
1 3335 2486 5528
2 3525 2806 7433
3 3559 3012 8707
4 3639 3380 8721
5 3734 3421 9408
6 3796 3611 9138
7 3847 3745 10374
8 3914 3892 10816
9 3917 4103 11192
10 4015 4265 12236
11 4101 4438 12586
12 4098 4893 13638
13 4145 5034 14639
14 4213 5260 15114

In the previous benchmarks the data was always stored in main memory. In table 3.4, you can see
the timings for data access from disk. The first timings result from storing only the graph data in
RAM and the HL data on disk, the second from storing the HL in RAM and the Graph data on disk,
the third from storing all data on disk. With the graph on the disk, a normal CH query takes on
average 55ms. So we can see a great speed up with our interpolation technique.

While storing the graph on disk and the Hub Labels in RAM, does provide at lower levels an
advantage compared to storing the HL on disk and the Graph on RAM, the path recovery is around
30 times slower(1ms RAM vs 30ms disk). So if the use case also requires to retrieve the path instead
of just the distance, it is preferable to store the graph in main memory. In practice, without deleting
caches sub-millisecond timings can regularly be achieved.

26

4 OSCAR Integration

Until now, we have shown how we have implemented a fast one to one routing application only
from an algorithmic point of view, without taking a look at how it can be accessed by the user and
solve his or her problems. A possible usage of the routing is to integrate with the search engine for
open street map data OSCAR [BF15]. The goal is to allow for search queries along the shortest
route from one point to another. An obvious use case would be to allow the users to search for
gas stations or restaurants which are located close on the path to the desired target. But given the
extensive query language of OSCAR, users can search for any item in the open street map data.

The implementation of this work exposes an HTTP-Endpoint in the OSCAR backend to query for
routes and integrates into the OSCAR query implementation to allow for queries along a given
route. To allow for a faster query routine the edges of the routing graph are mapped to the OSCAR
data structures in a pre processing step. The routing APIs are then accessed and visualized by the
OSCAR web application.

4.1 OSCAR basics

OSCAR is a search engine for Open Street Map(OSM) 1. OSM is a free database for global map
data such as streets and buildings. OSCAR indexes all OSM items to allow for a fast spatial and
text searches.

The pre processing of OSCAR creates a cell arrangement of regions. It arranges all the regions of
the OSM data into cells. The cells get tagged with the item data contained in them. At query time
only those cells are further explored which contain tags that match the query string. The cells have
a natural hierarchical order (see Figure 4.1) Since in practice the number of items greatly exceeds
the number of cells, a fast query is possible.

1https://www.openstreetmap.org/

27

4 OSCAR Integration

Figure 4.1: OSCAR cell arrangement of regions (left) and their resulting hierarchy (right). Source:
[BF15] Page 159

1

2
3

4
5

6
7

8

9

10

1

2 34

5

7 8
9

10
11

12
12

6

11

The oscar query language is quite extensive and will only be covered partly here. The query
string can contain a key value tag so that only items which also contain that key value tag get
returned. For example a key value tag query could be @amenity:restaurant . This query would
return all restaurants in the OSM Database. One can also query for items in a region. For example,
@amenity:fuel "Germany" would return all the gas stations located in Germany.

OSCAR can be visually explored via a web application2. The visualization of the query result for
@amenity:fuel "Germany" can be seen in Figure 4.2. One can see that if you are zoomed out the
results get divided into their regions with choropleth maps. If you zoom in, each individual result
will be displayed.

4.2 Backend implementation

For our backend integration we want to allow users to query for OSM items along the shortest path
from one point to another. The API is directly implemented into the OSCAR WEB API 3 all method
calls go over the same route as the OSCAR endpoint calls. There are two parts which need to be
integrated to enable our use case.

• Expose an endpoint which returns the shortest path from a given source and destination point.

• Augment the OSCAR query language with the possibility to define a source and destination
point to only return items that are located along the path.

