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1. Introduction

1.1. Motivation

Long ago, the mathematical area of topology, dealing with the classification of properties
of the space that are preserved under continuous deformations [1], has been a subject
that was rather unconnected to physical applications. This viewpoint has changed com-
pletely with the discovery of the quantum Hall effect [2] in 1986. Ever since, the idea of
classifying physical quantities, such as band structures, by means of topology, leading
to new exotic phases of matter like topological insulators [3], has attracted numerous
scientists. Recently, works in this field have been awarded a Nobel prize.

Mathematically, the notion of a continuous deformation can be reduced to the term
of open sets. Roughly speaking, neighboring points stay neighbors and edges remain
edges under a continuous map, while distances or angles are free to change. Pictorally,
two objects are topologically equivalent (homeomorphic) when they can be stretched or
bent into each other without cutting or gluing. The probably most popular illustrating

(a)

(b)

Figure 1.1.: (a) Continuous deformation of a mug into a torus. In the language of topology both
objects are homeomorphic such that topological invariants, for instance the number of holes, are
identical. (b) The deformation of a torus into a ball can only be achieved by cutting and gluing,
which is not a homeomorphism. Thus, the objects are not topologically equivalent and the process
corresponds to a topological phase transition with the number of holes changing from zero to one.
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1. Introduction

example is given by considering a mug and an orange. While the first can be continuously
deformed into a torus, the latter is a ball and cannot be transformed into a torus without
cutting a hole into it, compare with figure 1.1. Hence, both objects are topologically
distinct, meaning that one can find a topological invariant that is not shared between
them. In the example, a possible invariant is given by the number of holes, which is
one for the mug/torus, but zero for the orange/ball. The important consequence for
topological invariants to be preserved under continuous maps implies that the latter are
only allowed to change discontinuously.

Physically, topologically protected properties of a system are extremely resistant to a
large variation of the system parameters leading to interesting applications, for instance
in communication networks [4] and quantum computing [5, 6]. A prominent example for
this is the existence of stable edge modes that leads to quantized transport phenomena
at the system boundaries. The exhaustive classification scheme of topological insulators
and superconductors has been worked out in the tenfold way paper by Ryu et al. [7].

Approaches towards a classification of dissipative systems are of recent interest [8, 9],
which motivates the subject of this thesis to study effects in dissipative bosonic quan-
tum many-body systems that are known to possess topologically nontrivial phases in the
dissipation-free scenario. To do so, extensions of the paradigmatic Su-Schrieffer-Heeger
(SSH) model [10] are studied in two different frameworks that allow for the introduction
of dissipative effects – complex PT -symmetric on-site potentials [11] and master equa-
tions in Lindblad form [12]. Adopting the viewpoint that topological effects are often
expressed in interesting edge physics, the description of general edge effects arising in
dissipative setups is one of the major goals of this thesis.

The treatment of dissipative quantum many-body systems requires a toolbox of numer-
ical methods. In particular, a density matrix renormalization group (DMRG) algorithm
is developed in the course of this thesis. Extending the latter to non-Hermitian Hamil-
tonians allows for the simulation of systems governed by a PT -symmetric Hamiltonian.
Ultimately, the non-Hermitian DMRG procedure is employed in the Liouville space of
many-body density matrices for the treatment of master equations in Lindblad form.

Another challenging task involves the comparison of results obtained from both descrip-
tions, which has not been performed so far in the literature. Moreover, the treatment
of interacting systems requires advanced techniques that are not necessarily directly
available, since in the course of this work ideas of various fields are combined. Using
semi-analytical and numerical methods, interesting edge physics in the presence of dissi-
pation will be identified in both frameworks, which can also be brought into accordance,
thus dissipative effects can also be effectively studied within a non-Hermitian theory.
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1.2. Outline

1.2. Outline

As extensions of the SSH model are studied within this work, chapter 2 illustrates basic
properties of the latter, emphasizing consequences of nontrivial topology and topolo-
gical expressions. In particular, the occurrence of topologically protected edge states is
explained and the topological invariants given by the bulk winding number and the Zak
phase [13] are introduced. Moreover, the notion of adiabatic phases proposed by Berry
[14] is commented on.

Extending the SSH model to bosonic particles leads to the superlattice Bose-Hubbard
model (SL-BHM), which is discussed in more detail in chapter 3. It is known to also
possess topologically nontrivial phases that host edge states at open boundaries [15].
Interestingly, the SL-BHM is related to the SSH model and therefore most of the topo-
logical aspects can be understood as directly inherited. The construction of a topological
invariant and reasons for its quantization, which are required for the generalization to
the non-Hermitian case, are also contained.

In order to describe dissipative effects, chapter 4 presents the two different methods
of imposing PT -symmetric on-site potentials leading to a non-Hermitian Hamiltonian
and the description of the system dynamics by master equations in Lindblad form.
Both approaches can actually be related in the mean-field limit, which motivates the
application of non-Hermitian terms to effectively describe gain and loss also away from
this limit. To become familiar with non-Hermitian operators, fundamental quantities
that are inevitable for the treatment of the latter are introduced.

Chapter 5 contains an intermezzo on numerical methods to treat bosonic one-dimensional
quantum many-body systems described by a local Hamiltonian (or Liouvillean). Starting
from a simple build-up procedure of the investigated Hamiltonian, which allows to think
of a finite system to be composed of two composite blocks, the idea of properly renorma-
lizing the representation of a block to truncate the basis, thereby keeping the dimension
of the problem manageable, the celebrated density matrix renormalization group method
(DMRG) [16–18] is introduced and extended to non-Hermitian operators. Ultimately,
this allows for the treatment of master equations in Lindblad form by expressing the
latter in a vectorized form. A technique to target the non-equilibrium steady state
(NESS) of a master equation is presented, adopting the language of traditional DMRG.

In chapter 6 the SL-BHM is extended by complex on-site potentials that impose dif-
ferent dissipative patterns on the system. Effects of dissipation are identified in the
single-particle picture and related to the many-particle picture which can be accessed
by employing the presented DMRG algorithm for non-Hermitian Hamiltonians. In the
presence of complex energies a proper interpretation which leads to the most important
states resembling the steady states of an equivalent master equation is outlined.
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1. Introduction

PT -symmetric Hamiltonians are known to possess an entirely real spectrum for certain
parameter ranges, where the system is said to be PT -unbroken [11, 19, 20]. In chapter
7 the topological invariant introduced for the SL-BHM is formulated in a biorthogonal
version which can also be employed in the PT -unbroken regime. The real part of this
complex Berry phase is shown to be quantized in integer multiples of π and a simple
method for the numerical computation of the generalized winding number (complex
Berry phase) is given. The generalization of topological properties to the non-Hermitian
case leading to protected edge states at interfaces between two non-Hermitian systems
that are characterized by different invariants is also illustrated. Practically, although the
interpretation of the complex Berry phase as a topological invariant in the presence of
complex eigenvalues does not hold, it can be employed as a local order parameter that
encodes entanglement between two neighboring sites, even in the non-quantized case.
The effects described in chapter 6 are successfully related to the data for the generalized
winding numbers.

The second approach towards introducing gain and loss with master equations in Lind-
blad form is tackled in chapter 8, where the object of interest is given by the NESS of
the system. First, a condition for the total particle number of fermionic and bosonic sys-
tems described by a master equation with linear Lindblad couplings is derived. Using the
method of third quantization for both fermionic [21] and bosonic [22] systems governed
by a quadratic Liouvillean, steady state observables can be computed for the dissipative
versions of the SSH model and the non-interacting SL-BHM. Taking one step further
with the onset of particle interactions, which lead to a non-quadratic Liouville operator
that cannot be handled anymore by means of third quantization, the non-Hermitian
DMRG algorithm is employed in Liouville space to obtain steady state observables in
the interacting dissipative SL-BHM.

Note that each chapter starts with a brief summary of the content and concludes by
reviewing the major results and notational aspects. Readers that are already familiar
with a certain topic may want to skip a chapter, only reviewing the final summary at the
end of each chapter. Expansions of calculations and proofs are contained whenever they
were thought to contribute to a better understanding of the text. A detailed discussion
of the method of third quantization and considerations about improving the numerical
stability of DMRG in Liouville space is contained in the appendices.
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2. Su-Schrieffer-Heeger (SSH) model

In the following chapter some of the necessary terminology of topological aspects in
one-dimensional quantum systems is introduced and illustrated by investigation of the
paradigmatic Su-Schrieffer-Heeger (SSH) model [10, 23] – a tight-binding model, which
was originally proposed to describe topological solitons in polyacetylene, a linear polymer
(CH)x consisting of quasi-one-dimensional chains of CH-monomers (see figure 2.1c) with
two possible dimerization configurations.

Although the SSH model describes non-interacting fermions, it allows us to introduce
the key ideas laying out the foundation for the generalization of topological order to
interacting bosonic systems, as will be discussed later on (see chapter 3). Moreover, the
approach taken in this work also relies on those ideas, aiming to extend the aforemen-
tioned systems by dissipative processes.

Starting off with a discussion of the properties of the bulk (the“interior”part) of a system
described by the SSH Hamiltonian, introducing fundamental concepts for the treatment
of such Hamiltonians in section 2.1, the text proceeds with the occurrence of topological
edge states at system boundaries in section 2.2. Such states are characterized by an
exponentially located particle at the edge and emerge if the transition of the boundary
is accompanied by a change of the topological invariant. The latter does not change
under continuous deformations of the system Hamiltonian, which is the reason for edge
states to be robust against a large set of changes of the system parameters.

In case of a gapped system (like the SSH model which models a topological insulator),
the concept of adiabatic phases, so called Berry phases [14], can be applied and provides
a topological invariant that is also referred to as Zak phase in one-dimensional systems
[13], a subject dealt with in section 2.3.

The material presented throughout this chapter is oriented towards the approach taken
in reference [24]. For further reading the reader is also referred to [25].

2.1. Bulk properties

As already mentioned, the SSH model represents a paradigmatic Hamiltonian illustrating
the context of topological order in physical systems. In the course of this work the main
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2. Su-Schrieffer-Heeger (SSH) model

(a)
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Figure 2.1.: Interpretation and ori-
gin of the SSH model. (a) Peri-
odic superlattice potential com-
posed of multiple double-well
unit cells (dashed rectangles)
with intra-cell tunneling ampli-
tude t1 and inter-cell tunneling
t2. (b) Scheme of the superlat-
tice in terms of lattice sites (grey
circles: sublattice A, white cir-
cles: sublattice B) connected by
bonds indicating nearest neigh-
bor hopping. The line thickness
corresponds to the strength of
the related tunneling. (c) Stag-
gered hopping elements model
the two dimerization configura-
tions in polyacetylene (CH)x.
The trans-dimerization is shown.

focus will be on bosonic lattice systems whose Hamiltonians may easily be engineered
and controlled by ultracold atoms in optical lattices [26, 27]. Therefore, the text will
frequently adopt the terminology of optical lattices.

Consider a one-dimensional periodic potential of double-wells, which for instance could
be created by the superposition of two counter-propagating laser beams (see figure 2.1a).
A particle placed into such a superlattice structure may tunnel between two adjacent
lattice sites, the rate determined by the potential barrier height. The hopping element
of tunneling between two sites of a double-well is denoted by t1, while the inter-cell
tunneling (between two neighboring sites belonging to adjacent double-wells) is described
by t2. As one might already suspect, by varying the ratio of the two tunneling rates, the
physical properties of this model change. A common parameterization for the tunneling
amplitudes is given by

t1 = t (1 + ∆ cos(θ)) ,

t2 = t (1−∆ cos(θ)) ,
(2.1)

with an average tunneling t modulated by the dimerization strength ∆. A sweep of
the dimerization parameter θ ∈ [0, π] switches the dominance of inter- and intra-cell
tunneling with equal tunnelings at θ = π

2
⇔ t1 = t2 = t.

A pictoral way of thinking about those connected double-wells can be made up by
considering wells as lattice sites joined by bonds indicating the strength of tunneling.

6



2.1. Bulk properties

As indicated by figure 2.1b, thick connections represent strong tunneling, while thin
bonds mark weak coupling. One can then imagine the system to be composed of dimers
joined together by a small hopping amplitude. This interpretation resembles the original
intention to model the two different dimerization configurations in polyacetylene, one of
which is sketched in figure 2.1c.

The SSH Hamiltonian for spin-polarized fermions on a one-dimensional chain of L lattice
sites labeled by indices 1, 2, . . . , L with staggered hopping elements in second quantiza-
tion reads

H = −
L−1∑

j=1,3,...

(
t1c
†
j+1cj + h.c.

)
−

L−2∑

j=2,4,...

(
t2c
†
j+1cj + h.c.

)
, (2.2)

where h.c. denotes Hermitian conjugation, cj (c†j) represent fermionic annihilation (cre-
ation) operators at site j satisfying the anti-commutation relations

{cj, ck} =
{
c†j, c

†
k

}
= 0,

{
cj, c

†
k

}
= δjk,

(2.3)

and real tunneling amplitudes t1, t2 ∈ R are assumed. Moreover, an integer number of
unit cells N implies L = 2N to be even (at least in the course of this chapter).

Since the Hamiltonian (2.2) is quadratic in annihilation and creation operators and
therefore there is no interaction between the fermions, it is sufficient to restrict its
treatment to the single-particle basis, keeping in mind that a generic many-particle
state of the system can be expressed in terms of properly antisymmetrized products
of single-particle states. For the purpose of deriving the eigenstates |ψn〉 and energies
En, n = 1, 2, . . . , L, the Hamiltonian is expressed in the projector notation introduced in
[24],

H = −
N∑

j=1

(t1 |j, B〉〈j, A|+ h.c.)−
N−1∑

j=1

(t2 |j + 1, A〉〈j, B|+ h.c.) , (2.4)

where the fact that the chain of double-wells can be separated into two sublattices A and
B (compare figure 2.1b) only coupling to one another is used to describe the presence
of a particle in unit cell j at the lattice site assigned to sublattice A by |j, A〉 and so on.
The notation in (2.4) emphasizes the two different tunnelings (inter- and intra-cell).

As the main focus is on properties of the bulk periodic boundary conditions are assumed.
The Hamiltonian itself is then left invariant by translations |j, ◦〉 → |j + `, ◦〉 , ` ∈ Z, ◦ ∈
{A,B}, by an integer number of unit cells. This periodicity in the degree of freedom
labeling the unit cells can be split apart by a Fourier transformation. To to so, one

7



2. Su-Schrieffer-Heeger (SSH) model

chooses a representation of |j, ◦〉 ≡ |j〉 ⊗ |◦〉 in terms of the Hilbert spaces of internal
(i.e. the single double-well) states |◦〉 ∈ Hinternal and external (i.e. the unit cell index)
degrees of freedom |j〉 ∈Hexternal. Introducing the quasi-momentum state |k〉 ∈Hexternal,
the external degree of freedom is Fourier-transformed according to the relation

|k〉 =
1√
N

N∑

j=1

eijk |j〉 , where k =
2π

N
,
4π

N
, . . . , 2π. (2.5a)

Inverting equation (2.5a) leads to

|j〉 =
1√
N

2π∑

k= 2π
N
, 4π
N
,...

e−ijk |k〉 , where j = 1, 2, . . . , N (2.5b)

as the correspondence Nδkk′ =
∑N

j=1 e−i(k−k′)j holds.

With that said, the external terms stemming from the external degree of freedom in the
SSH Hamiltonian (2.4) expressed in momentum state representation read

N∑

j=1

|j〉〈j| = 1

N

N∑

j=1

2π∑

k= 2π
N
, 4π
N
,...

2π∑

k′= 2π
N
, 4π
N
,...

e−i(k−k′)j |k〉〈k′|

=
∑

k,k′

δkk′ |k〉〈k′| =
∑

k

|k〉〈k| ,
(2.6a)

N∑

j=1

|j + 1〉〈j| =
∑

k

e−ik |k〉〈k| . (2.6b)

Substituting (2.6) into (2.4) (including periodic boundary conditions) yields the following
form of the Hamiltonian,

H = −t1
N∑

j=1

(|j〉〈j| ⊗ |A〉〈B|+ h.c.)− t2
N∑

j=1

(|j + 1〉〈j| ⊗ |A〉〈B|+ h.c.)

=
∑

k

|k〉〈k| ⊗
[
−
(
t1 + t2e−ik

)
|A〉〈B|+ h.c.

]
︸ ︷︷ ︸

≡HBloch(k)

,
(2.7)

where the term HBloch(k) containing the internal degrees of freedom is referred to as
Bloch Hamiltonian. Then, the eigenstates can be decomposed by a product ansatz
|ψn(k)〉 = |k〉 ⊗ |un(k)〉 with the 2π-periodic Bloch function |un(k)〉 = an(k) |A〉 +
bn(k) |B〉. This is nothing but a discrete version of the well-known Bloch theorem [28]
and such a representation may always be chosen when the system is left invariant by a
group of translation operators.
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2.2. Topological edge states
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Figure 2.2.: Band structure of the single-particle energies of a finite periodic system of N = 32 unit
cells for different tunneling ratios obtained numerically by exact diagonalization. (a) Variation of
the tunneling ratio keeping t1 = 1. (b) Variation by the parameterization (2.1) with parameters
t = 1,∆ = 2/3. The energy gap of the Bloch bands closes at t1 = t2.

Hence, the eigenvalue problem H |ψn〉 = En |ψn〉 reduces to a much simpler one, namely
HBloch(k) |un(k)〉 = En(k) |un(k)〉, which can be expressed as a matrix equation,

−
(

0 t1 + t2e−ik

t1 + t2eik 0

)

︸ ︷︷ ︸
≡HBloch(k)

(
an(k)
bn(k)

)
= En(k)

(
an(k)
bn(k)

)
, (2.8)

with the Bloch Hamiltonian matrix HBloch(k) that will be discussed in more detail later
on. Finally, after some simple calculus the energy dispersion reads

E1,2(k) = ±
√
t21 + t22 + 2t1t2 cos (k) (2.9)

and is shown for the two different parameterizations in figure 2.2. The energy spectrum
consists of two symmetrically arranged Bloch bands around E = 0. Thus, the many-
particle ground state of the system is given by a fully occupied lower Bloch band. Since
both bands are separated by an energy gap, the SSH Hamiltonian describes a (topo-
logical) insulator. It is crucial to notice that the staggered hopping is essential for the
energy gap to open as the band gap closes for a vanishing dimerization at t1 = t2 (or
equivalently θ = π/2).

2.2. Topological edge states

So far the properties of a periodic system (imagine the lattice sites connected in the
shape of a ring) without system boundaries have been discussed. However, interesting

9



2. Su-Schrieffer-Heeger (SSH) model
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Figure 2.3.: Single-particle energy spectra of an open chain of N = 32 unit cells and lattice occupations
of some eigenstates. (a) Variation of the tunneling ratio keeping t1 = 1. (b) Variation by the
parameterization t = 1,∆ = 2/3. Note the occurrence of zero-energy modes in the regime t2 > t1.
(c) Expectation values of the lattice occupation for two typical bulk states of the lower Bloch band.
(d) The mid-gap modes at zero energy are exponentially localized at the system boundary which
is why they are called edge states. Note that the edge states are localized on a sublattice only.

features arise when the ring is cut along one bond such that the result is a chain with
two open boundaries.

To see this the single-particle energies of a system with identical length as that used in
figure 2.2, but this time with open boundaries, is shown in figures 2.3a, 2.3b. While there
are still two bands separated by an energy gap that closes at the homogeneous configura-
tion t1 = t2, the open boundaries cause the emergence of two mid-gap degenerate states
at zero energy in the regime where the inter-cell tunneling t2 dominates the intra-cell
hopping t1. It is not only the energy that distinguishes those zero-energy modes from the
rest of the bulk states. In figure 2.3c the lattice occupation 〈nj〉 = 〈c†jcj〉 of two states
hosted by the lower Bloch band are shown. As expected a particle delocalizes over the
whole bulk described by a Bloch wave. In contrast, the lattice occupation of the zero
energy states is strongly concentrated at one of each of the boundaries (compare figure
2.3d). Such states providing a degree of freedom in terms of a localized particle at the
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2.2. Topological edge states

(a)

t1 � t2

(b)

t1 � t2

Figure 2.4.: Dimerized limit of the SSH model. (a) Setting either t2 or t1 to zero leaves the open chain
in a configuration of decoupled double-wells (top panel) or a collection of dimers with completely
decoupled single sites at the edges (bottom panel). (b) Same configurations in the superlattice
potential picture. The ground state consists of “singlet states” localized on a single double-well
(indicated by blue-shaded ellipses) allowing for the possibility of having two isolated sites at the
edges a single-particle can be placed on.

edge of the system are called edge states.

The occurrence of edge states can be understood by considering the fully-dimerized limit
of the unit cells shown in figure 2.4a. In the limit t1 � t2 the chain decomposes into
N completely decoupled dimers (top panel of figure 2.4a) and the many-particle ground
state is composed of singlet-type ground states 1√

2
(|j, A〉−|j, B〉) of a double-well, located

on a single dimer (top panel of figure 2.4b). The same applies for t2 � t1, except for the
lattice sites located at the boundaries (bottom panels of figures 2.4a, 2.4b). However,
now there are two lattice sites that are completely isolated from the rest of the chain,
which can be filled with a particle without investing any energy (the zero-energy edge
states).

However, edge states do not only occur in the strict limit of strongly dimerized double-
wells. Rather they are a generic feature of the energy spectrum when t2 > t1. This
robustness originates from the topological properties of the system. Remember that
topological properties of a system cannot change under continuous deformations of the
system, i.e. as long as the energy gap of the system does not close. Thus, the closing of
the energy gap at t1 = t2 represents a topological phase transition and topology protects
the edge states from hybridizing with the bulk whenever t2 > t1.

The topological phase transition can be observed by tracking the topological invariant
of the system which is given by a winding number ν of the Bloch Hamiltonian matrix

11



2. Su-Schrieffer-Heeger (SSH) model
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Figure 2.5.: Winding number of the Bloch Hamiltonian of the SSH model. (a) Loop performed by
the vector n(k) parameterizing HBloch(k) for different parameter sets: t1 = 2, t2 = 0.8 (left),
t1 = 0.8, t2 = 0.8 (center), t1 = 0.4, t2 = 0.8 (right). The number of times the origin is encircled by
the loop, ν, represents a topological invariant which discontinuously changes at the phase transition
marked by t1 = t2 and is accompanied by a closing of the band gap. (b) By projecting the loops
(dashed colored lines) onto the unit circle (indicated by dashed black lines), the winding number
can also be computed with a standard formula.

HBloch(k). By expanding (2.8) in terms of Pauli matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
−1 0
0 1

)
, (2.10)

the Bloch Hamiltonian can be embedded in a quasi two-dimensional space,

HBloch(k) = −n(k) ·σ, n(k) =



t1 + t2 cos (k)
t2 sin (k)

0


 (2.11)

with σ =
(
σx,σy,σz

)T
spanned by the x and y components of n(k).

Because of the properties of the Pauli matrices the length of the vector n(k) corresponds
directly to the energy, |n(k)| = |E1,2(k)|. As the quasi-momentum k sweeps from 0 to 2π
the vector n(k) performs a loop in the (nx, ny)-plain, encircling the point (nx = t1, ny =
0) with a radius of t2 (compare figure 2.5a). The number of times the loop performed
by n(k) winds around the origin can simply be read off and it can be checked that the
winding number is ν = 0 for t1 > t2 and changes to ν = 1 for t1 < t2. At the transition,
the loop passes through the origin indicating a closing of the energy gap which, as already
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2.3. Topological invariants – Berry phases

mentioned, represents the only way a topological invariant can change. A standard way
of calculating the winding number involves a projection of the loop onto the unit circle,
defining ñ(k) = n(k)/ |n(k)| (see figure 2.5b), computing the oriented area enclosed by
ñ(k) and finally dividing this area by the surface of the unit circle [24],

ν =
1

π

∫ 2π

0

1

2

(
ñ(k)× ∂

∂k
ñ(k)

)

z

dk. (2.12)

In the next section, the method of adiabatic phases that provides a more general access
to topological invariants of gapped systems will be introduced. The Berry phase (or
Zak phase) which represents the topological invariant of the SSH model can be directly
associated to the winding number (2.12) [29].

Some final remarks that shall not be kept back are in order. This is the fact that
nz(k) = 0 stems from a chiral symmetry [24] of the SSH model. The text shall not go
too much into detail, but it is worth to be aware of two aspects:

â Chiral symmetry causes the energy spectrum of the SSH model to be antisymmet-
ric, i.e. if E is eigenvalue of H, then −E is another one. Moreover, it can be shown
that due to a chiral symmetry, each of the two edge states (left: |L〉, right: |R〉) is
hosted on one of the sublattices A,B, [24] such that

|L〉 =
N∑

j=1

aj |j, A〉 , |R〉 =
N∑

j=1

bj |j, B〉 . (2.13)

â More generally, nontrivial topological order in one-dimensional systems can only
be achieved by a symmetry of the system. Because of that, topological order
in one-dimensional systems is often referred to as symmetry-protected topological
order (SPT) [30].

2.3. Topological invariants – Berry phases

The winding number of the SSH Bloch Hamiltonian provides an illustrative topological
invariant, which however cannot be generalized straightforwardly. A more general ap-
proach towards the construction of topological invariants for gapped systems is given by
the concept of adiabatic phases, first introduced by Berry [14] (this text will only present
the formalism for one-dimensional systems). The loop performed by the components of
n(k) can be regarded as a transport of the Hamiltonian H = H(n(k)) along a closed
loop in parameter space {n, n ∈ R3}. If the requirements of the adiabatic theorem, which
will be discussed later on, hold, the ground state of the system will acquire a phase, the
Berry phase.
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2. Su-Schrieffer-Heeger (SSH) model
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Figure 2.6.: Relative phase between a discrete set of nonorthogonal states. (a) A set of three states
assigned to three different locations in parameter space. The phase between to adjacent states can
be understood in terms of a contraction of neighboring bras and kets indicated by arrows. Neither
of the phases is gauge-invariant. (b) Arranging the states in a closed loop C yields the quantity
ϕC = ϕ12 + ϕ23 + ϕ31, which by construction is gauge-invariant.

To see how such a phase can be assigned consider the discrete case first, where a finite
set of ground states {|ψ1〉 , |ψ2〉 , . . . |ψM〉} (for instance, assigned to points k1, k2, . . . , kM
in parameter space) is given (see figure 2.6a). One might assign a relative phase ϕ12

between two non-orthogonal states |ψ1〉 , |ψ2〉 by means of the scalar product [24],

ϕ12 = − arg (〈ψ1 |ψ2〉) =⇒ e−iϕ12 =
〈ψ1 |ψ2〉
|〈ψ1 |ψ2〉|

, (2.14a)

or, equivalently,

ϕ12 = −Im(ln (〈ψ1 |ψ2〉)) . (2.14b)

However, this definition alone is not physically meaningful. This is because the Schröding-
er equation is invariant by a global gauge transformation,

|ψ〉 → eiα |ψ〉 , α ∈ R, (2.15)

as two states that only differ by a global phase α lead to the same evolution of all
observables and can therefore be considered equal in quantum mechanics. Note that
one could assign any global phase to both of the states in (2.14a) without changing
the actual physics, but obviously modifying the outcome of ϕ12 arbitrarily. This is
also an important aspect for numerical computations as a numerical routine solving for
eigenvectors of a Hamiltonian matrix will assign a completely random complex phase to
each eigenvector.

Fortunately, this problem can be circumvented if the states used in the computation of
the phase are arranged in a closed loop C (compare figure 2.6b). Then, the Berry phase
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2.3. Topological invariants – Berry phases

ϕC of the loop C reads

ϕC = ϕ12 + ϕ23 + . . .+ ϕM1

= − arg (〈ψ1 |ψ2〉 〈ψ2 |ψ3〉 · · · 〈ψM |ψ1〉)

= −Im

(
ln

(
M∏

j=1

〈ψj |ψj+1〉
)) (2.16)

This form is inherently gauge-invariant, as a gauge transformation of any state |ψj〉 →
eiαj |ψj〉 leaves equation (2.16) unchanged because of the simultaneous gauge transfor-
mation in the adjoint counterpart 〈ψj| → e−iαj 〈ψj|. In numerical computations, the
parameter space (momentum space for the SSH model) could be discretized in M steps
k1,...,M yielding the Bloch states |ψ1,...,M〉, which can then be used to evaluate (2.16) for
the Berry phase.

To represent a topological invariant that can only change discontinuously, an additional
property of the Berry phase is quantization, which is caused by a symmetry as already
mentioned before. In the following, this will be illustrated for the SSH model. Before
doing so some physical requirements that have to be met for equation (2.16) to provide
a physically useful quantity are addressed.

The original approach of Berry [14] considers the slow (adiabatic) transport of a quantum
system described by a Hamiltonian H(R), R ∈P parameterized by the parameter space
P around a loop C ,

C : [0, T )→P,

t 7→ R(t),
(2.17)

such that R(0) = R(T ) and T is large enough for the evolution to be slow. The evolution
of a state |ψ(t)〉 is governed by the Schrödinger equation

i
d

dt
|ψ(t)〉 = H(R(t)) |ψ(t)〉 (2.18)

(setting ~ = 1). For any point R(t) there exists a natural basis |n(R(t))〉, where

H(R(t)) |n(R(t))〉 = En(R(t)) |n(R(t))〉 . (2.19)

According to the adiabatic theorem [31], a system subjected to a slow perturbation re-
mains in its instantaneous eigenstate if the eigenvalue is gapped from the rest of the
spectrum. Hence, a system initially prepared in a state |ψ(0)〉 = |n(R(0))〉 and trans-
ported slowly enough (see [32] for a rigorous presentation) along the loop in parameter
space will at time t be in the state |n(R(t))〉 acquiring two phases,

|ψ(t)〉 = exp

(
−i

∫ t

0

En(R(t′))dt′
)

exp (iϕn(t)) |n(R(t))〉 . (2.20)
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2. Su-Schrieffer-Heeger (SSH) model

The first exponential accounts for the dynamical phase arising from the evolution of the
Hamiltonian. The second term can be considered as an effect of the parameter spaces’
geometry. Inserting the ansatz (2.20) into (2.18) and solving for the geometric phase
ϕn(t), one obtains

dϕn
dt

= i 〈n(R(t)) | ∇Rn(R(t))〉 · dR
dt
. (2.21)

Eventually, after performing an adiabatic closed path, the system will end up in the
initial state ∼ |n(R(0))〉, having picked up a dynamical phase

∫ T
0
En(R(t′))dt′ and a

geometric phase ϕn(T ) = ϕn(C ) that only depends on the loop C ,

ϕn(C ) =

∮

C

〈n(R) | i∇Rn(R)〉 · dR ≡
∮

C

A(R) · dR. (2.22)

The integrand of equation (2.22) is called Berry connection. It is crucial to be aware of
the fact that for the integration in (2.22) to work a smooth gauge has to be chosen for
the instantaneous basis. In particular for numerical algorithms this can be an exhausting
task [33], making it comfortable to have a gauge-invariant method (equation (2.16)) for
computing the Berry phase at hand as well.

The relation between equations (2.16) and (2.22) can be seen by discretizing the loop
into M equidistant steps and expressing the gradient term by a finite difference deriva-
tive of first order, neglecting higher terms. Assuming a one-dimensional parameter
space and a discretized loop C = (k1, k2, . . . , kM) with spacing ∆k and associated states
(|ψ(k1)〉 , |ψ(k2)〉 , . . . , |ψ(kM)〉), equation (2.16) can be rewritten by using the following
relation from a Taylor expansion of

〈ψ(kj) |ψ(kj+1)〉 ≈ 〈ψ(kj)|
(

1 + ∆k
∂

∂k

)
|ψ(kj)〉

= 1− i∆kA(kj)

≈ exp (−i∆kA(kj)) ,

(2.23)

such that

lim
M→∞

M∏

j=1

〈ψ(kj) |ψ(kj+1)〉 = lim
M→∞

exp

(
−i

M∑

j=1

∆kA(kj)

)

= exp

(
−i

∮

C

A(k)dk

)
,

(2.24)

which reproduces the same result for the Berry phase as (2.22).

The Berry phase obtained by transporting a one-dimensional periodic system along the
first Brillouin zone is called Zak phase,

ϕn,Zak =

∫ 2π

0

〈
un(k)

∣∣∣∣
∂

∂k
un(k)

〉
dk ≡

∫ 2π

0

An(k)dk, (2.25)
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2.3. Topological invariants – Berry phases

which has also recently been experimentally detected by interferometry [34]. Here, the
|un(k)〉 are the Bloch functions introduced in the context of equation (2.8). For the
SSH model the Zak phase directly corresponds to the winding number ν of the previous
section. Note that due to the form of the Bloch Hamiltonian (equation (2.11)) the Bloch
Hamiltonian anti-commutes with the Pauli matrix σz,

{HBloch(k), σz} = 0, (2.26)

which is a symmetry property of the model referred to as a chiral symmetry leading to
the quantization of the Zak phase ϕZak = 0, π mod 2π. First, by using property (2.26),
if HBloch(k) |u+(k)〉 = E(k) |u+(k)〉 where |u+(k)〉 denotes the state of the upper Bloch
band, then

HBloch(k)σz |u+(k)〉 = −σzHBloch(k) |u+(k)〉 = −E(k)σz |u+(k)〉 (2.27)

implies that |u−(k)〉 = eiα−(k)σz |u+(k)〉. Thus up to a phase α−(k) the state σz |u+(k)〉
corresponds to the eigenstate in the lower Bloch band with eigenvalue −E(k). It is
trivial that the sum over all Zak phases is zero in total, i.e. ϕ+,Zak +ϕ−,Zak = 0 mod 2π.
Moreover, the Berry connection A+(k) of a Bloch state in the upper band is related to
that in the lower band A−(k) by application of the chain rule,

A−(k) =

〈
u−(k)

∣∣∣∣ i
∂

∂k
u−(k)

〉
=

〈
u+(k)e−iα−(k)

∣∣∣∣ i
∂

∂k
eiα−(k)u+(k)

〉

= − ∂

∂k
α−(k) +A+(k),

(2.28)

which inserted into (2.25) leads to ϕ−,Zak − ϕ+,Zak = 0 mod 2π. Combining both rela-
tions, one arrives at the quantization ϕ±,Zak = 0, π mod 2π.

Chapter review

â The SSH model describes spin-polarized electrons on a one-dimensional chain of
double-wells with alternating nearest neighbor hopping amplitudes t1 (intra-cell)
and t2 (inter-cell), which may also be expressed by an average tunneling amplitude
t, the dimerization strength ∆ and a dimerization parameter θ (compare equation
(2.1)).

â In the regime t2 > t1 zero-energy edge states, characterized by an exponentially
localized particle appear at an open boundary (or, more generally, at a domain
where the topological invariant changes). The emergence of edge states can be
understood in the limit of full dimerization and their stability for weaker dimer-
izations is caused by topology protecting them from hybridizing with the bulk
modes.
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2. Su-Schrieffer-Heeger (SSH) model

â The Bloch Hamiltonian (2.8) of the SSH model contains all topological informa-
tion. The number of times the parametrization vector n(k) encircles the origin
in parameter space provides a topological invariant, the winding number ν, which
may only change when the energy gap between the Bloch bands closes. Berry’s
method of adiabatic phases [14] provides a more general approach, but for the
SSH model the winding number is directly related to the Zak phase ϕZak, given by
equation (2.25).

â Each Zak phase of a Bloch band is quantized to ϕ±,Zak = 0, π mod 2π. This
quantization is due to the chiral symmetry of the SSH model. The two topo-
logical phases are (i) t1 > t2 where ϕ±,Zak = 0 and (ii) t2 > t1 where ϕ±,Zak.
In one-dimensional systems nontrivial topological order is always protected by a
symmetry, which for the SSH model is a chiral symmetry.
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3. Superlattice Bose-Hubbard model
(SL-BHM)

Now that the fundamental aspects of topological order in the SSH model have been laid
out, this chapter will present the actual model which will be excessively investigated in
what follows – the superlattice Bose-Hubbard model (SL-BHM). The SL-BHM can be
considered as a generalization of the SSH model to interacting bosons which reduces to
the Hamiltonian of its fermionic predecessor in the limit of hard-core bosons.

Proceeding in a way similar to the previous chapter the text first presents the model
Hamiltonian and properties of the bulk in section 3.1 reviewing both numerical [35,
36] and analytical results obtained from perturbative treatment [37, 38]. The phase
diagram of the bulk is discussed focussing on the Mott-insulator (MI) phases that are
characterized by (half) integer filling of the lattice, some of them hosting topological
edge states. A motivation for studying the superlattice Bose-Hubbard model, especially
its topological properties, will be given in section 3.2 by outlining its relation to the
SSH model. Although the bosonic SL-BHM originates from the fermionic SSH model,
there are fundamental differences which become obvious if one attempts to generalize the
concept of topological order and the construction of a topological invariant for interacting
bosonic systems, which will be addressed in section 3.3.

Note that the details of the SL-BHM’s topological properties have already been worked
out in reference [15], from which most of the results will be reviewed in this chapter.
Moreover, some figures of this publication are reproduced in order to check the validity
of the Hermitian density matrix renormalization (DMRG) code (see chapter 5 for more
details), which has been implemented in the course of this work.

3.1. Bulk properties and topological edge states

One of the main subjects of the investigations performed in this work involve the one-
dimensional superlattice Bose-Hubbard model, whose Hamiltonian for a one-dimensional
lattice of length L with sites labeled by 1, 2 . . . , L in the grand-canonical ensemble
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3. Superlattice Bose-Hubbard model (SL-BHM)

reads

H = −
∑

j odd

(
t1a
†
jaj+1 + h.c.

