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Abstract

Since emission and fuel economy standards have risen significantly, car manufacturers
find themselves forced to invest in new battery and related technologies. Research
on methods and technologies that improve the efficiency of both the battery and
the electric powertrain, pose the greatest challenges of this technological transition.
Therefore, software solutions for energy management and motion control as well as
economic driving strategies are becoming more and more the focus of future deve-
lopments. Software solutions allowing for potential economic savings are particularly
appealing, since these do not require any structural or mechanical design changes.

With the main objective of increasing economic savings, this present work investigates
analytical models of the electric powertrain for a battery electric vehicle with two drive
modules on the front and rear axle. The modeling approach focuses on loss processes
associated with the energy conversion of the voltage source inverters and induction
motors. Due to a wide spectrum of involved time constants in the range of seconds to
a few milliseconds, efficiency analyses of electric vehicles rarely follow model-based
approaches and instead rely on characteristic loss maps, which neglect dynamic effects
and physical limitations, for example, those resulting from the limited battery voltage.
This widespread sespectrum comes from both the longitudinal dynamics of the vehicle
and the voltage and current harmonics that result from high frequency switchings of
the inverters’ semi-conductors. New dynamical models are thus proposed that can
be efficiently integrated into vehicle simulations and also be implemented online on
embedded systems, such as the motor control unit of the investigated vehicle. In
doing so, an average value model of the voltage source inverter is derived, based on a
double Fourier integral analysis of the semi-conductor switching signals. Furthermore,
a widely used model of the induction motor, applied for motor analysis and control
design, is reformulated into an equivalent differential flat system based on the definition
of a new flat output. Both component models are integrated into a vehicle simulation
of a Mercedes Benz EQC prototype and are thoroughly validated through extensive
simulative studies and experimental test series.

With the help of the newly introduced models and with the assistance of modern vehicle
sensor systems, control strategies of the electric powertrain are investigated that aim
for the most energy efficient operation. In a first step, decentralized optimal control
approaches are proposed that improve the efficiency of the electric drive module, not
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only during stationary operation, but also during transient torque con-ditions. This
improvement is achieved by an appropriate field oriented control method. In a second
step, optimization-based torque allocation strategies are investigated and evaluated
experimentally. Finally, a centralized predictive control approach is presented that
exploits all operational degrees of freedom, which are the variable torque allocation, the
front and rear axle magnetic flux, and the adjustment of the vehicle speed according
to topographical and traffic dependent conditions. Significant economic savings are
demonstrated for the decentralized control methods as well as for the centralized
control approach.

The high level of accuracy and performance that is achieved by the proposed model-
based framework and predictive operational strategies are only made possible by
exploiting the positive structural properties of the newly introduced differential flat
system representation of the induction motor.
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Kurzfassung

Durch die fortschreitende Verschärfung der gesetzlichen Anforderungen sehen sich
Automobilhersteller gezwungen, in die zunehmende Verwendung von Batteriesystemen
zu investieren. Die größte Herausforderung dieses technologischen Wandels stellen
Verbesserungen im Bereich der Batterietechnologie mit dem Fokus einer effizienteren
Energieumwandlung dar. In Anbetracht der Tatsache, dass in naher Zukunft keine
disruptive neue Batterietechnologie erwartet wird, rücken softwaretechnische Lösungen
im Energie- und Vortriebsmanagement und sogenannte Eco-Driving Assistenzsysteme
immer weiter in den Vordergrund der Forschung und Entwicklung. Entsprechende
Technologien sind von großem Interesse, da sie keine baulichen Änderungen erfordern.

Die vorliegende Arbeit beschäftigt sich mit der analytischen Modellbildung des elek-
trischen Antriebsstrangs eines batterieelektrischen Fahrzeugs mit zwei Antriebseinheit-
en auf der Vorder- und Hinterachse mit dem Ziel einer effizienteren Energiewandlung.
Im Vordergrund der Modellierung stehen die Verlustprozesse der Wechselrichter und
Asynchronmaschinen. Aufgrund des hohen Spektrums der dominanten Zeitkonstanten
im Bereich von wenigen Millisekunden bis hin zu einigen Sekunden, hervorgerufen durch
die Trägheit der Fahrzeuglängsdynamik sowie der Strom- und Spannungsoberwellen des
Wechselrichters, finden dynamische Modelle der elektrischen Komponenten in Effizienz-
analysen elektrischer Fahrzeuge selten Anwendung. So werden Verlustkennfelder
gegenüber modellbasierten Ansätzen weitgehend bevorzugt. Stationäre Kennfelder
sind jedoch nicht in der Lage, dynamische Verlusteffekte und Randbedingungen,
die z.B. aus dem Abfall der Batteriespannung bei hohen Leistungsanforderungen
resultieren, abzubilden. Diese Arbeit stellt neue dynamische Modellansätze vor,
die nicht nur eine effiziente Integration in einer Gesamtfahrzeugsimulation ermög-
lichen, sondern aufgrund Ihrer Echtzeitfähigkeit auch auf der Motorsteuerung des
betrachteten Versuchsfahrzeugs implementiert werden können. Die Modellierung
des Wechselrichters erfolgt dabei im Frequenzbereich durch die Betrachtung einer
zweidimensionalen Fourier-Entwicklung der Halbleiter-Schaltsignale. Ein in der feld-
orientierten Regelung häufig genutztes Modell der Asynchronmaschine wird durch
die Definition eines neuen flachen Ausgangs in eine äquivalente differenzielle Form
transformiert. Beide Teilmodelle werden in ein Fahrzeugmodell eines Versuchsträgers,
der auf einem Mercedes Benz EQC basiert, integriert und durch umfangreiche Simula-
tionen und Messungen validiert.
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Die Betriebsstrategie des elektrischen Antriebsstrangs wird auf Basis der neu vorge-
stellten Modelle unter Berücksichtigung zusätzlicher Fahrzeugsensorik hinsichtlich
der Energieeffizienz optimiert. Zunächst wird eine dezentrale Optimalsteuerung be-
trachtet, welche die Effizienz der Asynchronmaschine durch eine variable Feldstärke
im stationären Betrieb wie auch bei dynamischen Momentenanforderungen steigert.
Anschließend wird eine Optimalsteuerung für die Verteilung des Antriebsmoments
implementiert und experimentell bewertet. Abschließend wird eine zentrale modellprä-
diktive Regelung untersucht, die alle verfügbaren Freiheitsgrade nutzt: die variable
Momentenverteilung, die Feldstärke beider Antriebseinheiten und die Anpassung
der Geschwindigkeit an die topographischen und verkehrsbedingten Gegebenheiten.
Sowohl für das dezentrale als auch für das zentrale Reglungskonzept kann eine deutliche
Verbesserung der Effizienz nachgewiesen werden.

Der wesentliche Beitrag dieser Arbeit ist die neue flache Darstellung der Asynchron-
maschine, ohne die das modellprädiktive Regelungskonzept in dem vorgestellten
Detaillierungsgrad nur mit sehr hohem rechentechnischem Aufwand umsetzbar wäre.
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1 Introduction

By 2017, the world’s total energy supply had more than doubled compared to 1971 [99].
Since 1971, oil has been the predominant energy source amounting to one third of the
total primary energy supply. While the share of the total final consumption has hardly
changed for most sectors, the consumption from the transport sector is continually
growing. As transportation still heavily relies on fossil fuels, it is responsible for nearly
one quarter of the world’s Greenhouse Gas Emissions (GHGEs) [63, 100], where
passenger transport accounts for three quarters of this amount [62, 98]. Due to shorter
development periods and lifetimes of passenger cars and light duty vehicles compared
to aircrafts, trains, and ships, high expectations are placed on new vehicle technologies
[212]. However, after a steady decline of the average emissions from new passenger cars
between 2010 and 2016, the fleet-average Carbon Dioxide (CO2) emissions increased in
the two consecutive years [225]. Reasons for this upward trend are the strong demand
for high-powered vehicles and Sport Utility Vehicles (SUVs) as well as a growing share
of newly registered petrol cars in response to the Volkswagen emissions scandal [201].
Furthermore, the increasing demand for transport highly contributes to air pollution
with harmful concentrations of nitrogen dioxide and particulate matter, especially
in urban and highly populated areas [36]. These environmental pressures and the
resulting climate change raise more and more public concerns, which motivate stricter
regulatory actions.

Consequently, global CO2 emission and fuel economy standards have become signifi-
cantly more progressive in order to create incentives for the car industry to invest in
new technologies, mitigate global warming, and improve environmental health [35].
The historical development of fleet emissions performance and current standards for
passenger cars are presented in Figure 1.1. The European emissions regulations, with
a fleet average target of 95 gCO2/km by 2021, is the most stringent in the world.
A violation of the manufacturer’s specific limit incurs a fine of 95 EUR per year for
every excess gram of CO2 multiplied by the number of newly registered vehicles (cf.
Article 8 [168]). Only a few manufacturers are on track and will be able to reach
their 2021 targets [62], which is why Europe’s thirteen top manufacturers are facing
serious penalties with more than 14.5 bn EUR in fines [164]. Due to technological
advancements of battery technologies and the drastic decrease of battery costs over
the last decade [100], car manufacturers have announced a diversified portfolio of
Electric Vehicles (EVs) in order to comply with the emission reduction targets. In the
European Union about sixty models were available at the end of 2018 whereas 333
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1 Introduction

Figure 1.1: Fleet CO2 emissions performance and current standards (normalized to
the New European Driving Cycle; cf. Figure 2 [35]).

models are expected in 2025 [38, 225]. While the numbers of available Plug-In Hybrid
EVs (PHEVs) and Fuel Cell EVs (FCEVs) seems to flatten, the growth of Battery
EVs (BEVs) continue to follow a strong linear upward trend. To accelerate the rate
of electrification, markets are increasingly adopting zero-emission vehicle mandate
programs [37] and are gradually transforming from direct to more indirect forms of
subsidies, including an increased support for the charging infrastructure.

As BEV sales are expanding at a fast pace and a mass-market adoption for battery
production in Europe is triggered [225], EVs and in particular BEVs present the
key future component of a sustainable mobility in the upcoming decade. The main
advantages of BEVs include:

• a considerably better efficiency than conventional Internal Combustion Engine
(ICE) vehicles, which offers a high potential for GHGEs reductions,

• zero tailpipe emissions, well suited to address air pollution issues in urban areas,

• dependencies on oil imports are reduced since electricity can be produced with
a variety of resources and fuels, and is often generated domestically,

• decarbonisation of electricity supply benefits both, battery manufacturing
facilities and charging, which amplifies advantages of EVs relative to other
powertrains.

However, to unleash the full potential of BEVs, it is crucial to discuss disadvantages
and to understand the environmental impact associated with all stages of their life
cycle [61, 104]. A comparison of life-cycle GHGEs of an average mid size car for
different powertrains is shown in Figure 1.2. Being the component with the most
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Figure 1.2: Life-cycle GHGEs over ten year lifetime of an average mid-size car by
powertrain: battery electric vehicle with an 80 kWh battery (BEV 80),
plug-in hybrid electric vehicle (PHEV), fuel cell electric vehicle (FCEV),
internal combustion engine (ICE); cf. [100, 104]).

energy-intensive manufacturing process, the battery can be responsible for up to a
third of the vehicle’s life-cycle emissions. Apart from GHGEs, the battery has a
high impact on raw materials. Furthermore, due to the limited battery capacity, the
limited range is still one of the main barriers for customers to buy BEVs. Therefore
manufacturers aim to increase the energy density of batteries. However, by adding
more cells to the battery pack, the environmental impact due to the additional weight,
raw material extraction, and processing increases as well. Nevertheless, based on
the average electricity mix in Europe, it can be concluded that the high efficiency of
BEV powertrains can reduce the well-to-wheel emissions during the fuel cycle and
therefore has the potential to decrease GHGEs when compared to ICE vehicles [61].
The extent of which depends on various factors including amongst others the progress
of the electricity generation mix, the vehicle’s lifetime mileage, size, and weight as
well as the driving location and style. In particular, an increase in weight leads
to a disproportional increase of the GHGEs during the tank-to-wheel life cycle. If
the weight of a BEV cannot be reduced, this deficit has to be compensated for by
improving the overall efficiency of the electric powertrain.
The enhancement of battery performances, such as cost, density, and cycle life, are
the decisive factors for the success of electric mobility. Future potential battery
technologies, however, are not yet beyond the laboratory stage leaving the Li-ion
battery to likely dominate the BEV market over the next decade [100]. Therefore,
it is fundamentally important to investigate methods that improve the BEV energy
efficiency, considering both present and near future means.
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1 Introduction

1.1 Battery Electric Vehicles

The battery is not the only BEV system that needs to be redesigned and improved
in order to meet the growing demands and concerns of the future electrification of
mobility. The electric powertrain also offers great potential for optimizing the energy
conversion of the stored electrochemical energy into traction, braking, and thermal
energy. When focusing on motion control, energy conversion is provided by two main
components: power electronics and the electric motor. The most commonly used
motors of current BEVs are the Induction Motor (IM) and the Permanent Magnet
Synchronous Motor (PMSM) [252]. Advantages and disadvantages of different motors
used in vehicle applications are discussed in numerous studies including [65, 169, 247].
As was concluded in [10, 156], no definite statement can be made on which motor type
generally has the highest energy efficiency. Therefore, the selection of the motor type
must be based on a well-defined operational range and the associated power ratings.
These in turn are determined by various dynamic drive and load cycles and are mainly
influenced by the vehicle size and weight. Besides the choice of motor type, several
general powertrain configurations exist [8, 64] that may be classified according to

• the number of powered axles ∈ {single axle, all-wheel-drive},

• the number of motors ∈ {1, 2, 3, 4},

• the alignment of multiple motors ∈ {longitudinal, lateral},

• the type of transmission ∈ {single-speed, multiple-speed},

• the usage of a clutch to disengage the motor.

Transmissions are adopted for EVs in order to operate at higher rotor speeds than
ICEs and to enable an increased power density. A single-speed transmission is often
preferred to multi-speed systems due to the low design complexity and the high
efficiency of PMSMs over a wide speed range [54]. Clutches are required, for example,
in the case of a PMSM to avoid high idling losses and sudden jamming during faulty
operation.

The vehicle investigated in this study is a Mercedes-Benz EQC prototype. In 2019
the EQC was the first battery electric Mercedes-Benz vehicle launched under the
EQ brand. The electric powertrain of the EQC features a 400 V battery with a
nominal energy storage of 85 kWh. Two centered 150 kW IMs, each with different
characteristics, are installed in longitudinal alignment on the front and rear axle.
Each motor is equipped with a single-speed transmission and a power inverter with
Insulated-Gate Bipolar Transistor (IGBT) modules, which have a maximum rating of
650 V/800 A. The transmission, the electric motor, and the power electronics are all
integrated into one compact Electric Drive Module (EDM) to optimize the package,
weight and cost.
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1.2 Operational Strategies

Figure 1.3: Electric Powertrain of the Mercedes-Benz EQC [41].

Apart from the EDM, the battery also supplies a 12 V electrical system via a DC/DC
converter. Low voltage systems, which for example include the control units, the head
unit, and the high voltage thermal management system, are considered as auxiliaries.
In order to keep the system temperature of the battery and both EDMs in their
nominal ranges, all three components are provided with water and convection based
cooling systems. Furthermore, to attain a high power density, the motor rotor shafts
are flooded with cooling water for heat discharge. Positive Temperature Coefficient
(PTC) heaters are used in cold weather conditions mainly for cabin heating and to
maintain the nominal battery temperature.

1.2 Operational Strategies

The research to date has not been able to establish a convincing analytical framework
that supports the conceptional design of All-Wheel-Drive (AWD) BEVs. One of the
main reasons is that the possibilities and limitations of operational strategies for
electric powertrains are insufficiently considered in explorative studies and during
design decisions. Operational strategies refer to supervisory controls, component
controls, and software solutions for energy management, thermal management, and
motion control. All three strategies together determine how the associated components
should operate and interact in order to satisfy the control or motion task in the safest,
the most convenient, and efficient way. Software and control approaches with potential
economic savings are particularly appealing, since these do not require any structural
or mechanical changes.
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A typical application for energy management is the battery management system
which, for example, observes the battery’s state of charge [40]. Based on all state
observations of the battery, measures are taken to guarantee a safe and optimal
operation, e. g. in terms of cycle life [188]. Energy management is thus also associated
with control functions that regulate and coordinate the power flow of all involved
energy sources. Thermal management encompasses all control tasks in association
with heating, air conditioning, and cooling [200]. Finally, motion control determines
an optimal driving strategy while considering dynamic, driveability, and economic
aspects. Subsequently this strategy is implemented by applying and coordinating the
corresponding control actions for all available actuators. Motion contro strategies are
sometimes also referred to as energy management strategies. This work focuses on
energy management strategies of EDMs as well as on driving strategies for motion
control of AWD BEVs. The guiding research questions are:

• How can energy management strategies improve the efficiency of BEVs in real
world driving conditions and how do they differ from strategies developed for
Hybrid EVs (HEVs) and conventional ICE vehicles?

• What are the main factors that influence the electromechanical energy conversion
and how can meaningful representations of these be derived in a model-based
framework that supports the design of energy management strategies and power-
train concepts in a computationally efficient manner?

1.3 State-of-The-Art Review

The following synopsis of literature is restricted to EV motion control strategies
that are capable of improving the energy efficiency of the electric powertrain. Since
special emphasis is placed on the experimental evaluation of such strategies, modeling
approaches of EDMs are reviewed with the intention to derive an accurate system
representation of the investigated BEV.

1.3.1 Economic Driving

An important step along the energy conversion path of any vehicle is the wheel-to-
distance conversion of the mechanical energy, stored in the form of momentum, into
kinetic energy of the speed profile and the potential energy dictated by the road
topography [206]. This conversion is accompanied with a substantial amount of energy
losses and is mainly influenced by weight, aerodynamic drag, and rolling friction as well
as the driving style and traffic conditions. Contrary to improvements anticipated for
the tank-to-wheel path, the optimal wheel-to-distance conversion aims at a maximum
utilization of the available energy at the wheels, independent of the powertrain type.
Corresponding methods can be applied to all kinds of vehicles including trains [32],
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buses [244], and FCEV [3]. However, generally, the two problems addressing the
tank-to-wheel and wheel-to-distance efficiency are not decoupled so that the energy
management of the powertrain has a strong influence on the optimal driving strategy.
This is demonstrated by the similarities in the cases of a pulse-and-glide strategy for
a gasoline engine [80, 130] and the state of charge strategy for a PHEV [87, 88].

Much of the literature on energy efficiency focuses particularly on
Economic Driving (ED) strategies that predominantly act on the vehicle’s speed
and acceleration. An overview on modeling approaches and solution methods for ED
is presented in [205, 206]. Based on the original findings of [207], the authors propose
a classification of ED strategies as systems that offer advice: before departure, e. g.
by proposing the most energy efficient route [149, 150], during the trip supported by
advanced driver-assistance systems, and after arrival through encouraging summaries
and statistics. In this context, advanced driver-assistance systems can be further
classified as systems that provide

• feedback advice based on the historic and current performance, for example by
means of an ED indicator [49],

• feedforward advice based on upcoming events, for example using a haptic accel-
erator pedal [144],

• and means for adaptive or predictive cruise control [129, 230].

The former two systems are often based on heuristic rules that are inspired by the best
practice of an energy-efficient driver, who is also referred to as hypermiler. Recent
methods for adaptive and predictive cruise control, on the other hand, are designed in
a more general framework, in which ED is regarded as an optimal control problem [15].
The discipline of optimal control looks at the optimization of a dynamic process that
is described by a system of Ordinary Differential Equations (ODEs) or differential
algebraic equations. To this end an objective function is defined, which in the case
of ED is equivalent to the energy consumption over a pre-defined time or distance
horizon. Typically, the consumption is expressed in terms of l/100km in the case of
an ICE vehicle and kWh/100km in the case of a BEV. The aim of the optimization is
to minimize an objective, where the arguments for minimization are control inputs
that are applied to the vehicle. The control inputs for most powertrains can be chosen
to be the traction and braking force or equivalent representations of these. Additional
controls and degrees of freedom for HEVs and PHEVs, for example, are the selected
gear [86] and the torque split ratio between the engine and the electric motor [110].
The optimized control policies and resulting vehicle states have to comply with the
state dynamics, which might be influenced and constrained by traffic conditions [5,
145], and at the same time are limited by input and state constraints that are imposed
by the technological boundaries of the powertrain.
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Frequently adopted solution methods of optimal control problems in automotive
applications are based on the indirect method of Pontryagin’s Maximum Principle
(PMP) as well as Dynamic Programming (DP) [70, 206]. PMP methods transform
the optimal control problem into a multi-point boundary value problem via the
necessary conditions of optimality. For special cases, including the ED problems in
[80, 108, 163, 205], an analytical solution can be derived for the control inputs of the
powertrain. These examples assume that the driving scenario over the optimization
horizon is known. The indirect method of PMP yields highly accurate solutions for
these scenarios and is well suited for theoretical analyses of the problem structure, from
which rule-based strategies can be derived [93, 170, 243]. A considerable disadvantage
of indirect methods is the laborious derivation of the necessary conditions of optimality.
These conditions must be determined for every problem instance and driving scenario
and may require several different special cases depending on the state and input
constraints. Likely for such reasons, DP is the most common method, primarily
employed for HEVs and PHEVs [134, 174, 177, 232]. DP methods are based on
Bellman’s Principle of optimality [13]. In a discrete form, in which both the control
inputs and system states are discretized, they have the great advantage of finding a
global solution for the discretized system regardless of the chosen model complexity,
yet, they suffer from the curse of dimensionality. This means that a slight increase
in the problem’s dimension, for example, by using a more sophisticated model of the
powertrain with multiple states or by considering more degrees of freedom, induces
an unacceptable growth in the required computational time. A method that does
not require any prior knowledge of the driving cycle and that is computationally less
demanding, yet can combine the merits of both DP and PMP, is known in the HEV
literature as the equivalent consumption minimization strategy [162, 165, 208]. This
method presents a systematic approach for an optimized coordination of both power
sources via the electric motor and the combustion engine, using the definition of an
equivalent fuel consumption. A more extensive overview and thorough review on
optimized ED and energy management strategies for HEVs and PHEVs is found in
[17, 88].

Despite the extensive literature on ED, only a few studies validate the proposed
driving and energy management strategies using experiments with real world driving
conditions. In [85], an online-capable discrete DP method is implemented for an ICE
truck, which on highways achieves a fuel saving of 6 % at the cost of a 2 % longer
travel time. An example using ICE passenger cars, is presented in [185], where the fuel
consumption is improved by 10 % while the average speed is maintained. Savings of up
to 3 % compared to a heuristic approach are demonstrated on a chassis dynamometer
for optimized energy management of a HEV truck [234]. However, the traveling time
is not examined. Focusing on BEVs, a discrete DP method is implemented for a
Tesla Roadster, which reduced the energy consumption by more than 6 % without any
notable impact on the traveling time [185]. A number of experiments are conducted
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in urban areas by [70, 71, 189] using a battery electric Smart ForTwo. The authors
achieve an efficiency improvement of 6 % with a 1 % increase of traveling time. This
is done by optimizing the speed trajectory as well as an adaptive cruise control that
follows the traffic-dictated speed.

1.3.2 Optimal Torque Distribution

While there is a large body of literature on ED and energy management for HEVs and
PHEVs, very few studies investigate optimal control strategies that are particularly
suited for BEVs. The coordination of the engine and the electric motor of hybrid
vehicles, as well as the degrees of freedom that are presented by the multi-speed
transmission and the possibility to regenerate energy during braking, are the factors
that make the ED control problem challenging. This high number of degrees of
freedom represent a promising opportunity to improve the overall efficiency. A BEV
on the other hand, only has a single power source, typically adopts a single-speed
transmission, and, therefore, offers less savings potential from a control perspective.
However, AWD concepts allow for a variable distribution of the traction and braking
torque between front and rear axle. Since both axles are involved in the energy
conversion process there is an increased regenerative braking potential. Furthermore,
with only three components in the EDM energy conversion chain (power inverter,
motor, transmission), the efficiency can be improved by a favorable shift of the motor’s
operating points. In an extensive simulative study [8], it is demonstrated that an
AWD BEV with two motors and longitudinal torque distribution can be the most
energy efficient concept for a sport utility BEV. For this powertrain configuration,
an optimization-based torque distribution strategy is proposed, which aims for the
minimum power demand in every operating point using the front and rear axle torque
as the arguments for minimization. To this end, power losses are represented through
speed and torque dependent efficiency maps. Optimized design explorations for two
motor concepts with integrated power distribution are presented in [45, 95]. Both
methods approximate power losses along the design process using quadratic functions,
however, [45] derives these based on more sophisticated component models. Following
the model-based approach, the authors show that an optimal power distribution
between differently sized motors can improve the overall efficiency by 0.7 %, compared
to a single driven axle using one motor. However, as other studies indicate, the full
potential is not yet fully exploited.

With this in mind, research has turned towards energy-efficient operations using torque
distribution and control allocation methods over the past decade. A comprehensive
overview of corresponding strategies is presented in the state-of-the art review in [209].
Contributions are arranged in chronological order and categorized according to the
powertrain configuration, the considered loss processes, the modeling assumptions
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of the vehicle dynamics, and validation means, i.e simulation and experiments. The
vast majority of investigations focus on configurations with four motors and, thus, in
addition to the flow of energy, are mainly concerned with aspects related to driving
dynamics including longitudinal and lateral tire slip [171] and direct yaw moment
control [123, 172, 173]. In [53], the authors look at a case study featuring a BEV Range
Rover Evoque, in which all four EDMs have the same characteristics. For this specific
powertrain configuration, it is shown that the lateral torque distribution is optimal
when both front and rear axle motors are operated in either traction or regeneration.
Furthermore, in the case of small torque demands, drive via a single axle is optimal,
whereas an even longitudinal distribution is the most energy efficient solution for high
torque demands. If only a single-axle is energized, the front motors are selected due
to safety aspects and the tendency to oversteer. Based on these findings, an optimal
switching point between these two modes of operation is derived as a function of the
vehicle speed. Adopting this switching characteristic, energy savings of up to 3 %
compared to a single powered axle are demonstrated in experiments of the Artimes
Road driving cycle with a constant 8 % uphill slope.

As a result of implementing an ED strategy, which exhibits only moderate acceleration
values, lateral driving dynamics and losses due to tire slip can be neglected. Neverthe-
less, in an optimized torque distribution problem formulation, a road curvature can
enforce limitations due to the non-negligible centrifugal acceleration [185]. A notable
example of an optimization based distribution strategy for a two-PMSM concept with
dog clutches that solely considers the tank-to-wheel conversion is analyzed in [115].
The clutches are used to disengage the motors in order to reduce idling losses. Instead
of using the front and rear axle torque as optimization arguments, the control is
reduced to a single input of the distribution factor, also referred to as torque split. The
optimization problem is solved offline for every possible torque and speed combination
and the solution is represented as a distribution factor map. Moreover, an optimal
control problem is introduced, which considers a simple dynamic model of the clutches
and penalizes a frequent engaging and disengaging of these. This problem is solved
by a DP method and requires a minimum prediction horizon of three seconds. A
simulative study indicates an energy saving potential of 6.5 %.

1.3.3 Electric Drive Modeling and Control

All of the mentioned torque distribution strategies evaluate losses of the powertrain
components using polynomial approximations or efficiency maps and neglect dynamic
effects and physical constraints of the BEV powertrain. A model-based approach,
which acts on all physical domains along the energy conversion chain aims for a better
understanding of how loss processes influence the overall efficiency in dynamic driving
scenarios. Following this approach, it is essential also to consider the control strategies
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of the powertrain components, since these may have a substantial impact on the
overall performance. In particular, it is worthwhile analyzing the electromechanical
energy conversion of the motor, which can be influenced according to the amount of
energy that is stored in the magnetic field which couples the electrical powertrain and
the mechanical drivetrain.

Modeling approaches that simulate both the transient and steady state behavior of a
variable-speed electric motors essentially differ in whether they assume sinusoidally or
non-sinusoidally distributed windings and whether they account for detailed magnetic
properties and design features (for example hysteresis losses or dynamic air-gap
variations) or consider linear magnetic circuits and simplified symmetric designs (such
as a uniform air gap). While simplified assumptions are valid approximations in
most cases and establish the foundation of models for control design [159, 183, 203]
and consequently for this study, they lead to less accurate approximations of voltage
and current wave forms required, for example, during design processes or machine
diagnostics. Technological advances and the exponential progress in computational
power have motivated the development of electromagnetic Finite Element Analysis
(FEA) methods used, for example, in the software package Motor-CAD [153]. However,
FEA has the disadvantage of long calculation times. A computationally less intense
approach for motor analysis, which accounts for arbitrary windings and unbalanced
operation conditions, is known as Winding Function Theory (WFT). WFT was
established by [224] and modified in [160] and [22]. A detailed description of the WFT
concept and an exemplary derivation of a multiple coupled circuit model is presented
in [138]. A third possibility for motor analysis is the Magnetic Equivalent Circuit
(MEC) approach. This has a reduced modeling complexity compared to FEA and an
enhanced accuracy compared to the WFT approach [139, 217]. Instead of deriving
circuit models with equivalent electrical parameters, as done in the WFT aproach, the
MEC concept is based on magnetic circuit models, which allow for a more accurate
and straightforward consideration of local saturation, leakage, and iron losses. An
extensive overview and comparison of different modeling approaches is found in [248].
All of these modeling approaches have the disadvantage of long computation times
due to extremely demanding time constants of the current dynamics compared to the
longitudinal dynamics of the vehicle.

Equivalent circuit models of electric motors which are derived from the WFT, compute
the angular rotor speed and the electromagnetic torque based on the motors’ phase
voltage inputs. However, range and efficiency analyses of electric vehicles are based on
load cycles that are described by speed and torque profiles. Thus, motor controls have
to be considered in the modeling process in order to establish the causality between
the inputs of the electrical motor and the load cycle of a driving scenario. The most
common control algorithms for IMs and PMSMs are Field Oriented Control (FOC),
sometimes also referred to as vector control, and Direct Torque Control (DTC). The
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concept of FOC, originally pioneered by [18, 82], is at present a well established control
method widely used in industrial applications thanks to practical implementations
and advancements introduced by [73, 105, 124, 125] and many others. An extensive
list of publications has been reported on the topic of FOC including the textbooks
[126, 183, 203]. In this work, the concept of FOC will be discussed in more detail
which is why the main aspects and differences of DTC are now briefly described.
One of the first contributions on DTC was published by [48]. Both schemes FOC
and DTC compute the control actions, i. e. switching instances of the inverter’s
semiconductors, based on the error of the measured or estimated torque and flux
(rotor flux for FOC and stator flux for DTC). However, DTC does not require any
means for current control, coordinate transformations, or any type of Pulse Width
Modulation (PWM) [92]. Instead, it schedules the switching instances with the support
of hysteresis comparators and optimal switching tables [76, 154]. For this reason, the
classical DTC is readily implemented on an embedded system and does not put any
high demands on the control hardware. The lack of direct current control [28], however,
makes FOC more attractive for BEV applications. By analyzing the similarities of
both control approaches, [229] proposed a method using current hysteresis comparators
to combine the merits of both FOC and DTC.

Regardless of the chosen motor control, the magnetic flux can be controlled indepen-
dently of the torque or speed. This additional degree of freedom is exploited in
a Loss Minimizing Technique (LMT) to find an optimal balance between different
loss processes that act on the electric and magnetic domain of the motor [11]. IMs
especially benefit from a LMT as demonstrated in the comperative study of IMs and
PMSMs in BEV applications [25]. Corresponding strategies for PMSMs are commonly
referred to as Maximum Torque Per Ampere (MTPA) [181, 222]. Nonlinear model
predictive control schemes for PMSMs are presented in [58, 59]. Though modern
power electronic devices are generally assumed to achieve high efficiencies, these
values are only reached in a very specific torque and speed region. If BEVs are
operated in a partial load area far below the maximum power rating, the efficiency
is significantly reduced. To guarantee an energy-efficient operation over the entire
torque and speed range, search-based LMTs try to converge to a minimum power loss
by means of a dedicated feedback loop [79, 228], wheres model-based LMTs strive
for analytical expressions of the optimal flux level [131, 148]. A nonlinear model
predictive control scheme and optimal setpoint computation for IMs is proposed in [60].

As will be shown in this work, IM analyses and control designs of LMTs can gain
advantages from a system theoretic perspective that is based on the concept of
differential flatness. The theory of differential flatness is built on concepts of differential
geometry and has been successfully established in the field of nonlinear system analyses
and control design [67, 128]. In [33], it was demonstrated that the IM is linearizable
by a dynamic state feedback which is essentially equivalent to a proof of differential
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flatness [66]. Based on these findings, it was originally shown by [140, 141] and
confirmed by [47] that the angle of the rotor flux orientation and rotor angle form
a flat output. All electrical and magnetic states of the motor can be represented
as analytical functions of the flat output and its successive time derivatives. These
functions are referred to as state- and input-parametrization. One disadvantage of
the variable choice in [140, 141] is the dependency of the derived state- and input-
parametrization on the load torque, which is assumed to be known. However, due
to complex friction effects of the drivetrain and tires as well as unpredictable road
conditions, the load torque and its time derivatives are prone to high uncertainties.
Furthermore, when it comes to the problem of range and efficiency analyses, the rotor
flux orientation angle is not an intuitive choice as it is neither directly connected to
the FOC task of the IM nor to the motion control task of the vehicle.

