
Universität Stuttgart
Institut für Analysis, Dynamik und Modellierung

Lehrstuhl für Analysis und Mathematische Physik

On the Eigenvalues of the Non-Self-Adjoint Robin
Laplacian on Bounded Domains and Compact

Quantum Graphs

Von der Fakultät Mathematik und Physik der Universität Stuttgart zur Erlangung

der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte

Abhandlung,

vorgelegt von

Robin Lang

aus Stuttgart.

Erscheinungsjahr 2021

Hauptberichter: Prof. TeknD Timo Weidl

Mitberichter: doc. Mgr. David Krejčiřík, Ph.D. DSc.
Apl. Prof. Dr. Jens Wirth

Tag der mündlichen Prüfung: 01.12.2020





Abstract

This thesis addresses several questions about properties and asymptotic behaviours
of eigenvalues of the non-self-adjoint Robin Laplacian −∆α

Ω, that is, of the eigenvalue
problem

−∆u = λu in Ω,
∂u

∂ν
+ αu = 0 on ∂Ω,

where Ω is either a bounded (smooth or Lipschitz) domain in Rd, d ≥ 1, or a compact
quantum graph and α is a parameter. In recent years a large body of literature has
developed around these questions in the self-adjoint case, that is, for a real Robin
parameter α ∈ R, and it is a natural question to ask whether those results can be
generalised for α ∈ C; and this is the question we want to pursue here. According
to the vast amount of recent literature, there seems to be a burgeoning interest
in the spectral properties of the Robin Laplacian, which is why we want to give a
comprehensive overview on this subject. After a brief summary on the results for the
self-adjoint Robin Laplacian, presented to gain insight into what to expect for α ∈ C,
we start by proving regularity results on the eigenvalues λ as (meromorphic) functions
of α. Besides, we answer the question whether one can find an orthonormal basis (or
weaker types of bases) of L2(Ω) consisting of Robin eigenfunctions. Our main interests,
however, are the localisation of the spectrum as well as the asymptotic behaviour
of λ as functions of α as α→∞ in C. The tools commonly used to study spectral
properties of self-adjoint Laplace operators are totally inapplicable as they rely on
the variational min-max characterisation of eigenvalues, test-function arguments,
and Dirichlet-Neumann bracketing techniques. However, all these techniques become
useless if non-self-adjoint operators are considered; and this is the case as soon as
Imα 6= 0. To this end, we use two different approaches in order to study properties
of the eigenvalues as well as their asymptotic behaviour as functions of α as α→∞
in C.

Firstly, we establish trace-type inequalities for functions on smooth and non-smooth
domains Ω to prove a localisation theorem for the eigenvalues. This allows us to show



that, for fixed α, the entire spectrum (or more precisely the numerical range of −∆α
Ω)

is contained in a parabolic region in C. What is more, this localisation theorem gives
us control over both the real and imaginary parts of any eigenvalue in terms of the
real and imaginary parts of α, which then implies eigenvalue estimates for Lipschitz
domains that are new even in the real case. This approach is further applied to
compact quantum graphs, that is, metric graphs on which the Laplace operator
acts. To this end, we consider such graphs, where some (or all of the) vertices are
equipped with, possibly different, Robin parameters αj ∈ C (also called δ couplings)
and on the remaining vertices continuity-Kirchhoff (also called Neumann–Kirchhoff)
conditions are imposed.

Secondly, we exploit a duality result for the Dirichlet-to-Neumann operator M(λ)
which is already known in the self-adjoined case: a number λ ∈ C is an eigenvalue of
the Robin Laplacian with parameter α ∈ C if and only if α is an eigenvalue of the
Dirichlet-to-Neumann operator with parameter λ. As it turns out, it is often more
convenient to study the eigenvalues α of M(λ) instead of the eigenvalues λ of −∆α

Ω

and this is the path we take. This approach yields several results for domains and
quantum graphs, respectively: on the one hand, we consider explicit examples of
domains Ω ⊂ Rd, such as intervals and higher dimensional hyperrectangles and balls.
We use explicit calculations in order to obtain a detailed analysis of the problem;
we give asymptotic error terms for the eigenvalue asymptotics and we compare
their behaviour to what happens in the real case. On the other hand, the same
Dirichlet-to-Neumann duality approach applied to quantum graphs not only allows
us to prove a dichotomy result on what happens to λ when α→∞ in certain regimes
of the complex plane, but since M(λ) can be calculated more or less explicitly, we
give an (almost) complete answer to the question of the asymptotic behaviour as the
Robin parameters αj →∞ in certain regimes.
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Zusammenfassung

Diese Dissertation befasst sich mit den spektralen Eigenschaften des nicht-selbst-
adjungierten Robin Laplace Operators −∆α

Ω, d.h. mit den Eigenwerten des Randw-
ertproblems

−∆u = λu in Ω,
∂u

∂ν
+ αu = 0 on ∂Ω.

Dabei ist Ω entweder ein beschränktes (glattes oder Lipschitz) Gebiet im Rd oder
ein kompakter Quantengraph und die Zahl α ist ein Parameter. Insbesondere von
Interesse ist dabei das asymptotische Verhalten der Eigenwerte in Abhängigkeit
vom Robin-Parameter α. In den letzten Jahren entwickelte sich eine große An-
zahl an Artikeln, die sich mit dem Robin-Laplace im selbstadjungierten Fall, d.h.
für reelle Robin-Parameter α, beschäftigen. Wir stellen uns die Frage, ob die Re-
sultate auf den Fall α ∈ C verallgemeinert und ob neue Erkenntnisse aus dieser
Untersuchung gezogen werden können; und dies wollen wir als Anlass nutzen, um
einen umfassenden Überblick über das Thema zu geben und dabei neue Resultate
zu präsentieren. Um ein Gefühl für das Problem selbst und die Erwartungen für
den komplexen Fall zu bekommen, fassen wir zunächst die bekannten Resultate im
selbstadjungierten Fall zusammen. Für komplexes α untersuchen wir die Eigenwerte
λ in Abhängigkeit vom Parameter α und zeigen, dass es sich dabei um meromorphe
Funktionen handelt. Außerdem beantworten wir die Frage, wann man eine Orthonor-
malbasis des L2(Ω) aus Eigenfunktionen finden kann und betrachten im Zuge dessen
auch schwächere Basis-Begriffe. Unser Hauptinteresse besteht jedoch zum einen in
der Lokalisierung des Spektrums und zum anderen im asymptotischen Verhalten
der Eigenkurven λ, wenn α in C gegen Unendlich strebt. Üblicherweise wird im
Kontext selbstadjungierter Operatoren auf Werkzeuge wie die variationelle min-max
Charakterisierung von Eigenwerten, Testfunktionsargumente oder das Dirichlet-
Neumann-Bracketing zurückgegriffen. All diese Techniken basieren jedoch darauf,
dass der zugrundeliegende Operator selbstadjungiert ist. Da dies nicht mehr der Fall
ist, sobald Imα 6= 0 gilt, müssen wir auf alternative Techniken ausweichen und wir
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verwenden daher zwei verschiedene Ansätze, um die Eigenschaften von Eigenwerten
sowie ihr asymptotisches Verhalten zu untersuchen.

Zunächst stellen wir Spurungleichungen für Funktionen auf glatten und Lipschitz
Gebieten auf und beweisen damit ein Lokalisierungstheorem. Dieses besagt, dass für
feste Parameter α das gesamte Spektrum (oder genauer, der numerische Wertebereich)
innerhalb eines parabolischen Bereichs in C liegt. Darüberhinaus lässt es uns
ebenso den Real- und Imaginärteil von λ mithilfe des Real- und Imaginärteils von α
kontrollieren. Dies wiederum liefert Eigenwertabschätzungen auf Lipschitz Gebieten,
die selbst im reellen Fall neu sind. Den Ansatz, den numerischen Wertebereich zu
untersuchen, wenden wir ebenfalls auf Quantengraphen an. Dabei handelt es sich um
metrische Graphen bestehend aus Knoten und Kanten, wobei der Laplace Operator
auf letzteren wirkt und die Knoten als Rand des Graphen interpretiert werden können.
Zu diesem Zweck betrachten wir Graphen, bei welchen einige (oder alle) Knoten
mit (möglicherweise unterschiedlichen) Robin-Parametern αj ∈ C versehen sind. Die
restlichen Knoten genügen dabei der Stetigkeits- und Kirchhoff-Bedingung (auch
Neumann–Kirchhoff-Bedingung genannt).

Zweitens nutzen wir eine aus dem selbstadjungierten Fall bekannte Dualitätsaussage
zwischen dem Robin-Laplace und dem Dirichlet-zu-Neumann Operator M(λ). Dieses
besagt, dass eine Zahl λ ∈ C genau dann Eigenwert des Robin-Laplace mit Parameter
α ∈ C ist, wenn α ein Eigenwert des Dirichlet-zu-Neumann Operators zum Parameter
λ ist: Eine Analyse der Eigenwerte α von M(λ) ist oft günstiger als die der Robin
Eigenwerte λ. Dieser Ansatz liefert mehrere Resultate, sowohl im Bezug auf Gebiete
als auch für Quantengraphen. Einerseits betrachten wir konkrete Modelfälle, wie
etwa Intervalle und höherdimensionale Quader und Kugeln. Dabei nutzen wir
explizit durchgeführte Berechnungen, um möglichst viele Details und Zusammenhänge
herauszuarbeiten; wir geben im Zuge dessen auch asymptotische Fehlerterme der
Eigenwertasymptotik(en) an und vergleichen diese erneut mit den Resultaten des
selbstadjungierten Problems. Andererseits liefert der selbe Dirichlet-zu-Neumann
Ansatz für Quantengraphen ein Dichotomie-Resultat mit Informationen darüber,
wie sich λ verhalten kann, wenn α auf eine gewisse Art und Weise gegen Unendlich
divergiert. Da sich in diesem Fall M(λ) mehr oder minder explizit berechnen
lässt, geben wir ebenfalls eine (fast) vollständige Antwort auf die Frage nach dem
asymptotischen Verhalten der Eigenwerte auf beliebigen kompakten Quantengraphen,
wenn α unter gegebenen Voraussetzungen gegen Unendlich strebt.
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Basic notation

Numbers, vectors, and sets

:= equal to by definition
∅ empty set

A ⊂ B A is a subset of B
A ( B A 6= B is a subset of B

#A the cardinality of a (possibly infinite) set A
R set of real numbers (−∞,+∞)

R+ / R0
+ set of positive / non-negative real numbers

R− / R0
− set of negative / non-positive real numbers

Sd−1 (d− 1)-sphere {x ∈ Rd : |x| = 1} in Rd

χA the characteristic function R→ R on a set A ⊂ R

Z set of integers
N / N0 / N−0 set of positive / non-negative / non-positive integers

Bδ(x) open ball with radius δ and centre x
Dδ,δ′(x) open annulus with inner and outer radii 0 < δ < δ′ and centre x

C / i set of complex numbers / imaginary unit in C
R / C R ∪ {±∞} / C ∪ {∞}

Re z / Im z real part / imaginary part of z ∈ C
z / M∗ complex conjugate of z ∈ C and M ⊂ C

Γ complex Gamma function C \ N−0 → C
S±θ / T±θ sectors in C, see Definition 3.6.1

Cm×n set of complex (m× n)−matrices
In identity matrix in Cn×n

xT transpose of a vector x ∈ Cn

x̌ (x1, . . . , xd−1) ∈ Rd−1 for x = (x1, . . . , xd) ∈ Rd

δij Kronecker delta for i, j ∈ Z
diag{e1, . . . , en} (n× n)-matrix M with entries Mij = δiiei

Ω / ∂Ω open domain in Rd / its boundary
cl(M) = M closure of a set M

M c
X complement X \M of a subset M ⊂ X

conv(M) convex hull of a discrete set M
acc(M) points of accumulation of a set M ⊂ N for a metric space N
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Functions, spaces, norms, and convergence

suppu support cl {x ∈ Ω : u(x) 6= 0} of a mapping u
Resz(f) the residue of a function f in z ∈ C

∂β partial derivative for a multi-index β ∈ Rd

Ck(Ω) k times continuously differentiable functions on Ω
Ckc (Ω) functions in Ck(Ω) which have compact support
S(Rd) Schwartz space
S∗(Rd) Topological dual space of S(Rd)
dimX dimension of a linear space X

codimY dimension of X/Y for a subspace Y ⊂ X
V ∗ continuous dual space of a topological vector space V

`2(C) square summable sequences in C
B Banach space
H Hilbert space

⊕ / 	 orthogonal sum / difference
M⊥ orthogonal complement to a set M

(f, g)H inner product of f and g in a (pre) Hilbert space H
IX identity operator I : X → X

‖f‖X X-norm of f
‖f‖ L2(Ω)-norm of f

fk → f in H convergence of fk to f w.r.t. ‖ · ‖H
fk ⇀ f in H weak convergence of fk to f w.r.t. ( · , · )H

X↪→Y the embedding I : X → Y is bounded
X
b
↪→ Y the embedding I : X → Y is compact

tr f trace of a function f

Generic abbreviation

cf. confer (“compare”)
e.g. exempli gratia (“for example”)
i.e. id est (“that is”)
viz. videlicet (“namely”)

w.r.t. with respect to
a.e. almost everywhere (w.r.t. a measure µ)
� end of proof
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Operators and their spectra

L(H) set of bounded (linear) operators on H
S∞(H) set of compact (linear) operators on H

A generic linear operator
A(α) family of linear operators {A(α) : α ∈ C}
a[ · , · ] sesquilinear form D(a)×D(a)→ C
a[u] quadratic form a[u, u]

D(A) / D(a) domain of a A / a

R(A) range of A
N(A) kernel of A
G(A) graph of A

W (A) / W (a) numerical range of a A / a

A∗ / A−1 adjoint and inverse of A
ρ(A) resolvent set of A
σ(A) spectrum of a closed operator A

σp(A) / σess(A) point / essential spectrum of a closed operator A
Rz(A) resolvent (A− zI)−1 of A
M(λ) Dirichlet-to-Neumann operator
∇ Nabla operator (∂1, . . . , ∂d)
∆ Laplace operator

∑d
j=1 ∂

2
j

∆w Laplace-Beltrami operator on Sd−1

−∆D
Ω / −∆N

Ω Dirichlet / Neumann Laplacian on Ω
−∆α

Ω Robin Laplacian on Ω with parameter α ∈ C

Quantum graphs

E set of edges of a graph
V set of vertices of a graph
VR subset of vertices equipped with a Robin boundary condition
VN set V \ VR

G(V, E) graph consisting of V and E
deg v number of edges incident with a vertex v

D smallest degree of all v ∈ VR
`G smallest length of all edges of a (sub)graph G

m(M) smallest modulus of all elements of a finite set (or vector) M
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Chapter 1

Introduction

1.1 Motivation

The Laplace operator (or Laplacian) is a differential operator named after the
French mathematician Pierre-Simon de Laplace (1749–1827). He used it to describe
motions of objects in outer space (so called celestial mechanics) by applying it to
the gravitational potential

VG(x) = −GM
x

(1.1.1)

in R, where G is the gravitational constant and M > 0 is the mass of a single point
mass in the origin. This gravitational potential VG(x) describes the work that needs
to be done to move a unit mass from infinity to x. More generally in R3, if we assume
that VG does not originate from a point mass but comes from a continuous mass
distribution ρ(y) ≥ 0 at y ∈ R3, then VG reads

VG(x) = −
∫
R3

G

|x− y|
ρ(y) dV (y). (1.1.2)

Consequently, we can recover the mass distribution ρ from VG by using the Laplace
operator ∆, that is,

ρ(x) = 1
4πG∆VG(x). (1.1.3)

However, gravitational fields are just the tip of the iceberg when it comes to physical
phenomena whose descriptions are based on differential equations or, more precisely,
on the Laplace operator, such as electric potentials, diffusion equations to describe
thermal conduction, and the propagation of (e.g. electromagnetic) waves, to name
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Chapter 1 Introduction

just a few. Since often bounded geometries are considered when describing physical
phenomena, it is necessary to equip Poisson’s equation

∆u = f (1.1.4)

for suitable functions u and f with further conditions. As a first (simple) example
we want to consider a finite vibrating string:

(1) if we control the end points, that is, attach them to some fixed component,
the obtained vibration can be described by the wave equation equipped with
Dirichlet boundary conditions1;

(2) controlling the vertical forces on the end points of the string results in Neumann
boundary conditions2;

(3) supposing an elastic attachment, that is, both ends of the string are attached
to springs: then the vertical forces on the end points are not controlled by
some given function, but they are proportional to the displacements of the end
points. The boundary condition used to describe this motion is a mixture of
the two conditions above and called Robin boundary condition3.

When we consider f = λu as the right-hand side of Poisson’s equation (1.1.4) we
obtain the eigenvalue equation ∆u = λu, known as the Helmholtz equation4, which
leads us to the mathematical field of spectral theory (we want to refer to Section 2.3
for more details on the spectral theory of Dirichlet and Neumann Laplacians). In
spectral theory one wants to study the spectrum of an eigenvalue problem, that is,
the numbers λ such that there exists a non-zero function u with Pu = λu for some
differential operator P . In this thesis we want to consider P = −∆ as the differential
operator and equip it with the Robin boundary condition on a fixed domain Ω, that
is, a sufficiently smooth, bounded, connected open set in Rd, d ≥ 1. This problem

1named after the German mathematician Peter Gustav Lejeune Dirichlet, 1805–1859
2named after the German mathematician Carl Gottfried Neumann, 1832–1925
3named after the French mathematician Victor Gustave Robin, 1855–1897. However, Robin never
used the third boundary condition and it is still unclear who first attached his name to it; for
more information on Robin’s work and the third boundary condition, we refer to the article The
Third Boundary Condition - Was it Robin’s? [66].

4named after the German physicist Hermann Ludwig Ferdinand von Helmholtz, 1821–1894.

20



1.1 Motivation

reads

−∆u = λu in Ω, (1.1.5a)
∂u

∂ν
+ αu = 0 on ∂Ω, (1.1.5b)

for a Robin parameter α appearing in the boundary condition. Note that here and
throughout ν denotes the outer unit normal to the boundary ∂Ω, and if d = 1, then
we understand Ω ⊂ R to be a bounded open interval. From now on, we will be
partially following [30, Section 1].

In recent years a large body of literature has developed around the asymptotic
behaviour of the eigenvalues of (1.1.5) as the parameter α ∈ R tends to ±∞ ∈ R.
To this end, we denote the solutions λ of

−∆u = λu in Ω, (1.1.6a)

u = 0 on ∂Ω, (1.1.6b)

numbered in ascending order, by

λ1 ≤ λ2 ≤ · · · → ∞, (1.1.7)

that is, the eigenvalues of the boundary value problem for the Dirichlet Laplacian.
Since the solutions of the Robin problem (1.1.4) depend smoothly on the Robin
parameter α, we similarly denote them by

λ1(α) ≤ λ2(α) ≤ · · · → ∞, (1.1.8)

and interpret each λj(α) as a function of α clarifying what we meant by writing
“asymptotic behaviour of the eigenvalues”: in contrast to Weyl’s asymptotics, where,
inter alia, the behaviour of the k-th eigenvalue is studied as k →∞, we want to study
both single eigenvalues and the whole spectrum as the boundary parameter tends to
infinity. We want to mention that the following paragraph is a brief summary and
we refer to Section 2.4 for more details and formal statements. In the real case, i.e.,
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α ∈ R, it is known that, for each k ∈ N,

λk(α)→ λk (1.1.9)

from below (that is, λk(α) are monotonically increasing in α) as α → +∞; the
corresponding rate of convergence was studied and proved in [57, 58]. On the other
hand, if α→ −∞, the situation is much more complicated. Consider Ω ∈ Rd to be
smooth and fix any k ∈ N. Then, the k-th eigencurve λk(α) satisfies

λk(α) ∼ −α2 (1.1.10)

as α→ −∞. Note that the enumeration of the eigenvalues in the sense of (1.1.8) does
not respect the analyticity of the curves – if we follow the analytic branches of the
eigenvalues, then the numbering is permuted as −α increases. The existence of such
crossing points allows the existence of further curves of eigenvalues which converge
to eigenvalues of the Dirichlet Laplacian from above [3, 38, 45, 63, 64, 85, 90]. Based
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Figure 1.1.1: Plot of the eigenvalues λ of the one dimensional Robin problem as functions
of α ∈ R. Note that in this case there are exactly two eigenvalues which behave like −α2

as α→ −∞. Here, the eigenvalues λk are globally analytic functions of α and there are no
crossings at all.
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1.1 Motivation

on these statements several question arise:

(1) Can one determine more precise asymptotics, that is, higher (or in this case
lower) terms in the asymptotic expansion of λk(α) as α→ −∞?

(2) What happens if we no longer require Ω to be smooth (for example by allowing
corners in the boundary ∂Ω)?

(3) If we no longer restrict α to be real but allow complex numbers α ∈ C as
parameters, can we make any statement about the asymptotics of complex
eigencurves as |α| → ∞ in C?

The first question has been extensively studied and answered in [54, 59, 68, 82, 100]
who proved statements where the coefficients of further terms heavily depend on the
geometry of Ω, more particular on its curvature. The second question, i.e., the case
of less regularity, has also been considered in several articles [35, 78, 79, 80, 88]: to
this end, a finite number of “model corners” – that is, corners which can be mapped
to a model cone of fixed angle of opening by a smooth diffeomorphism – is considered.
In this model case they prove that the asymptotics is mainly driven by the “most
acute” corner(s) of the domain; or in other words: the sharper the corner(s), the
larger the leading coefficient C of the asymptotics λ ∼ −Cα2 as α→ −∞.
However, the third question of considering complex Robin parameters is the one

this thesis is devoted to. But why are (complex) Robin parameters interesting in the
first place? Due to the large body of literature (partially cited above) it is a natural
question to ask for generalisations of this problem; especially out of intrinsic interest
as someone who is interested in spectral theory. The road to working on the spectra
non-self-adjoint operators while having a background in self-adjoint theory is long
and rocky; this matter itself is challenging and thus worthwhile and desirable. Even
though there is no somewhat comprehensive work on the eigenvalue asymptotics of
the non-self-adjoint Robin Laplacian, there seems to be a burgeoning interest in this
topic in more specific contexts. When one speaks of scientific interest, however, an
application reference is usually inevitable. The physical term describing boundary
conditions of the third type is often called impedance boundary condition, which
plays a fundamental role in some of the articles listed below:
Firstly, we want to mention half-spaces where the Robin boundary condition is

confined to a straight axis and the domain on which the Helmholtz equation is
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studied is unbounded. If the Robin parameter is allowed to be variable, that is, α is a
real function of the location x ∈ ∂Ω, the problem models outdoor sound propagation
over inhomogeneous flat terrain and acts as a model of rough surface scattering
[40, 87]. Mathematically, in this setting, sufficient conditions on the function α have
been studied which guarantee the total absence of eigenvalues in the spectrum [41].
Note that in this half-plane case, the Robin problem 1.1.5 still admits a discrete
set of eigenvalues outside the essential spectrum, that is, studying this problem
should give a more complete picture of the eigenvalue behaviour even in the real case.
Secondly, another field where impedance boundary conditions are crucial is scattering
theory of electromagnetic waves that collide with an object with its surface structure
being related to the real and complex parts of the Robin parameter α [6, 69]. Also
mathematically, inverse scattering problems have been studied, where the scattered
field satisfies mixed Dirichlet-impedance conditions on the boundary of the scatterer
[39]; for works on similar fields see [86, 87]. Furthermore, there are more various
contexts such as metric quantum graphs [71] (this field will be considered in the
last chapter of this thesis), thin layers [32, 84], triangles [93, 110], and especially
waveguides [31, 97, 98, 99, 107]. It seems astonishing that despite the great interest
in complex Robin (or impedance) boundary conditions, the literature still lacks of
a comprehensive overview of the spectral properties of the non-self-adjoint Robin
Laplacian on (bounded) Lipschitz domains. To this end, we will treat this issue
systematically; here, we want to give a brief summary of the results obtained therein.

1.2 Main results

The following theorem combines statements from Theorems 3.1.2, 3.2.11, 3.2.18, 3.3.1,
and 3.3.8; we refer to Chapter 3 for the individual theorems and their respective
proofs. Note that this theorem allows us to speak of analytical curves – up to
possible crossing points – when considering the Robin eigenvalues as functions of
the parameter α. This especially motivates the study of the question regarding the
asymptotics of these curves in the complex plane as α→∞ in C.

Theorem 1.2.1 (see [30, Theorem 1.1]). Suppose Ω ⊂ Rd, d ≥ 1, is a bounded
Lipschitz domain. Then we have the following statements.
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1.2 Main results

(1) Each eigenvalue has finite algebraic multiplicity and depends locally analytically
on α ∈ C: more precisely, if (λk(α0))k∈N is an enumeration of the eigenvalues
(each repeated according to its finite algebraic multiplicity) for some α0 ∈ R,
then each λk(α0) may be extended to a meromorphic function λk(α) such that
for any α ∈ C, these eigenvalues form the spectrum of the corresponding Robin
Laplacian.

(2) Away from crossing points of eigenvalues, each eigenvalue λk(α) and the corre-
sponding eigenprojection are holomorphic functions of α, whereas at the crossing
points the weighted eigenvalue mean and the total projection are holomorphic.

(3) If λk(α) is simple with eigenfunction ψ = ψ(α), then λ′k(α) is given by

λ′k(α) =
∫
∂Ω ψ

2 dσ(x)∫
Ω ψ

2 dx (1.2.1)

(where the right-hand side is to be interpreted as a holomorphic continuation
in the event that the denominator is zero, as any singularities are removable).

(4) For any α ∈ C, the set of eigenfunctions and generalised eigenfunctions cor-
responding to the eigenvalues {λk(α) : k ∈ N} can be chosen to form an Abel
basis of L2(Ω), of order

d− 1
2 + δ (1.2.2)

for any δ > 0, and even a Riesz basis if d = 1.

(5) However, for any α ∈ C \ R, the eigenfunctions can not be chosen to form
an orthonormal basis of L2(Ω). For the definitions of both bases, we refer to
Definitions 3.3.3, 3.3.4, and 3.3.5.

In the self-adjoint case it is known that the set of eigenfunctions form an or-
thonormal basis of L2(Ω) for all α ∈ R and it is a natural question to ask whether
this property remains valid in the complex case. We can answer this question with
the negative result of Theorem 3.3.1 (i.e., Theorem 1.2.1 (5)), although, there are
weaker basis concepts to give the positive results mentioned in (4). For the sake of
completeness and to build a foundation for our research, we give an overview of the
results known in the real (self-adjoint) case in Section 2.4. To give our expectations
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based on these results (and on the explicit calculations for model domains, such
as intervals, cuboids and balls), we refer to the brief summary above and give the
following conjecture, which, however, will not be answered completely in this work.

Conjecture 1.2.2 (see [30, Conjecture 1.2]). Let Ω ⊂ Rd, d ≥ 2, be a bounded
Lipschitz domain, and suppose α ∈ C, |α| → ∞.

(1) If Reα→ −∞, then there exists a sequence of absolutely divergent eigenvalues.
Any limit point of non-divergent analytic eigenvalue curves of eigenvalues is an
eigenvalue of the Dirichlet Laplacian (that is, a solution of (1.1.6)).

(i) If Ω has C1 boundary, then each divergent eigenvalue behaves asymptoti-
cally like −α2 + o(α2).

(ii) If Ω has Lipschitz boundary, then for any divergent analytic curve of
eigenvalues λ = λk(α), there is a constant CΩ,k ∈ [1,∞) depending only
on k from Theorem 1.2.1, such that λk(α) = −CΩ,kα

2 + o(α2).

(2) If Reα remains bounded from below, then each eigenvalue converges to an
eigenvalue of the Dirichlet Laplacian.

We also want to note that most statements of Conjecture 1.2.2 are already known
in the self-adjoint case. In spite of that, the asymptotics on Lipschitz domains, i.e.
(ii), is still a question to be answered even for α ∈ R, see [36, Open Problems 4.17
and 4.20]. It is worth noting that if |Imα| grows faster than |Reα| as α→∞ in C,
for the divergent eigenvalues it is now possible to have large positive real part.
Unsurprisingly, the main problem of studying the complex case is that the tech-

niques commonly used in the articles where only self-adjoint operators are considered
are completely inapplicable in the non-self-adjoint case as they rely on the variational
min-max characterisation of eigenvalues and associated tools, such as test function
arguments, as in [45, 63, 64, 85] or Dirichlet-Neumann bracketing techniques (cf.
[54, 88, 100]) used for the decomposition of the Robin Laplacian. Thus, it is necessary
to revise and extend our toolbox which, besides acclimatisation, provides us with the
pleasant advantage that results for complex parameters maintain valid if restricted
to α ∈ R.
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1.2 Main results

Estimates on the numerical range I

This is the case, for example, for the following theorem which will be proved as a
slightly stronger version, namely for the numerical range – estimates on this set build
first pillar of this thesis – of the associated sesquilinear Robin form (to which our
Laplacian is associated): we refer to Section 3.4 for details, including a description
of the parabolic-type region ΛΩ,α as depicted in Figure 1.2.1, and in particular to
Theorem 3.4.1 for the stronger version and its proof.

Theorem 1.2.3 (see [30, Theorem 1.3]). Suppose Ω ⊂ Rd, d ≥ 2, is a bounded
Lipschitz domain. Then there exist constants C1 ≥ 2 and C2 > 0 depending only
on Ω, such that for any α ∈ C, any corresponding eigenvalue λ ∈ C of (1.1.5) is
contained in the set

ΛΩ,α :=
{
t+ α · s ∈ C : t ≥ 0, s ∈ [0, C1

√
t+ C2]

}
; (1.2.3)

in particular, we have the estimate

Reλ ≥ −C
2
1

4 |Reα|2 − C2|Reα|. (1.2.4)

If Ω has C2 boundary, then we may choose C1 = 2.

The statements given above are based on sharp trace-type estimates on the
boundary integral of the Robin eigenfunctions. Since the Robin form simply reads

aα[u, v] =
∫

Ω
∇u∇v dx+ α

∫
∂Ω
uv dσ(x), (1.2.5)

this boundary term is the only term in the expression for λ with possibly non-zero
imaginary part and this allows us to control the location of the whole spectrum
(more precisely the numerical range) for fixed α ∈ C inside an explicitly specified
parabolic-type region ΛΩ,α of the complex plane.
As mentioned before, Theorem 1.2.3 might be restricted to the real case, more

precisely for Reα = α < 0, and from (1.2.4) we obtain a new result even in the
self-adjoint case.

Corollary 1.2.4 (see [30, Corollary 1.4]). Suppose Ω ⊂ Rd, d ≥ 2, is a bounded
Lipschitz domain. Then there exist constants c1 ≥ 1 and c2 > 0 depending only on Ω
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Figure 1.2.1: The set ΛΩ,α for Reα < 0 and two different choices of Imα > 0. As Imα→ 0,
the region collapses to the part of the real axis from −C2

1
4 |Reα|2 − C2|Reα| to +∞.

such that for any α < 0 and any corresponding eigenvalue λ ∈ R we have

λ ≥ −c1α
2 + c2α. (1.2.6)

If Ω has C2 boundary, then we may choose c1 = 1.

At this point there are two things worth mentioning: firstly, Corollary 1.2.4 answers
Open Problem 4.17 from [36], namely that for any bounded Lipschitz domain Ω,
there exists a constant c1 > 0 depending only on Ω such that

λ1(α) ≥ −c1α
2 (1.2.7)

asymptotically as α→ −∞. Secondly, this also seems to be the first time that for
any general C2 domain there exists a constant c2 > 0 depending only on Ω such that

λ(α) ≥ −α2 + c2α (1.2.8)

holds for all α < 0. The constant c2 might be estimated explicitly in terms of the
geometry of ∂Ω: since the proof is based on expressions where the (maximal) mean
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curvature of the domain plays a major role, it is apparent why we require Ω to be of
(at least) class C2. For more details on c2 we refer to Remark 3.4.13.

The Dirichlet-to-Neumann approach

Another approach – the second pillar of this thesis – is based on the duality between
the Robin Laplacian on L2(Ω) and the Dirichlet-to-Neumann operator on L2(∂Ω).
To this end, suppose that (i) λ = λ(α) ∈ C is an eigenvalue of the Robin Laplacian
for some given parameter α ∈ C and (ii) that this eigenvalue is in the resolvent set
of the Dirichlet Laplacian, i.e., λ is not in the spectrum of the eigenvalue problem
(1.1.6). The Dirichlet-to-Neumann operator M(λ) is the operator which maps g to
the (negative of the) outer normal derivative −∂νu of the solution (if one exists) of
the Dirichlet problem

−∆u = λu in Ω, (1.2.9a)

u = g on ∂Ω. (1.2.9b)

Then, α is an eigenvalue of M(λ) for this value of λ. What is more, M(λ) is defined
in such a way that λ ∈ C is an eigenvalue of the Robin problem (1.1.5) for a given
parameter α ∈ C if and only if α is an eigenvalue of the Dirichlet-to-Neumann
operator for the spectral parameter λ. Consequently, studying the properties of
Robin eigenvalues λ = λ(α) as functions of α is equivalent to studying the Dirichlet-
to-Neumann eigenvalues α = α(λ) as functions of λ. Since it turns out that it is
often more convenient to study α(λ) instead of λ(α) (even though some kind of
inversion is needed to translate the results from one picture into the other), this
is the approach we will take. This technique is standard and well known for real
α [12, Theorem 3.1], and it has been exploited on a regular basis in various other
contexts, see for example [12, 15, 43, 61, 92]. Besides, there are also results on the
duality between elliptic differential operators and operators of Dirichlet-to-Neumann
type in the non-self-adjoint case [34, Theorem 4.10], but in this thesis we give a
direct proof not only for the duality result of the complex eigenvalues but also for the
corresponding eigenfunctions of both operators: u is an eigenfunction of the Robin
problem (1.1.5) for a given parameter α ∈ C if and only if tru is an eigenfunction
of M(λ). One of the results obtained by exploiting this equivalence is the following
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dichotomy theorem which does not previously (with respect to [30]) seem to have
been formally proved (as stated in [36, Open Problem 4.11]). For the proof and more
details we refer to two paragraphs of this work: for the one-dimensional case d = 1,
see Theorem 4.1.1 and for d ≥ 2, see Section 3.5.

Theorem 1.2.5 (see [30, Theorem 1.5]). Let Ω ⊂ Rd, d ≥ 1, be a bounded Lipschitz
domain and α ∈ C. Then, each analytic eigenvalue curve λ = λ(α) of the Robin
Laplacian −∆α

Ω either converges to a point in the Dirichlet spectrum or diverges to
∞ in C as α→∞ in C.

In contrast to the preceding theorem where individual eigencurves are considered,
we conversely study the entirety of the spectrum as α → ∞ in C. To be more
precise, we analyse the possible points of accumulation of the Robin eigenvalues. It
turns out that if α diverges away from the negative real semi-axis, the only points of
accumulation lie in the Dirichlet spectrum. On the other hand, if α is contained in a
neighbourhood of the negative real semi-axis, the situation is much more complicated
since the crossing points of the eigencurves might accumulate.

Theorem 1.2.6 (see [30, Theorem 1.6]). Let Ω ⊂ Rd, d ≥ 2, be a bounded Lipschitz
domain and α ∈ C.

(1) If α → ∞ in C in such a way that either Reα remains bounded from below
or
∣∣∣Reα
Imα

∣∣∣ remains bounded, then the only points of accumulation of the Robin
Laplacian eigenvalues as α→∞ are eigenvalues of the Dirichlet Laplacian.

(2) However, any λ ∈ C is a point of accumulation of the eigenvalues of the Robin
Laplacian if α ∈ C is allowed to be arbitrary. More precisely, given any λ ∈ C
there exist αk ∈ C, k ∈ N, |αk| → ∞, such that λ is an eigenvalue of the Robin
Laplacian with parameter αk, for all k ∈ N.

We prove a slightly more precise version of Theorem 1.2.6 (1), namely Theorem 3.6.3
plus Remark 3.6.4. For the proof and more details on the contrast between both
statements of Theorem 1.2.6 we refer to Section 3.6.

Furthermore, we give a detailed analysis of the asymptotic behaviour of the Robin
eigenvalues where Ω is chosen to be a concrete example. To this end, we can (more
or less explicitly) calculate and analyse the corresponding Dirichlet-to-Neumann
operators on intervals, d-dimensional rectangles (in this work often called cuboids or
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hyperrectangles), and balls in d ≥ 2 dimensions. Studying the asymptotics of M(λ)
on these model domains and exploiting the aforementioned duality – we devote the
whole Chapter 4 to this topic – supports Conjecture 1.2.2. Besides, we expect that
many of the ideas drawn from this analysis could be transferred to more general
settings. As it turns out, this expectation is true for compact quantum graphs which
might be interpreted as a generalisation of the bounded interval. The setting of
metric graphs is the subject of Chapter 5 which, in particular, provides a proof of a
version of Conjecture 1.2.2.

By quantum graphs we mean metric graphs (for a definition and more details, see
Section 5.1) on which the Laplace operator acts. To this end, we consider compact
metric graphs G(V , E) consisting of a finite set of edges E = {e1, . . . , em}, m ∈ N,
joined in a certain way at a finite set of vertices V = {v1, . . . , vn}, n ∈ N.

Figure 1.2.2: A compact graph with |V| = 11 vertices and |E| = 12 edges.

We equip k ≤ n of the vertices (ordered such that they are denoted by v1, . . . , vk)
with Robin boundary conditions and the n − k remaining vertices vk+1, . . . , vn of
V with continuity-Kirchhoff (also called Neumann–Kirchhoff) conditions. We then
define a differential operator on G = G(V , E) by taking the negative of the second
derivative (that is, −∆) on each edge e1, . . . , em. To this end, each e ∈ E is identified
with a compact interval [0, `e] ⊆ R of length `e = |e| > 0. At the same time we equip
the vertices, that is, the endpoints of the edges e ∈ E , with the vertex conditions
mentioned above. More precisely, we assume that the domain of the corresponding
operator −∆α

VR consists of L2(G) functions f such that

(i) continuity at all vertices v ∈ V ,
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(ii) the δ condition

∑
e∼vj

∂

∂ν
f |e(vj) + αjf(vj) = 0, (1.2.10)

αj ∈ C, j = 1, . . . , k, at a distinguished set VR := {v1, . . . , vk} ⊂ V of Robin
vertices (here f |e is the restriction of the function f on G to the edge e, ∂

∂ν
f |e(v)

is the derivative of f at the endpoint of e pointing into vj , and the summation
is over all edges e incident with vj), and

(iii) the usual Kirchhoff condition (also known as current conservation, see [27, eq.
(1.4.4)]), corresponding to α = 0, at all vertices in V \ VR.

For brevity, we will write α = (α1, . . . , αk)T ∈ Ck for the vector containing the Robin
parameters on the vertices of VR ordered such that αj represents the parameter at
vj. To put (ii) into perspective, the boundary ∂Ω of a domain Ω ∈ Rd corresponds
to the distinguished set VR of Robin vertices at which the vertex condition (1.2.10)
is imposed; conditions of this type are also called δ coupling or δ interaction. We
note that, similarly to Theorem 1.2.1, all eigenvalues of −∆α

VR are at least piecewise
analytic functions of α ∈ Ck, and for any fixed α they form an at most countable set.
We obtain the following result similar to Theorem 1.2.5; here, we denote by m(α)
the smallest of the moduli of its components, viz.

m(α) = min
j=1,...,k

|αj|. (1.2.11)

Theorem 1.2.7 (see [76, Corollary 4.3]). Let G(V , E) be a compact metric graph with
VR = {v1, . . . , vk} as its set of Robin vertices and let α ∈ Ck be the vector containing
the Robin parameters αj ∈ C. Then, each analytic eigenvalue curve λ = λ(α) of
the Robin Laplacian −∆α

VR either converges to a point in the Dirichlet spectrum or
diverges to ∞ in C as m(α)→∞.

For the proof, see Theorem 5.3.2 and Corollary 5.3.3. Before we come to our
main result for quantum graphs, we want to emphasise the importance of this topic
in spectral theory and applications: since each edge corresponds to a bounded
interval and each compact graph can be interpreted as finitely many such intervals
“glued together” at (some or all of) their endpoints, detailed analyses of quantum
graphs is often more easily accessible compared to the case where higher dimensional
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objects are studied. Moreover, even though graphs sometimes even allow explicit
computations to verify abstract theories or, on the other hand, to gain insight into
what to expect for domains or manifolds, they often turn out to be non-trivial. This
occurs for example with problems such as the Anderson localisation (the absence
of diffusion of waves in a disordered medium), the field of quantum chaos (the
description of chaotic classical dynamical systems in terms of quantum theory) or
geometric spectral theory [109, 65, 24, 77], to name just a few. Additionally, the
vertex condition studied in this thesis appears frequently in the literature on quantum
graphs; for a description, see [27, Section 1.4], and for literature featuring these
conditions we refer to [25, 28, 51, 55, 70, 71, 105], among many others. We also refer
to the book [27, Preface and Chapters 1 and 7] as well as to the articles [25, 55, 81]
for even more references and information on these topics.
To state our main result, a version of Conjecture 1.2.2 for compact quantum

graphs, we need to introduce another Laplace operator on G. To this end, we denote
by −∆D

VR the (Dirichlet) Laplace operator on L2(G), where the δ condition (ii) of
−∆α

VR is replaced by the Dirichlet (zero) condition at the distinguished set VR ⊂ V .
Note that, if vj is such a vertex equipped with the Dirichlet condition, the graph
G decouples to a disjoint union of deg vj subgraphs, where deg vj is the number of
edges incident with vj, cf. Figure 1.2.3.

