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1 Introduction

Excitons are atom-like states in semiconductors like cuprous oxide (Cu2O) formed by an
electron and a positively charged hole. They are created by exciting an electron from the
valence band into the conduction band where the electron forms a bound hydrogen-like
state with the hole remaining in the valence band. In this thesis we will focus on excitons
of the yellow series which have excitation energies corresponding to wavelengths of about
590 nm [1].

Excitons in cuprous oxide have been studied intensively in experiments [1–3] and quantum
mechanical calculations [4, 5]. Those investigations showed that there are similarities to
the hydrogen atom but also deviations caused by the band structure of the crystal. For
the hydrogen atom it was possible to connect the quantum mechanical energy spectrum
to classical Keplerian orbits in the Bohr-Sommerfeld model. The question arises whether
this is possible for excitons in cuprous oxide as well.

Semiclassical trace formulas relate fluctuations of the density of states to classical periodic
orbits where the frequencies are related to the action or period of the periodic orbits
while the amplitude is related to stability properties of the orbits. In this thesis we want
to apply semiclassical theories for the calculation and interpretation of exciton spectra.

In order to take the band structure of Cu2O into account in classical calculations we treat
the quasispin and hole spin degrees of freedom with an adiabatic approach. Thereby,
we assume the spin dynamics to be much faster than the classical motion and calculate
the spin-dependent part of the Hamiltonian quantum mechanically while the exciton
dynamics is treated classically.

Cuprous oxide has a cubic Oh symmetry. Therefore, it has distinct symmetry planes in
which two-dimensional classical exciton orbits occur. In order to simplify the problem
we limit ourselves to orbits in the plane orthogonal to the [001] axis.

For investigating the classical exciton dynamics we show a Poincaré surface of section
and search for periodic orbits in the plane. Furthermore, we calculate the action, period
and stability properties of these orbits and use them for semiclassical calculations.

5



1 Introduction

1.1 Structure of the thesis

In chapter 2 we present the theoretical foundations and methods. In section 2.1 we
talk about the semiconductor cuprous oxide, its symmetries and the band structure.
In section 2.2 we present the semiclassical trace formulas which allow for calculating
the density of states from classical periodic orbits. In section 2.3 we show how to find
and simulate classical exciton orbits and how to calculate the orbit parameters. In
section 2.4 we will explain how to calculate the frequencies of a scaled energy spectrum in
semiclassical calculations and we show a quantum mechanical equivalent we can compare
with.

In chapter 3 we present our results. In section 3.1 we search for periodic orbits at
constant neff = 5 and calculate the frequencies and amplitudes of the scaled spectrum
semiclassically. In section 3.2 we investigate the energy dependence of the periodic-orbit
parameters.
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2 Theoretical foundations and
methods

2.1 Excitons in cuprous oxide

Excitons are states in semiconductors. An electron is excited from the valence band into
the conduction band and forms an atom-like structure with the hole remaining in the
valence band. The early experiments with excitons were made in cuprous oxide (Cu2O)
by Gross [2]. Since then experimental techniques have made enormous progress and in
2014 Kazimierczuk et al. [1] realized excitons with principal quantum numbers up to
n = 25 and extensions larger than 2 µm. They did their experiments in natural Cu2O
because, although it can be fabricated artificially [6, 7], natural Cu2O is of better quality
until now. One reason why cuprous oxide is used in exciton experiments quite frequently
is that the excitation energy of the excitons corresponds to frequencies in the visible
spectra. Another reason is that they have a high Rydberg energy and therefore a strong
splitting of the energy levels and large radii [1].

An exciton consists of an electron and a hole both with a charge of ±e which looks quite
similar to the hydrogen atom. Nevertheless, the exciton is affected by the band structure
of the semiconductor which means that it does not share exactly the same Hamiltonian
as the hydrogen atom. Also experiments showed a deviation from the hydrogen-like
behavior [3].

2.1.1 Symmetry

Figure 2.1 shows the molecular structure of the semiconductor Cu2O. It consists of copper
atoms arranged in an fcc lattice and oxygen atoms arranged in a bcc lattice [10]. Both
lattices are shifted by 1/4 of the lattice side against one another. The Cu2O crystal has
cubic Oh symmetry which is also projected onto the band structure and therefore the
Hamiltonian of the system [11]. The symmetry operations of this symmetry group are
listed in table 2.1.
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2 Theoretical foundations and methods

Cu
O

Figure 2.1: Molecular structure of cuprous
oxide. The red oxygen atoms are arranged
in a bcc lattice and the blue copper atoms
are arranged in an fcc lattice shifted by 1/4

of the lattice side in each direction.

Table 2.1: Symmetry operations of the Oh group [8, 9].

Symmetry operation Explanation

E Identity
8C3 Threefold rotations around the [111] axis and equivalents
3C2 Twofold rotations around the [001] axis and equivalents
6C4 Fourfold rotations around the [001] axis and equivalents
6C2 Twofold rotations around the [110] axis and equivalents
I Inversion
8S6 Improper rotations around the [111] axis and equivalents
6S4 Improper rotations around the [001] axis and equivalents
3σh Reflections at planes normal to the [001] axis and equivalents
6σd Reflections at planes normal to the [110] axis and equivalents

Table 2.2: Symmetry operations of the C4v group [8, 9].

Symmetry operation Explanation

E Identity
C2 Twofold rotations around the [001] axis
2C4 Fourfold rotations around the [001] axis
3σh Reflections at planes normal to the [100] and [010] axis
6σd Reflections at planes normal to the [110] and [110] axis

8



2.1 Excitons in cuprous oxide

An n-fold rotation Cn means to rotate by multiples of 360°/n around the given axis. The
8C3 for example denotes a rotation by ±120° around the axes [111], [111], [111] and [111].
The 8 is the total number of non identical operations of this type which is the number of
possible rotation angles times the number of possible axes. Note that a rotation by 120°
around [111] would be identical with a rotation by −120° around [111]. There are only
6 C4 operations because some of them would be identical with the C2 operations. An
improper rotation is a combination of a rotation and a reflection. It occurs when the
system is a mirror image of itself after the rotation.

There are two different reflection operations in the Oh group. Also the Hamiltonian is
reflected at these symmetry planes which means that classical trajectories in these planes
will stay there forever [9, 12]. This will be important because we want to simulate classical
exciton orbits and in order to simplify our system we limit ourselves to trajectories in
the symmetry plane orthogonal to [001]. This makes the exciton orbits two-dimensional.
The dynamics in the other σh symmetry planes will be the same but in the σd planes
they will be different.

The symmetry group corresponding to the symmetry plane orthogonal to [001] is C4v.
The knowledge of this symmetry can be useful when searching for starting conditions for
periodic exciton orbits. The symmetry operations of the C4v group are listed in table
2.2.

2.1.2 Band structure

Excitons in Cu2O can be described through the Hamiltonian [5, 9, 11]

H = Eg +He(pe) +Hh(ph, I,Sh) + V (re − rh) (2.1)

with gap energy Eg, the momentum p dependent Hamiltonians of electron (e) and hole
(h) so as the Coulomb potential V (re − rh) depending on the distance between electron
and hole re − rh. The gap energy for cuprous oxide so as further material parameter can
be seen in appendix B. The quasispin I is introduced in order to account for the cubic
Oh symmetry of the system and interacts with the hole spin Sh. The corresponding hole
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2 Theoretical foundations and methods

Hamiltonian reads

Hh (ph, I,Sh) = HSO (I,Sh) +
1

2~2m0

[
~2(γ1 + 4γ2)p

2
h

+2(η1 + 2η2)p
2
h (I · Sh)

−6γ2
[
p2h1I

2
1 + c.p.

]
−12η2

[
p2h1I1Sh1 + c.p.

]
−12γ3 [{ph1, ph2} {I1, I2}+ c.p.]

−12η3 [{ph1, ph2} (I1Sh2 + I2Sh1) + c.p.]
]

(2.2)

where c.p. means the cyclic permutation of the indices (e.g I1I2 +c.p. = I1I2 +I2I3 +I3I1)
and with the symmetric product {A,B} = 1

2
(AB +BA). The mass m0 is the standard

electron mass and γi and ηi are the Luttinger parameters [3, 4] which result from fits to
experimental data. They account for the effective mass of the hole in the crystal lattice.
As one can see it depends on the direction of the momentum as well as on the spins. The
term HSO in the Hamiltonian denotes the spin-orbit coupling

HSO (I,Sh) =
2

3
∆

(
1 +

1

~2
I · Sh

)
(2.3)

with parameter ∆ and identity 1.

The electron Hamiltonian is just the momentum term

He(pe) =
p2e

2me
(2.4)

where me is the effective mass of the electron in the conductance band.

The Coulomb potential is

V (re − rh) =
e2

4πεε0|re − rh|
(2.5)

with the dielectric constant ε.

Combining all components and expressing the system in relative and center-of-mass
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2.1 Excitons in cuprous oxide

coordinates

M = mh +me,

µ =
mh +me

mhme
,

r = rh − re,

p =
meph −mhpe

M
,

R =
mhrh +mere

M
,

P = ph + pe,

(2.6)

the Hamiltonian reads

H = Eg +
p2

2me
+Hh (p, I,Sh)− e2

4πεε0|r|
(2.7)

where the center-of-mass momentum P is neglected. Introducing the new parameter
γ′1 = γ1 +m0/me the Hamiltonian changes to

H =
γ′1p

2

2m0

− e2

4πεε0r
+ H̃b (ph, I,Sh) (2.8)

with

H̃b (ph, I,Sh) = Eg

+
2

3
∆

(
1 +

1

~2
I · Sh

)
+

2γ2
~2m0

p2

+
η1 + 2η2
~2m0

p2 (1 + I · Sh)

− 3γ2
~2m0

[
p21I

2
1 + c.p.

]
− 6η2

~2m0

[
p21I1Sh1 + c.p.

]
− 6γ3

~2m0

[{p1, p2} {I1, I2}+ c.p.]

− 6η3
~2m0

[{p1, p2} (I1Sh2 + I2Sh1) + c.p.] .

(2.9)

Besides r and p additional degrees of freedom arise in the Hamiltonian because of
the quasispin I and the hole spin Sh. Furthermore, we shift the energy by −Eg what
eliminates it in the Hamiltonian.

11



2 Theoretical foundations and methods
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Figure 2.2: Schematic plot of the band
structure of cuprous oxide. One can see
the conduction band (CB) and the valence
band (VB) which is split up due to spin-orbit
coupling (∆) and the interaction of the hole
spin with the crystal lattice. The excitons
are divided in series named according to
the energy which is necessary to excite an
electron from the VB to the CB. In this
thesis we investigate excitons of the yellow
series.

A schematic view of the band structure of cuprous oxide is shown in figure 2.2. The valence
band splits up because of the band structure term H̃b (ph, I,Sh) in the Hamiltonian (2.8).
The excitons are classified in series according to their excitation energy. There are the
yellow, green, blue and violet series but since the both last arise from a splitting of the
conduction band they are not considered in our Hamiltonian [11]. In this thesis we want
to investigate excitons of the yellow series which belongs to a total spin of I + Sh = 1/2

and which have excitation energies corresponding to wavelengths of about 590 nm [1].

2.1.3 Quantum mechanical treatment of excitons in cuprous oxide

Energy spectra of the yellow exciton series are already measured experimentally [1, 13,
14] and invested quantum mechanically [3, 13, 14]. In order to get the energy spectrum
one can solve the quantum mechanical Hamiltonian in a complete basis [5, 11, 15]. Those
investigations revealed that there are significant deviations from the hydrogen-like series.
One can introduce a quantum defect δn,l describing the energy levels as

En,l = − Ry
(n− δn,l)2

(2.10)

with principal quantum number n and azimuthal quantum number l in analogy to
the hydrogen atom [16]. With the quantum defects a new effective quantum number
neff = n−δn,l is introduced. The factor Ry is the ideal Rydberg energy in the hydrogen-like
case and for the excitons in Cu2O it is

Ry =
~2γ′1

2a2excm0

(2.11)
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2.2 Semiclassical theories

with

aexc =
4πεε0~2γ′1
e2m0

. (2.12)

In analogy to the hydrogen atom we can introduce exciton-Hartree units with

e =
m0

γ′1
= ~ =

1

4πεε0
≡ 1. (2.13)

The new units can be found in appendix C.

2.2 Semiclassical theories

Now that we have seen the quantum mechanical treatment of excitons it is time to
explain some semiclassical theories. The idea behind semiclassical theories is that one
can use classical dynamics in order to derive quantum mechanical quantities, especially
the energy density. We will start with torus quantization because of didactic reasons.
Then the Barry-Tabor formula and Gutzwiller’s trace formula are derived. They allow
for calculating the energy density from the sum over all classical periodic exciton orbits.
In this thesis we will actually not calculate an energy density but it’s Fourier transform.
This allows for investigating which classical exciton orbits are responsible for which peaks
and comparing this to the Fourier transform of a corresponding quantum mechanical
spectrum. In order to make the prefactor clear and to be convenient with books and
lectures we do not use exciton-Hartree units in this section.

2.2.1 Torus quantization

Torus quantization is one method for calculating quantized energy levels from classical
systems [17]. We start with the WKB method (Wenzel, Kramer, Brillouin) for a one-
dimensional system with position q and momentum p oscillating between two points
q = a, b. With energy E and potential V we can write down the Schrödinger equation
as

Ψ′′ +
2m

~2
(E − V (q))Ψ = 0. (2.14)

We make the ansatz

Ψ(q) = A(q) exp

(
i
S(q)

~

)
(2.15)

13



2 Theoretical foundations and methods

for the wave function Ψ. By evaluating equation (2.14) one finds

A ∝ (S ′)−1/2, (2.16)

S ′2 = 2m(E − V ) + ~2
[

3

4

(
S ′′

S ′

)2

− 1

2

S ′′′

S ′

]
. (2.17)

Neglecting terms in ~2 leads to

S(q) ≈ ±
∫ √

2m(E − V (q)) dq = ±
∫
p dq. (2.18)

The problem is that A diverges for p = 0 and therefore at the turning points (q = a, b).
One can solve this problem by linearizing the potential near those points with

E − V (q) ≈ F0(q − a), (2.19)

or with b instead of a. After some calculations and comparisons the resulting semiclassical
wave function turns out to be

Ψ(q) ∝ cos

(
1

~

∫ a

q

p dq′ − π

4

)
!∝ cos

(
1

~

∫ q

b

p dq′ − π

4

)
. (2.20)

It follows the quantization condition for bound states∫ a

b

p dq = π~
(
n+

1

2

)
, n ∈ N0. (2.21)

The integration equals the classical action over half the period of a periodic movement.

