
Institute for Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Textured Surfels Visualization of
Multi-Frame Point Cloud Data

David Schütz

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Thomas Ertl

Supervisor: Patrick Gralka, M.Sc.
Tobias Rau, M.Sc.
Dr. Guido Reina

Commenced: June 2, 2020

Completed: January 4, 2021

Abstract

Laser scanning devices enable the capturing and storage of scenes and objects in the real world.
The corresponding point datasets approximate surfaces where the laser beam of the scanner was
reflected. Already today, there is a wide field of applications that visualize point clouds, ranging
from preservation of cultural heritages to land surveying. With advances in technology, measuring
techniques became increasingly precise and accurate. The associated growth of the captured point
clouds offers many opportunities but also challenges. Visualizing billions of points can easily
surpass the memory capacities of commercial computers. Furthermore, render times can increase,
hindering the dynamic exploration and analysis.

In this work, we present a processing pipeline that reduces the complexity of point clouds. As a
first step, planar regions of a point cloud are approximated by rectangles. Subsequently, calculated
textures and displacement maps allow a more realistic representation of the classified points through
rectangles. The generated data is stored in a data structure that supports different level of detail
representations based on the camera position, as well as efficient culling of invisible points. Lastly,
the data structure is rendered using the OSPRay render engine.

In an evaluation, different parameter configurations of our processing pipeline are examined. The
collected data is analyzed in terms of render time, memory consumption, and image quality.
Furthermore, all results are compared with a sphere-based reference method. Overall, a notable
saving in memory consumption can be observed. Meanwhile, image quality and rendering times
provide comparable results to the reference method, especially for distant to medium viewing
distances. However, the achieved compression rate is dependent on the spatial properties of the
point cloud. Datasets with large planar regions allow the consolidations of a high amount of points
by a small number of rectangles. Meanwhile, regions with high curvature can cause overlapping
geometry and a lower point reduction.

All in all, the presented approach enables the rendering of point clouds at different levels of detail.
Approximated geometric shapes reduce memory consumption while preserving render times and
image quality. Thus, complex point clouds can be visualized more efficiently on commercial
computer systems.

3

Kurzfassung

Lasermessgeräte ermöglichen das Aufnehmen und Speichern von Szenen und Objekten in der realen
Welt. Die zugehörigen Punktdatensätze approximieren Oberflächen, an welchen der Laserstrahl des
Scanners reflektiert wurde. Bereits heute gibt es einen weiten Bereich an Anwendungen, welcher
von der Erhaltung von kulturellem Erbe bis zur Landvermessung reicht. Mit technologischen
Fortschritten wurden die Messtechniken immer präziser. Das verbundene Wachstum an Größe
der aufgenommenen Punktwolken bietet viele Möglichkeiten, aber auch Herausforderungen. Das
Visualisieren von Milliarden an Punkten kann schnell die Speicherkapazitäten von kommerziellen
Computern übersteigen. Darüber hinaus kann die Renderzeit steigen, was die dynamische
Exploration und Analyse erschwert.

In dieser Arbeit präsentieren wir eine Verarbeitungspipeline, welche die Komplexität einer Punk-
twolke reduziert. In einem ersten Schritt werden planare Regionen in einer Punktwolke durch
Rechtecke approximiert. Anschließend ermöglichen berechnete Texturen und Displacement Maps
eine realistischere Repräsentation der klassifizierten Punkte durch Rechtecke. Die erzeugten Daten
werden dabei in einer Datenstruktur gespeichert, welche verschiedene Detailgrade basierend auf der
Kameradistanz unterstützt, sowie auch nicht sichtbare Punkte effizient entfernt. Zuletzt wird die
Datenstruktur in der OSPRay Engine gerendert.

In einer Evaluation werden verschiedene Parameterkonfigurationen unserer Verarbeitungspipeline
untersucht. Die gesammelten Daten werden auf Renderzeiten, Speicherverbrauch und Bildqualität
analysiert. Darüber hinaus werden alle Ergebnisse mit einer auf Sphären basierenden Referenzmeth-
ode verglichen. Insgesamt können beachtenswerte Einsparung im Speicherverbrauch ausgemacht
werden. Währenddessen liefern die Resultate für Bildqualität und Renderzeiten, besonders für
entfernt und mittlere Betrachtungsabstände, vergleichbare Ergebnisse mit der Referenzmethode.
Jedoch ist die erreichte Kompressionsrate von den räumlichen Eigenschaften der Punktwolke
abhängig. Datensätze mit großen planaren Regionen ermöglichen das Zusammenfassen von großen
Punktmengen durch eine geringe Anzahl an Vierecken. Währenddessen können Regionen mit hoher
Krümmung überlappende Geometrie und eine geringere Reduktion an Punkten verursachen.

Alles in allem ermöglicht der präsentierte Ansatz das Rendern der Punktwolken in verschiedenen
Detailstufen. Die approximierten geometrischen Formen reduzieren den Speicherverbrauch, während
Renderzeiten und Bildqualität bewahrt werden. Dadurch können auch komplexe Punktwolken auf
kommerziellen Computern effizient dargestellt werden.

4

Contents

1 Introduction 11

2 Foundations 13
2.1 Bounding Volume Hierarchy . 13
2.2 Kd-Tree . 14
2.3 Pkd-Tree . 14
2.4 Nearest Neighbor Search . 16
2.5 Principal Component Analysis . 16
2.6 Point Cloud Segmentation . 17
2.7 Region Growing . 18
2.8 DBScan . 19

3 Related Work 21
3.1 Rendering of Large Point Clouds . 21
3.2 Surface Reconstruction . 22

4 Methodology 25
4.1 Observations . 25
4.2 Overview . 27
4.3 Geometric Shape Processing . 28
4.4 Data Structure . 29

5 Implementation 33
5.1 Used Technology . 33
5.2 Overview . 33
5.3 Normal Estimation . 34
5.4 Pointcloud Segmentation . 36
5.5 Texture Generation . 38
5.6 Tessellation . 40
5.7 Data Structure . 41

6 Evaluation 43
6.1 Datasets . 43
6.2 Parameter Space . 43
6.3 Preprocessing . 45
6.4 Runtime Performance . 49
6.5 Memory Usage . 51
6.6 Image Quality . 55

5

7 Discussion 59
7.1 Runtime Performance . 59
7.2 Memory Requirements . 61
7.3 Image Quality . 61

8 Conclusion and Outlook 65

Bibliography 67

A Evaluation 73

6

List of Figures

2.1 Spatial splits of a kd-tree and a pkd-tree . 15

4.1 Heatmap showing point density in a LiDAR dataset 26
4.2 Processing pipeline of a point cloud . 28
4.3 Process of creating a texture from point color data 29
4.4 Level of detail data structure of our approach 31

5.1 Overview of all implemented modules as well as their connections 35
5.2 Impact of small and large search radii for the estimation of normals 36
5.3 Four different properties to differentiate between adjacent surfaces 37
5.4 Using the two Principal Components to calculate uv-coordinates of a texture . . . 39

6.1 Result of the implemented point cloud segmentation method given two different
parameter configurations . 46

6.2 Comparison of two textures using different parameters 48
6.3 Processing of unclassified Points . 49
6.4 Render times for the graffiti dataset using different processing parameter values . 50
6.5 Average time to render a frame for the graffiti dataset using different preprocessing

parameter values . 52
6.6 Memory usage of our method for the graffiti dataset 53
6.7 Memory usage of our method for the bike dataset 54
6.8 Bar chart showing SSIM values comparing all configuration of our approach with a

reference image . 56
6.9 Differences between the reference render method and our approach showing the

bike dataset . 57
6.10 Comparison of the render results of a reference method and our approach for the

graffiti dataset . 58

A.1 SSIM value of the graffiti dataset visualized by a bar chart 73

7

List of Tables

6.1 Summary of all parameters used in the evaluation 44
6.2 Results of the implemented region growing algorithm with different parameter values 47

A.1 Render times of the graffiti dataset . 74
A.2 Render times of the bike dataset . 75
A.3 Memory consumption of the graffiti dataset . 76
A.4 Memory consumption of the bike dataset . 76
A.5 SSIM values of the graffiti dataset . 77
A.6 SSIM values of the bike dataset . 78

9

1 Introduction

Rendering large particle datasets is an important and highly studied field in computer visualization.
Finding applications across and beyond scientific fields, point datasets can be acquired in different
ways like per simulations or measuring devices. Common scanning devices that capture real-world
scenes can be based on high-frequency light pulses. These laser scanners gather datasets containing
point data. To do so, they scan objects in the real world with a high precision and store the depth
position of each point. The resulting set of points approximates the surfaces of the observed
environment. Merging multiple of these datasets from different angles and viewing distances results
in an increasingly complex and dense point cloud. This opens up a wide range of use cases, whether
it is the preservation of historical monuments, support in crime scene analysis, or quality control of
technical components.

Visualizing a point dataset bears many challenges. Modern scanning devices can capture large point
clouds including up to billions of points. Besides the three dimensional position, each point can
contain additional information like color or velocity depending on the application area. This results
in large datasets often surpassing the memory capacity of a graphics card or even the random-access
memory. Furthermore, often the sheer computational power is too small to display billions of
points simultaneously. Therefore, simply rendering each point as a sphere or point primitive quickly
reaches limitations based on the size of the point cloud. The resulting high render times lead to a
more cumbersome dynamic exploration of the point data. In addition to technical requirements,
visualizing the whole point cloud has less impact on the resulting image quality as the camera
distance increases. If more than one point is projected to a pixel, the user can no longer distinguish
between the individual points. Since modern scanning devices achieve a high point frequency,
measuring points less than a millimeter away from each other. This can result in thousands of points
being summarized in one pixel. Additionally, when being zoomed in, large areas of the point cloud
can be outside of the viewport and therefore not visible to the user. Varying point density and noise
hide additional challenges in rendering and analyzing the data. Thus, preprocessing and simplifying
the dataset is a necessary task, enabling the visualization of large point clouds on commercially
available computer systems.

Traditional rendering approaches rely on a subsampling of the point cloud or the reconstruction of
the point data to a triangulated mesh. Furthermore, spatial data structures can be used to accelerate
the occlusion of invisible points. However, finding representatives reducing processing time and
memory requirements while preserving image quality remains a challenging task.

In this work, a different hybrid approach will be explored. Rendering point cloud data via surface
elements so-called surfels. This is achieved by summarizing sets of points through geometry
elements. Here, a point cloud segmentation method enables the detection of planar surfaces in the
point cloud. Subsequently, for each classified plane, a rectangle is approximated in the point cloud.
To enable a more realistic representation, the color data of the classified points are combined into

11

1 Introduction

textures. Furthermore, a level of detail is provided by displacement maps which incorporate the
deviations of points from the approximated planes. Therefore, depending on the viewing distance,
different level of detail representations can be rendered using the introduced data structure.

In the course of this work, we collaborated with the company FARO, in particular with Dr. Sebastian
Grottel. Dr. Grottel provided various datasets for the evaluation as well as expert opinion.

Thesis Structure

The upcoming chapters are structured as follows:

Chapter 2 – Foundations: This chapter provides technical fundamentals on which the upcoming
chapters are based on. Spatial data structures allowing the storage of point and geometry data
are introduced and explained. Additionally, the basics and methods for an efficient finding of
adjacent points are introduced. Finally, existing segmentation methods for classifying points
are presented. These methods are later used to find point representatives as well as to further
spatially classify point data.

Chapter 3 – Related Work: Existing approaches that allow the efficient visualization of point
clouds are presented. Additionally, details on their procedure and implementations are
provided. Furthermore, we outline the differences and distinctions to our proposed approach.

Chapter 4 – Methodology: An overview of our approach is introduced based on previously made
observations. The basic steps and foundations of our approach are explained, leading from a
point cloud to a data structure, allowing the dynamic visualization of the processed data.

Chapter 5 – Implementation: In this chapter, the implementation of the previously presented
approach is explained. Algorithms as well as used technologies are illustrated in more detail.

Chapter 6 – Evaluation: To compare different preprocessing configurations the implemented
approach is executed and measured for a predefined parameter space. Runtime, memory
consumption, and image quality are examined. Subsequently, the different configurations are
compared to each other as well as to a reference method.

Chapter 7 – Discussion: We examine and analyze the previously presented results. The advantages
and disadvantages as well as the limitations of our approach are outlined.

Chapter 8 – Conclusion and Outlook: In this chapter, the fundamental steps, as well as the most
important obtained results and information of this work are summarized. In a subsequent
outlook, possible extensions and improvements are presented.

12

2 Foundations

This chapter presents methods and topics on which this work is based on. First spatial data structures
like Bounding Volume Hierarchies and kd-trees are explained. The subsequently presented pkd-tree
specializes in the efficient storage and processing of particle datasets. Afterward, clustering
algorithms are explained, which segment a point cloud in different groups based on point properties.
Last, we illustrate the Principal Component Analysis, which enables the dimensional reduction
of a point dataset and finds Principal Component vectors representing directions with the highest
variance.

2.1 Bounding Volume Hierarchy

A Bounding Volume Hierarchy (BVH) is a tree structure containing bounding boxes of objects in
space. BVHs are used for a wide variety of tasks. Clark [Cla76] proposed to use a BVH to speed up
processing times when rendering objects in space from an arbitrary viewpoint. Usually, leaf nodes
of a BVH contain geometric primitives. Those leaf nodes are grouped and summarized by parent
nodes with greater box values bounding the bounding boxes of all the child nodes. A popular use
case is the acceleration of ray primitive intersections in ray tracing algorithms.

Different strategies to construct a BVH-tree exist. Most notable top-down, bottom-up, and insertion
methods. Top-down algorithms [KK86] start with the root node of the tree and then split up the
bounding boxes until all primitives in the leaf nodes are reached. Bottom-up approaches [GHFB13;
WBKP08] start with all primitives and subsequently merge them until the root node is constructed.
Often a hierarchical clustering method is used in these approaches to guarantee a better tree quality.
Lastly, insertion methods [BHH14; GS87] create a BVH incrementally, inserting one node after
another into the tree. This has the advantage that not all primitives need to be stored in memory at
the same time.

Finding good partitions is an important task when building a BVH-tree. Inadequate partitioning
metrics can cause unnecessarily many intersection tests caused by overlapping bounding boxes.
A simple approach is to partition along the axis with the longest range between two centroids of
all bounding boxes [KK86]. The surface area heuristic [GS87] is a popular partitioning scheme
optimizing the tree for ray intersection tests. The heuristic minimizes the area of regions with a
dense vertex distribution. Therefore, the probability of a random ray hitting this area is reduced
avoiding further costly intersection tests with many nodes. Originally the proposed concept of
Goldsmith and Salmon [GS87] created a BVH based on an insertion strategy. However, many
state-of-the-art BVH construction methods use SAH together with a top-down approach [MB90;
Wal07].

13

2 Foundations

Traversing a BVH starts at the root node where a ray or another object is intersected with the
bounding box of the node. If the ray hits the bounding box, the children of the nodes are traversed
and the intersection is tested again. When the ray misses the bounding box the node and all its
children can be neglected. Therefore, the tree traversal ends when either a leaf node is hit or all
intersection tests miss. Since bounding boxes can overlap, the tree is traversed on multiple paths.
All paths have to be processed in the algorithm until termination as there is always a possibility of
finding a better fit.

2.2 Kd-Tree

Being invented in 1975 by Bentley [Ben75], the kd-tree is a multidimensional binary search tree.
The spatial data structure finds use in nearest neighbor search or as an acceleration structure in
computer graphics among other fields. In short, a kd-tree is a binary space partitioning (BSP) tree
[FKN80] recursively dividing space into two convex subsets. In addition to a BSP tree, a kd-tree
requires the intersecting hyperplanes subdividing the data to be aligned to the axes of the coordinate
system.

Every level of a kd-tree splits the data along a cutting dimension. Bentley et al. proposed to repeat
each dimension equally in a round-robin order. For this all nodes of the tree store one data point
representing the split in the coordinate of the cut dimension. An illustration of a kd-tree is shown in
Figure 2.1 a). A kd-tree is explored recursively. Traversing to the left child means finding data
points with smaller values in the dividing dimension. Traversing to the right results in higher
values.

2.3 Pkd-Tree

The pkd-tree, which was introduced by Wald et al. [WKJ+15], is a data structure based on the kd-tree
supporting the rendering of large particle datasets. In their work Wald et al. distinguish between
balanced and spatial kd-trees. Spatial kd-tree splits are determined through space usually dividing
the tree into spatially equal subtrees. However, the resulting tree is oftentimes unbalanced which
represents a disadvantage of this method. Balanced kd-trees divide the dataset into equal-sized
subsets. This results in a tree being completely balanced except for its leaf nodes. Subsequently, the
kd-tree can be stored without any additional memory overhead by simply sorting the data points.
However, the tree can not be adapted to store other geometric primitives than spheres or points.
Similar to a BVH, the kd-tree can be build using the surface area heuristic, optimizing ray primitives
intersections.

Pkd-trees are based on balanced kd-trees. In contrary to the original algorithm from Bentley
[Ben75], the respective dimensions splitting the tree are not chosen in a round-robin procedure.
Instead, the dimension with the maximum extent of the bounding box is divided. Traversing a
pkd-tree is alike to traversing a BVH-tree. Given two subtrees one can compute their bounding
boxes by clipping the bounding box of the parent node at the intersecting line of the node. However,
the radius of the particle stored in a node has to be considered. Therefore, a maximum radius is
added to both bounding boxes. This results in two conservative bounding boxes overlapping each
other at the center of the node’s particle by a length of two times the maximum radius.

14

2.3 Pkd-Tree

P2,bbox left P2,bbox right

P3,bbox rightP3,bbox left P1,bbox high

P1,bbox low

P2,bbox left
P2,bbox
 right

P3,
bbox
left

P3,bbox right

P3 P3

P1P1

P2

P1,bbox high

P1,bbox low

a) b) c)

Figure 2.1: Particles stored in two different spatial structures. Image a) shows the spatial seg-
mentation of a kd-tree. Here, the data structure is divided at splitting points, which
are stored in the respective node. The points divide space parallel to the coordinate
axes in for example a round-robin schedule. A pkd-tree in b) splits the data along the
coordinates of single points. Additionally, a threshold value is added creating two
conservative bounding boxes overlapping in the middle, as can be seen in c). Note that
for presentation purposes a small epsilon value is added to the shown bounding boxes
preventing visual overlap. Figures b) and c) are adapted from Wald et al. [WKJ+15].

Additionally, nodes contain exactly one splitting point. Correspondingly, the tree can be easily
recursively traversed by testing the bounding boxes of both child nodes. An example of the maximum
radius threshold can be seen in Figure 2.1 b). The associated conservative bounding boxes are
shown in Figure 2.1 c). When the left bounding box is hit, the left child is traversed, or alternatively
the right child when its bounding box is intersected. If the tested value lies in the area where both
bounding boxes overlap, both children have to be traversed.

In practice, several adaptations can be done to optimize tree traversal, especially regarding ray
intersections. First, the pkd-tree can be traversed in a front to back order allowing early termination
when an intersection is found. However, it has to be taken into account, that the pkd-tree can have
overlapping bounding boxes. Therefore, all sub-trees being recursively traversed at the same time
need to continue their traversal, since they may find a closer intersection. In addition, computing the
ray intersection with the whole bounding box each time results in unnecessary calculations. When
moving from a node to its child only one of the six sides of the bounding box actually changed.
Hence, only this side has to be ray intersection tested again.

In an evaluation Wald et al. [WKJ+15] compared the pkd-tree with an Embree quad-BVH-tree.
Especially in memory requirements, the pkd-tree surpasses the BVH-tree since no additional space
for pointers is needed. Therefore, the pkd-tree requires more than five times less memory. In
contrast, the BVH-tree is 1.48 times faster, especially for close-up views, whereas this advantage is
negated for farther viewing distances.

15

2 Foundations

2.4 Nearest Neighbor Search

The nearest neighbor search finds all surrounding points of a query point in a dataset. There
are different types of nearest neighbor search, changing search extent, and the size of the results.
Elseberg et al. [EMSN12] mentions three different types of nearest neighbor queries.

