
Institute of Information Security

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Designing Privacy-Preserving
Architectures for Cloud-Based

Services

Nico Haas

Course of Study: Informatik

Examiner: Prof. Dr. Ralf Küsters

Supervisor: Julian Liedtke, M.Sc.,
Immanuel Kunz, M.Sc.

Commenced: July 15, 2020

Completed: January 15, 2021

Abstract

Privacy is becoming increasingly relevant in society. One reason is the growth in digital networking
of people, partly resulting from the increased use of end devices. According to Adam Moore, the
definition of privacy includes the “right to control access to and uses of places, bodies, and personal
information” [Moo08]. This definition assumes the users themselves can govern the flow of their
personal data. In many cases, however, user data is still being stored without consent, partly for
commercial purposes or misused by other third parties. One specific case is the Facebook-Cambridge
Analytica scandal in 2018 [CG18]. In order to protect personal data, the EU introduced a uniform
set of rules: The General Data Protection Regulation (GDPR) [EU16]. Implemented in 2018, it
aims to ensure privacy at an early stage of software development (“privacy by design”), and data
protection as a default setting (“privacy by default”).

In software development, architectural patterns are used for designing a software architecture,
each representing “a package of design decisions that is found repeatedly in practice, has known
properties that permit reuse, and describes a class of architectures” [BCK03]. These patterns do not
address privacy, or address it insufficiently.

The following two questions arise: Which architectural patterns exist that implement privacy
requirements in a software architecture? How can these patterns be selected in a given application
context?

This thesis proposes privacy-preserving architectural patterns implementing privacy requirements
from early on in the software development process. Furthermore, a methodology is presented that
assigns appropriate patterns to the respective use case. A use case demonstrates the applicability of
the methodology. Finally, the the presented architectural patterns and methodology are discussed.

3

Kurzfassung

Die Privatsphäre ist ein Bereich, der aktuell zunehmend an Relevanz in der Gesellschaft gewinnt.
Ein Grund hierfür ist die fortschreitende digitale Vernetzung der Menschen, mit bedingt durch die
vermehrte Nutzung von Endgeräten. Laut Adam Moore umfasst die Definition von Privatsphäre “ein
Recht auf Kontrolle des Zugangs zu und der Nutzung von persönlichen Informationen” [Moo08].
Dem zur Folge wird davon ausgegangen, dass der Nutzer selbst den Datenfluss regulieren kann.
In vielen Fällen werden aber bis heute Nutzerdaten ohne Zustimmung gespeichert, die zum Teil
für kommerzielle Zwecke oder von anderen Dritten missbraucht werden. Ein konkreter Fall ist der
Facebook Cambridge Analytica Skandal aus dem Jahr 2018 [CG18].

Um den Schutz der persönlichen Daten zu wahren, wurde in der EU mit der Datenschutzgrundverord-
nung (DS-GVO) ein europaweit einheitliches Regelwerk eingeführt, welches seit 2018 Anwendung
findet. Ein Bestreben der DS-GVO ist die Sicherstellung der Privatsphäre in einem frühen Stadium
der Software-Entwicklung (“privacy by design”) und Datenschutz als Grundeinstellung (“privacy
by default”).

Im Bereich der Softwareentwicklung existieren sogenannte Architekturmuster, die “ein Bündel
aus Entwurfsentscheidungen darstellen, die wiederholt in der Praxis vorkommen, bekannte Eigen-
schaften besitzen, Mehrfachnutzung erlauben und eine Klasse von Architekturen beschreiben”
[BCK03]. Jedoch wird die Privatsphäre, mittels dieser Muster, nicht oder in unzureichender Form
berücksichtigt.

An dieser Stelle setzt die Thesis an und stellt einen Lösungsversuch für die folgenden zwei Problem-
stellungen vor: Welche Architekturmuster existieren, die Anforderungen an den Datenschutz in der
Architektur umsetzen? Wie können diese Patterns in einem Applikationskontext gewählt werden?

Dazu werden in erster Linie Privatsphäre unterstützende Architekturmuster (engl. “privacy-
preserving architectural patterns”) vorgeschlagen, die Privatsphäre von früh an im Softwareentwick-
lungsprozess berücksichtigen. Desweiteren wird eine Methodik vorgestellt, die dem jeweiligen
Anwendungsfall entsprechende Muster zuordnet. Ein Machbarkeitsnachweis demonstriert die
Methodik anhand eines Anwendungsbeispiels. Abschließend wird die Zweckmäßigkeit der hier
vorgestellten Architekturmuster und Methodik diskutiert.

4

Contents

1 Introduction 13
1.1 Motivation and Research Questions . 14
1.2 Outline . 15

2 Background 17
2.1 Privacy–a Multidimensional Concept . 17
2.2 Cloud Computing and Privacy . 20
2.3 Software Architecture and Patterns . 21

3 Related Work 27
3.1 Privacy Engineering . 27
3.2 Privacy-Related Patterns . 30

4 Privacy-Preserving Architectural Patterns 41
4.1 Scope . 41
4.2 Terminology . 42
4.3 Quality Attribute Privacy . 49
4.4 Client-Side Obfuscation . 54
4.5 Private Data Processing . 59
4.6 Private Network Access . 64
4.7 Private Information Exchange . 69
4.8 Pseudonymous Identity Management . 74
4.9 Anonymous Authorization . 78
4.10 Access Control . 81

5 Methodology 85
5.1 Objectives . 85
5.2 Functional Principle and Overview . 85
5.3 Setting-Driven Elicitation . 88
5.4 Privacy-Driven Elicitation . 89
5.5 Pattern Relation-Driven Elicitation . 91
5.6 Architect-Driven Selection . 92

6 Use Case 95
6.1 Context . 95
6.2 Motivation . 96
6.3 Applying the Methodology . 96

7 Discussion 101
7.1 Objectives . 101

5

7.2 Limitations . 102

8 Conclusion and Outlook 107
8.1 Contributions to Research Questions . 107
8.2 Open Questions and Future Work . 108

Bibliography 111

6

List of Figures

2.1 Privacy Taxonomy of Solove . 18
2.2 Software Development Life Cycle . 22
2.3 Client-Server Architecture . 24
2.4 Quality Attributes and Architectural Tactics . 25
2.5 Specific Scenario for the Quality Attribute Security 25
2.6 Deriving a New Quality Attribute . 26

3.1 Privacy Taxonomy for PETs . 29
3.2 Abstraction Spectrum 1 . 32
3.3 Abstraction Spectrum 2 . 33
3.4 Abstraction Spectrum 3 . 34

4.1 Scope of the Cloud in This Thesis . 42
4.2 Deriving the New Quality Attribute Privacy for Identifying Architectural Patterns 49
4.3 Privacy Characteristics . 51
4.4 Specific Scenario for Client-Side Obfuscation 55
4.5 Sketch of Client-Side Obfuscation . 56
4.6 Specific Scenario for Private Data Processing 60
4.7 Sketch of Private Data Processing . 61
4.8 Specific Scenario for Private Network Access 64
4.9 Sketch of Private Network Access . 66
4.10 Specific Scenario for Private Information Exchange 69
4.11 Sketch of Private Information Exchange . 71
4.12 Specific Scenario for Pseudonymous Identity Management 75
4.13 Specific Scenario for Anonymous Authorization 78
4.14 Specific Scenario for Access Control . 82

5.1 Abstract View of the Pattern Elicitation . 86
5.2 Overview of the Methodology . 87
5.3 Privacy Aspect-Driven Elicitation . 90
5.4 Attacker Model-Driven Elicitation . 91
5.5 Privacy Aim-Driven Elicitation . 92

6.1 Applying the Methodology to the Use Case . 97

7

List of Tables

3.1 Survey on Privacy-Related Patterns . 39

4.1 General Scenario for the Quality Attribute Privacy 52

5.1 Setting-Driven Elicitation . 88
5.2 TTP-Driven Elicitation of Variants . 89

9

Acronyms

AWS Amazon Web Services. 20

CC Common Criteria. 30

CSP cloud service provider. 20

FIP fair information practice. 28

GDPR General Data Protection Regulation. 3

GoF Gang of Four. 23

HE homomorphic encryption. 19

IaaS Infrastructure as a Service. 20

IDC International Data Corporation. 13

IoT Internet of Things. 13

NIST National Institute of Standards and Technology. 20

OECD Organisation for Economic Co-operation and Development. 28

OSS open-source software. 68

PaaS Platform as a Service. 20

PET Privacy Enhancing Technologies. 14

PIA privacy impact assessment. 34

PII personally identifiable information. 45

PPAP privacy-preserving architectural pattern. 14, 107

RQ research question. 107

SaaS Software as a Service. 20

SDLC Software Development Life Cycle. 14

SSO single sign-on. 79

TEE trusted execution environment. 61

Tor The Onion Routing. 19

TPP third party processor. 42

TTP trusted third party. 29

11

Acronyms

UI user interface. 36

VPN virtual private network. 65

12

1 Introduction

The goal of protecting privacy becomes a greater challenge considering the growth of data collecting
services. The International Data Corporation (IDC) predicts, as digitization continues, all data that
is created, captured, or replicated will increase fivefold by 2025 compared to 2018—in figures to
175 Zetabytes [Ryd18]. According to the IDC, the now almost ubiquitous technology of cloud
computing will account for half of it, which allows services, such as the provision of storage or
software, to be used over the Internet (the cloud). The Internet of Things (IoT), as an example,
uses cloud services in almost every application. The concept of IoT is to connect end devices (the
things) in a network with the goal of supporting people in various areas of life; both in the private
sector (be it smart home or smart cities), as well as in the field of industrial production (Fourth
Industrial Revolution) [AGM+15; XXL18]. Considering current and supposed future sales figures,
the increasing number of IoT devices is apparent: 50 billion are currently in use, another 30 billion
devices are predicted to be in use next year. The fact that companies will eventually move their
business to the cloud [HH10], emphasizes cloud computing becoming nearly pervasive. The world
of ubiquitous computing, envisioned by Mark Weiser, seems to be a stone’s throw away [Wei91].
More companies and private individuals using the cloud implies more personal data is moving to
the cloud. Known examples are recent incidents where private data had become public1, or has been
collected by companies for targeted advertising2. Protecting this data is made difficult by the fact
that privacy, and therefore privacy infringements, is not easy to define. Privacy is a complex and
multidimensional concept (see Chapter 2). One of various emerging definitions reads as follows: “A
right to privacy is a right to control access to and uses of places, bodies, and personal information”
[Moo08]. These definitions are not binding and counteracting is not punishable by law. To prevent
the violation of privacy, a number of legal regulations have been adopted in various parts of the
world. A known example is the EU’s General Data Protection Regulation (GDPR), which imposes
heavy penalties for non-compliance. The GDPR complicates the way data collecting companies,
like Google and Facebook, are operating within the EU [HV18]. It supports Ann Cavoukian’s
idea of privacy by design [Cav+09], intending to enforce privacy at an early stage of software
development. Considering the classical software life cycle, privacy has to be enforced directly after
the requirements have been established, and before the actual implementation takes place.

1https://www.forbes.com/sites/daveywinder/2019/09/05/facebook-security-snafu-exposes-419-million-user-phone-
numbers/?sh=632b25cc1ab7

2https://policies.google.com/privacy?hl=en-US

13

https://www.forbes.com/sites/daveywinder/2019/09/05/facebook-security-snafu-exposes-419-million-user-phone-numbers/?sh=632b25cc1ab7
https://www.forbes.com/sites/daveywinder/2019/09/05/facebook-security-snafu-exposes-419-million-user-phone-numbers/?sh=632b25cc1ab7
https://policies.google.com/privacy?hl=en-US

1 Introduction

1.1 Motivation and Research Questions

There are different approaches to implement privacy by design. The GDPR, for example, proposes
the use of so-called Privacy Enhancing Technologiess (PETs). These PETs are already existing
and “cover the broader range of technologies that are designed for supporting privacy and data
protection”3. If these technologies are used, certain privacy risks can be mitigated or completely
eliminated. PETs serve their purpose effectively, if the software developer applies them in the right
context.

Another way to implement privacy into software systems is to apply privacy patterns which “are
design solutions to common privacy problems—a way to translate privacy by design into practical
advice for software engineering” [DGZ15].

Beyond PETs, a pattern is designed to present the software developer a solution to a privacy problem
in a specific context. A pattern is composed of a context, a problem and a solution, and can involve
a PET as a part of it.

Hoepman introduced Privacy Design Strategies to serve as a guideline for building privacy-friendly
software systems, including regulatory requirements [Hoe14].

In the design process of the Software Development Life Cycle (SDLC), the fundamental structure of
the software system is significant, also referred to as software architecture. Traditional architectural
patterns are proven reusable solutions to recurring problems in software architecture within a specific
context. Definitions of a software architecture are vague and ambiguous (see Chapter 2). What
constitutes a software architecture, how it is defined in this thesis, and where the aforementioned
privacy by design techniques come into play is explained in Chapter 4.

This thesis addresses the following two research questions: Which architectural patterns exist that
implement privacy requirements in a software architecture? How can these patterns be selected in a
given application context?

In the first place, a new class of architectural patterns is defined, which is built similar to traditional
architectural patterns of software design. Patterns of this kind are then identified—the privacy-
preserving architectural patterns. These patterns are designed to address recurring privacy problems,
describe elements of a software architecture and their interconnection to fulfill privacy requirements.
In a subsequent step, a method is presented to assign certain privacy preserving architectural patterns
to a given context. For this purpose, the definition of classical architectural patterns is enhanced by
elements that represent properties of the multidimensional construct privacy. In the sense of this
thesis, the aforementioned PETs can be specific implementations of the proposed patterns. They
correspond to architectural tactics, which are used to augment or implement architectural patterns
[BCK03].

In summary, this thesis constitutes the following contributions:

• The definition and identification of privacy-preserving architectural patterns (PPAPs)

• A methodology for selecting the suitable patterns for a given context

3https://www.enisa.europa.eu/topics/data-protection/privacy-enhancing-technologies

14

https://www.enisa.europa.eu/topics/data-protection/privacy-enhancing-technologies

1.2 Outline

1.2 Outline

The remainder of this thesis is organized as follows. Chapter 2 deals with the setting and basic
concepts used in this thesis. It elaborates the following terms: Cloud computing, privacy, software
architecture, pattern, and tactic. Existing literature in the scope of this thesis is examined in Chapter 3.
In this context, research is discussed that either try to engineer privacy, or are relevant for defining
the proposed PPAPs. It points out how this thesis differs from existing research. Chapter 4 reflects
the main contribution of this thesis. It provides the definition of a PPAP and identifies various PPAPs,
using the introduced quality attribute privacy. Chapter 5 presents a methodology, supporting an
architect to select the suitable PPAPs in a specific context. A use case, applying the aforementioned
methodology, is presented in Chapter 6. Chapter 7 discusses the methodology, both in general and
applied to the use case; and identifies limitations. Finally, this thesis is summarized and concluded
in Chapter 8.

15

2 Background

This thesis identifies PPAPs for cloud-based applications, allowing architects to build privacy-
friendly software systems. Basic knowledge of relevant terms and concepts is presented in this
chapter, providing a better understanding for the remainder of this thesis.

The first section discusses the complex term privacy and its usage in this thesis. Addressing privacy
in the cloud is illustrated in Computing and Privacy. The characterization of a software architecture
is covered in the last section, Software Architecture. In addition, methods that are used for designing
a software architecture are described, including architectural patterns.

2.1 Privacy–a Multidimensional Concept

The meaning of privacy has evolved from its classical sense and has become more complex in the
digital world. Defining privacy as “the right to be left alone” [BW90], today’s interconnection of
the Internet is no longer sufficiently covered. The challenge nowadays is to ensure the privacy of
individuals operating in the digital world. Bélanger and Crossler review multiple definitions of
privacy, concluding that “privacy refers to the desire of individuals to control or have some influence
over data about themselves” [BC11].

Security is commonly categorized in confidentiality, integrity and availability of data. While it
relates to all information that is used by a software system, privacy, on the other hand, addresses
personal information. As of today there is no universal definition of privacy, because there are
various views of what privacy is and what the consequences of non-compliance are. Van Rest et al.
states that “privacy is a broad, abstract, and subjective concept” [RBE+12]. The viewpoints may
consist of cultural privacy concerns or national regulations [BJKL04]. Different perspectives are
outlined in the following.

Companies are developing their own privacy strategies. This can have a positive impact on their
image, or a negative impact on market shares by non-compliance [AFT06].

In the literature, many definitions and characterizations are proposed defining (information) privacy.
Solove claims, most definitions being inaccurate: They define privacy either too broad or too
narrow [Sol02]. He proposes a taxonomy for privacy, trying to avoid people’s lack of clarity what
it is [Sol05]. Figure 2.1 illustrates his classification of privacy into four places (activities), where
privacy can be violated: At the data subject (corresponds to the activity invasion), on the way from
the data subject to the data holder (information collection, e.g. surveillance or interrogation), at
the data holder (information processing), and from the data holder to third parties (information
dissemination).

17

2 Background

Figure 2.1: Solove classifies privacy into groups where privacy can be violated: Information
collection, information processing, information dissemination and invasion [Sol05]

Privacy is defined on the legal basis as well, and more privacy stricter regulations emerge. To
give their citizens more control over their personal data, the European Union (EU) introduced and
implemented the GDPR [EU16]. Personal data is any information relating to an individual, who can
be directly or indirectly identified. In GDPR terms (and in the taxonomy of Solove, see Figure 2.1),
data subjects represent these individuals. A Data controller decides on the further processing of
personal data. The third entity within the GDPR framework, the data processor, processes personal
data on behalf of the data controller.

One part of this regulation lists 8 privacy rights every citizen (data subject) has, which every
company, dealing with personal data from within the EU, has to ensure. These comprise the right to
be informed, - of access, - of rectification, - to erasure, - to restrict processing, - to data portability, -
to object and the rights in relation to automated decision making and profiling. In addition, they
demand companies to implement the privacy by design and privacy by default approaches (Article
25). According to Article 5 of the GDPR, companies have to ensure: They only use and collect the
amount of data that is needed for the purpose of the business (data minimization), the processed
data is relevant to the purpose communicated with the data subject (purpose limitation), personal
data is only stored as long as it is necessary (storage limitation), and state of the art security tools
are applied (integrity and confidentiality).

Ann Cavoukian is considered to be the person who first coined the term privacy by design [Spi12].
In her paper, “Privacy by design: The 7 foundational principles”, she proposes a framework for
proactively embedding privacy into the software development process from early on [Cav+09].
The principles are: Proactive not Reactive, Privacy embedded into the system, Privacy by default,
Full Functionality, End-to-End Security, Visibility and Transparency and Respect for User Privacy.

18

2.1 Privacy–a Multidimensional Concept

Privacy by design, according to the GDPR, corresponds to the principle of Privacy embedded into
the system in the work of Ann Cavoukian. It is the term for enforcing privacy from the beginning of
software development. Privacy by default, which is the same in both the GDPR and Ann Cavoukian’s
work, represents the implementation of privacy as a standard, i.e. users (data subject in the GDPR
case) do not have to apply their own privacy settings or techniques—the system has to be designed
for it.

Privacy Enhancing Technologies

The GDPR requires companies to discover existing tools for privacy protection. To realize the
privacy by design concept, the GDPR advises to use PETs. PETs are technologies, specifically
designed to increase privacy in the system. Borking et al. define it in this way: “PETs have been
defined as a coherent system of ICT [Information and Communications Technology] measures
that protects privacy by eliminating or reducing personal data or by preventing unnecessary and/or
undesired processing of personal data; all without losing the functionality of the data system”
[BR01].

In terms of the Privacy by Design Framework and the GDPR, PETs are the tools of choice for
building software systems that support privacy. Like privacy, there is no universally accepted
definition for PETs. It is mostly dependent on and defined by legislative requirements. For example,
the European Union Agency For Network And Information Security provides a guideline in terms
of a PETs controls matrix1. PETs are categorized in secure messaging, virtual private networks,
anonymization networks and anti-tracking tools for online browsing.

Common PETs are encryption, use of pseudonyms, differential privacy, data tokenization and onion
routing (e.g. using the The Onion Routing (Tor) network) [APT13; BRD+15; Dwo08; GRS99;
PK01]. Encryption, for example, is a highly effective tool to protect personal information from
unauthorized access. Applying the current standards, it is impossible to decrypt the ciphertext in
reasonable time without having the private key.

Privacy Classification

The scope of PETs is as broad as software systems themselves. Consequently, the way they work
varies significantly. This is due to reasons of privacy in itself: It is complex and multidimensional.
A single PET is designed to address specific parts of privacy and cannot solve privacy as a whole.
In terms of the GDPR, privacy can be grouped into the 8 privacy rights listed above, and the data
protection principles (Article 5): Lawfulness, fairness and transparency; purpose limitation; data
minimization; accuracy; storage limitation; integrity and confidentiality; and accountability [EU16].
Heurix et al. categorize privacy into 7 different dimensions, where each dimension represents
a property that can be used to distinguish PETs from one another [HZNF15]. For example, one
dimension addresses the state of data: One type of PET addresses data located on the server (e.g.
encryption), other PETs address data in transit (e.g. TOR), and others protect data being processed
(e.g. homomorphic encryption (HE), allowing to perform calculations on encrypted data).

1https://www.enisa.europa.eu/publications/pets-controls-matrix/pets-controls-matrix-a-systematic-approach-for-
assessing-online-and-mobile-privacy-tools

19

https://www.enisa.europa.eu/publications/pets-controls-matrix/pets-controls-matrix-a-systematic-approach-for-assessing-online-and-mobile-privacy-tools
https://www.enisa.europa.eu/publications/pets-controls-matrix/pets-controls-matrix-a-systematic-approach-for-assessing-online-and-mobile-privacy-tools

2 Background

Privacy is not uniquely defined and depends on multiple factors, e.g. the legal situation. The trend
is to incorporate privacy from early on in software development. The PPAPs proposed in this thesis
realize this idea, using patterns to build a software architecture with privacy in mind from early on
(software architectures and patterns are explained in Section 2.3).

This section describes privacy as a complex and multidimensional construct. In Chapter 3, relevant
papers are investigated for the categorization of privacy. The definition of a PPAP, presented in
Chapter 4, is constructed to reflect this aspect. The PETs presented above are proven solutions for
certain specific privacy problems. A PET represents a concrete realization of a PPAPs solution, and
hence PETs are incorporated in Chapter 4 as well. The categorization of privacy plays an important
role in Chapter 5, where a methodology is developed for building software systems. It takes into
account the different properties of privacy.

2.2 Cloud Computing and Privacy

The scope of this thesis covers cloud-based applications. To show the relevance of privacy in the
cloud setting, the necessary background knowledge is given here. The idea of cloud computing is to
use IT resources as a service, and let the cloud service provider (CSP) manage the IT infrastructure
behind it. Managing multiple logically linked cloud servers, the CSP can offer flexibility, efficiency,
cost savings and security, that a single entity (a person or a company) may not be able to achieve
on its own. The common view of cloud computing, corresponds to the definition of the National
Institute of Standards and Technology (NIST)2. It defines the cloud model consisting of the essential
characteristics, deployment models, and service models [MG+11]. The former encompasses that
users can manage the cloud resources (on-demand self-service), access the cloud with any end
device (broad network access), adjust resources to the demand very fast (resource pooling and rapid
elasticity), and measure the service. Deployment models describe how the cloud is used: As a
public cloud (anyone can use it), private cloud (cloud is addressed to one organization), community
cloud (multiple organizations use it together), or a hybrid cloud (private and public clouds are used
simultaneously). The NIST distinguishes between three service models: Software as a Service
(SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). In ascending order,
they indicate the degree of responsibility the cloud consumer occupies. In SaaS, the user has at
most influence on configuration settings. On the other side of the spectrum (IaaS), the cloud user
can develop on the operating system level. It is also possible for a customer to use IaaS or PaaS to
create an application which is in turn offered as SaaS to other (end) users, making the customer a
service provider. An example of today are the Amazon Web Services (AWS)3. Plenty of companies
outsource their business to AWS. The top four companies with the largest payments to AWS are
Netflix, Twitch, LinkedIn and Facebook4. In terms of privacy, the CSP (AWS in this example) is
usually not free of legal requirements. Independent of the chosen model, privacy plays an important
role, because end users trust the service provider with their personal data. In the case described
above, a service provider itself is a customer of a CSP, and in turn trusts the CSP. The latter case

2https://www.nist.gov
3https://aws.amazon.com/
4https://www.contino.io/insights/whos-using-aws

20

https://www.nist.gov
https://aws.amazon.com/
https://www.contino.io/insights/whos-using-aws

2.3 Software Architecture and Patterns

implies, that an end user has to trust both: The service provider and the CSP. In addition, an end
user usually shares the service with other end users, who can thus also gain insight into personal
data.

Examples range from using the cloud as a data storage, to the use of a complex application. A
complex application can include location determination, payment system, interaction between
clients, etc. In addition, the cloud’s enormous computing power is exploited to analyze big data,
mostly affecting personal data. In the application of smart homes and smart cities the cloud can
serve as a control center. Regarding the former, the majority of data is inherently sensitive. All
mentioned examples include personal data, which can be abused by a service provider, or even by
third parties.

Due to the enormous increase in the number of IoT devices (see Chapter 1), new technologies,
extending the cloud, have been developed to reduce the workload on the cloud: Edge computing
and fog computing. Edge computing constitutes the principle of moving data storage and processing
toward the end devices, e.g. directly at the end devices. In fog computing, parts of the service are
moved to the LAN of the end devices by so-called fog nodes [LGL+15]. They usually have more
computing power than end devices, but less than the cloud. The idea is to combine the enormous
computing power of few cloud servers with the computing power of many devices (fog nodes and
end devices). Moving data toward end devices can have a positive impact on privacy, as these
technologies enable to keep personal data more towards the user’s side.

This section provides an overview of basic cloud terms and clarifies privacy is not to be neglected
in the cloud. These considerations contribute to the understanding necessary for examining the
related work in the next chapter. The terminology given in this section is used in Chapter 4, which
outlines the scope of the cloud in which the thesis is located.

2.3 Software Architecture and Patterns

The core of this work is the definition and identification of PPAPs. This section shows the location
of architectural patterns, which include PPAPs, in the software systems. Definitions and properties
of a software architecture and architectural patterns are examined.

As in the traditional sense of architecture, a software architecture reflects the fundamental structure
of the system. Accordingly, the construction of a software architecture takes place early in the
development process. Various models for software development have emerged over the last decades,
e.g. the traditional waterfall model, incremental models, or new agile models (for instance the
Scrum Framework) [Rup10]. Despite different ways of execution, they all share the principle of the
Software Development Life Cycle (SDLC). It divides the development of software into 6 phases:
Requirement analysis, design, development, testing, deployment, and maintenance. Cycle underlines
the on-going character of a software system, each phase being executed multiple times.

The SDLC starts with the analysis of the requirements. Including these requirements, the blueprint
for the software system is created in the design phase—the software architecture. Building the
architecture involves the participation of the different stakeholders, and is located directly before
the development of the system. Figure 2.2 illustrates the 6 phases in the SDLC, highlighting where
building an architecture takes place.

21

2 Background

Requirement Analysis Design

Development

TestingDeployment

Maintenance

Client

Server

Client Server
Architecture

Figure 2.2: Overview of the SDLC: The design phase is highlighted, representing where a software
architecture is built.

2.3.1 Software Architecture

There are multiple definitions of a software architecture and views on it’s abstraction level vary. The
Carnegie Mellon University provides a series of definitions [Uni17].

