Detektion von Fehlern am Gleis mittels Frequenzanalyse am Beispiel eines Fahrweg-Fahrzeug-Modells

Detection of track irregularities on a scale track-vehicle-model using frequency analysis

Verfasser: Ibrahim Aboul Seoud
Studiengang: Bauingenieurwesen

Prüfer: Prof. Dr.-Ing. Ullrich Martin
Betreuer: Dr.-Ing. Sebastian Rapp

Stuttgart, den 27. Oktober 2018
Erklärung

Hiermit erkläre ich, dass ich die von mir am heutigen Tage eingereichte Bachelorarbeit

- selbständig verfasst habe,
- keine anderen als die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen Werken übernommenen Aussagen als solche gekennzeichnet habe,
- weder vollständig noch in wesentlichen Teilen Gegenstand eines anderen Prüfungsverfahrens gewesen ist,
- weder vollständig noch in Teilen bereits veröffentlicht habe und
- dass das elektronische Exemplar mit den anderen Exemplaren übereinstimmt.

Stuttgart, den 27. Oktober 2018 ..

Unterschrift
Danksagung

An dieser Stelle möchte ich mich bei all denen bedanken, die mir bei der Verfassung der Bachelorarbeit zur Seite standen.

An erster Stelle bedanke ich mich bei Herrn Prof. Ullrich Martin, der es ermöglichte diese Bachelorarbeit am Institut für Eisenbahn- und Verkehrswesen zu verfassen.

Des Weiteren gilt mein besonderer Dank meinem Betreuer Herrn Dr.-Ing. Sebastian Rapp, der mir während der gesamten Bearbeitungszeit mit fachlich wertvollen Hinweisen und Tipps zur Seite stand sowie mir die Möglichkeit gab auch praktische Einblicke zu erlangen.

Ein ganz besonderer Dank gilt auch meiner Partnerin und meiner Familie für die Motivation, die moralische Unterstützung und vor allem, dass sie immer für mich da waren.

Vielen Dank an alle die Zeit, Geduld und Mühen in meine Arbeit investiert haben.

Stuttgart, den 27. Oktober 2018

Unterschrift
Aufgabenstellung

Im Rahmen der Bachelorarbeit soll am Beispiel eines Fahrweg-Fahrzeug-Modells eine Frequenzanalyse zu einzelnen im Modell existierenden Fehlern (Schienenbruch, Schienenstoß, punktuelle Instabilität) durchgeführt werden. Hierzu sollen die Messschriebe im Bereich von Fehlern mittels der Fast Fourier Transformation, der spektralen Beschleunigungsdichte und der Wavelet-Analyse untersucht werden. Die Auswertung der Messdaten sowie die anschließend zu entwickelte Logik zur Fehlererkennung, sollen mit Hilfe der Software Laboratory (MATLAB) erfolgen.

Im Einzelnen wird verlangt:

▪ Literaturrecherche zur Erfassung des Fahrwegzustands mittels Sensoren an Regelzügen (Beschreibung der Messmethoden und der detektierten Fehler sowie der in der Literatur verwendeten Auswertmethoden)
▪ Beschreibung des Fahrzeug-Fahrweg-Modells und der dort enthaltenen Fehler
▪ Untersuchung typischer Frequenzbereiche einzelner Fehler im Messschrieb mittels der Fast Fourier Transformation, der spektralen Beschleunigungsdichte und der Wavelet-Analyse
▪ Vergleich der Methoden hinsichtlich der Fehlererkennung mit Positionsangabe, der Rechenzeit und der möglichst frühzeitigen Erkennung von Gleislagefehlern
▪ Untersuchung des Einflusses der Fahrzeuggeschwindigkeit und der Zugzusammensetzung des Messzuges auf die Fehlererkennung
▪ Entwicklung einer Logik zu Detektion von Gleislagefehlern im Modell und strukturierte Darstellung der Logik mit der Software Enterprise Architect
Inhaltsverzeichnis

1 Motivation ... 1
 1.1 Entgleisungen durch Gleislagefehler (Rückblick) ... 1
 1.2 Ziel und Zweck der Arbeit ... 1

2 Literaturübersicht und Stand der Technik .. 2
 2.1 Methoden zur Erkennung von Gleislagefehlern und Schienenfehlern ... 2
 2.1.1 Gleismessfahrzeug .. 2
 2.1.2 Achslagerbeschleunigung ... 4
 2.1.3 Gleisbegehung .. 5
 2.1.4 Georadarmessung .. 5

3 Aufbau eines Bahnkörpers in konventioneller Schotterbauweise .. 7
 3.1 Einleitung .. 7
 3.2 Oberbau .. 7
 3.2.1 Schienen .. 7
 3.2.2 Schwellen ... 9
 3.2.3 Befestigungsmittel .. 9
 3.2.4 Bettung ... 10
 3.3 Unterbau ... 11

4 Beschreibung der Gleisfehler ... 12
 4.1 Schienenstoß ... 12
 4.2 Schienenbruch .. 13
 4.3 Punktuelle Instabilität .. 14
 4.4 Steifigkeitswechsel im Brückenbereich ... 15
 4.5 Richtlinien .. 16

5 Beschreibung des Fahrweg-Fahrzeug-Modells .. 17
 5.1 Teststrecke .. 17
 5.1.1 Hochbahnkonstruktion .. 17
 5.1.2 Feder-Schrauben-Konstruktion ... 18
 5.1.3 Verbindungen zwischen den einzelnen Modulen ... 19
 5.1.4 Stromversorgung der einzelnen Module .. 19
 5.2 Fehlererzeugung .. 19
 5.3 Software .. 21
 5.3.1 Software zur Erfassung der Messdaten .. 22
 5.3.2 Messdaten Import mit MATLAB ... 23

6 Gleisfehler ... 24
6.1.1 Datenbearbeitung .. 26
6.2 Zuordnung der Gleisfehler im Messschrieb ... 26
6.3 Gleisfehler Darstellung .. 33
7 Frequenzanalyse ... 47
 7.1 Diskrete Fourier Transformation .. 47
 7.1.1 Fast-Fourier-Transformation ... 50
7.2 Spektrale Beschleunigungsdichte .. 51
7.3 Wavelet-Analyse .. 52
8 Auswertung der Beschleunigungsdaten .. 55
 8.1 Vermeidung des Alias-Effekts ... 55
 8.1.1 Auswertung der FFT .. 56
 8.2 Auswertung der spektralen Beschleunigungsdichte ... 65
 8.3 Vergleich Fast Fourier Transformation und Spektrale Beschleunigungsdichte 74
 8.4 Logik zur Erkennung der Fehler im Modell ... 77
 8.5 Fehlertyp Längshöhenfehler ... 86
 8.6 Auswertung der Wavelet-Analyse .. 91
9 Zusammenfassung und Ausblick ... 95
10 Literaturverzeichnis ... 97
Abbildungsverzeichnis

Abbildung 1: Messprinzip der RAILab-Technik für die Gleisgeometriemessung [6] 3
Abbildung 6: Gebräuchlichste Schienenformen und ihre Abmessungen [18] 8
Abbildung 7: Schnitt K Oberbau [19].. 10
Abbildung 8: K Oberbau auf Holzschwellen [15] ... 10
Abbildung 10: Schienenstoß im Real System [1] ... 12
Abbildung 11: Schienenstoß im Modell .. 12
Abbildung 12: Schienenbruch im Real System [23] .. 13
Abbildung 14: Punktuelle Instabilität im Real System [25] ... 14
Abbildung 16: Steifigkeitswechsel am Brückenanfang und -ende im Real System [26] 15
Abbildung 17: Steifigkeitswechsel am Brückenanfang und -ende im Modell [24] 15
Abbildung 18: Teststrecke mit Messsystem [24] ... 17
Abbildung 21: Konstruktion der Modulverbindung [24] .. 19
Abbildung 27: Befehle zur Bedienung des Messsystems .. 22
Abbildung 28: Messschrieb der Vertikalbeschleunigung .. 26
Abbildung 29: Position der Fehler im Messschrieb .. 27
Abbildung 30: Logik der For-Schleife zur Detektion des Maximums für ein definiertes Messintervall .. 28
Abbildung 31: Schienenbruch 1 mit Angabe des Maximums ... 29
Abbildung 32: Schienenbruch 2 mit Angabe des Maximums ... 29
<table>
<thead>
<tr>
<th>Abbildung</th>
<th>Beschreibung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbildung 33:</td>
<td>Achsabstand am Fahrzeugmodell</td>
<td>29</td>
</tr>
<tr>
<td>Abbildung 34:</td>
<td>Punktuelle Instabilität mit Angabe des Maximums</td>
<td>30</td>
</tr>
<tr>
<td>Abbildung 35:</td>
<td>Schienenstoß 1 mit Angabe des Maximums</td>
<td>31</td>
</tr>
<tr>
<td>Abbildung 36:</td>
<td>Schienenstoß 2 mit Angabe des Maximums</td>
<td>31</td>
</tr>
<tr>
<td>Abbildung 37:</td>
<td>Schienenstoß 3 mit Angabe des Maximums</td>
<td>31</td>
</tr>
<tr>
<td>Abbildung 38:</td>
<td>Schienenstoß 4 mit Angabe des Maximums</td>
<td>31</td>
</tr>
<tr>
<td>Abbildung 39:</td>
<td>Steifigkeitswechsel an Brückenanfang und -ende mit Angabe des Maximums</td>
<td>32</td>
</tr>
<tr>
<td>Abbildung 40:</td>
<td>Vertikale Beschleunigung im Bereich des 1. Schienenstoßes für zwölf Fahrtrunden</td>
<td>34</td>
</tr>
<tr>
<td>Abbildung 41:</td>
<td>Vertikale Beschleunigung im Bereich des 2. Schienenstoßes für zwölf Fahrtrunden</td>
<td>35</td>
</tr>
<tr>
<td>Abbildung 42:</td>
<td>Vertikale Beschleunigung im Bereich des 1. Schienenbruchs für zwölf Fahrtrunden</td>
<td>36</td>
</tr>
<tr>
<td>Abbildung 43:</td>
<td>Vertikale Beschleunigung in Bereich der punktuellen Instabilität für zwölf Fahrtrunden</td>
<td>37</td>
</tr>
<tr>
<td>Abbildung 44:</td>
<td>Vertikale Beschleunigung im Bereich des 3. Schienenstoßes für zwölf Fahrtrunden</td>
<td>38</td>
</tr>
<tr>
<td>Abbildung 45:</td>
<td>Vertikale Beschleunigung im Bereich des 4. Schienenstoßes für zwölf Fahrtrunden</td>
<td>39</td>
</tr>
<tr>
<td>Abbildung 46:</td>
<td>Vertikale Beschleunigung im Bereich der Brücke für zwölf Fahrtrunden</td>
<td>40</td>
</tr>
<tr>
<td>Abbildung 47:</td>
<td>Vertikale Beschleunigung im Bereich des 2. Schienenbruchs für zwölf Fahrtrunden</td>
<td>41</td>
</tr>
<tr>
<td>Abbildung 48:</td>
<td>Mittelwert für die einzelnen Fehler im Modell</td>
<td>43</td>
</tr>
<tr>
<td>Abbildung 49:</td>
<td>Logik für die Einstellung und Messung</td>
<td>44</td>
</tr>
<tr>
<td>Abbildung 50:</td>
<td>Logik für die Detektion des Maximums</td>
<td>44</td>
</tr>
<tr>
<td>Abbildung 51:</td>
<td>Logik für die Zuordnung der Gleisfehlern anhand ihrer maximalen Beschleunigungswerte</td>
<td>45</td>
</tr>
<tr>
<td>Abbildung 52:</td>
<td>Ablauf Wavelet Transformation</td>
<td>54</td>
</tr>
<tr>
<td>Abbildung 53:</td>
<td>Original Signal</td>
<td>55</td>
</tr>
<tr>
<td>Abbildung 54:</td>
<td>Gefiltertes Signal</td>
<td>56</td>
</tr>
<tr>
<td>Abbildung 55:</td>
<td>Verlauf der Fast Fourier Transformation Schienenstoß 3</td>
<td>58</td>
</tr>
<tr>
<td>Abbildung 56:</td>
<td>Verlauf der Fast Fourier Transformation Schienenbruch 2</td>
<td>58</td>
</tr>
<tr>
<td>Abbildung 57:</td>
<td>Verlauf der Fast Fourier Transformation Schienenbruch 1</td>
<td>59</td>
</tr>
<tr>
<td>Abbildung 58:</td>
<td>Verlauf der Fast Fourier Transformation Schienenstoß 2</td>
<td>59</td>
</tr>
<tr>
<td>Abbildung 59:</td>
<td>Verlauf der Fast Fourier Transformation Schienenstoß 4</td>
<td>60</td>
</tr>
<tr>
<td>Abbildung 60:</td>
<td>Verlauf der Fast Fourier Transformation Brücke</td>
<td>61</td>
</tr>
</tbody>
</table>

Seite VI
Abbildung 61: Verlauf der Fast Fourier Transformation punktuelle Instabilität
Abbildung 62: Logik für den Ablauf der Fehlerklassifizierung
Abbildung 63: Logik für die Zuordnung der Gleisfehlern anhand der Fast Fourier Transformation
Abbildung 64: Verlauf spektrale Beschleunigungsdichte Schienenstoß 1
Abbildung 65: Verlauf spektrale Beschleunigungsdichte Schienenstoß 2
Abbildung 66: Verlauf spektrale Beschleunigungsdichte Schienenstoß 3
Abbildung 67: Verlauf spektrale Beschleunigungsdichte Schienenstoß 4
Abbildung 68: Verlauf der spektralen Beschleunigungsdichte Schienenbruch 1
Abbildung 69: Verlauf der spektralen Beschleunigungsdichte Schienenbruch 2
Abbildung 70: Verlauf der spektralen Beschleunigungsdichte punktuelle Instabilität
Abbildung 71: Verlauf spektrale Beschleunigungsdichte Brücke
Abbildung 72: Vergleich FFT und SBD Schienenbruch 1
Abbildung 73: Vergleich FFT und SBD Schienenstoß 1
Abbildung 74: Vergleich FFT und SBD Schienenstoß 2
Abbildung 75: Vergleich FFT und SBD punktuelle Instabilität
Abbildung 76: Logik für die Zuordnung der Fehler anhand der spektralen Beschleunigungsdichte
Abbildung 77: Mittels Frequenzanalyse erkannter Schienenbruch 1 in der gemessenen Vertikalbeschleunigung
Abbildung 78: Mittels Frequenzanalyse erkannter Schienenbruch 2 in der gemessenen Vertikalbeschleunigung
Abbildung 79: Mittels Frequenzanalyse erkannter Schienenstoß 2 in der gemessenen Vertikalbeschleunigung
Abbildung 80: Mittels Frequenzanalyse erkannter Schienenstoß 3 in der gemessen Vertikalbeschleunigung
Abbildung 81: Mittels Frequenzanalyse erkannter Schienenstoß 4 in der gemessen Vertikalbeschleunigung
Abbildung 82: Mittels Frequenzanalyse erkannte punktuelle Instabilität in der gemessen Vertikalbeschleunigung
Abbildung 83: Mittels Frequenzanalyse erkannter Schienenstoß 1 in der gemessen Vertikalbeschleunigung
Abbildung 84: Mittels Frequenzanalyse erkannte Brücke in der gemessen Vertikalbeschleunigung
Abbildung 85: Logik für die Zuordnung der Fehler anhand der spektralen Beschleunigungsdichte und der Vertikalbeschleunigung
Abbildung 86: Mittels Frequenzanalyse erkannte Gleislagefehler in der gemessenen Vertikalbeschleunigung .. 84
Abbildung 87: Mittels Frequenzanalyse erkannte Schienenfehler in der gemessen Vertikalbeschleunigung .. 85
Abbildung 88: Mittels spektrale Beschleunigungsdichte erkannte Gleisfehler ... 85
Abbildung 89: Längshöhenfehler mit Holzplatte im Modell .. 86
Abbildung 90: Fehlertyp Längshöhenfehler .. 87
Abbildung 91: Fehlertyp punktuelle Instabilität .. 87
Abbildung 92: Fast Fourier Transformation Längshöhenfehler ... 88
Abbildung 93: Fast Fourier Transformation Punktuelle Instabilität .. 88
Abbildung 94: Spektrale Beschleunigungsdichte Längshöhenfehler .. 89
Abbildung 95: Spektrale Beschleunigungsdichte Punktuelle Instabilität ... 89
Abbildung 96: Mittels Frequenzanalyse erkannte Längshöhenfehler in der gemessen Vertikalbeschleunigung .. 90
Abbildung 97: Sym4 Motherwavelet [33] .. 91
Abbildung 98: Mesßschrieb mit Savitzky-Golay Filter ... 92
Abbildung 99: Wavelet-Analyse mit sym4 für zwölf Runden ... 93
Tabellenverzeichnis

Tabelle 1: Schienenformen und ihre Einsatzbereiche [18] .. 8
Tabelle 3: Typische Extrema des 1. Schienenstoßes .. 34
Tabelle 4: Zeitliche Distanzen zwischen den Extrema für Schienenstoß 1 34
Tabelle 5: Typische Extrema des 2. Schienenstoßes .. 35
Tabelle 6: Zeitliche Distanzen zwischen den Extrema für Schienenstoß 2 35
Tabelle 7: Typische Extrema des 1. Schienenbruchs ... 36
Tabelle 8: Zeitliche Distanzen zwischen den Extrema für Schienenbruch 1 36
Tabelle 9: Typische Extrema der punktuellen Instabilität ... 37
Tabelle 10: Zeitliche Distanzen zwischen den Extrema für die punktuelle Instabilität 37
Tabelle 11: Typische Extrema des 3. Schienenstoßes ... 38
Tabelle 13: Typische Extrema des 4. Schienenstoßes ... 39
Tabelle 14: Zeitliche Distanzen zwischen den Extrema für den Schienenstoß 4 39
Tabelle 15: Typische Extrema der Brücke .. 40
Tabelle 16: Zeitliche Distanzen zwischen den Extrema für die Brücke 40
Tabelle 17: Typische Extrema des 2. Schienenbruchs ... 41
Tabelle 18: Zeitliche Distanzen zwischen die Extrema für den Schienenbruch 2 41
Tabelle 19: Vertikale Beschleunigungswerte des Maximums und des Minimums für die einzelnen Fehlern ... 42
Tabelle 20: Fehlermerkmale bei Fast Fourier Transformation zur Fehlerklassifizierung 62
Tabelle 21: Spektrale Beschleunigungsdichte Schienenstoß 1 .. 66
Tabelle 22: Spektrale Beschleunigungsdichte Schienenstoß 2 .. 67
Tabelle 23: Spektrale Beschleunigungsdichte Schienenstoß 3 .. 68
Tabelle 24: Spektrale Beschleunigungsdichte Schienenstoß 4 .. 69
Tabelle 25: Spektrale Beschleunigungsdichte Schienenbruch 1 .. 71
Tabelle 26: Spektrale Beschleunigungsdichte Schienenbruch 2 .. 71
Tabelle 27: Spektrale Beschleunigungsdichte punktuelle Instabilität 72
Tabelle 28: Spektrale Beschleunigungsdichte Brücke ... 72
Tabelle 29: Merkmale der Fehler für die spektrale Beschleunigungsdichte 73
Abkürzungsverzeichnis

DB Deutsche Bahn
AEG Allgemeines Eisenbahngesetz
EBO Eisenbahnbau- und Betriebsordnung
FFT Fast Fourier Transformation
DFT Diskrete Fourier Transformation
SBD Spektrale Beschleunigungsdichte
RAILab Rollendes Analyse und Inspektionslabor
IFC Instrumented Freight Car
TTCi Transportation Technology Center, Inc.
ABA Axel-Box-Acceleration

Formelverzeichnis

\(f \) Frequenz [Hz]
\(v \) Geschwindigkeit \([\frac{m}{s}]\)
\(t \) Zeit [s]
\(a \) Beschleunigung \([\frac{m}{s^2}]\)
\(\lambda \) Wellenlänge
\(f_s \) Abtastfrequenz
Kurzfassung

Abstract
The growing demand for rail traffic increases the number of possible dangerous railway events. Many of the occurring railway accidents can be avoided by an early identification of the track errors and their positions. The continuous monitoring and evaluation of the road condition in real time using attached sensors on regular trains can save considerable costs and offer safer and more comfortable rides for passengers. For this purpose, track error models with different geometries and requirements were installed on the railway miniature replica at the Institute of Railways and Transportation at the University of Stuttgart. The vertical acceleration of the miniature train was measured using an acceleration sensor on the vehicle.
In order to be able to evaluate individual errors in the measurement signal, a classification of the detected errors is necessary. Here, the characteristics and effects of a rail breakage, rail joints, punctual instability, and the stiffness change when driving over a bridge are examined. Due to the known positions of the track errors in the model, a distinction can be made between the individual errors in the signal in order to be able to assign them to their respective error type. The greater the track error, the greater the rash of the acceleration in the measurement record.
As part of the bachelor thesis, a frequency analysis is performed on individual errors in the model. For this purpose, the signals that are positioned in the range of the errors are to be analyzed using the Fast Fourier transformation, the Power Spectral, and the Wavelet analysis. The aim of this scientific work is to develop a logic that detects the track position error in the model using the software Enterprise Architect. This logic should then be implemented with the software MATLAB.
1 Motivation

1.1 Entgleisungen durch Gleislagefehler (Rückblick)

Im folgenden Kapitel werden Beispiele von Zugentgleisungen gezeigt, die durch nicht früh erkannte Gleislagefehler verursacht wurden.

Zugentgleisung am 08.08.2014 in Burgstall (Murr)

Ursächlich für die Entgleisung sind mehrere kurz hintereinanderliegende (periodische) Gleislagefehler in der Längshöhe. Die vorgefundenen Gleislagefehler resultieren aus dem eingeschränkt tragfähigen Untergrund sowie der nicht nachhaltig durchgeführten Instandsetzung. Durch die Entgleisung wurden der Oberbau, die Oberleitung und die Weichen stark beschädigt. [2]

Zugunglück am 24.01.2018 in Mailand (Italien)

Die Ursache für die Entgleisung war einen Bruch in die Schienen. Aufgrund der Entgleisung haben sich mehr als hundert Menschen leicht verletzt und drei Menschen kamen ums Leben.

1.2 Ziel und Zweck der Arbeit

2 Literaturübersicht und Stand der Technik

2.1 Methoden zur Erkennung von Gleislagefehlern und Schienenfehlern

Folgendes Kapitel gibt einen Blick über die vorhandene Literatur, die zum Thema Entwicklung intelligenter Fehlerdetektionssystem vorhanden ist.

2.1.1 Gleismessfahrzeug

RAILab

Instrumented Freight Car (IFC)

Das Transportation Technology Center, Inc. (TTCi) besitzt einen Wagen IFC (Instrumented Freight Car), der mit verschiedenen Sensoren Fehlern mit unterschiedlichen Wellenlängen unter Achslasten detektieren kann. Dehnmessstreifen, Beschleunigungssensoren und Druckaufnehmer werden für die Ermittlung der Fahrzeugbewegung verwendet, um unter anderen auch langwellige Gleislagefehler zu identifizieren. Die Beschleunigungssensoren werden für die Erkennung von kurzwelligen Irregularitäten, wie z.B. ein Schienenbruch, benötigt. Das IFC be- sitzt zudem eine Global Positioning System (GPS), das die Fehlerdaten mit den jeweiligen Koordinaten weiterleitet. Die Abweichungen werden im Messschrieb markiert, wenn sie einen definierten Grenzwert von +/-12,2 mm erreicht haben [9].