Figure 1.2.3: Dirichlet conditions at a vertex vj imply that the graph decouples to a disjoint
union of deg vj subgraphs. If every vertex is a Dirichlet vertex, then we arrive at |E|
subgraphs, each of which is an interval.

Theorem 1.2.8 (see [76, Theorem 1.2]). Suppose G = (V , E) is a compact metric
graph, and for the set of Robin vertices VR = {v1, . . . , vk} ⊂ V, suppose that each
vj ∈ VR is equipped with the Robin parameter αj ∈ C, j = 1, . . . , k, and set
α := (α1, . . . , αk) ∈ Ck. We suppose that for some m ∈ {0, 1, . . . , k}

(1) α0 := α1 = · · · = αm →∞ in a sector fully contained in the open left half-plane;
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(2) αm+1, . . . , αk → ∞ in such a way that Reαj remains bounded from below as
αj →∞, for all m+ 1 ≤ j ≤ k.

Then, as α→∞, counting multiplicities there are exactly m eigenvalues λ of −∆α
VR

which diverge away from the positive real semi-axis (that is, whose distance to the
positive real semi-axis grows to ∞); these satisfy the asymptotics

λ = − α2
0

(deg vj)2 +O
(
α2

0e`GReα0
)

(1.2.12)

as α → ∞, where `G is the length of the shortest edge of G. Every eigenvalue of
−∆α

VR which does not diverge to ∞ in C converges to an eigenvalue of −∆D
VR.

In other words, we prove two possible behaviours of Robin eigenvalues as αj →∞ in
C in the following regimes. On the one hand, for each Robin vertex vj ∈ VR equipped
with α0 such that the real part of the Robin parameter satisfies Reα0 → −∞
sufficiently quickly, we obtain a single divergent eigenvalue λ of −∆α

VR . On the
other hand, if Reαj remains bounded from below as αj →∞, then we end up with
a Dirichlet vertex condition in vj. Before proceeding, we want to make a couple
of comments on the latter theorem: First of all, we remark that the statement is
obtained by exploiting the duality of −∆α

VR and the associated Dirichlet-to-Neumann
operator M(λ). Since the spectrum of the self-adjoint Dirichlet Laplacian −∆D

VR is
purely real, so is the set of singularities of M(λ). Consequently, in this regime the
duality, or more precisely the relationship between α and λ, is far more complicated
and this is why in Theorem 1.2.8 we deliberately avoid considering any potential
eigenvalue curves which diverge within any fixed strip around the real positive semi-
axis. For more information in the much simpler setting of one-dimensional intervals,
we refer to Section 4.1.3 and especially to Proposition 4.1.6.

Secondly, it appears to be a natural question to ask whether the result remains true
if the non-Robin vertices are equipped with some other self-adjoint condition(s) than
the standard (continuity) Kirchhoff condition (iii). While our proof makes explicit
use of the Kirchhoff conditions on VN , we expect that certain generalisations, that
is, replacing (iii) by a different vertex condition, would be possible; see Remark 5.3.7
for more details.
Thirdly, there is a noteworthy generalisation in the statement of Theorem 1.2.8

compared to Conjecture 1.2.2 (and the theorems for domains): here, the Robin
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parameter α is variable in the sense that it can be seen as a function α : V → C with

α(vj) =

αj for j = 1, . . . , k,

0 for j = k + 1, . . . , n,
(1.2.13)

while in the statements for domains (namely Theorem 1.2.3 and Corollary 1.2.4)
we fix α ∈ C to be independent of the position x ∈ ∂Ω. However, some of our
results remain valid in essentially the same form even if α is considered a function
α ∈ L∞(∂Ω,C) instead of a constant α ∈ C. This generalisation is possible especially
for two subject areas in particular: roughly speaking, for basic operator-theoretic
properties in Section 3.1 as well as for the estimates on the numerical range in
Section 3.4 due to the robust trace-type inequalities the estimates therein are based
on. We refer to Remarks 3.1.4 and 3.4.15, respectively, for more details. For most
other cases, however, this kind of generalisation introduces significant complications
(see Remark 3.2.16 for the Dirichlet-to-Neumann operator as such an example) and
we expect that many results would need heavy modifications in order to remain valid.

Fourth, in addition to supporting Conjecture 1.2.2, Theorem 1.2.8 should be of
independent interest: as mentioned before, vertex conditions of Robin type are
frequently studied (even though it is mostly the self-adjoint case examined in the
literature), however, there are further works in the field of spectral theory of quantum
graphs where the relationship between the parameter α and the eigenvalue λ (in
other words the function α 7→ λ(α)) plays a significant role [25, 51]. In addition
to basic spectral and generation properties of graph Laplacians with complex δ

couplings [70, 71], just recently a Weyl law for the eigenvalue asymptotics of star
graphs for fixed complex α ∈ C was established [105]. Moreover, there is a huge
body of literature on the eigenvalue asymptotics for Laplacians on Rd, where large α
are often used to model potentials supported on a lower-dimensional manifold; we
refer to [47, 52, 53] for more information on this topic.
Fifth, the key to the proof of Theorem 1.2.8 is a well-chosen representation (see

Lemma 5.2.1) of the Dirichlet-to-Neumann operator: since there are only finitely
many Robin vertices v1, . . . , vk, the Dirichlet-to-Neumann operator – also known
as (Titchmarsh-Weyl) M -function – takes the form of a k × k matrix in a more
or less explicit representation. This provides an enormous advantage compared to
corresponding abstract results for domains. Now, the asymptotic behaviour of M
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with respect to its spectral parameter λ = λ(α) only needs to be translated into a
description for λ(α). To this end, we exploit the (in the real case well known) duality
result of Theorem 5.2.2 and, similarly to the interval case, this allows us to give an
essentially complete answer to the question of the asymptotic behaviour of Robin
eigenvalues for large complex Robin parameters.
And sixth, it is worth mentioning that the asymptotics described in (1.2.12) is,

to the best of our knowledge, even in the case of real α new and since there is an
active interest in eigenvalue estimates on quantum graphs (see [25] and the references
therein), we explicitly state this special case.

Theorem 1.2.9 (see [76, Theorem 1.3]). Keep the assumptions of Theorem 1.2.8.
Suppose now that α := α1 = . . . = αk is real and negative and all vertices in VR are
equipped with the common Robin parameter α, and that

deg v1 ≤ deg v2 ≤ . . . ≤ deg vk (1.2.14)

Then for

α < −2 max
j=1,...,k

{
deg vj
`j

}
(1.2.15)

the self-adjoint operator −∆α
VR has exactly k negative eigenvalues (here `j is the

length of the shortest edge incident with vj). Moreover, for each j = 1, . . . , k, the jth
eigenvalue λj = λj(α) behaves like

λj(α) = − α2

(deg vj)2 +O
(
α2e`Gα

)
(1.2.16)

as α→ −∞. Every other eigenvalue λj(α), j ≥ k + 1, converges to an eigenvalue of
−∆D

VR.

In the real (self-adjoint) setting, delta conditions can sometimes play a role in
the surgery methods used for quantum graphs which is why it can be useful to
understand how the eigenvalues depend on these conditions, see [25, Section 3]. We
will remain for a moment in the real case: there, one can show that the j-th Robin
eigenvalue λj(α) converges to the (j − k)th Dirichlet eigenvalue from above, for any
j ≥ k + 1; we refer to [27, Theorem 3.1.13] for the proof when k = 1 (the general
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case is analogous). We draw explicit attention to the coefficient C of the leading
term asymptotics −Cα2: in Theorem 1.2.9 we prove that C = (deg vj)−2, i.e., we
have C < 1 as soon as more than one edge is incident with vj. This is a major
difference to the behaviour on domains in Rd: if the domain Ω is smooth, then we
always have C = 1 [45, 90]; if ∂Ω contains corners, then, depending on the sharpness
of those corners, we obtain C > 1. For more details and the actual theorems we
refer internally to Section 2.4.1, and externally to [78, 80, 88]. However, the first
observation of the leading coefficient depending on the geometry of the boundary goes
back to [85] which might be seen as the pioneer article for eigenvalue asymptotics of
the Robin Laplacian.

Back to the numerical range

We exploit the same overarching idea to localise the spectrum of the non-self-adjoint
Robin Laplacian as described in the prior paragraph Estimates on the numerical
range in order to prove statements similar to Theorem 1.2.3 and Corollary 1.2.4 in the
setting of compact quantum graphs. We prove an adapted version of Theorem 1.2.3
to obtain a similar parabolic region ΛG,α ⊂ C, cf. Figure 1.2.1, containing the whole
of the spectrum. Notationally, for the fixed set VR = {v1, . . . , vk} of Robin vertices
we will always write

D := min
j=1,...,k

deg vj (1.2.17)

for the smallest number of edges being incident with any Robin vertex. We also
denote by `G = min{`e : e ∈ E} the length of the shortest edge in the whole of G.

Theorem 1.2.10 (see [76, Theorem 5.1]). (1) Let α ∈ Ck. Then the numerical
range W (aα), and in particular every eigenvalue of −∆α

VR, is contained in the
set

ΛG,α :=

t+
k∑
j=1

αjsj ∈ C : t ≥ 0, sj ∈
[
0, 2

D

√
τj + 2

D`G

] , (1.2.18)

where the numbers 0 ≤ τj ≤ t satisfy ∑k
j=1 τj ≤ t.

(2) If α1 = . . . = αk =: α ∈ C is independent of j = 1, . . . , k, then W (aα) is
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contained in

ΛG,α :=
{
t+ α · s ∈ C : t ≥ 0, s ∈

[
0, 2

D

√
t+ 1

D`G

]}
. (1.2.19)

This localisation theorem gives us control over both the real and imaginary party
of any eigenvalue in terms of the real and imaginary party of α, thus, as a direct
consequence, we obtain the following corollary.

Corollary 1.2.11 (see [76, Corollary 5.2]). Let α ∈ C such that Reα < 0. Then
any eigenvalue λ ∈ σ(−∆α

VR) satisfies

Reλ ≥ −(Reα)2

D2 + Reα
D`G

. (1.2.20)

Furthermore, we do not only give estimates on the real part but also on the
(modulus of) the imaginary part of λ and we refer to Section 5.4 and especially
Theorem 5.4.15 for more details. We want to remark that if the components of
α ∈ Ck have a sufficiently large negative real part, these bounds (for both Reλ
and Im λ) are essentially asymptotically optimal. Let us therefore briefly consider
the simplest case where α < 0 is independent of the k Robin vertices v1, . . . , deg vk,
which we order such that deg v1 ≤ deg v2 ≤ · · · ≤ vk. Let |G| be the total length of
G (that is, the sum of all edge lengths). Then, we obtain the following two-sided
bound on the lowest eigenvalue λ1(α),

λ1(α) ≥ − α2

(deg v1)2 + α

`G deg v1
, (1.2.21a)

λ1(α) < min
{
− α2

(deg v1)2 −
2α

`G deg v1
− 1
`2
G
,
kα

|G|

}
. (1.2.21b)

This statement is proved in Corollary 5.4.10 and Remark 5.4.11.

1.3 Structure of the thesis

This thesis is organised as follows. To establish a formal basis for future sections, we
start in Chapter 2 by introducing preliminaries and basics about boundary value
problems. In Sections 2.1 and 2.2 we provide fundamental ideas and theorems
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from functional analysis and spectral theory, such as Sobolev spaces on Lipschitz
domains and their boundaries, trace operators, and the variational characterisation
of eigenvalues. After a short summary of Dirichlet, Neumann, and Robin boundary
conditions and their corresponding forms and operators in Section 2.3, we briefly
sketch the case of the Robin eigenvalues (or eigencurves) in the special case when Ω
is a bounded interval where everything can be calculated explicitly. Section 2.4 is
devoted to the history of Robin eigenvalue asymptotics: we summarise the crucial
milestones of what has been achieved so far in the field of spectral asymptotics of
the self-adjoint Robin Laplacian on both smooth and non-smooth (that is, Lipschitz)
domains.

In Chapter 3 we start with a detailed spectral analysis of the Robin Laplacian on
domains Ω ⊂ Rd. In Sections 3.1 and 3.2 we generalise results in the self-adjoint case
to the case where α is no longer real (see Theorem 3.1.2). Moreover, we prove that
{A(α) := −∆α

Ω : α ∈ C} forms a self-adjoint holomorphic family of operators, that
is, A(α)∗ = A(α), as well as that each Robin eigenvalue λk(α) can be extended to a
meromorphic function with at most algebraic singularities at non-real crossing-points
of eigenvalues, cf. Theorem 3.2.11, and the same is proved for the corresponding
eigennilpotents. Another generalisation is given in Theorem 3.2.18: for α ∈ R
there is a known formula for the derivative λ′(α) of a simple eigenvalue λ with
respect to the Robin parameter and we prove that this representation is indeed
locally meromorphic with at most removable singularities. In view of the analytic
dependence of the eigenfunctions of the Robin Laplacian for α ∈ C, Section 3.3
is devoted to the question whether these eigenfunctions also still have reasonable
basis properties of L2(Ω): we prove the negative result of Theorem 3.3.1, which says
that the eigenfunctions of −∆α

Ω form an orthonormal basis of L2(Ω) if and only if
α ∈ R, cf. Theorem 1.2.1 (5). Besides, we introduce weaker basis concepts (such as
Riesz, Bari, and Abel bases) in order to prove a positive result which corresponds
to Theorem 1.2.1 (4). The analysis of the numerical range in Section 3.4 leads us
to our main localisation Theorem 3.4.1: to obtain that the numerical range (and
hence the spectrum) of the Robin Laplacian is contained in a parabolic region ΛΩ,α

we prove the crucial (and sharp) trace-type inequality of Lemma 3.4.7 for Lipschitz
domains. In Section 3.5 we introduce and analyse the Dirichlet-to-Neumann operator,
including a proof of Theorem 1.2.5, as well as the “duality” between the Robin and
Dirichlet-to-Neumann eigenvalue problems, which is well known in the real case. In a
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later section this will form the (abstract) foundation of the explicit analysis of model
domains in Chapter 4. However, before proceeding with explicit calculations, we
study the question of which values λ ∈ C can be reached as points of accumulation
of the Robin eigenvalues as α → ∞ in C; up to a sector in which α diverges, we
answer this question in Theorem 3.6.3. The last section of this chapter, namely
Section 3.7, then rounds off the spectral analysis of the Robin Laplacian by recalling
and applying recent results from [21, Sections 2, and 3] to our operator.
In Chapter 4, we give three concrete examples (model cases) of Ω. Here, we

additionally pay attention to the error estimates appearing in the asymptotic expan-
sions. Firstly, start with the interval in Section 4.1, where we not only calculate the
Dirichlet-to-Neumann operator explicitly, but we give a detailed analysis of what
happens in the picture of the Dirichlet-to-Neumann operator and the Robin Lapla-
cian, respectively, including a consideration of the relation between the eigenvalues
diverging near the positive real semi-axis and the parameter α. Divergence of the
eigenvalues λ outside an arbitrarily small sector around the positive real semi-axis is
shown to be possible only if Reα→ −∞: the only two divergent eigenvalues λ behave
like −α2, while the rest converge to the Dirichlet spectrum. If Reα remains bounded
from below, then, at least outside such a sector, all eigenvalues are convergent (see
Theorems 4.1.1 and 4.1.4, as well as Proposition 4.1.6). Besides, in Section 4.1.2, we
describe the procedure of inverting the asymptotical expansions from α(λ) to λ(α)
while the information about the error terms is preserved. Here and throughout the
text we call this the Rouché inversion technique. Furthermore, we prove a version
of Theorem 1.2.1 (5) by explicit calculations. Secondly, in Section 4.2 we use our
results on the interval to study d-dimensional rectangles (also called hyperrectangles
or cuboids), see Theorem 4.2.2, as they are constructed as d intervals orthogonally
“glued together”. And thirdly, we treat d-dimensional balls in Section 4.3, where
the asymptotic behaviour of complex Bessel functions are used to determine the
asymptotics of the Robin eigenvalues; see in particular Theorems 4.3.5 and 4.3.6.

Finally, in Chapter 5 we study all the aspects and properties mentioned above but
in the setting where the domain Ω is replaced by a compact quantum graph G. In
Section 5.1 we give a brief summary of the basic notation of metric graph, where we
define suitable function spaces and introduce different vertex conditions (especially
the so called δ coupling) and the corresponding Laplace operators. We continue in
Section 5.2 by introducing Dirichlet-to-Neumann matrices M(λ) to derive the block
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matrix representation of Lemma 5.2.1. This allows us to establish the asymptotic
behaviour of M in Section 5.3 which is key for proving Theorem 1.2.8. Finally, in
Section 5.4 we give estimates on the numerical range of the Robin Laplacian and
hence inequalities for the real and imaginary parts of its eigenvalues.

1.4 How to read this thesis

Even though this doctoral thesis is designed to be a coherent text and the order of
the chapters and sections are chosen to serve this purpose, there are some remarks
on how to read this dissertation.

(1) This thesis is based on the two articles [30] (joint work with James B. Kennedy
and Sabine Bögli) and [76] (joint work with James B. Kennedy) as listed on
page 11. However, since the problems studied here are generalisations of a topic
already (at least partially) covered by former papers, there are sections which
contain notation and results from textbooks or articles we have not proved or
introduced ourselves. To clarify and distinguish these different cases, mainly
two “citing methods” are used: the first indicator is the brief introduction
preceding each chapter or (sub)section, while the second one is a short text
preceding the statement in question. If there is no indicator whatsoever, the
statements are due to the two articles mentioned above, that is, new results
proved by my co-authors and myself. To give a rough idea of the subject areas
falling into the last category, in Figure 1.4.1 they are marked with an asterisk.
Chapters 3 and 4 are mainly based on [30, Sections 3-8 and Sections 2, 9], the
results in Chapter 5 are due to [76].

(2) The underlying papers [30, 76] form a proper subset of this thesis and the main
results of both papers and this thesis coincide. However, in this thesis there are
many additional paragraphs, remarks, and statements which support the main
results with further information and details: besides a higher level of detail
in almost every proof, many additional figures sketch or illustrate the ideas
of proof or clarify given notation. Furthermore, especially when considering
examples in Chapter 4, there are supplementary statements (e.g. Lemma 4.1.7)
which might follow from the abstract theory of Chapter 3: explicit calculations,
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however, appeared to be useful for gaining insight into what to expect in the
general case and so they are included as well.

(3) The previous item leads additionally to a last remark, namely, that there are
two possible (and canonical) ways to read this thesis. (Before actually reading
this paragraph, for reasons of clarity, we highly recommend taking a look at
the corresponding Figure 1.4.1 first.) As an alternative to reading the thesis in
the order presented (that is, interpreting Chapters 4 and 5 as applications of
the theory established in Chapter 3), one can start out with reading Chapter 4
in order to gain intuition as well as more insight into the approaches from
Chapter 3. This is the path we, the authors of [30, 76], took. Since (parts of)
Chapter 5 might be interpreted as a generalisation of the discrete calculations
in the case where Ω is an interval, one could also read Sections 5.1- 5.3 as a
comprehensive generalisation of Section 4.1.
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Preliminaries and boundary value
problems
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In this chapter we will introduce function spaces, corresponding embedding theo-
rems, and collect a number of basic properties which we will use to introduce and
understand the Laplacian and some of its boundary value problems. The boundary
conditions in this context, namely Dirichlet, Neumann, and Robin conditions, will be
introduced in Section 2.3. Since our aim is to make statements that are as general
as possible (at least with respect to the boundary regularity), we will be using the
framework of McLean [94, Chapter 3] and Kato [74, Chapters V and VII], and we
start by recalling some definitions from there. We assume throughout that (1) H
is a Hilbert space with inner product ( · , · )H and norm ‖ · ‖H , and (2) that, if not
stated otherwise, Ω ⊂ Rd is a bounded Lipschitz domain.
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2.1 Some functional analysis

In this section we build the foundations for considering linear operators and their
boundary value problems on bounded Lipschitz domains Ω ⊂ Rd. We start by
introducing Sobolev spaces both on domains and on their boundaries ∂Ω, respectively.
A complete introduction can be found in many textbooks, e.g. [2, 62, 5]. We, however,
use the framework, definitions and theorems of [94, Section 3] since the statements
therein (Sobolev embedding theorems as well as compactness of the trace operator)
are given in a generality to even hold for Lipschitz domains.

2.1.1 Sobolev spaces on Lipschitz domains

We start by defining what exactly we mean by the term Lipschitz domain; heuristically,
this means that the boundary ∂Ω of a domain Ω can locally (after an elementary
transformation) be described by the graph of a Lipschitz continuous function.

Definition 2.1.1. Let Ω ⊂ Rd, d ≥ 2, be an open set. If there is a Lipschitz
continuous function ζ : Rd−1 → R such that

Ω =
{
x ∈ Rd−1 : xd < ζ(x̌) for all x̌ = (x1, . . . , xd−1)T ∈ Rd−1

}
, (2.1.1)

then Ω is called a Lipschitz hypograph.

Definition 2.1.2. The open set Ω is a Lipschitz domain if its boundary ∂Ω is
compact and if there exist finite families {Wj} and {Ωj} such that the following
conditions hold.

(1) The family {Wj} is a finite open cover of ∂Ω: each Wj ⊂ Rd is open and we
have ∂Ω ⊂ ⋃jWj.

(2) Each Ωj can be transformed to a Lipschitz hypograph by a rigid motion, that
is, by a rotation plus a translation.

(3) The set Ω satisfies

Wj ∩ Ω = Wj ∩ Ωj (2.1.2)

for each j.
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Definition 2.1.3. Let Ω ⊂ Rd, d ≥ 2, a non-empty open subset.

(1) The Sobolev space W k,p(Ω) of order k based on Lp(Ω) is defined by

W k,p(Ω) =
{
u ∈ Lp(Ω) : ∂βu ∈ Lp(Ω) for all |β| ≤ k

}
, (2.1.3)

where β ∈ Nd is a multi-index and ∂βu is viewed as a distribution on Ω, that
is, ∂βu ∈ Lp(Ω) means that there exists a function gβ ∈ Lp(Ω) such that

(u, ∂βϕ)L2(Ω) = (−1)|β|(gβ, ϕ)L2(Ω) (2.1.4)

for all test functions ϕ ∈ D(Ω). The function gβ is then often called weak
partial derivative of u.

(2) The norm ‖ · ‖Wk,p(Ω) defined by

‖u‖Wk,p(Ω) :=
∑
|β|≤k

∫
Ω

∣∣∣∂βu(x)
∣∣∣p dx

1/p

(2.1.5)

is called Sobolev norm. The completeness of the space Lp(Ω) implies that
W k,p(Ω) together with the latter norm is a Banach space.

Since the canonical setting of trace operators are Sobolev spaces of fractional order,
we need the following definition.

Definition 2.1.4. (1) For 0 < µ < 1 we denote by | · |µ,p,Ω the Slobodeckij semi-
norm1

|u|µ,p,Ω :=
(∫

Ω

∫
Ω

|u(x)− u(y)|p
|x− y|d+pµ dx dy

)
. (2.1.6)

(2) For s = k + µ ∈ (k, k + 1), we define

W s,p(Ω) :=
{
u ∈ W k,p(Ω) : |∂βu|µ,p,Ω <∞ for all |β| = k

}
. (2.1.7)

1This norm is sometimes also called Gagliardo semi-norm, see [46, Section 2].
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This space equipped with the norm ‖ · ‖W s,p(Ω) given by

‖u‖W s,p(Ω) :=
‖u‖pWk,p(Ω) +

∑
|β|=k

∣∣∣∂βu∣∣∣p
µ,p,Ω

 (2.1.8)

is called Sobolev space of fractional order s.

Remark 2.1.5. The latter Definition 2.1.4 also holds for p = ∞: note that the
integrand of (2.1.6) is the pth power of

|u(x)− u(y)|
|x− y|µ+d/p . (2.1.9)

Consequently, if p =∞, we get the usual Hölder semi-norm of order µ.

Remark 2.1.6. For p = 2 we write Hs(Ω) instead of W s,2(Ω). Due to the extension
theorem of Stein, cf. [111, Chapter VI.3: Theorem 5’ and Section 3.3], for s ≥ 0, the
space Hs(Ω) defined in this way coincides with the space of functions from Hs(Rd)
restricted to Ω. In the second case, for s ∈ R, we define the so called Bessel potential
of order s,

J s : S(Rd)→ S(Rd) : u(x) 7→
∫
Rd

(1 + |ξ|2)s/2û(ξ)e2πi ξ·x dξ, (2.1.10)

for x ∈ Rd, where û is the Fourier transform of u in the Schwartz space S(Rd).

We arrive at the following definition.

Definition 2.1.7. For any s ∈ R we define the Sobolev space of order s on Rd by

Hs(Rd) :=
{
u ∈ S∗(Rd) : J su ∈ L2(Rd)

}
(2.1.11)

and equip this space with the inner product

(u, v)Hs(Rd) := (J su,J sv)L2(Rd) (2.1.12)

and the induced norm

‖u‖Hs(Rd) :=
√

(u, u)Hs(Rd) = ‖J su‖L2(Rd). (2.1.13)
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Remark 2.1.8. Note that the Bessel potential

J s : Hs(Rd)→ L2(Rd) (2.1.14)

introduced in (2.1.10) is a unitary isomorphism, and J 0u = u implies that

H0(Rd) = L2(Rd). (2.1.15)

Definition 2.1.9. Let Ω ⊂ Rd, d ≥ 2, be a bounded Lipschitz domain and let s > 0.
If we denote by Hs

0(Ω) the closure of D(Ω) in Hs(Ω), then H−s(Ω) is defined as the
dual space Hs

0(Ω)∗.

We want to give an important compactness result which originated in the well
known article of Rellich [104].

Theorem 2.1.10. Let Ω ∈ Rd be a bounded, open subset and assume that

−∞ < t < s <∞. (2.1.16)

Then, the embedding Hs(Ω) ↪→ H t(Ω) is compact. In particular, for s > 0, every
Hs(Ω) is compactly embedded in L2(Ω).

2.1.2 Sobolev spaces on the boundary

Let Ω ⊂ Rd be a Lipschitz hypograph, cf. Definition 2.1.1, and let 0 ≤ s ≤ 1. The
corresponding Sobolev space Hs(∂Ω) is constructed in terms of Sobolev spaces on
Rd−1. Let u ∈ L2(∂Ω) and define

uζ(x̌) = u(x̌, ζ(x̌)) (2.1.17)

for x̌ ∈ Rd−1.

Definition 2.1.11. We define the space Hs(∂Ω) by

Hs(∂Ω) :=
{
u ∈ L2(Ω) : uζ ∈ Hs(Rd−1)

}
(2.1.18)
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and equip it with the inner product

(u, v)Hs(∂Ω) := (uζ , vζ)Hs(Rd−1). (2.1.19)

Definition 2.1.12. The space H−s(∂Ω) is defined as the completion of L2(∂Ω) with
respect to the norm given by

‖u‖H−s(∂Ω) :=
∥∥∥∥uζ√1 + |∇ζ|2

∥∥∥∥
H−s(Rd−1)

. (2.1.20)

It can be followed that H−s(∂Ω) is a realisation of the dual space Hs(∂Ω)∗.

To define Hs(∂Ω) for Lipschitz domains Ω, recall the notation of Definition 2.1.2,
we choose a partition of unity {Φj} subordinate to the open cover {Wj} of ∂Ω. To
this end, we choose Φj to satisfy ∑j Φj(x) = 1 for all x ∈ ∂Ω.

Definition 2.1.13. The space Hs(∂Ω) is defined as in Definition 2.1.11 together
with the inner product

(u, v)Hs(∂Ω) :=
∑
j

(Φju,Φjv)Hs(∂Ωj). (2.1.21)

2.1.3 The trace operator

When working with boundary value problems it is natural to consider u|∂Ω as an
element of a Sobolev space on ∂Ω while u itself is an element of a Sobolev space on
Ω. The function which maps u to u|∂Ω is then called trace operator ; we dedicate this
short section to the operator just mentioned and its properties. Let s > 1/2. As
before, unless otherwise stated, for the proofs of the following statements we refer to
[94, Section 3, esp. pp. 100-106]: the trace operator tr : D(Rd)→ D(Rd−1) given by

tru(x) := u(x̌, 0) (2.1.22)

for x̌ ∈ Rd−1 can be uniquely extended to a bounded linear operator

tr : Hs(Rd)→ Hs−1/2(Rd−1). (2.1.23)
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Since tr has a continuous right inverse, we have

Hs−1/2(Rd−1) =
{

tru : u ∈ Hs(Rd)
}
. (2.1.24)

If we now consider Lipschitz domains, then the trace operator

tr : D(Ω)→ D(∂Ω) (2.1.25)

defined by tru = u|∂Ω satisfies the following extension property.

Theorem 2.1.14. For 1/2 < s < 3/2 the operator tr from (2.1.25) has a unique
extension to a bounded linear operator

tr : Hs(Ω)→ Hs−1/2(∂Ω). (2.1.26)

For a proof and more details we refer to [42, Lemma 3.6].

2.2 Some spectral theory

For the sake of completeness we give some basic terms and theorems of spectral
theory of (unbounded) operators and forms on Hilbert spaces. We will be using
the framework of Spectral Theory of Self-Adjoint Operators in Hilbert Space by M.
S. Birman and M Z. Solomjak [29, Chapter 3].

Definition 2.2.1. A linear mapping

A : D(A) ⊂ H → H (2.2.1)

is called linear operator on a Hilbert space H. By D(A) we denote its domain and
by R(A) = AD(A) its range (or image). With respect to the inner product

(u, v)A = (u, v)H + (Au,Av)H , u, v ∈ D(A) (2.2.2)

the domain D(A) becomes a pre-Hilbert space, denoted by HA; the corresponding
norm ‖ · ‖A given by

‖u‖2
A = ‖u‖2

H + ‖Au‖2
H , u ∈ D(A) (2.2.3)
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is called A-norm.

Definition 2.2.2. Let A : D(A) ⊂ H → H be a linear operator. A is called closed
if HA is complete, i.e. HA is a pre-Hilbert space with respect to (2.2.2).

There are well known properties which are equivalent to A being closed: The
following lemma is due to [29, Theorem 3.2.1.].

Lemma 2.2.3. Let A : D(A) ⊂ H → H be a linear operator. Then, the following
properties are equivalent:

(1) A is closed.

(2) The graph

G(A) := {(u,Au) ∈ H ×H : u ∈ D(A)} (2.2.4)

is closed in H ×H.

(3) Whenever a sequence (xn)n∈N in D(A) converges in H, i.e., xn → x ∈ H, and
Axn → y in H, then we have x ∈ D(A) and y = Ax.

Definition 2.2.4. Let A : D(A) ⊂ H → H be a closed, densely defined linear
operator, that is, D(A) ⊂ H is dense with respect to ‖ · ‖H .

(1) The set

ρ(A) := {z ∈ C : A− zI : D(A)→ H has a bounded inverse} (2.2.5)

is called resolvent set of A;

(2) for z ∈ ρ(A) we call

Rz(A) := (A− zI)−1 : H → D(A) (2.2.6)

the resolvent of A.

(3) The complement of the resolvent set σ(A) := C \ ρ(A) is called spectrum of A;

(4) we denote by σp(A) the point spectrum A, that is

σp(A) := {z ∈ σ(A) : A− zI : D(A)→ H is not injective}; (2.2.7)
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(5) and we call the set

σess(A) := {z ∈ σ(A) : (A− zI) :D(A)→ H

is not a Fredholm operator}
(2.2.8)

the essential spectrum of A.

Note that in the literature the definition of essential spectra of non-self-adjoint op-
erators might vary. Our definition (often denoted by σe3) using Fredholm operators is
due to Wolf, cf. [114]. For five distinct definitions and their respective characteristics,
see [49, Chapter IX].

Definition 2.2.5. Let a : D(a) × D(a) ⊂ H × H → C be a densely defined
sesquilinear form and let A : D(A) ⊂ H → H be a linear operator. We call the set

W (A) := {(Au, u) : u ∈ D(A) and ‖u‖H = 1} ⊂ C (2.2.9)

the numerical range of A and, likewise, the set

W (a) := {a[u, u] : u ∈ D(a) and ‖u‖H = 1} ⊂ C (2.2.10)

the numerical range of a. If A is the operator associated with a, that is, if A is
defined by

D(A) = {u ∈ D(a) : ∃h ∈ H with a[u, v] = (h, v) ∀v ∈ D(a)}, (2.2.11a)

Au = h, (2.2.11b)

then it follows immediately from the definitions that

σp(A) ⊂ W (A) ⊂ W (a). (2.2.12)

Definition 2.2.6. We call A m-sectorial (of semi-angle θ) if there exist a vertex
γ ∈ R and an angle 0 ≤ θ < π/2 such that

W (A) ⊂ {z ∈ C : | arg(z − γ)| ≤ θ} (2.2.13)
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(where the principal argument of a complex number is taken to be between −π and
π) and for all λ ∈ C with Reλ < γ we have that λ ∈ ρ(A) satisfies the resolvent
norm estimate

‖(A− λI)−1‖H→H ≤
1

|γ − Reλ| . (2.2.14)

The form a is likewise called sectorial (of semi-angle θ) if (2.2.13) holds for W (a)
instead of W (A). Neglecting the resolvent estimate (2.2.14), A and a, respectively,
satisfying (2.2.13) are called sectorial.

The following property, cf. [74, Corollary VI.2.3], of the numerical range of an
operator and its associated sesquilinear form is an immediate conclusion of Kato’s
first representation theorem [74, Theorem VI.2.1].

Lemma 2.2.7. The numerical range W (A) of A is a dense subset of the numerical
range W (a) of a.

The following statement is known as the Riesz–Schauder theorem or simply spectral
theorem for compact operators. For its proof we refer to [102, Theorem VI.15].

Theorem 2.2.8. Let A ∈ S∞(H) be a compact operator on H. Then, its spectrum
σ(A) is a discrete set having no limit points except perhaps λ = 0. Further, any
λ ∈ σ(A)\{0} is an eigenvalue of finite multiplicity (i.e. the corresponding space of
eigenvectors is finite dimensional).

With the assistance of the spectral mapping theorem we obtain the following
corollary.

Corollary 2.2.9. Let A be a linear operator with compact resolvent Rz(A) ∈ S∞(H).
Then,

(1) for the spectrum of A we have σ(A) = σp(A);

(2) either σ(A) is finite or there exists a sequence (λk)k∈N ⊂ C such that

lim
k→∞
|λk| =∞ and σ(A) = {λk | k ∈ N}; (2.2.15)

(3) λ ∈ σp(A) implies that dimN(λI −A) <∞.

54



2.2 Some spectral theory

The next statement is often called Hilbert–Schmidt theorem. Its proof can be found
in [102, Theorem VI.16].

Theorem 2.2.10. Let A ∈ S∞(H) be a self-adjoint compact operator on H. Then
there is a complete orthonormal basis (ψk)k∈N of H consisting of eigenfunctions ψk
of A. The associated sequence of eigenvalues (λk)k∈N ⊂ R satisfies limk→∞ λk = 0.

We arrive at the following version of the spectral theorem for m-dissipative opera-
tors; for both the statement itself and its proof, see [9, Theorem 1.4.8].

Theorem 2.2.11. Let A : D(A) ⊂ H → H be a linear operator on a separable and
infinite dimensional Hilbert space H. Assume that A

(1) is m-dissipative, i.e., Re (Au, u)H ≤ 0 for all u ∈ D(A) and (I − A) is
surjective;

(2) is symmetric, i.e., (Au, u)H = (u,Au)H for all u ∈ D(A);

(3) has compact resolvent, i.e., Rz(A) ∈ S∞(H) for every z ∈ ρ(A).

Then, there exists an orthonormal basis (ψk)k∈N ⊆ D(A) of H and an associated
sequence of eigenvalues (λk)k∈N ⊆ (−∞, 0], such that

Aψk = λkψk and lim
k→∞

λk = −∞. (2.2.16)

Furthermore, A is given by

D(A) = {u ∈ H | (λn(u, ψk))k∈N ∈ `2(C)}, (2.2.17a)

Au =
∞∑
k=1

λk(u, ψk)ψk. (2.2.17b)

2.2.1 Variational characterisation

A major tool for estimating the eigenvalues of self-adjoint operators is the so called
min-max principle or the variational characterisation of eigenvalues. This technique
allows us to use test functions to obtain upper estimates for the eigenvalues. Since
we will need the notation in Chapter 5, we give a brief introduction; the definitions
and statements in this section are well known and can be found in almost every
textbook about spectral theory, e.g. [62, Section 8.12], [103, Chapter XIII.1], or [74,
Section I.6.10].
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Definition 2.2.12. Let a : D(a) × D(a) → R be a real sesquilinear form. The
quotient defined by

R[a](u) := a[u, u]
‖u‖L2(Ω)

(2.2.18)

is called the Rayleigh quotient of a.

We adapt the general min-max (or more precisely max-min) principle to the case
of the Robin Laplacian.

Theorem 2.2.13. Let A : H → H be a self-adjoint operator which is semi-bounded
from below and associated to the form a : D(a)×D(a)→ R. Then, its nth eigenvalue
λn(A) can be characterised by

λn(A) = sup
N⊂D(a)

codimN=n−1

inf
u∈N
u6=0

R[a](u). (2.2.19)

In particular, the first eigenvalue of the real Robin Laplacian λ1(α) reads

λ1(α) = inf
u∈H1(Ω)
u6=0

∫
Ω |∇u|2 dx+ α

∫
∂Ω |u|2 dσ∫

Ω |u|2 dx . (2.2.20)

2.3 Dirichlet, Neumann, and Robin Laplacians

Let Ω ⊂ Rd, d ≥ 1, be a bounded domain, that is, a bounded open set with a finite
number of connected components, and (if d ≥ 2) assume that it is a Lipschitz domain,
cf. Definition 2.1.2. We will proceed as follows: firstly, we define a sesquilinear form
on H1(Ω),

aα : H1(Ω)×H1(Ω)→ C, (2.3.1)

for arbitrary α ∈ C. By restricting the form domain D(aα) = H1(Ω) × H1(Ω) to
H1

0 (Ω) × H1
0 (Ω) and by setting the Robin parameter α = 0, we then obtain the

Dirichlet and Neumann Laplacian, respectively. To this end, let α ∈ C and define

aα[u, v] =
∫

Ω
∇u · ∇v dx+ α

∫
∂Ω
uv dσ(x). (2.3.2)
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We will refer to this form as the Robin form (for the parameter α) and we want to
use the abbreviation aα[u] := aα[u, u] for u = v; the form is then called quadratic.
If a = aα is the Robin form in Definition 2.2.12, then the Rayleigh quotient (see
Definition 2.2.12) reads

R[aα](u) =
∫

Ω |∇u|2 dx+ α
∫
∂Ω |u|2 dσ∫

Ω |u|2 dx . (2.3.3)

Recall that Ω is a Lipschitz domain. We use the framework of [12, Section 2] in order
to clarify what we mean by ∆u and ∂νu of u ∈ H1(Ω).

Definition 2.3.1. Let Ω ⊂ Rd be any bounded Lipschitz domain and let u ∈ H1(Ω).

(1) We say that ∆u ∈ L2(Ω) if there exists f ∈ L2(Ω) such that
∫

Ω
∇u · ∇v dx =

∫
Ω
fv dx (2.3.4)

for all v ∈ H1
0 (Ω).

(2) Let additionally ∆u ∈ L2(Ω). We say that ∂u
∂ν

= ∂νu ∈ L2(∂Ω) if there exists
g ∈ L2(∂Ω) such that

∫
Ω

(
∇u · ∇v − (∆u)v

)
dx =

∫
∂Ω
gv dσ (2.3.5)

for all v ∈ H1(Ω). We then write ∂νu = g.

Before proceeding, we want to make a few remarks: firstly, the usual normal
derivative ∂νu is generally not defined for all u ∈ H1(Ω) since Ω is assumed to be a
Lipschitz domain. To this end, we explicitly remark on the Definition 2.3.1(2); we
say that the (outer) normal derivative ∂νu exists, if it exists, in the weak sense and
we will not speak of the “distributional sense” here owing to the low regularity of the
boundary. Secondly, both (1) and (2) of Definition 2.3.1 are chosen in a way such
that Green’s formula

∫
Ω

(
∇u · ∇v − (∆u)v

)
dx =

∫
∂Ω

∂u

∂ν
v dσ (2.3.6)

holds for all v ∈ H1(Ω) whenever u ∈ H1(Ω), ∆u ∈ L2(Ω), and ∂νu ∈ L2(Ω). By
the trace theorem (cf. Theorem 2.1.14 for s = 1) the Robin form aα is coercive,
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that is, there exists c > 0 such that Re aα[u] ≥ c‖u‖2
H1(Ω) for all u ∈ D(aα) = H1(Ω).