K-nearest neighbor (k-nn) search, described by Cover and Hart [CH67] finds a number of k points
that are closest to the query point. Especially in cases when an exact number of points is needed,
k-nn search is of advantage. However, if applied in regions with sparse points, the k-nn search can
lead to unwanted results. This is caused by far away points, which are included since the query
point does not have many neighbors. Fixed radius nearest neighbor search solves this problem by
returning all nearest neighbors lying in a fixed radius around the query point. With this method,
the distance between points can not surpass a given threshold. Nevertheless, the number of found
points is not fixed anymore. Sparse regions may result in little to no points, while dense regions can
return many points, resulting in higher computation costs. The third query type, which is called
ranged search combines a fixed radius nearest neighbor search with a k-nn search. Here, a number
of k neighbors are searched in a region limited by a radius. However, according to Elseberg et al.
[EMSN12] many nearest neighbors searching libraries do not provide this search strategy. Another
notable query type is the approximate nearest neighbor search. This approach, as presented by Arya
et al. [AMN+98], trades accuracy for efficiency. While approximate nearest neighbor search may
not find all nearest neighbors of a query point, it exceeds other approaches in computation speed
and memory savings.

Besides different search strategies, the nearest neighbor search can be implemented using various
data structures. Most approaches use spatial trees like a kd-tree or octree. Meanwhile, the
approximate nearest neighbor search relies on local sensitive hashing.

2.5 Principal Component Analysis

According to Jolliffe and Cadima [JC16], Principal Component Analysis (PCA) is a widespread and
one of the oldest dimension reduction methods. Given a k-dimensional dataset PCA can reduce
the dimensionality by projecting them to Principal Components. Principal Components are linear
vectors maximizing the variance of the data in their direction. This is done by fitting a hyperplane
onto the dataset that approximates the position the data points. Besides dimension reduction PCA
additionally finds use in other tasks like approximating normal vectors, finding an eigenbasis, and
describing the planarity of points.

Since PCA is sensitive to variances between different measurement units it is common to standardize
each data point at the beginning. This is done by transforming the dataset to the center and
dividing each value by its respective standard deviation. In the second step, the covariance matrix
is computed. The covariance matrix is a symmetric squared matrix describing the variance and
covariance between each variable. On the diagonal of the matrix, the variance along each axis of
the datasets is described. Other values are the covariance between the two linear combinations.
Therefore, the covariance indicates the correlation between two variables.

16

2.6 Point Cloud Segmentation

Lastly, eigenvalues and eigenvectors of the covariance matrix are calculated. Since the covariance
matrix describes the variance between each variable, the eigenvector with the largest eigenvalue
maximizes the variance of the dataset along its direction. Note, since the covariance matrix is
symmetric all eigenvectors of the matrix are orthogonal. Thus, they can build a new orthogonal
eigenbasis reducing the dimensionality of the datasets by a chosen number of principal components.

2.6 Point Cloud Segmentation

Before finding use in 3D point data many segmentation methods have their origin in 2D image
processing. Image segmentation is defined as ”a process of partitioning pixels of an image to
different regions based on specific information, which are normally intensity, texture or color” Liang
et al. [LZB14, p. 847]. The same principle can be applied to 3D point data. Points in 3D space are
clustered in different local regions sharing the same attributes. However, points do not lie equally
spaced on a grid. Contrary to images, points in a point cloud can have varying distances to their
neighbors, building dense and sparse regions. Thus, other attributes like the normal or curvature at
each point gain more importance for the segmentation of 3D data.

Point cloud segmentation methods can be categorized into different groups. Nguyen and Le [NL13]
distinguish between edge-based [BLHH; WA03], region-based [NBW12; VTLB15], attributes-based
[BL08; VD01], model-based [GG04; SWK07], and graph-based methods [GF09; SRO10].

Edge-based methods detect edges splitting the point cloud data into different regions. Then areas
lying in between these edges are classified. By searching the neighborhood and including points with
similar attributes, region-based algorithms find clusters in a dataset. More precisely, a distinction is
made between seeded and unseeded region growing methods. Seeded-region approaches start at a
seed point, where a local region incrementally grows until all bounding points are found. Afterward,
the process is repeated for the next seed point if the point has not already been classified. Unseeded
methods use a top-down approach by first classifying all points to the same cluster and then dividing
the region into smaller ones. In the following sections, a seeded region growing algorithm is
explained in more detail, since the algorithm to find planar regions in this work is based on it.

Attribute-based methods use clustering algorithms based on precomputed attributes for each point.
Meanwhile, graph-based methods arrange data points in a graph, with for example neighboring
points sharing an edge. Subsequently, based on different graph operations cluster can be identified.
At last, model-based algorithms try to fit simple mathematical shapes matching the point cloud. In
a following step, particles are classified as shapes.

Furthermore, Xie et al. [XTZ20] distinguish between Point Cloud Segmentation algorithms, like
the above-mentioned methods, and Point Cloud Semantic Segmentation. Point Cloud Semantic
Segmentation is a topic of 3D Point Cloud segmentation growing popularity over the last years.
Here, additional semantic information for each point, usually using machine learning approaches, are
detected and stored. Works like PointNet [QSMG17] can classify and segment semantic structures
like mugs, tables and, chairs in a 3D point cloud using a deep learning approach.

17

2 Foundations

2.7 Region Growing

In "Robust Segmentation in Laser Scanning 3D Noisy Point Cloud Data", Nurunnabi et al. [NBW12]
present a seeded region growing algorithm. Notable compared to other algorithms is the seed point
selection based on their curvature and the comparison between PCA and robust PCA [HRB05] for
normal and curvature calculation. In addition, region growing is applied based on three different
criteria. These criteria are the orthogonal distance, euclidean distance, and the angle between
normal vectors.

In the first step, the curvature and normal vector are computed for each point in the point cloud.
This is done by either using PCA or robust PCA. When calculating the covariance matrix on a set of
nearest neighbor points, a 3D plane is fitted into this subset of data. Here, the two eigenvectors
with the biggest eigenvalues point in the two directions of the highest variance, building two
perpendicular tension vectors of the plane. Meanwhile, the third eigenvector points in the direction
of the horizontal variance of the fitted plane. Therefore, the third eigenvector can be used as an
approximation of the normal vector. Depending on the used query type for the nearest neighbor
search the fitted plane is averaged over more or fewer data points. Nurunnabi et al. use k-nn search
for their normal estimation, arguing that their datasets have varying point density. The planarity or
also called curvature 𝜎 of a point 𝑝𝑖 is calculated as followed: 𝜎(𝑝𝑖) = _0

_0+_1+_2
[PGK02]. Here

_0 is the smallest of the three eigenvalues. If _0 has a high value it implies a high variance towards
the direction of the normal. This in turn indicates an uneven surface.

In a following step, region growing is performed on the point cloud. For this, the algorithm starts at
the point with the least curvature. This point is pushed into a set of seed points, which is empty at
the beginning. In the next step, the first point in the set of seed points is removed. If the curvature
value of the point surpasses a fixed threshold value and the point is not classified yet, a k-nn search
is performed. For each nearest neighbor point, three criteria are evaluated. If the criteria are met,
the point is classified to the current cluster. To reduce noise and outlier data, the orthogonal distance
(OD) of all neighboring points 𝑝𝑖 is calculated by: OD(𝑝𝑖) = (𝑝𝑖 − 𝑝)𝑇 .�̂� with 𝑝 being the median
point and �̂� being the unit normal of the fitted plane. For the second criteria, the euclidean distance
from the current point to the seed point is calculated. The threshold distance is the median of the
distance between the seed point and all its neighbors. At last, the angle \ between the seed point
normal 𝑛𝑖 and current point normal 𝑛 𝑗 is tested against a given threshold. The angle is calculated as
follows: \𝑖 𝑗 = arccos

��𝑛𝑖𝑇 𝑛 𝑗

��. If all requirements are met the point 𝑝𝑖 is pushed into the set of seed
points. Afterward, nearest neighbor search is performed on the next point in the set of seed points.
This process is repeated until the set of seed points is empty. If the number of all points classified to
the current cluster exceeds a minimum quantity, the current cluster is accepted. Otherwise, the seed
points are classified as noise. Subsequently, the next unclassified point with the lowest curvature is
pushed into the empty set of seed points and the procedure is repeated for the next cluster until all
points are classified.

In an evaluation, Nurunnabi et al. show that using robust principal component analysis makes the
algorithm more robust to outliers. Therefore, robust component analysis delivers more correct
results for noisy data.

18

2.8 DBScan

2.8 DBScan

Clustering techniques find patterns in datasets through unsupervised learning and classify their
data elements. DBScan scan is such a clustering algorithm and was first introduced by Ester et al.
[EKSX96]. The algorithm is based on the density of data points. As opposed to other clustering
algorithms like k-means [Mac67], there is no need to determine the number of clusters to be found.
DBScan starts by iterating over a set of unclassified data points. Afterward, fixed radius nearest
neighbor search is performed on the given points. If the number of found neighbors surpasses
a designated threshold, a new cluster will be assigned to the point as well as all its neighbors.
Subsequently, a nearest neighbor search is performed iteratively on the set of all unclassified found
neighbors. Again, if the quantity of found neighbors of a seed surpasses the threshold all previously
unclassified points join the cluster. Additionally, the points are included in the set of seed points.
This procedure is repeated until no unclassified points are found. Adjustable parameters of DBScan
are the minimum number of nearest neighbors found for a queued seed point and the radius which
is used for the fixed radius nearest neighbor search.

19

3 Related Work

Visualizing point clouds is a well-studied topic in computer graphics. It covers many areas ranging
from the visualization of molecular dynamics simulations to the reconstruction of surfaces. This
work focuses on the rendering of large point clouds. In addition, the surface of a point cloud is
approximated by geometrical shapes and simplified accordingly. In the following, the related work
to our approach is presented for both fields. Furthermore, we argument how our work differs from
the presented methods.

3.1 Rendering of Large Point Clouds

One of the first methods to render large point clouds is QSplat [RL00]. QSplat relies on a bounding
spheres data structure. Firstly, the structure is built by preprocessing the point cloud to a triangular
mesh. Afterward, normals for each vertex can be computed more easily. Furthermore, a maximum
sphere size for a vertex is chosen based on the maximum distance to all connected vertices. To
create a tree, vertices are split in a top-down approach along their longest axis. If only a single
vertex is left, a sphere is spanned with the vertex being in its center. The bounding spheres data
structure enables the use of visibility culling and level of detail control. When rendering, the
algorithm traverses the created tree. If a node is not visible on the screen, the whole branch of the
tree is skipped. Otherwise, all children of the tree are traversed until either a leaf node is met or
the area of the sphere projected to the screen exceeds a set threshold. Subsequently, the spheres
are visualized using a splat based rendering method. When the camera is not moved, the scene is
rendered in successively higher detail, until each splat reaches the size of one pixel.

Equally to QSplat, Gobbetti and Marton [GM04] create a hierarchical data structure where each
level of the data structure contains a further refinement of the previous tree level. Therefore, the
closer a node is to the root node, the coarser is its representation. The data structure is based on
a binary tree containing indices to a point array. Here, the root node points to the whole point
cloud. Child nodes spatially subdivide the points of their parent node into two equally sized subsets.
This process is executed until the nodes reach a predefined limit of points. Each node represents a
subsampling of its contained points. Here, the root node contains the coarsest resolution while child
nodes add a fixed amount of additional points to the representation. Cutting the tree at specific
levels provides a corresponding level of detail depending on the cutting level.

Sequential point trees are a data structure allowing the adaptive rendering of point clouds solely on
the graphics processing unit [DVS03]. In the first step, the point data is arranged in an octree. In a
bottom-up approach, bounding disks are approximated for each node, representing the later splats
used for rendering the node. Afterward, the tree can be traversed recursively. Based on different
error metrics the deviation of all child disks projected to the bounding disk of the parent node can
be calculated. When rendering the data structure, a level of detail is created, by defining an error

21

3 Related Work

threshold. If the calculated error lies above the threshold all children of the node are traversed
recursively. Afterward, each node meeting the requirements or being a leaf node is rendered as
a splat. Since the rendering method is based on recursion it is not capable of being efficiently
rendered on a graphics card. Therefore, the point tree is sequentialized and rearranged. A new more
intuitive measure is calculated providing a camera distance interval at which the node meets the set
error threshold. Subsequently, all nodes are stored in an array and are sorted by the maximum value
in the computed interval. This array can be rendered on the GPU sequentially moving from coarse
to fine level of detail.

Instant points [WS06] extend the concept of sequential point trees by reducing their memory overhead.
Afterward, the so-called memory optimized sequential point trees (MOSPT) are combined with a
nested octree. An outer octree allows view-frustum culling as well as multiple selectable levels
of detail for the whole model. Each node of the outer octree contains a single internal octree.
Meanwhile, each node of the internal octree contains a MOSPT. This data structure enables a splat
based rendering approach visualizing large point clouds without the need for long preprocessing
steps.

A more recent implementation using nested octrees is Potree [Sch16]. Potree is a web-based
visualization tool rendering large point clouds. Each node of the octree subsamples its included
point set. Thereby, higher-level nodes increase the number of points representing its spatial area.
The subsampling strategy is based on Poisson-disk subsampling, which was first proposed by Cook
[Coo86] in the context of computer graphics. This allows the rendering algorithm to calculate the
level of detail on the fly based on the depth of the visible tree nodes. Point sizes of the rendered
splats are determined adaptively adjusting the covered space between adjacent points.

Octree based rendering methods introduce some challenges when being rendered on a graphics card.
Since they divide the data in equally spaced boxes each node can enclose an arbitrary amount of
points. Therefore, dense regions lead to a higher maximum node level, while coarse regions provide
little to no further refinement. This can lead to highly unbalanced trees. Furthermore, leaf nodes of
an octree can contain a variable amount of points producing different vertex buffer object sizes.
Goswami et al. [GZPG10] address these challenges by using a kd-tree data structure with a variable
branching factor. Choosing this factor based on the size of the dataset makes it possible to pick
a uniform amount of points per node and a favored tree depth. The sum of all leaf nodes equally
subdivides the point data of the whole point cloud. In higher-level nodes points with similar normal
directions are clustered and represented by additional calculated point representatives. Thereby
each node contains the same amount of points similar to the point threshold of the leaf nodes.

Similar to the presented methods, we use a level of detail datastructure in our work. However,
instead of subsampling points or calculating new point primitives for each level of detail, we
utilize segmented geometric primitives as representatives. Subsequently, the datastructure has to be
adjusted, handling various geometric shapes as well as unclassified point data.

3.2 Surface Reconstruction

With surface reconstruction, we summarize approaches that focus on the approximation of point
cloud surfaces. Already in 1992 Hoppe et al. [HDD+92] addressed the topic of simplifying the
surfaces described by points. Hoppe estimated plane normals in a k-neighborhood of nearest points

22

3.2 Surface Reconstruction

through PCA. Afterward, edges between points were weighted based on the normal deviation of
both vertices. Based on these weights a minimal spanning tree was built. Finally, marching cubes
was used to calculate a linear continuous approximation of the point surface.

Similar to Hoppe et al., Pauly et al. [PGK02] calculated normals through the eigenvector with
the smallest eigenvalue in the covariance matrix. Additionally, a curvature value for each point
based on the three eigenvalues was calculated. Subsequently, two methods to cluster point regions
were presented. The first approach utilized a region growing algorithm to find point regions of a
limited size to subdivide the point cloud in multiple patches. Another proposed method relied on
adaptive hierarchical clustering splitting regions along their directions with the highest variance.
Both methods generated clustered regions of a fixed maximum size. The higher the curvature
within a region, the fewer points it contains. Finally, each detected region is approximated by a
splat. Thereby the area of a splat increases with the number of represented points. Depending on
the defined maximum amount of points for a patch, a different level of detail can be achieved, highly
reducing the amount of rendered points.

There is a wide variety of different approaches to approximate the surface of a point cloud by a
triangle mesh. Carr et al. [CBC+01] uses radial basis function interpolation. Here, a single radial
basis function is fitted to the point cloud data. Subsequently, the surface can be either visualized via
raytracing, or a marching tetrahedra variant can be used to approximate the isosurface of the function.
Kazhdan et al. [KBH06] formulates the surface reconstruction as a spatial Poisson problem. All of
these solutions assume that the point cloud describes a watertight surface. This means, that the
resulting mesh consists of one closed surface without any holes.

Besides the previously presented smooth reconstruction algorithms, the surface of a point cloud can
be approximated by fitting geometric primitives in the point cloud. As described in Section 2.6 there
exists a wide range of algorithms to detect geometric primitives. The results of these algorithms
can be used to represent point regions. Chen and Chen [CC08] use a method similar to region
growing, clustering adjacent points with low normal deviation. Then boundary lines of a cluster are
detected by projecting the point cloud in 2D space. Subsequently, boundary points are detected by
computing distances from a point to all detected lines. In a final step, a polygon for each cluster
is calculated. This method allows the reconstruction of sparse point clouds solely by polygons.
Lafarge and Alliez [LA13] describe a hybrid algorithm consolidating detected planar shapes with
unclassified point regions. For this, points representing planar shapes as well as sharp regions are
resampled. Afterward, a Delaunay triangulation [Del34] for all vertices based on an error threshold
is computed. The higher the threshold the more points are represented by planar shapes.

We use a point cloud segmentation method similarly to geometric primitive based surface recon-
struction methods. However, our aim is to be able to handle larger point cloud sizes combining
the segmentation with a level of detail datastructure. Additionally, the presented methods are only
validated for point clouds containing less than three million points. Furthermore, many methods like
Lafarge and Alliez [LA13] do not support color information in their presented approach. Finally,
since many point clouds can contain holes and discontinuities, we do not assume water tight surfaces
for our approach.

23

4 Methodology

This chapter outlines the methods and steps we used to process a point cloud. For this purpose,
a visualized point cloud is observed more closely and performance bottlenecks are identified.
Subsequently, a method is developed to circumvent the found challenges and to enable a more
efficient visualization. Therefore, suitable regions are represented by detected geometric shapes,
replacing point subsets. Afterward, a datastructure is designed allowing the efficient rendering of
the resulting dataset based on the distance to the camera.

4.1 Observations

The visualization of point clouds underlies several restrictions in practice. These are mostly based
on computer hardware limitations but also on human capabilities. At a certain distance, humans are
no longer able to distinguish between two objects. This property is due to the physical conditions of
the eye and differs between different persons and ages. In more detail, the angular resolution of the
human eye is about one arc minute [Ver18]. This means that under ideal conditions a human can
separate two lines which are at least in an angle of 1

60◦ . Thus, for a common viewing distance of 25
centimeters, the human eye can distinguish two lines that are at least 0.075 millimeters apart. For a
viewing distance of one kilometer, the interval is already 0.03 meters apart. Therefore, for larger
viewing distances the human eye can not separate adjacent points anymore.

Additionally, the used computer hardware especially the processing unit for rendering and the
available memory cause restrictions. When the required memory of the point cloud surpasses the
capacity of the random-access memory (RAM) or video random-access memory (VRAM), costly
data transfers slow down the rendering speed significantly. Furthermore, the processing speed of
the CPU or GPU is limited. The time to process billions of points can be not fast enough to produce
an image in an acceptable time at 24 frames per seconds or higher. Therefore, reducing the number
of rendered primitives can accelerate rendering times and diminish memory capabilities. Besides
the limitations of the human eye, the resolution of the computer monitor restricts the number of
points that can be distinguished in a given area. If two projected points are mapped into the same
raster during the rasterization stage, both are mapped onto the same pixel. Hence, they can not be
visually separated in the final rendered image.

To further analyze this, we implemented a simple point renderer coupled with a histogram. Given
a point cloud dataset, the renderer draws every point as a point primitive. The size of each point
is one pixel. Now, during the rasterization stage, each point falling into a pixel is counted. This
results in a texture with the height and width of the program’s resolution. Every texel in the texture
represents a pixel and encodes the number of points falling into it. To visualize the texture every
value is linearly scaled from zero to the maximum value in the texture. Then, the texture is rendered
as a heatmap with a color scale from blue to yellow.

25

4 Methodology

Figure 4.1: LiDAR dataset remodeling the interior of a room. A heatmap from blue to yellow
encodes the number of points that are mapped to a single pixel. The values are linearly
scaled from one point to 250 points per pixel. A histogram at the bottom further
visualizes the point distribution among the pixels. With a number of 120131 most of
the pixels contain 16 points. Planar areas perpendicular to the viewer build the densest
regions.

A blue color encodes pixels with one or a few points in them. Yellow indicates a high amount of
points with up to 250 points per pixel. Additionally, a histogram is generated. The x-values of the
histogram are binned by the number of points falling into a pixel on the histogram. This means, all
pixels with a certain range of points being mapped to them, are represented by one bar. The y-Axis
encodes the number of pixels falling in the defined range of a bar. For example, if the bin size is
one, the height of the most left bar would represent the number of pixels containing exactly one
pixel. If the bin size is ten, the left bar encodes all pixels with one to ten points in them. Figure 4.1
shows the rendered picture using a point cloud acquired by a laser scanner. The dataset remodels
the interiors of a room. Various observations can be made when analyzing the data.