)
−
∑

j even

(
t2a
†
jaj+1 + h.c.

)

+
U

2

∑

j

nj (nj − 1) +
∑

j

(εj − µ)nj,
(3.1)

where aj (a†j) denote bosonic annihilation (creation) operators satisfying canonical com-
mutation relations,

[aj, ak] =
[
a†j, a

†
k

]
= 0,

[
aj, a

†
k

]
= δjk,

(3.2)

and nj = a†jaj is the number operator acting on lattice site j. The first two sums, rep-
resenting the kinetic term of the Hamiltonian, describe nearest neighbor hopping with
alternating tunneling amplitudes t1, t2 ∈ R that are assumed to be real, if not explicitely
stated differently. Obviously, the hopping is completely analogous to the SSH case (com-
pare equation (2.2)), except fermionic operators being replaced by bosonic equivalents.
As bosons are not governed by Pauli’s exclusion principle a site may be populated with
multiple bosons, giving rise to interactions. The third term of the Hamiltonian (3.1)
accounts for this process and models local on-site interactions (for instance in the spirit
of an s-wave scattering interaction potential) described by the on-site interaction U .
Throughout the text the energy scale of the model will be fixed by adopting the con-
vention U = 1. Finally, external potentials may impose a different on-site potential εj
at each lattice site energetically favoring the addition or removal of a particle, and µ
denotes the global chemical potential. In most cases the on-site potentials are set to
εj = 0 unless explicitely stated.

For t1 = t2 the SL-BHM reduces to the homogeneous Bose-Hubbard model, which is
known to possess gapless superfluid as well as gapped Mott-insulating (MI) phases that
are characterized by integer occupation per lattice site [37, 39]. Given a fixed value
of the tunneling amplitude t1 = t2 the phase boundaries of MI phases at filling ρ are
bounded by the lower and upper chemical potentials µ±ρ such that for µ−ρ ≤ µ ≤ µ+

ρ the
ground state is of type MI at filling ρ. Figure 3.1a shows numerical results for the phase
boundaries of MI regimes at filling ρ = 0, 1, 2 for a finite system with open boundary
conditions obtained by DMRG. Note that for L→∞ the MI phases will be completely
absent when t1 exceeds a critical value – a feature that is not properly reproduced by
the finite system, which is considered a finite size effect. The ground state for each of
the MI phases shown in figure 3.1a is shown in figure 3.1b.

In the same manner the staggered hopping was essential for the SSH model to open an
energy gap between the Bloch bands, it is the main ingredient for the appearance of
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Figure 3.1.: Ground state phase diagram and Mott-insulating phases of the one-dimensional homo-
geneous Bose-Hubbard model (t1 = t2). (a) Extract of the phase diagram of a finite system with
L = 16 lattice sites and open boundaries obtained by DMRG (allowing at most four particles per
site, i.e. a local site dimension D = 5 and keeping the truncation error ε < 10−9, see chapter 5 for
more details). The phase boundaries µ+

0 (red), µ±1 (green), and µ±2 (orange) are determined by a
bisection algorithm similar to the method applied in [36] targeting a lattice filling of ρ = 0, 1, 2,
respectively. Filled areas correspond to the areas of integer filling in the (µ, t1)-plain. (b) Ground
state lattice occupation of the MI phases at filling ρ = 0, 1, 2 (red circles, green triangles, orange
pentagons, respectively) on a homogeneous lattice (L = 32) with open boundaries obtained by
DMRG (D = 5, ε < 10−9). Model parameters are t1/U = 0.1 and µ/U = −0.5, 0.5, 1.4.

topological order in the SL-BHM. In fact, for alternating hoppings t1 6= t2 new features
appear in the phase diagram. In addition to Mott regimes of integer occupation separated
by superfluid phases, MI phases of half integer occupation emerge [36]. In the phase
diagram the loophole shaped areas of such MI phases become more pronounced for a
strong staggering and vanish completely as t1 approaches t2. Figure 3.2a shows the phase
diagram of a finite system with a dimerization of t2 = 0.2t1 similar to the figure shown
in reference [36] obtained by DMRG. The appropriate ground states of the MI phases
are plotted as well in figure 3.2b.

In the following, the focus will be on the ρ = 1/2 MI phase. In the limit of strong
interactions, t1,2/U � 1 the upper and lower phase boundaries µ±1/2 can be obtained

perturbatively up to order O (t22/U, t2t
2
1/U

2) [15],

µ−1/2 = − |t1 − t2| ,

µ+
1/2 = |t1 − t2|+

U

2
− 1

2

√
16t21 + U2 − 4t1t2

U
.

(3.3)

A more detailed extract of the phase boundaries µ±1/2 already shown in figure 3.2a is
presented in figure 3.3a, the only difference being a swap of the tunneling amplitudes
such that t2 > t1, which does not influence the properties of the bulk when the system
is sufficiently large. In this topologically nontrivial dimerization configuration the many-
particle ground state shows edge features in the ρ = 1/2 MI phase. It is the value of
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Figure 3.2.: Ground state phase diagram and Mott-insulating phases of the one-dimensional SL-BHM
for t2 = 0.2t1. (a) Extract of the phase diagram of a system with L = 16 sites and open boundary
conditions showing the phase boundaries µ+

0 , µ
±
1/2, µ

±
1 , µ

±
3/2 and µ±2 (in red, blue, green, purple, and

orange solid lines, respectively). In contrast to the homogeneous Bose-Hubbard model additional
MI phases at half integer filling ρ = 1/2, 3/2, . . . occur when the hopping is alternated. DMRG
parameters are chosen identical to that in figure 3.1. (b) Ground state lattice occupation for the
MI phases (in the topologically trivial dimerization scheme) at ρ = 0, 1/2, 1, 3/2, 2 (red circles, blue
squares, green triangles, purple diamonds, and orange pentagons, respectively) in a chain of length
L = 32. System parameters are t1/U = 0.1 and µ/U = −0.5, 0, 0.5, 1.0, 1.4.

the chemical potential that determines whether the edge state is governed by a localized
particle or a localized hole at the boundary as can be seen in figure 3.3b. The transition
between hole and particle edge state is marked by a critical chemical potential µe, such
that a hole edge state occurs in the regime µ1/2 ≤ µ < µe while the ground state is a
particle edge state when µe < µ ≤ µ+

1/2. An analytical expression of the critical chemical
potential can be derived by means of perturbation theory and, in the strongly-interacting
limit, is given by the expression [15]

µe = −2t22
U − 2t1

(U + t1)(U − 3t1)
. (3.4)

Note that it has been avoided to overload figure 3.3a by also showing the analytical
results (3.3), (3.4), however the validity of numerical values can be verified by taking a
look at the original figure in reference [15].

In the latter, it is also shown that the particle edge state vanishes when the tunneling
amplitude t1/U exceeds a critical value. This feature is reproduced within the figure
shown in this text as µe approaches µ+

1/2 for increasing t1/U , although this behavior can
be seen more clearly when the system size is increased. In fact, when the tunneling is
increased, the particle edge state extends more and more into the bulk, until it completely
hybridizes with it at the critical value of t1/U . Figure 3.3c illustrates how the shape of
the edge state changes with varying tunneling parameters. For small values of t1/U , the
edge state (particle and hole) is sharply localized at the edge. Increasing the coupling
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Figure 3.3.: Properties of edge states in the topologically nontrivial ρ = 1/2 MI phase of the SL-BHM.
(a) Bulk phase boundaries µ±1/2 for a system with L = 16, open boundaries, and t1 = 0.2t2. In

this dimerization configuration edge states appear in terms of a localized particle or hole at the
system boundaries. The phase is split into two regimes separated by the critical chemical potential
µe, which marks the transition in the many-particle ground state from hole to particle edge state.
(b) Lattice occupation of the ground state of a system with L = 32 (only the first 16 sites are
shown) showing a hole and particle edge state depending on the value of the chemical potential.
Additional system parameters are t1 = 0.2t2 and t2 = 0.1. (c) Shape of the (un)occupied edge
states for different values of the tunneling parameter while t2 = 0.2t1. The values of µ/U are chosen
from figure (a) such that the particle state appears if µe < µ < µ+

1/2 and the hole state is present

whenever µ−1/2 < µ < µe. The system length L = 17 is chosen to be odd in order to only obtain

edge features at one of the system boundaries. Top panel: t1/U = 0.1, bottom panel: t1/U = 0.2.
(d) Localization length (see equation (3.5)) of particle ξp and hole ξh states for different tunneling
amplitudes t1/U while t2 = 0.2t1 obtained from a system with L = 17 sites.

from the open boundary to the bulk the localization of the occupied edge is blurred,
while the hole state stays almost unaffected. A quantitative measure for the localization
of an edge state is given by the localization length ξ [15],

ξ =

(∑

j

∆nj

)2/∑

j

(∆nj)
2 , (3.5)
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3. Superlattice Bose-Hubbard model (SL-BHM)

where ∆nj = |〈nj〉 − 1/2|Θ(± (〈nj〉 − 1/2)) is the difference between the occupation
of lattice site j and a generic one in the bulk, 1/2, and Θ denotes the Heaviside step
function. Depending on the type of state (hole or particle) only sites filled with more (+:
particle) or less (−: hole) than 1/2 are used in the determination of ξp (particle) and ξh

(hole). Figure 3.3d shows numerical studies of the localization length of the edge states.
The fact that the hole state is nearly unaffected by differing tunneling is underlined by
an almost constant localization length, whereas the latter diverges for the particle state
at the aforementioned critical tunneling value.

Many properties of the SL-BHM can be related to the SSH model. Therefore the fol-
lowing section is devoted to outlining the parallels of both models.

3.2. Relation to the Su-Schrieffer-Heeger model

The main difference between SL-BHM and SSH model is rooted in the nature of the
particles they are describing. While fermions obey Pauli’s exclusion principle, forbidding
double occupancies of a single lattice site, an arbitrary amount of bosons may be placed
on a certain site leading to on-site interactions. However, if one is interested in the low
energy physics of the SL-BHM both models can be mapped onto each other in the limit
of hard-core bosons U →∞. In that case the on-site interaction forces the ground state
to avoid double occupancies of a lattice site as they would cost plenty of energy.

Hence, the interaction term in (3.1) can be neglected when the hard-core limit U →∞
is under consideration. Setting εj = 0 the remaining terms are now transformed by

a “fermionization” of the bosonic creation (annihilation) operators a†j, (aj), given by a
Jordan-Wigner transformation [40],

cj = aj exp

(
−iπ

∑

k<j

nk

)
,

c†j = a†j exp

(
iπ
∑

k<j

nk

)
.

(3.6)

It can be checked that the operators cj, c
†
j satisfy fermionic anti-commutation relations

(2.3). Thus the SL-BHM Hamiltonian in the hard-core limit reduces to

HU→∞ = −
∑

j odd

(
t1c
†
jcj+1 + h.c.

)
−
∑

j even

(
t2c
†
jcj+1 + h.c.

)
−
∑

j

µnj, (3.7)

which, up to the term including the chemical potential, is the SSH Hamiltonian (2.2).
Hence, the SSH model is the hard-core limit of the low-energy physics of the SL-BHM at
µ = 0. That said, some relationships have to be emphasized:
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3.2. Relation to the Su-Schrieffer-Heeger model

â At µ = 0 the energy spectra of both hard-core SL-BHM and SSH model are encoded
in the two Bloch bands (assuming periodic boundaries). The many-particle ground
state can be expressed in terms of single-particle states by filling up the entire lower
Band, which results in an insulating state at half filling of the lattice that directly
corresponds to the ρ = 1/2 MI phase in the SL-BHM.

â Following the same argument for a system with open boundaries the emergence
of edge states as ground states is a direct consequence of their appearance in the
single-particle energy spectrum (compare figure 2.3) whenever t2 > t1. The term
of (3.7) containing the chemical potential can be considered as a shift of the entire
single-particle spectrum, such that for µ > 0 the zero-energy edge states of the
SSH model are energetically lowered by µ, which leads to a bulk at half filling
(completely filled lower Bloch band) with a particle located at each boundary
(occupied edge states). For µ > 0 the zero energy modes are shifted towards
positive energies and their occupation is avoided by the ground state, which is then
given by a bulk with unoccupied edges (the hole state). Hence, the critical chemical
potential is µe = 0 in the hard-core limit and even in the strongly-interacting limit,
see figure 3.3a.

â Similarly, the phase boundaries for the ρ = 1/2 MI phase, or equivalently a fully
occupied lower Bloch band, can be derived in the hard-core limit. The many-
particle ground state is at half filling as long as (i) the upper Bloch band is not
lowered below E = 0 by the chemical potential term, causing more particles to
be filled in the ground state, in this case the upper boundary for the chemical
potential is given by the energetic distance between the upper Bloch band and
zero implying µ+

1/2 = |t1 − t2| (see equation (2.9)) or (ii) the lower Bloch band
bulges out of the negative energy domain leading to fewer particles in the ground
state and µ−1/2 = − |t1 − t2|. Note that this is the limit U → ∞ of equation (3.3)
presented earlier.

The emergence of topological edge states in the ρ = 1/2 MI phase of the SL-BHM
can therefore be interpreted as a remnant of the SSH Bloch band’s topology. However,
carrying over the topological invariant given by the Zak phase to the bosonic interacting
system leads to problems that will be addressed in the next section. Another crucial
property of the SSH model is the chiral symmetry, which is spoiled by the interaction
term as U becomes finite. The very same symmetry protected the topological order in
the SSH model raising the question which symmetry protects topological order in the
SL-BHM.
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3. Superlattice Bose-Hubbard model (SL-BHM)

3.3. Topological invariants for interacting systems

The attempt of computing the Zak phase for an interacting system as the SL-BHM
fails because the Hamiltonian cannot be represented by a Bloch Hamiltonian and the
notion of single-particle states becomes useless. There are different approaches towards
generalizing the topological invariants of non-interacting periodic systems usually defined
in momentum space, or to define new topological invariants for interacting topological
insulators [41–45]. The topological invariant introduced by [15] can be understood as a
generalization of the Zak phase (2.25) and applies the concept of quantized Berry phases
as local order parameters [46] introduced by Hatsugai. This section shall review the
steps of Hatsugai’s arguments.

As in section 2.3 a Hamiltonian H(R) parametrized by a number of parameters R ∈P
spanning the parameter space is assumed. Suppose that, given the normalized unique
many-body ground state |ψ(R)〉 and a loop C in P, that the ground state energy is
always separated from the rest of the Hamiltonian spectrum. Then one can compute
the Berry phase by integration of the Berry connection, see equation (2.22), which is
repeated here in adapted notation,

ϕ(C ) =

∮

C

〈ψ(R) | i∇Rψ(R)〉 · dR ≡
∮

C

A(R) · dR. (3.8)

A subtle point here is that the ground state is only determined up to a phase such that
the Berry connection transforms under a gauge transformation |ψ(R)〉 → eiα(R) |ψ(R)〉
by A(R)→ A(R)−∇Rα(R) (compare equation (2.28)). A proper (regular) gauge may
be specified by projecting each ground state to a reference state |φ〉, yielding [46]

|ψφ(R)〉 = |ψ(R)〉 〈ψ(R) |φ〉
|〈ψ(R) |φ〉| . (3.9)

It can be shown that Berry phases obtained by choosing two different reference states
|φ〉 , |φ′〉, both defining regular gauges, are invariant up to integer multiples of 2π,

∮

C

Aψφ(R) · dR =

∮

C

Aψφ′ (R) · dR mod 2π,

ϕ(C , Aψφ) = ϕ(C , Aψφ′ ) mod 2π.

(3.10)

The Berry phases’ properties become even more interesting when the system possesses
a discrete antiunitary symmetry, [H(R),Θ] = 0, represented by the operator Θ which is
independent from the parameters of the Hamiltonian. The symmetry operator Θ = T UΘ

can be split up into a unitary operation UΘ, followed by complex conjugation, whose
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3.3. Topological invariants for interacting systems

representation, for the purpose of this text, is given by the time reversal operator T .
Expanding the ground state in a fixed orthonormal basis {|j〉} the action of Θ reads

|ψ(R)〉 =
∑

j

cj(R) |j〉 =⇒ Θ |ψ(R)〉 ≡ |ψΘ(R)〉 =
∑

j

c∗j(R)Θ |j〉 , (3.11)

where the basis {Θ |j〉} is also assumed to be orthogonal. One can verify that the Berry
connections for |ψ(R)〉 ,

∣∣ψΘ(R)
〉

in a regular gauge are related,

AψΘ =
〈
ψΘ(R)

∣∣ i∇Rψ
Θ(R)

〉

=
∑

j

cj(R)∇Rc
∗
j(R)

= −
∑

j

c∗j(R)∇Rcj(R)

= −〈ψ(R) | i∇Rψ(R)〉 = −Aψ,

(3.12)

where the normalization of the ground state
∑

j |cj(R)|2 = 1 was used.

However, if the Hamiltonian commutes with Θ and the ground state is always unique as
assumed, then

∣∣ψΘ(R)
〉

and |ψ(R)〉 can only be related by a gauge transformation. This
in addition to the argument urged in equation (3.10) implies that the Berry phases of
both Berry connections of equation (3.12) are equal up to an integer multiple of 2π,

ϕ(C , AψΘ) = ϕ(C , Aψ) ≡ ϕ(C ) mod 2π. (3.13a)

Furthermore, the transformation of the Berry connection (3.12) implies

ϕ(C , AψΘ) = −ϕ(C , Aψ) mod 2π. (3.13b)

Ultimately, equations (3.13) state the desired result, namely that “the Berry phase of
the antiunitary invariant state is inevitably quantized” [46] to

ϕ(C ) = 0, π mod 2π, (3.14)

raising ϕ to a topological quantity that cannot change continuously because of its strict
quantization. Note that this approach requires neither translational symmetry nor pe-
riodic boundary conditions and may also be applied to systems with open boundaries
governed by an antiunitary symmetry. With that said, one can now define a topological
invariant for the SL-BHM that will be called ν in analogy to the winding number of the
SSH Hamiltonian back in section 2.3 and in order to separate what follows in notation.

The ground state of the SL-BHM Hamiltonian (3.1) is unique and gapped when the
system is in either the half integer or integer MI phase and the system is inversion-
symmetric, that is if all sites are mirrored at the centering bond one can think the
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3. Superlattice Bose-Hubbard model (SL-BHM)

0 0.5 1

0

π
2

π

chemical potential µ/U

ν

t1 < t2
t1 > t2

Figure 3.4.: Generalized winding number for differ-
ent MI phases of the SL-BHM obtained by exact
diagonalization (D = 4) of a system of L = 8 sites
(red triangles: t1/U = 0.1, t2/U = 0.02, orange
squares: t1/U = 0.02, t2/U = 0.1). The loop
in parameter space is discretized to 100 equidis-
tant points yielding ν by use of equation (2.16).
Regimes of MI phases corresponding to the hop-
ping are filled in the same colors as in figure 3.2a.
Note that integer MI are always topologically
trivial, while half-integer MI may have ν = π in
the nontrivial dimerization configuration in which
edge states occur as a consequence.

one-dimensional chain (as sketched in figure 2.1b) to be mapped onto itself. In fact, the
antiunitary symmetry is given by the combined action of time inversion T and space
inversion P , also known as parity-time (PT ) symmetry,

[H,PT ] = 0. (3.15)

To define ν consider the sites of the SL-BHM to be periodically connected forming a
ring which is cut along one bond to yield the open chain. By introducing a modulated
tunneling t2eiϑ (so called twisted boundary conditions [15, 41]) at exactly that bond the
Hamiltonian parameter space is extended by the modulation parameter ϑ. This exposes
the system to a perturbation which, importantly, respects the symmetry of the system.
This can be understood by investigating only the kinetic term −t2eiϑa†La1 + h.c. with
modulated tunneling from last to first site as the rest of the Hamiltonian still anti-
commutes with PT (equation (3.15)). The action of PT on the extension term leaves
the latter invariant as well because

T : −t2eiϑa†La1 − t2e−iϑa†1aL → −t2e−iϑa†La1 − t2eiϑa†1aL,

P : −t2e−iϑa†La1 − t2eiϑa†1aL → −t2e−iϑa†1aL − t2eiϑa†La1.
(3.16)

Following the argument of the first part of this section, by sweeping the tunneling mod-
ulation ϑ = 0→ 2π the Hamiltonian is transported along a loop in parameter space and
the many-particle wave function |ψ(ϑ)〉 picks up a Berry phase ν, which according to
equation (3.14) is strictly quantized to ν = 0, π mod 2π,

ν =

∫ 2π

0

〈
ψ(ϑ)

∣∣∣∣ i
∂

∂ϑ
ψ(ϑ)

〉
dϑ, (3.17)

as long as the ground state is unique and gapped during the entire loop.

Figure 3.4 shows numerical results for the generalized winding number of the MI phases
of a SL-BHM (L = 8) for the two different dimerization configurations. It is easy to
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3.3. Topological invariants for interacting systems

convince oneself of the fact that the ground state of an integer MI phase is always
topologically trivial, as it can be written as a product of single-site states – for instance
the MI state with ρ = 1, |ψMI

1 (ϑ)〉 =
∏L

j=1 a
†
j |0〉, which clearly does not pick up any phase

when the twisted boundary is modulated, and therefore ν = 0. Similarly, the ground
state of the ρ = 1/2 MI can be approximated by an (unnormalized) product state of
dimers in the “singlet” configuration, given either by |ψMI

1/2(ϑ)〉 ∼ ∏M
j=1(a†2j−1 − a†2j) |0〉

(topologically trivial dimerization, compare upper panel of figure 2.4b), or |ψMI
1/2(ϑ)〉 ∼∏M

j=1(a†2j−1−a†2j)(a†L+ eiϑa†1) |0〉 (nontrivial dimerization, see lower panel of figure 2.4b),
which picks up a phase of ν = π if the modulated bond corresponds to a strong one that
hosts a dimer state.

To illustrate this in more detail consider only one double-well with a twisted tunneling
amplitude t2eiϑ. In the single-particle limit with basis states |1, 0〉 , |0, 1〉, this is a simple
matrix model,

H = −
(

0 t2e−iϑ

t2eiϑ 0

)
(3.18)

with ground state |ψ−(ϑ)〉 = 1√
2
(|1, 0〉+ eiϑ |0, 1〉). Computing ν in the sense of equation

(3.17) delivers the desired result,

ν =

∫ 2π

0

〈
ψ−(ϑ)

∣∣∣∣ i
∂

∂ϑ
ψ−(ϑ)

〉
dϑ = π. (3.19)

This example demonstrates another aspect leading to a more profound understanding of
how the generalization of the Zak phase is accomplished. Note that the model Hamilto-
nian (3.18) corresponds directly to the Bloch Hamiltonian of the SSH model, equation
(2.8). Thus, the transport through the Brillouin zone varying the momentum k can also
be interpreted as twisting the tunneling amplitudes t2 of a periodic unit cell.

Physically ϑ corresponds to a magnetic flux threading the system [15] and the complex
tunneling amplitudes can be engineered by application of an external magnetic field
B = ∇×A to an optical lattice modifying the tunneling amplitude t between two lattice
sites located at positions xi, xj as

t→ t exp

(
i

∫ xj

xi

A · dx
)
, (3.20)

which is known as Peierls substitution [47, 48].

To conclude some comments about a possible experimental realization of a system in
which edge states can be observed, as proposed in [15], are in order. Topologically
protected edge states may not only arise at an open boundary of a topologically nontrivial
system (ν 6= 0), but more generally at any boundary with a change ∆ν in the topological
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Figure 3.6.: Ground state lattice occupation of an experimentally realizable setup for the observation
of edge states at internal domains of MI phases with different topological properties (reproduced
from [15]). The system length is L = 64 and the on-site potential is a step potential at the
centered 12 sites superimposed with a centered harmonic on-site potential εj = ω(j− jcenter)2 with
ω/U = 0.001. DMRG parameters are D = 5 and ∆ε < 10−9. (a) Top panel: t1/U = 0.04, t2/U =
0.2,∆ε/U = 0.6. The interface between the two MI phases in the center does not show edge
states. Bottom panel: Sketch of the interface between the ρ = 1 (left) and ρ = 1

2 (right) MI
phase. No boundary effects are expected as both phases are topologically trivial. (b) Top panel:
t1/U = 0.2, t2/U = 0.04 for different potential heights ∆ε/U = 0.6 (occupied edge), ∆ε/U = 0.7
(unoccupied edge). The interface is located at a strong bond such that the interior MI phase is
topologically nontrivial and edge states appear in form of a localized particle or hole. Bottom
panel: Sketch of the situation in terms of potentials. The site at the boundary may be occupied
(particle, circular symbols) or unoccupied (hole, rectangular symbols).

invariant. So far a special case under consideration has been the boundary between the
vacuum (ν = 0) and a topologically nontrivial system. But it is also possible to observe
edge states at internal domain walls, such as a boundary between an integer (ν = 0)
and a nontrivial half integer (ν = π) MI phase. Such domains form when the SL-BHM
is exposed to an external step potential εj = ∆εΘ (|j − jcenter| − jstep) governing the
2jstep central lattice sites around the center position jcenter, which could be realized by
the admixture of a second species of particles [49]. In figure 3.6 the ground states of
such a setup are shown, using the same system parameters as in the original publication
[15]. Due to the step potential an internal boundary between two different MI phases
arises. If the interface is located at a weak bond, such that the ρ = 1/2 MI phase is
topologically trivial (ν = 0), no edge states appear (figure 3.6b). If instead the domain
wall between the two regimes is located at a strong bond and therefore the interior MI
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3.3. Topological invariants for interacting systems

phase is characterized by ν = π, edge states with a localized particle or hole, depending
on the potential step height, emerge at the interface (figure 3.6a).

It is the purpose of this work to investigate the influence of dissipative effects on the
topological edge states of the SL-BHM. As all systems have so far been described by a
Hamiltonian which leads to a unitary evolution in time without dissipation, the following
chapter is dedicated to two frameworks that allow for the introduction of dissipation.

Chapter review

â The SL-BHM is the generalization of the SSH model to interacting bosons and
reduces to the latter in the limit of hard-core bosons (U → ∞) and low energies.
Its ground state phase diagram hosts gapped integer and half-integer MI phases.
While the integer MI ground state is always topologically trivial, the half integer
MI can possess topological order, which can be regarded as inherited from the
SSH model and is indicated by edge states at boundaries at which the topological
invariant changes.

â A generalization of the Zak phase for the interacting case can be accomplished by
employing twisted boundary conditions on the tunneling amplitude between the
first and last site of an open chain, which respects the symmetry of the system.
The generalized winding number ν is quantized to ν = 0, π mod 2π because the
SL-BHM is inversion-symmetric and thus the appropriate antiunitary symmetry
needed to follow the argument of Hatsugai [46] is PT symmetry.
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4. Gain and loss

This chapter presents the methods of how to include dissipative effects in the description
of lattice models that are studied in the course of this work.

When dealing with open (in the sense of dissipative) quantum systems the object of
interest is usually given by the system’s density matrix ρ. Frequently, dissipation is
introduced by extending the von Neumann equation governing the unitary evolution of
ρ with collapse operators in Lindblad form, which preserve the physical constraints of ρ
in the time evolution and model dissipative effects such as many-body recombinations,
phase noise or localized particle gain and loss leading to a master equation in Lindblad
form. Section 4.1 provides a brief overview of this modification of the unitary evolution,
referring the interested reader to the literature [50].

Interestingly the action of the Lindblad operators studied in this work can effectively be
replaced by complex on-site potentials in the mean-field limit and offers a way to stay in
the wave function picture, however by paying the price of a non-Hermitian Hamiltonian.
Since the discovery of Bender and Boettcher [11] that the requirement of a Hermitian
Hamiltonian may be relaxed to a weaker condition, namely the Hamiltonian being PT -
symmetric, the development of a framework for the treatment of such non-Hermitian
Hamiltonians has been triggered [51]. All necessary aspects of this extension of Hermitian
quantum mechanics will be discussed in section 4.2.

4.1. Master equations in Lindblad form

The effect of dissipation in a system manifests itself in the evolution of a pure quantum
state |ψ〉. In case of a unitary time evolution generated by a Hermitian Hamiltonian
in the Schrödinger equation, the system’s exploration of the Hilbert space H is often
severely restricted to the subspace spanned by the contributing eigenvectors in the de-
composition of |ψ〉. On the contrary, this does not hold in the dissipative scenario. An
arbitrary state may couple to different dissipative channels that may eventually elimi-
nate any trace of the original quantum state the system has been prepared in. Therefore
the description of a quantum state by a wave function has to be extended to a represen-
tation that is capable of describing an ensemble of mixed states in the context of open
quantum systems.
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environment
He

system
Hs

interaction
Hi

Figure 4.1.: Total system (universe) com-
posed of a system (s) of interest and the
remaining part acting as an environment
(e). Both building blocks are described
by a Hermitian Hamiltonian Hs, He, re-
spectively. As the interest shall only be
on the subsystem, the environment can be
considered to introduce dissipative effects
due to the interaction between system and
bath described by the interaction Hamil-
tonian Hi leading to the form of the total
Hamiltonian, see equation (4.5).

The density matrix ρ ∈ L(H ) is a linear positive-semidefinite Hermitian operator on
the Hilbert space H . For a finite-dimensional Hamiltonian H ∈ L(H ) with eigenstates
{|ψj〉}, the most general form of the density matrix is given by

ρ =
∑

j,k

ρjk |ψj〉〈ψk| , (4.1)

where the coefficents ρjk are constrained by ρjk = ρ∗kj (Hermiticity) and that all eigen-
values of the matrix ρ with (ρ)jk = ρjk are non-negative (positive semi-definite). The
density matrix of a statistical ensemble of classically superimposed states with real prob-
abilities pj completely free of any quantum-mechanical entanglement reads

ρ =
∑

j

pj |ψj〉〈ψj| , (4.2)

implying Tr{ρ} =
∑

j pj = 1 because of the probabilistic interpretation. Moreover,

the quantity 0 < Tr{ρ2} =
∑

j p
2
j ≤ 1 can be employed to classify the purity of the

mixed state described by ρ as Tr{ρ2} = 1 for a pure state whereas Tr{ρ2} < 1 in a
mixed ensemble. Following the notion of equation (4.2) the expectation value 〈A〉 of an
observable A is evaluated by computing

〈A〉 =
∑

j

pj 〈ψj |Aψj〉 = Tr{ρA} . (4.3)

To see how dissipative effects can be accounted for in the density matrix formulation
consider a total system whose evolution in time is given by a Hamiltonian H (see the
sketch in figure 4.1). The actual interest (for instance in observables) shall only be on
a small subsystem of this universe such that the remaining part can be regarded as an
environment, which due to couplings between bath and system imposes dissipation on
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4.1. Master equations in Lindblad form

the system of interest. The time evolution of the universe’s density matrix ρ is dictated
by the von Neumann equation (setting ~ = 1),

dρ

dt
= −i [H, ρ] . (4.4)

The Hamiltonian acting on the universe’s Hilbert space H that may be decomposed
into the system and environmental spaces H = Hs ⊗He takes the form

H = Hs ⊗ 1e + 1s ⊗He +Hi. (4.5)

Imagine Hs to be given by one of the Hamiltonians presented in chapters 2 and 3.
Expectation values of system observables given by operators A⊗1e are computed via

〈A⊗ 1e〉 = Tr{(A⊗ 1e) ρ} = Trs{ATre{ρ}} ≡ Trs{Aρs} (4.6)

introducing the reduced density matrix ρs of the system, which is obtained by partially
tracing out all degrees of freedom of the environment of ρ, that is ρs ≡ Tre{ρ}. It would
thus be desirable to compute ρs(t). Partially taking the trace of equation (4.4) over the
environment the resulting equation of motion reads

dρs

dt
= −iTre{[H, ρ]} . (4.7)

Based on assumptions concerning the nature of the reservoir equation (4.7) can be sim-
plified. Without going too much into detail the approximation of a bath with short-lived
memory (Markovian approximation), which is large enough to stay unaffected over time
as well as a weak coupling between system and environment (Born approximation) shall
be explicitly mentioned here. For a more complete presentation, the interested reader
may take a look at reference [50].

Working out all approximations leads to a master equation in Lindblad form [12],

dρs

dt
= −i [Hs, ρs] +

1

2

∑

µ

(
2LµρsL

†
µ −

{
L†µLµ, ρs

})
≡ L̂ρs, (4.8)

which is the most general form preserving the trace and positivity of ρs. Note that the
first term is equivalent to the von Neumann equation (4.4), thus generating the unitary
evolution of the reduced density matrix. The second term models dissipative processes
and is parameterized by a number of Lindblad operators (or collapse operators) Lµ, whose
choice may depend on the physical processes they account for. The Lµ are a remnant
of the interaction between bath and system, which has effectively been integrated out.
Common choices include Lµ =

√
γ(aµ)3 for three-body recombinations, Lµ =

√
γ(aµ)2

for two-body losses by inelastic collisions or Lµ =
√
γa†µaµ modeling phase noise (for a

complete list and considerations towards experimental realizations see [52]). In this work
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the influence of single-particle gain (loss) described by collapse operators Lµ =
√
γa†µ

(
√
γaµ) will be investigated. The coupling strength γ will be referred to as gain or loss

parameter. Before proceeding by reviewing the two simplest models subject to such
dissipative processes some more comments about equation (4.8) are made.

First, the influence of the environment on the system can be interpreted in terms of the
reservoir performing measurements on the system thereby leading to a collapse of the
system’s wave function, which is called a quantum jump. In fact, the adoption of this
view has triggered the development of numerical methods for the treatment of dissipative
quantum systems such as the quantum Monte Carlo wave function method [53], that
stochastically determines the event of a quantum jump by non-Hermitian evolution of a
wave function with an effective Hamiltonian Heff = Hs− i/2

∑
µ L
†
µLµ. Performing many

iterations starting off with the same wave function and randomly applying quantum
jumps according to the rule of the algorithm yields a set of quantum trajectories that
can be averaged in order to obtain observables.

Second, the Lindblad equation (4.8) may be viewed as an operator equation in terms
of a linear non-Hermitian operator L̂, which is called the Liouville operator (or Liouvil-
lean) and encodes the information of the open quantum system. There exist interesting
analytical approaches for treating ρs and L̂, two of which have also been employed in
the course of this work and are summarized in appendices B and C. Mostly, the interest
is on observables of the state that is approached in the long time limit, in which the
system has thermalized with the reservoir. This non-equilibrium steady state (NESS)
can be considered a right eigenstate of the Liouvillean with eigenvalue zero but for now
it suffices to be aware of the terminology and more details will be covered in future
chapters that deal with the computation and investigation of those states.

Note as well that it is commonly accepted to drop the system indices in equation (4.8)
in the context of open quantum systems, which will be done in the following.

Let us now have a look at the two simplest scenarios, which however are of high impor-
tance to illustrate the approach taken in the next section – a single site with localized
particle loss (gain) as has been worked out in [54, 55]. The Lindblad equation of a sin-
gle site characterized by a Bose-Hubbard Hamiltonian with particle loss described by a
collapse operator L =

√
γa is given by

dρ

dt
=
γ

2

(
2aρa† − a†aρ+ ρa†a

)
. (4.9)

Inserting the most general allowed ansatz,

ρ(t) =
∞∑

j=0

pj(t) |j〉〈j| (4.10)
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4.2. Non-Hermitian quantum mechanics

with orthogonal Fock states |j〉 and the constraint that
∑

j pj(t) = 1, leads to the
following coupled system of equations,

dpj
dt

= γ [(j + 1)pj+1 − jpj] . (4.11)

The total particle number expectation value n(t) ≡ Tr{ρ(t)n} =
∑∞

j=0 jpj(t) on the
single site is obtained by inspection of its time derivative using relation (4.11),

dn

dt
=
∞∑

j=0

dpj
dt
j =

∞∑

j=0

γ
[
(j − 1)jpj − j2pj

]
= −γn, (4.12)

implying an exponential decay n(t) = n(0)e−γt of the particle number.

In the same manner a result for the evolution of the particle number on a single site
subject to single-particle gain modeled by a Lindblad operator L =

√
γa† can be derived

yielding n(t) = [n(0) + 1] eγt−1 (see [55]) which is approximately given by n(t) ≈ n(0)eγt

in the limit of large initial particle numbers.

It is a crucial point that the mean-field limit of single-particle gain (loss) corresponds
to an exponential increase (decay) of the particle number at the rate of the gain (loss)
parameter γ. This aspect may be reinterpreted by including the fact that adding a
complex potential +

(−)iγ/2 in a discretized Schrödinger equation of a Bose-Einstein con-
densate, whose wave function is described by a single component c(t), leads to exactly
the same behavior as the Schrödinger equation reads

i
dc

dt
= +

(−)i
γ

2
c, (4.13)

resulting in n(t) = n(0) |c(t)|2 = n(0) exp ( +
(−)γt). This outcome can be seen as a moti-

vation to study dissipative effects (also away from the mean-field limit) by introduction
of complex on-site potentials in the model setup. Speaking in terms of the SL-BHM,
the Hamiltonian (3.1) in second quantization is to be modified by additional complex
on-site terms εj. However, in doing so the price to be paid is the Hamiltonian losing its
Hermiticity. However, Hermiticity is an important property since it guarantees reality
of the eigenvalues and physical observables as well as orthogonality of the eigenstates.