Consequently, aα is closed, which then implies that there exists an associated operator
Ã(α) on L2(Ω) (see almost every textbook about operator theory, e.g. [102]). By
associated we mean that D(Ã(α)) ⊂ D(aα) and aα[u, v] = (Ã(α)u, v)L2(Ω) for every
u ∈ D(Ã(α)) and every v ∈ D(aα). The domain of the associated operator reads

D(Ã(α)) =
{
u ∈ D(aα) : ∃h ∈ L2(Ω) such that

aα[u, v] = (Ã(α)h, v) ∀ v ∈ D(aα)
}
,

(2.3.7)

cf. [14, Section 1].

Definition 2.3.2. We define the following operator denoted by −∆α
Ω on L2(Ω) by

D(−∆α
Ω) =

{
u ∈ H1(Ω) : ∆u ∈ L2(Ω)

and ∂u

∂ν
∈ L2(∂Ω) with ∂u

∂ν
+ αu = 0

}
,

(2.3.8a)

−∆α
Ωu = −∆u. (2.3.8b)

Here,

∆u =
d∑
i=1

∂2u

∂x2
i

(2.3.9)

is the positive distributional Laplacian and ∂u
∂ν

is to be understood in the sense of
Definition 2.3.1(2). The associated eigenvalue problem reads

−∆u = λu in Ω, (2.3.10a)
∂u

∂ν
+ αu = 0 on ∂Ω; (2.3.10b)

the Robin boundary condition is also referred to as third type.

We want to mention that the mathematical community does not agree on whether
this boundary condition should in fact be called Robin condition since it was never
used by the namesake Victor Gustave Robin, see Third Boundary Condition - Was it
Robin’s? [66]. We wish to prove that the operator A(α) = −∆α

Ω from Definition 2.3.2
is indeed the one associated to aα.
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Lemma 2.3.3. The operator on L2(Ω) associated to aα is defined by

D(−∆α
Ω) =

{
u ∈ H1(Ω) : ∆u ∈ L2(Ω)

and ∂u

∂ν
∈ L2(∂Ω) with ∂u

∂ν
+ αu = 0

}
,

(2.3.11a)

−∆α
Ωu = −∆u. (2.3.11b)

For the proof, we follow the steps of [14, Proof of Theorem 2.3].

Proof. Let Ã(α) be the operator on L2(Ω) associated to aα. Step 1: We show that
D(Ã(α)) ⊂ D(A(α)) and A(α)u = Ã(α) on D(Ã(α)). Fix any u ∈ D(Ã(α)), let
Ã(α)u = f ∈ L2(Ω), and let v ∈ H1(Ω) be arbitrary. Then we have

∫
Ω
∇u · ∇v dx+ α

∫
∂Ω
uv dσ(x) = aα[u, v] (2.3.12a)

= (Ã(α)u, v) (2.3.12b)

=
∫

Ω
fv dx (2.3.12c)

for all v ∈ H1(Ω) by definition of the relation aα ∼ Ã(α). We may choose any
v ∈ C∞c (Ω) in (2.3.12) to obtain f = −∆u. Using this, we immediately obtain

∫
Ω
∇u · ∇v dx+

∫
Ω

(∆u)v dx =
∫
∂Ω

(−αu)v dσ(x) (2.3.13)

for all v ∈ H1(Ω), that is, ∂νu exists in the weak sense of Definition 2.3.1(2), and it
satisfies ∂νu = −αu, or equivalently,

∂u

∂ν
+ αu = 0. (2.3.14)

Step 2 (converse of Step 1): we prove that D(A(α)) ⊂ D(Ã(α)) and Ã(α)u = A(α)
on D(A(α)). To do this, let u ∈ D(A(α)) as in Definition 2.3.2; we observe that

∫
Ω
∇u · ∇v dx+

∫
Ω

(∆u)v dx =
∫
∂Ω

∂u

∂ν
v dσ(x) =

∫
∂Ω

(−αu)v dσ(x) (2.3.15)
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for all v ∈ H1(Ω). Rearrangement yields

aα[u, v] = −
∫

Ω
(∆u)v dx (2.3.16)

for all v ∈ H1(Ω) and that is, by definition 2.3.7, exactly u ∈ D(Ã(α)), as well as

Ã(α)u = −∆u = −∆α
Ωu = A(α)u. (2.3.17)

For more details on this topic we refer to [12, Section 2] or [33, Section 1]. We use
the Robin form to define the Dirichlet and Neumann Laplacians, respectively.

Definition 2.3.4. If α = 0, then we write −∆N
Ω in place of −∆0

Ω for the operator
on L2(Ω) associated with the Dirichlet form a0 on its form domain D(a0) = H1(Ω).
The operator −∆N

Ω is called the Neumann Laplacian. The associated eigenvalue
problem reads

−∆u = λu in Ω, (2.3.18a)
∂u

∂ν
= 0 on ∂Ω; (2.3.18b)

the Neumann boundary condition is also referred to as second type.

In fact, the following definition is usually presented as a theorem where (in a similar
manner is for the Robin Laplacian) it is proved that the given domain coincides
with the one of the operator that is associated to the particular form. However, the
Dirichlet Laplacian is well known and we omit the proof (cf. [17, Section 3]).

Definition 2.3.5. If a0 is restricted to H1
0 (Ω)×H1

0 (Ω), then we call the associated
operator the Dirichlet Laplacian, which we denote by −∆D

Ω ; that is,

D(−∆D
Ω ) =

{
u ∈ H1

0 (Ω) : ∆u ∈ L2(Ω)
}
, (2.3.19a)

−∆D
Ωu = −∆u. (2.3.19b)
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The associated eigenvalue problem reads

−∆u = λu in Ω, (2.3.20a)

u = 0 on ∂Ω; (2.3.20b)

the Dirichlet boundary condition is also referred to as first type.

The following theorem is well known and we omit its proof. The properties listed
mostly follow from the fact that the resolvent Rz(A) (for A = −∆D

Ω or A = −∆N
Ω )

is a compact operator and thus, the spectral theorem, namely Theorem 2.2.11, is
applicable.

Theorem 2.3.6. Let Ω ⊂ Rd, d ≥ 1, be a bounded Lipschitz domain. The operators
−∆D

Ω and −∆N
Ω

(1) both have compact resolvent,

(2) are m-accretive, self-adjoint and semi-bounded from below in L2(Ω).

(3) Their spectra

σ(−∆D
Ω ) ⊂ (0,∞) and σ(−∆N

Ω ) ⊂ [0,∞) (2.3.21)

are discrete, consisting only of eigenvalues of finite multiplicity, whose algebraic
and geometric multiplicities always coincide, and with +∞ as their only point
of accumulation.

Remark 2.3.7. Due to the fact that

D(a0) = H1
0 (Ω) ⊂ H1

0 (Ω′) (2.3.22)

(extend any function H1
0 (Ω) to Ω′ by zero) for any Ω ⊂ Ω′, it is immediate by the

max-min principle, see Theorem 2.2.13, that the Dirichlet eigenvalues satisfy the so
called domain monotonicity

λDk (Ω′) ≤ λDk (Ω) (2.3.23)

for all k ∈ N.
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2.3.1 Robin eigencurves in one dimension

To gain insight into what to expect in general, we want to consider the one dimensional
case of the Laplace eigenvalue problem with real Robin boundary conditions. Since
there are only two boundary points {±1} of Ω = (−1, 1), the Robin problem reads

−u′′ = λu on (−1, 1), (2.3.24a)

−u′(−1) + αu(−1) = 0, (2.3.24b)

+u′(+1) + αu(+1) = 0. (2.3.24c)

Note that we always consider the outer normal derivative. It is well known that the
general solution of (2.3.24) is given by

u(x) = C+ cos(
√
λx) + C− sin(

√
λx) (2.3.25)

with coefficients C−, C+ ∈ R. The first derivatives with respect to x

u′(x) = −C+
√
λ sin(

√
λx) + C−

√
λ cos(

√
λx) (2.3.26)

at the boundary points x = ∓1 read

−u′(−1) = −C+
√
λ sin(

√
λ)− C−

√
λ cos(

√
λ) (2.3.27a)

and u′(+1) = −C+
√
λ sin(

√
λ) + C−

√
λ cos(

√
λ), (2.3.27b)

respectively. Then the boundary conditions (2.3.24b) and (2.3.24c) are equivalent to

sin(
√
λ)
[
− C+

√
λ− αC−

]
+ cos(

√
λ)
[
− C−

√
λ+ αC+

]
= 0, (2.3.28a)

sin(
√
λ)
[
− C+

√
λ+ αC−

]
+ cos(

√
λ)
[
C−
√
λ+ αC+

]
= 0, (2.3.28b)

which, by addition and subtraction, respectively, implies

−C+
√
λ sin(

√
λ) + αC+ cos(

√
λ) = 0, (2.3.29a)

−αC− sin(
√
λ)− C−

√
λ cos(

√
λ) = 0. (2.3.29b)
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We arrive at

α =
√
λ tan

√
λ for λ 6= π2

4 (2j + 1)2 , (2.3.30a)

or α = −
√
λ cot

√
λ for λ 6= π2j2 (2.3.30b)

for any j ∈ N0 (for j = 0, that is, λ→ 0+, equation (2.3.30b) can be continuously
extended to α = −1). We consider the following two cases.

(1) If λ = π2j2 for some j ∈ N0, or in other words sin(
√
λ) = 0 and | cos(

√
λ)| = 1,

then the equations (2.3.28) lead to

−C−
√
λ+ αC+ = 0 = C−

√
λ+ αC+, (2.3.31)

which implies C− = 0 due to the outer equations and consequently C+ = 0 for
α 6= 0 due to the inner equation. We arrive at u ≡ 0, a contradiction.

(2) If λ = (2j + 1)2π2/4 for some j ∈ N0, or in other words cos(
√
λ) = 0 and

| sin(
√
λ)| = 1, then a similar argument yields u ≡ 0, as well.

This approach allows us to make some observations based on the latter calculations
and on Figure 2.3.1.

(1) For each value of λ, which is not an eigenvalue of the corresponding Dirichlet
problem, that is,

λ 6= λDj = j2π2

4 (2.3.32)

for j ∈ N, there are exactly two corresponding values of α.

(2) The eigenvalues are (strictly) monotonically increasing in α for all α ∈ R.

(3) There are no crossings of the positive eigenvalue curves.

(4) If α < 0 is sufficiently large, then there are exactly two (mostly referred to as
λ1(α) ≤ λ2(α)) negative eigenvalues, which seem to diverge to −∞ as α→ −∞
and these are the only branches which are unbounded in λ; for more details
and generalisations, see Section 2.4.1 for real parameters and Section 4.1.2
for the complex case. Every other eigenvalue converges to some point of the
Dirichlet spectrum as α→ −∞.
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Figure 2.3.1: Plot of the eigenvalues λ of the Robin problem (2.3.28) as functions of α ∈ R:
the blue graph originates from (2.3.30a), the orange one from (2.3.30b); the horizontal grid
lines represent the corresponding exception points (2.3.30).

(5) If α = 0, then the eigenvalues λ(0) are given by (πj)2/4 for j ∈ N0, that is,
exactly the eigenvalues of the Neumann Laplacian on (−1, 1).

(6) If α > 0, then every eigenvalue is positive and each of them converges to some
point of the Dirichlet spectrum.

2.4 Eigenvalue asymptotics

For a fixed domain Ω ⊂ Rd, d ≥ 2, we consider the Robin eigenvalue problem for a
real parameter α ∈ R and ask the question as to what happens to the eigenvalues in
σ(−∆α

Ω) = {λk(α) : k ∈ N} as α tends to ±∞ in R.

2.4.1 Large negative parameter

We want to ignore the term large for a brief moment and assume that Ω ⊂ Rd is a
bounded Lipschitz domain. If we use the constant test function u ≡ 1 (note that this
cannot be an eigenfunction for α < 0) in the variational max-min characterisation of
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the first eigenvalue (2.2.20), we immediately obtain

λ1(α) < α
|∂Ω|
|Ω| (2.4.1)

for any α < 0, that is, a first trivial estimate from above; in particular, we have
λ1(α) < 0 for any α < 0. Assume that Ω ⊂ {x1 > 0} is contained in the upper
half-space. D. Daners and J. B. Kennedy [45, Lemma 2.1 and Remark 2.2] used the
test function u(x) = e−αx to obtain an estimate from above which originated in the
article [63] by T. Giorgi and R. Smits from 2007: for any bounded Lipschitz domain
Ω ⊂ Rd, d ≥ 2, we have

λ1(α) < −α2 (2.4.2)

for any α ≤ 0. We wish to point out that there is a fundamental difference
when considering the nth eigencurve λn(α) (counted accordingly to multiplicity)
or an analytic branch: in general the nth eigenvalue may be overtaken by the
(n + 1)st eigenvalue as α → −∞. These crossing points permute the order of the
eigenvalues λ1(α) ≤ λ2(α) ≤ . . . as exemplified in Figure 2.4.2; however, when
considering the (possibly) non-smooth eigencurves, we have the following theorem
[36, Proposition 4.8].

Theorem 2.4.1. Let Ω ⊂ Rd, d ≥ 2, be a bounded Lipschitz domain. Then for any
fixed n ≥ 1, we have λn(α)→ −∞ as α→ −∞.

Smooth domains

So, to obtain an upper estimate on the first eigenvalue with a test function argument
is straight forward, however, proving the corresponding lower estimate is profoundly
harder: the first approach to get an asymptotic expansion of the principal eigenvalue
as α→ −∞ is by A. A. Lacey, J. R. Ockendon, and J. Sabina from 1998 [85]. They
proved that λ1(α) behaves asymptotically like −α2 if the domain Ω is somewhat
similar to a ball in Rd; to be more precise, let Ω ∈ Rd be a bounded Ck domain for
k ≥ 2 such that there exists a Ck diffeomorphism h0 (that is, h−1

0 exists and is also
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of class Ck),

h0 : Sd−1 → ∂Ω, (2.4.3)

where Sd−1 ⊂ Rd is the (d−1)-sphere in d dimensions. In particular, this assumption
implies that the annular region

Ωε := {x ∈ Ω : dist(x, ∂Ω) < ε} (2.4.4)

can be mapped onto the spherical annulus

Dε := B1(0) \B1−ε(0) (2.4.5)

for some small ε > 0: for example, let y = rw be the representation of y ∈ Dε in
spherical coordinates, that is,

1− ε < r < 1 and ω ∈ Sd−1, (2.4.6)

and let ν(x) be the outer unit normal to Ω, as well as h0 as in 2.4.3. Then we use
the transformation x = h(y) given by

h(y) = h0(ω) + (r − 1)ν(h0(ω)). (2.4.7)

The transformation is depicted in Figure 2.4.1.
For more details on the following theorem and its proof, we refer to [85, Theo-

rem 2.2].

Theorem 2.4.2. Let Ω ∈ Rd, d ≥ 2, be equivalent to a sphere as described above.
Then, we have λ1(α) = −α2 + o (α2) as α→ −∞.

Note that the proof of Theorem 2.4.2 can be used verbatim if Ω consists of finitely
many connected components, each of which being equivalent to a sphere. Several
years later in 2004, the result was generalised by J. Lou and M. Zhu. Not only did
they state Theorem 2.4.2 for generic domains of class C1 [90, Theorem 1.1], but they
allowed α to depend on the position of the boundary, that is, if we replace α by
αb(x) for some continuous function b : ∂Ω→ R and denote by b+ the non-negative

66



2.4 Eigenvalue asymptotics

Figure 2.4.1: We use the Ck diffeomorphism h0 to map the annular region Ωε onto the
spherical annulus Dε.

part of b, we have

λ1(α) = −α2
(

max
x∈∂Ω

b+(x)
)2

+ o
(
α2
)

(2.4.8)

as α→ −∞ [90, Remark 1.1]. The interest in this topic did not slacken and so the
main result of Lou and Zhu was further generalised by D. Daners and J. B. Kennedy
in 2010 to be applicable for higher eigenvalues [45, Theorem 1.1]:

Theorem 2.4.3. Let Ω ∈ Rd, d ≥ 2, be a bounded domain of class C1. Then for
every n ∈ N we have

λn(α) = −α2 + o
(
α2
)

(2.4.9)

as α→ −∞.

Remark 2.4.4. Note that in this theorem we do not follow what we will later on
call analytic eigencurves: the nth eigenvalue might be overtaken by the λn−1 at some
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distinct threshold α = α0, that is

λn(α0) = λn−1(α0). (2.4.10)

These possible crossing points imply a permutation of the elements of σ(−∆α
Ω) =

{λk(α) : k ∈ N} as depicted in Figure 2.4.2.

Figure 2.4.2: Crossing points of the eigencurves, where λi, µi, and λi(α) denote the Dirichlet,
Neumann, and Robin eigenvalues, respectively.

Besides, there are results for the second term asymptotics of the principal eigenvalue
for α→ −∞: P. Freitas and D. Krejčiřík proved the following version for balls and
spherical shells (annular regions), see [59, Theorem 3].

Theorem 2.4.5. Given positive numbers 0 < r < R we denote by

Dr,R := {x ∈ Rd : r < |x| < R} (2.4.11)
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2.4 Eigenvalue asymptotics

the spherical annulus of width R− r and centre 0. Then we have the asymptotics

λ1[Dr,R](α) = −α2 + d− 1
R

α + o(α), (2.4.12a)

λ1[BR](α) = −α2 + d− 1
R

α + o(α) (2.4.12b)

as α→ −∞.

This result for the second term asymptotics was further generalised by P. Exner,
A. Minakov, and L. Parnovski in 2014 [54, Theorem 1.3] and again in 2015 by K.
Pankrashkin and N. Popoff [100, Theorem 1]. Here, we want to give the latter result
for C3 and C4 domains, respectively. We denote by κmax = κmax(Ω) the maximum
mean curvature of the boundary ∂Ω of a C3 domain. Since the sign of the mean
curvature depends on the choice of the normal vector to ∂Ω as well as on the sign
convention for the Weingarten tensor, we specify that here a convex domain does
always have positive mean curvature.

Theorem 2.4.6. Let Ω ⊂ Rd, d ≥ 2, be of class C3, then for any fixed k ∈ N we
have

λk(α) = −α2 + (d− 1)κmaxα +O
(
α2/3

)
(2.4.13)

as α→ −∞. If, additionally, the domain is of class C4, then the remainder estimate
can be replaced by O

(
α1/2

)
.

This result may be used to consider conjectures regarding a reverse Faber-Krahn
inequality; M. Bareket conjectured that for any α < 0 the ball maximises the first
eigenvalue of the Robin problem among all domains of the same volume [19, Section 1].
Considering a counterexample from [59], let Br be a ball of radius r > 0 and Dr,R

be as defined in Theorem 2.4.5 of the same volume as Br, we have

κmax(Br) = 1
r
>

1
R

= κmax(Dr,R) (2.4.14)

and hence

λ1[Br](α) < λ1[Dr,R](α) (2.4.15)

for sufficiently large α < 0 by Theorem 2.4.6.
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Lipschitz domains

In this section we want to discuss the effect of the domain having corners on the first
term of the asymptotics as α → −∞. For the half-angle 0 < δ ≤ π we define the
planar sector

Uδ :=
{

(r, θ) = z ∈ R2 : |θ| < δ
}
, (2.4.16)

where the functions u(x, y) = u(r, θ) shall be denoted by the common notation in
Cartesian coordinates for r > 0 and θ ∈ [0, 2π). The two major cases, namely sectors
of acute and obtuse angles, are depicted in Figure 2.4.3. If Ω = Uδ, M. Levitin and

Figure 2.4.3: Planar sectors Uδ for two different choices of δ. Note that, unlike depicted
here, Uδ is not truncated but an infinite sector in R2.

L. Parnovski showed in [88] by construction of the corresponding eigenfunction that
the principal eigenvalue satisfies

λ1[Uδ](α) = − α2

sin2 δ
if 0 < δ <

π

2 , (2.4.17a)

λ1[Uδ](α) = −α2 if π2 ≤ δ < π. (2.4.17b)

Their main result, however, is the following asymptotical expression where the
leading coefficient equals the principal eigenvalue of a model cone Ky which is C∞-
diffeomorphic to the “most acute” corner(s) of the domain Ω, cf. Figure 2.4.4. To
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this end, Ω is assumed to be piecewise smooth and to satisfy a uniform interior cone
condition and for reasons of clarity we refer to [88, Theorem 3.2] for more details on
the assumptions on Ω and for the proof.

Theorem 2.4.7. Assume that the domain Ω ⊂ Rd, d ≥ 2,

(1) is piecewise smooth,

(2) satisfies the interior cone condition,

(3) satisfies the existence of a C∞-diffeomorphism fy for each y ∈ ∂Ω as described
above and depicted in Figure 2.4.4.

Then we have

λ1(α) = −CΩα
2 + o(α2) (2.4.18)

as α→ −∞, where

CΩ := sup
y∈∂Ω

Cy = sup
y∈∂Ω
−λ1[Ky](−1) > 0. (2.4.19)

Figure 2.4.4: C∞-diffeomorphism fy from the model cone Ky onto the corresponding corner
of Ω.

If y is a corner point but the boundary is somewhat bent inside such that there
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exists a hyperplane Hy 3 y and a radius r > 0 with

Br(y) ∩Hy ⊂ Ω, (2.4.20)

cf. Figure 2.4.4, then we have Cy = 1. The same holds if Ω is smooth at y [88,
Theorem 3.5]. Furthermore, the same authors generalise this result for a variable
Robin parameter: if α is replaced by αw(y) for a boundary weight

w : ∂Ω→ R with sup
y∈∂Ω

w(y) > 0, (2.4.21)

then the coefficient CΩ of Theorem 2.4.7 is replaced by

CΩ := sup
y∈∂Ω
w(y)>0

w(y)2Cy, (2.4.22)

see [88, Remark 3.3].

Figure 2.4.5: A domain Ω where ∂Ω is bent inwardly at a corner point y ∈ ∂Ω such that
the green segment of the hyperplane Hy is fully contained in Ω.

2.4.2 Large positive parameter

From the variational characterisation, see Theorem 2.2.13, it is clear that each λn( · )
is an increasing function of α ∈ R (in fact, the eigenvalues are strictly increasing,
cf. [106, Theorem 3.2]): if we assume that λn(α) is an algebraically simple (that is,
the dimension of the associated spectral projection) eigenvalue for some α and if we
denote the corresponding eigenfunction by ψn, then the derivative of the eigenvalue
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with respect to α is given by

d
dαλn(α) =

∫
∂Ω ψ

2
n dσ∫

Ω ψ
2
n dx ≥ 0. (2.4.23)

This expression for the derivative is due to [7, Lemma 11] for α > 0, however, the
proof works verbatim for all α ∈ R. We will generalise this result in Section 3.2.2.
Furthermore, by [57, Theorem 1] and the following arguments we can follow that
there exists an infinite number of crossing points of the Robin eigenvalues with the
α axis, cf. Figure 2.4.2. Indeed, let Ω ⊂ Rd, d ≥ 2, be a bounded Lipschitz domain.
It is known that, as long as the trace operator H1(Ω) → L2(∂Ω) is compact, the
spectrum of the Steklov problem

−∆u = 0 in Ω, (2.4.24a)
∂u

∂ν
− τu = 0 on ∂Ω (2.4.24b)

is purely discrete and consists only of eigenvalues {τj : j ∈ N} [13, Section 2]. Each
τj corresponds to a zero eigenvalue of the Robin problem for the parameter α = −τj
which proves the assertion. This together with the monotonicity (2.4.23) implies
that each of these eigenvalues must remain negative for α < −τj and positive for
α > −τj. Back to the case of positive α, if we assume that Ω is of class C2, then
each Robin eigenvalue converges to some point of the Dirichlet spectrum, that is,
the spectrum of the Dirichlet operator σ(−∆D

Ω ), as α→ +∞, cf. [57, Theorem 2].

Theorem 2.4.8. Let Ω ⊂ Rd, d ≥ 2, be a bounded domain of class C2. Then the
Robin eigenvalues λk(α), k = 1, 2, . . . , satisfy

0 ≤ λDk − λk(α) ≤
C
(
λDk
)2

√
α

(2.4.25)

for all α > 0. The constant C does not depend on k.

In particular, we have λk(α) → λDk as α → +∞ which justifies the regime of
Figure 2.4.2 for α > 0.
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In this chapter we will formally introduce the Robin Laplacian, denoted by −∆α
Ω,

on bounded domains Ω ⊂ Rd and establish regularity and basis properties of the
eigenvalues (as functions of the complex parameter α) and eigenfunctions, respectively.
Moreover, we will prove a localisation theorem for the numerical range in order
to give estimates on the whole Robin spectrum and hence on the eigenvalues of
−∆α

Ω. The Dirichlet-to-Neumann operator will be introduced whose duality to the
Robin eigenvalue problem will be exploited to (1) prove statements on the points
of accumulation of the Robin eigenvalues and (2) to give explicit calculations in
Chapter 4.
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3.1 The Laplace operator and its boundary value
problems

The Robin Laplacian, as it will turn out, acts as a cross between both the Dirichlet and
the Neumann Laplacian. The following lemma is key to establishing its properties.

Lemma 3.1.1. Let Ω ⊂ Rd, d ≥ 1, be a bounded Lipschitz domain and α ∈ C. The
Robin form aα given by (2.3.2) is bounded in H1(Ω) and sectorial of semi-angle θ
for any 0 < θ < π/2.

Proof. Fix any α 6= 0 (if α = 0, the proof is trivial since the form a0 is associated to
the self-adjoint Neumann Laplacian). Due to the trace theorem 2.1.14 for s = 3/4
and the Sobolev embedding theorem by Rellich 2.1.10 we have that the map given
by the composition

H1(Ω) b
↪→ H3/4(Ω) tr−→ H1/4(∂Ω)↪→L2(∂Ω) (3.1.1)

is compact and thus bounded. This implies

|aα[u]| =
∣∣∣∣∫

Ω
|∇u|2 dx+ α

∫
∂Ω
|u|2 dσ(x)

∣∣∣∣ (3.1.2a)

≤ ‖∇u‖2
L2(Ω) + |α|‖u‖2

L2(∂Ω) (3.1.2b)

≤ Cα‖u‖2
H1(Ω) (3.1.2c)

for all u ∈ H1(Ω), that is, the Robin form aα is well defined and bounded on
H1(Ω)×H1(Ω). Sectoriality then follows immediately from the definition of aα.

The following theorem now follows from Kato’s first representation theorem, see
Theorem 3.2.2, [74, Corollary VI.2.3], plus the fact that the form domain H1(Ω) is
densely and compactly embedded in L2(Ω) since Ω is a bounded Lipschitz domain:
see Theorem 2.1.10 for the compactness and for the density statement we use the
fact that the space of test functions D(Ω) is dense in L2(Ω). The following theorem
is due to [30, Theorem 3.3].

Theorem 3.1.2. Let Ω ⊂ Rd, d ≥ 1, be a bounded Lipschitz domain and α ∈ C.
The operator −∆α

Ω is

(1) semi-bounded from below in L2(Ω),
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(2) locally uniformly (in α ∈ C) m-sectorial of semi-angle θ for any 0 < θ < π/2,

(3) densely defined on H1(Ω), and

(4) its spectrum σ(−∆α
Ω) is discrete, consisting of eigenvalues of finite algebraic

multiplicity, with their only point of accumulation being ∞ ∈ C;

(5) it is self-adjoint if and only if α ∈ R and

(6) for any given α ∈ R, its eigenfunctions may be chosen to form an orthonormal
basis of L2(Ω).

We also briefly state for the record a result (see [30, Theorem 3.4]) on the generation
properties of holomorphic semigroups. We will not need this here, so we do not go
into any details.

Theorem 3.1.3. Let Ω ⊂ Rd, d ≥ 1, be a bounded Lipschitz domain and α ∈ C.
The operator ∆α

Ω generates a holomorphic C0-semigroup of operators of semi-angle θ,
for any 0 < θ < π/2.

For more on holomorphic semigroups, including their definition, see [11, Chapter 3].

Proof. This follows immediately from the resolvent estimate contained in the m-
sectoriality assertion of Theorem 3.1.2, combined with Proposition 3.7.4 and Theo-
rem 3.7.11 of [11].

Since we are interested in the spectral properties of the Robin Laplacian and for
future reference, we state explicitly the weak form of the eigenvalue equation: λ ∈ C
is an eigenvalue of the operator −∆α

Ω, that is, of the boundary value problem

−∆u = λu in Ω, (3.1.3a)
∂u

∂ν
+ αu = 0 on ∂Ω, (3.1.3b)

with eigenfunction ψ, if and only if

aα[ψ, v] =
∫

Ω
∇ψ · ∇v dx+

∫
∂Ω
αψ v dσ(x) = λ

∫
Ω
ψ v dx (3.1.4)

for all v ∈ H1(Ω). Finally, we briefly summarise what happens if α is allowed to be a
function α : ∂Ω→ C instead of a constant. Even though this generalisation will not
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be deepened for domains in this work, it will still play a greater role as we consider
quantum graphs in Section 5; there we will be considering compact quantum graphs,
that is, α is a function from the set of vertices into C.

Remark 3.1.4. If α ∈ L∞(∂Ω,C), then the sesquilinear form aα may be defined in
the same way (see (2.3.2)) and maintains its properties (in particular Lemma 3.1.1)
due to the continued validity of the trace theorem and hence the estimate∣∣∣∣∫

∂Ω
α|u|2 dσ(x)

∣∣∣∣ ≤ ‖α‖L∞(∂Ω)‖u‖2
L2(∂Ω) (3.1.5a)

≤ ε‖∇u‖2
L2(Ω) + C(ε, ‖α‖L∞(∂Ω))‖u‖2

L2(Ω). (3.1.5b)

Consequently, Theorem 3.1.2 remains valid with the obvious modifications that −∆α
Ω

is self-adjoint if and only if α(x) ∈ R for all x ∈ ∂Ω. The local uniform sectoriality of
Theorem 3.1.2 depends only on ‖α‖L∞(∂Ω): indeed, for given semi-angle θ the vertex
in the sectoriality estimate can be chosen in dependence only on the estimate given
in (3.1.5). Theorem 3.1.3 then holds verbatim.

3.2 Holomorphic dependence of the Robin
eigenvalues and eigenfunctions on the
parameter

In this section we wish to study the dependence of the eigenvalues λ(α) and eigenpro-
jections Qλ of the Robin Laplacian −∆α

Ω on the parameter α ∈ C. This segment splits
into two parts: in Section 3.2.1 we apply Kato’s theory of holomorphic families of
operators to show that there is a family of eigencurves (as functions of α ∈ C), each of
them analytic apart from potential crossing points, which describe the totality of the
spectrum for any fixed α. Moreover, we prove that the eigenprojections as operators
on L2(Ω) likewise depend analytically on α, again except at the crossing points.
However, here caution is recommended: the normalised eigenfunctions themselves
do not change analytically: see Theorem 3.2.14. Then, in Section 3.2.2, we obtain a
formula for the derivative of an eigencurve with respect to α, at any point where the
corresponding eigenprojection is one-dimensional, that is, where the eigenvalue is
simple.
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3.2.1 A holomorphic family of operators

As mentioned, we will start by applying Kato’s theory, see [74, Chapter VII], to study
the behaviour of the eigenvalues and eigenprojections of the Robin Laplacians −∆α

Ω

in dependence on the parameter α ∈ C. As before, Ω ⊂ Rd, d ≥ 1, is a fixed bounded
Lipschitz domain. We first recall some more basic theory. To this end, we use the
framework of Section 2.2 to give important theorems about the relation between
linear operators and their associated forms and we start with the first representation
theorem, cf. [74, Theorem VI.2.1].

Definition 3.2.1. We call a linear submanifold D′ ⊂ D(a) a core of a sesquilinear
form a : D(a)×D(a)→ C, if the restriction

a′ : D′ ×D′ ⊂ D(a)×D(a)→ C (3.2.1)

of a has the closure a′ = a.

Theorem 3.2.2. Let a : D(a)×D(a) ⊂ H → C be a densely defined, closed, sectorial
sesquilinear form on H. Then there exists an m-sectorial operator A : D(A) ⊂ H →
H such that

(1) D(A) ⊂ D(a) and

a[u, v] = (Au, v)H (3.2.2)

for all u ∈ D(A) and v ∈ D(a);

(2) if u ∈ D(a), w ∈ H and

a[u, v] = (w, v)H (3.2.3)

holds for every v belonging to a core of a, then u ∈ D(A) and Au = w. The
m-sectorial operator A is uniquely determined by the condition (1).

The following two corollaries are due to [74, Corollary VI.2.2 and VI.2.3].

Corollary 3.2.3. If we define the form a′ : D(A)→ H for the operator A : D(A)→
H by

a′[u, v] := (Au, v)H , (3.2.4)
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then we have a′ = a.

Corollary 3.2.4. The numerical range W (A) is a dense subset of W (a).

Furthermore, we need to specify what we will be meaning by a holomorphic families
of operators or forms. The following definitions are due to [74, Section VII.2.1].

Definition 3.2.5. Let X, Y be Banach spaces. A family of closed operators A(α) :
X → Y for α ∈ D0 ⊆ C is called a holomorphic family of type (A) if

(1) the domain D(A(α)) = D(A) is independent of α,

(2) A(α)u is holomorphic for α ∈ D0 for every fixed u ∈ D(A).

Definition 3.2.6. Let aα be a family of sesquilinear forms on D(a) for α ∈ D0 ⊆ C.
This family is said to be holomorphic of type (a) if

(1) each aα is sectorial and closed with D(aα) = d(a) independent of α and dense
in H,

(2) aα[u, u] is holomorphic for α ∈ D0 for each fixed u ∈ d(a).

Remark 3.2.7. (1) If A(α) is holomorphic of type (A), it is actually holomorphic,
i.e. representable as a convergent power series.

(2) By using the polarisation formula, (2) from Definition 3.2.6 implies that aα[u, v]
is holomorphic in α for each fixed pair u, v ∈ D(a).

Theorem 3.2.8. Let aα be a holomorphic family of forms of type (a). For each α
let A(α) ∼ aα be the associated m-sectorial operator. Then A(α) form a holomorphic
family of operators and A(α) are locally uniformly sectorial.

Definition 3.2.9. We call the family A(α) a holomorphic family of type (B) if A(α)
is holomorphic, m-sectorial, and A(α) ∼ aα, where aα is a holomorphic family of
forms of type (a).

To emphasise the dependence on α and for ease of notation, from now on we will
write

A(α) := −∆α
Ω. (3.2.5)

For an isolated eigenvalue λ of a linear operator A on a Hilbert space H, its
eigenprojection Qλ is defined as follows (see [74, Section III.6.5]).
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Definition 3.2.10. Take a closed curve Γλ ⊂ ρ(A) enclosing λ but no other point
of σ(A). Then,

Qλ = − 1
2πi

∮
Γλ

(A− zI)−1 dz (3.2.6)

is a projection onto the algebraic eigenspace of λ in H. Besides, Qλ is independent
of the choice of Γλ.

We arrive at the following results; see [30, Theorem 4.1].

Theorem 3.2.11. Let Ω ⊂ Rd, d ≥ 1, be a bounded, Lipschitz domain and let A(α),
α ∈ C, be given by (3.2.5).

(1) The operator family A(α), α ∈ C, is self-adjoint holomorphic, i.e., A(α)∗ =
A(α).

(2) Each eigenvalue λk(α) can be extended to a meromorphic function with at most
algebraic singularities at non-real crossing points of eigenvalues. There are only
finitely many eigenvalue curves meeting at locally finitely many crossing points.
The same is true of the corresponding eigenprojections Qλ and eigennilpotents
(A(α)− λ(α))Qλ(α).

Before proving the latter theorem we follow [30, Section 4] in order to give two
remarks on crossing points of the eigencurves and on the analytic continuation
property of the spectrum for a fixed α0 ∈ C.

Remark 3.2.12. Suppose that two different eigenvalue curves λ1(α) and λ2(α) meet
at λ for α = α0, i.e.

λ = λ1(α0) = λ2(α0). (3.2.7)

Then, the corresponding separating curves Γλ1(α), Γλ2(α) in (3.2.6) do not exist in
the limit α → α0. However, the holomorphic continuation of the total projection
Q̂λ(α) := Qλ1(α) + Qλ2(α) exists in α0 and is equal to the eigenprojection for λ of
A(α0). In addition, let m1 and m2 denote the respective algebraic multiplicities
(that is, the dimensions of the associated spectral projections) and m = m1 +m2 the
multiplicity at α0. By [74, Sections VII.4.5, II.2], the weighted eigenvalue mean

λ̂(α) := 1
m

(m1λ1(α) +m2λ2(α)) (3.2.8)
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Chapter 3 Spectral analysis of the Robin Laplacian

is holomorphic in α0. A corresponding statement holds in the case of more than two
curves meeting at λ, but in general the eigennilpotents may be discontinuous in α0.

Remark 3.2.13. Theorem 3.2.11 proves in particular parts (1) and (2) of The-
orem 1.2.1. Let us briefly explain in particular how we obtain the fact that the
analytic continuation E(α) of the eigenvalues

E(α0) := {λk(α0) : k ∈ N} (3.2.9)

for given α0 ∈ C exhaust the spectrum σ(−∆α
Ω) for any α ∈ C. Indeed, suppose there

were some α ∈ C and an eigenvalue λ(α) which did not lie on any of the eigencurves
λk(α), that is, λ(α) /∈ E(α). Then, said eigenvalue λ(α) could itself be extended to
an analytic eigenvalue curve on C by Theorem 3.2.11(2), and in particular we would
have an eigenvalue λ(α0) not included among the the λk(α0), that is, λ(α0) /∈ E(α0),
a contradiction to the assumption that (λk(α0))k∈N (counting multiplicities) is the
totality of the spectrum at α0.

Proof of Theorem 3.2.11. (1) By [74, Theorem VII.4.2], A(α), α ∈ C, is a holomor-
phic family of operators, and by [74, Remark VII.4.7], it is a self-adjoint holomorphic
family. (2) Then it follows from [74, Theorem VII.1.8] that the eigenvalues and
eigenprojections depend (locally) holomorphically on α, and hence so do the eigen-
nilpotents. Since the operator family is self-adjoint holomorphic, there are no
singularities at real crossing points of eigenvalues, see [74, Section VII.3.1]. The
finiteness of the number of eigenvalue curves meeting at a crossing point, and of
the local number of crossing points, follows from A(α) having compact resolvent
and from the holomorphy of the eigenvalue curves. More precisely, since the total
projection (see Remark 3.2.12) is locally holomorphic, [74, Problem III.3.21] implies
that the dimension of its range is locally constant and thus finite. This also implies
that if there were infinitely many crossing points in a compact set, then finitely many
eigenvalue curves meet at infinitely many points which have an accumulation point;
now the identity theorem implies that the eigenvalue curves have to be identical.
It remains to prove that for any fixed α0 ∈ C each eigenvalue λk(α0) can be

extended to a function which is holomorphic on C except at the crossing points. We
fix such a λk(α0) and take an arbitrary compact subset K ⊂ C that is the closure of
an open, connected set. It suffices to prove that if K contains α0 in its interior, then
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3.2 Holomorphic dependence of the Robin eigenvalues and eigenfunctions

there is a bounded holomorphic (except for crossing points) eigenvalue curve λk(α),
α ∈ K, which coincides with λk(α0) at α = α0.

To this end we consider the resolvent of A(α) for α ∈ K. We set

ρKΩ :=
⋂
α∈K

ρ(−∆α
Ω). (3.2.10)

Note that ρKΩ 6= ∅ since the operator family A(α), α ∈ K, is uniformly sectorial, see
Theorem 3.1.2 (2). Fix z ∈ ρKΩ ; then the resolvent family

Rz(α) = (A(α)− zI)−1, α ∈ K, (3.2.11)

is not only compact but bounded-holomorphic [74, Theorem VII.1.3]. Thus, the
point spectrum

σp(Rz(α)) = σ(Rz(α)) \ {0} (3.2.12)

consists of eigenvalues of finite algebraic multiplicity, and with 0 as their only point
of accumulation. Denote the eigenvalues of Rz(α0) by µj(α0), where the ordering is
chosen in such a way that

λj(α0) = 1
µj(α0) + z (3.2.13)

for all j. Now the eigenvalue µk(α0) may be extended to a holomorphic eigenvalue
curve, first to a neighbourhood of α0. This curve µk(α) cannot take on the value 0
for any α ∈ K, since otherwise Rz(α) would not be invertible; hence its modulus has
a non-zero minimum on any compact set. Together with the bounded-holomorphy
of A(α), α ∈ K, we obtain that µk(α) can be extended holomorphically to all of K
except at only finitely many crossing points with other eigenvalue curves. Via the
identification

λk(α) = 1
µk(α) + z (3.2.14)

we obtain that λk(α) is well defined and holomorphic on all of K except at the
crossing points. Since α0 ∈ C and k were arbitrary, this completes the proof.
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Chapter 3 Spectral analysis of the Robin Laplacian

Even though Theorem 3.2.11 establishes that the eigenprojections can be continued
holomorphically (away from possible crossing points), the eigenfunctions lose this
property when normalised to have L2(Ω)-norm one (see [30, Theorem 4.4]):

Theorem 3.2.14. Let H be a separable Hilbert space and let D ⊂ C be an open,
connected set. Let A(α) be an operator family on H such that its eigenfunctions u(α)
depend holomorphically on α ∈ D. Then the norm ‖u(α)‖H is non-constant on D or
u does not depend on α ∈ D.