As mentioned above this is only applicable for one-dimensional systems. Usually one
wants to treat two- or three-dimensional systems. At this point torus quantization comes
into play. It looks for the points where the action S has singularities or caustics and
defines it piece by piece as S(q) or S(p) with

S(p) = S(q)− pq, (2.22)
q = −∇pS, (2.23)
0 = H

(
−∇pS,p

)
− E. (2.24)

For the one-dimensional case the Maslov index function is defined as

σp(t) = σq(t)− sign
(

dp

dq

)
(2.25)

where t is some variable like time describing the path. The function is defined as σq in
each q sector and analogously for p.

14



2.2 Semiclassical theories

Every time a singularity or caustic is passed the space is changed from q to p sector or
the other way around and the function increases or decreases by one. The Maslov index
is defined as

µ ≡ [σ]

2
(2.26)

where [σ] denotes the change of σ over one period.

The semiclassical wave function is now defined as

Ψ(q) = B(q) exp

(
i
[
S(q)

~
− σq

π

4

])
in each q sector, (2.27)

Ψ(p) = B(p) exp

(
i
[
S(p)

~
− σp

π

4

])
in each p sector, (2.28)

where the phase experiences a shift at every singularity or caustic. The amplitude B
is not of interest at the moment but evaluating the phase one gets the quantization
condition

[S] = 2π~
(
n+

α

4

)
, n ∈ N0 (2.29)

which equals (2.21) where α = 2 because a one-dimensional vibration needs four changes
between q and p sector (four points where dp/dq changes sign).

In N dimensions the singularities/caustics occur at det
∣∣∣ ∂pl∂qm

∣∣∣ = 0 which is why the Maslov
index function is defined as

σp(t) = σq(t)− sgn
(
∂pl
∂qm

)
(2.30)

with

sgn
(
∂pl
∂qm

)
=

N∑
i=1

sign(λi), (2.31)

where λi are the eigenvalues of the matrix ∂pl
∂qm

. In analogy to the one-dimensional system
the quantization condition is

[S]Ck
= 2π~

(
nk +

αk
4

)
, n ∈ N0 (2.32)

where Ck describes one of N independent paths on the torus. This leads to N quantum
numbers nk. The problem with this is that it is difficult to find these paths Ck. The
Berry-Tabor formula which is presented in the following does not use the paths Ck but
periodic orbits instead.
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2 Theoretical foundations and methods

2.2.2 Berry-Tabor formula

In order to derive the Berry-Tabor formula for two-dimensional systems we start with
the EKB quantization (Einstein, Keller, Brillouin) [17, 18]. It uses the ansatz

Jk = ~
(
nk +

µk
4

)
, nk ∈ N0, (2.33)

E(n) = H (J) (2.34)

for the action variables Jk which is similar to the quantization condition from torus
quantization. For an integrable system with dimension N = 2 the density of states is
then given by

ρ(E) =
∞∑

n1=0

∞∑
n2=0

δ(E − E(n1, n2)) (2.35)

which can be transformed into

ρ(E) =
∞∑

M1,M2=−∞

∫
dn1

∫
dn2 δ(E − E(n1, n2)) exp(2πi(M1n1 +M2n2))

+
1

2

∞∑
M=−∞

∫
dn1 δ(E − E(n1, 0)) exp(2πiMn1)

+
1

2

∞∑
M=−∞

∫
dn2 δ(E − E(0, n2)) exp(2πiMn2)

+
1

4
δ(E − E(0, 0))

(2.36)

by using Poisson’s summation formula. The second and third term can be treated as a
semiclassical correction of order ~ and the fourth term is not of interest here because it
is connected only to one specific energy E(0, 0). The equation is therefore reduced to the
first term which is called ρ(2)(E) in the following. By using (2.33) one can write it as

ρ(2)(E) =
1

~2
∑
M1,M2

exp
(
−iπ

2
(M1µ1 +M2µ2)

)
×
∫ ∞
~µ1/4

dJ1

∫ ∞
~µ2/4

dJ2 δ(E −H(J1, J2)) exp

(
2πi
~

(M1J1 +M2J2)

)
.

(2.37)

The term with M1 = M2 = 0 is called Thomas-Fermi term

ρ̃(2)(E) =
1

(2π~)2

∫
dp

∫
dq δ(E −H(p, q)). (2.38)
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2.2 Semiclassical theories

It is the mean density of states. The remaining oscillating part is calculated by replacing
the delta function with

δ(x) =
1

2π~

∫ ∞
−∞

exp
(
i
τx

~

)
dτ. (2.39)

It becomes

δρ(2)(E) =
1

2π~3
∑

M1 6=06=M2

exp
(
−iπ

2
Mµ

)∫
dJ1

∫
dJ2 exp(iφ(J)), (2.40)

φ(J) =
1

~
(2πMJ + τ(E −H(J))) . (2.41)

The term oscillates strongly except for the stationary phase ∇φ(J) = 0 which leads to

2πMi = τωi(J1, J2) = τ
∂H

∂Ji
, (2.42)

M1

M2

=
ω1

ω2

∈ Q. (2.43)

The Mi turn out to be winding numbers of resonant tori which means that only periodic
orbits contribute to ρ(2)(E). After some further calculations the Berry-Tabor formula for
integrable systems is derived:

ρ(2)(E) = ρ̃(2)(E) +
∑
M 6=0

TM

π
√
~3M3

2 |g′′E|
cos

(
SM

~
− π

2
σM −

π

4

)
(2.44)

Thereby TM is the period and SM the action of the periodic orbit with winding number
M = (M1,M2). The function gE defines the relation between the both action variables
on the energy surface via

E = H(J1, J2 = gE(J1)). (2.45)

The Maslov index σM is defined as

σM =
2∑
i=1

sign(λi) (2.46)

with λi being the eigenvalues of the Hesse matrix ∂2H/∂Ji∂Jj.

As with the torus quantization before we have the problem that the Berry-Tabor formula
is limited to a fixed number of dimensions. Gutzwiller’s trace formula which is derived
in the following is applicable for arbitrary dimensions.
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2 Theoretical foundations and methods

2.2.3 Gutzwiller’s trace formula

In order to derive Gutzwiller’s trace formula for isolated orbits [17, 19, 20] one starts
from the retarded Green’s function

G+
E =

∑
n

|n〉 〈n|
E − En + iε

(2.47)

with states |n〉 and energy eigenvalues En. The density of states can be expressed through
this operator as

ρ(E) =
∑
n

cnδ(E − En) = − 1

π
Im
(
tr
(
G+
E

))
(2.48)

by using

1

x+ iε
= P

1

x
− iπδ(x) (2.49)

with the Cauchy principal value P . The Green’s operator can be expressed through the
quantum mechanical propagator Kqm(q, t, q′, t′ = 0) as

G+
E(q, q′) =

∑
n

〈q|n〉 〈n|q′〉
E −H + iε

=
1

i~

∫ ∞
0

dt exp

(
i
~

(E + iε)t
)∑

n

Ψ∗n(q)Ψn(q′) exp

(
− i
~
Ent

)
=

1

i~

∫ ∞
0

dt exp

(
i
~

(E + iε)t
)
Kqm(q, t, q′, t′ = 0). (2.50)

The propagator can be expressed through Feynman’s path integrals and then be brought
to the semiclassical Van-Vleck formula

KSCL(q, t, q′, t′ = 0) = (2πi~)−N/2
∑
SCL

√
|c| exp

(
i
~
R(q, q′, t)− i

π

2
κ

)
(2.51)

by using stationary phase approximation. The sum is taken over all classical trajectories
with same start and end point q = q′. The variables are

R(q, q′, t) =

∫ ∞
0

dτ L(q̇, q, τ), (2.52)

c = det

(
∂2R

∂q∂q′

)
, (2.53)
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2.2 Semiclassical theories

with Lagrange function L and κ is the number of caustics along the path. Inserting this
in Green’s function and using stationary phase approximation (E = −Ṙ(t0 = 0)) leads
to

G+
E,SCL =

2π

(2πi~)(N+1)/2

∑
SCL, E fixed

√
|D| exp

{
iS(q, q′, E)− i

π

2
µ
}

(2.54)

with action

S(q, q′, E) = R(q, q′, t) + Et =

∫ q

q′
pdq̃, (2.55)

the determinant

D =
c

(∂
2R
∂t2

)t0
= det

(
∂2S
∂q∂q′

∂2S
∂q′∂E

∂2S
∂q∂E

∂2S
∂E∂E

)
(2.56)

and the Maslov index

µ =

{
κ ∂2R

∂t2
|t0 > 0,

κ+ 1 ∂2R
∂t2
|t0 ≤ 0.

(2.57)

The density ρ(E) is now split up into a fluctuating part ρfl(E) and an average density

ρ̃(E) =
1

(2π~)N

∫
dp dq δ(E −H(p, q)) (2.58)

called the Thomas-Fermi term. It is the N -dimensional version of equation (2.38). The
fluctuating part is

ρfl(E) = − 1

π
Im

{
2π

(2πi~)(N+1)/2

∫
dq
∑
CT

|D|1/2 exp

(
iS(q, q, E)

~
− iµ

π

2

)}
. (2.59)

The sum goes over all closed trajectories (CT). Another stationary phase with

0 =

(
∂S(q, q, E)

∂q

)
q0

=

(
∂S(q, q′, E)

∂q
+
∂S(q, q′, E)

∂q′

)
q=q′=q0

= p− p′ (2.60)

leads to the momentum p being equal at start and end of the trajectory. This is why only
periodic orbits contribute to the sum. Splitting the position into q = (x, q⊥,1, ..., q⊥,N−1) =

(x, q⊥) where x is locally the coordinate parallel to trajectory allows for transforming
the determinant into

D = − ∂2S

∂E∂x

∂2S

∂E∂x′
det

(
∂S

∂q⊥∂q
′
⊥

)
= (−1)N

1

ẋẋ′
det

(
∂p′⊥
∂q⊥

)
. (2.61)
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2 Theoretical foundations and methods

Linearizing the action near the periodic orbit leads to

S(q, q, E) =

∮
p dq︸ ︷︷ ︸
SPO

+
1

2

N−1∑
i,j=1

Wij(x)q⊥,iq⊥,j, (2.62)

Wij(x) =

(
∂2S

∂q⊥∂q⊥
+

∂2S

∂q⊥∂q
′
⊥

+
∂2S

∂q′⊥∂q⊥
+

∂2S

∂q′⊥∂q
′
⊥

)
q⊥=q′⊥=0

. (2.63)

Inserting this and integrating over the orthogonal components using Fresnel integrals the
density can be transformed into

ρfl(E) = − 1

π
Im

{
1

i~
∑
PO

exp

(
i
SPO

~
− i

π

2
(µ+ ν)

)∫
dx |D(x)|1/2|det(W (x))|−1/2

}
(2.64)

where the determinants can be replaced with∣∣∣∣detW (x)

D(x)

∣∣∣∣ = ẋ2|det(MPO − 1)| (2.65)

with the monodromy matrix MPO. The integral then reduces to∫
dx

1

ẋ
=

∫
PPO

dt
ẋ

ẋ
= TPPO (2.66)

where the integral is taken over the primitive periodic orbit (PPO) which is the underlying
orbit with the lowest possible time period TPPO.

This finally leads to Gutzwiller’s trace formula

ρ(E) = ρ̃(E) +
1

π~
∑
PO

TPPO√
|det(MPO − 1)|

cos

(
SPO

~
− π

2
σPO

)
(2.67)

with Maslov index σPO = µ+ν. Besides the Maslov index it contains only the time period
TPPO, the monodromy matrix MPO and the action SPO. All of these orbit parameters
can be calculated in simulations of classical exciton orbits.

2.3 Investigation of the classical exciton dynamics

In the previous chapter we have seen how to compare classical results to quantum
mechanical calculations by using trace formulas. In this section we will see how the
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2.3 Investigation of the classical exciton dynamics

classical orbits are simulated and how the relevant parameters are calculated, namely the
action, period and monodromy matrix. At first the treatment of the additional degrees
of freedom through quasispin and hole spin is explained. Then the simulation of classical
orbits is explained including the problem of finding starting conditions for periodic orbits.
We continue with introducing the stability matrix from which the monodromy matrix is
a submatrix. The chapter is closed by explaining how the necessary parameters can be
calculated from the simulations.

2.3.1 Adiabatic approach

The Hamiltonian of our system (2.8) depends on the position and the momentum but also
on the quasispin and the hole spin which introduces additional degrees of freedom. Earlier
investigations showed that it is not suitable to treat the spin dynamics classically [21, 22].
Therefore, the spin dependence of the Hamiltonian is treated quantum mechanically.

At first we make an adiabatic approach which means that we consider the spin dynamics
being much faster than the exciton motion [9, 23]. The wave function can now be
expressed as product

Ψ = Φ(p)X(p, I,Sh) (2.68)

of a part Φ only depending on the momentum and a part X which depends also on the
spins. This wave function fulfills the stationary Schrödinger equation

EnΨ =

[
p2

2
− 1

r
+ H̃b(p, I,Sh)

]
Ψ (2.69)

with energy eigenvalues En. The spin-dependent part acts on the band-structure term
as

Wn(p)X = H̃b(p, I,Sh)X, (2.70)

with momentum dependent eigenvalues Wn(p). The equation can be solved quantum
mechanically for a fixed position and momentum because we assume the spins to react
almost instantaneously to changes in r and p.

This is done by introducing a matrix representation in the basis of combined quasispin
and the hole spin as 

|1, 1/2,−1,−1/2〉
|1, 1/2,−1,−1/2〉
|1, 1/2,−0,−1/2〉
|1, 1/2,−0,−1/2〉
|1, 1/2,−1,−1/2〉
|1, 1/2,−1,−1/2〉

 (2.71)
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2 Theoretical foundations and methods

with states |jI , jSh ,mI ,mSh〉 where j,m are the quantum numbers of the corresponding
spins. This leads to a 6× 6 matrix form of the spin Hamiltonian

H̃b =
2

3
∆ (1 + I · Sh)

+
2γ2
γ′1
p2

+
η1 + 2η2

γ′1
p2 (1 + I · Sh)

− 3γ2
γ′1

[
p21I

2
1 + c.p.

]
− 6η2

γ′1

[
p21I1Sh1 + c.p.

]
− 6γ3

γ′1
[{p1, p2} {I1, I2}+ c.p.]

− 6η3
γ′1

[{p1, p2} (I1Sh2 + I2Sh1) + c.p.] .