Abbildung 1: Messprinzip der RAILab-Technik für die Gleisgeometriemessung [6]

Abbildung 2: TTCi Messfahrzeug mit Lokomotive [9]
Hi-Rail Fahrzeug
Nachteil des Messfahrzeugs ist, dass zwar Defekte am Gleis erkannt werden, jedoch eine Fehlerklassifizierung nicht möglich ist.

2.1.2 Achslagerbeschleunigung
2.1.3 Gleisbegehung

2.1.4 Georadarmessung

Abbildung 5: Georadar-Messeinrichtung an einem Messfahrzeug [13]
3 Aufbau eines Bahnkörpers in konventioneller Schotterbauweise

3.1 Einleitung

3.2 Oberbau

3.2.1 Schienen
Schwellen befestigt wird. Auf den Schienenfuß steht ein senkrecht schmaler Steg, der an seinem oberen Ende den Schienenkopf trägt [18].
Die Querschnitte der am häufigsten verwendeten Schienen und ihre wichtigsten Abmessungen sind in Abbildung 6 dargestellt. Die Schienenformen und ihre Einsatzbereiche sind in Tabelle 1 aufgeführt [15].

![Abbildung 6: Gebräuchlichste Schienenformen und ihre Abmessungen [18]](image)

<table>
<thead>
<tr>
<th>Schienenform</th>
<th>Einsatzbereich</th>
<th>Höhe</th>
<th>Fuß</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 41</td>
<td>Straßenbahn auf eigenem Gleiskörper</td>
<td>138</td>
<td>125</td>
</tr>
<tr>
<td>S 49</td>
<td>U-Bahn, Stadtbahn, Anschlussbahn</td>
<td>149</td>
<td>125</td>
</tr>
<tr>
<td>S 54</td>
<td>Regelprofil in DB Gleisen</td>
<td>154</td>
<td>125</td>
</tr>
<tr>
<td>UIC 60</td>
<td>UIC Profil ist international eingeführt.</td>
<td>172</td>
<td>150</td>
</tr>
</tbody>
</table>

Tabelle 1: Schienenformen und ihre Einsatzbereiche [18]

Die Schienen werden aneinandergestoßen und anschließend verschweißt. Dabei wird das Schmelzschweißverfahren, wie z.B. das Thermit Lichtbogen- oder Pressschweißen, bevorzugt.
3.2.2 Schwellen

<table>
<thead>
<tr>
<th>Abmessungen/Eigenschaften</th>
<th>Holzschwellen</th>
<th>Betonschwellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form 1</td>
<td></td>
<td>B 70</td>
</tr>
<tr>
<td>Länge (l (m))</td>
<td>2,60</td>
<td>2,60</td>
</tr>
<tr>
<td>Breite (b<sub>oben</sub> (m)</td>
<td>0,16</td>
<td>0,171</td>
</tr>
<tr>
<td></td>
<td>0,26</td>
<td>0,30</td>
</tr>
<tr>
<td>Höhe (h (m))</td>
<td>0,16</td>
<td>0,235</td>
</tr>
<tr>
<td>Gewicht (kg)</td>
<td>ca. 100</td>
<td>304</td>
</tr>
<tr>
<td>Lebensdauer (Jahre)</td>
<td>3-18</td>
<td>ca. 60</td>
</tr>
</tbody>
</table>

Tabelle 2: Abmessungen und Eigenschaften von Holz- und Betonschwellen [15]

Der Schwellenabstand bezieht sich auf die Längsachse der Schwellen und wird in Abhängigkeit von der Gleisbelastung und der Tragfähigkeit des Bodens bestimmt. Der Abstand kann zwischen 0,60 m und 1,00 m variieren [15]. Bei einem wenig tragfähigem Untergrund und bei starker Verkehrsbelastung ist ein kleinerer Schwellenabstand und eine größere Schotterhöhe zu wählen, um die Belastung stärker verteilen zu können.

3.2.3 Befestigungsmittel

Abbildung 7: Schnitt K Oberbau [19]

Abbildung 8: K Oberbau auf Holzschwellen [15]

3.2.4 Bettung

3.3 Unterbau

Eine wirkungsvolle Entwässerung der Bahnanlagen ist notwendig, da der Boden durch das Eindringen von Wasser seine Tragfähigkeit verlieren kann.

Abbildung 9: Wassereinwirkungen und Druckverhältnisse [20]
4 Beschreibung der Gleisfehler

Im folgenden Kapitel werden die unterschiedlichen Gleisfehler im Real System und im Modell beschrieben. Die Gleisfehler im Modell werden mit den Fehlern im Real System verglichen und deren Bezug beschrieben.

4.1 Schienenstoß

Real System

Modell
Schienenstöße im Modell sind als schwebende Stöße montiert. Der erste Stoß hat eine Länge von 1 cm. Der zweite hat eine innere Länge von 1 cm und eine äußere Länge von 1,4 cm. Beim dritten Schienenstoß beträgt die Länge des Kragarms 2,3 cm und ist somit der größte Stoß im Modell. Der letzte Schienenstoß ist der kleinste und hat eine Länge von 0,9 cm.

4.2 Schienenbruch

Real System
Das Auftreten von Schienenbrüchen beeinträchtigt die Sicherheit des Eisenbahnbetriebs erheblich, so dass der Fahrweg nicht mehr genutzt werden kann. Ein Schienenbruch ist ein Durchbruch oder Ausbruch der Schiene. Schienenbrüche entstehen überwiegend durch eine hohe Verkehrsbelastung, bei starken Temperaturschwankungen oder durch Schweißfehler. Schienenbrüche werden in folgende drei Arten unterteilt [21].

- Waagerechte Schienenbrüche verlaufen parallel zur Fahrtrichtung im Steg und trennen den Schienenkopf vom Schienenfuß. [22]
- Senkrechte Schienenbrüche verlaufen quer zur Fahrtrichtung durch das vollständige Schienenprofil. [22]
- Nierenbrüche verlaufen über einige Zentimeter in Längsrichtung im Steg und ändern dann ihre Richtung zum Schienenfuß hin. [22]

Modell
Im Modell sind zwei Schienenbrüche installiert, wobei sie unterschiedliche Längen haben. Der erste Schienenbruch besitzt einen Bruch parallel zur Fahrtrichtung im Steg, so dass es einen waagerechten Schienenbruch darstellt. Er hat eine äußere Länge von 2 cm und eine innere Länge von 1 cm und befindet sich direkt am Anfang des zweiten Kreisbogens. Der zweite Schienenbruch hat eine Bruchlänge von 1 mm in Längsrichtung und stellt einen Nierenbruch dar.

Abbildung 12: Schienenbruch im Real System [23]
Abbildung 13: Schienenbruch im Modell [24]
4.3 Punktuelle Instabilität

Real System

Modell

Die Punktuelle Instabilität im Modell wurde durch einen Längshöhenfehler mit einer Gesamtlänge von 14 cm gebildet. Der Tiefpunkt befindet sich in der Mitte und hat eine Tiefe von 2mm, so dass sich eine kleine Parabel im Fahrweg bildet. Der parabelförmige Weg erzeugt das gleiche Verhalten, wie bei einer Einsenkung oder Aufweichung des Bodens im Real System.

Abbildung 14: Punktuelle Instabilität im Real System [25]
Abbildung 15: Punktuelle Instabilität im Modell [24]
4.4 Steifigkeitswechsel im Brückenbereich

Real System
Steifigkeitswechsel, wie beispielsweise der Übergang zu einer Brücke oder sich verändernde Oberbauformen (Bahnübergang), können ebenfalls eine Unstetigkeitsstelle verursachen [26]. Die Interaktion Gleis/Brücke spielt eine große Rolle bei der Planung von Gleisanlagen, aufgrund der schwimmenden Lagerung des Gleises auf einem Balken mit zwei Stützen. [27]. Es wurde deshalb im Modell der Einfluss der Steifigkeitswechsel auf die gemessene Beschleunigung untersucht.

Modell
Die Gesamtlänge der Brücke beträgt 15,3 cm. Die Übergangsbereiche, die den Gleisfehler verursachen, wie beispielsweise die Auffahrt und Abfahrt von der Brücke haben im Modell eine Länge von ca. 1,3 cm.

Abbildung 16: Steifigkeitswechsel am Brückenanfang und-ende im Real System [26]

Abbildung 17: Steifigkeitswechsel am Brückenanfang und-ende im Modell [24]
4.5 Richtlinien

Für die Beurteilung der Qualität der Gleisgeometrie legt aktuell die Richtlinie 821 der Deutschen Bahn AG die Grundsätze für die Inspektion des Oberbaus fest. Die Einhaltung der empfohlenen Toleranz- und Grenzwerte ermöglicht eine sichere Betriebsführung und wird in drei Hauptniveaus definiert [7]:

- SR_A ist der Wert, bei dessen Überschreitung eine Beurteilung hinsichtlich der Einplanung einer Instandsetzungsmaßnahme unter wirtschaftlichen Gesichtspunkten erforderlich ist [7].
- SR_{100} ist der Wert, der den technisch/wirtschaftlichen Abnutzungsvorrat beinhaltet. Bei dessen Überschreitung ist eine Instandsetzung bis zur nächsten Regelinspektion erforderlich [7].
- SR_{lim} ist der Wert, bei dessen Überschreitung eine Beeinträchtigung der Funktionsfähigkeit zu erwarten ist. Eine Instandhaltung ist in kürzest möglicher Zeit durchzuführen [7].

Alternativ wird gemäß EN 13848, Teil 5 drei Sicherheitsniveaus unterschieden:

- Aufmerksamkeitsgrenze (AL): Bezieht sich auf den Wert, der, falls er überschritten wird, zu einer Analyse des geometrischen Gleiszustandes führt, und der in der regulär geplanten Instandhaltungsarbeiten berücksichtigt wird [7].
- Eingriffsgrenze (IL): Bezieht sich auf den Wert, der, wenn er überschritten wird, korrigierende Instandhaltungsmaßnahmen erfordert, damit die Sicherheitsgrenze nicht vor der nächsten Inspektion erreicht werden kann [7].
- Sicherheitsgrenze (IAL): Bezieht sich auf den Wert, der, wenn er überschritten wird, Maßnahmen erfordert, welche zur Reduzierung des Risikos der Entgleisung führt. Dies kann entweder durch Sperren des Gleises, Reduzierung der Geschwindigkeit oder durch Korrektur der Gleisgeometrie erfolgen [7].
5 Beschreibung des Fahrweg-Fahrzeug-Modells

5.1 Teststrecke

5.1.1 Hochbahkonstruktion

Die Teststrecke ist in vier Abschnitte aufgeteilt. Sie besteht aus zwei Geraden und zwei Kreisbögen die zusammen eine ovale Strecke bilden.

Abbildung 18: Teststrecke mit Messsystem [24]
5.1.2 Feder-Schrauben-Konstruktion

Abbildung 19: Langwellige Gleislagefehler in der Längshöhe [24]

Aufbau:

Abbildung 20: Aufbau Feder-Schrauben-Konstruktion [3]
5.1.3 Verbindungen zwischen den einzelnen Modulen

Die einzelnen Module sind mittels einer Gewindestange mit Hutmutter und Flügelschraube verbunden. Dies ermöglicht einen einfachen und zugleich schnellen Auf- und Abbau sowie eine platzsparende Lagerung.

Abbildung 21: Konstruktion der Modulverbindung [24]

5.1.4 Stromversorgung der einzelnen Module

Jeder Streckenabschnitt wird einzeln mit einer maximalen Spannung von 12 Volt versorgt, um mögliche Unterbrechungen der Stromversorgung an den Übergängen zu vermeiden [24].

Abbildung 22: Detaillierte Ansicht auf die Stromversorgung der vier Streckenabschnitte [24]

5.2 Fehlererzeugung

Um eine einfache systematische Zuordnung der Gleisfehler zu erreichen wurden folgende Schienen- und Gleisfehler eingebaut:

- 4 Schienenstöße
- 2 Schienenbrüche (Abbildung 23)
- 1 punktuelle Instabilität (Abbildung 25)
- 1 Steifigkeitswechsel im Brückenbereich (Abbildung 24)
Im Realsystem kann die genaue Position und die Art der Fehler aufgrund von Informationsmangel nicht ermittelt werden. Das Modell hat dagegen den sehr großen Vorteil, dass die genaue Position der Fehler im Modell bekannt ist. Man kann die Fehler bestimmten Mustern im Messschrieb leicht zuteilen. Dies ermöglicht eine Fehlerklassifizierung, die durch unterschiedliche Algorithmen beschrieben und getestet werden kann [7]. Anhand von festgelegten Toleranz- und Grenzwerten kann anschließend eine Einzelfehlerbetrachtung durchgeführt werden. Um die Eigenfrequenz des Messfahrzeuges zu erhöhen, wurde ein zusätzliches Gewicht am Messwagen befestigt.

Die Zusammensetzung des Messzuges, dessen Fahrtrichtung sowie die Position der Fehler ist in Abbildung 26 dargestellt und wurde während der Untersuchung nicht geändert. Der Messzug hielt nach einer Rundenfahrt immer am gleichen Streckenabschnitt (Anfang des ersten Kreisbogens) für ca. 3 s bevor eine erneute Rundenfahrt startete. Die Fahrzeuggeschwindigkeit betrug bei der Überfahrt der Fehler ca. 0,37 m/s [24].
5.3 Software

Es wurde eine Software für die Erfassung der Daten programmiert, die eine schnelle und kon-
tinuierliche Datenübertragung garantiert. Die erzeugten Daten vom Beschleunigungssensor
können leicht in die Software Matrix Laboratory (MATLAB) importiert werden [24].
5.3.1 Software zur Erfassung der Messdaten

Zur Bedienung des Messsystems werden folgende Befehle benötigt:

Abbildung 27: Befehle zur Bedienung des Messsystems
Der Beschleunigungssensor kann in der jetzigen Konfiguration Daten mit einer Abtastrate von $t_s = 2 \text{ ms}$ bzw. einer Abtastfrequenz von $f_s = \frac{1}{t_s} = \frac{1}{2 \text{ ms}} = \frac{1}{2 \times 10^{-3}} = 500 \text{ Hz}$ aufzeichnen [24].

5.3.2 Messdaten Import mit MATLAB

Die im Messprotokoll aufgezeichneten Daten werden mit einer dafür selbstprogrammierten Funktion in MATLAB in Vektoren umgewandelt. Jede Beschleunigungsrichtung (x,y,z) ergibt einen Vektor. Da für einen Controller die Division mit rationalen Zahlen einen höheren Zeitaufwand erfordert und damit laut Hersteller Messungen mit vergleichsweise kurzen Zeitabständen nicht mehr umsetzbar wären, muss jeder Eintrag des Vektors mit $\frac{1}{1365,3125} \times 9,81 \frac{\text{m}}{\text{s}^2}$ multipliziert werden, um die Beschleunigung in $\frac{\text{m}}{\text{s}^2}$ zu erhalten. Anschließend können die erzeugten Daten für eine Weiterverarbeitung genutzt werden [24].
6 Gleisfehler

Die Gleisfehler werden durch die Wellenlängen λ in kurz-, mittel- oder langwellige Fehler unterteilt. Die kurzwelligen ($4m \leq \lambda \leq 25m$) und mittelwelligen ($25m \leq \lambda \leq 70m$) Gleisfehler deuten auf einen Fehler in der Bettung hin, während langwellige Fehler auf einen Fehler im Untergrund oder im Unterbau hinweisen. Wellenlängen mit einer Länge von $\lambda < 0.3m$ weisen auf einen Schienenoberflächenfehler hin, wie beispielsweise einen Schienenbruch oder einen Schienensstoß. Die Wellenlänge der Gleisfehler und die Geschwindigkeit des Fahrzeugs v beeinflussen die Fahrzeugfrequenz f (in Hertz, Hz). Wenn ein Zug über einen mittelwelligen Gleisfehler mit einer Geschwindigkeit von 100 km/h fährt, beträgt die Frequenz bei der Überfahrt ca. 1.1 Hz. Da die Frequenz direkt proportional zu der Geschwindigkeit steht, verdoppelt sie sich auf 2.2 Hz, wenn sich die Geschwindigkeit auf 200 km/h erhöht.

\[
\begin{align*}
 f &= \frac{v}{\lambda} & (6.1) \\
 f &= \text{Eigenfrequenz des Fahrzeugs} \\
 v &= \text{Geschwindigkeit des Fahrzeugs} \left[\frac{m}{s} \right] \\
 \lambda &= \text{Wellenlänge} \left[m \right]
\end{align*}
\]

Die Geschwindigkeit des Fahrzeugs ist der entscheidende Parameter für die Intensität der dynamischen Beanspruchung. Gleisfehler $F(x)$ können vereinfacht als eine sinusförmige Anregung angenommen werden.

\[
F(x) = F_0 \cdot \sin\left(\frac{2\pi}{\lambda} \cdot x \right) & (6.2)
\]

mit

\[
F_0 = \text{Fehleramplitude} \\
\lambda = \text{Wellenlänge} \\
x = \text{zurückgelegter Weg}
\]

Aus der Geschwindigkeit des Fahrzeugs für den mit der Zeit t zurückgelegten Weg x des Rades ergibt sich:

\[
x = v \cdot t & (6.3)
\]

Durch Einsetzen von (6.3) in (6.2) folgt:

\[
F(x) = F_0 \cdot \sin\left(\frac{2\pi}{\lambda} \cdot v \cdot t \right) & (6.4)
\]

Durch zweimaliges Ableiten von (6.4) nach der Zeit t ergibt sich:

\[
\frac{\partial^2 F(x)}{\partial t^2} = -F_0 \left(\frac{2\pi v}{\lambda} \right)^2 \cdot \sin\left(\frac{2\pi v}{\lambda} \cdot t \right) & (6.5)
\]
Aus der zweiten Ableitung des Ortes x nach der Zeit t ergibt sich die Beschleunigung $a(x)$. Nach Umstellen von (6.4) nach F_0 und durch das Einsetzen in (6.5), folgt:

$$a(x) = -F(x) \cdot \left(\frac{2\pi v}{\lambda}\right)^2$$

(6.6)

$$z_{Richtung} = \frac{x_{z_Richtung, 2}}{1365.3125 + 9.81 + 10}$$

(6.7)
Die frühzeitige Erkennung der Fehler am Gleis ermöglicht die Vermeidung einer kostenintensiven Instandhaltungsmaßnahme und im schlimmsten Fall die Entgleisung von Fahrzeugen. Die Beschleunigungswerte in x und y Richtung werden in dieser Arbeit nicht berücksichtigt.

6.1.1 Datenbearbeitung

6.2 Zuordnung der Gleisfehler im Messschrieb
In Abbildung 29 ist die Reihenfolge der Fehler im Verlauf der Vertikalbeschleunigung dargestellt. Der Messschrieb wurde visuell Stückweise betrachtet und mittels des Data Cursors in MATLAB die jeweiligen Positionen des Fehlermaximums für jede Runde bestimmt.

```matlab
for j=1:size(M,3) % M beinhaltet die Intervalle aller Fehlertypen
    R=M(:,:,j); % R beinhaltet alle Vektoren der Matrix
    for i=1:size(R,2)
        figure
        v = R(:,i);
        % ausgewählte Intervalle plotten
        plot([x_limit(j,i):x_limit(j,i)+500],v)
        hold on
        plot(posmax(j,i), (maximum(j,i)),'ko','LineWidth',5,
        'MarkerSize', 5) % Maximum mit Position posmax plotten
        strmax = ['Maximum = ',num2str(maximum(j,i))];
        text(posmax(j,i),maximum(j,i),strmax,
```

Abbildung 29: Position der Fehler im Messschrieb
'HorizontalAlignment','right');
xlabel('Messpunkt [\])
ylabel('vertikale Beschleunigung [m/s^2]')
title(sprintf('%s Runde %d',titlematrix(j), i));
end
end

Abbildung 30: Logik der For-Schleife zur Detektion des Maximums für ein definiertes Messintervall
Bei jedem Fehler bilden sich zwei typische Ausschläge, wobei der zweite immer größer ist als der erste. Dies ist auf die zwei Achsen des Messfahrzeugs zurückzuführen, durch die der Beschleunigungssensor zweimal durch den gleichen Fehler angeregt wird.

Die gemessenen Daten wurden mit einer Abtastfrequenz von $f_s = 500 \, Hz$ ermittelt. Der Abstand der einzelnen Messpunkte bei den Überfahrten der Fehler ist durch die Abtastrate der Messsignale definiert und entspricht 2 ms. Um zu überprüfen, ob die Abtastfrequenz 500 Hz beträgt, wurde die Anzahl der Messpunkte zwischen zwei Ausschlägen berechnet. Es lagen durchschnittlich 115 Messwerte zwischen zwei ausgewählten Fehlern vor. Die 115 Messwerte entsprechen einer Zeit von ca. 0,23 s. Der zurückgelegte Weg s kann mit der Gleichung $s = v \cdot t$ beschrieben werden. Durch das Einsetzen der bekannten Geschwindigkeit von $0,37 \, m/s$ ergibt sich ein Weg von ca. 85,1 mm. Nach der rechnerischen Ermittlung des zurückgelegten Weges wurde der Abstand der zwei Achslager am Fahrzeugmodell gemessen, was der Länge des berechneten Weges entsprach. Somit konnte nachgewiesen werden, weshalb sich zwei Ausschläge im Messschrieb pro Fehler bilden. Für die Klassifizierung der Fehler wird vereinfachend der größte Ausschlag betrachtet.

Abbildung 33: Achsabstand am Fahrzeugmodell
Vergleicht man die Messschriebe in Abb. 31 und 32 ist zu erkennen, dass beim ersten Schienenbruch im Vergleich zum zweiten Schienenbruch deutlich größere vertikale Beschleunigungen erzeugt werden. Das Fahrzeug erfährt nur einen Sprung beim Befahren des Fehlers und kehrt relativ zeitnah zum normalen Zustand zurück. Beim Befahren des ersten Schienenbruchs erfährt das Fahrzeug eine vertikale Beschleunigung von ca. \(22.013 \, \text{m/s}^2 \). Beim zweiten Bruch beträgt die Beschleunigung nur \(12.241 \, \text{m/s}^2 \).