Proof. Let α ∈ D, assume the family of normalised eigenfunctions u(α) of A(α) to
be holomorphic and fix an arbitrary α0 ∈ D. Then, the function f : D → C defined
by f(α) = (u(α0), u(α)) satisfies

|f(α)| ≤ ‖u(α0)‖H‖u(α)‖H = 1, (3.2.15)

that is, f is contractive on D. Now, since f(α0) = 1, the maximum principle yields
that |f | ≡ 1 is constant and by f(α0) = 1 we conclude f ≡ 1. Furthermore, for any
α ∈ D we have

‖u(α)− u(α0)‖2
H = (u(α)− u(α0), u(α)− u(α0)) (3.2.16a)

= ‖u(α)‖2
H + ‖u(α0)‖2

H − 2Re (u(α0), u(α)) = 0. (3.2.16b)

Consequently, u(α) = u(α0) and the family of eigenfunctions is independent of α, a
contradiction.

The question whether the eigenfunctions of −∆α
(−a,a) are orthogonal in L2((−a, a))

will be clarified in Section 3.3.

Remark 3.2.15. In the case of such domains, where one can describe the eigenvalues
more or less explicitly (that is, as solutions of transcendental equations), namely
intervals, balls and (hyper-) rectangles, it is possible to show that the eigennilpotents
are always zero; see Remark 4.2.1 for the case of hyperrectangles and Remark 4.3.4
for the case of the ball. It thus seems reasonable to expect that the eigennilpotents
are zero on any Lipschitz domain.

Remark 3.2.16. However, it is easy to see that there can be nontrivial eigennilpo-
tents if α is allowed to be a function on the boundary. Take the simplest possible
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3.2 Holomorphic dependence of the Robin eigenvalues and eigenfunctions

case of an interval Ω = (−a, a) and suppose α : {−a, a} → C is a function. Then for
some values of α the eigennilpotents are non-zero: indeed, following the approach of
[83, Section 3], let t ∈ R and consider purely imaginary αt(x) of the form

αt(x) =

−it for x = −a,

+it for x = +a.
(3.2.17)

Then the spectrum of the Robin Laplacian A(αt) = −∆αt
(−a,a) reads

σ (A(αt)) =
{
t2
}
∪
{
k2
j

}
j∈N

, (3.2.18)

where kj := πj
2a , j ≥ 1. That is, the spectrum consists of the eigenvalues of the

Neumann Laplacian independently of t, plus the eigenvalue t2. This eigenvalue
(interpreted as the case j = 0) corresponds to the eigenfunction

u0(x) = −e−itx, (3.2.19)

while the rest of the eigenfunctions for k2
j read

uj(x) = cos(kj(x+ a))− it
kj

sin(kj(x+ a)). (3.2.20)

Note that each uj, j ≥ 1, is, like its eigenvalue, independent of t. Fix j ∈ N. The
eigenvalue curves t2 and k2

j obviously cross at t = kj, meaning that the algebraic
multiplicity at this point should be two. However, the eigenfunctions u0 and uj

converge to the same function as t→ kj: indeed, we check that for

g(x) = i
2txe−itx − e2ita

4t2 eitx (3.2.21)
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when t = kj the corresponding eigennilpotent satisfies

(
A(αt)− t2

)
g(x) = − d2

dx2 g(x)− t2g(x) (3.2.22a)

= − d
dx

(
i

2te
−itx + 1

2xe−itx − e2itai
4t eitx

)

− t2
(

i
2txe−itx − e2ita

4t2 eitx
) (3.2.22b)

= −
(

1
2e−itx + 1

2e−itx − it
2 xe−itx + e2ita

4 e−itx
)

− it
2 xe−itx + e2ita

4 eitx
(3.2.22c)

= −e−itx = u0(x) (3.2.22d)

as well as

(
A(αt)− t2

)2
g =

(
− d2

dx2 − t
2
)
u0(x) = −t2e−itx + t2e−itx = 0. (3.2.23)

Consequently, we obtained

(
A(αt)− t2

)
g = u0 6= 0 and

(
A(αt)− t2

)2
g = 0, (3.2.24)

that is, g is a root vector and the geometric and algebraic eigenspaces do not coincide
at t = kj.

However, the focus of this work is on the eigenvalue asymptotics and it would take
us too far afield to explore the question of the eigennilpotents here. So we leave it as
an open problem to investigate them in the case that α is independent of x ∈ ∂Ω.

Open Problem 3.2.17. Given any bounded Lipschitz domain Ω ⊂ Rd, suppose
that λ = λ(α) is a repeated eigenvalue of A(α) = −∆α

Ω for some α ∈ C. Is the
eigennilpotent (A(α)− λ(α))Qλ(α) necessarily equal to zero?

3.2.2 The derivative with respect to α

Let λ(α) be a simple eigenvalue with corresponding eigenfunction ψ. We wish to
give a formula for the derivative λ′(α) along its corresponding eigencurve, which by
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3.2 Holomorphic dependence of the Robin eigenvalues and eigenfunctions

Theorem 3.2.11 always exists. Especially but not only in the special case α = 0 a
corresponding formula (see [36, eq. (4.12)]),

d
dαλ(α) =

∫
∂Ω ψ

2 dσ(x)∫
Ω ψ

2 dx , (3.2.25)

is reasonably well known; for more details see [36, Section 4.3.2] and the references
therein. The proof of the following theorem (which is due to [30, Theorem 4.8]) is
given after the proof of Lemma 3.2.20.

Theorem 3.2.18. Let Ω ⊂ Rd, d ≥ 1, be a bounded, Lipschitz domain, let α0 ∈ C,
and let λ = λ(α) be any holomorphic family of eigenvalues. Suppose that there exists
a δ > 0 such that for all α in the neighbourhood Bδ(α0) of α0, λ(α) is a simple
eigenvalue of −∆α

Ω, with eigenfunction ψ(α) which is chosen to be holomorphic in α.
Then in a neighbourhood of α the function

α 7→
∫
∂Ω ψ(α)2 dσ(x)∫

Ω ψ(α)2 dx (3.2.26)

is meromorphic with at most removable singularities. Its holomorphic continuation
is equal to λ′(α) at every point in Bδ(α0).

This justifies writing simply

λ′(α) =
∫
∂Ω ψ(α)2 dσ(x)∫

Ω ψ(α)2 dx (3.2.27)

for all α ∈ Bδ(α0), and in particular Theorem 3.2.18 implies Theorem 1.2.1(3).
We leave it as an open problem to determine whether the mapping (3.2.26) can

actually have (removable) singularities, or whether the denominator never vanishes.

Open Problem 3.2.19. Let λ(α) be any algebraically simple eigenvalue of −∆α
Ω for

some Ω ⊂ Rd bounded and Lipschitz and α ∈ C, and denote by ψ(α) its eigenfunction,
scaled arbitrarily. Does it follow that

∫
Ω
ψ(α)2 dx 6= 0 ? (3.2.28)

We first prove that under the assumptions of the theorem the derivative of the
eigenfunction ψ with respect to α, which we denote by ψ′(α) (and which exists as
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an element of L2(Ω) by another application of Theorem 3.2.11) is actually in H1(Ω).
Notationally, we will take z ∈ C to be small enough that α + z ∈ Bδ(α0), that is,
|α + z − α0| < δ.

Lemma 3.2.20. Under the assumptions of Theorem 3.2.18, we have ψ′(α) ∈ H1(Ω)
for all α ∈ Bδ(α0).

Proof. We will show that

lim sup
z→0

‖∇ψ(α + z)−∇ψ(α)‖2
2

|z|2
<∞. (3.2.29)

Since we already know that ∇ψ′(α) exists in the distributional sense (as ψ′(α) ∈
L2(Ω)), it will then follow from (3.2.29) that actually ∇ψ′(α) ∈ L2(Ω).

To prove (3.2.29), we fix z ∈ C sufficiently small (as explained above) and use the
weak form of the equation for both λ(α+ z) and λ(α) to obtain (with (·, ·) the inner
product on L2(Ω))

‖∇(ψ(α + z)− ψ(α))‖2
2 (3.2.30a)

= Re
∫

Ω
(∇ψ(α + z)−∇ψ(α)) · (∇ψ(α + z)−∇ψ(α)) dx (3.2.30b)

= Re
[
λ(α + z)

(
ψ(α + z), ψ(α + z)− ψ(α)

)]
− Re

[
(α + z)

∫
∂Ω
ψ(α + z)(ψ(α + z)− ψ(α)) dσ(x)

]
− Re

[
λ(α)

(
ψ(α), ψ(α + z)− ψ(α)

)]
+ Re

[
α
∫
∂Ω
ψ(α)(ψ(α + z)− ψ(α)) dσ(x)

]
(3.2.30c)

= Re
(

(λ(α + z)ψ(α + z)− λ(α)ψ(α)), ψ(α + z)− ψ(α)
)

− Re
∫
∂Ω

(
(α + z)ψ(α + z)

− αψ(α))(ψ(α + z)− ψ(α))
)

dσ(x).

(3.2.30d)
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We next estimate the integrand in the boundary integral (3.2.30d) as follows:

− Re
[(

(α + z)ψ(α + z)− αψ(α)
)
(ψ(α + z)− ψ(α))

]
(3.2.31a)

= −Re (α + z)|ψ(α + z)− ψ(α)|2

+ Re
[
zψ(α)(ψ(α + z)− ψ(α))

] (3.2.31b)

≤ −Re (α + z)|ψ(α + z)− ψ(α)|2

+ 1
2 |ψ(α + z)− ψ(α)|2 + |z|

2

2 |ψ(α)|2.
(3.2.31c)

Applying the trace inequality in the form
∫
∂Ω
|u|2 dσ(x) ≤ ε‖∇u‖2 + Cε‖u‖2 (3.2.32)

for all u ∈ H1(Ω), where Cε > 0 depends only on ε > 0, to each of the two integrals
∣∣∣∣−Re (α + z) + 1

2

∣∣∣∣ ∫
∂Ω
|ψ(α + z)− ψ(α)|2 dσ(x) (3.2.33)

and

|z|2

2

∫
∂Ω
|ψ(α)|2 dx, (3.2.34)

and choosing ε > 0 small enough that

η := ε
[
−Re (α + z) + 1

2

]
< 1 (3.2.35)

leads us to

‖∇(ψ(α + z)− ψ(α))‖2
2

≤ Re
(
(λ(α + z)ψ(α + z)− λ(α)ψ(α)), ψ(α + z)− ψ(α)

)
+ η‖∇(ψ(α + z)− ψ(α))‖2

2

+ Cε

(
−Re (α + z) + 1

2

)
‖ψ(α + z)− ψ(α)‖2

2

+ |z|2
(
ε

2‖∇ψ(α)‖2
2 + Cε

2 ‖ψ(α)‖2
2

)
.

(3.2.36)

Now ε can be chosen independently of α ∈ Bδ(α0); in particular, with such a choice,
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the coefficient of |z|2 depends only on α, that is, we may write

Cα := ε

2‖∇ψ(α)‖2
2 + Cε

2 ‖ψ(α)‖2
2 (3.2.37)

for this coefficient. We now divide by |z|2 and pass to the limit as z → 0 to obtain

lim sup
z→0

‖∇(ψ(α + z)− ψ(α))‖2

|z|2
(3.2.38a)

≤ 1
1− ηRe (λ′(α)ψ(α) + λ(α)ψ′(α), ψ′(α))

+ 1
1− ηCε

(
−Reα + 1

2

)
‖ψ′(α)‖2 + Cα.

(3.2.38b)

Since we already know that ψ′(α) ∈ L2(Ω), the right-hand side of the above inequality
is finite. This establishes (3.2.29) and hence completes the proof of the lemma.

Proof of Theorem 3.2.18 and hence of Theorem 1.2.1(3). We choose ψ(α) ∈ H1(Ω)
as a test function in the weak form of the eigenvalue equation for λ(α):

∫
Ω

(∇ψ(α))2 dx+ α
∫
∂Ω
ψ(α)2 dσ(x)− λ(α)

∫
Ω
ψ(α)2 dx = 0. (3.2.39)

The left-hand side clearly depends holomorphically on α. Moreover, since ψ′(α) ∈
H1(Ω) by Lemma 3.2.20, we may calculate its derivative as

2
∫

Ω
∇ψ′(α) · ∇ψ(α) dx+

∫
∂Ω
ψ(α)2 dσ(x)

+ 2α
∫
∂Ω
ψ′(α)ψ(α) dσ(x)− λ′(α)

∫
Ω
ψ(α)2 dx

− 2λ(α)
∫

Ω
ψ′(α)ψ(α) dx = 0.

(3.2.40)

But the weak form (3.1.4) of the eigenvalue equation for λ(α) also implies that

2
∫

Ω
∇ψ′(α) · ∇ψ(α) dx+ 2α

∫
∂Ω
ψ′(α)ψ(α) dσ(x)

= 2λ(α)
∫

Ω
ψ′(α)ψ(α) dx,

(3.2.41)

whence
λ′(α)

∫
Ω
ψ(α)2 dx =

∫
∂Ω
ψ(α)2 dσ(x). (3.2.42)
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This yields (3.2.27) in the case that
∫

Ω ψ(α)2 dx 6= 0. But since we know that λ′(α)
is holomorphic in Bδ(α0), as are the mappings

α 7→
∫

Ω
ψ(α)2 dx, α 7→

∫
∂Ω
ψ(α)2 dσ(x), (3.2.43)

if the left-hand side of (3.2.42) vanishes at some point, then the right-hand side must
vanish as well, and to the same order. It follows that any singularities of the mapping
(3.2.26) in Bδ(α0) are removable. This completes the proof of the theorem.

3.3 Basis properties of the eigenfunctions

Given the analytic dependence of the eigenfunctions {uk(α)}k≥1 of the Robin Lapla-
cian for α ∈ C, cf. Theorem 3.2.11, it is a natural question to ask whether they also
still have reasonable basis properties. The best case, that is, the eigenfunctions can be
chosen to form an orthonormal basis of L2(Ω), is well known for real α due to the self-
adjointness of the corresponding operator, cf. [36, Section 4.2]. We will show that the
set of eigenfunctions lacks this property as soon as α is no longer real. This negative
result of Theorem 3.3.1 seems devastating, however, there are other (weaker) basis
concepts (such as Riesz, Bari, and Abel bases, see Definitions 3.3.3, 3.3.4, and 3.3.5)
to investigate. In this section we will explore this question and, in particular, prove
parts (4) and (5) of Theorem 1.2.1.
We start with the negative result (5), that the eigenfunctions do not generally

form an orthonormal basis (see [30, Theorem 5.1]).

Theorem 3.3.1. Let Ω ∈ Rd, d ≥ 1, be a bounded Lipschitz domain and α ∈ C.
Then the eigenfunctions ek(α), k ∈ N, of −∆α

Ω can be chosen to form an orthonormal
basis of L2(Ω) if and only if α ∈ R.

Proof. For ease of notation, in this section we will write A(α) := −∆α
Ω. For α ∈ R

the claim follows from the self-adjointness of A(α).
Let α ∈ C \ R and assume that the eigenfunctions {ek(α)}∞k=1 of A(α) do form

an orthonormal basis of L2(Ω). To distinguish the notation from the complex
conjugation z of z ∈ C and

M∗ = {z ∈ C : z ∈M} (3.3.1)
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of M ⊂ C, let cl(M) be the closure of M . Let

u ∈ D (A(α)∗) = D(A(α)) ⊂ L2(Ω) (3.3.2)

have L2(Ω)-norm one. Then there is a unique representation of u,

u =
∞∑
k=1

(u, ek(α)) ek(α), 1 = ‖u‖2
2 =

∞∑
k=1
|(u, ek(α))|2, (3.3.3)

which we use to calculate

(u,A(α)∗u) = (A(α)∗u, u) (3.3.4a)

=
∞∑
k=1

(u, ek(α)) ((−∆α
Ω)∗u, ek(α)) (3.3.4b)

=
∞∑
k=1

(ek(α), u) (u, λk(α)ek(α)) (3.3.4c)

=
∞∑
k=1
|(u, ek(α))|2 λk(α). (3.3.4d)

By definition of the numerical range (2.2.10) and the identity

cl(W (aα)) = cl(W (A(α))), (3.3.5)

cf. Lemma 2.2.7, we obtain

cl(W (A(α)∗)) = cl(W (a∗α)) = cl(W (aα))∗ = cl(W (A(α)))∗. (3.3.6)

Note that due to the normalisation of u we have
∞∑
k=1
|(u, ek(α))|2 = 1 (3.3.7)

and (3.3.4d) can be interpreted as an infinite convex combination of the complex
conjugated elements λk(α) ∈ σ(A(α)). The convex hull of the whole spectrum will
be denoted by

conv (σ(A(α))) = conv {λk(α) : k ∈ N} . (3.3.8)
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Due to (3.3.4) and (3.3.6) we obtain

cl(W (A(α)))∗ = cl(W (A(α)∗)) = cl (conv (σ(A(α)))∗) (3.3.9)

and by complex conjugation of both sides we arrive at

cl(W (aα)) = cl(W (A(α))) = cl (conv(σ(A(α)))) . (3.3.10)

This equation leads us to a contradiction as follows: since A(α) is sectorial and its
resolvent is compact, for any sufficiently large r > 0 the truncated convex hull

Pr(α) := conv {λk(α) : k ∈ N, |λk(α)| ≤ r} ⊂ C (3.3.11)

is a polygon which contains at most finitely many eigenvalues ofA(α), see Figure 3.3.1.

Re z

Im z

r R

Pr(α)

PR(α)

λ1

λ3

λ2

λ6

λ5

λ4

λ7

λ8

λ9

Figure 3.3.1: The truncated convex hull Pr(α) containing all eigenvalues λj = λj(α) in
Br(0). Here we see two convex hulls for different radii r < R. Note that there are at most
finitely many eigenvalues in each Pr(α), that is, this set is polygon-shaped.

We show that Pr(α) is contained in the upper half-plane, or equivalently Im λk(α) >

93



Chapter 3 Spectral analysis of the Robin Laplacian

0 for all k ∈ N: due to

σ(A(α)) ⊂ W (aα) ⊂ {z ∈ C : Im z ≥ 0} (3.3.12)

it is clear that Im λk(α) ≥ 0 for all k ∈ N. Now assume that there exists an
eigenvalue λ ∈ Pr(α)∩R, that is, we find a corresponding (normalised) eigenfunction
u ∈ D(A(α)) such that

λ = (A(α)u, u) =
∫

Ω
|∇u|2dx+ α

∫
∂Ω
|u|2dσ(x) ∈ R. (3.3.13)

This holds if and only if u|∂Ω = 0, that is, u is an eigenfunction of the Dirichlet
Laplacian AD := −∆D

Ω . Furthermore, u ∈ D(A(α)) yields

0 = ∂νu+ αu = ∂νu (3.3.14)

on ∂Ω and u is additionally a Neumann eigenfunction, a contradiction. In other
words, we have shown that

cl (conv(σ(A(α)))) ∩ R = ∅. (3.3.15)

Since the principal eigenvalue λ1 = min σ(AD) can be represented by the varia-
tional max-min characterisation, there exists a normalised minimising function (the
associated eigenfunction) u1 ∈ H1

0 (Ω) such that

λ1 =
∫

Ω
|∇u1|2 dx. (3.3.16)

Recall that the domains of the Dirichlet Laplacian and the Robin form satisfy

D(AD) ⊂ H1
0 (Ω) ⊂ H1(Ω) = D(aα), (3.3.17)

see Section 2.3. Consequently, λ1 ∈ cl(W (aα)), a contradiction to (3.3.10) and
(3.3.15). Hence the eigenfunctions {ek(α)}∞k=1 of A(α) do not form an orthonormal
basis of L2(Ω).

One may show by explicit calculation that, even on the interval Ω = (−a, a),
consistent with Theorem 3.3.1, for given α ∈ C \ R the eigenfunctions of the Robin
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Laplacian −∆α
Ω belonging to different eigenspaces are not in general orthogonal to

each other: this statement is studied in Section 4.1.4, more precisely as the statement
of Lemma 4.1.7. Hence, for our positive result, we necessarily need to introduce
“weaker” notions of basis. Here we will consider three: Bari, Riesz and Abel bases.
The definitions of the first two of these, namely Definitions 3.3.3 and 3.3.4, are taken
from [72, 3.6.16-19]. For what follows we assume (H, ‖·‖H) to be a separable complex
Hilbert space. We start by defining what we mean by a basis of H.

Definition 3.3.2. A set B = {ek}∞k=1 ⊂ H is called a basis (or Schauder basis) of
H if for each h ∈ H there exists a unique, convergent series representation

h =
∞∑
k=1

hkek (3.3.18)

with coefficients hk = hk(h) ∈ C.

We denote by `2(C) the space of square summable sequences, namely

`2(C) :=

(xk)k ⊂ C : ‖(xk)k‖`2(C) :=
( ∞∑
k=1
|xk|2

)1/2

<∞

 . (3.3.19)

Definition 3.3.3. Let B = {ek}∞k=1 be a basis of H. Then B is called a Riesz basis
if there are constants 0 < m ≤M such that

m‖(hk)k‖`2 ≤ ‖h‖H ≤M‖(hk)k‖`2 (3.3.20)

holds for any h = ∑∞
k=1 hkek ∈ H.

Definition 3.3.4. Let B′ = {e′k}∞k=1 be an orthonormal basis of H. A set B =
{ek}∞k=1 ⊂ H is called a Bari basis of H if B is quadratically near B′, that is,

∞∑
k=1
‖ek − e′k‖2

H <∞. (3.3.21)

An Abel basis, as first introduced in [89] and also defined for example in [115,
Section 1.2.13], is always defined with respect to the eigenvectors and generalised
eigenvectors (for short, generalised eigenvectors) of a densely defined sectorial operator
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A. The intuitive idea is that the formal series expansion

∞∑
k=1

hkek (3.3.22)

of an element h ∈ H in the generalised eigenvectors ek of A may not converge. The
goal is to force it into convergence by multiplying each coefficient hk by a weight
e−λγkt (where λk is the eigenvalue corresponding to ek), such that

∞∑
k=1

hke−λ
γ
k
tek (3.3.23)

converges for each fixed t > 0, and this series then converges to h as t → 0, then
{ek}∞k=1 is an Abel basis of order γ ≥ 0. (Note that an Abel basis will not generally
be a basis in the sense of Definition 3.3.2, since the - series expansion is explicitly
not required to converge.) The general idea is based on the Abel summability of
(divergent) series by Abelian means; we refer to [67, Section 4.7] for more details. To
give the definition of Abel bases we copy the one from [115].

Definition 3.3.5. Suppose A : H ⊃ D(A) → H to be a densely defined operator
with purely discrete spectrum, such that all but finitely many of its eigenvalues lie
in the sector

T+
θ = {z ∈ C : | arg z| < θ} (3.3.24)

for some θ ∈ (0, π). Then we say that the generalised eigenvectors of A form an
Abel basis of H of order γ ≥ 0 if γθ < π/2 and if there exists an enumeration of the
eigenvalues {λk}∞k=1 (with {ek}∞k=1 the corresponding enumeration of the generalised
eigenvectors) such that for this fixed enumeration, for each h ∈ H, there exists a
sequence of coefficients hk ∈ C for which the series

h(t) :=
∞∑
k=1

hke−λ
γ
k
tek (3.3.25)

is convergent for all t > 0, and h(t)→ h in H as t→ 0+.
For the eigenvalues λ which do not lie in T+

θ , the weight e−λγkt in (3.3.25) is to
be interpreted as 1, while if some λ is a repeated eigenvalue and {ej, . . . , ej+`} is a
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basis of its eigenspace, then the corresponding terms in the series (3.3.25) are to be
interpreted in terms of the eigenprojection, that is,

j+∑̀
k=j

hke−λ
γtek (3.3.26)

is to be replaced by

1
2πi

∮
Γλ

e−λγt(A− zI)−1h dz, (3.3.27)

where Γλ is any closed path in C separating λ from the rest of the spectrum.

The definition can be extended to allow γθ < π in place of γθ < π/2; we refer,
again, to [115, Section 1.2.13].

Remark 3.3.6. One may derive from the definitions that an orthonormal basis is
always a Bari basis, a Bari basis is always a Riesz basis, and a Riesz basis, if it
consists of the generalised eigenfunctions of a suitable operator, is always an Abel
basis of order zero. The latter, in turn, is an Abel basis of any positive order γ > 0,
provided only that the sectoriality estimate γθ < π still holds.

Our goal is to show that the eigenfunctions of A(α) form (at least) an Abel basis
of L2(Ω), for any α ∈ C. This is based on a theorem of M. S. Agranovich (the main
theorem of [4]), which we recall here for ease of reference.

Theorem 3.3.7. Suppose H and V are separable complex Hilbert spaces such that
V ↪→ H is compact, and suppose that a : V × V → C is a bounded, coercive
sesquilinear form. Denote by

b := Re a = a+ a

2 and c := iIm a = a− b (3.3.28)

the real and imaginary forms, respectively, which add to give a. Denote by A and B
the operators on H associated with a and b, respectively. Suppose that

(i) there exist 0 ≤ q ≤ 1 and m > 0 such that

|c[u, u]| ≤ m‖B1/2u‖2q
H ‖u‖

2−2q
H (3.3.29)

for all u ∈ V , and
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(ii) there exists p > 0 such that the sequence of eigenvalues λk(B), k ≥ 1, of B
(bounded from below by assumption), repeated according to their multiplicities,
has the asymptotic behaviour

lim sup
k→∞

λk(B)
kp

> 0. (3.3.30)

Then A has discrete spectrum, the invariant subspaces of A are all finite dimensional,
and the corresponding eigenfunctions and generalised eigenfunctions of A constitute

(1) a Bari basis of H if p(1− q) > 1, or

(2) a Riesz basis of H if p(1− q) = 1, or

(3) an Abel basis of H, of order 1/p+ (q− 1) + δ for any (sufficiently small) δ > 0,
if p(1− q) < 1.

Theorem 3.3.7 was already used for a similar purpose in [71, Section 5] to prove a
corresponding one-dimensional result; more precisely, for the Laplacian on a compact
metric graph, equipped with complex δ conditions at one or more of the vertices
(corresponding to a complex Robin condition), one can apply (2) to obtain a Riesz
basis. With this background, we can now state our main positive result, which
corresponds to Theorem 1.2.1(4) and hence to [30, Theorem 5.7].

Theorem 3.3.8. Let Ω ⊂ Rd, d ≥ 1, be a bounded Lipschitz domain and α ∈ C.

(1) If d = 1, then there is a Riesz basis of L2(Ω) consisting of the eigenfunctions
and generalised eigenfunctions of −∆α

Ω;

(2) If d ≥ 2, then there is an Abel basis of L2(Ω) of order (d− 1)/2 + δ for any
(sufficiently small) δ > 0, consisting of the eigenfunctions and generalised
eigenfunctions of −∆α

Ω.

The conditions on d in the latter theorem are by no means sharp; we leave the
following question as an open problem.

Open Problem 3.3.9. Do the eigenfunctions of −∆α
Ω still form a Riesz basis of

L2(Ω) if Ω ⊂ Rd is a bounded Lipschitz domain in dimension d ≥ 2, as they do when
d = 1 and when Ω is rectangular (see Remark 4.2.1)?
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Furthermore, here we repeat the open problem from Remark 3.2.15 to establish
that the eigennilpotents are always trivial, that is, that all generalised eigenfunctions
are in fact eigenfunctions.

Proof of Theorem 3.3.8. We only need to apply Theorem 3.3.7, as was done in [71,
Section 5] for d = 1, and in fact we refer there for the proof in this case.

So suppose that d ≥ 2. Obviously, we choose H = L2(Ω) and V = H1(Ω). Given
α ∈ C, which will be fixed throughout, we suppose ω ≥ 0 to be such that

aα[u, u] + ω(u, u) (3.3.31)

is coercive H1(Ω), which we may always do by the trace inequality, cf. Lemma 3.1.1.
We then choose

a[u, v] := aα[u, v] + ω(u, v), (3.3.32)

so that

b = aReα + ω( · , · )2, (3.3.33a)

A = −∆α
Ω + ωI, (3.3.33b)

B = −∆Reα
Ω + ωI, (3.3.33c)

and to apply Theorem 3.3.7 we only need to check the conditions (i) and (ii). We will
show that (i) holds for q = 1/2 and (ii) holds for any p ≤ d/2, leading in particular
to the order of the Abel basis claimed in the theorem.

For (i), first note that for any operator B satisfying the assumptions of the theorem,
we have that

(
B1/2u,B1/2u

)
= (Bu, u) = b[u, u] (3.3.34)

for all u ∈ D(B), and in particular ‖B1/2u‖2 = b[u, u]1/2 for all u ∈ V = H1(Ω). Up
to a possibly different constant, the form b defines an equivalent norm on H1(Ω).
Thus, in our setting, and with q = 1/2, (3.3.29) reduces to the question of the
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existence of a constant m > 0 such that, for all u ∈ H1(Ω)

|Imα|
∫

Ω
|u|2 dσ ≤ m‖u‖H1(Ω)‖u‖2. (3.3.35)

But this, in turn, follows immediately from the trace inequality (3.4.52) of Re-
mark 3.4.11, to be proved below.

For (ii), note that the constant ω has no effect on the asymptotic behaviour of the
eigenvalues; thus we may assume without loss of generality that ω = 0. We are thus
interested in the smallest p > 0 such that

lim sup
k→∞

λk(−∆Reα
Ω )

kp
> 0. (3.3.36)

However, the Weyl asymptotics for the Robin Laplacian (see, for example, [7,
Section 1] or [73, 112]), valid for any Reα, namely

λk(−∆Reα
Ω ) = Cd(|Ω|)kd/2 + o(kd/2) (3.3.37)

as k →∞ for a constant Cd(|Ω|) > 0, leads us to p ≤ d/2.

3.4 On the numerical range

Since −∆α
Ω ceases to be self-adjoint for α ∈ C \ R, techniques commonly used to

obtain estimates for localising the spectrum fail. The idea is to localise the numerical
range W (aα) of the Robin form which (since it contains the whole spectrum of our
operator) particularly provides estimates for the eigenvalues. In particular, we obtain
estimates on Reλ for complex (and as a special case for real) α for both Lipschitz
domains and those having C2 boundary. Even though both cases are based on
trace-type inequalities, cf. Lemma 3.4.7, we obtain somewhat different results, and
require a different method of proof: the reason why we use C2 boundary to describe
the smooth case (compared with the non-smooth Lipschitz boundary) are curvature
estimates used to obtain constants for the eigenvalue inequalities of Lemma 3.4.7. In
the case of general Lipschitz domains the function describing the distance from the
boundary ∂Ω does no longer enjoy the same regularity properties and a different,
local argument is needed.
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As mentioned before, this section is devoted to give bounds on the numerical range of
aα associated with the operator −∆α

Ω on a general Lipschitz domain Ω ⊂ Rd, which
we recall is given by

W (aα) =
{ ∫

Ω
|∇u|2 dx+

∫
∂Ω
α|u|2 dσ such that

u ∈ H1(Ω) with ‖u‖2 = 1
}
⊂ C.

(3.4.1)

The spectrum satisfies

σ(−∆α
Ω) = σp(−∆α

Ω) ⊂ W (−∆α
Ω) ⊂ W (aα), (3.4.2)

and in addition to giving an independent proof of the sectoriality of the form and
the operator claimed in Section 3.1 (more precisely, Lemma 3.1.1), these bounds will
more importantly provide us with an estimate on the rate at which any eigenvalues
λ(α) can diverge in the regime Reα < 0. Moreover, these bounds allow us to control
the imaginary part of the eigenvalue. In particular, the following theorem contains
Theorem 1.2.3 (see [30, Theorem 6.1]).

Theorem 3.4.1. Suppose Ω ⊂ Rd, d ≥ 2, is a bounded Lipschitz domain. Then
there exist constants C1 ≥ 2 and C2 > 0 depending only on Ω such that for α ∈ C
the set W (aα) is contained in

ΛΩ,α =
{
t+ α · s ∈ C : t ≥ 0, s ∈ [0, C1

√
t+ C2]

}
. (3.4.3)

In particular, we have the estimate

Reλ ≥ −C
2
1

4 |Reα|2 − C2|Reα| (3.4.4)

for all λ ∈ σ(−∆α
Ω). If Ω has C2 boundary, then we may choose C1 = 2.

The regions ΛΩ,α for different values of α ∈ C are depicted in Figure 3.4.1 for
Reα > 0 and Imα > 0 and in Figure 3.4.2 for Reα < 0 and Imα > 0. The
constants C1, C2 > 0 from (3.4.3) heavily depend on the geometry of ∂Ω, and with
our method of proof it should be possible to give an estimate on them, at least in
principle; see Remark 3.4.13 for a discussion of the meaning of C2 in the case of
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smooth domains, where we obtain an expression for C2 related to the curvature of
∂Ω, cf. (3.4.34).
It does not seem clear whether or not we should expect C1 = 2 in Theorem 3.4.1

for domains of class C1, not just C2; cf. Remark 3.4.3.

Figure 3.4.1: The set ΛΩ,α, which contains the numerical range W (aα), for a representative
choice of Reα > 0 and Imα > 0, corresponding to the region between the curve ∂ΛΩ,α and
the real axis. The region is composed of the union of segments of the form {t+ α · s ∈ C :
s ∈ [0, C1

√
t+ C2]}, each of slope Imα/Reα, for different values of t ≥ 0; the dotted lines

show these segments for selected values of t1, . . . , t4 > 0. Their endpoints form a parabolic
section of ∂ΛΩ,α open to the right.

Given the continuing interest in the self-adjoint case and since it is the first time a
bound of the following form valid for all α < 0 and for general C2 domains has been
found, we cover this special case in the following proposition.

Proposition 3.4.2. Let Ω ⊂ Rd, d ≥ 2, be a bounded Lipschitz domain. Then, there
exist constants c1 ≥ 1 and c2 > 0 depending only on Ω such that for any α < 0 and
any corresponding eigenvalue λ ∈ R we have

λ ≥ −c1α
2 + c2α. (3.4.5)

If Ω has C2 boundary, then we may choose c1 = 1.
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Figure 3.4.2: The set ΛΩ,α for Reα < 0 and two different choices of Imα > 0 (whose upper
boundaries correspond to the solid and dashed curves, respectively). As Imα → 0, the
region collapses to the part of the real axis from −C2

1
4 |Reα|2 − C2|Reα| to +∞.

Furthermore, we wish to discuss how they fit in with known results before we turn
to the proofs. To this end, we start with a discussion of the real case for smooth
domains.

Remark 3.4.3. We recall the well known bound

λ1(α) < −|α|2 (3.4.6)

on the principal (smallest) Robin eigenvalue λ1(α) of −∆α
Ω for any bounded Lipschitz

domain Ω ⊂ Rd and α < 0, which may be obtained by a simple variational argument
(we refer to [63, Theorem 2.3] or [36, Proposition 4.12] for external references and
internally to Section 2.4.1). Together with this bound, Proposition 3.4.2 in the case
of a C2 domain gives a new, simpler proof of the asymptotic behaviour

λ1(α) = −|α|2 +O(α) (3.4.7)

as α → −∞. The only other proof of this fact available for C2 – actually C1 –
domains, which is completely different and involves a blow-up argument, is the
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principal result of the article [90] from 2004. All other proofs (which give more terms
in the expansion) require more boundary regularity: indeed, if Ω is C3, then, as
α→ −∞,

λ1(α) = −|α|2 − (d− 1)κ̄max|α|+O(α2/3), (3.4.8)

where κ̄max denotes the maximal mean curvature of ∂Ω, see [36, Section 4.4.2.1] for
a discussion and further references.
It is interesting to note that in the case of smooth Ω, that is, λ1 ∼ −α2, the

constant C2 appearing in Theorem 3.4.1 is likewise related to the curvature of ∂Ω
(see Remark 3.4.13 for more details); the presence of the curvature suggests that the
“smooth” version of Theorem 3.4.1 does not hold under significantly weaker regularity
assumptions than C2. We leave the following question as an open problem.

Open Problem 3.4.4. Determine whether a better bound than the one in Theo-
rem 3.4.1 is possible for C1 domains.

After studying the case of smooth domains in the previous remark, we now consider
a less regular boundary of Ω.

Remark 3.4.5. We recall that for domains Ω with piecewise smooth boundary
and a finite number of “model corners”, the asymptotic behaviour of the principal
eigenvalue reads

λ1(α) = −C|α|2 + o(α2) (3.4.9)

as α→ −∞, for a constant C ≥ 1 depending on the opening angle(s) of the “most
acute” corner(s) of Ω (we refer to [36, pp. 94–95] for details and references); it is
an open problem to show that (3.4.9) also holds on general Lipschitz domains [36,
Open Problem 4.17]. The lower bound of Theorem 3.4.1 in the form of Corollary 1.2.4,
together with (3.4.6), at least implies a two-sided asymptotic bound of this form.

The following remark goes beyond our topic, but for the sake of completeness we
still want to mention it.

Remark 3.4.6. We incidentally note that the bound of Theorem 3.4.1 on the
numerical range of aα and therefore on the spectrum −∆α

Ω implies that, for any
Lipschitz domain Ω ⊂ Rd and any α ∈ C, the operator ∆α

Ω generates a cosine
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function, that is, the corresponding wave equation is well posed (see [11, Section 3.14]
for more details on cosine functions of operators). In fact, it is known that an
operator generates a cosine function if and only if its numerical range and spectrum
are contained in a parabolic region (see [11, Theorems 3.17.4 and 3.17.5] or [10,
Theorem 5.3]). Here, we see that −ΛΩ,α is contained in the parabolic region described
in that theorem for sufficiently large ω > 0. How large ω has to be depends on α, C1

and C2.

The proof of Theorem 3.4.1 is based on the following trace-type inequality.

Lemma 3.4.7. Let Ω ⊂ Rd, d ≥ 2, be a bounded Lipschitz domain. Then there exist
constants C1 ≥ 2 and C2 > 0, both depending only on Ω, such that

∫
∂Ω
|u|2 dσ ≤ C1‖∇u‖2 + C2 (3.4.10)

for all u ∈ H1(Ω) with ‖u‖2 = 1. If Ω has C2 boundary, then we may choose C1 = 2.

The constants C1 and C2 will be the same as the ones appearing in the statements
of Theorems 3.4.1 and 1.2.3. The proofs for the cases of C2 and Lipschitz boundaries
are completely different. For the smooth case, which we treat first, we need a
technical lemma involving the geometry of Ω near its boundary, where we will heavily
rely on the assumption that ∂Ω is C2. We first introduce some notation:

Definition 3.4.8. For a bounded domain Ω ⊂ Rd, we define

(1) the signed distance function to ∂Ω, namely dΩ ∈ C(Rd;R), by

dΩ(x) :=

dist(x, ∂Ω) = infz∈∂Ω |x− z| if x ∈ Ω,

− dist(x, ∂Ω) if x ∈ Rd \ Ω.
(3.4.11)

(2) Given any ε > 0, we also set

Ωε := {x ∈ Rd : |dΩ(x)| < ε} (3.4.12)

to be the (open) “strip” around (or neighbourhood of) ∂Ω of width 2ε, where
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we also write

Ω+
ε := Ωε ∩ Ω = {x ∈ Ω : dΩ(x) < ε},

Ω−ε := Ωε ∩ Ωc
Rd = {x ∈ Ωc

Rd : −dΩ(x) < ε},
(3.4.13)

cf. Figure 3.4.3.

ε

ε

Rd \ Ω

Ω

∂Ω = S0

Ω+
ε

Ω−ε

Sε

S−ε

Figure 3.4.3: Depiction of the neighbourhoods Ωε, Ω−ε , and Ω+
ε for an exemplary section of

∂Ω.

(3) Finally, we define the level surfaces of dΩ in Ωε, viz.