Bass et al. define software architecture as “the structure or structures of the system, which comprise
software elements, the externally visible properties of those elements, and the relationships among
them” [BCK03]. It implies the architecture being an abstraction of the software system. The
definition of Bass et al. builds on another definition that includes “structures needed to reason
about the system”5.

Another class of definitions focuses on major design decisions: Martin Fowler suggests to incorporate
elements representing “important stuff, whatever that is” [Fow03].

This thesis assumes the stakeholders being interested in making their system privacy-friendly,
fearing negative effects on their business (see Section 2.1 Privacy–a Multidimensional Concept).
The stakeholder’s perception determines the elements being considered important. Nevertheless,
the structures being used to reason about the system is important [BCK03].

In the work of Bass et al. the key elements are architecture structures [BCK03]. The authors
distinguish between module structure, component-and-connector (C&C) structure, and allocation
structure. The module structure is of static nature, whereas an allocation structure deals with linking
to the hardware. A C&C structure describes the dynamic behavior of single architectural elements
(components) and their relations (expressed by connectors). In this thesis, the C&C view is of
relevance, because it represents the flow of (personal) data. Service C&C structures is a special
form, used to define elements within its structure, providing services that can be consumed by other
elements.

5No reference in the book is given

22

2.3 Software Architecture and Patterns

With the help of architectural patterns, proven architecture structures can be reapplied, making the
development process significantly faster and more error-free. Architectural patterns are discussed
in the following subsection.

2.3.2 Architectural Patterns

In the process of creating an architecture, analogies can be drawn from the architecture of building
to the software domain. Christopher Alexander introduced architectural patterns with his work “A
Pattern Language: Towns, Buildings, Construction” in the year 1977 [Ale77]. An architectural
pattern is a template for solving a recurring problem in the same way it has been successfully applied
before. The solution is an abstract view on the architectural parts which are fundamental. Applying
one pattern many times always results in different concrete realizations [Ale77]. The usage of
patterns has found its way into the software world, originated in the work of the so-called Gang of
Four (GoF) [GHJV93]. They propose design patterns, depicting best-practices for programming in
object-oriented languages and have been acknowledged by the software development community.
In the course of time, patterns have established themselves in the field of software architecture. A
software architecture pattern is a reusable solution to a recurring problem, within the context of
software architectures. Bass et al. define it as follows: “An architectural pattern is a package of
design decisions that is found repeatedly in practice, has known properties that permit reuse, and
describes a class of architectures” [BCK03]. In contrast to the aforementioned design patterns,
architectural patterns provide a more abstract view of the system. What the degree of abstraction
for the resulting architectural structure is, depends on the definition of a software architecture. The
simplest structure of a pattern divides it into the following: The context of the problem, a problem
formulation and a solution. For more clarity the pattern can be extended by further elements, e.g.
variants showing different implementations or sketches guiding the solution graphically. Common
architectural patterns are the Layered Pattern, Model View Controller Pattern and Client Server
Pattern. The latter is also used in this thesis for identifying PPAPs, because it reflects the fundamental
operation of a cloud: Offering a service to multiple clients, while the service provider represents
the server.

The client-server architecture includes the components of a server and one or more clients. The
server and the respective client are connected through their ports (connectors). One type of connector
consists of an HTTP connection in TCP/IP networks, as is common in the World Wide Web. A
Server provides a service, a client can make use of. If a client wants to use the service of a server,
it sends a request for the service. The server is on standby and responds to the client’s request.
Figure 2.3 illustrates the simplified form of a cloud-based application in the client-server model,
representing a service C&C structure.

Bass et al. introduces architectural tactics, being less abstract than a pattern and usually representing
a single component of an architecture [BCK03]. They can be used to create and extend architectural
patterns, or can act as a concrete implementation. The authors define tactics with respect to
achieving quality attributes, mostly representing the building blocks an architectural pattern consists
of, and addressing single forces of a pattern. In this thesis, architectural tactics mostly represent the
aforementioned PETs. Thus, a PET can act as a concrete implementation of a pattern or augment a
pattern.

23

2 Background

(Cloud) Service
Provider

Client

Client 1

Client

Client N.

Key:

Client Server
Connector with client

and server ports

ClientServer

Server Server

Figure 2.3: An example client-server architecture of a cloud-based application.

It is unusual to speak of inventing patterns. Instead they are discovered or identified. Patterns
take up established techniques, i.e. solutions that have already been introduced and used several
times, and package them as patterns. These proven solution approaches aim at simplifying similar
processes for others in the future. This holds true for all kinds of patterns and tactics discussed so
far.

2.3.3 Quality Attributes

To evaluate and design a software architecture, quality attributes can be considered. Quality attributes
are characteristics of a software system that are used by relevant stakeholders to evaluate the quality
of the system [BCK03]. They investigate 7 quality attributes for the design and analysis of a software
architecture: Availability, interoperability, modifiability, performance, security, testability, and
usability. The quality attributes are divided into categories, classifying architectural tactics, which
support the achievement of quality attributes.

The security quality attribute, for example, is divided into the following categories: Detect attacks,
resist attacks, react to attacks and recover from attacks. It is depicted in Figure 2.4, accompanied
with some of the corresponding architectural tactics.

An architectural tactic can potentially fall under multiple categories of different quality attributes, i.e.
fulfilling multiple quality attributes to a certain degree. E.g., the architectural tactic corresponding
to the PET encryption achieves the privacy as well as the security quality attribute (within the resist
attacks category). This thesis takes the view of Bass et al.’s work, describing tactics as individual
parts of patterns. A pattern consists of several tactics, or tactics are used to specify existing patterns
more precisely. Tactics are not written on a pure code level, and distinguished from design patterns
proposed in the work of the Gang of Four [GHJV93].

24

2.3 Software Architecture and Patterns

Quality Attribute

Categorization Resist Attacks React to
Attacks

Architectural Tactics Encryption Limited
Access

Privacy Security Performance

Lock
Computer

Figure 2.4: The relationship between quality attributes and architectural tactics.

2.3.4 Deriving a New Quality Attribute

Bass et al. provide guidelines to develop a new quality attribute, presented in the following and
illustrated in Figure 2.6 [BCK03].

First, the characterization describing the quality attribute should be identified in a dialog with the
stakeholders. E.g., the quality attribute security may be characterized by confidentiality, integrity
and availability. Based on this, specific scenarios are created, accurately describing the quality
attribute. From these scenarios the general scenario is built. A scenario consists of the following
parts: The source of stimuli indicates where the stimulus originates, the stimuli represents a quality
attribute violating event that requires and triggers a countermeasure, the artifact and the environment
define which system element is affected and in which process the stimulus arrives, the response is
the countermeasure to the stimulus, and the response measure determines the effectiveness of the
response. Figure 2.5 illustrates a specific scenario of the security quality attribute.

Artifact:
Data within the

system
Stimulus:

Attempts to inject a
virus into the system Environment:

System is online

Response:

Inform Actors

Source:
External
attacker

Response Measure:
Required operators will be

notified within one day

Figure 2.5: Specific scenario for the quality attribute security in the category react to attacks.

After the general scenario is captured, individual solution approaches are collected. E.g. existing
patterns are examined (design or architectural patterns, dealing with the new quality attribute),
experts are consulted, or the general scenario created earlier is used. When these individual solution
approaches are found, a model can be created. It describes the parameters, influencing the quality
attribute. Architectural tactics and patterns can be identified by using this model, consulting experts,
or examining existing systems and literature that are assumed to address this quality attribute. Finally
a checklist with 7 categories is created: Allocation of responsibilities, coordination model, data
model, management of resources, mapping among architectural elements, binding time decisions,
and choice of technology.

25

2 Background

Characteristics of QA Specific Scenarios General Scenario Architectural Tactics Checklist for QA

Figure 2.6: Deriving a new quality attribute (QA) according to Bass et al. [BCK03].

This section introduces different views of a software architecture and architectural patterns. In
Chapter 4, these existing views are used to form the valid definitions of a software architecture and
architectural patterns in this thesis. The usage of different quality attributes for designing a software
architecture is depicted. An approach for deriving a new quality attribute is shown. Privacy is
neither considered as quality attribute as a whole, nor as part of security. In Chapter 4, the privacy
quality attribute is derived to identify relevant architectural tactics and PPAPs. Since this thesis falls
within the scope of cloud-based applications, the C&C Client Server Pattern serves as a foundation
for each PPAP identified in this thesis.

This chapter provided background information and the technical foundation, being important to
understand the content of this thesis. Relevant work in research is discussed in the next chapter,
including privacy engineering approaches and different kinds of patterns in the privacy and security
domain.

26

3 Related Work

The foundation for the thesis is established in Chapter 2. Relevant results from literature, concerning
privacy and patterns, are examined in the following. Their impact on the definition and identification
of the PPAPs are discussed.

The first section discusses work presenting approaches to incorporate privacy in the development
process of software systems. This thesis leverages patterns to enforce privacy in software archi-
tectures. Relevant work that directly addresses privacy patterns, or that can be exploited to define
privacy patterns, is identified in the subsequent section. The results from these two sections pave
the way for designing a software architecture, using privacy patterns: The privacy-preserving
architectural patterns (PPAPs).

3.1 Privacy Engineering

This section discusses related work aiming at translating privacy requirements into a software
system. One way to systematically incorporate privacy goals into the software design is to detect
privacy threats in risk models. LINDDUN is a framework for threat analysis of a software system
to detect privacy violations in data flows, aiming to enforce privacy at an early stage in the software
development [WJ15]. It investigates the following 7 properties of privacy, forming the name
LINDDUN: Linkability, identifiability, non-repudiation, detectability, disclosure of information,
unawareness and non-compliance. Starting with the modeling of the system by a data flow diagram
(DFD), the framework identifies privacy threats via LINDDUN threat categories. They also provide
a table of PETs from which the most necessary ones are extracted at the end of the analysis
procedure.

The system-level abstraction of DFDs can be leveraged to develop scenarios for deriving the privacy
quality attribute and to find architectural tactics in form of PETs. Although LINDDUN is used
early in the development process, it is not intended to design software architectures. It aims to
find privacy vulnerabilities and suggests PETs to fix them. This thesis uses architectural patterns
to introduce privacy from defined privacy requirements on the software system. These patterns
provide more abstraction on the system flow than applying PETs (architectural tactics).

Attempts to characterize privacy, without involving a risk model and not addressing a specific
domain, are discussed in the following.

Venter and Eloff present a taxonomy for information security, distinguishing technologies between
proactive and reactive [VE03]. While proactive technologies secure data before a security breach
occurs, reactive technologies are deployed after breaches are detected.

The idea of proactive technologies is reflected in this thesis. Patterns are identified, proactively
embedding privacy in the architecture, i.e. without the end user having to do anything.

27

3 Related Work

Policy notices inform the data subject about the collection, processing and disclosure of personal
data [CRC05]. Milne et al. conducted a study of over 2400 participants, examining their reactions to
privacy policy notices on the Internet [MC04; MCG06]. One of the conclusions is that participants
are annoyed with long complicated privacy notices, and therefore demand to work further on
improving the privacy policy notices.

Despite privacy policy notices providing a solution to enhance privacy, they do not constitute a
proactive approach. This thesis solves the problem of collecting, processing and disclosing too
much personal data in advance—with proactive architectural patterns, following the privacy by
default principle (presented in Chapter 2).

Spiekermann and Cranor propose a framework for allowing the design of privacy enhancing systems
[SC08]. To make the system more privacy-friendly, they distinguish between measures of two types:
Privacy-by-policy and privacy-by-architecture. The former comprises measures, giving users a
certain amount of control over their data processing. This is usually implemented through the Notice
and Choice approach, derived from the fair information practices (FIPs). FIPs are privacy principles,
recommended by the Organisation for Economic Co-operation and Development (OECD), as a basis
for discussing and establishing privacy requirements. However, the highest degree of privacy can be
achieved through privacy-by-architecture. This approach enforces privacy directly in the software
architecture, using architectural elements that are composed of privacy-preserving technologies.
Their framework is divided into privacy stages from zero to three. The higher the privacy stage
is, the less identifiable individuals are, when linking their stored personal data to their identity.
Measures including privacy-by-policy can only cover the first two privacy stages, 0 and 1. Privacy-
by-architecture, on the other hand, can fulfill stages 2 and 3, reflecting the authors’ statement that
(only) this approach can provide the highest level of privacy. The authors claim that the principle
of privacy-by-policy is used too often in practice, because it is easier to implement. But privacy-
by-architecture is always preferable if possible. Their basis for choosing appropriate architecture
measures consists of two properties: Network centricity and identifiability. The former indicates
whether the personal data is mostly processed on the server side (network-centric architectures), or
on the client side (client-centric).

Even if the authors do not explicitly state it, their framework represents the principles of privacy
by design and privacy by default (introduced in the GDPR afterwards), the PPAPs are also built
on. Applied to the privacy pattern domain, this thesis adopts the view of differentiating between
privacy-by-policy and privacy-by-architecture. The preference of implementing the privacy-by-
architecture over the privacy-by-policy principle is followed. Only privacy patterns are identified,
directly influencing the software architecture from the outset. Privacy patterns, only providing
privacy-by-policy, are excluded. The dimensions of network centricity and identifiability are both
considered in this thesis. In the former case, shifting personal data towards the client or the server
constitutes a trade-off between privacy and usability. Trade-offs are included in the definition of a
PPAP and discussed further in Chapter 6. The “engineering privacy” framework lacks a step-by-step
process and automation, that would enable architects to effectively select and implement appropriate
measures for designing privacy supporting systems. Chapter 5 presents a methodology, supporting
architects to build a privacy-friendly software architecture.

Heurix et al. focus on the categorization of privacy in the context of PETs [HZNF15]. They consider
privacy as a construct consisting of several properties. In order to classify and identify common
characteristics of PETs, they developed a taxonomy dividing privacy into several dimensions. Each
dimension determines a distinct subdomain of privacy a PET can address, and thus specify a different

28

3.1 Privacy Engineering

Privacy

Data

TTP

processed
stored
transit

frequency
phase
task

Reversibilty cooperation
degree

Scenario

Aspect

untrusted Client
untrusted Server
mutual
external

content
identity
behavior

Aim

unlinkability
indistinguishability
confidentiality
deniability

Foundationsecurity model
cryptography

Figure 3.1: Privacy Taxonomy for PETs [HZNF15].

privacy property. Illustrated in Figure 3.1, the taxonomy consists of 7 elements : Scenario, aspect,
aim, foundation, data, trusted third party (TTP), and reversibility. These dimensions can span
further branches, describing them in more detail. For the sake of clarity, the individual dimensions
are briefly described below only in relation to the first child of the respective branch. Relevant
dimensions are discussed in more detail in Chapter 4. The scenario dimension represents the
attacker model, consisting of an untrusted client, an untrusted server, mutual, or an external. The
overarching goal is depicted in aspects, including the elements of content, identity, and behavior.
The aim specifies the achievement of the aspects: Unlinkability, indistinguishability, confidentiality,
or deniability. Foundation specifies the security model, a PET is in, and the applied cryptographic
primitives. The data dimension specifies the state of data, a PET addresses: Data can be processed,
stored or in transit. The second last item indicates if a TTP must be involved, and is further
distinguished in frequency, phase and task. Finally, reversibility states whether the output of a PET
can be reversed. It is divided into the degree of reversibility and necessity of the data subjects
cooperation.

This thesis follows the assumption of Heurix et al., considering privacy as a multidimensional
construct, and implying different PETs as necessary in different application contexts. Since a PET
corresponds to an architectural pattern (see Chapter 2), this assumption is applied to architectural
patterns in this thesis. To apply the multidimensional aspect of privacy, the taxonomy of Heurix
et al. is considered, and its dimensions adapted to the architectural context of this thesis. This
chapter introduces the dimensions briefly. Because an architectural tactic provides a different level
of abstraction than an architectural pattern [BCK03], the PET-dimensions are not adopted identically.
The dimensions foundation and reversibility are excluded, because this thesis assumes them to
be too specific to be mapped in the software architecture. Chapter 4 determines for each adopted
dimension and its subdivided properties whether they are applicable, and the extent to which they
are incorporated into PPAPs. Various PETs, classified into the taxonomy by Heurix et al., are taken
into consideration in form of architectural tactics for PPAPs.

Martinez et al. categorize privacy in the context of the application of PETs in smart cities [MPS13].
They consider the privacy of citizens to be a 5-dimensional construct: Identity, query, location,
footprint, and owner privacy. For each dimension, they identified several privacy issues and
associated existing solutions in the form of PETs. The dimensions result from a mapping to one

29

3 Related Work

or both of the following two privacy models. First, they propose a mapping for each dimension
to the 3D database model of Domingo-Ferrer which distinguishes between respondent, user and
owner privacy [Dom07]. Second, the W3 privacy dimensions related to location-based applications
of Pérez and Solanas is considered [PS11]. It explores the following three questions, forming the
name W3: Where is the request coming from? Who is the user sending the request? What is the
request about?

Chapter 2 presents the guideline for introducing a new quality attribute [BCK03]. The privacy
dimensions of Martinez et al. are considered for deriving the privacy quality attribute privacy in
the next chapter. The PETs, they found for the different dimensions, are considered in form of
architectural tactics, for instance use of pseudonymizers and private information retrieval.

3.2 Privacy-Related Patterns

Chapter 2 presents software design patterns, representing proven solutions to commonly recurring
problems in the software development. They consist at least of the parts context, problem, and
solution. Architectural patterns follow the same approach, but are solutions to recurring problems
in the context of software architectures. They are characteristically broader in scope than software
design patterns [Hoe14]. This section discusses relevant work in the area of patterns that helps define
and identify architectural patterns that are consistent with the conclusions made in the previous
section.

The section emerges as follows: First, the security pattern domain is examined for patterns that aid
in identifying PPAPs. Subsequently, the literature is examined that includes privacy patterns.

3.2.1 Security Patterns

Although in this thesis privacy is not considered as a subset of security, they are related and overlap
in certain areas (see Chapter 2). Therefore, security patterns are examined in the following.

Yoder and Barcalow introduced patterns to the information security community in 1997 [YB97].
They proposed 7 security patterns to embed security in the development of applications.

In 2002, Markus Schumacher argued that security is insufficiently considered in the process of
designing software (design phase in terms of the SDLC) [Sch02]. His work presents a pattern
template, which is designed by taking into account security standards. He advocates the use of
security patterns, because they provide solutions being more readable and offer a clearer structure
than standards. In this case, the Common Criteria (CC) is used, mapping the standards to the
pattern elements context, problem, forces and solution. It is an international standard (ISO/IEC
15408) providing best practices for evaluating information systems to determine whether they
meet the imposed security standards [MFP07]. Using the proposed security pattern template,
Schumacher identifies two security patterns that relate to the privacy domain: Protection against
Cookies is intended to protect against the persistent storage of cookies, which can contain personal
data. Its solution consists of reducing the use of cookies on the web client, e.g. by deleting them
periodically. The forces consists of the functional security requirements from the CC: Anonymity,
unlinkability and usability. Restricting cookies increases the first two (privacy) properties, while

30

3.2 Privacy-Related Patterns

potentially reducing the usability since web sites may not work properly anymore. The second
pattern addressing privacy, Pseudonymous Email, protects the identity when logging on to websites
(in this case an email service) using pseudonyms instead of personal data.

Individual elements of the structure of these security patterns are adopted for the definition of
a PPAP in Chapter 4. The approach of deriving patterns from standards is also pursued in this
thesis. Current legislation, in form of the legal framework GDPR, is taken into account to define
and identify PPAPs. In addition, solutions proven in practice and literature are considered. The
first privacy pattern identified by Schumacher is not consistent with the proactive principle of
privacy-by-architecture. It represents a solution, the client can implement on its side independently
of the system (setting cookies in the web browser). This thesis takes the approach of incorporating
privacy requirements as a standard in the system, without the user having to implement or set
anything additional. The idea of using pseudonyms, protecting the identity, is included in the pattern
catalog presented in Chapter 4.

Schumacher is also involved as a co-author of the book “Security Patterns: Integrating security and
systems engineering”, following up the idea of his work described above and identifies multiple
security patterns [SFH+13]. In addition to including international security standards like the CC,
they also consider security information of known software companies, and organizations like the
NIST and the SANS (Sys-Admin, Audit, Network, Security) Institute1. System Access Control
Architecture Patterns constitute one group of patterns, addressing the issue of permitting and denying
access to different users. The Limited Access pattern, e.g., represents a solution, presenting to a user
only the currently available functions, while hiding everything for which he has no authorization.

The identified patterns represent architectural patterns, addressing security. As described in Chapter
2, the security and privacy domains overlap when, for example, technologies of the security domain
protect personal data. This overlap is found in the book, and certain patterns are incorporated into
PPAPs, e.g. Limited Access.

3.2.2 Privacy Patterns

Identifying patterns has been incorporated in the privacy domain by various authors. The idea in
the security domain to use established standards is adopted. In case of privacy, these are usually
given by law.

First, this thesis considers related work, presenting approaches to classify privacy patterns. These
considerations help to organize different types of privacy patterns with respect to the level of
abstraction and to identify new privacy patterns. Then, related work is reviewed that identifies either
general, or domain-specific privacy patterns, e.g., from the IoT domain. They are discussed with
respect to the considerations made in Section 3.1 and the level of abstraction being examined in the
following.

1https://www.sans.org/

31

https://www.sans.org/

3 Related Work

Abstraction

Privacy Design Patterns

Architectural Patterns
(e.g. PPAPs)GoF Design Patterns Architectural Tactics /

PETs

Code-level high-level

Figure 3.2: Abstraction spectrum: Where PPAPs are located in comparison to GoF’s design patterns,
architectural tactics, and privacy design patterns.

Classifying Privacy Patterns

Van Rest et al. provide a new privacy by design definition, using the privacy framework of Solove
(presented in Chapter 2), and incorporating the EU legislation [RBE+12]. The paper seeks to
support the implementation of the general privacy by design scheme into domain-specific appli-
cations. Considering patterns from the security and privacy domain, they divide privacy patterns
into different categorizations: Sets of patterns related to anonymization and pseudonymization
(example patterns are: Aggregation, pseudonymous email); hiding of personal data (encryption);
data minimization (no pattern provided); transparency, auditing and accounting patterns (right of
inspection by data subject); or informed consent (privacy statement). For each categorization they
present existing privacy patterns, e.g. pseudonymous email for the former. According to the authors,
an implementation of a pattern does not have to be existent yet, allowing to identify patterns for
which a provable implementation is assumed to exist in the near future. They observe that the
difficulty in identifying patterns lies in achieving the right abstraction.

In the spectrum of privacy design patterns, PPAPs try to achieve the highest level of abstraction,
allowing the design of privacy-friendly architectures (see Chapter 2). Where PPAPs, privacy design
patterns and architectural tactics are located with respect to the abstraction level, is illustrated
in Figure 3.2. This thesis follows their extended privacy by design definition, involving the legal
perspective. The presented privacy patterns by van Rest et al. are covered in other research discussed
in this chapter—the authors do not identify new ones. They represent lower-level patterns than
architectural ones, mostly representing architectural tactics (e.g. PETs). Of these patterns, those
that follow the principle of privacy-by-architecture are considered, e.g. encryption. The claim,
pattern implementations do not have to exist yet, is adopted in the form of architectural tactics in
the definition of a PPAP.

Stating privacy must be enforced at the core of the system and should not be implemented as an
additional feature, Hoepman proposes 8 privacy design strategies applying the privacy by design
principle earlier in the SDLC than privacy design patterns [Hoe14]. He considers IT systems as
information storage systems, modeled by a database metaphor. The 8 strategies comprise: Minmise,
hide, separate, aggregate, inform, control, enforce, and demonstrate. Because these strategies have
more abstract goals, they can serve as a characterization of privacy design patterns. A pattern
can be included in multiple strategies, e.g. the use pseudonyms pattern [PH10] follows both the
hide and minimise strategy. To develop these strategies, current legislation and frameworks that
affect privacy are examined: OECD Privacy Guidelines, the European legislation, and the ISO
29100 Privacy Framework. Although privacy design patterns occur in the design phase, privacy by

32

3.2 Privacy-Related Patterns

Abstraction

Privacy Design Patterns

Architectural Patterns
(e.g. PPAPs)GoF Design Patterns Architectural Tactics /

PETs

Code-level high-level

Hoepman's Privacy
Design Strategies

Figure 3.3: Abstraction spectrum: Where PPAPs are located in comparison to GoF’s design patterns,
architectural tactics, privacy design patterns, and Hoepman’s privacy design strategies.

design, according to the author, starts earlier than the use of detailed patterns. Hoepman argues that
strategies can be used to classify privacy design patterns and their associated PETs. Several privacy
design patterns are identified with the help of these strategies, e.g. attribute-based credentials.

As illustrated in Figure 3.2, privacy design patterns vary in their abstractness. This thesis assumes
many privacy design patterns to occur late in the design phase, implying less abstraction. Hoepman’s
strategies are close to a PPAPs degree of abstraction. These strategies represent higher-level goals,
not providing architectural elements—and not presenting any kind of patterns. This thesis tries to
realize higher level goals of privacy and still retain the structure of architectural patterns, embedding
privacy into the software architecture. Figure 3.3 illustrates their location at the end of the privacy
patterns abstraction spectrum, and before Hoepman’s strategies. Four of the strategies follow the
principle of privacy-by-architecture: Minimise, hide, separate and aggregate. A pattern is considered
a privacy-by-architecture pattern, if it follows at least one of these four strategies. This thesis follows
Hoepman’s assumption that privacy should be incorporated from the outset, emphasized by the
introduction of a new quality attribute privacy, considering his strategies for its derivation. Presented
patterns are incorporated into PPAPs, e.g. attribute-based credentials. In this thesis a cloud model
is assumed to be more complex than an information storage system. Multiple clients, e.g., use
the cloud-based service simultaneously, whereas each client forms a separate part of the software
architecture. PPAPs aim at protecting privacy, keeping in mind the multiple dimensions of privacy.

Colesky et al. claim that Hoepman’s privacy design strategies are too abstract to incorporate
legal prerequisites into the development of software systems [CHH16]. In the work of Colesky et
al., privacy tactics are proposed as a further categorization for patterns, being less abstract than
Hoepman’s strategies. The idea is to make privacy by design more practical than using privacy
design strategies. Privacy tactics are located between privacy design patterns and strategies from an
abstraction point of view: While strategies reflect the goal of the architecture to achieve privacy
by design, tactics give a more concrete way to achieve this goal and provide more abstraction than
patterns. Tactics have the purpose to fulfill certain quality attributes (see Chapter 2). In Colesky et
al.’s work, the quality attribute of concern is privacy. Referencing the work of Bass et al. [BCK03],
they categorize privacy using Hoepman’s Strategies. Per strategy, they incorporate up to four tactics
extracted by examining over 100 Privacy Design Patterns. Like strategies, tactics are applied to
classify privacy design patterns, being “an approach to privacy by design which contributes to the
goal of an overarching privacy design strategy”. The strategies initially defined by Hoepman are
reviewed and their direct relationship to GDPR principles is shown.