Abbildung 34: Punktuelle Instabilität Runde 1

Bei der Überfahrt der punktuellen Instabilität reagiert das Fahrzeug mehrmals mit niedrigen Ausschlägen zwischen \(1 \, \text{m/s}^2 \) und \(1,5 \, \text{m/s}^2 \). Es wird festgelegt, dass die Position des Maximums in der Mitte der Unstetigkeitsstelle liegt. Dort erfährt das Fahrzeug aufgrund der negativen Längsneigung die stärkste Beschleunigung mit einem Wert von ca. \(3,1669 \, \text{m/s}^2 \). An der gleichen Stelle wird das Fahrzeug aufgrund der positiven Längsneigung abgebremst. Man kann im Messschrieb erkennen, dass die Verzögerung fast bei \(4,0 \, \text{m/s}^2 \) liegt. Die maximale vertikale Beschleunigung bei einer punktuellen Instabilität weist im Vergleich zu Beschleunigungswerten bei Schienenbrüchen keine solche hohe Werte auf.
Der erste Schienenstoß erfährt wiederholende kleine Änderungen in der Beschleunigung. Das Verhalten der Beschleunigung gleicht der einer punktuellen Instabilität, wobei der Ausschlag kleiner ist. Der maximale Wert beträgt $2,448 \frac{m}{s^2}$. Da das Fahrzeug im ersten Kreisbogen nach dem Stopp von 0 m/s an beschleunigt, erreicht das Messfahrzeug nicht immer die maximale Geschwindigkeit am Schienenstoß 1, weshalb die Beschleunigung für einen Schienenstoß relativ niedrig ausfällt. Der zweite und der vierte Schienenstoß besitzen einen Wert von $5,178 \frac{m}{s^2}$ und $6,242 \frac{m}{s^2}$. Vor und nach diese Unstetigkeitsstellen erfährt das Fahrzeug eine kleine Beschleunigung, die nicht mehr als $2 \frac{m}{s^2}$ beträgt, wobei auch hier starke negative Beschleunigungswerte erreicht werden. Der dritte Schienenstoß gleicht dem zweiten Schienenbruch im Beschleunigungsverlauf. Hier werden im Vergleich zum Schienenbruch mehrere Schwingungen mit größeren Beschleunigungswerten erzeugt.
In Abb. 39 ist zu erkennen, dass die vertikale Beschleunigung im positiven und negativen Bereich gleichmäßig schwankt, wodurch das Fahrzeug eine starke Verzögerung der Geschwindigkeit erfährt. Es wird angenommen, dass die starke Schwankung von zirka \(-7 \frac{m}{s^2}\) die Steifigkeitsdifferenz bei der Auffahrt der Brücke repräsentiert. Der positive Maximalwert beträgt \(2.764 \frac{m}{s^2}\) und ist im Vergleich zum Minimum deutlich geringer.

Abbildung 39: Steifigkeitswechsel an Brückenanfang und -ende mit Angabe des Maximums
6.3 Gleisfehler Darstellung

Da nun alle Fehler im Messschrieb identifiziert wurden, konnte eine For-Schleife programmiert werden, sodass die 8 unterschiedlichen Fehlerbereiche jeweils mit den 12 gemessenen Runden geplottet werden konnten. Mit dem Plotten der Fehler wurde die Untersuchung der Fahrzeugreaktion an den Fehlern ermöglicht. Dies ist für die Ausarbeitung der unterschiedlichen Fehlermerkmale notwendig, um diese später klassifizieren und detektieren zu können.

Die berechneten Positionen der Maximalwerte posmax wurden für die Darstellung des Fehlerbereiches in einem Intervall von +/- 50 Messpunkten vom Maximum ausgehend wie folgt verwendet:

```matlab
for j=1:size(posmax,1) % posmax ist die Position des Maximums
    figure
    for i=1:size(posmax,2)
        plot(posMax(:,j,i),'--','linewidth',1.5) % posMax ist der Bereich +/-150 Messpunkte ab posmax
        hold on
    end
end
```
Abbildung 40: Vertikale Beschleunigung im Bereich des 1. Schienenstoßes für zwölf Fahrtrunden

<table>
<thead>
<tr>
<th>Position</th>
<th>Typ</th>
<th>Bereich</th>
<th>Vertikale Beschleunigung $[m/s^2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maximum</td>
<td>Global</td>
<td>3,397</td>
</tr>
<tr>
<td>2</td>
<td>Minimum</td>
<td>Global</td>
<td>-3,415</td>
</tr>
</tbody>
</table>

Tabelle 3: Typische Extrema des 1. Schienenstoßes

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0,2 ms</td>
</tr>
<tr>
<td>2</td>
<td>0,2 ms</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 4: Zeitliche Distanzen zwischen den Extrema für Schienenstoß 1
Abbildung 41: Vertikale Beschleunigung im Bereich des 2. Schienenstoßes für zwölf Fahrtrunden

<table>
<thead>
<tr>
<th>Position</th>
<th>Typ</th>
<th>Bereich</th>
<th>Vertikale Beschleunigung [m/s²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maximum</td>
<td>Global</td>
<td>5,207</td>
</tr>
<tr>
<td>2</td>
<td>Minimum</td>
<td>Global</td>
<td>-8,990</td>
</tr>
<tr>
<td>3</td>
<td>Maximum</td>
<td>Lokal</td>
<td>3,972</td>
</tr>
<tr>
<td>4</td>
<td>Minimum</td>
<td>Lokal</td>
<td>-3,156</td>
</tr>
<tr>
<td>5</td>
<td>Maximum</td>
<td>Lokal</td>
<td>2,765</td>
</tr>
<tr>
<td>6</td>
<td>Minimum</td>
<td>Lokal</td>
<td>-2,093</td>
</tr>
<tr>
<td>7</td>
<td>Maximum</td>
<td>Lokal</td>
<td>1,730</td>
</tr>
<tr>
<td>8</td>
<td>Minimum</td>
<td>Lokal</td>
<td>-1,173</td>
</tr>
</tbody>
</table>

Tabelle 5: Typische Extrema des 2. Schienenstoßes

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0,4 ms</td>
<td>2,2 ms</td>
<td>3,0 ms</td>
<td>4,2 ms</td>
<td>5,6 ms</td>
<td>6,6 ms</td>
<td>8,0 ms</td>
</tr>
<tr>
<td>0,4 ms</td>
<td>-</td>
<td>1,8 ms</td>
<td>2,6 ms</td>
<td>3,8 ms</td>
<td>5,2 ms</td>
<td>6,2 ms</td>
<td>7,6 ms</td>
</tr>
<tr>
<td>2,2 ms</td>
<td>1,8 ms</td>
<td>-</td>
<td>0,8 ms</td>
<td>2,0 ms</td>
<td>3,4 ms</td>
<td>4,4 ms</td>
<td>5,8 ms</td>
</tr>
<tr>
<td>3,0 ms</td>
<td>2,6 ms</td>
<td>0,8 ms</td>
<td>-</td>
<td>1,2 ms</td>
<td>2,6 ms</td>
<td>3,6 ms</td>
<td>5,0 ms</td>
</tr>
<tr>
<td>4,2 ms</td>
<td>3,8 ms</td>
<td>2,0 ms</td>
<td>1,2 ms</td>
<td>-</td>
<td>1,4 ms</td>
<td>2,4 ms</td>
<td>3,8 ms</td>
</tr>
<tr>
<td>5,6 ms</td>
<td>5,2 ms</td>
<td>3,4 ms</td>
<td>2,6 ms</td>
<td>1,4 ms</td>
<td>-</td>
<td>1,0 ms</td>
<td>2,0 ms</td>
</tr>
<tr>
<td>6,6 ms</td>
<td>6,2 ms</td>
<td>4,4 ms</td>
<td>3,6 ms</td>
<td>2,4 ms</td>
<td>1,0 ms</td>
<td>-</td>
<td>1,4 ms</td>
</tr>
<tr>
<td>8,0 ms</td>
<td>7,6 ms</td>
<td>5,8 ms</td>
<td>5,0 ms</td>
<td>3,8 ms</td>
<td>2,0 ms</td>
<td>1,4 ms</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 6: Zeitliche Distanzen zwischen den Extrema für Schienenstoß 2
Abbildung 42: Vertikale Beschleunigung im Bereich des 1. Schienenbruchs für zwölf Fahrtrunden

<table>
<thead>
<tr>
<th>Position</th>
<th>Typ</th>
<th>Bereich</th>
<th>Vertikale Beschleunigung [m/s^2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maximum</td>
<td>Lokal</td>
<td>6,961</td>
</tr>
<tr>
<td>2</td>
<td>Minimum</td>
<td>Global</td>
<td>-25,09</td>
</tr>
<tr>
<td>3</td>
<td>Maximum</td>
<td>Global</td>
<td>29,89</td>
</tr>
<tr>
<td>4</td>
<td>Minimum</td>
<td>Lokal</td>
<td>-16,12</td>
</tr>
<tr>
<td>5</td>
<td>Maximum</td>
<td>Lokal</td>
<td>13,19</td>
</tr>
<tr>
<td>6</td>
<td>Minimum</td>
<td>Lokal</td>
<td>-13,19</td>
</tr>
<tr>
<td>7</td>
<td>Maximum</td>
<td>Lokal</td>
<td>3,224</td>
</tr>
</tbody>
</table>

Tabelle 7: Typische Extrema des 1. Schienenbruchs

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0,6 ms</td>
<td>1,4 ms</td>
<td>1,6 ms</td>
<td>2,4 ms</td>
<td>2,8 ms</td>
</tr>
<tr>
<td>2</td>
<td>0,6 ms</td>
<td>-</td>
<td>0,8 ms</td>
<td>1,0 ms</td>
<td>1,8 ms</td>
<td>2,4 ms</td>
</tr>
<tr>
<td>3</td>
<td>1,4 ms</td>
<td>0,8 ms</td>
<td>-</td>
<td>0,2 ms</td>
<td>1,0 ms</td>
<td>1,6 ms</td>
</tr>
<tr>
<td>4</td>
<td>1,6 ms</td>
<td>1,0 ms</td>
<td>0,2 ms</td>
<td>-</td>
<td>0,8 ms</td>
<td>1,2 ms</td>
</tr>
<tr>
<td>5</td>
<td>2,4 ms</td>
<td>1,8 ms</td>
<td>1,0 ms</td>
<td>0,8 ms</td>
<td>-</td>
<td>0,4 ms</td>
</tr>
<tr>
<td>6</td>
<td>2,8 ms</td>
<td>2,4 ms</td>
<td>1,6 ms</td>
<td>1,2 ms</td>
<td>0,4 ms</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>3,0 ms</td>
<td>2,6 ms</td>
<td>1,8 ms</td>
<td>1,4 ms</td>
<td>0,6 ms</td>
<td>0,2 ms</td>
</tr>
</tbody>
</table>

Tabelle 8: Zeitliche Distanzen zwischen den Extrema für Schienenbruch 1
Abbildung 43: Vertikale Beschleunigung in Bereich der punktuellen Instabilität für zwölf Fahrtrunden

<table>
<thead>
<tr>
<th>Position</th>
<th>Typ</th>
<th>Bereich</th>
<th>Vertikale Beschleunigung $[\text{m/s}^2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minimum</td>
<td>Global</td>
<td>-4,852</td>
</tr>
<tr>
<td>2</td>
<td>Maximum</td>
<td>Global</td>
<td>3,713</td>
</tr>
</tbody>
</table>

Tabelle 9: Typische Extrema der punktuellen Instabilität

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,6 ms</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>1,6 ms</td>
</tr>
</tbody>
</table>

Tabelle 10: Zeitliche Distanzen zwischen den Extrema für die punktuelle Instabilität
Abbildung 44: Vertikale Beschleunigung im Bereich des 3. Schienenstoßes für zwölf Fahrtrunden

<table>
<thead>
<tr>
<th>Position</th>
<th>Typ</th>
<th>Bereich</th>
<th>Vertikale Beschleunigung [m/s^2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maximum</td>
<td>Lokal</td>
<td>3.138</td>
</tr>
<tr>
<td>2</td>
<td>Minimum</td>
<td>Global</td>
<td>-9.364</td>
</tr>
<tr>
<td>3</td>
<td>Maximum</td>
<td>Global</td>
<td>19.37</td>
</tr>
<tr>
<td>4</td>
<td>Minimum</td>
<td>Lokal</td>
<td>-4.909</td>
</tr>
<tr>
<td>5</td>
<td>Maximum</td>
<td>Lokal</td>
<td>4.920</td>
</tr>
<tr>
<td>6</td>
<td>Minimum</td>
<td>Lokal</td>
<td>-3.846</td>
</tr>
<tr>
<td>7</td>
<td>Maximum</td>
<td>Lokal</td>
<td>4.690</td>
</tr>
</tbody>
</table>

Tabelle 11: Typische Extrema des 3. Schienenstoßes

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0,8 ms</td>
<td>1,6 ms</td>
<td>2,0 ms</td>
<td>2,6 ms</td>
<td>3,2 ms</td>
</tr>
<tr>
<td>2</td>
<td>0,8 ms</td>
<td>-</td>
<td>0,8 ms</td>
<td>1,2 ms</td>
<td>1,8 ms</td>
<td>2,4 ms</td>
</tr>
<tr>
<td>3</td>
<td>1,6 ms</td>
<td>0,8 ms</td>
<td>-</td>
<td>0,4 ms</td>
<td>1,0 ms</td>
<td>1,6 ms</td>
</tr>
<tr>
<td>4</td>
<td>2,0 ms</td>
<td>1,2 ms</td>
<td>0,4 ms</td>
<td>-</td>
<td>0,6 ms</td>
<td>1,2 ms</td>
</tr>
<tr>
<td>5</td>
<td>2,6 ms</td>
<td>1,8 ms</td>
<td>1,0 ms</td>
<td>0,6 ms</td>
<td>-</td>
<td>0,6 ms</td>
</tr>
<tr>
<td>6</td>
<td>3,2 ms</td>
<td>2,4 ms</td>
<td>1,6 ms</td>
<td>1,2 ms</td>
<td>0,6 ms</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>3,6 ms</td>
<td>2,8 ms</td>
<td>2,0 ms</td>
<td>1,6 ms</td>
<td>1,0 ms</td>
<td>0,4 ms</td>
</tr>
</tbody>
</table>

Tabelle 12: Zeitliche Distanzen zwischen den Extrema für den 3. Schienenstoß
Abbildung 45: Vertikale Beschleunigung im Bereich des 4. Schienenstoßes für zwölf Fahrtrunden

<table>
<thead>
<tr>
<th>Position</th>
<th>Typ</th>
<th>Bereich</th>
<th>Vertikale Beschleunigung [m/s²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maximum</td>
<td>Global</td>
<td>6,645</td>
</tr>
<tr>
<td>2</td>
<td>Minimum</td>
<td>Lokal</td>
<td>-11,29</td>
</tr>
<tr>
<td>3</td>
<td>Maximum</td>
<td>Lokal</td>
<td>6,328</td>
</tr>
<tr>
<td>4</td>
<td>Minimum</td>
<td>Global</td>
<td>-13,42</td>
</tr>
<tr>
<td>5</td>
<td>Maximum</td>
<td>Lokal</td>
<td>4,690</td>
</tr>
<tr>
<td>6</td>
<td>Minimum</td>
<td>Lokal</td>
<td>-7,870</td>
</tr>
<tr>
<td>7</td>
<td>Maximum</td>
<td>Lokal</td>
<td>3,052</td>
</tr>
<tr>
<td>8</td>
<td>Minimum</td>
<td>Lokal</td>
<td>-4,219</td>
</tr>
</tbody>
</table>

Tabelle 13: Typische Extrema des 4. Schienenstoßes

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>1,2 ms</td>
<td>2,8 ms</td>
<td>4,0 ms</td>
<td>4,6 ms</td>
<td>5,4 ms</td>
<td>7,0 ms</td>
</tr>
<tr>
<td>2</td>
<td>1,2 ms</td>
<td>-</td>
<td>1,6 ms</td>
<td>2,8 ms</td>
<td>3,4 ms</td>
<td>4,2 ms</td>
<td>5,8 ms</td>
</tr>
<tr>
<td>3</td>
<td>2,8 ms</td>
<td>1,6 ms</td>
<td>-</td>
<td>1,2 ms</td>
<td>1,8 ms</td>
<td>2,6 ms</td>
<td>4,2 ms</td>
</tr>
<tr>
<td>4</td>
<td>4,0 ms</td>
<td>2,8 ms</td>
<td>1,2 ms</td>
<td>-</td>
<td>0,6 ms</td>
<td>1,8 ms</td>
<td>3,4 ms</td>
</tr>
<tr>
<td>5</td>
<td>4,6 ms</td>
<td>3,4 ms</td>
<td>1,8 ms</td>
<td>0,6 ms</td>
<td>-</td>
<td>1,2 ms</td>
<td>2,8 ms</td>
</tr>
<tr>
<td>6</td>
<td>5,4 ms</td>
<td>4,2 ms</td>
<td>2,6 ms</td>
<td>1,8 ms</td>
<td>1,2 ms</td>
<td>-</td>
<td>1,6 ms</td>
</tr>
<tr>
<td>7</td>
<td>7,0 ms</td>
<td>5,8 ms</td>
<td>4,2 ms</td>
<td>3,4 ms</td>
<td>2,8 ms</td>
<td>1,6 ms</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>8,2 ms</td>
<td>7,0 ms</td>
<td>5,4 ms</td>
<td>4,6 ms</td>
<td>4,0 ms</td>
<td>2,8 ms</td>
<td>1,2 ms</td>
</tr>
</tbody>
</table>

Tabelle 14: Zeitliche Distanzen zwischen den Extrema für den Schienenstoß 4
Abbildung 46: Vertikale Beschleunigung im Bereich der Brücke für zwölf Fahrtrunden

<table>
<thead>
<tr>
<th>Position</th>
<th>Typ</th>
<th>Bereich</th>
<th>Vertikale Beschleunigung [m/s²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minimum</td>
<td>Global</td>
<td>-7,697</td>
</tr>
<tr>
<td>2</td>
<td>Maximum</td>
<td>Global</td>
<td>4,518</td>
</tr>
</tbody>
</table>

Tabelle 15: Typische Extrema der Brücke

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,6 ms</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 16: Zeitliche Distanzen zwischen den Extrema für die Brücke
Abbildung 47: Vertikale Beschleunigung im Bereich des 2. Schienenbruchs für zwölf Fahrrunden

<table>
<thead>
<tr>
<th>Position</th>
<th>Typ</th>
<th>Bereich</th>
<th>Vertikale Beschleunigung $[\frac{m}{s^2}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Minimum</td>
<td>Lokal</td>
<td>-5,800</td>
</tr>
<tr>
<td>2</td>
<td>Maximum</td>
<td>Global</td>
<td>13,59</td>
</tr>
<tr>
<td>3</td>
<td>Minimum</td>
<td>Global</td>
<td>-17,47</td>
</tr>
<tr>
<td>4</td>
<td>Maximum</td>
<td>Lokal</td>
<td>9,835</td>
</tr>
<tr>
<td>5</td>
<td>Minimum</td>
<td>Lokal</td>
<td>-2,840</td>
</tr>
</tbody>
</table>

Tabelle 17: Typische Extrema des 2. Schienenbruchs

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>0,8 ms</td>
<td>1,4 ms</td>
<td>3,0 ms</td>
</tr>
<tr>
<td>2</td>
<td>0,8 ms</td>
<td>-</td>
<td>0,6 ms</td>
<td>2,2 ms</td>
</tr>
<tr>
<td>3</td>
<td>1,4 ms</td>
<td>0,6 ms</td>
<td>-</td>
<td>1,6 ms</td>
</tr>
<tr>
<td>4</td>
<td>3,0 ms</td>
<td>2,2 ms</td>
<td>1,6 ms</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>4,2 ms</td>
<td>3,4 ms</td>
<td>2,8 ms</td>
<td>1,2 ms</td>
</tr>
</tbody>
</table>

Tabelle 18: Zeitliche Distanzen zwischen die Extrema für den Schienenbruch 2

Durch die genaue Betrachtung der Muster konnten kleinere Abweichungen für jeden Fehler erkannt werden. Wie in Kapitel 6.2 verursacht der erste Schienenstoß aufgrund der Anfangsgeschwindigkeit nicht immer die gleiche Beschleunigung. In Tabelle 19 sind die Ergebnisse der Vertikalbeschleunigung für die einzelnen Fehler zusammengefasst.
<table>
<thead>
<tr>
<th>Fehlertyp</th>
<th>max. positive vertikale Beschleunigung [m/s²]</th>
<th>max. negative vertikale Beschleunigung [m/s²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schienenbruch 1</td>
<td>22-30,2</td>
<td>-25,09</td>
</tr>
<tr>
<td>Schienenbruch 2</td>
<td>11,0-13,5</td>
<td>-17,47</td>
</tr>
<tr>
<td>Schienenstoß 1</td>
<td>2,4-3,3</td>
<td>-3,15</td>
</tr>
<tr>
<td>Schienenstoß 2</td>
<td>4,0-5,2</td>
<td>-8,99</td>
</tr>
<tr>
<td>Schienenstoß 3</td>
<td>13,0-19,0</td>
<td>-9,36</td>
</tr>
<tr>
<td>Schienenstoß 4</td>
<td>5,6-6,8</td>
<td>-13,42</td>
</tr>
<tr>
<td>Punktuelle Instabilität</td>
<td>2,8-3,7</td>
<td>-4,85</td>
</tr>
<tr>
<td>Steifigkeitswechsel</td>
<td>2,4-4,0</td>
<td>-7,69</td>
</tr>
</tbody>
</table>

(Grundeinstellung)

Tabelle 19: Vertikale Beschleunigungswerte des Maximums und des Minimums für die einzelnen Fehlern

Um die Bereiche der Fehler besser analysieren zu können, wurde der Mittelwert für jeden Messpunkt berechnet. Damit war es möglich, die Fehler anhand ihrer Mittelwerte zu analysieren. Um den Mittelwert zu berechnen wird die untenstehende Formel verwendet:

\[
x_{\text{Mittel}} = \frac{x_1 + x_2 + x_3 + \ldots + x_N}{N}
\]

mit

\[x_n = \text{Werte der Messpunkte}\]

\[N = \text{Anzahl der Messpunkte}\]

In Matlab musste die Maximum-Matrix folgend transponiert werden, um den Mittelwert der Fehler berechnen zu können:

```matlab
posMax = permute(posMax,[3 1 2]);  \% transponierte Matrix

-For-Schleife. Hier wird D als 3-dimensionale Matrix der jeweiligen Position definiert.

```
Alle Schienenstöße bilden unterschiedliche Muster. Die Schienenbrüche weisen zuerst einen negativen Ausschlag und anschließend einen positiven Ausschlag mit ähnlichen Betrag auf. Hier ist der positive Betrag deutlich größer als der negative.