4.2. Non-Hermitian quantum mechanics

In the last decades, a lot of progress towards the understanding and extension of quan-
tum mechanics to non-Hermitian theories has been made [19, 20, 56]. In particular, the
discovery that the Hermiticity of the Hamiltonian guaranteeing an entirely real eigen-
value spectrum in early quantum mechanics can be relaxed to more general conditions
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4. Gain and loss

containing also classes of non-Hermitian operators. For instance a necessary condition for
the spectrum of an operator to be entirely real is given by pseudo-Hermiticity [57–59].

The family of operators considered in this work contains Hamiltonians that commute
with the combined action of parity and time reversal operators P and T , respectively,
which are known as PT -symmetric Hamiltonians. A system is said to be PT -symmetric
if its Hamiltonian commutes with PT ,

[H,PT ] = 0, (4.14)

with the defining actions of the parity-time reversal operator on space x and momentum
operator p as well as the imaginary unit i reading

PT



x

p

i


PT =



−x
+p

−i


 . (4.15)

For one-dimensional lattice systems in second quantization as presented earlier this ac-
tion translates into P mirroring all sites (and appropriate annihilation/creation opera-
tors) at the center of a chain (compare figure 2.1b) while T performs a complex conjuga-
tion. From equation (4.15) it follows that (PT )2 = 1, and thus the eigenvalues λ = eiα

are located on the unit circle.

If a generic Hamiltonian of the form H = p2/2m+ V (x) with a complex potential V (x)
is investigated, demanding that H commutes with PT (equation (4.14)) imposes the
condition V (x) = V ∗(−x) on the potential function. The physical consequences of V
being a complex function reveal themselves in the generalized continuity equation for a
wave function ψ(r, t) in position space representation [55] (~ = 1),

∂

∂t
|ψ(r, t)|2 +∇ · j(r, t) = 2 |ψ(r, t)|2 Im(V (r)) , (4.16)

with j = i (ψ∇ψ∗ − ψ∗∇ψ) /2m denoting the current density of probability. Equation
(4.16) reduces to the familiar continuity equation if the right side equals zero. One can
reinterpret this relation in terms of positive (negative) imaginary parts of V accounting
for a source (sink) of the wave function’s probability, which corresponds to dissipation.

Interestingly, the eigenvalues of a non-Hermitian Hamiltonian fulfilling equation (4.14)
can be real and correspond to stationary modes. To see this, consider the eigenvalue
equation H |ψ〉 = E |ψ〉, where |ψ〉 is an eigenvector of the parity-time reversal operator
PT |ψ〉 = λ |ψ〉, multiplied by PT . It follows that

PT H |ψ〉 = (PT EPT )PT |ψ〉 ,
Eλ |ψ〉 = E∗λ |ψ〉 , (4.17)

38



4.2. Non-Hermitian quantum mechanics

and since λ 6= 0 the eigenvalue E = E∗ is inevitably real, E ∈ R, for relation (4.17)
to hold. Note that this is not generally true as |ψ〉 is required to be an eigenvector of
both the Hamiltonian and the PT operator. In total the following statements hold for
a PT -symmetric system [20]:

1. If all eigenstates of a PT -symmetric Hamiltonian (in the sense of equation (4.14))
are also eigenstates of PT , the eigenvalue spectrum is completely real and the PT
symmetry of H is said to be unbroken. The inverse of this statement is also valid.

2. In the case of one or more eigenstates of H violating the eigenvalue equation of
with PT , the PT symmetry of H is said to be broken.

3. Eigenvalues of a PT -symmetric Hamiltonian come in complex conjugate pairs and
respective eigenstates are related by the action of PT , i.e. if H |ψ〉 = E |ψ〉, then
PT |ψ〉 is eigenvector with eigenvalue E∗ as HPT |ψ〉 = PT H |ψ〉 = E∗PT |ψ〉.

The approach taken in this work is motivated by the analogy between Lindblad operators
and complex on-site potentials in the mean-field limit (see figure 6.1). The introduction
of such terms respecting the PT symmetry of the Hamiltonian is applied as an effective
theory to introduce gain and loss effects, meaning that all quantities (for instance expec-
tation values) are evaluated in the sense of the Hermitian framework. While the regime
of unbroken PT symmetry corresponds to the system having stationary modes stabilized
by currents the interpretation of broken PT symmetry is a subtle point, which has to be
carefully investigated and compared to results obtained from Lindblad equations which
is left for future chapters.

Before concluding, some final remarks towards the generalization of the treatment of
complex non-Hermitian Hamiltonians are necessary to understand what follows. Al-
though the loss of Hermiticity does not necessarily lead to complex observables, an
outstanding problem to cure is that the eigenstates lose orthogonality and therefore
common projection techniques are spoiled. Moreover, the evolution of a state |ψ〉 is not
unitary in the sense that the norm 〈ψ(t) |ψ(t)〉 is conserved. Fortunately, all known
concepts like Hermiticity, unitarity, quantum probabilities and the computation of ex-
pectation values (to name only a few) can be carried over by working in a biorthogonal
basis manifesting the field of biorthogonal quantum mechanics [51, 57–59].

In the latter the subject of investigation is a complex finite-dimensional Hamiltonian
K = H − iΓ (to distinguish from previous statements) consisting of two Hermitian
operators K = K†,Γ = Γ†. A necessary condition for the operator to be biorthogonally
Hermitian (or η-pseudo-Hermitian) is given by the relation [51, 57–59]

K† = ηKη−1, (4.18)

where η effectively acts as a metric (see text below equation (4.21)). The right (left)
eigenvectors |φj〉 (|χj〉) of K with right (left) eigenvalues κn (νn) are defined by the
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4. Gain and loss

relations

K |φj〉 = κj |φj〉 ,
K† |χj〉 = νj |χj〉 .

(4.19)

This is a generalization of the Hermitian scenario where |χj〉 = |φj〉. The need to extend
the basis of states in this way is triggered by the observation that the orthogonality
relation between right eigenstates known from Hermitian quantum mechanics does not
hold anymore, that is 〈φj |φk〉 6= 0 for j 6= k. Of course, the same holds for the left
eigenstates. However, if the eigenvalue is assumed to be non-degenerate, then without
loss of generality the eigenvalues can be labeled as κj = ν∗j and it may be shown that
the following biorthogonality relation between left and right eigenvectors holds [51],

〈χj |φk〉 = δjk 〈χj |φj〉 . (4.20)

Taken the same assumptions it can be shown that the eigenstates |φj〉 are linearly in-
dependent and span the Hilbert space H . Equation (4.20) is the key for the aforemen-
tioned generalizations of Hermitian quantum mechanics. A detailed description shall be
avoided here but the storyline in reference [51] starts from the observation that the oper-
ator Πj = |φj〉〈χj| / 〈χj |φj〉 acts as a projector onto the state |φj〉 and the Hamiltonian
K may therefore be expressed as follows,

K =
∑

j

κjΠj =
∑

j

κj |φj〉〈χj| , (4.21)

where the normalization convention 〈χj |φj〉 = 1 has been adopted. Defining a duality
relation between H and its dual space H ? such that if |ψ〉 =

∑
j cj |φj〉 ∈H , then the

dual element is given by 〈ψ̃| =
∑

j c
∗
j 〈χj| ∈ H ? leads to 〈ψ, ψ〉 ≡ 〈ψ̃|ψ〉 = 〈ψ|ηψ〉 =∑

j |cj|
2 = 1 due to equation (4.20) [51]. Long story short, a generalization of Hermi-

tian quantum mechanics can be performed by properly replacing projectors and scalar
products by the respective biorthogonal extensions.

The interested reader is invited to identify the Hermitian equivalents of equations (4.19)-
(4.21) as well as in the remaining techniques generalized in reference [51].

Chapter review

â The treatment of open quantum systems is usually based on the density operator,
ρ which is capable of describing mixed quantum states.

â The most general form of an equation of motion for a dissipative system preserving
positivity and the trace of ρ is given by a master equation in Lindblad form (4.8). It
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4.2. Non-Hermitian quantum mechanics

can be derived by effectively integrating out all environmental effects of a universe
system when the interest is only on a small subsystem based on the assumption of
a Markovian reservoir and additional approximations.

â The mean-field limit of a single lattice site with single-particle gain (loss) with
collapse operator L =

√
γa† (

√
γa) corresponds to an exponential increase (decay)

in particle number at the rate γ. The same behavior is obtained by adding a
complex-valued potential +

(−)iγ/2 to a discretized Schrödinger equation. Complex
on-site potentials will be used as an effective description for gain and loss also away
from the mean-field limit leading to non-Hermitian Hamiltonians.

â It is known that non-Hermitian Hamiltonians may also possess entirely real eigen-
values leading to an extension of early quantum mechanics. The family of PT -
symmetric operators is a class of Hamiltonians exhibiting such behavior. More
generally, the treatment of non-Hermitian Hamiltonians can be formalized by use
of a biorthogonal basis consisting of their left and right eigenvectors |φj〉 , |χj〉.
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5. Numerical treatment of 1D bosonic
many-body systems

Despite the fact that it is the process of interaction between particles leading to such a
diversity in nature the investigation of such systems both analytically and numerically
is complicated for different reasons. In the quantum-mechanical scenario analytical ap-
proaches are restricted to special cases or perturbative results – one reason for this being
that in the presence of interactions the system properties cannot be analyzed by sole
investigation of a single particle but rather the complete basis has to be considered. Nu-
merical methods are in most cases restricted to only a few lattice sites as the dimension of
the Hilbert space increases exponentially. Nevertheless, this field has pushed its frontiers
further in recent decades and by now numerical methods provide promising techniques
to gain a deeper understanding of interacting many-body systems. The following chapter
presents the most important numerical recipes employed in this work.

Section 5.1 starts with the simplest “brute force” approach of setting up the Hamiltonian
matrix from which all system properties can be derived. In fact an iterative scheme of
this procedure will be presented, whose limitation however is given by the exponential
increase of the problem dimension.

One outcome of attempts to cure the problem of dimensionality is the celebrated density
matrix renormalization group method (DMRG), whose understanding and generalization
has been under ongoing progress since its proposal by White in 1992 [16]. Therefore,
the amount of literature is huge (for reviews see [17, 18] and references therein) and
the knowledge required to understand recently developed techniques (formulated in the
more general framework of tensor network states [60] but roughly pursuing the same
goal as the “old-fashioned” algorithm) go beyond the scope of this work. Section 5.2 will
give a brief description of the main DMRG techniques for Hermitian Hamiltonians used
in this work adopting the language of White, thereby avoiding the terminology of tensor
network states or matrix product states (MPS). Interested readers without experience in
DMRG may want to consult the very comprehensible introduction [61] and this1 Python
code collection of basic DMRG algorithms consisting of only a few hundred commented
lines including the most popular optimization techniques.

1https://github.com/simple-dmrg/simple-dmrg
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5. Numerical treatment of 1D bosonic many-body systems

Since one main goal of this work includes the investigation of gain and loss introduced
by complex on-site potentials causing the Hamiltonian to be non-Hermitian a possible
extension of DMRG to non-Hermitian systems is presented in section 5.3. Works on
such extensions are found in quantum chemistry [62, 63] as well as in the study of non-
equilibrium systems, which for instance account for diffusive processes [64–68]. To the
best of the author’s knowledge, this work is the first to deliberately employ the algorithm
for the study of PT -symmetric quantum systems.

Practically, having implemented the DMRG method for non-Hermitian operators also
allows for the algorithm to be used for the investigation of master equations in Lindblad
form. Different methods forming the solid foundation of this goal have been proposed in
[69–71] and the purpose itself is still a task under ongoing research and has only recently
been tackled in an approach similar to that one taken in this work, but based on the
framework of MPS [72]. Section 5.4 presents a method based on the non-Hermitian
DMRG algorithm allowing for the investigation of steady state properties of master
equations in Lindblad form sticking to the “traditional” terminology of White, thus
requiring no prior knowledge of the MPS framework. The focus of both sections 5.3
and 5.4 will be on necessary adaptions of a working Hermitian DMRG code for readers
willing to extend their own.

Throughout this chapter the introduced techniques of DMRG will be pointed towards
the SL-BHM as it plays the central role in this work. For a more general overview the
reader is referred to the reviews [17, 18]. Although effort has been put into finding
existing code for reuse and extension, the author is currently not aware of an existing
code implementing the presented strategy without adopting the terminology of MPS.

5.1. Exact diagonalization

Reconsider the Hamiltonian of the SL-BHM (equation (3.1)),

H = −
∑

j odd

(
t1a
†
jaj+1 + h.c.

)
−
∑

j even

(
t2a
†
jaj+1 + h.c.

)

+
U

2

∑

j

nj (nj − 1) +
∑

j

(εj − µ)nj

≡
∑

j

Tj,j+1 +
∑

j

Vj,

(5.1)

which shall be repeated for completeness here with all terms acting on the same sites
collected in the last equality emphasizing the locality of the Hamiltonian, as the SL-BHM
only consists of nearest neighbor tunneling (Tj,j+1) and on-site processes (Vj). It is this
property which leads to an efficient recursive scheme for building up the Hamiltonian
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5.1. Exact diagonalization

(a)
1 1 2 1 2 3

. . .

(b)

1

Basis: (|0〉1 , |1〉1)
Particles: (0, 1)

Operators:

a1 =

(
0 0
1 0

)

a†1 =
(
0 1
0 0

)

n1 =

(
0 0
0 1

)

Hamiltonian:
H1 = (ε1 − µ)n1

Observables: n1

2

Basis: (|0〉2 , |1〉2)
Particles: (0, 1)

Operators:

a2 =

(
0 0
1 0

)

a†2 =
(
0 1
0 0

)

n2 =

(
0 0
0 1

)

Hamiltonian:
H2 = (ε2 − µ)n2

Observables: n2

1 2

Basis:(
|0〉1
|1〉1

)
⊗
(
|0〉2
|1〉2

)
=




|0〉1 ⊗ |0〉2
|0〉1 ⊗ |1〉2
|1〉1 ⊗ |0〉2
|1〉1 ⊗ |1〉2




Particles: (0, 1, 1, 2)

Connection operators:

a
(u)
2 = 11 ⊗ a2, a

†(u)
2 = 11 ⊗ a†2

Hamiltonian:
H12 = H1 ⊗ 12 + 11 ⊗H2

− t1a†1 ⊗ a2 − t∗1a1 ⊗ a†2
Observables:

n
(u)
1 = n1 ⊗ 12, n

(u)
2 = 11 ⊗ n2

Figure 5.1.: Build-up scheme of lattice sites in exact diagonalization. (a) Starting from a block
containing only one lattice site, the latter is consecutively enlarged by adding another single site
until the desired system length is reached. (b) Detailed description of an enlargement process with
local site dimension D = 2 including implementation details such as particle numbers of the basis
vectors, operators required for the enlargement and observables to be measured after the build-up.
The connection rule for the Hamiltonian is highlighted in red.

matrix of a one-dimensional chain of L lattice sites, as one can imagine this process
as starting from a single site adding contiguous sites until the desired system length is
reached (compare figure 5.1a). In the language of DMRG one speaks of a block consisting
of one (or multiple) site(s) being enlarged by a single site. The canonical basis to work
with is spanned by the single site particle number Fock states |j〉k denoting the presence
of j particles at lattice site k.

As an example, consider a single lattice site labeled 1 with a Hamiltonian H1 = V1 and
the basis {|j〉1} being enlarged with a single site labeled 2 represented by the Hamiltonian
H2 = V2 in the basis {|k〉2}. The enlarged block’s basis is then spanned by the product
basis {|j〉1 ⊗ |k〉2} of sites 1 and 2 and the Hamiltonian is given by H12 = H1 ⊗ 12 +
11 ⊗H2 + T12 with the identity 1` at site `.

Consequently, this procedure can be applied iteratively recycling the quantities from
the blocks being connected. For instance, after two enlargements the Hamiltonian of a
three-site composite block (compare figure 5.1a) in the product basis {|j〉1 ⊗ |k〉2 ⊗ |`〉3}
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5. Numerical treatment of 1D bosonic many-body systems

reads H123 = H12⊗13 +112⊗H3 +11⊗T23, where only the last term, the coupling term
T23, cannot be directly constructed by recycling of the former block Hamiltonians.

Numerical treatment requires the introduction of a cutoff D of the local Hilbert space
dimension. In most scenarios of this work, it suffices to chose D = 4, 5 as the low-energy
physics of the SL-BHM in the strongly-interacting regime avoid multiple occupation of a
single site and D corresponds to the fact that one keeps track of at most D− 1 particles
per site.

To be more illustrative consider another example, namely the enlargement of a single
site 1 with local site dimension D = 2 represented in the Fock basis {|0〉1 , |1〉1} by
another lattice site 2 with analogous basis as shown in figure 5.1b. With the matrix
representation of annihilation, creation and particle number operators at hand their form
in the enlarged block 1-2 is simply computed by an outer product“⊗”, one representation
of which is given by the Kronecker product. That said, the coupling term T12 in the basis
{|0〉1 ⊗ |0〉2 , |0〉1 ⊗ |1〉2 , |1〉1 ⊗ |0〉2 , |1〉1 ⊗ |1〉2} can be computed by

T12 = −t1a†1 ⊗ a2 + h.c. = −t1
(

0 1
0 0

)
⊗
(

0 0
1 0

)
+ h.c.

= −t1
(

0 ( 0 0
1 0 ) 1 ( 0 0

1 0 )
0 ( 0 0

1 0 ) 0 ( 0 0
1 0 )

)
+ h.c. = −t1

(
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

)
+ h.c.

(5.2)

and the on-site terms V1, V2 as well as the Hamiltonian H12 of block 1-2 follow similarly.
Continuing this scheme finally leads to the Hamiltonian matrix.

Equation (5.2) already suggests that the final matrix is extremely sparse which is (i) due
to the locality of the Hamiltonian and (ii) because the Hamiltonian (5.1) conserves the
total particle number as it commutes with the operator

∑L
j=1 nj. The second property

causes the Hamiltonian to decompose into block structure, each block only coupling
basis states corresponding to the same total particle number. Hence, keeping track of
the total particle number of the basis, as indicated in figure 5.1b comes in handy when
finally computing for eigenstates of the Hamiltonian matrix employing a large sparse
eigensolver such as the implicitly restarted Arnoldi method provided by the ARPACK
library [73]. Instead of computing eigenvectors of the entire matrix, cutting and sepa-
rately diagonalizing the blocks of invariant subspaces leads to a significant speedup.

In view of the next section introducing the idea of DMRG two aspects shall again be
stressed before proceeding:

â The locality of the SL-BHM (equation (5.1)) allows to think of the construction of a
system as sticking together single sites or more generally two blocks as indicated by
figure 5.2. Whenever two blocks are connected to form a superblock of, say length L,
the Hamiltonian H1...L of the composite system can be constructed by knowledge of
the Hamiltonians H1...`, H`+1...L of both constituents plus the connection operators

46

http://www.caam.rice.edu/software/ARPACK/


5.2. Hermitian density matrix renormalization group algorithms (DMRG)

1 2 . . . `

System block

Basis dimension:

Hamiltonian:

Connection operators:

(Optional) observables:

Ds

H1...`

a`, a
†
`

n1, . . . , n`

`+ 1 . . . L

Environment block
Dimension:

Hamiltonian:

Connection:

Observables:

De

H`+1...L

a`+1, a
†
`+1

n`+1, . . . , nL

Figure 5.2.: Scheme for connecting two blocks to form a “superblock”. For a local Hamiltonian like
the SL-BHM the construction of the superblock Hamiltonian H1...L requires knowledge of the
composite Hamiltonians H1...` and H`+1...L as well as the operators contributing in the coupling
term T`,`+1. In case of the SL-BHM the hopping term from the left to the right block must have

access to the operators a`, a
†
` and a`+1, a

†
`+1. White blocks will be referred to as system blocks in

the following, while gray blocks are called environment blocks in the spirit of DMRG. The total
system is represented by the superblock resulting from the connection of system and environment.

contributing to the coupling term T`,`+1 which are given by the annihilation and
creation operators at the sites where the two blocks are joined by a tunneling
amplitude, for instance t1. Consequently this leads to the construction rule

H1...L = H1...` ⊗ 1`+1...L + 11...` ⊗H`+1...L +
(
t1a
†
` ⊗ a`+1 + h.c.

)
. (5.3)

â A drawback of this scheme is that the basis dimension grows rapidly since the
Hamiltonian matrix of a chain of length L with single site cutoff D results in
DL basis states corresponding to an exponentially increasing problem size. A
compression scheme has to be found such that the dimensionality stays below
numerical limits without losing most of the physical information.

5.2. Hermitian density matrix renormalization group
algorithms (DMRG)

The core of DMRG tackles the issue of exact diagonalization from a perspective question-
ing whether it is necessary to keep all states in a basis when seeking for the ground state
of a system. Before justifying that there is indeed a way to truncate the basis without
losing important bits of information, the text illustrates underlying ideas first.

Suppose that the total system of interest, a chain of L sites, is constructed by connecting
two blocks to a superblock (compare figure 5.2). One block is called the system block
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while the other is named environment block. The state of interest, that is the ground state
|ψ〉 of the superblock, can be expressed in the product basis |j〉s ⊗ |k〉e ≡ |j〉s |k〉e of the
system and environment block suppressing the outer product symbol in the following,

|ψ〉 =
Ds∑

j=1

De∑

k=1

ψjk |j〉s |k〉e , (5.4)

with system and environment dimensions Ds, De, respectively. As both dimensions grow
exponentially in an exact diagonalization scheme the question to be posed is whether a
proper approximation |ψ̃〉 of (5.4) can be found by discarding most of the unimportant
system block basis states such that the residual norm | |ψ〉 − |ψ̃〉 |2 is minimal. The
number of states kept in the description of the system block is often denoted by m and
gives rise to the following form of |ψ̃〉 [74],

|ψ̃〉 =
m∑

α=1

De∑

k=1

ψ̃αk |α〉s |k〉e . (5.5)

It turns out that the optimal choice of the states |α〉s to keep in the description of the
system block is given by the orthogonal eigenvectors of the reduced density matrix

ρs = Tre{|ψ〉〈ψ|} =
Ds∑

i,j=1

De∑

k=1

ψikψ
∗
jk |i〉s〈j|s

≡
Ds∑

i,j=1

(ρs)ij |i〉s〈j|s ≡
Ds∑

α=1

wα |α〉s〈α|s

(5.6)

belonging to the m largest eigenvalues w1...m, which are assumed to be ordered such that
1 ≥ w1 ≥ w2 ≥ . . . ≥ wDs ≥ 0 (see also section 4.1 for the properties of the reduced
density matrix). This statement can be proofed rigorously (see page 54). Because the
eigenvalues satisfy the sum rule

∑Ds

α=1wα = 1, the fidelity of the truncation procedure
by discarding all but the first dominant m eigenvalues of ρs is given by the truncation
error ε,

ε = 1−
Ds∑

α=m+1

wα, (5.7)

and if the components ψjk of the ground state (see equation (5.4)) and analogously ψ̃jk
of the approximation are considered as matrices the residual norm may be evaluated,
yielding | |ψ〉 − |ψ̃〉 |2 = ε [74].

To illustrate this, figure 5.3 shows the eigenvalues of a reduced density matrix of a
subsystem with ` = 4 in a total SL-BHM system of L = 8 represented exactly (in the
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Figure 5.3.: Largest eigenvalues of the re-
duced density matrix of a subsystem with
` = 4 in a total system of L = 8 described
by the SL-BHM with system parameters
t1/U = 0.1, t2/U = 0.02, µ/U = 0.02 and
local site dimension D = 4. Only the
largest of the 64 eigenvalues are shown.
The eigenvalues decay rapidly and the sys-
tem block can be represented to high ac-
curacy by keeping only a fraction of the
contributing eigenvectors in the basis.

numerical sense) without prior truncation of the basis and a site cutoff dimension of
D = 4. It is clearly visible that the eigenvalues decay rapidly such that a truncation of
the system basis could be performed very efficiently. Even by keeping m = 10 of the 64
states, the truncation error ε can be kept below typical values of 10−8 or even less.

The reasons for this behavior are versatile and enlightening in order to get a deeper
insight into DMRG, especially when it comes to understanding the limits of the algo-
rithm [60, 74], but go beyond the scope of this text. Nevertheless, one aspect stemming
from quantum information theory shall be mentioned here as it has interesting cross
connections to topological order. Suppose that an arbitrary system is divided into two
subsystems “s” and “e” (system and environment). It can be shown in most cases, that
the von Neumann entanglement entropy

S = −Tr{ρs ln (ρs)} = −Tr{ρe ln (ρe)} , (5.8)

or in terms of the eigenvalues S = −∑Ds

α=1 wα ln (wα), which provides a measure of the
entanglement between the two subsystems must obey certain area laws [75]. As a conse-
quence, the truncation procedure of DMRG discards highly-entangled states between the
constituents. Thus the smaller S the fewer states have to be kept in an accurate approxi-
mation (for example to deceed a fixed truncation error). As a rule of thumb, the number
of states to be kept scales as m ≈ eS [74]. For ground states of one-dimensional gapped
local Hamiltonians with open boundary conditions the appropriate area law states that
S ∼ ln(L) and therefore m ∼ L. This paves the road to success of DMRG in the treat-
ment of one-dimensional quantum systems. Interestingly, the fact that one-dimensional
systems obeying the aforementioned criteria are always short-range entangled and the
statement that topological order can only be present due to symmetry properties of
the system are related to topological order is a consequence of long-range entanglement
which cannot occur in a local one-dimensional system [76].

To sum up, the core of DMRG relies on enlarging and connecting system and environment
blocks to form a superblock followed by a truncation of the system basis keeping only
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(a)

(b)

(c)

(d)

(e)

Figure 5.4.: Illustration of the first two steps in the infinite system algorithm. (a) The algorithm
starts with a single block. (b) The system block is enlarged by one site and mirrored for the
environment block. (c) System and environment block are connected in order to construct the
superblock Hamiltonian from which the target ground state is obtained. (d) From the ground state
of the superblock the reduced density matrix of the system block is deduced. Finally, the basis
of the enlarged system block is truncated by rotating all operators to the new basis given by the
m eigenvectors of the reduced density matrix yielding a compressed result of the enlarged block.
(e) Continuing the previous steps the system block size is iteratively increased and the algorithm
proceeds until the system properties have converged.

the m most contributing eigenvectors |α〉s , α = 1, . . . ,m of the reduced density matrix.
This final step is accompanied by a basis transformation from the former system basis
|j〉s , j = 1, . . . , Ds to the compressed basis |α〉s. All internal operators of the system
block (Hamiltonian, connection operators, optional observables) have to be rotated to
the new basis. Explicitly, an operator A =

∑Ds

j,k=1Ajk |j〉s〈k|s given in the old basis of
the system in terms of a Ds×Ds matrix A with (A)jk = Ajk is transformed to the new
basis yielding the truncated rotated form Ã in the new basis by

Ã =
m∑

α,α′=1

|α〉s〈α|s

(
Ds∑

j,k=1

Ajk |j〉s〈k|s

)
|α′〉s〈α′|s

=
m∑

α,α′=1

(
Ds∑

j,k=1

〈α | j〉sAjk 〈k |α′〉s

)
|α〉s〈α′|s ≡

m∑

α,α′=1

Ãαα′ |α〉s〈α′|s ,
(5.9)

which is now characterized by an m ×m dimensional matrix Ã. Numerically this can
be achieved by lining up the m eigenvectors of ρs in an m×Ds matrix U row per row.
Then equation (5.9) translates into

Ã = UAU †. (5.10)

With that said, two common DMRG methods can now be outlined – the infinite and
the finite system algorithm.

Infinite system algorithm: This method was originally intended for obtaining the
ground state properties (for instance energy per lattice site) in the thermodynamic limit
L→∞. For an inversion-symmetric system it proceeds as follows (see figure 5.4) [74]:
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5.2. Hermitian density matrix renormalization group algorithms (DMRG)

1. Start by creating a block of one lattice site including all necessary operators such
as the Hamiltonian, connection operators and optional observables (figure 5.4a).

2. Enlarge the block by one lattice site (indicated by a black site, see figure 5.4b)
updating Hamiltonian and observables. Change the connection operators to the
new ones and (optionally) add observables to the enlarged block. Use a mirrored
copy of this block as environment (grayish block in figure 5.4b).

3. Connect the enlarged system block and the enlarged environment block to the
superblock (figure 5.4c) yielding the superblock Hamiltonian H.

4. Using a large sparse eigensolver, compute the ground state |ψ〉 of the superblock.
The eigenvalue corresponds to the ground state energy. (Optionally) compute
expectation values of observables using the ground state and representations of
the observable operators in the system and environment block.

5. Construct the reduced density matrix ρs of the system block using |ψ〉. To do so,
reshape the components ψjk (compare equation (5.4)) into a Ds × De matrix ψ
such that the row index corresponds to the system basis whereas column indices
are associated with environment basis elements. Then according to equation (5.6)
the matrix ρs is obtained by ρs = ψψ†. Diagonalize the matrix ρs and yield the
Ds eigenvalues wα in descending order with the appropriate eigenvectors |α〉s.

6. Choose the number of basis vectors to keep after the truncation (for instance set
m = const or choose m dynamically by keeping the truncation error ε (equa-
tion (5.7)) below a specified threshold). Line up the components of the m most
contributing eigenvectors in a m×Ds matrix U .

7. Truncate the system block by applying equation (5.10) to all internal operators
thereby reducing the basis dimension of the block from Ds to m. Note that the
length of the enlarged truncated system block has increased by one (figure 5.4d).

8. Continue with step 2. After one DMRG step, this yields a truncated system block
of increased length (figure 5.4e). Iterate the scheme until the system properties
(observables, energy per lattice site) have converged.

In order to treat systems without inversion symmetry step 2 has to be modified since
the mirrored version of the enlarged block cannot serve as environment. Therefore two
species of blocks representing the left and right half of the total system have to be grown
separately using the other complement as environment block. It shall be emphasized
that steps 2-7 represent the core of DMRG and are referred to as a DMRG step, which
is also the foundation of the finite size algorithm.
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Figure 5.5.: Illustration of a sweep in the finite system DMRG for a system of total length L = 8
(from top to bottom, from left to right). The sweep starts in the symmetric configuration, where
the left block of length ` = L/2−1 is chosen as system block whereas the environment corresponds
to the right block of length L − ` − 1. Iterating to the right, the role of system and environment
are reversed and the system growth proceeds from right to left until reaching the left boundary of
the system is reached. Finally the system returns to the initial situation and another sweep can be
performed.

Finite system algorithm: In contrast to the infinite size algorithm which often leads
to poor results, the formulation of the finite size algorithm can achieve a much higher
accuracy. The limited fidelity of the infinite system algorithm arises from the fact that
each bond at which the superblock is cut into system and environment is only optimized
once. Thus later truncation steps cannot affect the previously performed steps. This
reasoning in the finite size algorithm introduces the notion of sweeping (see figure 5.5).
The algorithm is performed in the following steps [74]:

1. Start from a single lattice site and apply the infinite system algorithm until the
block length reaches L/2 − 1. During this procedure store the interim left and
right blocks in a list for later reuse. Finishing this build-up the list of intermediate
blocks should contain left and right blocks from length 1 to L/2− 1.

2. Perform a sweep (best illustrated by an example, compare figure 5.5). To do so,
take for instance the left block of length ` = L/2−1 as system block which implies
that the environment block is given by the right block of length L−`−1 (compare to
the top left configuration of figure 5.5). After performing the DMRG step (usually
without measuring observables), store the resulting left block of length `+ 1 in the
block list and proceed with the latter choosing the appropriate environment block
from the list. When the system block reaches length L − 2, reverse direction by
taking the right block as system and the appropriate left block as environment.
Continue this scheme until the initial configuration with the system given by the
left block of length L/2 − 1 is reached. This situation is called the symmetric
configuration, in which observables can be computed most accurately.
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5.2. Hermitian density matrix renormalization group algorithms (DMRG)

3. Apply multiple sweeps until the system properties (energy per lattice site, expec-
tation values) have converged to the desired accuracy.

The sweeping procedure is essential as former variations are capable of influencing later
truncations and vice versa leading to a tremendous increase in accuracy.

Instead of only optimizing for the ground state (target state) it is also possible to target
multiple states in step 4. For instance if the interest is on the k lowest states of the
system, one solves for the appropriate target states |ψ1〉 , |ψ2〉 , . . . , |ψk〉 and constructs
the reduced density matrix

ρs =
k∑

j=1

wjTre{|ψj〉〈ψj|} , (5.11)

where the weight factors wj are usually chosen equal, that is wj = 1/k.

We conclude this section by commenting on aspects about pushing the performance of
DMRG (see also [17, 74]). Generally the computationally most demanding task in a
DMRG step is given by employing the large sparse solver for finding the target state(s)
of the superblock Hamiltonian. Two of the most powerful techniques to improve the
runtime of this step are mentioned here as they have also been included in the code:

â State prediction: Common large sparse eigensolver routines usually rely on itera-
tive schemes (for instance the Lanczos algorithm [77]) that converge towards the
desired eigenvector after a number of iterations. Providing a proper guess state in
the initialization therefore speeds up the solver as convergence takes fewer itera-
tions. A prediction state can be computed in a sweep using the target state of the
previous step and the transformation matrices U of the system and environment
blocks in order to transform the latter into the new basis.

â Symmetries of the model: As already mentioned in section 5.1 the SL-BHM is
particle-conserving, which is a consequence of its U(1)-symmetry. Hence the su-
perblock Hamiltonian decomposes into block structure and each block assigned to
an invariant subspace of same total particle number can be diagonalized separately.
The very same argument leads to a block structure of the reduced density matrix
ρ and the transformation matrix U , and is practical as the block structure of in-
ternal block quantities is not spoiled by numerical inaccuracies. This saves a lot of
memory in the sparse representation due to the huge number of exact zeros. Note
that in order to exploit the particle number conservation, the particle number of
each basis vector of a block has to be kept track of in a DMRG step.

Although the aforementioned techniques speed up the diagonalization of the superblock
Hamiltonian this task still takes most of the computational time in the algorithm.
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5.3. DMRG for non-Hermitian Hamiltonians

After the basic DMRG techniques for Hermitian Hamiltonians have been outlined, this
section aims at generalizing the procedure in order to deal with non-Hermitian Hamil-
tonians, especially the previously mentioned PT -symmetric Hamiltonians.

Recap that while a Hermitian operator H =
∑

j Ej |ψj〉〈ψj| = H† can be expressed solely
by knowledge of its eigenvectors |ψj〉 with real eigenvalues Ej, a non-Hermitian operator
K 6= K† may only be written in this form using the left and right eigenvectors |χj〉 , |φj〉
respectively (see equations (4.19), (4.21)) with eigenvalues κj, that isK =

∑
j κj |φj〉〈χj|.

Thus it seems reasonable that a non-Hermitian formulation of DMRG requires left and
right eigenvectors as well.

It will turn out that only slight changes of the Hermitian algorithms have to be im-
plemented. Instead of computing only the (right) target state |ψ〉 ≡ |φ〉 of the non-
Hermitian superblock Hamiltonian, the left eigenstate |χ〉 is required as well. Then the
residual norm

| |φ〉 − |φ̃〉 |2 + | |χ〉 − |χ̃〉 |2 (5.12)

relative to the approximations |φ̃〉 , |χ̃〉 with a truncated system is minimized by keeping
the m most contributing eigenvectors of the density matrix [66]

ρs =
1

2
Tre{|φ〉〈φ|+ |χ〉〈χ|} . (5.13)

Use enlarged system and environment to construct the superblock Hamiltonian H (K)

Solve the eigenvalue equation
H |ψ〉 = E |ψ〉 for the desired target
state (for instance the ground state)

Solve the eigenvalue equations
K |φ〉 = κ |φ〉 and K† |χ〉 = κ∗ |χ〉

for the desired target states

Construct the reduced den-
sity matrix ρs = Tre{|ψ〉〈ψ|}

Construct the reduced density ma-
trix ρs = 1/2 Tre{|φ〉〈φ|+ |χ〉〈χ|}

Compute the eigenvectors |α〉s , α = 1, . . . , Ds with eigenvalues wα, order them
descendingly and keep m eigenvectors associated with the largest eigenvalues

Line up the eigenvectors in an m × Ds matrix U and transform all operators of the
enlarged system block, for instance A → Ã = UAU † to perform the truncation

1.

2. 2.

3. 3.

4.

5.

Figure 5.6.: Comparison between a DMRG step of a Hermitian (blue) and a non-Hermitian (orange)
system. Note that most of the steps are identical whereas changes only appear in two substeps.
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This choice of the density matrix can also be understood by considering the Hermi-
tian scenario with multiple target states (equation (5.11)) but this time left and right
eigenstates have to be targeted for a proper representation of the system Hamiltonian,
compare equation (4.21).

Figure 5.6 illustrates the modifications to a Hermitian DMRG code that have to be made
in order to add the capability of handling non-Hermitian systems.

To further illustrate the choice of eigenvectors of the density matrix (5.13) minimizing
equation (5.12) the proof of the Hermitian equivalent shall be given here following ref-
erences [17, 66], from which the non-Hermitian version follows immediately but requires
a lengthily notation.