1.4 Goals and Contributions of this Dissertation

In this study a model-based framework is developed that accurately represents the
energy flow of the electrical powertrian of an AWD BEV in a variety of stationary
and dynamic operating conditions. Contrary to characteristic loss maps that are
typically used in analyses of energy management strategies for electric powertrains,
the introduced framework adopts equivalent circuit models of the IM and Voltage
Source Inverter (VSI). These are defined only by a few electrical parameters, of which
VSI parameters are easily obtained form the manufacturers data-sheets. Furthermore,
identification procedures of IM model parameters have reached a maturity level with
considerably lower costs and time-expenditure than empirically determined loss or
efficiency maps. These require extensive measurements over a wide torque and speed
range, which have to be repeated at different temperatures and battery voltage levels.
A further advantage of the model-based approach is a straight forward consideration
of the temperature and battery voltage dependencies. For example, temperature
dependent variations of losses can be considered by adjusting the resistive parameters
of the IM and VSI. The voltage dependency of the motors maximum torque rating
is inherently represented by the voltage equations of the IM. Furthermore, since
meaningful IM circuit parameters are obtained through FEA, analyses of operational
strategies can be performed in an early development phase of a BEV.
In order to raise the acceptance of the proposed model-based framework within the
automotive field, it is important to evaluate its accuracy and highlight its limitations.
The component models of the electric powertrain are thus validated by using the case
study of a Mercedes-Benz EQC prototype. In the scope of this study modeling and
analysis processes of the EQC powertrain concept are considered. Nevertheless, due
to the modular structure of the component models, the framework can be readily
generalized to incorporate other concepts with PMSMs, multi-speed gears, and clutches.
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Despite the many advantages of a model based approach, previous studies, including
the reviewed studies on ED and torque distribution, have struggled to implement
sophisticated models of electric powertrain components mainly due to the associated
time scales. While the vehicle’s longitudinal dynamics are governed by time constants
in the range of seconds, current transients of the motor occur in a few milliseconds
and are therefore several orders of magnitude faster than the frequencies that appear
in a typical driving cycle. In [196, 197], it is demonstrated how these voltage and
current harmonics can have an impact on the performance and design of an electric
powertrain. The main difficulty that arises with these wide spread time scales is the
computational burden associated with the numerical solution of the underlying ODEs.
A unique characteristic and one of the most significant contributions of this study is the
representation of IM system dynamics as a new differential flat system that overcomes
the previously discussed disadvantages of existing approaches. By exploiting the
positive structural properties and, in particular, the canonical form of this equivalent
system, the IM model is reformulated as a set of equivalent linear differential equations.
In other words, the canonical form can be interpreted as a chain of integrators in
which system dynamics are described by straightforward differentiation of the flat
output. Consequently, if the flat output trajectory is known, all states and inputs
are also known by algebraic relations of the state- and input-parametrization. The
central benefit of this equivalent representation is that IM dynamics in its canonical
form can be considered as "less dynamic" compared to the IM current dynamics and
is therefore better suited for simulation and optimal control design. Based on this
flat system representation and a newly derived average value model of the VSI, it
is possbile to compute BEV losses online, using the vehicle’s Motor Control Unit
(MCU). Moreover, as noted in [176], an inversion-based approach such as the flat
system enables a computationally efficient solution for optimal control.

For these reasons the differential flat model framework is well suited for the investigation
and systematic design of ED strategies. Based on this framework, energy management
strategies are formulated as optimal control problems and analyzed on the component
level of the IM and a centralized BEV system level. The degrees of freedom used to
improve the powertrain’s efficiency are

• the magnetic flux of the electric motor,

• the longitudinal torque distribution,

• and the vehicle’s acceleration and speed.

Contrary to DP and PMP methods that are widely adopted in automotive applications,
this work introduces a direct multiple shooting method to solve the optimal control
problems in a Nonlinear Model Predictive Control (NMPC) fashion [50, 51]. Direct
methods, including collocation methods [195, 227], single shooting methods, and
multiple shooting methods [19, 112], are based on a discretization of the infinite-
dimensional optimal control problem into a finite-dimensional nonlinear optimization.
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Numerical solution methods for nonlinear optimization have been considerably im-
proved in terms of reliablity and computational speed due to algorithmic developments,
for example, of Sequential Quadratic Programming (SQP) and Interior Point (IP)
methods [158].

Following this approach the central role of the magnetic field is thoroughly investigated
in the context of ED and energy management strategies for BEVs. The findings gained
from the analytical perspective of the differential flat system representation allows for
a more profound understanding of how energy conversion is influenced and improved
by motion control strategies. Only through this representation it is possible to derive
optimal control formulations on a component and vehicle system level that accounts
for all BEV specific boundary conditions and operational degrees of freedom and can
still be solved in a reasonable amount of time with sufficient accuracy.

1.5 Thesis Overview

This work is laid out in three main chapters. The general structure is illustrated
in Figure 1.4. Chapter 2 lays the foundation of the model-based framework and
introduces the component models for the BEV powertrain. Emphasis is placed on the
components with the fastest dynamics, which are the IM and the VSI. Together both
components can be responsible for approximately 18 %−40 % of associated powertrain
losses. The remaining losses are attributed to the drivetrain, the auxiliaries and,
with a comparatively small proportion, to internal battery losses. Models of these
components are presented, which represent the essential physical interactions along
the electromechanical energy conversion chain. Eventually all component models are
integrated in a system model of the investigated experimental vehicle and validated
by an extensive series of experimental tests.

The BEV system model expresses the relation of how a voltage input influences the
vehicle’s motion. However, if the driver steps on or releases the accelerator or break
pedal, the electrical powertrain acts as a torque transducer where the wheel torque
almost instantaneously follows the commanded torque. This causality is established
based on appropriate controls of the electric drive. The impact of IM controls on
the vehicle’s energy management and particularly the influence of the magnetic
field as the central link of the electrical powertrain and mechanical drivetrain are
discussed in Chapter 3. With the key objective of an optimized energy management,
a loss minimizing FOC strategy is presented in an algorithmic form that can be
easily integrated on embedded systems and MCUs. Based on a new definition of a
flat output and the resulting equivalent system representation, structural insights
of IM dynamics are provided from which both FOC or DTC schemes may benefit.
Furthermore, extensions of these conventional control methods are investigated that
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exploit the properties of the inverse IM model, which is given by the differential
flat state- and input-parametrization. Based on the developed algorithm and the
inverse model, advanced optimal control strategies are proposed to further improve
the component’s efficiency and dynamic performance.

Finally in Chapter 4, electric drive controls are integrated into a differential flat
model of the BEV powertrain. Within a field study, model-based range analyses are
conducted in order to assess the validity of the model, improve the understanding of loss
processes in real world driving conditions and to identify economic saving potentials.
Built on these findings, an optimized torque allocation strategy is presented in an
algorithmic form. Though the control algorithm solely exploits the torque distribution,
it accounts for the physical limitations that are imposed by the FOC of the IM. A
sequence of experimental tests demonstrate that a re-distribution of traction and
braking energy can achieve considerable energy savings compared to a single axle
operation. Finally, all degrees of freedom presented by a variable flux level, torque
distribution, and driving style are controlled in a centralized NMPC ED strategy,
which in a simulative study indicates significant energy saving potentials. A conclusive
summary and outlook are provided in Chapter 5.
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Figure 1.4: Model predictive energy management for induction motor drives and
all-wheel-drive battery electric vehicles.
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This chapter introduces the modeling assumptions for the components of the inves-
tigated BEV powertrain shown in Figure 2.1. Most of the attention is placed on
the electrical domain and in particular on the IM and VSI. The central aim of the
modeling approach is to accurately simulate the electrical states and related loss
processes in order to provide realistic and conclusive evaluations of the powertrain’s
efficiency and the electric range.

Following the direction of energy conversion for motion control, Section 2.1 starts with
modeling the power electronic circuit of the VSI. The bidirectional power transfer
between the battery and the IM requires the supply of a balanced three-phase voltage
set. The power flow is controlled by a designated PWM strategy, which schedules
the switching instances of the individual semi-conductor switches of the half-bridge
three-phase inverter. Corresponding power electronics circuit analyses are either
conducted in the time- or frequency-domain [21] and, usually, both are required to
fully understand the system behavior. Simulations in the time-domain often rely on
behavioral based models [29], which, for example, are used in the circuit-oriented
software package PLECS [4, 179]. The major difficulty of time-domain analyses is
the discrete nature of semi-conductor switching. It is therefore necessary to know
exactly when the switching has occurred and how the circuit topology has changed.
By combining both discrete switching and continuous circuit components, a VSI
classifies as a hybrid system [142]. While avoiding the complexity of a time-domain
simulation that comes with switching frequencies of a magnitude in the order of 10 kHz,
Section 2.1 derives analytical expressions for VSI losses in the frequency-domain based
on a novel waveform model and a double Fourier integral analysis.

Section 2.2 continues with the electromechanical energy conversion of the IM. The
derivation of the well known dq equivalent cirquit model of a squirrel-cage IM [119,
120] establishes expressions for torque in terms of the electrical machine variables, i. e.
the Alternating Current (AC) voltages and currents. A short overview of the reference
frame and the turns ratio transformation is presented, as these are at the core of
motor analyses. To enable an accurate representation of motor losses the dq-model is
extended by a basic loss model for frequency dependent magnet hysteresis losses and
eddy currents. While the VSI model is fully parameterized based on information that
is typically provided in technical data sheets, resistive and inductive parameters of
the IM circuit model have to be identified from FEA or test procedures. A review
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Figure 2.1: Electric powertrain of an all-wheel-drive battery electric vehicle.

of parameter estimation methods for online and offline identification is presented
for a simple adaptation in vehicle applications. Offline methods require special test
procedures and measurement equipment, whereas online methods have the potential to
run on the MCU of the BEV during normal operation. An overview on identification
methods with numerous references to related publications is found in [223]. In addition
to these standard methods, a novel in-vehicle identification procedure is introduced
that does not require any additional test equipment and only relies on information
that is available on the vehicle’s communication bus system.

The vehicle’s motion in response to the wheel torque is described by a longitudinal
dynamics model. The causality between the wheel torque and the electromechanical
torque of the IM is outlined in Section 2.3. With the main focus on the electrical
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powertrain, only the main influencing loss processes of the drivetrain are considered.
These primarily attribute to the mechanical brake and the amount of energy that can
be regenerated via the IM and also to friction losses of the transmission gear. Both
are approximated through empirical models.

Arriving at the central model of this study, all three component models discussed
so far are joined to a mathematical description of the EDM system in Section 2.4.
Interactions of internal system states as well as the voltage input and wheel torque
output relation are illustrated in a comprehensive block diagram. The influence of the
battery supply voltage, which has not yet been considered, is discussed in Section 2.5.
Finally, the accuracy of the EDM and battery model are evaluated in an experimental
validation in Section 2.6. A conclusive model summary is provided in Section 2.7.

2.1 Voltage Source Inverter

A VSI is composed of three half-bridge, single-phase inverters, for which, each single
half-bridge is assumed to connect two ideal transistors and inverse conduction diodes
as shown in Figure 2.2 [21, 56]. The most common switching device in almost all
commercially available BEV drives is the IGBT [186]. However, recent advances in the
field of silicon carbide unipolar technologies are expected to improve the performance
and efficiency of next-generation power semi-conductors [101]. Exemplary voltage
characteristics uTr and uD, as well as switching energies Eon,off and Erec of a transistor
and diode are shown in Figure 2.2 as a function of the conduction current. These
characteristics are usually provided in accompanying data-sheets.

2.1.1 Pulse Width Modulation
The power flow to an electric drive is determined by the amplitude and frequency of
its phase voltage. Both are controlled by means of a PWM method that schedules
the switching instants of each individual switch so that the fundamental volt-second
average of the output voltage matches the fundamental of a reference waveform.
Various PWM methods show significant differences in terms of the attainable voltage
range and harmonic distortion [83, 92]. An intuitive way to explain PWM methods
and VSI loss dependencies, is the triangular intersection method and waveform model
depicted in Figure 2.3 [84, 202]. A PWM method can be viewed as a low level control
that is governed by the supervisory control of the electric drive through the command
of a sinusoidal voltage request

uas,n = Mi cos (ω0t) , (2.1)
where

Mi = min
{

π

2apwm

û

udc
, 1
}

, (2.2)
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2 Electric Powertrain Modeling

Figure 2.2: Voltage source inverter circuit model and IGBT characteristics.

is the modulation index. The modulation index is a function of the desired phase
voltage peak value û, the terminal voltage udc and the maximum attainable voltage
range of the PWM method denoted by apwm, which takes on values of π/4 for
sinusoidal PWM and reaches its maximum of one during a six-step modulation.
The reference wave (2.1) is modulated by the injection of a so called zero-sequence
system. As discussed in [84] and listed in the Appendix A.2, all carrier-based PWM
methods can be distinguished by a specific zero-sequence signal uzss. Due to the
digital implementation process of PWM, the resulting reference signal is sampled
and held constant, which introduces a phase delay. This process is referred to as
regular sampling. Finally, the sampled waveform is compared against a high frequency
triangular carrier wave to obtain the balanced set of switching or gating signals of the
upper switch

sa, sb, sc ∈ {0, 1} . (2.3)
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2.1 Voltage Source Inverter

Figure 2.3: Pulse width modulation triangle intersection method and waveform model
for regular sampled space vector PWM.
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Zero represents a blocking-state and one represents an on-state in which the particular
phase-leg potential is connected to the positive Direct Current (DC) rail. To prevent
a short circuit, the lower switch is controlled by the complement s̄{a,b,c} = 1 − s{a,b,c}.

2.1.2 Conduction & Switching Losses
The two predominant loss processes in semi-conductor devices are attributed to
switching and on-state losses of the transistors and diodes [116, 117]. As will be shown
shortly, both are functions of the switched load current, the power factor angle ϕ, and
the PWM method [116]. Since an electric drive essentially acts as an inductive load,
it is assumed that the resulting phase current

ias = î cos (ω0t + ϕ) , (2.4)

is sinusoidal and shifts in phase by the power factor angle ϕ. During the positive
half-period of (2.4), the upper transistor is energized only if the switch is in an on-state.
Whereas, during the negative half-period, the upper diode is energized if the switch is
in an on-state. Consequently, the transistor and diode current for the upper switch
are

iTr,u =
{

ias sa , ias ≥ 0
0 , ias < 0

, iD,u =
{

0 , ias ≥ 0
ias sa , ias < 0

. (2.5)

The current values for the lower switch, iTr,l and iD,l, are derived accordingly using
the complement of the switching signal. Considering the markedly different voltage
characteristics and switching energies of transistor and diode, it follows that VSI losses
can be expressed as a function of the switching signal, the switching frequency fc, the
power factor angle ϕ, and the Root Mean Square (RMS) transistor and diode currents
according to

Pl,vsi =3
2

(
uTr (iTr,u) iTr,u + uTr (iTr,l) iTr,l + uD (iD,u) iD,u + uD (iD,l) iD,l + (2.6)

[Eon,off (iTr,u) + Eon,off (iTr,l) + Erec (iD,u) + Erec (iD,l)] fc

)
.

The effect of the PWM method contribute to the discrete nature of the switching
signals (2.3) which result in unwanted harmonic components and resulting harmonic
distortions of the switched load current iassa. These harmonic distortions can be
quantified and analyzed by means of the Harmonic Distortion Function (HDF) and
the Switching Loss Function (SLF) [116, 117]. The HDF quantifies the harmonic
distortion, which results from sub-harmonic stimulation, i. e. the voltage and current
waveform quality, and therefore is a measure of harmonic copper loss. The SLF is
used to compare switching losses of various PWM methods. Both characteristics HDF
and SLF are well suited to compare different PWM strategies and are typically used
to evaluate the harmonic performance.
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2.1 Voltage Source Inverter

2.1.3 Double Fourier Analysis
An analytic framework to analyze the harmonic performance of a particular PWM
implementation in a more general context was presented in [191]. Also, based on
the findings of [143] and [91], it is shown how the switched current is computed in
the frequency domain by means of a double Fourier integral analysis. Following this
analysis process, a switching signal is assumed to be a double variable controlled
waveform sa (x, y) in which time variation is determined by two independent time
variables, the modulation carrier wave x and the low frequency reference wave y

x = 2πfct, y = ω0t . (2.7)

In the following step, this switching signal is expressed in a double Fourier series
expansion

sa (x, y) = A00

2︸︷︷︸
dc offset

+
∞∑

n=1

(
A0n cos (ny) + B0n sin (ny)

)
︸ ︷︷ ︸

baseband harmonics

+
∞∑

m=1

(
Am0 cos (mx) + Bm0 sin (mx)

)
︸ ︷︷ ︸

carrier harmonics

+

∞∑
m=1

∞∑
n=−∞

(
Amn cos (mx + ny) + Bmn sin (mx + ny)

)
︸ ︷︷ ︸

sideband harmonics

(2.8a)

with Fourier coefficients being defined as

Cmn = Amn − jBmn

2
= 1

(2π)2

π∫
−π

xub∫
xlb

sa (x, y) e−j(mx+ny) d x d y , m, n ∈ Z . (2.8b)

The lower and upper limits, xlb and xub, of the inner integral in (2.8b) are defined as
a function of the PWM method and the modulation index. As shown in Figure 2.4,
these are constructed by means of a so-called unit cell. A unit cell defines constant
regions in the (x, y) plane, whose boundaries constitute a PWM specific contour. This
PWM contour is defined by the projection of the intersections between the carrier
wave and reference voltage uas,n onto the (x, y) plane, as illustrated at the top left of
Figure 2.4 for a single carrier cycle and fundamental period. The switching signal is
obtained from these contours by a periodic continuation of the unit cell in x and y
directions. Both time variables are connected via the carrier ratio

p = 2πfc

ω0
= x

y
, (2.9)

which defines a straight line in the enclosed space of unit cells. The switching signal
results from the projection of this line onto the PWM specific contours of each unit
cell, as seen at the top right of Figure 2.4.

Analytical solutions of the Fourier coefficients for switching signals of typical regular
sampled PWM methods exist and are discussed in great detail by Holmes and Lipo in
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2 Electric Powertrain Modeling

[91] and [90]. A symmetrical, regular sampled Space Vector PWM (SVPWM) is the
most commonly used PWM method. The Fourier coefficients of an even switching
signal sa for this SVPWM are given by Bmn = 0 ∀m, n and

A00 = 1 , A01 = Mi

2
, (2.10a)

Amn = 4
smnπ2

(
π

6
sin
(

[smn + n]π

2

)[
Jn (

√
3smi) + 2 cos

(
nπ

6

)
Jn (smi)

]
+ (2.10b)

ς(0)
n

[
J0 (

√
3smi) − J0 (smi)

]∣∣∣∣
n�=0

+

∞∑
k=1

k �=−n

(
ς(k)

n + k

[
Jk (

√
3smi) + 2 cos

(
[2n + 3k]π

6

)
Jk (smi)

])
+

∞∑
k=1
k �=n

(
ς(−k)
n − k

[
Jk (

√
3smi) + 2 cos

(
[2n − 3k]π

6

)
Jk (smi)

]) )
,

where ς : N→R is

ς(v) = sin
(

[smn + |v|]π
2

)
cos
(

[n + v]
π

2

)
sin
(

[n + v]
π

6

)
, (2.10c)

Jk are Bessel functions of the first kind and order k, and where

smn = m + n
p

, smi = smn

√
3

4
πMi . (2.10d)

The Fourier coefficients of (2.10) for a modulation index of Mi = 0.9 and a carrier
ratio of p = 60, at a vehicle speed close to 50 km/h, are shown in Figure 2.4. They are
divided into baseband harmonic components A0n|

n>0, carrier harmonic components
Am0|

m>0 and sideband harmonic components Amn|
m>0,n∈(−∞,∞), which are located in

the vicinity of the carrier frequencies. Indicated in blue, are overlapping components
that are determined, for example, by the sum of baseband and sideband components.
From Figure 2.4, it is observed that baseband amplitudes drop rapidly for higher
harmonic components. The same applies for sideband components with an increasing
distance from the carrier harmonics. Since the IM acts as an inductive load, the
influence of harmonic components decreases at high frequencies. Therefore, it is
sufficient to only consider the first few baseband components of the switching signal
for loss computations. However at higher vehicle speeds and accordingly decreasing
carrier ratio, the sideband harmonic components near the first carrier frequency move
into the direction of lower frequencies, which leads to more overlapping components in
the baseband. This effect results in a higher harmonic distortion of the phase current
that eventually leads to an increase of VSI losses.
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2.1 Voltage Source Inverter

Figure 2.4: Double Fourier integral analysis and harmonic spectrum of SVPWM.

2.1.4 Average Value Model

To derive an analytical expression for conduction and switching losses (2.6), it is
necessary to obtain an expression of the switched current iassa. Following a similar
approach as in [143], such an expression is derived within the frequency domain based
on the convolution

iassa � �Ias (ω) ∗ Sa (ω) , (2.11)

with

ias � �Ias (ω) = î

2

(
δ (ω − ω0) + δ (ω + ω0)

)
ejϕω/ω0 , (2.12)
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where Sa characterizes the harmonic spectrum of the switching signal, (2.10) defines
an example of this, and δ is the Dirac delta function, which is the identity element of
the convolution operator. Equation (2.11) is equal to

Ias (ω) ∗ Sa (ω) = î

2

(
Sa (ω − ω0) ejϕ +Sa (ω + ω0) e−jϕ

)
, (2.13)

and simply represents the sum of two shifted PWM spectra. After some elaborate
reformulations using trigonometric identities, (2.13) can be transformed back to the
time domain yielding

iassa = î

2

(
A01 cos (ϕ) +

∞∑
n=1

[A0n-1 cos (nω0t + ϕ) − A0n+1 cos (nω0t − ϕ)] + (2.14)

∞∑
m=1

∞∑
n=−∞

[A0n-1 cos ([mp + n] ω0t + ϕ) − A0n+1 cos ([mp + n] ω0t − ϕ)]
)

.

Similar expressions are derived in the same way for the square value of the switched
current and the switched current of the lower switch by exploiting the fact that for
the binary signal

s2
a = sa , s̄a = 1 − sa . (2.15)

Given a closed form solution of the switched current, expressions for transistor and
diode current (2.5) and eventually for (2.6) are readily derived. Considering the use
in powertrain simulations, however, it is undesirable to compute the higher order
components of the switched load current as this consumes essential computational
power. A reasonable trade-off between computational efficiency and model accuracy
is achieved by means of an average value model. Transistor and diode current (2.5)
are thus averaged over one fundamental cycle by employing the time integral over the
positive half period of iTr,u and the time integral over the negative half period of iD,u:

īTr,u = 1
2π

π

2
−ϕ∫

−
π

2
−ϕ

iassa d y , īD,u = 1
2π

3π

2
−ϕ∫

π

2
−ϕ

iassa d y , (2.16)

which eventually leads to

īTr,u = î − īD,l = î

4
A01 cos (ϕ) + Ih,1 (ϕ) , (2.17a)

īD,u = î − īTr,l = î

4
A01 cos (ϕ) + Ih,1 (ϕ + π) , (2.17b)

ī2
Tr,u = î2 − ī2

D,l = î2

8

(
A00 + A02

2
cos (ϕ)

)
+ I2

h (ϕ) , (2.17c)

ī2
D,u = î2 − ī2

Tr,l = î2

8

(
A00 + A02

2
cos (ϕ)

)
+ I2

h (ϕ + π) . (2.17d)
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For the sake of brevity, the harmonic current term Ih,k of order k at an arbitrary
phase angle β is defined as

Ih,k (β) = î

2π

(
∞∑

n=k
χ (n)

[
A0n-k cos (nβ − ϕ) + A0n+k cos (nβ + ϕ)

]
+ (2.17e)

∞∑
m=1

∞∑
n=−∞

χ (mp + n)
[

Amn-k cos ([mp + n]β − ϕ) +

Amn+k cos ([mp + n]β + ϕ)
])

,

the square value I2
h at β is defined as

I2
h (β) = î

4
Ih,2 + î2

4π

(
A01

2
cos (β − ϕ) + A03

2
cos (β + ϕ) + (2.17f)

∞∑
n=1

χ (n) A0n cos (nβ) +

∞∑
m=1

∞∑
n=−∞

χ (mp + n) Amn cos ([mp + n]β)
)

,

and χ : N→Q at index v is defined as

χ (v) = 2
v

sin
(

vπ

2

)
. (2.17g)

Over a wide speed range, a sufficient approximation of the VSI power loss (2.6) is
obtained, using the average value models (2.17) with a finite number of baseband
harmonic components A0n assuming that Amn|

m>0 = 0. If the voltage characteristics
and switching energies of the power semi-conductor device, shown in Figure 2.2, are
approximated by linear functions

uTr = RTr iTr + UTr , (2.18)
uD = RD iTr + UD , (2.19)

Eon,off = E′
on,off iTr , (2.20)

Erec = E′
rec iD , (2.21)

equation (2.6) is further simplified to

Pl,vsi =3
2

(
[RTr + RD] î2 + [RTr − RD] î2

4π
hpwm + (2.22a)

[
UTr + fcE′

on,off
] (

1 + 2
π

)
î +

[UD + fcE′
rec]
(

1 − 2
π

)
î

)
,
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where the influence of the PWM method is modeled by means of the harmonic factor

hpwm =
(

A01 +
(

A03 − 2
3
A01

)
cos (2ϕ) + 2

5
A03 cos (4ϕ) + (2.22b)

∞∑
n=1

χ (n) [cos (nϕ) − cos (nϕ + nπ)] A0n +

∞∑
n=5

χ (n + 2) [cos ([n + 2] ϕ) − cos ([n + 2] (ϕ + π))] A0n +

∞∑
n=5

χ (n − 2) [cos ([n − 2] ϕ) − cos ([n − 2] (ϕ + π))] A0n,

)
.

The defining parameters are the conduction resistance RTr, forward voltage drop UTr,
and variation rate of the turn-on and turn-off switching energy E′

on,off associated with
the transistor as well as the conduction resistance RD, forward voltage drop UD, and
variation rate of the reverse recovery energy associated with the diode. All parameters
are derived from the IGBT characteristics depicted in Figure 2.2. These are typically
provided in the technical specification of the VSI. Equation (2.22) is a function of the
constant switching frequency fc and the fundamental electric frequency ω0, the phase
current peak value î, the power factor angle ϕ, and the baseband harmonic Fourier
coefficients that characterize the PWM method. These in turn are functions of the
switching frequency, the fundamental frequency, and the modulation index, which
itself is a function of the phase voltage (2.1) and terminal voltage. Except for the
terminal voltage, all of these variables are directly linked to the operating points of an
electric motor and are computed with the help of the state space model presented in
the following Section 2.2. The main advantage of the proposed modeling approach
is the explicit computation of the average transistor and diode current (2.17) which
enables a straight forward integration in thermal models to account for the strong
junction-temperature dependency of transistor and diode parameters.

2.2 Induction Motor

BEVs require sophisticated motor designs that aim for a perfect sinusiodal winding
distribution. With the intention of implementing optimal control algorithms, simula-
tion speed is of the utmost importance, which is why the simplified assumptions of a
uniform air gap, a linear magnetic circuit, and concentrated sinusoidally distributed
winding functions are considered to be reasonable for the intended use. All higher
harmonics of the stator winding distribution are thus neglected, so that only the
fundamental component is considered. As a consequence, it is assumed that a sinosoidal
Magneto-Motive-Force (MMF) wave is produced in space. The most commonly known
modeling approach, based on such simplified assumptions, is the dq-model of a squirrel-
cage IM [119], which uses equivalent electrical circuit parameters and is derived from
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2.2 Induction Motor

Figure 2.5: Model of a symmetrical 3-phase 2-pole induction motor.

the 3-phase 2-pole model shown in Figure 2.5 [120, 203]. Windings of this motor are
modeled as coils with identical resistances R{s,r}, leakage self-inductances Ll{s,r}, and
self-inductances Lm{s,r} for either stator (subscript s) or rotor (subscript r). According
to Faraday’s law and Kirchhoff’s voltage law, the line-to-neutral voltages are[

uabc,s

0

]
=
[

Rs 0
0 Rr

][
iabc,s

iabc,r

]
+ d

dt

[
λabc,s

λabc,r

]
, (2.23)

where R{s,r} = diag (R{s,r}, R{s,r}, R{s,r}) ∈ R3×3 is a block diagonal matrix containing
the respective stator or rotor resistances. Within the magnetically coupled circuit,
the flux λabc,{s,r} = (λa{s,r} λb{s,r} λc{s,r}) ∈ R3 linking stator and rotor coils is derived
from Ampère’s circuit law[

λabc,s

λabc,r

]
=
[

Ls Lsr

LT
sr Lr

][
iabc,s

iabc,r

]
, (2.24a)

where the symmetric self inductance matrix is

L{s,r} = LT
{s,r} =

⎡
⎣Ll{s,r} + Lm{s,r} −0.5Lm{s,r} −0.5Lm{s,r}

· Ll{s,r} + Lm{s,r} −0.5Lm{s,r}

· · Ll{s,r} + Lm{s,r}

⎤
⎦ , (2.24b)

and the rotor position dependent mutual inductance matrix is

Lsr (θm) =

⎡
⎣ Lsr cos (θm) Lsr cos

(
θm + 2π

3

)
Lsr cos

(
θm − 2π

3

)
Lsr cos

(
θm − 2π

3

)
Lsr cos (θm) Lsr cos

(
θm + 2π

3

)
Lsr cos

(
θm + 2π

3

)
Lsr cos

(
θm − 2π

3

)
Lsr cos (θm)

⎤
⎦ , (2.24c)
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with Lsr being the mutual inductance between stator and rotor (cf. [120] page 81-83).
The rotor position is determined by the rotor angle θm. Due to the assumption of
a sinusoidal MMF wave, three-phase sets of voltages, currents, and flux linkages in
stationary operation are assumed to be in balanced conditions with equal amplitudes
and mutual 120◦ phase displacement. For example, the line-to-neutral voltages
uabc,s = (uas ubs ucs)T ∈ R3 and stator phase currents iabc,s = (ias ibs ics)T ∈ R3 are
given by

uabc,s =

⎡
⎣ û cos (ω0t)

û cos
(

ω0t − 2π

3

)
û cos
(

ω0t + 2π

3

)
⎤
⎦ , iabc,s =

⎡
⎣ î cos (ω0t + ϕ)

î cos
(

ω0t − 2π

3
+ ϕ
)

î cos
(

ω0t + 2π

3
+ ϕ
)
⎤
⎦ , (2.25)

where ω0 is the fundamental electrical angular frequency, ϕ is the power factor angle,
and û, î are the peak values of the phase voltage and phase current.

The functional principle of an IM with additional poles hardly differs in its essentials
from the 3-phase 2-pole model. Within one electrical period of the fundamental
frequency, the MMF wave only passes through the sector that is spanned by a single
pole pair. Multiple poles may thus be interpreted as a scaling factor and can be
generalized as a 2-pole model by using the definition of the electrical rotor angle and
electric rotor angular frequency

θe = Zpθm , ωe = θ̇e = Zpωm , (2.26)

instead of the rotor angle and rotor frequency ωm = θ̇m. The scaling factor is
determined by the number of pole pairs Zp.

2.2.1 Reference Frame Transformation

In the modeling process of the dq equivalent circuit model, flux linkage and voltage
equations (2.23) and (2.24) are considerably simplified by a change of variables that
is based on what is known as the reference frame theory [120, 204]. Transformations
based on the work of Park [167] and Clarke [34] are both special cases of this general
theory. As shown in Figure 2.6, the basic idea of this transformation is to represent
electric and magnetic variables in a rotating reference frame. The resulting complex-
valued space vector x ∈ C is obtained by employing the transformation for stator
variables

xs = 2
3

(
xas + xbs ej2π/3 +xcs e−j2π/3) e−jα

= xds + jxqs ,
(2.27a)
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Figure 2.6: T-form equivalent circuit model of an induction motor represented in a
rotating dq-reference frame.

and rotor variables

xr = 2
3

(
xar + xbr ej2π/3 +xcr e−j2π/3) e−j(α−θe)

= xdr + jxqr ,
(2.27b)

where the leading factor 2/3 is chosen in such a way that the magnitude of the space
vector |x| is equal to the peak value x̂ of the respective voltage, current, or flux linkage.
The orientation of the reference frame real axis is denoted by α. A space vector may
be thought of as a variable that determines the instantaneous magnitude and angular
position of the peak value of a sinusoidally distributed wave. The wave itself results
from the sinusoidally distributed windings. As done in [120], it is also possible to
represent (2.27) as a real-valued dq0 vector. However, the general formulation of a
complex-valued space vector, introduced by [118], provides a means of expressing the
dq-model in a more compact form. For the inverse transformation as well as the dq0
formulation of (2.27) the reader is referred to the Appendix A.1.