Abbildung 49: Logik für die Einstellung und Messung

Abbildung 50: Logik für die Detektion des Maximums
Abbildung 51: Logik für die Zuordnung der Gleisfehlern anhand ihrer maximalen Beschleunigungswerte
Die Peaks und die Amplituden im Messschrieb sind für die Fehlerklassifizierung sinnvoll, jedoch kann man durch das Analysieren des Signals mehrere Informationen gewinnen. Um eine bessere Zuordnung der Fehler zu erreichen, werden die Beschleunigungssignale entlang der Fehler mit der Fast-Fourier-Transformation und der spektralen Beschleunigungsdichte untersucht. Die unterschiedlichen Fehler sollen anschließend anhand ihres Frequenzverhaltens charakterisiert werden. Die Fehlererkennung über die charakteristischen Frequenzbereiche der jeweiligen Gleisfehler wird im folgenden Kapitel erläutert.
7 Frequenzanalyse

7.1 Diskrete Fourier Transformation

\[
f(x) = \sum_{n=-\infty}^{\infty} c_n \times e^{i k x}
\]

(7.1)
dargestellt. Der Ausgangsvektor \(f \) wird nach der Transformation als Linearkombination von Vektoren des Typs: \(\rightarrow_{\text{w}_k} = (e^{i k x_0}, e^{i k x_1}, \ldots, e^{i k x_{N-1}}) \) in komplexen Einheitswurzeln dargestellt. Der transformierte Vektor stellt spezifische Merkmale wie z.B. Störsignale der Ausgangsdaten dar. Der Vektor \(f := (f(x_0), f(x_1), \ldots, f(x_{N-1})) \) als Linearkombination der Einheitswurzeln an den Punkten \(x_l \) aus [29]:

\[
(W_k)_{\rightarrow_{\text{w}_k}} = (e^{i k 0 \times 2 \pi / N}, e^{i k 1 \times 2 \pi / N}, \ldots, e^{i k (N-1) \times 2 \pi / N})
\]

(7.2)

folgt:

\[
(W_k) = (e^{i 2 \pi / N} k l) = (w_N^{k l})
\]

Für alle \(N \in \mathbb{N} \) ist die Fourier Matrix \(N \times \Omega \) definiert, sodass die l-te Spalte von \(N \times \Omega \) \(\rightarrow_{\text{w}_l} \) enthält:

\[
N \times \Omega_{k,l} := \rightarrow_{\text{w}_k} = e^{i k 2 \pi / N} = w_N^{k l}
\]

(7.3)

Die Diskrete Fourier Transformation kann als Skalarprodukt dargestellt werden:

\[
<z \rightarrow_{\text{w}}, f \rightarrow_{\text{w}_k}>_{N} = \frac{1}{N} \sum_{m=0}^{N-1} z_m \cdot \overline{w_m}
\]

(7.4)

durch

\[
f_k = <f \rightarrow_{\text{w}_k}, \rightarrow_{\text{w}}>_N = \frac{1}{N} \sum_{l=0}^{N-1} f_l \cdot e^{-i k l \frac{2 \pi}{N}}
\]

(7.5)
Beispiel DFT und FFT [28]:
Hier wird die Diskrete Fourier Transformation der Folge \(\bar{s} = (1,2,3,4,5,6,7,8) \) mittels der FFT berechnet. Das dazugehörende Polynom ist:

\[
P(x) = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + 7x^6 + 8x^7
\]

Die DFT (\(\bar{s} \)) ist die Reihe der Werte

\[
DFT (\bar{s}) = (P(w_8^0), P(w_8^1), P(w_8^2), P(w_8^3), P(w_8^4), P(w_8^5), P(w_8^6), P(w_8^7))
\]

Wobei:

\[
\begin{align*}
w_8^0 &= 1; & w_8^1 &= \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} & w_8^2 &= i; & w_8^3 &= - \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \\
w_8^4 &= -1; & w_8^5 &= - \frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} & w_8^6 &= -i; & w_8^7 &= \frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2}
\end{align*}
\]

Also:

\[
\begin{align*}
w_4^0 &= 1; & w_4^1 &= i; & w_4^2 &= -1 & w_4^3 &= -i \\
w_2^0 &= 1; & w_2^1 &= -1
\end{align*}
\]

Wir wenden jetzt das „Divide-And-Conquer“-Prinzip mit \(y = x^2 \):

\[
P(x) = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + 7x^6 + 8x^7 \\
= (1 + 3x^2 + 5x^4 + 7x^6) + x(2 + 4x^2 + 6x^4 + 8x^6) \\
= (1 + 3y + 5y^2 + 7y^3) + x(2 + 4y + 6y^2 + 8y^3).
\]

Mit

\[
P_0(y) = 1 + 3y + 5y^2 + 7y^3; & \quad P_0(y) = 2 + 4y + 6y^2 + 8y^3;
\]

Anschließend wird das „Divide-And-Conquer“-Prinzip wieder verwendet mit \(z = y^2 \)

\[
P_0(y) = (1 + 5y^2) + y(3 + 7y^2); & \quad P_0(y) = 2 + 6y^2 + y(4 + 8y^2); \\
= (1 + 5z) + y(3 + 7z); & \quad = 2 + 6z + y(4 + 8z).
\]

folgt:

\[
P_{ee}(z) = 1 + 5z; & \quad P_{e0}(z) = 3 + 7z; \\
P_{0e}(z) = 2 + 6z; & \quad P_{00}(z) = 4 + 8z.
\]
Jetzt haben wir

\[
 DFT((1,5)) = \langle p_{ee}(w_2^0), p_{ee}(w_2^1) \rangle = \langle p_{ee}(1), p_{ee}(-1) \rangle \\
 = (1 + 5 \cdot 1, 1 + 5 \cdot (-1)) = (6, -4)
\]

\[
 DFT((3,7)) = \langle p_{e0}(w_2^0), p_{e0}(w_2^1) \rangle = \langle p_{e0}(1), p_{e0}(-1) \rangle \\
 = (3 + 7 \cdot 1, 3 + 7 \cdot (-1)) = (10, -4)
\]

\[
 DFT((2,6)) = \langle p_{0e}(w_2^0), p_{0e}(w_2^1) \rangle = \langle p_{0e}(1), p_{0e}(-1) \rangle \\
 = (2 + 6 \cdot 1, 2 + 6 \cdot (-1)) = (8, -4)
\]

\[
 DFT((4,8)) = \langle p_{00}(w_2^0), p_{00}(w_2^1) \rangle = \langle p_{00}(1), p_{00}(-1) \rangle \\
 = (4 + 8 \cdot 1, 4 + 8 \cdot (-1)) = (12, -4)
\]

Mit der Verwendung von Gleichung 7.5 mit \(n = 4 \) erhalten wir:

\[
 DFT((1,3,5, 7)) = (6 + w_4^0 \cdot 10, -4 + w_4^1 (-4), 6 - w_4^0 \cdot 10, -4 - w_4^1 (-4)) \\
 = (6 + 10, -4 + i(-4), 6 - 10, -4 - i(-4)) \\
 = (16, -4 - 4i, -4, -4 + 4i)
\]

\[
 DFT((2,4,6, 8)) = (8 + w_4^0 \cdot 12, -4 + w_4^1 (-4), 8 - w_4^0 \cdot 12, -4 - w_4^1 (-4)) \\
 = (8 + 12, -4 + i(-4), 8 - 12, -4 - i(-4)) \\
 = (20, -4 - 4i, -4, -4 + 4i)
\]

Und als letzter Schritt erhalten wir aus 7.5 mit \(n = 8 \):

\[
 DFT((1,2,3,4,5,6,7,8)) \\
 = (36, -4 - 4i(1 + \sqrt{2}), -4 - 4i, -4 + 4i(1 - \sqrt{2}), -4, -4 - 4i(1 - \sqrt{2}), -4 + 4i, -4 + 4i(1 + \sqrt{2}))
\]
7.1.1 Fast-Fourier-Transformation

Beispielsweise sei: $N = 2^k, k \in \mathbb{N}, x = (x_i)_{i=0}^{N-1} \in \mathbb{C}^N$

(7.6)

$$
P_N = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0
\end{bmatrix}
$$

Pemutationsmatrix

also

$$P_N \cdot x_{N-2} =: \left(\begin{array}{c}
x_{\text{even}} \\
x_{\text{odd}}
\end{array} \right), x_{\text{even}}, x_{\text{odd}} \in \mathbb{C}^{N/2}, \text{Teilvektor von } x$$

Die FFT lässt sich für $N = 2^k$ rekursiv berechnen: schnelle FFT.

$$F_N(y) = \frac{1}{2} \begin{pmatrix}
I & I \\
-I & -I
\end{pmatrix} \begin{pmatrix}
F_{N/2}(y_{\text{even}}) \\
F_{N/2}(y_{\text{odd}})
\end{pmatrix}
mit \quad D_{N/2} = \text{diag} \left(w^0, w^{-1}, \ldots, w^{-\left(\frac{N}{2}\right)} \right)$$

(7.7)

Beispiel: $N = 8$

$$F_8 = \begin{pmatrix}
y_0 \\
y_1 \\
\vdots \\
y_7
\end{pmatrix}$$
folgt
\[F_4 = \begin{pmatrix} y_0 \\ y_2 \\ y_4 \\ y_6 \end{pmatrix} \text{ und } F_4 = \begin{pmatrix} y_1 \\ y_3 \\ y_5 \\ y_7 \end{pmatrix} \]

aus
\[F_4 = \begin{pmatrix} y_0 \\ y_2 \\ y_4 \\ y_6 \end{pmatrix} \text{ folgt } F_2 = \begin{pmatrix} y_0 \\ y_4 \end{pmatrix} \text{ und } F_2 = \begin{pmatrix} y_2 \\ y_6 \end{pmatrix} \]

und aus
\[F_2 = \begin{pmatrix} y_0 \\ y_4 \end{pmatrix} \text{ ergibt sich } y_0 \text{ und } y_4. \]

Das Verfahren der FFT beschleunigt die Berechnung erheblich aufgrund des geringeren Speicheraufwands gegenüber der Matrixvariante der DFT. Für \(N = 2^k, k \in \mathbb{N} \) lässt sich die Berechnung auf \(\sigma(N \log_2 N) \) beschleunigen, z.B. \(N = 1024 = 2^{10}, \log_2 N = 10 => N \log_2 N = 10240 \) wesentlich kleiner als \(1024^2 \) [29, 30].

7.2 Spektrale Beschleunigungsdichte

Alternativ zu der FFT wurden die erzeugten Messschriebe mittels der spektralen Beschleunigungsdichte untersucht. Die spektrale Beschleunigungsdichte zeigt die Stärke der Energie als eine Funktion der Frequenz an. In anderen Worten gibt sie an, bei welchen Frequenzen die Beschleunigungen stark und bei welchen diese schwach sind. Die Einheit der spektralen Beschleunigungsdichte ist die Energie pro Frequenzbreite. Die Energie innerhalb eines bestimmten Bereichs kann erhalten werden, indem die spektrale Beschleunigungsdichte innerhalb dieses Frequenzbereichs integriert wird [31, 32].

Die spektrale Beschleunigungsdichte wird wie folgt berechnet:
\[S_{xx}(f) = X^*(f) \cdot X(f) = |X(f)|^2 \quad (7.8) \]

Nach der Formel von Plancherel gilt:
\[\frac{1}{2T} \int_{-T}^{T} |f_T(t)|^2 dt = \frac{1}{2T} \int_R |F(f_T)(w)|^2 dw \quad (7.9) \]

Falls die mittlere Signalleistung
\[r_{xx}(0) := \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |f(t)|^2 dt \quad (7.10) \]

existiert, existiert auch die rechte Seite obiger Formel und als spektrale Beschreibung der Leistung man kann die spektrale Leistungsdichte definieren als
\[S_{xx}(w) := \lim_{T \to \infty} \frac{1}{2T} |F(f_T)(w)|^2 \quad (7.11) \]
Für jedes endliche T heißt die Größe $P_{erT}(w) := |F(f_T)(w)|^2$ das Periodogramm von f. Es stellt einen Schätzwert der spektralen Leistungsdichte dar, dessen Erwartungswert aber nicht $S_{xx}(w)$ entspricht und dessen Varianz auch für beliebig große T nicht verschwindet [31, 32].

Zur Bestimmung der spektralen Leistungsdichte $S_{xx}(w)$ wird oft das Wiener-Chintschin-Theorem herangezogen [31]:

$$S_{xx}(w) = F(r_{xx})(w) = \frac{1}{2\pi} \int_{-\infty}^{\infty} r_{xx}(t)e^{-jwt}dt$$ \hspace{1cm} (7.12)

Dabei ist

$$r_{xx}(t) = \lim_{T \to \infty} \int_{-T}^{T} f(t)f(t+\tau)d\tau$$ \hspace{1cm} (7.13)

die Autokorrelationsfunktion des zeitlichen Signals $f(t)$. Wird ein Signal mit dem Leistungsdichtespektrum $S_{xx}(w)$ über ein lineares, zeitvariantes System mit Übertragungsfunktion $H(w)$ übertragen, so ergibt sich am Ausgang ein Leistungsdichtespektrum von

$$S_{yy}(w) = |H(w)|^2 \cdot S_{xx}(w).$$ \hspace{1cm} (7.14)

Die Übertragungsfunktion geht quadratisch in die Formel ein, da das Spektrum eine Leistungsgöße ist. Das Autoleistungsspektrum kann als einseitiges Spektrum $G_{xx}(f)(f > 0)$ dargestellt werden. Es gilt dann [31]:

$$G_{xx} = S_{xx}(f) \quad für \ f = 0$$ \hspace{1cm} (7.15)

und

$$G_{xx} = 2S_{xx}(f) \quad für \ f > 0.$$ \hspace{1cm} (7.16)

7.3 Wavelet-Analyse

Das Wavelet $\psi(t)$ ist eine Welle mit endlicher Reihe, die wie folgt definiert ist:

$$\sum_{-\infty}^{+\infty} \frac{\left|\hat{\psi}(w)\right|^2}{|w|} dw < \infty \quad (7.17)$$

mit

$$\int_{-\infty}^{+\infty} \psi(t) dt = 0 \quad (7.18)$$

wobei $\hat{\psi}(w)$ die Fourier Transformation von $\psi(t)$ ist. Gleichung 7.18 weist darauf hin, dass ein Wavelet einen Null-Mittelwert haben soll.

Die kontinuierliche Wavelet-Transformation einer Funktion ist wie folgt definiert:

$$Wf(s, u) = \frac{1}{\sqrt{s}} \int_{-\infty}^{+\infty} f(t) \psi^* \left(\frac{t-u}{s}\right) dt \quad (7.19)$$

wobei $\psi^*(t)$ die komplex konjugierte Wavelet-Funktion ist. s ist der kontinuierliche Intervallindex, u der kontinuierliche Position Index und $Wf(s, u)$ sind die Wavelet-Koeffizienten. Der kontinuierliche Intervallindex ist eine ganze Zahl im Intervall von Null bis zum Maximalwert des anstrebenden Bereichs. Der kontinuierliche Position Index ist eine Zahl im Intervall von Minimum zu dem Maximalwert des anstrebenden Bereichs. Es existieren unterschiedliche Wavelet-Familien, die für bestimmte Anwendungen günstig sind [9, 33].
Der Ablauf der Wavelet-Transformation kann vereinfacht wie folgt dargestellt werden [33]:

Abbildung 52: Ablauf Wavelet Transformation
8 Auswertung der Beschleunigungsdaten

8.1 Vermeidung des Alias-Effekts

Der Alias-Effekt ist ein Fehler, bei dem das Originalsignal-Frequenzanteil höher als die halbe Abtastfrequenz ist. Der Fehler bildet sich dann, wenn die Abtastung durch den Sensor nicht schnell genug erfolgt. Solche Frequenzanteile werden als die Nyquist-Frequenz bezeichnet. Der Alias-Effekt entsteht beim Nichteinhalten des Abtasttheorems, z.B. bei einer Unterabtastung, was dann zu einer falschen Wiederherstellung des Ursprungssignals führt. Auch wenn das Abtasttheorem eingehalten wird, kann es zu Aliasing kommen, wenn das Abtastsignal von einem Rauschsignal überlagert ist und Frequenzanteile hat, die höher sind, als die Nyquist-Frequenz. Die Abtastfrequenz muss mindestens zweimal so groß sein, wie die gemessene Frequenz [34].

Um den Einfluss des Aliaseffekts ausschließen zu können, wurde zunächst der Verlauf der Vertikalbeschleunigung mittels Butterworth-Filter um die halbe Abtastfrequenz (250 Hz) tiefpassgefiltert. Der Tiefpassfilter lässt alle Signalanteile unterhalb einer Grenzfrequenz durch und dämpft die Signale oberhalb der Grenzfrequenz. Durch die Entfernung einiger Frequenzen wird im ein Glättungseffekt erzeugt [32, 34].

Um äußere Einflüsse auf die Beschleunigung bei der Messung zu vermeiden, wurde ein Butterworth-Bandpass-Filter auf die Ausgangsdaten angewendet und mit den Originaldaten verglichen.

Abbildung 53: Original Signal

- Butterworth-Filter-Anwendung in MATLAB

```
abtastfrequenz = 500;
untere_grenzfrequenz = 250;
nyquistfrequenz = 0.5 * abtastfrequenz;
Wn = untere_grenzfrequenz/nyquistfrequenz;
order = 6;  %maximale Verzögerung, die bei der Berechnung verwendet wird
[b1,a1] = butter(order,Wn,'low');
z_Richtung_gefiltert = filter(b1,a1, z_Richtung);
```

8.1.1 Auswertung der FFT

Nach Anwendung der FFT-Funktion und der Transformation vom Zeit- in den Frequenzbereich lassen sich die stärksten auftretenden Frequenzen im Signal erkennen.

Hier wurde das Intervall von posMax untersucht. Dazu wurde für eine bessere Veranschaulichung eine For-Schleife entwickelt.
for j=1:size(posMax,2)
 for i=1:size(posMax,3)
 figure
 hold on % Abtastfrequenz
 Fs= 500;
 L= length(posMax(:,j,i)); % Länge Frequenzauflösung
 NFFT = 2^nextpow2(L);
 Y= fft(posMax(:,j,i),NFFT)/L; % Diskrete Fourier-Transformation
 f= Fs/2*linspace(0,1,NFFT/2+1);
 plot(f,2*abs(Y(1:NFFT/2+1)))
 hold on
 stem(f,2*abs(Y(1:NFFT/2+1)),'filled','MarkerFaceColor','red','MarkerEdgeColor','blue') % Beschriftung
 end
end

Die Abtastfrequenz FS beträgt konstant 500 Hz. Die NFFT ist die Länge des Signals für die Anwendung der Fourier-Transformation.

Die Verwendung der NFFT ist sehr hilfreich, wenn Signale mit unterschiedlichen Längen verglichen werden und alle die gleiche Frequenzauflösung aufweisen sollen. Da die Einstellung der NFFT für alle Signale gleich ist, ist ein direkter Vergleich der Frequenzen möglich.

Durch die Frequenzanalyse mittels FFT werden die unterschiedlichen Merkmale der Frequenzen bestimmt. Dies hilft bei der konkreten Unterscheidung zwischen den Fehlertypen.

Abbildung 55 zeigt die wichtigsten Merkmale des 3. Schienenstoßes. Man kann erkennen, dass zwei globale und ein lokales Maximum vorliegen. Die größte erzeugte Energie für das erste globale Maximum besitzt eine Amplitude von $2,133 \frac{m}{s^2} \cdot Hz$ und $2,856 \frac{m}{s^2} \cdot Hz$. Die Energie verläuft zwischen den Frequenzen 39,06 Hz und 46,88 Hz konstant. Das zweite Peak liegt zwischen 93,75 Hz und 101,6 Hz, wobei dort die Energie auch zwischen 1,805 $\frac{m}{s^2} \cdot Hz$ und 2,526 $\frac{m}{s^2} \cdot Hz$ konstant verläuft. Für eine bessere Klassifizierung kann zusätzlich festgestellt werden, dass ein lokales Maximum bei 70,31 Hz vorhanden ist. Direkt vor und nach den lokalen Maxima befinden sich zwei lokale Minima bei 62,5 Hz und 78,13 Hz. Bemerkenswerterweise weist die Energie bei den beiden Minima trotz der kleinen Abweichungen den gleichen Wert auf. Ab 0 Hz bis zum ersten globalen Maximum weist die Energie einen quadratischen Verlauf auf.
Die FFT des zweiten Schienenbruchs (Abb. 56) weist ein ähnliches Verhalten im Vergleich zum dritten Schienenstoß auf. Hier liegt die am stärksten vertretene Frequenz bei 46,88 Hz mit einer Amplitude zwischen 3,313 m/s² und 4,522 m/s². Zwischen den Frequenzen 62,5 Hz und 93,75 Hz besitzt die Energie einen konstanten Verlauf. Ab 15,63 Hz bis 31,25 Hz verläuft die Energie stark monoton steigend mit einem linearen Verlauf. Es ist zu erkennen, dass die Amplituden vor und nach 109,4 Hz in etwa den gleichen Wert aufweisen.
Die am stärksten vertretene Frequenz im Bereich des ersten Schienenbruchs ist 78,13 Hz, wobei die Amplitude im Vergleich zum zweiten Schienenbruch größer ist. Die Frequenzen vor und nach dem Maximum sind für beide Schienebrüche gleichermaßen vertreten. Die Amplituden befinden sich zwischen 3,51 $\frac{m^2}{s^2 Hz}$ und 5,929 $\frac{m^2}{s^2 Hz}$. Auch hier tritt die Frequenz von 46,88 Hz mit großer Amplitude auf. Im Vergleich zum ersten Schienenbruch treten die Amplituden an den gleichen Frequenzen auf. Hier ist der Verlauf der Amplituden bezüglich der Frequenzen linear. Er steigt bis zum Maximum und fällt dann ab.
Die Ergebnisse der FFT des zweiten und vierten Schienenstoßes sind ähnlich, da sie viele gemeinsame Merkmale aufweisen. Beide weisen ein globales Maximum bei 42,97 Hz auf, wobei die Amplituden einen unterschiedlichen Wert besitzen. Dies kann an den unterschiedlichen Geometrien der Fehler im Modell liegen. Beim zweiten Schienenstoß sind die Amplituden zwischen 39,06 Hz und 42,97 Hz konstant. Der gesamte Verlauf der beiden Schienenstöße bis zum Peak, kann als annähernd exponentiell betrachtet werden. Ein weiteres Merkmal ist beim zweiten Schienenstoß, dass die Frequenz von 50,78 Hz, statt eines negativen exponentiellen Verlaufs, zwischen 0,38 \(\frac{m}{s^2 Hz} \) und 0,742 \(\frac{m}{s^2 Hz} \) bis 97,66 Hz annähernd konstant bleibt. Beim vierten Schienenstoß ist die größte Amplitude bei 48,88 Hz. Ein sehr wichtiges Merkmal für die Fehlerklassifizierung ist der Tiefpunkt bei 66,41 Hz. Dort ist die Energie am geringsten und beträgt nicht mehr als 0,25 \(\frac{m}{s^2 Hz} \). Es existiert ein zweites Maximum bei 89,84 Hz, das als ein „gedämpfter“ Verlauf des ersten Maximums bezeichnet werden kann.

Bei der Überfahrt der Brücke schwingt das Fahrzeug mehrmals mit unterschiedlichen Frequenzen. Es existieren mehrere Ausschläge in den Amplituden, wobei die Werte unter 1 \(\frac{m}{s^2 Hz} \) bleiben. Das Maximum liegt hier zwischen 31,25 Hz und 39,06 Hz. Das gleiche Phänomen tritt bei der Abfahrt auf. Es treten kleine Unebenheiten im Gleis auf, die das Fahrzeug zu Schwingungen anregt. Es ist zu erkennen, dass nach jedem Hochpunkt ein Tiefpunkt folgt.
Für die Zuordnung der Ausschläge zum Typ „Brückenfahrt“ können die Frequenzen 54,69 Hz, 70,31 Hz, 83,94 Hz, 101,60 Hz und 109,4 Hz als lokale Maxima gewählt werden.