Suppose the representation of the ground state of a superblock expressed in the product
basis of system and environment is given (compare equation (5.4)),

|ψ〉 =
Ds∑

j=1

De∑

k=1

ψjk |j〉s |k〉e , (5.14)

and we are seeking for an optimal representation of the system in terms of m orthogonal
vectors |α〉s =

∑
j uαj |j〉s such that the approximation of |ψ〉 (equation (5.5)),

|ψ̃〉 =
m∑

α=1

De∑

k=1

ψ̃αk |α〉s |k〉e , (5.15)

minimizes the distance | |ψ〉 − |ψ̃〉 |2. Inserting the expansion of both states using the
normalization of |ψ〉 one finds (throughout assuming real components for simplicity)

| |ψ〉 − |ψ̃〉 |2 = 1− 2
∑

α,j,k

ψ̃αkuαjψjk +
∑

α,k

ψ̃2
αk

!
= min (5.16)

for the expression to be minimized. Taking the partial derivative of (5.16) with respect
to one of the variational parameters ψ̃αk and demanding for it to vanish in the global
minimum leads to

−2
∑

j

uαjψjk + 2ψ̃αk = 0 =⇒
∑

j

uαjψjk = ψ̃αk. (5.17)

Eliminating the ψ̃jk from equation (5.16) with this relation leads to an expression de-
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pending on the coefficients uαj which has to be minimized,

| |ψ〉 − |ψ̃〉 |2 = 1− 2
∑

α,j,k

(∑

`

uα`ψ`k

)
uαjψjk +

∑

α,k

(∑

j,`

uαjψjkuα`ψ`k

)

= 1−
∑

α,j,`

uαj

(∑

k

ψjkψ`k

)
uα`

= 1−
∑

α,j,`

uαj (ρs)j` uα`,

(5.18)

where quite naturally the components of the reduced density matrix (equation (5.6))
appear. Because of the positivity and Hermiticity of ρs equation (5.18) is minimized
by setting the uαj to the components of the eigenvectors belonging to the m largest
eigenvalues wα and therefore the |α〉s correspond to those eigenvectors, which concludes
the proof. Note as well that equation (5.7) follows immediately.

Carrying over this proof to the non-Hermitian case, it can be argued that in order to
target both left and right eigenstates |φ〉 , |χ〉 one seeks proper approximations |φ̃〉 , |χ̃〉,

|φ̃〉 =
m∑

j=1

De∑

k=1

φ̃αk |α〉s |k〉e , |χ̃〉 =
m∑

j=1

De∑

k=1

χ̃αk |α〉s |k〉e , (5.19)

which minimize equation (5.12). Following the steps of the above proof for this case
then leads to the result that the |α〉s are best chosen as the m eigenvectors belonging to
the largest eigenvalues of the reduced density matrix given by equation (5.13).

5.4. DMRG in Liouville space

With the non-Hermitian DMRG algorithms at hand the field of physically accessible
problems has widened. Our code can treat non-Hermitian Hamiltonians, for instance
find the “ground state” (that is the eigenstate with lowest real part of the eigenvalue),
but the interest shall also be on a comparison between results from PT -symmetric
Hamiltonians and dissipation introduced by a master equation in Lindblad form,

dρ

dt
= −i [H, ρ] +

∑

µ

(
2LµρL

†
µ −

{
L†µLµ, ρ

})
≡ L̂ |ρ〉# , (5.20)

where the last equality will be explained in a moment. Note that the Lindblad operators
have been rescaled in comparison to equation (4.8) in order to be consistent with the
references [21, 22] aiming at an analytical approach towards the solution of this equation
(see also appendices B and C).
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The idea of how to include the capability of handling equation (5.20) in our non-
Hermitian DMRG code relies on the construction and enlargement rule of a Liouville
operator (instead of a Hamiltonian) for a single site. Similar to the build-up procedure
of the SL-BHM Hamiltonian in section 5.1, an iterative enlargement procedure can be
found, which is presented in the following. Using the non-Hermitian DMRG method
allows us to optimize the basis representation of a system for the desired target state.

First, consider the construction of L̂ for only a single site with a Hilbert space H
restricted to D states, that is at most D− 1 particles. H is spanned by the Fock states
|j〉 , j = 0, . . . , D − 1 denoting the presence of j particles at that site. As the Liouville
operator is acting on the density matrix ρ ∈ L living in the Liouville space L = L(H ),
the basis to work with is given by the D2 standard basis vectors |i〉 ⊗ 〈j| = |i〉〈j| , i, j =
0, . . . , D−1 spanning the single site Liouville space, and ρ may be expressed as follows,

ρ =
D−1∑

i,j=0

cij |i〉〈j| . (5.21)

Similar to the Fock basis being orthogonal with respect to the scalar product 〈◦ |N〉, the
standard Liouvillean basis is trace-orthogonal,

TrH

{
(|i〉〈j|)† |k〉〈`|

}
= δikδj`. (5.22)

One can then adopt a vectorized “superket” notation of the density matrix,

ρ =
D−1∑

i,j=1

ρij |i〉〈j| → |ρ〉# =
D−1∑

i,j=1

ρij

∣∣∣ |i〉〈j|
〉

#
, (5.23)

such that “superket” states are still orthonormal in the sense of equation (5.22). In the
more general case of L lattice sites 1, . . . , L, whose total Liouville space Ltot is spanned
by the single site Liouville spaces Li,

Ltot =
L⊗

i=1

Li, (5.24)

the vectorized density matrix can be expanded as

|ρ〉# =
∑

i1,j1

∑

i2,j2

· · ·
∑

iL,jL

ρi1j1,i2j2,...,iLjL

∣∣∣ |i1〉1〈j1|1 ⊗ |i2〉2〈j2|2 ⊗ . . .⊗ |iL〉L〈jL|L
〉

#
. (5.25)

Practically, this notation allows us to express the action of L̂ onto the vectorized |ρ〉# in
terms of a matrix (compare to the Hamiltonian matrix acting on a vector wave function).
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1 2 . . . `
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Basis dimension:

Liouvillean:
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` , â

†R
`
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`
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Dimension:

Liouvillean:
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Observables:

De

L̂`+1...L

âL
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Figure 5.7.: Scheme for the connection of two dissipative blocks to form a superblock. In the dissipative
framework both blocks are described by Liouvillean operators L̂1...`, L̂`+1...L, respectively. The
superblock Liouvillean L̂1...L needs access to both Liouville operators as well as the connection
operators at the bond, that is aL` , a

R
` , a

†L
` , a†R` and aL`+1, a

R
`+1, a

†L
`+1, a

†R
`+1, see equation (5.28).

To do so, left and right bosonic annihilation and creation operators âL, âR, â†L, â†R are
introduced by the following action on the vectorized density matrix [22],

âL |ρ〉# = |aρ〉# ,
âR |ρ〉# = |ρa〉# ,

â†L |ρ〉# =
∣∣a†ρ

〉
#
,

â†R |ρ〉# =
∣∣ρa†

〉
#
.

(5.26)

Using those operators equation (5.20) translates into

L̂ |ρ〉# = −i
(
|Hρ〉# − |ρH〉#

)
+
∑

µ

(
2
∣∣LµρL†µ

〉
#
−
∣∣L†µLµρ

〉
#
−
∣∣ρL†µLµ

〉
#

)

≡ −i
(
ĤL − ĤR

)
|ρ〉# +

(∑

µ

2L̂L
µL̂
†R
µ − L̂†Lµ L̂L

µ − L̂R
µ L̂
†R
µ

)
|ρ〉#

≡
(
L̂(uni) + L̂(diss)

)
|ρ〉# ,

(5.27)

where ĤL, ĤR denote the Hamilton operators in which bosonic annihilation/creation
operators have been replaced by the left and right equivalents of equation (5.26), respec-
tively (the same holds for the Lindblad terms). The unitary term L̂(uni) of the Liouvillean
is obviously a local operator as it contains the Hamiltonian, which is assumed to pos-
sess this property (see section 5.1). If the Lindblad operators Lµ are also chosen to be
local (which is the case in this work as single-particle gain and loss on single sites is
investigated), the dissipative term L̂(diss) of the Liouvillean is also local. Thus a sim-
ple connection/enlargement rule between two blocks can be formulated in terms of the
operators (5.26) (see figure 5.7):
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1

Basis:( |0〉1
|1〉1

)
⊗
( 〈0|1

〈1|1

)
=




|0〉〈0|1
|0〉〈1|1
|1〉〈0|1
|1〉〈1|1


 ≡




|1〉1#
|2〉1#
|3〉1#
|4〉1#




Trace vector: t1 = ( 1,0,0,1 )T

Operators:

âL1 = ( 0 1
0 0 )⊗ ( 1 0

0 1 ) =

(
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

)
, â†L1 =

(
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

)

âR1 = ( 1 0
0 1 )⊗ ( 0 0

1 0 ) =

(
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

)
, â†R1 =

(
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)

n̂L1 = ( 0 0
0 1 )⊗ ( 1 0

0 1 ) =

(
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

)
, n̂R1 =

(
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

)

ĤL
1 = (ε1 − µ)n̂L1 , ĤR

1 = (ε1 − µ)n̂R1 , L̂1 =
√
γâ†1

Liouvillean: L̂1 = L̂(uni)1 + L̂(diss)1

L̂(uni)1 = −i
(
ĤL

1 − ĤR
1

)

L̂(diss)1 = 2L̂L
1 L̂

†R
1 − L̂†L

1 L̂
L
1 − L̂R

1 L̂
†R
1

Observables: n̂L1

2

Basis: ( |1〉2#,|2〉2#,|3〉2#,|4〉2# )
Trace vector: t2 = ( 1,0,0,1 )T

Operators: âL,R2 , â†L,R2 , n̂L,R2 , ĤL,R
2 , L̂2 =

√
γâ2

Liouvillean: L̂2 = L̂(uni)2 + L̂(diss)2

Observables: n̂L2

1 2

Basis:




|1〉1#
|2〉1#
|3〉1#
|4〉1#


⊗




|1〉2#
|2〉2#
|3〉2#
|4〉2#


 =




|1〉1#|1〉2#
|1〉1#|2〉2#
|1〉1#|3〉2#
|1〉1#|4〉2#
|2〉1#|1〉2#
|2〉1#|2〉2#
|2〉1#|3〉2#
|2〉1#|4〉2#
|3〉1#|1〉2#
|3〉1#|2〉2#
|3〉1#|3〉2#
|3〉1#|4〉2#
|4〉1#|1〉2#
|4〉1#|2〉2#
|4〉1#|3〉2#
|4〉1#|4〉2#




Trace vector:

t12 =

(
1
0
0
1

)
⊗
(

1
0
0
1

)
=( 1,0,0,1,0,0,0,0,

0,0,0,0,1,0,0,1 )T

Connection operators:

â
L(u)
2 = 1̂1 ⊗ âL2 ,

â
†L(u)
2 = 1̂1 ⊗ â†L2 ,

â
R(u)
2 = 1̂1 ⊗ âR2

â
†R(u)
2 = 1̂1 ⊗ â†R2

Liouvillean:

L̂12 = L̂1 ⊗ 1̂2 + 1̂1 ⊗ L̂2
+ it1

(
âL1 ⊗ â†L2 + â†L1 ⊗ âL2

)

− it1

(
âR1 ⊗ â†R2 + â†R1 ⊗ âR2

)

Observables:

n̂
L(u)
1 = nL1 ⊗ 1̂2, n̂

L(u)
2 = 1̂1 ⊗ n̂L2

Figure 5.8.: Illustration of the enlargement procedure of a single site dissipative block 1 with local
Hilbert space dimension D = 2, that is D2 = 4 degrees of freedom for the single site density matrix.
The matrix representations for left and right bosonic annihilation and creation operators have been
explicitly computed to show that operators from the Hamiltonian routine (compare figure 5.2) may
in principle be reused. The connection rule for the construction of the Liouville operator of the
connected block is highlighted and for simplicity t1 ∈ R has been assumed. The trace vector
contains information about the contribution of a basis vector to the trace and is required in the
computation of expectation values. A generalization of this scheme to D > 2 is straightforward.
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5. Numerical treatment of 1D bosonic many-body systems

â Given a system block of length ` which is to be connected with a tunneling am-
plitude t1 ∈ R to the environment block of length L − ` where both blocks are
described by a Liouvillean L̂1...`, L̂`+1...L, respectively, the superblock Liouvillean
L̂1...L is given by

L̂1...L = L̂1...` ⊗ 1̂`+1...L + 1̂1...` ⊗ L̂`+1...L

+ it1

(
âL
` ⊗ â†L`+1 + â†L` ⊗ âL

`+1

)
− it1

(
âR
` ⊗ â†R`+1 + â†R` ⊗ âR

`+1

)
,

(5.28)

where the second line is caused by the coupling between both blocks in the unitary
term L̂(uni) and the case L− ` = 1 corresponds to enlarging a dissipative block of
length ` by one lattice site.

To illustrate the growth of a dissipative system block further, the enlargement process
of a single site with D = 2 is shown in figure 5.8. For the construction of left and right
annihilation/creation operators the appropriate matrices from the Hamiltonian method
can be recycled.

With that said, one concludes that the Liouvillean has now been successfully integrated
in the class of operators that can be handled by non-Hermitian DMRG. The locality
of the Liouville operator (equation (5.27)) induces a block scheme which is required for
DMRG techniques that heavily rely on blocking. For the purpose of writing equation
(5.20) as matrix equation where the Liouvillean is represented by a matrix, a “superket”
notation for the vectorized density matrix |ρ〉# is introduced. Due to the orthogonality
of the basis states (equation (5.22)) all substeps in the DMRG algorithm, for instance
the construction of the “reduced superket density matrix of the system”, work safely. An
interesting state of the Liouville operator is given by the eigenstate |ρness〉# associated
with eigenvalue zero since

L̂ |ρness〉# = 0 |ρness〉# (5.29)

in addition with the master equation (5.20) implies |ρness(t)〉# = const, and thus |ρness〉#
corresponds to the non-equilibrium steady state (NESS ) towards which the system con-
verges in the long-time limit. Targeting the eigenvalue zero in the diagonalization of the
superblock Liouvillean in a DMRG step leads to a representation of |ρness〉#.

So far one subtle aspect has been withheld from the discussion since it requires some
additional treatment, namely the computation of expectation values. Evaluating the
latter for an observable Â requires a “superket” representation of the trace, compare
equation (4.3). This representation is implemented by keeping track of the identity I1...`

in the Hilbert space of a block of length `,

I1...` =
∑

i1,i2,...,i`

|i1〉1〈i1|1 ⊗ |i2〉2〈i2|2 ⊗ . . .⊗ |i`〉`〈j`|` , (5.30a)
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5.4. DMRG in Liouville space

whose “superket” representation reads

|I1...`〉# =
∑

i1,i2,...,i`

∣∣∣ |i1〉1〈i1|1 ⊗ |i2〉2〈i2|2 ⊗ . . .⊗ |i`〉`〈j`|`
〉

#
. (5.30b)

Effectively, the components of the vector |11...`〉# expressed in the system“superket”basis
|i〉s# , i = 1, . . . , Ds stored in the so called trace vector t1...` contain the contribution of a
basis state to the trace in the Hilbert space (compare figure 5.8 for an example),

|I1...`〉# =
Ds∑

i=1

ti |i〉s# . (5.30c)

In a DMRG step the basis of the system is rotated by the transformation matrix U
and all operators of the block represented by matrices transform according to equation
(5.10). Carrying the notion of equation (5.9) over to the trace vector t (equation (5.30c))
leads to the following transformation in the truncation procedure,

ti |i〉s# →
m∑

α=1

ti 〈α | i〉s# |α〉s# =
m∑

α=1

tiuαi |α〉s# ≡
m∑

α=1

t̃α |α〉s#

=⇒ t→ t̃ = U t.

(5.31)

Ultimately, the computation of an expectation value can be formulated as follows:

â Given the right target state |ρ〉# =
∑DsDe

i=1 ρi |i〉#, the trace vector and an observ-

able Â in the superblock basis |i〉# described by the vectors ρ, t and the matrix A
respectively, the expectation value

〈Â〉 =
Tr
{
Â |ρ〉#

}

Tr
{
|ρ〉#

} is evaluated by 〈Â〉 =
t ·Aρ
t · ρ . (5.32)

Equation (5.32) is best understood by recapitulating that the vector t contains
information about the contribution of the respective basis state to the trace such
that multiplying t with another quantity results in the trace of the latter.

Finally, a non-Hermitian DMRG step (compare figure 5.6 for the formulation in the
Hamiltonian framework) in the language of the Liouvillean is presented in figure 5.9.

There are some more subtleties to be aware of, which are also mentioned in [72] presenting
a similar MPS-based algorithm. Our method does neither ensure that the target density
matrix is (i) positive-semidefinite nor (ii) Hermitian. While the second aspect can be
circumvented by a more sophisticated choice of the local Liouville space basis in terms of
Hermitian generalized Gell-Mann matrices, which is commented on in appendix D, the
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5. Numerical treatment of 1D bosonic many-body systems

Use the enlarged system and environment to construct the superblock Liouvillean L̂

Solve the eigenvalue equations L̂ |φ〉# = κ∗ |φ〉#, L̂† |χ〉# = κ |χ〉# for the desired
target (κ = 0 for the NESS). The state |φ〉# (= |ρ〉# in the text) corresponds
to the vectorized “superket” representation of the density matrix which is sought

Construct the “reduced superket density matrix” (does not correspond to a physi-
cally meaningful quantity but rather provides the opimal basis representation of

the system to approximate the target states) ρs = 1/2 Tre

{
|φ〉#〈φ|# + |χ〉#〈χ|#

}

Compute the eigenvectors |α〉s# , α = 1, . . . , Ds with eigenvalues wα, order them
descendingly and keep m eigenvectors associated with the largest eigenvalues

Construct the transformation matrix U and truncate all operators (the trace vec-
tor) of the system according to the scheme A → Ã = UAU † (t → t̃ = U t)

1.

2.

3.

4.

5.

Figure 5.9.: Non-Hermitian DMRG step in the terms of the Liouvillean. Note that all steps can
directly be adopted from the Hamiltonian method (figure 5.6) the only difference being a different
basis, which however is still orthogonal in the sense of equation (5.22) and is required for the
outlined DMRG algorithm to work. A small adaption, namely the transformation of the trace
vector originates from the modified computation of expectation values.

first point cannot be straightforwardly implemented. Therefore one has to rely on the
assumption that the mathematical properties of ρ are physically meaningful. Moreover,
in chapter 8 a condition for the expectation value of the particle number in the steady
state will be derived and can be used as additional check for the validity of the results
obtained from simulations.

Chapter review

â Interacting bosonic systems are difficult to investigate numerically as the dimension
of the Hilbert space is infinite-dimensional, that is a single lattice site can host
an arbitrary number of bosons. Usually, the degrees of freedom of a single are
restricted to D states (at most D − 1 particles per site), which still comes at a
price of exponential growth of the dimension.

â Since the Hamiltonians under investigation are local, a representation of a finite
system can be generated iteratively by starting from a single site providing a
proper enlargement rule for adding an additional site. DMRG makes use of this
building procedure but also provides a truncation procedure to effectively reduce
the dimensionality of the problem. In many cases, especially in one-dimensional
local gapped quantum systems, this truncation procedure is highly effective which
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5.4. DMRG in Liouville space

is one of the reasons for the success of DMRG. Errors of numerical simulations (for
instance energy or expectation values) are usually on the order of the truncation
error ε.

â For the purpose of this work, a basic DMRG code for Hermitian operators has
been implemented. Moreover, in order to deal with PT -symmetric Hamiltonians
the algorithm has been extended to non-Hermitian Hamiltonians.

â Using non-Hermitian DMRG allows us to study dissipative systems not only in
the framework of PT -symmetric Hamiltonians but also by targeting the steady
state properties of a master equation in Lindblad form. The technique resembles
recently developed MPS-based algorithms but does not require prior knowledge of
this framework as we formulate it in the traditional language of DMRG. Thus we
believe it may provide a very comprehensible approach for readers familiar with
DMRG that do not (yet) want to get involved with MPS. All adaptions can be
included in a working Hermitian DMRG code without much effort.
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6. The PT -symmetric SL-BHM

This chapter gives an overview of the effects arising in the SL-BHM extended by com-
plex PT -symmetric potentials such that the Hamiltonian always satisfies equation (4.14).
Before doing so, a physical motivation why such an extension is of interest is given. In
chapter 3 it was outlined that the gapped Mott-insulator (MI) phases are characterized
by a topological invariant given by the generalized Zak phase ν (see equation (3.17)),
which is quantized due to the PT symmetry of the Hermitian Hamiltonian (considera-
tions on how to carry over the generalized Zak phase to the non-Hermitian scenario are
given in chapter 7). Extending the latter by addition of non-Hermitian on-site terms
which however respect the symmetry of the Hamiltonian can be employed as an effective
theory to introduce single-particle gain and loss, see chapter 4. In particular, the class of
non-Hermitian PT -symmetric operators is capable of possessing entirely real eigenvalues
for a certain range in parameter space corresponding to stationary modes, which can be
interpreted as stable although the system is subject to gain and loss. The interpretation
in the PT -broken (see page 39) regime is more complicated as complex eigenvalues lead
to an exponential (de)amplification of a bosonic system, which finally ends up entirely
empty or keeps on filling with particles due to gain and loss effects.

It is therefore desirable to study the existence of parameter ranges in which the SL-BHM
is stable despite of dissipative effects. Even more interesting the question how topological
order, which quite generically is accompanied by the occurrence of edge modes, translates
into the dissipative case can be posed. Pushing this idea further there could exist
topological phase transitions that are driven by dissipation and a problem under recent
investigation addresses the topological classification of open quantum systems (for an
approach to fermionic systems, see reference [9]).

In section 6.1 the complex on-site potentials, which have already been partially used for
studying the relation between PT symmetry and topological phases in different fermionic
models [78–81] are presented including a discussion of the single-particle spectra.

Section 6.2 investigates the low-energy spectrum of the SL-BHM extended by complex
on-site potentials focussing on the identification of features in the edge states that are
caused by dissipation, which may serve as an indicator for topological effects.
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6. The PT -symmetric SL-BHM

6.1. Complex on-site potentials

In the following, the SL-BHM Hamiltonian (3.1), which is denoted by H0 from now on,
will be extended by a non-Hermitian potential U such that the total Hamiltonian

H = H0 + U (6.1)

effectively describes a dissipative version of the SL-BHM with different gain and loss
patterns dictated by U . In total four different on-site potentials are considered on a
chain of L lattice sites, all of which are sketched in figure 6.1.

A simple dissipative setup is given by setting the first site of a one-dimensional SL-
BHM chain to act as a sink for particles, while bosons are filled into the system at
the last site acting as a source. Such a situation can be realized when the chain (for
instance a quantum wire) is in contact with two different baths (e.g. heat [82, 83] or
particle reservoirs) at its outer boundaries. The potential describing this situation is
abbreviated by U1 and reads

U1 = −iγn1 + iγnL (6.2a)

parameterized by the gain/loss strength γ. Physically one expects U1 to induce currents
through the entire system from source to sink.

Placing single-particle gain and loss on two directly adjacent sites in the center of the
chain results in the “centered” version of U1 denoted as U

(c)
1 ,

U
(c)
1 = −iγnL/2−1 + iγnL/2, (6.2b)

− +

U1

− +

U
(c)
1

+ − + − + − + −
U2

− − − − + + + +

U3

Figure 6.1.: Sketch of the complex on-
site potentials (equations (6.2)) ac-
counting for different dissipative se-
tups of single-particle gain and loss
on a linear chain with L = 8 sites.
While white lattice sites are not
directly affected by dissipation (no
complex on-site potential), blue sites
(−) are subject to loss effects by an
imaginary potential of −iγ and yel-
low circles (+) mark sites where par-
ticles are coupled into the system
corresponding to a potential value of
+iγ. The dimerization of the chain is
suppressed in this illustration as the
focus is on the on-site terms.
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6.1. Complex on-site potentials

which can be regarded as a dissipative impurity in the system and has only recently
also been investigated in [84]. In particular, the centered construction is advantageous
compared to U1 as it allows for tracking the quantized topological order parameter
between two adjacent dissipative sites (see chapter 7).

Moving away from only single sites acting as sinks and sources for particles, the next
potentials are characterized by a fully dissipative chain, that is each lattice site is subject
to either gain or loss. If both effects are introduced in an alternating fashion, the unit
cell structure will be conserved allowing for an analytical approach of the fermionic SSH
version of the model. The appropriate on-site potential is called U2,

U2 =
∑

j=1,3,...

iγnj +
∑

j=2,4,...

(−iγ)nj. (6.2c)

Finally, in order to investigate the consequence of identical dissipative processes among
a large number of sites a potential overlaying gain or loss on an entire half of the chain
will be considered,

U3 =

L/2∑

j=1

(−iγ)nj +
L∑

j=L/2+1

iγnj, (6.2d)

which can be imagined by a chain embedded into two two-dimensional reservoirs.

The behavior of a single particle in an SSH chain of unit cells subject to adjacent gain
and loss described by U2 shall be derived analytically as it emphasizes the existence of
real eigenvalues in the spectrum and the hard-core bosonic SL-BHM model maps onto
the latter in the strongly-interacting regime at µ = 0 (see chapter 3). Considering the
Hamiltonian (2.2) extended by the potential term (6.2c), the same steps as in chapter 2
can be carried out to yield the Bloch Hamiltonian of the periodic system,

HBloch(k) = −
(
−iγ t1 + t2e−ik

t1 + t2eik iγ

)
≡ −n(k) ·σ,

with n(k) =



t1 + t2 cos (k)
t2 sin (k)

iγ


 ,

(6.3)

compare with equations (2.8), (2.10) and (2.11). Solving for the eigenvalues En(k) of the
matrix (6.3) by use of the Pauli matrices’ properties leads toHBloch(k)2 = n(k) ·n(k)1 =
E2
n1, and thus the energy dispersion reads as follows,

En(k) = ±
√
t21 + t22 + 2t1t2 cos(k)− γ2, (6.4)

compare equation (2.9). The behavior of the eigenvalues can best be studied in the
“worst case”, where k = π, and the tunneling-dependent strictly positive term of the
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Figure 6.2.: Real and imaginary parts of the single-particle energies of an open chain with L =
32 and U2. The PT -unbroken phase is marked by a gray-shaded area. (a) The trivial phase

(t1 = 0.1, t2 = 0.02) correctly reproduces equations (6.4) and (6.5) (γ
(U2)
c = 0.08). (b) In the

nontrivial dimerization (t1 = 0.02, t1 = 0.1) that hosts zero-energy edge modes, the bulk states act
as expected by the analytical result, while the edge states do not correspond to eigenstates of PT
and immediately break the PT symmetry of the Hamiltonian.

square root’s argument is minimal. Since En(k = π) = ±
√

(t1 − t2)2 − γ2, the critical

value γ
(U2)
c at which the eigenvalues change their property from entirely real to imaginary

is given by

γ(U2)
c = |t1 − t2|. (6.5)

Figure 6.2 shows real and imaginary parts of the single-particle energies of a chain with
open boundaries and L = 32 in both the topologically trivial and nontrivial dimeriza-
tion. In the first, the spectrum reproduces the expected behavior of equation (6.4) (see
figure 6.2b) as the missing weak bond from last to first site in the periodic system may
be neglected without significant effects. In addition to this behavior, the edge states
occurring in the open chain with nontrivial dimerization (compare zero-energy modes in
figure 6.2b) immediately break the PT symmetry of the Hamiltonian while the remain-
ing bulk states act like in the trivial phase. This is trivially obtained, using the shape
of an edge state (see figure 2.3d) and the statement on page 39 that eigenstates of an
entirely real spectrum of a non-Hermitian Hamiltonian are necessarily eigenstates of PT
as reference, because an edge state is obviously not an eigenstate of the latter. Thus,
the PT symmetry of the nontrivial phase is broken for finite values of γ.
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Figure 6.3.: Real and imaginary parts of the single-particle energies of an open chain with L = 32 and
U1 with PT -unbroken phases shaded in gray. (a) In the trivial dimerization (t1 = 0.1, t2 = 0.02)
the real part of the energies of all but four bulk states is independent from the gain/loss parameter
γ. The aforementioned states start to separate from the Bloch bands accompanied by a breaking of
PT symmetry and finally become purely imaginary after a bifurcation. (b) The imaginary part of
the bulk and edge states in the nontrivial dimerization pattern (t1 = 0.02, t2 = 0.1) is completely
unaffected by γ, while edge states again break the PT symmetry for finite γ.

Moreover, the potentials U1 and U
(c)
1 which unfortunately do not allow to be treated

analytically also lead to a stable PT -unbroken phase in the nontrivial dimerization under
small perturbations parameterized by γ (see figures 6.3 and 6.4). Instead of the whole
Bloch band bending towards the imaginary axis leading to purely imaginary energies in
the case of U2, the real part of all but a fixed number of states in the Bloch band is
not affected by the dissipation described by both potentials. Though not analytically
accessible, many aspects of the single-particle spectra can be explained by adopting the
view of the fully-dimerized limit (compare figure 2.4), which is to a certain extent fulfilled
by the choice of the tunneling amplitudes in figures 6.3, 6.4. Then, the similarity of the
spectra in the trivial dimerization, figures 6.3a, 6.4a follows directly as both systems
contain (L − 4)/2 Hermitian double-wells and two non-Hermitian double-wells, either
with gain or loss, all of which are weakly coupled. Note however that this does not mean
that the states bending towards zero real part are the same in both scenarios, as will
become clear in the next section, in which the many-particle perspective will be tackled.
In the same fashion, the critical value γU1

c for the trivially dimerized configuration with

U
(c)
1 can be derived when gain and loss are located on a strongly coupled dimer which
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Figure 6.4.: Single-particle energies of an open chain with L = 32 and U
(c)
1 with the PT -unbroken

phase highlighted in gray. (a) The trivial dimerization (t1 = 0.1, t2 = 0.02) exhibits the same
behavior as in the case of U1, compare with figure 6.3b. The reason for this will become clearer in
the many-particle picture, see section 6.2. (b) In the nontrivial dimerization (t1 = 0.02, t2 = 0.1)
two bulk states bend to zero real part, which is accompanied by breaking of the PT symmetry
after their arrival and can be understood by a simple dissipative double-well model. Interestingly,
the edge states from the Hermitian case still have real eigenvalues as they are only supported at
the boundaries and do not reach into the bulk, where the dissipative impurity is located.

can be treated separately besides its Hermitian equivalents, as is the case for the system
in figure 6.4b. To do so, one may again employ the familiar double-well matrix model
introduced in equation (3.18), but now with a real tunneling amplitude t1 and single-
particle loss (gain) at the left (right) well. The Hamiltonian of such a dissipative dimer
is given by

H = −
(

iγ t2
t2 −iγ

)
(6.6)

with eigenvalues E± = ±
√
t22 − γ2 that are real as long as |t2| < |γ|. Consequently,

when all dimers of the chain can approximately be regarded as decoupled the critical
value is |γ(U1)

c | ≈ |t2|, which is in perfect agreement with the illustration 6.4b.

In addition, a unique feature in the nontrivial dimerization pattern appears for U
(c)
1 as

particle gain and loss are located in the interior of the system. Hence, the Hermitian
zero-energy edge modes which are located only at the boundaries of the system are
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Figure 6.5.: Real and imaginary parts of the single-particle spectra of a system with L = 32 and U3.
(a) In the trivial dimerization (t1 = 0.1, t2 = 0.02) all real parts of the bulk states are resistant
to γ but the PT symmetry breaks immediately. (b) Two bulk states bend towards the imaginary
axis in the nontrivial dimerization (t1 = 0.02, t1 = 0.1) leading to additional “zero-energy” modes.

effectively uninfluenced by the dissipative impurity in the center, and therefore do not
correspond to imaginary energies, contrary to the scenarios of the other potentials in
which gain and loss are always present at the system boundaries.

The only potential immediately breaking the Hamiltonian’s PT symmetry in both dimer-
izations is given by U3, see figure 6.5. While the real parts of almost all the Bloch band
energies are unaffected by γ, two states bend towards real part zero in the nontrivial
dimerization (figure 6.5b), which can be identified with the analogous process for U

(c)
1

(figure 6.4b) caused by the centering double-well with adjacent gain and loss.

If one temporarily ignores the imaginary parts of the energies, three different scenarios
can be identified in the spectra of the potentials U1, U

(c)
1 and U3, compare figures 6.3a,

6.4a, 6.4b and 6.5b: (i) for small values of the gain/loss parameter γ all bulk states
are stable, (ii) intermediate values of γ lead to several bulk states bending towards
zero energy and (iii) increasing γ to a critical value those bulk states arrive at zero
energy where they remain for larger values of the gain/loss strength. In other words,
the influence of gain and loss can lead to additional zero-energy modes triggering the
speculation that the topology of the system’s many-body“ground state”(whose definition
in the non-equilibrium case is not obvious) might be affected as well.
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6. The PT -symmetric SL-BHM

Thus, if a way to interpret the imaginary parts of the spectrum is found, which in the
case of hard-core bosons (or fermions) can be accomplished by interpreting Im(En) as a
decay rate, one may speak of “dissipatively driven zero-energy modes” in the system.

6.2. Low-energy spectra for different potentials

As outlined in the previous section the different complex on-site potentials considered in
the single-particle picture show varying effects depending on both the dimerization of the
chain and the strength of particle gain/loss. Now, the many-particle view will be assumed
in order to relate both investigations. To do so, some comments about the physical
constraints underlying the interpretation of results in this section are inevitable.

Since bosons are not restricted by Pauli’s exclusion principle, adding particle gain on a
single lattice site can in principle lead to the system infinitely filling up with particles.
Besides the fact that such an amplification spoils any trace of the system properties (for
instance edge states or other topological effects), it contradicts to the approximation of
a weak coupling between the system and reservoir, which builds the foundation for the
master equations in Lindblad form and is therefore also deeply rooted in the motiva-
tion of using complex on-site potentials away from the mean-field limit. The following
investigations will thus be restricted to the low-energy regime (no amplification) of the
non-Hermitian SL-BHM in the strongly-interacting regime. Although those assumptions
seem to be very restrictive, they lead to an impressive agreement with results obtained
in the treatment of hard-core bosons in the framework of master equations in Lindblad
form (see chapter chapter 8). The amplification problem will be targeted in sections 8.3,
8.4 and can basically be reduced to the problem of finding a proper setup of Lindblad
operators guaranteeing for a compensation between gain and loss effects.

Throughout this section, the non-Hermitian DMRG code presented in section 5.3 is
employed using the local site cutoff D = 5 and a dynamical adaption of the number of
states kept in the truncation to keep the truncation errors ε < 10−9 during the build-
up procedure and improving the accuracy by decreasing the latter to ε < 10−10 in the
sweeping process, which should yield accurate results (an online article dealing with the
proper choice of DMRG hyper-parameters such as the truncation error or the number
of sweeps can be found on the homepage of the Itensor C++ library1). As an incidental
remark, note that for smaller systems the accordance of the non-Hermitian DMRG code
with results from exact diagonalization has been verified.

The interest is on the effects on the topologically interesting ρ = 1/2 MI phase of the
SL-BHM. Instead of studying consequences of varying chain dimerization (see chapter
2), the tunneling amplitude ratio is kept fixed, sweeping the gain/loss parameter γ.

1http://itensor.org/index.html
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Figure 6.6.: Low-energy spectrum and states of the SL-BHM (open chain with L = 16) around
µ/U = 0 for (a) the trivial (t1/U = 0.1, t2/U = 0.02) and (b) the nontrivial dimerization pattern
(t1/U = 0.01, t2/U = 0.1). Top panel: Sketch of both systems for L = 8 and energy gap ∆E/L per
lattice site between the ground (red circles) and the first few excited states. The gapped ρ = 1/2
MI phase is highlighted in gray. Bottom panels: Particle number expectation values of the first
excited states at µ/U = 0.02. Colors and markers correspond to those of the energies in the top
panels.

In particular, the two dimerizations are chosen to be t1/U = 0.1, t2/U = 0.02 (trivial
pattern) and t1/U = 0.02, t2/U = 0.1 (nontrivial scheme). Figure 6.6 contains sketches
of both system setups in the Hermitian case where thick lines that join two sites are
associated with the larger tunneling amplitude.

The low-energy spectrum, or more precisely the energy gap (per lattice site) between
the many-particle ground state and the first few excited states obtained by DMRG is
shown for the trivial (figure 6.6a) and nontrivial dimerization (figure 6.6b) of a chain
with L = 16. The closing and reopening of the energy gap associated with the phase
transition of the model from ρ = 0 MI to superfluid to ρ = 1/2 MI to superfluid to
ρ = 1 MI is clearly visible (see also figure 3.2a for the phase diagram). In the chemical
potential regime of the ρ = 1/2 MI phase highlighted in gray the gap closes once more
at µ/U ≈ 0 in the nontrivial dimerization, in which the topological edge states in the
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6. The PT -symmetric SL-BHM

ground state change from hole to particle type. Choosing a fixed chemical potential value
of µ/U = 0.02 results in the ground state represented by a flat ρ = 1/2 MI state in the
trivial and an edge state with both occupied boundaries for the nontrivial dimerization
as can be seen in the lower panels of figure 6.6, which show the lattice occupation of
the ground and the first excited states. The excited states of the trivial phase are given
by adding another particle to the bulk that delocalizes over the entire lattice in form of
Bloch waves. The same applies to the nontrivial dimerization where interestingly the
edge feature is still present in the first excited state and higher states are also obtained
by removing a particle from the edge such that the system is half-filled.

The interpretation of the following spectra is somewhat difficult as complex energies,
especially in the bosonic case, would lead to an amplification of the system for states
corresponding to energies with positive imaginary part and a decay for the negative
equivalent. With the restrictions on the spectrum explained above, the investigated
regime should therefore properly reproduce the behavior of the system for time scales
during which the reservoir does not heat up the system too much (small real part of the
energy) such that occupations with multiple bosons are avoided. Chapter 8 will illustrate
that this interpretation in most cases leads to the same effects that are observed in the
steady state of an equivalent master equation in Lindblad form.