St := {x ∈ Rd : dΩ(x) = t} (3.4.14)

for t ∈ R to be

Ωε =
⋃

t∈(−ε,ε)
St. (3.4.15)

Lemma 3.4.9. Suppose Ω ⊂ Rd is a bounded domain of class C2. Then there exists
ε > 0 such that

(1) dΩ|Ωε ∈ C
2(Ωε);
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(2) for each x ∈ Ωε there exists a unique minimiser zx ∈ ∂Ω such that

dΩ(x) = |x− zx|; (3.4.16)

(3) for each x ∈ Ωε \ ∂Ω,

∇dΩ(x) = x− zx
|x− zx|

(3.4.17)

with zx as in (2). In particular, |∇dΩ(x)| = 1 for all x ∈ Ωε;

(4) for each t ∈ [−ε, ε], St is a compact manifold of class C1; and

(5) for each f ∈ C1(Ωε) the function

t 7→
∫
St
f dσ (3.4.18)

is differentiable at every t ∈ (−ε, ε), and its derivative, given by
∫
St
∂tf + f∆dΩ dσ, (3.4.19)

is in C([−ε, ε]). In particular, for any f ∈ C1(Ω+
ε ) and any ε1 ∈ [0, ε),

∫
Sε1

f dσ −
∫
∂Ω
f dσ =

∫
Ω+
ε1

∂tf + f∆dΩ dx. (3.4.20)

Proof. (1) Since ∂Ω is assumed to be C2, this statement is contained in [62, Appendix,
Lemma 1], see also [18, Lemma 2.4.2]. (2) follows (possibly for a different ε) from [56,
Lemma 4.11] where we need that ∂Ω is of class C1,1. However, a covering argument
using the fact that ∂Ω is compact, that is, we can consider finitely many balls covering
∂Ω, is sufficient to apply said Lemma on each such ball (in the language of [56], (2)
means that reach(∂Ω) > 0). (3) then follows from [56, Theorem 4.8], where we note
that ∇dΩ ∈ C1(Ωε) and |∇dΩ| = 1 in Ωε \ ∂Ω implies that |∇dΩ| = 1 everywhere in
Ωε. (4) follows from (1) using the Implicit Function Theorem and the fact that ∇dΩ

never vanishes on Ωε by (3), together with a covering argument since St is clearly
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compact. For (5), fix f ∈ C1(Ωε) and for brevity write

F (t) :=
∫
St
f dσ. (3.4.21)

Firstly, we claim that (3.4.19) is the distributional derivative of F . Indeed, for any
test function ϕ ∈ C∞c (−ε, ε), we have

∫ ε

−ε
F (t)ϕ(t) dt =

∫ ε

−ε

∫
St
fϕ(t) dσ dt =

∫
Ωε
fϕ ◦ dΩ dx (3.4.22)

by the coarea formula in the form of [50, Section 3.4.3], using the fact that the St
are the level surfaces of dΩ and |∇dΩ| = 1 everywhere by (3). In particular,

∫ ε

−ε
F (t)ϕ′(t) dt =

∫
Ωε
fϕ′ ◦ dΩ dx =

∫
Ωε
f∇dΩ · ∇(ϕ ◦ dΩ) dx (3.4.23a)

= −
∫

Ωε
ϕ ◦ dΩ div(f∇dΩ) dx (3.4.23b)

= −
∫ ε

−ε
ϕ(t)

∫
St

div(f∇dΩ) dx dt, (3.4.23c)

where for the second last equality we have used the divergence theorem (integration
by parts) and the compact support of ϕ; and the last equality follows from another
application of the coarea formula. The claim now follows from the short calculation

div(f∇dΩ) = ∇f · ∇dΩ + f∆dΩ = ∂tf + f∆dΩ, (3.4.24)

valid pointwise in Ωε since dΩ is C2 by (1), and using the fact that ∇dΩ points in
the direction of t by (3). We next note that the integrand in (3.4.19) is in C(Ωε) and
hence a short argument using the compactness of St and the uniform continuity of
the integrand shows that the integral in (3.4.19) is in fact in C([−ε, ε]); in particular,
it is the pointwise derivative of F at every point in (−ε, ε).

Finally, for (3.4.20), by what we have just shown we may apply the Fundamental
Theorem of Calculus in the form of [108, Theorem 7.21] to the function F on the
interval [0, ε1] (for any ε1 < ε) to obtain

F (ε1)− F (0) =
∫ ε1

0

∫
St
∂tf + f∆dΩ dσ. (3.4.25)

A final application of the coarea formula to the integral on the right-hand side,
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together with the definition of F , yields (3.4.20).

Proof of Lemma 3.4.7. The case of C2 boundary. We keep the notation of dΩ, Ω±ε ,
and St from Lemma 3.4.8 and note that it suffices to prove

∫
∂Ω
|u|2 dσ ≤ C1‖∇u‖2 + C2 (3.4.26)

for all u ∈ C1(Ω), by density of the latter set in H1(Ω) for bounded Ω of class C2

(cf. [62, Section 7.6]) and the trace theorem. We let ε > 0 be as in Lemma 3.4.9
(in particular, by making ε a little smaller if necessary we can always assume that
(3.4.20) holds with ε in place of ε1) and choose a cut-off function ϕ ∈ C1(Ω) such
that 0 ≤ ϕ(x) ≤ 1 for all x ∈ Ω and


ϕ(x) = 0 for all x ∈ Ω \ Ωε,

ϕ|St = const for all fixed t ∈ [0, ε],

ϕ|∂Ω = 1.

(3.4.27)

The existence of such a function is guaranteed by the regularity statements in
Lemma 3.4.9: indeed, if we let ψ ∈ C∞([0,∞)) be any smooth function satisfying
ψ(0) = 1 and ψ(t) = 0 for all t ≥ ε, then we may take ϕ = ψ ◦dΩ. Now fix u ∈ C1(Ω)
normalised such that ‖u‖2 = 1. Then

f := |u|2ϕ ∈ C1(Ω) (3.4.28)

and we apply formula (3.4.20) from Lemma 3.4.9 to obtain the following equation
(3.4.30). Using that ϕ = 1 on ∂Ω and ϕ = 0 on Sε in (3.4.29), we obtain

−
∫
∂Ω
|u|2 dσ =

∫
Sε
|u|2ϕ dσ −

∫
∂Ω
|u|2ϕ dσ (3.4.29)

=
∫

Ω+
ε

∂t(|u|2ϕ) + |u|2ϕ∆dΩ dx (3.4.30)

=
∫

Ωε
2ϕRe (u∂tu) + |u|2∂tϕ+ |u|2ϕ∆dΩ dx. (3.4.31)
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Due to ϕ = 0 on Ω \ Ω+
ε , we may estimate

∫
∂Ω
|u|2 dσ ≤ 2‖ϕ‖∞‖u‖2‖∇u‖2 + ‖u‖2

2‖∇ϕ‖∞

+ ‖u‖2
2‖ϕ‖∞ ·max

x∈Ωε
|∆dΩ(x)|

(3.4.32a)

= 2‖∇u‖2 + ‖∇ϕ‖∞ + max
x∈Ω+

ε

|∆dΩ(x)| (3.4.32b)

using the normalisation ‖u‖2 = 1 as well as ‖ϕ‖∞ = 1 (where all norms are over Ω).
This proves the assertion

∫
∂Ω
|u|2 dσ ≤ C1‖∇u‖2 + C2 (3.4.33)

with

C2 := ‖∇ϕ‖∞ + max
x∈Ω+

ε

|∆dΩ(x)|. (3.4.34)

If Ω is a Lipschitz domain, the proof of Lemma 3.4.7 is based on a very different,
local argument. To this end, we need another auxiliary statement on the normal
vector to ∂Ω, which needs some additional notation: fix z ∈ ∂Ω and a neighbourhood
Uz of z such that within Uz, ∂Ω is given by the graph of a Lipschitz function
ζ : Rd−1 → R such that Ωz := Ω ∩ Uz lies in the region

{
x ∈ Rd : xd < ζ (x̌)

}
, (3.4.35)

where we use the notation

x = (x1, . . . , xd)T = (x̌, xd)T ∈ Rd ' Rd−1 × R. (3.4.36)

Such a neighbourhood Uz exists by Definition 2.1.2. From now on, we will write

(∂Ω)z := ∂Ω ∩ Uz (3.4.37)

for the part of the boundary of Ω which lies inside the just defined neighbourhood
Uz, cf. Figure 3.4.4. Then in the coordinate system (3.4.35), the normal vector to
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(∂Ω)z z

∂Ω

Ω

Ωc

Uz

Ωz

Figure 3.4.4: Depiction of the neighbourhood Uz for some boundary point z ∈ ∂Ω plus the
corresponding sets Ωz and (∂Ω)z, respectively.

∂Ω given by

ν = (ν1, . . . , νd)T : ∂Ω→ Rd, (3.4.38)

which is an L∞-function since ∂Ω, is Lipschitz (see [37, Section 1]). We omitted the
proof of the following statement in [30, Proof of Lemma 6.5]; thus, for completeness’
sake, we give in this thesis.

Proposition 3.4.10. After the preceding procedure the d-th component νd of the
normal vector ν satisfies

ess inf{νd(y) : y ∈ (∂Ω)z} > 0. (3.4.39)

Proof. In the neighbourhood Uz the boundary ∂Ω is locally given by the graph of
a Lipschitz function ζ : Rd−1 → R (cf. Definitions 2.1.1 and 2.1.2). From now on,
every statement is to be understood locally in this neighbourhood. It is well known
that ∇ζ exists a.e. and ∇ζ ∈ L∞(Rd−1) is bounded, as well; and the same holds for
the (outer) normal vector

ν = (ν1, . . . , νd)T : ∂Ω→ Rd. (3.4.40)
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Since Ωz lies in the region (3.4.35), that is, Ω lies on one side of ζ, we have νd ≥ 0
a.e. Besides, if we denote by Tζ(x̌) the tangential hyperplane to ζ (at those points x̌
where it exists), then at x = (x̌, xd)T ∈ Rd the plane Tζ(x̌) is given by

span





1
0
0
...
0

∂ζ
∂x1

(x̌)


,



0
1
0
...
0

∂ζ
∂x2

(x̌)


, . . . ,



0
0
...
0
1

∂ζ
∂xd−1

(x̌)




. (3.4.41)

By construction, we have ν · τ = 0 for all τ ∈ Tζ(x̌) (where it exists). We now
rewrite ν · τ = 0 in terms of the d− 1 vectors from (3.4.41) and obtain the system of
equations

ν1(x) + νd(x) ∂ζ
∂x1

(x̌) = 0 (3.4.42a)

ν2(x) + νd(x) ∂ζ
∂x2

(x̌) = 0 (3.4.42b)

...

νd−1(x) + νd(x) ∂ζ

∂xd−1
(x̌) = 0 (3.4.42c)

which hold a.e. The following argument leads us to νd > 0 a.e.: we already know
that νd ≥ 0 a.e. If we assume νd = 0, then the n-th equation of (3.4.42) implies that
νn = 0 for n = 1, . . . , d− 1, hence ν = 0, a contradiction. Furthermore, since ∇ζ is
bounded, there exists C1 > 0 such that |∂jζ(x̌)| ≤ C1 for all j = 1, . . . , d− 1 and for
almost every x̌. Consequently, recall that νd 6= 0, we obtain∣∣∣∣∣νj(x)

νd(x)

∣∣∣∣∣ ≤ C2 ⇔ |νj(x)|2 ≤ C3|νd(x)|2 (3.4.43)

a.e. for a constant C3 = C2
2 > 0 and for all j = 1, . . . , d− 1. By the latter inequality
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it follows from the normalisation of ν that

1 = |ν(x)|2 =
d∑
j=1
|νj(x)|2 = |νd(x)|2 +

d−1∑
j=1
|νj(x)|2 (3.4.44a)

≤ [1 + (d− 1)C3]|νd(x)|2. (3.4.44b)

Together with νd > 0 a.e. we arrive at

νd(x) ≥ 1√
1 + (d− 1)C3

> 0 (3.4.45)

a.e. in the given neighbourhood Uz.

We now turn to the remaining part of the proof of Lemma 3.4.7.

Proof of Lemma 3.4.7. The case of Lipschitz boundary. Since in the case of general
Lipschitz domains the corresponding parametrisation of Ωε does not enjoy the same
regularity properties, we give a different, local argument. We recall the notation
preceding Proposition 3.4.10 and we fix a test function ϕ ∈ C∞c (Rd) such that
0 ≤ ϕ ≤ 1 on Rd as well as

ϕ(y) = 1 for all y ∈ (∂Ω)z,

ϕ(y) = 0 for all y ∈ ∂Ω with νd(y) ≤ 0.
(3.4.46)

Since ∂Ω is Lipschitz (see Definition 2.1.2), by shrinking the neighbourhood Uz if
necessary, we can always guarantee the existence of such a ϕ. Then for a given
function u ∈ H1(Ω) normalised to ‖u‖2 = 1, we have

ess inf
y∈(∂Ω)z

νd(y)
∫

(∂Ω)z
|u|2 dσ ≤

∫
∂Ω
ϕ|u|2νd dσ =

∫
Ω

∂

∂xd
(ϕ|u|2) dx (3.4.47)

by the divergence theorem applied to the function

F = (0, . . . , 0, ϕ|u|2) ∈ W 1,1(Ω) (3.4.48)

and the Lipschitz domain Ω (see [96, Théorème 3.1.1]). The latter integral may be
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estimated by
∫

Ω

∂

∂xd
(ϕ|u|2) dx ≤ ‖∇ϕ‖∞‖u‖2

2 + 2‖ϕ‖∞‖∇u‖2‖u‖2. (3.4.49)

Using the normalisations ‖u‖2 = 1, ‖ϕ‖∞ = 1, the estimate (3.4.47) may be written
as

∫
(∂Ω)z

|u|2 dσ ≤ C1,z‖∇u‖2 + C2,z (3.4.50)

for suitable constants C1,z, C2,z > 0 depending on z ∈ ∂Ω. Since ∂Ω is compact,
a simple covering argument now yields the assertion (3.4.10). Note that for every
z ∈ ∂Ω we have

C1,z = 2
ess inf
y∈(∂Ω)z

νd(y) ≥ 2 (3.4.51)

since |ν| = 1 and C1,z <∞ by Proposition 3.4.10; hence also C1 ≥ 2.

Remark 3.4.11. If Ω is a Lipschitz domain, the above proof also yields the slightly
different trace inequality

∫
∂Ω
|u| dσ ≤ C(Ω)‖u‖H1(Ω)‖u‖2 (3.4.52)

for all u ∈ H1(Ω), needed in the proof of Theorem 3.3.8: Recall that (∂Ω)z = ∂Ω∩Uz.
Then, by (3.4.49), we have

ess inf
y∈(∂Ω)z

νd(y)
∫
∂Ω∩Uz

|u|2 dσ ≤
∫

Ω

∂

∂xd
(ϕ|u|2) dx (3.4.53a)

≤ ‖∇ϕ‖∞‖u‖2
2 + 2‖ϕ‖∞‖∇u‖2‖u‖2 (3.4.53b)

≤ (‖∇ϕ‖∞ + 2‖ϕ‖∞) ‖u‖H1(Ω)‖u‖2, (3.4.53c)

leading to
∫

(∂Ω)z
|u|2 dσ ≤ Cz‖u‖H1(Ω)‖u‖2 (3.4.54)

for all u ∈ H1(Ω), for a constant Cz > 0 depending only on z ∈ ∂Ω. A covering
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argument as in the above lemma then yields (3.4.52).

In preparation for the proof of Theorem 3.4.1 we want to give one last lemma.

Proposition 3.4.12. Let α 6= 0 and C > 0. Then

C‖∇u‖2 ≤
C2

4 |Reα|+ ‖∇u‖
2
2

|Reα| . (3.4.55)

Proof. By multiplying the rearranged inequality (3.4.55) by 4|Reα| > 0, we obtain

C2|Reα|2 − 4C|Reα|‖∇u‖2 + 4‖∇u‖2
2 =

(
C|Reα| − 2‖∇u‖2

)2
≥ 0. (3.4.56)

Proof of Theorem 3.4.1. Let C1 ≥ 2, C2 > 0 be the constants from Lemma 3.4.7; in
particular, we assume C1 = 2 if Ω is of class C2. Fix u ∈ H1(Ω) with ‖u‖2 = 1 and
set

λ := ‖∇u‖2
2 + α

∫
∂Ω
|u|2 dσ ∈ W (aα). (3.4.57)

Then, for

t := ‖∇u‖2
2 ≥ 0 and s :=

∫
∂Ω
|u|2 dσ ≥ 0 (3.4.58)

we have

Reλ = t+ Reα · s and Im λ = Imα · s. (3.4.59)

Moreover, by Lemma 3.4.7, we obtain that s ≤ C1
√
t+ C2; thus λ ∈ ΛΩ,α.

To see that every λ ∈ W (aα), and hence every λ ∈ σ(−∆α
Ω), satisfies the estimate

(3.4.4), we first remark that if Reα ≥ 0, then clearly

ΛΩ,α ⊂ {z ∈ C : Re z ≥ 0}. (3.4.60)

Hence we may assume without loss of generality that Reα < 0. Then by definition
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(cf. (3.4.57)) and both Lemma 3.4.7 and Proposition 3.4.12 we have

Reλ = ‖∇u‖2
2 + Reα

∫
∂Ω
|u|2 dσ (3.4.61a)

= ‖∇u‖2
2 − |Reα|

∫
∂Ω
|u|2 dσ (3.4.61b)

≥ ‖∇u‖2
2 − |Reα|

[
C1‖∇u‖2 + C2

]
(3.4.61c)

≥ ‖∇u‖2
2 − |Reα|

[
C2

1
4 |Reα|+ ‖∇u‖

2
2

|Reα| + C2

]
; (3.4.61d)

thus, we arrive at

Reλ ≥ −
(
C1

2

)2
|Reα|2 − C2|Reα| (3.4.62)

which completes the proof.

Remark 3.4.13. Suppose that ∂Ω is of class C2. We recall that the constant
C2 = C2(Ω) appearing in Theorem 3.4.1 and Lemma 3.4.7, as noted in (3.4.34), may
in this case be taken

C2 = ‖∇ϕ‖∞ + max
x∈Ω+

ε

|∆dΩ(x)|, (3.4.63)

where ε > 0 is as in Lemma 3.4.9 and ϕ is chosen to have support in Ω+
ε . Let us be a

bit more specific. We may take ‖∇ϕ‖∞ to be 1/ε, corresponding to a linear function
of t ∈ [0, ε] extended by 0 at t = ε (which can be approximated arbitrarily well in
the ∞-norm by C1 functions), while for x ∈ Ω+

ε , it is known that the Hessian of the
signed distance function is equal to the Weingarten map of the (unique) surface St
passing through x, at x. In particular,

|∆dΩ(x)| =

∣∣∣∣∣∣
d−1∑
j=1

κStj (x)

∣∣∣∣∣∣ = (d− 1)
∣∣∣κ̄St(x)

∣∣∣ (3.4.64)

where κSt1 ( · ), . . . , κStd ( · ) are the principal curvatures at a given point of St and κ̄St

is its mean curvature [18, Lemma 2.4.2 and Remark 2.4.4]. This means that the
essentially optimal form of the constant C2 coming from our proof – to be compared
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with the coefficient of α in (3.4.8) – is

C2 = 1
ε

+ (d− 1) max
t∈[0,ε]

max
x∈St

∣∣∣κ̄St(x)
∣∣∣ , (3.4.65)

where ε > 0 is any constant for which Lemma 3.4.9(2) holds; in the language of [56],
we may take any ε ∈ (0, reach(∂Ω)]. (Note that we explicitly do not claim that C2

from (3.4.65) is optimal in the general sense.) As a simple example we consider a
ball B ⊂ Rd.

Example 3.4.14. In the case of a ball BR ⊂ Rd, d ≥ 2, of radius R > 0, for each
principal curvature κStj on St (cf. Definition 3.4.8) we have

κStj = 1
R− t

(3.4.66)

for all j = 1, . . . , d, and thus the same holds for the mean curvature κ̄St , where
t = t(x) is chosen such that x ∈ St. Consequently, for ε < R, (3.4.65) becomes

C2 = 1
ε

+ (d− 1) max
t∈[0,ε]

( 1
R− t

)
= 1
ε

+ d− 1
R− ε

. (3.4.67)

We may take any ε < R and due to the localisation Theorem 3.4.1 and (3.4.66) we
arrive at the optimisation problem

Reλ ≥ −|Reα|2 − min
ε∈(0,R)

[
1

R− ε
+ d− 1

ε

]
|Reα|. (3.4.68)

To solve this, we interpret C2 as a function of ε,

C2(ε) := 1
ε

+ d− 1
R− ε

, (3.4.69)

to be minimised for 0 < ε < R. Consequently, for a minimising 0 < ε0 < R, we
require

0 = C ′2(ε0) = − 1
ε2

0
+ d− 1

(R− ε0)2 ⇔ ε0 = R√
d− 1 + 1

, (3.4.70)
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which, after a short calculation, gives

C2(ε0) = d+ 2
√
d− 1

R
. (3.4.71)

(C2(ε0) is indeed a minimum since C ′′2 (ε) > 0 for all ε < R). This value of C2 may
be compared with the known bound and asymptotics for real negative α

−|α|2 − d− 1
R
|α| > λ1(−∆α

B) = −|α|2 − d− 1
R
|α|+ o(α) (3.4.72)

where the inequality is valid for all α < 0 and the asymptotic expansion is for
α→ −∞, see [8, Theorem 3 and eq. (1.2)].

Remark 3.4.15. If we allow variable α ∈ L∞(∂Ω,C), then it is clear that similar
results hold since the key trace estimate, Lemma 3.4.7, does not depend on α,
although the region ΛΩ,α can no longer be described explicitly in general. However,
(3.4.4) has a direct equivalent: if we set

‖Reα‖∞ := ess sup
x∈∂Ω

|Reα(x)|, ‖Imα‖∞ := ess sup
x∈∂Ω

|Imα(x)|, (3.4.73)

then, mimicking the arguments of the proof of Theorem 3.4.1 we obtain the estimate

Reλ ≥ −C
2
1

4 ‖Reα‖2
∞ − C2‖Reα‖∞ (3.4.74)

for all λ ∈ σ(−∆α
Ω), or more generally all λ ∈ W (aα), where
C1 ≥ 2, C2 > 0 for Lipschitz domains,

C1 ≥ 2, C2 = 2 for domains of class C2.
(3.4.75)

Even in the case of real-valued α, this may be viewed as a partial generalisation
of [90, Remark 1.1], which establishes the asymptotics for variable α ∈ R of the
form α = tb(x), t→ −∞, for a fixed continuous function b ∈ C(∂Ω). Moreover, we
can still obtain parabolic estimates on the numerical range of the type necessary to
ensure that ∆α

Ω generates a cosine function (cf. Remark 3.4.6). For simplicity assume
that Reα(x) ≥ 0 almost everywhere (whence also Reλ ≥ 0 for any λ ∈ W (aα));
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then, with C1, C2 as above,

|Im λ| =
∣∣∣∣∫
∂Ω

Imα |u|2 dσ(x)
∣∣∣∣ ≤ ‖Imα‖∞(C1‖∇u‖2 + C2) (3.4.76a)

≤ ‖Imα‖∞(C1
√

Reλ+ C2), (3.4.76b)

independently of Reα ≥ 0.

3.5 The Dirichlet-to-Neumann operator

From now on, we will be interested in the asymptotic behaviour of the eigenvalues
λ(α) of −∆α

Ω as α→∞ in C. To this end, we will exploit the duality between the
Robin eigenvalue problem (1.1.5) and the eigenvalue problem

M(λ)g = αg (3.5.1)

of the Dirichlet-to-Neumann operator M(λ) acting on ∂Ω. This operator is defined
for λ in the resolvent set ρ(−∆D

Ω ) of the Dirichlet Laplacian; its formal definition can
be found in (3.5.9), the duality result just mentioned is contained in Theorem 3.5.8.
For more information on this operator, we refer to, e.g., [12, 15, 21, 20, 43, 61, 92]; its
relationship to the Robin Laplacian (at least for real α) is explored in [12, Section 2]
and [15, Section 8], for example, and for complex α see for example [61, Section 3].
In order to defineM(λ), we first need to recall a solubility result for the inhomogeneous
Dirichlet boundary value problem. Here and in what follows we fix a bounded
Lipschitz domain Ω ⊂ Rd, d ≥ 2 and write tru = u|∂Ω for the trace of a function
u ∈ H1(Ω). However, if there is no ambiguity, we will tend to omit the “tr” notation.
Moreover, recall that every g ∈ H1/2(∂Ω) is the trace of a function u ∈ H1(Ω).

Lemma 3.5.1. Let Ω ⊂ Rd, d ≥ 2, be a bounded Lipschitz domain and let λ ∈
ρ(−∆D

Ω ) ⊂ C.

(1) For each g ∈ H1/2(∂Ω), the Dirichlet boundary value problem

−∆u = λu in Ω,

u = g on ∂Ω,
(3.5.2)
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interpreted in the usual weak sense, has a unique solution uλ ∈ H1(Ω), that is,
uλ solves

∫
Ω
∇u · ∇v dx = λ

∫
Ω
uv dx (3.5.3)

for all v ∈ H1
0 (Ω), and tru = g.

(2) For such λ, if

H1(λ) := {u ∈ H1(Ω) : −∆u = λu as in (3.5.3)}, (3.5.4)

then we have the direct sum decomposition H1(Ω) = H1
0 (Ω)⊕H1(λ).

Proof. For λ ∈
(
R ∩ ρ(−∆D

Ω )
)
, this follows immediately from [12, Lemma 2.2],

together with the fact that H1/2(∂Ω) = trH1(Ω); for general λ ∈ ρ(−∆D
Ω ) the same

proof works verbatim.

We denote by P (λ) : H1/2(∂Ω)→ H1(Ω) the Poisson operator given by

P (λ) : g 7→ uλ, (3.5.5)

where uλ solves (3.5.2), which is well defined for any λ ∈ ρ(−∆D
Ω ); indeed, one may

show that P (λ) is a bijection from H1/2(∂Ω) onto H1(λ) as defined in (3.5.4) and in
fact a right inverse of the trace operator. We can now define the Dirichlet-to-Neumann
operator. For λ ∈ ρ(−∆D

Ω ), we first define a sesquilinear form

qλ : H1/2(∂Ω)×H1/2(∂Ω)→ C (3.5.6)

by

qλ[g, h] =
∫

Ω
∇P (λ)g · ∇P (λ)h− λP (λ)g P (λ)h dx. (3.5.7)

The (negative) Dirichlet-to-Neumann operator

M(λ) : D(M(λ)) ⊂ L2(∂Ω)→ L2(∂Ω) (3.5.8)
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is then the operator in L2(∂Ω) associated with −qλ, which is given by

D(M(λ)) =
{
g ∈ H1/2(∂Ω) : ∂

∂ν
P (λ)g ∈ L2(∂Ω)

}
,

M(λ) = − ∂

∂ν
P (λ),

(3.5.9)

see [21]. In words, the Dirichlet-to-Neumann operator maps given Dirichlet data
g = tru to the Neumann data −∂u

∂ν
of the same solution u = P (λ)g of −∆u = λu.

Lemma 3.5.2. Let λ ∈ ρ(−∆D
Ω ). The operator −M(λ) is

(1) closed,

(2) densely defined,

(3) m-sectorial,

(4) and has compact resolvent in L2(∂Ω).

In particular, its spectrum consists of eigenvalues of finite algebraic multiplicity and
is denoted by

σ(M(λ)) = {αk ∈ C : k ∈ N}. (3.5.10)

Proof. Everything except the sectoriality follows immediately since H1/2(∂Ω) is
densely and compactly embedded in L2(∂Ω), and qλ is closed on H1/2(∂Ω) (see e.g.
[101, Theorem 3.8]). For the sectoriality of the operator, it suffices to show that qλ
is sectorial, that is, that there exist constants ω, µ ∈ R such that

Re qλ[g, g] + ω‖g‖2
L2(∂Ω) ≥ µ‖g‖2

H1/2(∂Ω) (3.5.11)

for all g ∈ H1/2(∂Ω). To prove (3.5.11), by the fact that the trace map is bounded
from H1(Ω) to H1/2(∂Ω), cf. Theorem 2.1.14, it certainly suffices to show that for
any λ ∈ C there exists ω ≥ 0 such that the square root of η, given by

η(u) :=
∫

Ω

(
|∇u|2 − Reλ|u|2

)
dx+ ω

∫
∂Ω
|u|2 dσ, (3.5.12)

u ∈ H1(Ω), defines an equivalent norm on H1(Ω). But this, in turn, follows
immediately from Maz’ya’s inequality in the form of [15, eq. (4)]. We conclude that
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qλ and M(λ) are sectorial. For a slightly different (but equivalent) approach in the
case of real λ, we refer to [16, Corollary 2.2 and Section 4.4]. However, the proof can
be carried over verbatim to complex λ.

Remark 3.5.3. It may be shown that the domain of the Dirichlet-to-Neumann
operator is indeed D(M(λ)) = H1(∂Ω) for any λ ∈ ρ(−∆D

Ω ). However, since we will
not need this, we refer to [94, Theorem 4.25 for s = 1/2] for both the proof and more
details.

Remark 3.5.4. (1) It is also possible to define the Dirichlet-to-Neumann operator
for λ ∈ σ(−∆D

Ω ), either as a multi-valued operator, or by factoring out the
Dirichlet eigenfunctions corresponding to λ from H1(Ω). We will not need this
here, so we do not go into the details, which may be found in [12].

(2) In dimension d = 1, that is, for a bounded, non-degenerate interval, the
Dirichlet-to-Neumann operator can be represented by the 2× 2-matrix given
by (4.1.16). Obviously, Lemma 3.5.2 continues to hold in this case. For more
details we refer to Section 4.1.

Lemma 3.5.5. The Dirichlet-to-Neumann operator M(λ)

(1) is meromorphic with respect to the spectral parameter λ ∈ C and

(2) its singularities are poles of finite order and coincide with the eigenvalues of
the corresponding Dirichlet Laplacian, i.e., the set of singularities of λ 7→M(λ)
is σ(−∆D

Ω ).

(3) For λ ∈ ρ(−∆D
Ω ), M(λ) is a self-adjoint holomorphic operator family and the

corresponding quadratic forms are holomorphic of type (a) (in the sense of Kato
[74, Section VI.4.2], see Definition 3.2.6).

In the proof of the previous lemma we will use a perturbation formula for M(λ)
in terms of the fixed operator M(0); for its proof we refer to [20, Lemma 2.4 for
µ = 0]. To give this statement, we note that for λ ∈ ρ(−∆D

Ω ) the Poisson operator
P (λ) given by (3.5.5) and its adjoint

P ∗(λ) : H−1
0 (Ω)→ H−1/2(∂Ω) (3.5.13)

are well defined.
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3.5 The Dirichlet-to-Neumann operator

Lemma 3.5.6. If λ ∈ ρ(−∆D
Ω ), then we have

M(λ) = M(0) + λP (0)∗
(
I + λ(−∆D

Ω − λI)−1
)
P (0). (3.5.14)

Proof of Lemma 3.5.5. The perturbation formula of Lemma 3.5.6 depends polyno-
mially on λ and on the resolvent of the Dirichlet Laplacian which is known to be a
meromorphic function with poles of finite order, as follows from Theorem 2.3.6. This
proves that M(λ), λ ∈ ρ(−∆D

Ω ), is a holomorphic operator family. It is self-adjoint
holomorphic, i.e. M(λ) = (M(λ))∗, by (3.5.14) and using that M(0) is self-adjoint
and that ρ(−∆D

Ω ) is symmetric about the real axis. The corresponding quadratic
forms qλ are holomorphic of type (a) (see Definition 3.2.5), where the sectoriality
was proved in Lemma 3.5.2.

Remark 3.5.7. One can show by exactly the same argument as in the proof of
Theorem 3.2.11 that the corresponding eigenprojections can be chosen to depend
holomorphically on λ ∈ ρ(−∆D

Ω ).

We can now state the following duality result linking the eigenvalues α of the
operator M(λ) and λ of −∆α

Ω. In the case of real α this is standard and well
known (see [12, Theorem 3.1]); however, for completeness’ sake we give a proof in
the complex case. In fact, the duality between elliptic differential operators and
operators of Dirichlet-to-Neumann type, or so-called Titchmarsh–Weyl M -functions,
is also known in the non-selfadjoint case, e.g. see [34, Theorem 4.10], but here we
give a direct proof including a corresponding duality result for the eigenfunctions of
both operators, that is, a function u is an eigenfunction of the Robin Laplacian if
and only if tru is an eigenfunction of the Dirichlet-to-Neumann operator.

Theorem 3.5.8. Let Ω ⊂ Rd, d ≥ 2, be a bounded Lipschitz domain. For any α ∈ C
and any λ ∈ ρ(−∆D

Ω ), we have that

(1) λ ∈ σ(−∆α
Ω) if and only if α ∈ σ(M(λ)) and

(2) u is an eigenfunction of −∆α
Ω corresponding to the eigenvalue λ if and only if

tru is an eigenfunction of M(λ) for its eigenvalue α.

Proof. Note first that the spectra of M(λ) and −∆α
Ω consist only of eigenvalues of

finite multiplicity (see Lemma 3.5.2 and Theorem 3.1.2, respectively). On the one
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hand, we have λ ∈ σ(−∆α
Ω) for given α ∈ C with eigenfunction u ∈ H1(Ω) if and

only if
∫

Ω
∇u · ∇v dx− λ

∫
Ω
uv dx = −α

∫
∂Ω
uv dσ (3.5.15)

for all v ∈ H1(Ω), see (3.1.4). On the other hand, by (3.5.7) we have α ∈ σ(M(λ))
for given λ ∈ ρ(−∆D

Ω ) with eigenfunction g ∈ H1/2(∂Ω) if and only if
∫

Ω
∇P (λ)g · ∇P (λ)h− λP (λ)g P (λ)h dx = −α

∫
∂Ω
gh dσ (3.5.16)

for all h ∈ H1/2(∂Ω). Using the fact that P (λ)g satisfies the Dirichlet boundary
condition in the weak sense (3.5.3), which we recall by

∫
Ω
∇P (λ)g · ∇v dx = λ

∫
Ω
P (λ)gv dx (3.5.17)

for all v ∈ H1
0 (Ω), together with the direct sum decomposition H1(Ω) = H1

0 (Ω)⊕
H1(λ) of Lemma 3.5.1, it follows that the eigenfunction g of M(λ) satisfies

∫
Ω

(
∇P (λ)g · ∇v − λP (λ) vg

)
dx = −α

∫
∂Ω
g tr v dσ (3.5.18)

for all v ∈ H1(Ω). Comparing (3.5.15) and (3.5.18) leads immediately to the
statement λ ∈ σ(−∆α

Ω) if and only if α ∈ σ(M(λ)) (as long as λ ∈ ρ(−∆D
Ω )), with

g = tru, or, equivalently, u = P (λ)g.

Remark 3.5.9. A corresponding statement holds for any generalised eigenfunctions,
as shown very recently in [22]. For more details on this topic, see Section 3.7.

Finally, we turn to the proof of the dichotomy result.

Proof of Theorem 1.2.5. By Lemma 3.5.5 the Dirichlet-to-Neumann operator M(λ)
is a meromorphic operator family whose set of singularities consists of poles of
finite order and coincides with the spectrum σ(−∆D

Ω ) of the corresponding Dirichlet
Laplacian. Now let (αk)k∈N be any complex sequence with αk → ∞ as k → ∞.
Assume that the eigenvalues λk := λ(αk) corresponding to αk on a common analytic
branch (for any fixed choice of slicing) remain bounded as k →∞; without loss of
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3.6 The points of accumulation of the Robin eigenvalues

generality we may suppose that λk → λ0 ∈ C as k →∞. Then by Theorem 3.5.8,
for each k we may write αk = α(λk) for the Dirichlet-to-Neumann eigenvalues, which
likewise belong to a common analytic branch. For this branch we have αk →∞ as
λk → λ0. By definition, this means that λ0 must be a singularity of the operator
family M(λ). The only possibility is that λ0 ∈ σ(−∆D

Ω ).

3.6 The points of accumulation of the Robin
eigenvalues

In this section we study the question of which values λ ∈ C can be reached as points
of accumulation of the eigenvalues of −∆α

Ω as α→∞. However, the answer of this
question depends on how α → ∞ in C, that is, in which regime the considered
α-path runs to ∞ in C. To this end, we confine ourselves to complex sectors having
their vertex in the origin. We start by dividing the complex plane in the following
fashion; here we assume that the principal argument is always between −π and
π. Furthermore, throughout this section we suppose Ω ⊂ Rd, d ≥ 2, to be a fixed
bounded Lipschitz domain; and for any set A ⊆ C the set of points of accumulation
of A is denoted by acc(A).

Definition 3.6.1. (1) Let 0 < θ < π/2 be an (arbitrarily small) angle and define
the two open sectors

S+
θ := {z ∈ C : θ < arg z < π − θ} (3.6.1)

and

T+
θ := {z ∈ C : | arg z| < θ} (3.6.2)

in the upper and right-hand half-planes, respectively. We then define

S−θ := −S+
θ and T−θ := −T+

θ (3.6.3)

to be the corresponding sectors reflected in the real and imaginary axes,
respectively. Consequently, the complex plane is, up to two straight lines
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mutually crossing in z = 0, symmetrically partitioned into four sectors; see
Figure 3.6.1.

(2) If θ = π/2, both lower and upper sectors S±θ vanish and T±θ are defined as an
extension of (3.6.2); and as before we define T−π/2 := −T+

π/2.

(3) If π/2 < θ′ < π, we define T+
θ′ by (3.6.2), that is, we have a partition of the

complex plane in two asymmetric sectors T+
θ′ and T−π−θ′ .

Figure 3.6.1: The four sectors S±θ and T±θ for 0 < θ < π/2.

Our principal aim is to prove Theorem 1.2.6. As mentioned in the introduction,
the Dirichlet-to-Neumann operator will be used in the proof, more precisely of part
(2). For (1), we will draw on some ideas similar to the ones of [38] for the case of real
negative α→ −∞; in particular, the following lemma, which we will use repeatedly,
recalls [38, Lemma 2.1].

Lemma 3.6.2. Let (αk)k∈N ⊂ C be any divergent sequence in C and for each k ∈ N
select a Robin eigenvalue λk := λ(αk) ∈ σ(−∆αk

Ω ) (we do not require the λk to belong
to the same analytic eigenvalue branch). Suppose that

(1) the sequence (λk)k∈N is bounded, and

(2) for each k ∈ N there exists an associated eigenfunction ψk normed to ‖ψk‖L2(Ω) =
1, such that the sequence (‖ψk‖H1(Ω))k∈N of H1(Ω)-norms is bounded.

Then

acc{λk : k ∈ N} ⊆ σ(−∆D
Ω ). (3.6.4)
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3.6 The points of accumulation of the Robin eigenvalues

Moreover, if up to a subsequence λk → λD ∈ σ(−∆D
Ω ), then up to a further subse-

quence the ψk converge weakly in H1(Ω) to a Dirichlet eigenfunction associated with
λD.

Proof. Let λ be any point of accumulation; without loss of generality we suppose
that lim

k→∞
λk = λ. We first claim that the corresponding eigenfunctions ψk satisfy

∫
∂Ω
|ψk|2 dσ → 0 (3.6.5)

as k → ∞: in fact, this follows since an eigenfunction ψk satisfies aα[ψk] = λk, cf.
(3.1.4), viz.

∫
∂Ω
|ψk|2 dσ = 1

αk

[
λk −

∫
Ω
|∇ψk|2 dx

]
(3.6.6)

for αk 6= 0. The fact that the both λk and the integrals
∫

Ω
|∇ψk|2 dx (3.6.7)

are bounded by assumption together with 1/αk → 0 as k →∞ implies (3.6.5). Next,
since the ψk are bounded in H1(Ω), up to a subsequence there exists a weak limit
ψ ∈ H1(Ω) such that

ψk ⇀ ψ in H1(Ω) (3.6.8)

as k → ∞. By the compactness of the embedding H1(Ω) ↪→ L2(Ω), cf. Theo-
rem 2.1.10, we have

ψk ⇀ ψ in L2(Ω). (3.6.9)

Additionally, using the compactness of Theorem 2.1.10 for t = 3/4 < 1 = s,
Theorem 2.1.14 for s = 3/4, and the boundedness of the boundary ∂Ω, we have that
the map given by the composition

H1(Ω) b
↪→ H3/4(Ω) tr−→ H1/4(∂Ω)↪→L2(∂Ω) (3.6.10)

is compact, that is, we have the sequence trψk converges in L2(∂Ω). In particular, ψ
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has zero trace, so ψ ∈ H1
0 (Ω). Finally, using the eigenvalue equation for λk and the

weak H1-convergence of the ψk, for all ϕ ∈ H1
0 (Ω) (whose traces vanish) we have

∫
Ω
∇ψ · ∇ϕ dx = lim

k→∞

∫
Ω
∇ψk · ∇ϕ dx (3.6.11a)

= lim
k→∞

λk

∫
Ω
ψkϕ dx = λ

∫
Ω
ψϕ dx. (3.6.11b)

Since ψ ∈ H1
0 (Ω), this says exactly that λ is an eigenvalue, and ψ a corresponding

eigenfunction, of the Dirichlet Laplacian.

We can now give the proof of Theorem 1.2.6(1). We will in fact prove the following
slightly more precise version, which also allows us to conclude convergence of the
eigenfunctions not mentioned in Theorem 1.2.6. As before, note that we do not
require our eigenvalues to belong to the same analytic curve and recall that the
sector T−θ is the sector in the left half-plane with semi-angle 0 < θ < π/2 introduced
in Definition 3.6.1.

Theorem 3.6.3. Let (αk)k∈N be any divergent sequence in the sector C \ T−θ for
some θ > 0 such that αk →∞ in C, and for each k ∈ N let

λk := λ(αk) ∈ σ(−∆αk
Ω ) (3.6.12)

be any corresponding eigenvalue. Then

acc{λk : k ∈ N} ⊆ σ(−∆D
Ω ). (3.6.13)

Moreover, if up to a subsequence λk → λ ∈ σ(−∆D
Ω ), then there exist eigenfunctions

for λk which, possibly up to a further subsequence, converge weakly to a Dirichlet
eigenfunction for λ.

Proof of Theorem 3.6.3 and hence of Theorem 1.2.6(1). The goal is to directly ap-
ply Lemma 3.6.2 in order to obtain the conclusion of the theorem. For this we need
to show that under the stated assumptions if the λk (or any subsequence thereof) are
bounded, then they always admit corresponding eigenfunctions ψk which (under the
normalisation ‖ψk‖2 = 1) are bounded in H1(Ω). To this end, first assume without
loss of generality that the sequence (λk)k∈N actually converges to some λ ∈ C; we
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distinguish between two possibilities, which together completely cover the sector
C \ T−θ : (i) Reαk ≥ 0 for all k ∈ N and (ii)

∣∣∣Reαk
Imαk

∣∣∣ remains bounded, respectively.