A further simplification of the voltage and flux equations is achieved by relating all
rotor variables to the stator coils according to the appropriate ratio of turns N{s,r} of
stator and rotor coils

λ′
r = Ns

Nr
λr , u′

r = Ns

Nr
ur , i′

r = Nr

Ns
ir , (2.28a)

and by using the following definition

R′
r =
(

Ns

Nr

)2
Rr , L′

lr =
(

Ns

Nr

)2
Llr . (2.28b)
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This transformation is known as turns ratio transformation [159]. For the sake of
simplicity, the prime notation used in (2.28) is dropped in the further course of this
work. If not stated otherwise, rotor variables are always referred to the stator coils.
Altogether, this yields the dq equivalent circuit model shown in Figure 2.6:[

us

0

]
=
[

Rs 0
0 Rr

][
is

ir

]
+

[
jα̇ + d

dt
0

0 j (α̇ − ωe) + d
dt

][
λs

λr

]
, (2.29a)

[
λs

λr

]
=
[

Lls + Lm Lm

Lm Llr + Lm

][
is

ir

]
, (2.29b)

which has the major advantage that the undesirable variation in the mutual impedance
matrix (2.24c) with respect to the rotor position is eliminated in (2.29b). The mutual
inductance Lm in (2.29b) is a result of the reference frame transformation and is equal
to three halves of the stator self-inductance Lms.

2.2.2 State Space Model
In the literature there are various representations of the dq-model (2.29) depending
on the choice of the reference frame and the system states. Throughout this work the
dq-reference frame is used, in which the real or direct axis synchronously rotates with
the rotor flux linkage λr. As a result of this field orientation, the complex component
of the flux linkage is equal to zero at all times λr = λr + j0. The direct axis thereby
moves across the stator at a frequency of

α̇ = Lm

τr

iqs

λr
+ Zpωm , (2.30)

and across the rotor with slip frequency

ωsl = α̇ − ωe = ssl α̇ , (2.31)

where ssl denotes the slip factor and τr is the rotor time constant defined in (2.34).
During steady state operation, the reference frame frequency α̇ is equal to the syn-
chronous frequency ω0. Other commonly used reference frames are summarized in the
Appendix A.1.

By choosing the phase current is and rotor flux linkage λr as independent system
states and the stator phase voltage us as input, voltage and flux equations of the dq
equivalent circuit (2.29) are reformulated as a nonlinear, time varying, input-affine
state space model:

⎡
⎣ i̇ds

i̇qs

λ̇r

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

− ids

τc
+ ωeiqs + Lm

τr

(
i2
qs

λr
+ λr

σLrLs

)
− iqs

τc
− ωeids − Lm

τr

(
iqsids

λr
+ ωeτr

λr

σLrLs

)
−λr

τr
+ Lm

τr
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⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎣

1
σLs

0

0 1
σLs

0 0

⎤
⎥⎥⎦
[

uds

uqs

]
, (2.32)
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where the time dependence is due to the electric rotor speed ωe = θ̇e. The mutual
inductance Lm, stator resistance Rs, rotor resistance Rr, and the stator and rotor
inductances

Ls = Lls + Lm , Lr = Llr + Lm , (2.33)

constitute the defining parameter set and determine the rotor and current time
constant

τr = Lr

Rr
, τc = σLrLs

LrRs + (1 − σ)LsRr
, (2.34)

as well as the leakage coefficient

σ = 1 − L2
m

LrLs
. (2.35)

Space vectors of the stator flux linkage and the rotor phase current are retrieved from
the system states of (2.32) using the following transformation[

λs

ir

]
=

⎡
⎣ σLs

Lm

Lr

−Lm

Lr

1
Lr

⎤
⎦[ is

λr

]
. (2.36)

Equation (2.36) does not depend on the reference frame and can be used to derive
other dynamic system representations of the dq-model.

Physically measurable quantities, which are often used in performance analyses, are
the peak values defined in (2.25), i. e.

î =
√

i2
ds + i2

qs , (2.37)

û =
√

u2
ds + u2

qs , (2.38)

and the power factor angle

ϕ = atan
(

iqs

ids

)
− atan

(
uqs

uds

)
. (2.39)

The electromagnetic rotor torque Te, which is coupled to the electric system via the
magnetic field, is given by

Te = 3
2
Zp

Lm

Lr
λriqs . (2.40)

Equation (2.40) is derived by considering the change of energy stored in the coupling
field or corresponding change of the associated co-energy [120]. Together, with the
resulting rotor speed ωm, the rotor torque defines the operating point and determines
the mechanical power flow from or to the drivetrain

Pm = Te ωm . (2.41)
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The required electrical power through-put in every operating point

Pe,im = 3
2
îû cos (ϕ) = 3

2
(idsuds + iqsuqs) , (2.42)

must obey the law of conservation of energy and, therefore, compensates for the power
loss of stator and rotor resistances and leakage inductances

Pl,im = Pe,im − Pm . (2.43)

With the convention adopted in this work, the energy supplied by the electric source
is considered positive whereas the energy supplied by the drivetrain is negative.
Therefore, both electric and mechanical power are negative when energy is supplied
to the electrical source and positive when energy is supplied to the drivetrain. This
means that Pe,im and Pm are positive during acceleration and coasting and negative
during regenerative braking.

2.2.3 Core Losses & Saturation
For an accurate computation of the electrical power output in vehicle applications,
it is recommended to also consider frequency dependent losses, which attribute to
magnetic hysteresis losses and eddy currents occurring in the ferromagnetic material
of all magnetic fields [113, 218]. Both are generally referred to as core losses Pl,core.
Additional frequency dependent losses are introduced by the skin effect in rotor bars
[20, 136].

Following the simplified loss-model approach presented in [131], it is assumed that
stator and rotor core losses are both proportional to the square of the magnetizing flux
level. Furthermore, hysteresis losses are proportional to the effective electric angular
frequency, whereas eddy current losses are proportional to the square value of the
effective electric angular frequency. In the case of the stator system, this frequency is
equal to ω0 and in the case of the rotor system it is equal to the slip frequency (2.31).
Due to small slip frequencies, the overall core loss predominantly depends on the core
loss in the stator, which is approximated by

Pl,core = 3
2

(ωeLm)2

Rfe
i2
ds . (2.44)

The constant parameter Rfe is the empirically determined core loss resistance [127].
In line with the simplified approach [131], the model structure of (2.29) and (2.32)
remains unchanged and does not require an equivalent iron loss branch placed in
parallel to the magnetizing branch of the equivalent circuit as presented in [127] and
illustrated in Figure 2.7. The simplification is justified by the fact that the magnetizing
current is much larger than the current loss of the parallel iron loss branch. In the
further course of this study, core losses will always be associated with the motor so
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that Pl,im refers to all modeled loss processes of the IM including Pl,core.

All of the above mentioned states and values are affected by magnetic saturation.
Saturation generates additional harmonic components in the air gap flux [31] and
leads to cross-coupling effects [236, 237] of the flux linkags, which are not predicted by
the linear model of (2.29b). In [147], the WFT is used to derive a dynamic model of
an AC motor which, in an experimental setup, has proven to predict saturation effects
accurately. For optimized energy management of BEVs, however, it is undesirable
to operate the IM in its saturation region due to the high stator current and the
associated disproportionately high power loss. The magnetic circuit is thus assumed
to be linear.

2.2.4 Steady State Equations

Analytical expressions that are regularly considered during system analyses of the
upcoming chapters, are based on the steady state model of (2.32), where

(i̇ds i̇qs λ̇r)T = 0 .

These are derived in detail in Section 3.3 with the help of the equivalent flat system
representation. However, for a better overview the steady state equations (superscript
st) are presented below. These are functions of the rotor speed ωm, electromagnetic
torque Te, and the rotor flux λr

ist
ds = λr

Lm
, (2.45a)

ist
qs = 2

3
Lr

Lm

Te

Zpλr
, (2.45b)

ust
ds = 1

Lm

(
Rsλr − σLsLr

(
4
9
Rr
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Zpλ2
r

+ 2
3
Zpωm

)
Te

Zpλr

)
, (2.45c)

ust
qs = 1

Lm

(
LsZpωmλr + 2

3
(LsRr + LrRs)

Te

Zpλr

)
. (2.45d)

The steady state power loss of the IM including core losses is

P st
l,im = 3

2

(
Rs

L2
m

+ (Zpωm)2

Rfe

)
λ2

r + 2
3

(
Rr + L2

r

L2
m

Rs

)
T 2

e

Z2
pλ2

r
. (2.45e)
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The stationary stator current and voltage peak values are given by

îst = 1
Lm

√
λ2

r + 4
9
L2

r
T 2

e

Z2
pλ2

r
, (2.45f)
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(2.45g)

2.2.5 Offline Identification

A standardized offline identification method is the IEEE test procedures for poly-phase
IMs and generators [97]. The standard prescribes the measurement of the per phase
stator resistance Rs by means of a DC [96]. For a symmetrical three-phase motor,
the stator resistance is equal to one-half of the terminal-to-terminal resistance. If
the resistance is known at a specific temperature ϑ0, it can be adjusted to any other
temperature ϑs by

Rs = Rs|ϑ0
(1 + αR (ϑs − ϑ0)) , (2.46)

where αR is the temperature coefficient of the corresponding conduction material
(100 % IACS conductivity copper αR = 4.264 × 10−3 1/K;
aluminum αR = 4.444 × 10−3 1/K). Relation (2.46) also applies to the rotor
resistance Rr.

Given the stator resistance, the T-form equivalent circuit parameters are derived
from voltage and current measurements recorded during two separate test procedures,
known as the locked rotor test and the no-load test. Different methods exist to
determine the input impedance of the motor based on these tests. The discussion
below follows the method presented in [203]. The input impedance ZIM is defined as

ZIM =
u0

s

i0
s

= uαs + juβs

iαs + jiβs
, (2.47)

where uαs, uβs and iαs, iβs are the measured voltage and current values represented in
the stationary reference frame (indicated using the superscript 0). In the case of a
squirrel-cage motor, the rotor is a symmetrical bar winding, which means that the
input impedance dependency on rotor position is negligible.

The locked rotor test is conducted by applying a balanced set of ac-voltages with a
relatively low amplitude and a synchronous frequency of ω0 to the IM while the rotor
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2.2 Induction Motor

Figure 2.7: Simplified equivalent circuit model of the induction motor during the
locked rotor test a) and the no-load test b); T-form equivalent circuit
model in the stationary reference frame c).

is locked in position. For these test conditions, almost the entire electrical input power
compensates for the conduction losses and, therefore, is highly sensitive to the stator
and rotor resistance. Due to the low voltage and correspondingly low flux level, iron
losses are negligible. Based on the slip frequency of ωsl = ω0 and a relatively high
reactance of the main magnetizing path, the equivalent circuit is assumed to be of
the form shown in Figure 2.7 a). Under this assumption, the initial estimation of the
rotor resistance is determined by the real part of the input impedance

Rr = � {ZIM} − Rs . (2.48)

Correspondingly, the sum of the leakage inductance is derived from the imaginary
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part of the input impedance

Lls + Llr = 	 {ZIM}
ω0

. (2.49)

If no design details are available, the ratio of Lls/Llr is assumed to be equal to one.
Other factors may apply for different motor design types (cf. section 5.10.3.2 [97]).

The no-load test makes use of a balanced set of ac-voltages while operating at a
negligible rotor torque and a steady state rotor speed. In this no-load configuration
the input power is predominantly divided into conduction and iron losses as well as
friction losses of the rotor. Since at no load the slip frequency is close to zero, the
equivalent circuit is assumed to be of the form shown in Figure 2.7 b). It is noted,
that due to the low slip frequency the pole pair number is determined by the closest
integer to Zp ≈ ω0/ωm. After (2.47) is computed based on the current and voltage
measurements, the value of the iron core resistance can be obtained with

Rfe = (� {ZIM} − Rs)2 + (	 {ZIM} − ω0Lls)2

� {ZIM} − Rs
, (2.50)

and the mutual inductance is determined as

Lm = (� {ZIM} − Rs)2 + (	 {ZIM} − ω0Lls)2

ω0 (	 {ZIM} − ω0Lls)
. (2.51)

The estimation of the rotor resistance and leakage inductance can be improved using
the identified values for Rs, Rfe, Lls, Lm and the full T-form equivalent circuit model
depicted in Figure 2.7 c). Evaluating (2.47) once again for the current and voltage
measurements of the locked-rotor test, an intermediate impedance is defined according
to

Zint =Rfe
(Rfe − (� {ZIM} − Rs)) (� {ZIM} − Rs) − (	 {ZIM} − ω0Lls)2

(Rfe − (� {ZIM} − Rs))2 + (	 {ZIM} − ω0Lls)2 + (2.52)

jR2
fe

	 {ZIM} − ω0Lls

(Rfe − (� {ZIM} − Rs))2 + (	 {ZIM} − ω0Lls)2 .

Finally, the update of the rotor resistance and leakage inductance yields

Rr = (ω0 − ωm) ω0 � {Zint} L2
m

� {Zint}2 + (ω0Lm − 	 {Zint})2 , (2.53)

Llr = ω0 (ω0Lm − 	 {Zint}) L2
m

� {Zint}2 + (ω0Lm − 	 {Zint})2 − Lm . (2.54)

Various other identification methods exist, that impose special conditions during
the test procedure. For example, [210] identifies parameters from transient tests
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while presupposing conditions on the rotor slip, whereas [30] performs locked rotor
tests in which only one phase is energized. More recently, [121] introduced a genetic
algorithm for an adapted IM model, that accounts for saturation and skin effects. The
maturity level of offline identification methods is particularly evident when looking at
self-commissioning procedures, in which the motor controller automatically determines
all model parameters [106, 194].

2.2.6 Online Identification

The accuracy of the IM model improves if parameter variations are tracked online,
especially because the stator and rotor resistance are temperature dependent (2.46).
However, the number of parameters that can be identified online is restricted. Their
selection depends on the model structure and structural identifiability of the involved
parameter [14]. The two major groups of online identification methods are observer-
based techniques and methods that are based on a Model Reference Adaptive System
(MRAS) [223]. The principle idea of a MRAS is to construct an error signal from a
modeled reference and its corresponding measurement. This error signal can be used
in a feedback loop to correct the parameter estimate so that the reference signal more
closely resembles the observed behavior. Ideally, a signal is chosen that is sensitive
to the parameter. A recent example of a MRAS, used in the context of a BEV, is
presented in [245]. This method identifies the rotor resistance and mutual inductance.
The most prominent technique, however, is the Extended Kalman Filter (EKF) [7,
249]. The EKF, along with other online identification methods, are tested on a small
experimental setup with a 1.5 kW motor in [9]. The identifiablity of the analyzed
methods is evaluated by consulting the Fisher information. This information arises as
a measure of the expected error in a modeled output. A lower bound of the parameter
variance for a given test procedure can be derived from the Fischer information via
the Cramer-Rao inequality [72].

2.2.7 In-Vehicle Identification

The previously discussed methods all require measurements of the rotor speed, the
stator phase voltages, and stator phase currents at high sampling frequencies. However,
it is often the case in practice that the access to internal control functions and
measurements are restricted. Vehicle state on the internal communication bus that
are readily accessible are

• the RMS value of the stator phase current irms = î/
√

2,

• the electric power throughput of the IM Pe,im,

• an accurate estimation of the rotor torque Te,
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• and the rotor speed ωm

at sampling frequencies of 1 kHz. This selection of measurement data at relatively low
sampling frequencies strongly limits the chance of identifying the IM parameters. It is
therefore necessary to make further assumptions on the model structure and to reduce
the number of parameters to be identified.

The first assumption is that the IM is operated in steady state. An experimental
study presented in [193], demonstrates that this assumption is sufficient to accurately
reproduce the observed phase current and power loss for a dynamic driving cycle.
A more detailed discussion of the steady state assumption follows in Section 2.6.2.
Furthermore, the pole pair number Zp and stator resistance Rs are assumed to be
known. The pole pair number is typically provided in the technical specification of
the motor. As per [97], the stator resistance is easily measured at the terminals of the
motor. Consequently the steady state current and power loss model (2.45) are fully
defined by the parameter set

{
Lr

L2
m

, τr ,
Lr

Rfe

}
. (2.55)

The second assumption is made on the rotor flux. The fundamental problem of an
online identification method is the unknown rotor flux λr. In the case of an EKF, the
rotor flux is estimated along with the rotor time constant. As soon as an accurate
estimation of the rotor flux is available, the identification of the rotor time constant
and mutual inductance becomes straight forward. With this motive in mind, it is
assumed that IM controls in BEV applications make use of loss-minimizing control
strategies or are able to determine the rotor flux empirically to guarantee the maximum
possible IM efficiency. In both cases, this a priori knowledge of the operating strategy
can be used to derive an estimation of the rotor flux. For the considered experimental
vehicle this assumption is verified in Section 3.2. As will be shown there, the rotor flux
that minimizes conduction, leakage and core losses (LMT), is expressed as a function
of the rotor speed and torque

λlmt
r =

⎛
⎜⎝4

9
RrL

2
m + RsL

2
r

Rs + (LmZpωm)2

Rfe

T 2
e

Z2
p

⎞
⎟⎠

0.25

. (2.56)

Equation (2.56) is valid as long as the IM is not operated in magnetic saturation or
at the maximum attainable phase voltage. This assumption is realistic at moderate
power and torque demands. Therefore, in a partial load area, (2.56) can be used in
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(2.45) to obtain

Pe,im = 2
Lm

√(
Rs + L2

mω2
e

Rfe

)
(RrL2

m + RsL2
r ) T 2

e

Z2
p

+ ωmTe , (2.57)
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e
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. (2.58)

Both expressions, (2.57) and (2.58), define different parameterized mappings for the
same model output

y = (Pe,im − ωmTe) î2 , (2.59)

which are given by

y = Lr

L2
m
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and

y = 4
3
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L2
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( 1
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+ 2 Lr

L2
m

Rs + Lr

Rfe
Z2

pω2
m

)
T 2

e

Z2
p

. (2.61)

It is noted that the above mappings only depend on the parameter set defined in (2.55).
Another possible control strategy is to choose the flux level in a way that minimizes
the phase current instead of the IM losses. Following such an MTPA strategy, it is
shown in Section 3.2 that the rotor flux is equal to

λmtpa
r =

(
4
9
L2

r
T 2

e

Z2
p

)0.25

. (2.62)

However, at a speed of

ωm,0 =
√

RrRfe

ZpLr
, (2.63)

where the strategies (2.56) and (2.62) are identical, a third mapping of the phase
current square value is given by

î2∣∣
ωm,0

= 4
3

Lr

L2
m

√
T 2

e

Z2
p

. (2.64)

Based on these mappings, an identification procedure is proposed in [193], which
determines the parameter set (2.55) in three steps. Following this approach the torque
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and speed operating range of the IM is divided into a region defined by (2.63) with the
neighborhood of ωm,0 as well as a partial load area, in which it is guaranteed that the
IM is not magnetically saturated or operated at the maximum phase voltage. Though,
the boundary of the partial load area and the speed ωm,0 are not known beforehand,
a first iteration of the identification procedure results in a sufficiently close estimation
of (2.55) by choosing a conservative selection of low torque operating points and a
speed that is close to the base speed of the IM. The base speed is defined by the point
at which the product of the rated torque and speed is equal to the nominal power.
This initial guess can be used in a second iteration to identify the partial load area
more precisely and to restrict the actual speed range of ωm,0.

For the first step of the identification procedure, data of the RMS phase current and
rotor torque are collected for operating points in the vicinity of ωm,0. The parameter
Lr/L2

m is then derived from a linear regression using (2.64). For the second and third
step, data of the current, rotor torque, rotor speed and electric power are recorded
in the partial load area. Preferably, information over a wide speed range is included.
The second step identifies the combination of parameters 1/τr + Lr/L2

mRs as a single
parameter by the least square error of (2.60). A huge advantage of this combined
parameter, is that the mapping (2.60) does not depend on any other model parameter
except for the previously identified value of Lr/L2

m, which only linearly scales the
relation. The rotor time constant τr is then derived using the estimate of Lr/L2

m and
the known stator resistance. Finally, the remaining parameter Lr/Rfe is obtained from
(2.61).

After completion of these three identification steps, it is possible to obtain an estimate
of the magnetic parameters by adopting an initial guess of the leakage coefficient σ so
that

Lr = Ls = 1
1 − σ

L2
m

Lr
, Lm =

√
1

1 − σ

L2
m

Lr
. (2.65)

In an iterative process, the guess of the leakage coefficient is improved by evaluating
the conformity of the modeled phase current and IM power loss similar to a MRAS
based approach.

2.3 Drivetrain

Within this work the operating points (ωm, Te) of an IM drive are defined by the
vehicle’s longitudinal dynamics. Since the focus is placed on energy management of
electric drives, the longitudinal dynamics are not expressed in terms of the vehicle
speed v and force, but rather in terms of the wheel angular speed

ωwhl = v/rwhl , (2.66a)
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and the wheel torque Twhl(
r2

whlm + J
)

ω̇whl = Twhl + Tbrk − rwhlFres , (2.66b)

where rwhl is the effective wheel radius, Tbrk ∈ R− is the nonpositive brake torque
applied via the friction brake, and Fres ∈ R+ is the sum of the aerodynamic resistance,
rolling friction force, and the force induced by gravity

Fres = 1
2

Adcdρ(ωwhl rwhl − vh)2 + mg(cr cos (γ) + sin (γ)) . (2.66c)

Depending on the wheel and brake torque, the vehicle can operate in three different
modes

• traction T = {Twhl, Tbrk ∈ R × R−| Twhl > 0 ∧ Tbrk = 0},

• coasting C = {Twhl, Tbrk ∈ R × R−| Twhl = 0 ∧ Tbrk = 0},

• braking B = {Twhl, Tbrk ∈ R × R−| Twhl + Tbrk < 0}.

Vehicle parameters are the vehicle mass m, the inertia of all rotating components J ,
the projected vehicle frontal area Ad, the drag coefficient cd, and the rolling resistance
coefficient cr. These may vary, for example, due to an additional payload or changing
road and weather conditions. Other environmental factors of influence are the density
of the ambient air ρ, the headwind vh, the acceleration due to gravity g, and the road
grade γ. The former two are in general unknown and therefore introduce uncertainties.
The road grade for a specified route can be obtained from road preview data provided
by navigational services.

As observed in [151], the vehicle dynamics present the greatest source of uncertainty
and require special attention. Detailed sensitivity analyses of parameter uncertainties
and their influence on the energy consumption are conducted in [149]. Derived from
these findings, estimation methods are proposed which are suitable to reduce the
error dependencies of the rolling resistance coefficient. This has been identified as the
most critical parameter. In this study, the vehicle mass, the effective wheel radius,
the inertia of all rotating components, and the projected vehicle frontal area of the
longitudinal dynamics model (2.66b) are given by the vehicle manufacturer. Also
given is the aerodynamic drag coefficient, which is determined in dedicated wind
tunnel tests. The remaining rolling friction coefficient is identified from torque and
speed measurements. This is done by a linear regression based on (2.66b) and (2.69),
in which the acceleration is computed with a differentiating filter and the road grade
is obtained from Global Positioning System (GPS) and navigational data [149].

2.3.1 Regenerative Braking
The regenerative braking potential of a BEV has a huge influence on the electric
energy consumption [78]. Depending on the design and the control of the braking
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Figure 2.8: Regenerative braking characteristics.

system, only a limited amount of kinetic and potential energy can be regenerated
to charge the battery, while the remaining energy is dissipated via the mechanical
friction brake. The influence of the friction brake is approximated by the following
definition of an electric wheel torque

Te,whl = Twhl + Tbrk ,

=
{

Twhl , Twhl ≥ 0
max {Twhl + Tfric (Twhl) , Twhl,lb (ωwhl)} , Twhl < 0

. (2.67)

The causality between the requested wheel torque and the electric wheel torque is
governed by characteristics and control functions that are defined by control strategies
of the MCU. The minimum regenerative brake torque Twhl,lb is bound from below to
account for drivability requirements [133] or system requirements and is computed
within the MCU as a function of the wheel speed. If the battery is fully charged
for example, the minimum regenerative brake torque is restricted to Twhl,lb = 0 so
that solely the friction brake is applied. Design and control specific influences of the
braking system are modeled by a friction brake offset Tfric, which is a function of the
applied wheel torque. These characteristics may change, depending on the driving
mode or the current driving situation.

Both the friction brake offset Tfric and minimum regenerative brake torque Twhl,lb are
identified from EDM torque, brake torque, and speed measurements recorded during
a field study. For every driving mode, the lower bound of the electric wheel torque
is represented as a piece-wise affine, speed dependent function. Two examples are
illustrated as dotted lines in the right graph of Figure 2.8. Similarly, as shown in the
left graph, the friction brake offset is fitted to a piece-wise affine function of the wheel
torque.
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2.3.2 Friction Losses
To see how the electromagnetic rotor torque Te is connected to the electric wheel torque
Te,whl, several friction processes of the drivetrain have to be considered. Components
that considerably contribute to friction losses are transmission gears, torque couplers,
power split devices, and rotor internal cooling systems. Furthermore, due to the high
amount of rotor losses, the rotor shaft is an integral element of the cooling system and
thus flooded with a cooling fluid. Consequently, the cooling system and the lubrication
of the gear affect these friction processes. All of these effects are beyond the scope of
this work, which is why drivetrain losses are modeled as the parasitic friction torque

Tdt = p0dt + p1dt
ωwhl

ωnom
+ f1dt (ωwhl)

Te,whl

Tnom
+ f2dt (ωwhl)

(
Te,whl

Tnom

)2
, (2.68a)

where ωnom ∈ R+ denotes the nominal wheel speed, Tnom ∈ R+ is the nominal wheel
torque, and p{0,1}dt ∈ R+ are constant parameters. The nominal values can be chosen
to be the maximum attainable speed and torque. The polynomial speed dependent
functions f1dt and f2dt both are define by

f{1,2}dt (ωwhl, Te,whl) =

⎧⎨
⎩ p0dt,T + p1dt,T

ωwhl

ωnom
+ p2dt,T

(
ωwhl

ωnom

)2
, Te,whl ≥ 0

p0dt,B + p1dt,B
ωwhl

ωnom
+ p2dt,B

(
ωwhl

ωnom

)2
, Te,whl < 0

,

(2.68b)

with the constant parameters p{0,1,2}dt,{B,T } ∈ R. Changing characteristics in propul-
sion and regeneration are accounted for in the two cases of (2.68b). Note that the first
affine speed dependent term in (2.68a) is obtained by a simple linear friction model.
Finally, the connection between electric wheel torque, wheel speed, and the operating
point (ωm, Te) of an electric drive is given by

ωm = ωwhl ιdt , Te = Twhl + Tdt

ιdt
, (2.69a)

where ιdt denotes the fixed gear ratio. A huge advantage of the proposed modeling
approach is the possibility to use (2.68) and (2.69a) in both directions of the transmis-
sion yielding

Twhl =
−f1dt (ωwhl) − Tnom +

√
(f1dt (ωwhl) + Tnom)2 − 4f2dt (ωwhl)

(
p0dt + p1dt

ωwhl

ωnom
− Teιdt

)
2f2dt (ωwhl)

Tnom

.

(2.69b)

The quasi stationary model of the drivetrain’s friction torque (2.68) is identified with
the help of a test stand on which each axle is connected to an electric drive. Since
the wheel torque is directly controlled by the test stand, the friction torque can be
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Figure 2.9: Identified quasi stationary model of the drivetrain friction torque.

approximated by the difference between the estimated EDM rotor torque and the
controlled wheel torque. This difference is shown in Figure 2.9 as a function of the
EDM rotor speed and torque, where a selection of measurements is recorded during a
dynamic driving cycle. The graph only shows operating points for low acceleration
values and situations in which the friction brake is inactive. The identified, least-square
fit of the model (2.68) is displayed as a surface. Despite the clear errors that are
expected for complex friction processes, a more detailed comparison in Section 2.6.1,
shows that the average friction torque is well represented by (2.69).

2.4 Electric Drive Module

So far, a dynamic component model of the IM has been derived in Section 2.2, an
average value model of the VSI is presented in Section 2.1 and a quasi-stationary
model of the transmission, as part of the drivetrain, is modeled in Section 2.3. These
three components form an EDM.

2.4.1 Block Diagram

A graphical representation of the EDM, which summarizes the results of the previous
chapter, is depicted in Figure 2.10. The block diagram illustrates the interactions of
internal system states and highlights the input/output relations of all subsystems.
Starting with the voltage reference u∗

a, u∗
b, u∗

c on the left of Figure 2.10, Clarke’s
transformation (see Appendix A.1) is applied to obtain the equivalent space vector
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(2.2)

(2.9)
(2.10)

(2.17)

(2.22)
(2.29)
(2.39)
(2.40)
(2.42)

(2.30)
(2.68) (2.69)

Figure 2.10: Electric drive module block diagram.

representation in the stationary reference frame with coordinates u∗
αs and u∗

βs. This
space vector moves across the stator with a commanded fundamental frequency
ω0 and magnitude û∗. The magnitude of the applied voltage uαs, uβs is saturated
depending on the maximum attainable voltage range of the PWM method according
to Mi ∈ [0, 1]. Furthermore, the commanded reference is delayed by τd due to the
digital implementation process of regular sampling. This time shift is formulated
with help of the time delay property of the Laplace transformation, where s ∈ C

denotes the Laplace variable. In the following step, the states of the electric drive are
computed based on the IM state-space model within its reference frame. Both the
transformation to the reference frame of the motor e−jα and inverse transformation
back to the stationary reference frame ejα require the knowledge of the reference frame
orientation α. Separated into the individual components, the transformation e±jα

between frame A and B is given by

�
{

xA} = cos (α) �
{

xB}∓ sin (α) 	
{

xB} , (2.70a)

	
{

xA} = cos (α) 	
{

xB}± sin (α) �
{

xB} . (2.70b)

Downstream of the motor model, the resulting power factor angle ϕ and stator phase
current magnitude î are used to compute VSI losses as well as the average transistor
and diode currents. Finally the generated rotor torque Te is applied to the drivetrain
via the quasi stationary model of the gear. Measurable states are the rotor speed
ωm, the terminal voltage udc, the phase voltages uas, ubs, ucs, and the phase currents
ias, ibs, ics. Based on these measurements, state estimation techniques are employed to
obtain the RMS phase current irms, the electromagnetic rotor torque Te, the electric
power input Pe,edm, and the IM power throughput Pe,im which are all available on the
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Figure 2.11: Qualitative representation of typically occurring operating points of
various driving cycles, based on [156].

internal vehicle communication bus system.

2.4.2 Operating Region

The operating region of the EDM, defined by

Oedm = {ωm, Te ∈ R+ × R| Te,lb (ωm, udc, îub) ≤ Te ≤ Te,ub (ωm, udc, îub)} , (2.71)

is shown in Figure 2.11. Without loss of generality, it is assumed that the BEV is
only operated in forward motion. The maximum torque rating for driving is denoted
by Te,ub, whereas the minimum rating for regenerative braking is Te,lb. Both are
functions of the rotor angular speed ωm and the terminal voltage udc. Furthermore,
both may be limited by a bound on the magnitude of the phase current îub. The
electromagnetic torque for steady state operation at constant speed and zero road
grade γ is displayed for reference proposes. Furthermore, typically occurring operating
regions of various driving cycles are illustrated as shaded areas. These are calssified
as urban, suburban and highway cycles according to [156].

2.5 Battery

Lithium-ion batteries have become the preferred choice for BEVs. Compared to
nickel metal hybrid (NiMH) or nickel cadmium (NiCd) batteries, the most distinctive
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Figure 2.12: Equivalent circuit model of a lithium-based battery and BEV power
distribution.

advantages are: energy density, high voltage, low self-discharge rate, long cycle life,
and high charging and discharging rate capability [40, 199]. Research on new types of
cell chemistries, for example, based on lithium-sulphur [69] as well as on advanced
battery management systems [81], seem to offer the most promising potential to
improve the range, or, reduce concerns on the limited range of BEVs.

2.5.1 Circuit Model
A basic physical model of a battery which resembles the observed changes of the
terminal voltage, current, and state of charge, can be derived by means of an equivalent
impedance model of a battery cell [187]. Different equivalent circuit models for
automotive applications have been proposed for various cell chemistries [24, 69]. The
simplest of these is the model of a lithium-based battery depicted in Figure 2.12.
It is composed of an ideal open-circuit voltage source in series with an internal
resistance Rbat. The open-circuit voltage uocv represents the equilibrium potential
of the entire battery and is given as a function of the State of Charge (SOC). The
internal resistance Rbat accounts for the ohmic resistances in the electrolyte, the
electrodes, the interconnection of cells, and the battery terminals as well as the charge-
transfer resistance and diffusion resistance of internal electrochemical processes. These
processes and resistances show a strong dependency on the battery temperature ϑbat.
As discussed in Section 2.1 and expressed by (2.2), the attainable voltage range of

an electric drive is determined by the PWM method and its terminal voltage. These
variables constitute the key factor that influences the maximum power rating of the
drive module and thus defines the torque boundaries for motion control. The causality
between the terminal voltage and the overall electric power demand Pbat is derived
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from Kirchhoff’s voltage law

udc − uocv − Rbatidc = 0 , (2.72)

and is given by

udc = uocv +
√

u2
ocv − 4RbatPbat

2
. (2.73)

As the depletion of the battery energy progresses, the open-circuit voltage decreases
continuously. This phenomenon is modeled by means of current counting. Given the
terminal voltage and overall power demand, the DC battery current is

idc = Pbat

udc
(2.74)

which is used to derive an expression of the state of charge based on the Initial Value
Problem (IVP)

d SOC

dt
= − idc

Qnom
· 100 % , (2.75)

where Qnom denotes the nominal battery capacity. For a short time horizon of a few
seconds, the SOC and system temperature, and therefore, the open-circuit voltage
and internal resistance, are assumed to be constant.

The battery is subject to extensive investigations throughout the development of an
BEV. These investigations include measurements of cell impedances over a wide range
of frequencies, that are essential for the battery management system. Consequently,
detailed battery models and characteristics are available from which the simplified
circuit model of Figure 2.12 is easily derived. For further information on identification
methods concerning battery systems, the reader is referred to the series of publications
by [180].