(2.72)

The matrix representation of the spin operators can be derived from the creation and
annihilation operator

J+ = J1 + iJ2, J− = J1 − iJ2 (2.73)

with

J+ |j,m〉 =
√

(j −m)(j +m+ 1) |j,m+ 1〉 , (2.74)

J− |j,m〉 =
√

(j +m)(j −m+ 1) |j,m− 1〉 , (2.75)
J3 |j,m〉 = m |j,m〉 (2.76)

where J is a spin operator and j,m are the spin quantum numbers of one spin. The spin
matrices turn out to be

I1 =
1√
2



0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 0 0 0

0 0 0 1 0 0

 , Sh1 =
1

2



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0

 ,

I2 =
i√
2



0 0 −1 0 0 0

0 0 0 −1 0 0

1 0 0 0 −1 0

0 1 0 0 0 −1

0 0 1 0 0 0

0 0 0 1 0 0

 , Sh2 =
i
2



0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 −1 0 0

0 0 1 0 0 0

0 0 0 0 0 −1

0 0 0 0 1 0

 , (2.77)
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2.3 Investigation of the classical exciton dynamics

I3 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

 , Sh3 =
1

2



1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 0 −1

 .

Solving this by diagionalyzing the spin Hamiltonian generates six eigenvalues Wn(p)

occurring in pairs of two degenerate eigenvalues (Kramer’s theorem [24]). Writing the
components of the Schrödinger equation we get

EnΦX = X

[
p2

2
− 1

r

]
Φ

+ ΦH̃b(p, I,Sh)X

− 1

r
(ΦX) +X

1

r
Φ.

(2.78)

The last line occurs because X(p; I,Sh) depends on the momentum which makes the
position operator acting on it. Due to the spin motion being much faster we treat this
term as a small perturbation and neglect it.

Finally we are able to reduce the Hamiltonian to

HΦ =

[
p2

2
− 1

r
+Wn(p)

]
Φ = EnΦ (2.79)

which does not depend on the spins any more. In this thesis we are interested in the
yellow exciton series which belongs to a total spin of 1/2. When solving the eigenvalue
problem for Wn(p) we take all spins into account, also the green series with a spin of
3/2. Therefore, the lowest pair of degenerate eigenvalues Wn(p) is taken for the yellow
series because we expect the spins to stay on their energy surface.

Now we can make the Hamiltonian (2.79) classical:

H =
p2

2
− 1

r
+Wn(p) = E. (2.80)

In classical dynamics we are no longer searching for energy eigenvalues but in simulating
trajectories at fixed energy E.

2.3.2 Classical exciton dynamics

Now that the spins are no longer a part of the classical Hamiltonian we want to simulate
classical exciton orbits. From the semiclassical theories we know that we need to find
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2 Theoretical foundations and methods

periodic orbits because only they contribute to the trace formulas. In this thesis we want
to make a first approach of using semiclassical theories for excitons in cuprous oxide
which is why we simplify the system further.

From the cubic Oh symmetry of Cu2O we know that there are rotation axes. On these
axes one-dimensional orbits occur but since they propagate straightly to the core they
have zero angular momentum and are therefore not of interest in the fluctuating part of
the spectrum. This works analogously for the nine symmetry planes (3σh and 6σd) at
which the system can be mirrored. Orbits which are set up in these planes should stay
there and are therefore two-dimensional. In this thesis we choose to search for orbits
only in the symmetry plane orthogonal to [001].

Before we can start with investigating the classical exciton dynamics a regularization
is introduce because of the Coulomb singularity in the Hamiltonian at r = 0. This
can reduce the accuracy for orbits which come close to this region. In this thesis
Kustaanheimo-Stiefel (KS) coordinates [9, 25] are used which are generated not only by a
transformation of space but also of time. One specialty of the KS coordinates is that they
can be applied only for a even number of space coordinates which makes it necessary to
append a zero to our position and momentum in order to get a four-dimensional space

r = (r1, r2, r3, 0)ᵀ , (2.81)
p = (p1, p2, p3, 0)ᵀ . (2.82)

The KS transformations are defined by

L(U) =
1

2


U3 −U4 U1 −U2

U4 U3 U2 U1

U1 U2 −U3 −U4

U2 −U1 −U4 U3

 , (2.83)

r = L(U)U =
1

2


2(U1U3 − U2U4)

2(U1U4 + U2U3)

U2
1 + U2

2 − U2
3 − U2

4

0

 , (2.84)

p =
2

U2
L(U)P =

1

U2


U3P1 − U4P2 + U1P3 − U2P4

U4P1 + U3P2 + U2P3 + U1P4

U1P1 + U2P2 − U3P3 − U4P4

U2P1 − U1P2 − U4P3 + U3P4

 (2.85)

with the new four-dimensional position U and momentum P . The Hamiltonian

H =
p2

2
− 1

r
+ H̃b =

P 2

2U2
− 2

U2
+ H̃b (2.86)
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2.3 Investigation of the classical exciton dynamics

can be transformed with a Poincaré transformation [9, 26]

H̃ = g(U ,P )(H − E) (2.87)

where E is the energy. The singularity at U = 0 can now be eliminated by choosing

g(U ,P ) = U2 (2.88)

what leads to the new Hamiltonian

H̃ =
P 2

2
− 2 + H̃reg

b (U ,P )− 2EU2 (2.89)

where H̃reg
b = U2H̃b. The time t transforms to the the KS time τ with

dt

dτ
= g(U ,P ) = U2 = 2r. (2.90)

The KS transformation is a cotangent lift transformation which means that the new
coordinates Γ = (U ,P )ᵀ are still canonically conjugated. Hamilton’s equation of motion
reads

dΓ

dτ
= J

∂H

∂Γ
(2.91)

with

J =

(
0 1
−1 0

)
. (2.92)

This is the equation we have to integrate when simulating the exciton orbits.

2.3.3 Periodic orbit search

In the following it will be shown how the classical exciton dynamics can be simulated
and how to search for periodic orbits in the symmetry plane orthogonal to [001].

At the beginning of the simulation a start position r0 is given in form of a start radius
r0 and a start angle ϕ0. The z component is thereby zero because we want to stay in
the symmetry plane. In this thesis we restrict ourselves to such orbits which have points
where the velocity is orthogonal to the position. This reduces the search to finding the
start position r0 because the absolute of the velocity v0 is given by the choice of a fixed
energy. Because of the C4v symmetry of the symmetry plane it is likely that at least two
of the points with orthogonal velocity are located either at ϕ = 0° or ϕ = 45°. This is
why only these two angles are used when searching for starting conditions of periodic
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2 Theoretical foundations and methods

orbits which reduces the effort to a one-dimensional root search in the absolute |r0|.
Note that because of the C4v symmetry it would be sufficient to look for further angles
between 0° and 45°.

The starting conditions are transformed into KS coordinates with

U 0 =


√

2r0 cos
(
θ0
2

)
cos
(
ϕ0+α0

2

)
√

2r0 cos
(
θ0
2

)
sin
(
ϕ0+α0

2

)
√

2r0 sin
(
θ0
2

)
cos
(
ϕ0−α0

2

)
√

2r0 sin
(
θ0
2

)
sin
(
ϕ0−α0

2

)
 . (2.93)

The angle θ0 is 90° because the simulation takes place in the xy-plane. The parameter
α0 can be chosen arbitrarily because the new coordinates have an additional dimension.
It is set to zero and remains constant during the simulation.

The start momentum cannot be calculated so easily because it is derived from the
conservation of energy. In contrast to the hydrogen like case the Hamiltonian (2.89)
depends on Wn(U ,P ) which depends also on the momentum itself. In order to solve
that problem a four-dimensional root search f(P ) = (f1, f2, f3, f4)

ᵀ = 0 is done where
the four equations

f1(P ) =
P 2

2
− EU 2 +Wn(U ,P )− 2, (2.94)

f2(P ) = UU̇ = U
∂H̃

∂P
, (2.95)

f3(P ) = U1U̇1 + U2U̇2 − U3U̇3 − U4U̇4, (2.96)

f4(P ) = U2U̇1 − U1U̇2 − U4U̇3 + U2U̇4 (2.97)

must be zero. Thereby U̇ is the derivative of the position with respect to τ which equals
∂H/∂P . The first equation (2.94) is the conservation of energy, the second one (2.95)
refers to the initial velocity being orthogonal to the position vector (êr) and the third
equation (2.96) equals vz = 0 which can be seen in line three of transformation (2.85).
From the same transformation one can derive the bilinear relation

U2P1 − U1P2 − U4P3 + U3P4 = 0 (2.98)

since the fourth component has to be zero. For solving the equation system it is necessary
to calculate

∂H̃

∂P
= P +

∂Wn

∂P
(2.99)
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2.3 Investigation of the classical exciton dynamics

with the derivative of ∂Wn/∂P which cannot be done analytically. It is therefore
calculated numerically with a five-point formula

∂Wn(P )

∂Pi
=
−Wn(P + 2dP êi) + 8Wn(P + dP êi)− 8Wn(P − dP êi) +Wn(P − 2dP êi)

12dP
(2.100)

where êi = (δi1, δi2, δi3, δi4)
ᵀ and dP being a fixed parameter which was optimized for

stable results. This can be done analogously for U but with another parameter dU .

In order to succeed in this root search one needs a good initial guess for P . This is
done by first assuming the perturbation Wn to be zero. In that case it would just be the
hydrogen like case with an absolute of

P
(0)
0 =

√
2EU2 + 4 (2.101)

and in the direction of êϕ. This guess can be improved by inserting the resulting
momentum into Wn(P 0) and calculating the momentum again. The root search is done
using the algorithm HYBRD1 [27].

After setting up the particle it is integrated for some time. Now we check whether it
returns to the start position or not. In order to search for specific orbits the number of
cycles around the core ncycle is fixed which means that the position angle ϕ changes by
2πncycle during the simulation. In order to decide whether an orbit is periodic or not it
is checked whether the radial velocity

dr

dt
=

dτ

dt

d(U2/2)

dτ
=

1

U2
U

dU

dτ
(2.102)

is zero. The actual search algorithm is a root search in UU̇ (r0) = 0 using HYBRD1 [27]
again. The starting radius r0 is thereby varied and a new orbit is simulated for every
searching step. Note that the resulting orbit is not necessarily periodic with ncycle but
can also be periodic with 2ncycle in case the position does not return to the starting
position. This happens because of the mirror symmetry of the Hamiltonian.

2.3.4 Periodic orbit parameters

For the semiclassical calculations we need to know about the action, period and the
monodromy matrix of each periodic orbit. We also need the second derivative of
gE(J1) = J2 in the Berry-Tabor formula (2.44).
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The classical action is

S =

∮
p dr =

∮
P dU =

∮
P

dU

dτ
dτ. (2.103)

It follows that the derivative of the action is

dS

dτ
= PU̇ . (2.104)

By using this equation it is possible to integrate the action during the integration of the
system with Hamilton’s equation of motion (2.91). The time has to be integrated too
since the KS transformation uses a nonlinear time transformation. From equation (2.90)
one gets

dt

dτ
= U2. (2.105)

The monodromy matrix is a submatrix of the stability matrix which is why the stability
matrix must be calculated. The stability of an orbit describes what happens when a
small deviation ∆Γ(0) is applied to the start coordinates Γ(t = 0). The stability matrix
M (0, t) [17] is the linearized response and connects this deviation ∆Γ(0) to the deviation
∆Γ(t) at time t by

∆Γ(t) = M(0, t)∆Γ(0). (2.106)

The time evolution of the stability matrix can be derived from Hamilton’s equation of
motion (2.91) like

dM ij

dτ
=

d

dτ

∂Γi(τ)

∂Γj(0)

=
∂

∂Γj(0)

dΓi(τ)

dτ

=
∂Γl(τ)

∂Γj(0)

∂

∂Γl(τ)
Jik

∂H

∂Γk(τ)

= Jik
∂2H

∂Γk(τ)∂Γl(τ)
Mlj(0, τ). (2.107)

This equation depends on the second derivative of the Hamiltonian in each direction

∂2H̃

∂Γi∂Γj
=

(
−4Eδkl 0

0 δkl

)
ij

+
∂2Wn

∂Γi∂Γj
, k, l ∈ [1, 2, 3, 4]. (2.108)
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In order to calculate this numerically the five-point formula (2.100) is used two times
like

∂2Wn

∂Γi∂Γj
=

∑
κ=−1,1−κ∂jWn(Γ + κ2dΓiêi) + κ8∂jWn(Γ + κdΓiêi)

12dΓi
(2.109)

where ∂jWn = ∂Wn/∂Γj can be calculated using the original formula. The parameter
dΓi is thereby chosen differently depending on whether Γi is a position or momentum
variable.

Originally a three-point formula was used but it turned out that it has not the necessary
accuracy and that this in fact slowed down the integration algorithm RKSUITE [28]
which uses adaptive step size control. Therefore, the more precise five-point formula
is also faster than the three-point formula regardless the factor four in the number
calculations of Wn.

The function gE(J1) = J2 was defined via equation (2.45) and defines the relation of the
action variables on the energy surface. In contrast to the other parameters the action
variables Ji cannot be easily integrated with the system. Nevertheless, it is possible to
calculate them numerically by calculating them from the classical action

SM = 2πM1J1 + 2πM2J2 (2.110)

where we have the winding numbersM = (M1,M2) again. Simulating a series of periodic
orbits with varying M1 but constant M2 allows for calculating the derivative

J1 =
1

2π

∂SM

∂M1

(2.111)

numerically. Using equation (2.110) one can calculate J2 as

J2 =
SM

2πM2

− M1

M2

J1. (2.112)

Note that this works of course only for constant energy. Now that J1 and J2 are known
also gE is known. The second derivative has to be calculated numerically too.

In this thesis we use a polynomial fit to the action in order to derive J1 and J2 through
the analytical derivative of this polynomial. The resulting curve J2(J1) is smooth and
can be evaluated at a high number of equally spaced points. These points are used for
applying a numerical two-point derivative twice. The resulting points g′′E(J1) can be
interpolated with fits again.
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The second derivative of the function gE can also be calculated using the stability matrix
[29, 30]. The corresponding formula is

g′′E =
2

πM3
2∆S

[
1√

det(M s,xy − 1)
+

1√
− det(Mu,xy − 1)

]−2
(2.113)

with

∆S =
1

2
(Su − Ss). (2.114)

Thereby the index s labels the quantities of the stable and u the quantities of the unstable
partner orbit. Note that this formula holds only for M2, S and M being parameters of
the primitive periodic orbit.

Now that we have seen how the parameters can be calculated let us explain the stability
matrix in more detail.

Properties of the stability matrix

The stability matrix is symplectic what is defined as

M ᵀJM = J . (2.115)

It follows that the eigenvalues λ occur in quadruplets of

λi, λ
∗
i ,

1

λi
,

1

λ∗i
. (2.116)

For the case of real eigenvalues or complex eigenvalues with an absolute of one this
reduces to pairs of λi, λ−1i since |λi| = 1⇒ λ∗i = λ−1i .