A rather simple insight is that similar to the human eye, the number of points which can not
be visually separated increase with the viewing distance. While standing exactly in front of the
armchair, seen in the middle of the picture, most pixels contain one point. Moving half a meter
away from the chair increases the mode to eight points per pixel. Finally, at one meter away most
pixels include twenty points. From a far distance of 25 meters, 5000 points or more is the most
frequent value, with a maximum value of twenty thousand points mapped to a pixel.

A second observation considers the planar regions of the room. When they are placed perpendicular
to the viewer, many points are projected to the same pixel in the shape of a line. For example, if the
surface normal of the seat pad points in the direction of the camera, all points representing the pad

26

4.2 Overview

are distributed along a large area of the screen. When rotated by ninety degrees, the area of the
projected point subset diminishes. Solely a thin line is visible on the screen, with the vector of the
highest variance of the planar subset pointing to the direction of the camera.

Last, hidden, invisible points increase the number of points per pixel. This can be seen on the right
side of the image. Here, the chair should cover the stand of the fan and the floor. Not visible in the
image but nevertheless important is that points outside the viewport are discarded. Especially for
close viewing distances, only a small fraction of points is shown on the monitor. Therefore, the
memory requirement and the processing time of the not visible points could be discarded until the
camera moves.

4.2 Overview

To overcome the challenges previously proposed, an overall concept is introduced in this section.

It is important to consider that a point cloud is an approximation of objects in the real world. This
type of representation finds its origin in the measurement of the scenes visualized by the point set.
Laser scanners sample the environment and store depth data at points where the laser beam hits a
surface. In contrast to a point cloud, objects consist of continuous surfaces, at least if one stays above
viewing distance of the atomic space. These surfaces can also be described by other geometric
primitives like cylinders, rectangles, or spheres. The advantage of these geometries is that individual
primitives can describe a larger space than points. Planar surfaces, as for example identified in the
previous chapter, consist of thousands of points. Instead, each surface can be described by a single
rectangle, which requires only four vertices to store. If these points are replaced by the identified
geometries, the memory requirements of the point cloud can be substantially decreased. Likewise,
the render time could be reduced, since significantly fewer primitives have to be processed. There
already exists a wide variety of algorithms, that identify geometric shapes in the point set. One of
these algorithms can be used to segment points in the dataset based on the previously mentioned
geometry.

Afterward, as can be seen in Figure 4.2, a distinction is made between classified and unrecognized
points. Although the real world consists of many surfaces, not every region can be described by
simple mathematical geometries. Some objects consist of more complicated structures, so that not
all points can be classified. These points have to be processed to allow a simplified representation
and a more efficient storage.

Likewise, the classified shapes have to be processed further, in order to create a realistic representation.
Many point datasets include color information for each point. This allows to create a more realistic
representation of the visualized objects. Therefore, a method has to be developed to transfer the
color information of the classified points to their geometric shape representatives.

In the next step the unclassified points, as well as the detected geometric shapes, have to be stored.
When rendering the dataset, hidden geometry or primitives out of the viewport can be discarded.
This is based on the previous observation, that these objects are not visible on the screen. Therefore,
the chosen data structure should support such culling techniques. Additionally, the data structure
has to efficiently store the processed geometry and pass them to the render-engine. In the last step,
the preprocessed is visualized on the computer screen.

27

4 Methodology

Unclassified
Point Processing

Point Cloud
Dataset

Point Cloud
Segmentation

Geometric
Shapes

Processing

Datastructure

Render
Engine

Figure 4.2: Overview of the presented processing pipeline. In the first step, geometric shapes are
discovered in the dataset. Therefore, points lying in such shapes are classified and
replaced by simple geometry like triangles, rectangles, cylinders, or spheres. Afterward,
the approximated geometry has to be processed further to achieve a more realistic
representation. Previously unclassified points have to be processed as well to match
the level of detail of the other geometry. Afterward, both, unclassified points and
geometric shapes are stored in a data structure. This data structure should support
further processing steps to reduce the complexity of the dataset given a camera position.
Finally, the data structure sends geometry to the rendering engine in order to visualize
the processed point cloud.

4.3 Geometric Shape Processing

Likewise to a point cloud, it is important to recognize, that the detected shapes of a point cloud
segmentation method are an approximation of real-world objects. Although, structural shapes such
as planes, cylinders, and spheres occur, they are not given in perfectly regular shapes contrary to their
mathematical representatives. Surfaces of objects can have different curvatures or even recesses. In
addition, surfaces are not perfectly smooth. Depending on the material and condition they have
irregularities such as indentations or bumps. These irregularities can be modeled by measuring the
displacement of data points from the surface. Subsequently, choosing a finer tessellation level and
then displacing vertices in the direction of the respective normal vector, creates a more detailed
representation.

28

4.4 Data Structure

Figure 4.3: To create a texture, the colors of the classified points are mapped to a grid on the
approximated shape. Then each cell encodes the color of a texel. From this information,
a texture can be created.

Furthermore, the color of the surfaces must be described by their representatives. A common
method in computer graphics is to save the color of geometries as a texture. To create these textures,
the color-coding of the individual points must be projected onto their representatives. For this,
a suitable uv-parameterization of the classified points has to be generated. In more detail, the
uv-coordinates determine where each color point is located on the final texture. To achieve this,
we use a method that constructs a grid over the area of the approximated geometry. Subsequently,
the classified points can be projected into the different cells of the grid. Figure 4.3 illustrates this
process.

4.4 Data Structure

Implementing a dedicated level of detail data structure is an important task. Since point cloud
datasets can contain billions of points the dedicated data structure should support efficient storage
of both the point data as well as other geometric primitives. Furthermore, in previous works, a data
structure is used to process the point cloud out-of-core. When the size of the raw point data alone
will not fit the RAM or VRAM of commercial computers, the data can be preprocessed. Afterward,
only geometry visible in the current view is passed to the CPU or GPU. The rest of the point cloud
is stored on the computer hard drive. When the view changes, the data structure has again to be
traversed and the visible geometry is passed to the processing unit. An effective traversal strategy
can therefore speed up the time until the geometry is rendered.

29

4 Methodology

Another common method often combined with an out-of-core approach is to store different levels
of detail. As stated in Section 4.1 the human eye is less capable of distinguishing adjacent shapes
for further viewing distances. Additionally, the computer monitor is not able to visualize details
smaller than the size of a pixel. Therefore, with an increasing distance to the camera, fewer details
have to be shown. To realize this, precalculated representatives are chosen for a given distance
range. Previous works like multiway kd-trees [GZPG10] or Potree[Sch16] take advantage of spatial
data structures to implement this approach.

In contrary to the two previously mentioned methods, the representatives in our approach contain
other geometric types than point primitives. Therefore, our data structure needs to support the
storage of geometry types like cylinders, rectangles, or spheres. A BVH-tree [Cla76] is suitable
for saving these shapes. This is due to the fact that the geometries can be well described by their
bounding boxes. Going further, the number of primitives discovered is significantly less than the
number of points in the point cloud. Therefore, the additional storage requirement for the pointers
and the bounding box is negligible.

When building the BVH-tree, detected shapes build the leave nodes of the hierarchy. Here, the
calculation method of the bounding boxes is dependent on the geometry type. For example, the
bounding boxes of a rectangle can be identified by using the maximum coordinate values in each
dimension of the four vertices. To differentiate between the various geometric types a parameter
in the leaf nodes is used. Each stored representative can be visualized in different levels of detail.
Therefore, for every node in the BVH, we store the bounding box and vertices of the representative.
An additional byte is used to encode the geometric shape of the primitive. Otherwise one would not
be able to recognize during the render phase which shape should be rendered solely based on the
vertices of the geometry.

Another challenge arises in how to create a hierarchy and link the different nodes in the BVH-tree.
With identified primitives lying in the leaf nodes of the tree, higher-level nodes have to aggregate two
higher-level nodes. Therefore, a suitable method has to be found, which constructs the BVH-tree.
With the underlying idea that parent nodes could represent coarser representatives summarizing two
or more nodes, different strategies come into question. Here, the challenge lies in recognizing and
assembling coherent primitives. Ideally, semantically related primitives such as a chair or a table
are grouped first.

A common heuristic, when building a BVH-tree, is partitioning along the axis the largest range of
centroids in a top-down approach is. While this approach is fast and simple, larger planes are less
likely to be merged early even when other shapes lie near them. Another approach is to merge the
two primitives with the shortest distance between each other in a bottom-up approach. The latter
approach creates better representations, but the build time increases. Additionally, the BVH-tree
is more likely to be highly unbalanced. To recognize semantically related structures, semantic
segmentation methods can be used. However, this would require an additional processing step.
The surface area heuristic (SAH) [GS87] optimizes the tree structure to reduce the necessary ray
primitive intersection. Although SAH optimizes rendering times, it becomes more challenging to
create higher-level representatives.

Besides geometric primitives like planes and cylinders, the data structure needs to be feasible to
store the raw point data. The point data provides the most accurate representation of the real-world
properties. Thus, for a detailed view, the user should always have the possibility to visualize this
data.

30

4.4 Data Structure

C AB ED

Bo
un

di
ng

 V
ol

um
e

H
ie

ra
rc

hy
p-

k-
d

tre
es

BVH Node Attributes:
Node Type

BBox
left-child

right-child
Control Points

pointIndexStart (Leaf)
pointIndexEnd (Leaf)

Classfied Points

Pkd Leaf A

Pkd Leaf B

Pkd Leaf C

....

Figure 4.4: The level of detail data structure used in our approach. Approximated geometry is stored
as a leaf node in a BVH-tree. Higher nodes can further summarize the approximated
shapes. Each node contains a bounding box as well as the control points, and pointers
to their children. Additionally, leaf nodes contain indices to their represented points.
Each of these point subsets is processed as a pkd-tree.

In our approach pointers to the classified point data subsets of each geometric shape are stored in the
leaf nodes. To minimize the required memory, we use pkd-trees to store these point subsets. The
pkd-tree reduces memory overhead by only needing to sort the particle data. Then, after building
each pkd-tree, the point indices of each point subset can be stored in the leaf nodes of the BVH-tree.
An illustration of the presented data structure can be seen in Figure 4.4.

Lastly, we need to differentiate between classified and unclassified point data. Until now, we only
considered classified points in our data structure. However, unclassified points have to be processed
as well. These points undetected by our planar point cloud segmentation method may be freely
distributed in the bounding box of the point cloud. In a similar approach to the previous method,
an additional pkd-tree can be used to process this data. However, the unclassified points can be
spread non-uniform over the entire bounding box of the whole point cloud. Unclassified points can
be a result of regions with high curvature, sparse regions with insufficient points, noise, or points
approximating not identified shapes. Therefore, a single pkd-tree may slow down rendering times.
Thus, unclassified points have to be further subdivided. For this, we are using a clustering approach,

31

4 Methodology

finding cohesive point regions. Afterward, an additional similar BVH-tree as introduced earlier
can be constructed. However, the leaf nodes do not contain different geometric types compared
to the previously presented BVH. Instead, the classified point clusters are stored in the leaf nodes.
Dividing the unclassified point data from the approximated shapes can accelerate ray intersections,
since less geometry is overlapping.

32

5 Implementation

This chapter focuses on the implementation of the previously presented concept. For this purpose,
the used technologies are described in more detail. Furthermore, various implementation details, as
well as design choices, are discussed. Therefore, each step of the implemented processing pipeline
is introduced and described.

5.1 Used Technology

The presented approach was implemented as a plugin in the MegaMol framework [GBB+19].
MegaMol is a visualization prototyping framework implemented at the Visualization research
center of the University of Stuttgart. The plugin is written in the C++ Programming Language.
Additionally, some OpenGL code is used to visualize interim results. To process point cloud
datasets, the Adaptable IO System(ADIOS) [LKS+08] is utilized. ADIOS allows to load, store,
and adapt the data inside of MegaMol. For the nearest neighbor search, we used the nanoflann1

header library. Nanoflann is based on a kd-tree to process two or three-dimensional point clouds.
Nanoflann provides a k-nn search as well as a fixed radius nearest neighbor search. Approximate
nearest neighbor and ranged nearest neighbor search are not supported. The STB image library2

enables saving and loading textures as png files. To render the final result, the OSPRay renderer
[WJA+17] is used. OSPRay is a CPU based ray-tracing framework developed to visualize scientific
datasets. This work is based on OSPRay version 1.8 immigrated to the MegaMol framework
[RKRE17].

5.2 Overview

A MegaMol plugin is composed of several modules communicating through data calls. Each module
processes a point cloud which is loaded at the beginning. Afterward, the dataset is processed by
the module next to the data loader and subsequently passed to the following module. Lastly, the
dataset can be visualized by passing it to the view module at the end of the processing pipeline. An
overview of all modules used in this work and their inner connections is shown in Figure 5.1.

In the beginning, a point cloud is loaded as an ADIOS file. Then normals, as well as curvatures,
are calculated by the NormalEstimator module. These normals and curvatures are required for the
following point cloud segmentation module. This module implements a region-based segmentation

1https://github.com/jlblancoc/nanoflann
2https://github.com/nothings/stb

33

5 Implementation

algorithm. Here, planar shapes are identified and points corresponding to the detected shapes are
classified. Afterward, the RegionGrowing module splits the dataset into classified and unclassified
points.

The classified points are used to fit rectangles into the approximated planar regions. Afterward,
an algorithm computes image textures combined with displacement values for each rectangle and
stores them as image files in the TextureGenerator module. Subsequently, the Tessellation module
combines the computed textures and rectangles by triangulating the given mesh based on the
resolution of the texture and the stored displacement values. Furthermore, the uv-coordinates and
vertices of the mesh are computed.

Meanwhile, the unclassified points are passed to the DBScan module. The DBScan algorithm
enables the detection of spatially connected point regions. Thereupon, each cluster is segmented
further by spatially subdividing the dataset in the Treelet module. For each of these subsets, a
pkd-tree is build to accelerate the calculation of ray intersections. Finally, the created pkd-trees,
are forwarded to the OSPRay renderer and stored in an OSPRay intern BVH-tree. Additionally,
points neither classified by the region growing or DBScan algorithms are passed on to be added
individually into the BVH-tree created by OSPRay. In the last step, the approximated planar shapes
are visualized as triangles. The remaining points are rendered as sphere geometry.

5.3 Normal Estimation

The point cloud segmentation algorithm used in this work requires precomputed normals and
curvatures for each point in the point cloud. Therefore, the normal estimation module calculates
curvatures and normals of each point in the given dataset. For this, a simple approach using PCA is
provided. This approach is based on the work of Pauly et al. [PGK02]. The PCA approach is fast,
intuitive, and easy to implement. Nevertheless, for higher precision or noisy point cloud data other
approaches like introduced by Mura et al. [MWP18] lead to more precise and robust results.

Typically, the point normal in a point cloud approximates the surface of a local point region. To
approximate this region, adjacent points have to be found. Then the surface is estimated by fitting a
plane in this set of points. Now, the normal of the plane estimates the surface at the position of
the queried point. Given an unstructured point cloud, a plane can be fit in a set of arbitrary points
using principal component analysis. This is done by calculating the covariance matrix of the chosen
point set. Then eigenanalysis yields the three principal components. The two eigenvectors with
the highest eigenvalue span the fitted plane in three-dimensional space. The third eigenvector is
perpendicular to the two span vectors describing the divergence from the points to the fitted plane.
Thus, the third eigenvector provides an approximation of the plane normal. Therefore, calculating
the third eigenvector on a set of nearest neighbors estimates the local surface at the position of the
points.

The region searched for nearest neighbors affects the resulting normal. As can be seen in Figure 5.2,
fitting a plane in small regions is sensitive to small local fluctuations. In contrast, using a larger set
of neighboring points averages small local changes. Thus, the calculated normals do not deviate
much from adjacent points resulting in smoother but less precise transitions between points. In
return, the calculated normals are more robust against noise.

34

5.3 Normal Estimation

Figure 5.1: Overview of the implemented OSPRay modules. Modules are visualized as blue boxes,
data calls are encoded by the connection between the modules. First, the point cloud is
loaded by the adiosDataSource module. Afterward, normals and curvatures for each
point are approximated. The computed results are utilized in our Region Growing
algorithm finding planer areas in the dataset. Subsequently, the dataset is split into
classified and unclassified points. Classified points are represented by rectangles.
Related textures and displacements values are calculated in the TextureGenerator
module. Based on the resolution of the resulting textures, the rectangles can be further
tessellated in the Tessellation module. Finally, triangles of the resulting mesh are
passed into the OSPRay internal BVH. Meanwhile the DBScan algorithm clusters
unclassified points. The identified groups are then further subdivided into the Treelet
module. Subsequently, a pkd tree for each cluster is created. Similar to the triangles,
each pkd-tree is added to OSPRay’s BVH-tree. Finally, points left unclassified after the
DBScan algorithm are individually added to the BVH as sphere geometry.

Additionally, depending on the number of nearest neighbors and the size of the point set this
computation can be time-consuming. To accelerate these calculations and the nearest neighbor
search the algorithm is performed in parallel using OpenMP3. A smaller radius leads to a noticeable
faster processing time since the nearest neighbor search and PCA have to process a smaller amount
of points.

3https://www.openmp.org/

35

5 Implementation

Figure 5.2: Fitting a surface in a larger set of neighbors results in a plane averaging the points’
positions. Smaller regions provide more precise normals. However, they are less robust
to noise.

5.4 Pointcloud Segmentation

There are different approaches to find regions with related properties in a point cloud. For this
work, we chose a seeded planar region growing algorithm based on Nurunnabi et al. [NBW16]. The
algorithm has the advantage of being easy to implement and modify. Furthermore, the algorithm
has several adjustable parameters.

Given an unorganized point cloud with position, normal, and curvature for each point, we want to
fit arbitrary planes in planar regions approximating the points lying in 3D space. Thus, adjacent
points with their surface normal pointing into a similar direction are classified into the same cluster.
In the first step, a set of seed points is sorted based on their curvature in ascending order. Then
the point with the least curvature is added to a set of seed points. To find adjacent points a nearest
neighbor search is performed. Afterward, the queried points are added or dismissed for the current
cluster. There are four different options how adjacent planes can be separated from each other
which can be seen in Figure 5.3. A sharp angle between adjacent normals indicates an edge between
two fitted planes. These edges occur, for example, when two flat walls are connected and point in
two different directions. These two surfaces can be distinguished by a maximum threshold angle
\ between the adjacent normals 𝑛𝑖 and 𝑛 𝑗 as seen in Figure 5.3 a). The angle is calculated by
acos

��𝑛𝑖 .𝑛 𝑗

�� < \. When the previously calculated normals are not aligned we need to calculate the
absolute value of the dot product. This considers the ambiguity that the normals can point in the
opposing direction.

However, while this heuristic covers many cases, it is not sufficient in itself. If there is a horizontal
jump between two planes, as shown in figure Figure 5.3 b), the normals of all points would point
in the same direction. Thus, we calculate a second condition limiting the horizontal shift by
a threshold. As a third constraint, two planes can be separated by a certain distance shown in
Figure 5.3 c). In contrary to Nurannabi et al. we do not calculate a maximum threshold of the
median distance. However, we limit the radius of the nearest neighbor search, discarding points
that exceed a maximum distance limit in the k-nn search. The last option is a curvy edge, seen in
Figure 5.3 d). Having constant curvature in local regions can lead to a slowly arching surface.

36

5.4 Pointcloud Segmentation

a)
θ

b)

c) d)

Figure 5.3: Four cases where two adjacent surfaces have to be differentiated. In a) the angle
between the two planes exceeds a maximum distance. Furthermore, the horizontal
distance between two planes can exceed a maximum horizontal distance limit. Besides
the horizontal distance, the euclidean distance between two planes can be higher than a
defined threshold. Lastly, a global angle between the current point and its seed point
can surpass an angular limit.

When comparing two local normals in those regions, the angle between them may be smaller than
the set normal threshold. Thus, the implemented region growing algorithm could additionally
detect non-planar geometry like slowly arching cylinders or spheres. To exclude this, we compute
the angle between the start seed point with the lowest curvature and the current point. This angle is
then compared to a global angle threshold.