2.5.2 Electric Power Distribution
The overall electric power demand is defined by

PEV =
∑

∀a∈{fa,ra}

P a
e,edm + Pe,aux

︸ ︷︷ ︸
Pbat

+ Rbati
2
dc , (2.76a)

The first term in (2.76a) is equal to the overall power throughput of all electric drive
modules, the second term summarizes the power demand of auxiliaries Pe,aux ∈ R+ and
minor loss processes, and the last term approximates internal battery losses. Each drive
module’s power throughput is equal to its mechanical traction or regenerative braking
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power Pm ∈ R plus all losses resulting from electromechanical energy conversion
Pl,{im,vsi} ∈ R+

Pe,edm = Pm +
∑

Pl,{im,vsi} . (2.76b)

For example, the overall loss of an IM drive module encompasses (2.43), (2.44), and
(2.22) and is thus given by

Pl,edm = Pl,im + Pl,vsi . (2.76c)

Note that drivetrain losses are not included in this formulation as they are accounted
for by the drivetrain friction torque (2.68) and that Pl,im is the short notation of
the sum of (2.43) and (2.44). This allows to examine the electrical powertrain and
the drivetrain independently of each other. Therefore, any drivetrain model can be
included in the vehicle simulation.

Due to the voltage dependency of the modulation index (2.2) and corresponding
dependency of Pl,vsi, the terminal voltage (2.73) is only given implicitly. If this
implicit nonlinear equation is not solved by an iterative numerical method, for example,
Newton’s method [158], the terminal voltage can be approximated in two steps. In
the first step, Pl,vsi is approximated with the help of an average efficiency ηvsi. In case
of an IM drive module, this approximation is defined by

P̂l,vsi = 1 − ηvsi

ηvsi
(Pm + Pl,im) . (2.76d)

Subsequently this estimation is used to compute (2.76a) as well as the terminal voltage
(2.73), which in the second step is used in (2.22) to improve the estimation of P̂l,vsi.

Eventually, the auxiliary power Pe,aux is modeled in the same way as done in [151].
Following this approach, Pe,aux is assumed to be constant and represented as an
average power demand that solely depends on the ambient temperature. This assump-
tion is valid as long as the system temperatures of the battery, the cabin, and all
drive modules do not considerably differ from their respective nominal temperatures.
A violation of this assumption may cause an additional power demand required for
thermal conditioning [135]. However, in the scope of this study, it is assumed that the
vehicle is in a preconditioned state. The average auxiliary power is then computed by
the time average

Pe,aux (ϑamb) =

tf∫
t0

udc,aux idc,aux dt

tf − t0
, (2.77)
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Figure 2.13: Identified auxiliary power demand.

where udc,aux and idc,aux are the terminal voltage and current measured at the central
power distribution unit, which supplies all auxiliary subsystems. The characteristic of
(2.77) is shown in Figure 2.13 as a function of the ambient temperature ϑamb. If the
assumption of a preconditioned vehicle is violated, the approximation (2.77) can be
generalized by considering an additional amount of energy for thermal conditioning.
This amount varies depending on the duration of the trip and the thermal capacities
of the individual subsystems. The energy required for thermal conditioning of the
cabin, for example, is derived in [149].

2.6 Experimental Validation

Despite the numerous advantages of a model-based approach, empirically determined
characteristics benefit from a higher level of confidence and in practice are often
considered to represent the true system behavior. However, they are only valid for
steady state operations and are limited by the operating conditions of the identifying
test procedure. Neither empirically determined characteristics nor the proposed
models are universally applicable as various assumptions and simplifications are made.
Therefore, it is important to validate the model for its intended use.

To validate the EDM and battery model, a test series was conducted in a controlled
environment on a Powertrain Integration Center (PIC) test stand. On this test
stand, each wheel is connected to a high-power and high-precision electric drive to
simulate realistic driving resistances and road conditions. The ambient temperature
is kept constant at 20 °C. Before each test cycle, the vehicle is preconditioned so
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that all system components reach their nominal operating temperature. Consequently
uncertainties due to environmental factors or road conditions are mostly eliminated.
Three cycles are driven for three different initial states of the battery charge level and
consequently for a varying DC voltage level. These nine scenarios are repeated for
five different operational strategies:

• pure Front Wheel Drive (FWD),

• pure Rear Wheel Drive (RWD),

• AWD with equal torque split,

• AWD with variable torque split and a loss map based allocation scheme,

• AWD with variable torque split and a model-based allocation scheme.

In total, 45 test cycles were completed covering a distance of more than 2.300 km. Test
cycles are selected that represent real world driving conditions. These are recorded
via the on-board navigation system of the experimental vehicle, which provides
information on the GPS position and the vehicle speed. This information is used to
match measurements with map related information obtained from HERE Technologies
using a Representational State Transfer (REST) application programming interface. In
doing so, information including heights and slope values are provided for road segments
between 2 m and 200 m of length. Along with other attributes, the information is used
in [151] to analyze individual driving style characteristics for the purpose of energy
consumption forecasts. HERE introduces a classification metric depending on the
traffic volume, speed, and connectivity of the road, however, in the context of this
study, these road classes may be classified as freeways (class 1), federal highways (class
2), and priority and main roads (class 3). Road classes four and five can be considered
as lower priority urban roads. The first mixed cycle of the test series is chosen to
represent a mixture of the different road classes and is essentially characterized by a
measured average speed of 60 km/h. The second urban cycle only passes through urban
areas with a high percentage of main roads and lower priority roads at an average
speed below 30 km/h. A third generic cycle is defined, which is a comprehensive sweep
of acceleration and braking scenarios between different set vehicle speeds. This cycle
is chosen due to the high coverage of the EDMs operational torque and speed range.

For all three cycles, the driving mode with the highest regenerative braking potential
is selected so that the friction brake is hardly applied. Signals on the vehicle Controller
Area Network (CAN) bus and internal control signals of the MCU are recorded at
sampling frequencies of 100 Hz and 1 kHz. Available signals are the front and rear
axle EDM terminal voltages and currents, the IM RMS phase currents and rotor
angular speeds, as well as estimations of the rotor torque and VSI power loss. The
electrical input power of the EDM is derived from the terminal measurements. Further
information on the experimental series, including the speed, acceleration and road
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grade profiles, are presented in Appendix A.4.

The individual component models are validated by comparing simulated results to
CAN measurements as well as losses that are computed by means of characteristic loss
maps. These loss maps are derived from electrical terminal measurements at various
speed ωm and torque Te values. Consequently these maps characterize IM and VSI
losses. Three loss maps are provided by the motor manufacturer for different DC link
voltage levels. Two test cycles conducted for the mixed route and pure FWD/RWD
are used for model identification and are, therefore, excluded from the validation
data set comprised by the remaining 43 cycles. The characteristic of the drivetrain
friction torque is identified as discussed in Section 2.3.2, the parameters of the VSI are
obtained from the manufacturer’s data-sheet, and the IM parameters are estimated
according to the proposed in-vehicle identification method presented in Section 2.2.7.
Solely the validation results of the front axle EDM are presented. Similar positive
results are obtained for the rear axle.

2.6.1 Electric Drive Module Components

EDM losses, including conduction losses, core losses, and VSI losses, are computed on
the basis of the measured angular speed ωm and rotor torque Te. The IM phase voltage
is controlled so that load profile (ωm, Te) is ideally tracked. The control algorithm is
described in Section 3. Consequently, the IM and VSI are validated independently of
the drivetrain friction torque, which is evaluated in a second step using the measured
speed ωm and the wheel torque Twhl. In order to assess the model accuracy for the wide
range of operating points, the EDM input power Pe,edm = udcidc ∈ [Pedm,lb, Pedm,ub]
is divided into M equidistant intervals

Pe,edm
[i] = Pedm,lb + (i − 1) ΔPe,edm , ∀i ∈ 1(1)M , (2.78a)

Pedm,ub = Pedm,lb + M ΔPe,edm . (2.78b)

As a measure for the accuracy of the model, the absolute error

e{Pe,edm,Pl,vsi,irms,Te} =
{

Pe,edm, Pl,vsi, î, Te
}∣∣

mdl
−
{

Pe,edm, Pl,vsi, î, Te
}∣∣

mea
(2.79)

and the relative error

ε{Pe,edm,Pl,vsi,irms,Te} =
e{Pe,edm,Pl,vsi ,̂i,Te}

∣∣∣
mdl{

Pe,edm, Pl,vsi, î, Te
}∣∣

mea

(2.80)

are computed for the electrical input power Pe,edm, the VSI power loss Pl,vsi, the stator
phase current RMS value irms, and the rotor torque Te. The notation x|

mdl
indicates

56



2.6 Experimental Validation

Figure 2.14: Distribution of the 8.9 million data points recorded for the electric drive
module input power during the PIC test series.

that the state x is computed by the model, whereas x|
mea

denotes a measurement.
Subsequently, the mean value and the 5 % and 95 % percentile are computed for all
data points of the 43 test cycles within every interval

[
Pe,edm

[i], Pe,edm
[i+1]
]
. The

distribution of the 8.9 million data points, recorded during the test series for the
EDM under consideration, is shown in Figure 2.14. All of these points only represent
driving or braking conditions. Data points during stand still are not considered.

The results obtained for this analysis are presented in Figure 2.15. The top graph
shows the absolute and relative error of the electrical power throughput computed
by the power loss map and the EDM model. The average error is shown as a line
and the 90 % confidence interval, defined by the 5 % and 95 % percentile, is indicated
as a surface. For the majority of operating points within Pe,edm ∈ [−65 kW, 80 kW],
the average relative error of the modeled input power is below |εPe,edm | < 8 % where
in 90 % of the samples εPe,edm ∈ [−19, 21] %. The model clearly outperforms the loss
map, which in this operating range has an average error of |εPe,edm | < 12 % and a 90 %
confidence level of εPe,edm ∈ [−58, 55] %. In absolute terms, the average error of the
model is below |ePe,edm | < 3.5 kW compared to the loss map with |ePe,edm | < 6.5 kW.

Outside the region of Pe,edm ∈ [−65 kW, 85 kW], the accuracy of the modeled EDM
power is high for regenerative braking, whereas it develops a trend of underestimating
the observed losses for higher power demands in very dynamic driving situations. The
accuracy of the EDM can be improved by taking saturation of the IM into account
and by considering the thermal dependency of the resistive parameters, if, instead of
economic driving, the focus is placed on dynamic driving performance.
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loss map

model

model

model

Figure 2.15: Comparison of modeled and measured induction motor and voltage source
inverter states.
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The effect of assuming a linear magnetic IM circuit becomes clear when looking at the
bottom graph of Figure 2.15 showing the absolute and relative error of the RMS phase
current. While being in an acceptable range for the intended use, the error of the IM
phase current is comparably high in contrast to the EDM input power. As expected,
the model underestimates the magnitude of the phase current at high power demands
due to the assumption of a constant inductance. A closer inspection of (2.64) or (2.58)
and their parameter sensitivity indicates that the current estimate can be improved
by a nonlinear magnetic model and in particular by a current dependent mutual
inductance, which linearly scales the stator phase current. A nonlinear magnetic
model with current dependent mutual inductance is presented in [242]. It is noteworthy
that similar results are obtained when comparing the relative error of the phase current
in the bottom right graph of Figure 2.15 with the characteristic of the nonlinear mutual
inductance of Fig.3 in [242].

A phase current mismatch directly affects the accuracy of the VSI model. The absolute
and relative error of the VSI loss derived from an internal control signal of the MCU
is shown in the second graph of Figure 2.15. Comparing the relative error of the phase
current and VSI loss, both develop a similar tendency of underestimating the observed
behavior. At low power demands, an overestimation of the current leads to increased
switching losses. With a rising power demand and, therefore, an increasing current,
an underestimation of the current mainly results in a reduced conduction loss. Above
100 kW, a different PWM method is applied, that has significantly lower switching
losses. However, since high power demands are not the major concern in this study,
the model only considers a space vector PWM. Consequently, the error of the VSI loss
decreases although the phase current continues to be underestimated. Nevertheless,
in the case of braking and low power demands for driving, where the current error is
relative low, the mean relative error of the VSI model is below |εPl,vsi | < 10 %. Overall
the accuracy level with a mean absolute error that lies between ePl,vsi ∈ [−750 W, 75 W]
and is most of the time below ePl,vsi ≤ |200 W|, is adequate for the intended use.

So far, the IM and VSI model are evaluated separately from the drivetrain. Thus, the
question is raised how accurately the inputs to these models are computed by the quasi
stationary model of the drivetrain friction torque. Figure 2.16 displays the absolute
and relative error of the modeled IM rotor torque. As expected, friction processes
generally are complex and, therefore, lead to high variations with a confidence level of
εTe ∈ [−45, 40] %. However, within the region of Pe,edm ∈ [−65 kW, 80 kW] the mean
relative error is below |εTe | < 10 % with a mean absolute error of |eTe | < 5 Nm. At
high regenerative power demands, which are mainly influenced by the friction brake
offset and the minimum brake torque, the error increases and the error becomes more
or less inconsistent. One possible justification is the low number of data points in
this operating region. Another explanation is the intervention of additional safety
functions. When considering the simple form of the model, however, the results are
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Figure 2.16: Comparison of modeled and estimated induction motor rotor torque.

reasonable.

2.6.2 Comparison of Steady State and Transient Operation

For the identification of the IM model parameter, it assumed in Section 2.2.7 that the
steady state equations of Section 2.2.4 are sufficient to describe a dynamic driving
scenario. In order to justify this assumption, Figure 2.17 compares EDM measure-
ments with simulation results of a steady state and dynamic model for an acceleration
scenario, in which the electromagnetic rotor torque Te is increased to almost 100 Nm
within 550 ms. In this time frame, the increase of the rotor speed is negligible so that
ωm ≈ 0. The steady state model computes all IM states according to the assumptions
in Section 2.2.7. Comparing the EDM electrical input power and the IM RMS phase
current, both models show a high resemblance between the measurement and the
simulation. When starting the acceleration the dynamical model demonstrates a
better estimation compared to the steady state model. However, at higher torque
values, as soon as the rotor torque approaches its desired value, both models become
indistinguishable. To evaluate this observation for a wider operational range, the
steady state electric input power and phase current are computed for all test cycles
of the PIC test series and, together with the simulation of the dynamical model, are
compared to CAN measurements in a similar analysis as conducted in the previous
section. Figure 2.18 presents the absolute error (2.79) and relative error (2.80) of the
simulation results. It is again demonstrated that both models approximate the actual
system behavior equally well. This confirms the conclusion in Section 2.2.7, which is
based on the findings of [193].
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Figure 2.17: Comparison of steady state and dynamic modeling assumptions for a
acceleration scenario from standstill (ωm ≈ 0) .
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Figure 2.18: Comparison of steady state and dynamic modeling assumptions for all
cycles of the PIC test series.

2.6.3 Battery Voltage

The EDM operation is mainly influenced by the battery voltage and the resulting
EDM DC terminal voltage. An inaccurate estimation of the power demand and
especially an error of the estimated auxiliary power may cause an ever-increasing
deviation of the modeled and observed behavior. Particularly for long driving cycles
it is undesirable to propagate an error over time. Due to this error propagation, the
terminal voltage is evaluated by comparing the measured and modeled state for the
most critical cycle of the test series, which is the longest driving cycle of acceleration
and braking scenarios with the lowest initial battery voltage and pure FWD. For this
purpose, the modeled EDM power and the estimated average auxiliary power is used
as input to the battery model. Figure 2.19 displays the profile and resulting absolute
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Figure 2.19: Comparison of modeled and measured EDM terminal voltage.

error of the EDM terminal voltage eudc = udc|
mod

− udc|
mea

. In the upper graph it
is seen that the voltage level decreases as the battery is discharged. The oscillation
result from the accelerations and subsequent deceleration between different vehicle
speeds (see Figure A.5). Within the first 20 min, the actual auxiliary power demand
is slightly underestimated. Consequently, the battery discharge is reduced and the
modeled voltage level is above the observed value. During acceleration and braking at
the peaks of the EDM power throughput, the model predicts a more severe voltage
drop. This is mainly due to the simplified assumption of the battery circuit model,
which does not contain any capacitive elements. Nevertheless, for up to 55 min, the
overall behavior is well represented with an absolute error below |eudc | < 5 V. After
55 min, the vehicle is supposed to rapidly accelerate up to a speed of 130 km/h with a
single motor. This drives the EDM to its maximum torque rating. Since the EDM
power is underestimated for these high power demands, the battery is discharged less,
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which, in turn, results in a modeled terminal voltage that is above the measurement.
Even though the model deviates from the actual behavior during the remaining 40 min,
the absolute error is below |eudc | < 10 V, which is sufficient for the intended use. Not
least because the error propagation can be inhibited by a continuous update of the
actual voltage level.

2.7 Model Summary

This chapter lays the foundation for a model-based design of energy management
strategies. A new average value model of the VSI is introduced that computes the per
fundamental average of IGBT conduction and switching losses. This model is derived
from frequency analyses and is based on analytical expressions of the switched load
current. A particular benefit of the VSI model is the straight-forward consideration
of thermal effects, which can be accounted for by temperature dependent resistive
parameters. Furthermore, since VSI losses are computed as a function of IM states, a
first step is made towards an inversion-based system representation in which electrical
system states are computed based on a motion profile. The second step is made by the
quasi stationary model of the drivetrain, which either computes the parasitic friction
torque as a function of the wheel torque or is based on the input of the electromagnetic
rotor torque. Therefore, this model can act in both directions of the transmission. In
doing so, main influences of the friction brake and the regenerative braking strategy
are considered. As interfaces of the VSI and drivetrain model are defined in terms of
motor variables, the electromechanical energy conversion of the EDM is governed by
the electric and magnetic model equations of the IM. From a control perspective, the
standard dq-model of the IM is the most effective system representation in terms of
accuracy and computational efficiency. The electrical potential at which this conversion
takes place is described by an equivalent circuit model of the battery.

The experimental validation provides strong evidence that the model-based approach
allows for a more accurate estimation of the EDM electrical input power than empiri-
cally determined loss maps. Compared to polynomial representations of loss maps,
which are derived from empirical considerations and only approximate the system
behavior in a limited operational range, the proposed model structure is particularly
well suited to represent losses in vehicle simulations. Moreover, the EDM model
can provide additional information on the electrical states, which are otherwise only
made available by empirical methods at an unreasonable expense. The significant
improvement, not only of the average error, but also of the confidence level, is
remarkable in that the VSI and IM parameters are easily obtained from data-sheets
and identified from a single driving cycle by using standard vehicle CAN bus measure-
ments. It is expected that even better results can be obtained if dedicated offline
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and online estimation methods for IM parameters and nonlinear magnetic models are
employed. Due to the consistency of the stationary and dynamic model, it can be
concluded that a precise knowledge of fast electrical dynamics is not required during a
dynamic driving cycle to resemble the observed behavior of the EDM input power, the
VSI power loss, and the IM phase current. Consequently, based on the steady state
equations of the IM, the average value model of the VSI, and the quasi stationary
model of the drivetrain, powertrain losses and information on the electrical states
can be computed as functions of torque, speed and the magnetic flux. While torque
and speed are typical control variables for motion control, the rotor flux constitutes a
degree of freedom that can be exploited to improve the powertrain’s efficiency.
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3 Energy Management Strategies for Induction
Motor Drives

The EDM model that is presented in the previous chapter establishes the relation
between the variables of the electrical powertrain and the mechanical drivetrain. It
computes the wheel torque and speed based on a phase voltage input. However, in
range or efficiency analyses of ED strategies it is preferable to compute the electrical
variables as a function of the mechanical input. This requires the consideration of
IM controls. The chosen control strategy has a substantial impact on the overall
performance of the BEV. This influence is readily explained by a different viewpoint
on the electromechanical energy conversion that is derived from a more energetic and
control theoretic perspective. This particular view is the subject of this chapter and
emphasis is put on the magnetic field, which couples the mechanical drivetrain and
the electrical powertrain.

The EDM may be interpreted as a port-Hamiltonian system as shown in Figure 3.1,
which allows for modeling the energy flow between systems of different physical
domains using a systematic and insightful framework [233]. Following this modeling
approach, subsystems are represented as energy-storing elements S and energy-dissi-
pating elements R. These elements are coupled via a port-based network and interact
through power-conserving elements, which are formalized by the geometric notation
of a Dirac structure D. The Dirac structure links different subsystems via pairs of
equally dimensioned vectors of flow and effort. Their product is equal to power. In
the case of the EDM and the kinetic rotational subdomain of the drivetrain, the flow
is equal to the torque Te, the effort is equal to the angular velocity ωm, and the energy
is stored in form of the angular momentum. Energy is dissipated via the pair of the
drivetrain friction torque and the angular speed (ωm, Tdt). For the magnetic coupling
field of a single phase, the flow is given by the phase voltage u{a,b,c}s and the effort is
defined by the phase current i{a,b,c}s. Furthermore, the energy is stored in form of
the flux linkage and dissipated due to leakage and core losses in the ferromagnetic
material. Finally, in the case of the electric subdomain of the powertrain, the flow is
equal to the DC current idc, the effort is equal to the DC voltage udc, and the state
that determines the energy storage is the charge of the battery. Within the electrical
subdomain, heat loss occurs due to the resistance of the current-carrying conductors.

State-of-the-art control methods of IM allow to change the rotor flux level independent-
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Figure 3.1: Energy balance within the port-Hamiltonian representation of an electric
drive module.

ly of the electromagnetic torque. This degree of freedom can be exploited to balance
between core and leakage losses, IM conduction losses, and VSI losses during steady
state and transient operation. For example, during a braking event, a high flux level
results in an effort and flow pair with a high phase voltage and low phase current.
Therefore, conduction losses of the IM and VSI are low, while core losses of the
coupling field are relatively high. A low flux level, on the other hand, leads to a power
pair with a high current and low voltage. Even though conduction losses increase
due to the comparable high phase current, a lower flux level may result in a higher
amount of charge and therefore in an improved motion control strategy for regenerative
braking.

The first part of this chapter provides a basic overview on EDM feedback loops of
sensing, computation, and actuation and highlights the operational boundaries of
the IM. Section 3.2 introduces an energy management strategy, which improve the
overall efficiency of the IM by appropriate control of the rotor flux level. Section
3.3 introduces the new flat output of the IM and discusses the advantages over the
previously known approaches [47, 140, 141]. Exploiting the positive properties of the
differential flat system structure the conventional FOC is extended by a Two Degree
of Freedom (2DOF) control. Building on this control approach, Section 3.4 proposes
an optimal control method, which is used as reference governor for the 2DOF control.
Finally, in Section 3.5, the different control approaches are compared in a simulative
study. A summary of the main findings is provided in Section 3.6.
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Figure 3.2: The concept of field orientation.

3.1 Field Oriented Control

FOC is best described by assuming temporarily that the stator currents are impressed
by an inner feedback loop, which computes the voltage reference in such a way that
the desired current reference is ideally met. Since phase voltages become a concern
for current control, it is possible to omit them from the dq-model equations (2.32)
leaving nothing but the ODE of the rotor flux linkage. From this perspective the
dynamic structure of the IM is simplified as shown in Figure 3.2. The space vector
diagram on the left and block diagram on the right, show how the rotor flux λr is
controlled by the parallel or direct component ids of the stator space vector is = î ejβi .
The causality between ids and the rotor flux λr is described by a first order system
which is governed by the rotor time constant τr. Subsequently, the product of the
quadrature component iqs and the rotor flux determines the electro-magnetic torque Te.

FOC is aiming for a control structure similar to that of a DC drive, in which Te

is directly controlled by the quadrature component iqs, independent of ids. In a
squirrel-cage IM, however, a current in the rotor bars can only be induced by a time
varying field as represented by the space vector λr which moves across the rotor
with slip frequency ωsl. Consequently, the flux and torque generating components of
is = ids +jiqs are indirectly controlled by means of an appropriate slip frequency of the
alternating stator current which, from the perspective of the stationary reference frame,
is determined by the space vector components iαs and iβs. This requires a dynamic
decoupling as indicated on the right of Figure 3.2. Decoupling is achieved by an inverse
transformation of the current reference in the field coordinates ids, iqs to stationary
coordinates iαs, iβs, which presumes that the estimation of the field orientation α̂
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3 Energy Management Strategies for Induction Motor Drives

is accurate. Consequently, the field coordinates can be chosen independently. This
considerably simplifies the design of torque and rotor flux control.

3.1.1 Flux Estimation

For the practical implementation of FOC it is important that the estimated field
orientation must be in close agreement with the actual position of the fundamental flux
wave. The problem of flux estimation is the acquisition of the rotor flux magnitude λ̂r

and orientation α̂. Generally these methods can be classified into direct methods and
indirect methods.

The direct method attempts to observe the rotor flux, either by flux density measure-
ments in the air gap, for example by placing suitably spaced Hall-sensors on the
stator teeth, or by using speed and terminal voltage as well as current measurements.
As it is highly complex to fit a mechanically fragile device to an electric drive, flux
observers based on speed and terminal measurements have become more attractive. A
presentation on linear observer based methods for flux estimation is found in [238].
A sliding-mode observer is presented in [182]. Nonlinear rotor flux observers with
and without feedback corrections and their accuracy attributes w.r.t. parameter
uncertainties are discussed in great detail in [102].

The indirect methods, without feedback corrections, use the slip relation to compute
the flux position relatively to the rotor by summing up the sensed rotor position
signal with the approximated slip position signal. One simple example is based on the
stator current model in the rotor fixed reference frame (cf. I1βL-Model [203]). From
this perspective, the reference frame moves across the stator with an electric rotor
angular frequency of ωe. Accordingly, the relative movement of the rotor flux space
vector directly determines the slip frequency. In this reference frame, denoted by the
superscript (.)ωe , the rotor flux equation is derived from (2.29) and (2.36) yielding

λ̇
ωe
r = − 1

τr
λωe

r + M

τr
iωe
s . (3.1)

The indirect method according to (3.1) is illustrated in the block diagram of Figure 3.3.
From this diagram and (3.1), it becomes apparent that the indirect method based on
the current model is sensitive to parameter uncertainties of the rotor time constant
and the mutual inductance.

De Doncker and Novotny present a unified approach of decoupling networks for direct
and indirect FOC, in which the orientation of the reference frame is linked to an
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3.1 Field Oriented Control

Figure 3.3: Flux estimation based on the stator current model.

arbitrary flux vector [44]. A major disadvantage of FOC in the indirect form, is its
sensitivity to parameter uncertainties which are discussed in more detail in [43] and
[102]. Still, both direct and indirect methods use model parameters to derive flux
estimates and are thus prone to parameter sensitivities. This has motivated a variety
of research activities in the field of online parameter estimation, which is discussed in
Section 2.2.6.

3.1.2 Current Control

The inner current control loop is depicted in Figure 3.4. In the case of an ideally
impressed stator current, it is obvious that the response behavior of the inner feedback
loop to set-point changes is of particular importance. Having this objective in mind,
recent research activities have focused on predictive control strategies which are
based on the method of deadbeat control [132, 215]. Deadbeat predictive control is
designed in the domain of sampled or discrete-control systems [1, 103]. It can therefore
achieve an extremely fast response behavior, though specific actions must be taken
to address delays, disturbances and high sensitivities to modeling errors and noise [146].

A conventional control design concerning the frequency domain allows for a rather
simple method of load disturbance and noise attenuation at the cost of an inferior
response behavior. For this purpose, plant dynamics are modeled by (2.29) which
leads to

us = σLs

⎛
⎝ 1

τc
is +

d is
dt

+ jα̇is︸︷︷︸
coupling

⎞
⎠− Lm

Lr

( 1
τr

− jωe

)
λr︸ ︷︷ ︸

back EMF

. (3.2)
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Figure 3.4: Field oriented control.

Identifying the back EMF as disturbance, the transfer function of the control plant is
defined as

Giu (s) =
is (s)
us (s)

= τc

σLs

1
1 + τcs + jα̇τc

. (3.3)

In case of the investigated EDM, the time constant τc defined in (2.34) ranges in the
order of a few msec. To compensate for the coupling term and the back EMF, it is
convenient to introduce a new input v along with the nonlinear static state feedback

us = v + jσLsα̇is︸ ︷︷ ︸
decoupling

− Lm

Lr

( 1
τr

− jωe

)
λr︸ ︷︷ ︸

back EMF compensation

. (3.4)

Assuming a perfect decoupling with an exact knowledge of the involved parameter as
well as a good approximation of the rotor flux and the reference fame speed α̇, current
dynamics (2.32) are simplified by the static state feedback to a decoupled first order
system with

d is
dt

= − 1
τc

is + 1
σLs

v . (3.5)

The error dynamics of ei = i∗
s − is with respect to the reference signals or set-points,

are thus readily stabilized by using simple PI controllers

C (s) =
v (s)
ei (s)

= kp,is + ki,i

s
, (3.6)

where the proportional and integral gains for the direct and quadrature component
are tuned based on standard methods of linear control theory [6, 68]. Standard
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tuning methods, specifically developed for motor drives, are the Modulus Optimum
and Symmetrical Optimum [6, 203].

Several technical aspects strongly limit the response behavior of the static state
feedback (3.4) and PI controller. One important aspect is the time delay of the VSI.
Since for regular sampled PWM, the calculated voltage reference can only have an
effect on the next sampling period, the voltage reference will be shifted in phase
and eventually cause unwanted coupling effects. Apart from this plant delay τd, a
computational delay τcd of the digital control loop on an interrupt-driven digital
system has to be considered. The plant and computational delays can add up to two
sampling periods which range in the order of a view hundred μsec. Following the
approach in [203], the transfer from the voltage reference to the actual phase voltage
is modeled as a zero-order hold element in series with a dead time

Guu* (s) =
us (s)
u∗

s (s)
= 1 − e−sτcd

τcds︸ ︷︷ ︸
computational delay

e−sτd︸ ︷︷ ︸
plant delay

e−jα̇τd︸ ︷︷ ︸
coupling

= G′
uu* (s) e−jα̇τd . (3.7)

Since time delays belong to the class of partial differential equations they cannot be
described by a finite state vector as is the case for ODEs. However they may be
approximated by

e−sτd ≈ 1(
1 + τd

n
s
)n , (3.8)

for a finite n ∈ Z, e. g. n = 4. A more accurate approximation is based on the Padé-
Approximation [68]. The resulting transfer function with decoupling state feedback
is

Giv (s) =
is (s)
v (s)

= τc

σLs

Guu*

1 + τcs + jα̇τc − jα̇τcGuu*
. (3.9)

Figure 3.5 depicts the block diagram of the closed control loop of (3.9) under the
action of static state feedback (3.4) and shows how dynamics are separated into a
direct and quadrature component. Transfer function P denotes the plant dynamics
of (3.5) and C the control law of (3.6). In the block diagram, it is indicated how
coupling effects enter through plant and computational delays and correspondingly it
becomes evident, that an attenuation of the approximated disturbances

dd = σLsα̇ (sin (α̇τd) ids + cos (α̇τd) iqs) + sin (α̇τd) uqs

G′
uu*

, (3.10)

dq = σLsα̇ (sin (α̇τd) iqs − cos (α̇τd) ids) − sin (α̇τd) uds

G′
uu*

, (3.11)

are particularly relevant for the design process.
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Figure 3.5: Field oriented control: current dynamics.

Another limiting aspect is the maximum voltage uub = apwm2/πudc, which can be
attained by the PWM method. In case of a dynamic torque demand, the current
controller will calculate an excessive phase voltage amplitude due to high current
references. To avoid possible oscillations and windup effects, it is important to consider
that û ≤ uub. A classical anti-windup strategy, however, ignores the geometric relations
of space vectors. Therefore an approach is anticipated, which respects the demands for
decoupling and back EMF compensation as per (3.4) while considering the geometric
possibilities. A dynamic response behavior can be further supported if it is possible
to prioritize either field or torque generation and therefore recognize priorities of the
individual components uds and uqs. This leads to three splitting strategies

• uqs has priority over uds: u∗
d,sat = sign (u∗

ds)
√

u2
ub − u∗

qs
2,

• uds has priority over uqs: u∗
q,sat = sign (u∗

qs)
√

u2
ub − u∗

ds
2,
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• phase correct limitation: u∗
d,sat = u∗

ds
uub√

u∗
ds

2 + u∗
qs

2
, u∗

q,sat = u∗
qs

uub√
u∗

ds
2 + u∗

qs
2
.

However, concerning the static state feedback (3.4) it is not always obvious which
component should be prioritized. Possible splitting strategies are presented in [183],
where for example the priority decision is characterized depending on whether the
drive is in driving or regenerating mode. Which strategy is best suited is often unclear.