The stability matrix for a periodic orbit with period T is

M(0, nT ) = M(T, nT )M (0, T )

= (M (0, T ))n (2.117)

after n periods. In this thesis we will only investigate the stability of periodic orbits
which is why the stability matrix M without given arguments is defined as the stability
matrix after one period M(0, T ). It follows that the deviation after n periods is

∆γi(nT ) = λni ∆γi(0) (2.118)

where ∆γi is an eigenvector belonging to λi.
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Figure 2.3: The black circle is the original
periodic orbit starting at r = (2, 0). The
figure shows what happens when applying a
deviation ∆γ(0) to the x position. The red
orbit is the case for a stability eigenvalue
of λx = 1 where the new orbit is periodic
again. In case of the blue orbit it would be
λx = 2. Since the response is linear for small
deviations the distance to the original orbit
will increase over time. The green curve has
an eigenvalue of λx = −1/2. After time T
the orbit is at (1.75, 0) and at (2.125, 0) after
2T . The original orbit will be approximated
after some time.

Eigenvalues and eigenvectors

The stability matrix can be connected to the Liapunov exponent

L = lim
t→∞

1

t
ln(sup |λi(t)|)

= lim
n→∞

1

nT
ln(sup |λi(T )|n)

=
1

T
ln(sup |λi(T )|) (2.119)

where sup |λi(t)| is the maximum eigenvalue of M(0, t). The orbit is stable if L = 0

which is the case for sup |λi(t)| = 1 and unstable for L > 0 (sup |λi(t)| > 1). The case
sup |λi(t)| < 1 and L < 0 can therefore not occur because of the symplectic structure of
the stability matrix.

Figure 2.3 explains how the eigenvalues affect the behavior of a periodic orbit. For an
eigenvalue of λi = 1 the orbit is stable because the deviation will be the same after an
arbitrary number of periods. For |λi| > 1 the deviation becomes larger with increasing
time and the orbit therefore unstable. For |λi| < 1 the deviation becomes smaller and
the new orbit tends to the original orbit for t → ∞. This looks like the orbit is even
more stable but the symplectic structure of the stability matrix states that there must
be a direction in which |λj| =

∣∣λ−1i ∣∣ > 1 which is why the orbit is unstable regardless.
As one can see in the figure a negative eigenvalue will cause to the deviation to change
sign after each period.
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2 Theoretical foundations and methods

This was quite intuitive but as told before the eigenvalues and also the eigenvectors can
be complex. In the following it will be explained how a complex eigenvalue affects the
orbit.

The eigenvalues can be expressed through the complex exponent φ with

λi,i+1 = exp{±φi} = exp{±(ui + ivi)} (2.120)

where ui and vi are real. For the case of complex eigenvalues with u = 0 the eigenvectors
have the form

Λi,i+1 = Ri ± iI i. (2.121)

The stability matrix acts on the vectors Ri like

MRi = M

[
1

2
(Ri + iI i) +

1

2
(Ri − iI i)

]
= exp(ivi)

1

2
(Ri + iI i) + exp(−ivi)

1

2
(Ri − iI i)

= cos(vi)Ri − sin(vi)I i (2.122)

and analogously on I i like

MI i = cos(vi)I i + sin(vi)Ri. (2.123)

Together it is possible to let the stability matrix act on a real linear combination of Ri

and I i. This results in

M [a cos(θ)Ri + a sin(θ)I i] = a cos(θ − vi)Ri + a sin(θ − vi)I i (2.124)

with real numbers a and θ. As one can see the stability matrix causes a rotation in the
Ri-I i-plane where it is important to mention that Ri and I i are not necessarily unit
vectors.

Furthermore, there is another way to investigate the stability of the periodic orbit by
taking a look at the sum

bi ≡ λi + λ−1i = exp(φi) + exp{−φi} = 2 cosh(φi). (2.125)

The orbit is stable in the corresponding direction if |bi| ≤ 2 and else unstable. This value
will also be important for interpolating the stability of further periodic exciton orbits
from already simulated ones.
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2.4 Customization and scaling of the energy spectra

Monodromy matrix

The actual number of degrees of freedom is reduced by one for each conserved quantity
like energy or angular momentum. The eigenvalues corresponding to the direction of
those quantities are one. The monodromy matrix is the nontrivial submatrix of the
stability matrix which means that it only contains the eigenvalues corresponding to the
other directions. Note that the remaining eigenvalues can be one regardless.

2.4 Customization and scaling of the energy spectra

In order to account for the specialties of excitons in cuprous oxide we adapt the semiclas-
sical trace formulas for our purpose. Since the energy spectrum is shrunk in the limit
of high energies [1] we want to stretch it in order to get an oscillating function with
about fixed period in order to be able to investigate it’s frequencies and compare them
to the semiclassical calculations. This is what this section deals with and additionally
the Fourier transform of a quantum mechanical spectrum will be shown.

2.4.1 Trace formula for two-dimensional orbits in the
three-dimensional system

The problem with the Berry-Tabor formula (2.44) is that it is only valid for two-
dimensional systems but excitons in Cu2O are three-dimensional. Gutzwiller’s trace
formula (2.67) on the other hand is applicable for an arbitrary number of dimensions but
only for periodic orbits which are isolated. As can be seen for example in the Poincaré
surface of section in figure 3.1 there will be one central fixed point for which these
conditions apply and for which Gutzwiller’s trace formula will be used. The other orbits
occur in pairs of a stable and an unstable partner orbit and are not isolated.

The monodromy matrix MPO of these orbits contains two stability eigenvalues for the
stability inside the symmetry plane (λxy, λ−1xy ) and two for the stability out of it (λz, λ−1z ).
Since the orbits are (almost) stable against perturbations out of the plane we treat them
as isolated in this direction and calculate the part which depends on λz with Gutzwiller.
The stability in the plane will be treated with Berry-Tabor.

The determinant in Gutzwiller’s trace formula (2.67) can be split up like

ρ(E) =
1

π

∑
PO

1√
|det(M z − 1)|

TPPO√
|det(Mxy − 1)|

cos
(
SPO −

π

2
σPO

)
(2.126)
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with √
|det(M i − 1)| =

√∣∣(λi − 1)(λ−1i − 1)
∣∣ =

∣∣∣λ1/2i − λ−1/2i

∣∣∣. (2.127)

The idea is to keep only the term
√
|det(M z − 1)| and replace the remaining part with

Berry-Tabor (2.44). It results in the mixed trace formula

ρ(E) =
1

π

∑
M

1√
|det(M z − 1)|

TM√
M3

2 |g′′E|
cos
(
SM −

π

2
σM −

π

4

)
. (2.128)

2.4.2 Scaling of the energy spectrum

As mentioned above we want to stretch the energy spectrum in order to get rid of it’s
shrinking. Therefore, remember that the energy is expressed through

E = − 1

2n2
eff

(2.129)

with an effective quantum number neff = n− δn,l. Although this quantum number neff is
connected to quantum defects δn,l it scales about with the principle quantum number n.
The states are therefore approximately equidistant in neff which is why we want to get
the density ρ(neff) instead of ρ(E). From

dE

dneff
=

1

n3
eff

(2.130)

and ∫
ρ(neff)dneff

!
=

∫
ρ(E)dE =

∫
ρ(E)

n3
eff

dneff (2.131)

it follows for Gutzwiller’s trace formula (2.67) that

ρ(neff) =
ρ(E)

n3
eff

=
1

πn3
eff

∑
PO

TPPO√
|det(M − 1)|

cos
(
SPO −

π

2
σPO

)
(2.132)

and analogously for the mixed trace formula (2.128). Since the action S scales about
with neff (see figure 3.13) we can easily see in the oscillating cosine that S/neff is
the variable which corresponds to the frequencies in a Fourier transformed spectrum.
The corresponding amplitudes A(S/neff) are given through the prefactor of the cosine.
Originally the amplitude is complex because of the oscillating term with the Maslov
index σ but we can also use the absolute of the amplitude |A|. In the hydrogen-like case
peaks would occur at multiples of 2π which is why we plot the amplitudes over S/(2πneff)

in order to make the deviations from the hydrogen atom evident.
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2.4 Customization and scaling of the energy spectra

2.4.3 Comparison to the quantum mechanical spectrum

One problem when comparing the quantum mechanical and semiclassical frequencies is
that we calculate them from a number of periodic orbits at fixed neff in the semiclassical
case while they result from a scaled energy spectrum in the quantum mechanical case.
In the following we will outline how P. Rommel and M. Schumacher [32] keep the energy
virtually fixed in the quantum mechanical calculations.

At first we abbreviate the Hamiltonian (2.8) with

H = pLp− 1

r
+HSO (2.133)

with a linear operator L depending on quasispin and hole spin which describes all terms
in which p occurs. As one can see in equation (2.9) these terms are all of order p2. The
HSO term denotes the spin-orbit coupling (2.3). The Schrödinger equation then reeds

HΨ = EΨ = − 1

2n2
eff

Ψ. (2.134)

We try to eliminate the energy dependence by multiplying with n2
eff and scaling the coor-

dinates. When scaling the position with r = n2
effr̃ the quantum mechanical momentum

has to scale with p = n−2eff p̃ because of the canonical commutation relation. The new
Schrödinger equation becomes

H̃Ψ = n2
effHΨ =

(
p̃Lp̃
n2
eff
− 1

r̃
+ n2

effHSO

)
Ψ = −1

2
Ψ. (2.135)

In order to evolve this near a fixed energy n2
effHSO is set to n2

0HSO as

H̃ =

(
p̃Lp̃
n2
eff
− 1

r̃
+ n2

0HSO

)
Ψ = −1

2
Ψ (2.136)

where the spin-orbit coupling can now be adjusted in quantum mechanical calculations
by choosing n0. This results in quantized states neff which depend on the choice of n0.

In our classical systems we are not limited through canonical commutation relation and
are free to choose p = n−1eff p̃ instead. Our transformed classical Hamiltonian then reads

H̃ = p̃Lp̃− 1

r̃
+ n2

effHSO (2.137)

with H̃ = n2
effE = −1/2.

To cut a long story short, classical calculations with fixed neff can be compared to
quantum mechanical calculations with fixed n0 = neff. Varying n0 will change the
quantum mechanical spectrum while varying neff changes the classical dynamics.
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Figure 2.4: Fourier transform of a scaled quantum mechanical spectrum with n0 = 5

done by M. Schumacher [31]. The data is comparable to classical calculations at an
energy of E = −1/(2n2

eff) with neff = 5. The both lower plots are insights in the upper
plot. Subplot b) shows that there are high peaks close to integer numbers of the frequency
which corresponds to the scaled classical action S/(2πneff). This is very similar to the
hydrogen-like case where those peaks can be assigned to special Kepler ellipses. Subplot c)
on the other hand reveals deviations from the hydrogen-like behavior for higher S/(2πneff)

as additional peaks occur. It is desired to find classical periodic orbits which belong to
the peaks and which reproduce the deviations from the hydrogen-like case.
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2.4 Customization and scaling of the energy spectra

Figure 2.4 shows the Fourier transform of a scaled quantum mechanical spectrum [31].
Although the peaks have not yet the correct height their position should be about right.
We hope to find classical periodic exciton orbits which can be assigned to these peaks
by using semiclassical theories. Nevertheless, there are some problems including that M.
Schumacher uses slightly different material parameters for his calculations. This might
lead to quantitative deviations in our results.

Let us now take a look at the qualitative behavior of the Fourier transformed spectrum.
In figure 2.4 b) one can see that there are major peaks near integer values of S/(2πneff)

what is similar to the hydrogen atom where these peaks result from classical Keplerian
orbits in the Bohr-Sommerfeld model. Nevertheless, the peaks are not exactly at integer
values what is a first deviation from the hydrogen-like behavior. Furthermore, additional
peaks occur for higher S/(2πneff) like shown in figure 2.4 c).

In the semiclassical case we expect the peaks near integer values to belong to a short
orbit which is periodic after one cycle while the other peaks should belong to orbits with
higher periods.
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3 Results

3.1 Investigations at constant energy

The aim of this section is to calculate the Fourier transformed energy spectrum from
the simulated periodic orbits at neff = 5. Before doing so the orbits are classified using
their winding numbers M1 and M2 accompanied by a general overview of the orbits’
appearance. Then the orbit parameters are investigated in dependence of the winding
numbers. We will see that it is possible to interpolate the parameters of most of the
orbits which were not simulated by using these dependencies. Afterwards the action
variables are calculated and from there the amplitudes and frequencies of the spectrum
by using the Berry-Tabor formula.

3.1.1 Orbits and winding numbers

The investigations in this thesis focus on periodic orbits in the symmetry plane of cuprous
oxide orthogonal to the [001] axis. Figure 3.1 shows a Poincaré surface of section (PSOS)
of the dynamics in this plane at fixed neff = 5. The central fixed point belongs to the
periodic orbit with the highest angular momentum. It appears to be almost circular
but slightly deformed according to the squared symmetry of the Hamiltonian. This
deformation cannot be seen with the bare eye at neff = 5.

The central fixed point is surrounded by many rational tori which break up leaving
pairs of stable and unstable fixed points according to the Poincaré-Birkhoff theorem
[17]. When we go from the center to the edge of the PSOS the angular momentum of
the corresponding periodic orbits decreases. Furthermore, not all of the pairs indeed
consist of a stable and unstable partner orbit since for most of the shown tori both
orbits are marginally stable. This can bee seen directly in the PSOS in figure 3.2 which
shows a small region of the former PSOS in more detail. The distinction between stable
and unstable fixed points is clearest for the orbit pair with winding number M1 = 8.
The stable fixed points are also called elliptic fixed points because a small deviation
will stay near the fixed point and form an ellipse as can be seen in the figure. The
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Figure 3.1: Poincaré surface of section at neff = 5. In the center one can see a stable
and isolated fixed point which belongs to the orbit with the highest angular momentum.
It is surrounded by tori which break up leaving altering stable and unstable fixed points.
The angular momentum of the corresponding orbit pairs is smaller the closer they are
to the edge. Beyond the outer torus with M1 = 5 the system becomes chaotic what
is indicated through the black dots. The accumulations of black dots indicate further
periodic orbits in that region but they belong to winding numbers M2 > 1.
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Figure 3.2: Poincaré surface of section at neff = 5. The black dots belong to non
periodic orbits originating from small deviations of the starting conditions of the periodic
orbits. The figure reveals that elliptic stable and hyperbolic unstable fixed points can
be identified only for M1 ∈ [5, 6, 8, 12]. The other fixed points show no clear visible
difference in their behavior even when taking a closer look at them than in this figure.
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unstable fixed points are also called hyperbolic fixed points because a small deviation
will move away from the fixed point. In the PSOS you can see a cross where such
points appear. A distinction between elliptic and hyperbolic fixed points occurs only
for M1 ∈ [5, 6, 8, 12], the other tori form lines in the PSOS. As we will see later, the
relevant stability eigenvalues of those orbits are also very close to one and for most fixed
points it is not possible to identify elliptic and hyperbolic fixed points even by using
their stability eigenvalues. The assignment of stable and unstable in the PSOS is done
for reasons of classification based on the fact that all orbits with distinct eigenvalues and
high symmetries (M1 = 4n, n ∈ N) have an unstable fixed point on the px = 0 axis while
the orbits with M1 6= 4n have a stable fixed point here.