One subtle aspect has to be addressed before moving on: the aforementioned approach
towards the interpretation of complex spectra induces that the states contributing most
to the dissipative low-energy behavior are constraint to (i) small real parts and (ii) large
imaginary parts of the respective energies. Using DMRG only one constraint, namely the
first is realized by targeting a number of ∼ 10 states associated with the lowest lying real
parts in the spectrum. Such a small number of states may not be sufficient to obtain the
state satisfying the second condition as well. Therefore the investigation of the different
gain/loss patterns shall rather serve as an indicator of generic features appearing in the
system. In fact, combining additional information about the properties of the steady
state, exact diagonalization studies realizing both constraints can be performed and
one finds the desired states from the description with complex on-site potentials to
correctly reproduce the steady state of the equivalent master equation, which represents
a remarkable result that is left for the end of this chapter.

To start off with the many-particle description of the SL-BHM with complex on-site
potential U1, figure 6.7 shows the real and imaginary parts of the energies in the low-
energy regime for varying strengths of gain and loss. As in the single-particle case of
nontrivial dimerization (compare figure 6.3b), in which the real parts of the energies are
completely unaffected by the dissipation introduced within U1 and only the zero-energy
edge modes break the PT symmetry, the real part of the spectrum in the interacting
many-particle case neither shows a strong dependence on γ nor a crossing of states (top
panels of figure 6.7b). A PT -symmetric many-body state with two occupied edges rep-
resents the “ground state” of the system whose stability however is questionable as the
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Figure 6.7.: Low-energy spectrum for different values of γ and exemplary lattice occupations of the
first excited states of an SL-BHM chain with length L = 16 and µ/U = 0.02 superposed with
U1. (a) In the trivial dimerization (t1/U = 0.1, t2/U = 0.02) the PT symmetry of the shown
fraction of states is unbroken up to γ/U ≈ 0.02. The PT -broken states are given by edge states in
the Hermitian nontrivially dimerized subsystem (white sites only), while the sites subject to gain
and loss effectively decouple from the rest of the system. The plots are sorted for ascending real
part leading to sudden color changes in the imaginary part. (b) The nontrivially dimerized phase
(t1/U = 0.02, t2/U = 0.1) immediately breaks the PT symmetry with gain and loss favoring the
occupation of an edge indicated by a positive imaginary part of the energy (green triangles).

spectrum is complex for finite γ. The two PT -broken states (green triangles and purple
diamonds) result from an occupied and an unoccupied edge. As one would expect, the
favored state associated with a positive imaginary part of the energy belongs to a config-
uration with occupied right edge and empty left boundary. In the trivial dimerization,
the PT symmetry of the system is unbroken for small values of γ in the part of the
spectrum shown in figure 6.7a (top panel), which is consistent with the observation in
the single-particle spectrum (figure 6.3a). The transition to the PT -broken phase is
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6. The PT -symmetric SL-BHM

accompanied by the occurrence of states that are characterized by a fixed occupation of
the sites subject to gain and loss combined with an edge state in the interior system.
This effect can be interpreted as an effective decoupling of the dissipative sites from the
rest of the Hermitian system, which is then a nontrivial chain with edge states whose
occupations are influenced by the dissipative sites. Thus, the states bending towards
zero real part in the single-particle energy spectrum are given by the edge modes of the
Hermitian subsystem of sites 2 to L− 2.

This leads to the following reinterpretation of the three stages mentioned in the last
section (page 71): (i) for small coupling strengths γ gain and loss processes induce
currents, which however can be compensated by the system that is therefore still PT -
unbroken, (ii) at a certain point the currents cannot be balanced by the system anymore
and the dissipative sites start to fill or empty. Simultaneously, the sites more and more
decouple from the system and are solely influenced by the dissipative effects located on
them. If the remaining subsystem is given by a nontrivially dimerized chain this triggers
some of the original bulk states to deform into edge states of the latter and (iii) when
the decoupling of the dissipative sites is completed, the remaining system possesses zero
(real part) energy modes given by the empty or filled isolated dissipative sites plus edge
modes of the Hermitian subsystem which also have an energy real part of zero. The
imaginary parts give some indication about whether the dissipative setup leads to an
occupation of the state or not.

Carrying over this notion to the case of U
(c)
1 , one expects new edge states to emerge in the

spectrum whenever the Hermitian subsystem obtained by neglecting the dissipative sites
of the chain possesses a nontrivial boundary, which is the case for a total chain of trivial
dimerization shown in figure 6.8a. Indeed after the PT phase transition at γ/U ≈ 0.02
PT -broken states with edge features at the neighboring sites of the dissipative impurity
appear (blue squares and green triangles). While the occupation of the edge state located
on the subsystem adjacent to the gain site is favored (positive imaginary part), the
equivalent next to the loss site will decay leaving an empty edge (negative imaginary
part). In the single-particle picture of figure 6.4a the four bending states are given by
particles directly localized on the two dissipative sites and two edge states located at
the arising nontrivial boundaries in the Hermitian remainders of the chain. Contrary
to this, the decomposition of the nontrivially dimerized chain subject to U

(c)
1 does not

lead to further nontrivial boundaries hosting edge states. The PT -broken states only
show features directly on the dissipative sites (compare figure 6.8b). In consistence to
that, only two instead of four states represented by the two degrees of freedom on the
dissipative impurity bend towards the imaginary axis in the single-particle picture, see
figure 6.4b. Note that the spectrum of figure 6.8b illustrates that the many-particle
DMRG simulation is not capable of resolving the entire spectrum which is expressed in
the artifacts around γ/U ≈ 0.01 to 0.09 that indicate the PT phase transition although
a subset of entirely real eigenvalues is obtained from γ/U ≈ 0.09 to 0.15.
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Figure 6.8.: Low-energy spectrum for different strengths of gain and loss and lattice occupations of
the excited states of an SL-BHM chain with length L = 16 and chemical potential µ/U = 0.02,

superposed with U
(c)
1 . (a) The trivial chain with a dissipative impurity is PT -unbroken up to

γ/U ≈ 0.02. After the PT transition edge features appear at the Hermitian subsystem and are
clearly visible in the low-energy states. The imaginary part of the spectrum leads to the conclusion
that the occupation of the edge state on the left half will be avoided while the filling of the equivalent
on the right subsystem is preferred. (b) In the nontrivial chain the Hermitian remainder does not
possess an additional nontrivial boundary. Hence no additional edge features emerge, except for
the occupation of the dissipative sites.

This problem becomes even more intriguing for the case of the complex on-site poten-
tial U2. Although such a system may possess a large PT -unbroken regime, the phase
transition in the single-particle picture is accompanied by a change of the eigenvalues
from entirely real to purely imaginary, compare figure 6.2. Such a behavior fits into
the list of effects observed so far for the other potentials as now all sites are subject to
dissipation, thus all bulk states will deform to result in localized particle states at one
site each for large values of γ. Hence a band structure with almost degenerate real parts

77



6. The PT -symmetric SL-BHM

(a)

+ − + − + − + −
(b)

+ − + − + − + −

−6

−5

−4

R
e(
E
)
/L

·1
02

0 0.05 0.1 0.15 0.2

−1

0

1

Im
(E

)
/L

·1
02

γ/U

0

0.5

1

0 5 10 15

0

0.5

1

0 5 10 15

j

〈n
j
〉

γ/U = 0.2

−5

−4

R
e(
E
)
/L

·1
02

0 0.05 0.1 0.15 0.2

−1

0

1

Im
(E

)
/L

·1
02

γ/U

0

0.5

1

0 5 10 15

0

0.5

1

0 5 10 15

j

〈n
j
〉

γ/U = 0.15

Figure 6.9.: Low-energy spectrum for varying γ and lattice occupation of the excited states of an
SL-BHM chain with length L = 16, µ/U = 0.02 and alternating gain and loss described by U2. (a)
The trivial chain is PT -unbroken until γ/U ≈ 0.1 and after the PT transition the states start to
fill up with particles, which is a consequence of the inadequate target sector of DMRG and does
not lead to the expected behavior. Note however that the bulk staggering in the excited states is
a very well expected feature. (b) In the nontrivial chain the filling of the bulk is also an incorrect
feature produced by the limitations of DMRG. At least the edge features in the excited states give
rise to a different behavior in comparison to the trivial chain.

is expected in the interacting many-body PT -broken regime of a chain with alternating
gain and loss, which lets the DMRG algorithm struggle when targeting for the lowest
real parts. Indicators of this behavior are given by the noisy imaginary parts of the
spectra in figure 6.9, which nevertheless have been included at this point for complete-
ness. The large PT -unbroken parameter regime of the trivial chain (figure 6.9a) up to
γ/U ≈ 0.1 is still correctly produced by DMRG, and encourages the statement that the
effects observed in the lattice occupation of the excited states in the PT -broken phase
are not in accordance with the Lindblad scenario. This can be traced back to the lim-
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6.2. Low-energy spectra for different potentials

itations of realizing the second constraint mentioned above within DMRG. While one
expects the chain to fill up with particles on the gain sites with loss sites simultaneously
emptying in the PT -broken phase leading to a staggered occupation of the chain, the
states shown in the lower panel of figure 6.9a do not exhibit this behavior. At least a
sign of staggered occupation is visible in the excited states (blue squares, green trian-
gles, purple diamonds). Consequently, the states shown in figure 6.9 are not the most
important configurations in the dissipative behavior of the system. The results obtained
for the nontrivially dimerized chain shown in figure 6.9b lead so a similar conclusion:
the excited states in the PT -broken regime simply do not represent the most important
states as DMRG is not capable of simultaneously targeting smallest real and largest
imaginary parts.

It is a general observation that the explained problem occurs whenever a large number
of single-particle states breaks the PT symmetry, as is the case for U2 and U3, see figures
6.2, 6.5. In the single-particle picture many complex eigenvalues lead to many degrees
of freedom to get a complex energy in the many-body view. In such cases the states
with largest imaginary part are not accessible to the DMRG setup chosen in this section,
which may then only be employed to investigate a fraction of the spectrum in order to
obtain hints whether the system is in the PT -unbroken phase or not.

With that said, it is not surprising that the states representing the first excited states
in the dissipative system subject to U3 (lower panels of figure 6.10) do not possess the
expected filling of the right half of the system while emptying the left half completely.
In accordance with the single-particle picture, the PT symmetry of both configurations
is immediately broken. Nevertheless, the notion of a bipartitioning of the system for
increasing gain/loss strength is still present in the lattice occupations (see for instance

the lower panel of figure 6.10a). Similar to the effects shown for U
(c)
1 , there may be

additional edge modes when the boundary between gain and loss is located on a strong
bond (compare figure 6.10b), which is also illustrated by the two bulk states bending
towards zero real part in the single-particle representation, figure 6.5a.

Unfortunately, the huge number of many-body states in the low real part regime of the
spectrum does not allow for DMRG to access all states because it is restricted to a number
of ∼ 10 target states. Now, the dimensionality of the system will effectively be broken
down until it is manageable by exact diagonalization since the large sparse eigensolver
employed in the latter is capable of computing ∼ 50 eigenstates for a sufficiently small
dimension of the problem and one might then choose the state with largest imaginary
part from this subset to yield the most dominating state of the system.

To do so, the site dimension of the system is cut to D = 2 as low real parts in the energy
spectrum in the strongly-interacting limit can only be realized by avoiding multiple
occupations of a single site. Moreover, for the steady state of a system with at most
one particle per site one can derive the condition that the number of particles located
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Figure 6.10.: Low-energy spectrum and lattice occupations of the excited states of an SL-BHM chain
with length L = 16 and µ/U = 0.02 subject to U3. Both configurations break the PT symmetry
for finite γ. (a) The states shown for the trivial chain are not the most important configurations in
the dissipative behavior but still contain the idea of a bipartitioning of the system at the boundary
between gain and loss. (b) In consistence with the single-particle picture where bulk states bend
towards the imaginary axis, edge effects appear in the states when the boundary of gain and loss
is located on a strong bond.

on the loss sites is equal to the number of holes on the gain sites for identical gain and
loss parameters (see equation (8.15) in chapter 8), that is

∑

jgain

(
1−

〈
njgain

〉)
=
∑

jloss

〈njloss
〉 , (6.7)

where jgain, jloss denote the indices of the sites subject to gain and loss respectively.
For U2 and U3 where all sites are exposed to gain and loss this directly leads to the
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Figure 6.11.: Lattice occu-
pation of the low-energy
states with largest imag-
inary part at half fill-
ing obtained by exact di-
agonalization (by picking
the desired state from the
lowest 70) for the triv-
ial (top rows) and non-
trivial dimerization (bot-
tom rows) where the sys-
tem parameters are chosen
equal to the previous spec-
tra. The potentials are
U1 (left column), U2 (cen-
ter column) and U3 (right
column) with γ/U = 0.1.
Additional parameters are
(a) L = 8, D = 4 and (b)
L = 16, D = 2.

condition

L

2
=
∑

jloss

〈njloss
〉+

∑

jgain

〈
njgain

〉
=
∑

j

〈nj〉 = 〈N〉 , (6.8)

which means that the steady state is at half filling of the lattice and the diagonalization
procedure can thus be restricted to only this invariant particle number subspace.

Under those assumptions figure 6.11 contains the lattice occupations of the state with the
largest imaginary part obtained from the computation of the 70 lowest lying states (real
part) within exact diagonalization for an intermediate dissipative strength of γ/U = 0.1
of the complex potentials U1, U2 and U3 in the two distinct dimerization patterns. Two
different system lengths and site dimensions are chosen such that both figure 6.11a
and 6.11b illustrate all effects that are also observed in the steady state computation
performed in chapter 8. The system properties of the different dissipative patterns can
be summed up as follows:

â The lattice occupation profile of the Hermitian subsystem in a total system subject
to U1 (red circles) is still flat with ρ = 1/2 and the occupations of the gain (loss)
sites at the open boundaries are fixed to 1 (0). In the trivial dimerization (top row
of each subfigure) where the subsystem is nontrivially dimerized, additional edge
modes whose occupation is fixed by the outer dissipative sites appear in the state.

â In case of the potential U2 (blue squares) the bulk occupation becomes staggered
and the staggering increases for larger values of γ. The trace of the edge modes in
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6. The PT -symmetric SL-BHM

the nontrivial chain, whose occupation is determined by the type of dissipation on
the most outer sites is still present.

â U3 (green triangles) leads to different shapes of the most important state depending
on the gain/loss strength and system size. While there are wave-like excitations
in the left and right half of the system where the features of edge modes are still
clearly visible (figure 6.11b), there exists also a phase in which all dissipative sites
are completely filled or empty and only the occupation of the centered double-well
in the transition from gain to loss can still be balanced (compare figure 6.11b).

Chapter review

â Different complex on-site potentials are employed to study dissipative effects on the
ρ = 1/2 MI phase of the SL-BHM. While the interpretation of the PT -unbroken
phase is straightforward, the PT -broken phase requires additional treatment.

â Since a bosonic system may in principle suffer from an infinite amplification by
gain processes, the investigation of the dissipative behavior is restricted to weak
couplings (low real parts in the energies, i.e. no double occupancies) of the reservoir.

â In the single-particle picture, it is observed that for the potentials U1, U
(c)
1 and

U3 a limited number of bulk states is deformed towards energy real part zero for
increasing strengths of the gain/loss parameter γ. Working in the many-particle
picture, those states are identified as (i) localized particles at dissipative sites and
(ii) zero-energy edge modes of the remaining Hermitian subsystem(s). This process
is interpreted in terms of the dissipative sites effectively decoupling from the rest
of the system, which shall be investigated in more detail in the next chapter. If the
imaginary part of the energy of such a state is positive, its occupation is favored
by dissipation, while a negative imaginary part leads to an unoccupied state.

â For potentials with only a few dissipative sites, non-Hermitian DMRG can be
employed successfully to study the important states of the system, that is the low-
energy states with largest imaginary part. For the potentials U2, U3 with a large
number of dissipative sites only one constraint (small real part) can be ensured and
DMRG is limited to only a small number of states such that the important ones
may not be contained in the targeted subset. After additional assumptions about
the properties of the steady state in the Lindblad master equation framework, the
same states can also be obtained by exact diagonalization, see chapter 8.
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7. Topological invariant for the
PT -symmetric SL-BHM

In this chapter the topological invariant ν for the SL-BHM introduced in chapter 3
is generalized to the non-Hermitian case. This is done by carrying over the arguments
employed in sections 2.3 and 3.3 leading to a quantized complex Berry phase whose quan-
tization is protected by PT symmetry giving rise to topologically protected edge states
in the PT -unbroken phase. Such states have already been found in optical structures
that obey equations analogous to those of PT -symmetric quantum systems [4]. Their
construction, together with the generalization of ν are the subject of section 7.1.

Practically, the construction of ν relies on Hatsugai’s proposal [46] to use Berry phases
as local order parameters. Even in the non-quantized scenario those quantities can be
employed to describe the correlation between adjacent sites, which is used in section 7.2
to follow the decoupling process of the dissipative lattice sites for increasing strengths
of gain and loss observed in the previous chapter.

7.1. Complex Berry phase for interacting systems

In order to extend the concept of Berry’s phase to non-Hermitian Hamiltonians one can
adopt the view taken in section 2.3 where the Hamiltonian H0(R) = H†0(R) parameter-
ized by a set of parameters R ∈ P is transported along a closed loop C in parameter
space P [85]. Since the Berry phase describes a geometric phase that is picked up by the
ground state of the Hamiltonian during the transport along C one is left with finding an
expression for the relative phase between the ground states at two infinitesimally distant
points in parameter space in a version of C discretized into M points R1, R2, . . . , RM

with RM+1 ≡ R1 and M →∞.

For a Hermitian Hamiltonian, this phase between say R1 and R2 (see equation (2.14a))
required only knowledge of the right ground states |ψ1,2〉, from which the dual repre-
sentations 〈ψ1,2| are trivially obtained and the normalization conditions 〈ψ1,2 |ψ1,2〉 = 1
ensure that a gauge-transformation (equation (2.15)) does not affect the phase picked
up on a closed loop. Those properties of the Hermitian phase between nonorthogonal
states on a closed loop is nicely illustrated by figure 2.6b.
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7. Topological invariant for the PT -symmetric SL-BHM

〈χ1|

|φ1〉
〈χ2|

|φ2〉

〈χ3|

|φ3〉

ϕ12

ϕ23

ϕ31

Figure 7.1.: Relative non-Hermitian phase ϕC = ϕ12 +
ϕ23 + ϕ31 between a discrete set of three states
arranged on a loop C . Phases between neighbor-
ing points are evaluated by contraction between the
states that are joined by arrows. By construction ϕC

is a gauge-invariant quantity. Note the unmistakable
resemblance to figure 2.6b.

In case of a non-Hermitian Hamiltonian H(R) 6= H†(R), the dual representation of a
(right) ground state |φ〉 is given by the left ground state 〈χ| (see equation (4.19)) with
the normalization condition

〈χ |φ〉 = 1. (7.1)

This motivates the following relation for the phase ϕ12 between two ground states
(|φ1〉 , 〈χ1|) and (|φ2〉 , 〈χ2|) represented by the left and right eigenvectors |φi〉 , 〈χi| at
the points R1, R2 in parameter space, respectively,

ϕ12 = − arg(〈χ1 |φ2〉) =⇒ e−iϕ12 =
〈χ1 |φ2〉
| 〈χ1 |φ2〉 |

, (7.2a)

or, in the same manner as equation (2.14a),

ϕ12 = −Im(ln(〈χ1 |φ2〉)) . (7.2b)

Again, ϕ12 is not gauge-invariant, but when the non-Hermitian phase ϕC of the states
(|φ1〉 , 〈χ1|), . . . , (|φM〉 , 〈χM |) arranged on the loop C = (R1, . . . , RM , RM+1 = R1) is
computed by (compare equation (2.16))

ϕC = ϕ12 + ϕ23 + . . .+ ϕM1

= − arg (〈χ1 |φ2〉 〈χ2 |φ3〉 · · · 〈χM |φ1〉)

= −Im

(
ln

(
M∏

j=1

〈χj |φj+1〉
))

,

(7.3)

a gauge-invariant quantity is obtained since the normalization convention (7.1) acts
similarly to the Hermitian case and compensates a gauge transformation |φj〉 → eiαj |φj〉
in the dual state 〈χj| → e−iαj 〈χj|. An example for a loop of three points is shown
in figure 7.1 and the reader is invited to identify the analogy to figure 2.6b. Roughly
speaking, the extension of the Hermitian to the non-Hermitian Berry phase is performed
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7.1. Complex Berry phase for interacting systems

by the assignments

|ψ(R)〉 → |φ(R)〉 ,
〈ψ(R)| → 〈χ(R)| ,

〈ψ(R) |ψ(R)〉 = 1 → 〈χ(R) |φ(R)〉 = 1,

(7.4a)

where the states fulfill the following eigenvalue equations,

H0(R) |ψ(R)〉 = E0(R) |ψ(R)〉 → H(R) |φ(R)〉 = E(R) |φ(R)〉 ,
〈ψ(R)|H0(R) = E0(R) 〈ψ(R)| → 〈χ(R)|H(R) = E∗(R) 〈χ(R)| . (7.4b)

Hence, the definition of the non-Hermitian Berry connection A(R) reads

A(R) ≡
〈
χ(R)

∣∣ i∇Rφ(R))
〉
. (7.5)

Working through the steps of equations (2.23) and (2.24) in exactly the same manner
but using the non-Hermitian substitution rules (7.4) it is straighforward to show that on
a loop discretized into equidistant intervals R1, R2, . . . , RM , the following limit holds,

lim
M→∞

M∏

j=1

〈
χ(Rj)

∣∣φ(Rj+1)
〉

= lim
M→∞

exp

(
−i

M∑

j=1

∆R · A(R)

)

= exp

(
−i

∮

C

A(R) · dR
)
,

(7.6)

such that equation (7.3) allows for the computation of the non-Hermitian Berry phase

ϕC =

∮

C

〈
χ(R)

∣∣ i∇Rφ(R)
〉
· dR. (7.7)

While the Hermitian Berry phase ϕ̃C is real,

ϕ̃C =

∮

C

〈
ψ(R)

∣∣ i∇Rψ(R)
〉
· dR

=

∮

C

i
(
∇R 〈ψ(R) |ψ(R)〉 −

〈
∇Rψ(R)

∣∣ψ(R)
〉)
· dR

=

∮

C

i
(
0−

〈
ψ(R)

∣∣∇Rψ(R)
〉∗) · dR

= ϕ̃∗C ,

(7.8)

the non-Hermitian equivalent is not necessarily real, which can be understood from the
interpretation of the Berry phase as geometric phase picked up in the adiabatic transport
of an eigenstate of the Hamiltonian along a closed loop while the system stays in this
state such that the norm is conserved. In the Hermitian case this leads to |ψ〉 → eiϕ̃C |ψ〉
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7. Topological invariant for the PT -symmetric SL-BHM

(neglecting the kinetic phase) and the conserved norm 〈ψ|ψ〉 = 1 automatically fixes
ϕ̃∗C = ϕ̃C . However, in the case of a non-Hermitian PT -symmetric Hamiltonian in the
PT -unbroken phase with entirely real eigenvalues and eigenstates that can physically be
regarded as stationary modes of the system, the conserved norm is given by 〈χ|φ〉 = 1.
Thus, if |φ〉 picks up the complex phase γC it can only be stated that 〈χ| picks up the
phase −γC in an adiabatic evolution.

In the case of resonances in the spectrum indicated by complex eigenvalues, the adiabatic
evolution cannot be regarded as solely governed by acquiring of a phase. In fact, a non-
Hermitian version of the adiabatic theorem has to be employed [86] leading to higher
order corrections [87] with equation (7.7) representing only the lowest order.

In the same fashion the quantization of the Hermitian Berry phase follows from an
antiunitary symmetry Θ = T UΘ consisting of a complex conjugation T and a unitary
operation Θ (see section 3.3), it can be shown that the real part of the complex Berry
phase of a PT -symmetric Hamiltonian is quantized in integer multiples of π mod 2π,
that is

Re(ϕC ) = 0, π mod 2π, (7.9)

if the unique transported state is also an eigenstate of Θ = PT . The sketch for the proof
of this statement runs as follows [33]: Expressing the transported right eigenstate |φ(R)〉
and its dual partner |χ(R)〉 in a stationary orthonormal basis {|j〉} with 〈j|k〉 = δjk,

|φ(R)〉 =
∑

j

cj(R) |j〉 , |χ(R)〉 =
∑

j

dj(R) |j〉 , (7.10)

the norm 〈χ(R)|φ(R)〉 = 1 constrains the coefficients to
∑

j d
∗
j(R)cj(R) = 1. A gauge

transformation with α(R) ∈ R leads to |φ(R)〉 → eiα(R) |φ(R)〉, and thus |χ(R)〉 →
eiα(R) |χ(R)〉, causing the transformation of the complex Berry connection (7.5) according
to A(R)→ A(R)−∇Rα(R) and thus the condition

ϕC =

∮

C

A(R) · dR → ϕ′C =

∮

C

A(R) · dR−
∮

C

(
∇Rα(R)

)
· dR (7.11a)

follows. The latter relates two complex Berry phases in different gauges,

ϕC = ϕ′C + 2πm, or Re(ϕC ) = Re(ϕ′C ) mod 2π (7.11b)

with m ∈ Z (compare equation (3.10)). Regarding the antiunitary symmetry PT of the
system, another property of the complex Berry connection can be derived. To do so, the
action of the symmetry operator PT is defined by

PT |φ(R)〉 ≡ |φPT (R)〉 =
∑

j

c∗j(R) |j〉 ,

PT |χ(R)〉 ≡ |χPT (R)〉 =
∑

j

d∗j(R) |j〉 ,
(7.12)
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7.1. Complex Berry phase for interacting systems

compare equation (3.11). By using equations (7.10) and (7.12) it follows that the complex
Berry connection (7.5) satisfies the relation

APT (R) =
〈
χPT (R)

∣∣ i∇Rφ
PT (R)

〉

= i
∑

j

dj(R)∇Rc
∗
j(R) = i

∑

j

(
d∗j(R)∇Rcj(R)

)∗

= −
〈
χ(R)

∣∣ i∇Rφ(R)
〉∗

= −A∗(R),

(7.13)

compare equation (3.12) for the equivalent version in an orthogonal basis. Integrating
equation (7.13) over a loop C , the Berry phase ϕPTC obtained from the transport of
|φPT (R)〉 and the equivalent quantity ϕC for the transport of |φ(R)〉 are connected by

ϕC = −ϕPT ∗C (7.14)

Both relations (7.11b) and (7.14) can only be combined when the application of PT on
the state |φ(R)〉 → |φPT (R)〉 corresponds to a gauge-transformation. This is the case if
the transported state |φ(R)〉 is unique and an eigenstate of PT whose eigenvalues are
known to be located on the complex unit circle (see page 38). Incorporating the known
properties of PT -symmetric Hamiltonians (see page 39) the conclusion to be drawn
reads as follows: If the state |φ(R)〉 does not break the Hamiltonian’s PT symmetry,

H(R) |φ(R)〉 = E(R) |φ(R)〉 , E(R) ∈ R,
=⇒

∣∣φPT (R)
〉

= eiα(R) |φ(R)〉 ,
(7.15)

both conditions on the complex Berry phase picked up by the state apply and

ϕC = ϕPTC + 2πm = −ϕ∗C + 2πm =⇒ 2Re(ϕC ) = 2πm (7.16)

with m ∈ Z. Finally, using equation (7.11b) once more this yields the desired result
Re(ϕC ) = 0, π mod 2π (equation (7.9)), constituting the biorthogonal version of equa-
tion (3.14). This result is not surprising as the conserved biorthogonal norm 〈χ(R)|φ(R)〉
allows for both states to pick up an arbitrary imaginary phase with opposite sign for the
dual partner such that the norm is conserved and the quantization rule applies only to
the real part of the phase, which can be considered a consequence of the biorthogonal
basis.

With that said, one can directly introduce the generalized winding number ν for the
dissipative SL-BHM by substituting the non-Hermitian equivalents (equation (7.4)) in
equation (3.17) resulting in

ν =

∫ 2π

0

〈
χ(ϑ)

∣∣∣∣ i
∂

∂ϑ
φ(ϑ)

〉
dϑ, (7.17)

where 〈χ(ϑ)| , |φ(ϑ)〉 are the left and right ground states of the SL-BHM Hamiltonian
H(θ) = H0(ϑ) + U extended by one of the complex potentials U introduced in chapter
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7. Topological invariant for the PT -symmetric SL-BHM

6 with twisted boundary conditions (see page 28). The U(1)-variation imposed by the
twisted tunneling term −t2eiϑa†La1+h.c. respects the PT symmetry of the non-Hermitian
Hamiltonian (see also equation (3.16)), and therefore the necessary conditions for the
real part of the complex Berry phase to be quantized may in principle be fulfilled.

In particular, equation (7.17) provides the non-Hermitian generalization of the topo-
logical invariant for the Hermitian SL-BHM when the Hamiltonian’s PT symmetry is
unbroken. Its computation is straightforward:

1. Impose a U(1) twist on an arbitrary tunneling element t→ teiϑ, ϑ ∈ [0, 2π) on the
non-Hermitian Hamiltonian of a periodic or open chain. Divide the loop C given
by the interval of ϑ into M equidistant steps, C = (ϑ1 = 0, ϑ2, . . . , ϑM , ϑM+1 =
2π = ϑ1).

2. For each ϑj, j = 1, . . . ,M compute the left and right ground states |φ(ϑj)〉 ≡
|φj〉 , |χ(ϑj)〉 ≡ |χj〉 associated with the smallest eigenvalue of the Hamiltonian
H(ϑj) with twisted tunneling amplitude teiϑj .

3. Use equation (7.3) to obtain ν by

ν = lim
M→∞

−Im

(
ln

(
M∏

j=1

〈χj |φj+1〉
))

. (7.18)

Note that the outlined procedure may in principle be applied to any tunneling amplitude
in the system, but only when the discussed assumptions are met ν will be rigorously
quantized and can serve as a topological invariant. Even in the non-quantized scenario,
ν can be used as a local order parameter to follow the decoupling process of the dissipative
sites discussed in chapter 6. This aspect is left for the next section.

Recap from the last chapter that the complex potentials U1, U
(c)
1 and U2 do not imme-

diately break the PT symmetry of the extended SL-BHM in the single-particle picture
where the entire spectrum can be scanned. Therefore the computation of ν shall first
be restricted to periodic chains subject to those dissipative patterns, in which U1 and
U

(c)
1 do not have to be distinguished in a periodic system. For the interpretation of ν

as a topological invariant to hold, the computed values always have to be considered in
relation to the energy spectrum, which must not contain complex eigenvalues.

Figure 7.2a shows numerical results of ν on a small periodic chain with length L = 8 and
the complex potential U2 where the additional parameters are chosen as before. In fact
there are eight quantized Berry phases v(A), . . . , v(H) obtained from twisting each of the
enumerated bonds (A) to (H) separately, but as the ring is invariant under translations
among two lattice sites only two different values are taken by the latter, which is the
reason why only two phases are shown for the variation of bonds (A) and (B). The reader
is invited to convince him- or herself of the fact that the performed twists conserve the
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Figure 7.2.: Real part of the generalized winding number ν and low-energy spectrum of a periodic
chain subject to U2 obtained by exact diagonalization. System parameters are t1/U = 0.02, t2/U =
0.1, µ/U = 0.02 and the local site dimension is restricted to D = 4. (a) Model sketch with
enumerated bonds that are varied in a U(1) twist where the interval [0, 2π) is split up into M = 100
equidistant steps to obtain the winding number ν in the lower panels. Because of the translation
symmetry of the ring only two phases are shown as the others behave in the same way. (b) Real
and imaginary parts of the lowest 20 states of the system with the ground state (lowest real part)
highlighted in orange. The PT phase transition takes place near γ/U ≈ 0.8.

system’s PT symmetry during the entire loop. In the panels of the winding numbers,
two regimes in which the quantity is perfectly quantized can be detected, separated by a
region in which no results or non-quantized values are obtained. The reason for that can
be traced back to the appearance of the system’s low-energy spectrum shown in figure
7.2b. As expected by the analytical result for the non-interacting case (equation (6.5)),

the PT phase transition takes place near γ
(U2)
c /U = |t1 − t2|/U = 0.08. Around this

transition the spectrum becomes almost gapless in the regime from γ/U ≈ 0.05 to 0.1,
which is the reason for the spoiled quantization of ν. The ground state is not unique
during the entire loop as the twist of the tunneling leads to an intermediate energy
crossing. Often, the particle number of the ground state changes within such a crossing
such that exact zeros are obtained in the argument of the logarithm in equation (7.18)
leading to undefined results corresponding to void areas in the winding number plots.

Depending on whether a strong or a weak bond in the periodic chain with U2 is varied,
the winding number in the PT -unbroken phase evaluates to ν = π or ν = 0 respectively.
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7. Topological invariant for the PT -symmetric SL-BHM

This result is consistent to the Hermitian case where the bulk of a periodic system in the
ρ = 1/2 MI phase is characterized by a trivial (nontrivial) value of ν when the system
is cut along a weak (strong) bond to yield an open chain. The presented biorthogonal
formulation (7.17) of the winding number therefore constitutes a topological invariant
for the interacting non-Hermitian PT -unbroken MI phases of the extended SL-BHM.

A similar formulation for the non-interacting analytically accessible scenario that is
equivalent to a non-Hermitian formulation of the Zak phase for the SSH model consisting
of non-Hermitian dimers is tackled in references [88, 89] and an algorithm for computing
the complex Berry phase, which is even capable of following the ground state through a
crossing leading to much smoother data for ν, is proposed in [33, 90] and also contains
further example models.

The theoretical observation that topologically protected edge states may still arise even in
dissipative non-Hermitian systems has also triggered interesting experimental works, for
instance in photonic systems [91], which allow for the realization of quasi PT -symmetric
systems in coupled waveguides [92]. Topologically protected edge modes can be employed
as stable guiding channels for light and therefore have interesting applications, e.g. for
robust communication systems. By wiggling a waveguide, the refractive index can be
modulated leading to the desired loss effects in the non-Hermitian description. In a
passive non-Hermitian system realizing a loss profile similar to that of U2 a topological
phase transition was observed experimentally [93] by tracking the propagation of light
in the array, where the winding number is effectively given by the mean displacement.

Borrowing the idea of the construction of a PT -symmetric defect originating from refer-
ence [4], topologically protected edge states can also be observed in the SL-BHM version
of a chain subject to U2 in the PT -unbroken phase. Figure 7.3a illustrates the system
configuration: starting with two chains composed of dissipative dimers with strong and
weak bonds (green and gray boxes, respectively), both are connected with a weak bond.
According to figure 7.2a, the two different joined subsystems result from cutting a SL-
BHM ring subject to U2 at a strong (weak) bond. Therefore the winding numbers of
the cut bonds differ, as a strong bond leads to ν = π whereas a weak one is classified by
ν = 0 in the PT -unbroken phase. Thus the connection between the two topologically
distinct chains emulates an interface at which the topological invariant changes, leading
to localized topologically protected edge states (compare chapter 3). As an incidental
remark, note that in order for the total system to be PT -symmetric, the dissipation of
the central site has to be removed such that the system is invariant under inversion at
the latter followed by a complex conjugation that effectively swaps gain and loss.

The interface states emerging as ground states of an SL-BHM system with U2 and a defect
with a total system length of L = 33 are shown in figure 7.3b together with the first
excited states for a value of the gain/loss parameter where the system is expected to be in
the PT -unbroken phase (compare figure 7.2b). As is the case for the Hermitian SL-BHM,
the type of the edge state is determined by the value of the chemical potential µ/U which
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Figure 7.3.: Topologically protected interface states at a boundary between two topologically distinct
non-Hermitian systems. (a) Extract of a sketch of the system configuration. The total system
consists of two open chains (green and gray boxes), which are made up of strongly or weakly bound
dissipative dimers. Both chains can be imagined as a result of cutting a ring with alternating gain
and loss at a strong or a weak bond. The bond along which the system is cut represents a topological
invariant which differs for the two subsystems leading to topologically protected interface states. For
the total system to be PT -symmetric, the dissipative effect on the central site has to be removed.
(b) Ground state (top panel) and first excited states (center and bottom panel) of the sketched
non-Hermitian defect system with L = 33 obtained by non-Hermitian DMRG (hyper-parameters
like in section 6.2) for different values µ/U of the chemical potential. Additional system parameters
are t1/U = 0.1 (strong bonds), t2/U = 0.02 (weak bonds) and γ/U = 0.04.

was chosen such that both particle and hole configuration with a flat bulk at ρ = 1/2
appear. Excited states are distinguished by excitations of the bulk, where interestingly
the feature of a localized particle at the interface is still present. Alternatively, an empty
interface can also be filled up with a particle to yield an excited state.

This concludes the outline that topological effects can also be expected and classified in
non-Hermitian bosonic interacting PT -unbroken systems.

Unfortunately, exact diagonalization studies of periodic systems of L = 8 subject to
U1, U

(c)
1 and U3 reveal that the PT symmetry is immediately broken, which spoils the
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7. Topological invariant for the PT -symmetric SL-BHM

interpretation of the introduced winding number in the sense of falling back to the
framework of topological order in Hermitian systems. Nevertheless, the introduced Berry
phase represents an interesting quantity even in the non-quantized case and in the PT -
broken regime, as will be addressed in the next section.