3.1.3 Torque and Flux Control

Based on the results shown in Figure 3.5, the current dynamics of the inner current
control loop for either the d-axis or the q-axis is

Gii* (s) = i.s (s)
i∗
.s (s)

= G′
uu* (kp,is + ki,i) τc cos (α̇τd)

σLss (τcs + 1) + G′
uu* (kp,is + ki,i) τc cos (α̇τd)

. (3.12)

Using (2.40), the plant model of the torque control loop is approximated by

GTei* (s) = 3
2
Zp

Lm

Lr
λrGii* , (3.13)

where it is assumed that the rotor flux is nearly constant. It is clear, that the stationary
gain of (3.13) decreases with a decreasing flux level. Finally, the open loop transfer
function Gλi* for rotor flux control is obtained by a series connection of (3.12) with a
first order system that is defined by (2.32)

Gλi* (s) = λr (s)
i∗
ds (s)

= Lm

τrs + 1
Gii* . (3.14)

The error dynamics of eλ = λ∗
r − λ̂r and ete = T ∗

e − Te are stabilized via PI-controllers.
These yield the closed loop dynamics of the IM

Gλλ∗ (s) = λr (s)
λ∗

r (s)
= (kp,λs + ki,λ) LmGii*

(τrs + 1) s + (kp,λs + ki,λ) LmGii*
, (3.15)

GTeTe∗ (s) = Te (s)
T ∗

e (s)
= (kp,tes + ki,te) 3ZpLmλrGii*

2Lrs + (kp,tes + ki,te) 3ZpλrLmGii*
, (3.16)

which describe the response behavior of the process outputs to the reference signals.
The respective proportional and integral gains are kp,λ, kp,te and ki,λ, ki,te. To reduce
the control effort, it is advisable to feed forward the steady state values of the direct
and quadrature current given by

ist
ds = λr

Lm
, (3.17)

ist
qs = 2

3
Lr

Lm

Te

Zpλr
. (3.18)
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Figure 3.6: Closed loop electric drive module current, flux and torque dynamics.

The dynamic performance of the EDM is characterized by the sensitivity function S,
the load sensitivity function P S, the complementary sensitivity function T , and the
noise sensitivity function CS, for the closed loop of current (3.12), flux (3.15), and
torque (3.16) control. These are shown in Figure 3.6 for an exemplary control design.
The sensitive function S, on the upper left, captures the response behavior of the
output to process noise, which enters at the output of the system, e. g. measurement
noise. On the upper right the load sensitivity P S characterizes the response of the
output to load disturbances, for example (3.10). The magnitude of the complementary
sensitivity T , in the lower left corner, describes both the response of the output to
the reference, and the response of the input to a load disturbance. The magnitude of
the noise sensitivity CS shows how the process input reacts to the reference or to the
process noise. The inner current control loop is designed for the maximum possible
bandwidth, while the outer torque loop is designed for a bandwidth, which is slower
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than the inner loop by a factor of 20. The flux control is designed according to the
symmetrical optimum [6, 203]. A more detailed analysis of the control performance in
the time domain follows in Section 3.3.

3.2 Efficiency Optimized FOC

In FOC the flux in the air-gap is conventionally maintained at a high level which is in
general limited by two main factors. Firstly, below the base speed, near 300 rad/s, in
the region of

Xsat = {λr, Te, ωm ∈ R+ × Oedm| λr = λub} , (3.19a)

(see Figure 3.7), the flux is bounded from above by λub due to saturation of the iron
core. Secondly, above base speed in the region of

Xvolt =
{

λr, Te, ωm ∈ R+ × Oedm| û = apwm
2
π

udc

}
, (3.19b)

the flux is limited by the DC-link voltage and the corresponding maximum phase
voltage of the chosen PWM method. Technical requirements, for example on the
winding insulation, may demand a compliance with an upper current limit îub within

Xcur =
{

λr, Te, ωm ∈ R+ × Oedm| î = îub
}

. (3.19c)

In the case of regenerative braking, the current limit becomes relevant, if the battery
is almost fully charged.
Storing a high amount of energy in the coupling field improves the dynamic perfor-
mance and damping properties of the IM which is roughly explained by the fact that
a sudden torque demand only involves a slight adjustment in the quadrature current
component iqs. However, in partial-load areas

Xpl =
{

λr, Te, ωm ∈ R+ × Oedm| λlb ≤ λr < λub ∧ û < apwm
2
π

udc ∧ î < îub

}
, (3.19d)

the prerequisite of a high flux level, leads to a poor EDM efficiency as iron losses are
not ideally balanced against conduction losses of the motor and converter. To achieve
maximum efficiency, the flux level at part load is substantially reduced. However,
reducing the flux level results in an increased delay when a transient torque command
requires more increase. Therefore, a minimum flux λlb is maintained during idling.

An optimized flux reduction based on the relation between two independent motor
variables can be expressed. One is used to balance the power loss while the other
maintains the mechanical output power at the desired operating point (ωm, Te).
Early investigations have chosen the stator voltage and slip [113] to derive analytical
formulations for the problem of loss minimization, while others used the stator
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Figure 3.7: Electric drive module flux dependent operating regions.

currents instead of voltages [107] or the magnetizing air-gap flux instead of the slip
frequency [111]. More recently attention has focused on accurate representations of
loss processes as well as on the consideration of technical limitations for example
due to the maximum voltage (3.19b) [242]. The following analysis uses the rotor flux
λr ∈ R+ and electromagnetic torque Te ∈ R as independent motor variables to pose
the problem of optimized flux reduction within the feasible set of

XIM = Xsat ∪ Xvolt ∪ Xcur ∪ Xpl . (3.19e)

The natural choice of independent variables with respect to FOC and the operating
range Oedm allows for a more intuitive interpretation and straight forward implementa-
tion of optimization results. This choice is only made possible by the flat system
representation of the IM, which is introduced in the upcoming section.

3.2.1 Loss Minimizing Control

The problem of loss minimization is described by the constrained nonlinear optimiza-
tion problem

P st*
l,im (Te, ωm) = min

λr∈X st
IM

P st
l,im (λr, Te, ωm) , (3.20)

where X st
IM represents the feasible set (3.19e) for steady state operating conditions

[158]. Using the square of the current and voltage peak value to define feasible regions
of XIM (

apwm
2
π

udc

)2
− û2 (λr, Te, ωm) ≥ 0 , (3.21a)

î2
ub − î2 (λr, Te, ωm) ≥ 0 , (3.21b)
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the Lagrangian function of problem (3.20) is defined as

L =

(
P st

l,im (λr, Te, ωm) − μ1 (λr − λlb) − μ2 (λub − λr) −
μ3

(
a2

pwm
4

π2 u2
dc − û2 (λr, Te, ωm)

)
− μ4
(̂
i2
ub − î2 (λr, Te, ωm)

)
)

. (3.22)

The scalar quantities μi ∈ R+, i ∈ I = 1(1)4 are called the Lagrange multipliers.

It is easily verified, that the second order partial derivative of the objective w.r.t the
rotor flux is positive definite and that the corresponding derivative of the current
constraint is positive definite for |Te| > 0, rendering both convex. In the case of
driving operation with Te ≥ 0, the same applies for the square value of the phase
voltage. For regenerative braking Te < 0, the phase voltage unfortunately is not convex.

Every local minimum λ∗
r , μ∗ of (3.20) has to satisfy the first-order necessary conditions

or Karush-Kuhn-Tucker (KKT) conditions
∂L

∂λr

∣∣∣
λ∗

r ,μ∗
= 0 , (3.23a)

∂L

∂μi

∣∣∣∣
λ∗

r

≥ 0 , ∀i ∈ I , (3.23b)

μ∗
i ≥ 0 , ∀i ∈ I , (3.23c)

μ∗
i

∂L

∂μi

∣∣∣∣
λ∗

r

= 0 , ∀i ∈ I . (3.23d)

Since the problem is convex, in the case of driving, each local minimum is also a global
solution. In the case of regenerative braking, multiple local solutions may exist. At
this stage, it is assumed that Linear Independent Constraint Qualification (LICQ)
holds at the optimum. This means that the gradients of the active constraint are
linearly independent. In this case, only one of the four constraints (3.19e) can be
active, since λ∗

r is clearly determined by the active constraint. In other words, at the
most one Lagrange multiplier is nonzero which leaves four options

• λ∗
r = λlmt

r ∈ X st
pl is the solution of the unconstrained problem (μ∗

i = 0, ∀i ∈ I),

• λ∗
r is equal to either the lower bound λlb or upper bound λub (μ∗

1 �= 0 ∨ μ∗
2 �= 0),

• λ∗
r = λr,volt ∈ X st

volt is limited by the maximum voltage (μ∗
3 �= 0),

• λ∗
r = λr,cur ∈ X st

cur is limited by the maximum current (μ∗
4 �= 0).

The solution for the unconstrained problem, derived from (3.23a), is

λlmt
r =

⎛
⎜⎝4

9
RrL

2
m + RsL

2
r

Rs + (LmZpωm)2

Rfe

T 2
e

Z2
p

⎞
⎟⎠

0.25

. (3.24)

79



3 Energy Management Strategies for Induction Motor Drives

The problem of finding the solution at the maximum attainable voltage X st
volt as per

(2.45g) and (3.23b) translates to a problem of finding the positive real roots x ∈ R+

of the fourth order polynomial

0 =
(

4
9
R2

r
T 2

e

Z2
p

x2 + 4
3
RrTeωm x + (LsRr)2 + 2RrRsL

2
m + (LrRs)2

(σLsLr)2 + (Zpωm)2
)

T 2
e

Z2
p

x2 +

3

((
L2

s Rr + L2
mRs
)

(σLsLr)2 Teωm − 3
(

Lmapwm

σLsLrπ

)2
u2

dc

)
x + 9

4
R2

s + (LsZpωm)2

(σLsLr)2 , (3.25a)

which leads to
λr,volt = 1/

√
x . (3.25b)

An efficient iterative approach to the solution of (3.25), is a damped Newton’s method
with the initial guess of (3.24).

For understanding the influence of the current limit in the region of X st
cur, see the

second graph of Figure 3.8. The phase current peak value monotonously increases into
the direction of an increasing power output Pm = Teωm. A strict limit on îub leads to
a shift of the line, that is defined by X st

cur ∩ X st
IM, into the direction of a reduced power

output. This line determines the maximum torque rating Te,ub generally given by

λr,cur, Te,ub = argmax
λr,Te∈X st

IM

Te , (3.26a)

for driving operations. In the case of regenerative braking, the minimum rating Te,lb

is defined by

λr,cur, Te,lb = argmin
λr,Te∈X st

IM

Te . (3.26b)

If no current limit is set, Te,ub and Te,lb are solely defined by the feasible region of X st
volt.

With an initialization of (3.24) and an arbitrary initial guess for Te, problem (3.26) is
readily solved with an appropriate numerical optimization method, for example the
Interior Point Optimizer (IPOPT) [239].

The boundaries of the solution regions, on which the LICQ is violated, are shown in
Figure 3.7. They are defined by the roots Te ∈ R of

λlmt
r = λlb, λlmt

r = λub, λlmt
r = λr,volt

λr,volt = λub, λr,volt = λr,cur ,
(3.27)

and are expressed as a function of speed ωm. The indicated vectors in Figure 3.7 show
how these boundaries are shifted for a decreasing current limit îub and a reduced
DC-link voltage udc.
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Algorithm 1 : Efficiency Optimized Flux Strategy
Require: IM parameter, voltage range apwm, lower and upper flux bound λlb, λub.

1: procedure λ∗
r (udc, îub, ωm, Te)

2: λr ← λlmt
r � compute unconstrained solution (3.24).

3: λr ← max {λlb, min {λr, λub}} � limit flux to upper or lower bound.
4: ûub ← apwm

2
π

udc � max. attainable voltage range.
5: û ← ûst (ωm, Te, λr) � compute phase voltage at operating point (2.45g).
6: if û > ûub then � check if phase voltage exceeds the max. voltage.
7: λr ← λr,volt � solve (3.25).
8: û ← ûst (ωm, Te, λr) � update phase voltage at new iterate (2.45g).

9: end if
10: î ← îst (Te, λr) � compute phase current at operating point (2.45f).
11: if î > îub or û > ûub then � check current and voltage limits.
12: λr, Te ∈ [Te,lb, Te,ub] ← (3.26) � solve (3.26) to limit torque.
13: end if
14: return: λr, Te, (Te,lb, Te,ub)

It can be shown that within the operating region of X st
volt, the flux constrained by the

maximum voltage is smaller than the unconstrained flux λr,volt < λlmt
r , whereas in the

region of X st
pl the converse is true λr,volt > λlmt

r . An optimal flux reduction strategy is
thus formulated as

λ∗
r = max

{
λlb , min

{
λr,volt , λlmt

r , λub
}}

. (3.28)

Summarizing the above results, a practical flux strategy is implemented in
Algorithm 1. Apart from computing the optimal flux level, this procedure also bounds
the torque by the minimum or maximum torque rating Te,lb, Te,ub. If required, these
bounds can be computed independently of the if condition in line 11 and provided as
return values. The electrical and magnetic states computed for this LMT are depicted
in Figure 3.8. From top to bottom, the graphs show the rotor flux magnitude, the
phase current peak value, the phase voltage peak value and the EDM power loss
for regenerative braking and driving operation. Torque and power loss values are
indicated in the per unit system (pu). Within the partial load area (3.19d), the flux is
gradually increased with rising torque magnitude, whereas the flux is slightly reduced
if the speed increases.
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Figure 3.8: Current, voltage and power loss characteristics for the loss minimizing
field strategy.
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3.2.2 Maximum Torque Per Ampere/Volt

Various alternative strategies for flux reduction have been proposed in the literature.
The most common strategy is known as MTPA. Instead of minimizing the power loss,
the objective of MTPA is to minimize the phase current according to

îst* (Te, ωm) = min
λr∈X st

IM

îst (λr, Te, ωm) . (3.29)

Following the same line of argumentation as for the previously discussed LMT, the
solution of problem (3.29) is

λ∗
r = max

{
λlb , min

{
λr,volt , λmtpa

r , λub
}}

, (3.30)

where the unconstrained solution is

λmtpa
r =

(
4
9
L2

r
T 2

e

Z2
p

)0.25

. (3.31)

Algorithm 1 is modified to follow an MTPA strategy by simply replacing the uncon-
strained solution for the LMT in the second line with (3.31).

The relative difference

ε{λ,i,u,Pl}

{
λr, î, û, Pl,edm

}∣∣
{MTPA,MTPV}{

λr, î, û, Pl,edm
}∣∣

LMT

(3.32)

between MTPA and the LMT for the rotor flux, stator current, stator voltage and
EDM power loss is displayed in the left column of Figure 3.9. While not being
symmetric, the relative difference for the driving operation is similar to the shown
results. Looking at (3.31), a distinguishing characteristic of the unconstrained MTPA
strategy is that the rotor flux is not speed dependent. At the rotor speed of

ωm = 1
Zp

√
RrRfe

Lr
. (3.33)

both strategies are identical. Below (3.33), in the partial load area, the rotor flux
magnitude of MTPA is reduced by up to 13 % compared to the LMT. Above (3.33),
the rotor flux almost linearly increases well over 40 % of the loss minimizing solution.
Comparing the stator phase voltage, the results are very similar, contrary to the
phase current where the proportion is well under 90 % for the maximum speed and
under 98 % at standstill. Overall, the power loss is higher for MTPA in comparison
to the LMT, except in the case of a view operating points. Since VSI losses are not
considered in the derivation of the optimal flux level, these points near zero torque
show a reduced loss mainly due to the lower current magnitude and the resulting

83



3 Energy Management Strategies for Induction Motor Drives

Figure 3.9: Relative difference of maximum torque per ampere (MTPA) and maximum
torque per volt (MTPV) compared to the loss minimizing technique (LMT)
for regenerative braking.
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drop in switching losses. Based on the average value model presented in Section 2.1,
VSI losses are easily incorporated into the LMT problem formulation. However, the
differences of the obtained flux level are marginal for the considered application and
are for this reason not further discussed.

In the case of regenerative braking, it makes sense to consider a different objective
in order to improve the overall efficiency. Instead of minimizing the EDM power
loss, it is desirable to increase the DC-link current, which in effect leads to a higher
charge rate of the battery. One possibility to increase the charge rate is to follow a
strategy which can be described as Maximum Torque Per Volt (MTPV). Since the
minimum voltage will cause a high phase current, provided that the output power is
kept constant, this strategy can be seen as the counterpart to MTPA. In this sense,
the problem is redefined as

min
λr∈X st

IM

ûst (λr, Te, ωm) . (3.34)

Due to the complex form of (2.45g), there is no closed form of the unconstrained
solution, but it is implicitly given by a higher order polynomial function. Nevertheless,
the problem is solved using IPOPT which converges for an arbitrary choice of an
initial guess. Despite the markedly higher power loss of MTPV, it is observed in
Figure 3.9, that the phase current is well above the magnitude obtained for the other
strategies. Since the phase current is rectified via the VSI and impressed to the
battery, this eventually leads to a higher charge rate. However, the main problem of
MTPV, as presented in Figure 3.9, is the resulting low flux level and the consequential
poor transient performance. Even though this consideration is only theoretical in
nature, it shows that a reduction beyond (3.28) and (3.30) can improve the charge
rate. Moreover, a MTPV like strategy might be interesting for thermal conditioning
through a systematic increase of the overall EDM loss, which for low speeds could be
up to ten times higher and for high speeds still double in comparison to an LMT.

3.2.3 Validation of BEV Control Strategies

Even if the access to internal control functions is restricted, the field strategy can be
validated by consulting characteristic loss maps of the IM. Given the model parameter,
the expression of the stationary power loss (2.45e) is used to derive the rotor flux in a
least square manner. For every operating point considered in the characteristic loss
map, the rotor flux is computed by solving

λr (ωm, Te) = argmin
λr>0

(
Pl,im|map − Pl,im|mdl

)2
. (3.35)

The first term, Pl,im|map, denotes the empirically determined IM loss and the second
term, Pl,im|mdl, is computed by the analytical expression defined in (2.45e). Figure 3.10
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Figure 3.10: Comparison of the modeled rotor flux and the flux level identified from
the induction motor loss map.

Figure 3.11: Comparison of modeled and specified maximum torque rating.

compares the results of (3.35) with the modeled flux of Algorithm 1. The resemblance
confirms the assumption that the EDM employs a flux strategy similar to a LMT.
Moreover, EDM loss maps, which are important performance quantifiers of energy
management strategies, can be represented by the IM model up to almost any
accuracy over the entire operational range, if the flux level is computed by means of a
characteristic map derived from (3.35).

The most important performance quantifier of an EDM is the torque rating. Therefore,
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it is essential that Algorithm 1 can accurately represent the maximum attainable
torque. Figure 3.11 compares the specified rating of the motor manufacturer with the
modeled results. At 900 rad/s, a different PWM method is used with a higher voltage
range, which, in turn, leads to an increased torque capability. From Figure 3.11
it is concluded that the voltage dependency as well as the overall characteristics
are well represented by the model-based approach. In practice, the minimum and
maximum torque ratings are represented by characteristic curves Te,whl,ub, Te,whl,lb

as a function of the vehicle speed. These have to be identified for different voltage
levels. Interpolating between these characteristics is only partially accurate. The
model-based approach is thus more generally applicable.

3.3 Flatness Based Control

This section introduces a new flat output for an IM that presents a more intuitive choice
for vehicle applications compared to existing definitions [140, 141]. The proposition of
the flat output is

• the rotor flux magnitude λr,

• the electromagnetic torque Te,

• and the rotor speed ωm,

which is a natural choice in the context of FOC and BEV motion control. It has to be
noted that the rotor flux magnitude and electromagnetic torque have been previously
mentioned as flat outputs in [216]. However, no evidence other than the already
mentioned references [47, 140, 141] is provided nor is it clear how the load torque,
which is used in the definition of the state- and input-parametrization is determined.
Defining the flat output as

z = (λr Te ωm) (3.36)

for an augmented system, these issues are avoided.

As originally presented in [192] and discussed in Section 2.2, the nonlinear state space
model (2.32) is of the general form

ẋ = f (t, x) + gd(x)uds + gq(x)uqs (3.37)

where the state vector x ∈ X ⊂ R3 on manifold X is equal to x = (ids iqs λr) and
where the vector fields f, gd, gq are obviously defined according to (2.32). The time
variance of (3.37) is due to the rotor speed ωm which is governed by the vehicle
longitudinal dynamics and in general is also influenced by the drivetrain dynamics.
Many properties of time-invariant systems do not extend to time varying systems,
which is why these are often augmented by an additional differential equation for the
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evolution of time ṫ = 1 so that well established analysis methods of time-invariant
nonlinear input affine systems can be applied. The central idea of the proof however,
is to augment (2.32) via a general representation of speed dynamics[

ẋ

ω̇m

]
︸ ︷︷ ︸

= ˙̃x

=
[

f (x̃)
fω (x̃)

]
︸ ︷︷ ︸

=f̃(x̃)

+
[

gd (x̃)
0

]
︸ ︷︷ ︸

=g̃d(x̃)

uds +
[

gq (x̃)
0

]
︸ ︷︷ ︸

=g̃q(x̃)

uqs + gω(x̃)uω , (3.38)

by introducing a new external input or disturbance uω ∈ R and influencing vector
fields fω and gω. Consequently, it is assumed that the rotor speed is governed by a
nonlinear input affine system. In its simplest form, this system is derived by Euler’s
second law of motion so that fω accounts for the electromagnetic torque and a possible
nonlinear friction term and gω is equal to the reciprocal of the rotational inertia. In
this case as well as in more detailed considerations, uω is equal to the load torque.
Since the load torque is an arbitrary external disturbance, it is unknown. However
for the derivation of the IM’s state- and input parametrization, fω, gω and uω do not
have to be known explicitly.
The augmented system (3.38) is diferentially flat if and only if there exists a mapping
Ψz with a rank equal to the number of independent inputs, which maps the states x̃,
the inputs uds, uqs, uω and a finite number of derivatives of the inputs onto the flat
output so that

z = Ψz
(

x̃, uds, u̇ds, .., u
(r1)
ds , uqs, u̇qs.., u(r2)

qs , u, u̇ω, .., u(r3)
ω

)
. (3.39)

The notation v(r) indicates the time derivative of variable v ∈ R up to the order r ∈ Z.
This mapping is given by

Ψz =

⎡
⎣ λr

Te

ωm

⎤
⎦ =

⎡
⎢⎣

λr

3
2
Zp

Lm

Lr
λriqs

ωm

⎤
⎥⎦ , (3.40)

which only depends on the system states. Furthermore, there has to be a state-
parametrization Ψx of rank four and input-parametrization Ψu of rank three which
define the algebraic relation between the flat output, its time derivatives, the states
and the inputs according to

x̃ = Ψx
(

λr, λ̇r, .., λ(r1−1)
r , Te, Ṫe, .., T (r2−1)

e , ωm, ω̇m, .., ω(r3−1)
m

)
, (3.41)

(uds uqs uω)T = Ψu
(

λr, λ̇r, .., λ(r1)
r , Te, Ṫe, .., T (r2)

e , ωm, ω̇m, .., ω(r3)
m

)
. (3.42)

where the sum of the highest derivative order
∑

i ri must be greater or equal to the
state dimension. These mappings must comply with

d Ψx

dt
= f̃ (Ψx) + g̃d(Ψx)Ψu,1 + g̃q(Ψx)Ψu,2 + gω(Ψx)Ψu,3 . (3.43)
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(3.46)

(3.47)

(2.30)

(2.39)

(3.50)

Figure 3.12: Equivalent differential flat system of an induction motor.

Both parametrizations are derived by repetitively applying the Lie derivative on the
rows i ∈ {1, 2, 3} of Ψz along the vector field f̃ :

zi = L
(0)
f̃

Ψz,i = Ψz,i (x̃) , (3.44a)

żi = Lf̃ ◦ L
(0)
f̃

Ψz,i = L
(1)
f̃

Ψz,i , (3.44b)

...

z
(ri)
i = L

(ri)
f̃

Ψz,i +
∑
g(.)

Lg(.) ◦ L
(ri−1)
f̃

Ψz,i uj (3.44c)

so that the highest order ri is determined in such a way that the Lie derivative on
Ψz,i along the vector fields gd, gq, gω up to the order ri − 2 vanish

Lgj ◦ L
(ri−2)
f̃

Ψz,i = 0 . (3.44d)

A particular benefit of the proposed state- and input-parametrization is that IM
variables can be decomposed into a stationary part and a transient part as per

Ψx = Ψst
x + Ψtr

x , (3.45a)

Ψu = Ψst
u + Ψtr

u . (3.45b)
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Given the order r1 = 2 and r2 = r3 = 1, the state-parametrization Ψx is defined by

ids = λr

Lm︸︷︷︸
=ist

ds

+ τr

Lm
λ̇r︸ ︷︷ ︸

=itr
ds

, (3.46a)

iqs = 2
3

Lr

Lm

Te

Zpλr︸ ︷︷ ︸
=ist

qs

+ 0︸︷︷︸
=itr

qs

, (3.46b)

λr = λr , ωm = ωm . (3.46c)

Accordingly, the stationary and transient parts of the input-parametrization Ψu are
defined by

uds = 1
Lm

(
Rsλr − σLsLr

(
4
9
Rr

Te

Zpλ2
r

+ 2
3
Zpωm

)
Te

Zpλr

)
︸ ︷︷ ︸

=ust
ds

+ (3.47a)

1
Lm

((
Rs

Rr
Lr + Ls

)
λ̇r + σLsτrλ̈r

)
︸ ︷︷ ︸

=utr
ds

,

uqs = 1
Lm

(
LsZpωmλr + 2

3
(LsRr + LrRs)

Te

Zpλr

)
︸ ︷︷ ︸

=ust
qs

+ (3.47b)

σLs

Lm

(
2
3
Lr

Ṫe

Zpλr
+ τrZpωmλ̇r

)
︸ ︷︷ ︸

=utr
qs

,

and the parametrization of the newly introduced input, which is equal to the unknown
load torque is

uω = ω̇m − fω (Ψx)
gω (Ψx)

. (3.48)

Since (3.46), (3.47) and (3.48) have full rank on

Z =
{

z ∈ R
3| λr �= 0 ∧ gω (x̃) �= 0

}
(3.49)

it is proven that (3.36) is a flat output of the augmented system (3.38). The canonical
form of the IM is displayed in Figure 3.12.
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As the voltage and current coordinates are separable into a stationary and transient
part, so are the square values of the stator phase current and phase voltage and the
IM power loss

Pl,im = P st
l,im + 3

2

(
ist
ds utr

ds + itr
dsu

st
ds + ist

qs utr
qs +

(
ωeτrλ̇r

)2
Rfe

)
︸ ︷︷ ︸

=P tr
l,im

, (3.50a)

î2 =
(̂
ist)2 +

(
2λr + τrλ̇r

) τr

L2
m

λ̇r︸ ︷︷ ︸
=(îtr)2

, (3.50b)

û2 =
(
ûst)2 + 2ust

ds utr
ds + utr

ds
2 + 2ust

qs utr
qs + utr

qs
2︸ ︷︷ ︸

=(ûtr)2

. (3.50c)

The stationary components (2.45) are listed before in Section 2.2.4.

One of the most obvious benefits of the equivalent flat system representation is that
for a desired electromagnetic torque and speed trajectory, whose design is essential for
motion control, IM control is reduced to the problem of planning an appropriate rotor
flux trajectory. A good overview on the target of trajectory planning is found in [75].
If a planned trajectory is feasible, which means that all technical limitations discussed
in Section 3.2 are considered, the input parametrization can be used to control the IM
in a feedforward manner. Feedforward control, however, is only applicable in theory
as the nominal control model can never account for all dynamic effects, uncertainties
and disturbances.

3.3.1 Two Degree of Freedom Control

For this reason, flatness based control often follows a 2DOF design so that the trajectory
generation and feedforward control is complemented by a robust feedback loop which
deals with the unknown or neglected plant uncertainties and guarantees that the
desired trajectory is tracked [235]. Consequently, control design is differentiated into
two problems, the generation of a feasible and possibly optimal trajectory on the one
hand and the design of a robust and stable tracking controller on the other. The
major advantage of a flatness based approach is the possibility to plan the feedforward
trajectory independently of any system state in an open-loop fashion, whereas for
feedback design well established methods can be relied upon [42]. A 2DOF structure
that builds on FOC is shown in Figure 3.13.

An elegant solution to the problem of online trajectory planning and smoothing,
which is particularly suited for integrator chains and motion control, is based on the
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Figure 3.13: Flatness based two degree of freedom control.

implementation of Finite Impulse Response (FIR) filters [16]. The proposed method
is shown to be equivalent to a function approach with time-optimal, multi-segment,
polynomial trajectories and is capable of respecting constraints on the first n derivatives
of the trajectory where n denotes the order of the trajectory. Furthermore, it allows
to properly shape the frequency spectrum of a motion law. An alternative example of
a polynomial approach is presented in [114].

A trajectory λr (t) is said to be of the order n, if the first n − 1 derivatives are
continuous or equivalent, if it is of the class Cn−1. The concept of the trajectory
generation is presented in Figure 3.14 and shows that the trajectory λr (t) ∈ Cn−1

is obtained by a step input λ∗
r (t) which is filtered via a series connection of n filter

elements, each parameterized by the time constant τi, i ∈ 1(1)n. In the first stage,
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Figure 3.14: Trajectory generation λr ∈ C1 based on a cascade of five filter elements
(1 − e−τns)/τn ( n = 2, s denotes the Laplace variable).

the filters response to a step function of amplitude λ∗
r results in a rectangular profile

with a duration of τ1. The area of this rectangular profile is unitary. Consequently,
its integral results in a linear profile from the initial value to the set-point λ∗

r with a
change rate given by Δλr,1/Δτ1. This directly imposes a desired limit value λ̇r,ub on
the change rate according to τ1 = |λ∗

r |/λ̇r,ub. Propagating the response through the
entire series connection, shows that the limit on the second derivative is imposed by
τ2 = λ̇r,ub/λ̈r,ub and that eventually leads to

τi = λ
(i-1)
r,ub /λ

(i)
r,ub . (3.51)

The total time required to reach the endpoint of the trajectory after a set-point change
is equal to the sum of the individual time constants

∑
∀i τi. If the time constants are

chosen in a way that τi ≥ τi+1 + ... + τn, the point to point trajectory is time optimal,
i. e. it reaches the endpoint in the minimum duration under the consideration of the
constraints. Otherwise, the trajectory is still guaranteed to comply with the constraints.

These methods illustrates, how trajectories can be planned for the rotor flux (where
n ≥ 2) in a computationally efficient manner. Furthermore, it is readily applicable for
motion control where the dynamics are approximately represented by a second order
system. Since the first derivative of the electromagnetic torque is required for the input
parametrization of the IM, trajectories for motion control can be planned with n ≥ 1
filter elements. The main advantage of this method is the possibility to limit the jerk
and the acceleration of the vehicle by means of sufficient bounds on Te and Ṫe. Both
of these quantities are important measures for driveability considerations [133]. In
addition, the prospect of designing the dynamic filters in regard to frequency-domain
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specifications of the drivetrain, enables the planning process to include design aspects
related to a resonance attenuation of the drivetrain. However, the main disadvantage
of this method is that the planning process and the imposed limits on the derivatives
are not directly related to state and input constraints of the phase current and voltage,
neither are the trajectories evaluated in terms of energy efficiency.

3.4 Optimal Control for Transient Operation

This section presents a more general solution to the problem of an optimal trajectory
generation. The objective is to minimize the energy loss for the transition of a starting
point (ωm, Te)|

t0
to an endpoint (ωm, Te)|

tf
while considering flux, voltage and current

constraints as well as the dynamic capabilities of the IM. There are relatively few
investigations addressing this problem of IM efficiency control during torque transients
[60]. A thorough literature survey of this field of research is found in [178]. One
of the first detailed studies of this problem is [137], where the authors used a DP
approach based on Bellman’s principle of optimality. The field received more attention
after necessary and sufficient optimality conditions were derived from the calculus of
variations for the torque tracking problem without state constraints [27]. Exploiting
these analytical results, [214, 215] extended the method and implemented an online
predictive control scheme by parameterization of the optimal flux trajectory based on
an exponential function. Apart from the DP approach and [60], however, the proposed
methods do not allow for an inclusion of the current and voltage constraints. The
method, proposed below, addresses this limitation and looks at the general constrained
problem

minimize
ufl

tf∫
t0

we Pl,im (ωm, xfl, ufl) + ϑ (xfl) dt + ϑf

(
xfl|

tf

)
(3.52a)

subject to ẋfl = Axfl + Bufl, (3.52b)
xfl|

t0
= x0, (3.52c)

apwm
2
π

udc − û (ωm, xfl, ufl) ≥ 0 , ∀t ∈ [t0, tf] , (3.52d)

îub − î (xfl) ≥ 0 , ∀t ∈ [t0, tf] , (3.52e)
xlb ≤ xfl ≤ xub , ∀t ∈ [t0, tf] , (3.52f)
ulb ≤ ufl ≤ uub , ∀t ∈ [t0, tf] , (3.52g)
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where xfl = (Te λr λ̇r) ∈ R3 denotes the state of the equivalent flat system and
ufl = (Ṫe λ̈r) ∈ R2 is the control variable with

A =

⎡
⎣0 0 0

0 0 1
0 0 0

⎤
⎦ , B =

⎡
⎣1 0

0 0
0 1

⎤
⎦ . (3.53)

Problem (3.52) belongs to the class of finite horizon optimal control problems with a
fixed initial condition (3.52c) [23, 166]. The time integral in (3.52a) is equal to the
energy that is dissipated due to IM loss processes plus the distance term ϑ. This term
penalizes the deviation of the state trajectory from the desired endpoint (Te, λr)|tf

,
where the terminal rotor flux λr|tf

is determined by the loss minimizing strategy
described in Section 3.2. Furthermore, in order to end the transition in a stationary
point, a penalty is imposed on the terminal state variable via the distance function ϑf .
No terminal constraint is used, since the terminal state may not be reached within the
consider time horizon. During the transition the rotor speed is assumed to be constant.
This may seem counter intuitive at first, though if the time horizon t ∈ [t0, tf] is
sufficiently small, the speed is almost constant due to the high inertia of the vehicle.
A weighting factor we is introduced to balance between the two objectives of energy
efficiency and tracking performance, which is the amount of time required to reach the
terminal state. Furthermore, constraints are imposed on the system states and inputs
as well as on the values of the phase voltage and phase current based on the state- and
input-parametrization which were defined in Section 3.3. Altogether, the constraints
define the feasible set XIM of (3.19), which was discussed in Section 3.2. Restrictions
on the torque Te and its time derivative Ṫe arise from technical limitations of the
drivetrain and drivability requirements [155].