At the edge of the PSOS in figure 3.1 one can see a chaotic region beyond the last torus
with M1 = 5 indicated by the black dots. Note that the PSOS contains only orbits with
M2 = 1 but also orbits with higher M2 occur.

The orbits are classified through the winding numbers M1 and M2. Figure 3.3 a) shows
the appearance of the orbits where M1 equals the number of ellipses the orbit consists of
while M2 describes the number of rotations of these ellipses around the z-axis which can
be seen in figure 3.3 b). Both numbers sum up to the total number of cycles

ncycle = M1 +M2. (3.1)

Because of the C4v symmetry of the Hamiltonian in the symmetry plane two orbits are
identical when they can be identified by applying C4v symmetry operations. Having a
look at figure 3.3 one can see that the stable partner of an orbit pair has a maximum on
a coordinate axis while the unstable pair has one on a bisector. One exception is the case
for M1 = 4n, n ∈ N where orbits of high symmetry occur. In the stable case maxima are
located on both the coordinate axes and the bisectors. In the unstable case there is no
maximum located on a coordinate axis or a bisector. An overview of all stable orbits
with M2 = 1 can be found in appendix D.

The highest symmetries occur on orbits with M1 = 4n, n ∈ N but also orbits with
M1 = 2n have more symmetries than usual. Comparing this to the PSOS in figure
3.2 one can see that orbit pairs with higher symmetry also have a clearer distinction
between stable and unstable fixed points. Thereby theM1 = 4n orbits have a 90° rotation
symmetry and can be mirrored at the axes so as their bisectors without being changed.
The M1 = 2n orbits have only a 180° rotation symmetry and can be mirrored at either
the axes or their bisectors but not at both. When having a look at the M1 = 8 orbits in
figure 3.3 it might look like they have a 45° rotation symmetry but this is not the case
because there are slight differences in the appearance of the ellipses on the axis and the
one on the bisectors. This direction dependent deformation becomes stronger the lower
M1/M2 is and can be seen easily at the M1 = 5 orbits.
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Figure 3.3: Figure a) shows examples for the stable and unstable partner orbits at
neff = 5. The winding number M1 is defined by the number of Kepler ellipses.
The winding number M2 describes the number of rotations of these ellipses around the
center. Figure b) shows orbits with the same M1 but different M2 in order to explain
what that means for the orbits. For M2 = 1 the quasiparticle passes one neighboring
ellipsis after another. In the case of M2 = 2 it passes the blue ellipses first and then the
orange one. It works analogously for M2 = 3 and higher.
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3.1.2 Orbit parameters

Figure 3.4 shows the time period T and action S of the orbits. Thereby T and S are mean
values from the stable and unstable partner orbits which is done because the relative
difference between both is smaller than 10−7 for most of the orbits and maximal 10−4

for orbit pairs with distinct stability. In the case of an unperturbed hydrogen atom it
would be S = 2πneff and T = 2πn3

eff which is why the parameters are scaled like this.
In addition it is intuitive that action and period should increase about linearly with
ncycle = M1 + M2 because a doubled number of cycles around the core will lead to a
doubled period. Nevertheless, a deviation from the linear behavior is observed which can
be explained by the shape of the ellipses changing when varying M1/M2. The deviation
is stronger the lower M1/M2 is which is expected because of the influence of the band
structure being stronger the smaller the distance between electron and hole becomes.
The figures in appendix D show that this is indeed the case for low M1/M2. Both, action
and period, form smooth curves when drawn in dependence of M1/M2 even for different
values of M2. This allows for interpolating action and period for arbitrary winding
numbers (M1,M2) without simulating them explicitly; this is described more detailed in
appendix G.

The eigenvalues of the stability matrix are assigned to specific directions by using their
eigenvectors. In appendix E the appearance of the eigenvectors and their sorting is
described in more detail.

Figure 3.5 a) shows the stability eigenvalues λxy describing the stability in the plane
of symmetry. For most of the shown orbits one cannot see any difference between the
stable and unstable orbit because their eigenvalues deviation from one is smaller than the
numerical accuracy. Nevertheless, λxy is clearly distinct from one for some orbits with
small M1/M2. The actual value of these eigenvalues seems to have no easy dependency
on M1/M2. The maximal value occurs for M1 = 8, M2 = 1 and the last distinguishable
pair occurs at M1 = 12, M2 = 1 where all neighboring orbits’ eigenvalues λxy are one.
This can be explained by the higher symmetry of such orbits which makes them shorter
in their fundamental region which is also the reason why M2 = 3 provides more unstable
orbits than M2 = 2. For M2 = 2 only orbits with an odd M1 are actual independent
because otherwise the orbit would just be two repetitions of an M2 = 1 orbit. Therefore,
no orbits with high symmetries can occur while M2 = 3 offers orbits with M1 = 16, 20,
28 and so on which have high symmetries.

The eigenvalue λz is shown in figure 3.5 b) and describes the stability out of the plane.
As one can see λz forms a smooth curve where the eigenvalues of the stable and unstable
partner orbits are almost identical. Scaling the eigenvalues from M2 = 2 and M2 = 3

with λM
−1
2

z one can see that the eigenvalues of higher M2 fit in there too. This scaling
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Figure 3.4: Figure a) shows the scaled time period T of the periodic orbits. In the
hydrogen-like case the scaling would be T = 2πn3

eff but the perturbed system shows
deviations from that behavior. All orbits withM2 = 1, 2 and 3 form a smooth curve what
indicates that the period of orbits with higher M2 can be interpolated from this curve.
It will be explained later how the M1/M2 ratio of the central fixed point is derived.
The scaled action S in figure b) shows a similar behavior. In the hydrogen-like case the
action would scale with S = 2πneff. The fact that all orbits form a smooth curve allows
for calculating the action variables through differentiation of the action with respect to
M1. More details can be found in appendix G.
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Figure 3.5: Figure a) shows the stability eigenvalues in the plane of symmetry which
occur in a pair of λxy and λ−1xy . They can be represented by their sum λxy + λ−1xy where
the orbit is stable if the term is between −2 and 2. Only orbits with a low ratio M1/M2

show visible differences from 2. The exceptions at M1 = 8 and M1 = 12 can be explained
by the higher symmetry of those orbits (see figures D.1 and D.4).
Figure b) shows that the stability eigenvalue out of the plane λz turns out to be almost
the same for both orbits of a pair. When scaling the eigenvalues for different M2 with
λ
M−1

2
z they form a smooth curve except for very small ratios M1/M2 < 6. A fit to this

curve allows for interpolating the eigenvalues for higher values of M2 without simulating
those orbits explicitly. The behavior for M1/M2 ∈ [24.00, 29.68] is remarkable because
the orbits become unstable here.
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results from the stability matrix M(nT ) for n periods being Mn(T ) and orbits with
M2 = 2 being twice as long as orbits with M2 = 1 at the same M1/M2 ratio. Therefore,
the eigenvalue for M2 = 2 will be the square of the eigenvalue for M2 = 1.

Because all M2 curves fit together it is possible to interpolate the z-eigenvalues for higher
M2 from this curve what is quite useful when calculating the trace formula amplitude
because it is no longer necessary to know each orbit explicitly. The eigenvalues can be
calculated from their sum by using

b = λ+ λ−1,

0 = λ2 − bλ+ 1, (3.2)

λ =
b±
√
b2 − 4

2
.

Note that the square root term becomes imaginary for an absolute of b smaller than 2
what returns the correct complex eigenvalues at this point. Unfortunately the smooth
curve breaks up below M1/M2 = 6 and an interpolation is no longer possible but this
affects only a few orbits per M2. More information about this can be found in appendix
F.

Remarkable is that there is a region M1/M2 ∈ [24.00, 29.68] where the orbits become
unstable in z-direction. Such an behavior could be connected to additional bifurcations
where the torus breaks up into more than two orbits but until now no such additional
orbits were discovered in the [001] symmetry plane. It might be that the partners are
located outside the plane. Furthermore, this bifurcation seems to have no effect on the
stability in xy-direction because the orbits just remain stable with constant eigenvalues
of one.

3.1.3 Trace formula amplitudes

In a next step we want to calculate the amplitudes of the trace formulas which equals the
Fourier transform of the scaled quantum mechanical spectrum. Therefore, it is necessary
to use separate formulas for the central orbit and the orbit pairs on the rational tori.
The central orbit can be taken into account using Gutzwiller’s trace formula

ρ(neff) =
1

πn3
eff

∑
PO

TPPO√
|det(MPO − 1)|

cos
(
SPO −

π

2
σPO

)
(3.3)
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Figure 3.6: The action variables J1 and J2 are calculated using the derivative of a
polynomial fitted to the action of the orbits with M2 = 1; see appendix G for more
details.

since it is stable and isolated. This can be evaluated to

ρcentral(neff) =
1

πn3
eff

∞∑
r=1

T√
|det(M r − 1)|

cos
(
rS − rπ

2
σ
)

=
1

πn3
eff

∞∑
r=1

T√∣∣∣∣(λr/2xy − λ−r/2xy

)2 (
λ
r/2
z − λ−r/2z

)2∣∣∣∣
cos
(
rS − rπ

2
σ
)

(3.4)

for r repetitions of the orbit. The contribution of an orbit pair is calculated with the
mixed Berry-Tabor and Gutzwiller trace formula

ρM (neff) =
TM

πn3
effM

3/2
2 |g′′E|1/2

∣∣∣λ1/2z − λ−1/2z

∣∣∣ cos
(
SM − σM

π

2
− π

4

)
(3.5)

for non-isolated periodic orbits where the winding numbers M = (M1,M2) represent the
orbit pair. In order to account for multiple repetitions one can rewrite this as

ρM (neff) =
∞∑
r=1

rTM

πn3
eff(rM2)3/2|g′′E|1/2

∣∣∣λr/2z − λ−r/2z

∣∣∣ cos
(
rSM − rσM

π

2
− π

4

)
(3.6)

withM = (M1,M2) being the winding numbers of the primitive periodic orbit now. The
influence of single orbits and orbit pairs can be investigated by looking at the amplitude
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Figure 3.7: Second derivative of J2 = gE(J1). The black x are the numerical second
derivative of J2 after J1 calculated with a simple 2 point derivative acting on the action
variables in figure 3.6. The lines are polynomials fitted to the black x in order to interpolate
values in between. The bold points are calculated from the stability eigenvalues using
equation (3.7) where the M1 values label the points from left to right. There are only
four points fitting on the curve, two dots and two squares, but those four points represent
the orbits (M1,M2) = (12, 1), (8, 1), (20, 3) and (16, 3) which are the four shortest orbits
with the highest symmetries. They have also the best accuracy because their eigenvalues
differ strongly from one and the difference of the action of stable and unstable partner
orbit is significantly larger than the numerical noise. Nevertheless, there are three points
above the curve also belonging to orbits with high accuracy. The three orbits below
the curve on the other hand have only poor accuracy like all other regular orbit pairs
with M2 ≤ 3 which are not shown here. They have eigenvalues and differences in action
which were numerically not resolvable in the simulations. This is why in the following
the smooth curves are used for calculations. The fit parameters of these curves are shown
in appendix G.
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|A| which is defined as the prefactor of the cosine. This is similar to a Fourier transform
in S where we neglect the additional phase related to the Maslov index σ.

Before doing so it is necessary to calculate the function g′′E which is the second derivative
of gE(J1) = J2 which describes the connection between the action variables J1 and J2
on the energy surface. These variables can be calculated from a polynomial fit to the
action S as described in appendix G; the result is shown in figure 3.6. The polynomials
for J1 and J2 apply not only for M2 = 1 but for all M2 which is why they can be used to
extrapolate the action variables for arbitrary orbit pairs (M1,M2).

The central orbit is the limiting case where the radius of the rational torus disappears
and the orbit becomes effectively one dimensional (see the PSOS in figure 3.1). The
classification with M1 and M2 does not hold here but when looking at figure 3.6 one
can see that J1 and J2 intersect just between M1/M2 = 43 and 44 and therefore in
the area where the central fixed point is located. It turns out that this point with
J1 = J2 = 4.99160 has the same action as the central orbit with S/2π = 4.99160 and can
therefore be connected to it. Using the corresponding ratio M1/M2 = 43.81 one can plot
the central orbit’s action and period in figure 3.4 seeing that they fit on the curves too.

For the calculation of g′′E one can evaluate the polynomials for J1 and J2 at a certain
number of points between J1(M1 = 43) and J1(M1 = 5) linearly spaced in J1. The
resulting curve J2(J1) can be differentiated by applying a two-point derivative twice. Note
that simply differentiating the polynomials analytically would lead to strong deviations
at the boundaries which is why it is not done here. In order to get an easy expression
for interpolating the values, two polynomials of order 5 are fitted to the resulting curve
where the left one is defined until J1 = 5.105 and the second one afterwards. The results
are plotted in figure 3.7.