Viewing privacy as a quality attribute is considered in this thesis. For identifying PPAPs, the
approach of Bass et al. is adopted, including Hoepman’s strategies and legislative requirements.
In contrast to the work of Colesky et al., Chapter 4 presents the derivation of the privacy quality
attribute, including respective scenarios (presented in Chapter 2). While both groups of authors

33

3 Related Work

Abstraction

Privacy Design Patterns

Architectural Patterns
(e.g. PPAPs)GoF Design Patterns Architectural Tactics /

PETs

Code-level high-level

Hoepman's Privacy
Design Strategies

Colesky et al.'s
Tactics

Figure 3.4: Abstraction spectrum: Where PPAPs are located in comparison to GoF’s design patterns,
architectural tactics, privacy design patterns, Hoepman’s privacy design strategies, and
Colesky et al.’s tactics.

regard tactics as a tool to fulfill quality attributes, they differ in their application: While Colesky et al.
consider tactics as primary goals for patterns, Bass et al. consider architectural tactics, constituting
elements of an software architecture. Instead of tactics being categorizations for patterns, like in
the work of Colesky et al. [CHH16], this thesis uses architectural tactics as atomic building blocks
for an architectural pattern [BCK03]. Figure 3.4 highlights the differences between tactics and
architectural tactics with respect to the level of abstraction: Tactics according to Colesky et al. are
located between Hoepman’s strategies and (architectural) patterns. In contrast, architectural tactics,
as used in the work of Bass et al. and this thesis, are on the lower end of the privacy design pattern
abstraction spectrum.

General and Cloud-based Privacy Patterns

Pearson examines challenges encountered when trying to offer privacy-friendly cloud services
[Pea09]. One of these approaches are privacy impact assessments (PIAs), representing a risk
estimation through a systematic analysis of data processing in terms of privacy. Privacy design
patterns is another way for applying privacy in the cloud domain. Pearson states that they provide
guidelines through their template structure. To incorporate privacy design patterns in the cloud
computing domain, she argues that more work needs to be done in this area. She claims the usage of
PIAs is generally preferable to privacy design patterns, because they consider more of the subtleties
of privacy in relation to individual contexts of the system.

By identifying PPAPs for cloud-based applications, this thesis advocates the view of focusing on
privacy patterns for the cloud domain. The problem of patterns not taking enough account of the
individual characteristics of the system is mitigated in this thesis: Chapter 5 proposes a methodology,
constructed to incorporate contextual elements of PPAPs with the help of the architect.

Referring to the work of Schumacher [Sch02], Romanosky et al. identify three new privacy patterns
in the context of web-based applications [RAH+06]. They follow the same assumption made in
this thesis: Security in the form of security patterns does not solve privacy problems, or at least not
directly. The identified patterns are intended to improve the control of users over their personal data,
which corresponds to the definition of privacy given in the previous chapter. The problem patterns
have in general, Romanosky et al. claim, is reflected in privacy patterns as well. They try to solve
all of the different sub-problems given in the problem part (called forces in the pattern world), but
usually succeed only in the form of compromises.

This thesis identifies patterns related to privacy as well and has a similar structure. The same view
is taken that patterns in the security domain include privacy only to a certain degree. As in the
work of Romanosky et al., privacy is seen as the main driver for identifying patterns. The idea

34

3.2 Privacy-Related Patterns

that different forces lead to trade-offs is considered in the PPAPs in the Consequences element as
trade-offs between the quality attributes. No patterns are presented that are relevant for the software
architectures of a cloud service. Instead, they are solutions on the web client only, for browsing the
Internet with privacy in mind. Nevertheless, the underlying techniques such as anonymizing the IP,
are embedded in the PPAPs in Chapter 4.

Hafiz identifies four privacy design patterns for software systems, providing anonymity in various
domains like online communication [Haf06]. For categorizing the patterns with respect to privacy,
he takes into account the proposed anonymity properties and the attacker model of Pfitzmann
and Waidner [PK01], as well as the degree of anonymity presented by Reiter and Rubin [RR98].
Relationships are built in between the patterns, guiding the developer in using the appropriate ones.
In a subsequent work, Hafiz introduces a pattern language [Haf13]. Consisting of 12 identified
privacy patterns (including the four patterns from his previous paper), the pattern language is
intended to create new PETs. Two example patterns are: Oblivious transfer or Pseudonymous
Identity. Oblivious transfer allows a client the exchange of data without the other participant (server
or another client) not knowing what data is received. The latter one is a more general pattern of the
Pseudonymous Email pattern proposed by Schumacher [Sch02], using pseudonyms to protect the
identity of a client.

The identified privacy patterns by Hafiz are architectural and follow the principle of privacy-by-
architecture. They are not designed to cover the area of cloud computing. Pearson claims that
further work would be needed to develop and assess the efficacy of new privacy design patterns
tailored to different types of cloud scenario [Pea09]. In identifying PPAPs that address cloud-
based applications, this work considers Hafiz’ patterns and adapts them accordingly. The idea of
identifying patterns that are related to each other is adopted in this thesis and incorporated into the
definition of a PPAP. Instead of identifying patterns for the creation of PETs [Haf06], PPAPs are
intended to support the design of privacy-friendly architectures. As presented in Chapter 2, PPAPs
can include PETs in the form of architectural tactics, suggesting possible implementations of an
architectural pattern.

Taking into account the Microsoft developer privacy guidelines, Pearson and Benameur identifies
privacy design patterns and propose a decision support system (DSS) [PB10]. They identify privacy
patterns with the goal to improve the software development process by implementing privacy
from the outset. The typical pattern structure is extended with the Classification element, used
for automated analysis of the patterns’ relations. The DSS aids developers in implementing these
patterns early in the development process. For selecting the appropriate patterns, the developer is
asked about the specific applications context. Depending on the user’s selection of answers, the
DSS outputs the patterns to be implemented. The system provides developers a tool that aims to
allow them to implement privacy without much prior knowledge about privacy technologies, and
without having to tediously browse through privacy guidelines. All identified patterns follow the
principle of privacy-by-policy. The authors argue that privacy design patterns that adhere to the
privacy-by-architecture principle can still be introduced into their system later on. In a similar
approach, Pearson and Shen propose a rule-based selection system that outputs respective privacy
patterns using only contextual information [PS10]. The following elements are added to the typical
pattern structure: Applicable Context (depicting the contextual environment the pattern can be
used in), Selection Rule Repository (the location where the rules are stored) and Selection Rules
(the name of the rules to be applied). Example for the former are: Sensitivity of data, Location of
(stored) data, or Number of users of system. The element classification is added as well, but not

35

3 Related Work

considered for the proposed system. For allowing the system to provide the developer with potential
patterns, a domain expert has to create patterns first. For each pattern, the applicable context and
corresponding selection rules are determined. The rule names are added to the respective pattern
element, and the entire rules are placed to a separate rules repository. The system interacts with the
developer, e.g. asking about the number of clients using the service, or whether the data contains
sensitive information. The Pattern Selector determines with the contextual information given by
the developer, and the specified rules from the rules repository, the potential patterns that can be
implemented. Pearson and Shen identifies two patterns for demonstration purposes: Obligation
Management and Sticky Policies. The item Sensitivity of data is included in the Applicable Context
element of both patterns. One of its corresponding rules states, that the use of the former design
pattern (DP1) is preferred, if the developer sets the sensitivity of information option to one in the
context evaluation phase.

The idea of incorporating privacy properties as pattern elements is adopted in this thesis. Discussions
from the first section are applied, e.g. the privacy dimensions of Heurix et al. From the discussions
in the first section, it is concluded that this thesis only considers patterns, proactively embedding
privacy into the software architecture. The identified privacy patterns of Pearson et al. are of the
privacy-by-policy type, and therefore not considered for identifying PPAPs [PB10; PS10]. Pearson
et al. provide a decision support system for selecting privacy-by-policy patterns arguing that privacy-
by-architecture patterns can be added to their system at a later stage [PB10]. This thesis assumes
that this justification does not follow one of the major assertions from the work of Spiekermann and
Cranor: First applying privacy-by-architecture and only then privacy-by-policy [SC08]. Pearson et
al. provide systems for pattern selection, either considering privacy properties [PB10], or the context
of the application [PS10]. Chapter 5 presents a selection procedure for PPAPs, considering the
context, without the need to go through guidelines, and considering privacy properties. It includes
the expertise of the architect, because this thesis assumes the privacy-by-architecture approach to
involve more complex approaches than their privacy-by-policy counterpart. The requirement of an
architect’s expertise is not assumed to constitute a drawback, since the design process involves the
presence of an architect.

Graf et al. present a catalog consisting of 12 identified privacy patterns for PETs [GWGT10]. These
constitutes user interface (UI) patterns that can be used in PETs in the areas of interaction, privacy
policies, and visualization. The Dynamic Privacy Policy Display pattern, e.g., falls under the second
area of privacy policies. It displays a privacy disclaimer when the mouse pointer is moved to a
specific area of the screen, e.g. near a login button.

The identified privacy patterns are neither architectural, nor do they follow the principle of privacy-
by-architecture. Similar to the work of Hafiz [Haf13], the patterns are designed for PETs and not for
enhancing the software architecture. Consequently, this thesis does not consider them for identifying
patterns.

Inspired by the Alexander’s building architectural patterns, the software design patterns from
the GoF, and the privacy by design principle, Doty and Gupta have identified privacy design
patterns to facilitate the implementation of privacy into software [DG13] . They collaborate with
others on a project that serves as a documentation for privacy patterns and provide a standardized
privacy pattern language [DGZ15]. The catalog of identified patterns is publicly available at
https://privacypatterns.org/, including over 70 patterns at the time of writing. The individual
elements of a pattern are: Summary, context, problem, solution, consequences, and examples.

36

https://privacypatterns.org/

3.2 Privacy-Related Patterns

Two example privacy patterns are: Protection against Tracking2 and Onion Routing3. The former
corresponds the aforementioned Protection against Cookies pattern proposed by Schumacher
[Sch02], recommending the user to delete cookies in the web client at regular intervals to avoid
server-side tracking.

Despite the inspiration of architectural patterns, not all patterns proposed by Doty et al. form
architectural ones. They correspond to the privacy design patterns in Figure 3.2 allowing them to
vary in the level of abstraction. The Protection against Tracking, e.g., does not affect the software
architecture of the system and actively involves the user in the privacy implementation. These two
properties result in the pattern following the principle of privacy-by-policy. There are patterns
that follow the privacy-by-architecture principle as well, e.g. Onion Routing. Depending on the
abstraction level, individual patterns are taken from their catalog to identify a PPAP, e.g. built in as
architectural tactics. The structure of the patterns, as inspired from architectural patterns, is adopted
for the definition of a PPAP.

Siljee identifies privacy patterns to be a starting point for creating a pattern catalog [Sil15]. All
patterns fulfill privacy transparency. Two privacy patterns are identified and an overview of existing
privacy transparency patterns is given, including patterns of Doty et al. [DGZ15].

All the identified patterns are following the principle of privacy-by-policy and are therefore not
taken into consideration in this thesis. In addition, they offer little abstraction making these patterns
to move more towards the low-level approaches in Figure 3.2.

Colesky et al. propose two pattern systems, one containing patterns that follow the Hoepman
strategy of inform [CC18] and one following the Hoepman strategy of control [CCD+18]. The
systems are intended to improve existing patterns from the Doty et al. [DGZ15] catalog, for example
by allowing relations between them. These pattern systems are intended to assist in picking and
applying the right patterns, by adding more relations to the existing patterns and developing them
further.

The identified privacy patterns follow the principle of privacy-by-policy. Hence, these patterns are
not considered in this thesis. The idea of including relations between patterns, allowing to apply
these related patterns simultaneously, is built into the definition of PPAP.

Privacy Patterns from IoT domain/other Domains

Applications in IoT often use cloud computing and process personal data (see Chapter 2). Since
privacy plays an important role as well, the following is devoted to research related to the application
of privacy patterns in the IoT domain—and consequently cloud-based applications.

Washizaki et al. conducted a search for IoT patterns and categorized those according to the quality
attributes they satisfy [WYH+19]. Out of 136 patterns found in 33 papers, one addresses the quality
attribute Privacy. In addition to privacy, the found pattern layered architecture for IoT applications
also addresses performance, reliability, security and scalability [KBL17]. They claim that the
patterns found are mostly not IoT specific, but general privacy and architectural patterns that are
adapted.

2https://privacypatterns.org/patterns/Protection-against-tracking
3https://privacypatterns.org/patterns/Onion-routing

37

https://privacypatterns.org/patterns/Protection-against-tracking
https://privacypatterns.org/patterns/Onion-routing

3 Related Work

That only one pattern is found, addressing the quality attribute privacy is assumed to be an indicator
that privacy is not sufficiently taken into account. This thesis identifies patterns for cloud-based
applications, and hence can be applied in the IoT Domain as well. The single pattern addressing
privacy is considered in the identification of the PPAPs.

While the work of Washizaki et al. surveys all types of design patterns in the IoT domain, Pape and
Rannenberg take the approach of examining exclusively privacy patterns pertaining to software in
general [PR19]. Instead of identifying new IoT privacy patterns, they demonstrate the direct use of
general privacy in patterns in the IoT domain regarding cloud, fog, and edge computing architectures.
7 Privacy Patterns from the collaborative catalog on the https://www.privacypatterns.org website
are found, that can be mapped to an architecture in the IoT. At the time of writing some of these
patterns do not exist in the current catalog (anymore). The authors present the three-layer service
delivery mode, regarding the different layers of an IoT application: Cloud, fog and edge computing
(presented in Chapter 2). They exploit this model, applying the general privacy patterns in the IoT
domain. The personal data storage, e.g., shifts personal data towards the end devices, protecting it
from the cloud computing server and other third parties. Another pattern, Added noise measurement
obfuscation, obfuscates data on the client side before sending it to the cloud. Focusing their work
on mapping privacy patterns to IoT architectures, they employ Spiekermann and Cranor’s policy-by-
architecture approach without explicitly referencing their work. Each of the patterns used, which are
still currently in the catalog, follow one or more principles of Hoepman’s privacy design strategies
that address privacy-by-architecture: They separate, minimize, aggregate, or hide personal data.
The previously mentioned trade-offs that have to be made when designing a software system to meet
one or more quality attributes are also addressed in their work. Weinberg is cited as discovering
a trade-off between privacy and convenience in IoT [WMAH15]. In terms of quality attributes,
it corresponds to the trade-off between privacy and usability: The usability quality attribute is
sacrificed, implementing technologies that are designed to enhance privacy. An example can be
found in the Added noise measurement obfuscation pattern, where Pape and Rannenberg discover
the trade-off between the degree of protecting the personal data (privacy quality attribute) and the
meaningfulness of this data for running the service properly (usability).

Aiming to build privacy-friendly architectures in the IoT domain, Pape and Rannenberg apply
patterns, that follow the privacy-by-architecture principle, and corresponding strategies proposed
by Hoepman. This thesis identifies patterns that follow the approach of proactively implementing
privacy goals in the architecture. Patterns in this thesis aim at applications in the cloud, which
is often used in the IoT domain (see Chapter 2 Background). Ideas from the work of Pape and
Rannenberg are considered for deriving the PPAPs presented here, e.g. the personal data storage
pattern, exploiting the three-layer service delivery mode. Conflicts of privacy with other quality
attributes are incorporated into a PPAP, helping in the selection of appropriate patterns in a specific
context.

This chapter first discussed relevant research in the literature that deals with engineering of privacy.
Privacy properties are built into the definition of a PPAP, e.g., the dimensions presented by Heurix
et al. [HZNF15]. This thesis identifies patterns that are architectural [BCK03], proactive (adapted
from the work of Venter and Eloff [VE03]), and follow the principle of privacy-by-architecture
[SC08].

Thereafter, this thesis reviewed work that is of relevance in identifying privacy patterns. Existing
patterns were examined, including those from the privacy and security domains. They are either
not privacy related, not architectural, do not follow the privacy-by-architecture principle, do not

38

https://www.privacypatterns.org

3.2 Privacy-Related Patterns

Paper PP AP PBA PBP Cloud
Schumacher et al. [SFH+13] 7 7 7 7 7

Romanosky et al. [RAH+06] 3 7 7 3 3

Schumacher et al. [Sch02] 3 7 7 7 3

Hafiz [Haf06; Haf13] 3 3 3 7 7

Pearson et al. [PB10; PS10] 3 3 7 3 3

Graf et al. [GWGT10] 3 7 7 3 3

Doty et al. [DG13; DGZ15] 3 3 3 3 3

Siljee [Sil15] 3 7 7 3 3

Washizaki et al. [WYH+19] 7 3 3 3 3

Pape and Rannenberg [PR19] 3 3 3 7 3

Table 3.1: Examining existing research in the domain of privacy-related patterns: 3 when the
respective work contains designated privacy patterns (PP) , presents architectural patterns
(AP) , follows the privacy-by-architecture principle (PBA) or the privacy-by-policy
principle (PBP), or is designed for cloud-based applications (Cloud). When it does not
satisfy an investigated property, the corresponding cell is marked with 7.

have the desired pattern structure, or are not suitable for the application in the cloud domain. An
overview of the examined privacy-related patterns is given in Table 3.1, assigning each paper to
the kind of privacy patterns they represent. The patterns of Doty et al.’s catalog encompasses all
properties, since they identify multiple types of patterns [DGZ15]. The pattern found by Washizaki
et al. satisfies the other properties, but is not in any pattern structure [WYH+19].

39

4 Privacy-Preserving Architectural Patterns

This chapter introduces the main contributions of this thesis, comprising the definition and the
identification of privacy-preserving architectural patterns (PPAPs).

The first section outlines the scope of the cloud, in which this thesis is located. Section 4.2 first
determines the definition for a software architecture which is used in this thesis. It takes into account
the background knowledge and relevant work in research, provided in Chapters 2 and 3. Building
on this notion of a software architecture, the definition and template of a PPAP are presented.
Section 4.3 Quality Attribute Privacy demonstrates the approach that has been taken to identify the
PPAPs presented in this thesis. This includes the introduction of the privacy quality attribute, its
categorization and its general scenario. Individual PPAPs are proposed thereafter: Each section
consists of the specific scenario corresponding to a PPAP, the identified architectural tactics and the
fully described pattern.

4.1 Scope

In order to determine privacy threats in the cloud, the scope of this thesis is described. This thesis
considers a cloud, consisting of three participating groups: The cloud service provider (CSP),
the clients, and optionally a third party. The relationship of a client and a cloud service provider
corresponds to the client-server architecture, presented in Chapter 2. A server offers a service
to the client, the cloud service. If multiple clients use the service in an interactive fashion, the
communication takes place exclusively via the server as the intermediary.

Chapter 2 presents various models in cloud computing, including the service models (as a service)
and deployment models (private, community, public, and hybrid cloud). Using virtualization
techniques, the CSP can leverage its IT resources to offer different models to different clients. This
thesis assumes a cloud-based service, comprising the software as a service model, and the public
cloud deployment model (the service being available to the public).

For the sake of simplicity, in this thesis a service offered by a CSP is assumed, directly addressing
the clients as end users with its service. For example, a CSP offers a ride-sharing service in which
clients, acting as drivers or passengers, exchange data via a mobile application, provided by the CSP.
Unless stated otherwise, the term client is used to describe the end device, that processes data sent
by the server, generates data on its own, and sends data to the server. Despite the fact that several
clients share a service, the clients can act isolated from each other in their usage. The definition of
a PPAP, presented in the next section, involves the attacker scenario, which specifies the malicious
actor in the system the pattern’s solution is protecting against. Chapter 5 presents a methodology
for selecting PPAPs, considering the privacy properties to be satisfied, and the setting. The setting
includes whether a client uses an application in isolation or multiple clients use the service together,
for example, through interaction.

41

4 Privacy-Preserving Architectural Patterns

Mobile Client

Cloud Service Provider

Internet

Clients

Laptop Client
Desktop Client

IoT Client

Third Party
Processor

(TPP)

Figure 4.1: Scope of the cloud in this thesis.

Depending on the business model, another actor may be involved, which receives data from the
CSP for analysis purposes. In this thesis this party is called the third party processor (TPP).

The concrete solution of a PPAP can rely on a third party, whether it acts as a middleman between
the cloud and the client, or it receives private data from the client and acts on behalf of the client to
hide certain properties from the server. This entity is called TTP. The term TTP originates from the
field of cryptography, where TTPs represent parties that must be trusted for a cryptographic protocol
to work. The fact that the TTP must be trusted, is also valid regarding privacy in this thesis. If the
TTP could not be trusted, the privacy problems would be shifted from the server to the TTP.

The scope of the cloud for this thesis is illustrated in Figure 4.1. It emphasizes that clients represent
a broad spectrum of end devices, ranging from desktop computers to devices in the IoT domain.
The TTP is omitted in the figure, since it is part of the solution in the presented PPAPs. It is not
part of the original cloud setting that is assumed in the first place.

4.2 Terminology

As discussed in Chapter 2, there are different definitions and different perspectives about the scope
of a software architecture. The notions of Bass et al. and Martin Fowler are combined to obtain the
definition of a software architecture used in this thesis [BCK03; Fow03]:

42

4.2 Terminology

A software architecture constitutes one or more structures of the system that allow reasoning about
the system and have a high impact on the system. The structures consist of interacting software
elements with externally visible properties. The stakeholders determine the degree of impact by
weighting the quality attributes.

The definition of an architectural pattern, presented in Chapter 2, is restated: “An architectural
pattern is a package of design decisions that is found repeatedly in practice, has known properties
that permit reuse, and describes a class of architectures” [BCK03].

With the identification of PPAPs, this thesis supports the implementation of the GDPR princi-
ples privacy by design (corresponding to the privacy embedded into the system principle in Ann
Cavoukian’s privacy by design framework [Cav+09]), and privacy by default (presented in Chapter
2). In the following, work discussed in Chapter 3 is taken into account, contributing to the definition
of a PPAP.

PPAPs are architectural patterns, representing connector and components (C&C) structures as a
class of architectures [BCK03]. The view of a software architecture definition above, in which the
interests of the stakeholders play an important role, is also transferred to the definition of a PPAP.
This thesis identifies architectural patterns, whose main objective is to satisfy the privacy quality
attribute. The derivation of the new quality attribute privacy is given in Section 4.3.

This thesis adopts the approach of incorporating privacy properties and the application context into
a privacy pattern [PB10; PS10]. The general pattern structure is extended with elements, providing
information about privacy properties. These properties are adopted and adapted from the taxonomy
for PETs: Privacy aspect, aim, scenario and data [HZNF15]. They are discussed in more detail
within the element description in the PPAP template, given at the end of this section. Each identified
PPAP satisfies these properties differently. These privacy properties, embedded into PPAPs, allow
the selection of the suitable patterns in a given context. The architect, e.g., takes into account the
various interests of the stakeholders and depending on this outcome, selects the appropriate PPAPs.
Chapter 5 presents a methodology, supporting the architect in this process.

The distinction between technologies in the area of security made by Ventor and Eloff is applied
to the privacy domain [VE03]. In terms of data protection, it is too late, when data breaches have
already occurred (see Chapter 2). This thesis calls privacy patterns proactive, when they implement
privacy requirements in a software system without the user noticing. The other type of privacy
patterns are reactive. They are applied when the system is already running, e.g. via privacy policy
notices [CRC05]. Being in conformity with the privacy by design and by default principles, this
thesis acknowledges the assertion of Spiekermann and Cranor, and identifies privacy patterns that
proactively embed privacy into the architecture, following the privacy-by-architecture principle
[SC08]. Most privacy patterns, found in the literature, follow the privacy-by-policy principle
[GWGT10; MC04; MCG06; PB10; RAH+06]. These patterns, e.g. UI patterns [GWGT10], are not
considered for the definition of a PPAP.

This thesis claims, that privacy-by-architecture patterns contribute more to the privacy by design and
default principle than privacy-by-policy patterns. They are considered to provide more abstraction
and to be located earlier in the design phase of the SDLC than their counterparts. Therefore, a
PPAP is defined to provide the level of abstraction of an architectural pattern and to embed privacy
proactively into the architecture following the principle of privacy-by-architecture.

With the previous considerations in mind the following definition for a PPAP is used:

43

4 Privacy-Preserving Architectural Patterns

A privacy-preserving architectural pattern (PPAP) is a collection of design decisions found repeat-
edly in practice, has known properties that permit reuse, describes one or more component and
connector (C&C) structures of a software architecture, and achieves designated properties of the
quality attribute privacy.

A PPAP consists at least of the following parts: Name, context, problem, privacy aspect, attacker
model, privacy aim, data, solution and consequences. Additional elements can be considered:
Alias, variants, known uses and relations. Except for the four elements, corresponding to privacy
properties, and the variants element, the patterns of the privacy pattern catalog of Doty et al. are
examined, and the general structure inferred [DGZ15]. The variants element is taken from the book
of Schumacher et al. [SFH+13]. Inspired by the classification element from the work of Pearson et
al., four dimensions of Heurix et al.’s privacy taxonomy for PETs is adopted and adapted: Privacy
aspect, attacker model, privacy aim and data [HZNF15; PB10; PS10].

A template with description for each element is given below, optional elements being marked
accordingly within square brackets.

Name

This element represents the name of the pattern. It should be short and concise.

[Alias]

This element represents aliases which may be more common or meaningful to specific groups of
people.

[Example]

An example can be given for better understanding. It provides more insight into a certain technique
or provide an example context.

Context

The context defines the conditions under which the problem emerges. It describes in which part of
a cloud service the problem occurs, usually where the solution is applied as well. But the solution
does not have to emerge in the same place, see element Data.

Problem

This element formulates the problem, the pattern tries to solve. In most cases it concludes with a
question to which the solution refers directly.

44

4.2 Terminology

Privacy Aspect

This element corresponds to one privacy dimensions in the privacy taxonomy for PETs of Heurix
et al. [HZNF15]. Privacy aspect is divided into content, behavior and identity.

The former refers to the protection of personal data from unauthorized access.

Behavior deals with user habits. A solution, addressing the behavioral aspect, protects sensitive
metadata, generated during the data flow between server and client.

In contrast to content, the last aspect, identity, prevents personally identifiable information (PII) in
the first place. It is further divided into anonymity and pseudonymity. The former yields solutions,
enabling a client to use a service without the server or other clients receiving PII. Pseudonymity
is a mitigation of anonymity, allowing other clients and the server to recognize clients by using
pseudonyms, instead of identifiable information. Other clients or the server (depending on the
attacker model, see next element) should not learn any PII except the pseudonym. The degree
of linkability highly depends on the chosen pseudonym. Optimal pseudonyms would be random
generated names. But for a better usability of the service, clients usually can name themselves. For
example in an application of a social platform, it is more convenient for a client to memorize other
clients, when they have a more meaningful name instead of a truly random generated one. The
client has the responsibility for choosing a name which is usable enough and still provides as much
unlinkability as possible.

For more details on the differences, see the taxonomy proposed by Pfitzmann and Köhntopp [PK01].
Heurix et al. additionally divide identity further, investigating directionality for both variants, as
well as holder and cardinality for the variant pseudonymity [HZNF15]. In this thesis, their inclusion
is assumed to make a pattern too specific, and thus harm the necessary abstraction needed for an
architectural pattern. Therefore, this thesis does not consider them.

Attacker Model

Considering the other privacy constraints, a PPAP aims at solving the given privacy problem,
assuming the server and the clients as potential attackers. In cryptography, an attack is a malicious
exploitation of a vulnerability in a software system. This thesis assumes an attacker model, depicting
the origin of potential attacks and its intent, determining the risk the attacker is willing to take. The
interests of an attacker are referred from the principles for the protection of personal data, set out in
Article 5 of the GDPR [EU16]. They suggest to use technologies offering as little personal data as
possible to potential attackers. Inversely, this thesis assumes an attacker, attempting to gain more
than it is necessary to run (server being the attacker) or use (client) the service.