To find adjacent points we use nearest neighbor search. As already stated, we want to limit the
radius of the nearest neighbor search by a maximum distance threshold. This makes fixed radius
neighbor search a good option. However, the point density of the point cloud is not guaranteed to
be uniform. That implies fluctuating numbers of found nearest neighbors. Inherently, the outcome
of our algorithm does not change significantly with a variable number of neighbors, contrary to the
normal estimation approach. When finding fewer nearest neighbors, their adjacent points again
would be detected in the following nearest neighbor queries. Yet, when there is a thin edge between
two bordering planes, finding more neighbors could skip this edge by also querying points beyond
that edge. When using with a fixed radius search, we can exactly limit this skip. However, a
disadvantage of fixed radius neighbor search is the performance. While in coarse regions a fixed
radius may find only no to few neighbors, the same radius can result in thousands of neighbors
in dense regions. In our algorithm, we add all found neighbors into a set of seed points. With
more found points the set of seed points grows. Thus, the same points may be processed more
often. Furthermore, the nearest neighbor search itself will become slower if more points are found.
K-nn search diminishes this performance constraints. Nevertheless, we do not have a fixed radius
limiting the maximum distance between two aligned planes. With ranged nearest neighbor search
the maximum distance, as well as the number of nearest neighbors, is fixed. But here again, since

37

5 Implementation

not all points lying in a radius are found, a thin edge of points is not guaranteed to be skipped over.
Therefore, limiting both the number of nearest neighbors, as well as the search radius provided the
reasonable results and runtime performance.

Overall, our implemented region growing algorithm has a wide range of adjustable parameters.
These parameters are the minimum point size of a cluster, the horizontal distance threshold, the
maximum local normal angle, and the maximum global normal angle.

5.5 Texture Generation

After the applied point cloud segmentation, a set of classified points results. Each cluster
approximates a plane. Since these planes span an infinite two-dimensional space in three dimensions,
we want to only visualize a finite subset of this space. In more detail, we want to find four corner points
to create a convex quadrilateral. To reduce unnecessary intersection tests later, the quadrilateral
should fit the set of points well. Large areas, where no points can be projected to the geometry
should be avoided. Additionally, since we want to map a texture to the quadrilateral, we choose
to diminish the choice of possible types of quadrilaterals to rectangles. With this, we facilitate
uv-mapping later.

Given the normal of the fitted plane, we can project the three-dimensional points into two dimensions.
Then, simply using the minimum and maximum x and y coordinates of the projected points as
rectangle vertices, generates a convex set. However, the projected data points can be arbitrarily
rotated at the center, resulting in a set of infinite possible bounding points. As stated before, we want
to choose the four bounding points in an optimal way to reduce the area of the constructed rectangle.
However, computation time has to be considered as well. The cost for tweaking the variables for a
perfect fit exceeds the later rendering benefits at a certain point. By using principal component
analysis, we find a good tradeoff between both factors. The principal component analysis provides
the three principal components of the point set. Transforming these points to the eigenbasis of the
covariance matrix enables a projection to two-dimensional space, by disregarding the vector with
the smallest eigenvalue. Now, the x-axis points in the direction with the highest variance of the
data. Again, we can use the minimum and maximum values in x and y direction to find a good uv
parametrization. Since the eigenvectors of the covariance matrix are perpendicular, these values can
be used as vertices of a rectangle. Thereby, the rectangle creates an approximation of the analyzed
points as seen in Figure 5.4.

Furthermore, we can use the rectangle as a representative of a cluster in the level of detail data
structure. However, until now we solely estimate the shape of the point cluster. In addition, all
points have a color attribute, creating a more realistic representation. As already mentioned, with
the points lying in two-dimensional space, we can create a texture approximating the color of all
points. For this, we create a raster over our two-dimensional transformed dataset. Every cell of
the raster represents a texel in the outcoming texture. The top left corner represents the texel with
uv-coordinates of both zero plus half the size of a cell. The most right texel has a u-coordinate
of one minus half the size of cell. The color of a texel is chosen by analyzing all points lying in
the respective cell. For this step, we use color interpolation. To guarantee a better-resulting color,
the color format of all points is first converted from RGB to HSV. A HSV color representation
allows to separate saturation and luminance when interpolating. Nevertheless, we additionally
implemented the color interpolation in RGB, allowing the user to choose the better fitting method.

38

5.5 Texture Generation

Figure 5.4: Principal Component Analysis is used to find the two perpendicular vectors with the
highest data variance. Then transforming to the eigenbasis yields a good approximation
of a fitted rectangle. Subsequently, a texture using uv-coordinates of the rectangle can
be created by building a grid over the data points.

Afterward, independent from the chosen method all points are weighted equally and the color
is linearly interpolated. In the end, we can store a texture based on the calculated texel values.
Additionally, we can change the texture size by adapting the cell height and width of the raster.
With bigger cells, more points are mapped to a texture and the texture has a lower resolution. If
a too small cell size is chosen, high-resolution textures containing many transparent texels result.
This is caused by the fact that many cells do not contain any points. To avoid this effect, a cell size
larger than the point density of the point cloud should be selected.

Ideally, every cell contains at least one point. However, based on the shape of the point cluster, the
cell size, and the chosen rectangle vertices, there can be cells enclosing no points. Additionally, the
detected planes do not have to be continuous. Holes in the approximated surfaces can occur. To
account for this, we add an opacity value to each color and the texture is stored with a red, green,
blue, and opacity channel. If the opacity is zero, there are no points in the respective area. Thus,
the texel has to be transparent. These translucent texels have to be addressed in the rendering stage
later, by for example discarding fragments. Since the color information of each point is given as
byte values, the resulting texture stores color with byte precision.

Another challenge that needs to be addressed is that the classified points do not have to be perfectly
flat. Points can vary between a certain threshold in the normal direction of the fitted plane. By
ignoring that fact, some planes may not fit together perfectly at the boundaries. Furthermore, the
surface of the representative shapes is perfectly flat. However, surfaces described in a point cloud
can additionally contain bumps and small deviations. Thus, while for coarser representatives this
approximation is good enough, we want to add this detail for nearer viewing distances. To do this,
we calculate a displacement distance in the direction of the respective plane normal for each point.
Afterward, we store the calculated value as a displacement map. This displacement map can be
used later to tessellate the rectangle mesh.

To calculate the displacement values, data points are not transformed into two-dimensional
space when using PCA. Instead, the points are transformed to the three-dimensional eigenbasis.
Subsequently, the third eigenvector is used to account for variation in the direction of the fitted
surface normal. Therefore, the rectangle has to be translated to the average point value in direction

39

5 Implementation

of the third eigenvector. With this information, the displacement for each point can be computed
by calculating the coordinate value on the third principal axis. There exist various approaches to
find the plane average. Using the statistical mode fits the plane so that most data points lie directly
on the plane. Nevertheless, since our planar segmentation method limits the divergence in the
normal direction, in the worst case, the maximum displacement value is two times the segmentation
threshold. All in all, fewer points need to be relocated using this method. However, having only a
limited amount of memory space to store the displacement value, the floating-point precision of the
displacement is less precise. Another approach is to calculate the mean position of all points. Here,
the maximum displacement value is smaller than by using the mode. Furthermore, most points
lie near the fitted rectangle. Yet, more points must be shifted, unless all points lie directly on the
rectangle. Last, calculating the midpoint between the minimum and maximum value yields the
smallest maximum divergence. However, the rectangle fits all points less precisely, resulting in a
high mean error.

Furthermore, the calculated displacement value for each point has to be stored. Using an additional
displacement map would result in some memory overhead since we only store a binary value in the
opacity channel of the previously calculated texture. Therefore, the displacement value is integrated
into the texture. Having an eight-bit precision for opacity, one value is reserved to encode whether
the texel is opaque. The remaining 255 values store the displacement information. With a zero
point, we can shift all points with a floating-point precision of 1

127 times the max displacement value
in or opposing to the normal direction.

5.6 Tessellation

This section describes the implemented tessellation algorithm. Our approach triangulates identified
rectangles based on the previously computed textures. In addition, vertices are shifted in direction
of the normal vector of the rectangle based on the previously calculated displacement values. Using
a GPU based rendering approach, tessellation and displacement are usually done on the fly given
a camera distance. However, OSPRay, which is used as the rendering engine, does not support
displacement mapping and on the fly tessellation. Thus, we provide a workaround by precalculating
different level of detail representatives. Coarser tessellation and displacement lead to a lower level
of detail with larger displacement deviations between two vertices. By contrast, finer tessellation
results in more triangles and therefore a more detailed representation.

The algorithm starts with the vertices of a computed rectangle and its displacement map. The
main idea lies in tessellating the rectangle for every texel in the texture. Then each vertex can be
shifted by the displacement value of the texel. To do this, we start at a corner vertex of the rectangle.
Subsequently, we process four texels which are adjacent and form a square on the surface. For
each texel, its position on the rectangle is calculated. Thus, the two normalized tension vectors
are multiplied with the u and v coordinate of the texel. Now, two triangles for every four points
can be built. Afterward, we can move the vertices by the displacement value in the direction of
the rectangle normal. The normal is retrieved from the previously implemented texture generation
algorithm. Using the third eigencomponent avoids that a vertex is shifted in the opposite direction.
This can occur because the normals in the data set are not directed. This method provides an
easy and reliable tessellation. However, it can still be improved. Until now, a triangle is created
for each texel. Since a texel can be transparent, some triangles are not visible in the rendered

40

5.7 Data Structure

image. Therefore, they can be already discarded when running the tessellation algorithm. If more
than one vertex is transparent no triangle will be constructed for the given area. This approach
enables the rejection of many transparent vertices. Note, as the vertex density relies on the texel
size of the texture, the higher the previously defined resolution of texture, the finer is the resulting
tessellation.

5.7 Data Structure

Since OSPRay relies on its internal data structure. The in Section 4.4 introduced level of detail data
structure could not be completely realized. Similar to the proposed concept classified rectangles are
stored as triangle mesh in the internal OSPRay BVH. However, since only a single BVH-tree is
supported all unsegmented point cloud data has to be stored in this tree contrary to the proposed
second BVH-tree. Before being added to the BVH-tree, all unsegmented point cloud data is
further classified by the DBScan algorithm. Then the identified clusters can be stored as pkd-trees.
However, the DBScan algorithm does not limit the maximum space a cluster can take. To prevent
large clusters with inefficient bounding boxes the segmented regions are further subdivided.

For this, we use an approach presented by Gralka et al. [GWG+20]. First, each cluster is split
into smaller segments of a fixed size. Gralka et al. divide nodes by splitting along the longest
bounding box axis. Given the previous example of three connected lines, this approach can lead
to an unbalanced tree. Instead of dividing the points of a cluster based on a spatial criterion, it is
possible to split along the median data point of the longest bounding box. Now, a balanced tree is
guaranteed. However, both cutting volumes no longer have the same spatial size. After splitting the
data, pkd-trees for each point subset are created. These subsets are then added as pkd-geometry
objects to OSPRay’s BVH-tree. Finally, the points, that were not detected by either the point cloud
segmentation method or the DBScan algorithm are added solely as point primitives to the BVH.

41

6 Evaluation

In this chapter, the implemented processing steps, as well as the rendered results, are evaluated.
For this purpose, a parameter space is predefined. Subsequently, the processing steps are executed.
Afterward, the obtained intermediate results will be presented and analyzed. For this purpose,
we compare rendering times, memory consumption, and image quality with a sphere-based point
rendering method in OSPRay.

6.1 Datasets

For the evaluation, two datasets provided by FARO are used. One of the datasets shows the cutout of
an empty room. A large part of the room consists of unplastered walls that are covered with graffiti.
With the walls and floor, the dataset contains large planar areas. However, most surfaces are rough
and uneven. Furthermore, the point density is not uniform, which must be taken into account while
running the preprocessing steps in our pipeline. In total, the dataset comprises 26130261 points.

The second dataset remodels a bicycle standing on the ground. With 14624303 points the dataset
is smaller than the previously introduced point cloud. In contrast to the graffiti dataset, the point
set contains significantly fewer and smaller planar areas. The modeled bike consists mainly of
cylindrical shapes with high curvatures.

Besides point and color information, these two datasets contain precomputed normals. Nonetheless,
we decided to use the self-calculated normal values presented in Section 5.3. This is based on
the observation, that our normal calculation method allows more degrees of freedom. Here, the
number of neighbors examined for the calculation can be determined by ourselves. Thus, the effect
of precise and smooth normals can be analyzed.

6.2 Parameter Space

There is a wide range of parameters in our processing pipeline. Therefore, changing every parameter
would result in too many combinations that need to be evaluated. To narrow this space further down
we limit the parameter space to predefined configurations for each processing step. Table 6.1 below
provides information about the most important parameter values used in the upcoming evaluation.

Since the implemented planar segmentation algorithm depends on the precomputed normals, we
calculate the normals and curvatures for each dataset using two different radii. One radius is picked
relatively small to include small bumps and changes. The second radius is twenty times the size of
the previous parameter, providing a smoother normal distribution. For the planar segmentation
algorithm, we explore two different configurations.

43

6 Evaluation

Table 6.1: There is a wide range of parameters that can be defined within the processing pipeline.
Here, the 14 most important parameters are shown. Furthermore, the specific values
used for the later carried out evaluation are listed.

Processing Step Parameter Description Values
Normal and
Curvature
Estimation

rNorm Radius threshold used for
fixed radius neighbor search.
Smaller values result in fewer
neighborhood points being
used to calculate the normal
and curvature values.

Bike: {0.0005, 0.000025}
Graffiti: {0.001, 0.00005}

Region
Growing

Num Nearest
Neighbors

Number of nearest neighbors
used for the k-nn search.

Both: 40

𝛼 Local normal deviation
threshold.

Both: {0.13, 0.35}

𝛽 Global normal deviation
threshold.

Both: {0.13, 0.35}

Minimum
Points

Minimum number of points
a cluster has to contain.

10,000

Texture
Generator

Res Cell size used to compute
the texture.

Bike: {0.004 (High),
0.012 (Middle),
0.036 (Low)}
Graffiti: {0.006 (High),
0.018 (Middle),
0.054 (Low)}

Tessellation tess Specifies, whether the
given rectangles should be
further tessellated.

Both: {True, False}

delTransp Specifies whether invisible
triangles are removed from
the mesh, when the mesh
is tessellated.

Both: {True, False}

DBScan 𝜖 Radius parameter of the
fixed radius nearest neighbor
search.

Bike: 0.0005
Graffiti: 0.001

Minimum
Points

Minimum number of points
a cluster has to contain.

Both: 100

Pkd Treelets Maximum
Size

Maximum number of points
a treelet can comprise.

Both: 1000

Rendering viewDist Viewing distance to the
rendered object.

Both: {Far, Middle, Near}

44

6.3 Preprocessing

The first parameter set leads to a stricter segmentation. Here, only points with a small angular normal
difference are classified together. The second configuration applies a higher angular limit. Thus,
more points can be classified. However, the correlated points deviate more from the approximated
surface. For the DBScan algorithm and treelet creation, we use a single parameter value. These
configurations have been established as good practice for the given datasets and do not need to be
compared further with other values. Since the two datasets have different point densities, the epsilon
value of the DBScan algorithm changes. Furthermore, the values between both point clouds change
for the texture generation step. Here, three different texture resolutions are used to investigate their
impact on runtime and memory requirements. Lastly, three different configurations are likewise
used for the tessellation processing step. First, the detected rectangles can be visualized solely or
they can be tessellated in a preprocessing step. Additionally, transparent triangles detected during
tessellation can be either discarded or kept.

6.3 Preprocessing

In this chapter, the results of the pre-processing steps in the conducted evaluation are presented.
Furthermore, detailed reasoning behind the selection of the chosen parameter values is provided.

6.3.1 Normal Estimation

Besides the type of nearest neighbor search, the solely adjustable parameter for the implemented
normal estimation algorithm is the number of nearest neighbors or the search radius. Using a k-nn
search for the graffiti dataset introduced some challenges. Since the dataset contains regions with
different point resolution, a normal calculation based on the number of nearest neighbors produced
inconsistent results. For example, dense regions led to precise normals over a small area as the
found nearest neighbors are near the query point. On the contrary, coarse regions led to more
averaged normals calculated over a larger region. Here, the distance between the query point and
a neighbor can be significantly higher. Therefore, we use a fixed radius nearest neighbor search
neglecting this effect. This is because all nearest neighbors in a fixed space are searched. However,
the number of found neighbors is not constant anymore leading a varying amount of points being
processed.

When choosing a radius parameter value we wanted to be able to differentiate between highly
averaged and precise normals. In the example of the graffiti point cloud, if the normals are calculated
with a smaller radius, the wall joints have normals pointing in different directions to the wall. In
contrast, with a larger radius, all normals are more average. Small deviations between two bricks are
almost neglected. It is of interest to compare these two configurations later since the implemented
point cloud segmentation method yields different results depending on the normal calculation.

6.3.2 Region Growing

The implemented region growing algorithm has the largest parameter space in our processing
pipeline. To reduce combinations we chose a constant threshold of minimum points, a constant
number of searched nearest neighbors, and a maximum distance between two adjacent points.

45

6 Evaluation

Figure 6.1: Two results of the implemented region growing algorithm. The left image used normals
approximated over a space of 0.001 meters for each point. Additionally, with twenty
degrees a high angle deviation limit was chosen. On the contrary, the right picture is
based on normals over a range of 0.00005 meters and a maximum local and global
angle of 7.5 degrees.

The selected values proofed to create good results. Furthermore, we neglected the horizontal
distance parameter since it added no further value for the later processing steps. Here, the maximum
search radius already provided a good limitation for the maximum distance between two points.

One goal of the later evaluation is to find out to what extent large detected areas influence the
performance and image quality in contrast to smaller planar areas with a lower deviation from the
point dataset. Therefore, we picked a small global and local angle of 7.5 degrees. In contrast,
we introduced a large angular limit of twenty degrees. The result of both parameter values can
be viewed in Figure 6.1. Especially for the rough and uneven surface of the walls, both values
resulted in significant differences. A high angle threshold resulted in a significantly higher amount
of classified points. Some inaccuracies can be observed on the green wall in the right image. Here,
since the surface normals vary highly between adjacent points, two planar surfaces are classified
over the same region, indicated by the purple and green color. Therefore, two overlapping planes
result.

Furthermore, the outcome of the algorithm was different given different normal estimation parameter
values. Averaged normals over a wider area allowed to detect coarser regions like walls and the
floor in the graffiti dataset. Meanwhile, more precise normals made it possible to distinguish
between smaller planar surfaces. When both parameters were low many adjacent points could not
be detected. Here, a significant drop of classified points can be observed for the graffiti dataset.
With 77.6% of all points, almost 5 million fewer points were detected.

46

6.3 Preprocessing

Table 6.2: Results of the region growing algorithm for different parameter values. A higher radius
for the normal calculation and a higher angular limit value lead to more classified
points. In contrast, the standard deviation of the points in the normal direction of the
approximated planes increases. In the bike dataset, fewer points are detected and more
planes are approximated than in the graffiti dataset.

Dataset Radius Normal
Estimation

Global and
Local Angle
in Degrees

Detected
Planes

Detected Points
(Coverage)

Standard
Deviation
in Normal
Direction

Graffiti 0.00005 7.5 35 20284261 (77.6%) 0.014099
Graffiti 0.00005 20 15 25059918 (95.9%) 0.018606
Graffiti 0.001 7.5 19 25185069 (96.4%) 0.018539
Graffiti 0.001 20 15 25870660 (99%) 0.021812
Bike 0.000025 7.5 49 8575954 (58.6%) 0.004492
Bike 0.000025 20 101 10752205 (73.5%) 0.011748
Bike 0.0005 7.5 82 9042540 (61.8%) 0.006378
Bike 0.0005 20 144 11871233 (81.2%) 0.019151

On average, the algorithm takes 180 seconds to process the graffiti dataset of 53 million points. This
time is reasonable, however for larger point clouds exceeding over a billions of points processing
times the implemented algorithm may has to be reconsidered. An octree-based implementation of
the region growing algorithm [VTLB15] or a model-based segmentation method [SWK07] may
provide better performance. As can be seen in Table 6.2 our implemented approach recognizes
more than 58% percent of all points for each configuration. For the graffiti dataset, which consists
mainly of planar surfaces, significantly more points are segmented, ranging from 77.6% to 99%. In
contrast, for the bike dataset, significantly more small areas are detected. In addition, the standard
deviation in the direction of the approximated normal was calculated for all configurations. For
this the smallest distance of each point to its representative was calculated. Based on the nature
of the region growing algorithm, a higher angle threshold, and smoother normals lead to a higher
calculated standard deviation.

6.3.3 Texture Generation

The texture generation method fits rectangles in the previously classified points. Afterward, an
image texture for each plane is created. Parameters for the algorithm are the cell height and width.
A higher texture resolution is achieved by smaller cell sizes. Larger parameter values lead to blurrier
textures that require less memory. With tessellation, the next processing step is dependent on the
resolution of the texture. Therefore, we chose three different cell sizes encoding high, medium, and
low texture resolutions. Since the average point density differs between the graffiti and bike dataset,
individual values were picked for each point cloud. A resulting texture of this algorithm can be
seen in Figure 6.2. The left image shows a high-resolution texture given a cell size of 6 millimeters.
On the right, the same wall is shown using a cell size of 54 millimeters. The resulting texture of the
image on the left requires 931 kilobytes of storage. The size of the right image is 14.6 kilobytes.