In order to verify the results g′′E is calculated on a second way using the stability eigenvalues
of the stable (s) and unstable (u) partner of an orbit pair with

g′′E =
2

πM3
2∆S

 1∣∣∣λ1/2s,xy − λ−1/2s,xy

∣∣∣ +
1∣∣∣λ1/2u,xy − λ−1/2u,xy

∣∣∣
−2 . (3.7)

The problem is that this formula works only for orbits where the eigenvalues and the
difference of the action of stable and unstable orbit ∆S = (Su − Ss)/2 can be resolved
numerically in the simulations which is the case only for a few orbit pairs. It turns out that
the four shortest investigated orbit pairs with the highest symmetries ((M1,M2) = (8, 1),
(12, 1), (16, 3) and (20, 3)) fit on the curve while the others do not. The fact that the most
accurate orbits fit on the curve suggests that the first method is valid and therefore it will
be used for further calculations. Nevertheless, there are three orbits ((M1,M2) = (5, 1),
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Figure 3.8: Figure a) contains the amplitudes |A| of the trace formulas over the action
scaled with S/(2πneff). The amplitudes are the contribution of one specific orbit without
the oscillating phase cos(i(S − πµ/2− π/4)) (like a Fourier transform). The contribution
of the central orbit is calculated with Gutzwiller’s trace formula (3.4) while for the other
orbit pairs a mixed Berry-Tabor and Gutzwiller formula (3.6) is used with g′′E taken from
the interpolation in figure 3.7. It is possible to identify some similarities to the Fourier
transformed scaled quantum mechanical spectrum in figure 2.4. There are main peaks
arising from the central orbit and secondary peaks from the orbit pairs. A more detailed
comparison is shown in figure 3.9.
Figure b) shows the same as figure a) but with the difference that the stability eigenvalue
λz is not taken into account in the formulas (|λr/2z − λ−r/2z | ≡ 1). By comparing the two
plots one can see which peaks result from λrz ≈ 1 singularities.
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Figure 3.9: The figure shows a comparison of the Fourier transformed scaled quantum
mechanical spectrum (QM) at n0 = 5 [31] and the semiclassical amplitudes for neff = 5 in
one plot. The amplitudes are scaled arbitrarily in order to make it easier to compare the
positions of the peaks. Subplot b) shows that the peaks from the central orbit do not
intersect with the major peaks. It might be that they result from the central orbit in the
distinct symmetry plane of Cu2O. The other subplot c) shows a region where additional
peaks occur. As one can see some of the additional peaks can already be identified with
specific orbits. Especially the M2 = 1 orbits which are comparably strong are located at
peak positions. Nevertheless, some peaks occur at positions where no orbit is located.
But of course our semiclassical calculations are limited to one symmetry plane of the
crystal and do not take into account the distinct symmetry plane or three-dimensional
orbits which is why many orbits are missing here.
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3.1 Investigations at constant energy

(6, 1) and (11, 2)) which differ strongly from the curve but are also simulated with high
enough accuracy. The difference is that they do not have that much symmetries as
the M1 = 4n orbits which might imply a connection to the symmetry here. However,
the value from the polynomial fit is taken for these orbit pairs too in order to stay
consistent.

Finally it is possible to use g′′E to calculate the amplitudes as described above. They
are plotted in figure 3.8 a) in dependence of the action scaled with S/(2πneff). The
high peaks result from λz being almost one what leads to singularities. This can be
verified by calculating the amplitudes without taking λz into account (this means setting
|λr/2z − λ−r/2z | = 1) which can be seen in figure 3.8 b). In analogy to the hydrogen atom
peaks arise close to integer values of S/2πneff. These peaks result from the central orbit.
A summary of the peaks resulting from the first twenty repetitions of this orbit are listed
in table 3.1. Furthermore, one can see additional peaks which result from the orbit pairs
and are a clear deviation from the hydrogen-like behavior. This is also what we expect
from the Fourier transform of the scaled quantum mechanical spectrum in figure 2.4
which also shown the major peaks at about integer values and additional peaks.

Figure 3.9 shows both the quantum mechanical (QM) and semiclassical amplitudes in
one plot. Note that this comparison is not yet accurate because of slightly different
material parameters and due to the fact that the amplitudes of the QM spectrum are
not calculated with a precise method. However, we compare them anyway since they
should be at least similar.

One can see that the peaks of the central orbit do not coincide with the major peaks of
the QM amplitudes but with small secondary peaks nearby. Furthermore, the amplitude
of the central orbit decays more strongly with S/(2πneff) than the major QM peaks. This
indicates that the major peaks arise from other orbits, maybe from a central orbit in
the distinct symmetry plane of the crystal. Nevertheless, some of the QM peaks can be
identified with specific orbits as can be seen in subplot c). Especially the M2 = 1 orbits
fit well to some of the additional peaks. Another difference are the small QM peaks at
half numbers which could not be reproduced in the semiclassical calculations.

In order to compare the amplitudes and parameters of the classical periodic orbits directly
they are listed in table 3.2 for all regular orbits with M2 = 1. For winding numbers
M1 ≤ 12 both the stable and unstable orbit are given in order to compare them. For
the other orbit pairs the difference of their parameters is smaller than the numerical
accuracy.

53



3 Results

Table 3.1: Scaled parameters and Gutzwiller amplitude for the central orbit and for r
repetitions of it.

r T/(2πn3
eff) S/(2πneff) λrxy + λ−rxy λrz + λ−rz A

1 0.986 929 0.998 321 1.980 1.992 155.286

2 1.973 858 1.996 641 1.921 1.967 38.958

3 2.960 787 2.994 962 1.825 1.927 17.416

4 3.947 716 3.993 283 1.692 1.870 9.877

5 4.934 645 4.991 604 1.526 1.799 6.388

6 5.921 574 5.989 924 1.329 1.712 4.494

7 6.908 503 6.988 245 1.107 1.612 3.353

8 7.895 432 7.986 566 0.862 1.499 2.613

9 8.882 361 8.984 886 0.601 1.373 2.107

10 9.869 290 9.983 207 0.327 1.236 1.746

11 10.856 219 10.981 528 0.047 1.088 1.480

12 11.843 148 11.979 848 −0.233 0.932 1.278

13 12.830 077 12.978 169 −0.509 0.769 1.123

14 13.817 006 13.976 490 −0.776 0.599 1.001

15 14.803 935 14.974 811 −1.026 0.424 0.904

16 15.790 864 15.973 131 −1.257 0.246 0.826

17 16.777 793 16.971 452 −1.463 0.065 0.763

18 17.764 722 17.969 773 −1.639 −0.116 0.711

19 18.751 651 18.968 093 −1.784 −0.296 0.670

20 19.738 580 19.966 414 −1.893 −0.473 0.636

Table 3.2: Scaled parameters and trace-formula amplitude for the orbits with M2 = 1.
The flag s/u denotes the stable or unstable partner orbit. For M1 > 12 only the stable
orbits are listed because the parameters of the stable and unstable orbit are identical.

M1 s/u T/(2πn3
eff) S/(2πneff) λz + λ−1z g′′E |A|

5 s 5.050 455 5.592 702 0.362 22.556 1.662

5 u 5.050 544 5.592 725 0.365 22.556 1.662

6 s 6.062 691 6.630 981 −0.861 33.304 1.241

6 u 6.062 984 6.631 067 −0.876 33.304 1.241

7 s 7.074 496 7.663 237 −1.770 46.210 1.072

7 u 7.074 497 7.663 237 −1.770 46.210 1.072

8 s 8.085 037 8.690 881 −1.988 60.426 1.042

8 u 8.086 217 8.691 237 −1.989 60.426 1.042

54



3.1 Investigations at constant energy

9 s 9.096 439 9.715 552 −1.971 75.340 1.052

9 u 9.096 439 9.715 552 −1.971 75.340 1.052

10 s 10.106 949 10.737 367 −1.828 90.755 1.085

10 u 10.106 949 10.737 366 −1.828 90.755 1.085

11 s 11.117 270 11.756 966 −1.613 106.579 1.133

11 u 11.117 270 11.756 966 −1.613 106.579 1.133

12 s 12.127 419 12.774 675 −1.347 122.271 1.199

12 u 12.127 450 12.774 679 −1.348 122.271 1.199

13 s 13.137 473 13.790 751 −1.047 138.680 1.278

14 s 14.147 406 14.805 382 −0.724 155.806 1.374

15 s 15.157 252 15.818 730 −0.387 173.498 1.490

16 s 16.167 023 16.830 924 −0.045 191.631 1.633

17 s 17.176 729 17.842 072 0.293 210.133 1.814

18 s 18.186 378 18.852 265 0.619 228.976 2.046

19 s 19.195 977 19.861 583 0.927 248.158 2.353

20 s 20.205 533 20.870 093 1.210 267.692 2.779

21 s 21.215 047 21.877 854 1.463 287.596 3.413

22 s 22.224 526 22.884 920 1.681 307.892 4.483

23 s 23.233 971 23.891 335 1.861 328.599 6.869

24 s 24.243 387 24.897 142 2.000 349.732 180.786

25 s 25.252 772 25.902 376 2.098 371.299 8.389

26 s 26.262 133 26.907 072 2.152 393.302 6.785

27 s 27.271 470 27.911 262 2.165 415.738 6.591

28 s 28.280 781 28.914 969 2.136 438.599 7.329

29 s 29.290 072 29.918 221 2.067 461.875 10.504

30 s 30.299 341 30.921 040 1.962 485.555 14.077

31 s 31.308 589 31.923 447 1.822 509.625 6.580

32 s 32.317 819 32.925 461 1.652 534.071 4.743

33 s 33.327 029 33.927 100 1.455 558.870 3.821

34 s 34.336 223 34.928 383 1.236 584.000 3.252

35 s 35.345 398 35.929 321 0.999 609.437 2.862

36 s 36.354 553 36.929 929 0.748 635.163 2.578

37 s 37.363 698 37.930 226 0.488 661.169 2.363

38 s 38.372 821 38.930 217 0.223 687.449 2.196

39 s 39.381 931 39.929 919 −0.042 713.985 2.063

40 s 40.391 022 40.929 339 −0.304 740.733 1.956

41 s 41.400 097 41.928 488 −0.557 767.619 1.869

42 s 42.409 158 42.927 378 −0.799 794.631 1.799

43 s 43.418 203 43.926 016 −1.025 822.106 1.741
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3.2 Investigations for varying energy

After the investigations at neff = 5 we want to know more about the energy-dependence
of the orbit parameters in order to be able to calculate an energy dependent spectrum.
Until now there is not enough data for such calculations but it was possible to derive
the energy dependence of the important central orbit which is shown in the following.
However, it turned out that using only this orbit is not sufficient. Afterwards the energy
dependence of a selection of orbits with small winding numbers is investigated.

3.2.1 Energy dependence of the central fixed point

At first we want to look at the central orbit. As told before it looks almost circular
especially for high neff. The central fixed point is of special interest because it is isolated,
stable and belongs to the shortest periodic orbit with the highest angular momentum. It
has therefore a very high contribution to the sums in the semiclassical trace formulas
which could be verified in the previous section.

Figure 3.10 a) shows the action and period of the central orbit. They are scaled in a way
that the scaled action and period would be one in the hydrogen-like case. It seems that
they converge to the same value for high neff which is hydrogen-like behavior but since
this value is about 0.993 and not one there are also differences remaining.

The eigenvalues of the central orbit are plotted as stability angles ivi = ln(λi) in figure
3.10 b). As one can see the eigenvalues λxy and λz tend to one for high neff. The difference
from one is thereby larger for λxy than for λz. Both eigenvalues remain stable over the
full investigated range of neff ∈ [1.5, 30]. Furthermore, the double logarithmic plot reveals
a scaling of the angles with n−2eff in the limit of high neff. By using this it might be possible
to extrapolate to higher neff. This can be useful because it is not easy to access this
range in quantum mechanical calculations or experiments.

3.2.2 Behavior of a selection of orbits with M2 = 1

In this section orbits with winding numbers M1 = 4, 5, 6, 7, and 8 are investigated
for neff varying in a range between 3 and 7. They are interesting because they have
stability eigenvalues distinct from one, except M1 = 7, and are therefore good examples
for investigating the energy dependence of the system.

In this section two orbit pairs occur which behave not quite regular. They are called
M1 = 4 and M1 = 5 (a). In order to introduce them they are shown in the Poincaré
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Figure 3.10: Parameters of the central orbit in dependence of neff. Figure a) shows the
scaled action and period of the central orbit for varying neff in a wide range. One can
see that both parameters tend to the same value of about 0.993 in the limit of high neff
while in the hydrogen-like case both would be one.
The stability eigenvalues of the central fixed point can be expressed through the stability
angles ivi = ln(λi) which can be seen in figure b). The eigenvalues tend to one for high
neff since the corresponding angles tend to zero. Furthermore, one can identify a scaling of
the angles with n−2eff in the limit of high neff. This may be useful for further investigations
e.g. using Gutzwiller’s trace formula to calculate the density of states and to extrapolate
further values without explicitly simulating them.
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Figure 3.11: Poincaré surface of section for the M1 = 4 and both M1 = 5 orbit pairs
at neff = 3. One can see that the M1 = 5 (a) pair is located inside the chaotic region
while the other M1 = 5 pair shows regular behavior. The M1 = 4 pair shows a special
behavior. It seems to be not chaotic but in contrast to other regular pairs the stable and
unstable fixed points do not alter but form loops.
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Figure 3.12: The figure shows an example for how the appearance of the orbits change
with neff. As one can see the ellipses of the orbits become narrower with increasing neff
but the orientation of the stable (s) and unstable (u) orbit does not change. Furthermore,
the radius of the orbit increases with n2

eff. The upper plots belong to the regular M1 = 5

orbits while the orbits in the middle are located in the chaotic region. The orbits with
M1 = 4 in the lower plots are different. As one can see they share the same symmetry
and become similar for increasing neff. They indeed disappear between neff = 3.6 and
3.65. The other way around they are created at this point in a tangent bifurcation.
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surface of section (PSOS) in figure 3.11. As one can see the M1 = 5 (a) orbits are located
in the chaotic region while the regular M1 = 5 orbits are not. The M1 = 4 orbits are
not chaotic and show a clear separation in elliptic stable and hyperbolic unstable fixed
points. However, they appear to be different from the other regular pairs since the fixed
points are arranged in a different way. While they alter on the torus for other pairs they
are arranged in loops here.

In order to investigate how the orbits’ shape behaves under a change of energy, orbits
with M1 = 5 and different neff are plotted in figure 3.12. It turns out that for high neff the
ellipses become narrower but that their orientation remains the same. The radius of the
orbits scales with about n2

eff. One can see that the ellipses of the chaoticM1 = 5 (a) orbits
are narrower than for the regular M1 = 5 orbits. The orbits with M1 = 4 behave different
since both the stable and unstable orbit share the same arrangement of their ellipses.
The only difference is that the stable ellipses are narrower. With increasing neff the
difference between both orbits becomes smaller until they become identical somewhere
between neff = 3.6 and 3.65. For higher neff they cannot be found which is why they are
created here in a tangent bifurcation.

In figure 3.13 a) the period of the orbit pairs is plotted. It turns out that both orbits
of a pair have about the same period except M1 = 4, even the M1 = 5 (a) pair has
similar periods. In the hydrogen-like case the period would scale with 2πn3

eff. The plot
shows that this behavior is approximated in the limit of high neff since the curves seem
to saturate but because they do not approximate a value of one there is an additional
factor which is different for each pair. The action is plotted in figure 3.13 b). Scaling it
with 2πneff and ncycle reveals deviations from the hydrogen-like behavior. The action is
thereby almost identical for both orbits of a pair. In contrast to the period the curves do
not saturate but it is likely that they will do outside the investigated range of neff ∈ [3, 7]

since the second derivative seems to be positive.