2http://oscar-web.de
3https://github.com/dbahrdt/oscar-web

28

4 OSCAR Integration

Figure 4.2: Visualisation of the gas stations in Germany displayed by oscar web.

4.2.1 Routing Endpoint

To get the shortest path and a distance a HTTP GET endpoint is exposed. The method call is located
at the route /oscar/routing/route . It takes in a query parameter ’q’ which has to be an array of
geographic points, each with a longitude and a latitude. The response will be the shortest path,
which starts at the first point visits every point in the given order and ends at the last point in the array.
The returned path is also an array of points and the distance is dependent on the type of distance
function the graph uses, but most commonly will be in seconds. An example request and response
can be seen in Listing 4.1. Currently the response will also include some debug information, but
that can be ignored.

29

4 OSCAR Integration

Listing 4.1 An example request and reply for the OSCAR routing API.

request: "http://routing.oscar-web.de/oscar/routing/route?

q=[[48.13676,11.5684],[52.5229,13.3813],[53.566,10.01953]]"

reply:

{

"path": [[48.1363,11.5684],[48.1375,11.5691], ... , [52.5229,13.3813],

... , [53.566,10.01953]],

"distance": 1503019058

}

4.2.2 Query Integration

As previously described OSCAR uses a cell arrangement to enable fast querying. When the search
engine receives a query it will find the cells which contain information specified by the query. To
find only items which are located along the path, the engine only needs to explore cells that the path
intersects. We could do this at runtime, but for long paths that will be quite resource intensive. To
speed it up, we calculate for each edge of the graph the cells it intersects and store the cell ids. At
query time we collect all those cell ids and instruct the search engine to only consider the specified
cells.

To then find gas stations along the route from point(48.7489, 9.1625) to point(50.19800, 10.4095)
the query @amenity:fuel $route(0,0,48.74894,9.162597,50.1980,10.40954) is needed. Just like
the for the routing endpoint, arbitrary many geographic points can be visited.

4.3 Frontend implementation

The existing frontend is a web application written with HTML, CSS and JavaScript4. It already
gives the user the option to limit their search result by a user drawn rectangle, polygon or linear
path. We extended that with the option to limit the search result by a shortest path for which the
user can choose the endpoints by clicking on the map.

Once the user has selected at least two points a request to the routing endpoint will be send and the
returned path will be drawn. The user can give the drawn path a name and reference the path in
their search result with &name.

To draw a route the user has to go to the Geometry tab of the web applications side bar and select
Route in the dropdown menu. After clicking on ’create’ the user can start clicking on the map to
specify their desired routing endpoints. The route will appear almost immediately after the user has
set their second endpoint. The user can keep clicking to define points which should also be visited
by the route. Once the user is satisfied with the route, they have to click on ’finish’ and name their

4https://oscar-web.de

30

4 OSCAR Integration

route to use it for OSCAR-queries. In figure 4.3 you can see the side bar of the web application
after a route has been drawn. An example route can be seen in figure 4.4. The search result for gas
stations along that route can be seen in figure 4.5.

Figure 4.3: Oscar side-bar after the route has been drawn.

Figure 4.4: Route from Stuttgart to Würzburg drawn in orange.

31

4 OSCAR Integration

Figure 4.5: Search engine result after querying for gas stations along the route.

32

5 Conclusion and Outlook

We achieved our goal to implement a fast and reliable routing application, while also integrating
it with the OSCAR search engine. The data can be selectively stored on disk and in RAM, both
offer a significant speed up to the normal Contraction Hierarchy query. The backend and frontend
integration with OSCAR enables the user to interactively explore the surrounding area along the
shortest route. A demo of the project can be found at http://routing.oscar-web.de. The source
code for the routing library can be viewed here: https://github.com/somakolli/path-finder-cli.
The integrated OSCAR source code can be observed under https://github.com/dbahrdt/oscar-
web/tree/routing.