47

6 Evaluation

Figure 6.2: Two resulting textures of the implemented algorithm using different parameters. Both
images show the texture of a wall generated from the graffiti dataset. The left image
was generated using a cell size of 6 millimeters while we used 54 millimeters for the
right one. Since the edges of the point cloud do not match the borders of the texture
perfectly, some inaccuracies can be detected. These are most evident at the edges of a
low-resolution texture. To avoid poorly visible areas the opacity values, describing the
displacement of each pixel, were neglected for this picture.

The proposed PCA approach to determine an uv-mapping of the triangle showed good but not
perfect results. Especially regions with diverging densities, shapes with straight edges or notches
can result in artifacts when choosing a low image resolution. This can be seen on the boundaries of
both textures shown in Figure 6.2. A lower resolution further magnifies this effect.

6.3.4 Tessellation

While the level of detail of our tessellation method is dependent on the resolution of the previously
computed texture, two additional parameters can be selected. First, the user can choose whether the
mesh should be tessellated. Otherwise, a single rectangle primitive is used for each detected planar
region. Furthermore, when tessellating the mesh, transparent triangles, which are invisible to the
user, can be discarded. In our evaluation, we decided to include all three possible combinations.

6.3.5 Unclassified Point Processing

Points not detected by our planar segmentation method are further clustered by the DBScan
algorithm. Here, the goal was to classify a large part of the remaining points. However, too small
clusters are dismissed to avoid pkd-trees containing a low amount of points. Therefore, the value
100 was chosen as the minimum number of nearest neighbors. For the search radius, a distinction
was made between 0.001 for the Graffiti and 0.00005 for the Bike dataset. Running the algorithm
on our datasets classified a majority of the remaining points. For the bike dataset, 99.4% to 99.8%
of the previously unclassified points were detected. For the graffiti dataset, the algorithm classified

48

6.4 Runtime Performance

Figure 6.3: Processing of all unclassified of points in the graffiti dataset. The left image shows the
result of clustered regions of the DBScan algorithm. The colored areas in the right
image, encode how the detected clusters were further spatially divided.

on average a lower percentage of points in the range of 92.4% to 99%. Subsequently, all clusters
were further spatially subdivided and partitioned into treelets. For this, a maximum point size of
1000 points per treelet was picked. The result of both processing steps can be seen in Figure 6.3.

6.4 Runtime Performance

To evaluate the runtime performance of our method, the presented parameter space was tested
in MegaMol. All configurations were run on a computer with 16 GB RAM and a Ryzen 2600x,
which has six cores and a 3.6 GHz base clock speed. Render times per frame were recorded in
milliseconds for three different viewing distances. A far distance implies a camera position further
away from the shown scene. Therefore, the dataset fills only a part of the viewport. A medium
distance indicates a common distance for analyzing the whole scene. Here, the dataset almost fills
the whole screen, while no part is cut out. Finally, a close view zooms into the dataset leaving a
small part of the data at a close range visible on the screen.

These distances were determined for each of the two datasets and then used uniformly for all
parameter configurations. To negate initial loading times, each configuration was first rendered
for twenty frames. Afterward, the render time was recorded for the next hundred frames. All in
all, our preprocessing parameter space includes 36 configurations for each dataset. Besides, each
configuration was measured for the previously mentioned three different camera distances. Given
the two datasets, this results in a total of 216 combinations. Since the 100 recorded values for each
combination showed stable and only slightly fluctuating results, the mean rendering time for each
combination is presented in the following bar charts. Subsequently, collected results were then
compared to the results of a point rendering method. Here, more specifically, all point data was
stored in a BVH and then each point was rendered as a sphere in OSPRay.

49

6 Evaluation

Rendertime (ms)

True True 0.054 0.001 7.5

True True 0.054 0.001 20

True True 0.054 5e-05 7.5

True True 0.054 5e-05 20

True True 0.018 0.001 7.5

True True 0.018 0.001 20

True True 0.018 5e-05 7.5

True True 0.018 5e-05 20

True True 0.006 0.001 7.5

True True 0.006 0.001 20

True True 0.006 5e-05 7.5

True True 0.006 5e-05 20

True False 0.054 0.001 7.5

True False 0.054 0.001 20

True False 0.054 5e-05 7.5

True False 0.054 5e-05 20

True False 0.018 0.001 7.5

True False 0.018 0.001 20

True False 0.018 5e-05 7.5

True False 0.018 5e-05 20

True False 0.006 0.001 7.5

True False 0.006 0.001 20

True False 0.006 5e-05 7.5

True False 0.006 5e-05 20

False False 0.054 0.001 7.5

False False 0.054 0.001 20

False False 0.054 5e-05 7.5

False False 0.054 5e-05 20

False False 0.018 0.001 7.5

False False 0.018 0.001 20

False False 0.018 5e-05 7.5

False False 0.018 5e-05 20

False False 0.006 0.001 7.5

False False 0.006 0.001 20

False False 0.006 5e-05 7.5

False False 0.006 5e-05 20

34.5
128.1

126

Tess Res. rNorm α/β

Configurations

0 5 0 100 150

del.
Trans.

Far

ViewDist

Medium
Close

Figure 6.4: Bar chart showing rendering times of all parameter combinations for the graffiti dataset.
Reference values of a sphere-based rendering approach are drawn as colored lines. Each
color represents a respective viewing distance. Parameter values for each configurations
are visualized in the table on the left of the image. For medium viewing distances our
approach is significantly faster than the compared rendering time of a sphere-based
rendering approach using a BVH. Dependent on the used configurations our approach
can be below or above the reference value of 126 milliseconds for close distances.

50

6.5 Memory Usage

Figure 6.4 shows the evaluation of our method with the different parameter configurations on the
y-axis. The baseline for close, medium, and far viewing distances of the BVH render method is
drawn as a red, green, and blue line. The red color encodes a far, the green color a medium, and
the blue color a close viewing distance. Viewing distances are similarly chosen in the bar chart,
encoding the rendering times given a preprocessing parameter combination.

An immediately visible detail is that the rendering time increases for closer viewing distances in
our method. Meanwhile, it decreases in comparison to the reference value from medium to close
viewing distance. For the close viewing distance, the comparison method achieves slightly better
results with 34.5 ms per frame than our method with an average of 39.8 ms. For medium distances,
however, our method outperforms the reference value with an average of 67.8 ms as opposed to 128.1
ms. The render times achieved by our method for near but also for medium distances are highly
dependent on the selected parameter space. For example, our method with a non-tessellated mesh,
low-resolution textures, and high radius, as well as high angle thresholds for the region growing
algorithm, took 91.3 ms to render for a near viewing distance. In contrast, many configurations
with a highly tessellated mesh remained above the baseline of 126 ms. All in all, rendering times
increased when a lower normal estimation radius or angle threshold was picked. Furthermore,
higher rendering time occurred when using tessellation while not discarding invisible triangles.
When using lower-resolution textures rendering times lowered especially for tessellated meshes.

For the bike dataset similar to the graffiti dataset, the evaluation results for far viewing distances are
slightly higher than the comparative value of 36.1 ms. The measured values can be observed in
Figure 6.5. This difference disappears for the medium viewing distance. Here, our method is faster
than the reference value 91.5 ms with an average of 80.4 ms. However, the percentual advantage is
noticeably smaller than for the graffiti dataset. For close viewing distances, our approach shows
significantly higher render times than the comparison value. Only tessellated configurations in
which transparent triangles are discarded provide slightly worse values than the baseline. All other
configurations exceed the given comparison value. In contrary to the graffiti dataset, non-tessellated
configurations did not provide the lowest render time. Instead tessellated meshes with removed
transparent vertices were the most efficient.

6.5 Memory Usage

In addition to the runtime performance, memory requirements are an important factor when
visualizing large datasets. When the dataset is too large to fit the RAM or VRAM capacity, costly
data transfers result. Therefore, we measured the memory consumption of every configuration.
In more detail, we recorded the entire memory usage of the MegaMol application given the
preprocessed datasets. In this way, in addition to the memory requirements of the raw dataset, the
RAM usage of further factors were taken into account. These are for example the overhead of the
OSPRay data structure and the memory usage to run our plugin and the MegaMol application.

Figure 6.6 visualizes the required RAM of each configuration as a bar chart. All in all, our approach
shows an advantage compared to a BVH consisting of point data. As a comparison, the BVH-tree
required 3754 MB of memory. This value is 22.4 times larger than the configuration with the lowest
memory consumption, which requires 174 MB of memory. However, even the maximum value of
our approach remains with 843MB clearly below the reference value.

51

6 Evaluation

Rendertime (ms)

Far

ViewDist

Medium

Close

True True 0.036 5e-04 7.5

True True 0.036 5e-04 20

True True 0.036 2.5e-05 7.5

True True 0.036 2.5e-05 20

True True 0.012 5e-04 7.5

True True 0.012 5e-04 20

True True 0.012 2.5e-05 7.5

True True 0.012 2.5e-05 20

True True 0.004 5e-04 7.5

True True 0.004 5e-04 20

True True 0.004 2.5e-05 7.5

True True 0.004 2.5e-05 20

True False 0.036 5e-04 7.5

True False 0.036 5e-04 20

True False 0.036 2.5e-05 7.5

True False 0.036 2.5e-05 20

True False 0.012 5e-04 7.5

True False 0.012 5e-04 20

True False 0.012 2.5e-05 7.5

True False 0.012 2.5e-05 20

True False 0.004 5e-04 7.5

True False 0.004 5e-04 20

True False 0.004 2.5e-05 7.5

True False 0.004 2.5e-05 20

False False 0.036 5e-04 7.5

False False 0.036 5e-04 20

False False 0.036 2.5e-05 7.5

False False 0.036 2.5e-05 20

False False 0.012 5e-04 7.5

False False 0.012 5e-04 20

False False 0.012 2.5e-05 7.5

False False 0.012 2.5e-05 20

False False 0.004 5e-04 7.5

False False 0.004 5e-04 20

False False 0.004 2.5e-05 7.5

False False 0.004 2.5e-05 20

Configurations

0 36.1 91.5 119 150 200 250 300

Tess Res. rNorm α/β
del.

Trans.

Figure 6.5: Render time in milliseconds for each parameter configuration shown as a bar chart.
Furthermore, the orange, green, and blue lines encode rendering times of a sphere-based
rendering approach using a BVH. While rendering times for far and medium viewing
distances are similar, the reference method shows better rendering times for close views.

52

6.5 Memory Usage

Graffiti

800

600

400

200

0

Resolution
High
Medium
Low

FALSE
FALSE
0.001

20

FALSE
FALSE
0.001

7.5

FALSE
FALSE
5e−05

20

FALSE
FALSE
5e−05

7.5

TRUE
FALSE
0.001

20

TRUE
FALSE
0.001

7.5

TRUE
FALSE
5e−05

20

TRUE
FALSE
5e−05

7.5

TRUE
TRUE
0.001

20

TRUE
TRUE
0.001

7.5

TRUE
TRUE
5e−05

20

TRUE
TRUE
5e−05

7.5

Tess.:
del. Transp.:

rNorm:
α/ β:

Config

M
em

or
y

(M
B

)

Figure 6.6: Memory requirements of the graffiti dataset for different preprocessing configurations.
With an increasing texture resolution the required memory increases. This effect is
amplified especially for high-resolution textures when tessellating the mesh. The
dataset with the lowest thresholds for the point cloud segmentation requires significantly
more memory than the other configurations.

Since a BVH based point rendering method allows fast render times but has significant overhead in
additional memory requirements, we additionally measured the memory consumption of a pkd-tree
for our two datasets. Here, our approach stays below the 962 MB memory requirement of the
pkd-tree.

Comparing the different configurations of our approach, the non-tessellated approach requires the
least amount of memory. Furthermore, the memory requirements increase significantly less between
the different texture resolutions than for the tessellated methods. Here, especially high-resolution
textures increase memory consumption. Additionally, deleting invisible triangles in the tessellated
mesh reduces the memory requirements further. Evaluating the parameters for the point cloud
segmentation method, the approach with the lowest angle and radius limit consumes significantly
more memory than all other approaches.

Furthermore, our approach provides better memory consumption values for the bike point dataset
than the BVH or pkd-tree variant. However, the compression rate remains below that of the graffiti
dataset. The configuration with the lowest memory capacity of 279 MB is 6.6 times smaller than
the reference value. On the other hand, the combination with the largest memory consumption of
533 MB is still 3.5 times smaller than the comparison. Again all measured values additionally lie
below the memory consumption of the pkd-tree with 640 MB.

53

6 Evaluation

Bike

M
em

or
y

(M
B

)

Resolution
High
Medium
Low

FALSE
FALSE
0.0005

20

FALSE
FALSE
0.0005

7.5

FALSE
FALSE
2.5e-05

20

FALSE
FALSE

7.5

TRUE
FALSE
0.0005

20

TRUE
FALSE
0.0005

7.5

TRUE
FALSE

20

TRUE
FALSE

7.5

TRUE
TRUE
0.0005

20

TRUE
TRUE
0.0005

7.5

TRUE
TRUE

20

TRUE
TRUE

7.5

Tess.:
del. Transp.:

rNorm:
α/ β:

Config

2.5e-05 2.5e-05 2.5e-05 2.5e-05 2.5e-05

400

300

200

100

0

500

Figure 6.7: Memory usage of the bike dataset given parameter values of our processing pipeline.
Similar to the graffiti dataset memory usage increases with higher resolution textures.
Compared to the graffiti dataset leads tessellation to a lower rise in memory. Lastly,
configurations with an angle threshold of 7.5 degrees require the most storage.

Not tessellating the detected rectangles again provides the representation with the least memory
requirements on average. However, contrary to the graffiti dataset, this advantage diminishes
for medium- and low-resolution textures. Furthermore, unlike in the Graffiti dataset, the normal
calculation has a smaller impact on memory requirements. However, configurations with a high
angle threshold still provide the highest compression rates.

Another important reference is to compare the memory requirements needed to store the raw dataset
compared to the representatives in our approach. To store a rectangle four vertices, six indices and
four uv-coordinates have to be contained in memory. Furthermore, a texture for each rectangle
has to be saved. Here, each set of points mapped to the same texel is described by four bytes.
Calculating the raw memory requirements of all primitives allows us to give further inside into the
memory requirements of our approach. The implemented segmentation algorithm detected 99%
of all points when choosing the two higher preprocessing thresholds. Therefore, 25870660 points
are replaced by 15 rectangles. Calculating the memory requirements of all points in the dataset
for these points, they consume 26130261 ∗ (4 ∗ 1byte + 3 ∗ 4byte) = 398.71 MB of memory. This
result is based on the assumption that each color channel requires one byte and all three coordinates
of a point are stored in four-byte precision. In contrast, the 15 rectangles consume 15(3 ∗ 4byte +
4 ∗ 4byte + 2 ∗ 4byte) = 540 byte. In addition, there are 3.96 MB required for unclassified points and
3.75 MB for the high-resolution textures. The consumed memory for low-resolution textures totals

54

6.6 Image Quality

68.5 KB. Therefore, the requirements are up to 99 times lower than when storing the raw point
data. It is important to note, that this represents one of the best cases of all of our configurations.
However, even for the bike dataset at least 58.6% of all points were detected. This replaces 8575954
points which have a memory requirement of 130.86 MB by 49 rectangles requiring a total of 1.7
KB for rectangles and up to 918KB for the storage of the textures.

6.6 Image Quality

Beyond the previously evaluated technical requirements, image quality serves as an important factor.
It is of little advantage for an approach to achieve good render times and low memory usage, when
the rendered image deviates too much from the original scene. For this, the representatives should
simplify the rendering requirements while still providing a realistic illustration. As common in
level of detail data structures, the image quality may decrease for objects further away, since less
detail is visible on the screen. To determine the image quality of our approach, a screenshot was
taken for each of the configurations evaluated. Because the removal of transparent triangles does
not influence the resulting image quality, this parameter was neglected. As a result, there were a
total of 18 configurations per dataset. For each of these configurations, a screenshot was taken
from a close, medium, and far viewing distance. As reference images, the results were compared
with the sphere-based rendering method used previously. Here, each point of the point cloud was
rendered as a colored sphere in OSPRay. To compare the results of our method with the reference
images the structural similarity index measure (SSIM) [WBSS04] was used. To determine the SSIM
value between a screenshot of our approach and the reference image, the SSIM implementation of
scikit-image [WSN+14] was utilized. The resulting values indicate the similarity of the two images
in percent. A value of one implies two completely matching images. In contrast, low values indicate
large differences. The minimum value of minus one implies two completely different images.

An overview of the SSIM values obtained for the Bike dataset can be observed in Figure 6.8. For
far viewing distances, near-perfect comparison values were determined for all configurations. The
SSIM results range from 0.997 to 0.9999. For medium distances, the SSIM values decreased slightly.
Here, the different textures led to the biggest differences. High-resolution textures achieved values
between 0.974 and 0.993. Medium-resolution textures, on the other hand, have a maximum SSIM
value of 0.985 and a minimum value of 0.964. The lowest results were achieved by low-resolution
textures within a range of 0.94 to 0.97. This trend is amplified for the near viewing distance.
Additional notable here are the significant differences between the parameters used for the point
cloud segmentation method compared to the other viewing distances. All in all, the results vary
highly for close viewing distances depending on the configuration. The SSIM values range from
0.719 to 0.965. The computed SSIM values of the graffiti dataset provided comparable values to the
results already presented. Merely the tessellation of the triangle mesh led to a higher increase than
is the case for the bike dataset. For a close viewing distance and high-resolution texture, this yielded
a rise of up to 0.1. The corresponding bar chart can be seen in Figure A.1 in the appendix.

To investigate the origin of the image quality differences in more detail, the SSIM map provided by
the scikit-image SSIM-method were analyzed. The maps highlights region, where deviations from
the reference image could be detected in the SSIM algorithm. An example of a reference image
and the image using our approach, as well as the resulting comparison image can be viewed in
Figure 6.9. The displayed bicycle can be seen at a medium viewing distance.

55

6 Evaluation

 Dist. Res. Tess.
View. Bike

0.00 0.25 0.50 0.75 1.00

Far 0.004 FALSE

Far 0.004 TRUE

Far 0.012 FALSE

Far 0.012 TRUE

Far 0.036 FALSE

Far 0.036 TRUE

Medium 0.004 FALSE

Medium 0.004 TRUE

Medium 0.012 FALSE

Medium 0.012 TRUE

Medium 0.036 FALSE

Medium 0.036 TRUE

Close 0.004 FALSE

Close 0.004 TRUE

Close 0.012 FALSE

Close 0.012 TRUE

Close 0.036 FALSE

Close 0.036 TRUE

SSIM

C
o

n
fig

u
ra

tio
n

rNorm/ α,β

0.005/ 20
0.005/ 7.5
2.5e−05/ 20
2.5e−05/ 7.5

Figure 6.8: In this image, a bar chart is presented showing the structural similarity index measure
(SSIM) between configurations of our approach and a reference image. The different
configurations of the point cloud segmentation method are encoded by four colors.
As the viewing distance lowers, the similarity value decreases. Furthermore, the four
different point cloud segmentation configurations have an high impact on the resulting
values, especially for the near viewing distance.

The parameters selected for our approach are a radius of 0.000025 for normal calculation, an angular
limit of 20 degrees, and a high-resolution texture. Thus, 0.73.5% of all points were replaced by 101
rectangles. Furthermore, the rendered triangles were additionally tessellated and displaced. The
calculated SSIM value of this configuration is 0.992. Observing the comparison image, especially
the floor color introduced consistent differences. Furthermore, regions with lower point densities, as
can be seen on the bottom left and right on the SSIM map, lead to further deviations. As can be seen
in Figure 6.10, the results of the graffiti dataset showed similar sources of differences. Here, a low
point point density area behind the shown mattress introduced the highest deviations. Furthermore,
the edges of the wall with no adjacent geometry caused differences. The respective SSIM value is
0.994.

56

6.6 Image Quality

Figure 6.9: This picture shows the difference between a reference image using a sphere-based
rendering method on top. The rendered image of our approach is shown in the middle.
Regions with deviations found by the SSIM algorithm are indicated in the image at
the bottom. Our method replaced 73.5% of all points in the bike dataset with 101
rectangles. Furthermore, high-resolution textures were used and the rectangles are
tessellated. Most differences can be identified across the floor and at the edges of the
approximated rectangles.