Having a look at figure 3.14 one can see the stability eigenvalues in the plane of symmetry
λxy for the different orbits. The regular orbit pairs all show a similar behavior. Their
eigenvalues’ difference from one increases with increasing neff. For the unstable orbits
this means an increasing instability while for the stable orbits the sum λs + λ−1s shrinks
for increasing neff. The sum thereby remains between −2 and 2 what means that these
orbits do not become unstable. When taking a close look at the curves one can see that
the second derivative of λu + λ−1u is positive for low neff and becomes negative for high
neff. This indicates the hypothesis that the stability eigenvalues might saturate at some
point but it would need a wider range of neff for testing it. Furthermore, a closer look at
the M1 = 7 orbits reveals that they split up into a stable and unstable orbit for high neff.
Though the splitting is small this indicates that for high neff more tori break up.
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Figure 3.13: Figure a) shows the time period and figure b) the action in dependence of
neff. The stable and unstable orbit have almost the same period except for M1 = 4. For
high neff the curves seem to converge. The action on the other hand does not saturate
for high neff but it is likely that it does for even higher neff outside the simulated range
because the second derivative is positive. The action of both M1 = 4 orbits seems to be
similar too which was not the case for the period.
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Figure 3.14: The figure shows the stability eigenvalues of orbits with lowM1 andM2 = 1

for varying neff. The dots represent the stable orbits while the crosses represent their
unstable partners. All pairs except M1 = 4 and M1 = 5 (a) show the same behavior.
The instability of the unstable orbit increases with increasing neff while the stable orbit
remains stable since the sum of the eigenvalues remains between −2 and 2. For the
M1 = 4 orbits it is the other way around. The orbit seems to be generated in a tangent
bifurcation somewhere between neff = 3.6 and 3.65 and the eigenvalues difference from
one increases with decreasing neff. The other exception is the orbit pair M1 = 5 (a) which
provides two highly unstable orbits which nevertheless share some common properties as
their eigenvalues seem to scale similarly. Note that the curves continue like this outside
the visible range (λxy + λ−1xy ∈ [−10, 15]).
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3.2 Investigations for varying energy
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Figure 3.15: The dots represent the stable orbits while the crosses represent the unstable
orbits. For both orbits of a pair the stability out of the plane of symmetry is almost the
same except for high neff where small deviations occur. There are two exceptions which
are explained later. The regular orbits have smooth curves which are different for each
pair but exhibit some similarities, for example they all have a minimum. This minimum
shifts towards higher neff for higher M1. Some of the curves leave the stable region
between −2 and 2 somewhere but M1 = 5 is the only orbit pair where the minimum is
below −2 while it seems to be exactly −2 for the other pairs.
The orbits with M1 = 4 differ strongly but have nevertheless some similarities as their
stability eigenvalues λz approximate one at the bifurcation point. The M1 = 5 (a) orbits
do not show a similar behavior. While one of them is always unstable in z-direction the
other one becomes stable for high neff.
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3 Results

The orbits with M1 = 4 behave the other way around. Their eigenvalues approximate
one as neff increases. When they reach it somewhere between neff = 3.6 and 3.65 the orbit
pair disappears in a tangent bifurcation which was mentioned before. Furthermore, for
very low neff the eigenvalues distance from one shrinks slightly which means that there is
a maximum respectively a minimum in the curves. The chaotic M1 = 5 (a) orbits are
both unstable and their instability increases strongly with decreasing neff.

Figure 3.15 shows the stability eigenvalue out of the plane of symmetry. It turns out
that this eigenvalue is about the same for the stable and unstable partner unless for high
neff where small deviations appear. In general the sum of the stability eigenvalues of
each regular orbit pair has a minimum shifting to higher neff for increasing M1. Except
for M1 = 5, all regular orbits have their minimum at λz + λ−1z = −2. For M1 = 5 the
minimum is below −2 which means that the orbit becomes unstable in z-direction here.
In addition, two of the curves show unstable regions where the absolute of the sum
becomes larger than two and the orbit therefore unstable but because of the general
trends it is likely that the other pairs also show such unstable regions but outside the
investigated range.

Again the pair with M1 = 4 shows a different behavior because the eigenvalues of the
both orbits are not the same. This might be explained by the PSOS in figure 3.11 where
one can see that the fixed points of both orbits are located in different regions because
their torus deforms strongly. This can cause different stability properties for both orbits.
The stability becomes similar at the bifurcation point since both orbits become identical
here. Also the eigenvalues of M1 = 5 (a) orbits do not fit together at all.

All in all, it seems to be possible to interpolate the orbits’ action, period and stability
eigenvalues for arbitrary neff in the investigated range because they form smooth curves.
An example for this is given in appendix F. Although this interpolation may become
important when calculating the density of states in dependence of neff it is not possible to
extrapolate the curves to higher neff. Unfortunately it is also not possible to tell anything
about the other orbits with higher M1 so there is a lot of work left to do finding at least
all M2 = 1 orbits in a wide range of neff. Like described in section 3.1 it might be possible
to derive the parameters of most of the other orbits from them.
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4 Conclusion and Outlook

In this thesis we investigated the classical dynamics of excitons in cuprous oxide in the
symmetry plane of the crystal orthogonal to the [001] axis for a fixed effective quantum
number neff = 5. Two-dimensional classical orbits occur in this plane because of the
cubic Oh symmetry of the crystal. We accounted for the band structure of cuprous oxide
by introducing a quasispin interacting with the hole spin where we treated the spin
dynamics quantum mechanically by using an adiabatic approach. A Poincaré surface
of section showed that there is one central fixed point which is stable and isolated, it
belongs to the shortest periodic orbit. According to the Poincaré-Birkhoff theorem we
expected the surrounding tori to break up leaving pairs of a stable and an unstable
partner orbit but it turned out that both partner orbits are stable except for a few
orbit pairs with small angular momentum. Furthermore, we investigated the period,
action and stability properties of these periodic orbits and used them to calculate the
frequencies and amplitudes of the scaled energy spectrum by using semiclassical trace
formulas. Comparing the frequencies to a quantum mechanical equivalent revealed a
similar behavior although the spectra are not yet comparable quantitatively.

Future work should focus on improving both the semiclassical and the quantum mechanical
spectrum. In the semiclassical case one needs to take into account orbits in the chaotic
region and from the distinct symmetry plane so as three-dimensional orbits in order to
get a complete spectrum. In the quantum mechanical case the accuracy of the frequencies
and amplitudes of the spectrum needs to be improved e.g. by using harmonic inversion
[33] and the spectrum should be scaled correctly. In addition, one should use exactly the
same material parameters for both spectra. Then it becomes possible to compare them
quantitatively.

If it succeeds and the semiclassical methods turn out to work one can extend them to
other energies and finally one might be able to derive a continuous energy spectrum. In
order to do so one can make use of the fact that action, period and the stability out of the
plane can be described through smooth curves in dependence of the effective quantum
number but also in dependence of the winding numbers which classify the periodic orbits.
This makes it possible to extrapolate the parameters of most of the regular periodic
orbits at least in the symmetry plane orthogonal to the [001] axis. For three-dimensional
periodic orbits it might be more complicated.
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A Zusammenfassung in deutscher
Sprache

Exzitonen sind atomähnliche Zustände in Halbleitern wie Kupferoxydul (Cu2O), beste-
hend aus einem Elektron und einem positiv geladenen Loch. Sie entstehen, indem
ein Elektron aus dem Valenz- ins Leitungsband angeregt wird, wo es sich mit dem
im Valenzband verbliebenem Loch zu einem wasserstoffartigen, gebundenen Zustand
verbindet. Diese Arbeit beschäftigt sich mit Exzitonen der gelben Serie, deren Anre-
gungsenergien Wellenlängen von etwa 590 nm [1] entsprechen.

Es wurden bereits Untersuchungen zu Exzitonen in Kupferoxydul durchgeführt, sowohl
experimentell [1–3], als auch mit quantenmechanischen Rechnungen [4, 5]. Diese Unter-
suchungen zeigen Ähnlichkeiten zum Wasserstoffatom auf, aber auch, dass es durch die
Bandstruktur zu Abweichungen kommt. Für das Wasserstoffatom hat sich gezeigt, dass
es möglich ist, eine Verbindung zwischen dem quantenmechanischen Energiespektrum
und den Kepler-Ellipsen des Bohr-Sommerfeld Modells herzustellen. Das wirft die Frage
auf, ob etwas Vergleichbares auch für Exzitonen in Kupferoxydul möglich ist.

Mittels semiklassischer Spurformeln ist es möglich die Fluktuationen in der Zustandsdichte
in Relation zu klassischen periodischen Bahnen zu setzen, wobei die Frequenzen durch
die Periodendauern oder Wirkungen gegeben sind, während die Amplituden durch die
Stabilität der Bahnen bestimmt werden. In dieser Arbeit werden diese semiklassischen
Theorien angewandt um die Spektren der Exzitonen zu berechnen und zu interpretieren.

Um die Bandstruktur bei der Berechnung klassischer Bahnen zu berücksichtigen wird
eine adiabatische Näherung für Quasispin und Lochspin verwendet. Dabei wird angenom-
men, dass die Spin-Dynamik viel schneller ist, als die klassische Bewegung, wodurch es
möglich wird, die Spin-Freiheitsgrade quantenmechanisch zu behandeln, während die
Exzitonenbahnen klassisch gerechnet werden.

Kupferoxydul hat eine kubische Oh Symmetrie. Deshalb gibt es unterschiedliche Symme-
trieebenen, in denen zweidimensionale klassische Exzitonenbahnen auftreten. Um das
Problem zu vereinfachen werden in dieser Arbeit nur Bahnen in der Symmetrieebene
senkrecht zur [001] Achse betrachtet.

67



A Zusammenfassung in deutscher Sprache

In der Arbeit wird die klassische Dynamik der Exzitonen untersucht, indem ein Poincaré-
Schnitt erstellt und periodische Bahnen in der Ebene gesucht werden. Für diese Bahnen
werden Wirkung, Periodendauer und die Stabilitätseigenschaften bestimmt, welche
anschließend für semiklassische Berechnungen verwendet werden.
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B Material parameters of cuprous
oxide

The following table lists the parameters for cuprous oxide as they are used in this thesis.

Table B.1: Material parameters of Cu2O used in this thesis.

parameter symbol value

band gap energy Eg 2.172 08 eV [1]
electron mass me 0.99m0 [34]
hole mass mh 0.58m0 [34]
dielectric constant ε 7.5 [35]
spin-orbit coupling ∆ 0.131 eV [3]
valence band parameters γ1 1.76 [3]

γ2 0.7532 [3]
γ3 −0.3668 [3]
η1 −0.02 [3]
η2 −0.00367 [3]
η3 −0.03367 [3]
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C Exciton-Hartree units

For the hydrogen system it is usual to use Hartree units defined by setting

e = m0 = ~ =
1

4πε0
≡ 1 (C.1)

with unit charge e, electron mass m0, Planck’s constant ~ and vacuum permittivity ε0.
For excitons in cuprous oxide one has to account for the permittivity ε so as the differing
effective mass of the electron which is done by setting

e =
m0

γ′1
= ~ =

1

4πεε0
≡ 1 (C.2)

where γ′1 = 2.77 and ε = 7.5. The unit of length aexc and the energy unit Eexc change
to

aexc =
4πεε0~2γ′1
e2m0

, Eexc =
~2γ′1
a2excm0

. (C.3)

The most important quantities so as their conversion to SI units are listed in table C.1.

Table C.1: Exciton-Hartree units and conversion to SI units for the most important
quantities. It is γ′1 = 2.77 and ε = 7.5. For the hydrogenlike case it would be γ′1 = ε = 1.

quantity symbol unit SI

charge q e 1.602× 10−19 C

mass m m0γ
′−1
1 3.228× 10−31 kg

angular momentum L ~ 1.055× 10−34 J s

length r aexc 1.099× 10−9 m

momentum p ~a−1exc 9.593× 10−26 kg m s−1

energy E Eexc 1.399× 10−20 J

time t ~E−1exc 3.769× 10−15 s

action S ~ 1.055× 10−34 J s
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D Summary of periodic orbits

This appendix contains images of all regular periodic orbits with M2 = 1 at neff = 5.
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Figure D.1: Stable periodic orbits for M2 = 1 at neff = 5, part 1.
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D Summary of periodic orbits
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Figure D.2: Stable periodic orbits for M2 = 1 at neff = 5, part 2.
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Figure D.3: Stable periodic orbits for M2 = 1 at neff = 5, part 3.
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D Summary of periodic orbits
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Figure D.4: Unstable periodic orbits for M2 = 1 at neff = 5, part 1.
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Figure D.5: Unstable periodic orbits for M2 = 1 at neff = 5, part 2.
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D Summary of periodic orbits
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Figure D.6: Unstable periodic orbits for M2 = 1 at neff = 5, part 3.
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E Sorting of the stability
eigenvectors

As mentioned in the results the stability eigenvalues of the periodic orbits are sorted
corresponding to the direction of their eigenvectors. The stability matrix is an 8 × 8

matrix in KS coordinates which makes the interpretation of the resulting eigenvectors
being not quite intuitive. In this appendix it will be shown how the eigenvalues are
sorted and how the eigenvectors can be interpreted.

In order to investigate the meaning of the eigenvectors they are transformed into real
space coordinates using the representation

U =


√

2r cos
(
θ
2

)
cos
(
ϕ+α
2

)
√

2r cos
(
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2

)
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)
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2r sin
(
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)
cos
(
ϕ−α
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)
√

2r sin
(
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)
sin
(
ϕ−α
2

)
 . (E.1)

The unit vectors into the direction of the corresponding variables read

êr = normalized (∂rU) =
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êϕ = normalized (∂ϕU) =
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êθ = normalized (∂θU) =
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êα = normalized (∂αU) =
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E Sorting of the stability eigenvectors

Unfortunately the unit vectors êϕ and êα are not orthogonal which means that they
cannot be used both in an orthonormal transformation. The solution is to replace êα
with the orthogonal vector

ê⊥ =


− sin

(
θ
2

)
sin
(
ϕ+α
2

)
sin
(
θ
2

)
cos
(
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sin
(
ϕ−α
2

)
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(
θ
2

)
cos
(
ϕ−α
2

)
 . (E.6)

The stability matrix can now be transformed as M (1) = T ᵀMT with

T =

(
êr êϕ êθ ê⊥ 0 0 0 0

0 0 0 0 êr êϕ êθ ê⊥

)
. (E.7)

Such a transformation changes the eigenvectors Λi but not the eigenvalues λi because
of

M (1)Λ
(1)
i = T ᵀMTT ᵀΛi

= T ᵀMΛi

= λiT
ᵀΛi

= λiΛ
(1)
i (E.8)

with transformed eigenvector Λ
(1)
i .