As for future work we would propose implementing further routing functionality into the OSCAR
frontend. For example, routing from one address to another, would enable the user to find their
desired route more easily. Further research into efficient Hub Label storage, such as compression,
would probably yield improvements in speed and in space consumption.

33

http://routing.oscar-web.de
https://github.com/somakolli/path-finder-cli
https://github.com/dbahrdt/oscar-web/tree/routing
https://github.com/dbahrdt/oscar-web/tree/routing

Bibliography

[BF15] D. Bahrdt, S. Funke. “OSCAR: OpenStreetMap Planet at Your Fingertips via OSm
Cell ARrangements”. In: Web Information Systems Engineering – WISE 2015. Ed. by
J. Wang, W. Cellary, D. Wang, H. Wang, S.-C. Chen, T. Li, Y. Zhang. Cham: Springer
International Publishing, 2015, pp. 153–168. isbn: 978-3-319-26190-4 (cit. on pp. 9,
27, 28).

[DGSW14] D. Delling, A. V. Goldberg, R. Savchenko, R. F. Werneck. “Hub Labels: Theory and
Practice”. In: Experimental Algorithms. Ed. by J. Gudmundsson, J. Katajainen. Cham:
Springer International Publishing, 2014, pp. 259–270. isbn: 978-3-319-07959-2 (cit.
on pp. 8, 14, 16).

[Dij+59] E. W. Dijkstra et al. “A note on two problems in connexion with graphs”. In: Nu-
merische mathematik 1.1 (1959), pp. 269–271 (cit. on pp. 8, 12).

[DSSW09] D. Delling, P. Sanders, D. Schultes, D. Wagner. “Engineering Route Planning Algo-
rithms”. In: Algorithmics of Large and Complex Networks: Design, Analysis, and
Simulation. Ed. by J. Lerner, D. Wagner, K. A. Zweig. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 117–139. isbn: 978-3-642-02094-0. doi: 10.1007/978-
3-642-02094-0_7. url: https://doi.org/10.1007/978-3-642-02094-0_7 (cit. on p. 8).

[Fun20] S. Funke. “Seamless Interpolation Between Contraction Hierarchies and Hub Labels
for Fast and Space-Efficient Shortest Path Queries in Road Networks”. In: Computing
and Combinatorics. Ed. by D. Kim, R. N. Uma, Z. Cai, D. H. Lee. Cham: Springer
International Publishing, 2020, pp. 123–135. isbn: 978-3-030-58150-3 (cit. on pp. 8,
17).

[Gol08] A. V. Goldberg. “A Practical Shortest Path Algorithm with Linear Expected Time”.
In: SIAM J. Comput. 37.5 (Feb. 2008), pp. 1637–1655. issn: 0097-5397. doi: 10.
1137/070698774. url: https://doi.org/10.1137/070698774 (cit. on pp. 8, 13).

[GSSD08] R. Geisberger, P. Sanders, D. Schultes, D. Delling. “Contraction Hierarchies: Faster
and Simpler Hierarchical Routing in Road Networks”. In: Experimental Algorithms.
Ed. by C. C. McGeoch. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 319–
333. isbn: 978-3-540-68552-4 (cit. on pp. 8, 13, 14).

All links were last followed on November 19, 2020.

https://doi.org/10.1007/978-3-642-02094-0_7
https://doi.org/10.1007/978-3-642-02094-0_7
https://doi.org/10.1007/978-3-642-02094-0_7
https://doi.org/10.1137/070698774
https://doi.org/10.1137/070698774
https://doi.org/10.1137/070698774

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Basics
	2.1 Efficient data structures for graphs
	2.2 Shortest path with Dijkstra's Algorithm
	2.3 Shortest path speedup schemes

	3 Interpolating between CH and HL
	3.1 Pre-processing Stage
	3.2 Query Stage
	3.3 Storing and searching on disk
	3.4 Benchmarks

	4 OSCAR Integration
	4.1 OSCAR basics
	4.2 Backend implementation
	4.3 Frontend implementation

	5 Conclusion and Outlook
	Bibliography