57

6 Evaluation

Figure 6.10: The resulting images of the sphere-based reference method (top) and our approach
(middle) showing the graffiti dataset. Our approach replaced 99% of all points
with 15 rectangles. To increase image quality the rectangles were tessellated and a
high-resolution texture was used. The identified differences by the SSIM algorithm
can be observed at the bottom image. Most deviations occur in regions with low point
density and at the edges of the fitted rectangles.

58

7 Discussion

In this chapter, the results of the conducted evaluation are reviewed and interpreted. Therefore,
possible explanations and reasons of observed effects regarding runtime performance, memory
requirements and image quality are provided. Furthermore, limitations and scalability of our
approach are discussed.

7.1 Runtime Performance

Observing the render times of the graffiti dataset of our approach, many of the parameter settings
yielded the expected effect. Visualizing the rectangles without tessellation showed to deliver the
best rendering times. This behavior is expected since the rendering engine has to process viewer
triangles. For the same reason, removing invisible triangles when tessellating reduced the overall
render times in both the graffiti and bike dataset. In the end, there were only slight differences
in the results between the different texture resolutions when the configuration was not tessellated.
Since the size of both datasets did easily fit the RAM of the tested system, the time overhead for
sampling a high-resolution texture in OSPRay seems to have only a low impact on performance.
Nevertheless, we expect a higher impact on performance, if the available memory is more limited
for example when using a larger dataset. Furthermore, combining a higher resolution texture with
tessellation increased rendering times by a higher factor. This was to be expected since a higher
resolution texture refines the tessellation. Thus, more triangles have to be visualized. Lastly, the two
parameters affecting our point cloud segmentation method showed an impact on render times. Here,
a similarity to the number of classified points can be observed. The more points are left unclassified
the more the render time increases. This was to be expected since all unclassified points have to be
rendered instead of summarizing them by single planes.

Comparing render times of both datasets revealed differences. Interestingly, the bike dataset
achieved not the best rendering times when the mesh was not tessellated. Instead, the method
that tessellated the mesh and discarded invisible triangles showed significantly better results. One
possible reason for this could be found in the planar areas discovered in the dataset. While the
graffiti dataset mainly contains rectangular planar areas, the bike dataset includes more curvy
regions. This results in rectangles being filled with fewer points. An example of this is the surface
of the tires. Our region growing algorithm discovers a planar surface on the two sides of them.
Building a circle shape in the texture the middle, as well as corner areas, are completely invisible.
Visualizing this region as a rectangle therefore results in an additional intersection test. This effect is
further enhanced when several such shapes overlap. Here, tessellation improves rendering times by
eliminating the invisible triangles. Solutions to this problem can also be found in the segmentation
algorithm. Being able to detect more shapes than planes, improves the density of points in a
representative. For example, the previously mentioned bicycle tire could be described as a torus.

59

7 Discussion

Overall, our approach achieved better results for the graffiti dataset than the bike dataset. A possible
explanation for this behavior lies in the results of the point cloud segmentation method. For the bike
dataset, each configuration classified fewer points than for the graffiti dataset. As already mentioned,
rendering the unclassified point data demands additional processing power than representing a
large number of points by a few rectangles. Furthermore, in the graffiti dataset detected planes
were larger and covered a wider area. The reason for this is that the bike dataset mostly consists
of areas with high curvature and non-planar regions. On the contrary, the representatives of the
bike dataset consist of a lot more but smaller rectangles. Here, good parameter values of the region
growing algorithm have to be found, balancing between overlapping rectangles and points that are
left unclassified. For our configurations, classifying the most points of the dataset still provided the
best rendering times. All in all, it is important to notice, that the planarity of the point dataset has
a high impact on rendering times for our algorithm. The bike dataset was particularly chosen to
represent a worst-case for our segmentation method.

Comparing the results of our approach with the reference values of the sphere-based rendering
method showed good results. Especially for medium viewing distances lower rendering times
could be achieved. A medium viewing distance describes a camera distance where no point is
located outside the viewport. Meanwhile, the area of the space occupied on the screen of the
dataset is optimized. Therefore, the highest amount of points have to be rendered in the reference
method. This number is significantly reduced by our approach and replaced by a small number of
rectangles. When zooming in further, the sphere BVH-tree can be more efficient, since it offers
very fast and simple viewport culling operations. Our approach likewise relies on a BVH for storing
geometric primitives. However, the sphere primitives are smaller than rectangles, allowing more
precise filtering of the dataset. Thereby, the reason that the sphere-based method provides better
render times for a close viewing distance can be explained. Furthermore, the sphere-based method
yields significantly better results for close viewing distances visualizing the bike dataset. However,
here the render times are further slowed down by the previously mentioned overlapping triangles.
Especially for planer regions, our approach can still improve render times for close distances at
specific configurations even with high-resolution textures. Lastly, even though our approach yields
higher rendering times for far camera distance, the observed differences are small. Here, the other
factors like memory requirements and image quality could provide a more important point of
reference.

It is important to note that the size of the datasets limits the results of our evaluation. The impact
of larger datasets for both compared render methods still needs to be explored. Here, our method
could offer greater advantages, since significantly fewer primitives have to be processed than in the
reference method. Further limitations can be found in the chosen rendering engine. Our proposed
data structure had to be modified to match the internal OSPRay architecture. Therefore, classified
and unclassified points had to be processed in the same BVH-tree. This can lead to more required
intersection tests since many points overlap with the approximated rectangles. Furthermore, a
dynamic level of detail could not be implemented, since on the fly tessellation and displacement
maps are not supported. While a constant level of detail provides good insight into the performance
of certain parameters, it does not reflect an ultimate use case. Dynamic selection of representatives
based on camera distance is an important aspect of many existing point render applications. As
a result, our performance is only hardly comparable with them. Another important aspect that
complicates this comparison is that OSPRay is based on ray tracing. While ray tracing represents
light bounces and reflections more realistically, a rasterization-oriented approach implemented on
the GPU can provide better render times.

60

7.2 Memory Requirements

7.2 Memory Requirements

Likewise to the rendering times, the memory requirements of our approach decreased the more
points were classified. This is to be expected since individual rectangles replace a large number of
points. The different texture resolutions had only a low impact on memory requirements. Due to
their low storage requirements compared to other factors, the additional space required is of minor
significance. Nevertheless, a finer tessellation leads to a significant memory increase. Especially in
the graffiti dataset tessellating the large rectangles had a high impact. On the contrary to the bike
dataset. Here, most of the memory requirements are taken by the unclassified points. Therefore, the
ratio between tessellation and total memory consumption is lower. Furthermore, the number of
additional vertices scales quadratically with the chosen cell size. Thus, the increase from medium
to high-resolution textures is significantly higher than it is the case for low to medium textures.

Comparing the memory consumption of our approach with that of the reference method shows the
great strength of our approach. A BVH has a significant memory overhead for bounding box and
pointer. For a large number of elements, as is the case with point clouds, this overhead exceeds
the memory consumption of the raw dataset. Therefore, the comparison between each other has
only limited significance. Data structures for large point sets rely on other memory structures like
an octree or kd-tree introducing lower overhead. However, our approach still offers a memory
advantage over a pkd-tree, which itself has almost no memory overhead. After all, this is the
main purpose of representatives in a level of detail data structure. The comparison with other
strategies, such as Poisson subsampling would be of interest. However, this is difficult to compare.
The compression rate of our approach depends on the spatial properties of a point cloud. If we
take the compression rate of the graffiti dataset with high segmentation thresholds, the dataset
can be reduced up to a factor of 99. Assuming a similar factor for a dataset that requires 50 GB
of memory, it could be reduced to 610 MB. However, while modeling room interiors with many
planar areas this may be a good reference value, other structures like trees can only be remodeled
to a limited extent. Here, additionally recognizing geometries like cylinders or spheres would
provide a further advantage. Furthermore, a level of detail method is solely presented for classified
points. Simplifying unclassified points would make our method much less dependent on the spatial
structure of the point cloud.

7.3 Image Quality

While SSIM is a good approach to measure the similarity between the two pictures, it introduces
some challenges for our use case. Finding a good reference value for the comparison of a screenshot
taken from our approach is not a trivial task. Optimally the rendered images are compared with the
real-world environment that the captured point cloud represents. However, images would have to be
taken from the same camera position. Additionally, influences like sunlight make this approach
nearly impossible. We decided to compare our results with the images of the previously presented
reference method. Visualizing a point cloud by small spheres creates high-resolution images that
are close to the depicted reality. Hereby, the point cloud is displayed with the highest possible
resolution. However, especially for close viewing distances, individual spheres may be visible in
the image. The displayed points are projected onto the screen as filled circles if they cover more

61

7 Discussion

than one pixel. Nevertheless, this difference only leads to small inaccuracies for medium and close
viewing distances. Another advantage is that this difference can be easily tracked by comparing the
divergence image displaying region with high dissimilarities.

Overall, we achieved high SSIM values for far and medium viewing distances. For close distances,
especially configurations in which many points were replaced showed deviations. This was to be
expected since the representatives are the only source of error for our approach. Unclassified points
visualized as spheres are creating an identical representation to our reference method. If we detect
zero points in our point cloud segmentation, we would obtain an identical image to our reference.
However, inferring from SSIM values to the image quality observed by humans is not a simple issue.
Flynn et al. [FWAP13] conducted a study observing at which SSIM values participants were able
to detect a distorted image. The results showed, that four images were indistinguishable starting
at a SSIM value of 0.96. Two other images, on the other hand, could not be separated from the
reference image at a SSIM value of 0.92 and above. These values are reached for all far and medium
viewing distances in our approach. Furthermore, some configurations achieved these values for
close distances. Based on the collected values, it can be concluded that low-resolution textures
are sufficient for our chosen far camera distance. Furthermore, for medium viewing distances, the
medium texture resolution showed to provide sufficient results. However, high-resolution textures
still enable measurable improvements. Due to the significant differences, only the calculated
high-resolution textures in our evaluation should be selected for close-up views. Here, the rectangles
should be additionally tessellated since it provided a noticeable increase in the SSIM values.

However, one should be careful with the interpretation of the SSIM values. Although the calculated
results indicate the differences between the two images, the calculated values provide only limited
information about the perceived quality of the images [NA20]. Therefore, we additionally reviewed
the created SSIM maps. The SSIM map highlights regions in the image where the algorithm
identified deviations from the reference picture. This allows further conclusions about the factors
that lead to the measured differences.

Analyzing the SSIM map, we were able to identify variable sources of errors. As seen in the bike
dataset, high constant dissimilarities can be detected on the floor where the bicycle stands. Three
major sources are contributing to this deviation. First, the texture resolution may not fit the local
point density of the point cloud at the represented region. Choosing a texture resolution in our
preprocessing, the size of a texel is constant for the whole dataset. However, point clouds can have
varying point densities. Being close enough, these differences can be identified if two or more
distinguishable spheres are represented by one texel. In addition, a varying point density makes
it difficult to choose an optimal cell size into which the points are projected. While the resulting
texture resolution may be too coarse for some areas, noticeable artifacts due to undersampling may
appear in other regions. To reduce this error, a dynamic texture resolution based on the point density
of each rectangle could be calculated in the preprocessing step. However, the error would remain
for varying resolutions within a rectangle. Another approach would be to reduce the artifacts of
undersampling. For this purpose, the color of texels without points could be interpolated based on
the neighboring texels. However, this approach is limited to slightly undersampled textures. Above
a certain resolution, it would no longer be possible to distinguish between holes appearing in the
sampled environment and undersampled regions.

Another source of error that is limited to close viewing distances is the shape of the representatives.
While spheres projected to the screen are represented by a circle, a texel can be recognized as a
square. Therefore, differences between both representations can be identified. Conclusions about

62

7.3 Image Quality

which representation reflects the reality more accurately can not be made since this is a basic
limitation of a point cloud. However, with modern scanning devices measuring points at one-tenth
of a millimeter apart, the use case of such close observation distances is very limited. Here, a point
cloud simply encounters limitations.

The last limitation is the color of a texel. In our approach, colors of all points mapped to a texel are
interpolated. The interpolated color represents a tradeoff between the color of all represented points.
The final resulting color may not even appear in the actual dataset. Visualizing a point cloud with
spheres, the color of the spheres are not interpolated. In contrast, only the colors of the spheres
are shown, which are not occluded by other spheres. Depending on the viewing angle the visible
spheres and colors may vary. We believe this leads to the largest differences between our approach
and the reference images. Differences can become visible, especially in the case of strongly locally
fluctuating color values. However, it remains to be analyzed how the color differences influence an
analysis. For our results, the color difference was hardly noticeable limited to small areas.

Besides differences within the textures, deviations could additionally be detected at the edge of
the approximated rectangles. Particularly in images of the Graffiti dataset, these differences are
visible. Furthermore, as the resolution decreases, the observed deviations intensify. This points to
an issue that was already noticeable when creating the textures. If even edges of the point cloud
are not mapped parallel to the border of the texture slight artifacts can be observed. This effect
was shown in Figure 6.2. A higher resolution diminishes these artifacts since the size of a texel is
smaller. Further improvements can be achieved by optimizing the calculations of the corner points
of a rectangle. However, if the detected planar region has more or less than four edges, a more
advanced uv-mapping has to be used.

Interestingly, tessellation had limited effects on the calculated SSIM values. On the other hand,
the differences were clearly visible for medium and close distances when comparing. We assume
this is due to the fact that the human eye can recognize differences in shape more easily than
color differences. Unaligned rectangles lead to unnatural forms and empty spaces. We can easily
recognize these effects since they can not occur in the real world. Color differences, on the other
hand, are often difficult to detect as long as the base color does not change. The detected differences
obtained by interpolation in our approach lead solely to different brightness levels. Therefore, we
conclude that the tessellation step is very important for the quality of the later result.

All in all, it is hard to tell which configuration provides the best overall performance considering
memory requirements, render times, and image quality. Configurations classifying fewer points lead
to worse render times and higher storage capacities. Meanwhile, the calculated SSIM value is higher.
However, as mentioned above the SSIM does not form a precise indication of the perceived image
quality. Significant differences nevertheless give a general indication. Here, it would be of further
interest to interview users to form a stronger established opinion. If there are strong similarities
with the SSIM value, an automatic selection of the parameters could be implemented optimizing
technical requirements and image quality. Furthermore, certain parameter values could be adjusted
manually based on user needs. An example of this could be the adjustment of tessellation levels,
texture resolutions, or the level of detail shown based on defined camera distances. Likewise,
the distance from which the raw point data is displayed to the user is still to be determined. The
representation of all points still allows the most detailed and realistic visualization. However, the
continuous surface of the approximated surfaces can fill the otherwise empty space between the
points. Again, this would require the investigation of possible use cases.

63

8 Conclusion and Outlook

Rendering point clouds quickly encounters limitations as the amount of data grows. In order to
display these datasets on commercial hardware further processing steps have to be conducted. In
this work, a processing pipeline was introduced simplifying point clouds by geometrical shapes. In
a first step, a normal estimation algorithm based on principal component analysis approximates
the normals of the point cloud surfaces. Subsequently, a region growing algorithm estimates
planar regions by planes. To be able to render these planes, rectangles are fit into the classified
point regions. This is done by reducing the planes into two dimensions and finding minimum
and maximum coordinates that can be used as vertices. Considering that point clouds can further
contain color information grids are created over the rectangles and points are mapped to respective
cells. With each cell describing a texel, textures of variable resolutions can be created. Here, the
resolution depends on the arbitrary adjustable cell size. Allowing to create various levels of details,
the approximated rectangles can be further refined. Calculated displacement maps describe the
deviation of points projected to each cell from the geometrical shape. Afterward, the mesh of
each rectangle can be tessellated and each vertex is shifted by the stored displacement value. With
increasing mesh refinement a more detailed representation can be achieved. To dynamically choose
a level of detail based on the viewpoint, a data structure is introduced. The data structure stores
detected geometry in a bounding volume hierarchy. Besides rectangles, each node is designed to be
able to store further geometry types like cylinders or spheres. Each leaf node contains indices to an
array storing the point data represented by each shape. Thereby for each point subset, a pkd-tree is
created and the array containing the point data is sorted accordingly. Besides classified point data,
all points not classified by our point cloud segmentation method are processed further. Here, the
DBScan algorithm is used to find related dense point regions. Afterward, the found clusters are
further spatially subdivided by the median point along the largest bounding box dimension. Finally,
each point segment is stored as a leaf node in a bounding volume hierarchy.

In a following evaluation, different parameter values in the processing pipeline were proposed,
tested, and analyzed. The resulting datasets have been rendered using the OSPRay ray tracing
engine. All results including up to 216 different configurations are presented and analyzed in terms
of render times, memory usage, and image quality. Furthermore, all values are compared to a
sphere-based rendering approach using a bounding volume hierarchy. Here, our approach shows
comparable render times especially for far and medium viewing distances, while providing almost
non-distinguishable render images from the reference method. Noticeable improvements were seen
in particular for medium viewing distances, where the rendering time could be more than halved for
some configurations. A major strength of our approach lies in the reduction of storage requirements.
While a point-based bounding volume hierarchy introduces a lot of memory overhead, our approach
reduces memory requirements lower than the original dataset. The memory compression rate highly
depends on the spatial arrangements of the points. For an indoor scene showing a vacant building up
to 99% of all points could be replaced by only fifteen rectangles. Another dataset consisting mainly
of regions with high curvature yielded 58.6% to 81.2% of all points being replaced. However, the

65

8 Conclusion and Outlook

resulting many small and overlapping rectangles led to higher rendering times which were especially
noticeable at close viewing distances. Comparing the different preprocessing parameters showed
visible differences in render times, memory usage as well as image quality. Classifying more points
with fewer planes produces the best overall results, however, the dataset must contain distinct planar
regions to achieve this. To gain insights into the image quality of the rendered results, images of the
sphere-based reference method were compared with our approach. For this, the structural similarity
index was calculated. The retrieved results indicated almost non-distinguishable results for far and
medium viewing distances. Additionally, SSIM maps were compared to further investigate sources
of errors. Here, most deviation resulted from small color differences and texture resolutions not
matching local point densities.

Outlook

Right now there are limiting factors regarding the current implementation and evaluation of our
approach. With the OSPRay rendering engine, dynamic tessellation, as well as displacement
mapping, is not supported. The precalculated constant level of detail only partially represents a later
use case. Here, a rendering approach based on the GPU can be implemented to achieve on-the-fly
tessellation and displacement mapping based on the viewing distance. Furthermore, rendering
times could be increased compared to CPU-based implementations. Likewise, the significantly
reduced memory requirements of our method could once again speed up render times considerably
in comparison to visualizing the whole point cloud.

This approach could be additionally improved by exploring different point cloud segmentation
methods. While the currently used region growing algorithm provides reasonable results, the large
parameter space, as well as possible overlapping segmented regions, can affect the later visualization.
Furthermore, the detection of additional geometrical shapes like cylinders or spheres can increase
the number of classified points as well as decrease the average deviation of all points from the fitted
geometry. Likewise, the representation of planer points by tensor product surfaces could better fit
non-rectangular shapes and therefore decrease overlap and intersections between the fitted planes.

In this work, the presented level of detail approach is limited to the classified points of the point
cloud segmentation method. Although unrecognized points are processed, they are all rendered in
the final view, if they are not occluded. A further approach aggregating these point regions with
high curvature could reduce rendering times and memory requirements based on the distance to the
viewport. This would additionally lead to a more consistent representation in which equally distant
objects are visualized uniformly.

Finally, the lowest level of detail in our approach is achieved by visualizing each planar region
by one rectangle. These rectangles are stored in the leaf nodes of a BVH-tree. However, the
representatives of the nodes can be further aggregated by their parent nodes. This allows to simplify
two or more detected geometries, enabling a higher compression rate. Nevertheless, finding a good
method to compute these representatives requires a more advanced heuristic aggregating nodes in
the BVH-tree. Furthermore, the technique has to incorporate the color information of the point
cloud.

66

Bibliography

[AMN+98] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, A. Y. Wu. “An Optimal
Algorithm for Approximate Nearest Neighbor Searching Fixed Dimensions”. In: J.
ACM 45.6 (Nov. 1998), pp. 891–923. issn: 0004-5411. doi: 10.1145/293347.293348.
url: https://doi.org/10.1145/293347.293348 (cit. on p. 16).

[Ben75] J. L. Bentley. “Multidimensional Binary Search Trees Used for Associative Searching”.
In: Commun. ACM 18.9 (Sept. 1975), pp. 509–517. issn: 0001-0782. doi: 10.1145/
361002.361007. url: https://doi.org/10.1145/361002.361007 (cit. on p. 14).