The following example shows the eigenvalues and eigenvectors of the stable M1 = 5,
M2 = 1 orbit at neff = 5. The two eigenvalue pairs which are different from one belong
to

λi = 0.5285± 0.8489i, 0.1809± 0.9835i (E.9)

Λi =



−0.699

0

0

0

0
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0

0
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± i
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0
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0
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0
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0
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0
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0
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0
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
(E.10)
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and the four eigenvalues close to one are

λi = 1.0052, 0.9948, 1.0000± 0i (E.11)

Λi =
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. (E.12)

The coordinates in which the eigenvectors are given are (êr, êϕ, êθ, ê⊥)ᵀ (for position and
momentum) which equals (êr, êϕ, êz, ê⊥)ᵀ because the orbits remain in the z = 0 plane.
Note that the zero components are not necessarily exact zero but only smaller than
0.001.

As one can see the eigenvectors are not all orthogonal and in some cases they are almost
degenerate. For the both first eigenvectors in (E.12) there are only differences in the
small components which are set to zero here. The stability matrix can therefore actually
not be diagonalized but only brought to a Jordan normal form. This in fact does not
change the case that one can calculate the trace as product of the eigenvalues and does
therefore not affect our semiclassical calculations.

The other orbits (at least at neff = 5) have quite similar eigenvectors which allows for
sorting them. The eigenvectors of other orbits have the same components being unequal
zero and having identical signs. The absolute of the components on the other hand
changes strongly.

The first eigenvalue pair belongs to a movement in the xy-plane and can therefor
be assigned to the actual stability inside the plane. The second eigenvalue pair has
components in z-direction but also in the direction of the orthogonal unit vector. This
unit vector has only limited physical meaning and the eigenvalue must therefore be
connected to the stability out of the plane.

The other four eigenvalues are close to one but it was expected that they are strictly one
because of conserved quantities. For varying simulation parameters the eigenvalues are
sometimes real and sometimes complex what indicates that it is only a numerical artifact.
Nevertheless, investigations showed that other orbits also have the same systematic.
There is one eigenvalue pair very close to one having eigenvectors similar to the last
eigenvector and one pair which is not that close to one and has two almost identical
eigenvectors.
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E Sorting of the stability eigenvectors

The general trend is that with increasing M1/M2 the difference of the eigenvalues in
xy-direction to one shrinks and in consequence the eigenvectors start to mix since there
are three eigenvalue pairs which are quite close to one. Also some of the small components
become bigger (sometimes even dominant). What remains is one eigenvector having
almost zero components along x- and y-direction describing the stability in z-direction.

At last let us take a look at the eigenvectors of the unstable partner of the former shown
orbit. The xy and z eigenvectors are

λi = 2.5537, 0.3916, 1.1824± 0.9832i (E.13)
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. (E.14)

The first two eigenvectors are now real and almost identical like it was the case for the
third pair from before. They remain in the xy-plane regardless. The eigenvectors for the
second pair look different but a complex eigenvector can of course be multiplied with
any complex number. When multiplying with −i one can see that the same components
are unequal zero and that they have the same sign.
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F Interpolating stability eigenvalues
and angles

This appendix explains how the stability eigenvalue λz can be interpolated for further
orbits with higher M2.

The eigenvalues λz form smooth curves when plotted in dependence of M1/M2 as well
as in dependence of neff interrupted only when changing between real and complex
eigenvalues. This behavior can be seen in the right graphs of figure F.1. Fortunately the
sum bz ≡ λz + λ−1z is smooth also at this transition points. This is why we use a fit to
bz instead of λz to interpolate values in between. Figure F.1 shows an example for a
polynomial fit of tenth order used to approximate the sum for M1 = 5. Using

bz = λz + λ−1z (F.1)
0 = λ2z − bzλz + 1

λz, λ
−1
z =

bz ±
√
b2z − 4

2
. (F.2)

one can calculate the eigenvalues from the real variable bz without knowledge of any
other quantity. In figure F.1 it is shown that the results fit to the simulated data.

Although the square root returns imaginary values in the case of complex eigenvalues
one has to be careful when implementing the routine. When calculating the stability
exponents φz one has to make sure that the right eigenvalue is taken for the calculation
in order to get the correct sign. The sums bz < −2 between neff = 3 and 4 are a good
example for this. The complex stability angle was defined as

φz = ln(λz) (F.3)

and can take two values in general because one can also use λ−1z . In this thesis we choose
the exponent φz to have a positive real and imaginary part. In case of the eigenvalue
being real and negative the logarithm can still be defined as

φz = ln(λz) = ln(−λz) + iπ (F.4)
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Figure F.1: The eigenvalues λz cannot be easily interpolated with a simple fit function
because of discontinuities but the sum λz + λ−1z forms a smooth curve. This appendix
explains how λz can be calculated by fitting a (tenth order) polynomial to the sum like
shown in figure a). The figures b) and c) show that all eigenvalues can be interpolated
correctly.

which will return the correct results for λz = exp(φz). The angle is defined by the smaller
λz in that case which has the bigger absolute value.

For the case of fixed neff it is desired to have a fit to the M2 = 1 orbits, which are most
easy to find, and to interpolate all remaining orbits with higher M2 like shown in figure
F.2. In that case λz has to be scaled like λM

−1
2

z in order to fit in. This is complicated by
the fact that λ = exp(φz) = exp(uz + ivz) is a complex number which means that there
are M2 possible outcomes for λM

−1
2

z . Fortunately this does not account for the inverse
case when calculating λz from the interpolated value but it has to be taken into account
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Figure F.2: For the case of varying neff it seems sufficient to use one polynomial for ap-
proximating the whole curve (in the investigated range of neff). In case of varying M1/M2

for fixed neff = 5 this is not the case any more. In order to reach an acceptable accuracy
one needs two polynomials defined on different intervals where the right polynomial can
be used for M1/M2 > 14 the left one for values below. The polynomials are fitted to the
M2 = 1 orbits only but they can be used to interpolate for M2 > 2. This works well for
all values even between M1/M2 = 24 and 30 but not for M1/M2 < 6. In this area the
behavior of the eigenvalues seems chaotic which may be explained by the orbits being
near the chaotic region. Note that the left M2 = 2 orbit (M1 = 11) seems to fit on the
curve but that there is a special case here, namely the case of λz < 0 which makes it
impossible to calculate the eigenvalue from the sum.

when comparing the data. The sum can be written as

b(M2)
z = λM

−1
2

z + λ−M
−1
2

z

= exp(φz + i2πn)M
−1
2 + exp(−φz − i2πn)M

−1
2

= cosh

(
1

M2

(φz + i2πn)

)
(F.5)

with n ∈ N. Unfortunately there is one case where it becomes impossible to interpolate
the correct λz namely when λz < 0 and M2 = 2n. For example at M2 = 2 the sum
becomes

b(M2=2)
z = cosh

(
1

2
(uz + iπ)

)
= i exp

(uz
2

)
− i exp

(
−uz

2

)
(F.6)
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F Interpolating stability eigenvalues and angles

which has a zero real but a non-zero imaginary part which cannot be interpolated from
the real function bz(M1/M2). As one can see in the figure this is indeed the case for one
orbit with M2 = 2 and M1 = 11. Furthermore, there are some additional data points
below M1/M2 = 6 which do not fit on the curve. The formula can therefore only be used
for ratios of M1/M2 >= 6. This reduces the simulation effort at least to only finding the
few shortest orbits of each M2 one wants to take into account. The remaining orbit’s
parameters can be interpolated. The corresponding fit parameters are listed in table F.1.

Table F.1: Coefficients of the polynomials fitted to b(M2)
z = λ

M−1
2

z + λ
−M−1

2
z in figure F.2.

quantity coefficients range

b
(M2)
z (M1/M2) +7.693 839 127 239 867 5× 10−8 x11 M1/M2 ∈ [6, 14]

−9.186 641 565 038 194 6× 10−6 x10

+4.938 881 811 090 857 9× 10−4 x9

−1.577 561 237 372 266 5× 10−2 x8

+3.325 283 562 079 463 0× 10−1 x7

−4.854 798 428 543 735 3 x6

+5.007 163 170 078 514 7× 101 x5

−3.646 383 540 718 250 1× 102 x4

+1.836 247 800 480 701 5× 103 x3

−6.084 812 064 352 566 3× 103 x2

+1.192 730 177 269 112 4× 104 x

−1.046 056 944 897 752 1× 104

b
(M2)
z (M1/M2) −1.569 782 680 533 240 3× 10−12 x8 M1/M2 ∈ [14, 43]

+7.697 300 561 474 088 3× 10−10 x7

−1.245 738 808 102 300 8× 10−7 x6

+9.482 303 688 053 998 0× 10−6 x5

−3.592 124 888 364 810 3× 10−4 x4

+5.895 561 430 732 325 4× 10−3 x3

−1.529 068 958 184 019 9× 10−2 x2

−2.224 374 669 141 482 3× 10−1 x

−1.231 146 593 157 067 8
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G Calculation of the action variables

This appendix explains how the action variables J1 and J2 are calculated in this thesis.
They are connected to the action by

S = 2πM1J1 + 2πM2J2. (G.1)

In order to calculate J1 one can use the derivative

∂S

∂M1

= 2πJ1 (G.2)

which is calculated numerically from the action of the orbits with M2 = 1. In order to
get reliable results the numerical derivative is done using two different ways. The first
is a simple two point derivative interpolating the value between two neighboring data
points with

∂S

∂M1

(
M1,i +M1,i+1

2

)
=

Si+1 − Si
M1,i+1 −M1,i

. (G.3)

The second way is to use the analytic derivative of a polynomial fit to S(M1). Figure
G.1 shows the accuracy of the fit polynomial in dependence of the polynomial degree.
Thereby a degree of 14 seems to be sufficient but a degree of 15 leads to better results in
the derivative especially for the extrapolation of values outside the fitting range. The
final fit curve (figure G.2) is now differentiated with respect to M1 in order to calculate J1
according to equation (G.2). The second action variable J2 is calculated by subtracting
J1 from the action S using the fit function so as the derivative. Figure G.3 shows that
both ways return the same results. For the calculations in this thesis the derivative of
the polynomial is used because it can be used for arbitrary M1/M2.

It was mentioned in the thesis that the action is almost the same for the stable and
unstable orbit of a pair but in figure G.4 it is proven to be true. It is worth mentioning
that this difference is indeed important when calculating g′′E directly from the orbit
parameter (equation (3.7)) instead of using the action variables but except for the cases
when λxy is significantly different from one (M1 = [5, 6, 8, 12]) the difference in S is of
the order of numerical accuracy and cannot be assumed to be resolved good enough for
such calculations.

87



G Calculation of the action variables

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

degree of fit polynomial

10−7

10−6

10−5

10−4

10−3

10−2

|S
fi
t
−
S
|/
S

maximal deviation
mean deviation

Figure G.1: The accuracy of the polynomial fit to S(M1) increases with increasing
polynomial degree up to a degree of 14 but it turns out that a degree of 15 results in a
better behavior at the boundaries of the M1 range.
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Figure G.2: A polynomial of degree 15 is fitted to the action for the M2 = 1 orbits
which allows for using the polynomial to interpolate the action for orbits with higher M2

as well as for calculating the derivative dS/dM1.
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Figure G.3: The plot shows the action variables J1 and J2 calculated by using the
two-point derivative and the derivative of a polynomial fit to S(M1). Both ways lead to
the same results which is why the polynomial fit is used for further calculations.
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Figure G.4: In figure G.2 a polynomial was used to interpolate the action for different
ratios M1/M2. But when there are pairs of two orbits a stable (s) and an unstable (u)
one for each (M1,M2) the question arises whether it is possible to do so. The plot shows
that the relative difference in action between the partners is indeed small enough to do
so. Furthermore, one can see that the difference is significantly larger for orbit pairs
which also have stability eigenvalues λxy different from one. But even those values are
only of order 10−5 what means that the fit can be used to calculate a valid average.
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G Calculation of the action variables

When interpolating parameters for higher M2 one will also need to interpolate the pe-
riod T . Because the derivative of this fit is not needed it is sufficient to approximate
T with a polynomial of degree 10. The coefficients of the fit polynomials for action
and period are listed in table G.1. Note that the coefficients seem to be very small
for high exponents of x but the full given accuracy is needed to reproduce the polyno-
mial correctly. Additionally the fit coefficients for g′′E from figure 3.7 are given in table G.2.

Table G.1: Coefficients of the fit polynomials for action and period.

quantity coefficients range

S(M1/M2) +7.528 514 388 436 460 5× 10−21 x15 M1/M2 ∈ [5, 43]

−3.171 941 050 461 375 7× 10−18 x14

+6.127 021 378 984 744 4× 10−16 x13

−7.197 357 892 446 447 4× 10−14 x12

+5.749 715 278 816 727 6× 10−12 x11

−3.308 814 143 903 416 7× 10−10 x10

+1.417 219 971 142 308 3× 10−8 x9

−4.602 404 830 656 148 8× 10−7 x8

+1.143 528 417 844 090 4× 10−5 x7

−2.177 428 538 769 049 4× 10−4 x6

+3.161 381 743 579 337 9× 10−3 x5

−3.458 117 369 433 046 1× 10−2 x4

+2.796 085 048 984 263 7× 10−1 x3

−1.640 224 500 146 046 3 x2

+3.866 020 450 143 041 4× 101 x

+2.851 636 009 038 511 3

T (M1/M2) −1.881 934 799 312 289 3× 10−13 x10 M1/M2 ∈ [5, 43]

+5.154 230 884 123 309 1× 10−11 x9

−6.244 393 934 727 318 7× 10−9 x8

+4.407 067 574 883 838 7× 10−7 x7

−2.008 243 533 295 071 3× 10−5 x6

+6.188 201 923 025 073 2× 10−4 x5

−1.312 683 461 051 171 3× 10−2 x4

+1.914 646 189 323 381 0× 10−1 x3

−1.890 730 715 542 091 6 x2

+8.049 371 559 460 452 1× 102 x

−2.814 561 669 418 478 1× 101
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Table G.2: Coefficients of the polynomials fitted to g′′E in figure 3.7.

quantity coefficients range

g′′E(J1) −5.587 905 994 843 958 3× 107 x5 J1 ∈ [4.993, 5.105]

+1.417 470 026 635 234 4× 109 x4

−1.438 282 141 542 306 1× 1010 x3

+7.297 093 062 825 294 5× 1010 x2

−1.851 106 687 759 681 7× 1011 x

+1.878 360 514 667 785 0× 1011

g′′E(J1) −3.156 448 119 932 510 3× 105 x5 J1 ∈ [5.105, 5.221]

+8.225 098 486 700 657 8× 106 x4

−8.575 112 629 199 299 2× 107 x3

+4.471 014 655 465 763 8× 108 x2

−1.165 845 895 275 227 3× 109 x

+1.216 287 550 164 564 8× 109
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