(i) Suppose that, for each λk, ψk is any associated eigenfunction such that ‖ψk‖2 =
1. We observe that the weak form (3.1.4) of the eigenvalue equation implies

∫
Ω
|∇ψk|2 dx+ Reαk

∫
∂Ω
|ψk|2 dσ = Reλk → Reλ (3.6.14)

as k →∞. Since Reαk ≥ 0, this is only possible if the first summand, that is,
the sequence (‖∇ψk‖2

2)k∈N, remains bounded, which in turn means that the ψk
form a bounded sequence in H1(Ω) and Lemma 3.6.2 is applicable.

(ii) Let the ψk be as before but now we consider the imaginary part of (3.1.4) to
obtain

Imαk

∫
∂Ω
|ψk|2 dσ = Imλk → Im λ (3.6.15)

by assumption. Now the condition (ii)

sup
k∈N

∣∣∣∣∣Reαk
Imαk

∣∣∣∣∣ <∞ (3.6.16)

implies that

Reαk
∫
∂Ω
|ψk|2 dσ (3.6.17)

and hence also

αk

∫
∂Ω
|ψk|2 dσ (3.6.18)

must in particular remain bounded as k → ∞. Since λk was also assumed
bounded, we conclude that

∫
Ω
|∇ψk|2 dx = λk − αk

∫
∂Ω
|ψk|2 dσ (3.6.19)

likewise remains bounded (recall that ‖ψk‖2 = 1), meaning that the ψk are
bounded in H1(Ω).
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We next turn to the proof of Theorem 1.2.6(2). This is in fact an immediate
implication of the fact that the Dirichlet-to-Neumann operator is unbounded.

Proof of Theorem 1.2.6(2). First suppose that λ ∈ ρ(−∆D
Ω ) and let M(λ) be the

Dirichlet-to-Neumann operator introduced in Section 3.5 (see (3.5.9)). Then by
Lemma 3.5.2, M(λ) admits a sequence of eigenvalues αk ∈ C such that |αk| → ∞.
By Theorem 3.5.8, for each such αk ∈ C, we have that λ ∈ σ(−∆αk

Ω ).
For λ ∈ σ(−∆D

Ω ) the argument is the same except thatM(λ) becomes a multivalued
operator; see Remark 3.5.4 (2).

Remark 3.6.4. We draw explicit attention to the marked contrast between parts (1)
and (2) of Theorem 1.2.6: on the one hand, for α diverging away from the negative
real semiaxis (more precisely outside the sector T−θ for arbitrarily small θ > 0), all
eigenvalues either diverge absolutely or converge to points in the Dirichlet spectrum.
This is not just true of the individual analytic branches of eigenvalues but for any
arbitrary sequence of eigenvalues in this region. On the other hand, for any λ ∈ C
we can find an infinite sequence of parameters αk, which must end up “close” to the
negative real semi-axis, for which λ is a Robin eigenvalue (this is where the sufficiently
large eigenvalues of the Dirichlet-to-Neumann operator M(λ) are to be found, for
any λ). Thus the whole of C can be obtained as points of accumulation if we place
no restriction on α. The reason why this is not inconsistent with Theorem 1.2.5 is
that there we are interested in the behaviour of the analytic curves of eigenvalues
(rather than sequences of αk which may be drawn from different analytic curves).

3.7 Jordan chains

The following results are due to [21, Sections 2, and 3], where characterisations
of Jordan chains of m-sectorial second-order elliptic partial differential operators
with measurable coefficients and (local or non-local) Robin boundary conditions are
studied. We, however, focus on the application of this theory on the Robin Laplacian,
c.f. [21, Section 4]. Throughout this section we denote by

A : D(A) ⊂ B → B (3.7.1)
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a linear operator in a Banach space B. Furthermore, let B1, B2 be Banach spaces,
let F ⊂ C be an open complex set and for all λ ∈ F let M(λ) ∈ L(B1, B2) be
holomorphic on F . We denote by M l(λ) the lth derivative of M(λ) for l ∈ N0.

Definition 3.7.1. Let k ∈ N0, f−1 = 0 and λ0 ∈ C.

(1) The set of vectors JA,k := {f0, . . . , fk} ⊂ B (for f0 6= 0) is called Jordan chain
for A at λ0 if JA,k ⊂ D(A) and

(A− λ0)fj = fj−1 (3.7.2)

for all 0 ≤ j ≤ k. The vector f0 is called eigenvector of A at the eigenvalue λ0;
the other vectors f1, . . . , fk are called generalised eigenvectors (or root vectors)
of A at λ0.

(2) The set of vectors JM(λ0),k := {ϕ0, . . . , ϕk} (for ϕ0 6= 0) is called Jordan chain
for M( · ) at λ0 ∈ F if JM(λ0),k ⊂ B1 and

j∑
l=0

1
l!M

(l)(λ0)ϕj−l = 0 (3.7.3)

for all 0 ≤ j ≤ k. The vector ϕ0 is called eigenvector of M( · ) at the eigenvalue
λ0; the other vectors ϕ1, . . . , ϕk are called generalised eigenvectors (or root
vectors) of M( · ) at λ0.

Jordan chains for holomorphic operator functions originated in [75], however, for
more details we refer to [91, Section II.11]. The following theorem (that is, [21,
Theorem 4.1] adapted to our needs) characterises Jordan chains for Robin Laplacians
by those of the corresponding Dirichlet-to-Neumann operator, and vice versa.

Theorem 3.7.2. Let λ0 ∈ ρ(−∆D
Ω ) and f−1 = 0. Consider the holomorphic function

λ 7→M [α](λ) := M(λ)− α (3.7.4)

from ρ(−∆D
Ω ) into L(H1/2(∂Ω), H−1/2(∂Ω)). Then the following holds.

(1) Let J−∆α
Ω,k

= {f0, . . . , fk} be a Jordan chain for −∆α
Ω at λ0. For all m ∈

131



Chapter 3 Spectral analysis of the Robin Laplacian

{0, . . . , k} define

ϕm := tr fm. (3.7.5)

Then, JM [α](λ0),k = {ϕ0, . . . , ϕk} is a Jordan chain for M [α]( · ) at λ0.

(2) Let {ϕ0, . . . , ϕk} be a Jordan chain for M [α]( · ) at λ0. For all m ∈ {0, . . . , k}
let fm ∈ H1(Ω) be the unique solution of the boundary value problem

(−∆− λ0)fm = fm−1, tr fm = ϕm. (3.7.6)

Then {f0, . . . , fk} is a Jordan chain for −∆α
Ω at λ0.
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As already mentioned in the paragraph How to read this thesis, this chapter can
fulfil two different purposes: on the one hand as a preparation for the whole subject
of complex Robin Laplacians, that is, to gain insight into what to expect in general,
or, on the other hand, to apply the theory introduced and developed in the previous
chapters, especially in Chapter 3. Here, we start by studying the case of simple
geometries, where everything can be computed explicitly. In the first section we will
consider the Robin Laplacian on the symmetric interval Ω = (−a, a) for a > 0 to
explicitly construct the Dirichlet-to-Neumann matrix M(λ) and compute its two
eigenvalues α± for any spectral parameter λ ∈ ρ(−∆D

Ω ). We further examine the
spectral and asymptotical properties of M(λ) to exploit the duality between Robin
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eigenvalues λ(α) and the eigenvalues α(λ) of the Dirichlet-to-Neumann operator; and
by this we obtain the asymptotical behaviour of the Robin eigenvalues as α→∞
in C. In Section 4.2, we use these ideas obtained for intervals to conclude results
for higher-dimensional cuboids in order to generalise the one-dimensional results.
In Section 4.3 we consider d-dimensional balls as another canonical example: we
separate the radial part of the Laplacian from the spherical Laplace-Beltrami operator
to conclude a somewhat closed representation of the Dirichlet-to-Neumann matrix.
Its entries consist of scaled Bessel functions whose asymptotical behaviour is used to
obtain the asymptotics of its eigenvalues α(λ). As before, we exploit the duality of
λ(α) and α(λ) to finally obtain the spectral asymptotics of the Robin eigenvalues as
α→∞.

4.1 The interval

We start by fixing a > 0 and consider the interval Ω = (−a, a) ⊂ R of length 2a;
here the Robin boundary value problem for any given α ∈ C reads

−∆u = −u′′ = λu on (−a, a), (4.1.1a)

−u′(−a) + αu(−a) = 0, (4.1.1b)

+u′(+a) + αu(+a) = 0. (4.1.1c)

Note that the sign of u′(±a) corresponds to the outer normal derivative at ±a. We
wish to find an explicit matrix representation of the Dirichlet-to-Neumann operator
introduced in Section 3.5. To this end, we start with the inhomogeneous Dirichlet
eigenvalue problem on Ω = (−a, a), namely

−u′′ = λu on (−a, a), (4.1.2a)

u(−a) = g1, (4.1.2b)

u(+a) = g2, (4.1.2c)

for given Dirichlet data g := (g1, g2)T ∈ C2, which allows us to study the Robin
problem (4.1.1) with the same methods described in Section 3.5: any λ ∈ C solving
the Dirichlet problem (4.1.2) for given g ∈ C2 is an eigenvalue of the Laplacian with
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complex Robin boundary conditions (4.1.1) if and only if there is a solution u of
(4.1.2) such that

u′(−a) = αg1 and − u′(a) = αg2. (4.1.3)

Let us write M(λ) for the function which maps

(g1, g2)T 7→ (u′(−a),−u′(a))T , (4.1.4)

that is, M(λ) ∈ C2×2 is the Dirichlet-to-Neumann operator. In the case of Ω =
(−a, a), the operator in its representation as a 2 × 2-matrix maps given Dirichlet
data (g1, g2)T to the associated Neumann data. Dirichlet-to-Neumann operators in
general are considered in Section 3.5. Thus a Robin eigenvalue λ of −∆α

(−a,a) for
given α corresponds to an eigenvalue α of the eigenvalue equation

M(λ)g = αg = α

g1

g2

 (4.1.5)

for given λ. In anticipation of our later strategy, to study the behaviour of the Robin
eigenvalues, we will in fact study the eigenvalues α of the matrix M(λ). To this end,
we start with the general solution u of (4.1.2) given by

u(x) = C+ cos(
√
λx) + C− sin(

√
λx). (4.1.6)

The coefficients C+ and C− depend on the (half) interval length a, the square root of
the spectral parameter

√
λ, and the Dirichlet data g: adding and subtracting both

equations

u(−a) = C+ cos(
√
λa)− C− sin(

√
λa) = g1 (4.1.7a)

and u(+a) = C+ cos(
√
λa) + C− sin(

√
λa) = g2, (4.1.7b)

respectively, immediately implies

C+ := g2 + g1

2 cos(
√
λa)

and C− := g2 − g1

2 sin(
√
λa)

, (4.1.8)
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where C+ = 0 if u is odd and C− = 0 if u is even. Using these constants, the (outer)
normal derivatives of u read

−u′(−a) =
√
λ
(
−g2 + g1

2 tan
√
λa− g2 − g1

2 cot
√
λa
)
, (4.1.9)

and similarly

u′(+a) =
√
λ
(
−g2 + g1

2 tan
√
λa+ g2 − g1

2 cot
√
λa
)
. (4.1.10)

Consequently, for λ such that

λ /∈ Sa := {z ∈ C : sin(
√
za) cos(

√
za) = 0} (4.1.11)

we mapg1

g2

 7→ −
−u′(−a)
u′(+a)

 =
√
λ

 g2+g1
2 tan

√
λa+ g2−g1

2 cot
√
λa

g2+g1
2 tan

√
λa− g2−g1

2 cot
√
λa

 (4.1.12)

and the corresponding matrix representation of this linear map, namely the Dirichlet-
to-Neumann matrix,

M(λ) =
√
λ

2

tan
√
λa− cot

√
λa tan

√
λa+ cot

√
λa

tan
√
λa+ cot

√
λa tan

√
λa− cot

√
λa

 , (4.1.13)

is well defined (for λ /∈ Sa). Then, by construction, we have that u is an eigenvector
for the eigenvalue α if and only if

−∂νu(±a) = M(λ)u(±a) = αu(±a), (4.1.14)

that is, exactly the Robin boundary condition (4.1.1). By the two identities

tan z − cot z = −2 cot 2z and tan z + cot z = 2 csc 2z (4.1.15)
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for z ∈ C with sin z 6= 0 we arrive at

M(λ) =
√
λ

− cot 2
√
λa csc 2

√
λa

csc 2
√
λa − cot 2

√
λa

 . (4.1.16)

To calculate the eigenvalues α+ and α− of (4.1.16) we apply the identity csc2 z −
cot2 z = 1 to

det(M(λ)− αI2) = α2 + 2α
√
λ cot(2

√
λa)

+ λ cot2(2
√
λa)− λ csc2(2

√
λa)

(4.1.17)

to obtain

α± =
√
λ
(
± csc(2a

√
λ)− cot(2a

√
λ)
)

(4.1.18)

except at the singularities of cot and csc, that is, except at z ∈ C such that
sin (2a

√
z) = 0; these singularities, however, correspond exactly to the numbers

λ = π2j2

4a2 , j ∈ Z, (4.1.19)

i.e., the eigenvalues of the Dirichlet Laplacian −∆D
(−a,a). From this representation

we can also deduce that the eigenvalues λ(α) of (4.1.5) depend analytically on
λ 6= π2j2/(4a2), or, equivalently, away from possible crossing points λ(α) can be
considered as analytic curves. This is proved formally, and in a more general setting,
in Section 3.2. Moreover, to establish what types of behaviour of λ(α) are possible
as α→∞, we may equally ask what conditions on λ guarantee that the eigenvalues
α of the matrix M(λ) diverge. It occurs that there are three different situations in
which this can happen. We classify them as follows:

(1)
√
λ approaches a pole of cot or csc, that is, zeros of sin, which represent

the Dirichlet eigenvalues. In this case the Robin eigenvalue λ converges to a
Dirichlet eigenvalue as α→∞;

(2) λ diverges to∞ in C away from the positive real axis, where the poles of cot and
csc are located. In this case, as we shall see, both eigenvalues of M(λ) diverge
as ±i

√
λ, corresponding to two divergent Robin eigenvalues λ = −α2 + o(α2);
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(3) λ diverges to ∞ but remains within a finite distance of the real axis, say some
strip parallel to Im λ = 0. While it is clear that the eigenvalues of M(λ) must
also diverge in this case, the relationship between α and λ appears to be more
complicated owing to the proximity of

√
λ to the poles of M(λ).

Let us examine each situation a little more closely, that is, the next three sections
are dedicated to the three cases (1) – (3).

4.1.1 Convergence to the Dirichlet spectrum

For the real case α ∈ R it is known from Theorem 2.4.8 (for the original article, see
[57, Theorem 2]) that on any bounded domain of class C2 the jth Robin eigenvalue
λj(α) ∈ R (numbered ascendingly) converges to the associated Dirichlet eigenvalue
λDj , that is, there exists some constant C > 0 such that

0 ≤ λDj − λj(α) ≤ C
(λDj )2
√
α

(4.1.20)

as α→ +∞, where C does not depend on j. Again the proofs make heavily use of
the self-adjointness of the problem. For the interval one finds a similar behaviour as
Reα→ +∞ as shown in the next theorem.
Consider the behaviour of the eigenvalues α(λ) of M(λ) as

√
λ approaches a

singularity of cot or csc, that is, λ approaches an eigenvalue of the Dirichlet Laplacian:
this is the only case in which α may diverge while λ remains bounded. Inverting this
statement by writing λ as a function of α leads to the following theorem (see [30,
Theorem 2.1]).

Theorem 4.1.1. Suppose the analytic eigencurve λ = λ(α) remains bounded as
α→∞ in C. Then it converges to some eigenvalue of the Dirichlet Laplacian, that
is, there exists some j ∈ Z such that

λ(α)→ π2j2

4a2 (4.1.21)

as α→∞.

Proof. The poles of cot and csc are of order one, and thus so are the poles of the
meromorphic Dirichlet-to-Neumann operatorM(λ) given by (4.1.16). If λ(α) remains
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bounded as α→∞ in C, the only possibility for this behaviour is that
√
λ approaches

one of said poles, namely
√
λ→ πj/(2a) for any j ∈ Z, that is, λ→ π2j2/(4a2) as

α→∞.

Remark 4.1.2. In principle, one could derive additional terms in the asymptotic
expansion of λ(α) as α→∞, in powers of α−1; let us sketch briefly how one might
get further information. The fact that the poles of M(λ) coincide with the Dirichlet
eigenvalues λDj allows us to obtain a partial fraction decomposition

M(λ) = 1
√
λAj −

√
λDj

+Gj(
√
λ) (4.1.22)

for a matrix-valued function Gj which is holomorphic (thus bounded) in a neighbour-
hood of

√
λDj , and matrices Aj. Calculating the residues ±πj/(2a2) of the on- and

off-diagonal components of M(λ), we can write down Aj explicitly, which, together
with the bounded Gj terms, may yield a more detailed statement.

4.1.2 Divergent eigenvalues away from the positive real axis

Suppose now that λ → ∞ in C in such a way that its distance to the positive
real axis diverges. For simplicity, we will actually suppose that λ diverges in a
non-trivial sector C \ T+

θ away from the positive real axis (recall Definition 3.6.1 and
Figure 3.6.1). We then make the following assumption.

Assumption 4.1.3. We suppose that λ diverges in the sector

C \ T+
2θ = {z ∈ C : 2θ < arg z < 2π − 2θ} (4.1.23)

for some small θ ∈ (0, π/2).

This assumption clearly ensures that λ does not approach any eigenvalue λDj ∈
σ(−∆D

Ω ) ⊂ R of the Dirichlet Laplacian. However, as we shall see, it is not necessary
for the asymptotical behaviour λ = −α2 + o(α2). Moreover, the assumption is
equivalent to

√
λ diverging to ∞ in one of the sectors S±θ . But this implies in

particular that Im
√
λ → ±∞, and for such

√
λ we can determine the asymptotic

behaviour of the Dirichlet-to-Neumann matrix (4.1.16), based on the asymptotics of
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its entries

cot z = i
(

1 + 2
e2iz − 1

)
= ∓i +O

(
e∓4Im z

)
(4.1.24)

and

csc z = 2i
eiz − e−iz = O

(
e∓2Im z

)
(4.1.25)

as Im z → ±∞, independently of Re z. Indeed, Assumption 4.1.3 allows us to choose
z = a

√
λ, which leads to

M(λ) = i
√
λ

±1 0
0 ±1

+O
(√

λe∓2aIm
√
λ
)
. (4.1.26)

Considering the leading coefficients to be iI2 and −iI2, respectively, and recalling
the eigenvalue problem for M(λ) (4.1.5), in each of the cases Im

√
λ → +∞ and

Im
√
λ→ −∞ we obtain the respective existence of exactly one diverging eigenvalue

behaving like α = α(λ), whose square satisfies the behaviour

α2 = −λ+O
(
λe∓2aIm

√
λ
)

(4.1.27)

as Im
√
λ→ ±∞. Inverting the equation from α(λ) to λ(α) and noting that these

eigenvalues always correspond to Reα→ −∞ (more precisely, we want α→∞ in
the left half-plane away from the imaginary axis, in order to guarantee that −α2

remains away from the positive real axis), we arrive at the following result (see [30,
Theorem 2.4]).

Theorem 4.1.4. For the interval Ω = (−a, a), if α → ∞ in a sector of the form
T−ϕ for any ϕ ∈ (0, π/2) (see Definition 3.6.1), then for any θ ∈ (0, π − 2ϕ) there
are exactly two divergent eigenvalues of the Robin Laplacian in the sector C \ T+

θ ;
these satisfy the asymptotics

λ(α) = −α2 +O
(
α2e2aReα

)
(4.1.28)

as α→∞ in T−ϕ . If α→∞ in such a way that Reα remains bounded from below,
then the Robin Laplacian has no divergent eigenvalues in C \ T+

θ , for any θ > 0.
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A special case and immediate implication (see [30, Corollary 2.5]) of the latter
theorem is α diverging on any ray (half-line) in the sector T−ϕ for some given
ϕ ∈ (0, π/2): we suppose α may be written as a function

α : (0,∞) 3 t 7→ teiϑ ∈ C (4.1.29)

for some fixed π/2 < ϑ < 3π/2, which in particular means that α(t) ∈ T−ϕ for all
t > 0.

Corollary 4.1.5. For the interval Ω = (−a, a), if α(t) = teiϑ → ∞ for any fixed
π/2 < ϑ < 3π/2, then for any θ ∈ (0, π − 2ϑ), for sufficiently large t > 0 there are
exactly two eigenvalues λ of the Robin Laplacian in the sector C \ T+

θ , and these both
satisfy the asymptotics

λ(α(t)) = −t2e2iϑ +O
(
t2e2 cos(ϑ)at

)
(4.1.30)

as t→∞.

The eigenvalue behaviour described in Theorems 4.1.1 and 4.1.4, and our approach
taken here, might be compared with the corresponding case of real α discussed in
Section 2.3.1 or, for even more details, with [36, Section 4.3.1].

The proof of Theorem 4.1.4 and hence of Corollary 4.1.5

We recall from Section 4.1 that as Im
√
λ→ ±∞ the matrix M(λ) has two divergent

eigenvalues α whose squares both behave like

α2 = −λ+O±
(
λe∓2aIm

√
λ
)
. (4.1.31)

This equation implies the anticipated asymptotic behaviour λ ∼ −α2, however, we
are also interested in the asymptotic remainder term, that is, a function f such that

λ = −α2 +O(f(α)) (4.1.32)

as α→∞ in T−ϕ . Consequently, our next goal is to invert the asymptotic equation
(4.1.31) from α(λ) to obtain the asymptotic equation for λ(α) and thus prove
Theorem 4.1.4. We first sketch the idea behind our inversion, namely an application of
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Rouché’s theorem, because we will also use this again in Section 4.3 when considering
d-dimensional balls. Let τ ≥ 0 and let h : C→ C be a continuous function such that
h(z)→ 0 as Im z → +∞. Suppose that α = α(λ), as a holomorphic function of λ,
satisfies the asymptotics

α(λ) = i
√
λ+ τ + g(

√
λ) (4.1.33)

as Im
√
λ→ +∞ for a certain error term g(

√
λ) which is O(h(

√
λ)); for the choice of

h see the corresponding asymptotics for the Dirichlet-to-Neumann operator, that is,
the remainder term g of (4.1.26) for the interval and (4.3.37) for the ball, respectively.
For given λ and hence α = α(λ), we define a new holomorphic function fα by

fα(z) := iz + τ − α, (4.1.34)

whose only zero is given by zα := i(τ − α). Then (4.1.33) becomes

fα(z) + g(z) = 0

if and only if z =
√
λ(α). Let Bα := Brα(zα) be a ball with centre zα and some given

radius rα > 0, cf. Figure 4.1.1. Then, by Rouché’s theorem, if α is sufficiently large

α

zα1

Bα1

∂Bα1

zα2

Bα2

zα3

Bα3

Bα4

rα1

z

rα2

Figure 4.1.1: Sequence of balls Bα as Reα→ −∞. For each z ∈ ∂Bα we have |fα(z)| = rα
which is used to compare the moduli of g and fα on ∂Bα.
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and

|g(z)| < |fα(z)| (4.1.35)

for all z ∈ ∂Bα, both fα and fα + g have exactly one zero in Bα. This technique
proves not only the existence of an eigenvalue of the Robin Laplacian that satisfies
said asymptotics, but gives an error term in the asymptotic expansion of λ(α) as
follows. By construction, for each z ∈ ∂Bα we have |fα(z)| = rα. Moreover, g = O(h)
as Im z → +∞ implies the existence of some constant δ > 0, such that

|g(z)| ≤ δ|h(z)| (4.1.36)

on ∂Bα for all sufficiently large α. For all such α we want rα to satisfy

δ |h(z)| < rα, z ∈ ∂Bα. (4.1.37)

To ensure this inequality, the decay of h is crucial: if it is too slow, then the method
fails. This will be clarified in the following proof.

Proof of Theorem 4.1.4. The eigenvalues α± of the Dirichlet-to-Neumann matrix
(4.1.16) read

α± =
√
λ
(
± csc(2a

√
λ)− cot(2a

√
λ)
)
. (4.1.38)

As α → ∞ in C we have either |
√
λ| → ∞ or

√
λ is forced to approach a zero of

sin(2a · ), which corresponds to a Dirichlet eigenvalue. The second case, in particular,
requires λ to remain bounded and thus is covered by Theorem 4.1.1 (alternatively,
one could adapt the proof of Theorem 1.2.6 to dimension d = 1). We divide the
proof into four steps:
Step 1: We assume that for some given θ ∈ (0, π) some Robin eigenvalue λ diverges

to ∞ away from the real axis, inside the sector S+
θ which, in particular, yields

Im
√
λ→ +∞. In Section 4.1.2 we saw that for this behaviour of

√
λ we obtain

α = ±i
√
λ+O

(√
λe−2aIm

√
λ
)

(4.1.39)

as Im
√
λ→∞; for more details see (4.1.24)-(4.1.27). (The other case Im

√
λ→ −∞

will be discussed in Step 3.)
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Step 2: It remains to invert this asymptotical behaviour by means of the Rouché
inversion technique sketched above. This will prove (based on the assumed asymptotic
behaviour of α) the existence of exactly two (see Step 3 and 4) divergent eigenvalues
λ which obey (4.1.39) away from the real axis. Here we deal with the inversion; as
mentioned before, we will only consider the case Im

√
λ → +∞ in detail. So let

τ = 0, that is fα(zα) = 0 for zα = −iα. Here we take h(z) := ze−2aIm z, which satisfies
h(z)→ 0 as Im z → +∞. By construction, every point z ∈ ∂Bα is represented by

z = zα + rαeiϕ = −iα + rαeiϕ (4.1.40)

for some ϕ ∈ [0, 2π). Our goal is to estimate h as in (4.1.37): a short calculation
using (4.1.40) gives

|h(z)| =
∣∣∣ze−2aIm z

∣∣∣ (4.1.41a)

=
∣∣∣(−iα + rαeiϕ

)
exp

[
−2aIm

(
−iα + rαeiϕ

)]∣∣∣ (4.1.41b)

≤ (|α|+ rα) exp
[
−2aRe (−α)− 2aIm

(
rαeiϕ

)]
(4.1.41c)

= (|α|+ rα) exp [2aReα− 2arα sinϕ] (4.1.41d)

≤ (|α|+ rα) e2arαe2aReα. (4.1.41e)

We now choose rα > 0 to ensure (4.1.37) on ∂Bα. To this end, it suffices to find rα
such that

δ (|α|+ rα) e2aReα < rαe−2arα (4.1.42)

for sufficiently large α; we make the ansatz

rα = C|α|e2aReα (4.1.43)

for a suitable constant C > 0 (in fact we may take any C > δ). Then, for such an
rα, (4.1.42) is equivalent to

δ
(
|α|+ C|α|e2aReα

)
e2aReα < C|α|e2aReα exp

[
−2aC|α|e2aReα

]
(4.1.44)
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and after rearrangement we obtain

δ
(
1 + Ce2aReα

)
< C exp

[
−2aC|α|e2aReα

]
, (4.1.45)

that is,

δ
(
1 + Ce2aReα

)
e2Ca|α|e2aReα

< C. (4.1.46)

Since

Ce2aReα → 0 and e2Ca|α|e2aReα → 1 (4.1.47)

as Reα → −∞, the left-hand side of (4.1.46) converges to δ and hence (4.1.42) is
satisfied whenever Reα is sufficiently large negative, how large depending only on a,
δ and C. In particular, for the ansatz (4.1.43), the inequality (4.1.42) is then valid.
We arrive at

√
λ(α) = −iα +O

(
αe2aReα

)
(4.1.48)

as Reα→ −∞, and thus

λ(α) = −α2 +O
(
α2e2aReα

)
. (4.1.49)

Step 3: We want to sketch how to adapt the proof to the assumption Im
√
λ→ −∞:

one chooses fα(z) = −iz − α which vanishes only for zα = +iα. Similar calculations
as above lead to √

λ(α) = +iα +O
(
αe2aReα

)
(4.1.50)

as Reα→ −∞.

Step 4 – Conclusion: We obtain that in both cases Im
√
λ → ±∞ the real part

Reα is always negative and divergent, that is, each divergent
√
λ within a sector of

the form S+
θ or S−θ (note that

√
λ ∈ S+

θ if and only if −
√
λ ∈ S−θ ) corresponds to

√
λ = iα + +O

(
αe2aReα

)
(4.1.51)
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and

√
λ = −iα +O

(
αe2aReα

)
, (4.1.52)

respectively. We conclude that, under the assumption that α diverges in a sector T−ϕ
with ϕ ∈ (0, π/2), there are exactly two divergent eigenvalues λ ∈ C \ T+

2θ, and both
of them satisfy (4.1.49) as Reα→ −∞. Moreover, this implies that if Reα remains
bounded from below, then there are no divergent eigenvalues λ→∞ in C \ T+

θ for
any 0 < θ < π/2.

4.1.3 Divergent eigenvalues near the positive real axis

While the previous Section 4.1.3 we studied the divergence of the eigenvalues away
from the real axis, we will now consider the other case of λ → ∞ such that, in
particular, there is no θ > 0 such that λ diverges in C \ T+

θ . The calculations
of Section 4.1.2 show that the language of sectors is not necessary to obtain the
asymptotical form (4.1.26) of the Dirichlet-to-Neumann matrix M(λ), indeed, it
is sufficient to assume that Im

√
λ → ∞ and Im

√
λ → −∞, respectively. To this

end, we assume that Im λ 6= 0 (and hence
√
λ) remains bounded. In this case the

asymptotics of M(λ) is less obvious: we have already seen that each of its entries
is meromorphic with poles of order one on the real axis. While the off-diagonal
entries vanish as Im

√
λ→ ±∞, this is not the case if Im

√
λ remains bounded and

the analysis becomes more difficult. Note that the poles of M(λ) correspond to
Dirichlet and Neumann eigenvalues, respectively, and each of them is a discrete point
located on the non-negative real half-axis. If λ diverges in some strip (of fixed width)
parallel to the real axis, the chosen path will pass arbitrarily closely to every single
one of them. The question arises which associated paths of α in the complex plane
correspond to such λ paths.

It would appear that any such λ path requires Reα to be unbounded from below,
cf. Figure 4.1.2. The explicit form of M(λ), which we recall by

M(λ) =
√
λ

− cot 2
√
λa csc 2

√
λa

csc 2
√
λa − cot 2

√
λa

 , (4.1.53)

allows us to calculate its two eigenvalues α± explicitly, that is, for z := 2
√
λa,
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4.1 The interval

Figure 4.1.2: On the left a path in the λ-plane from one pole λ1 of the Dirichlet-to-Neumann
operator to the next one λ2 while passing a zero (the second Neumann eigenvalue µ2). On
the right-hand side the real curve λ(α) ∈ R increasing from λ1 to λ2 as α ∈ R tends from
−∞ to +∞, cf. Figure 2.3.1 or [36, Section 4.3].

α± =
√
λ (− cot z ± csc z) (4.1.54a)

= −i
√
λ

(
e2iz + 1
e2iz − 1 ∓

2eiz

e2iz − 1

)
= ±i

√
λ

eiz ∓ 1
eiz ± 1 , (4.1.54b)

see (4.1.18). From this equation it follows that α ∼ ±i
√
λ as Im

√
λ→∞ in C, cf.

(4.1.26). However, let us consider
√
λ =

√
λ(τ) following some (continuous) path

described by

√
λ = x(τ) + iy(τ). (4.1.55)

Here, the functions x and y possess the properties that

(1) x : [0, 1)→ R is unbounded with x(τ)→∞ as τ → 1;

(2) y : [0, 1)→ R is bounded.

Then we observe the following: firstly, since the imaginary part y of
√
λ remains

bounded, for each such path and each sector T±θ there exists some τθ ∈ [0, 1) such
that

√
λ ∈ T±θ for all τθ < θ < 1; (4.1.56)
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up to a possibly different θ > 0 so too does λ. Secondly, the boundedness of Im λ

implies

λ = x2 + 2ixy − y2 ⇒ |2xy| = |Im λ| < c (4.1.57)

for a constant c > 0, that is, y = O(1/x). Without loss of generality, we consider
α+; from

α+ = (ix− y)e2iax − e2ay

e2iax + e2ay (4.1.58)

by a somewhat tedious calculation we arrive at

Reα+ = 1
2

y (1− e4ay)
cosh(2ay)− cos(2ax) −

x sin(2ax)
cosh(2ay)− cos(2ax) . (4.1.59)

Both denominators are bounded (and since cosh ≥ 1 and cosh t = 1 if and only if
t = 0 they can only vanish if y = 0) and so is the numerator of the first quotient by
assertion. The second numerator, however, diverges (indefinitely) as x = Re

√
λ→∞.

This proves Proposition 4.1.6.

Proposition 4.1.6. Suppose λ diverges along a path within a strip of fixed width
around the positive real axis. Then the corresponding eigenvalues α(λ) of M(λ)
satisfy |Imα(λ)| → ∞ and Reα(λ) oscillates and diverges indefinitely.

Among other things, this intimates, when combined with the proof of Theorem
4.1.4, that the Robin Laplacian can only have divergent eigenvalues in the regime
Reα→ −∞: indeed, if Reα remains bounded from below, then the conjecture rules
out divergent eigenvalues λ such that Im

√
λ remains bounded; while by Theorem 4.1.4

and its proof there can be no divergent eigenvalues λ such that Im
√
λ→ ±∞.

4.1.4 On the orthogonality of the eigenfunctions

In this section we continue with the analysis of the one dimensional Robin problem.
It is a natural question to ask whether for a fixed parameter α ∈ C the set of
eigenfunctions can – just like in the real case – still be chosen to form an orthonormal
basis of L2(−a, a). In contrast to the tools used to obtain the general results of
Section 3.3 here we rely on explicit calculations. So, for j ∈ {1, 2} let λj ∈ C be two

148



4.1 The interval

different eigenvalues of the Robin Laplacian −∆α
Ω on the interval Ω = (−a, a) for

some fixed a > 0. Even though we used the representation of eigenfunctions being
sums of sin and cos functions, here we will consider the eigenfunctions uj : Ω→ C
(corresponding to λj = k2

j ) represented by

uj(x) = Ajeikjx +Bje−ikjx. (4.1.60)

Without loss of generality we choose each kj such that Im kj ≥ 0. Since both
functions uj satisfy the Robin boundary condition

−∆u = −u′′ = λu on (−a, a), (4.1.61a)

−u′(−a) + αu(−a) = 0, (4.1.61b)

+u′(+a) + αu(+a) = 0. (4.1.61c)

we obtain

Aje−ikja(α− ikj) +Bjeikja(α + ikj) = 0 (4.1.62a)

Ajeikja(α + ikj) +Bje−ikja(α− ikj) = 0 (4.1.62b)

for constants Aj, Bj ∈ C \ {0}. Rearrangement of both equations in (4.1.62) yields

e2ikja = Bj

Aj

ikj − α
ikj + α

= Aj
Bj

ikj − α
ikj + α

. (4.1.63)

Hence, we need to consider the two cases (i) Aj = Bj and (ii) Aj = −Bj. In case (i)
we have

e2ikja = ikj − α
ikj + α

⇐⇒ e2ikja = ikj − α
ikj + α

; (4.1.64)

case (ii) similarly implies

e2ikja = − ikj − α
ikj + α

⇐⇒ e2ikja = − ikj − α
ikj + α

. (4.1.65)
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Consequently, this dichotomy corresponds to only having even and odd eigenfunctions,
respectively, and any eigenfunction of −∆α

Ω can be written as

u±(x) = C
(
eix
√
λ ± e−ix

√
λ
)

=

C+ cos
(
x
√
λ
)

for (+),

C− sin
(
x
√
λ
)

for (−)
(4.1.66)

for constants C± = C±(λ) ∈ C \ {0}. This allows us to prove the following lemma.

Lemma 4.1.7. The eigenfunctions of −∆α
(−a,a) are L2-orthogonal if and only if

α ∈ R.

Proof. We have already seen that each eigenfunction u of −∆α
Ω is either even, that

is u = u+ in the sense of (4.1.66), or odd. The Robin boundary problem on the
interval (−a, a) is symmetric (note again that its definition is with respect to the
outer normal derivative), the operator itself is invariant under reflection, and the
subspaces of even and odd eigenfunctions are mutually orthogonal. Thus, it suffices
to prove that (u1, u2) = 0 if and only if α ∈ R for u1 and u2 being simultaneously
even or odd. So, for j ∈ {1, 2}, let kj =

√
λj 6= 0 be the roots (with Im kj ≥ 0) of

two different eigenvalues corresponding to even eigenfunctions u1 6= u2 (scaled such
that Aj = Bj = 1 for j = 1, 2), that is,

(u1, u2) =
∫ a

−a

(
eixk1 + e−ixk1

) (
e−ixk2 + eixk2

)
dx (4.1.67a)

=
∫ a

−a

(
eix(k1−k2) + eix(k1+k2) + e−ix(k1+k2) + e−ix(k1−k2)

)
dx (4.1.67b)

= 2
i(k1 − k2)

(
eia(k1−k2) − e−ia(k1−k2)

)
+ 2

i(k1 + k2)
(
eia(k1+k2) − e−ia(k1+k2)

) (4.1.67c)

= 2eia(k1−k2)

i(k1 − k2)
(
1− e−2ia(k1−k2)

)

+ 2eia(k1+k2)

i(k1 + k2)
(
1− e−2ia(k1+k2)

)
.

(4.1.67d)
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By (4.1.64) and some rearrangements we see that (u1, u2) = 0 if and only if

0 = 1
k1 − k2

(
1− e−2ia(k1−k2)

)
+ e2iak2

k1 + k2

(
1− e−2ia(k1+k2)

)
(4.1.68a)

⇔ 0 =
(
k1 + k2

)(
1− ik1 + α

ik1 − α
· ik2 − α

ik2 + α

)

+
(
k1 − k2

)( ik2 − α
ik2 + α

)(
1− ik1 + α

ik1 − α
· ik2 + α

ik2 − α

)
.

(4.1.68b)

By an elementary but somewhat tedious calculation we arrive at

0 = 2k1k2 (α− α) = 4ik1k2Imα,

or in other words Imα = 0. In the case of both uj being odd, by using (4.1.65)
instead of (4.1.64), in (4.1.68b) the changed signs cancel each other out and we arrive
at the exact same result.

4.2 Cuboids

Based on our understanding of the interval we can easily obtain results for d-
dimensional cuboids (sometimes called hyperrectangles): fix the dimension d ≥ 2 and
choose d intervals (−aj, aj) for a1, . . . , ad > 0. We denote by

Q := (−a1, a1)× · · · × (−ad, ad)

the d-dimensional cuboid of edge lengths 2a1, . . . , 2ad with its centre in 0 ∈ Rd. Let

Aj(α) := −∆α
ej
, (4.2.1)

j = 1, . . . , d, be the one-dimensional Robin Laplacian on the edge ej ' (−aj, aj).
Then there exists a sequence of eigenvalues

λ1(α), λ2(α), . . . ∈ σ(−∆α
Q) ⊂ C (4.2.2)
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of the Robin Laplacian −∆α
Q on Q such that each of these eigenvalues λk(α), k ∈ N,

is given by a sum of eigenvalues of the constituent operators Aj(α), that is,

λk(α) =
d∑
j=1

λ(j)(α), (4.2.3)

where λ(j) ∈ σ(Aj(α)).

Remark 4.2.1. By Theorem 3.3.8 (1) we know that in d = 1 dimension and for each
α ∈ C there exists a Riesz basis of L2((−a, a)) consisting of the eigenfunctions of
−∆α

(−a,a). Now let d ≥ 2; for the d-dimensional hyperrectangle Q ⊂ Rd it follows by
separation of variables that there exists at least a Riesz basis of L2(Q) consisting of
products of the one-dimensional eigenfunctions of the operatorsAj(α) for j = 1, . . . , d,
which correspond to the eigenvalues of the form (4.2.3).

Theorems 4.1.1 and 4.1.4 state that, if α → ∞ in a sector of the form T−ϕ for
some 0 < ϕ < π/2, i.e., a sector completely contained in the left half-plane, on
each ej there are two eigenvalues of Aj, call them λ

(j)
1 , λ

(j)
2 , both of which diverge

like −α2 as α→∞. Consequently, if we start with j = 1, since a single diverging
eigenvalue of A1 can be added to d− 1 non-divergent eigenvalues on the remaining
edges e2, . . . , ed, and for each divergent one we have infinitely many choices, there
are infinitely many divergent eigenvalues of −∆α

Q which behave asymptotically like
−α2. In the next step we choose two divergent eigenvalues λ(1) of A1 and λ(2) of A2

and d− 2 non-divergent eigenvalues of A3, . . . ,Ad. Adding everything up we obtain
infinitely many eigenvalues of −∆α

Q behaving like −2α2. We proceed successively up
to step (d − 1) to obtain infinitely many eigenvalues that behave like −(d − 1)α2.
However, the final step is different: since there are two divergent eigenvalues for each
Aj, j = 1, . . . , d, we obtain not infinitely many but 2d possibilities for an eigenvalue
of −∆α

Q to satisfy the asymptotics −dα2. This results in the following theorem which
is due to [30, Theorem 9.3].