The main difference of (3.52), compared to a problem formulation that is based on
the original state space model (2.32) as conducted in [60], is the shift of nonlinearities
from the system dynamics to the constraints. Instead of a nonlinear state space model,
the problem is defined by the canonical form of the equivalent flat system (3.52b),
which is the integrator chains for the torque and rotor flux as shown in Figure 3.12.
Compared to IM current dynamics (3.3) with a time constant that is ten times
lower than the rotor flux time constant, the proposed formulation is clearly reduced
in complexity. Yet, this simplification is gained at the expense of nonlinear state
constraints (3.52d),(3.52e), whereas the use of the original state variables ids, iqs and
inputs uds, uqs describes the feasible set XIM via quadratic constraints. The positive
structural properties of the flatness based problem formulation have previously been
discussed in [192], where (3.52) is solved for a fixed terminal state by discrete DP.
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3.4.1 Direct Multiple Shooting

The following section extends the findings of [192] and solves (3.52) applying a direct
multiple shooting method [19, 50]. Therefore, the infinite dimensional problem (3.52)
is relaxed to a finite dimensional problem after introducing a discretization of the
control trajectory ufl ∈ Rnu on N equidistant intervals

tk = t0 + (k − 1)td , ∀k ∈ 1(1)N+1 , (3.54a)
tf = t0 + Ntd , (3.54b)

where {tk} defines the shooting grid and td ∈ R+ denotes the discrete time interval.
The control trajectory is further restricted to a piecewise constant function so that
on each interval t ∈ [tk, tk+1] ∀k ∈ 1(1)N the control is parameterized by a constant
ufl

[k] ∈ Rnu . For simplification an additional control ufl
[N+1] in the final point tf + td

of the shooting grid is added and fixed to the value of the previous shooting interval

ufl
[N] = ufl

[N+1] . (3.55)

In addition to the control parametrization, the multiple shooting method also intro-
duces a discretization of the state trajectory xfl on the shooting grid which is defined
by N IVPs

ẋkfl = Axkfl + Bufl , t ∈ [tk, tk+1] ∀k ∈ 1(1)N , (3.56a)

xkfl|
tk

= xfl
[k] . (3.56b)

Continuity of the state trajectory is enforced by matching the final value xkfl|
tk+1

obtained by the solution of (3.56) at the end of an interval with the initial point of
the succeeding shooting interval

xkfl|
tk+1

− xfl
[k+1] = 0 , ∀k ∈ 1(1)N . (3.57)

Considering the canonical form of an arbitrary flat output z ∈ R with the state vector
xz = (z ż z̈ ... z(r−1))T ∈ Rr and differential order r ∈ Z, the solution of the IVP on the
shooting interval starting at tk with constant input z(r) is

xkz|
tk+1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 td
td

2
. . .

tr−1
d

(r − 1)!

0 1 td
td

2
. . .

tr−2
d

(r − 2)!
·

... ·
...

·

1 td

0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xz
[k] +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tr
d

r!
tr−1
d

(r − 1)!

...

td

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
z(r)[k]

. (3.58)
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Finally the inequality and box constraints (3.52d)-(3.52g) are relaxed by enforcing
them solely on the shooting grid {tk}. This generally enlarges the feasible set and may
lead to constraint violations. However, in practice these violations are often negligible,
or can be reduced by choosing a finer shooting grid.

Altogether this yields the general form of a large-scale nonlinear optimization problem
with a resulting decision vector

v =
[
xfl

[1] ufl
[1] ... xfl

[k] ufl
[k] ... xfl

[N + 1] ufl
[N + 1]

]T
(3.59)

of (N + 1)(nx + nu) unknowns:

minimize
v

N∑
k=1

Pl
[k] + ϑf (xfl

[N+1]) (3.60a)

subject to xkfl|
tk+1

− xfl
[k+1] = 0 , ∀k ∈ 1(1)N, (3.60b)

xfl
[1] − x0 = 0, (3.60c)

ufl
[N+1] − ufl

[N] = 0, (3.60d)
ci (xfl

[k], ufl
[k]) ≥ 0 , ∀k ∈ 1(1)N+1 , ∀i ∈ I, (3.60e)

xlb ≤ xfl
[k] ≤ xub , ∀k ∈ 1(1)N+1, (3.60f)

ulb ≤ ufl
[k] ≤ uub , ∀k ∈ 1(1)N+1 , (3.60g)

where
Pl

[k] = wePl,im (ωm
[k], xfl

[k], ufl
[k]) + ϑ (xfl

[k]) . (3.61)

It is noted that due to the time discretization, the consideration of a discretized
speed profile ωm

[k] is straight-forward. The total number of constraints is equal to
(N + 1) (3nx + 2nu + nc) + nu where nc ∈ Z is the cardinality of the index set I which
includes the voltage and current constraints (3.52d) and (3.52e) with nc = 2. If the
weight we is chosen to be equal to td, the first term in (3.60a) is interpreted as the
energy that is dissipated during the transition. The penalty term and terminal cost
are defined as

ϑ (xfl
[k], ufl

[k]) =
nx∑
i=1

wx,i
(
x∗

fl,i − xfl,i
[k]
)2

, (3.62a)

ϑf (xfl
[N+1], ufl

[N+1]) = ϑ (xfl
[N+1], ufl

[N+1]) , (3.62b)

where x∗
fl ∈ Rnx is the desired terminal state. This is a stationary point

x∗
fl|

tf
=
[

Te|
tf

λr|tf
0
]T

, (3.63a)
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Figure 3.15: Multiple shooting grid for the flux trajectory of class C1.

for which the flux level λr|tf
is determined by Algorithm 1 as a function of the reference

torque Te|
tf
. Since the trajectory is not constrained to end in (3.63), the weights

wx ∈ Rnx are introduced in addition to we as tuning parameters. This approach
may be viewed as a potential field, in which the penalty term and terminal cost
(3.62) are interpreted as the sum of attractive potentials which pull the trajectory
towards the desired reference while considering the physical limitations of the system.
The first term of (3.60a), weighted by we, is interpreted as a repulsive potential
which tries to reduce the dissipated energy. In doing so, the method emphasizes on
computational efficiency, rather than on guaranteeing the attainment of the reference.
However, by increasing the artificial forces induced by the potential fields of (3.62),
the solution evolves more towards the reference. This can be done by either increasing
the magnitude of the reference value or by adjusting the corresponding weight. The
principle concept of the multiple shooting method for the flux trajectory with piecewise
constant input λ̈r is illustrated in Figure 3.15.

In order to generate a smooth trajectory for motion control which complies with
comfort requirements, it is desirable to impose an additional smoothness constraint
on the jerk Ṫe [155]. This is done apart from the limit on its magnitude. The sum-
of-norms regularization has gained more and more attention as a solution to this
problem [109, 161]. In particular, the l1 norm is known to force many elements of a
decision vector to zero when added to the objective. This characteristic is exploited for
example in feature selection and the Lasso regression [221]. As it is also anticipated
to reduce the magnitude and occurrence of jerk variations, an l1 norm regularization
term is added to the objective

ϑf (xfl
[N+1], ufl

[N+1]) + ςTe

N+1∑
k=1

sp
[k] + sn

[k] , (3.64)
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where ςTe ∈ R+ is a regularization factor and where sp
[k], sn

[k] ∈ R+ are artificial
variables which are introduced by the constraints

Ṫ [k]
e + sp

[k] − sn
[k] = 0 , ∀k ∈ 1(1)N+1 , (3.65a)

sp
[k] ≥ 0 , ∀k ∈ 1(1)N+1 , (3.65b)

sn
[k] ≥ 0 , ∀k ∈ 1(1)N+1 . (3.65c)

This increases the decision vector by 2(N + 1) variables and adds 3(N + 1) constraints
to the problem, however the computational effort is only slightly increased while
the solution is drastically improved in the desired way. Similar as for the jerk, a l1

norm regularization with regularization factor ςλ ∈ R+ is applied for the second time
derivative of the rotor flux, which further improves the transition behavior, which is
discussed in great detail in Section 3.5.

3.4.2 Optimized Reference Governor

By solving the Direct Multiple Shooting (DMS) problem (3.60), a state and input
trajectory is obtained, which complies with the physically and operationally imposed
limits and which tries to accomplish an energy efficient transition from an initial
operating point to a desired endpoint. Both trajectories are used in the 2DOF control
structure, shown in Figure 3.13, as feed-forward commands and references. To account
for disturbances and model uncertainties a receding horizon or Model Predictive Control
(MPC) scheme can be employed [51]. Difficulties associated with NMPC arise in terms
of closed-loop stability, recursive feasibility, and the necessity to find a solution of
the optimal control problem in real-time [52]. Due to the small time constants of IM
current dynamics, finding a solution in real-time is not the main intention of the DMS
approach. Nevertheless, the DMS problem formulation provides an efficient framework
to analyze optimal transitions, from which heuristics or rule based control methods
can be derived. Unlike a classical NMPC scheme, the proposed method classifies as
a reference governor [74]. If the trajectories are forced to end in a stationary point
within a sufficiently long time horizon, issues related to stability are taken care of by
the primal controller, which is the FOC. Proving the stability and recursive feasibility
of the control concept is not in the scope of this work. Nevertheless, positive results
are observed in simulative studies.

Following the receding horizon philosophy, only the first fraction of the optimized
trajectory with a prediction horizon tf is applied to the system. Subsequently, the
DMS problem is recalculated based on the measured or estimated state, which defines
the new initial operating point for the next transition with a possible updated reference.
The rate at which the state and reference are updated are defined by the time scale
tmpc < tf. In order to run in real-time, the DMS problem has to be solved within this
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Table 3.1: Direct multiple shooting parameter of the optimization-based induction
motor control strategy.

tf − t0 td tmpc we wx ςTe ςλ

80 ms 1 ms 10 ms 20 · td (1 , 10 , 1e−4) 1e−3 1e−3

time frame.

Problem (3.60) with l1 regularization is solved on a single thread of an Intel Core
i7-5600U processor using the modeling language JuMP v0.20.0 for mathematical
optimization [57] and IPOPT. Table 3.4.2 lists the considered time horizon tf − t0,
the time discretization td, the MPC update rate tmpc, the problem weights we, wx,
and the l1 regularization factor ςTe and ςλ for an exemplary implementation. A
detailed discussion of the numerical solution method for the DMS problem is found
in Appendix A.3. The computational effort is evaluated by solving several problem
instances for various step changes of the rotor torque. In total more than 5000 step
scenarios are solved for an initial value of zero and 10 % of the maximum torque Te,max

up to a set point of 10 %, 30 %, 50 %, and 100 % of Te,max. Scenarios are repeated for
all step responses at ωm ∈ 80(40)1040 rad/s and a current limit of îub ∈ 400(25)1200 A.
The voltage limit is defined by a battery voltage of 395 V. On average, the DMS
problem of a single MPC step converges within 342 ms. However, depending on the
number of constraints that are active within the control horizon of 80 ms, a single MPC
step may require several seconds. As expected, this shows that the problem cannot
be solved by means of the chosen numerical method and mathematical programming
language within a reasonable MPC update rate. For a real-time implementation,
alternative strategies are required.

Two illustrative examples of a set-point change between zero and maximum torque at
a speed of 200 rad/s and 1000 rad/s are shown in Figure 3.16. A current limit of 900 A
is imposed on the trajectory at a lower speed and the trajectory at the higher speed is
limited by 500 A. The first two rows present the torque trajectory, the following three
rows display the rotor flux trajectory and the bottom two rows show the resulting
stator phase current and voltage peak values. Reference values and limits are indicated
as red dotted lines. In the first scenario, the optimal torque trajectory follows an
exponential profile and reaches the maximum torque Te,max value within 20 ms. It
rapidly decreases back to zero within 20 ms. The torque trajectory complies with the
predefined limits on the jerk. The transition time of the optimal flux trajectory with
30 ms and 17 ms is considerably longer. During the almost linear transition of the
rotor flux, the current is at its specified limit. The peak value of the voltage reference
follows a non-trivial profile and remains within its boundaries.
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Figure 3.16: Direct multiple shooting optimization results.
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In the case of the second scenario at a considerably higher speed, the torque is limited
by Algorithm 1 to 20 % of the maximum value due to the maximum attainable voltage
limit. The voltage remains at its maximum value for a great part of the transition.
Only during the decrease of the torque and the rotor flux magnitude the peak value
of the voltage reference is reduced. Both the optimal torque trajectory and the flux
trajectory approximately follow an exponential profile. Compared to the first scenario
the transition time of the torque trajectory increases to 25 ms for a positive step
change despite the lower terminal value. A reason for this is the reduced current limit
of 500 A. The flux trajectory reaches its low reference value of 0.05 Vs within 30 ms.
The negative step change of the torque is completed in 2 ms and the rotor flux returns
to its idling level in 5 ms. During the return of the rotor flux, the transition time is
affected by the maximum current limit.

Summarizing the results, both scenarios show that for an increasing torque and flux
magnitude the optimal division between the torque producing component iqs and the
flux producing component ids, which follow similar profiles as the torque and flux
trajectory, is influenced by the current and voltage limit in a non-intuitive manner.
While the voltage constraint essentially limits the flux and torque magnitude at high
speeds, the current limit mainly has an influence on the transition time, and in
particular on the optimal flux profile. This observation is confirmed by the results of
all considered step scenarios. As long as the transition is not confined by a current
limit, the optimal flux trajectory can be described by an exponential function. This
is the case for the positive step change in the second scenario. However, a stricter
bound of the current limit leads to an increase of the transition time with an optimal
flux trajectory that is described by a linear function. This is observed in the first
scenario as well as for the negative step change of the second scenario. Since loss
processes support a decreasing torque and flux magnitude, a negative step change
is demonstrated to be less demanding. In this case the voltage limit has a minor
influence, whereas a current limit still affects the transition time.

Real-Time Reference Governor

Based on the findings which are derived from more than 5000 different step changes,
the optimized transition trajectories are characterized by the representative function

Te (t) = Te|
t0

+
(

Te|
tf

− Te|
t0

) (
1 − e−t/τTe

)
, (3.66)

and by a representative function for the rotor flux

λr (t) =
{

λr|t0
+ sign

(
λr|tf

− λr|t0

)
λ′ t , ωm ≤ ω̄m

λr|t0
+
(

λr|tf
− λr|t0

) (
1 − e−t/τλ

)
, ωm > ω̄m

. (3.67)

It is noted that (3.66) and the function with the exponential term in (3.67) are
analogously defined to the approach presented in [214]. To be able to quantify the
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Figure 3.17: Characteristics of optimized flux and torque trajectories for different step
changes.

influence of current and voltage constraints, the defining parameters of (3.66) and
(3.67), for various step changes, are displayed in Figure 3.17 as a function of the
specified current limit and the rotor speed. Four reference changes Te|

t0
− Te|

tf
are

considered and indicated in different colors. The left graph shows the results of the
identified time constant τTe ∈ R+. Compared to the optimal trajectory, (3.66) is
conservative as its first derivative is below the optimal value. This in turn leads to a
slight increase of the required transition time. At speeds below base speed, the time
constant τTe and accordingly the transition time of the torque trajectory decrease
exponentially with increasing current limit. With increasing speed, however, the effect
of the current limit is reduced while the voltage limit gains more influence. Above
base speed, the time constant is bound from below. This lower bound of τTe rises
with increasing speed and with increasing torque magnitude Te|

tf
.

For the majority of the transition time tf − t0, the phase current is influenced by
the shape of the flux trajectory mainly due to the comparable slow transition time.
Below the speed threshold ω̄m ∈ R+, the shape is determined by an almost constant
slope, which is parameterized by λ′ ∈ R+. Above ω̄m, the trajectory is better
described by the second term of (3.67). The speed threshold ω̄m depends on the
maximum attainable voltage range and is defined by the region of XIM\Xvolt indicated
in Figure 3.7. Within this region, both flux and torque trajectories are hardly limited
by the voltage constraint which is only active during the voltage peak that occurs as
soon as a reference change is initiated. The maximum magnitude of the slope λ̇ub

that is observed during the flux transition is shown on the right of Figure 3.17. In
this graph, the field weakening region Xvolt is clearly visible. The characteristic of the
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average slope, reveals that the optimized flux trajectory is proportional to the current
limit. In the region of Xvolt, however, the slope is bound from above. The parameter
λ̇ub and λ′ ar thus well suited to characterize (3.67), where the time constant τλ ∈ R+

is defined by

τλ =

∣∣∣∣λr|tf
− λr|t0

∣∣∣∣
λ̇ub

. (3.68)

In the case of step changes that start from Te > 0 as well as from an initial rotor flux
that is above the idling level, the characteristics of τTe and λ̇ub change in that the
transition time of the flux and torque trajectory decrease. This is expected, since
for a higher flux level the transition benefits from the energy that is stored in the
coupling field. Qualitatively, however, the characteristics are similar to those presented
in Figure 3.17. Therefore, (3.66) and (3.67) may be considered as conservative, sub-
optimal approximations of the DMS solution when parameterized by the values shown
in Figure 3.17.

For a practical implementation, the advantages of both the FIR trajectory planner
and the approximation of the DMS solution are combined. A FIR order one torque
trajectory and order two flux trajectory are generated as illustrated in Figure 3.14
according to [16]. The reference input is governed by the representative functions
(3.66) and (3.67). The defining parameters of the reference trajectory are stored in
lookup tables as functions of the vehicle speed and current limit. Therefore, the
characteristics with the highest value of τTe and the lowest value of λ′, λ̇ub are chosen.
As the transition is assumed to end in a steady state, the reference set-point of the
rotor flux is computed as shown in Figure 3.13 by means of Algorithm 1. Even though
the FIR filters are not required to comply with the physical limitations, an appropriate
design of these can be used to account for additional constraints and driveability
requirements. To stay within the desired transition time of the representative function,
the time constants τi of the FIR filter used for the flux trajectory can be set to

τ1 = τ2 = τ3 = 5λub

max{λ̇ub}
, (3.69)

where the maximum value of the λ̇ub characteristic is chosen. In view of Figure 3.17,
this value is given by max{λ̇ub} = 16 V. Due to requirements on the driving comfort,
the time constants of the FIR torque trajectory planner is defined by the maximum
jerk Ṫe,ub which yields

τ1 = τ2 = Te,ub

Ṫe,ub
. (3.70)
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3.5 Comparison of EDM Control Strategies

This section compares the EDM control strategies, which are introduced in the previous
sections. These are the

• FOC with loss minimizing flux level (LMT strategy),

• flatness based 2DOF control with optimized references (NMPC strategy),

• flatness based 2DOF control with sub-optimal references and FIR trajectory
planner (FIR strategy).

For evaluation purposes, all strategies are implemented in Matlab Simulink v2018b and
tested against a PLECS Blockset v4.1.5 circuit model of the IM and VSI [179]. This
circuit model uses a none-saturable squirrel cage IM which is powered by a three-phase
two-level IGBT converter [4]. The gate inputs of the six ideal IGBTs with forward
voltage and on-resistance are controlled by a symmetrical, regular sampled SVPWM
with a carrier frequency of 10 kHz at a constant supply voltage of 395 V. Compared
to the dq-model introduced in this study, the IM PLECS model also considers higher
harmonics of the modulated phase voltage.

Based on the simplified plant models introduced in Section 3.1 and a simple dead time
approximation, the control loops of current, flux and torque are designed as shown
in Figure 3.6. A flux estimation is computed using the indirect method of the stator
current model depicted in Figure 3.3. Algorithm 1 is implemented to compute the
reference for the loss minimizing flux level as a function of the rotor speed and torque.
The optimizd trajectories obtained by the NMPC scheme are computed offline.

Figure 3.18 presents the step responses of the control methods from zero to 150 N at
a vehicle speed of 30 km/h. The torque reference is set back to zero after 100 ms. Two
scenarios are considered for an upper phase current limit of 600 A and 1000 A. From
the top to the bottom, the graphs display the torque, the rotor flux, the stator phase
current peak value and the stator phase voltage peak value.

Following the designed trajectory, the optimized control strategies smoothly reach their
desired torque reference. During the transition, these comply with all predefined limits
on the jerk, flux derivatives and the phase voltage. The phase current trajectories of
the NMPC strategy are confined within the imposed limits, yet slightly violate the
constraints. These violations, which on average amount to approximately 6 %, mainly
attribute to model uncertainties and in particular to the higher harmonic excitation of
the VSI, which is considered for simulation but not within the optimization process.
Due to the conservative selection of the bound on the rotor flux derivative, the FIR
strategy stays within the current limits. In comparison, the LMT strategy leads to a
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Figure 3.18: Electric drive module step response at a vehicle speed of 30 km/h.
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temporary and high frequent oscillating behavior followed by a clear overshoot with a
torque peak which is 25 % above the reference. This in turn, results in a phase current
peak of approximately 3000 A. Returning to zero torque near 110 ms, the LMT control
reaches the maximum voltage limit. The subsequent toggling behavior leads to a
drop of the rotor flux below the minimum idling level and therefore to an increased
power demand. The main reason for the oscillating behavior in this scenario of a very
dynamic step change, is that the phase correct splitting strategy of a standard LMTs
does not adequately handle voltage constraints . The optimized trajectories, however,
smoothly approach their desired reference, all following the same profile.

Compared to the FIR strategy, the NMPC strategy reaches the desired torque and
flux level and therefore a steady state in a much shorter duration. This increase in
transition time is mainly due to the FIR filters. As the reference trajectory is filtered,
it is delayed by approximately 3 ms. Furthermore, the FIR strategy does not fully
exploit the voltage range of the VSI.

Figure 3.19 presents the time integral of the EDM energy loss (including VSI losses).
The energy amount is normalized to the total energy that is dissipated by applying a
conventional LMT control. It is noted, that for all optimized trajectories the dissipated
energy is clearly reduced compared to the conventional LMT approach. Furthermore,
a more efficient operation of the FIR trajectories compared to the NMPC generated
trajectories is observed. With 1.14 kWs at a current limit of 1000 A and 0.78 kWs at a
limit of 600 A, the FIR strategy requires 30 % less energy than the NMPC strategy
with 1.6 kWs and 1.08 kWs respectively. However, this reduced energy amount comes
at the cost of a transition time of the torque trajectory which is more than doubled
compared to the NMPC approach. If the transition time of the NMPC is adjusted
to the slower value, the computed solution results in a trajectory that requires less
energy than the FIR approach.

3.6 Summary

The main contribution of this study is presented in Figure 3.12 which shows the
differential flat IM model. Given a torque and speed trajectory of a driving cycle or
motion control task, related phase currents and voltages can be computed, provided
that the energy of the magnetic rotor field and its variation are known. In a steady
state operation, this energy is determined by the magnitude of the rotor flux linkage,
whereas in transient operations the variation of energy may be described in a canonical
form by second order trajectory of λr(t) ∈ C2. A FOC scheme allows for a direct and
independent control of the rotor torque and rotor flux linkage. Consequently, the
rotor flux represents a degree of freedom that can be exploited to find an optimal
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Figure 3.19: Electric drive module transition energy for a zero to 150 Nm step response
at a vehicle speed of 30 km/h.

balance between different loss processes. An efficiency optimized control strategy,
which computes the optimal flux level over the entire torque and speed range of the IM,
is proposed by Algorithm 1. The algorithm solves a nonlinear, optimization problem
in a computationally efficient manner and returns a flux level that either minimizes IM
losses, the phase current, or the phase voltage. Validation analyses confirm that the
electric drive of the experimental vehicle follows a LMT similar to the loss minimizing
flux level of Algorithm 1. Along the solution process, the algorithm further computes
the maximum and minimum torque ratings as a function of the vehicle speed, the
current limit, and the DC terminal voltage. Comparing the different control strategies,
which are referred to as LMT, MTPA, and MTPV, Figure 3.9 demonstrates that the
rotor flux has a substantial impact on IM operation. For example, when compared to
an LMT, an MTPA strategy may reduce the phase current by up to 20 %, whereas
an MTPV strategy can cause losses that are more than ten times higher. The wide
range of operating conditions that is achieved by adjusting the flux level offers great
potential for an improvement of operational strategies. Particular examples are a
higher regenerative braking potential or use cases for thermal management, in which
a systematic increase of the phase current or power loss provides an additional degree
of freedom for thermal control.

A major benefit of the inverse flat IM model, is its straight forward application in a
feedforward control structure. Chapter 3 uses the flat state- and input parametrication
to introduce a 2DOF control structure as well as an optimization based reference
governor that is ideally suited for motion control. The general control structure
illustrated in Figure 3.13 leads to the important finding, that in an optimal control
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setup the rotor flux trajectory is governed by the motion of the vehicle. Consequently,
flux dynamics are directly linked to the dynamics of the vehicle. The differential flat
IM is thus considered as less dynamic than the equivalent dq-model.
A simulative study with a high fidelity PLECS model of the EDM demonstrates
how a 2DOF controlled IM with optimized references outperforms a conventional
FOC in terms of tracking performance and efficiency. On this detailed component
level, however, it is difficult to evaluate the power saving potential for nominal
operations where the governing longitudinal dynamics are by far less demanding than
the contemplated example. Nevertheless, the improved dynamical performance, makes
the 2DOF approach interesting for Electronic Stability Control (ESC) functions and
in particular for Antilock Braking (ABS) and Traction Control System (ASR) [220].
Furthermore, given the possibility to limit the phase current, optimization potentials
for the design of the electric powertrain are created. For example, demands on the
power electronics can be reduced by lower current ratings and saturation of the IM
can be avoided.
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4 Energy Management Strategies for
All-Wheel-Drive BEVs

Based on the differential flat representation of the electric motor, which is introduced
in the previous chapter, as well as the average value model of the VSI and the chosen
model structure of the drivetrain introduced in Chapter 2, it is possible to invert the
causality and describe the EDMs energy conversion in the opposite direction. In doing
so, EDM controls and BEV motion control strategies for economic driving can be
integrated into the BEV system model in a straight-forward manner. The emerging
model of the experimental vehicle is depicted in the block diagram of Figure 4.1 and
is described in more detail in Section 4.1. The electric powertrain is equivalent to
the model shown in Figure 2.1. The canonical form of the flat system structure is
preferable mainly because load cycles as well as motion control tasks are intuitively
represented through mechanical load profiles. Therefore, all electrical states of the
BEV powertrain, including the electrical power through-put Pe,edm, the magnetic field
of the front and rear axle EDMs, and AC/DC currents and voltages, are computed,
based on the input ωwhl, Twhl, which is the wheel speed and overall wheel torque.
Assuming an economic driving style, this input is determined by the longitudinal
dynamics of the vehicle and an input of a speed, acceleration, and road grade profile.

Subject to the mechanical load, the central aim of energy management is to meet the
driver’s request considering all system boundaries and safety aspects. The secondary
goal is to exploit the given degrees of freedom in order to optimize the dynamic driving
behavior and the energy efficiency. Though both design requirements seem to follow
contradictory goals from the perspective of the electric drive, energy efficiency and
driving performance are strongly related. The maximum acceleration performance, an
important performance quantifier, for example, is only reached for the most efficient
operation of the powertrain and, therefore, can only be achieved with a suitable
control strategy of the electric drive. A well suited strategy for IM drives is proposed
in Section 3.4. However, the central motion control task that is investigated in this
study is to improve the overall efficiency and, thus, ultimately the vehicle range.
From previous discussions it becomes apparent that relevant loss processes for motion
control can be divided into two major groups:

• electric drive losses and
• losses originating from the battery, mechanical friction, drag resistance, and

rolling resistance.
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Figure 4.1: Differential flat system model of an all-wheel-drive battery electric vehicle.

Section 4.2 introduces a torque allocation strategy, as part of the AWD architecture,
that influences the first group of losses. Similar to the LMT of the IM drive, this
strategy is presented in an algorithmic form. This approach reaches its full potential
with different solutions for drive designs. In the case of the experimental vehicle,
two distinct IMs are used that are both designed for different speed ranges. The
second group of losses can be influenced by ED strategies. A centralized optimization
based approach that considers both the variable flux level and the torque allocation
is proposed in Section 4.3. For a meaningful evaluation of these energy management
strategies, it is essential that the flat system model provides accurate range related
information. The model accuracy and performance is thus evaluated in the following
Section 4.1.

4.1 Model-Based Range Analyses

One of the key questions of the model-based approach is whether the flat system model
shown in Figure 4.1 is capable of providing accurate range-related information in a
reasonable computation time. A main reason why sophisticated component models of
the electric drive have not been considered for economic driving analyses are the long
computation times, which are associated with the demanding time constant of the
motors current dynamics. However, the flat system model can be considered as less
dynamic, since all electrical states are determined by the flat output, i. e. the rotor
speed, torque, and flux linkage. While the former two naturally describe a mechanical
driving profile, the rotor flux is controlled via a loss minimizing FOC so that the
mechanical load is converted in the most efficient manner. Consequently, the flux
dynamics are governed by the speed and torque profile. This creates the prerequisite

112



4.1 Model-Based Range Analyses

for efficient formulations of optimal control problems.

To evaluate both the accuracy and computational effort, a field study was conducted
covering a distance of 1.450 km on selected routes in the area around Stuttgart,
Germany, in the period from August to November 2018 [151]. In total, five routes
were driven at least twice by three different drivers yielding a total number of 32 test
cycles. Along with the mixed and urban route, which are used for the experimental
validation of Section 2.6, additional routes are considered that mainly run on freeways
at an average speed of 80 km/h as well as on priority roads and federal highways in the
suburban area with an average speed of 40 km/h. All routes exhibit a relatively large
variation in elevation. Further information on the field study and key characteristics
of the individual routes are listed in Appendix A.4.

The modeled BEV range is evaluated by looking at the total energy depletion from
the battery

Ebat|mea =

tf∫
t0

udc,bat idc,bat dt , (4.1)

where udc,bat and idc,bat are the measured battery terminal voltage and current. This
is compared to the modeled results of

Ebat|mod =

tf∫
t0

P fa
e,edm + P ra

e,edm + Pe,aux dt . (4.2)

The input of the BEV system model is the measured vehicle speed and the road grade
obtained from GPS data. The wheel torque and speed are computed according to
the longitudinal dynamics of the vehicle. Subsequently, the torque allocation strategy
that is implemented on the MCU of the experimental vehicle is used to compute the
front and rear axle torque requests T fa

e , T ra
e . These are controlled in a decentralized

manner by each individual low-level EDM control. Due to the dynamic capabilities
of the electric motor and the comparably slow longitudinal dynamics of the BEV, it
is assumed that the torque reference is ideally tracked. Consequently, all electrical
variables downstream of the electric motor can be computed by means of the state
and input parametrization of the equivalent flat system and the average value model
of the VSI. Algorithm 1 computes the flux level λr as a function of the mechanical
load ωm, Te. Derivatives of the speed, torque and flux profile are computed using
a differentiating Savitzky-Golay filter [198]. If the rotor flux profile is known, the
analytical expressions of the drive train {(2.68),(2.69)}, the differential flat state- and
input-parametrization of the IM {(3.46),(3.47),(3.50)}, the average value model of the
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Figure 4.2: Relative error of the total energy depletion computed for the 32 test cycles
of the field study (cf. [149, 151]).

VSI {(2.9),(2.10),(2.22)}, and finally the battery model {(2.76),(2.73)} are computed
without any notable effort. When it is not known, the computation of the rotor flux by
means of Algorithm 1 is the only demanding procedure. Since the defining problems
of a loss minimizing FOC strategy are shown to be convex, in the case of driving,
efficient algorithms can be used to implement Algorithm 1. Though the problem is
not convex in the case of braking, positive convergence properties for same algorithms
are observed. The EDM model and the algorithm are, thus, successfully implemented
on an experimental build of the MCU software. When computed on a single thread of
an Intel Core i7-5600U processor, the full BEV system model of Figure 4.1 requires
less than 4 s on average to simulate a driving cycle with a duration of one hour.
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Table 4.1: Percentage share of power loss sources observed during the field study.
recording
time

amb.
temp.

avg.
speed

EDM
losses auxiliaries battery

route h °C km/h % % %
urban 1.12 14 24 58 40 2
urban 2.07 4 26 34 64 2

suburban 5.70 3 41 32 65 3
highway 1.67 27 81 58 33 9
highway 5.00 20 80 59 32 9
highway 3.40 12 80 58 34 8
highway 1.64 6 82 48 45 7

mixed 3.93 29 54 53 41 6

The quality of the predicted range is evaluated by the relative error in energy consump-
tion

εEbat =
Ebat|mod − Ebat|mea

Ebat|mea

. (4.3)

This error is indicated in Figure 4.2 for all five routes and test cycles ci∀i ∈ 1(1)32
of the field study. For reference purposes, the error of the estimated auxiliary power
consumption

εEaux =
Eaux|mod − Eaux|mea

Ebat|mea

(4.4)

is shown in the top graph. This error takes on rather small values, indicating that
the average auxiliary power is estimated well. The error of the modeled battery
energy is below |εEbat | < 5 % with a standard deviation over all cycles of 2.7 %. If
the same quantity is computed using the EDM loss map, the error increases with
εEbat ∈ (−1, −12) % and a standard deviation of 2.8 %. This behavior is expected,
as seen in Figure 2.15, which shows that the loss map mostly underestimates losses.
However, it is noted that the maps bias of a −6 % error can be corrected in order to
derive more accurate range information.