7.2. Local order parameters as indicator for decoupling

To see how the real part of the complex Berry phase can still be used as an indicator for
the decoupling process between the dissipative sites from the rest of the system, taking
one step back to the Hermitian case is quite helpful.

In case of a periodic Hermitian SL-BHM sketched in figure 7.4a, the winding numbers
are exactly quantized (see the argument of section 3.3) and transporting the many-
body ground state of a ρ = 1/2 MI along a loop in parameter space results in ν = 0
(ν = π) when a weak (strong) bond is twisted. The reason for this is that the ground
state approximately consists of singlet configurations that are entangled on a strong
bond. Therefore, the entanglement between two sites is encoded in the winding number
resulting from a U(1) twist of the connecting bond.

With this interpretation at hand it follows immediately that although the requirements
for the quantization of ν are violated when an arbitrary tunneling element of an open
chain is twisted, the obtained value of ν is still close to the quantized value in the periodic
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Figure 7.4.: Interpretation of the winding number as a local order parameter encoding the entanglement
between neighboring sites in the many-body ground state of the ρ = 1/2 MI phase of the SL-BHM.
Exactly quantized winding numbers are highlighted in red. (a) A U(1) variation of an arbitrary
tunneling element in the periodic system leads to a quantized winding number. The ground state
consists of singlets located on strongly-coupled double-wells with ν = π while weak bonds pick up
a phase of ν = 0. (b) In the open chain a twist does not respect the symmetries of the system
leading to non-quantized values of ν. Though no quantization is present, the winding numbers
are still close to the expectation in the periodic system as the ground state of the latter is a good
approximation. (c) Also in the nontrivial chain the interpretation of ν containing information
about the entanglement of the singlets located on the strong bonds holds to a large extent.
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system indicated in the two different dimerization configurations in figures 7.4b, 7.4c.
Interestingly, the inversion-symmetric bond at the center of the open chain still leads to
an exactly quantized value of ν as the variation of the tunneling amplitude respects the
PT symmetry of the system which guarantees the quantization.

Extending this interpretation of ν to the non-Hermitian SL-BHM allows us to follow the
behavior of entanglement between the lattice sites using ν as a local order parameter. To
do so, the ground state, that is the eigenstate associated with the smallest real part, is
classified by computing the complex Berry phase for each tunneling element by use of the
procedure presented in the previous section. This has two practical reasons: (i) As the
reader may verify, in the many-body DMRG computations for all complex potentials the
ground state’s eigenvalue is always real-valued, thus the ground state is an eigenstate of
PT which can in principle lead to a quantized winding number (the required conditions
for this to hold were outlined in the previous section). (ii) Although the classified state
is not stationary in the presence of complex eigenvalues in the spectrum, it nevertheless
contains the desired features of effects caused by dissipation such as additional edge
modes in Hermitian subsystems, compare figures 6.7 to 6.10.

For the following discussion, open SL-BHM chains with L = 8 extended by the complex
potentials presented in chapter 6 are studied within exact diagonalization setting the
local Hilbert space dimension to D = 4. The chemical potential is set to µ/U = 0.02
and the trivial (nontrivial) dimerization corresponds to t1/U = 0.1, t2/U = 0.02 (t1/U =
0.02, t2 = 0.1). This choice is in consistence with the spectra shown in the previous
chapter except for the system length. The computation of ν for a certain bond is
performed by use of equation (7.18), where the interval [0, 2π) is split into M = 100
equidistant steps. For brevity, the system parameters will be suppressed for the rest of
this section, only adopting the terminology of a trivial or a nontrivial chain. As the
imaginary part of ν will not be considered, the terms Re(ν) and ν are used equivalently
without differentiating. Similarly, the terms complex Berry phase and winding number
are used synonymously as was already done before.

Figure 7.5 shows the winding numbers ν(A), . . . , ν(G) resulting from a twist of the enu-
merated bonds (A) to (G) for an open SL-BHM chain of length L = 8 extended by U1

in both dimerization configurations. It is clearly visible that the winding numbers are
always near a value of 0 or π mod 2π (values of ν ≈ 0 and ν ≈ 2π are to be considered
equal). Note as well that for γ/U = 0 the Hermitian case is accurately reproduced
with strong (weak) bonds picking up ν = π (ν = 0). The general statement that the
winding number is almost unaffected by γ/U can be established for bonds between two
Hermitian sites. In addition to that, ν(D) is exactly quantized as the appropriate twist
respects the model symmetry. For the nontrivial chain (compare figure 7.5a) the wind-
ing numbers expected from the non-Hermitian model remain perfectly at this value up
to γ/U ≈ 0.16, where the strong bonds (A), (F) infected by gain and loss also become
trivial. At this transition, a crossing of the ground state takes place in the real part of
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Figure 7.5.: Real part of the complex Berry phase for the different bonds of a trivially and nontrivially
dimerized SL-BHM extended by U1 for varying strength of the gain/loss parameter. (a) The bonds
between two Hermitian sites in the trivial chain are almost unaffected by γ. As a consequence of
symmetry, ν(D) is exactly quantized. The bonds with a dissipative site show a significant change
from ν(A) ≈ π ≈ ν(G) to ν(A) ≈ 0 ≈ ν(G) mod 2π at γ/U ≈ 0.16. (b) In the trivial chain all bonds
are more or less unaffected by γ. Again, symmetry forces the exact quantization of ν(D).

the energy spectum, see figure 6.7a, and the dissipative sites decouple from the rest of
the chain such that the ground state shows features of internal edge modes. Speaking in
terms of entanglement, the dissipative bonds become unentangled at a critical value of
γ/U which is tracked by the transition from ν(A,G) ≈ π to approximately zero. This is
already the case in the ground state of the nontrivial chain (compare figure 7.5b), where
no crossing in the real part of the spectrum occurs (see figure 6.7b) such that all Berry
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Figure 7.6.: Winding number for all bonds in an SL-BHM chain subject to U
(c)
1 . (a) The two strong

links (C), (E), that are directly affected by gain and loss in the trivial chain, change their Berry
phase from ν ≈ π to ν ≈ 0 at γ/U ≈ 0.16 leading to an internal boundary that hosts edge
states. (b) The central bond’s Berry phase changes from ν = π to ν = 0 in the nontrivial chain at
γ/U ≈ 0.07 indicating that the entanglement between the two dissipative sites is lost in the new
ground state.

phases more or less remain at the original values modulo 2π.

This reasoning can directly be carried over to the scenario in which the open chain is
subject to U

(c)
1 shown in figure 7.6. In a trivial chain in which the dissipative impurity is

located on a weak bond, the investigation of the low-energy regime shows additional edge
features appearing in the ground state as the decomposition of the Hermitian system
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7. Topological invariant for the PT -symmetric SL-BHM

from the dissipative sites creates two additional nontrivial boundaries (compare figure
6.8a). The decoupling between the dissipative sites and their Hermitian neighbors is en-
coded in the winding numbers of the strong bonds (C), (E) at the center shown in figure
7.6a changing from approximately π to zero at a value of γ/U ≈ 0.16 according to the
crossing in the ground state spectrum. The loss of entanglement between two dissipative
sites coupled by a strong link can also be observed in the trivial chain shown in figure
7.6b. The central bond (D) becomes unentangled at γ/U ≈ 0.07 where the ground state
of the system changes according to the spectrum (figure 6.8b). Note however that the
directly adjacent sites are now still entangled via the bonds (B), (F), which still take
values of approximately π such that no additional edge modes appear in the subsystems
in accordance with the expectation of no additional nontrivial boundaries resulting from
the decoupling process. An interesting consequence of the central position of the dissi-
pative impurity is that the change of an exactly quantized Berry phase can be observed.
However, this winding number ν(D) has its limitations in a physical interpretation as an
adiabatic phase because the spectrum is complex and therefore the transported ground
state to obtain the phase cannot be considered stationary, spoiling the assumptions of
the adiabatic theorem.

For the case of alternating gain and loss imposed on the system by U2, three regions can
be identified in the parameter regime shown in figure 7.7 similar to the periodic case in
the previous section. Up to a value of γ/U ≈ 0.05 the chain is PT -unbroken with a
gapped ground state such that the exactly quantized winding numbers ν(D) yield results
similar to those shown in figure 7.2a. The region from γ/U ≈ 0.05 to 0.1, in which the
PT phase transition also occurs, again corresponds to a gapless spectrum. In this range
the complex Berry phases are far away from the quantized values and the transition to
ν ≈ 0 appears to happen in a stage-like fashion. In fact, the plots in figures 7.7a, 7.7b
allow for the identification of three intermediate stages. They can be understood by
considering the shape of the ground state shown within figure 6.9. In the gapless regime
the ground state is filled up from ρ = 1/2 to ρ = 1 MI which for a system with L = 8
corresponds to three intermediate values between a total particle number of L/2 and L.
In contrast to the periodic case, those intermediate ground states are not driven through
a crossing in the U(1) twist what results less scattered data.

It is interesting that although the transported ρ = 1 MI ground state in the case of U2

does not represent the most important state showing a staggered occupation (compare
the states shown in the center column of figure 6.11), the interpretation of decoupling
dissipative sites, that is all ν ≈ 0 is obviously valid for the staggered state. This can
be justified by borrowing the relation of the model to the single-particle limit whose
properties are inherited to the many-body case in the limit of strong interactions. From
the single-particle spectrum (figure 6.2) it is obvious that all states are driven towards
real part zero corresponding to local degrees of freedom on each dissipative site. As
those states are solely supported on a single site there cannot be any entanglement in
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Figure 7.7.: Real part of the complex Berry phases for an open SL-BHM chain subject to U2. The
quantized numbers ν(D) (in the gapped regime) directly correspond to the values of the twist of
a weak and strong bond in a periodic ring, see figure 7.2a. A discussion of the three regimes is
included in the text. Winding numbers of strong bonds are driven to ν=0 for both (a) the trivial
and (b) the nontrivial chain. This can also be understood by a recapitulation of the fact that the
transported state changes from ρ = 1/2 MI to ρ = 1 MI in the non-Hermitian description.

a many-body state, thus all ν are approximately 0. The transported state then has the
wrong filling of single-particle states but nevertheless produces the expected result.

The results for the winding numbers for U3 are withheld for brevity as they would lead
to redundancy of what has already been said so far. Moreover, they can easily be derived
by considering the behavior and lattice occupation of the ground state in the spectrum
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7. Topological invariant for the PT -symmetric SL-BHM

of the system shown in figure 6.10 and a comparison with the data for U
(c)
1 , which in the

limit of L = 2 is equal to U3.

To conclude, note that the entanglement interpretation of the complex Berry phase mo-
tivated by the singlet product structure of the ρ = 1/2 MI ground state reproduces a
feature that is quite peculiar in dissipative quantum systems. In the limit of strong dissi-
pation all winding numbers of dissipative bonds are eventually driven to approximately
zero such that the ground state is completely unentangled. Entanglement expresses it-
self in correlations in the many-body quantum state that are unveiled by performing
measurements. As mentioned in chapter 4 the influence of a reservoir on a system can
be understood in terms of the bath performing measurements on the system therefore
leading to quantum jumps. This formulation fits nicely into the picture of a reservoir
performing many measurements in the case of strong dissipation, thereby destroying any
correlations in the system’s quantum state which can thus not be entangled.

Chapter review

â A biorthogonal formulation of the SL-BHM generalized winding number (3.17) can
be employed to yield the complex Berry phase (7.17) whose real part is quantized to
Re(ν) = 0, π mod 2π for the gapped ground state of a PT -unbroken Hamiltonian
when the applied perturbation respects the PT symmetry of the model and the
transported state is unique during the entire loop.

â For the complex potential U2 which exhibits a PT -unbroken regime the notion
of topological order can be carried over to the non-Hermitian scenario leading
to localized interface states at boundaries between to topologically distinct non-
Hermitian systems.

â Even in the case in which the quantization of ν is spoiled for different reasons, it can
still be employed as a local order parameter detecting the entanglement between the
two lattice sites joined by the twisted bond. The effects of decoupling dissipative
lattice sites originally described in chapter 6 are illustrated by the appropriate
winding numbers being driven from ν ≈ π to ν ≈ 0.

â In the limit of strong dissipation all winding numbers of dissipative bonds are
driven to ν ≈ in consistence with the picture of a reservoir performing frequent
measurements on the system leading to a collapse of correlations/entanglement in
the many-body quantum state.
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8. Dissipation by master equations in
Lindblad form

In this last chapter some of the previously described effects that are observed in the
formulation of gain and loss with of complex on-site potentials are compared to results
obtained from a description with master equations in Lindblad form. The object of
interest is given by the non-equilibrium steady state (NESS), towards which the sys-
tem converges in the long-time limit regardless of its initial configuration if there are
no further decoherence-free subspaces. Under circumstances that have to be specified,
such states may correspond to physically interesting states, for instance topologically
protected states, which has triggered ideas of deliberately using engineered dissipation
to condense a system into the steady state exploiting this process as a preparation pro-
cedure [8, 9]. The topological classification of steady states, or more generally mixed
states described by density matrices represents a question which is under current investi-
gation [9, 94–96]. Without going too much into detail, the idea of a ground state that is
topologically protected by an energy gap in the non-dissipative Hamiltonian framework
carries over to two different gaps in the dissipative framework of a Gaussian master
equation, namely a dissipative gap (that is the smallest decay rate of the other modes)
and a purity gap (that is the purity of the state, which can be introduced by Tr{ρ2},
compare chapter 4).

In contrast to this, the pragmatic view that topological effects are almost always accom-
panied by the occurrence of edge states is adopted in this chapter, which motivates the
approach to study edge effects in the lattice occupation of steady states. As the lattice
occupation of various NESS will be investigated in this chapter, a condition for the ex-
pectation values of the particle numbers of steady states in both fermionic (hard-core
bosonic) and bosonic systems with linear Lindblad operators is derived in section 8.1.

In the case of a non-interacting system with linear Lindblad couplings is described by
terms that are at most quadratic in the bosonic/fermionic annihilation and creation
operators, the method of third quantization [21, 22] provides a powerful and efficient way
for computing observables of the steady state. For brevity, the outline of this procedure
for both the fermionic and bosonic case is excluded in this presentation, referring the
interested reader to appendices B and C that also contain remarks about the numerical
realization for the case of the SSH and the non-interacting SL-BHM models.
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8. Dissipation by master equations in Lindblad form

Employing the fermionic method of third quantization, section 8.2 studies the steady
states of the dissipative SSH model. It can be interpreted as a hard-core bosonic version
of the SL-BHM Hamiltonian which does not suffer from the problem of amplification as
only one particle is allowed per lattice site, similar to the physical restrictions imposed
in the extended PT -symmetric SL-BHM in chapter 6. The bosonic formulation of third
quantization is used in section 8.3 to study the non-interacting SL-BHM. Finally, the
interacting dissipative SL-BHM is tackled in section 8.4 using the non-Hermitian DMRG
procedure presented in chapter 5.

Before proceding, a few remarks on notation are in order.

Preliminaries and conventions: In chapter 4 the form (4.8) of the master equation in
Lindblad form used in [54, 55] was adopted to outline that a Lindblad operator L̃ =

√
γ̃a

(L̃ =
√
γ̃a†) on a single site may effectively be replaced by a complex on-site potential

(+)
− iγ̃/2 in the mean-field limit. Absorbing the factor 1/2 led to the complex on-site

potentials εj = +
(−)iγ introduced in chapter 6, that is γ̃/2↔ γ,

L̃ =
√
γ̃a

(†)
j ↔ εj = (+)

− i
γ̃

2
≡ (+)

− iγ. (8.1)

In this chapter however (except for the next section where the convention does not
matter anyways), the convention

dρ

dt
= −i [H, ρ] +

∑

µ

(
2LµρL

†
µ −

{
L†µLµ, ρ

})
(8.2)

stemming from the discussion [21, 22] of third quantization will be used in combination
with Lindblad operators describing single-particle loss (gain) by L =

√
γ′a (L =

√
γ′a†).

Comparing the different conventions leads to the relation γ̃/2↔ γ′ and thus the substi-
tutions γ′ ↔ γ̃/2↔ γ hold.

Thus, the master equations in Lindblad form with collapse operators parameterized by
the gain/loss strength γ′ used in this chapter are “equivalent” to the complex on-site
potential description of chapter 4 with a gain/loss parameters γ,

γ′ ↔ γ. (8.3)

Note however that this substitution is not rigorous because it only holds in the mean-
field limit. Nevertheless both formalisms are expected to exhibit similar effects when
the respective gain/loss parameters take values of the same magnitude, γ ∼ γ′.
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8.1. Expectation value conditions for the steady state

A necessary condition to be fulfilled by the steady state observables 〈nj〉, which may
be employed to check whether the result of a simulation corresponds to a physically
meaningful quantity can be derived by demanding the expectation value 〈N〉 of the total
particle operator N =

∑L
j=1 nj =

∑L
j=1 a

†
jaj to be constant in time, that is d/dt 〈N〉 = 0

or expressed in terms of the density matrix ρ using equation (4.3),

d〈N〉
dt

=
d

dt

(
L∑

j=1

〈nj〉
)

=
d

dt

(
L∑

j=1

Tr{ρnj}
)

=
L∑

j=1

Tr

{
dρ

dt
nj + ρ

dnj
dt

}
=

L∑

j=1

Tr

{
dρ

dt
nj

}
= Tr

{
dρ

dt
N

}
!

= 0.

(8.4)

Inserting the master equation in Lindblad form (4.8) for the equation of motion of the
density matrix ρ leads to two terms,

d〈N〉
dt

= Tr

{
N

[
−i [H, ρ] +

1

2

∑

µ

(
2LµρL

†
µ −

{
L†µLµ, ρ

})
]}

= −iTr{NHρ−NρH}+
1

2

∑

µ

Tr
{

2NLµρL
†
µ −NL†µLµρ−NρL†µLµ

}

= −iTr{NHρ−HNρ}+
1

2

∑

µ

Tr
{

2L†µNLµρ−NL†µLµρ− L†µLµNρ
}

= −i 〈NH −HN〉+
1

2

∑

µ

〈
2L†µNLµ −NL†µLµ − L†µLµN

〉

= −i 〈NH −HN〉+
1

2

∑

µ

〈
L†µ [N,Lµ]−

[
N,L†µ

]
Lµ
〉
,

(8.5)

where linearity and cyclicity of the trace have been used. The first term can be evaluated
by making use of the fact that the Hamiltonian conserves the total particle number and
therefore NH = HN . This can also be explicitly derived by writing both operators in
terms of bosonic creation and annhilation operators using the canonical commutation
relations of the latter. Hence, the first term vanishes and one is left with

d〈N〉
dt

=
1

2

∑

µ

〈
L†µ [N,Lµ]−

[
N,L†µ

]
Lµ
〉
, (8.6)

where up to this point the choice of the Lindblad operators is arbitrary and is now
replaced by the linear collapse operators employed in this work.
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For the following discussion, the two commutation relations are quite helpful,

[aj, N ] = − [N, aj] =
∑

k

[
aj, a

†
kak

]
=
[
aj, a

†
j

]
aj = aj, (8.7a)

[
a†j, N

]
= −

[
N, a†j

]
=
∑

k

[
a†j, a

†
kak

]
= a†j

[
a†j, aj

]
= −a†j. (8.7b)

Considering the case of single-particle gain at site j with a gain parameter γj, that is

L =
√
γja
†
j, the respective term in the sum of equation (8.6) simplifies to

1

2
γj

〈
aj

[
N, a†j

]
− [N, aj] a

†
j

〉
=

1

2
γj

〈
aja
†
j + aja

†
j

〉

= γj

〈
1 + a†jaj

〉
= γj (1 + 〈nj〉) .

(8.8a)

The same calculation for single site loss on site j with L =
√
γjaj results in

1

2
γj

〈
a†j [N, aj]−

[
N, a†j

]
aj

〉
=

1

2
γj

〈
−a†jaj − a†jaj

〉
= −γj 〈nj〉 . (8.8b)

Piecing equation (8.6) together for a system with loss at the sites labeled by jloss and
analogously jgain for sites with gain, by using equations (8.8) it follows that

d〈N〉
dt

=
∑

jgain

γjgain

(
1 +

〈
njgain

〉)
−
∑

jloss

γjloss
〈njloss

〉 . (8.9)

Ultimately, the steady state condition (8.4) for the expectation value of the total particle
number being stationary leads to a relation for the occupation of the dissipative sites,

∑

jgain

γjgain

(
1 +

〈
njgain

〉)
=
∑

jloss

γjloss
〈njloss

〉 , (8.10)

that holds for the steady state of a bosonic system described by arbitrary linear Lind-
blad operators parameterized by vectors lµ, kµ such that Lµ = lµ · a + kµ · a† with the
annihilation (creation) operators aligned in vectors a (a†).

Steady state condition for hard-core bosons/fermions: Performing the same com-
putation for hard-core bosons, the bosonic creation and annihilation operators a†j, aj can

effectively be replaced by their fermionic equivalents c†j, cj. The procedure is completely
analogous to the previous computation up to equation (8.6), which however is better
rewritten in terms of anticommutators,

d〈N〉
dt

=
1

2

∑

µ

〈
2L†µNLµ −NL†µLµ − L†µLµN

〉

=
1

2

∑

µ

〈
2L†µNLµ −

{
N,L†µLµ

}〉
.

(8.11)
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Useful relations are given by

{
N, c†jcj

}
=
{
c†jcj, N

}
= {nj, N} = 2njN = 2Nnj, (8.12a)

{
N, cjc

†
j

}
=
{
cjc
†
j, N

}
=
{

1− c†jcj, N
}

= 2N − 2njN, (8.12b)

and

Ncj =
∑

k

c†kckcj = −
∑

k

c†kcjck = −
∑

k

(δjk − cjc†k)ck = cj(N − 1), (8.12c)

Nc†j =
∑

k

c†kckc
†
j =

∑

k

c†k(δjk − c†jck) = c†j +
∑

k

c†jc
†
kck = c†j(1 +N), (8.12d)

where canonical anticommutation relations were used.

Single-site gain with L =
√
γjc
†
j leads to the following contribution in (8.11),

1

2
γj

〈
2cjNc

†
j −

{
N, cjc

†
j

}〉
=

1

2
γj

〈
2cjc

†
j(1 +N)− (2N − 2njN)

〉

=
1

2
γj 〈2(1− nj)(1 +N)− (2N − 2nj)〉

= γj (1− 〈nj〉) .

(8.13a)

In the same fashion for single site loss on site j with L =
√
γjcj one obtains

1

2
γj

〈
2c†jNcj −

{
N, c†jcj

}〉
=

1

2
γj 〈2nj(N − 1)− 2Nnj〉

= −γj 〈nj〉 .
(8.13b)

Consequently, the change of the total particle number expectation value of a system
affected by both single site gain and loss at sites jgain, jloss respectively is given by

d〈N〉
dt

=
∑

jgain

γjgain

(
1−

〈
njgain

〉)
−
∑

jloss

γjloss
〈njloss

〉 , (8.14)

which states the hard-core bosonic (fermionic) equivalent of equation (8.9). Thus, the
steady state of a hard-core bosonic (fermionic) system with linear Lindblad couplings
that can most generally be parameterized by Lµ = lµ · c+ kµ · c† obeys the relation

∑

jgain

γjgain

(
1−

〈
njgain

〉)
=
∑

jloss

γjloss
〈njloss

〉 . (8.15)

103



8. Dissipation by master equations in Lindblad form

8.2. Steady states of the SSH model

In order to circumvent the amplification problem bosonic systems may suffer from, the
discussion of the extended SL-BHM in chapter 6 was restricted to the low-energy regime
which corresponds to the strongly-interacting scenario, where multiple occupations of a
single site are avoided and the hard-core bosons can effectively be considered as fermions.
This analogy is used as a motivation to study the dissipative SSH Hamiltonian (2.1)
corresponding to the hard-core limit of the SL-BHM Hamiltonian (3.1) around µ = 0.

Because the Hamiltonian of interest does not contain interaction terms but only quadratic
contributions and the Lindblad couplings are linear, L =

√
γ′a(†), the method of third

quantization for quadratic fermionic systems [21] can be applied to compute observable
expectation values of the steady state. An outline of the general procedure comple-
mented with the application onto the dissipative SSH model is given in appendix B. The
main advantage of this method compared to exact diagonalization or DMRG procedures
in the 4L-dimensional Liouville space is that NESS properties can be obtained from a
4L×4L-dimensional shape matrix which allows for much larger system sizes. In order to
perform a comparison to the description of gain and loss with complex on-site potentials,
the results shown in this section are limited to L = 16.

With that said, the dissipative patterns imposed by the complex on-site potentials in
chapter 6 will now be discussed. Again, the tunnelings are set to t1 = 0.1, t2 = 0.02
(t1 = 0.02, t1 = 0.1), referring to the configuration as trivial (nontrivial) chain.

Figure 8.1 shows the steady state lattice occupation of a system with L = 16 subject to
a dissipative pattern similar to U1. In the trivial chain (figure 8.1a) the entire system
possesses a flat occupation for dissipation strengths up to γ′ ≈ 0.02. The currents
induced by gain and loss at the right and left boundary can be balanced by the system
until the couplings exceed the maximum current that is determined by the tunneling
amplitudes. At this point the dissipative sites start to fill/empty. Note however that
instead of influencing the entire bulk of the system, only the sites close to the sink/source
are affected by a change in occupation. This behavior can be understood by making
oneself aware of the fact that fermions are governed by Pauli’s exclusion rule forbidding
the presence of two fermions at the same lattice site. Consequently, when the site subject
to gain has been completely filled up with particles, the exclusion principle prevents more
fermions from being coupled into the system. In accordance to the results obtained in
the description with complex on-site potentials (compare figure 6.7), the dissipative
sites are entirely filled up (or emptied) and decouple from the remaining system as no
more particles can be coupled into or out of the system. The Hermitian subsystem
has nontrivial boundaries leading to the occurrence of edge states whose occupation is
favored or avoided by dissipation.
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Figure 8.1.: Steady state lattice occupation for an SSH chain with L = 16 and a dissipation pattern
similar to U1 for varying dissipation strength (colors do not carry information and are rather used
for reasons of visibility). (a) In the trivially dimerized chain a transition from a completely flat
to a steady state with edge features occurs. To follow this transition in more detail, the quantity
〈nedge〉 =

∑L
j=L−4(〈nj〉−1/2) where the difference of the occupation of the four most outer sites at

the gain boundary and a flat ρ = 1/2 bulk is summed. The observed behavior is consistent with the
description with complex on-site potentials, where the dissipative sites decouple from the Hermitian
subsystem and induce edge states in the nontrivially dimerized remnant. (b) The nontrivial chain
is almost unaffected by dissipation for parameter ranges varying over four magnitudes with gain
(loss) favoring (avoiding) the occupation of a boundary.
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8. Dissipation by master equations in Lindblad form

To follow the transition from a flat steady state to one with edge features, the particle
numbers of the outer four sites at the gain edge, subtracted from the bulk occupation
1/2 are summed to yield a quantity that describes the presence of edge features,

〈nedge〉 =
L∑

j=L−4

(〈nj〉 − 1/2) , (8.16)

which is also shown in figure 8.1a and exhibits a sharp transition around the mentioned
value of γ′.

In contrast to this, the steady state of the nontrivial chain is almost unaffected by a
sweep of the gain/loss parameter, compare figure 8.1b. For finite values of γ′, the edge
mode located at the lossy boundary is emptied while the occupation of its opponent at
the gain boundary is favored. Again, the interpretation that the remaining subsystem is
trivially dimerized and therefore does not exhibit edge modes is in accordance with the
behavior observed in chapter 6.

Figure 8.2 presents the NESS occupations of open chains subject to adjacent gain and
loss in the spirit of the complex on-site potential U2. The bulks of both the trivial
(figure 8.2a) and nontrivial (figure 8.2b) chain remain flat at half filling up to values
of γ′ ≈ 0.1. This is in exact correspondence to the expected behavior of the system
in the description with complex on-site potentials, where the PT phase transition up
to which the system is stationary occurs at γ

(U2)
c = |t1 − t2| = 0.08. Only when this

critical value of the gain/loss strength is exceeded, dissipative effects start to influence
the configuration of the bulk, which becomes staggered with gain sites being completely
filled with fermions while loss sites are emptied. In order to keep track of the steady
state staggering, especially at the system boundaries, the quantity

〈nstagg〉 = −1/4
4∑

j=1

(−1)j(〈nj〉 − 1/2) (8.17)

is defined and takes a value of 〈nstagg〉 = 0 for a flat and 〈nstagg〉 = 1 for a perfectly
staggered configuration of the steady state. The equivalent of the transition from the
PT -unbroken to the PT -broken regime in the Lindblad scenario is presented in the plots
of 〈nstagg〉. It shall be emphasized here that the staggering of the steady state can also
be understood by interpreting the imaginary parts of the energies shown in the single-
particle treatment of U2 (compare figure 6.2) as decay rates. As all states are driven
towards real part zero corresponding to local degrees of freedom on a single site with a
negative (positive) imaginary part for loss (gain), the long-time behavior of the system is
given by all modes with positive (negative) imaginary part filling up (emptying), which
leads to the observed staggering. However, for small values of γ′ the nontrivial chain
shows clear edge features described by 〈nstagg〉 = 1/4 while the bulk remains flat.
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Figure 8.2.: Lattice occupation of open SSH chains (L = 16) subject to U2. In the case of strong
dissipation, gain sites are filled up entirely while loss sites do not contain any particles such that the
NESS is staggered. To follow the transition, the quantity 〈nstagg〉 = −1/4

∑4
j=1(−1)j(〈nj〉 − 1/2)

providing a measure of the staggering at the left boundary of the system is also shown. (a) The
trivial chain is driven from a flat to a staggered NESS. (b) In the nontrivial chain, edge modes are
present while the steady state is still represented by a flat bulk. For large dissipative couplings
however, the edge mode cannot be distinguished from the staggered bulk.
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Figure 8.3.: Steady state lattice occupation and difference 〈nedge〉 between the occupation of the four
outer sites at the gain boundary and a half-filled bulk of an open SSH chain with a dissipative
pattern similar to U3. (a) In the steady state of the trivial chain currents introduced by dissipation
can be balanced up to a value of γ′ ≈ 0.002 before gain sites are completely filled up while loss
sites are unoccupied. (b) The same holds for the nontrivial chain, except for the occurrence of edge
states in the regime of weak dissipation.
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8.2. Steady states of the SSH model

Note that by using the steady state condition (8.15) for fermionic (hard-core bosonic)
systems derived in the last section, it is easy to show that the steady state for the
dissipative profiles represented by U2 and U3 without any sites unaffected by gain and
loss is always at half-filling, while interestingly this statement holds as well for the case
of U1 where the coupling to the environment can be considered to lead to balanced gain
and loss.

Results for the steady state occupation of the remaining dissipation pattern similar to
U3 are shown in figure 8.3. Similar to the previous scenarios, the system is able to
balance the currents introduced by gain and loss up to a critical value of γ′ ≈ 0.002,
which however is much smaller for U3 compared to the other configurations. This is
not surprising as the same process of in- or outcoupling of particles takes place at a
large number of adjacent lattice sites and currents that stabilize the particle number can
only be exchanged over the central bond. In fact, for an infinite system subject to U3

the system would not be able to compensate the imposed currents for finite values of
γ′ leading to an immediate filling of gain sites with loss sites simultaneously emptying.
This statement is consistent with the observation in chapter 6 that the spectrum of U3

is immediately PT -broken for finite γ′. Nevertheless, the small system size allows for a
compensation of currents for small gain/loss strengths. The transition to the expected
steady state configuration can be tracked by 〈nedge〉, which is also shown for both the
topologically trivial (figure 8.3a) and nontrivial (figure 8.3b) chain.

The dependency on the system size in the case of U3 introduces another interesting
degree of freedom that already expressed itself in the exact diagonalization study, where
complex on-site potentials were employed and the state with largest imaginary part in
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Figure 8.4.: Lattice occupa-
tion of the NESS of an
open SSH chain with triv-
ial (top rows) and nontriv-
ial (bottom rows) dimer-
ization obtained by the
method of third quantiza-
tion. The gain/loss pa-
rameter is γ′ = 0.05 unless
stated different, and the
dissipation patterns im-
plement U1 (left column),
U2 (center column) and U3

(right column). It is em-
phasized that the states
resemble the results shown
in figure 6.11. The system
length is (a) L = 8 and (b)
L = 16.
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8. Dissipation by master equations in Lindblad form

the low-energy regime was computed (compare figure 6.11). In this presentation, the
observed lattice occupations were not sensible to the system size for the potentials U1

and U2, while the state of U3 already showed a strong dependency on the chain length.

To conclude this section, a comparison between the description of dissipative effects with
complex on-site potentials and a master equation in Lindblad form shall be given. Figure
8.4 shows the lattice occupations of NESS for the investigated dissipative patterns and
dimerizations. The resemblance to the results shown in the course of the treatment of
complex on-site potentials (compare figure 6.11) is remarkable. Only in the case of U3

the gain/loss strength has to be tuned more carefully in order to obtain similar results,
which is a consequence of the mentioned dependency on the system length.

8.3. Steady states of the non-interacting SL-BHM

In the last section, the similarity between the description of dissipative effects with
PT -symmetric on-site potentials and master equations in Lindblad form was outlined.
A fundamental requirement for this comparison was given by the limitation of the oc-
cupation of a lattice site, realized by introducing the constraint to only consider the
low-energy and strongly-interacting regime, where multiple occupations are avoided. If
the latter is relaxed, thereby allowing for an arbitrary energy exchange between the
reservoir and the system, one has to face the amplification problem bosonic systems
suffer from.

To illustrate this, the non-interacting SL-BHM (U = 0) with Lindblad operators L =√
γ′a, L =

√
rγ′a† for single-particle loss and gain can be analyzed setting µ = 0. Note

that the gain amplitude is rescaled by a factor 0 ≤ r < 1, which will become clear in a
moment. The NESS of non-interacting bosonic systems with linear Lindblad couplings to
a reservoir can be investigated by means of the bosonic formulation of third quantization
[22]. Employing this procedure for the non-interacting SL-BHM results in a problem. In
most scenarios, the dissipative pattern imposed by carrying over the Lindblad operators
of the last section does not lead to a steady state as the system infinitely fills up with
particles. A first approach towards resolving the unbalanced gain and loss introduced
by the choice of collapse operators involves a rescaling of the gain parameter by a factor
r, such that the number of particles coupled into the system is effectively decreased.
This method was used in reference [54] to construct a double-well system with gain and
loss in one well each, exhibiting balanced gain and loss. The proper choice of r follows
from a similar reasoning for the conservation of the total particle number like in section
8.1. However, the intention of the mentioned publication only aimed at a description of
balanced gain and loss for short times and therefore cannot be successfully applied to
the construction of balanced steady states in the long-time limit.
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Figure 8.5.: Behavior of the steady state of a non-interacting periodic SL-BHM system with L = 16
and collapse operators L =

√
γ′a, L =

√
rγ′a† arranged in the fashion of the complex potential U2

with alternating gain and loss. (a) The black areas mark the regime in which the existence of a
steady state is guaranteed (see appendix C) while an infinite amplification of the system occurs in
the white regions. (b) Total particle number 〈N〉 of the NESS in the same parameter region. The
filling increases rapidly at the boundary between the area with an existing steady state and the
amplification regime.

Figure 8.5 illustrates this explained difficulty of properly choosing a Lindblad operator
setup that leads to no amplification of the system. The panel of figure 8.5a shows an
extract of the parameter regime for an arrangement of Lindblad operators similar to the
complex on-site potential U2 with a scaled gain amplitude. For increasing values of γ′

the critical value of r up to which the existence of a steady state is guaranteed decreases.
The results for the total number of particles present in the system’s steady state shown
in figure 8.5b underlines the improper choice of Lindblad operators as the total filling of
the system is very sensitive to r, γ′ near the transition to the amplification regime.

Thus, an alternative way for the parameterization of controlled gain and loss has to
be found. In this work, the latter will be realized by introducing both gain and loss
processes on a single site j, such that the linear collapse operator Lj acting on that site

is most generally described by two parameters γ
′(−)
j , γ

′(+)
j ,

Lj =

√
γ
′(−)
j aj +

√
γ
′(+)
j a†j. (8.18)

In order to relate this pattern to the notion of sites subject to particle gain and as like
in previous chapters, two different choices for the two parameters are made. A gain site
(yellow circles denoted by + in the model schemes) is described by the vector

γ′
g

=

(
γ
′(+)
g

γ
′(−)
g

)
with γ′(+)

g < γ′(−)
g (8.19a)
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and a loss site (blue circle labeled with a minus sign in sketches) is characterized by

γ′
`

=

(
γ
′(+)
`

γ
′(−)
`

)
with γ

′(+)
` < γ

′(−)
` . (8.19b)

In the following, the most common choice of equal loss on all dissipative sites, γ
′(−)
g =

γ
′(−)
` , is adopted, simultaneously setting γ

′(+)
g ≥ γ

′(+)
` . Consequently, effective controlled

gain is then imposed by the difference between the strength of the gain processes on the
loss and gain sites. In the case of γ′

g
= γ′

`
one speaks of symmetric reservoirs.

For the parameterization (8.19) there already exist some statements derived in [83],
which also hold for the interacting scenario in some cases. For the purpose of this work,
those results can be summed up as follows:

â In the non-interacting case (U = 0) of a homogeneous chain (t1 = t2) with a setup
of Lindblad operators (8.19) arranged on the most outer sites in the fashion of
U1, an exact solution for the occupation of the interior sites 2, . . . , L − 1 and the
edge sites 1, L can be derived. The bulk is always flat in this configuration and
only the edge occupations are influenced by bath parameters. With the onset of
interactions (U 6= 0), the flat bulk tends to deform into a linear profile.