In the scope of this thesis, different options for the origin are server, client, or both at the same time.
In addition, the server is assumed to be malicious only at a particular time for a restricted duration.
The attacker’s intent is divided into two categories: Malicious and honest-but-curious. A malicious
attacker tries everything in its power to gain more information about personal data with the risk of
being caught. Honest-but-curious attackers are using the service as intended and attempt to obtain
personal data, but without attracting attention.

45

4 Privacy-Preserving Architectural Patterns

As explained in Section 4.1, the server is represented by the CSP, allowing it to constantly monitor
the processes in the cloud, without being conspicuous. This thesis assumes a malicious server,
which accepts the risk of being caught, since it is minimized by the fact that it has control over the
cloud.

In the case of a client being the attacker, this thesis further differentiate whether the clients are
honest but curious or malicious. A PPAP assumes either malicious or honest but curious clients.
The latter constitutes a weaker assumption for the respective solution.

The previous section defines the scope of this thesis, considering cloud service in the public cloud.
This thesis assumes the server does not know its clients, and hence does not collude with them.
Thus, in the case both server and some clients are assumed to be malicious, they can be considered
separately.

This element corresponds to the privacy dimension scenario in the work of Heurix et al. [HZNF15].
In this thesis the name attacker model is assumed to be more common (in particular in the security
field) and therefore preferred over scenario. The authors propose as last option an attacker from the
outside, e.g. a criminal organization or government interference. In this thesis, an external gaining
control is assumed to be equivalent to the case a server or a client being malicious and therefore is
omitted. The protection against external attacks on the system falls under the security domain and
is out of scope in this thesis.

Aim

While the privacy aspect specifies what to protect, aim specifies how to protect it. This thesis adopts
three properties of the proposed dimension aim of Heurix et al.’s privacy taxonomy: Indistinguisha-
bility, unlinkability and confidentiality [HZNF15]. If the former aim is fulfilled, an attacker is not
able to distinguish between multiple clients. Unlinkability is achieved, if a client from one dataset
(e.g. a database table) cannot be linked to another entity from another dataset, e.g. if it is made
difficult for the attacker to link a data entry from a person table to the address from the address table.
In the case of the strictest view of confidentiality, the sensitive personal data is protected in such a
way an attacker does not obtain any information at all. This thesis excludes deniability, assuming it
to be too PET-specific, and thus not contribute to the abstraction needed for a PPAP.

Data

In contrast to the work of Heurix et al., this element specifies the state of the data that is affected
when the problem occurs and not the data state of the solution [HZNF15]. Because a PPAP provides
more abstraction than PETs, it is more likely that the data state of the solution differs from the
data in the problem part of a pattern, for example, in having more states than the problem. As in
Chapter 2 discussed, this data refers to personal data in the privacy domain. PPAPs only consider
data of the clients, because they represent natural persons (in contrast to the CSP, which is assumed
to be a company). Data can be considered in three states, forming the sub-components of this
pattern element: Stored, in transit and processed [HZNF15]. Since there are multiple participants in
cloud-based applications (see Figure 4.1), the solution can shift personal data from one participant
to another, satisfying the privacy properties. Therefore, the sub-component stored is further divided:
Data can be stored at the cloud or at the client. This distinction is in conformity with the principle

46

4.2 Terminology

of network centricity proposed by Spiekermann and Cranor [SC08]. By moving personal data to the
client, a solution contributes to the design of client-centric software architectures. Processed data is
data used by the CSP or by a designated third party provider, for example to compute a common
function with input data from multiple clients or for analysis purposes. In case of data in transit, the
solution transfers data between the client and the server. A solution can combine the variants of
stored data and data in transit.

Solution

The solution represents the solution description and optionally an example architectural structure for
solving the problem stated before. It depicts a C&C structure, i.e. the important elements involved
and the interaction between these elements are illustrated.

[Implementation and Variants]

A PPAP provides a solution in an abstract form, and can therefore vary in the implementation. This
element suggests a list of potential concrete realizations.

Chapter 2 presents architectural tactics, referred as the building blocks of an architectural pattern.
They can form concrete realizations in architectural patterns. In the privacy domain, they can be
represented by PETs, which are proven technologies in practice.

In a PPAP, different variants (architectural tactics) represent different realizations, which may differ
in a privacy property (privacy aspect, attacker model, data and aim). E.g. one tactic is addressing
only stored data, while another concrete solution considers stored data and data in transit. Or they
demonstrate compromises with respect to other quality attributes, e.g. sacrificing performance
for an increase in the respective privacy property. Another possibility is that multiple tactics are
applied, e.g. in a sequence where the output of one tactic is the input of another one.

The TTP dimension of Heurix et al. is taken by whether certain tactics require a TTP or not
[HZNF15]. However, no further distinction is made between frequency, phase, and task. Instead,
architectural tactics consider TTPs being present at some point in time.

This element serves on the one hand, as a help for the architects to choose the appropriate variant
from a list of architectural tactics, and on the other hand, as a support for the implementation in the
next phase of the SDLC.

Chapter 5 presents a methodology, where some variants are removed, depending on the context and
the choice of the architect.

[Example Resolved]

If there is a running example (see element Example), this element specifies its specific solution
(mostly representing one variant of the element stated before).

47

4 Privacy-Preserving Architectural Patterns

[Known Uses]

Known applications or systems, where this pattern is already employed effectively, can be listed
here as examples for better understanding, or as a proof of concept. The pattern does not have to
be used explicitly. It is sufficient that the respective PPAP can be employed to contribute to the
software architecture of the known use.

Consequences

Strengths and weaknesses of the presented solution are highlighted by discussing the extent to which
the problem and the privacy-related characteristics have been solved. In particular, if several variants
are proposed in Implementations and Variants, they are compared and evaluated with respect to
the contribution to the solution. Since privacy is introduced as a quality attribute, this element
considers additionally the impact on other quality attributes.

[Related Patterns]

When identifying patterns, various authors involve their relationships to other patterns [DGZ15;
Haf13; SFH+13]. This element specifies the relations to other elements, considering three types:
Dependencies, supplements and exclusions.

The former group of relations lists the architectural patterns (not only PPAPs), which have to be
covered in addition for applying this solution. Each PPAP identified in this thesis depends on the
server-client architectural pattern. This pattern is presented in Chapter 2 and constitutes the cloud
model presented in Section 4.1.

Some patterns are applied together to cover a wider range of privacy problems, or because they can
be used together efficiently. The supplements group lists patterns being recommended to use in
combination with this solution.

On the other hand there can also be patterns that are mutually exclusive. The latter group lists
patterns, which cannot be used simultaneously.

[Sketch]

In the pattern domain, sketches are often used to provide the reader (in this thesis the architect) the
operation of a pattern in an illustrated way. This is also true for (privacy-preserving) architectural
patterns in the form of C&C views used here. Its elements and interaction can be visualized in a
graphical representation.

In this thesis, a sketch is optionally presented at the beginning of a pattern definition.

48

4.3 Quality Attribute Privacy

1. Quality Attribute 2. Characteristics 3. Specific and
General Scenarios

4. Architectural
Tactics and Patterns

(PPAPs)

Privacy Derived from GDPR
data protection
principles and

research

Derived from PETs,
patterns and real
world examples

Derived from
scenarios.

Figure 4.2: Deriving a new quality attribute for identifying new architectural patterns (PPAPs):
Above the steps extracted from the book and below the approach chosen in this thesis.

4.3 Quality Attribute Privacy

Chapter 2 presents quality attributes, allowing to evaluate and design software architectures. In
addition, a guideline for developing and deploying a new quality attribute is outlined [BCK03].
This section leverages this guidance for a new quality attribute: Privacy.

This guideline is adapted for identifying PPAPs in this thesis. In the following, it is applied to first
characterize the new quality attribute, and second to set up its general scenario. In the subsequent
sections, the identified PPAPs are proposed.

Bass et al. present an approach, laid out in textual form, for dealing with a new quality attribute, and
using it to derive architectural tactics to create a design checklist for the respective quality attribute
(illustrated in Figure 2.6) [BCK03]. This thesis adapts this approach with the goal of identifying
PPAPs as a final step, instead of creating a design checklist. The modified approach, used in this
thesis, is outlined in the following. It is illustrated in Figure 4.2, depicting its individual steps with
the addition of comments on how each step is applied in this thesis.

4.3.1 Adapted Method for Deriving and Applying the Quality Attribute Privacy

Step 1: New Quality Attribute

The contribution of this thesis contains the definition and identification of architectural patterns,
supporting the design of privacy-friendly systems. It is assumed that the quality attributes presented
by Bass et al. are too different from privacy to allow the identification of PPAPs [BCK03]. The
quality attribute security comes closest, but overlaps only in parts with the Privacy domain (see
Chapter 2). Therefore, this thesis decides to introduce and derive the new quality attribute privacy.

Step 2: Establishing the Characteristics

Legal framework conditions and existing research are taken into account for the deduction of the
various characteristics of the quality attribute privacy. They take over the role of stakeholders, with
whom Bass et al. suggests to conduct interviews for identifying these characteristics [BCK03].

49

4 Privacy-Preserving Architectural Patterns

Since it is impossible to consider all legal positions regarding privacy, this thesis is limited to the
GDPR [EU16], which is considered one of the strictest privacy laws worldwide1. The relevant
characteristics identified for this thesis are enumerated and evaluated. The GDPR gives every EU
citizen, the data subjects, the right to be informed, the right of access, the right to rectification, the
right to erasure, the right to restrict processing, the right to data portability, the right to object and
rights in relation to automated decision making and profiling. These privacy rights correspond to the
privacy-by-policy notion (see Chapters 2 and 3) and are therefore excluded from consideration.

Privacy by design and privacy by default emphasize to consider privacy from early on in soft-
ware development as a standard (see Chapter 2). The proposed PPAPs inherently support this by
construction, but this does not represent a categorization of privacy in terms of a quality attribute.

Article 5 of the GDPR contains privacy principles considered in this thesis for characterizing
privacy as a quality attribute. These include data minimization, storage limitation, and integrity and
confidentiality. Other principles such as purpose limitation, accountability, lawfulness, fairness and
transparency, accuracy and accountability, are excluded from consideration as they do not form
principles that address software elements or embed privacy as a proactive approach in the software
system.

The characteristic of data minimization states to collect and process as little data as possible to fulfill
the purpose of the system. Storage limitation is the principle of keeping data in the system, only for
a defined period of time and then deleting or anonymizing it. Integrity and confidentiality represent
the part that overlaps with security and require those measures, protecting data from unauthorized
access and modification.

The following characteristics are found in the literature. Hoepman derived 8 privacy design strategies,
serving as a classification of privacy patterns by presenting a more abstract view [Hoe14]. Four of
them fall under the privacy-by-policy principle and are therefore not considered. The remaining
ones follow the principle of privacy-by-architecture and are therefore included for the creation of
scenarios: Minimise, hide, separate and aggregate.

Figure 4.3 illustrates the deduced characteristics from current legislation and literature. These
categorization types for privacy are used as keywords for finding real-world examples, and examining
research for existing technologies and patterns. Although not considered for characterization due to
the level of abstraction, the tactics of Colesky et al. [CHH16] and privacy properties included in the
PPAP provide support for scenario building in the next step. Considering the categorization of the
privacy quality attribute, and the specific scenarios, the general scenario is created.

Step 3: Building Scenarios

Similar to the book, scenarios are developed that play an important role in the derivation of the
quality attribute. Using the set of attribute characterizations, crafted in the previous step, the specific
scenarios are created first. There are different ways to create scenarios, and this thesis makes use of
two of them. One option is to create scenarios from research by examining existing patterns, or
PETs. Patterns may represent a different type than architectural patterns, and may occur in other
domains. Provided they address privacy in one form, they can be used for the scenario creation.

1https://www.wired.com/story/europes-new-privacy-law-will-change-the-web-and-more/

50

https://www.wired.com/story/europes-new-privacy-law-will-change-the-web-and-more/

4.3 Quality Attribute Privacy

Privacy

Hide Separate

AggregateMinimize

Integrity and
Confidentiality

Storage
Limitation

Figure 4.3: Deduced privacy characteristics

Another option involves the investigation of real world examples. The focus is placed on events
where the quality attribute is or can be violated. The scenarios have the same structure similar to the
book consisting of the same 6 parts. Following the book, a general scenario for the quality attribute
is developed from these scenarios. Some specific scenarios emerge as tactics and are therefore
presented in the individual PPAPs. For reasons of space and clarity, the presentation of all specific
scenarios is omitted.

The derived general scenario for the quality attribute privacy is presented below. For each individual
part, the relation to PPAPs is shown, e.g. the corresponding appearance within a PPAP. The general
scenario is illustrated in Table 4.1.

The source of a data disclosure can be a client, the server, or an external threat. Errors in the system,
that lead to the respective stimuli, originate in the server and are therefore associated with the server.
In a PPAP, the source of stimuli is represented in the attacker model element. The external threat
is not explicitly included there, since this thesis assumes a external impersonating the server, the
client, or both (discussed in Section 4.2).

Principles, categorizing the quality attribute in this thesis, are introduced in the previous section:
Data minimization, storage limitation, confidentiality and integrity, hide, separate and aggregate.
The stimulus is any event compromising personal data by not complying with any of these principles.
In a PPAP, stimuli are found in the problem description.

Artifact represents the elements or locations in the system, that are affected during the occurrence
of the stimulus. Since this thesis considers the quality attribute (information) privacy, the artifact
represents the elements where personal data is compromised, and hence the state of the data. Stimuli
refer to data at rest, in transit, or processed data. In the former case, a further distinction is made
between data that is placed on the server and data that is placed on the client device. The stimulus
for data in transit can be the result of attacks during the data flow from the server to the client, and
vice versa, or can take place at the server or client port. These elements are included in the example
client-server architecture for the cloud, illustrated in Figure 2.3. In a PPAP, these states of data can
be found in the data element.

51

4 Privacy-Preserving Architectural Patterns

Portion of Scenario Possible Values
Source of Stimulus Server, client, or external

Stimulus Personal data is disclosed through correspond-
ing source of stimuli

Artifact At rest (client or server), at transit (at client
port, server port, or intersected), or processed

Environment

The system involves one or multiple clients, us-
ing the service in an isolated fashion; client(s),
using the service actively or not; a TPP is in-
volved

Response
Data minimization, hide, aggregate, separate,
storage limitation, or integrity and confiden-
tiality

Response Measure To which extent the data disclosure is prevented

Table 4.1: The general scenario for the quality attribute privacy.

The environment is described by the circumstances of the system: The stimulus may occur during
default service operation, or while the client is not actively using the service; a third party may or
may not be involved; or a client may be using the service in isolation or sharing the service with
many other clients. The environment, constituting the cloud-specific context of an application, is
found in the context of a PPAP.

The response is a realization of any principles, derived in the classification of the privacy, that
is used to avoid or mitigate the stimulus: Data minimization, storage limitation, integrity and
confidentiality, hide, separate, and aggregate. A PPAP is a realization of one or more of these
principles. Considering the discussion about the levels of abstraction in Chapter 2, these principles
provide more abstraction (illustrated in Figure 3.3). They can serve as classification for PPAPs, like
in the work of Hoepman with privacy patterns in general (GDPR data protection principles are
assumed to provide the same level of abstraction) [Hoe14].

To evaluate the success of the response, the extent of personal information the particular attacker
(source of stimulus) can gain, is measured. Response measures are individually tied to the scenario,
but are also tied to one or more of the principles presented. They can either measure, if the
data has been minimized, hidden, aggregated or separated to the extent intended by the response
(data minimization, hide, aggregate or separate, respectively), the data has been stored longer
than necessary (storage limitation), or whether data is protected from unauthorized access and
modification in the case of the principle of confidentiality and integrity. In a PPAP, this part of
the general scenario is reflected in consequences, where the impact of the pattern’s solution is
discussed.

Step 4: Identifying Architectural Tactics and Patterns

Bass et al. suggest using the general scenario to categorize potential architectural tactics. This
thesis deviates from this approach, including the main contribution of this thesis: In the process of
developing the specific scenarios, and the general scenario, the PPAPs are identified. The abstraction

52

4.3 Quality Attribute Privacy

level of PPAPs is located between the specific scenarios and the general scenario. The different
response options of the general scenario, discovered in Step 3, represent higher-level goals a PPAP
follows. A PPAP is identified from the specific scenarios in one of the two following ways: Either a
specific scenario results directly in a PPAP or different specific scenarios are merged to form one
PPAP.

The first situation occurs, when a specific scenario is found and its response element maps the
abstraction of an architectural pattern and follows the principle of proactively embedding privacy
requirements (e.g. fulfilling the privacy properties of the PPAP definition) in the architecture.
One example represents the Pseudonymous Identity Management pattern, presented in Section 4.8.
Inspired by various related works, a specific scenario for the use of pseudonyms is created [Haf06;
MPS13; RBE+12; Sch02]. It fulfills the required properties of following the privacy-by-architecture
principle and providing the level of abstraction. Regarding the characteristics, using a Pseudonymous
Identity Management falls under the hide and minimizing principles. The goal (privacy aspect)
is to protect the identity of a client by using pseudonyms instead of PII. Additional architectural
tactics can optionally be added, derived from other specific scenarios, or from the literature. In the
example of Pseudonymous Identity Management, the pattern is augmented with architectural tactics
in the form of variations, including single sign-on.

The second way of identifying PPAPs results from combining several specific scenarios. One
reason is, if they do not reflect the level of abstraction of an architectural pattern, but are of the
privacy-by-architecture type. Thus, they represent architectural tactics. Different specific scenarios
form a PPAP, when these groupings pursue a goal that is more abstract than any individual one,
but not as abstract as one of the overarching goals from the response part in the general scenario.
This intermediate goal is identified as a PPAP, incorporating the different specific scenarios, e.g.
into the implementation and variants element in the form of architectural tactics. One example is
the identification of the two specific scenarios Homomorphic Encryption and Trusted Execution
Environment. The intermediate goal both are pursuing, consists of processing personal data, while
protecting its content from other participants. Hence, this thesis identifies the intermediate goal to
be Private Data Processing, following the principles of confidentiality and hide. The Private Data
Processing pattern is presented in Section 4.5.

In both cases, the next step is to put the discovered patterns in the form of an architectural pattern
by specifying the individual elements. Section 4.2 presents the template for each PPAP, depicting
each element, e.g. adopted dimensions of Heurix et al. for the respective privacy property elements
[HZNF15]. The fulfillment of each privacy property element must be assessed and inserted accord-
ingly. Relations to other patterns are considered and built in. In this thesis, each pattern is related to
the Client Server Pattern under the element Relations. If a new pattern is added, and it results in
new relations, the affected patterns have to be considered for adjustments. When all elements are
described, the identification of a pattern is completed.

While specific scenarios are not presented in detail (they are included in form of architectural tactics
in each PPAP), this thesis illustrates a PPAP-specific scenario in each corresponding section.

53

4 Privacy-Preserving Architectural Patterns

Omission of the Checklist

After identifying the architectural tactics, the approach of Bass et al. suggests the creation of a design
checklist for the new quality attribute, divided into 7 categories (see Chapter 2). This checklist is
intended to guide an architect, enabling him to consider the important decisions for the respective
software system. In the presented guideline for deriving a quality attribute, the authors conclude
with the creation of the design checklist. Architectural patterns are not created in their process.

In contrast to the work of Bass et al., this thesis identifies architectural patterns which is following
similar goals as the design checklist. Different categories of the design checklist are represented in
the architectural pattern. Second, Chapter 5 proposes a methodology supporting the architect in
finding the appropriate PPAPs for the design of privacy-friendly software architectures. Hence, this
thesis omits the creation of the design checklist.

This section introduces the new privacy quality attribute and its general scenario. The following
sections present the proposed PPAPs, including the PPAP-specific scenario , the architectural tactics,
and concluding the entire pattern according to the template of Section 4.2.

4.4 Client-Side Obfuscation

This section defines the PPAP Client-Side Obfuscation, following the principles of data minimization,
confidentiality and hide.

4.4.1 Scenario

In the following, the PPAP-specific scenario is presented, illustrated in Figure 4.4. A CSP states in
its service level agreements, that it ensures data integrity and recoverability. Thus, instead of saving
the backup on an own external disk, a client decides to put the trust into the cloud service provider.
Another scenario constitutes the storage highly sensitive data from multiple real identities, e.g. the
data is a collection of medical records which must not be disclosed. In this scenario, a client wants
to store data onto the cloud, e.g. doing a backup. This data can contain sensitive information about
the client. The stimulus is the circumstance, in which the server (source of stimulus) learns more
information about the client, than is necessary for the proper functional requirements of the service.
The affected part of the system is therefore the cloud storage (artifact). Storing data on the cloud is
a normal operation, hence does not constitute an unusual circumstance (environment). Response
measure is described by the extent of obtaining personal data that the server should not obtain. In
the best case (in terms of data protection), the server learns nothing about the personal information
of a client. But depending on the cloud-based application, some personal data is necessary for
properly running the service. In this case the extent of gaining personal information should be
limited to the purpose of the service, following the data minimization principle [EU16]. Other data
should be hidden or made confidential.

54

4.4 Client-Side Obfuscation

Artifact:
Cloud storage.Stimulus:

Server gains too
more personal

information than
necessary

Environment:
Storing data on cloud

server

Response:

Client obfuscates
content before

sending data to the
server

Source of
Stimulus:

Server

Response Measure:
Does the server obtain

personal information, which
is not necessary for the
purpose of the service?

Figure 4.4: Specific scenario for Client-Side Obfuscation.

Responding to this problem, the client obfuscates either the whole content, or parts of it, containing
the sensitive information. The most common form of obfuscating the client’s data is to apply
encryption. For encryption, the client uses a secret, which no one has access but itself. The
measurement of the response is reduced to the binary case: The server either can infer the content
behind the masked data, or not.

4.4.2 Architectural Tactics

Three obfuscation tactics are identified, making it difficult for the server to obtain the sensitive
content of the client data.

Client-Side Encryption

The best known method to hide data is to mask it completely from the server. Typically, cryptographic
primitive encryption is used for this purpose. This is also used extensively in the field of security to
fulfill the property of confidentiality. A distinction can be made between asymmetric and symmetric
encryption. The simplest case is where a service is only intended for a single client. In this case,
it is sufficient for the client to generate a key pair, keep the private key for itself, and send data to
the cloud encrypted, using the public key. If several clients use a service jointly, they are usually
required to use asymmetric encryption first. Using the Diffie-Hellman key exchange, they can agree
on a common private secret key. This offers significant performance advantages and is especially
useful when a group of clients does not vary in size. Explaining encryption is beyond the scope of
this thesis.

The corresponding scenario is extracted from the work of Heurix. et al. and Hafiz [Haf13; HZNF15].
For further details, this thesis refers to the work of Singla and Singh [SS13].

Tokenization

In contrast to encryption, tokenization is not based on a mathematical model that converts plaintext
into meaningless (from the perspective of people without a private key) ciphertext, and vice versa.
Also for increased security, the same plaintext must be encrypted into a different ciphertext every
time. Tokenizing is converting a given value of a table (e.g. credit card number or social security
number) or multiple table entries into one randomly different string of characters. Most of the time

55

4 Privacy-Preserving Architectural Patterns

Key: Client Server
Connector with client and server ports

Actor
Component

Data
Processing
Component

Database
Component

Client Server (Cloud Service Provider)

Obfuscator
Client Server Sensitive

Data

Figure 4.5: Sketch of Client-Side Obfuscation.

the length is preserved or normalized. This value does not change and is used in the process as usual.
The goal of the process is to prevent joins over tables with a primary and foreign key, containing
potentially sensitive information, and thus allowing an identification of persons.

There are variants, which differ in where the randomization of the plaintexts takes places and where
the tokens are stored. This can be either on the client side, realized by a proxy (TTP) or on the
server side just before the injection into databases. In the latter case, it is assumed that the server is
not compromised at the time of tokenization. A potential malicious activity occurs at a later time
and then only for a certain period of time.

For further details, this thesis refers to the work of Ang et al. [ATWW15].

Local Differential Privacy

Differential privacy aims at balancing the protection of privacy and the desire to gain as much
knowledge as possible. The server add randomized noise to entries in a database to protect individual
personal data while allowing statistically relevant analysis of the data [Dwo08].

In terms of privacy, local differential privacy provides a stronger concept, by randomizing the data
at the client before sending it. For this pattern, the specific variant local differential privacy is
adopted, since the protection of personal data is performed on the client side and the server never
receives raw personal data.

For further details, this thesis refers to the work of Cormode et al. [CJK+18]

4.4.3 Architectural Pattern

In the following, the PPAP is written according to the template, given in Section 4.2. Its Sketch is
illustrated in Figure 4.5.

56

4.4 Client-Side Obfuscation

Name

Client-Side Obfuscation of Information

Context

In a cloud-based application a client typically sends continuously data to the server, which is then
stored in the database of the server.

Problem

The data sent to the server can include PII, or other kind of data that a client does not want to
share with the server. How can the service prevent the (potential malicious) server from accessing
personal data, which is not necessary for the proper operation of the service?

Privacy aspect

The goal the pattern tries to pursue, is to protect the content.

Attacker Model

The potential malicious adversary is assumed to be the server or a TPP getting data from the server
for further processing.

Aim

The aim is to ensure that the content is stored in a confidential manner.

Data

Personal data is exposed on the CSP storage.

Solution

The content of data or critical parts of the data are hidden from the server by obfuscating the data.
When data is obfuscated, a server cannot deduce the (complete) actual content.

An example architecture is illustrated in Figure 4.5. Obfuscation is performed in the Obfuscator
component. It is part of the client component from the Client Server Pattern. In the example
architecture, the Obfuscator takes entries from a database as input. Other types of input are also an
option, for example generated data from IoT devices. Obfuscation takes place before the data is
sent to the server component, via the client-server connector. Implementing the obfuscation of the
content can vary. For different strategies see Implementation and Variants.

57

4 Privacy-Preserving Architectural Patterns

Implementation and Variants

The following variants are considered for implementation:

• Apply the architectural tactic Client-Side Encryption, using symmetric or asymmetric en-
cryption.

• Apply the architectural tactic Tokenization. This solution variant may involve a TTP.

• Apply the architectural tactic Local Differential Privacy.

Known Uses

One application is the use of a cloud-based service as a cloud storage. Clients do not trust the cloud
service provider, or are afraid of future data breaches. The critical data is stored permanently in the
cloud and, thus masking of information adds a layer of security to the disclosure of such data. This
can be achieved in the single client case, since it can store the necessary keys on its own device.
With multiple clients it is possible to store data such that the information is hidden from the server,
but all other included clients have access to the information (see architectural tactic Client-Side
Encryption).

The second variant is typically used to hide the credit card number [BH13].

Another use case includes data which the service needs for calculating on encrypted data. For
different applications see the Private Data Processing pattern.

Consequences

By obfuscating sensitive information, the server does not learn what is inside the actual data to a
certain extent. Thus, it is made more difficult for the server to draw any inferences about the clients
from the data content perspective.

This comes with a price, though. Depending on the use case, the operation of the service may
be limited or completely cut off. If the main purpose of the service is to calculate on sensitive
information of one or more clients, the use of Private Data Processing is recommended (see
Supplements). But if it is mandatory for the service to access the content of the data, other techniques
have to be considered to preserve as much privacy as possible.

The architect can choose the degree of obfuscation and therefore reversely the degree of linkability
by applying the respective variant presented here, or another variant not presented in Implementation
and Variants. The consequences of the three variants presented are discussed in the following. The
Client-Side Encryption implementation provides the greatest benefit in the degree of obfuscation.
Using state-of-the-art encryption methods, it is impossible, even for attackers with supercomputers
capabilities to access the data in a realistic amount of time. This strength can also become the
greatest weakness: Performing calculations on encrypted data is difficult. For certain purposes,
there are techniques that make it possible to work on them. These application areas are explained in
the Private Data Processing pattern. However, if the server needs the data in plaintext in order to
work with it, e.g., because private data processing is not possible or impractical, this architectural
tactic is not applicable.