[BHH14] J. Bittner, M. Hapala, V. Havran. “Incremental BVH construction for ray tracing”. In:
Computers & Graphics 47 (Dec. 2014). doi: 10.1016/j.cag.2014.12.001 (cit. on
p. 13).

[BL08] J. M. Biosca, J. L. Lerma. “Unsupervised robust planar segmentation of terrestrial
laser scanner point clouds based on fuzzy clustering methods”. In: ISPRS Journal
of Photogrammetry and Remote Sensing 63.1 (2008). Theme Issue: Terrestrial
Laser Scanning, pp. 84–98. issn: 0924-2716. doi: https://doi.org/10.1016/j.
isprsjprs.2007.07.010. url: http://www.sciencedirect.com/science/article/pii/
S0924271607000809 (cit. on p. 17).

[BLHH] B. Bhanu, S. Lee, C.-C. Ho, T. Henderson. “Range data processing: Representation
of surfaces by edges”. In: (cit. on p. 17).

[CBC+01] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum,
T. R. Evans. “Reconstruction and Representation of 3D Objects with Radial Basis
Functions”. In: Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’01. New York, NY, USA: Association for
Computing Machinery, 2001, pp. 67–76. isbn: 158113374X. doi: 10.1145/383259.
383266. url: https://doi.org/10.1145/383259.383266 (cit. on p. 23).

[CC08] J. Chen, B. Chen. “Architectural Modeling from Sparsely Scanned Range Data”.
In: Int. J. Comput. Vision 78.2–3 (July 2008), pp. 223–236. issn: 0920-5691. doi:
10.1007/s11263-007-0105-5. url: https://doi.org/10.1007/s11263-007-0105-5
(cit. on p. 23).

[CH67] T. Cover, P. Hart. “Nearest neighbor pattern classification”. In: IEEE Transactions on
Information Theory 13.1 (1967), pp. 21–27. doi: 10.1109/TIT.1967.1053964 (cit. on
p. 16).

[Cla76] J. H. Clark. “Hierarchical Geometric Models for Visible Surface Algorithms”. In:
Commun. ACM 19.10 (Oct. 1976), pp. 547–554. issn: 0001-0782. doi: 10.1145/
360349.360354. url: https://doi.org/10.1145/360349.360354 (cit. on pp. 13, 30).

[Coo86] R. L. Cook. “Stochastic Sampling in Computer Graphics”. In: ACM Trans. Graph.
5.1 (Jan. 1986), pp. 51–72. issn: 0730-0301. doi: 10.1145/7529.8927. url: https:
//doi.org/10.1145/7529.8927 (cit. on p. 22).

67

https://doi.org/10.1145/293347.293348
https://doi.org/10.1145/293347.293348
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1016/j.cag.2014.12.001
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2007.07.010
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2007.07.010
http://www.sciencedirect.com/science/article/pii/S0924271607000809
http://www.sciencedirect.com/science/article/pii/S0924271607000809
https://doi.org/10.1145/383259.383266
https://doi.org/10.1145/383259.383266
https://doi.org/10.1145/383259.383266
https://doi.org/10.1007/s11263-007-0105-5
https://doi.org/10.1007/s11263-007-0105-5
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1145/360349.360354
https://doi.org/10.1145/360349.360354
https://doi.org/10.1145/360349.360354
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/7529.8927
https://doi.org/10.1145/7529.8927

Bibliography

[Del34] B. Delaunay. “Sur la Sphere Vide”. In: Izvestia Akademia Nauk SSSR 7 (1934),
pp. 793–800 (cit. on p. 23).

[DVS03] C. Dachsbacher, C. Vogelgsang, M. Stamminger. “Sequential Point Trees”. In: ACM
Trans. Graph. 22.3 (July 2003), pp. 657–662. issn: 0730-0301. doi: 10.1145/882262.
882321. url: https://doi.org/10.1145/882262.882321 (cit. on p. 21).

[EKSX96] M. Ester, H.-P. Kriegel, J. Sander, X. Xu. “A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise”. In: KDD’96. Portland, Oregon:
AAAI Press, 1996, pp. 226–231 (cit. on p. 19).

[EMSN12] J. Elseberg, S. Magnenat, R. Siegwart, A. Nuchter. “Comparison on nearest-neigbour-
search strategies and implementations for efficient shape registration”. In: Journal of
Software Engineering for Robotics (JOSER) 3 (Jan. 2012), pp. 2–12 (cit. on p. 16).

[FKN80] H. Fuchs, Z. M. Kedem, B. F. Naylor. “On Visible Surface Generation by a Priori Tree
Structures”. In: SIGGRAPH Comput. Graph. 14.3 (July 1980), pp. 124–133. issn: 0097-
8930. doi: 10.1145/965105.807481. url: https://doi.org/10.1145/965105.807481
(cit. on p. 14).

[FWAP13] J. R. Flynn, S. Ward, J. Abich, D. Poole. “Image Quality Assessment Using the SSIM
and the Just Noticeable Difference Paradigm”. In: Proceedings, Part I, of the 10th
International Conference on Engineering Psychology and Cognitive Ergonomics.
Understanding Human Cognition - Volume 8019. Berlin, Heidelberg: Springer-Verlag,
2013, pp. 23–30. isbn: 9783642393594 (cit. on p. 62).

[GBB+19] P. Gralka, M. Becher, M. Braun, F. Frieß, C. Müller, T. Rau, K. Schatz, C. Schulz,
M. Krone, G. Reina, T. Ertl. “MegaMol – A Comprehensive Prototyping Framework
for Visualizations”. In: The European Physical Journal Special Topics 227.14 (Mar.
2019), pp. 1817–1829. issn: 1951-6401. doi: 10.1140/epjst/e2019-800167-5. url:
https://doi.org/10.1140/epjst/e2019-800167-5 (cit. on p. 33).

[GF09] A. Golovinskiy, T. Funkhouser. “Min-cut based segmentation of point clouds”. In:
2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV
Workshops. 2009, pp. 39–46. doi: 10.1109/ICCVW.2009.5457721 (cit. on p. 17).

[GG04] N. Gelfand, L. J. Guibas. “Shape Segmentation Using Local Slippage Analysis”. In:
Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry
Processing. SGP ’04. Nice, France: Association for Computing Machinery, 2004,
pp. 214–223. isbn: 3905673134. doi: 10.1145/1057432.1057461. url: https:

//doi.org/10.1145/1057432.1057461 (cit. on p. 17).

[GHFB13] Y. Gu, Y. He, K. Fatahalian, G. Blelloch. “Efficient BVH Construction via Approximate
Agglomerative Clustering”. In: Proceedings of the 5th High-Performance Graphics
Conference. HPG ’13. Anaheim, California: Association for Computing Machinery,
2013, pp. 81–88. isbn: 9781450321358. doi: 10 . 1145 / 2492045 . 2492054. url:
https://doi.org/10.1145/2492045.2492054 (cit. on p. 13).

[GM04] E. Gobbetti, F. Marton. “Layered point clouds: A simple and efficient multiresolution
structure for distributing and rendering gigantic point-sampled models”. In: Computers
& Graphics 28 (Dec. 2004), pp. 815–826. doi: 10.1016/j.cag.2004.08.010 (cit. on
p. 21).

68

https://doi.org/10.1145/882262.882321
https://doi.org/10.1145/882262.882321
https://doi.org/10.1145/882262.882321
https://doi.org/10.1145/965105.807481
https://doi.org/10.1145/965105.807481
https://doi.org/10.1140/epjst/e2019-800167-5
https://doi.org/10.1140/epjst/e2019-800167-5
https://doi.org/10.1109/ICCVW.2009.5457721
https://doi.org/10.1145/1057432.1057461
https://doi.org/10.1145/1057432.1057461
https://doi.org/10.1145/1057432.1057461
https://doi.org/10.1145/2492045.2492054
https://doi.org/10.1145/2492045.2492054
https://doi.org/10.1016/j.cag.2004.08.010

Bibliography

[GS87] J. Goldsmith, J. Salmon. “Automatic Creation of Object Hierarchies for Ray Tracing”.
In: IEEE Computer Graphics and Applications 7.5 (1987), pp. 14–20. doi: 10.1109/
MCG.1987.276983 (cit. on pp. 13, 30).

[GWG+20] P. Gralka, I. Wald, S. Geringer, G. Reina, T. Ertl. “Spatial Partitioning Strategies for
Memory-Efficient Ray Tracing of Particles”. In: Proceedings of IEEE Symposium on
Large-Scale Data Analysis and Visualization. 2020 (cit. on p. 41).

[GZPG10] P. Goswami, Y. Zhang, R. Pajarola, E. Gobbetti. “High Quality Interactive Rendering
of Massive Point Models Using Multi-way kd-Trees”. In: Pacific Conference on
Computer Graphics and Applications 0 (Sept. 2010), pp. 93–100. doi: 10.1109/
PacificGraphics.2010.20 (cit. on pp. 22, 30).

[HDD+92] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle. “Surface Reconstruction
from Unorganized Points”. In: SIGGRAPH Comput. Graph. 26.2 (July 1992), pp. 71–
78. issn: 0097-8930. doi: 10.1145/142920.134011. url: https://doi.org/10.1145/
142920.134011 (cit. on p. 22).

[HRB05] M. Hubert, P. J. Rousseeuw, K. V. Branden. “ROBPCA: A New Approach to Robust
Principal Component Analysis”. In: Technometrics 47.1 (2005), pp. 64–79. doi:
10.1198/004017004000000563. eprint: https://doi.org/10.1198/004017004000000563.
url: https://doi.org/10.1198/004017004000000563 (cit. on p. 18).

[JC16] I. T. Jolliffe, J. Cadima. “Principal component analysis: a review and recent devel-
opments”. In: Philosophical Transactions of the Royal Society of London Series A
374.2065 (Apr. 2016), p. 20150202. doi: 10.1098/rsta.2015.0202 (cit. on p. 16).

[KBH06] M. Kazhdan, M. Bolitho, H. Hoppe. “Poisson Surface Reconstruction”. In: Pro-
ceedings of the Fourth Eurographics Symposium on Geometry Processing. SGP
’06. Cagliari, Sardinia, Italy: Eurographics Association, 2006, pp. 61–70. isbn:
3905673363 (cit. on p. 23).

[KK86] T. L. Kay, J. T. Kajiya. “Ray Tracing Complex Scenes”. In: Proceedings of the 13th
Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH
’86. New York, NY, USA: Association for Computing Machinery, 1986, pp. 269–278.
isbn: 0897911962. doi: 10.1145/15922.15916. url: https://doi.org/10.1145/
15922.15916 (cit. on p. 13).

[LA13] F. Lafarge, P. Alliez. “Surface Reconstruction through Point Set Structuring”. In:
Computer Graphics Forum 32.2pt2 (2013), pp. 225–234. doi: https://doi.org/10.
1111/cgf.12042. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.
12042. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12042 (cit. on
p. 23).

[LKS+08] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, C. Jin. “Flexible IO and
Integration for Scientific Codes through the Adaptable IO System (ADIOS)”. In:
Proceedings of the 6th International Workshop on Challenges of Large Applications in
Distributed Environments. CLADE 08. Boston, MA, USA: Association for Computing
Machinery, 2008, pp. 15–24. isbn: 9781605581569. doi: 10.1145/1383529.1383533.
url: https://doi.org/10.1145/1383529.1383533 (cit. on p. 33).

69

https://doi.org/10.1109/MCG.1987.276983
https://doi.org/10.1109/MCG.1987.276983
https://doi.org/10.1109/PacificGraphics.2010.20
https://doi.org/10.1109/PacificGraphics.2010.20
https://doi.org/10.1145/142920.134011
https://doi.org/10.1145/142920.134011
https://doi.org/10.1145/142920.134011
https://doi.org/10.1198/004017004000000563
https://doi.org/10.1198/004017004000000563
https://doi.org/10.1198/004017004000000563
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1145/15922.15916
https://doi.org/10.1145/15922.15916
https://doi.org/10.1145/15922.15916
https://doi.org/https://doi.org/10.1111/cgf.12042
https://doi.org/https://doi.org/10.1111/cgf.12042
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12042
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12042
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12042
https://doi.org/10.1145/1383529.1383533
https://doi.org/10.1145/1383529.1383533

Bibliography

[LZB14] Y. Liang, M. Zhang, W. N. Browne. “Image Segmentation: A Survey of Methods
Based on Evolutionary Computation”. In: Simulated Evolution and Learning. Cham:
Springer International Publishing, 2014, pp. 847–859. isbn: 978-3-319-13563-2
(cit. on p. 17).

[Mac67] J. Macqueen. “Some methods for classification and analysis of multivariate observa-
tions”. In: In 5-th Berkeley Symposium on Mathematical Statistics and Probability.
1967, pp. 281–297 (cit. on p. 19).

[MB90] D. J. MacDonald, K. S. Booth. “Heuristics for Ray Tracing Using Space Subdivision”.
In: Vis. Comput. 6.3 (May 1990), pp. 153–166. issn: 0178-2789. doi: 10.1007/
BF01911006. url: https://doi.org/10.1007/BF01911006 (cit. on p. 13).

[MWP18] C. Mura, G. Wyss, R. Pajarola. “Robust Normal Estimation in Unstructured 3D
Point Clouds by Selective Normal Space Exploration”. In: Vis. Comput. 34.6–8
(June 2018), pp. 961–971. issn: 0178-2789. doi: 10.1007/s00371-018-1542-6. url:
https://doi.org/10.1007/s00371-018-1542-6 (cit. on p. 34).

[NA20] J. Nilsson, T. Akenine-Möller. Understanding SSIM. eng. Tech. rep. arXiv.org, June
2020. url: https://arxiv.org/abs/2006.13846 (cit. on p. 62).

[NBW12] A. Nurunnabi, D. Belton, G. West. “Robust Segmentation in Laser Scanning 3D
Point Cloud Data”. In: 2012 International Conference on Digital Image Computing
Techniques and Applications (DICTA). 2012, pp. 1–8. doi: 10.1109/DICTA.2012.
6411672 (cit. on pp. 17, 18).

[NBW16] A. Nurunnabi, D. Belton, G. West. “Robust Segmentation for Large Volumes of Laser
Scanning Three-Dimensional Point Cloud Data”. In: IEEE Transactions on Geoscience
and Remote Sensing 54.8 (2016), pp. 4790–4805. doi: 10.1109/TGRS.2016.2551546
(cit. on p. 36).

[NL13] A. Nguyen, B. Le. “3D point cloud segmentation: A survey”. In: 2013 6th IEEE
Conference on Robotics, Automation and Mechatronics (RAM). 2013, pp. 225–230.
doi: 10.1109/RAM.2013.6758588 (cit. on p. 17).

[PGK02] M. Pauly, M. Gross, L. Kobbelt. “Efficient simplification of point-sampled surface”.
In: vol. 1. Dec. 2002, pp. 163–170. isbn: 0-7803-7498-3. doi: 10.1109/VISUAL.2002.
1183771 (cit. on pp. 18, 23, 34).

[QSMG17] C. R. Qi, H. Su, K. Mo, L. J. Guibas. PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation. 2017. arXiv: 1612.00593 [cs.CV] (cit. on p. 17).

[RKRE17] T. Rau, M. Krone, G. Reina, T. Ertl. “Challenges and Opportunities using Software-
defined Visualization in MegaMol”. In: 7th Workshop on Visual Analytics, Information
Visualization and Scientific Visualization. 2017 (cit. on p. 33).

[RL00] S. Rusinkiewicz, M. Levoy. “QSplat: A Multiresolution Point Rendering System for
Large Meshes”. In: Proceedings of the 27th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’00. USA: ACM Press/Addison-Wesley
Publishing Co., 2000, pp. 343–352. isbn: 1581132085. doi: 10.1145/344779.344940.
url: https://doi.org/10.1145/344779.344940 (cit. on p. 21).

[Sch16] M. Schütz. “Potree: Rendering large point clouds in web browsers”. In: (2016) (cit. on
pp. 22, 30).

70

https://doi.org/10.1007/BF01911006
https://doi.org/10.1007/BF01911006
https://doi.org/10.1007/BF01911006
https://doi.org/10.1007/s00371-018-1542-6
https://doi.org/10.1007/s00371-018-1542-6
https://arxiv.org/abs/2006.13846
https://doi.org/10.1109/DICTA.2012.6411672
https://doi.org/10.1109/DICTA.2012.6411672
https://doi.org/10.1109/TGRS.2016.2551546
https://doi.org/10.1109/RAM.2013.6758588
https://doi.org/10.1109/VISUAL.2002.1183771
https://doi.org/10.1109/VISUAL.2002.1183771
https://arxiv.org/abs/1612.00593
https://doi.org/10.1145/344779.344940
https://doi.org/10.1145/344779.344940

Bibliography

[SRO10] J. Strom, A. Richardson, E. Olson. “Graph-based segmentation for colored 3D laser
point clouds”. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2010, pp. 2131–2136. doi: 10.1109/IROS.2010.5650459 (cit. on p. 17).

[SWK07] R. Schnabel, R. Wahl, R. Klein. “Efficient RANSAC for Point-Cloud Shape Detection”.
In: Computer Graphics Forum 26.2 (2007), pp. 214–226. doi: https://doi.org/10.
1111/j.1467-8659.2007.01016.x. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1111/j.1467-8659.2007.01016.x. url: https://onlinelibrary.wiley.com/
doi/abs/10.1111/j.1467-8659.2007.01016.x (cit. on pp. 17, 47).

[VD01] G. Vosselman, S. Dijkman. “3D building model reconstruction from point clouds and
ground plans”. In: International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences XXXIV (Jan. 2001) (cit. on p. 17).

[Ver18] G. Verhoeven. “Resolving some spatial resolution issues – Part 1: Between line pairs
and sampling distance”. In: 57 (Oct. 2018), pp. 25–34. doi: 10.5281/zenodo.1465017
(cit. on p. 25).

[VTLB15] A.-V. Vo, L. Truong-Hong, D. F. Laefer, M. Bertolotto. “Octree-based region growing
for point cloud segmentation”. In: ISPRS Journal of Photogrammetry and Remote
Sensing 104 (2015), pp. 88–100 (cit. on pp. 17, 47).

[WA03] M. A. Wani, H. R. Arabnia. “Parallel Edge-Region-Based Segmentation Algorithm
Targeted at Reconfigurable MultiRing Network”. In: J. Supercomput. 25.1 (May
2003), pp. 43–62. issn: 0920-8542. doi: 10.1023/A:1022804606389. url: https:
//doi.org/10.1023/A:1022804606389 (cit. on p. 17).

[Wal07] I. Wald. “On Fast Construction of SAH based Bounding Volume Hierarchies”. In: Oct.
2007, pp. 33–40. isbn: 978-1-4244-1629-5. doi: 10.1109/RT.2007.4342588 (cit. on
p. 13).

[WBKP08] B. Walter, K. Bala, M. Kulkarni, K. Pingali. “Fast agglomerative clustering for
rendering”. In: 2008 IEEE Symposium on Interactive Ray Tracing. 2008, pp. 81–86.
doi: 10.1109/RT.2008.4634626 (cit. on p. 13).

[WBSS04] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli. “Image Quality Assessment:
From Error Visibility to Structural Similarity”. In: Trans. Img. Proc. 13.4 (Apr.
2004), pp. 600–612. issn: 1057-7149. doi: 10.1109/TIP.2003.819861. url: https:
//doi.org/10.1109/TIP.2003.819861 (cit. on p. 55).

[WJA+17] I. Wald, G. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers, J. Gunther,
P. Navratil. “OSPRay - A CPU Ray Tracing Framework for Scientific Visualization”.
In: IEEE Transactions on Visualization and Computer Graphics 23.1 (Jan. 2017),
pp. 931–940. issn: 1077-2626. doi: 10.1109/TVCG.2016.2599041. url: https:

//doi.org/10.1109/TVCG.2016.2599041 (cit. on p. 33).
[WKJ+15] I. Wald, A. Knoll, G. P. Johnson, W. Usher, V. Pascucci, M. E. Papka. “CPU ray tracing

large particle data with balanced P-k-d trees”. In: 2015 IEEE Scientific Visualization
Conference (SciVis). 2015, pp. 57–64. doi: 10.1109/SciVis.2015.7429492 (cit. on
pp. 14, 15).

[WS06] M. Wimmer, C. Scheiblauer. “Instant Points: Fast Rendering of Unprocessed Point
Clouds”. In: Proceedings of the 3rd Eurographics / IEEE VGTC Conference on
Point-Based Graphics. SPBG’06. Boston, Massachusetts: Eurographics Association,
2006, pp. 129–137. isbn: 3905673320 (cit. on p. 22).