â In both the interacting (U = 0) and non-interacting (U 6= 0) model with only one
or many symmetric reservoirs the steady state is completely uncorrelated and can
be written as a product state. The entire system is filled with an identical number
of particles per site given by the expression

〈nj〉 =

(
γ
′(−)
`

γ
′(+)
`

− 1

)−1

=

(
γ
′(−)
g

γ
′(+)
g

− 1

)−1

, (8.20)

which is solely determined by the ratio of gain and loss on the reservoir(s). Note
that this behavior of the model in this certain configuration is independent of the
choice of the tunneling amplitudes, which may be chosen randomly (but non-zero).

With that said, the dissipation patterns of the complex on-site potentials U1, U2 and
U3 are transferred to the parameterization (8.19) of gain and loss sites allowing for
a controlled way of introducing dissipative effects without suffering from an infinite
amplification of the system.

Figure 8.6 shows the steady states of non-interacting SL-BHM chains with trivial (t1 =
0.1, t2 = 0.02, left panel), nontrivial (t1 = 0.02, t1 = 0.1, top right panel) and no (t1 =
t2 = 0.06, bottom right panel) dimerization for a dissipative pattern in U1 form. Note
that the symmetric configuration (red circles) shown in all plots is in accordance with
the analytical result (8.20) for the chosen reservoir parameters. As expressed above, the
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Figure 8.6.: Steady states of open non-interacting SL-BHM chains with different dimerizations subject
to a dissipation pattern similar to the complex on-site potential U1 for different reservoir prepara-
tions obtained by third quantization. Left: trivial chain (t1 = 0.1, t2 = 0.02), top right: nontrivial
chain (t1 = 0.02, t2 = 0.1), bottom right: homogeneous chain (t1 = t2 = 0.06). Although the
steady state is not at half filling anymore as in the hard-core bosonic (fermionic) scenario, edge
features similar to those described in chapter 6 appear.

homogeneous chain possesses a flat bulk with only the occupation of the dissipative sites
showing a different filling. In contrast to this, the trivial and nontrivial chain do not
exhibit an entirely flat bulk, but rather show exactly the same effects that were already
discussed in chapter 6. In the trivial chain the sites strongly coupled to the dissipative
boundaries are also affected by a particle gain or loss that also weakly invades the next-
neighboring sites. However, the described edge effects cannot be understood as degrees
of freedom in terms of a single particle located at the edge and the NESS is generally not
at half filling as can be seen from the condition (8.10) derived in section 8.1. The latter
condition can also be verified to hold for the occupation of the symmetric configuration.
Inserting (8.20) into the left side of (8.10) leads to (dropping the subscripts as both
parameters are equal)

∑

jgain

γjgain

(
1 +

〈
njgain

〉)
= 2γ′(+)

[
1 +

(
γ′(−)

γ′(+)
− 1

)−1
]

=
2γ′(+)γ′(−)

γ′(−) − γ′(+)
. (8.21a)

113



8. Dissipation by master equations in Lindblad form

+ − + − + − + −

0 5 10 15
0.3

0.4

0.5

0.6

j

〈n
j
〉

γ′
`
= (0.03, 0.1), γ′

g
= (0.03, 0.1)

γ′
`
= (0.025, 0.1), γ′

g
= (0.035, 0.1)

γ′
`
= (0.02, 0.1), γ′

g
= (0.04, 0.1)

γ′
`
= (0.015, 0.1), γ′

g
= (0.045, 0.1)

γ′
`
= (0.01, 0.1), γ′

g
= (0.05, 0.1)

0.2

0.4

0.6

0.8

1

〈n
j
〉

0 5 10 15

0.2

0.4

0.6

0.8

j

〈n
j
〉

Figure 8.7.: Lattice occupation of the steady states of non-interacting SL-BHM chains (L = 16)
exposed to a dissipative pattern similar to U2 for varying reservoir couplings. Top left: trivial
chain, top right: nontrivial chain, bottom right: homogeneous chain. The staggering of the bulk
is a generic feature of the dissipative pattern, but nevertheless edge features are most pronounced
for the nontrivially dimerized system.

Similarly, for the right side the same result follows,

∑

jloss

γjloss
〈njloss

〉 = 2γ′(−)

(
γ′(−)

γ′(+)
− 1

)−1

=
2γ′(−)γ(+)

γ′(−) − γ′(+)
. (8.21b)

In contrast to the almost completely flat bulk, the dissipative pattern imposed by an
arrangement of the controlled gain/loss Lindblad operators similar to U2 leads to a
staggering in the interior of the system regardless of the dimerization, compare figure 8.7.
The staggering is rather a consequence of alternating gain and loss. While the staggering
of the trivial and homogeneous chain continues to the system boundaries without major
deviations from the interior, the nontrivial system shows clear edge features stemming
from the weakly coupled boundary site that only allows for weak particle currents into
the interior. Since the explained sensitivity of the nontrivial chain to edge effects can
be explained by properties of the geometry of the chain (a weakly coupled site at the
boundary), it remains an open question whether this can be considered a topological
property of the system and, if so, how the latter can be classified.
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Figure 8.8.: Steady state lattice occupations obtained by third quantization for different non-
interacting SL-BHM chains with L = 16 and a dissipative structure similar to the complex on-site
potential U3. Top left: trivial chain, top right: nontrivial chain, bottom right: homogeneous chain.
The occupation of the two halfs subject to only loss or gain is described well by the symmetric
configuration with the respective bath configuration.

Another illustration of the occupation number in the symmetric configuration (equation
(8.20)) is given by an arrangement of Lindblad operators in the fashion of U3 shown
in figure 8.8. Except for the boundary between gain and loss sites, the occupation in
one of the two halfs subject to only controlled gain or loss is properly described by
the occupation number in the symmetric configuration. The fact that the sites j =
L/2 + 1, . . . , L are filled up with particles until 〈nj〉 ≈ 1 in the case of γ′

g
= (0.05, 0.1) is

not a consequence of Pauli’s exclusion principle as in the effective fermionic case discussed
in the previous section, but follows directly from the choice of the bath couplings and
equation (8.20), as 〈nj〉 = (0.1/0.05 − 1)−1 = 1 for j = L/2 + 1, . . . , L. Only at the
intermediate boundary particle currents lead to deviations from this expectation.

Following this reasoning, one could start from each of the presented dissipative patterns
in a symmetric configuration with γ

′(−)
g,` /γ

′(+)
g,` − 1 = 2 thus leading to an entirely flat oc-

cupation at ρ = 1/2, no matter how all other model parameters (including interactions)
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are chosen. Moving away from this configuration, for instance by the parameterization

γ′(+)
g → γ′(+)

g + ∆γ′,

γ
′(+)
` → γ

′(+)
` −∆γ′,

(8.22)

which was also applied in the shown results, one could increase the dissipative effects
to obtain lattice occupations resembling the states of the hard-core bosonic (fermionic)
case even more. The remaining effects to be studied for the dissipative SL-BHM involves
influences of particle interactions, which are discussed in the next section.

8.4. Truncated interacting SL-BHM

Proceeding further, the non-interacting SL-BHM with controlled gain and loss described
by Lindblad operators of the form of equations (8.18) is now extended by the inter-
action term determined by the on-site interaction U . For studying the entire SL-BHM
Hamiltonian (3.1), all on-site potentials εj and the chemical potential µ are set to zero.

As the Liouvillean of the system is not quadratic anymore, the method of third quan-
tization cannot be applied. Instead, the non-Hermitian DMRG algorithm presented in
section 5.4 is employed to study the steady state. The major restriction of the algorithm
on a regular workstation is given by the amount of memory required for the storage of
the sparse superblock Liouvillean matrix. Recap that the dimension of the latter for two
blocks with m basis states that are both enlarged by a single lattice site with dimension
D2, where D denotes the degrees of freedom of the single site’s Hilbert space, is given
by m2D4. Even if the Liouvillean matrix is extremely sparse this requires a storage of
O(m2D4) elements. In contrast, the superblock Hamiltonian in the Hilbert space DMRG
algorithm is only of dimension m2D2. Fortunately, the dissipative systems under inves-
tigation are close to the symmetric configuration whose steady state is exactly given by
a product of single site density operators (see reference [83]), which in principle requires
m = 1 for an exact representation within DMRG. Thus, it seems reasonable that the
number of states to be kept in a block for a proper description of its basis is also small.
In the following figures the DMRG strategy proceeds by keeping the truncation error
ε < 10−7 with a maximum of mmax = 32 states.

Moreover, the bosonic Liouville space has to be truncated by allowing a maximum par-
ticle number of D − 1 per site, that is a local site dimension of D2. However, it is
evident that the maximum number of allowed bosons required for properly converged
results depends heavily on the setup of the reservoirs. In order to choose the truncation
parameter D, the symmetric configuration of which the result is analytically known, is
simulated with the non-Hermitian DMRG method with different bosonic cutoffs for a
comparison. As mentioned above, the number of basis states m for this case can be
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Figure 8.9.: Occupation of the
symmetric non-interacting U2

SL-BHM chain for different
reservoirs obtained by non-
Hermitian DMRG in Liouville
space and different bosonic cut-
offs. Lines are guides to the eye
and dashed lines represent an-
alytical results. Additional pa-
rameters are L = 8 and t1 =
t2 = 0.1 but may in principle
be chosen randomly.

kept very small, which allows accessible values up to D = 7. Figure 8.9 shows the
occupation of the flat profile obtained by simulating a non-interacting SL-BHM chain
with symmetric reservoirs for different bath couplings. The convergence behavior is con-
nected to the filling of the steady state, that is the inverse of the ratio γ′(−)/γ′(+) − 1
(compare equation (8.20)). In the case of γ′ = (0.03, 0.1), in which the occupation is
largest, a proper convergence requires D > 5 while the other two configurations with less
dominant gain already converge to a good extent for D ≥ 5. Hence, convergence errors
are best eliminated by choosing a large ratio γ′(−)/γ′(+), which can then be modified
by the parameterization (8.22). For the remaining part of this section, the symmetric
bath configuration γ′ = (0.02, 0.1) will therefore be adapted to investigate the dissipative
patterns of the complex on-site potentials in the presence of particle interactions.

The results of both the non-interacting and interacting scenario of the dissipative SL-
BHM for both dimerizations and the different gain/loss patterns are summarized in figure
8.10. Generally, the steady state for U = 0 is reproduced to a very good accuracy by
the non-Hermitian DMRG procedure for D = 5. The open chains subject to U1 (figures
8.10a, 8.10b) and U3 (figures 8.10e, 8.10f) show small visible deviations from the result of
third quantization. Moreover, the onset of interactions has a similar effect on the NESS
occupation in the bulk as increasing the gain amplitude, while interestingly the nontrivial
boundaries are mostly unaffected. The staggering of the steady state for the case of U2

(figures 8.10c, 8.10d) is amplified by interactions. Similarly, filling/emptying of the sites
at the boundary between gain and loss in the U3 setup becomes more pronounced with the
onset of particle interactions. It is not known whether the results for the interacting case
are properly converged. Thus, the explained effect of U leading to similar consequences
as an increase in the gain amplitude could be even more explicit when more particles are
allowed on a single site. To conclude this section, it shall be stressed once more that the
effects identified in chapter 6 are quite generic to dimerized dissipative chains regardless
of the nature of the particles – fermionic or bosonic, interacting or non-interacting –
which is a remarkable result.
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8. Dissipation by master equations in Lindblad form
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Figure 8.10.: Comparison of the NESS in the non-interacting (third quantization (TQ, red circles)
and DMRG (D = 5, blue squares)) and interacting regime (D = 5 if not stated different, green
triangles) for different dissipative patterns and bath setups. Reservoir configuration in top subfigure
panels: γ′

`
= (0.015, 0.1), γ′

g
= (0.025, 0.1), bottom panels: γ′

`
= (0.01, 0.1), γ′

g
= (0.03, 0.1). The

left half shows the trivial chain (t1 = 0.1, t2 = 0.02) for (a) U1, (c) U2 and (e) U3 while the right
side contains results of the nontrivial chain (t1 = 0.02, t1 = 0.1) with (b) U1, (d) U2 and (f) U3.
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8.4. Truncated interacting SL-BHM

Chapter review

â The total particle number expectation value of the non-equilibrium steady state
(NESS) of a system with a particle-conserving Hamiltonian and linear Lindblad
couplings obeys relations (equations (8.10) and (8.15)) that enforce the NESS of
the fermionic (hard-core bosonic) dissipative SSH model to be at half filling for
U2, U3. Interestingly, this also holds for U1.

â A description of dissipation in the SL-BHM by complex on-site potentials leads
to results that are in accordance to the formulation with master equations in
Lindblad form. Identified effects stemming from the decoupling of dissipative sites
from the rest of the system explained in chapter 6 can also be observed in the
dissipative SSH model. It is remarkable that the approach of using complex on-
site potentials to effectively describe dissipative processes reproduces the result
of the Lindblad master equation steady state when the imaginary parts of the
energies are interpreted as decay rates.

â Relaxing the restrictions of no multiple occupations, the choice of Lindblad opera-
tors has to be modified to impose controlled gain and loss on lattice sites avoiding
an amplification of the bosonic system (equation (8.19)). Also for the dissipa-
tive non-interacting SL-BHM edge effects similar to those in the dissipative SSH
and PT -symmetric SL-BHM model can be identified, although the NESS is not
generally at half filling.

â Quadratic master equations can be treated within the formalism of third quanti-
zation [21, 22] for both fermionic and bosonic systems. For interacting systems,
no semi-analytic approach is available. The non-Hermitian DMRG algorithm in-
troduced in section 5.4 is successfully applied to study the effects of particle in-
teractions in the dissipative SL-BHM. The onset of interactions leads to effects in
the NESS occupation that are similar to those obtained from increasing the gain
amplitude.

â The presented method can be applied to arbitrary local non-quadratic Liouvilleans,
that is models with a local Hamiltonian joined by local Lindblad operators.
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9. Conclusion and outlook

One of the main goals in this work was the investigation of one-dimensional quantum
many-body systems whose Hamiltonians yield topologically nontrivial phases and which
are subject to dissipative effects. The study was done in order to identify generic effects
that may give rise to topological effects also appearing in the case of dissipation, in
which the development of a complete classification scheme is still an open problem. To
do so, two different approaches of imposing gain and loss were taken – the introduction
of complex on-site potentials and a description with master equations in Lindblad form
[12]. Interestingly, both descriptions that have two mostly independent communities
behind them lead to similar effects, which states one of the most outstanding results of
this work.

The studied systems were given by extensions of the paradigmatic Su-Schrieffer-Heeger
(SSH) model [10] for non-interacting spin-polarized fermions on a superlattice struc-
ture with alternating tunneling amplitudes, whose treatment allows for the illustration
of topological effects such as edge states and the classification of topological invari-
ants such as adiabatic phases originally introduced by Berry [14]. A straightforward
implementation of the SSH model for bosons leads to the superlattice Bose-Hubbard
model (SL-BHM) by incorporation of on-site potentials, on-site interactions and a grand-
canonical ensemble described by its chemical potential. In the hard-core limit, that is
for infinite particle interactions, the SL-BHM can be mapped onto the SSH model by a
Jordan-Wigner transformation [40] in the case of vanishing on-site potentials and zero
chemical potential. As a consequence, the topological properties of the SSH model’s
Bloch bands are inherited by the bosonic counterpart in this regime, also leading to a
nontrivial topology, which is still present in the strongly-interacting regime of the model.
This triggered efforts to generalize the topological classification scheme from the non-
interacting to the interacting scenario [43]. For the SL-BHM, a generalization of the
SSH bulk winding number, which is equivalent to the Berry phase picked up by the
lower Bloch band after a transport through the Brillouin zone, also known as Zak phase
[13], is achieved by introducing a magnetic flux threading the system [15, 46], which also
builds the foundation for a generalization to the dissipative (non-Hermitian) case.

Introducing single-particle gain and loss effects, the first approach under investigation
was realized by imposing PT -symmetric on-site potentials on the SL-BHM leading to a
non-Hermitian Hamiltonian with, in principle, complex energies. This can be motivated
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9. Conclusion and outlook

as the introduction of a complex on-site potential (+)
− iγ/2 leads to the same behavior of

the particle number on a single site in the mean-field limit, when dissipation is introduced
by Lindblad operators

√
γa (
√
γa†) with the gain/loss strength γ. Different dissipative

patterns given by the complex potentials Ui were studied in both the single- and many-
particle (non-interacting and interacting) picture. To avoid infinite amplifications of the
system, the analysis was restricted to the low-energy regime where multiple fillings of
sites are refused. In the single-particle picture a limited number of bulk states is deformed
towards energy real part zero for increasing gain/loss in the configurations U1, U

(c)
1 and

U3, which can be identified in the many-particle picture to correspond to (i) localized
particles at dissipative sites and (ii) zero-energy edge modes of the remaining Hermitian
subsystem. The effect of gain/loss on a dissipative site leads to its decoupling from
the rest of the system, thereby inducing the occurrence of edge states in the remaining
subsystem when the latter possesses nontrivial boundaries. Interpreting the imaginary
part of the energy of a state as a decay rate with a positive imaginary part leading
to a favored occupation of the state while the opposite holds for a negative imaginary
part, results in lattice occupations of the most contributing state (largest imaginary
part) being astonishingly similar to that of the steady state of an equivalent master
equation.

A very interesting arrangement of gain and loss in an alternating way, represented by
the complex potential U2 which exhibits a PT -unbroken regime, has already attracted
both theoretical [33, 80, 88–90] and experimental [4, 93] works for the realization and
classification of topological phases in non-Hermitian non-interacting systems. In this
work, the quantized topological invariant ν of the interacting SL-BHM (equation (3.17))
was generalized to the non-Hermitian PT -unbroken case (equation (7.17)) formulated in
a biorthogonal basis leading to a complex Berry phase ν. Following the argumentation of
Hatsugai [46], the quantization of Re(ν) in integer units of π was shown to be protected
by the PT symmetry of the system. A simple method for the numerical computation
of ν was presented in equation (7.18) and a different algorithm for the computation of
the complex Berry phase, leading to similar results, established by a co-worker and the
author of this thesis is to be published [33]. Moreover, the existence of topologically
protected edge states at interfaces between two non-Hermitian PT -unbroken systems
characterized by different complex Berry phases was successfully illustrated, borrowing
the system configuration from [4]. In fact, the formulation of the mentioned quantities
for the extended SL-BHM gives rise to topological order in interacting systems even in
the presence of dissipation.

The interpretation of the complex Berry phase as a topological invariant in the PT -
broken regime is spoiled as the assumptions of the adiabatic theorem have to be modified
in the presence of complex energies [86, 87]. Nevertheless, the generalized winding
number ν can be employed as a local order parameter encoding entanglement between
adjacent sites even in the PT -broken and non-quantized case, which is a consequence of
the product form of the SL-BHM ground state in terms of singlet configurations located
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along strong bonds in the fully-dimerized limit. In fact, the non-quantized values of ν
in an open dissipative SL-BHM chain are close to the strictly quantized values in the
periodic Hermitian system. The process of dissipative sites decoupling from the rest
of the system in the limit of strong gain/loss can be tracked by a change of ν ≈ π to
ν ≈ 0. Thus, dissipative effects lift the correlations/entanglement in a state for increasing
gain/loss strengths. Eventually, in the limit of strong dissipation, the winding numbers
of all bonds in the system that are affected by gain or loss are driven to ν ≈ 0, which can
be understood from the viewpoint of a reservoir frequently performing measurements on
the system, thereby resolving entanglement in the affected regions.

To compare the results of the description with complex on-site potentials, the second
approach towards describing dissipation was achieved by means of master equations
in Lindblad form with collapse operators

√
γ′a†,

√
γ′a accounting for single-particle gain

and loss, respectively. The interesting object is then given by the non-equilibrium steady
state (NESS) towards which the system converges in the long-time limit. A condition for
the lattice occupation of the NESS was derived for the dissipative scenarios U2 and U3,
stating that the NESS is always at half filling. The application of third quantization [21]
allows for an easy extraction of NESS observables for the dissipative SSH model leading
to lattice occupations that are in accordance with the interpretation of the spectra of
non-Hermitian Hamiltonians. Both the descriptions of dissipation with complex on-
site potentials and master equations in Lindblad form are in correspondence when the
number of particles is restricted, as is the case for the fermionic (hard-core bosonic) model
or the extended SL-BHM in the strongly-interacting low-energy regime. The outlined
correspondence is best illustrated by the resemblance of figures 6.11 and 8.4. In the same
fashion as for complex potentials, the decoupling of dissipative sites leading to Hermitian
remnants that may host additional edge modes is observed. This triggering of edge modes
in an interior Hermitian subsystem happens only for large enough dissipative strengths,
when the imposed currents cannot be balanced by the system anymore. Thus one can
deliberately prepare edge modes in a Hermitian subsystem, which may be referred to as
edge modes driven by dissipation.

If the restrictions of avoided multiple occupations of a single site are relaxed, the prob-
lem of an infinite amplification bosonic systems may suffer from has to be circumvented
by a modified choice of Lindblad operators that realizes controlled gain and loss. The
parameterization with γ

′(±)
g,` has already been investigated by reference [83] for a homoge-

neous Bose-Hubbard chain with reservoirs attached to the open boundaries as U1 where
also analytical results were obtained. Moving on to the treatment of the non-interacting
SL-BHM by carrying over this choice of Lindblad operators realizing controlled gain and
loss sites to the dissipative patterns of the Ui, the same effects occurring in the PT -
symmetric description and the dissipative SSH model could be identified by means of
third quantization [22], namely the effective decoupling of dissipative lattice sites from
the rest of the system leading to interior edge modes whenever the remnant possesses
nontrivial boundaries.
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9. Conclusion and outlook

Numerical methods have pushed the frontiers of accessible system dimensions for in-
teracting models in recent years and one of the most prominent methods for treating
one-dimensional quantum many-body systems is given by density matrix renormalization
group algorithms (DMRG) [16, 17], whose understanding and formalization in the lan-
guage of tensor network states (especially matrix product states (MPS)) [18, 60] requires
quite an effort to become familiar with. In this work, a formulation of a DMRG algorithm
in the traditional language was given, avoiding the terminology of MPS. This description
is not restricted to Hermitian operators, but has also been extended to non-Hermitian
operators, which allows for the study of both PT -symmetric Hamiltonians and Liou-
villeans. The technique resembles recently developed MPS-based algorithms [72]. Thus
the outlined procedure may provide a very comprehensible approach for readers familiar
with DMRG that do not (yet) want to get involved with MPS. It shall be emphasized
that all adaptions can be included in a working Hermitian DMRG code without much
effort. To the best of the author’s knowledge, this is the first time a non-Hermitian
DMRG method was deliberately employed to study PT -symmetric Hamiltonians.

Turning on particle interactions, the Liouville operator in the master equation in Lind-
blad form is not quadratic anymore and the method of third quantization cannot be
applied. To investigate the influence of particle interactions on the NESS, a DMRG
algorithm for the treatment of non-Hermitian operators was developed to optimize the
representation of the steady state in the Liouville space, whose dimension quickly ex-
ceeds numerical limitations when all degrees of freedom are kept in the description. The
method reproduces the results obtained from third quantization in the non-interacting
limit to high accuracy and aforementioned typical effects are also found in the interact-
ing dissipative SL-BHM with particle interactions leading to similar effects on the NESS
as an increase in the gain amplitude.

Outlook: In fact, the observed effects have not been rigorously related with a topolog-
ical classification scheme. This however could be achieved by embedding the observed
effects for the dissipative SSH model into the context of the topological classification of
steady states of quadratic master equations presented in [9, 97]. Pushing this further, it
is an open question whether the generalization of the winding number to the interacting
case by introducing a U(1) twist in a tunneling element can also be employed to classify
the NESS of an interacting system. Moreover, a deeper understanding of how dissipative
effects influence the Hermitian subsystem in the U1 dissipation pattern could be gained
by computing an effective Hamiltonian for the subsystem. It would be interesting to
see whether the outer gain/loss effectively leads to a lowering raising of the edge states’
energies leading to the observed favored/avoided occupation of the latter. Another ana-
lytically approachable task involved the derivation of analytical results for the dimerized
Bose-Hubbard model out of equilibrium similar to the computation performed in [83].
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A. Zusammenfassung (German)

Die vorliegende Arbeit mit dem Titel
”
Bosonische Vielteilchensysteme mit topologisch

nichttrivialen Phasen unter Gewinn und Verlust“ befasste sich mit der Untersuchung
eindimensionaler quantenmechanischer Vielteilchensysteme, deren Hamilton-Operatoren
topologisch nichttriviale Phasen aufweisen, in der dissipativen Erweiterung. Insbeson-
dere sollten allgemeine Effekte beschrieben werden, die Anlass für das Auftreten topolo-
gischer Effekte in offenen Quantensystemen geben, deren vollständige Charakterisierung
ein ausstehendes Problem darstellt. Im Rahmen der Arbeit wurden zwei unterschiedliche
Ansätze zur Beschreibung dissipativer Effekte realisiert – das Einführen komplexer Git-
terplatzpotentiale und eine Beschreibung der Systemdynamik mit Hilfe von Master-
Gleichungen in Lindblad-Form [12]. Insgesamt konnte gezeigt werden, dass beide Wege
ähnliche Effekte aufweisen.

Als Modelle wurden verallgemeinerte Varianten des bekannten Su-Schrieffer-Heeger-
Modells (SSH) [10] untersucht, welches nicht-wechselwirkende Spin-polarisierte Fermio-
nen auf einem eindimensionalen Übergitter mit alternierenden Tunnelamplituden be-
schreibt und eine Vielzahl von Eigenschaften topologisch nichttrivialer Systeme illustri-
ert, beispielsweise das Auftreten von topologisch geschützten Randzuständen und die
Klassifizierung solcher Systeme mit Hilfe einer adiabatischen Phase, welche ursprünglich
von Berry eingeführt wurden [14]. Im bosonischen Fall gelangt man durch Hinzu-
nahme von kontaktartigen Teilchenwechselwirkungen, externen Gitterplatzpotentialen
und einem großkanonischen Ensemble, das durch ein chemisches Potential charakterisiert
wird, zum Übergitter-Bose-Hubbard-Modell (SL-BHM). Im Grenzfall unendlich starker
Kontaktwechselwirkung, verschwindenden externen Potentialen und verschwindendem
chemischem Potential können SL-BHM und SSH-Modell durch eine Jordan-Wigner-
Transformation [40] ineinander überführt werden, weshalb die topologischen Eigenschaf-
ten der Bloch-Bänder im SSH-Modell in diesem Grenzfall direkt vom SL-BHM geerbt
werden und sogar für endliche Teilchenwechselwirkungen erhalten bleiben. Daraus folgte
das Bestreben, eine topologische Charakterisierung wechselwirkender Systeme durch Ver-
allgemeinerung der Konzepte für nicht-wechselwirkende Systeme zu erhalten [43]. Für
das SL-BHM kann die Windungszahl des Komponentenvektors des Hamilton-Operators
in Bloch-Gestalt, welche äquivalent zur adiabatischen Phase, die ein Zustand des tiefer
gelegenen Bloch-Bandes im SSH-Modell beim Transport durch die Brillouin-Zone auf-
nimmt – der Zak-Phase [13] – verallgemeinert werden, indem ein externer magnetischer
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A. Zusammenfassung (German)

Fluß eingeführt wird [15]. Dieser Ansatz wird im Folgenden ebenfalls zur Verallge-
meinerung der Begriffe im nicht-hermiteschen Fall benutzt.

Zuerst wurden PT -symmetrische Potentiale im SL-BHM eingeführt, was zu einem nicht-
hermiteschen Hamilton-Operator führt. Dieser Ansatz wird motiviert durch die Tat-
sache, dass das Verhalten der Teilchenzahl auf einem Gitterplatz mit Lindblad-Opera-
toren

√
γa, (
√
γa†) im Mean-Field-Grenzfall identisch mit dem Verhalten durch Ein-

führen eines komplexen Potentials (+)
− iγ/2 ist. Eine Vielzahl von Reservoiranordnungen

Ui wurde im Ein- und Vielteilchenbild untersucht. In ersterem stellte sich bei den
Potentialen U1, U

(c)
1 und U3 heraus, dass der Realteil der Energie einer geringen An-

zahl von Volumenzuständen verschwindet, welche im Vielteilchenbild als (i) komplett
an dissipativen Gitterplätzen lokalisierte oder (ii) Randzustände des verbleibenden her-
miteschen Teilsystems identifiziert werden konnten. Mit steigender Bad-Kopplung en-
tkoppeln die dissipativen Gitterplätze zunehmend vom Rest des Systems, das wiederum
Randzustände aufweisen kann, falls eine nichttrivale Grenze vorliegt. Interpretiert man
den Imaginärteil der Energie als Zerfallsrate, so werden Zustände mit positivem Real-
teil aufgefüllt, wohingegen solche mit negativem entleert werden. Diese Interpretation
führt zu Zuständen, welche gut mit den stationären Zuständen einer Master-Gleichung
übereinstimmen.

Eine interessante Anordnung von Bädern stellt das Alternieren von Gewinn- und Verlus-
teffekten in der Form von U2 dar, das eine PT -ungebrochene Phase aufweist. In dieser
Arbeit konnte die topologische Invariante des SL-BHM mit Hilfe einer biorthogonalen
Basis formuliert und auf den PT -ungebrochenen Bereich erweitert werden. Weiterhin
wurde unter Zuhilfenahme der Argumentation in [46] gezeigt, dass der Realteil dieser
komplexen Berry-Phase (order Windungszahl) Re(ν) im genannten Bereich strikt quan-
tisiert in ganzzahligen Vielfachen von π ist. Mit Gleichung (7.18) erfolgte eine numerische
Berechnung und die Veröffentlichung eines weiteren Algorithmus zur Berechnung der
komplexen Berry-Phase, zu dem der Autor beigetragen hat, steht bevor [33]. Weiterhin
wurde das Auftreten von topologischen Randzuständen an Grenzflächen zweier nicht-
hermitescher Systeme unterschiedlicher Berry-Phase illustriert.

Die Interpretation der komplexen Berry-Phase als topologische Invariante kann nicht
auf den PT -gebrochenen Bereich erweitert werden, da grundlegende Annahmen des
adiabatischen Theorems bei Anwesenheit komplexer Energien zu berücksichtigen sind
[41, 87]. Dennoch kann die Windungszahl ν als lokaler Ordnungsparameter zur Auflö-
sung von Verschränkung zwischen benachbarten Gitterplätzen in Zuständen verwendet
werden. Sogar im nicht-quantisierten Fall geringer Bad-Kopplungen verbleiben die Werte
von ν bei den zu erwartenden Ergebnissen des periodischen hermiteschen Systems. Die
Entkopplung nicht-dissipativer Plätze bei zunehmender Kopplung erfolgt durch einen
Übergang von ν ≈ π nach ν ≈ 0. Bei starker Dissipation werden letztendlich alle
Bindungen, die von dissipativen Effekten betroffen sind nach ν ≈ 0 getrieben. Dies
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steht in Übereinstimmung mit der Anschauung, dass ein Reservoir ununterbrochen Mes-
sungen am System ausführt, welche Korellationen/Verschränkung auflösen.

Zum Vergleich der Ergebnisse der nicht-hermiteschen Quantenmechanik erfolgte eben-
falls die Untersuchung von stationären Zuständen (NESS) zu Master-Gleichungen in
Lindblad-Form mit linearen Lindblad-Operatoren

√
γ′a†,

√
γ′a. Für das fermionische

dissipative SSH-Modell mit U2, U3 konnte abgeleitet werden, dass die Teilchenzahl des
NESS stets bei halber Füllung des Gitters liegt. Mit Hilfe der Methode der dritten
Quantisierung [21] können Observablen des stationären Zustandes leicht berechnet wer-
den. Die resultierenden Gitterbesetzungen stimmen mit der Beschreibung mit nicht-
hermiteschen Potentialen überein, was durch die beiden Abbildungen 6.11 und 8.4 il-
lustriert wird. Diese Korrespondenz bedarf jedoch der Beschränkung maximal pro Git-
terplatz zugelassener Teilchen. Es ist dennoch erstaunlich, dass beide Beschreibungen
zu den selben Beobachtungen führen. Mit dem Wissen, dass dissipative Gitterplätze
ab einer kritischen Badkopplung vom Rest des Systems entkoppeln, lassen sich gezielt
Randzustände im verbleibenden Untersystem induzieren.

Falls die Einschränkung der Besetzungszahl pro Gitterplatz aufgehoben wird, besteht
bei bosonischen Systemen die Möglichkeit, dass das System kontinuierlich mit Teilchen
aufgefüllt wird. Dies kann durch eine geeignete Parametrisierung der Lindblad-Operato-
ren umgangen werden, sodass durch die Beschreibung mit den Parametern γ

′(±)
g,` kontrol-

liert (ohne Überlaufen) Teilchen ein- und ausgekoppelt werden. Für den Fall solcher Bad-
Konfigurationen existieren bereits analytische und numerische Untersuchungen einer ho-
mogenen Bose-Hubbard-Kette [83]. Mit Hilfe der dritten Quantisierung [22] wurde nun
das nicht-wechselwirkende dissipative SL-BHM untersucht, wobei die identischen Effekte
identifiziert werden konnten – das Auftauchen interner Randzustände durch Entkopplung
von dissipativen Gitterplätzen im Fall eines nichttrivialen Teilsystems.

Das Behandeln wechselwirkender Systeme erfordert ein hohes Maß an Aufwand, da ana-
lytische Zugänge meist scheitern. Numerische Methoden haben in den vergangenen
Jahren den Bereich zugänglicher Systeme deutlich erweitert. Eine äußerst populäre
Methode zur Behandlung wechselwirkender quantenmechanischer Systeme stellen Dich-
tematrix-Renormierungs-Gruppen-Algorithmen (DMRG) [16, 17] dar, deren Verständ-
nis und Formalisierung in der Sprache von Tensor-Netzwerken (insbesondere Matrix-
Produkt-Zuständen (MPS)) [18, 60] eine gewisse Einarbeitung erfordert. Die Formu-
lierung der Methode in dieser Arbeit verzichtet auf die Begriffe dieses Gebiets und be-
dient sich der traditionellen Sprache, in welcher DMRG ursprünglich eingeführt wurde.
Weiterhin erfolgte eine Erweiterung der Methode, um nicht-hermitesche Operatoren zu
behandeln, wie beispielsweise PT -symmetrische Hamilton-Operatoren oder Liouville-
Operatoren. Für Leser, die über Kenntnisse von DMRG für hermitesche Operatoren
verfügen, bietet die vorliegende Darstellung eine verständliche Erweiterung ohne Be-
griffe aus dem Bereich der Tensor-Netzwerk-Formulierung. Die nötigen Veränderungen
eines Programms, welches hermitesche DMRG implementiert, sind leicht durchzuführen.
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A. Zusammenfassung (German)

Nach bestem Wissen des Autors ist die Untersuchung PT -symmetrischer Operatoren mit
DMRG in dieser Arbeit erstmalig erfolgt.

Um Auswirkungen von Teilchenwechselwirkungen zu studieren, konnte die Methode
der dritten Quantisierung nicht verwendet werden, da der das System beschreibende
Liouville-Operator nicht mehr von quadratischer Ordnung in den bosonischen Erzeu-
gern/Vernichtern ist. Hierzu wurde ein DMRG-Algorithmus entwickelt, der eine endlich-
dimensionale Darstellung des stationären Zustands im Liouville-Raum optimiert, da die
Dimension des letzteren dramatisch mit der Anzahl der zugelassenen Teilchen und der
Systemlänge zunimmt. Diese Methode reproduziert die Ergebnisse der dritten Quan-
tisierung im nicht-wechselwirkenden Fall mit hoher Genauigkeit. Auswirkungen der
Teilchenwechselwirkung auf die Gestalt des NESS liefern ähnliche Ergebnisse wie ein
leichtes Erhöhen der Einkoppelrate.
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B. Third quantization for fermions

B.1. General method

This chapter will walk through a brief summary of what has already been worked out in
a very comprehensive way in reference [21] – a method for the solution of steady state
properties of dissipative quadratic fermionic systems. Instead of only replicating the
main results of the latter work, the emphasis of this appendix is to drop some aspects
in order to illustrate the application of third quantization to the dissipative SSH model.
As most of the figures in section 8.2 have been obtained by this procedure, a practical
numerical approach that may be helpful for setting up a code implementing the method
of third quantization is included.

One of the major drawbacks in the numerically exact treatment of a dissipative fermionic
system consisting of L lattice sites is the exponential growth of the dimension of the total
system’s Liouville space Ltot spanned by the the tensor product of single-site Liouville
spaces Li (i = 1, . . . , L),

Ltot =
L⊗

i=1

Li, (B.1)

required to express its density matrix. As the single-site Hilbert space Hi of each lattice
site i possesses two degrees of freedom, |0〉i and |1〉i, the single-site Liouville space Li

is spanned by four states, namely |0〉i〈0|i, |0〉i〈1|i, |1〉i〈0|i and |1〉i〈1|i. Then, an exact
representation of the total system’s density matrix ρ ∈ Ltot requires the storage of 4L

coefficients ci1j1,i2j2,...,iLjL , the density matrix ρ reading as follows in the standard tensor
product basis,

ρ =
∑

i1,j1

∑

i2,j2

· · ·
∑

iL,jL

ci1j1,i2j2,...,iLjL |i1〉1〈j1|1 ⊗ |i2〉2〈j2|2 ⊗ . . .⊗ |iL〉L〈jL|L , (B.2)

where each of the summed indices takes values of 0 or 1. By setting up the system’s
Liouville operator (a 4L×4L matrix) one can compute the steady state’s density matrix of
equation (B.2), which yields all physical properties like expectation values of observables.
However, system lengths are heavily restricted due to the exponential increase in the
problem dimension.
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B. Third quantization for fermions

The method of third quantization allows for the computation of steady state properties
by diagonalizing a matrix of dimension 4L × 4L, called shape matrix A, pushing the
limit of accessible system sizes further.