A similar analysis is conducted in [149] based on the same field study, however,
using empirically determined loss models (cf. Figure 2.21; Input Uv; mixed: R1,
highway a): R2, highway b): R3, urban: R4, suburban: R5). Compared to a relative
error of εEbat ∈ (−10, 4) % that is achieved in the presented approach, the proposed
model-based framework considerably improves the prediction accuracy, particularly on
urban routes that are influenced by a multitude of transient stop and go maneuvers.
In summary, on all routes of the field study the mean relative error of the the flat
BEV system model is −0.1 % with a standard deviation of 2.8 %, which demonstrates
that realistic range-related information can be provided at a computational effort that
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Figure 4.3: Distribution of EDM power loss sources observed during the PIC test
series.

is comparable to characteristic loss maps.

To identify saving potentials of energy management strategies, it is useful to know
the distribution of losses within the electrical powertrain. Table 4.1 shows how the
power loss is separated into drive modules, auxiliaries, and the battery on different
routes of the field study and how they depend on the ambient temperature. The
indicated percentage share is computed by using the time average of the battery
power, the EDM power, the mechanical power, and a model-based approximation of
the internal battery loss, which is derived form the DC-link current measurement.
For reference purposes, the overall recording time, the time average of the ambient
temperature and the average vehicle speed are listed. The high share of EDM and
auxiliary losses underlines the potential of improved operational strategies and entails
the need for accurate loss models. Furthermore, by reducing the losses in the EDM
and, consequently, the battery discharge, auxiliary losses will decrease due to lower
cooling demands that are placed on the thermal management system.

The distribution of the EDM power losses among the individual EDM components, i. e.
the IM, VSI and drivetrain, is shown in Figure 4.3 for one of the motors. The indicated
values sum up to 100 % and represent the average value over all data points collected
during the PIC test series. The highest proportion of losses are attributed to the IM
during regenerative braking and a moderate power throughput of Pe,edm > −75 kW.
In this region, the VSI and IM make up over 70 % of all EDM losses. For driving
operation, within the region of Pe,edm < 75 kW, the loss distribution between the
drivetrain and the IM is almost the same with approximately 40 % each. However,
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the amount of IM losses climb with increasing power demand and current. Looking at
the VSI, it is noted that the switching and conduction losses only make up a small
amount of the EDM losses, except for the operating region of |Pe,edm| < 25 kW with a
share of up to 34 %. In conclusion, this analysis shows that the main factor of EDM
losses, that can be influenced by control strategies, is the IM phase current. One
possibility to reduce the phase current is to reallocate the traction or brake energy to
another motor in an AWD BEV.

4.2 Torque Allocation Strategies for All-Wheel-Drive BEVs

A variable torque allocation offers a high flexibility to improve both the driving
performance and energy efficiency of a AWD BEV. In a BEV with both a front
and rear axle motor, the driver’s request can be achieved by an infinite number of
torque distributions. This torque distribution is modeled by means of the coefficient
θspl ∈ [0, 1], which allocates

T fa
e,whl = θsplTe,whl (4.5)

to the front axle and

T ra
e,whl = (1 − θspl) Te,whl (4.6)

to the rear axle, where Te,whl is the electric wheel torque defined in (2.67). For
simplicity and since the dynamic driving behavior is not the major focus in this study,
the front and rear axle are assumed to have the same angular speed.

As a consequence of a high power demand, the DC voltage drops, which in turn
influences the control and flux strategy of the EDMs as well as the torque allocation
strategy. One of the most important performance quantifiers that is influenced by the
voltage level is the minimum and maximum torque ratings Te,whl,lb, Te,whl,ub. These
are both defined by the operational region of the BEV and the limitations of each
individual EDM

Oev =
{

ωwhl, Te,whl ∈ R+ × R| ωfa
m , T fa

e ∈ Ofa
edm , ωra

m , T ra
e ∈ Ora

edm .
}

(4.7)

It is necessary to know these boundaries in order to define the feasible region of the
torque split coefficient θspl ∈ [θspl,lb, θspl,ub] with

θspl,lb = min
{

θfa
spl, θra

spl
}

, θspl,ub = max
{

θfa
spl, θra

spl
}

, (4.8a)
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where

θfa
spl =

⎧⎪⎪⎨
⎪⎪⎩

min
{

T fa
e,whl,ub

Te,whl
, 1
}

, Te,whl ∈
(
0, T fa

e,whl,ub + T ra
e,whl,ub

]
min
{

T fa
e,whl,lb

Te,whl
, 1
}

, Te,whl ∈
[
T fa

e,whl,lb + T ra
e,whl,lb, 0

)
1 , Te,whl = 0

, (4.8b)

θra
spl =

⎧⎪⎪⎨
⎪⎪⎩

max
{

1 −
T ra

e,whl,ub

Te,whl
, 0
}

, Te,whl ∈
(
0, T fa

e,whl,ub + T ra
e,whl,ub

]
max
{

1 −
T ra

e,whl,lb

Te,whl
, 0
}

, Te,whl ∈
[
T fa

e,whl,lb + T ra
e,whl,lb, 0

)
0 , Te,whl = 0

. (4.8c)

Along with the flux level, Algorithm 1 is capable of computing these boundaries for
all possible operating conditions.

4.2.1 Energy-Efficient Torque Allocation

A re-allocation of traction or braking energy to the other motor reduces the power
throughput in both motors and, consequently, the magnitude of associated DC and
AC currents. As EDM losses increase at a higher than linear rate with the current
magnitude, a re-allocation of energy can improve the overall performance at high
power demands. At low power demands, however, the support of a second EDM may
negatively effect the energy efficiency by introducing an additional source of losses,
e. g. the switching and conduction losses of the second VSI. This section proposes a
real-time capable analytical framework for an optimized energy management strategy,
which maximizes the powertrain efficiency via the torque split coefficient θspl.

Assuming steady state operating conditions, the optimal torque allocation is computed
based on the constrained one-dimensional optimization problem

minimize
θspl

P fa
l,edm (ωfa

m , T fa
e , udc) + P ra

l,edm (ωra
m , T ra

e , udc) (4.9a)

subject to T fa
e = θspl Te,whl + T fa

dt (ωwhl, θsplTe,whl)
ιfa
dt

, (4.9b)

T ra
e = (1 − θspl) Te,whl + T ra

dt (ωwhl, (1 − θspl) Te,whl)
ιra
dt

, (4.9c)

ωfa
m = ωwhl ιfa

dt, (4.9d)
ωra

m = ωwhl ιra
dt, (4.9e)

θspl,lb ≤ θspl ≤ θspl,ub , (4.9f)
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Figure 4.4: Lower and upper limits of the torque split coefficient at different voltage
levels.

which yields a solution θ∗
spl for a specific operating point (udc, ωwhl, Te,whl). The

objective (4.9a) is to minimize front and rear axle EDM losses. As shown in
Figure 4.1, these are computed using Algorithm 1, the differential flat IM model,
and the average value model of the VSI. The torque request of each individual
motor T

{fa,ra}
e depends on the respective gear ratio ι

{fa,ra}
dt as well as the torque split

coefficient, which also has an influence on the resulting drivetrain friction torque
T

{fa,ra}
dt . The latter is computed as a function of the wheel speed and resulting electric

wheel torque. By definition of the upper and lower bounds of the torque split coefficient
according to (4.8) and by computing the maximum or minimum torque rating via
Algorithm 1, the solution θ∗

spl is guaranteed to comply with the IM current and
voltage limits. If the magnitude of the electric wheel torque is close to its maximum
attainable value, the impact of the restriction on (4.9f) increases. For example,
when Te,whl ≈ T fa

e,ub ιfa
dt + T ra

e,ub ιra
dt, the number of possible distributions

θspl ∈ [θspl,lb, θspl,ub] is reduced to a single feasible point. The feasible set [θspl,lb, θspl,ub]
for different voltage levels is depicted in Figure 4.4 as a function of the wheel speed
and torque. Figure 4.4 only shows the limits, which are imposed by the operational
boundaries of the IM. As the voltage level decreases, the upper and lower bounds
become more strict, especially at high vehicle speeds. It is noted that the feasible set
of the torque split coefficient may change in the case of a possible current limit as well
as for different driving modes with the corresponding minimum regenerative brake
torque shown in Figure 2.8.

With increasing complexity, algorithms are unlikely to be implemented on the MCU
of the BEV. Therefore, there is a clear need for simple and computationally efficient
control algorithms in vehicle applications. Problem (4.9) belongs to the class of
nonlinear multi-level optimization problems, as the evaluation of the objective function
needs to solve an underlying optimization problem defined within Algorithm 1. Though
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this formulation seems complex, it is demonstrated in the previous section, that the
LMT algorithm and the BEV system model are highly efficient and computed in
real-time. In fact, by defining the boundaries of the torque split coefficient based
on the maximum or minimum torque rating of Algorithm 1 and by inclusion of the
equality constraints in the cost function, problem (4.9) is reformulated as a one-
dimensional problem with a simple box constraint. In this case, the objective function
fc : [θspl,lb, θspl,ub] →R+ at a pre-defined wheel speed ωwhl and load torque Te,whl is

fc (θspl) =P fa
l,edm

(
ωwhl ιfa

dt,
θspl Te,whl + T fa

dt (ωwhl, θsplTe,whl)
ιfa
dt

, udc

)
+ (4.10)

P ra
l,edm

(
ωwhl ιra

dt,
(1 − θspl) Te,whl + T ra

dt (ωwhl, (1 − θspl) Te,whl)
ιra
dt

, udc

)
.

With help of the flat state and input parameterization as well as the analytically
derived solution of the rotor flux, introduced in Section 3.2, it can be easily verified
that the objective function is continuous. Since the box constraint (4.9f) implicitly
considers the voltage and current limits of the EDM, no additional constraints are
required.

A computationally efficient solution of the reformulated problem is the golden-section
search [166]. By applying this search method, a practical torque allocation procedure
is implemented in Algorithm 2. The procedure searches for an extremum of a function
inside the interval [θspl,lb, θspl,ub]. With every iteration i ∈ N of the while-loop, the
diameter of the search interval

d[i] = θspl,ub
[i] − θspl,lb

[i] (4.11)

is reduced until the extremum is located with a specified tolerance of d[i] ≤ ε ∈ R+.
By the definition of the golden ratio, each iteration only requires a single evaluation of
the objective function (4.10) apart from basic mathematical and memory operations.
The golden ratio

αgr =
√

5 − 1
2

≈ 0.618 (4.12)

is equal to the contraction ratio of the interval. The number of iterations N, required
to locate a minimum within the specified tolerance of ε, is given by [166]

N =
⌊

ln (ε) − ln (θspl,ub − θspl,lb)
ln (αgr)

⌋
. (4.13)

For example, in the worst case of θ ∈ [0, 1], the search interval is reduced to d < 0.01
within nine iterations. This narrows down the optimal torque allocation up to a 1 %
tolerance of the traction or braking torque Te,whl.

By applying Algorithm 2, the torque split coefficient for the minimum power loss θ∗
spl

and the coefficient for the maximum power loss θwc
spl are derived for a constant voltage
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Algorithm 2 : Efficiency Optimized Torque Allocation
Require: tolerance ε, golden ratio αgr, EDM system model and parameter.

1: procedure θ∗
spl(udc, ωwhl, Te,whl)

2: for front and rear axle do
3: if Te,whl ≥ 0 then � check if BEV is in driving or braking operation.
4: T axle

e,ub ← (3.26a) � solve (3.26a) for maximum torque rating.
5: T axle

e,whl,ub ← (2.69b) � account for friction losses.
6: else
7: T axle

e,lb ← (3.26b) � solve (3.26a) for minimum torque rating.
8: T axle

e,whl,lb ← (2.69b) � account for friction losses.
9: end if

10: end for
11: θspl,lb, θspl,ub ← (4.8) � initialize search interval.
12: d ← θspl,ub − θspl,lb � initialize diameter of search interval.
13: costlb ← fc|

θspl,lb
� compute EDM losses (4.10) for lower bound θspl,lb.

14: costub ← fc|
θspl,ub

� compute EDM losses (4.10) for upper bound θspl,ub.
15: θa ← θspl,lb + (1 − αgr) d � first internal point θa ∈ [θspl,lb, θspl,ub]
16: θb ← θspl,lb + αgrd � second internal point θb ∈ [θspl,lb, θspl,ub] , θb > θa

17: costa ← fc|
θspl,a

� compute EDM losses (4.10) for θspl,a.
18: costb ← fc|

θspl,b
� compute EDM losses (4.10) for θspl,b.

19: while d > ε do
20: if costa < costb then � compare cost values of internal points.
21: θspl,ub ← θb � minimum must lie within [θspl,lb, θb].
22: costub ← costb � update cost for upper bound.
23: θb ← θa; costb ← costa � replace second with first inter. point.
24: d ← θspl,ub − θspl,lb � update diameter of search interval.
25: θa ← θspl,lb + (1 − αgr) d � update first internal point.
26: costa ← fc|

θspl,a
� update cost (4.10) for first internal point.

27: else
28: θspl,lb ← θa � minimum must lie within [θspl,a, θub].
29: costlb ← costa � update cost for lower bound.
30: θa ← θb; costa ← costb � replace first with second inter. point.
31: d ← θspl,ub − θspl,lb � update diameter of search interval.
32: θb ← θspl,lb + αgrd � update second internal point.
33: costb ← fc|

θspl,b
� update cost (4.10) for second internal point.

34: end if
35: end while
36: return: argmin {costlb, costa, costb, costub} � return the split coefficient with

the lowest cost
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Figure 4.5: Comparison of optimal and worst case torque distributions computed by
Algorithm 2.
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level and for all feasible operating points ωwhl, Twhl ∈ Oev. Figure 4.5 summarizes the
results and displays the solution θ∗

spl with the highest efficiency in the upper graph.
The characteristic of the worst case coefficient θwc

spl is shown in the second graph. The
bottom graph compares the resulting cost functions (4.10) and illustrates the cost
difference of fc (θwc

spl) − fc (θ∗
spl). Isolines, connecting points of equal value, are shown

as white lines.

Looking at the optimal distribution, it is observed that the front axle EDM is more
efficient at low speeds, whereas for an increasing speed, a higher amount of torque is
allocated to the rear axle. Up to a speed of 30 rad/s during driving and a speed of
40 rad/s during braking, the wheel torque is fully allocated to the front axle as long
as T fa

e ∈ Ofa
edm. Above these speed values, torque is also allocated to the rear axle

before the front axle reaches its maximum rating. As soon as the requested torque
exceeds the maximum or minimum torque rating the optimal distribution more and
more resembles an AWD strategy with equal split.

In the worst case, the wheel torque is almost fully allocated to the rear axle within
T ra

e ∈ Ora
edm. However, in the region of (3.19b), where the wheel torque is limited by

the maximum attainable phase voltage, and for a torque, which is close to the lower or
upper bound of the front axle EDM Te,whl ≈ T fa

e,whl,{ub,lb}, the worst strategy would
be to operate the BEV as a FWD.

The comparison of the optimal and worst-case strategy reveals a energy saving poten-
tial of up to 3 kW in the partial load area and a saving of up to 5 kW at high power
demands and low speeds. However, the greatest advantage with savings of up to
40 kW, is achieved at speeds above 60 rad/s and high power demands, which exceed the
operating regions of each individual EDM, Ofa

edm and Ora
edm. These analyses confirm

that a re-allocation of traction or braking torque to a second EDM can improve the
overall efficiency of a BEV.

4.2.2 Experimental Validation

The proposed allocation strategy is tested during the PIC test series, which is intro-
duced in Section 2.6. Algorithm 2 is implemented on the MCU of the experimental
vehicle and adapted to compute the optimal distribution based on the BEV system
model as well as by using characteristic loss maps of the EDMs. The model-based
approach is denoted by θ∗

spl

∣∣
mdl

and the map-based strategy is referred to as θ∗
spl

∣∣
map

.
Both are compared to a pure front and RWD mode, where

θfa
spl = 1, θra

spl = 0 , (4.14)
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Figure 4.6: Optimal torque distribution computed via the characteristic loss map.

as well as to an even AWD distribution between front and rear axle with

θ
50/50
spl = 0.5 . (4.15)

For the PIC test series a different set of model parameters is used as in the case
for the validation results of Section 2.6, since these are identified afterwards, based
on the recorded data. The torque split strategy, which corresponds to the adapted
parameter set closely resembles the strategy of the map-based approach. An exemplary
characteristic of θ∗

spl

∣∣
map

for a constant terminal voltage is shown in Figure 4.6. This
strategy is different when it is compared to the characteristics of Figure 4.5, where the
full operational range of the front axle is not fully exploited for speeds below 40 rad/s.
Moreover, above this speed value, traction and braking energy is already reallocated
to the rear axle starting at lower torque requests.

For the evaluation and comparison of all strategies, the traction energy is obtained by

ET =

tf∫
t0

(ufa
dc,edm ifa

dc,edm)
∣∣

Twhl>0
+ (ura

dc,edm ira
dc,edm)

∣∣
Twhl>0

dt , (4.16)

where udc,edm and idc,edm are the measurements of the respective EDM terminal
voltage and current, which are only recorded during driving. Analogously, the braking
energy is defined by

EB =

tf∫
t0

(ufa
dc,edm ifa

dc,edm)
∣∣

Twhl<0
+ (ura

dc,edm ira
dc,edm)

∣∣
Twhl<0

dt . (4.17)
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Figure 4.7: PIC experimental results: Energy saving potential for different torque
allocation strategies.
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Both traction and braking energy are computed for the acceleration and braking
scenario, the mixed route, and the urban route. These three scenarios are repeated
for a high, medium, and low initial voltage level of the battery as well as for the
operational strategies of θfa

spl, θra
spl, θ

50/50
spl , θ∗

spl

∣∣
map

, and θ∗
spl

∣∣
mdl

. The results of all
fifteen cycles are shown in Figure 4.7. The graphs present the energy saving potential
compared to the cycle with the lowest voltage level and FWD mode. All cycles are
evaluated in relation to the FWD mode, since the front axle EDM is identified as the
most efficient motor over a wide speed range. If different strategies are compared to
each other, the difference in saving potential is always compared to the cycle with the
same voltage level. A negative saving potential indicates that less energy is regenerated
during braking and that more energy is consumed during traction. The reverse applies
for a positive saving potential. The left column displays the braking energy, the right
column the traction energy. Several important conclusions can be drawn from this
analysis.

First, it is observed that the initial voltage level of the battery has a notable impact on
the traction or braking energy. This is most evident for the acceleration and braking
scenario, where for a high voltage level 3 % less traction energy is required than for a
low voltage level. Therefore, it is important to account for the voltage dependency in
any powertrain related operational strategy. The model-based approach is particularly
suited to consider this influence.

Secondly, in nearly all cases the allocation strategy of Algorithm 2 achieves an im-
proved efficiency compared to a FWD, RWD, or an even torque split. Though the
map-based strategy generally performs better, similar positive results are also obtained
for the model-based approach. Considering the inferior choice of the parameter set,
which was used for the test series, as well as the improved accuracy observed in
Figure 2.15 for the newly identified parameter set, it is expected that the performance
of the model-based approach can be further improved. The highest saving potential of
9.5 % is attained during braking for the acceleration and braking cycle with a medium
initial voltage. For the same cycle, 5 % less energy is required during traction. This is
expected, as for the scenario under consideration, the BEV is predominantly operated
in high speed and high torque regions. In the previous section, these are identified as
the regions with the greatest advantage. It is noted that for this very dynamic and
demanding cycle, the performance of an even torque split is similar to the optimized
strategy.

Finally, in the case of the mixed and urban route, the vehicle is mainly operated in the
partial load area. Nevertheless, looking at the mixed routes, Algorithm 2 achieves a
saving potential of up to 3 % during braking and up to 1.4 % during traction. However,
the advantage over the FWD is reduced, as less energy is regenerated for a medium
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and high voltage level. This degradation becomes even more evident for the urban
route, where a FWD outperforms the optimized torque allocation. Only at a low
voltage level is there an advantage for Algorithm 2, due to the reduced maximum
torque rating. This result suggests that the optimized characteristic in Figure 4.5,
which is derived from the EDM model with the newly identified parameter set, is
closer to the actual optimum than the map-based characteristic of Figure 4.6. The
reason for this conclusion is, that the updated model-based approach and resulting
allocation strategy uses the front axle EDM more extensively in the partial load area.

To summarize, the proposed allocation strategy consumes between 0.6 % and 2 % less
battery energy on the mixed route compared to a FWD. This demonstrates that an
AWD powertrain which adopts Algorithm 2 can improve the overall efficiency and
extend the vehicle’s range. However, to achieve a significant improvement within
partial load areas, a precise representation of EDM losses is required. The model-based
approach is capable of providing this information. Furthermore, in order to reach its
full potential, control strategies need to be incorporated into the design process of the
EDMs. If electric drive designs focus on economical aspects rather than on driving
performance, smaller motors could be used which are designed to operate either at
low or high speeds. A downsizing of motors will lead to an operation that is shifted
from the partial load area towards the maximum power ratings. As demonstrated in
the previous chapter, these regions particularly benefit from Algorithm 2.

4.3 Model Predictive Control Strategies for Economic Driving

In the final section all energy management strategies presented so far are joined to
a centralized, predictive control strategy for ED. Due to the fast response behavior
of the EDM, its control is designed independently of the torque allocation strategy.
However, both are not necessarily decoupled. Furthermore, as the allocation strategy
is only designed for stationary conditions, the question arises whether an optimization-
based strategy for transient operation can improve the energy efficiency of the electric
powertrain.

To thoroughly plan the allocation of traction and braking energy, but also of the energy
that is stored in the magnetic field of an IM, it is desirable to include predictions
on future power demands into the optimization process [219, 251]. The differential
flat system model shown in Figure 4.1 is particularly well suited to derive meaningful
forecasts from vehicle speed predictions. The main influencing factor and greatest
source of uncertainties of speed predictions is the driver’s behavior [241]. Assuming
that the trip destination is known and communicated to a navigation system, further
information including the slope, traffic condition and the road infrastructure (speed
limits, road curvature, yield signs, roundabouts, traffic lights, etc.) are provided by
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navigation services, for example by HERE technologies. Different prediction methods
essentially differ in the length of the look-ahead horizon, which can be expressed in
terms of time or distance. Long-horizon predictions over several km are anticipated
for traffic management, routing problems or energy forecasts [150]. Short-horizon
predictions, over the time scale of a view seconds, are required for autonomous driving
functions [152] and for energy management [26]. The shorter the horizon and the denser
the traffic, the stronger the driving behavior is influenced by the vehicle’s environment
and the traffic-dictated speed. In these cases, information is preferably derived from
sensors, including cameras as well as radar and lidar sensors, and moreover, may be
provided by vehicle-to-vehicle and vehicle-to-infrastructure communication technologies
[231]. One widely discussed use case of these technologies is the possibility to gain
information on traffic-light states in order to optimally guide the vehicle through
"green windows" [5, 46]. A comprehensive survey on driving prediction techniques
is found in [251]. Research on speed and power demand predictions have utilized
artificial intelligence based methods [213, 246] as well as Marcov based methods [26,
211].

Given the large number of published studies on speed prediction and keeping the
objective of ED in mind, the following section focuses on an optimization framework
that is designed to follow a commanded speed reference and to incorporate any form
of speed prediction with a reasonable prediction horizon. Even if no state-of-the-art
prediction method can be used, a speed reference may be derived under the assumption
that a driver will continue with the current maneuver within his or her perception-
reaction time. As drivers have shown themselves capable of responding to road stimuli
in less than 2.5 s [226], it is assumed that the commanded traction and brake torque
and therefore the vehicles longitudinal acceleration does not change within one to two
seconds.
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4.3.1 Nonlinear Model Predictive Control

The objective of the proposed ED strategy is to minimize energy losses under considera-
tion of the operational boundaries and dynamic capabilities of the EDMs while
following a desired or predicted speed trajectory. In view of the differential flat system
representation, the control variables, representing the degrees of freedom, are chosen
to be the first time derivative of the overall electromagnetic rotor torque

Ṫe = Ṫ fa
e + Ṫ ra

e , (4.18)

the derivative of the torque split coefficient θ̇spl, and the first derivatives of the front
and rear axle rotor flux λ̇fa

r , λ̇ra
r . In vector notation, these are summarized as

u =
[
Ṫe θ̇spl λ̇fa

r λ̇ra
r
]T ∈ R

4 . (4.19)

In order to reduce the complexity, it is assumed that the flux trajectory is of order
one C1 so that the second derivative λ̈r can be neglected. The reason for this is that
the influence of the second derivative only becomes relevant on a much shorter time
scale. For example, this is demonstrated in the optimized step response in Figure 3.16,
where it is seen that the optimal λ̈r only initiates changes of motion and for most of
the time is equal to zero. Furthermore it is assumed that the speed trajectory does
not result in a regenerative brake torque outside the BEV’s operating region Oev. In
the case of a dynamic driving scenario, where this assumption is violated, the problem
can be easily extended by an additional control input of the mechanical brake torque
Tbrk. For the experimental vehicle, this assumption is verified, since due to the high
power ratings of the EDMs nearly all braking scenarios can be accomplished through
regeneration.

Using (4.19), the rotor torque derivatives of the individual axles are defined by

Ṫ fa
e = Ṫeθspl + Teθ̇spl , (4.20)

Ṫ ra
e = Ṫe(1 − θspl) − Teθ̇spl . (4.21)

After integration of (4.20), the wheel torque is computed applying the inverse model
of the drivetrain (2.69b). Subsequently the rotor speed is obtained via the simulation
of the longitudinal dynamics model. The resulting power losses are modeled by the
front and rear axle state and input parametrization of the IM as well as the average
value model of the VSI. The system states are thus defined as

x =
[
ωwhl Te θspl λfa

r λra
r
]T ∈ R

5 . (4.22)

All other electrical and mechanical states can be derived from the system states x
and control inputs u. Based on the BEV system model and the selected inputs and
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states, the general constrained problem for ED is formulated as

minimize
u

tf∫
t0

we

(
P fa

l,edm (x, u) + P ra
l,edm (x, u)

)
+ (ω∗

whl − ωwhl)2 dt + ϑf

(
x|

tf

)
(4.23a)

subject to ẋ = f (x, u, γ∗) , (4.23b)
x|

t0
= x0, (4.23c)

apwm
2
π

(
uocv +

√
u2

ocv − 4RbatPbat (x, u)
2

)
− ûfa (x, u) ≥ 0 , ∀t ∈ [t0, tf] , (4.23d)

apwm
2
π

(
uocv +

√
u2

ocv − 4RbatPbat (x, u)
2

)
− ûra (x, u) ≥ 0 , ∀t ∈ [t0, tf] , (4.23e)

îfa
ub − îfa (x, u) ≥ 0 , ∀t ∈ [t0, tf] , (4.23f)

îra
ub − îra (x, u) ≥ 0 , ∀t ∈ [t0, tf] , (4.23g)

xlb ≤ x ≤ xub , ∀t ∈ [t0, tf] , (4.23h)
ulb ≤ u ≤ uub , ∀t ∈ [t0, tf] . (4.23i)

The time integral in (4.23a) is equal to the energy that is dissipated via the front and
rear axle EDM plus the l2 norm that penalizes the difference between the controlled
speed trajectory ωwhl and the speed reference ω∗

whl. A weighting factor we is introduced
to balance between the two objectives of energy efficiency and tracking performance.
If the emphasis is placed on the consumption rather than on the tracking performance,
a deviation of the predicted trajectory can lead to additional energy savings. The
remaining penalty on the terminal state is imposed by the distance function

ϑf =
5∑

i=1

wx,i
(

x∗
i |

tf
− xi|tf

)2
. (4.24)

This penalty is viewed as an attractive potential that pulls the speed trajectory towards
the desired terminal speed x∗

1|
tf

= ω∗
whl|tf

as well as the entire system to a steady state

x∗
2:4|

tf
=
[
T ∗

e θ∗
spl λfa

r
∗

λra
r

∗]T , (4.25)

where T ∗
e is the required torque that holds the terminal speed. Based on the final load

conditions (ω∗
whl, T ∗

e )|
tf
, the torque split coefficient θ∗

spl is determined by Algorithm 2
and the optimal field strategy λfa

r
∗
, λra

r
∗ is computed by Algorithm 1. The weights

wx ∈ R5 are additionally introduced to we as tuning parameters.

The constraint (4.23b) and (4.23c) restrict the solution to comply with the BEV state
dynamics. Except for the longitudinal dynamics

ω̇whl = T fa
e ιfa

dt − T fa
dt + T ra

e ιra
dt − T ra

dt − rwhlFres (ωwhl, γ∗)
r2

whlm + J
(4.26)
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these are expressed in a canonical form, which is represented by a simple integration of
θ̇spl, Ṫe, λ̇fa

r and λ̇ra
r . The average road grade over the prediction horizon is denoted

by γ∗. Furthermore, constraints are imposed for the phase voltage and current of each
IM in (4.23d)-(4.23g). The formulation of the maximum attainable voltage (4.23d)
and (4.23e) considers the fact, that the battery voltage drops at high power demands.
Within the considered time horizon, it can be assumed that the open circuit voltage
of the battery uocv is constant. Both voltage and current constraints implicitly limit
the maximum or minimum torque. Nevertheless, further limitations, for example,
on the driving mode dependent minimum regenerative brake torque, can be defined
via the box constraints. These also limit the vehicles jerk Ṫe in order to account for
driveablity requirements.

Similarly as done in Section 3.4.1, problem (4.23) is reformulated as a DMS problem
and solved by applying a NMPC scheme. The DMS problem has the same general
structure as (3.60). The only notable difference is due to the state discretization of
the wheel speed ωwhl. The defining IVP associated with the corresponding continuity
constraint, can not be solved analytically. Instead it is approximated numerically
through a Runge-Kutta fourth order integration with variable step size. In order to
improve the solution quality and convergence speed of the numerical solution method,
a l1 norm regularization is introduced for all inputs. By solving the DMS problem,
EDM state and input trajectories are obtained, which are intended to govern the
reference of EDM controls in a feedforward manner.

4.3.2 Simulative Evaluation

As an illustrative example, the NMPC scheme is tested against a simulation of the
mixed route with a high initial voltage level. This cycle is part of the PIC test
series, which is introduced in Section 2.6. The scenario is chosen, since the identified
BEV system model shows a high level of accuracy on the mixed route and since
the stationary allocation strategy only offers a relatively small saving potential (cf.
Section 4.2.2). It is assumed that the load profile over the optimization horizon of
two seconds is known. The DMS version of problem (4.23) with l1 regularization
is solved on a single thread of an Intel Core i7-5600U processor using the modeling
language JuMP v0.20.0 for mathematical optimization [57]. Table 4.3.2 lists the
considered time horizon tf − t0, the time discretization td, the MPC update rate tmpc,
the problem weights we, wx, wu, and the l1 regularization factors of input (4.19). A
detailed discussion of the numerical solution method for the DMS problem is found
in Appendix A.3. On average, the DMS problem of a single MPC step converges
within five seconds. The chosen numerical solution method is thus not suited to be
implemented on an embedded system. Nevertheless, considering the number of states
and inputs, as well as the time scale and modeling detail, the proposed method is
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Table 4.2: Direct multiple shooting parameter of the BEV economic driving problem.
tf − t0 td tmpc we wx

2 s 100 ms 1 s 0.3 · td (10 , 0.1 , 1 , 0.1 , 0.1)
ςTe ςθ ςfa

λ ςra
λ

1e−2 1e−2 1e−3 1e−3

computationally more effective than a DP approach, which is typically used for hybrid
powertrains and vehicle speed optimization [175]. What is more, further measures
can be taken to improve the computational performance, which is why the proposed
problem structure is well suited for ED analyses.

The altitude of the mixed route and the optimized speed trajectory are presented in
the top graph of Figure 4.8. The speed reference and the optimized speed profile are
indistinguishable but not identical. In terms of distance, the optimized route is 34 m
longer, which corresponds to 0.1 % of the actual route. Typically, ED problems are
expressed in terms of distance and not time so that the optimized and actual travel
distance are consistent. Up to 1400 s the deviation of the optimized distance stays
below 10 m and then rises steadily to 34 m. This minor deviations can be neglected as
they doe not affect the simulation results. The bottom two graphs of Figure 4.8 show
the time integral of the EDM energy loss for braking and traction

El,B =

tf∫
t0

P fa
l,edm
∣∣

Te<0
+ P ra

l,edm
∣∣

Te<0
dt , (4.27)

El,T =

tf∫
t0

P fa
l,edm
∣∣

Te≥0
+ P ra

l,edm
∣∣

Te≥0
dt . (4.28)

Three different strategies are compared:

• a FWD strategy,

• the NMPC strategy,

• the Stationary Operational Strategy (STOS), represented by Algorithm 1 and
Algorithm 2.

During braking, all three approaches hardly show any difference. However, when
driving, a FWD dissipates 1034 Wh due to EDM loss processes, whereas the losses of
STOS amount to 1021 Wh and the NMPC losses are 963 Wh. This corresponds to a
saving potential of 7 %, comparing NMPC with FWD, while a saving potential of 6 %
is achieved when compared to STOS. Overall, the EDM efficiency has improved by
4.3 % over the STOS approach and by 4.9 % over a FWD. To be able to understand the
causes of this improvement better, the following section closely analyses the simulation
results of the NMPC and STOS approach on selected subsection of the mixed route.
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Figure 4.8: Optimization results of the mixed route.