58

4.5 Private Data Processing

Comparing to the encryption method, Tokenization has the advantage that the values in databases can
be used without the need for cryptographic keys, while in case of a data breach the substituted values
(database entries in most cases) still remain irreversible. It reduces the linkability, but compared to
encryption, data has a higher degree of linkability.

By allowing statistical analysis on the data, Local Differential Privacy provides a smaller effect on
the confidential protection of the data than the other variants. It represents a trade-off between the
wishes of the data controller (data to process) and the clients (data to be protected). The Differential
Privacy approach works only with larger populations, i.e. many clients have to use the service.

Related Patterns

This solution depends on an existing cloud architecture, constituting a server component, offering a
service to one or more client components. Therefore, it uses the Client Server Pattern as a basis.
The client component is augmented with the Obfuscator component, adding one of the presented
variants, or another tactic introduced by the architect.

This pattern complements the PPAPs Private Data Processing and Private Information Exchange.
As mentioned in Section 4.4.2, Private Data Processing can be added on top of encryption. It
enables the server to calculate on sensitive data, while it does not learn anything about the result and
the input of different participating clients. This solution is applicable if the Client-Side Encryption
variant is chosen. Combined with Private Information Exchange, clients can not only hide the
content from the server, but additionally hide the behavioral patterns of single clients.

In the current catalog of PPAPs, there are no excluding patterns.

4.5 Private Data Processing

This section defines the PPAP Private Data Processing, following the principles of confidentiality
and hide.

4.5.1 Scenario

There are applications with multiple clients, having the same class of sensitive data, wanting to
compute a function together. They consider the use of a cloud as a central point of calculation. Each
client wants to protect its sensitive data from both, other clients and the server. An example of this
can be found in the area of health care, where various institutions store sensitive patient data. For
improving predictions of whether patients will develop a certain disease, a more effective approach
is to collect all data together. The collective analysis is assumed to achieve better results than each
institution making predictions in its own smaller scope. But a institution does not want to (and
often is not allowed to, because of strict regulations) disclose their highly sensitive medical data of
patients in plaintext.

The scenario emerges as follows and is illustrated in Figure 4.6. The server represents the source
of the stimulus, since it is gaining information about sensitive data. Clients are not considered as
source. Depending on the application context, a client wants to protect its data from other clients. A

59

4 Privacy-Preserving Architectural Patterns

Artifact:
CloudStimulus:

Client data is
disclosed Environment:

Processing data on
cloud server

Response:

Use cryptographic or
hardware techniques,
allowing the server to
calculate on hidden

data

Source:
Server

Response Measure:
Does the server learn

anytyihg about the content
of client data? Measure
corresponds to trust the

hardware or the proofs of
the used technologies.

Figure 4.6: Specific scenario for Private Data Processing.

client gains more information about other clients, if the server colludes with it. Section 4.2 defines
the attacker model and makes the assumption, that a server do not collude with clients. Therefore,
a malicious client is not being able to gain more information. The server learns from performing
calculations on this data, the result and the individual inputs of the respective clients. This stimulus
takes place in the cloud (artifact), in the context of processing data (environment). Countermeasures
are technologies, allowing a function to be calculated on the server, without him or other clients
learning the inputs. In addition, the result should be sent to the clients without the server learning
its content. Responses can be cryptographic, or hardware technologies. The measurement is binary:
It is determined whether the server determines the content of the input or the result, or not. Since
it is not measurable for the clients, they rely on the mathematical proofs in case of cryptographic
technologies, or on the trustworthiness of hardware implementation, e.g. by referring to expert
opinions.

The same process can be applied to the case, where a single client wants to use the clouds computing
power to calculate computation-intensive tasks on sensitive data without revealing any content of
the data to the cloud.

4.5.2 Architectural Tactics

Two architectural tactics in form of PETs are presented below. While the first is of cryptographic
nature, the second represents a hardware-based solution.

Homomorphic Encryption (HE)

HE allows the analysis of encrypted data, and gives the same result as if the operations had been
performed in plain text. The returned results are also encrypted.

For calculation on the client’s inputs, each client provides its input in encrypted form to the server.
Without having the secret key, the server is able to perform calculations on encrypted data, provided
by the clients. Neither the server, nor other clients learn the input of a certain client.

Any function can be built from only two operations, addition and multiplication. Modern encryption
methods, which support both operations in unlimited numbers, are called Fully HE methods. Making
HE more practical, weakened variants have been developed with a smaller application scope, e.g.
Somewhat HE. Nevertheless, in most applications, the use of HE is impractical. Following from the
discussion in Chapter 3 [RBE+12; SFH+13], it is considered a potential implementation.

60

4.5 Private Data Processing

Key: Client Server
Connector with client and server ports

Actor
Component

Data
Processing
Component

Database
Component

Server (Cloud Service Provider)

Client
Server

Client

Sensitive 1

Sensitive 2

Client

Sensitive 1

Sensitive 2 Private

Processor

Client 1

Sensitive
Data

Sensitive
Data

Figure 4.7: Sketch of Private Data Processing.

HE is intensively researched, and although there are many remaining open problems [MOO+14],
Naehrig et al. provided serveral use cases where HE in form of Somewhat HE is applicable [NLV11].
Explaining HE in detail is beyond the scope of this thesis. For more information, the work of of
Craig Gentry is referenced [Gen10].

Trusted Execution Environment (TEE)

A trusted execution environment (TEE) is designed to create an isolated environment, cut off from
other applications and data, protecting the execution of applications or the storage of personal data
[SAB15]. A TEE can be understood as a processor-in-processor, which can manage its own keys
and only executes programs whose fingerprint remains unchanged from the original. The trust is
placed in the manufacturer of the processor.

This can be used in the cloud to perform a function within the TEE, with all participating clients
providing their input directly to the TEE. Within the TEE the function is then executed and the result
is returned. Only the manufacturer could access the input of the clients, since it has the necessary
keys.

For more information, the work of Sabt et al. is referenced [SAB15].

Regarding the attacker model, the following assumption is made. When the server (CSP) colludes
with the manufacturer, it is always able to undermine the TEE, gaining the information placed
in the environment. Thus, this thesis assumes this architectural tactic fulfilling the given privacy
requirements in the existence of a malicious server, but requires a TTP in form of the manufacturer.

4.5.3 Architectural Pattern

In the following, the PPAP is written according to the template, given in Section 4.2. Its Sketch is
illustrated in Figure 4.7.

61

4 Privacy-Preserving Architectural Patterns

Name

Private Data Processing

Alias

Secure Multiparty Computation

Example

Various companies from the same sector want to jointly process customer data for analysis purposes.
They decide to outsource the processing to the cloud, requiring their own customer data to be
protected from insight. How can they use the cloud to process the data of each company, while
neither the server nor any other company gain information about their own customer data?

Context

A CSP provides a service for computing different kind of mathematical functions, utilizing its
computational power to perform even computationally intensive calculations in short time. The
service can be used by a single client, or by a group of clients. In the latter case, clients want to
compute a collaborative function taking data from each client as an input.

Problem

Calculation with data may include personal data, which a client does not want to share. The problem
is double-edged: First, the clients do not want to share their input or the result with the server.
Furthermore the other clients are also not supposed to learn anything except the result. The question
is: How can the cloud be used as a central processing unit, allowing the input of each client to be
preserved from the server and other clients?

Privacy aspect

The general goal the pattern tries to achieve, is to protect the content of the inputs and the result.

Attacker Model

The main threat represents the malicious server. But depending on the context, the input has to be
protected from malicious clients as well.

Aim

The data is to be processed in a confidential way.

62

4.5 Private Data Processing

Data

The data is processed on the server side.

Solution

Use of cryptographic or hardware technologies, allowing shared data to be computed without the
server and clients learning more than they are supposed to, according to the constraints given by the
problem.

An example architecture is illustrated in Figure 4.7. Private processing is performed in the Private
Processor component. Since the solution takes place within the server, Private Processor is part of
the server component from the Client Server Pattern. In the example architecture, it takes input data
from different clients, which is transferred via the client-server connector. The Private Processor
can take its input from a database, stored on the server side as well. In this case, the data content
must be hidden from the server, e.g. by encryption. For different implementations of the Private
Processor component, see Implementation and Variants.

Implementation and Variants

The following variants are considered for implementation:

• Apply the architectural tactic Homomorphic Encryption (HE).

• Apply the architectural tactic Trusted Execution Environment (TEE). This solution variant
involves a TTP.

Example Resolved

The companies decide to use a cloud service to perform calculations on the customer data, without
disclosing the specific content of the data to the analytics engine.

Consequences

This pattern allows the processing and storage of data to be outsourced to cloud environments.
The solution performs calculations on client’s data, while preserving the confidentiality of the
information: Neither the server, nor other clients learn the content of a client’s own data.

On the downside, the requirements for being able to apply this pattern are so high, that limitations
are emerging in other areas. In the first variant the approach is secured by mathematical proofs, but
the complexity of their applications is large. In contrast, the hardware solution of the second variant
is dependent on the trust, put on the hardware manufacturer (TTP).

63

4 Privacy-Preserving Architectural Patterns

Artifact:
Server PortStimulus:

Server identifies
Client by examining

the IP address Environment:
When the client

sends or receive data

Response:

Thr client hides the
actual IP address

Source:
Server

Response Measure:
Check IP addresses from

IP packets.

Figure 4.8: Specific scenario for Private Network Access.

Related Patterns

This solution depends on an existing cloud architecture, constituting a server component, offering a
service to one or more client components. Therefore, it uses the Client Server Pattern as a basis.
The server component is augmented with the Private Processor component, adding one of the
presented variants, or another tactic introduced by the architect.

Applying the variant Homomorphic Encryption, the client has to encrypt the data beforehand. In
this case, this pattern complements the Encryption implementation of the Client-Side Obfuscation
pattern, augmenting the client component with the Obfuscator component.

In the current catalog of PPAPs, there are no excluding patterns.

4.6 Private Network Access

This section defines the PPAP Private Network Access, following the second strategy of Hoepman
[Hoe14], hiding personal data (origin of the client request) from the server.

4.6.1 Scenario

One way the server can improve its user profiling capabilities is to observe the IP traffic [KM09].
The server examines the source IP addresses of a client, using the provided service for a certain
time.

The scenario for the Private Network Access pattern emerges as follows, and is illustrated in
Figure 4.8. The attacker of this scenario corresponds to the source of the stimulus, which is in this
case the malicious server. He tries to re-identify the origin of different clients of the service by
monitoring the IP traffic (stimulus). Since it is about IP packets, the scenario is located at the server
port, where the packets enter and leave the system (artifact). The environment is composed of
common communication processes between the server and its clients. The response is to prevent
re-identification by IP traffic monitoring, the client can hide its address from the server by sending
and receiving packets about other stations. The success of this response can be determined by
inspecting the IP packets: Whether the actual address is stored or the address of an intermediary
(response measure). Since the client sends and receives the IP packets via relays, it has to rely on
the technology or intermediary used for this process.

64

4.6 Private Network Access

4.6.2 Architectural Tactics

This thesis identifies two architectural tactics being used in practice. In critical contexts, these
tactics can help to circumvent high levels of censorship, e.g. for bypassing the Great Firewall of
China [And12].

Virtual Private Network (VPN)

A virtual private network (VPN) is a virtual network that allows the client to use services on the
Internet without revealing its IP address.

In the setting of this thesis, it implies first sending data from the client to a VPN server (the
intermediary). Accordingly, the VPN server forwards this data to the server, containing its source
IP address. The CSP can only see the VPN server as the source and at most assume that the client
is located in the area around the VPN server location. To avoid that the VPN server learns the
content of the client’s data, the data is first encrypted with the shared symmetric or public key of the
server. For the response of the cloud server, the same applies in reverse sequence. The connection
between the VPN and the client is encrypted, the encrypted VPN tunnel. It prevents attackers (e.g.
eavesdropper) from determining which connections clients establish, and which destination these
connections have.

For more details about the implementation of VPNs, this thesis refers to the work of Seid and
Lespagnol [SL98].

Onion Routing (TOR)

Applying the onion routing technique, data is encrypted and the traffic sent to the destination server
via multiple nodes, each adding one layer of encryption. Receiving the traffic, the destination cannot
deduce the original source of the data.

One implementation of onion routing is Tor network 2. Tor encrypts a user’s traffic and routes it
through three random nodes of the Tor network while routes are changed every 10 minutes (Hidden
Service Protocol). This makes it almost impossible to track, who the sender of the request is, except
for the first node which knows the IP address of the origin (the entry server)—but these are not
stored by the Tor server. While the Tor browser3 is mainly used for connecting to the Tor network,
the Tor project team gives instructions, how the Tor connectivity can be added to an application4.

For more information about onion routing, the work of Goldschlag et al. is referenced [GRS99],
or see the pattern Onion Routing in the online catalog of privacy patterns created by Doty et al.5
[DGZ15]. McCoy et al. describe the onion routing implementation Tor network in more detail
[MBG+08].

2https://www.torproject.org/
3https://www.torproject.org/download/
4https://gitlab.torproject.org/legacy/trac/-/wikis/doc/TorifyHOWTO
5https://privacypatterns.org/patterns/Onion-routing

65

https://www.torproject.org/
https://www.torproject.org/download/
https://gitlab.torproject.org/legacy/trac/-/wikis/doc/TorifyHOWTO
https://privacypatterns.org/patterns/Onion-routing

4 Privacy-Preserving Architectural Patterns

Key: Client Server
Connector with client and server ports

Actor
Component

Client Server (Cloud Service Provider)Client Server

Server Hider Client

Figure 4.9: Sketch of Private Network Access.

4.6.3 Architectural Pattern

In the following, the PPAP is written according to the template, given in Section 4.2. Its Sketch is
illustrated in Figure 4.9.

Name

Private Network Address

Alias

Anonymous Network Communication

Example

Clients authorize themselves to a video streaming service using privacy Privacy-Preserving Trust
Establishment to validate their age (see Anonymous Authorization). They watch videos at irregular
times and in varying patterns to avoid further user profiling.

Context

Clients intend to access a cloud-based service while remaining anonymous. Reasons for this
can be the use of the service including sensitive data, that an individual client does not want to
disclose. Other anonymization solutions are already in use to protect privacy, such as Anonymous
Authorization and Location Granularity.

66

4.6 Private Network Access

Problem

Despite the fact that other privacy-preserving solutions are in use helping to make clients more
anonymous, the server can nevertheless obtain information about the identity of the client by learning
the origin of each client using the IP address. The following question arises: How to prevent the
server from gaining sensitive information about a client by inspecting the IP address while the client
is using the service (communicating with the server)?

Privacy aspect

The goal the pattern tries to achieve, is to protect the identity of the client by providing anonymity.

Attacker Model

In the scoped of cloud-based applications, as used in this thesis, clients connect directly to the server.
Also in case of interaction with other clients, the messages are first sent to the server, which in most
cases are processed and then sent to the other clients in some form. Thus the server is the main
attacker in this problem.

Aim

The aim is to achieve anonymity by making properties, here the origin of the data, unlinkable.

Data

This problem addresses the origin of data packets transmitted by the clients arriving at the server
node.

Solution

Hide the IP address of the clients by connecting to the cloud through an intermediary.

An example architecture is illustrated in Figure 4.7, using the Client Server Pattern. Instead of
direct connection between server and client, a Hider component is placed in between. It splits the
connector into two connectors, which connect the client and the server to the Hider, respectively.
The Hider can be implemented by the architectural tactics VPN or Tor variants. It forwards the
data packets in the appropriate direction without revealing the IP address of a client. Any traffic is
routed through the Hider, which prevents the server from learning the client’s IP address.

67

4 Privacy-Preserving Architectural Patterns

Implementation and Variants

The following variants are considered for implementation:

• Apply the architectural tactic Onion Routing.

• Apply the architectural tactic Virtual Private Network (VPN). This solution variant involves a
TTP.

• Combine the previous variants implementing the Onion over VPN approach by implementing
the clients application that it first connects to a VPN server and uses Tor from then on.

Example Resolved

The problem in the video platform example is that even though other anonymous solutions have
been applied, the server nevertheless can learn the origin of the clients packets. One solution is to
build the architecture with a VPN Server between the CSP and the clients. All future connections
from the clients, in form of IP addresses of the clients, are hidden from the server.

Consequences

Using this solution, clients are able to access cloud-based services without revealing their IP address.
However, the implementation of this solution also has disadvantages in terms of performance or
trustworthiness.

Although improvements can be made, the speed of using the Tor network is reduced compared
to the connection without Tor. It becomes even less as the ratio of Tor users to relays bandwidth
increases [DM09].

As far as trust is concerned, this thesis differentiates between two types.

In case of Onion Routing, trust is put into the technology, which is in this case open-source software
(OSS). A large OSS community for comprehensive review by community experts and continuously
code improvements are major components to provide high quality software [Abe07], which are
present int the Tor project. Regarding trusting the exit nodes in Tor, the probability that these are
malicious or incorrectly configured is negligible [WKM+14].

With VPNs, the trust is placed in the VPN Server resulting in a scenario including TTP.

Related Patterns

This solution depends on an existing cloud architecture, constituting a server component, offering a
service to one or more client components. Therefore, it uses the Client Server Pattern as a basis.

This pattern complements patterns aiming to enhance the anonymity of clients regarding the privacy
aspect identity, e.g. Anonymous Authorization. This solution does not protect against a server
analyzing the behavior. To protect the clients’ behavior, Private Information Exchange supplements
this solution.

68

4.7 Private Information Exchange

Artifact:
Server port.Stimulus:

Server obtains
information by

observing client
patterns without
examining the

incoming packets.

Environment:
Standard processes.

Response:

Client hides behavior
from Server.

Source:
Server

Response Measure:
Server cannot distinguish
clients in terms of access

patterns.

Figure 4.10: Specific scenario for Private Information Exchange.

In the current catalog of PPAPs, there are no excluding patterns.

4.7 Private Information Exchange

This section defines the PPAP Private Information Exchange following the second strategy of
Hoepman [Hoe14], hiding PII (client behavior) from the server. In addition, some variations apply
the principle of separate.

4.7.1 Scenario

Even if the server cannot read the content of incoming messages (e.g. by applying the client-side
obfuscation pattern) and the origin of the IP address is obfuscated (Private Network Access pattern),
client behavior patterns can reveal sensitive information about the person behind the client.

The scenario for the Private Information Exchange pattern emerges as follows and is illustrated in
Figure 4.10. In this scenario, the source of the threat is the server. The stimulus emerges when the
server can extract sensitive information from the behavior of the clients, and occurs during default
sending and receiving (environment) of data on the server port (artifact). Clients can avoid the
stimulus by concealing their behavior from the server by excluding it from communication to a
certain degree, compared to normal communication. The response is successful, if the server is not
able to create a profile from the behavior or at least only as far as the response allows.

4.7.2 Architectural Tactics

Below, architectural tactics are presented preventing the server from analyzing the behavioral
patterns of clients.

Broker

One way to hide the clients behavior from the server, is to put a broker between clients and the
server, which is considered to be trustworthy. It receives all messages from the clients and acts as a
client towards the server by accessing data in the cloud on behalf of the respective client. It then
forwards the responses to the respective clients.

69

4 Privacy-Preserving Architectural Patterns

Client-Centric Control and Communication

This architectural tactic aims at ensuring that the server does not receive the sensitive data. It suggests
to move parts of the cloud service to the client side by means of direct client communication, or
processing of data at the clients devices.

The cloud scope described in Section 4.1 is modified, allowing direct communications between
clients: Clients can interact by not transmitting all messages exclusively through the malicious
server. Thus, control is placed in the hands of the clients by communicating directly with each other.
Another approach is to avoid communication with the server, by storing and processing parts of the
personal data on the client side.

This architectural tactic is extracted by the specific scenario explored in the German Corona Warn
App6, which implements direct communication via Bluetooth in local proximity. Moving the control
of personal data towards the client complies with the approach of enhancing privacy by building
client-centric software architectures [SC08].

Metadata-Hiding Communication

Metadata-Hiding communication allows client communication with the server, without revealing
when an actual data transfer takes place. A client sends either messages with meaningful content
or fake ones (dummy traffic [BL02]). The effectiveness of this approach depends on the server
not being able to distinguish between the fake and real messages. Thus, data is obfuscated by the
clients in such a way that the server cannot tell when it is fake entries and when it is not. Client-Side
obfuscation is presented in the respective pattern in Section 4.4.

This architectural tactic is extracted by the specific scenario explored in the work of Eskandarian
et al. [ECM20]. They propose a payment splitting application, enhancing privacy by having all
participants upload entries at specific times [ECM20]. When no entry needs to be uploaded, a fake
messages is being sent instead.

Information Broadcasting

This architectural tactic prevents the server from knowing when a client receives personal data. It
sends a bundle of data with personal information to multiple clients in regular intervals. Respective
clients can select the data they are interested in from the bundle, making it difficult for the server
to find out which client has received which data. In contrast to the previous tactic, it protects the
behavior of clients in the event of data flows from the server to the clients.

This architectural tactic is extracted by the specific scenario explored in the German Corona Warn
App7. The server provides a list of information, containing the corresponding keys of infected
persons. In the process of Direct Client Communication, clients exchange keys with other clients
nearby. These obtained keys allow a client to detect an infected person in the list it has encountered
in the past. The application differs in that the list is made available online and clients can download

6https://www.coronawarn.app/en/
7https://www.coronawarn.app/en/

70

https://www.coronawarn.app/en/
https://www.coronawarn.app/en/

4.7 Private Information Exchange

Key: Client Server
Connector with client and server ports

Actor
Component

Direct bommunication between clients

Server (Cloud Service Provider)

Server

ServerServer

Client

Client

Sensitive
Data

Client

Client

Sensitive
Data

Client

Client

Sensitive
Data

Figure 4.11: Sketch of Private Information Exchange.

it anytime. Since there is no login mechanism, it is difficult for the server to figure out which clients
are accessing the list. Therefore, the clients’ behavior patterns are considered to be protected in the
Corona Warn App as well.

4.7.3 Architectural Pattern

In the following, the PPAP is written according to the template, given in Section 4.2. Its Sketch is
illustrated in Figure 4.11.

Name

Private Information Exchange

71

4 Privacy-Preserving Architectural Patterns

Context

A cloud service is offered whose purpose includes the interaction of multiple clients. All communi-
cation takes place via the server as intermediary.

Problem

Acting as intermediary, the server is able to gain sensitive information about each client by analyzing
the behavioral (service access) pattern. When within a group of clients, for example, one client is
sending significantly more messages or messages at certain times, the server can use this metadata
to improve its user profiling of the clients.

The question arises: How can the server be prevented from monitoring the behavioral pattern of its
clients by examining the communication flows?

Privacy aspect

The goal this pattern tries to achieve, is to protect information disclosed by behavioral patterns.

Attacker Model

The attacker in this pattern is the malicious server, which tries to gain information by analyzing the
behavioral pattern.

Aim

The solution aims to make the accesses of a client indistinguishable from other accesses of the same
client or others.

Data

This pattern deals with the information flow between clients and server; thus addresses data in
transit.

72

4.7 Private Information Exchange

Solution

Clients hide their behavior from the server. There are several ways to achieve this. One is to exclude
the server from the client’s service usage to some extent. Another way is to modify the server’s
perceived view by modifying the client’s behavior artificially.

An example architecture is depicted in the following, using the Client Server Pattern and the
Client-Centric Control and Communication variant. In addition to the connectors between each
client and the server, connectors are established between clients. These connectors enable direct
communication between clients to the exclusion of the server. Each client is assigned an additional
memory component for storing personal data (client-centric control).

Implementation and Variants

The following variants are considered for implementation:

• Apply the architectural tactic Broker.

• Apply the architectural tactic Client-Centric Control and Communication.

• Apply the architectural tactic Metadata-Hiding Communication.

• Apply the architectural tactic Information Broadcasting.

There are various combinations possible for simultaneous implementation, e.g. Information Broad-
casting for protecting data from the server to the client and Client-Centric Control and Communica-
tion vice versa.

Known Uses

At the time of writing, the nationwide available Corona warn App is used to reduce the spread of
SARS-CoV-2 in Germany. People using the app are informed when they had contact with a person
who is tested positive. Here the second variant comes into play. The disclosure of peoples’ behavior
is protected by only communicating with nearby persons via Bluetooth. Only a person found positive
is sending her or his encrypted key to the server while the others do not upload anything at all. Thus
the server never knows which persons had contact or where in the same place at the same time. In
the corona case, this solution is complemented by the pattern Information Broadcasting.

Consequences

All variants ensure that the clients can run the service while, with respect to the clients behavior,
keeping the server in the dark.

Using a Broker as intermediary can completely prevent the server from gaining information by the
behavioral pattern. In case the broker handles each client separately, it can buffer messages and
send it at a later time. When it sends all receiving messages from the clients, acting as one client
itself, their behavior is protected since the server never knows which clients are connecting. The
broker approach comes also with some downsides. First it can be a single point of failure meaning

73

4 Privacy-Preserving Architectural Patterns

in case of a breakdown, no message can be received and forwarded to the server; and vice versa.
Second, the broker carries great responsibility by acting on behalf of the clients. Therefore, it has
to be considered trustworthy from the clients point of view. In addition, The scope of possible
applications for a service may be limited.

The second variant, Client-Centric Control and Communication, protects from the server analyzing
the pattern and does not need a TTP. However the decreased controllability of the server comes
also with a price. If the service requires the processing of this sensitive data, excluded from the
communication with the server, it is not an option.

While the degree of indistinguishability is less, the Metadata-Hiding variant on the other hand
allows the server to use the data sent by clients. Since Client-Side Obfuscation is needed (see related
patterns), this solution only works if the server still can process the encrypted data or it does not
have to process it at all. For processing on encrypted data, see the Private Data Processing pattern.
Using this pattern, though, probably introduce new downsides like reduced performance of the
service. Thus, a service with too many clients may be not applicable.

Information Broadcasting protects the behavior for data sent from the server to the clients. Clients
may unintentionally learn about sensitive data from others, which is why additional mechanisms
such as encryption can be employed, see supplements. Another disadvantage is that the server sends
more than in normal operation, where individual messages are sent to clients. Furthermore, the size
of the bundle could be a problem, for example for low-powered devices.

Related Patterns

This solution depends on an existing cloud architecture, constituting a server component, offering a
service to one or more client components. Therefore, it uses the Client Server Pattern as a basis.

The server can detect fake messages by looking at the content if the metadata-hiding approach is
chosen. In the case of Information Broadcasting, the same holds true for other clients which could
learn more than it is intended. Therefore, this pattern complements Client-Side Obfuscation hiding
the actual content can be supplemented for these two variants.

In the current catalog of PPAPs, there are no excluding patterns.

4.8 Pseudonymous Identity Management

This section defines the PPAP Pseudonymous Identity Management, adhering the following strategies
[Hoe14]: Hiding and minimizing the disclosure of PII, by using pseudonyms.

4.8.1 Scenario

One possible scenario for this PPAP is explained in the following, and illustrated in Figure 4.12.