Theorem 4.2.2. Let Q ⊂ Rd, d ≥ 2, be a hyperrectangle and suppose that α→∞
in a sector of the form T−ϕ for some ϕ ∈ (0, π/2) (see Definition 3.6.1). Then for each
j = 1, . . . , d− 1 there are infinitely many divergent eigenvalues λ(α) of −∆α

Q such
that the leading term asymptotics reads λ(α) ∼ −jα2 and (at least) 2d eigenvalues
which behave like λ(α) ∼ −dα2.
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4.3 d-dimensional balls

Remark 4.2.3. As already mentioned in Chapter 1 there are several results on
the eigenvalue asymptotics for domains with less regularity and real parameter α.
However, there are no results for general Lipschitz domains but only for those having
a finite number of “model corners”. Just like in the case of real α [36] we expect that
the asymptotics is mainly driven by the “most acute” corner(s) of the domain – the
sharper the corner(s), the larger the (negative) leading coefficient of the asymptotics.

4.3 d-dimensional balls

We next consider the model case of higher dimensional balls

Ω = B := B1(0) ⊂ Rd (4.3.1)

in dimension d ≥ 2. We will use the notation ∂B = Sd−1 interchangeably. The idea
to study Laplacians on spherical domains is standard: we separate the radial and
spherical parts ∂r and ∆w from the Laplacian ∆. The spherical part ∆w, called
Laplace–Beltrami operator, is introduced in Section 4.3.2 and has a multitude of well
known (spectral) properties, which allow us to write functions in L2(B) in their series
representations with respect to the eigenfunctions of the Laplace-Beltrami operator.
We start by introducing basic notation for spherical harmonics, i.e, as we will later
see, eigenfunctions of ∆w.

4.3.1 On spherical harmonics

Laplace’s spherical harmonics are special functions on Sd−1 in Rd and a basic tool for
studying partial differential equations satisfying a given spherical symmetry in higher
dimensions. The set of Laplace’s spherical harmonics is complete and all functions
within are pairwise orthogonal: they form an orthonormal basis of L2(Sd−1), i.e., each
function defined on a sphere Sd−1 can be written as a sum of spherical harmonics.
This can be interpreted as a generalisation of the fact that each periodic function
defined on a circle can be written as a sum of sines and cosines, or in other words in
its Fourier series representation. We briefly recall a few properties of the eigenvalues
and eigenfunctions of the Laplace-Beltrami operator on Sd−1, which will be useful in
the sequel. For more details and further explanations we refer to [48, Section 2.2]

153



Chapter 4 Examples

which is also the literature both this and the next Section 4.3.1 are based on.

Definition 4.3.1. For l ∈ N0 let PC
l (d) denote the space of all homogeneous

polynomials of degree l in d variables with complex coefficients and define

(1) PC
l (Sd−1) :=

{
P |Sd−1 : P ∈ PC

l (d)
}
,

(2) HC
l (d) :=

{
P ∈ PC

l (d) : ∆P = 0
}
,

(3) HC
l (Sd−1) :=

{
P |Sd−1 : P ∈ HC

l (d)
}
.

Theorem 4.3.2. Let El, l ∈ N0, denote the complex eigenspaces of the Laplace-
Beltrami operator ∆ω on Sd−1. Then we have El = HC

l (Sd−1). Furthermore, they are
of dimension

Md
l := dimEl = dimHC

l (Sd−1) =
d+ l − 1

l − 1

−
d+ l − 3

l − 1

 , (4.3.2)

and we have

L2
C(Sd−1) =

∞⊕
l=0

El. (4.3.3)

The El are eigenspaces of the Laplace-Beltrami operator and one can calculate
that the corresponding eigenvalues µ2

l of the corresponding eigenvalue problem

−∆ωYl,j = µ2
l Yl,j (4.3.4)

are given by

µ2
l = l(d+ l − 2), (4.3.5)

where we denote by Yl,j the eigenfunctions for j = 0, . . . ,Md
l for fixed l ∈ N0, viz.

the spherical harmonics.
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4.3 d-dimensional balls

4.3.2 The Dirichlet Laplacian and Dirichlet-to-Neumann
operator on balls

Let u solve the Dirichlet eigenvalue problem

−∆u = λu on B, (4.3.6a)

u = g on ∂B, (4.3.6b)

for given g ∈ L2(∂B). Then we can write u ∈ L2(B) and g ∈ L2(∂B) in their unique
series representations

u(r, ω) =
∞∑
l=0

Md
l∑

j=0
ul,j(r)Yl,j(ω) (4.3.7)

and

g(ω) =
∞∑
l=0

Md
l∑

j=0
gl,jYl,j(ω), (4.3.8)

respectively. Here, we denote by ω ∈ Sd−1 and r ≥ 0 the angle and the radius
of a point x ∈ B, and Yl,j ∈ HC

l (Sd−1) is the jth spherical harmonic in the lth
eigenspace of the Laplace-Beltrami operator. Note that the continuity condition
requires ul,j(1) = gl,j.

The Laplace operator in polar coordinates reads

∆ = ∂2
r + d− 1

r
∂r + 1

r2 ∆ω (4.3.9)

and with this (and the eigenvalues (4.3.5)) in mind we say that a function u is a
solution of the Dirichlet problem (4.3.6) if and only if there exists a bounded sequence
(u0,j)j≥0 in C such that

λ2ul,j = −u′′l,j(r)−
d− 1
r

u′l,j(r) + l(d+ l − 2)
λ2 ul,j(r), (4.3.10a)

ul,j(1) = gl,j, (4.3.10b)

ul,j(0) = δ0lu0,j (4.3.10c)

hold for all j = 0, . . . ,Md
l and for each l ∈ N0. Here δ0j ∈ {0, 1} is the Kronecker
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delta. If we fix l and j, this differential equation is equivalent to

r2v′′ + (d− 1)rv′ − λ2
[
l(d+ l − 2)

λ2 − r2
]
v = 0. (4.3.11)

This is called Bessel’s differential equation and since we require ul,j(1) = gl,j one can
show that the ansatz

ul,j(r) = gl,j
J d

2 +l−1(λ) r
1− d2J d

2 +l−1(λr) (4.3.12)

solves the boundary value problem (4.3.10). However, this calculation is tedious but
standard and we omit it. Here and from now on Jm is the Bessel function of the
first kind of order m ∈ R: applying the Frobenius method on Bessel’s differential
equation implies

Jm(z) =
(
z

2

)m ∞∑
k=0

(
− z2

4

)k
k!Γ(m+ k + 1) , (4.3.13)

see [1, 9.1.10, p. 360]; however, we will not need this series representation. Using the
identity

J ′m(
√
λ) = m

λ
Jm(
√
λ)− Jm+1(

√
λ), (4.3.14)

also called (second) recurrence relation, for all m ∈ C, see [113, Chap. XVII, 17.21
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(B)], we take the normal derivative ∂r,

−
∂r
(
r1− d2J d

2 +l−1(λr)
)

J d
2 +l−1(λ)

∣∣∣∣∣∣
r=1

= −

(
1− d

2

)
J d

2 +l−1(λ)
J d

2 +l−1(λ)

+
λ
(
d
2 +l−1
λ

J d
2 +l−1(λ)− J d

2 +l(λ)
)

J d
2 +l−1(λ)

(4.3.15a)

= −λ
−J d

2 +k(λ)
J d

2 +k−1(λ)

−
(

1− d

2 + d

2 + l − 1
)
J d

2 +l−1(λ)
J d

2 +l−1(λ)

(4.3.15b)

= λ
J d

2 +l(λ)
J d

2 +l−1(λ) − l, (4.3.15c)

to obtain that for any given l ∈ N0 the Dirichlet-to-Neumann operator M (l)(λ) (with
respect to the l-th subspace HC

l ) maps the Dirichlet data gl,j onto (4.3.15c). We
conclude that this part M (l)(λ) of Dirichlet-to-Neumann operator on ∂B in the
subspace HC

l , identified in the canonical way with CMd
l via the eigenfunctions of

∆ω|HC
l
, is representable by an Md

l ×Md
l diagonal matrix each of whose diagonal

entries is equal to

M (l)(λ) =
√
λ
J d

2 +l(
√
λ)

J d
2 +l−1(

√
λ)
− l. (4.3.16)

The Dirichlet-to-Neumann operator M(λ) is then obtained by summing over all
subspaces HC

l , that is, it may be represented as a diagonal matrix. In particular,
for each l, there are exactly Md

l eigenvalues α of the Dirichlet-to-Neumann operator
M(λ) equal to M (l)(λ), and for our purposes it suffices to consider the M (l)(λ)
individually.

Remark 4.3.3. Since, for orders m ∈ {±1
2 ,±

3
2 , . . . }, the Bessel functions Jm can

be expressed through trigonometric functions multiplied by rational and square root
functions – here if and only if d is odd, in particular for d = 3 – the radial parts
ul,j appear as these spherical Bessel functions. Note that, e.g. for d = 3, the Bessel
functions Jl+ 1

2
in the ansatz (4.3.12) are multiplied by 1/

√
r which makes them

smooth in r → 0.
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Remark 4.3.4. Since each M (l)(λ) is diagonal and the Jordan chains of the Robin
Laplacian and the corresponding Dirichlet-to-Neumann operator are of the same
length, see Section 3.7, root vectors and eigenfunctions coincide and the eigennilpo-
tents are always zero.

Observe that the zeros of the denominator in (4.3.16) are simple and so are the
poles of the whole operator. The numerator does not cancel any of the poles, which
follows from (4.3.14). If we assume that

Jm(
√
λ0) = 0 = Jm+1(

√
λ0) (4.3.17)

for some m ∈ C and some λ0 ∈ C\{0} (we only need m ∈ 1
2N0), then this implies

J ′m(
√
λ0) = 0 and Jm has a zero of order 2, a contradiction. It follows that M (l) is a

meromorphic function having only simple, real poles and an essential singularity in
±∞. We have that

M (l)(λ)g = αg ⇒ |α| =

∣∣∣∣∣∣
√
λ
J d

2 +l(
√
λ)

J d
2 +l−1(

√
λ)
− l

∣∣∣∣∣∣ <∞ (4.3.18)

implies that for |α| → ∞ the right-hand side is forced to diverge as well. Using
(4.3.16), we are led via an explicit formula to the same dichotomy we saw in the
general case in Theorem 1.2.6. Namely, there are two possibilities: either λ converges
to the Dirichlet spectrum or diverges absolutely. In the latter case, as with the
interval, we may further distinguish between eigenvalues λ diverging away from the
positive real axis or in the vicinity of it. This leads to the following three cases.

(1)
√
λ approaches a pole of M (l)(λ), i.e. a zero of J d

2 +l−1, meaning the eigenvalue
λ converges to some element of the Dirichlet spectrum;

(2) λ→∞ in a sector of the form C\T+
2θ for some small θ > 0 (see Definition 3.6.1),

that is, Assumption 4.1.3 holds. In this case,
√
λ remains in S±θ and the quotient

of the Bessel functions in the expression forM (l) remains bounded, see (4.3.30c);

(3) the more complicated case of divergence, where λ→∞ in a sector T+
2θ.

We analyse the three cases separately.
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4.3.3 The convergent eigenvalues

We start with the convergent eigenvalues; we are interested in establishing the rate
of convergence. As we intimated for the interval, we may consider the residues of
the Dirichlet-to-Neumann operator, which also in the case of balls can be reduced
to a scalar problem. For m ∈ R and p ∈ N0, we denote the pth zero of the Bessel
function Jm of order m by jm,p ∈ R. The main result for the converging eigenvalues
on d-dimensional balls is the following theorem (see [30, Theorem 9.8]).

Theorem 4.3.5. Fix l, p ∈ N0. The eigenvalues λ = λ(α) converging to the Dirichlet
spectrum satisfy

λ(α) = j2
d
2−l+1,p −

2j2
d
2−l+1,p

α
+O

( 1
α2

)
(4.3.19)

as |α| → ∞.

Proof. The statement is proved by calculation of the residues of M (l). Indeed, setting

ml := d

2 − l + 1 (4.3.20)

and using (4.3.14), for the pth pole we calculate

Resjml,p
(
M (l)

)
= lim√

λ→jml,p

[
(
√
λ− jml,p)

(√
λ
Jml+1(

√
λ)

Jml(
√
λ)
− l
)]

(4.3.21a)

= lim√
λ→jml,p

[√
λJml+1(

√
λ)

√
λ− jml,p

Jml(
√
λ)− Jml(jml,p)

]
(4.3.21b)

= jml,pJml+1(jml,p)

× lim√
λ→jml,p

(
Jml(
√
λ)− Jml(jml,p)√
λ− jml,p

)−1 (4.3.21c)

= jml,pJml+1(jml,p)

×
(
J ′ml(jml,p)

)−1 (4.3.21d)

= jml,pJml+1(jml,p)

×
(
ml

jml,p
Jml(jml,p)− Jml+1(jml,p)

)−1 (4.3.21e)

= −jml,p. (4.3.21f)
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Since α is an eigenvalue of M (l)(λ) we obtain

(
√
λ− jml,p)α = Resjml,p

(
M (l)

)
+O(

√
λ− jml,p) (4.3.22a)

= −jml,p +O(
√
λ− jml,p) (4.3.22b)

as
√
λ→ jml,p, it follows that

√
λ(α) = jml,p −

jml,p
α

+O
( 1
α2

)
(4.3.23)

and hence for the eigenvalue λ

λ(α) = j2
ml,p
− 2

j2
ml,p

α
+O

( 1
α2

)
(4.3.24)

as α→∞.

4.3.4 Divergence away from the positive real axis

We next study those divergent eigenvalues λ which remain away from the positive
real axis, that is, we now apply Assumption 4.1.3. It will turn out that (unlike for
the interval) the assumption of divergence in a sector, that is, that Im

√
λ grows

sufficiently rapidly compared with Re
√
λ, is important. However, the approach

to determine the asymptotics of α as functions of λ is similar: we first need an
asymptotic expansion of M (l) for large λ, which in turn requires knowledge of the
asymptotics of the Bessel functions appearing in (4.3.16). To this end, let H(1)

m , H(2)
m

be the Hankel functions of the first and second kind, that is,

2Jm(
√
λ) = H(1)

m (
√
λ) +H(2)

m (
√
λ), (4.3.25)
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and set

P (m,
√
λ) : =

∞∑
l=0

(−1)l
Γ
(
m+ 2l + 1

2

)
(2l)!Γ

(
m− 2l + 1

2

)
(2
√
λ)2l

(4.3.26a)

= 1− (4m2 − 1)(4m2 − 9)
2!(8
√
λ)2

+ (4m2 − 1)(4m2 − 9)(4m2 − 25)(4m2 − 49)
4!(8
√
λ)4

− . . .
(4.3.26b)

as well as

Q(m,
√
λ) :=

∞∑
l=0

(−1)l
Γ
(
m+ (2l + 1) + 1

2

)
(2l + 1)!Γ

(
m− (2l + 1) + 1

2

)
(2
√
λ)2l+1

(4.3.27a)

= 4m2 − 1
8
√
λ
− (4m2 − 1)(4m2 − 9)(4m2 − 25)

3!(8
√
λ)3

+ . . . . (4.3.27b)

It is known that (see [1, 9.2, p. 364])

H(1)
m (
√
λ) =

√
2

π
√
λ

(
P (m,

√
λ) + iQ(m,

√
λ)
)

ei
√
λ− iπ

4 (2m+1) (4.3.28)

for −π < arg
√
λ < 2π and

H(2)
m (
√
λ) =

√
2

π
√
λ

(
P (m,

√
λ)− iQ(m,

√
λ)
)

e−i
√
λ+ iπ

4 (2m+1) (4.3.29)

for −2π < arg
√
λ < π. Let Pl(m,

√
λ) and Ql(m,

√
λ) be the sums (4.3.26a) and

(4.3.27a), respectively, up to the lth summand. To obtain the order 1/
√
λ, we only
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have to consider the first terms in the expansions of P and Q to obtain

Jm(
√
λ) = 1

2
(
H(1)
m (
√
λ) +H(2)

m (
√
λ)
)

(4.3.30a)

∼ 1
2

√
2

π
√
λ

[ (
P0(m,

√
λ) + iQ0(m,

√
λ)
)

ei
√
λ− iπ

4 (2m+1)

+
(
P0(m,

√
λ)− iQ0(m,

√
λ)
)

e−i
√
λ+ iπ

4 (2m+1)
] (4.3.30b)

=
√

1
2π
√
λ

(1 + i4m
2 − 1

8
√
λ

)
ei
√
λ− iπ

4 (2m+1)

+
(

1− i4m
2 − 1

8
√
λ

)
e−i
√
λ+ iπ

4 (2m+1)

.
(4.3.30c)

The non-(fractional-order)polynomial terms ei
√
λ and e−i

√
λ of H(1)

m (
√
λ) and H(2)

m (
√
λ)

yield exponential decrease and increase in S+
θ and S−θ , respectively. In a neighbour-

hood of the real axis, however, the remainder terms of the increasing expansion
dominate the leading terms of the decreasing expansion on the other side of the real
axis. This is why we want to add up both terms to obtain [1, 9.2.1, p. 364], viz.

Jm(
√
λ) = 1√

2π
√
λ

(
2 cos

(√
λ− iπ

4 [2m+ 1]
)

+ e|Im
√
λ|O

(
|
√
λ|−1

) ) (4.3.31)

as
√
λ → ∞ outside T−θ (in particular in T+

θ ). This expansion outside T+
θ (in

particular in T−θ ) is obtained by point reflection of Jm(
√
λ) in zero.

Considering the two cases where
√
λ→∞ in S−θ and S+

θ , separately, we arrive at

Jm(
√
λ) = 1√

2π
√
λ

(
1− i4m

2 − 1
8
√
λ

)
e−i
√
λe iπ

4 (1+2m) +O
(1
λ

)
(4.3.32)

as
√
λ→∞ in S−θ and

Jm(
√
λ) = 1√

2π
√
λ

(
1 + i4m

2 − 1
8
√
λ

)
e+i
√
λe− iπ

4 (1+2m) +O
(1
λ

)
(4.3.33)

as
√
λ→∞ in S+

θ , respectively. Using (4.3.32) and (4.3.33) and recalling the relation
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m = d
2 + l − 1, we calculate

Jm+1(
√
λ)

Jm(
√
λ)

=

(
1− i4(m+1)2−1

8
√
λ

)
exp

(
iπ
4 [1 + 2(m+ 1)]

)
(
1− i4m2−1

8
√
λ

)
exp

(
iπ
4 [1 + 2m]

) +O
(1
λ

)
(4.3.34a)

= 8
√
λ− i [(4m2 − 1) + 4(2m+ 1)]

8
√
λ− i(4m2 − 1)

exp
( iπ

2

)
+O

(1
λ

)
(4.3.34b)

=
(

1− i 4(2m+ 1)
8
√
λ− i(2m+ 1)(2m− 1)

)
i +O

(1
λ

)
(4.3.34c)

=
1− i 1

2
√
λ

2m+1 −
i
2(2m− 1)

 i +O
(1
λ

)
(4.3.34d)

= i + 2m+ 1√
λ

+O
(1
λ

)
(4.3.34e)

= i + d− 1
2
√
λ

+ l√
λ

+O
(1
λ

)
. (4.3.34f)

The calculations for the second case
√
λ→∞ in S+

θ works similarly and results in

Jm+1(
√
λ)

Jm(
√
λ)

= −i + d− 1
2
√
λ

+ l√
λ

+O
(1
λ

)
(4.3.35)

and we arrive at

Jm+1(
√
λ)

Jm(
√
λ)

= ±i + d− 1
2
√
λ

+ l√
λ

+O
(1
λ

)
(4.3.36)

in S±θ . Recalling (4.3.16), this means that for each l ∈ N0 we obtain an α = α(λ)
with the behaviour

α = ∓i
√
λ+ d− 1

2 +O
(

1√
λ

)
(4.3.37)

as
√
λ→∞ in S±θ , respectively. This leads us to the following statement, which is

due to [30, Theorem 9.9].

Theorem 4.3.6. Let Ω = B1(0) ⊆ Rd, d ≥ 2, and let α → ∞ in a sector of the
form T−ϕ for any 0 < ϕ < π/2. Then there are infinitely many Robin eigenvalues
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λ(α) such that

λ(α) = −α2 + α(d− 1) +O(1) (4.3.38)

as α→∞ in T−ϕ .

Proof. We invert (4.3.37) to obtain (4.3.38) using Rouché’s theorem, as explained in
Section 4.1.2. First, let

τ = d− 1
2 (4.3.39)

and let α ∈ C be large in some non-trivial sector T−ϕ for any large 0 < ϕ < π/2.
Following the approach of the aforementioned Section 4.1.2 and restricting ourselves
to the positive case of Im

√
λ→ +∞, we have

fα(z) := d− 1
2 + iz − α (4.3.40)

and

g(
√
λ) = O

(
h(
√
λ)
)

(4.3.41)

for the error term

h(
√
λ) = 1√

λ
→ 0 (4.3.42)

as Im
√
λ→ +∞. Then the unique zero zα of fα reads

zα = i
(
d− 1

2 − α
)
. (4.3.43)

Let rα > 0 be the radius of the Ball Bα = Brα(zα). Then for z ∈ Bα and sufficiently
large α we can estimate

|h(z)| ≤ c∣∣∣zα + eiϕ p
|α|

∣∣∣ = c∣∣∣id−1
2 − iα + eiϕ p

|α|

∣∣∣ < c′

|α|
(4.3.44)
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for some constants c, c′ > 0. We make the ansatz

|fα(z)| = rα = C

|α|
(4.3.45)

for a suitable constant C > 0. Consequently, since (4.1.36) holds for some δ > 0 for
sufficiently large α, a similar calculation as in the proof of Theorem 4.1.4 yields

|g(z)| < |fα(z)| on ∂B C
|α|

(zα). (4.3.46)

We end up with the existence of exactly one eigenvalue λ which behaves like

√
λ(α) = −iα + d− 1

2 +O
( 1
α

)
, (4.3.47)

that is, together with the case Im
√
λ → −∞, there are exactly two eigenvalues

which behave like

λ(α) = −α2 + (d− 1)α +O(1) (4.3.48)

as Reα→ −∞.

Remark 4.3.7. For any divergent eigenvalue curve λ(α) on the ball, there is a
complete asymptotic expansion in powers of α, and the above method might be
used to obtain arbitrarily many terms of it. Indeed, the asymptotics of the Bessel
functions (or more precisely the Hankel functions) provides us with everything needed
to determine the asymptotics of the Dirichlet-to-Neumann operators M (l)(λ), and
thus of α as Im

√
λ→ ±∞: taking more terms in (4.3.30a) results in more terms in

(4.3.32) and (4.3.33), and so too in (4.3.37), which can then again be inverted.

4.3.5 Divergence near the positive real axis

We reconsider the asymptotics in (4.3.31) and observe the oscillating nature of the
cosine part as Re

√
λ increases – the summand iπ

4 [2m+ 1] appearing in the argument
is simply a phase shift. Suppose that Im

√
λ remains bounded as

√
λ→∞ in T+

θ ,
i.e., we explicitly do not apply Assumption 4.1.3. Then it appears that Jm(

√
λ) is

dominated by λ1/4 cos(
√
λ). However, the cosine having zeros on the real axis might

be, in a neighbourhood of said zeros, dominated by the O(|
√
λ|−1) remainder term:
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thus this asymptotic expansion cannot be used. Furthermore, a calculation of the
asymptotics as in (4.3.36) then leads to more complicated behaviour.
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Quantum Graph Laplacians
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5.1 The Robin problem on compact quantum
graphs

This last chapter follows the article On the eigenvalues of quantum graph Laplacians
with large complex δ couplings [76] by James B. Kennedy and myself - not always
in structure but in content. In similar ways to the previous chapters on the Robin
Laplacian on bounded domains we exploit the duality of the Dirichlet-to-Neumann
operator M(λ) and the Robin Laplacian −∆α

G in order to give asymptotic formulas
for the eigenvalues, see Sections 5.2 and 5.3 for the construction of the Dirichlet-to-
Neumann operator and its asymptotics, respectively. In Section 5.4 we analyse the
numerical range of −∆α

G to obtain (similarly to the localisation theorem 3.4.1) that
the numerical range and hence the eigenvalues are localised in a parabolic region.
This allows us to control both the real and imaginary parts of the Robin eigenvalues
in terms of the real and imaginary party of α.
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Chapter 5 Quantum Graph Laplacians

5.1.1 On quantum graphs

We first need to introduce some basic terminology; we refer to the monographs
[27, 95] or the elementary introduction [23] for more details. The theory of quantum
graphs considers differential operators on so called metric graphs, that is, a set of
points (vertices) connected by segments (edges). For the differential operator the
edges are no different from one-dimensional intervals: the Laplacian, for example,
acts as the second derivative along each edge; the vertices can be interpreted as the
boundary of the graph which in our case gets equipped with the Robin condition,
that is, δ couplings in some (or all) of the vertices.

Figure 5.1.1: A (connected) compact graph with 11 vertices and 12 edges.

Definition 5.1.1. A compact metric graph G = (V , E) consists of

(1) a finite vertex set V = {v1, . . . , vn}

(2) and a finite edge set E = {e1, . . . , em},

where each edge e is identified with a compact interval [0, `e] ⊂ R of length `e > 0,
denoted by

e ' [0, `e]. (5.1.1)

The endpoints 0 and `e correspond to the vertices which are incident with the edge e
and we write v ∼ e (or interchangeably e ∼ v), if a vertex v is incident with e.

While the notation with respect to the endpoints 0 and `e implicitly presupposes
an orientation on e, we will see that since the sesquilinear forms are invariant under
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the transformation

[0, `e] 3 x 7→ `e − x, (5.1.2)

the associated differential operators we will be considering do not depend on this
choice of orientation.

Definition 5.1.2. (1) The degree of a vertex v ∈ V , denoted by deg v ≥ 1, is the
number of edges with which v is incident, that is,

deg v := # {e ∈ E : e ∼ v} (5.1.3)

for v ∈ V .

(2) We explicitly allow our graphs to have loops (edges both of whose endpoints
correspond to the same vertex; in this case the edge is counted twice when
computing the degree of the vertex) and we allow multiple edges between any
given pair of vertices, cf. Figure 5.1.2.

G1 G2

ve v1 v2

e3

e2

e4

e5

e1

e6

Figure 5.1.2: The graph G1 is called loop and G2 is a pumpkin graph with parallel edges
e1, . . . , e6.

Equipped with the usual metric corresponding to the shortest Euclidean path
between two points, G is a compact metric space. The graph is connected if and
only if it is connected as a metric space. We will always assume G to be such a
connected compact metric graph. On G, as customary, we can define the space L2(G)
of square integrable functions, the space C(G) ↪→ L2(G) of continuous functions, and
the Sobolev space H1(G) ↪→ C(G), respectively:
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Definition 5.1.3. We define

(1) the following function spaces

L2(G) =
⊕
e∈E

L2(e) '
⊕
e∈E

L2((0, `e)), (5.1.4a)

C(G) = {f : G → C : f |e ∈ C(e) for all e ∈ E

and f is continuous at each v ∈ V},
(5.1.4b)

H1(G) = {f ∈ C(G) : f |e ∈ H1(e) for all e ∈ E}; (5.1.4c)

(2) the integral of a function f over G by
∫
G
f dx :=

∑
e∈E

∫
e
f |e dx; (5.1.5)

(3) the expression ∂
∂ν
f |e(v) as the derivative of f along the edge e at v, pointing

into v (which may be thought of as the outer normal derivative to the edge e
at v); this exists if f |e ∈ C1(e).

5.1.2 The Robin Laplacian: complex δ couplings

To define our operator, we first need to identify a distinguished set of vertices, which
will be equipped with our Robin-type condition: we fix an arbitrary set

VR = {v1, . . . , vk} ⊂ V (5.1.6)

with cardinality k ≤ n := |V| and call VR the set of Robin vertices, consistent with
the nomenclature in [27, Section 1.4.1]. We further fix a vector

α = (α1, . . . , αk)T ∈ Ck (5.1.7)

with αj = α(vj) for j = 1, . . . , k, that is, the vector of Robin parameters where each
v1, . . . , vk gets equipped with its corresponding parameter α1, . . . , αk.
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Definition 5.1.4. We define a sesquilinear form aα : H1(G)×H1(G)→ C by

aα[f, g] :=
∫
G
f ′ · g′ dx+

k∑
j=1

αjf(vj)g(vj) (5.1.8)

for f, g ∈ H1(G) in the sense of (5.1.5).

G = G(VR,VN , E)

e1

e5

e9

e7

e2

e4

e3

e8

e6

e10
e11

e12

v1 v2

v3

v5v6

v7

v4 v8

v11 v9

v10

Figure 5.1.3: A connected graph G(VR,VN , E) with six Robin vertices v1, . . . , v6, five
Neumann–Kirchhoff vertices v7, . . . , v12, and 12 edges e1, . . . , e12: the red edges e1, . . . , e6
are intervals of the type R–R (cf. Section 4.1), e7, . . . , e10 are of type R–N and e11, e12 of
type N–N .

Integration by parts (each occurring integral is simply 1−dimensional) shows that
the operator on L2(G) associated with aα is the Laplacian, i.e., − d2

dx2 on each edge,
whose domain consists of those functions f ∈ H1(G) such that

(1) f |e ∈ H2(e) ↪→ C1(e) for all e ∈ E ,

(2) f is continuous at every vertex v ∈ V ,

(3) f satisfies the following vertex conditions:
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(3.1) if vj ∈ VR, then

∑
e∼vj

∂

∂ν
f |e(vj) + αjf(vj) = 0; (5.1.9)

(3.2) if vj ∈ V \ VR = {vk+1, . . . , vn}, then

∑
e∼vj

∂

∂ν
f |e(vj) = 0. (5.1.10)

By way of analogy with its counterparts on domains and manifolds, we will call the
unbounded operator on L2(G) associated with the form aα from (5.1.8) the Robin
Laplacian and denote it by −∆α

VR . Note that as mentioned in the introduction this
Robin condition is most commonly known as a δ condition (or δ coupling) in the
literature. We call and note that condition (5.1.10) on non-Robin vertices is the
condition usually known as Kirchhoff, which corresponds to the Robin condition
(5.1.9) with α = 0. The Kirchhoff condition together with continuity in each

v ∈ VN := V \ VR = {vk+1, . . . , vn} (5.1.11)

is then known variously in the literature as natural, standard, or even sometimes
just Neumann or Neumann–Kirchhoff; it is for this reason that we will use the letter
“N” as an index for the corresponding vertex set VN = V \ VR. For the construction
of the Dirichlet-to-Neumann matrix, we will need the Dirichlet Laplacian on G.

Definition 5.1.5. We will say that there is a Dirichlet condition at a vertex vj ∈ V
if all functions in the domain of the form or operator are simply equal to zero at vj;
no further conditions on the functions are imposed at vj. We will denote by −∆D

V0

the Laplacian satisfying

(1) Dirichlet conditions at every vertex in a subset V0 ⊂ V ,

(2) continuity plus Kirchhoff conditions at all vertices of VN = V \ V0.

At the level of sesquilinear forms, the form associated with this operator is given by

a0[f, g] =
∫
G
f ′ · g′ dx (5.1.12)
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for f, g in its form domain D(a0) which coincides with

H1
0 (G,V0) := {f ∈ H1(G) : f(vj) = 0 for all vj ∈ V0}. (5.1.13)

We will correspondingly write −∆D
V for the Laplacian on L2(G) satisfying Dirichlet

conditions at every vertex of V. In this case G decouples to a disjoint union of
m = |E| intervals, each equipped with Dirichlet conditions at both endpoints.

We refer in particular to [27, Section 1.4] for more details on these operators and
vertex conditions.

Figure 5.1.4: Dirichlet conditions at a vertex v imply that the graph decouples to a disjoint
union of deg v subgraphs. If every vertex is a Dirichlet vertex, then we arrive at |E|
subgraphs, each of which being an interval.

All the operators −∆α
VR , −∆D

VR are seen to have compact resolvent (since the
embedding of H1(G) into L2(G) is compact), and hence discrete spectrum, for any
α ∈ Ck. For real α or Dirichlet conditions, this is contained in [27, Theorem 3.1.1].
For complex α, this may be deduced from [26, Section 3] or [71, Sections 3.5 and 5],
or proved directly using the compactness of the embedding H1(G) ↪→ L2(G) and the
fact that −∆α

VR must have non-empty resolvent set, e.g., by Theorem 5.4.1. For each
eigenvalue λ ∈ σ(−∆α

VR), there exists an eigenfunction ψ ∈ H1(G) which satisfies

∫
G
ψ′ · ϕ′ dx+

k∑
j=1

αjψ(vj)ϕ(vj) = λ
∫
G
ψϕ dx (5.1.14)

for all ϕ ∈ H1(G). Throughout, we will assume the connected, compact graph G(V , E)
and set VR ⊂ V of Robin vertices to be fixed. Before continuing, we first note the
following basic property of the dependence of the eigenvalues of −∆α

VR on α ∈ Ck

(see [76, Lemma 2.1]).
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Lemma 5.1.6. The operator family A(α) = −∆α
VR, α ∈ C, is self-adjoint holomor-

phic; in particular, A(α)∗ = A(α) for all α ∈ C, and up to possible crossing points,
each eigenvcurve λ(α) depends holomorphically on α.

The proof is similar as the one for Theorem 3.2.11, that is, [74, Theorems VII.4.2
and VII.1.8, Remark VII.4.7]. Analyticity results can also be found in [26, Section 3.4].

5.2 The Dirichlet-to-Neumann operator

We now turn to the proof of Theorem 1.2.8. It is based on the Dirichlet-to-Neumann
operator M(λ), cf. Section 3.5, and its asymptotical behaviour as its spectral
parameter λ tends to infinity in C. To construct the Dirichlet-to-Neumann matrix on
quantum graphs we follow a similar approach as in Section 4.1, that is, we consider
the inhomogeneous Dirichlet problem where a vertex v is equipped with the Dirichlet
condition if and only if v ∈ VR; every other vertex satisfies the Neumann–Kirchhoff
condition. We start with the Dirichlet-to-Neumann matrix Meij(λ) on a single edge
eij ∈ E connecting two distinct vertices vi and vj, and extend it by zero to all the
vertices in VN to obtain an n× n matrix M̃eij(λ). Then, by summing over all these
matrices we obtain MV(λ), that is, the operator acting on all of G. If we remove all
phantom entries, namely each entry Aij of MV(λ) such that there is no edge joining
vi and vj, a representation of MV in block form allows us to give a formula for the
Dirichlet-to-Neumann matrix M(λ) acting on the correct vertex set VR. We want to
perform these steps in detail: given a vector (Dirichlet data)

g = (g1, . . . , gk)T ∈ Ck h VR (5.2.1)

and λ 6∈ σ(−∆D
VR), there exists a unique weak solution f ∈ H1(G) of the Dirichlet

problem

−f ′′ = λf edgewise, (5.2.2a)

f |VR = g, (5.2.2b)∑
e∼vj

∂

∂ν
f |e(vj) = 0 for all vj ∈ VN . (5.2.2c)
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The Dirichlet-to-Neumann operator M(λ) maps given Dirichlet data g = f |VR to
the corresponding Neumann data − ∂

∂ν
f |e(vj) of the same solution f of the problem

(5.2.2), that is, a map from VR to itself. If we fix the order v1, . . . , vk of the vertices
in VR, then M(λ) is canonically identifiable with a matrix in Ck×k. In future we
shall make this identification without further comment. We now wish to analyse this
operator in more detail: we first note that we may assume without loss of generality
that G does not have any loops nor multiple parallel edges (i.e., between any two
distinct vertices there is at most one edge); indeed, if this is not the case, then we
may insert a new, artificial vertex of degree two in the middle of each affected edge as
it is depicted in Figure 5.2.1. When these vertices are equipped with continuity and
Kirchhoff conditions, the Laplacian on the resulting graph is unitarily equivalent to
the one on the unaltered graph (see [24, Section 3]), and so the Dirichlet-to-Neumann
operator on the unaffected set VR of Robin vertices is equally unaffected.

Figure 5.2.1: To avoid loops and parallel edges, that is, edges e1 and e2 and vertices
v1 and v2 with v1 ∼ ej ∼ v2 for j = 1, 2 (e.g. as G2 depicted in Figure 5.1.2, artificial
Neumann–Kirchhoff vertices of degree 2 are inserted; they do not have any effect on the
spectral properties of our differential operators. Note that the loop requires not one but
two artificial vertices to avoid parallel edges.

Now let vi, vj ∈ V be any two distinct vertices and suppose they are joined by a
(unique) edge eij having length `ij > 0. It is known, and a short calculation shows,
that the Dirichlet-to-Neumann operator associated with the graph consisting just of
this edge (that is, an interval of length `ij) and the parameter

λ ∈ C \
{
π2n2

`2
ij

: n ∈ N
}

(5.2.3)
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may be represented by the matrix

Meij(λ) =
√
λ

− cot
√
λ`ij csc

√
λ`ij

csc
√
λ`ij − cot

√
λ`ij

 . (5.2.4)

For more details and a derivation of this representation, we refer to Section 4.1.
Fix λ ∈ C, to be specified precisely later. We denote by M̃eij ∈ Cn×n the matrix
corresponding to the operator (5.2.4) extended by zero to the n− k other vertices in
VN . That is, for fixed 1 ≤ i, j ≤ n, the (i, i)- and (j, j)-entries of M̃eij are given by

√
λAij := −

√
λ cot

√
λ`ij ; (5.2.5)

the (i, j)- and (j, i)-entries of M̃eij are given by

√
λBij :=

√
λ csc

√
λ`ij. (5.2.6)

All other entries are zero, that is,

M̃eij(λ) =
√
λ



0 · · · · · · · · · 0
... Aij 0 Bij

...
... 0 · · · 0 ...
... Bij 0 Aij

...
0 · · · · · · · · · 0


∈ Cn×n. (5.2.7)

Note that there are always (|i−j|−1) zeroes between the 4 non-zero entries of M̃eij (λ),
that is, M̃eij (λ) does always (and only) consist of the quadratic and symmetric block


Aij 0 Bij

0 · · · 0
Bij 0 Aij

 ∈ C(|i−j|+1)×(|i−j|+1) (5.2.8)

embedded in Cn×n: here, Aij are always diagonal entries of M̃eij(λ). We may then
write the Dirichlet-to-Neumann operator MV(λ) acting on all n vertices V, that is,
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5.2 The Dirichlet-to-Neumann operator

MV(λ) ∈ Cn×n, by summing over all the localised matrices (5.2.7),

MV(λ) =
∑
e∈E

M̃e(λ) ∈ Cn×n, (5.2.9)

which is well defined as long as λ is not in σ(−∆D
V ), i.e., not in the Dirichlet spectrum

of any of the decoupled edges considered as a collection of disjoint intervals. Note
that not each pair (vi, vj) is connected by some eij : if we set Aij = Bij = 0 whenever
there is no edge joining vi and vj, then each diagonal entry of MV(λ) consists of
exactly n addends (some of them being 0) and we may explicitly write the (i, j)-entry
of MV(λ) as

(MV(λ))ij =
√
λ


n∑
p=1

Aip if i = j,

Bij if i 6= j.

(5.2.10)

By this representation it is immediate that MV(λ) depends analytically on λ, with
isolated singularities at the discrete set σ(−∆D

V ), that is, the spectrum of the
Laplacian on G where each vertex v ∈ V is equipped with the Dirichlet condition.
Importantly, the Dirichlet-to-Neumann matrix MV(λ) acting on VR can be written
in a natural way in terms of MV(λ). We recall that V consists of the (ordered)
vertices v1, . . . , vn, such that the first k entries VR = {v1, . . . , vk} are equipped with
the Robin boundary condition. With this ordering, we write MV(λ) in block form as

MV(λ) =
R CT

C K

 , (5.2.11)

where

(1) R ∈ Ck×k represents the restriction of MV to the Robin vertices v1, . . . , vk,

(2) K ∈ C(n−k)×(n−k) is the restriction to the remaining n− k Neumann–Kirchhoff
vertices vk+1, . . . , vn,

(3) and C ∈ C(n−k)×k and its transpose CT give the interaction (“coupling”)
between these two groups of vertices.

The following representation (see [76, Lemma 3.1]) is adapted from [44], although
we expect it is known elsewhere.
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Chapter 5 Quantum Graph Laplacians

Lemma 5.2.1. With the representation (5.2.11), the matrix K is invertible if and
only if λ 6∈ σ(−∆D

VR). Whenever K is invertible, the operator M(λ) is well defined
and may be represented in matrix form by

M(λ) = R− CTK−1C. (5.2.12)

Proof. Let

xR := (x1, . . . , xk)T = g ∈ Ck ' VR (5.2.13)

be the Dirichlet data from (5.2.2b). We write

x =
xR
xN

 =
 g

xN

 ∈ Cn (5.2.14)

for the components

xN := (xk+1, . . . , xn)T := f |VN ∈ Cn−k ' VN , (5.2.15)

of values of f in the non-Robin vertices. Then xN is well defined and thus uniquely
determined by the first k entries xR since λ 6∈ σ(−∆D

VR). By construction we have

MV(λ)x =
R CT

C K

xR
xN

 =
∑e∼v

∂
∂ν
f |e(v)

0

 =
M(λ)xN

0

 (5.2.16)

That is,

M(λ)xN = RxR + CTxN , (5.2.17)

where

CxR +KxN = 0. (5.2.18)

Since xN is uniquely determined by xR ∈ Ck arbitrary, we must have that K is
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5.3 Asymptotics of the Dirichlet-to-Neumann operator

invertible. This implies

xN = −K−1CxR, (5.2.19)

and thus (5.2.12) follows if λ 6∈ σ(−∆D
VR). If on the other hand λ ∈ σ(−∆D

VR), then
since xN is no longer uniquely determined by xR in general (if ψ is an eigenfunction
of −∆D

VR , then x
N + ψ|VN is also a solution), K cannot be invertible.