Abbildung 60: Verlauf der Fast Fourier Transformation Brücke

Die Hauptmerkmale für die Klassifizierung der punktuellen Instabilität sind die Maxima bei 23,44 Hz und 82,03 Hz. Es liegt ein Tiefbereich ab einer Frequenz von 39,06 Hz bis 50,78 Hz vor. Im Tiefbereich betragen die Amplituden maximal $0,146 \frac{m}{\text{s}^2}$. Das Fahrzeug reagiert infolge der Absenkung der einzelnen Schienenstränge mit mehreren Schwingungen. Für die Klassifizierung kann die Frequenz von 3,90 Hz als Maximum angesetzt werden, da dies in den anderen Fehlern nicht auftaucht. Im Gegenteil zu allen anderen Gleisfehlern sind die Amplituden bei der Frequenz von 46,88 Hz relativ klein.

Abbildung 61: Verlauf der Fast Fourier Transformation punktuelle Instabilität
Für eine bessere Veranschaulichung sind alle besonderen Merkmale der einzelnen Fehler in Tabelle 20 zusammengefasst.

<table>
<thead>
<tr>
<th>Fehlertyp</th>
<th>maximale Amplitude</th>
<th>zweitstärkste Amplitude</th>
<th>Amplituden Verlauf</th>
<th>minimale Amplituden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schienenbruch 1</td>
<td>6,551 bei 78,13 Hz</td>
<td>5,929 bei 93,75 Hz</td>
<td>linear</td>
<td>0,254 bei 18,3 Hz</td>
</tr>
<tr>
<td>Schienenbruch 2</td>
<td>4,522 bei 46,88 Hz</td>
<td>2,921 bei 62,5 Hz</td>
<td>linear/ konstant</td>
<td>0,390 bei 15,63 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>und 109,4 Hz</td>
</tr>
<tr>
<td>Schienenstoß 1</td>
<td>0,920 bei 78 Hz</td>
<td>78 und 95 Hz</td>
<td>linear</td>
<td>0,12 bei 18,4 Hz</td>
</tr>
<tr>
<td></td>
<td>und 95 Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schienenstoß 2</td>
<td>1,557 bei 39,06 Hz</td>
<td>1,092 bei 35,16 Hz</td>
<td>exponentiell/ konstant</td>
<td>0,062 bei 0-18 Hz</td>
</tr>
<tr>
<td></td>
<td>und 42,97 Hz</td>
<td></td>
<td></td>
<td>und 103-120 Hz</td>
</tr>
<tr>
<td>Schienenstoß 3</td>
<td>2,856 bei 39,06 Hz</td>
<td>2,526 bei 93,75 Hz</td>
<td>quadratisch/</td>
<td>0,92 bei 62,5 Hz und</td>
</tr>
<tr>
<td></td>
<td>und 46,88 Hz</td>
<td></td>
<td>0,92 bei 62,5 Hz</td>
<td>78,13 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hz</td>
<td>Hz</td>
</tr>
<tr>
<td>Schienenstoß 4</td>
<td>2,509 bei 42,97 Hz</td>
<td>0,869 bei 89,84 Hz</td>
<td>exponentiell/</td>
<td>0,145 bei 66,41 Hz</td>
</tr>
<tr>
<td></td>
<td>und 46,88 Hz</td>
<td></td>
<td>konstant</td>
<td>und 116,31 Hz</td>
</tr>
<tr>
<td>Punktuelle Instabilität</td>
<td>0,606 bei 23,44 Hz</td>
<td>0,474 bei 82,03 Hz</td>
<td>abgedämpft</td>
<td>0,0135 bei 39,06 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>und 50,78 Hz</td>
</tr>
<tr>
<td>Steifigkeitswechsel</td>
<td>0,969 bei 39,06 Hz</td>
<td>0,886 bei 31,25 Hz</td>
<td>linear/ perio-</td>
<td>0,0324 bei 12,06 Hz</td>
</tr>
<tr>
<td>(Brücke)</td>
<td></td>
<td></td>
<td>disch</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 20: Fehlermerkmale bei Fast Fourier Transformation zur Fehlerklassifizierung

Abbildung 62: Logik für den Ablauf der Fehlerklassifizierung
Abbildung 63: Logik für die Zuordnung der Gleisfehlern anhand der Fast Fourier Transformation
8.2 Auswertung der spektralen Beschleunigungsdichte

Die Funktion der SBD wurde in Matlab wie unten beschrieben angewandt, um die unterschiedlichen Frequenzen zu untersuchen:

```matlab
% Berechnung der spektralen Beschleunigungsdichte
for j=1:size(M,3)
    R=M(:,:,j); % M beinhaltet die Bereiche aller Fehlertypen
    for i=1:size(R,2)
        FS= 500; % Abtastfrequenz
        x= R(:,i);
        p= pwelch(x,[],[],[],FS); % Leistungsdichtespektrum
        figure
        plot(p)
        xlabel('Frequenz (Hz)',['Fontsize',16])
        ylabel('Amplitude',['Fontsize',16])
        title(sprintf('%s Runde %d',titlematrix(j), i));
    end
```
In Abbildung 64 sind die wichtigsten Merkmale des ersten Schienenstoßes gekennzeichnet. Es gibt mehrere Peaks in den Amplituden. Der erste Peak befindet sich bei 16 Hz mit einer Amplitude von $0,0045 \, \text{m}^2 \text{s}^{-3}$. Die Energie erhöht sich tendenziell bei den höheren Frequenzen, wobei der zweite Peak bei 57 Hz liegt. Die Amplitude beträgt hier $0,0081 \, \text{m}^2 \text{s}^{-3}$. Zwischen dem zweiten und dem dritten Peak reduziert sich die Energie mit einer maximalen Amplitude von $0,002 \, \text{m}^2 \text{s}^{-3}$ und einem lokalen Minimum von $0,0005 \, \text{m}^2 \text{s}^{-3}$. Der Tiefbereich beginnt bei ca. 73 Hz und endet bei 102 Hz. Der dritte und letzte Peak befindet sich bei 116 Hz mit einer Amplitude von $0,0105 \, \text{m}^2 \text{s}^{-3}$ und ist somit das globale Maximum.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Frequenzbereich [Hz]</th>
<th>Amplitude SBD Spektrum $[\text{m}^2 \text{s}^{-3}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokales Maximum</td>
<td>16</td>
<td>0,002-0,0045</td>
</tr>
<tr>
<td>Tiefbereich</td>
<td>17-40</td>
<td>0,0010-0,0020</td>
</tr>
<tr>
<td>Lokales Maximum</td>
<td>57</td>
<td>0,004-0,0081</td>
</tr>
<tr>
<td>Tiefbereich</td>
<td>73-102</td>
<td>0,0005-0,002</td>
</tr>
<tr>
<td>Globales Maximum</td>
<td>116</td>
<td>0,006-0,0105</td>
</tr>
</tbody>
</table>

Tabelle 21: Spektrale Beschleunigungsdichte Schienenstoß 1
Beim zweiten Schienenstoß befindet sich ein starker Peak bei 22 Hz mit einer Amplitude von 0,043 $\frac{m^2}{s^3}$. Die Amplituden fallen dann stark ab, bis sie ihren Tiefpunkt bei 84 Hz erreichen. Weiter nimmt der Verlauf bei 117 Hz mit einer maximalen Amplitude von 0,012 $\frac{m^2}{s^3}$ zu.

Abbildung 65: Verlauf spektrale Beschleunigungsdichte Schienenstoß 2

<table>
<thead>
<tr>
<th>Typ</th>
<th>Frequenzbereich [Hz]</th>
<th>Amplitude SBD Spektrum $[\frac{m^2}{s^3}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globales Maximum</td>
<td>22</td>
<td>0,025-0,043</td>
</tr>
<tr>
<td>Globales Minimum</td>
<td>84</td>
<td>0,001</td>
</tr>
<tr>
<td>Lokales Maximum</td>
<td>117</td>
<td>0,012</td>
</tr>
</tbody>
</table>

Tabelle 22: Spektrale Beschleunigungsdichte Schienenstoß 2
Abbildung 66: Verlauf spektrale Beschleunigungsdichte Schienenstoß 3

In Abbildung 66 ist zu erkennen, dass sich bei der spektralen Beschleunigungsdichte des dritten Schienenstoßes im Bereich von 1 Hz bis 60 Hz sich die größten Frequenzen ergeben. Ab 60 Hz wird der Verlauf gedämpft. Das globale Maximum liegt hier bei 26 Hz mit einer Amplitude von 0,092 $\text{m}^2 \text{s}^{-3}$. Die maximale Amplitude im Bereich ab 60 Hz liegt bei 0,016 $\text{m}^2 \text{s}^{-3}$. Die Amplitude fällt ab 26 Hz stark ab bis sie wieder bei 54 Hz stark zunimmt. Im Tiefbereich befindet sich ein Maximum von 35 Hz mit einer Amplitude von 0,035 $\text{m}^2 \text{s}^{-3}$. Es existiert ein zweites lokales Maximum bei ca. 16 Hz mit einer Amplitude von 0,069 $\text{m}^2 \text{s}^{-3}$.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Frequenzbereich [Hz]</th>
<th>Amplitude SBD Spektrum $[\text{m}^2 \text{s}^{-3}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lokales Maximum</td>
<td>16</td>
<td>0,069</td>
</tr>
<tr>
<td>Globales Maximum</td>
<td>26</td>
<td>0,092</td>
</tr>
<tr>
<td>Lokales Maximum</td>
<td>35</td>
<td>0,035</td>
</tr>
<tr>
<td>Globales Minimum</td>
<td>41</td>
<td>0,007</td>
</tr>
<tr>
<td>Lokales Maximum</td>
<td>54</td>
<td>0,057</td>
</tr>
<tr>
<td>Lokales Minimum</td>
<td>89</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Tabelle 23: Spektrale Beschleunigungsdichte Schienenstoß 3
Das wichtigste Merkmal beim vierten Schienenstoß (Abb. 67) ist das Maximum bei 23 Hz. Die größte Amplitude beträgt $0,112 \, m^2/s^3$. Es existieren zudem drei kleine lokale Maxima bei 47 Hz, 74 Hz und 119 Hz. Bemerkenswerterweise strebt die Amplitude bei allen anderen Bereichen außerhalb des Maximums gegen $0 \, m^2/s^3$. Alle Ausschläge sind immer nur über einen kleinen Frequenzbereich vertreten.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Frequenzbereich [Hz]</th>
<th>Amplitude SBD Spektrum $[m^2/s^3]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globales Maximum</td>
<td>23</td>
<td>0,112</td>
</tr>
<tr>
<td>Lokales Maximum</td>
<td>47</td>
<td>0,010</td>
</tr>
<tr>
<td>Lokales Maximum</td>
<td>74</td>
<td>0,02</td>
</tr>
<tr>
<td>Lokales Maximum</td>
<td>119</td>
<td>0,015</td>
</tr>
</tbody>
</table>

Tabelle 24: Spektrale Beschleunigungsdichte Schienenstoß 4
Die spektrale Beschleunigungsdichte der zwei Schienenbrüche besitzt trotz des gleichen Fehlertyps unterschiedliche Merkmale. Der zweite Schienenbruch weist lediglich einen großen Ausschlag bei 21 Hz auf. Dieser Ausschlag besitzt einen Wert von 0,091 m^2s^{-3}. Im Vergleich zum ersten Schienenbruch ist die Energie aufgrund der Geometrie und der erweiterten Phase des Fehlers bei dem zweiten Schienenbruch deutlich höher. Bei dem ersten Schienenbruch erfährt das Fahrzeug die höchste Amplitude, welche zwischen den Frequenzen 22 Hz und 62 Hz liegt. Die größte Amplitude beträgt dort 0,147 m^2s^{-3}. Sie fällt dann bei 62 Hz stark ab, bis sie einen
Wert von \(0.01 \dfrac{m^2}{s^3}\) erreicht und dann wieder zunimmt, bis sie ein lokales Maximum mit 84 Hz erreicht ist.

<table>
<thead>
<tr>
<th>Typ</th>
<th>Frequenzbereich [Hz]</th>
<th>Amplitude SBD Spektrum [m^2/s^3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globales Maximum</td>
<td>39</td>
<td>0,147</td>
</tr>
<tr>
<td>Globales Minimum</td>
<td>62</td>
<td>0,01</td>
</tr>
<tr>
<td>Lokales Maximum</td>
<td>84</td>
<td>0,082</td>
</tr>
</tbody>
</table>

Tabelle 25: Spektrale Beschleunigungsdichte Schienenbruch 1

<table>
<thead>
<tr>
<th>Typ</th>
<th>Frequenzbereich [Hz]</th>
<th>Amplitude SBD Spektrum [m^2/s^3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globales Maximum</td>
<td>21</td>
<td>0,091</td>
</tr>
<tr>
<td>Globales Minimum</td>
<td>62</td>
<td>0,005</td>
</tr>
<tr>
<td>Lokales Maximum</td>
<td>93 und 112</td>
<td>0,014</td>
</tr>
</tbody>
</table>

Tabelle 26: Spektrale Beschleunigungsdichte Schienenbruch 2

Bei der punktuellen Instabilität gibt es zwei starke Ausschläge bei den Frequenzen 13 Hz und 114 Hz. Im Vergleich zu den anderen Gleisfehlern sind die Amplituden bei der punktuellen Instabilität deutlich kleiner. Die Energie erhöht sich ab 1 Hz und schwankt stark bei 7 Hz. Hier gibt es auch zwei erkennbare Tiefbereiche zwischen 20 Hz und 32 Hz und zwischen 70 Hz und 91 Hz. Dort sind die Amplituden maximal \(0,0017 \dfrac{m^2}{s^3}\) groß.

Abbildung 70: Verlauf der spektralen Beschleunigungsdichte punktuelle Instabilität
Die spektrale Beschleunigungsdichte der Brücke (Abb. 71) weist im Vergleich zur punktuelen Instabilität ein ähnliches Verhalten auf (Abb. 70). Es gibt zwei globale Maxima bei 20 Hz und 113 Hz. Die Amplituden betragen 0,0142 $\frac{m^2}{s^3}$ und 0,0093 $\frac{m^2}{s^3}$. Im Vergleich zu der punktuellen Instabilität hat der Gleisfehltyp „Brücke“ ein Maximum bei 53 Hz. Der Tiefbereich liegt hier bei 92 Hz.

Abbildung 71: Verlauf spektrale Beschleunigungsdichte Brücke

Tabelle 27: Spektrale Beschleunigungsdichte punktuelle Instabilität

<table>
<thead>
<tr>
<th>Typ</th>
<th>Frequenzbereich [Hz]</th>
<th>Amplitude SBD Spektrum $[\frac{m^2}{s^3}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globales Maximum</td>
<td>13</td>
<td>0,0136</td>
</tr>
<tr>
<td>Globales Minimum</td>
<td>7</td>
<td>0,0009</td>
</tr>
<tr>
<td>Lokales Maximum</td>
<td>114</td>
<td>0,012</td>
</tr>
</tbody>
</table>

Tabelle 28: Spektrale Beschleunigungsdichte Brücke

<table>
<thead>
<tr>
<th>Typ</th>
<th>Frequenzbereich [Hz]</th>
<th>Amplitude SBD Spektrum $[\frac{m^2}{s^3}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Globales Maximum</td>
<td>20</td>
<td>0,0142</td>
</tr>
<tr>
<td>Lokales Maximum</td>
<td>53</td>
<td>0,0083</td>
</tr>
<tr>
<td>Globales Minimum</td>
<td>92</td>
<td>0,0024</td>
</tr>
<tr>
<td>Lokales Maximum</td>
<td>113</td>
<td>0,0093</td>
</tr>
</tbody>
</table>
Tabelle 29 zeigt, die wichtigsten Merkmale der spektralen Beschleunigungsdichte aller Gleisfehler.

<table>
<thead>
<tr>
<th>Fehlertyp</th>
<th>maximale Amplitude $[m^2/s^3]$</th>
<th>Zweitstärkste Amplitude $[m^2/s^3]$</th>
<th>kleinste Amplitude $[m^2/s^3]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schienenbruch 1</td>
<td>0,1470 bei 39 Hz</td>
<td>0,082 bei 84 Hz</td>
<td>0,01 bei 62 Hz</td>
</tr>
<tr>
<td>Schienenbruch 2</td>
<td>0,0910 bei 21 Hz</td>
<td>0,014 bei 93 Hz</td>
<td>0,005 bei 62 Hz und 112 Hz</td>
</tr>
<tr>
<td>Schienenstoß 1</td>
<td>0,0105 bei 116 Hz</td>
<td>0,0081 bei 57 Hz</td>
<td>0,0002 zwischen 73 Hz und 102 Hz</td>
</tr>
<tr>
<td>Schienenstoß 2</td>
<td>0,0430 bei 22 Hz</td>
<td>0,012 bei 117 Hz</td>
<td>0,001 bei 84 Hz</td>
</tr>
<tr>
<td>Schienenstoß 3</td>
<td>0,0920 bei 26 Hz</td>
<td>0,069 bei 16 Hz</td>
<td>0,007 bei 41 Hz</td>
</tr>
<tr>
<td>Schienenstoß 4</td>
<td>0,1120 bei 23 Hz</td>
<td>0,015 bei 119 Hz</td>
<td>0,0001 zwischen 80 Hz und 115 Hz</td>
</tr>
<tr>
<td>Punktuelle Instabilität</td>
<td>0,0136 bei 13 Hz</td>
<td>0,012 bei 114 Hz</td>
<td>0,0009 bei 7 Hz</td>
</tr>
<tr>
<td>Steifigkeitswechsel (Brücke)</td>
<td>0,0142 bei 20 Hz</td>
<td>0,0093 bei 113</td>
<td>0,0024 bei 92 Hz</td>
</tr>
</tbody>
</table>

Tabelle 29: Merkmale der Fehler für die spektrale Beschleunigungsdichte
8.3 Vergleich Fast Fourier Transformation und Spektrale Beschleunigungsdichte

In Abschnitt 8.3 erfolgt ein Vergleich zwischen der spektralen Beschleunigungsdichte und der Fast Fourier Transformation. Die Kurven besitzen einen ähnlichen Verlauf. Im Vergleich zu der spektralen Beschleunigungsdichte liegen die Maxima der FFT um 22 Hz bis 25 Hz höher. Die Dominante Frequenz mittels FFT ermittelt, liegt bei dem ersten Schienenbruch (Abb. 72) bei 78 Hz und im Verlauf der spektralen Beschleunigungsdichte bei 55 Hz. Beim zweiten Schienenbruch liegt die dominante Frequenz der FFT bei 44 Hz und beim Verlauf der SBD bei 22 Hz. Ein zusätzlicher Unterschied ist, dass bei der SBD die Amplituden ab 60 Hz gegen 0 streben. Bei der FFT verlaufen die Amplituden bis zu 97 Hz konstant mit einem Wert von $3 \frac{m}{s^2}$ Hz.

Abbildung 72: Vergleich FFT und SBD Schienenbruch 1
Abbildung 73: Vergleich FFT und SBD Schienenstoß 1

Abbildung 74: Vergleich FFT und SBD Schienenstoß 2
Abbildung 75: Vergleich FFT und SBD punktuelle Instabilität
8.4 Logik zur Erkennung der Fehler im Modell

In Abbildung 76 ist die Logik der spektralen Beschleunigungsdichte für die Zuordnung der Fehler dargestellt. Die Zuordnung wird anhand der stärksten Frequenzen und deren Amplituden bestimmt.