A client subscribes to a service and interacts with other clients. During registration, he provides PII
to the server, for example, full name and location. The stimulus consists of revealing this personal
information to other clients (source of stimulus), while they are communicating. Interaction with

74

4.8 Pseudonymous Identity Management

Artifact:
Stored dataStimulus:

While interacting with
other clients, a client

learns information
about the identities by
looking at the names

Environment:
Default service
operation with
multiple clients

Response:

Use pseudonyms
instead of personal

identifiable
information

Source:
Client Response Measure:

Other clients do net learn
the identity from the name

Figure 4.12: Specific scenario for Pseudonymous Identity Management.

other clients represents a regular process within the service operation (environment) and concerns
data stored on the cloud (artifact). The problem is eliminated by the server allowing clients to use
pseudonyms (response). During registration, a client can choose a pseudonym. When interacting
with other clients, this pseudonym is presented instead of other PII. The strength of the response
is measured by the degree of linkability (response measure). E.g., a client chooses a pseudonym,
consisting of the first letter of his first name and the complete last name. The linkability is potentially
greater than with a randomized pseudonym.

The server can form the source of the stimulus as well. Pseudonyms can provide a more anonymous
registration. Therefore, this pattern can enhance privacy, increasing unlinkability of the client.
However, in some applications, personal data is needed for the service to operate properly, giving
the server access to this data regardless. This thesis assumes the client to be the main attacker. Since
there are use cases, where pseudonymization also protects against the server (e.g., registration in
forums), the server is included in the pattern as a possible attacker.

4.8.2 Architectural Tactics

Three architectural tactics are identified and presented below, establishing pseudonyms in different
ways. Choosing the pseudonym is done by the server (e.g. random created user name) or by the
client.

Pseudonymous Registration on-Premises

The pseudonym is chosen and stored during registration on the server side.

Pseudonymous Registration via Single Sign-On

The server implements single sign-on (SSO), and acquires the pseudonym from the identity
provider.

Pseudonymous Registration via Privacy-Preserving Trust Establishment

During privacy-preserving trust establishment, the server adopts the token id as a pseudonym. For
example, privacy attributed-based credentials can be used and the pseudonym is given in the process
of trust establishment.

75

4 Privacy-Preserving Architectural Patterns

4.8.3 Architectural Pattern

Name

Pseudonymous Identity Management

Alias

Use Pseudonyms.

Context

Clients using a service interact with each other. Representative names have to be used for interactions
in the future to resort to these names allowing a client to recognize other clients by their names.
E.g. on social networking platforms a client can look up a client by remembering its name or scroll
through a list of names.

Problem

This name can contain sensitive information usable for the re-identification of a client. For example,
if the first and last name is used in combination with other sensitive information of its profile, these
can be combined to link the respective client to the real person behind.

The following question arises: How to prevent other clients from seeing personal information of a
client while interacting with it.

Privacy aspect

The goal this pattern tries to achieve, is to protect the identity by providing pseudonymity.

Attacker Model

One source of threats is represented by other clients which can gain sensitive information. They are
assumed to follow the protocol as it is intended.

In addition, the attacker model includes the server. It can access PII, provided by the clients.

Aim

This pattern aims to provide a solution for supporting unlinkability of a client to the real identity.

76

4.8 Pseudonymous Identity Management

Data

The names are stored on the server.

Solution

The server stores a pseudonym for each client with which it logs into the system and interacts with
other clients. Typically, a database is used in which the pseudonym and an associated password
are stored. The client can log in and interact with other clients without revealing PII. From an
architectural perspective, for example, a database as well as a login and registration mechanism are
represented by corresponding components on the server side. The way a pseudonym is established
can vary, depicted in the Implementation and Variants element.

Implementation and Variants

For the implementation of the pseudonym generation the following variants are considered:

• Apply the architectural tactic Pseudonymous Registration on-Premises.

• Apply the architectural tactic Pseudonymous Registration via Single Sign-On.

• Apply the architectural tactic Pseudonymous Registration via Privacy-Preserving Trust Es-
tablishment.

Consequences

Using pseudonyms mitigates the disclosure of sensitive information, enhancing unlinkability.

As discussed in the consideration of the privacy aspect in Section 4.2, the usage of pseudonyms
impact the degree of unlinkability. The following trade-off can occur: Providing high unlinkability
by choosing a random pseudonym results in decreased usability, when clients are interacting with
each other.

The attacker model comprises clients and the server. But some applications require personal
information for running the service. This data the server can access regardless.

A hybrid approach is possible, where pseudonyms are only used for a single session. Then the
degree of linkability is between pseudonymity and anonymity. Anonymity is provided between
sessions and pseudonymity within a session.

77

4 Privacy-Preserving Architectural Patterns

Artifact:
Stored dataStimulus:

While using the
service, the client
reveals personal

identifiable
information

Environment:
Authorization

Response:

Provide anonymous
authorization

Source:
Server

Response Measure:
Server does not learn
personal identifiable

information with respect to
the authorization process

Figure 4.13: Specific scenario for Anonymous Authorization.

Related Patterns

This solution depends on an existing cloud architecture, constituting a server component, offering a
service to one or more client components. Therefore, it uses the Client Server Pattern as a basis. If
the third variant, Pseudonymous Registration via Privacy-preserving Trust Establishment is used,
the pattern Anonymous Authorization has to be applied in addition. It provides the usage of privacy
attribute-based credentials.

In the current catalog of PPAPs, neither excluding, nor complementing patterns are found.
Pseudonyms are often used in practice, independent of other technologies (or patterns).

4.9 Anonymous Authorization

This section defines the PPAP Anonymous Authorization. It adheres to the following strategies:
Minimizing personal data, by hiding it from the server.

4.9.1 Scenario

One possible scenario for this PPAP is depicted in the following, and illustrated in Figure 4.13.

To use a cloud-based service, a client must verify certain characteristics, e.g. the age. During
registration, a client discloses personal data, which can be exploited by the server to infer the
identity (stimulus). The source of stimulus is therefore the server. Since the client has to verify
properties, the stimulus concerns the environment of authorization. The concerned data is located
on the server (artifact). Responding to the stimulus, the server provides registration via anonymous
authorization. With such techniques, clients can use the service without revealing personal data.
To enable anonymous authorization, a TTP is usually assumed. The response measure is binary:
Either the server learns PII in the authorization process through credentials, or it does not.

Other clients are not involved in the authorization process and therefore not considered as source
of stimulus. Unless they collude with the server, or exploit a vulnerability in the system, they are
not able to gain personal data in that process. Both variants are excluded in this thesis: Section 4.2
states that collusion between server and clients is neglected due to the scope defined in Figure 4.1
(public cloud). Eliminating vulnerability is the responsibility of the server and falls into the security
domain.

78

4.9 Anonymous Authorization

4.9.2 Architectural Tactics

Two architectural tactics are identified, preventing the server to gain personal information of the
client in the authorization process.

Privacy-Preserving Trust Establishment (PPTE)

Attribute-based credentials allow servers to grant clients the use of a service by revealing only
data (the attributes) necessary to be permitted the use of the service (e.g., being of a certain age).
Although this architectural tactic requires a TTP for setting up the credentials in the first place, the
presence of the TTP in the authorization process is not mandatory.

For implementations see the work of Camenisch and Van Herreweghen, Persiano and Visconti, or
Paquing and Zaverucha [CV02; PV04; PZ11].

Single Sign-On (SSO)

The server implements single sign-on (SSO), putting the trust to a third party (the identity provider).
SSO describes a logon procedure that grants a user access to multiple services and resources after a
one-time authentication at a trusted third party (identity provider). For more details about SSO, this
thesis refers to the work of De Clercq [De 02].

4.9.3 Architectural Pattern

Name

Anonymous Authorization

Example

A service provides a video streaming platform with some movies containing mature content. Only
people that are at least 18 years old are allowed to watch these videos.

Context

Clients registering at the provided cloud-based service.

Problem

Registering disclose sensitive information of the clients. How to prevent the server from gaining
sensitive information about the clients when they register?

79

4 Privacy-Preserving Architectural Patterns

Privacy aspect

Anonymity (identity). The goal this pattern tries to achieve, is to protect the identity by providing
anonymity.

Attacker Model

The main threat represents the malicious server since it is involved in the process of registering.

Aim

The solution aims for increasing the indistinguishability and unlinkability of clients.

Data

Sensitive information is stored in the cloud (server). This solution addresses the problem of storing
personal information.

Solution

Instead of having to register with personal data, clients use anonymous authorization techniques
that allow them to prove properties without revealing other personal data.

From an architectural point of view, an authorization component is added to the connector port on
the server side. Verifying the required properties varies depending on the implementation variant.

Implementation and Variants

The following variants are considered for implementation:

• Apply the architectural tactic Privacy-Preserving Trust Establishment (PPTE).

• Apply the architectural tactic Single Sign-On (SSO).

Example Resolved

Clients authorize with attribute-based credentials. The server only learns that a user is of accepted
age or not.

80

4.10 Access Control

Consequences

Clients stay anonymous and are not linkable between different sessions, because from the server’s
point of view, each client is different.

The first simple variant is the easiest to implement, but does not provide the control of clients
fulfilling specific properties.

Another downside is the trade-off with usability. There are only few use cases where this solution
can be applied. Since it is the nature of services themselves, they often rely on user interactivity
and storing information. In this case, it is recommended to consider the Pseudonymous Identity
Management pattern.

For both variants, usability can be increased by using cookies. But especially when the same cookies
are used between different sessions, the privacy aspect vanishes.

Independent of the variant, the server is able to analyze the behavioral pattern of each client, for
example when clients are watching the same type of videos at the same time everyday. If cookies
are used, the degree of linkability increases as well.

Related Patterns

This solution depends on an existing cloud architecture, constituting a server component, offering a
service to one or more client components. Therefore, it uses the Client Server Pattern as a basis.

This pattern complements patterns aiming to enhance the anonymity of clients regarding the privacy
aspect identity, e.g. Private Network Access. In conjunction with the pattern Pseudonymous Identity
Management, anonymous authorization can be chosen as a starting point for a client to prove certain
properties and then to continue using the system with a pseudonym and password.

In the current catalog of PPAPs, there are no excluding patterns.

4.10 Access Control

This section defines the PPAP Access Control adhering to the following strategies: Preserving the
confidentiality of a clients data, and hiding it from other clients.

4.10.1 Scenario

The PPAP-specific scenario is depicted in the following, and illustrated in Figure 4.14.

Multiple clients use a service. There is the risk of a client being able to access more data from
another client, than is necessary for the regular operation of the service (stimulus). Therefore, clients
constitute the source of the scenario. The artifact concerns elements, accessing data on the server
side. The environment involves the regular operation of multiple clients, where the clients are

81

4 Privacy-Preserving Architectural Patterns

Artifact:
Stored dataStimulus:

A client has access to
more personal data
about other clients
than it is necessary

Environment:
Default service
operation with
multiple clients

Response:

Server implements
access control

mechanism

Source:
Clients

Response Measure:
The client can not see

(personal) data of other
clients than is necessary

for the regular operation of
the service.

Figure 4.14: Specific scenario for Access Control.

considered honest but curious. The stimulus is solved by the server, implementing access control
mechanisms (response). The response measure is the degree, to which a client might access data
from another client that it should not be able to access.

4.10.2 Architectural Tactics

One architectural tactic is identified and presented in the following: Limited Access.

This thesis assumes privacy and security forming two different fields overlapping in partial areas.
For example, some security measures can be applied to protect personal data, as in the case of
confidentiality and integrity. Schumacher et al. presented patterns for the field of security in software
engineering [SFH+13]. Part of these are the system access control architecture patterns, including
the Limited Access pattern. This pattern is used to design architecture components, restricting users
to access only certain data and deny the access to other data. In case of this thesis, this pattern is
adopted as an architectural tactic, restricting access to personal data, that a client may or may not
access.

The pattern involves the usage of other patterns as prerequisite (corresponding to the dependency
property of the Related Patterns element). For detailed descriptions of the patterns, this thesis
references to the work of Schumacher et al. [SFH+13].

4.10.3 Architectural Pattern

Name

Access Control

Context

Multiple clients use a service provided by the CSP by provisioning individual physical IT resources
to multiple clients.

82

4.10 Access Control

Problem

Multiple clients can access the same storage and use the same functions other clients use. The
risk arises that a client can use this to access resources and functions of other clients containing or
providing sensitive data, respectively. The question arises: How can the server prevent one client
from gaining sensitive information from another client, despite sharing individual IT resources with
multiple clients?

Privacy aspect

Unauthorized access is restricted to gain sensitive content of another client.

Attacker Model

The attackers constitute clients that are assumed to be malicious.

Aim

The content is kept confidential so that other clients do not gain access to sensitive information they
are not supposed to.

Data

The solution is targeted at data, which is stored on the server.

Solution

Access control mechanisms are used to logically separate the IT resources used by the clients and to
ensure that a client can only access the data that the service involves.

From an architecture perspective, components are added on the server side that restrict client access
to certain areas, e.g. components by the Limited Access pattern.

Implementation and Variants

The architectural tactic Limited Access is considered for implementation.

83

4 Privacy-Preserving Architectural Patterns

Consequences

Access control allows to set access permissions for clients, allowing clients to access only the
personal data within their access permissions. With the required security measures in place, this
makes it significantly more challenging for malicious clients to access unauthorized data.

A disadvantage is the higher costs for implementation and maintenance compared to other architec-
ture measures.

Related Patterns

This solution depends on an existing cloud architecture, constituting a server component, offering a
service to one or more client components. Therefore, it uses the Client Server Pattern as a basis.

In the current catalog of PPAPs, neither excluding, nor complements patterns are found.

84

5 Methodology

The architect’s task is to incorporate the various interests of the stakeholders into the software
architecture. Addressing the quality attribute privacy, Chapter 4 establishes the definition of a
PPAP, and identifies 7 PPAPs. The architect can leverage their structure to select the appropriate
patterns, for building a privacy-friendly software system. The catalog of PPAPs is not complete,
implying more patterns can be added in the future. Each Pattern can contain variants in the form
of architectural tactics. Therefore, an architect has potentially many combinations of solutions
available. The question arises how an architect chooses the appropriate patterns and variations, that
can be used in a specific application context. The context is given by the stakeholders’ interests,
and the scope of the system. This chapter proposes a methodology for PPAP selection, solving this
problem.

This chapter is structured as follows: First, the objectives of the methodology are presented. Then,
Functional Principle and an Overview outlines the structure of the methodology and includes
incorporation of the considerations from Chapter 3. The subsequent sections describe the individual
steps in detail.

5.1 Objectives

The methodology aims at fulfilling the following objectives: Reproducibility, effectiveness, low
complexity in use, and transferability to other pattern domains.

The methodology should be reproducible, implying it outputs the same selection of patterns when the
architect reruns it in the same environment. The environment constitutes the privacy requirements,
application context and the pattern catalog. It should always select PPAPs and output the ones
that are needed and applicable in the architect’s context (effectiveness). The application of the
methodology is supposed to be straightforward and not to require much expertise (complexity). The
methodology ought to be applicable independent of the type of pattern and domain the patterns
address.

Chapter 7 discusses the achievement of these objectives, considering the application to the method-
ology on the use case in the next chapter.

5.2 Functional Principle and Overview

The first part of the methodology consists of the pattern elicitation, illustrated in Figure 5.1. There
are 3 major components in the elicitation process: The pattern catalog, the architect, and the pattern
elicitation. The pattern catalog consists of the 7 identified PPAPs and provides one input to the

85

5 Methodology

Pattern ElicitationPrivacy-Preserving
Architecture Patterns

Application
Context Pattern Selection:

Pattern 1
Pattern 2

.

.

Pattern n

Privacy
Requirements

Architect

Figure 5.1: Abstract View of the Pattern Elicitation.

pattern elicitation. The architect provides the scope as well as the privacy requirements of the
system to the pattern elicitation. The pattern elicitation then automatically performs its selection
part of the process and returns a subset of the patterns given from the catalog. The architect decides
on the final selection of the remaining patterns and on their implementation variant. In the following,
the functional principle of the methodology is presented first; and then the individual steps are
presented.

The definition of a PPAP includes privacy properties, adapting the privacy dimensions of Heurix et
al. to match the abstraction level of architectural patterns: Privacy aspect, attacker model, privacy
aim and data [HZNF15]. Each PPAP addresses these embedded privacy properties in a different way,
which allows the selection of the appropriate patterns, depending on the given privacy requirements.
Selecting PPAPs comprises four steps, illustrated in Figure 5.2.

The systems of Pearson et al. address privacy patterns that follow the privacy-by-policy principle
and do not have the abstraction level of an architectural pattern [PB10; PS10]. This thesis proposes
a methodology for the selection of PPAPs, constituting a semi-automated approach. It considers the
privacy properties a PPAP fulfills, takes into account the contextual environment of the software
system, and saves the architect from having to go through guidelines. Following the different
stakeholder’s interests, the architect decides which privacy properties the software system has to
fulfill, e.g. protecting the identity in case of privacy aspect. The contextual environment specifies
the scope of the system, e.g. the involvement of third parties or the amount of clients.

In cloud computing, Pearson claims that PIAs are preferable to design patterns, because the template
structure of a pattern cannot cover the situation-specific context [Pea09]. The selection process
presented here addresses this issue, by incorporating the context and privacy properties with the
support of the architect. The architect eventually decides which patterns to implement and considers
the architectural tactics for the implementation. The choice of implementation also affects the
trade-offs with respect to other quality attributes, and is addressed within the PPAPs consequences
element.

86

5.2 Functional Principle and Overview

2. Privacy-Driven Elictation

1. Setting-Driven
Elicitation

Aspect-Driven
Elicitation

Attacker Model-
Driven Elicitation

Aim-Driven Elicitation

4. Pattern Selection

Privacy-
Preserving

Architectural
Patterns

3. Relation-Driven
Elicitation

Figure 5.2: Overview of the methodology: Steps of the pattern elicitation (1-3) and the final step
of the architect’s selection (4).

The first step considers the situation-specific context, referring to the scope, presented in Section 4.1.
Step 2 determines the privacy properties: Privacy aspect, attacker model, and aim. They are
combined in one step, since their order can be chosen arbitrarily. The sequence of first considering
the privacy aspect, then the attacker model and finally the aim, is chosen, as it is assumed to
represent the properties in descending order of importance. The data element is not considered, as
it is assumed to be irrelevant for the selection of PPAPs. It is intended to give additional information
about the problem description, for the architectural view and the implementation in the next SDLC
phase. The second last step evaluates the PPAPs’ relations, included in the respective related
patterns element. Finally, the architect decides on the selection of the remaining patterns, including
the choice of implementation (listed in the implementation and variants element).

If the outcome is not satisfying, the architect can trigger a new run of the process, or jump back to a
specific step to change the specific parameters. For example, the architect first attempts to design
the system providing anonymity, and select the privacy aspect to be fulfilled only with patterns
providing anonymity (identity). The methodology does not output any satisfying patterns. After
consulting with the stakeholders, the architect re-runs the process, changing the privacy aspect to
be fulfilled by protecting the identity through pseudonyms.

In the beginning, the complete pattern catalog is available. Each elicitation step reduces this set of
patterns, depending on the decisions set by the architect. After an elicitation, the remaining patterns
are passed on to the next step.

In each elicitation of step 2, the architect has the possibility to maintain the pattern set, by not
deciding on any specific value for the respective privacy property. This action is called skip, because
maintaining the current set of patterns is the same as skipping the particular step.

In the following, all steps are described individually, concluding with an illustration of the remaining
patterns for each step, except 4. For clarity, each elicitation assumes the full pattern catalog as input,
avoiding the presentation of all potential combinations. The same result is achieved by intersecting
(in terms of the set theory) the outputs of each elicitations.

87

5 Methodology

Pattern |C| = 1 |C| > 1 TPP TTP
Client-Side Obfuscation No Yes No No
Private Data Processing Yes Yes Yes No
Private Network Access Yes Yes Yes No
Private Information Exchange No Yes Yes No
Pseudonymous IDM Yes* Yes Yes No
Anonymous Authorization Yes Yes* Yes No
Access Control Yes* Yes Yes Yes

Table 5.1: Setting-Driven Elicitation: Passing on variants dependent on the scope settings |� | = 1
(exactly one client), |� | > 1 (multiple clients), TPP (is involved in the system), and
TTP (is considered for the solution). A cell marked with yes implicates the forwarding
of all variants, and no otherwise. Cells marked with a star (*) are special cases being
discussed in the respective section.

5.3 Setting-Driven Elicitation

Section 4.1 defines the scope of this thesis, depicting the involved participants. This step examines
the situation-specific variation of this scope. In contrast to the other steps, which reduces entire
patterns, the variations (architectural tactics) of patterns are investigated. These settings are not
embedded in a PPAP, since they depend on the specific situation of the considered software system
and on specific architectural tactics.

The first two settings examine the amount of clients using a cloud service in isolation: Either one
client uses a service in isolation, or multiple clients. Involvement of third parties determines the
remaining two settings. There are two types of third parties: TPPs for further processing of personal
data and TTPs that have to be involved to fulfill a certain privacy property.

In the following, for each of the four settings, all pattern variants are examined and inappropriate
ones are eliminated. Step 5 uses this elicitation to select variants for implementation. Table 5.1
provides an overview about the results of each setting. It specifies for each pattern in the respective
setting, whether this step passes on all variants (marked with yes) or eliminates at least one variant
of the respective pattern (marked with no).

Elicitation Depending on Number of Clients

In the context of applications where one client uses the service in isolation, two variants are found
that cannot be applied. The variant Direct Client Communication, which is included in the pattern
Privacy Information Exchange, excludes the server in parts from communication with other clients
in order to protect the behavior of the clients from the server. Since there are no other clients to
interact with, this variant can be excluded. The second variant is the Local Differential Privacy
tactic of the Client-Side Obfuscation pattern. Its performance is mitigated, since it depends on a
larger number of clients.

88

5.4 Privacy-Driven Elicitation

Pattern Tactics to be removed
Client-Side Obfuscation Tokenization with TTP
Private Data Processing Trusted Execution Environment
Private Network Access Virtual Private Network
Private Information Exchange Broker

Pseudonymous Identity Management 1) Privacy-Preserving Trust Establishment (PPTE)
2) Single Sign-On

Anonymous Authorization Privacy-Preserving Trust Establishment (PPTE)

Table 5.2: TTP-Driven Elicitation: Eliminated Variants when a TTP is not considered.

There are two patterns worth considering if they should be applied in the context of isolated clients:
Pseudonymous Identity Management and Access Control. Both act in the attacker model of malicious
clients, i.e. they are supposed to protect against other clients. Since Access Control also protects
against access by (unauthorized) clients who access the same service despite isolation, the pattern
is maintained. Pseudonymous Identity Management is also maintained, because in case of data
leakage, it makes linking more difficult if a pseudonym is disclosed instead of personal identifiable
information. This is the consequence of the decision made in the attacker model to exclude external
threats, assuming to be covered by malicious clients or servers. E.g., a malicious client represents
an external threat, when it attempts to gain access to personal data that is not within its scope of
service.

All variants contained in the identified patterns can be used in applications that involve multiple
clients. Several clients can use a service together, despite Anonymous Authorization, which is the
reason for keeping the pattern and its variants.

Elicitation Depending on Third Party Involvements

If the setting involves a TPP, the Tokenization variant is excluded from the Client-Side Obfuscation
pattern. It replaces personal identifiable data with a randomized string or number.

If the architect decides not to include a TTP, each PPAP of the current catalog, except Access
Control, is truncated by at least one variant that requires a TTP to work. Table 5.2 lists for each
pattern the tactics that are excluded from consideration.

5.4 Privacy-Driven Elicitation

Elicitations are presented below, each addressing a different privacy property: Privacy aspect,
attacker model and aim. These are embedded into the definition of a PPAP, allowing a semi-
automatic selection.

89

5 Methodology

Content BehaviorIdentity

Privacy Aspect

Client-side Obfuscation
Private Data Processing
Access Control

Private Information
Exchange

Anonymous Authorization
Private Network Access
Pseudonymous Identity
Management

Figure 5.3: Elicitation of patterns with respect to the privacy properties of privacy aspect: Content,
identity, behavior.

5.4.1 Privacy Aspect-Driven Elicitation

This elicitation step selects patterns by their privacy properties. In this step the architect has
to decide which privacy aspect is of most importance, and/or makes most sense in the specific
context: Content, identity or behavior. If content is chosen, the patterns Client-Side Obfuscation,
Private Data Processing and Access Control are preserved. The rest is removed from consideration.
In the case of the Behavior aspect, one pattern remains: Private Information Exchange. With
identity the patterns Anonymous Authorization, Private Network Access and Pseudonymous Identity
Management are available.

The architect is also given the option to select a combination of the aspects, then the selected patterns
are aggregated. The skip operation described above corresponds to selecting all three aspects.

Figure 5.3 illustrates the pattern selection possibilities, when choosing the respective privacy aspect
value.

5.4.2 Attacker Model-Driven Elicitation

In Chapter 4 the attacker model is defined, involving clients or the server as adversaries, which are
either malicious or honest-but-curious. This step aims at selecting patterns that match the adversary
model chosen by the architect. Those patterns are maintained that build architectural parts to protect
against the corresponding adversary. If the client represents the attacker, the patterns Access Control,
Pseudonymous Identification and Private Data Processing are selected. In case of the server being
the attacker, the other four remaining PPAPs are used for the remaining process, and additionally
Private Data Processing, since it protects against malicious clients. In Figure 5.4, the patterns are
listed graphically according to the chosen adversary.

There is one possible combination to mark both participants as adversaries, implying that all patterns
are forwarded.

90

5.5 Pattern Relation-Driven Elicitation

Server Client

Attacker Model

Anonymous Authorization
Client-side Obfuscation
Private Data Processing
Private Network Access
Private Information Exchange

Access Control
Pseudonymous Identification
Private Data Processing

Figure 5.4: Elicitation of patterns with respect to the the privacy properties of attacker model:
Server and client.

5.4.3 Aim-Driven Elicitation

An additional way to distinguish between patterns comprises the privacy property aim. This thesis
divides aim into unlinkability, indistinguishability and confidentiality. The pattern Anonymous
Authorization is a special pattern, since it supports the first two aims mentioned above. Therefore, it is
included in both cases. If the architect chooses unlinkability, the patterns Anonymous Authorization,
Private Network Access and Pseudonymous Identification remain. If the aim indistinguishability is
adopted, the two patterns Anonymous Authorization and Private Information Exchange must be
retained. Choosing Confidentiality results in the patterns Access Control, Client-Side Obfuscation
and Private Data Processing. The 3 variants are illustrated in Figure 5.5.

Four further combinations are possible, in which the respective patterns are combined to a set
(without duplicates). The methodology skips this step, if the architect selects all three aim variants.

5.5 Pattern Relation-Driven Elicitation

In the penultimate step the relations of patterns, which are elicited so far, to other patterns are
examined. Relations are embedded in the related patterns element of a PPAP. The possible relations
are dependencies, supplements and exclusions.

Every pattern is inspected individually for these elements, as shown in the following. Patterns listed
in Dependencies must be applied in order to be able to use the current inspected pattern. This step
attaches these necessary patterns to the current one.

91

5 Methodology

Unlinkability Indistinguishability

Privacy Aim

Anonymous Authorization
Private Network Access
Pseudonymous Identification

Anonymous authorization
Private Information Exchange

Confidentiality

Access Control
Client-side Obfuscation
Private Data Processing

Figure 5.5: Elicitation of patterns with respect to privacy properties of privacy aim: Unlinkability,
indistinguishability, and confidentiality.

The Supplements item proposes patterns whose application is useful in combination with the current
pattern ,or which are often used together in practice. The supporting patterns, from all patterns that
have been elicited so far, are combined in a separate set, called Patterns in Consideration.