We can now state the central duality result linking the eigenvalues of M(λ) and
−∆α

VR . Here we will still suppose that the vector α = (α1, . . . , αk)T ∈ Ck is given
and assume that the (ordered) vertices vj ∈ VR = {v1, . . . , vk} are equipped with the
corresponding Robin parameter αj; for brevity we will then write

Iα := diag{α1, . . . , αk} ∈ Ck×k. (5.2.20)

The next statement is well known in the case of real α ∈ R (see [27, Theorem 3.5.2]);
the proof in the complex vector case α ∈ Ck is identical, and we omit it.

Theorem 5.2.2. Let λ ∈ ρ(−∆D
VR). Then λ ∈ σ(−∆α

VR) if and only if

det(M(λ)− Iα) = 0. (5.2.21)

5.3 Asymptotics of the Dirichlet-to-Neumann
operator

We now investigate what happens to M(λ) when λ→∞. We first note the following
trivial but useful implication of Lemma 5.2.1, see [76, Lemma 4.1].

Lemma 5.3.1. The Dirichlet-to-Neumann matrix M(λ) is a meromorphic function
of λ. It is well defined for all λ ∈ ρ(−∆D

VR), and each λ ∈ σ(−∆D
VR) is a pole of finite

order of M(λ).

For a vector z = (z1, . . . , zk) ∈ Ck we denote by m(z) the smallest of the moduli
of its components zj, j = 1, . . . , k, i.e.

m(z) = min
j=1,...,k

|zj|. (5.3.1)
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Chapter 5 Quantum Graph Laplacians

Using the duality between the eigenvalues λ ∈ σ(−∆α
VR) of the Robin Laplacian and

the eigenvalues α ∈ σ(M(λ)) of the Dirichlet-to-Neumann matrix (see Theorem 5.2.2),
we obtain the following statement, see [76, Theorem 4.2].

Theorem 5.3.2. For any compact graph G and any bounded set Ω ⊂ C such that

dist(Ω, σ(−∆D
VR)) > 0 (5.3.2)

there exists a number α̂ > 0 depending only on Ω, G, and VR such that

σ(−∆α
VR) ∩ Ω = ∅ (5.3.3)

for all α = (α1, . . . , αk) ∈ Ck such that m(α) > α̂.

In other words, if we fix any bounded set Ω (strictly) away from the Dirichlet
spectrum, as m(α) grows and exceeds a certain threshold, each single eigenvalue
curve will have left Ω. Since Ω can be chosen to be arbitrarily close to any of the
discrete points of σ(−∆D

VR) the latter theorem immediately implies the following
dichotomy.

Corollary 5.3.3. Suppose m(α) → ∞ and λ = λ(α) is an analytic branch of
eigenvalues of −∆α

VR. Then either λ→∞ in C or λ converges to a point in σ(−∆D
VR)

as m(α)→∞.

Proof of Theorem 5.3.2 and hence of Corollary 5.3.3. For m(α) > 0 we consider the
invertibility of

M(λ)− Iα = Iα (Iα−1M(λ)− I) , (5.3.4)

where Iα−1 := diag{α−1
1 , . . . , α−1

k } is well defined (since m(α) > 0) and satisfies
Iα−1 = I−1

α by definition. Now the matrix M(λ) ∈ Ck×k is a meromorphic function of
λ with singularities at σ(−∆D

VR) (see Lemma 5.3.1), and hence its norm is uniformly
bounded on Ω ⊂⊂ ρ(−∆D

VR). Hence for each such Ω there exists a constant cΩ > 0
independent of α ∈ Ck such that

sup
λ∈Ω
‖Iα−1M(λ)‖Ck→Ck ≤ sup

λ∈Ω
‖Iα−1‖Ck→Ck ‖M(λ)‖Ck→Ck (5.3.5)

= cΩ ‖Iα−1‖Ck→Ck −→ 0 (5.3.6)
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5.3 Asymptotics of the Dirichlet-to-Neumann operator

as m(α) → ∞. This convergence implies that (Iα−1M(λ)− I) is invertible (as a
Neumann series) and the right-hand side of (5.3.4) is, too. That is, there exists a
constant α̂ > 0 such that

m(α) > α̂ =⇒ M(λ)− Iα is invertible. (5.3.7)

In particular, the kernel of M(λ)− Iα is trivial for m(α) > α̂, and thus there exist
no eigenvalues of the Robin Laplacian in Ω by Theorem 5.2.2.

It remains to analyse what divergent behaviour is possible, and under what
circumstances. To this end, we use the representations (5.2.10), (5.2.11), and (5.2.12)
together with ideas drawn from Section 4.1 for the interval. We first note that since
the coefficients Aij and Bij given by (5.2.5) and (5.2.6), respectively, only consist of
sine and cosine functions of

√
λ. Thus they are periodic in Re

√
λ and we only need

to consider the case Im
√
λ→ ±∞, in which case we have the asymptotics

cot z = i
(

1 + 2
e2iz − 1

)
= ∓i +O

(
e∓4Im z

)
(5.3.8)

and

csc z = 2i
eiz − e−iz = O

(
e∓2Im z

)
(5.3.9)

as Im z → ±∞, independently of Re z. For

z = `ij
2
√
λ (5.3.10)

this gives the following asymptotic expansion of M(λ) ∈ Ck×k. In what follows, for
brevity we will set

D := diag{deg v1, . . . , deg vk} ∈ Nk×k (5.3.11)

as well as

D̃ := diag{deg vk+1, . . . , deg vn} ∈ N(n−k)×(n−k). (5.3.12)

The following lemma corresponds to [76, Lemma 4.4].
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Lemma 5.3.4. Suppose λ→∞ in C in such a way that Im
√
λ→ ±∞, and recall

the definition `G := min{`e : e ∈ E} > 0. Then M(λ) has the asymptotic expansion

M(λ) = ±i
√
λD +O

(√
λe∓`GIm

√
λ
)
. (5.3.13)

as λ→∞.

Proof of Lemma 5.3.4. Recall the matrices R, C and K introduced in (5.2.11). Then
the expression

(MV(λ))ij =
√
λ


n∑
p=1

Aip if i = j,

Bij if i 6= j.

(5.3.14)

for the coefficients of these matrices, cf. (5.2.10), plus the asymptotics

Aij = ±i +O
(
e∓2`ijIm

√
λ
)

and Bij = O
(
e∓`ijIm

√
λ
)
, (5.3.15)

respectively, as Im
√
λ→ ±∞, which follow from (5.3.8) and (5.3.9), imply that

R = ±i
√
λD +O

(√
λe∓`GIm

√
λ
)
. (5.3.16)

Note that D is the coefficient matrix since Aij = 0 if and only if there is no edge
joining vi and vj. To be more precise, if there are deg vj edges joining the Robin
vertex vj, then there are exactly deg vj non-zero addends in the sum (5.3.14), each
of which behaves like ±i

√
λ+O

(√
λe∓2`ijIm

√
λ
)
. Similarly, we obtain

C, CT = O
(√

λe∓`GIm
√
λ
)

(5.3.17)

and

K = ±i
√
λD̃ +O

(√
λe∓`GIm

√
λ
)
. (5.3.18)

From the latter, we obtain (the rough but sufficient estimate) that K−1 = O(1/
√
λ)
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and hence also

CTK−1C = O
(√

λe∓2`GIm
√
λ
)
. (5.3.19)

Combined with the asymptotic expansion for R and the representation

M(λ) = R− CTK−1C (5.3.20)

(cf. (5.2.12)) of M(λ), this immediately yields the assertion (5.3.13).

Our next step is to use the asymptotics of M(λ) to analyse the asymptotical
behaviour of its eigenvalues. To this end, we use the Gershgorin circle theorem, see
[60], which is particularly useful for diagonally dominant matrices.

Theorem 5.3.5. Let A = (aij) ∈ Ck×k and define the radii

ri :=
∑
j=1
j 6=i

|aij|, i = 1, . . . k. (5.3.21)

(1) The spectrum of A = (aij) ∈ Ck×k satisfies

σ(A) ⊆
k⋃
i=1

Bri(aii) =: GA. (5.3.22)

(2) Moreover, every connected component of GA contains exactly as many eigen-
values as diagonal elements of A.

Corollary 5.3.6. For the Dirichlet-to-Neumann matrix M(λ) on a compact graph
with Robin vertices v1, . . . , vk we have that its eigenvalues βj, j = 1, . . . , k, satisfy

βj = i
√
λ deg vj +O

(√
λe−`GIm

√
λ
)

(5.3.23)

as Im
√
λ→ +∞.

Proof. By the statement

M(λ) = i
√
λD +O

(√
λe−`GIm

√
λ
)

(5.3.24)
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of Theorem 5.3.4 it is immediate that

ri(λ) = O
(√

λe−`GIm
√
λ
)

(5.3.25)

as Im
√
λ→ +∞. Thus, the Gershgorin disks (at this point it is irrelevant if they

are open or closed)

Bri(λ) (Mii(λ)) = Bri(λ)
(
i
√
λ deg vi +O

(√
λe−`GIm

√
λ
))
, (5.3.26)

i = 1, . . . , k, get exponentially smaller as Im
√
λ → +∞. Additionally, if λ is

sufficiently large, then the connected components of GM(λ) are exactly

k′ := |{deg v1, . . . , deg vk}| ≤ k (5.3.27)

disjoint disks and their union contains all the eigenvalues β1, . . . , βk. The statement
of the corollary is immediate after a possible rearrangement of their order.

To prove Theorem 1.2.8, it remains to “invert” these asymptotics, that is, express
these curves as functions of α. For this part of the argument, we may essentially
appeal to the proof given in [30, Section 9.1.3] for the corresponding statement on
the interval.

Proof of Theorem 1.2.8.
Firstly, we sketch the general idea: assume that α = (α1, . . . , αk) → ∞ in Ck and
recall the following two cases that for some m = 0, 1, . . . , k the vector α can be
reordered such that

(1) α0 := α1 = · · · = αm →∞ in a sector fully contained in the open left half-plane;

(2) αm+1, . . . , αk → ∞ such that Reαj remains bounded from below, for all
m+ 1 ≤ j ≤ k.

Note that the first case is allowed to be empty, which is the case if and only if m = 0.
Here and throughout the proof we understand “eigenvalue” to mean “analytic curve
of eigenvalues”. We wish to show that for each v1, . . . , vm (each of which is equipped
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with α0) there exists a corresponding eigenvalue λj which behaves like

λj = − α2
0

(deg vj)2 +O
(
α2

0e`GReα0
)

(5.3.28)

as α0 →∞, and that these m eigenvalues λ1, . . . , λm are the only ones which diverge
away from the positive real semi-axis.
Step 1: There are at least m such eigenvalues. Suppose first that λ is such

an eigenvalue diverging away from the positive real semi-axis; then necessarily
Im
√
λ→ ±∞. We obtain k eigenvalues of M(λ), namely β1, . . . , βk, each of which

behaves like (5.3.23). Now fix j = 1, . . . ,m. By the same inversion argument based
on Rouché’s theorem that was used in Section 4.1, there exists an eigenvalue λ of
−∆α

VR which satisfies

λ = − α2
0

(deg vj)2 +O(f(α0)) (5.3.29)

with the asymptotical error term

f(α0) = α2
0e`GReα0 (5.3.30)

as α0 →∞. We arrive at m divergent eigenvalues, each of which satisfies (5.3.28).
Step 2: There are at most m such eigenvalues. Suppose now that there is an

additional, (m+ 1)st divergent eigenvalue λ = λ(α) which satisfies Im
√
λ→ ±∞.

Then, again, the matrix M(λ) has k eigenvalues satisfying (5.3.23). By assumption,
λ is not an eigenvalue of −∆α

VR corresponding to the m curves λ1, . . . , λm found
above, that is, it does not correspond to the parameters α0. Hence, applying the same
inversion procedure, there must be some q ∈ {m+ 1, . . . , k} such that λ corresponds
to the eigenvalue αq ↔ λ described asymptotically by (5.3.23). But now Step 4 of
the proof of Theorem 4.1.4 shows that the condition Im

√
λ→ ±∞ together with

the relation (5.3.23) implies that necessarily Reαq → −∞ as λ(αq) → ∞. This
contradicts assumption (2), and we conclude that no such divergent eigenvalue λ can
exist which is not already among the m found above. Finally, we already know from
Corollary 5.3.3 that each eigenvalue of −∆α

VR which does not diverge to ∞ converges
to some eigenvalue of the Dirichlet Laplacian −∆D

VR as α→∞. This completes the
proof.
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Remark 5.3.7. It is already mentioned in the introduction that we always assume
the standard (continuity-Kirchhoff) conditions to hold on the set VN = V \ VR of
non-Robin vertices. The fact that we use these vertex conditions plays a major
role in two places: (1) the block matrix representation M(λ) = R − CTK−1C of
the Dirichlet-to-Neumann operator from Lemma 5.2.1, and (2), in the subsequent
asymptotics thereof in Lemma 5.3.4, more precisely in (5.3.19).

(1) Let us suppose for a moment that the functions in the domain of −∆α
VR satisfy

other (local) vertex conditions for all vertices in VN . In general, this would result
in a different matrix K̃ in both equations (5.2.11) and (5.2.16). Consequently,
the last n−k components CxR+K̃xN of (5.2.16) may no longer vanish and the
argument that xN is easily expressible as a function of xR fails. Moreover, if the
vertex condition assumed to hold on VN implies that CxR + K̃xN depends on f
(in our setting, the canonical example is any Robin condition), then xN may no
longer be uniquely determined by xR, that is, K̃ is no longer invertible. Thus
for our proof, we require the boundary condition to satisfy CxR + K̃xN = 0.

(2) The asymptotic behaviour (5.3.13) of the Dirichlet-to-Neumann matrix does
indeed depend on the asymptotics of K̃, however, we only require that CT K̃−1C

does not influence the leading term. In other words, we only need that K̃ does
not decrease too rapidly as Im

√
λ→ ±∞.

However, since this consideration is negligible for our main subject, will omit the
question of other vertex conditions for which our proof would still work.

5.4 Estimates on the numerical range and the
eigenvalues

In this section we want to give estimates on the location of the eigenvalues to comple-
ment the asymptotic results of the divergent eigenvalues described by Theorem 1.2.8.
To this end, we study the numerical range W (aα) of the Robin form aα with (re-
spect to the set VR = {v1, . . . , vk} ⊂ V of Robin vertices and the vector of Robin
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parameters α = (α1, . . . , αk)T ∈ Ck), namely

W (aα) = {aα[f, f ] : ‖f‖2 = 1} (5.4.1a)

=


∫
G
|f ′|2 dx+

k∑
j=1

αj|f(vj)|2 :
∫
G
|f |2 dx = 1

 ⊂ C, (5.4.1b)

noting that every eigenvalue of −∆α
VR is an element ofW (aα). For every fixed α ∈ Ck

we will present three sets of results which, while perhaps not surprising, give a fairly
complete picture of the location spectrum: our first results, namely Theorem 5.4.1,
give an estimate on the location of the set W (aα) in the complex plane,

σ(−∆α
G) = σp(−∆α

G) ⊂ W (−∆α
G) ⊂ W (aα), (5.4.2)

analogous to those of Section 3.4 for the complex Robin Laplacian on a domain
Ω in Rd. This leads to bounds on the real part of the eigenvalues which are, in
particular, sharp up to the first term of the asymptotics as α→∞ in Ck. In addition
to these bounds, we also consider more precise estimates on the imaginary part of
the eigenvalues afterwards. For the numerical range, we consider the case of α ∈ Ck

and the case of vertex-independent

α := α1 = . . . = αk ∈ C (5.4.3)

separately. Notationally, for the fixed set VR = {v1, . . . , vk} of Robin vertices we will
always write

D := min
j=1,...,k

deg vj. (5.4.4)

We also recall that `G = min{`e : e ∈ E} is the length of the shortest edge in G. The
following statement is due to [76, Theorem 5.1].

Theorem 5.4.1. (1) Let α ∈ Ck. Then the numerical range W (aα), and in
particular every eigenvalue of −∆α

VR, is contained in the set

ΛG,α :=

t+
k∑
j=1

αjsj ∈ C : t ≥ 0, sj ∈
[
0, 2

D

√
τj + 2

D`G

] , (5.4.5)
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where the numbers 0 ≤ τj ≤ t satisfy ∑k
j=1 τj ≤ t.

(2) If α := α1 = . . . = αk ∈ C is independent of j = 1, . . . , k, then W (aα) is
contained in

ΛG,α :=
{
t+ αs ∈ C : t ≥ 0, s ∈

[
0, 2

D

√
t+ 1

D`G

]}
. (5.4.6)

Remark 5.4.2. (1) By the definition of the numerical range (5.4.1) (or more
fundamentally, by Definition 5.1.4) we have that if Reαj = Reα(vj) ≥ 0 for
all vj ∈ VR, then Reλ ≥ 0 automatically as well, whereas if the components of
Reα are all negative or of indefinite sign, then Reλ may be negative.

(2) The set ΛG,α is depicted in Figure 5.4.1 in the simple case that α ∈ C with
Reα, Imα > 0; one might compare this depiction with Figures 3.4.1 and 3.4.2
for the complex Robin Laplacian on a domain in Rd.

Figure 5.4.1: The set ΛG,α from Theorem 5.4.1(2), which contains the numerical range
W (aα), for a representative choice of Reα > 0 and Imα > 0, corresponding to the region
between the curve ∂ΛG,α and the real axis. The region is composed of the union of segments
of the form {t+ α · s ∈ C : s ∈ [0, 2

√
t/D + 1/D`G]}, each of slope Imα/Reα, for different

values of t ≥ 0; the parallel lines show these segments for selected values of t1, t2, t3 > 0.
Their endpoints form a parabolic section of ∂ΛG,α open to the right.

The statement of Theorem 5.4.1 will follow from a kind of “trace-type” inequality
which allows us to control precisely the value that an arbitrary H1-function takes at
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5.4 Estimates on the numerical range and the eigenvalues

a given vertex in terms of certain subgraphs (star shaped graphs having the given
vertex as their centre) around it. This might be compared with [30, Lemma 6.5]. To
this end, we first require some notation regarding these subgraphs.

Definition 5.4.3. (1) Let ξ : E → (0, 1] be an edge-dependent length scaling
factor. Given any vertex vj ∈ V , we denote by

Sξj :=
⋃
e∼vj

ξ(e)e (5.4.7)

the star subgraph of G whose central vertex is vj and whose pendant edges are
the edges e incident with vj, scaled by the factor ξ(e) ∈ (0, 1].

(2) If ξ ≡ 1 on E , that is, none of the edges is shortened and Sξj is exactly the
subgraph which is formed by deleting each single edge e 6∼ vj, then we write
Sj instead of S1

j and call it the spanning star at vj.

We will always make the identification that Sξj is a subgraph of G (denoted by
Sξj ⊂ G); in particular, we will treat the scaled edge ξ(e)e ⊂ Sξj as a subset of the
edge e ⊂ G.

Definition 5.4.4. Let G = G(V , E) be a compact metric graph and let V0 ⊂ V be
an arbitrary collection of its vertices. We denote by G0 the subgraph of G consisting
of the union of all spanning stars of all vertices v ∈ V0.

Example 5.4.5. Assume that G is already a star with vertex set V = {v0, v1, . . . , vn}
centred in v0. We further call the edges ej ∼ vj for j = 1, . . . , n.

(1) If V0 = {v0} consists only of the central vertex v0, then the corresponding
spanning star G0 is the whole of G.

(2) If V0 = {vj} for any j = 1, . . . , n, then G0 is just the single edge ej. The
spanning star corresponding to any vertex set V0 ⊂ V such that v0 /∈ V0, then
G0 is, again, a star missing all edges ej with vj /∈ V0.

Definition 5.4.6. For any subgraph G ′ = (V ′, E ′) of G we define

`G′ := min
e∈E ′

`e (5.4.8)
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v1
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Figure 5.4.2: Left: star graph G as in Example 5.4.5 for n = 6 and `ei = `ej for all i 6= j; this
graph is also G0 for V0 = {v0}. Centre: Sξ0 for ξ(ej) = 1, j = 1, 2, 3, 5, 6, and ξ(e4) = 0.5.
Right: spanning star G0 for V0 = {v1}.

to be the length of the shortest edge e of G ′. As usual, we set ‖f‖G′ := ‖f‖G′,2 to be
the L2(G ′)-norm of f .

The following lemma (see [76, Lemma 6.1]) is key to prove Theorem 5.4.1.

Lemma 5.4.7. Let ξ : E → (0, 1] and vj ∈ V be arbitrary and denote by Sξj the
scaled star at vj as described in Definition 5.4.4. Then

deg vj|f(vj)|2 ≤ 2‖f‖Sξj ‖f
′‖Sξj + 1

`Sξj

‖f‖2
Sξj

(5.4.9)

for all f ∈ H1(G). Moreover, if V0 ⊂ V is an arbitrary set of vertices of G and G0

is the subgraph union of spanning stars for V0 as described above, then we have the
estimate

∑
vj∈V0

deg vj|f(vj)|2 ≤ 2‖f‖G0‖f ′‖G0 + 1
`G0

‖f‖2
G0 . (5.4.10)

For the proof of Lemma 5.4.7, we will use the following cut-off functions ϕj ∈ C(G),
which are supported in a certain neighbourhood of vj as depicted in Figure 5.4.3: for
each vj we define ϕj ∈ H1(G) with support in Sξj by setting

ϕξj(x) =

1− dist(x,vj)
ξ(e)`e if x ∈ ξ(e)e ⊂ Sξj

0 otherwise.
(5.4.11)
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5.4 Estimates on the numerical range and the eigenvalues

Then clearly 0 ≤ ϕξj ≤ 1; moreover, since we are assuming that G does not have any
loops, if ξ(e) = 1 for all e then the collection (ϕξj)nj=1 is a partition of unity. Note
that, if the scaling factor ξ ≡ 1 is trivial, we write ϕj instead of ϕ1

j .

Lemma 5.4.8. The cut-off function ϕξj fulfils the following properties.

(1) ϕξj has norm ‖ϕ
ξ
j‖∞ = 1 and it is weakly differentiable with norm

‖(ϕξj)′‖∞ = 1
`Sξj

. (5.4.12)

(2) If ξ ≡ 1 and vi ∼ e ∼ vj, we have

ϕi = 1− ϕj and ϕ′i = −ϕ′j. (5.4.13)

Proof. (1) The first statement is clear by construction and the weak differentia-
bility follows from the fact that the function is one-dimensional and Lipschitz
continuous on G. Note that the steepest decent of ϕξj occurs on the shortest
edge of Sξj ; and since the function is linear on each edge ξ(e)e, we have

∥∥∥(ϕξj)′∥∥∥ξ(e)e,∞ = 1
ξ(e)`e

= 1
`ξ(e)e

≤ 1
`Sξj

(5.4.14)

for all e ∼ vj, and equality if and only if ξ(e)e is the shortest edge of Sξj .

(2) Let ξ ≡ 1 be constant and let e ' [0, `e] be the edge incident with vi and
vj, where 0 corresponds to vi; here the functions ϕi and ϕj have the explicit
representations

ϕi(x) =
(

1− 1
ξ(e)`e

x

)
χ[0,ξ(e)`e](x) = 1− 1

`e
x (5.4.15)

and

ϕj(x) =
(

1− 1
ξ(e) + 1

ξ(e)`e
x

)
χ[`e(1−ξ(e)),`e](x) = 1

`e
x (5.4.16)

respectively, that is, ϕi = 1− ϕj. The last statement follows by differentiation
of this equation. This completes the proof.
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ξ(e2 )e2
ξ(e1)e1

ξ(e3)e3

1

v2

v1

v3

vj

Figure 5.4.3: Exemplary excerpt of a quantum graph. The function ϕξj is supported on Sξj
(here, ξ < 1 on e1, e2, e3); in particular, we have ϕξj(x) = 0 on the rest of G.

The last tool needed to prove Lemma 5.4.7 is the following auxiliary statement.

Lemma 5.4.9. Let (a, b) ⊂ R be a non-degenerate interval. If u, v are (weakly)
differentiable on (a, b), then we have (weakly)

(
|u|2v

)′
= 2vRe (uu′) + |u|2v′. (5.4.17)

Proof. Due to |u|2 = uu it suffices to prove (uu)′ = 2Re (uu). To this end, we
introduce real functions a, b, c, d such that

u = a+ ib and u′ = c+ id. (5.4.18)

Elementary calculations give

(uu)′ = u′u+ u(u)′ = 2(ac+ bd), (5.4.19)

which, together with

Re (ac+ iad− ibc+ bd) = Re ((a− ib)(c+ id)) = Re (uu′), (5.4.20)

proves the assertion.
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Proof of Lemma 5.4.7. Step 1: Proof of (5.4.9). We start by fixing any arbitrary
vj ∈ V . Let the spanning star Sξj and the cut-off function ϕξj be as described above,
and let f ∈ H1(G) be arbitrary. Each of the edges ξ(e)e of Sξj is identified with the
interval [0, `e], where the right boundary point `e corresponds to the centre vertex
vj, and 0 is the first zero of ϕξj on each edge to reach, that is, ϕξj(0) = 0 on each
ξ(e)e. This fact plus the fundamental theorem of calculus (note the differentiability
statement of Lemma 5.4.8) on that interval applied to the function |f |2ϕξj gives

|f(vj)|2 =
∫ ξ(e)`e

0
(|f |2ϕξj)′ dx (5.4.21a)

=
∫ ξ(e)`e

0
2ϕξjRe (f̄ f ′) + |f |2(ϕξj)′ dx, (5.4.21b)

where we used Lemma 5.4.9. Summing over all deg vj edges ξ(e)e ∼ vj yields

deg vj|f(vj)|2 =
∫
Sξj

2ϕξjRe (f̄ f ′) + |f |2(ϕξj)′ dx (5.4.22a)

≤ 2‖ϕξj‖Sξj ,∞‖f‖Sξj ‖f
′‖Sξj + ‖(ϕξj)′‖Sξj ,∞‖f‖

2
Sξj
. (5.4.22b)

Using Lemma 5.4.8 implies

deg vj|f(vj)|2 ≤ 2‖f‖Sξj ‖f
′‖Sξj + 1

`Sξj

‖f‖2
Sξj
, (5.4.23)

that is, (5.4.9).

Step 2: Proof of (5.4.10). We argue similarly but distinguish edges which are
incident with two vertices of V0. More precisely, if vi, vj ∈ V0 are two distinct vertices
and vi ∼ e ∼ vj, then we obtain the estimate

|f(vi)|2 + |f(vj)|2 =
∫ `e

0
2ϕiRe (f̄ f ′) + |f |2ϕ′i

+ 2ϕjRe (f̄ f ′) + |f |2ϕ′j dx.
(5.4.24)

But since ϕi = 1− ϕj and ϕ′i = −ϕ′j by statement (2) of Lemma 5.4.8, this reduces
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to

|f(vi)|2 + |f(vj)|2 ≤ 2‖f‖e‖f ′‖e. (5.4.25)

We now sum over all edges

e ⊂ G0 =
⋃

j∈N : vj∈V0

Sj (5.4.26)

both of whose endpoints are in V0. To these we also sum the estimates

|f(vi)|2 ≤ 2‖f‖e‖f ′‖e + 1
`e
‖f‖2

e, (5.4.27)

as obtained above, over all edges e in E0 which have only one incident vertex vi in
V0. Since each edge in the union G0 of the spanning stars of V0 is counted only once,
this yields

∑
vj∈V0

deg vj|f(vj)|2 ≤ 2‖f‖G0‖f ′‖G0 + 1
`G0

‖f‖2
G0 , (5.4.28)

that is, (5.4.10).

We can now give the proofs of Theorems 5.4.1 and 5.4.15.

Proof of Theorem 5.4.1. Proof of (1). Let

λ = ‖f ′‖2
G +

k∑
j=1

αj|f(vj)|2, (5.4.29)

f ∈ H1(G) normed to ‖f‖G = 1, be any point in W (aα). We set

t := ‖f ′‖2
G and sj := |f(vj)|2 (5.4.30)

for each Robin vertex vj ∈ VR and we consider Sξj for ξ(e) = 1/2 for each e ∼ vj.
Then the stars Sξj are all pairwise disjoint for j = 1, . . . , k. By (5.4.30) λ has the
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form

λ = t+
k∑
j=1

αjsj, (5.4.31)

and by the first statement of Lemma 5.4.7, that is, the trace estimate for a single
spanning star, we obtain

sj ≤
2

deg vj
‖f ′‖S1/2

j
‖f‖S1/2

j
+ 1
`S1/2

j
deg vj

‖f‖2
S1/2
j

(5.4.32a)

≤ 2
D
‖f ′‖S1/2

j
‖f‖G + 2

D`G
‖f‖2

G (5.4.32b)

= 2
D

√
τj + 2

D`G
(5.4.32c)

for each j = 1, . . . , k, where we want to make two notes: in (5.4.32b) we used that
every edge of every star S1/2

j has length at least `G/2 and in (5.4.32c) the τj = ‖f‖2
S1/2
j

are as in the statement of the theorem.
Proof of (2). Here we set t := ‖f ′‖2

G as before, but now

s :=
k∑
j=1
|f(vj)|2. (5.4.33)

Thus λ has the form λ = t+αs, and the estimate (5.4.10) from Lemma 5.4.7 together
with the same procedure as in the previous step implies that

s ≤ 2
D
‖f ′‖G0‖f‖G0 + 1

`G0D
‖f‖2

G0 ≤
2
D

√
t+ 1

D`G
, (5.4.34)

which completes the proof.

We now turn to the estimates on the real part of the eigenvalues announced
above, that is, an estimate on Reλ by an α-dependent term (for Reα < 0) from
above. They also demonstrate the asymptotic optimality of the bounds on ΛG,α
(see Remark 5.4.11). For simplicity, in what follows, we will assume that α ∈ C
is independent of the vertices; a similar statement holds in the general case. The
following statement is due to [76, Corollary 5.2].
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Corollary 5.4.10. Let Reα < 0. Then any eigenvalue λ ∈ σ(−∆α
VR) satisfies

Reλ ≥ −(Reα)2

D2 + Reα
D`G

. (5.4.35)

Proof of Corollary 5.4.10. This follows directly from Theorem 5.4.1(2); indeed, for
any eigenvalue λ

Reλ = t+ Reα · s ≥ t+ Reα
(

2
√
t

D
+ 1

D`G

)
. (5.4.36)

To minimise the right-hand side of the latter term for all possible t > 0 we set

0 = d
dt

(
t+ 2Reα

√
t

D
+ Reα

D`G

)
= 1 + Reα

D
√
t

(5.4.37)

which is, as a elementary calculation shows, true for

√
t = −Reα

D
⇒ t = (Reα)2

D2 > 0. (5.4.38)

Indeed, this is a minimiser of (5.4.36) since the right-hand side of (5.4.37) is strictly
monotonically increasing in t, that is, a change of sign from minus to plus. If we use
this minimiser t in (5.4.36), we immediately obtain (5.4.35).

Remark 5.4.11. (1) If m ≥ 1, that is, at least one αj → ∞ in a sector fully
contained in the open left half-plane, then Theorem 1.2.8 implies the existence
of an eigenvalue behaving like −α2/D2 as Reα→ −∞, meaning that the first
term of the estimate of Corollary 5.4.10 is correct in this regime.

(2) Actually, in the case of real negative α a test function argument can be used
to give a complementary upper bound on the smallest (real) eigenvalue

λ1(α) := min σ(−∆α
VR). (5.4.39)

To be more precise we have the following lemma.

Lemma 5.4.12. Let G be a compact metric graph of total length |G| and with k ∈ N
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Robin vertices. For real α < 0 we have that the first Robin eigenvalue satisfies

λ1(α) ≤


− α2

D2 − 2α
D`G
− 1

`2G
= −

[
α
D

+ 1
`G

]2
if α < − D

`G
< 0,

kα
|G| for all α < 0.

(5.4.40)

The proof of this lemma will rely on the variational (min-max) characterisation
of the eigenvalues, valid for all real α (see Theorem 2.2.13), as well as the following
eigenvalue estimate for stars, see [76, Lemma 6.2].

Lemma 5.4.13. Let S be a star with a Robin parameter of strength α at its central
vertex of degree D and Dirichlet conditions at all other vertices. Then its first
eigenvalue λD1 (α,S) satisfies

λD1 (α,S) ≤ −
(
α

D
+ 1
`S

)2
< 0 (5.4.41)

if α < − D
`S
, where as before `S denotes the length of the shortest edge of S.

Proof. We observe that the secular equation for −λD1 (α,S) > 0 reads

√
λ coth(

√
λ`G) = − α

D
, (5.4.42)

that is, −λD1 (α,S) is the smallest solution λ > 0 of this equation. This follows from
the fact that the vertex conditions and the symmetry property that the eigenfunction
must be invariant under permutations of the D equal edges of S (cf., e.g., [25,
Section 5]). Now the elementary inequality

coth(x) ≤ 1
x

+ 1, x > 0, (5.4.43)

applied to the left-hand side of (5.4.42) gives

1
`S

+
√
λ ≥ − α

D
. (5.4.44)

This is nontrivial if and only if α < −D/`S . In this case, rearranging gives (5.4.41).

We now turn to the proof of the upper bound in Lemma 5.4.12.
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Proof Lemma 5.4.12. The universal bound

λ1(α,G) ≤ kα

|G|
(5.4.45)

valid for all α < 0 follows immediately from taking f ≡ 1, that is, the (Neumann)
eigenfunction corresponding to α = 0, as a test function in the variational charac-
terisation. The other estimate will follow immediately from Lemma 5.4.13 and the
inequality

λ1(α,G) ≤ λD1 (α,S), (5.4.46)

where S = S1
1 is the star subgraph of G with central vertex v1, which we recall has

degree

deg v1 = D = min
j=1,...,k

deg vj, (5.4.47)

as introduced above. To obtain inequality (5.4.46) we argue as follows: consider
the first Dirichlet eigenvalue λD1 (α,S) on the star S and extend its associated
eigenfunction ψ by zero to the rest of G, that is, the extension of ψ may be canonically
identified with a function ψ̃ ∈ H1(G). Using ψ̃ as a test function in the Rayleigh
quotient R[aα] (see Definition 2.2.12) is exactly equal to λD1 (α,S), viz.

R[aα](ψ̃) =
∫
G |ψ̃′|2 dx+∑k

j=1 αj|ψ̃(vj)|2

‖ψ̃‖G
= λD1 (α,S); (5.4.48)

equivalently, we may appeal directly to [25, Theorem 3.10(1)].

While only the first term of the asymptotics has been considered in Remark 5.4.11
and Lemma 5.4.12, we can observe the following behaviour regarding the second
term.

Remark 5.4.14. We observe that as α→ −∞, we have

λ1(α) = − α
2

D2 + o(α−N) (5.4.49)

for all N ∈ N; while as α→ 0, since λ′1(0) = 1/|G| (see [27, Proposition 3.1.6] and
use that the eigenfunctions for the principal Neumann eigenvalue λ1(0) = 0 are
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constant),

λ1(α) = kα

|G|
+O(α2) (5.4.50)

as α→ 0. Hence there can be no “correct” coefficient c ∈ R of α in any (upper or
lower) bound of the form −α2/D2 +cα which is valid for all α < 0 and asymptotically
sharp for α→ 0 and α→ −∞.

We finish with a more precise statement (which is due to [76, Theorem 5.4]) about
the imaginary parts of the eigenvalues.

Theorem 5.4.15. Let α ∈ Ck.

(1) If Reαj ≥ 0 for all j = 1, . . . , k, then any eigenvalue λ of −∆α
VR satisfies

|Im λ| ≤ max
j=1,...,k

|Imαj|
deg vj

[
2
√

Reλ+ 1
D`G

]
. (5.4.51)

(2) If Reαj < 0 for at least one j = 1, . . . , k, then for every 0 < ε < 1 there exists
a constant C = C(ε) > 0 depending on G and each Reαj < 0 such that

|Im λ| ≤ max
j=1,...,k

|Imαj|
deg vj

[
2(1− ε)

√
Reλ+ C + 1

D`G

]
. (5.4.52)

Proof. (1) We simply note that, if f ∈ H1(G) is an eigenfunction corresponding to λ,
normalised so that ‖f‖G = 1, then by the second statement of Lemma 5.4.7 applied
to the union G0 of the stars S1

j , j = 1, . . . , k, whose total length we estimate from
below by `G,

|Im λ| =

∣∣∣∣∣∣
k∑
j=1

Imαj|f(vj)|2
∣∣∣∣∣∣ ≤

k∑
j=1

|Imαj|
deg vj

deg vj|f(vj)|2 (5.4.53a)

≤ max
j=1,...,k

|Imαj|
deg vj

[
2‖f ′‖G + 1

D`G

]
(5.4.53b)

≤ max
j=1,...,k

|Imαj|
deg vj

[
2
√

Reλ+ 1
D`G

]
, (5.4.53c)

where the last inequality follows from taking the real part of the quadratic form
(5.1.8) for λ ∈ C since Reα was assumed non-negative.

199



Chapter 5 Quantum Graph Laplacians

(2) We use the following weighted trace inequality: fix k′ ∈ {1, . . . , k} such that
(after relabelling the v1, . . . , vk if necessary) Reαj < 0 if and only if j ≤ k′. Then for
every δ > 0 there exists a constant

C = C(G,Reα1, . . . ,Reαk′ , δ) (5.4.54)

such that

0 ≤
k′∑
j=1

(−Reαj)|f(vj)|2 ≤ δ‖f ′‖2
G + C‖f‖2

G (5.4.55)

for all f ∈ H1(G), which can be obtained from the usual trace inequality by a
standard ε-Cε argument (as in (3.2.32)). Since for the eigenfunction f , normalised
so that ‖f‖G = 1,

Reλ = ‖f ′‖2
G +

k∑
j=1

Reαj|f(vj)|2 ≥ ‖f ′‖2
G − δ‖f ′‖2

G − C (5.4.56)

it follows that

‖f ′‖G ≤
√

Reλ+ C√
1− δ

. (5.4.57)

If we now substitute the factor 1/
√

1− δ by 1 − ε, then the same argument as in
(1), viz.

|Im λ| =

∣∣∣∣∣∣
k∑
j=1

Imαj|f(vj)|2
∣∣∣∣∣∣ ≤ max

j=1,...,k

|Imαj|
deg vj

[
2‖f ′‖G + 1

D`G

]
, (5.4.58)

leads to (5.4.52).

We finish with the proof of Theorem 1.2.9.

Proof of Theorem 1.2.9. The existence of k eigenvalues with the claimed asymptotics,
and the fact that non-divergent eigenvalues converge to points in σ(−∆D

VR) follow
immediately from Theorem 1.2.8. We next show that there are no more than k

divergent eigenvalues. This follows from a standard interlacing statement: denoting
the kth eigenvalue of −∆D

VR (counted with multiplicities) by λDk , since the forms
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associated with −∆α
VR and −∆D

VR coincide on the form domain H1
0 (G,VR) of the

latter, and the quotient space

H1(G)/H1
0 (G,VR) (5.4.59)

has dimension k, it follows from the min-max characterisation of the eigenvalues that

λDj−k ≤ λj(α) ≤ λDj (5.4.60)

for all α ∈ R and all j ≥ k + 1 (see also, e.g., [27, Section 3.1.6] or [25, Sections 3.1
and 4.1]). Hence λj(α) remains bounded whenever j ≥ k+1, and so by Corollary 5.3.3
converges to an eigenvalue of the Dirichlet Laplacian. It remains to prove that for

α < −2 max
j=1,...,k

{
deg vj
`j

}
(5.4.61)

the Robin Laplacian has exactly k negative eigenvalues: by the above reasoning,
it suffices to find one fixed α for which it has at least k such negative eigenvalues.
To this end, for each j = 1, . . . , k, we consider each star S1/2

j subgraph of G with
Robin condition at its central vertex vj; denote by ψj the test function equal to the
eigenfunction for the Dirichlet eigenvalue λD1 (α,S1/2

j ) on S1/2
j , extended by zero to a

function in H1(G), and whose Rayleigh quotient equals λD1 (α,S1/2
j ). Then, since the

supports of ψj are pairwise disjoint (which is due to the scaling factor ξ ≡ 1/2), we
can define the k-dimensional space

Hk :=
k⊕
j=1

ψj ⊂ H1(G) (5.4.62)

as a space of test functions for λk(α,G). If we choose any

α < −2 max
j=1,...,k

{
deg vj
`Sj

}
, (5.4.63)

then by Lemma 5.4.13 each function ψj , and thus every function in Hk has a negative
Rayleigh quotient (where one should not forget the scaling factor 2`1/2

Sj = `Sj). It
follows from the min-max characterisation that λk(α,G) < 0 for such α.
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