Abbildung 76: Logik für die Zuordnung der Fehler anhand der spektralen Beschleunigungsdichte
Die oben dargestellte Logik wurde wie folgt in Matlab umgesetzt:

```matlab
%% find the signal Schienenstoß 3
result=zeros(94500,1);
k=1;
pmaxes = zeros(940,1);
%pthrees = zeros(940,1);
while (k<940)
    %Spektralbeschleunigungsdichte
    p=pwelch(z_1(100*k:(100*k)+500),[],[],[],Fs);
    %Maximale Amplitude der Spektralen Beschleunigungsdichte
    pmax=max(p);
    %Maximale vertikale Beschleunigung
    wmax=max(z_1(100*k:(100*k)+500));
    pmaxes(k) = pmax
    %Maximalbereiche
    if pmax>0.06 && pmax<0.095  && wmax>13.8  && wmax<20
        result(100*k:100*k+500)=1;
        k=k+6;
    else
        result(100*k:100*k+500)=0;
        k=k+1;
    end
end
% plot result
z_temp1=z_1;
z_temp2=z_1;
[I,J]=find(result);
z_temp1(I)=0;
[R,C]=find(z_temp1);
z_temp2(R)=0;
figure(5)
plot(z_temp1)
hold on
plot(z_temp2)
title('Detektion Schienenstoß 3 im Signal')
grid on
xlim([2000 95000]);
xlabel('Anzahl Messpunkte [-]')
ylabel('Vertikalbeschleunigung [m/s²]')
set(gca, 'Fontsize',16)
hold off

Durch das Festlegen eines typischen Frequenz- und Amplitudenbereichs und die Werte der unterschiedlichen Maxima der vertikalen Beschleunigung für alle Fehler, konnten die Schienenbrüche und alle Schienenstöße sehr zuverlässig erkannt werden (Abb. 77 bis Abb. 84).
Abbildung 77: Mittels Frequenzanalyse erkannter Schienenbruch 1 in der gemessenen Vertikalbeschleunigung

Abbildung 78: Mittels Frequenzanalyse erkannter Schienenbruch 2 in der gemessenen Vertikalbeschleunigung
Abbildung 79: Mittels Frequenzanalyse erkannter Schienenstoß 2 in der gemessenen Vertikalbeschleunigung

Abbildung 80: Mittels Frequenzanalyse erkannter Schienenstoß 3 in der gemessenen Vertikalbeschleunigung
Abbildung 81: Mittels Frequenzanalyse erkannter Schienenstoß 4 in der gemessenen Vertikalbeschleunigung

Bei den Fehlertyp „Punktuelle Instabilität“ wurden 11 aus 12 Punktuelle Instabilitäten richtig erkannt (Abb. 82). Die nicht erkannte Punktuelle Instabilität in der ersten Runde kann aufgrund eines Fehlers in der Messung liegen, da die Spektrale Beschleunigungsdichte dieses Bereichs auch anders aussieht (Vergleich Abb. 63).

Abbildung 82: Mittels Frequenzanalyse erkannte punktuelle Instabilität in der gemessenen Vertikalbeschleunigung
Bei dem ersten Schienenstoß wurden die Fehler nur zum Teil richtig erkannt (Abb. 83). Das kann aufgrund der Position des Fehlers im Modell liegen. Da der Schienenstoß 1 am Anfang der Messung überfahren wird, werden aufgrund unterschiedlicher Geschwindigkeiten verschiedene vertikale Beschleunigungen gemessen. Die vertikale Beschleunigung wird durch die Anfangsbeschleunigung bis zum Erreichen der gewünschten Geschwindigkeit beeinflusst. Ändert man die Position des Startpunkts für die Rundenmessung ergeben sich Beschleunigungen im Bereich der anderen im Modell enthaltenen Schienenstößen.
Auch bei dem Fehlertyp „Brücke” wurden 11 aus 12 Fehlern richtig erkannt (Abb. 84). Zusätzlich wurde eine Logik (Abb. 85) in Matlab erstellt, die zwischen Gleislagefehler und Schienenfehler unterscheidet. Die Gleislagefehler beinhalten die Fehlertypen „punktuelle Instabilität” und „Brücke”. Die Schienenfehler beinhalten die Fehlertypen Schienenbrüche und die Schienenstöße.
Abbildung 85: Logik für die Zuordnung der Fehler anhand der spektralen Beschleunigungsdichte und der Vertikalbeschleunigung

Abbildung 86: Mittels Frequenzanalyse erkannte Gleislagefehler in der gemessenen Vertikalbeschleunigung

Abbildung 87: Mittels Frequenzanalyse erkannte Schienenfehler in der gemessenen Vertikalbeschleunigung

Abbildung 88: Mittels spektrale Beschleunigungsdichte erkannte Gleisfehler
8.5 Fehlertyp Längshöhenfehler

Zusätzlich wurden die Einwirkungen auf das Fahrzeug beim Überfahren eines Längshöhenfehlers untersucht und mit den Beschleunigungsverläufen im Bereich der punktuelen Instabilität verglichen. Es wurde eine Holzplatte an der tiefsten Stelle der punktuelen Instabilität im Modell mit einem Stahldraht befestigt (Abb.89). Im Vergleich zur punktuelen Instabilität ändert sich lediglich die Steifigkeit des Unterbaus. Die Geometrie bleibt jedoch gleich.

Durch die Untersuchung des Längshöhenfehlers mittels der Fast-Fourier-Transformation (Abb. 92) kann erkannt werden, dass die Reaktion des Fahrzeugs beim Überfahren der Längshöhenfehler ähnlich ist zum Verhalten im Bereich der punktuellen Instabilität (Abb. 93). Die stärkste Frequenz des Längshöhenfehlers liegt bei 31,25 Hz. Die Amplitude beträgt $0,9337 \, \text{m/s}^2$. Das Maximum bei der punktuellen Instabilität liegt bei 23,44 Hz. Zwischen den Frequenzen 7,81 Hz und 19,5 Hz des Längshöhenfehlers befindet sich ein Tiefbereich mit
einer Amplitude von $0,1486 \frac{m}{s^2 \cdot Hz}$. Bei der punktuellen Instabilität befindet sich der Tiefbereich zwischen 39,06 Hz und 54,69 Hz. Man kann zudem erkennen, dass ab 39,06 Hz bis 120 Hz die Amplituden im Bereich des Längshöhenfehlers einen Maximalwert von $0,1437 \frac{m}{s^2 \cdot Hz}$ erreichen. Im Gegensatz zum Längshöhenfehler erhöhen sich die Amplituden bei der punktuellen Instabilität ab dem Tiefbereich, statt einen konstanten Verlauf. Im Allgemeinen sind die Amplituden der punktuellen Instabilität kleiner als bei den Längshöhenfehlern.
Die spektrale Beschleunigungsdichte des Längshöhenfehlers (Abb. 94) zeigt einen großen Sprung in der Energie bei 18 Hz. Dort ist die maximale Amplitude $0,021 \frac{m^2}{s^3}$ hoch. Ab 27 Hz strebt die Energie gegen 0 Hz. Dies bedeutet, dass das Fahrzeug nur mit tiefen Frequenzen bei der Überfahrt des Längshöhenfehlers angeregt wird. Bei der punktuellen Instabilität befindet sich das Maximum bei 13 Hz. Die Amplitude beträgt dort $0,014 \frac{m^2}{s^3}$. Ein weiterer Peak wäre bei 117 Hz, wobei im Vergleich zum Längshöhenfehler die Amplituden im gleichen Bereich gegen 0 streben.

Abbildung 94: Spektrale Beschleunigungsdichte Längshöhenfehler

Abbildung 95: Spektrale Beschleunigungsdichte Punktuelle Instabilität
Hier wurde auch die Logik zur Detektion der Fehler für den Fehlertyp „Längshöhenfehler“ in Matlab umgesetzt. Das Fehlertyp „Längshöhenfehler“ wurde in allen Runden richtig erkannt (Abb. 96). Im Vergleich zu die frühere Punktuelle Instabilität an der gleichen Stelle, wurden 8 aus 8 Längshöhenfehler erkannt, statt 11 aus 12 bei der punktuellen Instabilität.

Abbildung 96: Mittels Frequenzanalyse erkannte Längshöhenfehler in der gemessenen Vertikalbeschleunigung
8.6 Auswertung der Wavelet-Analyse


![Abbildung 97: Sym4 Motherwavelet][33]

Es wurde zunächst ein Savitzky-Golay Filter mit einer Länge von 11 angewandt, um einen Glättungseffekt zu erzeugen (Abb. 98). Hierfür wurde folgender Code in Matlab angewendet:

```matlab
figure
plot(z_Richtung,"b")
s_goaly_wert_z = 11; %Savitzky Golay Filter
z_Richtung_filtered = sgolayfilt((z_Richtung), 5, s_goaly_wert_z);
hold on
plot(z_Richtung_filtered,"r")
grid on
xlabel('Zeit [s]');
ylabel('Beschleunigung in vertikaler Richtung [m/s²]')
```

[33] Abbildung 97: Sym4 Motherwavelet [33]

```matlab
CWTcoeffs = cwt(z_Richtung_filtered,200:220,'sym4','plot'); colormap jet; % kontInuierliche Wavelet-Transformation (CWT)
surf(CWTcoeffs); colormap jet;
shading('interp'); view(0,12);
```
Abbildung 99: Wavelet-Analyse mit sym4 für zwölf Runden
9 Zusammenfassung und Ausblick


Ergänzend zur FFT und SBD wurde eine Wavelet-Analyse mit der Software Matlab für jede gemessene Runde durchgeführt. Die punktuellen Instabilitäten für die zwölf Fahrtrunden wurden mit einem stark rot gekennzeichneten Wavelektkoeffizienten erfolgreich erkannt.

In einem letzten Schritt wurde die Logik für die Erkennung und Klassifizierung der Fehler anhand ihres Frequenzverhaltens mit der Software Enterprise entwickelt (Abb. 50 Abb.51, Abb.
10 Literaturverzeichnis

[1] Thomas HSB, *Schienenstoß*. [Online] Verfügbar unter: https://www.google.de/search?biw=1536&bih=674&tbm=isch&sa=1&ei=iw2kW8LVCMXhkgXB4YKgDA&q=schie-"sto%C3%9F&oq=schiene&gs_l=img.3.1.35i39k1l2j0i8.141972.142999.0.144352.6.6.0.0.0.260.722.0j4j1.5.0…1c.1.64.img.1.5.721…0i19k1.0._swZrWJsKLQ#imggrc=9qMNTtpjjrOuPM:. Zugriff am: Sep. 20 2018.


[28] UNSW Sydney, „FFT Example“.

[29] Prof Dr Jürgen Pöschel, „Vorlesungsunterlagen Höhere Mathematik III für el, phys, kyb, mecha“, 2016.


[33] Universität Bayreuth, „Zeitreihenanalyse“.


Anhang A Berechnungen

Gesamtc ode wird als eine Funktion in Matlab umgesetzt:

function Bachelorarbeit_2018()

close all
clc

%Datei
load x_z_Richtung_2.mat x_z_Richtung_2

%um Beschleunigung in m/s^2 zu erhalten
z_Richtung = x_z_Richtung_2./1365.3125.*9.81+10;

%Matrix x_lim (Intervall der Maxima)
x_lim =
[3750,11900,20000,27300,34550,42000,50150,57650,65500,72600,79850,87750;
4800,13100,20900,28300,35600,43050,51200,58800,66650,73750,81000,88750;
5500,13800,21750,29050,36300,43700,51900,59550,67350,74450,81750,89500;
6000,14500,22400,29600,36900,44200,52400,60100,67900,75000,82250,90000;
6350,14700,22600,29850,37100,44600,52700,60350,68190,75250,82550,90250;
6900,15150,23050,30350,37650,45100,53200,60850,68700,75750,83050,90750;
7900,16150,24050,31350,38600,46050,53200,60850,68700,75750,83050,91700;
9150,17350,25250,32500,39800,47250,55400,63000,70750,77850,85150,92850);

% Bereich der 8 Fehlertypen mit den jeweiligen 12 Runden werden in 8 unterschiedliche Vektoren dargestellt
x1= [z_Richtung(3850:4150),z_Richtung(12000:12300),z_Richtung(20100:20400),z_Richtung(27400:27700),z_Richtung(34650:34950),z_Richtung(42100:42400),z_Richtung(50250:50550),z_Richtung(57750:58050),z_Richtung(65600:65900),z_Richtung(72700:73000),z_Richtung(79950:80250),z_Richtung(87850:88150)];
\[ x_2 = \{z_{\text{Richtung}(4900:5200)}, z_{\text{Richtung}(13200:13500)}, z_{\text{Richtung}(21000:21300)}, z_{\text{Richtung}(28400:28700)}, z_{\text{Richtung}(35700:36000)}, z_{\text{Richtung}(43150:43450)}, z_{\text{Richtung}(51300:51600)}, z_{\text{Richtung}(58900:59200)}, z_{\text{Richtung}(66750:67050)}, z_{\text{Richtung}(73850:74150)}, z_{\text{Richtung}(81100:81400)}, z_{\text{Richtung}(88850:89150)}\}; \\
\]
\[ x_3 = \{z_{\text{Richtung}(5600:5900)}, z_{\text{Richtung}(13900:14200)}, z_{\text{Richtung}(21850:22150)}, z_{\text{Richtung}(29150:29450)}, z_{\text{Richtung}(36400:36700)}, z_{\text{Richtung}(43800:44100)}, z_{\text{Richtung}(52000:52300)}, z_{\text{Richtung}(59650:59950)}, z_{\text{Richtung}(67450:67750)}, z_{\text{Richtung}(74550:74850)}, z_{\text{Richtung}(81850:82150)}, z_{\text{Richtung}(89600:89900)}\}; \\
\]
\[ x_4 = \{z_{\text{Richtung}(6100:6400)}, z_{\text{Richtung}(14400:14700)}, z_{\text{Richtung}(22500:22800)}, z_{\text{Richtung}(29700:30000)}, z_{\text{Richtung}(40000:40300)}, z_{\text{Richtung}(44300:44600)}, z_{\text{Richtung}(52500:52800)}, z_{\text{Richtung}(60200:60500)}, z_{\text{Richtung}(68000:68300)}, z_{\text{Richtung}(75100:75400)}, z_{\text{Richtung}(82350:82650)}, z_{\text{Richtung}(90100:90400)}\}; \\
\]
\[ x_5 = \{z_{\text{Richtung}(6450:6750)}, z_{\text{Richtung}(14750:15050)}, z_{\text{Richtung}(22640:22940)}, z_{\text{Richtung}(29950:30250)}, z_{\text{Richtung}(37200:37500)}, z_{\text{Richtung}(44700:45000)}, z_{\text{Richtung}(52800:53100)}, z_{\text{Richtung}(60450:60750)}, z_{\text{Richtung}(68350:68650)}, z_{\text{Richtung}(75350:75650)}, z_{\text{Richtung}(82650:82950)}, z_{\text{Richtung}(90350:90650)}\}; \\
\]
\[ x_6 = \{z_{\text{Richtung}(7000:7300)}, z_{\text{Richtung}(15250:15550)}, z_{\text{Richtung}(23150:23450)}, z_{\text{Richtung}(30450:30750)}, z_{\text{Richtung}(37750:38050)}, z_{\text{Richtung}(45200:45500)}, z_{\text{Richtung}(53300:53600)}, z_{\text{Richtung}(60950:61250)}, z_{\text{Richtung}(68800:69100)}, z_{\text{Richtung}(75850:76150)}, z_{\text{Richtung}(83150:83450)}, z_{\text{Richtung}(90850:91150)}\}; \\
\]
\[ x_7 = \{z_{\text{Richtung}(8000:8300)}, z_{\text{Richtung}(16250:16550)}, z_{\text{Richtung}(24150:24450)}, z_{\text{Richtung}(31450:31750)}, z_{\text{Richtung}(38700:39000)}, z_{\text{Richtung}(46150:46450)}, z_{\text{Richtung}(54300:54600)}, z_{\text{Richtung}(61900:62200)}, z_{\text{Richtung}(69750:70050)}, z_{\text{Richtung}(76800:77100)}, z_{\text{Richtung}(84100:84400)}, z_{\text{Richtung}(91800:92100)}\}; \\
\]
\[ x_8 = \{z_{\text{Richtung}(9250:9550)}, z_{\text{Richtung}(17450:17750)}, z_{\text{Richtung}(24650:24950)}, z_{\text{Richtung}(32600:32900)}, z_{\text{Richtung}(39900:40200)}, z_{\text{Richtung}(47350:47650)}, z_{\text{Richtung}(55500:55800)}, z_{\text{Richtung}(63100:63400)}, z_{\text{Richtung}(70850:71150)}, z_{\text{Richtung}(77950:78250)}, z_{\text{Richtung}(85250:85550)}, z_{\text{Richtung}(92950:93250)}\}; \\
\]

% Matrix M (beinhaltet alle 8 Vektoren)

\[
M(:,1) = x_1; \quad \%\text{Schienenstoß 1} \\
M(:,2) = x_2; \quad \%\text{Schienenstoß 2} \\
M(:,3) = x_3; \quad \%\text{Punktuelle Instabilität} \\
M(:,4) = x_4; \quad \%\text{Schienenbruch 1} \\
M(:,5) = x_5; \quad \%\text{Schienenstoß 3} \\
M(:,6) = x_6; \quad \%\text{Schienenstoß 4} \\
M(:,7) = x_7; \quad \%\text{Brücke} \\
M(:,8) = x_8; \quad \%\text{Schienenbruch 2} \\
\]

M = zeros(501,12,8);

for j = 1:12 %12 Runden
    for k = 1:8 %8 Fehlertypen
        M(:,j,k) = z_Richtung(x_lim(k,j):x_lim(k,j)+500);
    end
end

%Titel Matrix für die Beschriftung der Typ des Fehlers
titlematrix= ['"Schienenstoß 1"', '"Schienenstoß 2"', '"Punkttuelle Instabilität"', '"Schienenbruch 1"', '"Schienenstoß 3"', '"Schienenstoß 4"', '"Brücke"', '"Schienenbruch 2"'];

%Butterworth Filter
abtastfrequenz = 500;
untere_grenzfrequenz = 200;
nyquistfrequenz = 0.5 * abtastfrequenz;
Wn = untere_grenzfrequenz/nyquistfrequenz;
order = 6;
[b1,a1] = butter(order,Wn,'low');
z_Richtung_gefiltert = filter(b1,a1, z_Richtung_gefiltert);

%Code für die Detektion des Maximums innerhalb des Intervalls
posmax = zeros(8,12);
maximum = zeros(8,12);
for j=1:size(M,3) %For-Schleife für alle 8 Fehlern
    R=M(:,:,j);
    for i=1:size(R,2) %For-Schleife für jeden einzelnen Fehler
        xlim([x_lim(j,i) x_lim(j,i)+500]) %ausgewählter Intervall
        idx_z = 1:length(z_Richtung);
        pos2search = idx_z(x_lim(j,i):x_lim(j,i)+500);
        [maximum(j,i),posmax(j,i)] = max(z_Richtung(pos2search));
        posmax(j,i) = pos2search(posmax(j,i));
    end
end

%alles plotten für jeden Fehlertyp
posMax = zeros(101,8,12);
for j=1:size(posmax,1)
    for i=1:size(posmax,2)
        bb = 50;
        posMax(:,:,i) = z_Richtung((posmax(j,i)-bb):(posmax(j,i)+bb));
    end
end

plot_Fehlern_mit_Maximum(M, x_lim, maximum, posmax, titlematrix)
plot_Fehlern_alles(posmax, posMax, titlematrix)
subplot_Fehlern_mit_Maximum(M, x_lim, posmax, maximum, titlematrix)
subplot_alle_Fehlern(posmax, posMax, titlematrix)
plot_FFT(posMax,titlematrix)
subplot_FFT(posMax,titlematrix)
subplot_FFT_alles(posMax,titlematrix)
plot_SBD(M,titlematrix)
subplot_SBD(M,titlematrix)
subplot_SBD_alles(M,titlematrix)
plot_mean_Fehler(posMax,titlematrix)
plot_mean_FFT(posMax,titlematrix)
plot_mean_SBD(posMax,titlematrix)
end

**Fehlern mit Maximumangabe:**

```matlab
function plot_Fehlern_mit_Maximum(M, x_lim, maximum, posmax, titlematrix)

%PLOT_FEHLERN_MIT_MAXIMUM
for j=1:size(M,3)
 R=M(:,:,j);
 for i=1:size(R,2)
 figure
 v = R(:,i);
 plot([x_lim(j,i):x_lim(j,i)+100],v)
 hold on
 %Maximum
 plot(posmax(j,i), (maximum(j,i)), 'ko', 'LineWidth', 5, 'MarkerSize', 5)
 strmax = ['Maximum = ', num2str(maximum(j,i))];
 text(posmax(j,i),maximum(j,i),strmax,'HorizontalAlignment','right')
 xlabel('Messpunkt [\mathbf{-}]')
 ylabel('vertikale Beschleunigung [m/s^2]')
 title(sprintf('%s Runde %d',titlematrix(j), i));
 end
end
end
```
Vergleich für jeden Fehlertyp:

function plot_Fehlern_alles(posmax, posMax, titlematrix)
    %PLOT_FEHLERN_ALLES
    for j=1:size(posmax,1)
        figure
        for i=1:size(posmax,2)
            plot(posMax(:,j,i),'--','linewidth',1.5) %Bereich des Maximums
            hold on
            xlabel('Messpunkt [-]','Fontsize',18)
            ylabel('vertikale Beschleunigung [m/s²]', 'Fontsize', 18)
            set(gca,'fontsize', 18)
            title(sprintf('%s',titlematrix(j)));
            legend(sprintf('%d1',j), sprintf('%d2',j), sprintf('%d3',j), sprintf('%d4',j), sprintf('%d5',j), sprintf('%d6',j), sprintf('%d7',j), sprintf('%d8',j), sprintf('%d9',j), sprintf('%d10',j), sprintf('%d11',j), sprintf('%d12',j))
        end
    end
end

Gesamtvergleich aller Fehlertypen:

function subplot_alle_Fehlern(posmax, posMax, titlematrix)
    %SUBPLOT_ALLE_FEHLERN
    for j=1:size(posmax,1)
        figure (1)
        subplot(2,4,j)
        hold on
        for i=1:size(posmax,2)
            plot(posMax(:,j,i),'--','linewidth',1.5)
            hold on
        end
        xlabel('Messpunkt [-]')
        ylabel('vertikale Beschleunigung [m/s²]')
        title(sprintf('%s',titlematrix(j)));
        legend(sprintf('%d1',j), sprintf('%d2',j), sprintf('%d3',j), sprintf('%d4',j), sprintf('%d5',j), sprintf('%d6',j), sprintf('%d7',j), sprintf('%d8',j), sprintf('%d9',j), sprintf('%d10',j), sprintf('%d11',j), sprintf('%d12',j))
    end
end
**Mittelwert Fehlertyp:**

```matlab
function plot_mean_Fehler(posMax,titlematrix)
%PLOT_MEAN

posMax = permute(posMax,[3 1 2]);

for j= 1:8
 figure
 D= posMax(:,:,j);
 g= mean(D);
 plot(g)
 hold on
 [H,I] = max(g);
 plot(I, H, 'ko', 'Linewidth',5, 'MarkerSize', 5)
 strmax = ['Maximum = ',num2str(H)];
 text(I,H,strmax,'HorizontalAlignment','right');
 xlabel('Messpunkt [\text{-}]')
 ylabel('vertikale Beschleunigung [m/s^2]')
 title(sprintf('%s',titlematrix(j)));
end

for j= 1:8
 figure (1)
 subplot(2,4,j)
 D= posMax(:,:,j);
 g= mean(D);
 plot(g)
 hold on
 [H,I] = max(g);
 plot(I, H, 'ko', 'Linewidth',5, 'MarkerSize', 5)
 strmax = ['Maximum = ',num2str(H)];
 text(I,H,strmax,'HorizontalAlignment','right');
 xlabel('Messpunkt [\text{-}]')
 ylabel('vertikale Beschleunigung [m/s^2]')
 title(sprintf('%s',titlematrix(j)));
end
```
Fast Fourier Transformation:

```matlab
function plot_FFT(posMax, titlematrix)
%PLOT_FFT

for j=1:size(posMax,2)
 for i=1:size(posMax,3)
 figure
 hold on
 Fs = 500;
 L = length(posMax(:,j,i));
 NFFT = 2^nextpow2(L);
 Y = fft(posMax(:,j,i),NFFT)/L;
 f = Fs/2*linspace(0,1,NFFT/2+1);
 plot(f,2*abs(Y(1:NFFT/2+1)))
 hold on
 stem(f,2*abs(Y(1:NFFT/2+1)),'filled','MarkerFaceColor','red','MarkerEdgeColor','blue')
 title(sprintf('%s Runde %d',titlematrix(j), i))
 xlabel('Frequenz (Hz)')
 ylabel('Amplitude')
 xlim([0 120]);
 end
end
end
```

Gesamtvergleich Fast Fourier Transformation aller Fehlertypen:

```matlab
function subplot_FFT_alles(posMax, titlematrix)
%SUBPLOT_FFT_ALLES

for j=1:size(posMax,2)
 for i=1:size(posMax,3)
 figure (1)
 subplot(2,4,j)
 hold on
 Fs = 500;
 L = length(posMax(:,j,i));
 NFFT = 2^nextpow2(L);
 Y = fft(posMax(:,j,i),NFFT)/L;
 f = Fs/2*linspace(0,1,NFFT/2+1);
 plot(f,2*abs(Y(1:NFFT/2+1)))
 hold on
 stem(f,2*abs(Y(1:NFFT/2+1)),'filled','MarkerFaceColor','red','MarkerEdgeColor','blue')
 title(sprintf('%s',titlematrix(j)))
 xlabel('Frequenz (Hz)')
 ylabel('Amplitude')
 xlim([0 120]);
 end
end
end
```
**Mittelwert Fast Fourier Transformation:**

```matlab
function plot_mean_FFT(posMax,titlematrix)
%PLOT_MEAN_FFT

posMax = permute(posMax,[3 1 2]);

for j=1:8
 figure
 hold on
 D = posMax(:,:,j);
 g = mean(D);
 Fs = 500;
 L = length(g);
 NFFT = 2^nextpow2(L);
 Y = fft(g,NFFT)/L;
 f = Fs/2*linspace(0,1,NFFT/2+1);
 plot(f,2*abs(Y(1:NFFT/2+1)))
 hold on
 stem(f,2*abs(Y(1:NFFT/2+1)),'filled','MarkerFaceColor','red','MarkerEdgeColor','blue')
 title(sprintf('%s',titlematrix(j)))
 xlabel('Frequenz (Hz)')
 ylabel('Amplitude')
 xlim([0 120]);
end

for j=1:8
 figure(1)
 subplot(2,4,j)
 D = posMax(:,:,j);
 g = mean(D);
 Fs = 500;
 L = length(g);
 NFFT = 2^nextpow2(L);
 Y = fft(g,NFFT)/L;
 f = Fs/2*linspace(0,1,NFFT/2+1);
 plot(f,2*abs(Y(1:NFFT/2+1)))
 hold on
 stem(f,2*abs(Y(1:NFFT/2+1)),'filled','MarkerFaceColor','red','MarkerEdgeColor','blue')
 title(sprintf('%s',titlematrix(j)))
 xlabel('Frequenz (Hz)')
 ylabel('Amplitude')
 xlim([0 120]);
end
```
**Spektrale Beschleunigungsdichte:**