Patterns in Exclusions represent conflicts and have to be resolved by the architect. At first, the
patterns elicited so far are examined for mutual exclusion. Resulting conflicts are listed in the set
Conflicts and assigned to high priority. Subsequently, these patterns are compared with the Patterns
in Consideration and resulting conflicts are listed in Conflicts, given priority low.

Unlike the others, this step outputs three different sets. The first set consists of the patterns elicited
so far, appended with the respective patterns they depend on. Conflicts constitutes the second set and
represents key-value pairs. Key is a pattern being elicited so far, and values containing conflicting
patterns with accompanying priorities. The last set constitutes the Patterns in Consideration, built
analogously to the previous key-value style but without attached priorities.

5.6 Architect-Driven Selection

In the last step, the architect chooses the appropriate patterns, depending on the context. The
architect can decide about each patterns’ variant, whether it should be eliminated, or highlighted
for the next phase of the SDLC, the implementation. Two scenarios are identified and possible
solutions are proposed. They are presented in the following.

Scenario 1: Non-Empty Pattern Set

In the first scenario, the final set of patterns available for selection, is not empty. The architect
decides which patterns can be applied in the context of the application. In addition, collisions from
the second and third sets have to be solved (identified in the previous step). For each conflict the
architect weighs up and selects the most appropriate one(s). Or the architect find a compromise
applying both patterns of a conflict, e.g. by fulfilling their privacy goals in a weakened way. The
following criteria to decide on one pattern, or against, can be considered.

92

5.6 Architect-Driven Selection

PPAPs are constructed to take into account different privacy properties. To get the maximum possible
privacy protection, the architect should try to apply each PPAP available. In particular those that
are complementary (expressed in related patterns) are recommended to use simultaneously.

For each pattern the architect decides if its applicable, e.g. considering the skill of the development
team, time and cost efforts for the implementation, other (architectural) parts of the system, or
trade-offs with different quality attributes.

Once the setting comprises clients, using the service in isolated form, the architect should decide
whether it is possible to offer the system in an anonymous way. If this is the case, Anonymous
Authorization should be preferred over Pseudonymous Identity Management, because it offers
greater protection against linkability.

If the final set of patterns is selected, the architect decides on the variants for each one. Variants are
selected, taking into account the discussion in a patterns’ consequences element, or considering
other implementation variants not present in the pattern (e.g. by consulting experts in the privacy
domain). The selection of variants can be determined, e.g. by discussing the impacts on the quality
attributes with different stakeholders.

If no suitable pattern or implementation is found, the following scenario takes place.

Scenario 2: No Remaining Pattern

If no patterns remain after the last step or if no realization is found for a pattern, the following
considerations can be made.

Although Spiekermann and Cranor prefer the principle of privacy-by-architecture, they do not
exclude the other case [SC08]. It may not be feasible to design the appropriate architecture, proac-
tively implementing privacy requirements. In the lack of architectural solutions, the architect can
consider privacy-by-policy measures, e.g. using other privacy patterns. They are less abstract, but
still found in the design phase, and thus follow the principle of privacy by design [EU16]. Research,
concerning privacy-by-policy patterns, is discussed in Chapter 3. One example is informing (privacy
design strategy [Hoe14]) the client, by use of privacy policy notices [CRC05; GWGT10], e.g. via
collecting the consent of the users about the processing of their data.

Considerations for each Scenario

Independent of the scenario, the architect can take the following considerations into account.

The pattern catalog is incomplete, implying there can always be solutions which are not yet examined
in the current pattern catalog, although they are more suitable for the context. Using the architect’s
experience and expertise, the architect should try to find solutions, not presented in the current
pattern catalog.

The methodology presented in this chapter follows an iterative approach. If no satisfactory solution
of patterns and variants has been found, the process can be re-run, and executed with a different
setting, or other privacy properties. In addition, emerging conflicts can be solved differently in the
new run. The architect is encouraged to follow this idea, before choosing the next best solution.

93

5 Methodology

New runs can be executed for different parts (data) in the system. Patterns that would otherwise be
mutually exclusive, when applied in the same context, can be used simultaneously.

This chapter presented a methodology for selecting PPAPs. It is constructed to achieve the objectives
reproducibility, effectiveness, low complexity in use, and transferability to other pattern domains.
Taking into account privacy properties and the situational context, it supports the architect in finding
the suitable patterns for the given scope of the system. In the next chapter, this method is applied in
a use case. Chapter 7 discusses the approach of using PPAPs, and the methodology, examining the
fulfillment of the objective set.

94

6 Use Case

This chapter presents a use case, demonstrating the applicability of the PPAPs and the selection
methodology of Chapters 4 and 5, respectively. It consists of a company’s plan to analyze emojis
and provide emoji predictions in a privacy-friendly manner in the scope of smartphone keyboard
applications. This thesis considers two companies with different privacy requirements, attempting
to realize the use case with the help of the methodology.

This chapter first describes the context and motivation that emerges. Subsequently, the methodology
is performed for both companies. It selects the PPAPs and their variations, for implementing the
privacy requirements in the software architecture, respectively.

6.1 Context

In everyday life, the keyboard of a smartphone is constantly in use, e.g. when chatting with friends,
writing documents or surfing the web browser. Keyboards on Android devices are apps, and can
therefore be programmed by anyone and made available in the Google Play Store. When acquiring
a smartphone, at least one keyboard app is preinstalled. In case of Android devices, this can be
Google’s own developed keyboard Gboard, or a manufacturer-specific one, for instance the Samsung
Keyboard.

Besides Google’s own keyboard app, there are plenty of others for Android phones offered by
third-party providers. A distinction can be made between proprietary and open source applications.
Examples of proprietary keyboards are Gboard1 (Google), or Microsoft SwiftKey Keyboard2. Open
Source alternatives are AnySoftKeyboard3 and Simple Keyboard4.

In the post-T9 era of Android, keyboard input is supplemented by word predictions and completions,
allowing the user to work faster with a predefined selection of words. How keyboard providers per-
form analysis and make predictions varies. A privacy risk arises when using proprietary keyboards,
where it is not ensured what happens to the persons’ keyboard inputs. The keyboards can secretly
record every keystroke and misuse the sensitive data. Regardless of the app’s license (whether
proprietary or open source), privacy issues arise if the cloud is connected to process personal data
for input analysis.

1https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
2https://play.google.com/store/apps/details?id=com.touchtype.swiftkey
3https://play.google.com/store/apps/details?id=com.menny.android.anysoftkeyboard
4https://play.google.com/store/apps/details?id=rkr.simplekeyboard.inputmethod

95

https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
https://play.google.com/store/apps/details?id=com.touchtype.swiftkey
https://play.google.com/store/apps/details?id=com.menny.android.anysoftkeyboard
https://play.google.com/store/apps/details?id=rkr.simplekeyboard.inputmethod

6 Use Case

Gboard for example provides next word prediction, auto-correction, word completion and animation
suggestion. Google presents the federated learning approach used in Gboard for predicting words
[HRM+18]. They claim to protect the privacy of its clients by using the global model to train their
inputs locally and only sharing model updates with the server. But security experts advise caution:
Federated learning approaches are vulnerable to specific kinds of attacks, e.g. model poisoning
[BCMC19].

6.2 Motivation

The use case is motivated by the desire to provide a privacy-friendly software system for analyzing
and predicting emojis in a keyboard application.

Let Company A and Company B be two companies trying to deploy such a software system in
the cloud. Both companies share the business goals of analyzing and predicting input data. Since
text input is inherently sensitive, they decide to limit the analysis and prediction to emojis. The
companies are located in various countries of the EU and are aimed at citizens who speak the local
language. Their ambition is to meet as many privacy requirements as possible within the scope of
their business objectives and expertise.

Being based in EU countries, the companies need to follow the terms of the GDPR to make their
respective systems privacy-friendly. A software architecture is built, meeting the business goals, and
the requirements of the GDPR. The architect therefore decides to use PPAPs, and the methodology
presented in Chapter 5. For the development on the client side, both companies choose the open
source application AnySoftKeyboard, on which the application is built. AnySoftKeyboard has local
word predictions (on bigrams) implemented. Since it is open source software and has no cloud
connection, it is assumed to be privacy-friendly, making it suitable for the enterprise.

6.3 Applying the Methodology

For selecting the PPAPs appropriate for their application, the companies’ architects apply the
methodology presented in Chapter 5. Each elicitation step and the final pattern selection are
examined in tandem for each company below. The process is illustrated in Figure 6.1.

6.3.1 Setting-Driven Elicitation

In the first step, the setting is examined, potentially excluding variants or entire PPAPs: In this use
case, clients are not directly connected by interaction, but they do not work completely isolated
from each other. The offered services collect the data of individual clients to train it in their machine
learning models, respectively.

In both companies there is no TPP involved. While the architect of Company A decides to exclude
the participation of a TPP, the other company may consider one.

96

6.3 Applying the Methodology

1. Setting-Driven
Elicitation

4. Aim-Driven
Elicitation

2. Privacy Aspect-
Driven Elicitation

3. Attacker Model-
Driven Elicitation

PPAP_Catalog without TTP Variants

5. Relation-Driven
Elicitation

6. Pattern Selection

1. Client-Side Obfuscation
Local Differential Privacy

2. Private Network Access
Onion Routing

3. Private Information Exchange
Metadata-Hiding
Communication

4. Pseudonymous Identity
Management

On-Premises
5. Access Control

Limited Access
6. Client-Server Pattern

Company A Company B

PPAP_Catalog

PPAP_Catalog without TTP Variants PPAP_Catalog

PPAP_Catalog without TTP Variants PPAP_Catalog \ {Access Control, Pseudonymous
Identity Management}

PPAP_Catalog without TTP Variants PPAP_Catalog \ {Access Control, Pseudonymous
Identity Management}

PPAP_Catalog without TTP Variants PPAP_Catalog \ {Access Control, Pseudonymous
Identity Management}

+ Client-Server Pattern + Client-Server Pattern

1. Client-Side Obfuscation
not possible
instead Privacy Policy Notices
(privacy by policy)

2. Private Network Access
VPN

3. Private Information Exchange
Brokers

4. Client-Server Pattern

Figure 6.1: The PPAP selection process for both companies: The left column depicts the individual
steps and the other two columns display the selection of patterns (and variants in the
last step) for the respective step and the respective company.

Therefore, all patterns and variants regarding the client setting are preserved in both companies.
Taking into account the involvement of third parties, variants requiring the presence of TTP are
eliminated for Company A. Apart from these variants, all patterns are passed to the next step
unchanged for both companies.

6.3.2 Privacy Aspect-Driven Elicitation

In this step, the decision about the privacy aspect is made. Both companies consider all three
options to be relevant in the use case setting: The content of data and the identity of the respective
client should be protected; the examination of user behavior should be prevented.

All patterns are passed to the next step for both companies.

97

6 Use Case

6.3.3 Attacker Model-Driven Elicitation

Next, the architects examine the attacker model. The application of Company B does not involve
any interaction, leading the architect to consider the server as a source of threat only. While clients
could compromise the effectiveness of the training model by providing false information, they are
assumed to be unable to gain sensitive data.

Company A’s application provides extra features and a forum for their clients, requiring a login. Since
it includes interaction, the architect decides to consider both, clients and the server, as threats.

Therefore, the following patterns are sorted out for Company B: Access Control and Pseudonymous
Identification. Consequently, 5 patterns are passed on. In case of Company A, all patterns are
passed on.

6.3.4 Aim-Driven Elicitation

In the next step, the architects decide to consider all privacy aims: The content of data should be
sufficiently protected against unauthorized access (confidentiality), the usage should not be linkable
to the identity of the respective client (unlinkability), and it should not be possible to distinguish
between individual data (indistinguishability).

Accordingly, the pattern selection remains unchanged.

6.3.5 Relation-Driven Elicitation

The penultimate step examines the related patterns element of a PPAP: Dependencies, supplements,
and occurring conflicts (exclusions) are automatically generated and passed on to the last step. The
dependency that all PPAPs share, is the Client Server Pattern.

The following scenario arises for Company A: The first set that is passed to the last step consists of
all patterns of the catalog (since no pattern has been excluded so far) and the Client Server Pattern.
Since there are no exclusions in the current PPAP catalog, set 2 is empty. Set 3 consists of all pattern
recommendations.

Company B’s input from the previous step contains 5 patterns. Set 1 consists of all patters elicited
so far and the Client Server Pattern. Set 2 is empty. In Anonymous Authorization, the pattern
Pseudonymous Identity Management is considered as a possible supplement, but it has already been
excluded. All other supplements are added to set 3.

Pattern Selection

In the last step, the architect selects the suitable patterns and their implementation.

Company A makes the following selection: It excludes Anonymous Authorization, since the applica-
tion is intended to be made available for each user and does not require an authorization mechanism.
The architect is satisfied with the remaining patterns and makes the following implementation

98

6.3 Applying the Methodology

decisions: The company chooses the variant Local Differential Privacy for the Client-Side Ob-
fuscation pattern. To protect the clients’ IP addresses, the architects decides to implement the
Private Network Access via the Onion Routing variant. The Metadata-Hiding Communication
implementation is chosen for the Private Information Exchange pattern to avoid client user profiling.
The corresponding recommendation to use client-side obfuscation in addition, is already in place.
Since no TTP is included, the architect decides to implement Pseudonymous Identity Management
in the form of Pseudonymous Registration On-Premises. The implementation of Access Control is
Limited Access. The Client Server Pattern is listed as a dependency in all PPAPs and is applied
accordingly.

Company B decides to remove the Anonymous Authorization pattern, since there is no login needed.
The architect is satisfied with the remaining four patterns and makes the following implementation
decisions: After consulting the stakeholders, the architect concludes that the skill level of the
development team is not sufficient for a Local Differential Privacy implementation. The other
implementation variants are not practical for their machine learning model. If a PPAP is not found
or a found one impractical, scenario 2 of the current step recommends applying privacy-by-policy
measures. Therefore, the architect decides to apply Privacy Policy Notices, informing the clients
about the disclosure of their personal data [CRC05]. Protecting the clients’ IP addresses, Company
B implements the Private Network Access pattern via the VPN variant. For Private Information
Exchange, the architect decides to implement the Broker variant, since the VPN server can take
over its part. The Client Server Pattern is listed as a dependency in all PPAPs and is applied
accordingly.

For selecting PPAPs in a given context, this chapter applied the methodology presented in this
thesis. A use case was defined, analyzing and predicting emojis on keyboard inputs of Android
smartphones. For two companies that want to deploy the same application but have different privacy
requirements, the methodology resulted in different sets of architectural patterns to support the
design of an privacy-friendly software system. Chapter 7 discusses the use case against the set
objectives of the methodology.

99

7 Discussion

The new class of patterns, PPAPs, introduced in Chapter 4, and the methodology presented in
Chapter 5 are examined below. First, this thesis assesses the objectives defined for the methodology.
Limitations of PPAPs, and the methodology are discovered thereafter.

7.1 Objectives

Chapter 5 determines the objectives for the methodology: Reproducibility, effectiveness, low
complexity in use, and transferability to other pattern domains. They are discussed in the following.

Reproducibility

The methodology is a systematic approach that selects patterns according to the architect’s pref-
erences. If the pattern catalog remains unchanged, and the architect selects the same preferences
for the privacy properties, the methodology is reproducible up to the last step. In the last step, the
architect selects the appropriate patterns according to the specific context and expertise. If these
have not changed, the same result is produced.

In the actual implementation variant the result may change, e.g. when a new PET evolves. The
implementation and variants element provides support for the implementation phase and does not
affect the abstract view of the pattern.

Effectiveness

Considering the use case, Company B cannot implement a pattern (Client-Side Obfuscation) due to
the missing skill level (Local Differential Privacy) and due to the application context (remaining
variants). Since the approach of proactively implementing privacy requirements in the system
cannot be followed, the weaker variant of privacy-by-policy is implemented (informing the clients).
In both cases, the companies’ architects decide not to use the Anonymous Authorization pattern,
because they assume it to be irrelevant in their scope.

Therefore, it is not always possible for an architect to realize a pattern proposed for the last step. This
thesis defines and identifies PPAPs to cover as many combinations of the presented privacy properties
as possible. It is possible that the selection process does not output PPAPs. Either potential patterns
have not been identified (yet) or the elicited ones are not applicable in the considered system context.
If no architectural solution is found, the architect considers other measures, e.g. patterns following
the privacy-by-policy principle.

101

7 Discussion

The final implementation of the patterns, selected semi-automatically before the last step, in the
system depends on the architect’s decisions. Therefore, the selection process is dependent on the
expertise of the architect.

Whether the selection process covers all patterns that are needed, is difficult to answer. PPAPs
are designed to include different privacy properties that each pattern satisfies in different ways.
Therefore, if the architect makes the appropriate settings, the patterns with the corresponding privacy
requirements are available for the final selection of the architect. In addition, the architect can re-run
the selection process with different preference to get more patterns for selection, if necessary.

Low Complexity

Executing the first three steps is straightforward, and represents a semi-automated process. In
the last step, the architect has to decide which patterns to adopt. Since the architect’s expertise
is required, automating the entire process is not possible. A need for expertise is not considered
problematic, because the architect is present during the design phase of the SDLC.

Transferability

In Section 5.2, the functional principle of the selection process is presented. The methodology
is transferable to patterns found in other fields, e.g. in the security domain. It selects patterns,
considering properties that are embedded in the patterns, and involves the architect of the relevant
software system. Two possible ways of transferring the methodology to the corresponding domain
are explained.

The first approach is to adapt the patterns of the new domain, by extending the patterns with specific
properties. If the domain corresponds to a quality attribute, for example security, patterns can be
extended with properties used to fulfill this particular quality attribute. In this example, the common
classification into confidentiality, integrity and availability can be used. Another option could be
to adopt the categories extracted by Bass et al.: Detect attacks, resist attacks, react to attacks, and
recover from attacks [BCK03].

An alternative approach is to proceed in reverse order: The methodology is adapted according to the
already existing patterns. Properties from the patterns are extracted and integrated into the selection
process of the methodology. If the patterns include relations, they can be applied as it is done in the
second last step of the methodology presented in thesis.

The degree of application context (here e.g. third parties), that can be included, must be examined
individually for each pattern domain.

7.2 Limitations

This thesis highlights and discusses problems encountered with the use of PPAPs below. They are
taken into consideration for future work in Chapter 8.

102

7.2 Limitations

Patterns Inherent Incompleteness

Examining the objective effectiveness, an observed problem is the absence of potential PPAPs in
the catalog. The current catalog, consisting of 7 identified patterns, is not complete: The size
of the pattern catalog, the architectural patterns, and the architectural tactics do not guarantee
completeness. Potential reasons are outlined in the following: Within the time and space constraints
of this thesis, patterns are identified that conform to the definition given in Chapter 4. Shen and
Pearson observe the difficulty to conduct a comprehensive study on PETs [SP11]. By analogy,
patterns may not have been identified despite their existence.

Chapter 2 outlines the increasing importance and prioritization of privacy, potentially leading to an
increase in relevant research areas. Existing technologies may become more practicable through
improvements or may be deprecated since new state-of-the-art technologies emerge. Fernandez
identified patterns, that are not yet deployable according to current time and technology, but may
become so in the near future [Fer13] . The same is true for variants in PPAPs: Current technologies
(in the form of architectural tactics/ PETs) may be modified or new ones added. The architectural
tactic Homomorphic Encryption is currently only implementable to a certain degree. Assumptions
are made, allowing the technology to operate with limited impact in certain contexts, for example
by mitigating other quality attributes, such as performance and scalability. However, the lack of
architectural tactics is not a limitation. They serve as an assistance for implementations, and for
solving possible trade-offs. A PPAP represents a more abstract view of the solution and can be used
more universally.

Another reason for incompleteness is a change in the existing structure of a pattern or of individual
elements over time. New privacy properties can be introduced or existing properties can be redefined
to cover the current state of the catalog more effectively. E.g., this thesis considers anonymity to
be the property of hiding the client’s identity and existence from the server. Anonymity within
a service does not guarantee anonymity between different services. The use of SSO supports to
achieve anonymity in the current system, but the identity provider (for example Facebook or Google)
learns which other services are used, and thus gains more sensitive data. Modifying the pattern
structure can help to address this issue.

The incompleteness of a catalog lies in the nature of patterns [DG13]. The incompleteness does
not diminish the usefulness of the catalog. The SDLC is an iterative process, where designing the
architecture is part of the design phase (see Chapter 2). Architectural patterns support the design of
software system from a software architecture view. Other measures that are executed in the SDLC
afterwards, addressing more specific parts of the system, can be applied in addition. An example is
suggested in the methodology: Applying privacy patterns following the privacy-by-policy principle.
There are other methods that implement privacy in the system in a different way and can be applied
in addition, e.g. risk model approaches (see Chapter 3). These take place at the earliest when the
architecture is in place. One example is the privacy threat methodology LINDDUN [WJ15].

Therefore, an incomplete PPAP catalog can contribute to the construction of privacy-friendly
systems, e.g., as a starting point or complement to other methods.

103

7 Discussion

Lack of Comparison With Other Patterns and Quality Attributes

The identified patterns address the quality attribute privacy. The fulfillment of the privacy quality
attribute has positive or negative effects on those of others [BCK03]. Emerging trade-offs are
made primarily at the level of architectural tactics. They arise in the suggested variants within the
Implementations and Variants part of a PPAP and are discussed in the Consequences part. In the
scope of this thesis, PPAPs outline these trade-offs, covering a range of a few other quality attributes:
In most cases, these are usability and performance.

The variants are suggestions and vary. They are listed to the best of the authors’ knowledge and
serve as an initial proposal of a PPAP. The architect, however, has to reflect on them and to take
into consideration alternative technologies to deliver the implementation, most suited to the system.
Therefore, trade-off analysis of the superior PPAP is difficult to carry out: An architectural pattern
is assumed to be too abstract to make detailed final statements about the impact on other quality
attributes.

Due to the incompleteness of patterns, it is impossible to be able to solve all trade-off issues. The
issues arise not only between quality attributes, but also within a quality attribute. Employing
privacy patterns in the IoT domain, Pape and Rosenberg question whether the system better meets
privacy requirements when data is being moved from the cloud to the clients [PR19]. This is
synonymous with the question whether the achievement of privacy by moving parts of the cloud
service to the end devices, could have a negative effect on securing the data. Confidentiality of
personal data pertains to the quality attributes privacy (and security). There are arguments for both
approaches and the architect ultimately decides on the solution and the corresponding pattern.

So far, the trade-off regarding quality attributes between PPAPs is discussed. Architectural patterns
in general, can be related to PPAPs. The Related Patterns and Consequences elements examine
exclusively PPAPs.

When applying architectural patterns, it is common practice to make trade-offs on the level of
architectural tactics [BCK03]. The architectural patterns of this thesis are designed to mainly satisfy
the quality attribute privacy, implications on other quality attributes are mainly expressed with
different tactics. Applying architectural patterns from other domains, the architect must consider
emerging trade-offs primarily at the level of architectural tactics (keeping in mind the incompleteness
of architectural patterns and tactics, as discussed above).

The difficulty, in comparing PPAPs with other patterns in terms of quality attributes, lies in the nature
of architectural patterns and their degree of abstraction. Therefore, it is not a specific limitation
of PPAPs, but a property of using architectural patterns in general. An architect is responsible for
weighing and balancing the different quality characteristics. Hence, comparing PPAPs with other
architectural patterns, is beyond the scope of this thesis.

Limitations Related to the Abstraction of a PPAP

Finding the right abstraction is the key for identifying privacy patterns [RBE+12]. This thesis
leverages the abstraction level of architectural patterns to implement privacy requirements in a
software architecture.

104

7.2 Limitations

In the definition of a PPAP, only those dimensions of Heurix et al.’s work are considered providing the
necessary level of abstraction for building architectures [HZNF15]. Furthermore, the extent to which
a dimension is adopted (e.g., excluding deniability for aim) is examined. If all dimensions would be
adopted unchanged, instead of architectural patterns, only PETs or lower privacy design patterns
would be identified in terms of abstraction. Regarding the trade-off between abstraction of PPAPs
and the effectiveness of the methodology, this thesis encounters and discusses two limitations.

First, PPAPs can satisfy multiple privacy property values of a privacy property, e.g. client and server
for the attacker model in the Private Data Processing pattern. As a consequence, this ambiguity
makes the selected methodology less precise. The more ambiguities arise, the less granularity the
methodology provides, and the greater the number of patterns are available in the last step of the
methodology. In extreme case, the second last step outputs all patterns of the catalog and provides
minor support for an architect.

There is always a trade-off, and thus the option of a PPAP meeting multiple property values. It
is important to choose the abstraction level in such a way that good decisions about the selection
of patterns can be made. In this thesis, the presented selection process makes the decisions on
the selection of patterns, with the help of the present architect. The PPAP abstraction is chosen,
being more abstract than PETs, and representing architectural elements. In addition, they are not
as abstract as Colesky et al.’s tactics or Hoepman’s privacy design strategies, which would make
the methodology less practical [CHH16; Hoe14]. When more PPAPs are added to the catalog, the
privacy properties may need to be readjusted, or new ones to be embedded into the definition of
a PPAP to maintain the practicability of the methodology. One option is to refine the elicitation
driven by the attacker model to distinguish malicious from honest but curious clients, when more
patterns are added to the catalog. PETs are incorporated into PPAPs in form of architectural tactics,
allowing the architect to make decisions on the abstraction level of PETs as well.

The second limitation arises from the non-uniform definitions and views of software architectures.
PPAPs adhere to the definitions of a software architecture and an architectural pattern given in
Chapter 4. For other architects, the definition may differ or be interpreted differently. E.g., the
assumption, adopted by Martin Fowler, that a software architecture constitutes elements that are
important in the given context [Fow03] has been attempted to be defined more precisely. In this
thesis, privacy is from importance, and therefore it is included in the definition supported by legal
background and related work. What is important to a certain architect may still differ, depending
which definition and scope are chosen. As a result, PPAPs may be less useful for certain architects.

It is not a specific limitation of PPAPs, but the limitation of the ambiguous definitions and scopes
of a software architecture. According to the transferability as described before, the patterns can be
transferred to other domains. A different view of a software architecture can be considered as a
different domain and, therefore, the patterns or the methodology can be adapted accordingly.

Lack of Relations

In a PPAP, relationships to other patterns are linked by the related patterns element. It allows
additional patterns to be considered or excluded. Except for the Client Server Pattern, which is
involved in every pattern, relations are scarce in the current state of the pattern catalog. Relations

105

7 Discussion

are often used in the field of patterns and considered one of the key points of patterns, increasing
their expressiveness [DGZ15; Haf13; SFH+13]. Potential reasons for the lack of relations in PPAPs
are highlighted in the following.

The first limitation observes the incompleteness of the catalog. With 7 patterns included, the size of
the current catalog may be too small to provide a sufficiently large basis for relations. This thesis
assumes the amount of the relations increase, when new patterns are added or individual PPAPs are
modified.

As discussed in the second limitation, this work is limited to architectural patterns in the privacy
domain. The lack of consideration of other patterns that fulfill other quality attributes is assumed to
lead to fewer options of architectural patterns that could be related.

The major cause is observed in the construction of a PPAP: They are defined and identified to satisfy
various privacy properties in various ways. E.g., the Privacy Aspect property can be satisfied by
content, identity, or behavior. Thus, each PPAP can be considered to operate in its own privacy
domain. When the abstraction addressed in the previous limitation is reduced, more possibilities of
relationships arise (but the effectiveness of the methodology decrease).