71

https://doi.org/10.1109/IROS.2010.5650459
https://doi.org/https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2007.01016.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2007.01016.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01016.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.5281/zenodo.1465017
https://doi.org/10.1023/A:1022804606389
https://doi.org/10.1023/A:1022804606389
https://doi.org/10.1023/A:1022804606389
https://doi.org/10.1109/RT.2007.4342588
https://doi.org/10.1109/RT.2008.4634626
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TVCG.2016.2599041
https://doi.org/10.1109/TVCG.2016.2599041
https://doi.org/10.1109/TVCG.2016.2599041
https://doi.org/10.1109/SciVis.2015.7429492

Bibliography

[WSN+14] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner,
N. Yager, E. Gouillart, T. Yu. “scikit-image: image processing in Python”. In:
PeerJ 2 (June 2014), e453. issn: 2167-8359. doi: 10.7717/peerj.453. url: http:
//dx.doi.org/10.7717/peerj.453 (cit. on p. 55).

[XTZ20] Y. Xie, J. TIAN, X. Zhu. “Linking Points With Labels in 3D: A Review of Point
Cloud Semantic Segmentation”. In: IEEE Geoscience and Remote Sensing Magazine
(2020), 0–0. issn: 2373-7468. doi: 10 . 1109 / mgrs . 2019 . 2937630. url: http :

//dx.doi.org/10.1109/MGRS.2019.2937630 (cit. on p. 17).

All links were last followed on January 2, 2021.

72

https://doi.org/10.7717/peerj.453
http://dx.doi.org/10.7717/peerj.453
http://dx.doi.org/10.7717/peerj.453
https://doi.org/10.1109/mgrs.2019.2937630
http://dx.doi.org/10.1109/MGRS.2019.2937630
http://dx.doi.org/10.1109/MGRS.2019.2937630

A Evaluation

In this chapter, additional tables showing resulting data values of our conducted evaluation in
Chapter 6 are presented. Additionally, a bar chart is shown, representing the calculated SSIM values
of the graffiti dataset.

Graffiti

0.00 0.25 0.50 0.75 1.00

SSIM

C
on

fig
ur

at
io

n

rNorm/ α,β

0.001/ 20
0.001/ 7.5
5e−05/ 20
5e−05/ 7.5

Dist. Res. Tess.
View.

Far 0.006 FALSE

Far 0.006 TRUE

Far 0.018 FALSE

Far 0.018 TRUE

Far 0.054 FALSE

Far 0.054 TRUE

Medium 0.006 FALSE

Medium 0.006 TRUE

Medium 0.018 FALSE

Medium 0.018 TRUE

Medium 0.054 FALSE

Medium 0.054 TRUE

Close 0.006 FALSE

Close 0.006 TRUE

Close 0.018 FALSE

Close 0.018 TRUE

Close 0.054 FALSE

Close 0.054 TRUE

Figure A.1: Bar chart representing the calculated similarity index measure (SSIM) between different
preconfigurations of our approach. The parameter values of the configurations are
presented in the left table. Furthermore, the different segmentation parameter values
are encoded in four colors.

Table A.1: Render times of all configurations in milliseconds for the graffiti dataset. The first four
columns encode different preprocessing parameters. Following, the render times of four
different point cloud segmentation configurations are displayed.

Te
ss

.
de

l.T
ra

ns
p

Re
s

V
ie

w
D

is
t

rN
or

m
:0

.0
01

𝛼
/𝛽

:7
.5

°
rN

or
m

:0
.0

01
𝛼
/𝛽

:2
0°

rN
or

m
:0

.0
00

5
𝛼
/𝛽

:$
7.

5°
rN

or
m

:0
.0

00
5

𝛼
/𝛽

:2
0°

Tr
ue

Fa
ls

e
0.

00
6

Fa
r

39
.3

73
44

6
38

.9
01

73
3

44
.2

50
45

5
40

.4
90

36
6

Tr
ue

Fa
ls

e
0.

00
6

M
ed

iu
m

63
.6

73
20

8
62

.7
68

96
0

93
.6

06
06

9
69

.8
20

02
0

Tr
ue

Fa
ls

e
0.

00
6

C
lo

se
11

0.
37

8
99

0
10

9.
83

5
38

6
14

9.
55

6
14

8
12

1.
81

5
77

2
Tr

ue
Fa

ls
e

0.
01

8
Fa

r
38

.2
74

97
0

38
.7

61
15

9
43

.6
11

94
0

39
.3

83
03

0
Tr

ue
Fa

ls
e

0.
01

8
M

ed
iu

m
57

.8
58

79
2

56
.3

05
60

4
86

.1
32

64
4

63
.3

33
58

4
Tr

ue
Fa

ls
e

0.
01

8
C

lo
se

10
5.

29
8

54
4

10
3.

84
7

65
4

14
6.

18
7

33
6

11
5.

49
4

59
4

Tr
ue

Fa
ls

e
0.

05
4

Fa
r

37
.8

01
74

3
38

.4
72

11
9

41
.6

88
58

4
38

.8
39

61
4

Tr
ue

Fa
ls

e
0.

05
4

M
ed

iu
m

56
.0

08
61

4
53

.5
14

56
4

84
.9

38
14

8
61

.5
42

45
5

Tr
ue

Fa
ls

e
0.

05
4

C
lo

se
10

0.
96

2
97

1
99

.2
03

06
9

13
8.

50
8

08
0

11
1.

50
2

23
8

Tr
ue

Tr
ue

0.
00

6
Fa

r
40

.0
78

87
1

40
.6

41
21

8
45

.5
98

53
5

41
.1

48
79

2
Tr

ue
Tr

ue
0.

00
6

M
ed

iu
m

73
.5

47
26

7
70

.8
85

27
7

10
8.

40
6

47
5

78
.3

16
31

7
Tr

ue
Tr

ue
0.

00
6

C
lo

se
13

3.
65

5
70

3
12

8.
30

9
38

6
18

9.
16

5
86

1
14

0.
69

2
03

9
Tr

ue
Tr

ue
0.

01
8

Fa
r

38
.7

21
39

6
38

.0
60

51
5

44
.2

29
04

0
39

.6
55

08
9

Tr
ue

Tr
ue

0.
01

8
M

ed
iu

m
63

.8
40

21
8

61
.1

53
18

8
95

.1
40

95
0

69
.6

61
37

6
Tr

ue
Tr

ue
0.

01
8

C
lo

se
11

7.
07

4
08

9
11

6.
20

2
46

6
16

8.
95

9
81

2
12

7.
43

3
08

9
Tr

ue
Tr

ue
0.

05
4

Fa
r

38
.0

10
83

2
38

.6
20

15
8

42
.1

21
15

8
39

.1
37

96
1

Tr
ue

Tr
ue

0.
05

4
M

ed
iu

m
60

.0
55

20
8

58
.7

12
47

5
91

.4
90

01
0

65
.8

15
31

7
Tr

ue
Tr

ue
0.

05
4

C
lo

se
10

6.
82

1
25

8
10

3.
77

0
11

9
15

3.
64

4
22

8
11

7.
59

7
05

9
Fa

ls
e

-
0.

00
6

Fa
r

37
.7

36
24

8
38

.1
81

09
9

42
.6

16
88

1
38

.7
41

59
4

Fa
ls

e
-

0.
00

6
M

ed
iu

m
55

.0
14

79
2

53
.4

10
58

4
83

.4
79

85
1

60
.0

86
53

5
Fa

ls
e

-
0.

00
6

C
lo

se
10

0.
02

8
51

5
93

.0
48

61
4

15
0.

01
0

75
3

10
8.

82
6

30
7

Fa
ls

e
-

0.
01

8
Fa

r
38

.1
59

30
7

37
.3

08
26

7
42

.0
14

64
3

38
.6

44
91

1
Fa

ls
e

-
0.

01
8

M
ed

iu
m

54
.0

49
33

7
52

.8
28

92
1

77
.6

61
22

8
59

.0
58

70
3

Fa
ls

e
-

0.
01

8
C

lo
se

96
.8

91
82

1
93

.4
46

21
8

14
5.

27
1

34
7

10
5.

47
1

44
6

Fa
ls

e
-

0.
05

4
Fa

r
37

.5
23

35
6

37
.1

67
43

6
41

.1
05

64
4

38
.6

01
24

8
Fa

ls
e

-
0.

05
4

M
ed

iu
m

53
.2

49
59

4
50

.4
50

76
2

79
.1

33
01

9
58

.5
69

92
1

Fa
ls

e
-

0.
05

4
C

lo
se

91
.8

74
83

2
91

.3
08

47
5

13
6.

66
1

71
2

10
2.

99
4

05
9

Table A.2: Render times of all configurations in milliseconds for the bike dataset. The first four
columns encode different preprocessing parameters. Following, the render times of four
different point cloud segmentation configurations are displayed.

Te
ss

.
de

l.T
ra

ns
p

Re
s

V
ie

w
D

is
t

rN
or

m
:0

.0
00

5
𝛼
/𝛽

:7
.5

°
rN

or
m

:0
.0

00
5

𝛼
/𝛽

:2
0°

rN
or

m
:0

.0
00

02
5

𝛼
/𝛽

:$
7.

5°
rN

or
m

:0
.0

00
02

5
𝛼
/𝛽

:2
0°

Tr
ue

Fa
ls

e
0.

00
4

Fa
r

45
.6

19
22

8
43

.9
83

47
5

48
.6

08
09

9
45

.6
57

16
8

Tr
ue

Fa
ls

e
0.

00
4

M
ed

iu
m

90
.8

29
80

2
98

.4
73

93
1

10
1.

39
7

37
6

10
4.

37
8

59
4

Tr
ue

Fa
ls

e
0.

00
4

C
lo

se
27

2.
17

7
77

1
33

1.
00

1
68

3
28

3.
42

1
44

6
36

5.
76

8
61

3
Tr

ue
Fa

ls
e

0.
01

2
Fa

r
43

.8
73

64
4

42
.7

85
57

4
45

.6
94

81
2

43
.7

12
81

2
Tr

ue
Fa

ls
e

0.
01

2
M

ed
iu

m
84

.5
98

76
2

85
.1

08
94

1
95

.0
40

57
4

94
.4

43
97

0
Tr

ue
Fa

ls
e

0.
01

2
C

lo
se

24
8.

93
4

98
0

27
8.

62
9

68
2

25
7.

91
8

76
2

31
9.

76
8

30
7

Tr
ue

Fa
ls

e
0.

03
6

Fa
r

42
.7

09
06

9
42

.2
71

50
5

45
.1

91
79

2
42

.4
52

67
3

Tr
ue

Fa
ls

e
0.

03
6

M
ed

iu
m

77
.3

85
95

1
73

.5
62

80
2

88
.6

97
24

8
83

.8
86

23
7

Tr
ue

Fa
ls

e
0.

03
6

C
lo

se
22

2.
93

4
16

8
22

5.
42

0
49

5
23

3.
73

5
36

7
27

4.
58

5
10

9
Tr

ue
Tr

ue
0.

00
4

Fa
r

42
.9

88
82

2
42

.3
44

35
6

45
.9

92
71

3
42

.1
12

01
0

Tr
ue

Tr
ue

0.
00

4
M

ed
iu

m
70

.9
09

55
5

66
.4

01
11

9
80

.6
47

08
9

71
.0

27
46

6
Tr

ue
Tr

ue
0.

00
4

C
lo

se
16

1.
72

5
75

3
15

3.
95

1
05

0
17

4.
16

2
13

9
16

2.
52

3
97

0
Tr

ue
Tr

ue
0.

01
2

Fa
r

42
.5

42
73

3
42

.3
67

48
5

43
.9

46
94

1
41

.5
07

73
3

Tr
ue

Tr
ue

0.
01

2
M

ed
iu

m
69

.3
72

33
7

65
.4

02
49

5
79

.5
24

07
9

69
.0

09
35

6
Tr

ue
Tr

ue
0.

01
2

C
lo

se
16

0.
89

8
33

7
15

3.
24

4
66

3
17

5.
33

6
81

2
16

0.
04

6
03

0
Tr

ue
Tr

ue
0.

03
6

Fa
r

42
.3

39
74

2
40

.0
94

61
4

43
.6

10
50

5
41

.1
43

04
9

Tr
ue

Tr
ue

0.
03

6
M

ed
iu

m
67

.9
63

23
8

61
.9

82
87

1
76

.6
60

04
0

67
.4

42
55

4
Tr

ue
Tr

ue
0.

03
6

C
lo

se
16

2.
25

7
43

6
15

5.
39

2
91

1
17

0.
77

9
43

5
15

9.
87

7
14

8
Fa

ls
e

-
0.

00
4

Fa
r

44
.7

24
42

5
42

.3
31

97
0

44
.8

28
01

0
43

.2
65

65
3

Fa
ls

e
-

0.
00

4
M

ed
iu

m
82

.0
96

38
6

80
.6

06
08

9
84

.5
27

84
2

88
.4

32
86

1
Fa

ls
e

-
0.

00
4

C
lo

se
23

7.
83

3
56

4
28

4.
47

9
05

9
23

0.
66

8
78

2
30

6.
78

9
82

3
Fa

ls
e

-
0.

01
2

Fa
r

44
.6

11
98

0
42

.9
44

25
7

45
.2

39
56

4
42

.9
69

74
3

Fa
ls

e
-

0.
01

2
M

ed
iu

m
81

.2
17

75
3

79
.8

71
33

7
83

.3
45

87
1

85
.5

82
17

8
Fa

ls
e

-
0.

01
2

C
lo

se
23

3.
10

2
11

8
26

5.
20

9
75

2
22

5.
90

6
50

5
29

3.
67

2
74

2
Fa

ls
e

-
0.

03
6

Fa
r

44
.0

00
14

9
41

.9
49

56
4

43
.9

57
54

5
42

.1
54

03
0

Fa
ls

e
-

0.
03

6
M

ed
iu

m
76

.3
99

56
5

72
.3

93
19

8
80

.3
35

39
6

78
.8

62
78

2
Fa

ls
e

-
0.

03
6

C
lo

se
21

4.
40

4
65

4
22

5.
61

8
07

8
21

1.
03

0
48

6
26

6.
29

4
04

9

Table A.3: Memory usage of all configurations in megabyte for the graffiti dataset. The first four
columns encode different preprocessing parameters. Following, the render times of four
different point cloud segmentation configurations are displayed.

Tess. del. Transp Res rNorm:0.0005
𝛼/𝛽 : 7.5°

rNorm:0.0005
𝛼/𝛽:20°

rNorm:0.000025
𝛼/𝛽:$7.5°

rNorm:0.000025
𝛼/𝛽 : 20°

True False 0.006 514 475 843 545
True False 0.018 240 208 564 276
True False 0.054 217 180 534 242
True True 0.006 452 416 759 481
True True 0.018 238 202 557 276
True True 0.054 211 178 534 241
False - 0.006 218 185 540 255
False - 0.018 212 179 534 247
False - 0.054 207 175 530 245

Table A.4: Memory usage of all configurations in megabytes for the bike dataset. The first four
columns encode different preprocessing parameters. Following, the render times of four
different point cloud segmentation configurations are displayed.

Tess. del. Transp Res rNorm:0.0005
𝛼/𝛽 : 7.5°

rNorm:0.0005
𝛼/𝛽:20°

rNorm:0.000025
𝛼/𝛽:$7.5°

rNorm:0.000025
𝛼/𝛽 : 20°

True False 0.004 463 370 533 410
True False 0.012 403 290 453 340
True False 0.036 393 288 447 330
True True 0.004 443 337 500 372
True True 0.012 403 289 448 334
True True 0.036 396 285 447 325
False - 0.004 401 288 452 327
False - 0.012 400 287 450 325
False - 0.036 393 279 448 320

Table A.5: Results of the image quality evaluation for the graffiti dataset. SSIM is used to compare
images of our approach with a sphere-based reference method. The first four columns
encode different preprocessing parameters. Following, the SSIM values of four different
point cloud segmentation configurations are displayed.

Tess. Res ViewDist rNorm:0.001
𝛼/𝛽 : 7.5°

rNorm:0.001
𝛼/𝛽:20°

rNorm:0.0005
𝛼/𝛽:$7.5°

rNorm:0.0005
𝛼/𝛽 : 20°

True 0.006 Far 0.999 910 0.999 904 0.999 926 0.999 931
True 0.006 Medium 0.993 605 0.994 231 0.993 316 0.994 427
True 0.006 Close 0.932 511 0.927 358 0.955 404 0.945 465
True 0.018 Far 0.999 717 0.999 701 0.999 824 0.999 780
True 0.018 Medium 0.972 921 0.971 593 0.984 779 0.977 241
True 0.018 Close 0.856 893 0.846 314 0.925 273 0.876 153
True 0.054 Far 0.998 404 0.998 268 0.998 964 0.998 566
True 0.054 Medium 0.928 586 0.924 073 0.954 905 0.934 338
True 0.054 Close 0.819 576 0.808 490 0.880 791 0.831 513
False 0.006 Far 0.999 418 0.999 307 0.999 581 0.999 447
False 0.006 Medium 0.972 008 0.974 780 0.978 927 0.979 057
False 0.006 Close 0.833 243 0.854 753 0.906 471 0.904 552
False 0.018 Far 0.999 333 0.999 147 0.999 615 0.999 325
False 0.018 Medium 0.959 616 0.958 102 0.976 503 0.965 183
False 0.018 Close 0.826 990 0.826 242 0.918 684 0.858 515
False 0.054 Far 0.998 074 0.997 811 0.998 848 0.998 174
False 0.054 Medium 0.922 862 0.918 131 0.951 210 0.928 484
False 0.054 Close 0.811 414 0.803 236 0.888 181 0.825 668

Table A.6: Results of the image quality evaluation for the bike dataset. SSIM is used to compare
images of our approach with a sphere-based reference method. The first four columns
encode different preprocessing parameters. Following, the SSIM values of four different
point cloud segmentation configurations are displayed.

Tess. Res ViewDist rNorm:0.0005
𝛼/𝛽 : 7.5°

rNorm:0.0005
𝛼/𝛽:20°

rNorm:0.000025
𝛼/𝛽:$7.5°

rNorm:0.000025
𝛼/𝛽 : 20°

True 0.004 Far 0.999 882 0.999 739 0.999 936 0.999 903
True 0.004 Medium 0.991 547 0.986 947 0.993 244 0.991 080
True 0.004 Close 0.956 951 0.888 188 0.965 275 0.925 018
True 0.012 Far 0.999 657 0.999 151 0.999 725 0.999 530
True 0.012 Medium 0.983 630 0.970 796 0.985 665 0.978 462
True 0.012 Close 0.927 463 0.816 895 0.937 227 0.863 396
True 0.036 Far 0.998 672 0.996 889 0.998 736 0.997 632
True 0.036 Medium 0.966 854 0.942 613 0.970 023 0.952 615
True 0.036 Close 0.888 650 0.733 917 0.894 496 0.786 995
False 0.004 Far 0.999 761 0.999 276 0.999 725 0.999 590
False 0.004 Medium 0.987 146 0.974 426 0.985 566 0.981 169
False 0.004 Close 0.952 840 0.855 458 0.948 577 0.900 924
False 0.012 Far 0.999 570 0.998 756 0.999 612 0.998 976
False 0.012 Medium 0.981 145 0.963 524 0.982 996 0.970 963
False 0.012 Close 0.924 310 0.800 792 0.929 539 0.846 567
False 0.036 Far 0.998 426 0.996 584 0.998 563 0.996 960
False 0.036 Medium 0.964 132 0.940 145 0.967 486 0.948 131
False 0.036 Close 0.880 816 0.719 881 0.880 986 0.769 806

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Foundations
	2.1 Bounding Volume Hierarchy
	2.2 Kd-Tree
	2.3 Pkd-Tree
	2.4 Nearest Neighbor Search
	2.5 Principal Component Analysis
	2.6 Point Cloud Segmentation
	2.7 Region Growing
	2.8 DBScan

	3 Related Work
	3.1 Rendering of Large Point Clouds
	3.2 Surface Reconstruction

	4 Methodology
	4.1 Observations
	4.2 Overview
	4.3 Geometric Shape Processing
	4.4 Data Structure

	5 Implementation
	5.1 Used Technology
	5.2 Overview
	5.3 Normal Estimation
	5.4 Pointcloud Segmentation
	5.5 Texture Generation
	5.6 Tessellation
	5.7 Data Structure

	6 Evaluation
	6.1 Datasets
	6.2 Parameter Space
	6.3 Preprocessing
	6.4 Runtime Performance
	6.5 Memory Usage
	6.6 Image Quality

	7 Discussion
	7.1 Runtime Performance
	7.2 Memory Requirements
	7.3 Image Quality

	8 Conclusion and Outlook
	Bibliography
	A Evaluation