```matlab
function plot_SBD(M, titlematrix)
%PLOT_SBD

for j=1:size(M,3)
 R=M(:,:,j);
 for i=1:size(R,2)
 FS= 500;
 x= R(:,i);
 p= pwelch(x,[],[],[],FS);
 figure
 plot(p)
 xlabel('Frequenz (Hz)','Fontsize',18)
 ylabel('Amplitude','Fontsize',18)
 title(sprintf('%s Runde %d',titlematrix(j), i));
 end
end

for j=1:size(M,3)
 R=M(:,:,j);
 for ii=1:size(R,2)
 FS= 500;
 x= R(:,:,ii);
 p= pwelch(x,[],[],[],FS);
 figure(j)
 plot(p)
 xlabel('Frequenz [Hz]', 'Fontsize',18)
 ylabel('Amplitude [m^2/s^3]', 'Fontsize',18)
 title(sprintf('%s Spektrale Beschleunigungsdichte %d',titlematrix(j)));
 hold on
 end
end
end

Gesamtvergleich Spektrale Beschleunigungsdichte aller Fehlertypen:

```matlab
function subplot_SBD_alles(M, titlematrix)
%SUBPLOT_SBD_ALLES

for j=1:size(M,3)
    R=M(:,:,j);
    for ii=1:size(R,2)
        FS= 500;
        x= R(:,:,ii);
        p= pwelch(x,[],[],[],FS);
        figure(1)
        subplot(2,4,j)
        hold on
        plot(p)
        xlabel('Frequenz (Hz)')
```
Mittelwert Spektrale Beschleunigungsdichte:

\[
\text{function plot_mean_SBD(posMax,titlematrix)}
\]

\[
\text{posMax = permute(posMax,[3 1 2]);}
\]

\[
\text{for j=1:8}
\]

\[
\text{figure}
\]

\[
\text{D= posMax(:,:,j)};
\]

\[
\text{g= mean(D)};
\]

\[
\text{FS= 500};
\]

\[
\text{p= pwelch(g,[],[],[],FS);}
\]

\[
\text{plot(p)}
\]

\[
\text{xlabel('Frequenz (Hz)')}\]

\[
\text{ylabel('Amplitude')}\]

\[
\text{title(sprintf('%s',titlematrix(j)))};
\]

\[
\text{end}
\]

\[
\text{for j=1:8}
\]

\[
\text{figure (1)}
\]

\[
\text{subplot(2,4,j)}
\]

\[
\text{D= posMax(:,:,j)};
\]

\[
\text{g= mean(D)};
\]

\[
\text{FS= 500};
\]

\[
\text{p= pwelch(g,[],[],[],FS);}
\]

\[
\text{plot(p,'r','Linewidth',2)}
\]

\[
\text{xlabel('Frequenz (Hz)')}\]

\[
\text{ylabel('Amplitude')}\]

\[
\text{title(sprintf('%s',titlematrix(j)))};
\]

\[
\text{end}
\]

Längshöhenfehler

\[
\text{z_Richtung_Laengshoehenfehler= z_Richtungneu/1365.3125.*9.81+10;}
\]

\[
\text{figure}
\]

\[
\text{plot(z_Richtung_Laengshoehenfehler)}
\]

\[
\text{clc}
\]

\[
\text{figure}
\]

\[
\text{plot(z_Richtung_Laengshoehenfehler)}\]

\[
\text{hold on}
\]

\[
\text{plot(z_Richtung_Laengshoehenfehler)}
\]

\[
\text{xlim([3150 3650])}
\]

\[
\text{xlabel('Messpunkt [-]')}
\]
ylabel('Vertikale Beschleunigung [m/s^2]')
title('Längshöhenfehler Runde 1')
hold on
idx_z91 = 1:length(z_Richtung_Laengshoehenfehler); % minimum der ersten 3 Stellen
pos2search = idx_z91(3150:3650);
[minimun91, pos91] = min(z_Richtung_Laengshoehenfehler(pos2search));
pos91 = pos2search(pos91);
plot((pos91), (minimum91), 'ko', 'LineWidth', 5, 'MarkerSize', 5)
strmin = ['minimum = ', num2str(minimum91)];
text(pos91, minimum91, strmin, 'HorizontalAlignment', 'right');

figure
plot(z_Richtung_Laengshoehenfehler)
hold on
plot(z_Richtung_Laengshoehenfehler)
xlim([11150 11650])
xlabel('Messpunkt [-]')
ylabel('Vertikale Beschleunigung [m/s^2]')
title('Längshöhenfehler Runde 2')
hold on
idx_z92 = 1:length(z_Richtung_Laengshoehenfehler); % minimum der ersten 3 Stellen
pos2search = idx_z92(11150:11650);
[minimun92, pos92] = min(z_Richtung_Laengshoehenfehler(pos2search));
pos92 = pos2search(pos92);
plot((pos92), (minimum92), 'ko', 'LineWidth', 5, 'MarkerSize', 5)
strmin = ['minimum = ', num2str(minimum92)];
text(pos92, minimum92, strmin, 'HorizontalAlignment', 'right');

figure
plot(z_Richtung_Laengshoehenfehler)
hold on
plot(z_Richtung_Laengshoehenfehler)
xlim([19150 19650])
xlabel('Messpunkt [-]')
ylabel('Vertikale Beschleunigung [m/s^2]')
title('Längshöhenfehler Runde 3')
hold on
idx_z93 = 1:length(z_Richtung_Laengshoehenfehler); % minimum der ersten 3 Stellen
pos2search = idx_z93(19150:19650);
[minimun93, pos93] = min(z_Richtung_Laengshoehenfehler(pos2search));
pos93 = pos2search(pos93);
plot((pos93), (minimum93), 'ko', 'LineWidth', 5, 'MarkerSize', 5)
strmin = ['minimum = ', num2str(minimum93)];
text(pos93, minimum93, strmin, 'HorizontalAlignment', 'right');

figure
plot(z_Richtung_Laengshoehenfehler)
hold on
plot(z_Richtung_Laengshoehenfehler)
xlim([27000 27500])
xlabel('Messpunkt [-]')
ylabel('Vertikale Beschleunigung [m/s^2]')
title('Längshöhenfehler Runde 4')
hold on
idx_z94 = 1:length(z_Richtung_Laengshoehenfehler); % minimum der ersten 3 Stellen
pos2search = idx_z94(27000:27500);
[minimu94,pos94] = min(z_Richtung_Laengshoehenfehler(pos2search));
pos94 = pos2search(pos94);
plot((pos94), (minimum94), 'ko', 'LineWidth', 5, 'MarkerSize', 5);
strmin = ['minimum = ', num2str(minimum94)];
text(pos94, minimum94, strmin, 'HorizontalAlignment', 'right');
figure
plot(z_Richtung_Laengshoehenfehler)
hold on
plot(z_Richtung_Laengshoehenfehler)
xlim([34900 35400])
xlabel('Messpunkt []')
ylabel('Vertikale Beschleunigung [m/s^2]')
title('Längshöhenfehler Runde 5')
hold on
idx_z95 = 1:length(z_Richtung_Laengshoehenfehler); % minimum der ersten 3 Stellen
pos2search = idx_z95(34900:35400);
[minimu95,pos95] = min(z_Richtung_Laengshoehenfehler(pos2search));
pos95 = pos2search(pos95);
plot((pos95), (minimum95), 'ko', 'LineWidth', 5, 'MarkerSize', 5);
strmin = ['minimum = ', num2str(minimum95)];
text(pos95, minimum95, strmin, 'HorizontalAlignment', 'right');
figure
plot(z_Richtung_Laengshoehenfehler)
hold on
plot(z_Richtung_Laengshoehenfehler)
xlim([42200 42700])
xlabel('Messpunkt []')
ylabel('Vertikale Beschleunigung [m/s^2]')
title('Längshöhenfehler Runde 6')
hold on
idx_z96 = 1:length(z_Richtung_Laengshoehenfehler); % minimum der ersten 3 Stellen
pos2search = idx_z96(42200:42700);
[minimu96,pos96] = min(z_Richtung_Laengshoehenfehler(pos2search));
pos96 = pos2search(pos96);
plot((pos96), (minimum96), 'ko', 'LineWidth', 5, 'MarkerSize', 5);
strmin = ['minimum = ', num2str(minimum96)];
text(pos96, minimum96, strmin, 'HorizontalAlignment', 'right');
figure
plot(z_Richtung_Laengshoehenfehler)
hold on
plot(z_Richtung_Laengshoehenfehler)
xlim([49650 50150])
xlabel('Messpunkt []')
ylabel('Vertikale Beschleunigung [m/s^2]')
title('Längshöhenfehler Runde 7')
hold on
idx_z97 = 1:length(z_Richtung_Laengshoehenfehler); % minimum der ersten 3 Stellen
pos2search = idx_z97(49650:50150);
[minimum97,pos97] = min(z_Richtung_Laengshoehenfehler(pos2search));
pos97 = pos2search(pos97);
plot((pos97), (minimum97), 'ko', 'LineWidth', 5, 'MarkerSize', 5);
strmin = ['minimum = ', num2str(minimum97)];
text(pos97,minimum97,strmin, 'HorizontalAlignment','right');

figure
plot(z_Richtung_Laengshoehenfehler)
hold on
plot(z_Richtung_Laengshoehenfehler)
xlim([57200 57700])
xlabel('Messpunkt [-]')
ylabel('Vertikale Beschleunigung [m/s^2]')
title('Längshöhenfehler Runde 8')
hold on
idx_z98 = 1:length(z_Richtung_Laengshoehenfehler); % minimum der ersten 3 Stellen
pos2search = idx_z98(57200:57700);
[minimum98,pos98] = min(z_Richtung_Laengshoehenfehler(pos2search));
pos98 = pos2search(pos98);
plot((pos98), (minimum98), 'ko', 'LineWidth', 5, 'MarkerSize', 5);
strmin = ['minimum = ', num2str(minimum98)];
text(pos98,minimum98,strmin, 'HorizontalAlignment','right');

%% alles plotten

figure
title('Längshöhenfehler');
hold on
bb=15;
posmin91 = z_Richtung_Laengshoehenfehler((pos91-bb):(pos91+bb));
plot(posmin91,'r')
hold on
posmin92 = z_Richtung_Laengshoehenfehler((pos92-bb):(pos92+bb));
plot(posmin92,'g')
hold on
posmin93 = z_Richtung_Laengshoehenfehler((pos93-bb):(pos93+bb));
plot(posmin93,'k')
hold on
posmin94 = z_Richtung_Laengshoehenfehler((pos94-bb):(pos94+bb));
plot(posmin94,'c')
hold on
posmin95 = z_Richtung_Laengshoehenfehler((pos95-bb):(pos95+bb));
plot(posmin95,'b')
hold on
posmin96 = z_Richtung_Laengshoehenfehler((pos96-bb):(pos96+bb));
plot(posmin96,'y')
hold on
posmin97 = z_Richtung_Laengshoehenfehler((pos97-bb):(pos97+bb));
plot(posmin97,'r--')
```
hold on
posmin91 = z_Richtung_Laengshoehenfehler((pos98-bb):(pos98+bb));
plot(posmin91,'g--')
hold on
legend('91','92','93','94','95','96','97','98')
grid on
xlabel('Messpunkt [-]','Fontsize',18)
ylabel('vertikale Beschleunigung [m\s^2]','Fontsize',18)
set(gca,'fontsize',18)

%% FFT
figure
Fs = 500; % Sampling Frequenz
L91 = length(posmin91); % Length of signal
NFFT = 2^nextpow2(L91); % Next power of 2 from length of y
Y91 = fft(posmin91,NFFT)/L91;
f91 = Fs/2*linspace(0,1,NFFT/2+1);
% Plot single-sided amplitude spectrum
plot(f91,2*abs(Y91(1:NFFT/2+1)))
hold on
stem(f91,2*abs(Y91(1:NFFT/2+1)),'filled','MarkerFaceColor','red','
'MarkerEdgeColor','blue')
xlim([0 120]);

Fs = 500; % Sampling Frequenz
L92 = length(posmin92); % Length of signal
NFFT = 2^nextpow2(L92); % Next power of 2 from length of y
Y92 = fft(posmin92,NFFT)/L92;
f92 = Fs/2*linspace(0,1,NFFT/2+1);
% Plot single-sided amplitude spectrum
plot(f92,2*abs(Y92(1:NFFT/2+1)))
hold on
stem(f92,2*abs(Y92(1:NFFT/2+1)),'filled','MarkerFaceColor','blue','
'MarkerEdgeColor','blue')
xlim([0 120]);

Fs = 500; % Sampling Frequenz
L93 = length(posmin93); % Length of signal
NFFT = 2^nextpow2(L93); % Next power of 2 from length of y
Y93 = fft(posmin93,NFFT)/L93;
f93 = Fs/2*linspace(0,1,NFFT/2+1);
% Plot single-sided amplitude spectrum
plot(f93,2*abs(Y93(1:NFFT/2+1)))
hold on
```
stem(f93,2*abs(Y93(1:NFFT/2+1)),'filled','MarkerFaceColor','green', 'MarkerEdgeColor','blue')
xlim([0 120]);

Fs = 500; % Sampling Frequenz
L94 = length(posmin94); % Length of signal
NFFT = 2^nextpow2(L94); % Next power of 2 from length of y
Y94 = fft(posmin94,NFFT)/L94;
f94 = Fs/2*linspace(0,1,NFFT/2+1);

% Plot single-sided amplitude spectrum
plot(f94,2*abs(Y94(1:NFFT/2+1)))
hold on
stem(f94,2*abs(Y94(1:NFFT/2+1)),'filled','MarkerFaceColor','black', 'MarkerEdgeColor','blue')
xlim([0 120]);

Fs = 500; % Sampling Frequenz
L95 = length(posmin95); % Length of signal
NFFT = 2^nextpow2(L95); % Next power of 2 from length of y
Y95 = fft(posmin95,NFFT)/L95;
f95 = Fs/2*linspace(0,1,NFFT/2+1);

% Plot single-sided amplitude spectrum
plot(f95,2*abs(Y95(1:NFFT/2+1)))
hold on
stem(f95,2*abs(Y95(1:NFFT/2+1)),'filled','MarkerFaceColor','yellow', 'MarkerEdgeColor','blue')
xlim([0 120]);

Fs = 500; % Sampling Frequenz
L96 = length(posmin96); % Length of signal
NFFT = 2^nextpow2(L96); % Next power of 2 from length of y
Y96 = fft(posmin96,NFFT)/L96;
f96 = Fs/2*linspace(0,1,NFFT/2+1);

% Plot single-sided amplitude spectrum
plot(f96,2*abs(Y96(1:NFFT/2+1)))
hold on
stem(f96,2*abs(Y96(1:NFFT/2+1)),'filled','MarkerFaceColor','c', 'MarkerEdgeColor','blue')
xlim([0 120]);

Fs = 500; % Sampling Frequenz
L97 = length(posmin97); % Length of signal
NFFT = 2^nextpow2(L97); % Next power of 2 from length of y
Y97 = fft(posmin97,NFFT)/L97;
f97 = Fs/2*linspace(0,1,NFFT/2+1);

% Plot single-sided amplitude spectrum
plot(f97,2*abs(Y97(1:NFFT/2+1)))
hold on
stem(f97,2*abs(Y92(1:NFFT/2+1)),'filled','MarkerFaceColor','red,'
'MarkerEdgeColor','blue')
xlim([0 120]);

Fs = 500; % Sampling Frequency
L98 = length(posmin98); % Length of signal
NFFT = 2^nextpow2(L98); % Next power of 2 from length of y
Y98 = fft(posmin98,NFFT)/L98;

f98 = Fs/2*linspace(0,1,NFFT/2+1);

% Plot single-sided amplitude spectrum
plot(f98,2*abs(Y98(1:NFFT/2+1)))
hold on
stem(f98,2*abs(Y98(1:NFFT/2+1)),'filled','MarkerFaceColor','red,'
'MarkerEdgeColor','blue')
title('Fast Fourier Transformation Längshöhenfehler')
xlabel('Frequenz(Hz)','Fontsize',18)
ylabel('Amplitude','Fontsize',18)
set(gca,'fontsize',18)
xlim([0 120]);

legend('91','92','93','94','95','96','97','98')

%% SBD

figure

FS1 = 500;
x91 = z_Richtung_Laengshoehenfehler(3150:3650);
p91=pwelch(x91,[],[],[],FS1);
hold on
plot(p91)

hold on
FS2 = 500;
x92 = z_Richtung_Laengshoehenfehler(11150:11650);
p92=pwelch(x92,[],[],[],FS2);
hold on
plot(p92)

hold on
FS3 = 500;
x93 = z_Richtung_Laengshoehenfehler(19150:19650);
p93=pwelch(x93,[],[],[],FS3);
hold on
plot(p93)
FS4 = 500;
x94 = z_Richtung_Laengshoehenfehler(27000:27500);
p94=pwelch(x94,[],[],[],FS4);
hold on
plot(p94)
hold on
FS5 = 500;
x95 = z_Richtung_Laengshoehenfehler(34900:35400);
p95=pwelch(x95,[],[],[],FS5);
hold on
plot(p95)
hold on
FS6 = 500;
x96 = z_Richtung_Laengshoehenfehler(42200:42700);
p96=pwelch(x96,[],[],[],FS6);
hold on
plot(p96)
hold on
FS7 = 500;
x97 = z_Richtung_Laengshoehenfehler(49650:50150);
p97=pwelch(x97,[],[],[],FS7);
hold on
plot(p97)
hold on
FS8 = 500;
x98 = z_Richtung_Laengshoehenfehler(57200:57700);
p98=pwelch(x98,[],[],[],FS8);
hold on
xlabel('Frequenz [Hz]','Fontsize',18)
ylabel('Amplitude [m^2/s^3]','Fontsize',18)
set(gca,'fontsize',18)
title('Spektrale Beschleunigungsdichte Längshöhenfehler')
plot(p98)

legend('91','92','93','94','95','96','97','98')
Wavelet Analyse:

clc
close all

z_Richtung = x_z_Richtung_2./1365.3125.*9.81+10;

figure
plot(z_Richtung,'b')
xlim([1000 94000]);
s_goaly_wert_z = 11; %Savitzky Golay Filter
z_Richtung_filtered = sgolayfilt((z_Richtung), 5, s_goaly_wert_z);
hold on
plot(z_Richtung_filtered,'r')
xlim([1000 94000]);
grid on
title('Signal mit Savitzky Golay Filter')
xlabel('Zeit [s]');
ylabel('Beschleunigung in vertikaler Richtung [m/s²]')
set(gca,'Fontsize',16)

figure
CWTcoeffs = cwt(z_Richtung_filtered,200:220,'sym4','plot'); colormap jet;
surf(CWTcoeffs); colormap jet;
shading('interp'); view(0,12);
title('Wavelet Analyse')
xlabel('Messpunkt [-]');
ylabel('Waveletkoeffizient [-]')
zlabel('Skalierung [-]')

figure
CWTcoeffs = cwt(z_Richtung_filtered
(2830:9900),200:220,'sym4','plot'); colormap jet;
surf(CWTcoeffs); colormap jet;
shading('interp'); view(0,12);
title('Wavelet Analyse Runde 1')
xlabel('Messpunkt [-]');
ylabel('Waveletkoeffizient [-]')
zlabel('Skalierung [-]')

figure
CWTcoeffs = cwt(z_Richtung_filtered
(10900:17800),200:220,'sym4','plot'); colormap jet;
surf(CWTcoeffs); colormap jet;
shading('interp'); view(0,12);
title('Wavelet Analyse Runde 2')
xlabel('Messpunkt [-]');
ylabel('Waveletkoeffizient [-]')
zlabel('Skalierung [-]')

figure
CWTcoeffs = cwt(z_Richtung_filtered
(18900:25200),200:220,'sym4','plot'); colormap jet;
surf(CWTcoeffs); colormap jet;
shading('interp'); view(0,12);
title('Wavelet Analyse Runde 3','Fontsize',18)
xlabel('Messpunkt [-]');
ylabel('Waveletkoeffizient [-]')
zlabel('Skalierung [-]')

gfigure
CWTcoeffs = cwt(z_Richtung_filtered
(26360:33190),200:220,'sym4','plot'); colormap jet;
surf(CWTcoeffs); colormap jet;
shading('interp'); view(0,12);
title('Wavelet Analyse Runde 4','Fontsize',18)
xlabel('Messpunkt [-]');
ylabel('Waveletkoeffizient [-]')
zlabel('Skalierung [-]')

gfigure
CWTcoeffs = cwt(z_Richtung_filtered
(33700:39620),200:220,'sym4','plot'); colormap jet;
surf(CWTcoeffs); colormap jet;
shading('interp'); view(0,12);
title('Wavelet Analyse Runde 5','Fontsize',18)
xlabel('Messpunkt [-]');
ylabel('Waveletkoeffizient [-]')
zlabel('Skalierung [-]')

gfigure
CWTcoeffs = cwt(z_Richtung_filtered
(41190:47970),200:220,'sym4','plot'); colormap jet;
surf(CWTcoeffs); colormap jet;
shading('interp'); view(0,12);
title('Wavelet Analyse Runde 6','Fontsize',18)
xlabel('Messpunkt [-]');
ylabel('Waveletkoeffizient [-]')
zlabel('Skalierung [-]')

gfigure
CWTcoeffs = cwt(z_Richtung_filtered
(49260:56500),200:220,'sym4','plot'); colormap jet;
surf(CWTcoeffs); colormap jet;
shading('interp'); view(0,12);
title('Wavelet Analyse Runde 7','Fontsize',18)
xlabel('Messpunkt [-]');
ylabel('Waveletkoeffizient [-]')
zlabel('Skalierung [-]')

gfigure
CWTcoeffs = cwt(z_Richtung_filtered
(56800:63000),200:220,'sym4','plot'); colormap jet;
surf(CWTcoeffs); colormap jet;
shading('interp'); view(0,12);
title('Wavelet Analyse Runde 8','Fontsize',18)
xlabel('Messpunkt [-]');
ylabel('Waveletkoeffizient [-]')
zlabel('Skalierung [-]')
figure
CWTcoeffs = cwt(z_Richtung_filtered
(64890:71430),200:220,'sym4','plot'); colormap jet;
surf(CWTcoeffs); colormap jet;
shading('interp'); view(0,12);
title('Wavelet Analyse Runde 9','FontSize',18)
xlabel('Messpunkt [-]');
ylabel('Waveletkoeffizient [-]')
zlabel('Skalierung [-]')
figure
CWTcoeffs = cwt(z_Richtung_filtered
(71430:78570),200:220,'sym4','plot'); colormap jet;
surf(CWTcoeffs); colormap jet;
shading('interp'); view(0,12);
title('Wavelet Analyse Runde 10','FontSize',18)
xlabel('Messpunkt [-]');
ylabel('Waveletkoeffizient [-]')
zlabel('Skalierung [-]')
figure
CWTcoeffs = cwt(z_Richtung_filtered
(79310:85560),200:220,'sym4','plot'); colormap jet;
surf(CWTcoeffs); colormap jet;
shading('interp'); view(0,12);
title('Wavelet Analyse Runde 11','FontSize',18)
xlabel('Messpunkt [-]');
ylabel('Waveletkoeffizient [-]')
zlabel('Skalierung [-]')
figure
CWTcoeffs = cwt(z_Richtung_filtered
(86700:93490),200:220,'sym4','plot'); colormap jet;
surf(CWTcoeffs); colormap jet;
shading('interp'); view(0,12);
title('Wavelet Analyse Runde 12','FontSize',18)
xlabel('Messpunkt [-]');
ylabel('Waveletkoeffizient [-]')
zlabel('Skalierung [-]')
Signaldetektion:

```matlab
clc
close all
z_1 = x_z_Richtung_2.*1365.3125*9.81+10;
figure(1)
subplot(2,1,1)
plot(z_1)
xlim([1000 94000]);
ylabel('Beschleunigung in z-Richtung [m/s^2]')
xlabel('Messpunkt [\text{-}]')
set(gca,'FontSize',14)
title('Original Signal')

%% Butterworth Filter
abtastfrequenz = 500;
untere_grenzfrequenz = 200;
nyquistfrequenz = 0.5 * abtastfrequenz;
Wn = untere_grenzfrequenz/nyquistfrequenz;
order = 6;
[b1,a1] = butter(order,Wn,'low');
z_1_filtered = filter(b1,a1,z_1);
subplot(2,1,2)
plot(z_1_filtered)
xlim([1000 94000]);
ylabel('Beschleunigung in z-Richtung [m/s^2]')
xlabel('Messpunkt [\text{-}]')
set(gca,'FontSize',16)
title('Filtered Signal')

%% find the signal Schienenstoß 1
result=zeros(94500,1);
k=1;
pmaxes = zeros(940,1);
%pthrees = zeros(940,1);
while (k<940)
p=pwelch(z_1(100*k:(100*k)+500),[],[],[],Fs);
pmax=max(p);
%Maximale Amplitude der Spektralen Beschleunigungsdichte
wmax=max(z_1(100*k:(100*k)+500));
%Maximale vertikale Beschleunigung
pmaxes(k) = pmax;
%pthrees(k) = p(3);
if pmax>0.0045 && pmax<0.0097 && wmax>1.415 && wmax<2.7
%Maximalbereiche
result(100*k:100*k+500)=1;
k=k+6;
else
result(100*k:100*k+500)=0;
k=k+1;
end
end

% plot result
```
\begin{verbatim}
z_temp1 = z_1;
z_temp2 = z_1;
[I,J] = find(result);
z_temp1(I) = 0;
[R,C] = find(z_temp1);
z_temp2(R) = 0;

figure(5)
plot(z_temp1)
hold on
plot(z_temp2)
title('Detektion Schienenstoß 1 im Signal')
grid on
xlim([2000 95000]);
xlabel('Anzahl Messpunkte [-]')
ylabel('Vertikalbeschleunigung [m/s²]')
set(gca,'Fontsize',16)
hold off