The problem with the lack of relationships (the simultaneous application or exclusion) of multiple
patterns is partially solved by the methodology. Appropriate patterns are selected in the context of
the system where the architect is present. These are the patterns constituting the relation with the
context of an application: They are important and should be applied together. Patterns that do not
meet the respective privacy properties are excluded. This corresponds to the attitude of relations of
a pattern.

106

8 Conclusion and Outlook

This thesis presents an approach to design software architectures with privacy in mind, utilizing
architectural patterns. Using the presented patterns provide a way to comply with the privacy
by design and default principle (GDPR) to attack the problem of the recent increasing privacy
concerns [EU16]. The contributions of this thesis consist of the identification of privacy-preserving
architectural patterns (PPAPs) as well as a methodology for the selection of suitable (architectural)
patterns in a given context of the software system.

In the following, the contributions are discussed with respect to their fulfillment of the research
questions (RQs). This thesis concludes with open questions, which can be the starting point for
future work.

8.1 Contributions to Research Questions

Chapter 1 defines two RQs. Their fulfillment by the presented contributions is assessed in the
following. This thesis represents one way to address these questions. Other work is being carried
out with similar objectives. Some of these are presented and discussed in Chapter 3.

RQ 1: Which Architectural Patterns Exist That Implement Privacy Requirements in a
Software Architecture?

By identifying PPAPs, this thesis proposes architectural patterns allowing the design of a privacy-
friendly software architecture. Compared to most privacy patterns found in the literature, PPAPs
share the abstraction level of an architectural pattern to enable the view of a software architecture. The
privacy quality attribute is introduced to identify PPAPs. The identified patterns are brought into the
structure defined in Chapter 4 to implement privacy properties and to represent an architecture class.
A PPAP forms the architecture class of a component-and-connector (C&C) structure, describing its
elements and their interaction [BCK03].

Thus, architectural patterns exist, implementing privacy requirements in a software architecture:
PPAPs. This thesis identifies 7 PPAPs.

The discussion in Chapter 7 reveals that PPAPs may not represent the complete architecture. The
designed architecture can be leveraged as a starting point for further methods, taking place in the
SDLC afterwards, e.g. privacy threat modeling in the form of LINDDUN [WJ15].

107

8 Conclusion and Outlook

RQ 2: How Can These Patterns Be Selected in a Given Application Context?

This thesis presents a methodology for selecting patterns in the context of the application. One of
the goals of this methodology is the transferability to other pattern domains, in order to make it
more universally applicable.

PPAPs are designed to incorporate privacy features, leveraged in the selection process in Chapter 5.
The selection includes the scope, e.g. involvement of third parties. Another part of the selection
is the evaluation of relations between patterns. After these selection steps, the architect has the
patterns available that can be used. In a final step, the architect decides which patterns to adopt for
designing the software architecture.

The answer to this research question is, that a methodology for selecting patterns can be constructed,
by including quality attribute related properties of a pattern and situational environments (the scope
of the software system) for the selection process.

8.2 Open Questions and Future Work

The discussion in Chapter 7 discovers open questions, not being addressed by this thesis. They may
be the starting point for future work, and are presented below.

Universal PPAPs

Data processed in the cloud is expected to account for 50 percent of the world’s data (see Chapter 1).
Therefore, this thesis focuses on identifying PPAPs, representing software architectures in the cloud.
The question is whether the patterns are applicable to other privacy domains or are too specific to
the cloud context.

Relevance for New SDLC Models

This thesis considers the general SDLC model, where the design of the software architecture
takes place in the second step: The design [Rup10]. In contrast to traditional models, such as the
Waterfall model, the agile development approach does not follow a sequential approach, allowing
the overlapping of individual SDLC steps. Therefore, the use of PPAPs for designing software
architectures in such models may be complicated.

As discussed before, PPAPs represent parts of the architecture, not the whole system, and can be
used in conjunction with other methods (e.g., LINDDUN [WJ15]). This thesis assumes that PPAPs
can be applied in other SDLC models. Future work can be done, investigating the relevance of
PPAPs in multiple SDLC models and validating this assumption.

108

8.2 Open Questions and Future Work

Extension of the Catalog and Patterns

Chapter 7 discusses the incompleteness of the catalog of PPAPs and PPAPs themselves.

Future work can be done to extend the catalog, implying the identification of new PPAPs and
the adaption to the methodology. Furthermore, the privacy properties can be studied and new
ones developed; or the existing ones can be modified. By adapting the privacy properties, the
methodology can maintain its effectiveness, despite the increasing pattern catalog.

Impact on other Architectural Patterns

Besides the Client Server Pattern, this thesis does not consider other architectural patterns. The
discussion in Chapter 7 reveals, that the application of architectural patterns depends on the emerging
trade-offs between quality attributes. The impact on other architectural patterns, with respect to
other quality attributes, can be investigated in future work.

Composition

This thesis incorporates privacy properties into architectural patterns. The privacy taxonomy for
PETs is taken and adapted to map the abstraction level of architectures [HZNF15]. Funke et al.
extend the work of Heurix et al., comparing the enforced privacy of PETs [FWD17]. They propose
a mathematical approach that can be used to measure the enforced privacy. This idea can be adapted
to PPAPs, potentially enhancing the relation between patterns.

109

Bibliography

[Abe07] M. Aberdour. “Achieving quality in open-source software”. In: IEEE software 24.1
(2007), pp. 58–64 (cit. on p. 68).

[AFT06] A. Acquisti, A. Friedman, R. Telang. “Is there a cost to privacy breaches? An event
study”. In: ICIS 2006 Proceedings (2006), p. 94 (cit. on p. 17).

[AGM+15] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash. “Internet of
things: A survey on enabling technologies, protocols, and applications”. In: IEEE
communications surveys & tutorials 17.4 (2015), pp. 2347–2376 (cit. on p. 13).

[Ale77] C. Alexander. A pattern language: towns, buildings, construction. Oxford university
press, 1977 (cit. on p. 23).

[And12] D. Anderson. “Splinternet behind the great firewall of china”. In: Queue 10.11 (2012),
pp. 40–49 (cit. on p. 65).

[APT13] R. Arora, A. Parashar, C. C. I. Transforming. “Secure user data in cloud computing
using encryption algorithms”. In: International journal of engineering research and
applications 3.4 (2013), pp. 1922–1926 (cit. on p. 19).

[ATWW15] G. W. Ang, D. J. Townsend, J. H. Woelfel, T. P. Woloszyn. System and method for
tokenization of data for storage in a cloud. US Patent 9,021,135. Apr. 2015 (cit. on
p. 56).

[BC11] F. Bélanger, R. E. Crossler. “Privacy in the digital age: a review of information
privacy research in information systems”. In: MIS quarterly (2011), pp. 1017–1041
(cit. on p. 17).

[BCK03] L. Bass, P. Clements, R. Kazman. Software architecture in practice. Addison-Wesley
Professional, 2003 (cit. on pp. 3, 4, 14, 22–26, 29, 30, 33, 34, 38, 42, 43, 49, 102,
104, 107).

[BCMC19] A. N. Bhagoji, S. Chakraborty, P. Mittal, S. Calo. “Analyzing federated learning
through an adversarial lens”. In: International Conference on Machine Learning.
PMLR. 2019, pp. 634–643 (cit. on p. 96).

[BH13] K. B. Bomar, G. E. Harper. Tokenized data security. US Patent 8,595,812. Nov. 2013
(cit. on p. 58).

[BJKL04] S. Bellman, E. J. Johnson, S. J. Kobrin, G. L. Lohse. “International differences in
information privacy concerns: A global survey of consumers”. In: The Information
Society 20.5 (2004), pp. 313–324 (cit. on p. 17).

[BL02] O. Berthold, H. Langos. “Dummy traffic against long term intersection attacks”.
In: International Workshop on Privacy Enhancing Technologies. Springer. 2002,
pp. 110–128 (cit. on p. 70).

111

Bibliography

[BR01] J. J. Borking, C. Raab. “Laws, PETs and other technologies for privacy protection”.
In: Journal of Information, Law and Technology 1 (2001), pp. 1–14 (cit. on p. 19).

[BRD+15] B. T. Bailey, J. Romer, C. Doyle, J. Gifford, K. Zibart. Tokenizing sensitive data. US
Patent 8,943,574. Jan. 2015 (cit. on p. 19).

[BW90] L. Brandeis, S. Warren. “The right to privacy”. In: Harvard law review 4.5 (1890),
pp. 193–220 (cit. on p. 17).

[Cav+09] A. Cavoukian et al. “Privacy by design: The 7 foundational principles”. In: Infor-
mation and privacy commissioner of Ontario, Canada 5 (2009) (cit. on pp. 13, 18,
43).

[CC18] M. Colesky, J. C. Caiza. “A System of Privacy Patterns for Informing Users: Creating
a Pattern System”. In: Proceedings of the 23rd European Conference on Pattern
Languages of Programs. 2018, pp. 1–11 (cit. on p. 37).

[CCD+18] M. Colesky, J. C. Caiza, J. M. Del Alamo, J.-H. Hoepman, Y.-S. Martı́n. “A system
of privacy patterns for user control”. In: Proceedings of the 33rd Annual ACM
Symposium on Applied Computing. 2018, pp. 1150–1156 (cit. on p. 37).

[CG18] C. Cadwalladr, E. Graham-Harrison. “Revealed: 50 million Facebook profiles har-
vested for Cambridge Analytica in major data breach”. In: The guardian 17 (2018),
p. 22 (cit. on pp. 3, 4).

[CHH16] M. Colesky, J.-H. Hoepman, C. Hillen. “A critical analysis of privacy design strate-
gies”. In: 2016 IEEE Security and Privacy Workshops (SPW). IEEE. 2016, pp. 33–40
(cit. on pp. 33, 34, 50, 105).

[CJK+18] G. Cormode, S. Jha, T. Kulkarni, N. Li, D. Srivastava, T. Wang. “Privacy at scale:
Local differential privacy in practice”. In: Proceedings of the 2018 International
Conference on Management of Data. 2018, pp. 1655–1658 (cit. on p. 56).

[CRC05] G. E. Clayton, K. I. Robertson, H. T. Carneal. Policy notice method and system. US
Patent 6,904,417. June 2005 (cit. on pp. 28, 43, 93, 99).

[CV02] J. Camenisch, E. Van Herreweghen. “Design and implementation of the idemix
anonymous credential system”. In: Proceedings of the 9th ACM conference on Com-
puter and communications security. 2002, pp. 21–30 (cit. on p. 79).

[De 02] J. De Clercq. “Single sign-on architectures”. In: International Conference on Infra-
structure Security. Springer. 2002, pp. 40–58 (cit. on p. 79).

[DG13] N. Doty, M. Gupta. “Privacy Design Patterns and Anti-Patterns Patterns Misap-
plied and Unintended Consequences”. In: Trustbusters Workshop at the Symposium
onUsable Privacy and Security (2013) (cit. on pp. 36, 39, 103).

[DGZ15] N. Doty, M. Gupta, J. Zych. privacypatterns. org-Privacy Patterns.(2015). 2015. url:
https://privacypatterns.org/ (cit. on pp. 14, 36, 37, 39, 44, 48, 65, 106).

[DM09] R. Dingledine, S. J. Murdoch. “Performance Improvements on Tor or, Why Tor
is slow and what we’re going to do about it”. In: Online: http://www. torproject.
org/press/presskit/2009-03-11-performance. pdf (2009) (cit. on p. 68).

[Dom07] J. Domingo-Ferrer. “A three-dimensional conceptual framework for database pri-
vacy”. In: Workshop on Secure Data Management. Springer. 2007, pp. 193–202
(cit. on p. 30).

112

https://privacypatterns.org/

Bibliography

[Dwo08] C. Dwork. “Differential privacy: A survey of results”. In: International conference on
theory and applications of models of computation. Springer. 2008, pp. 1–19 (cit. on
pp. 19, 56).

[ECM20] S. Eskandarian, M. Christodorescu, P. Mohassel. “Privacy-Preserving Payment Split-
ting”. In: Proceedings on Privacy Enhancing Technologies 2020.2 (2020), pp. 67–88
(cit. on p. 70).

[EU16] R. 2. (EU). Protection of Natural Persons with Regard to the Processing of Personal
Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC.
European Parliament and Council. Luxembourg: Office for Official Publications of
the European Communities. Apr. 2016 (cit. on pp. 3, 18, 19, 45, 50, 54, 93, 107).

[Fer13] E. Fernandez-Buglioni. Security patterns in practice: designing secure architectures
using software patterns. John Wiley & Sons, 2013 (cit. on p. 103).

[Fow03] M. Fowler. “Who needs an architect?” In: IEEE SOFTWARE 20.5 (2003), pp. 11–13
(cit. on pp. 22, 42, 105).

[FWD17] S. Funke, A. Wiesmaier, J. Daubert. “Constrained PET Composition for Measur-
ing Enforced Privacy”. In: Proceedings of the 12th International Conference on
Availability, Reliability and Security. 2017, pp. 1–10 (cit. on p. 109).

[Gen10] C. Gentry. “Computing arbitrary functions of encrypted data”. In: Communications
of the ACM 53.3 (2010), pp. 97–105 (cit. on p. 61).

[GHJV93] E. Gamma, R. Helm, R. Johnson, J. Vlissides. “Design patterns: Abstraction and
reuse of object-oriented design”. In: European Conference on Object-Oriented
Programming. Springer. 1993, pp. 406–431 (cit. on pp. 23, 24).

[GRS99] D. Goldschlag, M. Reed, P. Syverson. “Onion routing”. In: Communications of the
ACM 42.2 (1999), pp. 39–41 (cit. on pp. 19, 65).

[GWGT10] C. Graf, P. Wolkerstorfer, A. Geven, M. Tscheligi. “A pattern collection for privacy
enhancing technology”. In: The 2nd Int. Conf. on Pervasive Patterns and Applications
(PATTERNS 2010). 2010, pp. 21–26 (cit. on pp. 36, 39, 43, 93).

[Haf06] M. Hafiz. “A collection of privacy design patterns”. In: Proceedings of the 2006
conference on Pattern languages of programs. 2006, pp. 1–13 (cit. on pp. 35, 39,
53).

[Haf13] M. Hafiz. “A pattern language for developing privacy enhancing technologies”. In:
Software: Practice and Experience 43.7 (2013), pp. 769–787 (cit. on pp. 35, 36, 39,
48, 55, 106).

[HH10] M. H. Hugos, D. Hulitzky. Business in the cloud: what every business needs to know
about cloud computing. John Wiley & Sons, 2010 (cit. on p. 13).

[Hoe14] J.-H. Hoepman. “Privacy design strategies”. In: IFIP International Information
Security Conference. Springer. 2014, pp. 446–459 (cit. on pp. 14, 30, 32, 50, 52, 64,
69, 74, 93, 105).

[HRM+18] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein, H. Eichner,
C. Kiddon, D. Ramage. “Federated learning for mobile keyboard prediction”. In:
arXiv preprint arXiv:1811.03604 (2018) (cit. on p. 96).

113

Bibliography

[HV18] K. A. Houser, W. G. Voss. “GDPR: The end of Google and facebook or a new
paradigm in data privacy”. In: Rich. JL & Tech. 25 (2018), p. 1 (cit. on p. 13).

[HZNF15] J. Heurix, P. Zimmermann, T. Neubauer, S. Fenz. “A taxonomy for privacy enhancing
technologies”. In: Computers & Security 53 (2015), pp. 1–17 (cit. on pp. 19, 28, 29,
38, 43–47, 53, 55, 86, 105, 109).

[KBL17] H. Khazaei, H. Bannazadeh, A. Leon-Garcia. “Savi-iot: A self-managing container-
ized iot platform”. In: 2017 IEEE 5th international conference on future Internet of
Things and Cloud (FiCloud). IEEE. 2017, pp. 227–234 (cit. on p. 37).

[KM09] M. Kumpošt, V. Matyáš. “User profiling and re-identification: case of university-wide
network analysis”. In: International Conference on Trust, Privacy and Security in
Digital Business. Springer. 2009, pp. 1–10 (cit. on p. 64).

[LGL+15] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, L. Sun. “Fog computing: Focusing on
mobile users at the edge”. In: arXiv preprint arXiv:1502.01815 (2015) (cit. on p. 21).

[MBG+08] D. McCoy, K. Bauer, D. Grunwald, T. Kohno, D. Sicker. “Shining light in dark places:
Understanding the Tor network”. In: International symposium on privacy enhancing
technologies symposium. Springer. 2008, pp. 63–76 (cit. on p. 65).

[MC04] G. R. Milne, M. J. Culnan. “Strategies for reducing online privacy risks: Why con-
sumers read (or don’t read) online privacy notices”. In: Journal of interactive mar-
keting 18.3 (2004), pp. 15–29 (cit. on pp. 28, 43).

[MCG06] G. R. Milne, M. J. Culnan, H. Greene. “A longitudinal assessment of online privacy
notice readability”. In: Journal of Public Policy & Marketing 25.2 (2006), pp. 238–
249 (cit. on pp. 28, 43).

[MFP07] D. Mellado, E. Fernández-Medina, M. Piattini. “A common criteria based security
requirements engineering process for the development of secure information systems”.
In: Computer standards & interfaces 29.2 (2007), pp. 244–253 (cit. on p. 30).

[MG+11] P. Mell, T. Grance, et al. “The NIST definition of cloud computing”. In: (2011)
(cit. on p. 20).

[MOO+14] C. Moore, M. O’Neill, E. O’Sullivan, Y. Doröz, B. Sunar. “Practical homomorphic
encryption: A survey”. In: 2014 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE. 2014, pp. 2792–2795 (cit. on p. 61).

[Moo08] A. D. Moore. “Defining privacy”. In: Journal of Social Philosophy 39.3 (2008),
pp. 411–428 (cit. on pp. 3, 4, 13).

[MPS13] A. Martı́nez-Ballesté, P. A. Pérez-Martı́nez, A. Solanas. “The pursuit of citizens’
privacy: a privacy-aware smart city is possible”. In: IEEE Communications Magazine
51.6 (2013), pp. 136–141 (cit. on pp. 29, 53).

[NLV11] M. Naehrig, K. Lauter, V. Vaikuntanathan. “Can homomorphic encryption be prac-
tical?” In: Proceedings of the 3rd ACM workshop on Cloud computing security
workshop. 2011, pp. 113–124 (cit. on p. 61).

[PB10] S. Pearson, A. Benameur. “A decision support system for design for privacy”. In:
IFIP PrimeLife International Summer School on Privacy and Identity Management
for Life. Springer. 2010, pp. 283–296 (cit. on pp. 35, 36, 39, 43, 44, 86).

114

Bibliography

[Pea09] S. Pearson. “Taking account of privacy when designing cloud computing services”.
In: 2009 ICSE Workshop on Software Engineering Challenges of Cloud Computing.
IEEE. 2009, pp. 44–52 (cit. on pp. 34, 35, 86).

[PH10] A. Pfitzmann, M. Hansen. “A terminology for talking about privacy by data minimiza-
tion: Anonymity, Unlinkability, Undetectability, Unobservability, Pseudonymity, and
Identity Management”. In: URL: http://dud. inf. tu-dresden. de/literatur/Anon_Ter-
minology_v0 34 (Jan. 2010) (cit. on p. 32).

[PK01] A. Pfitzmann, M. Köhntopp. “Anonymity, unobservability, and pseudonymity—a
proposal for terminology”. In: Designing privacy enhancing technologies. Springer.
2001, pp. 1–9 (cit. on pp. 19, 35, 45).

[PR19] S. Pape, K. Rannenberg. “Applying privacy patterns to the internet of things’(iot)
architecture”. In: Mobile Networks and Applications 24.3 (2019), pp. 925–933 (cit. on
pp. 38, 39, 104).

[PS10] S. Pearson, Y. Shen. “Context-aware privacy design pattern selection”. In: Interna-
tional Conference on Trust, Privacy and Security in Digital Business. Springer. 2010,
pp. 69–80 (cit. on pp. 35, 36, 39, 43, 44, 86).

[PS11] P. A. Pérez-Martı́nez, A. Solanas. “W3-privacy: the three dimensions of user privacy
in LBS”. In: 12th ACM Int’l. Symp. Mobile Ad Hoc Networking and Computing.
2011 (cit. on p. 30).

[PV04] G. Persiano, I. Visconti. “An efficient and usable multi-show non-transferable anony-
mous credential system”. In: International Conference on Financial Cryptography.
Springer. 2004, pp. 196–211 (cit. on p. 79).

[PZ11] C. Paquin, G. Zaverucha. “U-prove cryptographic specification v1. 1”. In: Technical
Report, Microsoft Corporation (2011) (cit. on p. 79).

[RAH+06] S. Romanosky, A. Acquisti, J. Hong, L. F. Cranor, B. Friedman. “Privacy patterns for
online interactions”. In: Proceedings of the 2006 conference on Pattern languages of
programs. 2006, pp. 1–9 (cit. on pp. 34, 39, 43).

[RBE+12] J. van Rest, D. Boonstra, M. Everts, M. van Rijn, R. van Paassen. “Designing privacy-
by-design”. In: Annual Privacy Forum. Springer. 2012, pp. 55–72 (cit. on pp. 17, 32,
53, 60, 104).

[RR98] M. K. Reiter, A. D. Rubin. “Crowds: Anonymity for web transactions”. In: ACM
transactions on information and system security (TISSEC) 1.1 (1998), pp. 66–92
(cit. on p. 35).

[Rup10] N. B. Ruparelia. “Software development lifecycle models”. In: ACM SIGSOFT Soft-
ware Engineering Notes 35.3 (2010), pp. 8–13 (cit. on pp. 21, 108).

[Ryd18] D. R.-.-J. G.-.-J. Rydning. “The digitization of the world from edge to core”. In:
Framingham: International Data Corporation (2018) (cit. on p. 13).

[SAB15] M. Sabt, M. Achemlal, A. Bouabdallah. “Trusted execution environment: what it is,
and what it is not”. In: 2015 IEEE Trustcom/BigDataSE/ISPA. Vol. 1. IEEE. 2015,
pp. 57–64 (cit. on p. 61).

[SC08] S. Spiekermann, L. F. Cranor. “Engineering privacy”. In: IEEE Transactions on
software engineering 35.1 (2008), pp. 67–82 (cit. on pp. 28, 36, 38, 43, 47, 70, 93).

115

Bibliography

[Sch02] M. Schumacher. “Security Patterns and Security Standards.” In: EuroPLoP. Citeseer.
2002, pp. 289–300 (cit. on pp. 30, 34, 35, 37, 39, 53).

[SFH+13] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, P. Sommerlad.
Security Patterns: Integrating security and systems engineering. John Wiley & Sons,
2013 (cit. on pp. 31, 39, 44, 48, 60, 82, 106).

[Sil15] J. Siljee. “Privacy transparency patterns”. In: Proceedings of the 20th european
conference on pattern languages of programs. 2015, pp. 1–11 (cit. on pp. 37, 39).

[SL98] H. A. Seid, A. Lespagnol. Virtual private network. US Patent 5,768,271. June 1998
(cit. on p. 65).

[Sol02] D. J. Solove. “Conceptualizing privacy”. In: Calif. L. Rev. 90 (2002), p. 1087 (cit. on
p. 17).

[Sol05] D. J. Solove. “A taxonomy of privacy”. In: U. Pa. L. Rev. 154 (2005), p. 477 (cit. on
pp. 17, 18).

[SP11] Y. Shen, S. Pearson. “Privacy enhancing technologies: A review”. In: HP Laborato-
ries 2739 (2011), pp. 1–30 (cit. on p. 103).

[Spi12] S. Spiekermann. “The challenges of privacy by design”. In: Communications of the
ACM 55.7 (2012), pp. 38–40 (cit. on p. 18).

[SS13] S. Singla, J. Singh. “Cloud data security using authentication and encryption tech-
nique”. In: Global Journal of Computer Science and Technology (2013) (cit. on
p. 55).

[Uni17] C. M. University. What is your definition of software architecture? 2017. url: https:
//resources.sei.cmu.edu/asset_files/FactSheet/2010_010_001_513810.pdf

(cit. on p. 22).
[VE03] H. Venter, J. H. Eloff. “A taxonomy for information security technologies”. In: Com-

puters & Security 22.4 (2003), pp. 299–307 (cit. on pp. 27, 38, 43).
[Wei91] M. Weiser. “The Computer for the 21 st Century”. In: Scientific american 265.3

(1991), pp. 94–105 (cit. on p. 13).
[WJ15] K. Wuyts, W. Joosen. “LINDDUN privacy threat modeling: a tutorial”. In: CW

Reports (2015) (cit. on pp. 27, 103, 107, 108).
[WKM+14] P. Winter, R. Köwer, M. Mulazzani, M. Huber, S. Schrittwieser, S. Lindskog,

E. Weippl. “Spoiled onions: Exposing malicious Tor exit relays”. In: International
Symposium on Privacy Enhancing Technologies Symposium. Springer. 2014, pp. 304–
331 (cit. on p. 68).

[WMAH15] B. D. Weinberg, G. R. Milne, Y. G. Andonova, F. M. Hajjat. “Internet of Things:
Convenience vs. privacy and secrecy”. In: Business Horizons 58.6 (2015), pp. 615–
624 (cit. on p. 38).

[WYH+19] H. Washizaki, N. Yoshioka, A. Hazeyama, T. Kato, H. Kaiya, S. Ogata, T. Okubo,
E. B. Fernandez. “Landscape of iot patterns”. In: 2019 IEEE/ACM 1st International
Workshop on Software Engineering Research & Practices for the Internet of Things
(SERP4IoT). IEEE. 2019, pp. 57–60 (cit. on pp. 37, 39).

116

https://resources.sei.cmu.edu/asset_files/FactSheet/2010_010_001_513810.pdf
https://resources.sei.cmu.edu/asset_files/FactSheet/2010_010_001_513810.pdf

[XXL18] L. D. Xu, E. L. Xu, L. Li. “Industry 4.0: state of the art and future trends”. In:
International Journal of Production Research 56.8 (2018), pp. 2941–2962 (cit. on
p. 13).

[YB97] J. Yoder, J. Barcalow. “Architectural patterns for enabling application security”. In:
Proceedings of the 4th Conference on Patterns Language of Programming (PLoP’97).
Vol. 2. Citeseer. 1997 (cit. on p. 30).

All links were last followed on January 15, 2021.

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation and Research Questions
	1.2 Outline

	2 Background
	2.1 Privacy–a Multidimensional Concept
	2.2 Cloud Computing and Privacy
	2.3 Software Architecture and Patterns

	3 Related Work
	3.1 Privacy Engineering
	3.2 Privacy-Related Patterns

	4 Privacy-Preserving Architectural Patterns
	4.1 Scope
	4.2 Terminology
	4.3 Quality Attribute Privacy
	4.4 Client-Side Obfuscation
	4.5 Private Data Processing
	4.6 Private Network Access
	4.7 Private Information Exchange
	4.8 Pseudonymous Identity Management
	4.9 Anonymous Authorization
	4.10 Access Control

	5 Methodology
	5.1 Objectives
	5.2 Functional Principle and Overview
	5.3 Setting-Driven Elicitation
	5.4 Privacy-Driven Elicitation
	5.5 Pattern Relation-Driven Elicitation
	5.6 Architect-Driven Selection

	6 Use Case
	6.1 Context
	6.2 Motivation
	6.3 Applying the Methodology

	7 Discussion
	7.1 Objectives
	7.2 Limitations

	8 Conclusion and Outlook
	8.1 Contributions to Research Questions
	8.2 Open Questions and Future Work

	Bibliography