The master equation in Lindblad form representing the equation of motion of the density
matrix ρ of a dissipative quantum system of length L is given by

dρ

dt
= −i [H, ρ] +

∑

µ

(
2LµρL

†
µ −

{
L†µLµ, ρ

})
≡ L̂ρ, (B.3)

where ~ = 1 was set. While the Hermitian Hamilton operator H generates a unitary
evolution, the Lindblad operators Lµ acccount for a coupling to a reservoir introducing

dissipation. Together, they form the system’s Liouville operator (or Liouvillean) L̂.

It is convenient to express the Hamiltonian and Lindblad operators in terms of 2L
abstract Hermitian Majorana operators wj, which satisfy the anticommutation relation

{wj, wk} = 2δjk, j, k = 1, 2, . . . , 2L. (B.4)

For canonical fermions, the latter are related to the fermionic annihilation (creation)
operators cj (c†j), annihilating (creating) a fermion at the lattice site labeled j,

w2j−1 = cj + c†j,

w2j = i
(
cj − c†j

)
,

⇔
cj =

1

2
(w2j−1 − iw2j) ,

c†j =
1

2
(w2j−1 + iw2j) .

(B.5)

Assuming a quadratic system and linear couplings to the environment, the operators of
equation (B.3) can be expanded as

H =
2L∑

j,k=1

wjH
(w)
jk wk = w ·H(w)w, (B.6a)

Lµ =
2L∑

j=1

l
(w)
µ,j wj = l(w)

µ ·w, (B.6b)

with w =
(
w1, w2, . . .

)T
and a matrix H(w) = −H(w) that is chosen to be antisymmetric

because of the anticommutation relations (B.4).

Instead of considering the situation in second quantization with, (un-)occupied Fock
states of each lattice site, one introduces a Hilbert space structure on the 4L dimensional
space of operators wj, referred to as K. K is spanned by basis vectors |Pα〉 made up of
different configurations α =

(
α1, α2, . . . , α2L

)
of the wj,

P(α1,α2,...,α2L) = wα1
1 wα2

2 · · ·wα2L
2L , (B.7)
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B.1. General method

with αj ∈ {0, 1} representing the absence (or presence) of the operator wj. The inner
product of two elements of the Hilbert space |x〉 , |y〉 ∈ K is defined by

〈x | y〉 ≡ 1

4L
Tr
{
x†y
}
, (B.8)

such that the basis vectors are orthonormal, 〈Pα |Pα′〉 = δαα′ . This can be seen by con-
sidering the anticommutation relation (B.4) of the wj and their relation to the fermionic
annihilation and creation operators in equation (B.5), from which it is easy to see that
Tr{wj} = 0 as wj is a superposition of annihilation and creation operators and the trace
is performed over the Fock space of second quantization. In addition, one finds w2

j = 1.
Explicitly performing the inner product of two basis vectors described by α and α′ is
done by pulling through each of the wj using the anticommutation relation until meeting
another wj thus canceling to 1. The only possibility for a non-zero contribution in the
trace is given when there are no wj left in the end, which implies α = α′.

Note the analogy to the notion of second quantization: instead of elements of the Fock
space that are for instance counting particles, |n1, n2, . . . , nL〉, it is now Majorana oper-
ators one is dealing with, |α1, α2, . . . , α2L〉. However, the operator Fock space K is not
too different at all. There is an inner product and there are orthogonal basis states –
only the interpretation is unfamiliar. Moreover, a density matrix of the form of equation
(B.2) can be converted into a representation in abstract Majorana operators (B.7) by
expressing the local operator basis in terms of the wj. Therefore, ρ can be interpreted
as a superposition of Pα.

In analogy to introducing fermionic annihilation (creation) operators cj (c†j), reference
[21] defines their equivalents on K that add or remove a Majorana operator in the
representation of equation (B.7) by 4L annihilation (creation) linear maps ĉj (ĉ†j), j =
1, 2, . . . , 2L, called adjoint Fermi maps (or a-fermions),

ĉj |Pα〉 = δαj1 |wjPα〉 , (B.9a)

ĉ†j |Pα〉 = δαj0 |wjPα〉 , (B.9b)

satisfying canonical anticommutation relations

{ĉj, ĉk} = 0, (B.10a){
ĉj, ĉ

†
k

}
= δjk. (B.10b)

With that said, it is now possible to rewrite the equation of motion of the density matrix
(B.3) in terms of a-fermions. This task decomposes into two subtasks as

dρ

dt
= L̂0ρ+

∑

µ

L̂µρ, (B.11)
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B. Third quantization for fermions

where the Liouvillean was split up in a unitary term L̂0 and the dissipative terms L̂µ.

Expressing the unitary Liouville term L̂0ρ = −i [H, ρ] requires the computation of terms
of the form |wjwkPα〉 − |wkwjPα〉 (see equation (B.6a)). Using the properties (B.9),
(B.10) of the adjoint Fermi maps results in

|wjwkPα〉 − |wkwjPα〉 = 2
(
ĉ†j ĉk − ĉ†kĉj

)
|Pα〉 , (B.12)

and by linearity it follows immediately that

L̂0 = −4i
2L∑

j,k=1

ĉ†jHjkĉk = −4iĉ† ·H(w)ĉ (B.13)

with ĉ =
(
ĉ1, ĉ2, . . . , ĉ2L

)T
and ĉ† =

(
ĉ†1, ĉ

†
2, . . . , ĉ

†
2L

)T
.

Similarly, the dissipative term of equation (B.11),

L̂µρ = 2LµρL
†
µ −

{
L†µLµ, ρ

}
=

2L∑

j,k=1

l
(w)
µ,j l

(w)∗
µ,k L̂j,kρ (B.14)

is found to be [21]

L̂j,k =
(

1 + eiπN̂
)(

2ĉ†j ĉ
†
k − ĉ†j ĉk − ĉ†kĉj

)

+
(

1− eiπN̂
)(

2ĉj ĉk − ĉj ĉ†k − ĉkĉ†j
) (B.15)

with N̂ =
∑

j ĉ
†
j ĉj being the operator counting the total number of a-fermions (the sim-

ilarity of N̂ and the total particle number operator N =
∑

j c
†
jcj in second quantization

is not accidental). It is crucial to note that both terms of the Liouvillean, equations
(B.13) and (B.14), consist only of even products of adjoint Fermi maps. Therefore, the
parity of a-fermions is conserved and K = K+ ⊕ K− can be decomposed in a space K+

spanned by basis vectors with an even sum
∑

j αj of the vector α and another space K−
hosting odd sums of a-fermions.

For the purpose of this work, the main interest lies on the computation of occupation
numbers, that is observables consisting of an even number of Majorana fermions. There-

fore, the Liouvillean can be restricted to K+. The resulting Liouvillean L̂
∣∣∣
K+
≡ L+ is

given by [21]

L+ = −2ĉ† ·
(
2iH(w) +M (w) +M (w)T

)
ĉ+ 2ĉ† ·

(
M (w) −M (w)T

)
ĉ†, (B.16)

where the matrix M (w) is obtained from the Lindblad operators (B.6b) as follows,

M
(w)
jk =

∑

µ

l
(w)
µ,j l

(w)∗
µ,k . (B.17)
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B.1. General method

The true beauty of equation (B.16) is revealed after applying a linear transformation
from adjoint Fermi maps ĉj, ĉ

†
j (j = 1, 2, . . . , 2L) to so-called adjoint Hermitian Majorana

maps âj = â†j (j = 1, 2, . . . , 4L),

â2j−1 =
1√
2

(
ĉj + ĉ†j

)

â2j =
i√
2

(
ĉj − ĉ†j

) ⇔
ĉj =

1√
2

(â2j−1 − iâ2j)

ĉ†j =
1√
2

(â2j−1 + iâ2j) ,
(B.18)

which also account for anticommutation relations {âj, âk} = δjk. Finally, the Liouvillean
collapses into a compact form,

L̂+ = â ·Aâ− 2Tr{M} 1̂, (B.19)

with â =
(
â1, â2, . . . , â4L

)T
and the aforementioned antisymmetric 4L×4L shape matrix

A = −AT that eventually allows for the computation of the steady state properties
straightforwardly.

Assuming the shape matrix to be diagonalizable, the 4L eigenvectors of A come up in
pairs of eigenvalues,

Av2j−1 = βjv2j−1, Av2j = −βjv2j, j = 1, 2, . . . , 2L. (B.20)

The rapidities βj are sorted according to Re(β1) ≥ Re(β2) ≥ · · · ≥ Re(β2L). More-
over, it can be shown that it is always possible to normalize the eigenvectors to respect
the following property (in case of degenerate rapidities, one has to choose appropriate
superpositions in the degenerate subspace, see subsection B.2.2),

vk · v` = Jk`, J =

(
( 0 1

1 0 ) ( 0 0
0 0 )

( 0 0
0 0 ) ( 0 1

1 0 )
. . .

)
. (B.21)

In the notion of reference [21] one can dervive the following statements assuming a
quadratic Hamiltonian H, linear Lindblad couplings Lµ, diagonalizability of the shape
matrix A and normalized eigenvectors according to equation (B.21):

â The non-equilibrium steady state (NESS) of a system described by equation (B.3)
is unique if and only if none of the rapidities equals zero.

â Any initial density operator ρ0 ∈ K+ converges towards the NESS if and only if
all real parts of the rapidity spectrum are strictly positive, Re(βj) > 0.

â If the NESS is unique, quadratic observables 〈wjwk〉ness are computed by

〈wjwk〉ness = δjk +
1

2

2L∑

m=1

(v2m,2j−1v2m−1,2k−1 − v2m,2jv2m−1,2k

−iv2m,2jv2m−1,2k−1 − iv2m,2j−1, v2m−1,2k) .

(B.22)
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B. Third quantization for fermions

B.2. Application to the dissipative SSH model

Having introduced and discussed main aspects of third quantization for quadratic fermi-
onic open systems with linear Lindblad operators, this section shall dive more into detail
when it comes to the implementation of the method in order to have numerical results
at hand. In this work, the focus lies on employing the procedure of section B.1 for the
computation of expectation values of particle numbers 〈nj〉ness = 〈c†jcj〉ness

.

B.2.1. Obtaining the shape matrix

As an example, consider the SSH model presented in chapter 2 subject to dissipation
with alternating gain and loss in the spirit of the complex on-site potential U2 proposed
in chapter 6,

H = −
L−1∑

j=1,3,...

(
t1c
†
jcj+1 + h. c.

)
−

L−1∑

i=2,4,...

(
t2c
†
jcj+1 + h. c.

)
, (B.23a)

Lµ =

{√
γ′c†µ, for µ = 1, 3, . . .√
γ′cµ, for µ = 2, 4, . . . ,

(B.23b)

assuming t1, t2 ∈ R. From the treatment of the model by means of exact diagonalization,
the Hamiltonian matrixH(c) in the basis of fermionic annihilation and creation operators
is already accessible,

H = c† ·H(c)c, H(c) =

(
0 −t1 0
−t1 0 −t2 . . .

0 −t2 0
. . .

. . .
. . .

)

︸ ︷︷ ︸
L×L

, (B.24)

gathering the fermionic operators in vectors c =
(
c1, c2, . . . , cL

)T
, c† =

(
c†1, c

†
2, . . . , c

†
L

)T
.

With the representation of H in the basis of cj, c
†
j it is simple to obtain the matrix

H(w) in the basis of abstract Majorana fermions (equation (B.6a)). Numerically, one
can rewrite the relation (B.5) between both bases in matrix form,

c =
1

2

(
1 −i 0 0
0 0 1 −i 0 0

0 0 1 −i
. . .

. . .
. . .

. . .
. . .

. . .

)

︸ ︷︷ ︸
L×2L

w ≡ Bw,

c† = B∗w or c†T = wTB†.

(B.25)

Inserting both relations into (B.24), comparing with (B.6a), one finds

H(w) = B†H(c)B. (B.26)
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B.2. Application to the dissipative SSH model

Before proceeding, note that H(w) obtained this way is not necessarily antisymmetric,
which is however possible due to the anticommutation relation (B.4) of abstract Majo-
rana fermions. Hence, an explicit antisymmetrization is required,

H(w) → 1

2

(
H(w) −H(w)T

)
. (B.27)

Doing the calculus for the example Hamiltonian (B.24) leads to

H(w) =
i

4




( 0 0
0 0 )

(
0 t1
−t1 0

)
( 0 0

0 0 )(
0 t1
−t1 0

)
( 0 0

0 0 )
(

0 t2
−t2 0

)
. . .

( 0 0
0 0 )

(
0 t2
−t2 0

)
( 0 0

0 0 ) . . .

. . .
. . .

. . .




︸ ︷︷ ︸
2L×2L

. (B.28)

In the same manner, the Lindblad operators (B.23b) are expressed as

Lµ =
√
γ′





l(c)Tµ c† = l(c)Tµ B∗︸ ︷︷ ︸
l
(w)
µ

w for µ = 1, 3, . . .

with l
(c)
µ,j = δµj,

l(c)Tµ c =
︷ ︸︸ ︷
l(c)Tµ B w for µ = 2, 4, . . .

(B.29)

which, in terms of the example, results in

l
(w)
1 =

√
γ′

2

(
1, i, 0, 0, . . .

)T
,

l
(w)
2 =

√
γ′

2

(
0, 0, 1,−i, 0, 0, . . .

)T
,

...

(B.30)

The last thing to deal with is the construction of the matrix M (w) parameterized by the
Lindblad operators. Arranging all Lindblad vectors in a matrix,

L(w) =



l
(w)T
1

l
(w)T
2
...




︸ ︷︷ ︸

, (B.31)

equation (B.17) can be interpreted as a simple matrix multiplication,

M (w)T = L(w)L(w)†. (B.32)

For the example model one obtains

M (w) =
γ′

4

(
( 1 −i

i 1 ) ( 0 0
0 0 )

( 0 0
0 0 ) ( 1 i

−i 1 ) . . .

. . .
. . .

)

︸ ︷︷ ︸
2L×2L

. (B.33)
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B. Third quantization for fermions

Now that all matrices required for the computation of the Liouvillean restricted to the
space of even-number Majorana fermions have been transformed into the appropriate
bases, the last task requiring some effort in order to obtain the aspired shape matrix is to
implement the transformation from Fermi maps to adjoint Hermitian Majorana maps.
The corresponding relation (B.18) translates into

ĉ =
1√
2

(
B 02L×2L

02L×2L B

)

︸ ︷︷ ︸
2L×4L

â ≡ B̂â,

ĉ† = B̂∗â or ĉ†T = âT B̂†.

(B.34)

Inserting the latter into equation (B.16) ultimately yields the shape matrix,

L+ = −2âT B̂†
(
2iH(w) +M (w) +M (w)T

)
B̂â

+ 2âT B̂†
(
M (w) −M (w)T

)
B̂∗â

= â ·Aâ,
(B.35)

which is guaranteed to be antisymmetric by another antisymmetrization,

A→ 1

2

(
A−AT

)
, (B.36)

In terms of the example model the final result reads

A =
1

2




γ′Γ1 −t1T
−t1T γ′Γ2 −t2T

−t2T γ′Γ1
. . .

. . .
. . .


 , (B.37a)

where the 4× 4 matrices Γ1,Γ2,T have been introduced for abbreviation,

Γ1 =

( −1 i −i 1
−i −1 1 i
i −1 −1 i
−1 −i −i −1

)
, Γ2 =

( −1 i i −1
−i −1 −1 −i
−i 1 −1 −i
1 i −i −1

)
, T =

(
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

)
. (B.37b)

Two remarks are in order: First of all, note that the shape matrix of the example is
a band matrix which is not that different from the Hamiltonian matrix obtained by
adding a complex on-site potential to the SSH model. Generalizing the method of
Fourier expansion presented in chapter 2, one is capable of deriving an equivalent of the
Bloch Hamiltonian – a“Bloch Liouvillean”represented by an 8×8 matrix. An interesting
question to be posed is whether a topological invariant can be assigned to the steady state
by investigation of such a matrix in a similar way than in the Hamiltonian framework.
For further information, the interested reader is referred to reference [9] presenting a
framework for topology in dissipative systems and a thesis currently in progress in the
author’s group [90]. Second, the actual purpose of obtaining NESS observables requires
dealing with the eigenvalues and appropriate eigenvectors of the shape matrix. It turns
out that for the investigated system configurations degeneracies in the rapidity spectrum
arise frequently, demanding additional treatment that is commented on now.
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B.2. Application to the dissipative SSH model

B.2.2. Dealing with degeneracies

Once the shape matrix has been obtained by following the explained steps above, the
calculation of NESS observables is almost straight ahead. In case of a non-degenerate
rapidity spectrum, the normalization convention (B.21) is straightforwardly implemented
by simple sorting and scaling of the eigenvectors. However, the degenerate case takes
some more effort.

Consider only one subspace of a k-fold degenerate eigenvalue β 6= 0 with eigenvectors
v

(+)
1 , v

(+)
2 , . . . , v

(+)
k and the equivalents v

(−)
1 , v

(−)
2 , . . . v

(−)
k belonging to the eigenvalue −β.

To simplify notation, one defines v
(+)
j ≡ |β, j〉 and v

(−)
` ≡ |−β, `〉 and introduces

〈β, j | −β, `〉 ≡ v
(+)
j · v(−)

` . (B.38)

Because of the antisymmetry of the shape matrix A = −AT it is easy to show the
following properties of the eigenvectors of the degenerate subspace,

〈β, i | β, j〉 = 0,

〈−β, i | −β, j〉 = 0, where i, j = 1, 2, . . . , k.
(B.39)

Only two vectors of different eigenvalue have nonzero overlap,

〈β, j | −β, i〉 ≡ cij, (B.40)

so one set of eigenvectors can be kept unchanged while the eigenvectors in the remaining
set have to be properly superimposed to satisfy the normalization condition (B.21).
Picking the set of eigenvectors of eigenvalue β to stay unmodified one has to find linear
superpositions

∣∣−β, j̃
〉

(distinguished by tilde indices) such that
〈
β, i
∣∣−β, j̃

〉
= δij. (B.41)

An expansion of the original eigenvectors in the sought basis,

|−β, i〉 =
∑

j

αij
∣∣−β, j̃

〉
, (B.42)

in combination with the demanded property (B.41) leads to

αij = 〈β, j | −β, i〉 = cij (B.43)

and implies

|−β, i〉 =
∑

j

cij
∣∣−β, j̃

〉
, (B.44a)



|−β, 1〉

...
|−β, k〉


 = c




∣∣−β, 1̃
〉

...∣∣∣−β, k̃
〉


 . (B.44b)
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Thus, finding valid superpositions can be implemented by computing the overlap matrix
c according to equation (B.40) followed by inverting the system of linear equations
(B.44b). The desired superpositions satisfying (B.41) are obtained by




∣∣−β, 1̃
〉

...∣∣∣−β, k̃
〉


 = c−1



|−β, 1〉

...
|−β, k〉


 . (B.45)

With that said, all requirements for the application of equation (B.22) are met.
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The approach towards extending the method of third quantization to bosonic systems
is somewhat different from the previous one outlined in appendix B. Nevertheless, the
fermionic method has been included in this work as it gently introduces the idea of
working in an operator Fock space rather than in the more familiar Fock space of second
quantization, not to mention the various results presented in section 8.2 that have been
obtained by the fermionic method.

Moreover, the generalization performed in this chapter is helpful for understanding how
a Liouville operator describing a dissipative bosonic system can be represented numer-
ically in a similar way to that presented in section 5.1. In fact, it has triggered the
generalization of the non-Hermitian DMRG code of section 5.4 to systems described by
a Liouvillean.

The following discussion is taken from references [22, 98] whose approach is motivated by
the treatment of non-dissipative bosonic systems in the framework of second quantiza-
tion. There, the representation of a basis of the many-body state, |n1, n2, . . . , nL〉 ≡ |n〉,
living on a one-dimensional lattice of length L requires two ingredients: (i) a vacuum
state |ψ0〉 = |0, 0, . . . 〉 and (ii) ladder operators {aj, a†k, j, k = 1, 2, . . . , L} obeying

canonical commutation relations [aj, a
†
k] = δjk, [aj, ak] = [a†j, a

†
k] = 0, that allow for the

creation or annihilation of a boson at a certain lattice site, which leads to the familiar
construction of the Fock basis,

|n〉 =
L∏

j=1

1√
nj!

(
a†j

)nj
|ψ0〉 . (C.1)

C.1. General aspects

In contrast to the fermionic case, the bosonic counterpart requires two vector spaces
K and K′ satisfying some properties that shall not be discussed here (see [22]). While
K contains trace class operators (density matrices) denoted as kets |ρ〉, K′ contains
unbounded operators such as a physical observable A, denoted as bras (A|, with the
expectation value of an observable (A| ∈ K evaluated on a density matrix |ρ〉 ∈ K′,

(A| ρ〉 = Tr{Aρ} . (C.2)
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Following the notion of second quantization one introduces 2L left and right annihilation
and creation operator maps b̂L, b̂R, b ∈ {aj, a†k, j, k = 1, 2, . . . , L}, whose action onto a
density matrix |ρ〉 ∈ K is defined by

b̂L = |bρ〉 ,
b̂R = |ρb〉 ,

(C.3)

which, by equation (C.2), implies the action onto an observable (A| ∈ K′,
(A| b̂L = (Ab| ,
(A| b̂R = (bA| .

(C.4)

From the set of left and right annihilation (creation) operator maps one constructs 4L
maps âν,j, â

′
ν,j, j = 1, 2, . . . , L, ν = 0, 1, as follows,

â0,j = âL
j ,

â1,j = â†Rj ,

â′0,j = â†Lj − â†Rj ,
â′1,j = â†Lj − â†Rj .

(C.5)

The latter satisfy almost canonical commutation relations,
[
âν,j, â

′
µ,k

]
= δµνδjk,[

â′ν,k, â
′
µ,k

]
= [âν,k, âµ,k] = 0.

(C.6)

At this point, note the similarity to second quantization: while the bosonic annihilation
(creation) operators annihilate the right (left) vacuum state, 〈ψ0| a†j = 0 and aj |ψ0〉 = 0,
their equivalents in third quantization left-annihilate the identity operator (1| â′ν,j and
right-annihilate the vacuum density matrix |ρ0〉 = ||ψ0〉〈ψ0|〉 such that âν,j |ρ0〉 = 0. In
complete analogy to equation (C.1) the construction of basis states |m〉 ∈ K, (m| ∈ K′
where m =

(
m0,1,m1,1, . . . ,mL,0,mL,1

)
follows,

|m〉 =
L∏

j=1

∏

ν=0,1

1√
mν,j!

(
â′ν,j
)mν,j |ρ0〉 ,

(m| = (1|
L∏

j=1

∏

ν=0,1

1√
mν,j!

(âν,j, )
mν,j ,

(C.7)

as well as the biorthogonality relation (m|m′〉 = δmm′ guaranteed by (C.6) (which is
also the case in second quantization, where only an orthogonal basis is required).

C.2. Quadratic bosonic open systems

Having introduced the mathematical foundation, especially the 4L maps (C.3) that allow
for a construction of basis states similar to the notion of second quantization, consider
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C.2. Quadratic bosonic open systems

a one-dimensional system of L lattice sites subject to dissipation, which is properly
modeled by a master equation in Lindblad form (setting ~ = 1),

dρ

dt
= −i [H, ρ] +

∑

µ

(
2LµρL

†
µ −

{
L†µLµ, ρ

})
≡ L̂ |ρ〉 . (C.8)

For the purpose of this work, the assumptions about the form of the system Hamiltonian
H are chosen to be more restrictive than in the original outline [22] in order to avoid
clutter. In fact, a quadratic Hamiltonian of the form

H =
L∑

i,j=1

a†iHijaj = a† ·Ha, (C.9a)

where a =
(
a1, a2, . . . , aL

)T
andH† = H is assumed, joined by linear Lindblad operators

parameterized as follows,

Lµ = lµ · a+ kµ · a†. (C.9b)

Then, for |ρ〉 ∈ K, the Liouvillean L̂ in (C.8) can be expressed in terms of the 4L maps

(C.5). Gathering the maps in vectors â′0 =
(
â′0,1, â

′
0,2, . . . , â

′
0,L

)T
and, in the same fashion,

â′1, â0, â1, some lengthy algebra yields [22]

L̂ = −iĤL + iĤR +
∑

µ

(
2L̂L

µL̂
†R
µ − L̂†Lµ L̂L

µ − L̂R
µ L̂
†R
µ

)

= −iâ′0 ·H â0 + iâ′1 ·H∗â1

+ â′0 · (N −M ∗) â0 + â′1 · (N ∗ −M ) â1

+ â′0 ·
(
L† −L∗

)
â1 + â′1 ·

(
LT −L∗

)
â0

− â′0 ·L∗â′0 − â′1 ·Lâ′1 + 2â′0 ·N â′1,

(C.10)

with L× L matrices M = M †,N = N † and L defined by

M =
∑

µ

lµ ⊗ l∗µ ≡
∑

µ

Mµ,

N =
∑

µ

kµ ⊗ k∗µ ≡
∑

µ

Nµ,

L =
∑

µ

lµ ⊗ k∗µ ≡
∑

µ

Lµ,

(Mµ)ij = lµ,il
∗
µ,j,

(Nµ)ij = kµ,ik
∗
µ,j,

(Lµ)ij = lµ,ik
∗
µ,j.

(C.11)

A remark about the way equation (C.10) is obtained is in order. First, recall that the
4L maps âν,j, â

′
ν,j are related to the left and right creation (annihilation) maps âL,R, â†L,R
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C. Third quantization for bosons

by equation (C.5) which translates into

âL = â0,

â†L = â′0 + â1,

âR = â′1 + â0,

â†R = â1.
(C.12)

In order to shed some more light on equation (C.10), consider each term separately, for
instance iĤR |ρ〉 arising from iρH in (C.8). Expressing the latter in terms of âL,R, â†L,R

and using equation (C.12) leads to

iρH = i
L∑

i,j=1

ρa†iHijaj

= i
∑

i,j

Hij

∣∣∣ρa†iaj
〉

= i
∑

i,j

Hij â
R
j

∣∣∣ρa†i
〉

= i
∑

i,j

Hij â
R
j â
†R
i |ρ〉

= i
∑

i,j

H∗jiâ
R
j â
†R
i |ρ〉 = iâR ·H∗â†R |ρ〉 = i (â′1 + â0) ·H∗â1 |ρ〉

≡ iĤR |ρ〉 .

(C.13)

Performing this kind of computation for each of the terms occuring in the Lindblad
equation, adding up all terms, simplifying them by using the commutation relations
(C.8) and collecting terms of identical pattern finally results in the longish expression
for the Liouvillean L̂.

A more compact form is achieved when all operators are arranged in a 4L component

vector b̂ =
(
â0, â1, â

′
0, â
′
1

)T
reading

L̂ = b̂ ·Sb̂− S01̂ (C.14)

with a constant S0 = Tr{M} − Tr{N} and the 4L× 4L matrix S,

S =

(
02L×2L −X
−XT Y

)
= ST , (C.15)

consisting of 2L× 2L matrices X,Y parameterized by the matrices of (C.11),

X =
1

2

(
iH∗ −N ∗ +M −L+LT

−L∗ −L† −iH −N +M ∗

)
, (C.16a)

Y =
1

2

(
−L∗ −L† 2N

2NT −L−LT
)

= Y T . (C.16b)

Similar to the fermionic case, the 2L eigenvalues βj of the matrix X which is assumed
to be diagonalizable in the following, are referred to as rapidities.

By using the properties of S, reference [22] expands the Liouvillean in terms of left
and right eigenvectors (so called normal master-mode maps) of the latter in order to
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C.2. Quadratic bosonic open systems

derive expressions for properties of the NESS, which is right-annihilated by L̂, that is
L̂ |ρness〉 = 0 in order to be a stationary solution of equation (C.8).

Following the notion of this reference, everything finally reduces to solving for a complex
2L × 2L symmetric matrix Z = ZT satisfying a continuous Lyapunov or Sylvester
equation,

XTZ +ZX = Y . (C.17)

A unique solution of equation (C.17) is known to exist if there are no rapidities βj, βj′
that add up to zero, βj + βj′ = 0. Since X is unitary similar to a real matrix, the
eigenvalues βj always come in complex conjugate pairs βj, β

∗
j , requiring all rapidities

to have a non-vanishing real part Re(βj) 6= 0 in order to achieve the condition for the
solution of the continuous Lyapunov equation to be unique.

Contrary to the fermionic case, the existence of a NESS in a bosonic system is not
guaranteed and depends on the choice of Lindblad operators as the system is not finite-
dimensional and may never stop filling up with excitations from the reservoir (infinite
amplification). However, if this is not the case, or equivalently if Re(βj) > 0 for all j,
the following statements hold (see reference [22] for a more complete listing):

â A unique NESS exists and is right-annihilated by the Liouvillean, L̂ |ρness〉 = 0.

â Expectation values of two-point correlators 〈: bibj :〉ness = Tr{: bibj : ρness} of the

NESS, where : ◦ : denotes normal ordering and b =
(
a, a†

)T
, are easily read off

from the matrix Z,

〈: bibj :〉ness = Zij. (C.18)

To conclude, some comments on the implementation of the presented method as well as
the extraction of physical observables of the NESS, especially the computation of lattice
site occupations 〈a†jaj〉ness

, are in order. Generally, it does not take much effort to extract
the Hamiltonian matrix H and Lindblad vectors lµ, kµ (see equation (C.9)) of a certain
system setup. Next, those quantities are used to construct the matrices M ,N ,L (see
(C.11)) followed by the build-up of X,Y (equation (C.16)). Assuring all assumptions
made on the rapidities βj to hold, one then solves equation (C.17) for Z to yield the

desired observable expectation values as 〈a†jaj〉ness
= ZL+j,j. There are already existing

standard algorithms to solve equations of such a form. For instance, the Python library
SciPy [99, 100] provides a solver method scipy.linalg.solve sylvester.
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D. Generalized Gell-Mann matrices

This appendix is devoted to further pushing the performance and reliability of the non-
Hermitian DMRG algorithm presented in section 5.4 that targets the steady state of a
dissipative system described by a master equation in Lindblad form.

So far, the local basis for a single-site density matrix allowing for at most D − 1 par-
ticles is spanned by the standard basis |i〉〈j|, where i, j = 0, 1, . . . , D − 1. Such a
D-dimensional quantum system is also referred to as qudit. Besides the fact that all op-
erators required for the construction of the Liouville operator are already at hand from
the Hermitian DMRG algorithm, requiring only little adaption of the code, the basis is
trace-orthogonal,

TrH

{
(|i〉〈j|)† |k〉〈`|

}
= δikδj`, (D.1)

where the trace is performed over the basis of the qudit Hilbert space H . This is a
practical property when it comes to evaluating overlaps or computing reduced density
operators like in the truncation procedure of the algorithm.

The algorithm itself allows for complex expansion coefficients cij ∈ C leading to (possibly
non-physical) operators in the single-site’s Liouville space,

ρ =
∑

i,j

cij |i〉〈j| . (D.2)

It is essential to note that the space of expansion coefficients can easily be reduced by
the Hermiticity of ρ implying cij = c∗ji. However, such a restriction cannot be straight-
forwardly implemented, because handing over such kind of information to the large
sparse eigensolver employed during the optimization of the steady state density matrix
is difficult.

This problem can be overcome by choosing a basis that is Hermitian, given by the
generalized Gell-Mann matrices (GGM). For a single qudit, whose Liouville space is
spanned by the standard basis |j〉〈k| with j, k = 0, 1, . . . , D − 1 the D2 − 1 generalized
Gell-Mann matrices read as follows:
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D. Generalized Gell-Mann matrices

â D(D − 1)/2 symmetric GGM:

Λjk
(s) = |j〉〈k|+ |k〉〈j| , 1 ≤ j < k ≤ D. (D.3a)

â D(D − 1)/2 antisymmetric GGM:

Λjk
(a) = −i |j〉〈k|+ i |k〉〈j| , 1 ≤ j < k ≤ D. (D.3b)

â D − 1 diagonal GGM:

Λ` =

√
2

`(`+ 1)

(∑̀

j=1

|j〉〈j| − ` |`+ 1〉〈`+ 1|
)
, 1 ≤ ` ≤ D − 1. (D.3c)

For a qubit (D = 2), the GGM (D.3) reduce to the familiar Pauli matrices. In fact, the
GGM are a generalization of the qubit case to arbitrary dimension.

Including the identity matrix 1, the set of GGM forms a basis that is Hermitian and
trace-orthogonal in the sense of equation (D.1) with only a little deviation: if an arbitrary
enumeration is assigned to the elements of the basis {{Λjk

(s)}, {Λ
jk
(a)}, {Λ`},1} such that

it reads {Ai, i = 1, 2, . . . , D2}, the trace-orthogonality translates into

TrH

{
Ai†Aj

}
= TrH

{
AiAj

}
= Dδij. (D.4)

Proving this statement is straightforward and explicitly worked out in reference [101].
Note that the constant does not cause trouble for the steps of DMRG to work properly.

Reference [101] also provides a useful relation for the expansion of standard basis ele-
ments |j〉〈k| in GGM,

|j〉〈k| =





1
2

(
Λjk

(s) + iΛjk
(a)

)
, for j < k

1
2

(
Λkj

(s) − iΛkj
(a)

)
, for j > k

−
√

j−1
2j

Λj−1 +
D−j−1∑
n=0

1√
2(j+n)(j+n+1)

Λj+n + 1
D
1, for j = k.

(D.5)

Equation (D.5) simplifies the procedure of expressing operators and density matrices in
the total Liouville space, which is composed of products of single-site Liouville spaces.

The performance of the non-Hermitian DMRG algorithm presented in section 5.4 can
be improved by expanding all operators and density matrices in such a basis. To see
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this, reconsider the single-site density matrix of equation (D.2), but now expanded in
the basis of {Ai},

ρ =
∑

i,j

cij |i〉〈j| =
∑

i

c̃iA
i, (D.6)

with c̃i (i = 1, 2, . . . , D2) denoting the expansion coefficents of ρ in the GGM basis.

Consequently, the Hermiticity of ρ and the basis, Ai
†

= Ai, implies c̃∗i = c̃i and thus c̃i ∈
R. Therefore, once all operators and Liouvilleans have been expressed in the GGM basis,
it is sufficient to only target states in the sparse eigensolver with entirely real coefficients.
Alternatively, this condition can be employed as an assertion for guaranteeing the target
density matrix to be Hermitian.

The idea of using GGM as a practical basis, in which the density matrix of a system
can be expressed, has already been realized in an MPS-based formalism to optimize the
steady state of a dissipative system [83]. However, in this reference an initial state is
evolved in time by means of MPS algorithms until it has converged towards the steady
state.

There are also other MPS-based formalisms targeting steady states by time evolution [69,
70] or directly [72] (and the algorithm presented in this work) besides further variational
principles [71] for obtaining steady state properties of dissipative quantum many-body
systems.

Assuring Hermiticity of the density matrix of the steady state is one important challenge
in order to obtain physically valid results. Another crucial property of the density matrix
is positivity, which turns out to be either difficult to impose on the target state ansatz
(as is the case for the code presented in this work) or computationally more costly (see
[72] and references within).

At least, by introducing operators in the GGM basis, the algorithm of section 5.4
can be extended such that the problem of accidentally targeting non-Hermitian den-
sity matrices can be circumvented. Nevertheless, as the algorithm’s output is con-
sistent with results obtained from the QuTiP [102, 103] library’s steady state solver
qutip.steadystate.steadystate for small systems and does not produce physically coun-
ter-intuitive data for larger systems, the author leaves this extension of the code for
future work considering it to already perform fine for most scenarios investigated in this
work.

147

http://qutip.org/index.html
http://qutip.org/docs/3.0.0/guide/guide-steady.html




Bibliography

[1] M. Nakahara. Geometry, topology and physics. CRC Press (2003).

[2] K. von Klitzing. The quantized Hall effect. Rev. Mod. Phys. 58, 519–531 (1986).

[3] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys.
82, 3045–3067 (2010).

[4] Weimann S., Kremer M., Plotnik Y., Lumer Y., Nolte S., Makris K. G., Segev
M., Rechtsman M. C., and Szameit A. Topologically protected bound states in
photonic parity-time-symmetric crystals. Nat. Mat. 16, 433–438 (2017).

[5] A. Stern and N. H. Lindner. Topological Quantum Computation — from basic
concepts to first experiments. Science 339, 1179–1184 (2013).

[6] V. Lahtinen and J. K. Pachos. A short introduction to topological quantum com-
putation. SciPost Phys. 3, 021 (2017).

[7] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig. Topological insulators
and superconductors: Tenfold way and dimensional hierarchy. N. J. Phys. 12,
065010 (2010).

[8] S. Diehl, E. Rico, M. A. Baranov, and P. Zoller. Topology by dissipation in atomic
quantum wires. Nat. Phys. 7, 971 (2011).

[9] C.-E. Bardyn, M. A. Baranov, C. V. Kraus, E. Rico, A. İmamoğlu, P. Zoller, and
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