% find the signal Schienenbruch 1
result = zeros(94500,1);
k = 1;
pmaxes = zeros(940,1);
%pthrees = zeros(940,1);
while (k<940)
Pwelch(z_1(100*k:(100*k)+500),[],[],[],Fs);
 pmax = max(p);
 %Maximale Amplitude der Spektralen Beschleunigungsdichte
 wmax = max(z_1(100*k:(100*k)+500));
 %Maximale vertikale Beschleunigung
 if pmax > 0.103 && pmax < 0.18 && wmax > 20 && wmax < 31
 %Maximalbereiche
 result(100*k:100*k+500) = 1;
 k = k+6;
 else
 result(100*k:100*k+500) = 0;
 k = k+1;
end

% plot result
z_temp1 = z_1;
z_temp2 = z_1;
[I,J] = find(result);
z_temp1(I) = 0;
[R,C] = find(z_temp1);
z_temp2(R) = 0;

figure(5)
plot(z_temp1)
hold on
plot(z_temp2)
title('Detektion Schienenbruch 1 im Signal')
grid on
\end{verbatim}
xlim([2000 95000]);
xlabel('Anzahl Messpunkte [-]')
ylabel('Vertikalbeschleunigung [m/s²]')
set(gca,'Fontsize',16)
hold off
%% find the signal Schienenbruch 2
result=zeros(94500,1);
k=1;

pmaxes = zeros(940,1);
%pthrees = zeros(940,1);
while (k<940)
 p=pwelch(z_1(100*k:(100*k)+500),[],[],[],Fs);
 pmax=max(p);
 pmaxes(k) = pmax;
 %pthrees(k) = p(3);
 if pmax>0.064 && pmax<0.091 && wmax>11 && wmax<13.7
 result(100*k:100*k+500)=1;
 k=k+6;
 else
 result(100*k:100*k+500)=0;
 k=k+1;
 end
end

% plot result
z_temp1=z_1;
z_temp2=z_1;
[I,J]=find(result);
z_temp1(I)=0;
[R,C]=find(z_temp1);
z_temp2(R)=0;

figure(5)
plot(z_temp1)
hold on
plot(z_temp2)
title('Detektion Schienenbruch 2 im Signal')
grid on
xlim([2000 95000]);
xlabel('Anzahl Messpunkte [-]')
ylabel('Vertikalbeschleunigung [m/s²]')
set(gca,'Fontsize',16)
hold off
%% find the signal Schienenstoß 2
result=zeros(94500,1);
k=1;

pmaxes = zeros(940,1);
%pthrees = zeros(940,1);
while (k<940)
 p=pwelch(z_1(100*k:(100*k)+500),[],[],[],Fs);
pmax=max(p); % Maximale Amplitude der Spektralen Beschleunigungsdichte
wmax=max(z_1(100*k:(100*k)+500)); % Maximale vertikale Beschleunigung
pmaxes(k) = pmax;
%pthrees(k) = p(3);
if pmax>0.03 && pmax<0.06 && wmax>3.9 && wmax<5.4 % Maximalbereiche
result(100*k:100*k+500)=1;
k=k+6;
else
result(100*k:100*k+500)=0;
k=k+1;
end
end

% plot result
z_temp1=z_1;
z_temp2=z_1;
[I,J]=find(result);
z_temp1(I)=0;
[R,C]=find(z_temp1);
z_temp2(R)=0;
figure(5)
plot(z_temp1)
hold on
plot(z_temp2)
title('Detektion Schienenstoß 2 im Signal')
grid on
xlim([2000 95000]);
xlabel('Anzahl Messpunkte [-]')
ylabel('Vertikalbeschleunigung [m/s²]')
set(gca,'Fontsize',16)
hold off

% find the signal Schienenstoß 3
result=zeros(94500,1);
k=1;
pmaxes = zeros(940,1);
%pthrees = zeros(940,1);
while (k<940)
 p=pwelch(z_1(100*k:(100*k)+500),[],[],[],Fs);
pmax=max(p); % Maximale Amplitude der Spektralen Beschleunigungsdichte
wmax=max(z_1(100*k:(100*k)+500)); % Maximale vertikale Beschleunigung
pmaxes(k) = pmax;
%pthrees(k) = p(3);
if pmax>0.06 && pmax<0.095 && wmax>13.8 && wmax<20 % Maximalbereiche
result(100*k:100*k+500)=1;
k=k+6;
else
result(100*k:100*k+500)=0;
k=k+1;
end
end

% plot result
z_temp1=z_1;
z_temp2=z_1;
[I,J]=find(result);
z_temp1(I)=0;
[R,C]=find(z_temp1);
z_temp2(R)=0;

figure(5)
plot(z_temp1)
hold on
plot(z_temp2)
title('Detektion Schienenstoß 3 im Signal')
grid on
xlim([2000 95000]);
xlabel('Anzahl Messpunkte [-]')
ylabel('Vertikalbeschleunigung [m/s²]')
set(gca,'Fontsize',16)
hold off

%% find the signal Schienenstoß 4
result=zeros(94500,1);
k=1;
pmaxes = zeros(940,1);
%pthrees = zeros(940,1);
while (k<940)
 p=pwelch(z_1(100*k:(100*k)+500),[],[],[],Fs);
 pmax=max(p);
 wmax=max(z_1(100*k:(100*k)+500));
 if pmax>0.05 && pmax<0.113 && wmax>5.5 && wmax<6.95
 result(100*k:100*k+500)=1;
 k=k+6;
 else
 result(100*k:100*k+500)=0;
 k=k+1;
 end
end

% plot result
z_temp1=z_1;
z_temp2=z_1;
[I,J]=find(result);
z_temp1(I)=0;
[R,C]=find(z_temp1);
z_temp2(R)=0;
figure(5)
plot(z_temp1)
hold on
plot(z_temp2)
title('Detektion Schienenstoß 4 im Signal')
grid on
xlim([2000 95000]);
xlabel('Anzahl Messpunkte [-]')
ylabel('Vertikalbeschleunigung [m/s²]')
set(gca,'Fontsize',16)
hold off

%% find the signal Punktuelle Instabilität

result=zeros(94500,1);
k=1;
pmaxes = zeros(940,1);
%pthrees = zeros(940,1);
while (k<940)
 p=pwelch(z_1(100*k:(100*k)+500),[],[],[],Fs);
 pmax=max(p);
 wmax=max(z_1(100*k:(100*k)+500));
 pmaxes(k) = pmax;
 %pthrees(k) = p(3);
 if pmax>0.0061 && pmax<0.0134 && wmax>2.16 && wmax<3.78
 result(100*k:100*k+500)=1;
 k=k+6;
 else
 result(100*k:100*k+500)=0;
 k=k+1;
 end
end

% plot result
z_temp1=z_1;
z_temp2=z_1;
[I,J]=find(result);
z_temp1(I)=0;
[R,C]=find(z_temp1);
z_temp2(R)=0;

figure(5)
plot(z_temp1)
hold on
plot(z_temp2)
title('Detektion Punktuelle Instabilität im Signal')
grid on
xlim([2000 95000]);
xlabel('Anzahl Messpunkte [-]')
ylabel('Vertikalbeschleunigung [m/s²]')
set(gca,'Fontsize',16)
hold off

%% find the signal Brücke
result=zeros(94500,1);
k=1;
pmaxes = zeros(940,1); %pthrees = zeros(940,1);
while (k<940)
 p=pwelch(z_1(100*k:(100*k)+500),[],[],[],Fs);
 pmax=max(p); %Maximale Amplitude der Spektralen Beschleunigungsdichte
 wmax=max(z_1(100*k:(100*k)+500)); %Maximale vertikale Beschleunigung
 pmaxes(k) = pmax;
 %pthrees(k) = p(3);
 if pmax>0.0101 && pmax<0.017 && wmax>2.38 && wmax<4.52
 %Maximalbereiche
 result(100*k:100*k+500)=1;
 k=k+6;
 else
 result(100*k:100*k+500)=0;
 k=k+1;
 end
end

% plot result
z_temp1=z_1;
z_temp2=z_1;
[I,J]=find(result);
z_temp1(I)=0;
[R,C]=find(z_temp1);
z_temp2(R)=0;
figure(5)
plot(z_temp1)
hold on
plot(z_temp2)
title('Detektion Brücke im Signal')
grid on
xlim([2000 95000]);
xlabel('Anzahl Messpunkte [-]')
ylabel('Vertikalbeschleunigung [m/s²]')
set(gca,'Fontsize',16)
hold off

Detektion Fehlertyp „Längshöhenfehler“

%% find the signal Längshöhenfehler
result=zeros(63000,1);
k=1;
pmaxes = zeros(630,1); %pthrees = zeros(940,1);
while (k<630)
 p=pwelch(z_Richtungneu_1(100*k:(100*k)+500),[],[],[],Fs);
 pmax=max(p); %Maximale Amplitude der Spektralen Beschleunigungsdichte
 wmax=max(z_Richtungneu_1(100*k:(100*k)+500)); %Maximale vertikale Beschleunigung
 pmaxes(k) = pmax;
 %pthrees(k) = p(3);
 if pmax>0.0101 && pmax<0.017 && wmax>2.38 && wmax<4.52
 %Maximalbereiche
 result(100*k:100*k+500)=1;
 k=k+6;
 else
 result(100*k:100*k+500)=0;
 k=k+1;
 end
end

% plot result
z_temp1=z_Richtungneu_1;
z_temp2=z_Richtungneu_1;
[I,J]=find(result);
z_temp1(I)=0;
[R,C]=find(z_temp1);
z_temp2(R)=0;
figure(5)
plot(z_temp1)
hold on
plot(z_temp2)
title('Detektion Brücke im Signal')
grid on
xlim([2000 95000]);
xlabel('Anzahl Messpunkte [-]')
ylabel('Vertikalbeschleunigung [m/s²]')
set(gca,'Fontsize',16)
hold off
\[w_{\text{max}} = \max(z_{\text{Richtungneu}_1(100*k:(100*k)+500)}); \quad \% \text{Maximale vertikale Beschleunigung} \]

\[p_{\text{maxes}}(k) = p_{\text{max}}; \]
\[\% p_{\text{threes}}(k) = p(3); \]
\[\text{if } p_{\text{max}}>0.061 \&\& p_{\text{max}}<0.095 \&\& w_{\text{max}}>6.15 \&\& w_{\text{max}}<7.66 \quad \% \text{Maximalbereiche} \]
\[\text{result}(100*k:100*k+500)=1; \quad k=k+6; \]
\[\text{else} \quad \text{result}(100*k:100*k+500)=0; \quad k=k+1; \]
\[\text{end} \]
\[\text{end} \]
\[\% \text{plot result} \]
\[z_{\text{temp1}} = z_{\text{Richtungneu}_1}; \]
\[z_{\text{temp2}} = z_{\text{Richtungneu}_1}; \]
\[[I,J]=\text{find(result)}; \]
\[z_{\text{temp1}}(I)=0; \]
\[[R,C]=\text{find(z_{temp1});} \]
\[z_{\text{temp2}}(R)=0; \]
\[\text{figure(5)} \]
\[\text{plot(z_{temp1})} \]
\[\text{hold on} \]
\[\text{plot(z_{temp2})} \]
\[\text{title('Detektion Längshöhenfehler im Signal')} \]
\[\text{grid on} \]
\[\text{xlim([1000 63000])} \]
\[\text{xlabel('Anzahl Messpunkte [-]')} \]
\[\text{ylabel('Vertikalbeschleunigung [m/s²]')} \]
\[\text{set(gca,'Fontsize',16)} \]
\[\text{hold off} \]

Detektion Gleisfehler im Signal

\[\text{result} = \text{zeros(94500,1)}; \]
\[k=1; \]
\[p_{\text{maxes}} = \text{zeros(940,1)}; \]
\[\% p_{\text{threes}} = \text{zeros(940,1)}; \]
\[\text{while}(k<940) \]
\[\quad p = \text{pwelch(z_1(100*k:(100*k)+500),[],[],[],Fs);} \]
\[\quad [p_{\text{max}}, \text{pos}_{\text{loc}}] = \text{max(p)}; \quad \% \text{Maximale Amplitude der Spektralen Beschleunigungsdichte mit Positionsangabe} \]
\[\quad w_{\text{max}} = \max(z_1(100*k:(100*k)+500)); \quad \% \text{Maximale vertikale Beschleunigung} \]
\[\quad \text{pos}_{\text{min}} = \min(-z_1(100*k:(100*k)+500)); \quad \% \text{Maximale negative vertikale Beschleunigung} \]
\[\quad p_{\text{maxes}}(k) = p_{\text{max}}; \]
\[\quad \% p_{\text{threes}}(k) = p(3); \]
\[\quad \text{if } p_{\text{max}}>0.005 \&\& p_{\text{max}}<0.02 \&\& w_{\text{max}}>1.8 \&\& w_{\text{max}}<4.55 \&\& \text{pos}_{\text{min}}>-7.7 \&\& \text{pos}_{\text{min}}<-1.54 \&\& \text{pos}_{\text{loc}}>8 \&\& \text{pos}_{\text{loc}}<22 \quad \% \text{Maximalbereiche} \]
\[\quad \text{result}(100*k:100*k+500)=1; \quad k=k+6; \]
else
 result(100*k:100*k+500)=0;
 k=k+1;
end
end

% plot result
z_temp1=z_1;
z_temp2=z_1;
[I,J]=find(result);
z_temp1(I)=0;
[R,C]=find(z_temp1);
z_temp2(R)=0;

figure(5)
plot(z_temp1)
hold on
plot(z_temp2)
title('Detektion Gleisfehler im Signal')
grid on
xlim([2000 95000]);
xlabel('Anzahl Messpunkte [-]')
ylabel('Vertikalbeschleunigung [m/s²]')
set(gca,'Fontsize',18)
hold off

Detektion Schienenfehler im Signal

result=zeros(94500,1);
k=1;
pmaxes = zeros(940,1);
%pthrees = zeros(940,1);
while (k<940)
 p=pwelch(z_1(100*k:(100*k)+180),[],[],[],Fs);
 [pmax,pos_loc]=max(p); %Maximale Amplitude der Spektralen Beschleunigungsdichte mit Positionsangabe
 wmax=max(z_1(100*k:(100*k)+180)); %Maximale vertikale Beschleunigung
 posmin=min(-z_1(100*k:(100*k)+180)); %Maximale negative vertikale Beschleunigung
 pmaxes(k) = pmax;
 %pthrees(k) = p(3);
 if pmax>0.01 && pmax<1.2 && wmax>3.7 && wmax<33 && posmin>-30 && posmin<-4 && pos_loc>15 && pos_loc<120 %Maximalbereiche
 result(100*k:100*k+500)=1;
 k=k+6;
 else
 result(100*k:100*k+500)=0;
 k=k+1;
 end
end
%
% plot result
z_temp1=z_1;
z_temp2=z_1;
[I,J]=find(result);
z_temp1(I)=0;
[R,C]=find(z_temp1);
z_temp2(R)=0;

figure(5)
plot(z_temp1)
hold on
plot(z_temp2)
title('Detektion Schienenfehler im Signal')
grid on
xlim([2000 95000]);
xlabel('Anzahl Messpunkte [-]')
ylabel('Vertikalbeschleunigung [m/s²]')
set(gca,'Fontsize',18)
hold off
Anhang B Weitere Angaben

Gesamte Logik zur Detektion der Gleisfehler im Messschrieb:
Start Messung

Aktivieren Beschleunigungssensor

Einstellen Messrichtung

Einstellen Messbereich

Starten Messung

Beenden Messung

Ende Messung

Start Detektion

Starten Detektion von Gleislagefehler

Teilen Messschrieb in Intervalle von je 250 Messwerte

Setzen Intervall

Finden Maximum im Intervall

Speichern Maximum

Speichern Position des Maximums posmax

Untersuchen Bereich +/- 50 Messwerte ab posmax

Untersuchen nächstes Intervall

Alle Intervalle untersucht?

Ja

Vermerken alle Maxima

Ende Detektion

Nein

Ende Detektion

Start

Ordne Fehler

Berechnen Fast Fourier Transformation

Berechnen Spektrale Beschleunigungsdichte

Ende
Maximalwerte

Schienenstoß 1
::Maximum zwischen 1,2 m/s² und 3,3 m/s²

Schienenstoß 2
::Maximum zwischen 3,9 m/s² und 5,4 m/s²

Schienenbruch 1
::Maximum zwischen 20 m/s² und 31 m/s²

Punktuelle Instabilität
::Maximum zwischen 2,1 m/s² und 3,9 m/s²

Schienenstoß 3
::Maximum zwischen 13,8 m/s² und 20 m/s²

Schienenstoß 4
::Maximum zwischen 5,5 m/s² und 6,95 m/s²

Brücke
::Maximum zwischen 1,8 m/s² und 4,5 m/s²

Schienenbruch 2
::Maximum zwischen 11 m/s² und 13,7 m/s²

Längshöhenfehler
::Maximum zwischen 0,86 m/s² und 2,1 m/s²
Fast-Fourier-Transformation:
Maximum bei 78 Hz und 95 Hz
FFT Werte

Fast-Fourier-Transformation:
Maximum bei 39,06 Hz und 42,97 Hz

Fast-Fourier-Transformation:
Maximum bei 78,13 Hz

Fast-Fourier-Transformation:
Maximum bei 23,44 Hz

Fast-Fourier-Transformation:
Maximum bei 39,06 Hz und 46,88 Hz

Fast-Fourier-Transformation:
Maximum bei 42,97 Hz

Fast-Fourier-Transformation:
Maximum bei 39,06 Hz

Fast-Fourier-Transformation:
Maximum bei 46,88 Hz

Fast-Fourier-Transformation:
Amplitude zwischen 2,133 m/s²/Hz und 2,856 m/s²/Hz

Fast-Fourier-Transformation:
Amplitude zwischen 3,313 m/s²/Hz und 4,522 m/s²/Hz

Fast-Fourier-Transformation:
Amplitude zwischen 4,915 m/s²/Hz und 6,551 m/s²/Hz

Fast-Fourier-Transformation:
Amplitude zwischen 1,092 m/s²/Hz und 1,557 m/s²/Hz

Fast-Fourier-Transformation:
Amplitude zwischen 2,047 m/s²/Hz und 2,509 m/s²/Hz

Fast-Fourier-Transformation:
Amplitude zwischen 0,638 m/s²/Hz und 0,969 m/s²/Hz

Fast-Fourier-Transformation:
Amplitude zwischen 0,146 m/s²/Hz und 0,606 m/s²/Hz

Start FFT
Spektrale Beschleunigungsdichte:
Maximum zwischen 40 Hz und 117 Hz

Spektrale Beschleunigungsdichte:
Maximum zwischen 20 Hz und 24 Hz

Spektrale Beschleunigungsdichte:
Maximum zwischen 39 Hz und 42 Hz

Spektrale Beschleunigungsdichte:
Maximum zwischen 39 Hz und 42 Hz

Spektrale Beschleunigungsdichte:
Maximum zwischen 8 Hz und 15 Hz

Spektrale Beschleunigungsdichte:
Maximum zwischen 24 Hz und 28 Hz

Spektrale Beschleunigungsdichte:
Maximum zwischen 20 Hz und 25 Hz

Spektrale Beschleunigungsdichte:
Maximum zwischen 18 Hz und 22 Hz

Spektrale Beschleunigungsdichte:
Maximum zwischen 18 Hz und 22 Hz

Spektrale Beschleunigungsdichte:
Maximum zwischen 15 Hz und 19 Hz

Spektrale Beschleunigungsdichte:
Amplitude zwischen 0,0054 m²/s³ und 0,01 m²/s³

Spektrale Beschleunigungsdichte:
Amplitude zwischen 0,005 m²/s³ und 0,019 m²/s³

Spektrale Beschleunigungsdichte:
Amplitude zwischen 0,06 m²/s³ und 0,095 m²/s³

Spektrale Beschleunigungsdichte:
Amplitude zwischen 0,0078 m²/s³ und 0,021 m²/s³

Schienenstoß 1
Schienenstoß 2
Schienenbruch 1
Punktueller Instabilität
Schienenstoß 3
Schienenstoß 4
Brücke
Schienenbruch 2
Längshöhenfehler