The load cycle of the first subsection t ∈ [1240, 1260] s is depicted in the left column of
Figure 4.9. From top to bottom, the graphs show the vehicle speed, the corresponding
acceleration and the road grade. Within twenty seconds the vehicle accelerates from
zero speed to 50 km/h, first at a rapid acceleration of more than 3 m/s2 and after
the first eight seconds with a moderate acceleration below 1 m/s2. As shown in the
top graph, the NMPC solution closely tracks the speed reference, however limits the
maximum acceleration to 2.5 m/s2.
The right column displays the combined front and rear axle rotor torque, the torque

split coefficient, the front axle rotor flux and the sum of both EDM losses. As seen
for the torque trajectory and the optimized split coefficient, the NMPC scheme shows
a tendency of maintaining a steady system state. This behavior mainly attributes
to the l1 regularization, which forces the control inputs to stay close to zero. IM
controls benefit from this behavior, since numerous transition phases with possible
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Figure 4.9: Comparison of stationary (STOS) and predictive control strategy (NMPC)
for the first subsection of the mixed route.
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high magnitudes of λ̇r are avoided. As discussed in Section 3.4.2, these transitions
can lead to high current peaks and therefore to an increased power loss. Even though
the torque trajectory complies with specified limitations on the jerk, the gradual
change may be disadvantageous from a driveability perspective. However, jerky torque
variations can be reduced by enforcing stricter limitations on Ṫe or by a subsequent
filtering approach. Based on the speed prediction, the NMPC control increases the
front axle flux level before the peak demand at 1242 s. At 1245 s the STOS allocates
5 % of the traction torque to the rear axle because of the high torque demand, which is
above the maximum torque rating of the front axle EDM. All of these measures lead
to a reduction of the EDM power loss, which is evident when looking at the bottom
graph. For the load cycle of Figure 4.9, 4.8 % less energy is dissipated via both EDMs
for NMPC than is the case for STOS, which is nearly equivalent to a FWD.

The load cycle and optimization results of the second subsection t ∈ [399, 419] s are
displayed in Figure 4.10. The scenario is an acceleration at a high speed and a negative
road grade. The vehicle is mostly operated in the partial load area with relatively low
torque demands. Given the preview of the negative road grade, the NMPC solution
demonstrates a behavior that is typical for ED. It exploits the prior knowledge of the
road grade and predicted power demand in order to plan for an extensive coasting
phase within t ∈ [400, 411] s. After 415 s a power loss peak occurs for the SOST. Since
the SOST does not relay on a prediction and just reacts to the current power demand,
the rotor flux is almost reduced to zero just before the acceleration is raised. This
leads to an inefficient operation over a very short time scale. Despite the low power
demand of the Figure 4.11 load cycle, the smoothed optimized trajectories lead to a
7 % improvement of the EDM efficiency compared to the stationary strategy or the
FWD.

The final subsection t ∈ [1690, 1850] s in Figure 4.11 shows a speed profile of a vehicle
on a highway with a preceding vehicle. Nearby to 1840 s, the speed limit changes
from 100 km/h to 120 km/h. As expected in the case of ED, the maximum values of
acceleration and deceleration are reduced. At this high speed and power demand, the
vehicle is repeatedly operated at the maximum attainable voltage level of the front
axle EDM. The NMPC scheme and the STOS find an optimized flux trajectory that
complies with the voltage limitation. Due to this operational boundary, a sudden
drop of the torque split coefficient is observed during high acceleration and power
peaks, for example at 1698 s, 1739 s and 1844 s. The NMPC control dissipates 4.7 %
less energy than the STOS in the Figure 4.11 load cycle.
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Figure 4.10: Comparison of stationary (STOS) and predictive control strategy (NMPC)
for the second subsection of the mixed route.
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Figure 4.11: Comparison of stationary (STOS) and predictive control strategy (NMPC)
for the third subsection of the mixed route.
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4.4 Summary

This chapter shows how the IM and its control are integrated into a flat system model
of the experimental vehicle, which computes EDM losses and electrical states of the
powertrain as a function of a speed, acceleration, and road grade profile in real time.
A model-based range analysis and field study demonstrate an estimation accuracy of
−0.1 % with a standard deviation of 2.8 % for thirty-two driving cycles. The high share
of EDM losses, observed during the field study, underlines the potential of improved
energy management strategies, of which a variable torque distribution between front
and rear axle drives is identified as a promising solution. An efficiency optimized
allocation strategy, which implicitly considers the voltage and current limits of the
EDM, is implemented in Algorithm 2 and tested on the MCU of the experimental
vehicle. On the PIC and the mixed route (see Appendix A.4) it is demonstrated
that Algorithm 2 leads to a 0.6 % − 2 % efficiency improvement compared to a FWD.
However, as indicated in an acceleration and braking scenario, the saving potential
can increase up to 8 %, when for example motors with lower power ratings are used.

Finally, flux and allocation strategies are combined into a centralized NMPC strategy
that further exploits an economic adaptation of the vehicle’s speed. Simulation results
indicate that on selected subsections of the mixed route the predictive NMPC strategy
achieves efficiency improvements of up to 7 % when compared to a decentralized and
stationary optimization of the torque split and rotor flux. For the entire cycle, the
potential is still more than 4 %. When compared to a FWD, improvements of almost
5 % are observed. These positive results demonstrate that the EDM efficiency is
clearly improved by a predictive control strategy. However, looking at the NMPC
and the trajectories of the rotor flux and the torque split coefficient that are obtained
by Algorithm 1 and Algorithm 2 in a decentralized approach, strong similarities are
notable. This suggests a minor coupling between the individual control strategies,
which is supported by the conclusion of Section 2.7, that both a stationary and
dynamic model of an electric drive represent the losses of a dynamic driving cycle
equally well. Consequently, both controls can be designed independently of each other.

Due to the similarity of a centralized and decentralized approach, and since most of the
savings are obtained from utilizing the speed and acceleration profiles, it is expected
that an efficiency improvement of 4 % can also be achieved with a decentralized torque
allocation and flux strategy, in which control references are obtained from a separate
optimization of the vehicle speed. Similar results with savings in the same order
of magnitude, are achieved for the same experimental vehicle by a discrete DP and
quadratic programming approach in [149], that solely utilizes the vehicle speed and
acceleration. Contrary to the results of this chapter, the ED approach presented in
[149] leads to a minor increase of the traveling time.

138



5 Conclusion

Energy management strategies and in particular ED strategies that are specifically
designed for BEVs can significantly improve the overall efficiency of the electric
powertrain without any structural or mechanical changes. The development of these
strategies and their implementation in software solutions requires a clear understanding
of how far the energy conversion processes, from the electrochemical energy stored
in the battery to the potential and kinetic energy of the vehicle, can be influenced
by appropriate control methods. If all dominant loss processes along the energy
conversion chain are considered with sufficient accuracy, a model-based approach can
provide a systematic and understanding framework for this purpose.

Chapter 2 forms the foundation for a suited model-based framework by using the
example of the Mercedes-Benz EQC prototype. A dynamical model of the IM is
introduced which is widely used for motor analysis and control design. However,
this model is rarely used in automotive applications due to the wide spectrum of
involved time constants, for example, comparing the current dynamics and the vehicle’s
longitudinal and drivetrain dynamics. Even more challenging are parasitic effects due
to semi-conductor switchings of the VSI with switching frequencies in the range of
10 kHz. For these reasons, vehicle simulations mostly represent power electronics and
electric motors as speed and torque dependent loss maps and thereby neglect dynamic
effects and the resulting physical limitations. Above all, the operation of the electric
motor is limited by the voltage range of the VSI, which in effect determines maximum
torque ratings. In this study PWM methods are thus thoroughly investigated on the
basis of which a new average value model of the VSI conduction and switching losses
is proposed. This model is derived from a double Fourier integral analysis of the
PWM switching signals, whose series expansion are subsequently used to compute the
semi-conductor switched current in the frequency domain. Following this approach
a general VSI model, that accounts for higher harmonic dissipative effects of carrier
based PWM methods, is successfully integrated into vehicle simulations.
While the automotive sector prefers loss maps of the EDM to model-based approaches,
mainly due to their lower complexity and inexplicable derivation of the model para-
meter, the experimental validation conducted in Section 2.6 demonstrates that the
proposed model achieves a considerably higher level of accuracy than empirically
determined loss maps or polynomial approximations and can also provide more
realistic range related information. Moreover, it is possible to compute meaningful
estimations of internal electrical EDM states, which are otherwise only made available
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by empirical methods at unreasonable costs. In order to increase the acceptance of the
model-based framework, parameter identification methods are presented in Section 2.2.
Compared to procedures that identify a characteristic loss map, parameter estimation
methods of the IM model have reached a maturity level with considerably lower costs
and time expenditure. Since measurements of the phase voltage and stator current at
the required sampling rate were not available, an in-vehicle identification method is
proposed that only relies on states of the vehicle’s internal communication bus system.
In view of the positive validation results, the identification method has proven to
effectively determine the model parameters.

However, the central contribution of this study, that further allows to integrate the
IM in automotive applications, is the representation of the motor’s current and flux
dynamics as an equivalent differential flat system based on a new definition of a flat
output. The substantial role of the magnetic field during the electromechanical energy
conversion of an electric motor suggests that the magnetic field is also important
from a system theoretical perspective, for example, in terms of observability and
controllability. In fact, the rotor flux along with the electromechanical torque and
rotor speed define a flat output of the IM. The state- and input-parametrization
of the differential flat IM, which in other words are analytical expressions of the
phase current and phase voltage, are thus derived in Chapter 3 in the context of FOC.
These expressions allow for a remarkably efficient implementation of the IM model
and control method into vehicle simulations and even in embedded systems, such
as the MCU of the experimental vehicle. This real-time capability is not achieved
with the typical equivalent IM model. What is more, the flat system representation is
particularly well suited for the design of optimization-based control strategies for BEVs.
Exploiting the structural properties of the flat system, an LMT for the IM is proposed
by the field strategy of Algorithm 1. Any standard FOC method is readily extended
by this strategy. Furthermore, a 2DOF control strategy is proposed that improves
the dynamic performance and energy efficiency of the EDM during sudden torque
transients. Taking advantage of the IM state- and input-parametrization, a nonlinear
optimal control problem is formulated and solved in the receding horizon manner of
MPC via a direct multiple shooting method. Analyzing the solution for various step
changes, a real-time sub-optimal control method is proposed and implemented as a
reference governor within the 2DOF control structure. A unique feature of this control
approach is the possibility to limit the IM phase current during transients. A detail
PLECS simulation of the EDM and a step change from zero to 50 % of the maximum
rated torque demonstrates an energy saving potential of more than 60 % compared
to an FOC with loss minimizing field strategy while approximately maintaining the
same dynamic performance. However, it is noted that typical driving conditions
are by far less demanding than the considered simulation scenario. Therefore, the
overall efficiency of the BEV is expected to improve only slightly. Nevertheless, the
control method is extremely interesting when potentially used in ESC, ABS, and ASR
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functions, which could lead to less frequent engagements of the friction brakes. The
arising possibilities represent the most significant differences and advantages compared
to HEVs and conventional ICE vehicles.

The full differential flat BEV system model of the experimental vehicle is presented in
Chapter 4. Based on this model, optimization-based energy management is proposed
for AWD vehicles with two distinct IMs in longitudinal alignment on the front and
rear axle. A torque allocation strategy is introduced by Algorithm 2 and implemented
on the MCU of the experimental vehicle. The results of an extensive experimental
test series, conducted on a powertrain test rig, demonstrate an energy saving potential
of up to 2 % in real world driving conditions when compared to a FWD. Given the
powertrain configuration of the experimental vehicle, an allocation that is predominant-
ly operated on the front axle EDM has shown to be the most energy efficient strategy
for an urban driving cycle and a mixed cycle, with urban, suburban and highway
sections. However, in a generic scenario of several accelerations and decelerations, in
which the vehicle is operated close to its maximum power ratings, an even torque split
becomes more appropriate. As in this case savings of 8 % are observed, it is expected
that BEVs with lower power ratings could benefit more from an efficiency optimized
torque allocation strategy. To be able to reach the full saving’s potential, operational
and control strategies need to be considered and analyzed during the design process
of the EDMs. The model-based framework in its differential flat form is particularly
well suited for this purpose, due to the exceptional computational efficiency. Finally,
once more the advantages of the flat system representation are demonstrated in a
simulative study of a predictive NMPC strategy, which indicates energy savings of
5 % compared to a FWD without any notable increase in the traveling time for a real
world driving cycle. This is achieved in a centralized approach that for the first time
exploits all operational degrees of freedom, which are the vehicle speed profile, the
front and rear axle magnetic flux and the variable torque allocation.
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A Appendix

A.1 Reference Frame Transformation

A.1.1 dq0 Formulation

The reference frame transformation of a three-phase variable

xabc = [xa xb xc]T (A.1)

into a real valued dq0 (direct-quadrature-zero) vector

xdq0 = [xd xq x0]T (A.2)

is defined as

xdq0 = Kαxabc (A.3)

with orientation α and transformation matrix
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The inverse transoformation is given by
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⎣ cos (α) − sin (α) 1

cos
(

α − 2π

3

)
− sin

(
α − 2π

3

)
1

cos
(

α + 2π

3

)
− sin

(
α + 2π

3

)
1

⎤
⎦ . (A.5)

For a balanced set of variables

xabc = x̂

⎡
⎣ cos (β)

cos
(

β − 2π

3

)
cos
(

β + 2π

3

)
⎤
⎦ , (A.6)

it holds that x0 is equal to zero, so that the transformation is simplified to

xdq =
[

xd

xq

]
= 2

3

[
cos (α) cos

(
α − 2π

3

)
cos
(

α + 2π

3

)
− sin (α) − sin

(
α − 2π

3

)
− sin

(
α + 2π

3

)]xabc (A.7)
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and

xabc =

⎡
⎣ cos (α) − sin (α)

cos
(

α − 2π

3

)
− sin

(
α − 2π

3

)
cos
(

α + 2π

3

)
− sin

(
α + 2π

3

)
⎤
⎦xdq . (A.8)

Since for a balanced set of variables xc = −xa − xb, equation (A.7) can be further
simplified to

xdq = 2√
3

[
cos
(

α − π

6

)
sin (α)

− sin
(

α − π

6

)
cos (α)

][
xa

xb

]
. (A.9)

A.1.2 Space Vector Formulation

Analog to the dq0 formulation, the reference frame transformation of a balanced
three-phase variable xabc ∈ R3 into a complex valued space vector is defined as

xdq = 2
3

(
xa + xb ej2π/3 +xc e−j2π/3) e−jα , (A.10)

= xd + jxq . (A.11)

The inverse transformation is

xabc = �
{[

1 e−j2π/3 ej2π/3
]T

xdq ejα
}

. (A.12)

A.1.3 Induction Motor Reference Frames

Reference frames commonly used in the analysis of electric machines are listed in
Table A.1.3. The orientation used to define the dq0 or space vector transformation is

Table A.1: Commonly used Reference Frames.

Reference Frame Speed
Transformation
Stator Variables

Transformation
Rotor Variables

stationary 0 α = 0 α = −θe

rotor ωe α = θe α = 0
synchronous ω0 α =

∫
ω0 α =

∫
ω0 − θe

listed for stator and rotor variables.
The real axis of the stationary reference frame is fixed to the phase a-axis of the
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stator. Balanced stator variables are transformed into the stationary reference frame
by Clarke’s transformation

xαβ,s =
[

xαs

xβs

]
=

[
1 0
1√
3

2√
3

][
xas

xbs

]
, (A.13)

xαβ,s = 2
3

(
xas + xbs ej2π/3 +xcs e−j2π/3) . (A.14)

Instead of the dq-notation, variables in the stationary reference frame are typically
denoted by a αβ-notation.
The real axis of the rotor reference frame is fixed to the a-axis of the rotor circuit
and rotates with the electrical angular speed ωe of the rotor. The corresponding
transformation is commonly known as Park’s transformation. The synchronous refer-
ence frame rotates at the fundamental electrical angular frequency corresponding to
the fundamental frequency of the variables associated with the stator.

A.2 Pulse Width Modulation

In the triangle intersection method shown in Figure 2.3, the modulation signals are
compared with the triangle carrier wave. The resulting intersection points define the
switching instants of the PWM method. The zero-sequence system of a modulator
significantly influences the switching frequency characteristics. However, it does
not affect the per-carrier cycle average value of the VSI line-to-line voltage. The
zero-sequence signal uzss for different PWM methods are listed in Table A.2 and
Table A.3. Furthermore, the tables list the maximum linear voltage range apwm. For
more detailed information, the interested reader is referred to [84, 92].

Table A.2: Zero-sequence systems and maximum voltage range of continuous PWM
methods.

Modulation Method
Zero-Sequence System
uzss

Voltage Range
apwm

sinusoidal 0 π/4 = 0.785
third harmonic
injection 1/4

−Mi

4
cos (3ω0t) 0.882

third harmonic
injection 1/6

−Mi

6
cos (3ω0t) 0.907

space vector 0.5 min {|uas,n|, |ubs,n|, |ucs,n|} 0.907

145



A Appendix

Table A.3: Zero-sequence systems and maximum voltage range of discontinous PWM
methods.

Modulation
Method

Zero-Sequence System
uzss

Voltage Range
apwm

intermediate

{
0.5 sign (uas,n) − uas,n, |u{b,c}s,n| ≤ |uas,n| ≤ |u{b,c}s,n|
0.5 sign (ubs,n) − ubs,n, |u{a,c}s,n| ≤ |ubs,n| ≤ |u{a,c}s,n|
0.5 sign (ucs,n) − ucs,n, |u{a,b}s,n| ≤ |uas,n| ≤ |u{a,b}s,n|

0.907

max 0.5 − max {uas,n, ubs,n, ucs,n} 0.907
min 0.5 − min {uas,n, ubs,n, ucs,n} 0.907

A.3 Algorithmic Development for Direct Multiple Shooting

The following section provides a basic overview of the numerical method which is used
to solve the DMS problem in the way of NMPC [51]. The discussion emphasizes on
aspects, that are specific to the flat problem formulation and that to some extent
are already used in the algorithmic development. These aspects offer even further
potential to improve the computation performance of the proposed method. While
viable numerical methods for large-scale nonlinear programming, are the Augmented
Lagrangian method [39, 94] and SQP [122], this chapter focuses on the IP method
[239, 250].

A specific structural property of the DMS problem is its separability [112], which
roughly means that there either is no coupling or merely a linear coupling between
two decision variables x̃[i], ufl

[i] and x̃[j], ufl
[j] on different nodes i, j ∈ 1(1)N + 1, i �= j

of the shooting grid. The only linear couplings that exist, are due to the final control
variables (3.60d) and the continuity constraint (3.60b). Algorithms applied to DMS
problems, exploit this separable structure to efficiently compute first and second order
derivatives as well as the arising linear and quadratic subproblems. To elaborate this
in more detail, the Lagrangian of the problem (3.60) is defined by

L =

⎛
⎜⎝

N∑
k=1

Pl
[k] + ϑf +

(
ufl

[N] − ufl
[N+1]
)T

μu +
(
x0 − xfl

[1]
)T

μx
[1]+

N∑
k=1

(
xkfl|

tk+1
− xfl

[k+1]
)T

μx
[k+1] −

N+1∑
k=1

(
CT

g
[k]

μg
[k] + CT

b
[k]

μb
[k]
)
⎞
⎟⎠ . (A.15a)

Variables μx ∈ Rnx are the Lagrange multipliers of the continuity constraints (3.60b),
μu ∈ Rnu of the terminal input constraint (3.60d), μg ∈ R

nc
+ of the general inequality

constraints (3.60e), and finally μb ∈ R
2(nx+nu)
+ are the Lagrange multipliers of the

box constraints where Cg : Rnx × Rnu →Rnc and Cb : Rnx × Rnu →R2(nx+nu) are given in
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vector notation

Cg
[k] =

⎡
⎢⎣

c1
[k]

...
cnc

[k]

⎤
⎥⎦ , Cb

[k] =

⎡
⎢⎢⎣

xfl
[k] − xlb

xub − xfl
[k]

ufl
[k] − ulb

uub − ufl
[k]

⎤
⎥⎥⎦ , (A.15b)

with ci
[k] = ci (xfl

[k], ufl
[k]) ∀i ∈ 1(1)nc. It is convenient to split the gradient of the

Lagrangian into N + 1 systems

∇xfl
[N+1]L = ∇xfl

[N+1]ϑf − μx
[N+1] − ∂CT

g
[N+1]

∂xfl[N+1]
μg

[N+1] − JT
x μb

[N+1] , (A.16a)

∇ufl
[N+1]L = −μu − ∂CT

g
[N+1]

∂ufl[N+1]
μg

[N+1] − JT
u μb

[N+1] , (A.16b)

∇xfl
[N]L = ∇xfl

[N]Pl
[N] + ∂xNfl

∂xfl[N]

∣∣∣T
tN+1

μx
[N+1] − μx

[N] − ∂CT
g

[N]

∂xfl[N]
μg

[N] − JT
x μb

[N] , (A.16c)

∇ufl
[N]L = ∇ufl

[N]Pl
[N] + ∂xNfl

∂ufl[N]

∣∣∣T
tN+1

μx
[N+1] + μu − ∂CT

g
[N]

∂ufl[N]
μg

[N] − JT
u μb

[N] , (A.16d)

...

∇xfl
[k]L = ∇xfl

[k]Pl
[k] + ∂xkfl

∂xfl[k]

∣∣∣T
tk+1

μx
[k+1] − μx

[k] − ∂CT
g

[k]

∂xfl[k]
μg

[k] − JT
x μb

[k] , (A.16e)

∇ufl
[k]L = ∇ufl

[k]Pl
[k] + ∂xkfl

∂ufl[k]

∣∣∣T
tk+1

μx
[k+1] − ∂CT

g
[k]

∂ufl[k]
μg

[k] − JT
u μb

[k] , (A.16f)

...

∇xfl
[1]L = ∇xfl

[1]Pl
[1] + ∂x1fl

∂xfl[1]

∣∣∣T
t2

μx
[2] − μx

[1] − ∂CT
g

[1]

∂xfl[1]
μg

[1] − JT
x μb

[1] , (A.16g)

∇ufl
[1]L = ∇ufl

[1]Pl
[1] + ∂x1fl

∂ufl[1]

∣∣∣T
t2

μx
[2] − ∂CT

g
[1]

∂ufl[1]
μg

[1] − JT
u μb

[1] , (A.16h)

with

Jx =
[
Inx×nx −Inx×nx 0nx×2nu

]T , Ju =
[
0nu×2nx Inu×nu −Inu×nu

]T . (A.16i)

Matrices I and 0 are respectively the identity matrix and the zero matrix and their
subscripts indicate the dimension. It is noted, that each of the above N+1 systems only
depend on the decision variables and the Lagrange multipliers at the individual time
instance of the shooting grid {tk} as well as on μx of the subsequent shooting interval.
The exception in (A.16a)-(A.16d) is due to the terminal input constraint and μu.
Applying a Newton’s method to a linear model of the KKT necessary conditions, built
from (A.16) along with the continuity constraints (3.60b)-(3.60d) and active inequality
constraints (3.60e)-(3.60g), is equivalent for solving a sequence of constrained quadratic
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subproblems as it is done for SQP. These subroblems are formulated using a local
quadratic model of the Lagrangian (A.15a), which is minimized on a linearization of
the feasible set (cv. [158] chapter 18).

A.3.1 Interiour Point Method

Alternatively, IP methods redefine the KKT conditions to a system known as the
primal-dual system (cv. [158] chapter 19). Therefore inequality constraints (A.15) are
transformed into equality constraints by subtractions of the positive slack variables
sg ∈ R

nc
+ and sb ∈ R

2(nx+nu)
+

Cgs
[k] = Cg

[k] − sg
[k] , Cbs

[k] = Cb
[k] − sb

[k] . (A.17)

Starting from an initial guess for the decision variables, the Lagrange multipliers and
the slack variables:

ṽ[k] =
[
xT

fl
[k]

uT
fl

[k]
sT

g
[k]

sT
b

[k]
μT

x
[k] −μT

g
[k] −μT

b
[k]]T , ∀k ∈ 1(1)N+1 , (A.18)

as well as for μu, IP methods solve a sequence of linear equations, which are variants
of the symmetrical primal-dual system:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Jμu −Jμu

JT
μu B[N+1] ST

0
[N]

−JT
μu S0

[N] B[N] ST
0

[N-1]

. . .
S0

[k+1] B[k+1] ST
0

[k]

S0
[k] B[k] ST

0
[k-1]

. . .
S0

[2] B[2] ST
0

[1]

S0
[1] B[1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δμu

δṽ[N+1]

δṽ[N]

...
δṽ[k+1]

δṽ[k]

...
δṽ[2]

δṽ[1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ufl
[N] − ufl

[N+1]

b[N+1]

b[N]

...
b[k+1]

b[k]

...
b[2]

b[1]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.19)

For the ease of notation, the matrices defined at the most recent iterate of ṽ[k], are
given by

B[k] =

⎡
⎢⎢⎣

H [k] 0nxu×ncc JT
μx JT

C
[k]

0ncc×nxu diag (sg
[k], sb

[k])−1 diag
(

μg
[k], μb

[k]
)

0ncc×nx −Incc×ncc

Jμx 0nx×ncc 0nx×nx 0nx×ncc

JC
[k] −Incc×ncc 0ncc×nx 0ncc×ncc

⎤
⎥⎥⎦ , ∀k ∈ 1(1)N+1 , (A.20a)

S0
[k] =

[
0nxu×nxu+ncc ST [k] 0nxu×ncc

02ncc+nx×nxu+ncc 02ncc+nx×nx 02ncc+nx×ncc

]
, ∀k ∈ 1(1)N , (A.20b)

b[k] =

⎡
⎢⎢⎣

∇L[k]

Λ[k]

xkfl|
tk+1

− xfl
[k+1]

C [k]

⎤
⎥⎥⎦ , ∀k ∈ 2(1)N+1 , b[1] =

⎡
⎢⎢⎣

∇L[1]

Λ[1]

xfl
[1] − x0

C [1]

⎤
⎥⎥⎦ , (A.20c)
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with nxu = nx + nu, ncc = nc + 2nxu, and

∇L[k] =
[

∇xfl
[k]L

∇ufl
[k]L

]
, H [k] =

[
∇2

xfl
[k]xfl

[k]L ∇2
xfl

[k]ufl
[k]L

∇2
ufl

[k]xfl
[k]L ∇2

ufl
[k]ufl

[k]L

]
, S[k] =

[
∂xkfl

∂xfl[k]

∣∣∣
tk+1

∂xkfl

∂ufl[k]

∣∣∣
tk+1

]
, (A.20d)

C [k] =
[

Cgs
[k]

Cbs
[k]

]
, JC

[k] =
[

∂Cg
[k]

∂xfl[k]

∂Cg
[k]

∂ufl[k]

Jx Ju

]
, Λ[k] =

[
μg

[k] − κ diag (sg
[k])−1

1

μb
[k] − κ diag (sb

[k])−1
1

]
, (A.20e)

Jμx =
[
−Inx×nx 0nx×nu

]
, Jμu =

[
0nu×nx −Inu×nu 0nu×2ncc+nx

]
. (A.20f)

The operator diag : Rn1 × Rn2 × ... →Rn1+n2+...×n1+n2+... takes the elements of one or more
vectors and returns a diagonal matrix whose main diagonal contains the elements
of these vectors. The parameter κ ∈ R+ used in (A.20e) is known as the barrier
parameter and 1 is a vector with all entries equal to one. After (A.19) is solved, the
next iterate of the IP method is obtained by

μ+
u = μu + αμδμu , ṽ+[k] = ṽ[k] + diag (αv) δṽ[k] , ∀k ∈ 1(1)N+1 , (A.21)

where αv ∈ Rnxu+2ncc+nx and αμ ∈ R represent an appropriate step size, for example
determined by a backtracking line search, trust-region method or filter method [12,
240]. As the iterations proceed, the sequence of barrier parameters {κ} must converge
to zero, so that the solution of the original problem (3.60) is recovered in the limit.
Different barrier reduction strategies are analyzed in [157]. The state-of-the-art IP
solver used in this study is IPOPT [239]. Very recently an extension of the commercial
IP solver FORCES PRO [55] was introduced by [250]. This extension is tailored to the
sparse block structure of the DMS primal-dual system (A.19) and therefore promises
a significant speedup of selected examples in comparison to IPOPT.

A.3.2 Integration and Differentiation

As mentioned by [51] and [250], computationally expensive steps associated with
the DMS primal-dual system (A.19) or comparable subproblems of SQP methods,
belong to the generation of the derivative information required in (A.20d) as well
as the integration of a possibly stiff IVP. The latter is required for the residual
of the continuity constraint, for example, used in case of the IVP defined by the
vehicle longitudinal dynamics. Depending on the properties of the dynamical system,
the residual can be efficiently computed by means of explicit or implicit integration
methods [89, 184]. More demanding, is the sensitivity generation for the general
nonlinear IVP on the shooting grid {tk}

ẋk = f (xk, u[k]) , (A.22a)

xk|
tk

= x[k] , (A.22b)
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with a constant input u[k] ∈ Rnu and continuous state xk ∈ Rnx . The sensitivities
∂xk

∂x[k]
∈ Rnx×nx and ∂xk

∂u[k]
∈ Rnx×nu are defined by the variational differential equation

d
dt

∂xk

∂x[k]
= ∂f

∂xk

∂xk

∂x[k]
,

∂xk

∂x[k]

∣∣∣
tk

= Inx×nx , (A.23a)

d
dt

∂xk

∂u[k]
= ∂f

∂xk

∂xk

∂u[k]
+ ∂f

∂u[k]
,

∂xk

∂u[k]

∣∣∣
tk

= 0nx×nu , (A.23b)

which can be solved simultaneously with (A.22). Apart from this first order derivative
information, it is desirable to compute second order sensitivities, i. e. the adjoint
sensitivity of μT

x
∂xk

∂x[k]
and μT

x
∂xk

∂u[k]
, in order to obtain the exact Hessian H [k] used in

(A.20d). An overview of sensitivity generation methods based on the forward and
reverse mode of Automatic Differentiation (AD), also referred to as Algorithmic
Differentiation, is found in [2] and the textbook [77].

Due to the canonical form of the flat system (3.56), however, the solution of the
IVP (3.58) and therefore the sensitivities are computed explicitly as a function of the
discrete time interval td of the shooting grid (3.54). For the integrator chain of a
single flat output xz = (z ż z̈ ... z(r−1)) ∈ Rr with differential order r, the sensitivities at
the end of a shooting interval tk+1 are

∂xkz

∂xz[k]

∣∣∣
tk+1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 td
td

2
. . .

tr−1
d

(r − 1)!

0 1 td
td

2
. . .

tr−2
d

(r − 2)!
·

... ·
...

·

1 td

0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
∂xkz

∂z(r)[k]

∣∣∣
tk+1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tr
d

r!
tr−1
d

(r − 1)!

...

td

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.24)

Applying (A.24) to the example of the IM with the reduced flat output z = (Te, λr) of
differential order one and two and system state xfl = (Te λr λ̇r) yields

∂xkfl

∂xfl[k]

∣∣∣
tk+1

=

⎡
⎣1 0 0

0 1 td

0 0 1

⎤
⎦ ,

∂xkfl

∂ufl[k]

∣∣∣
tk+1

=

⎡
⎢⎣

td 0

0 t2
d

2
0 td

⎤
⎥⎦ . (A.25)

Accordingly, (A.24) is easily generalized for systems with multiple flat outputs. Since
the sensitivities of a flat system are independent of the initial state and input, their
second order or adjoint sensitivities vanish. Consequently, the block diagonal elements
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of the exact Hessian of the Lagrangian (A.15a) are given by

H [k] =

⎡
⎢⎣∇2

xflxfl
Pl

[k] +
nc∑

i=1
μg,i

[k]∇2
xflxfl

ci
[k] ∇2

xflufl
Pl

[k] +
nc∑

i=1
μg,i

[k]∇2
xflufl

ci
[k]

∗ ∇2
uflufl

Pl
[k] +

nc∑
i=1

μg,i
[k]∇2

uflufl
ci

[k]

⎤
⎥⎦ , ∀k ∈ 1(1)N

(A.26)

H [N+1] =

⎡
⎢⎣∇2

xflxfl
ϑf +

nc∑
i=1

μg,i
[N+1]∇2

xflxfl
ci

[N+1] ∇2
xflufl

ϑf +
nc∑

i=1
μg,i

[N+1]∇2
xflufl

ci
[N+1]

∗ ∇2
uflufl

ϑf +
nc∑

i=1
μg,i

[N+1]∇2
uflufl

ci
[N+1]

⎤
⎥⎦ . (A.27)

The loss function Pl, the terminal cost ϑf and the general inequality constraints ci

considered in this work are factorable functions (see Definition 2.2. in [2]), which
roughly means that they can be evaluated and represented in a computational graph
that is build from elementary functions. Therefore, the gradients and Hessians can
be computed by means of AD, which in the context of this thesis is done, using the
ForwardDiff.jl package [190].

A.4 Experimental Study

A.4.1 Field Study

The field study is introduced in Section 4.1. Table A.4.1 summarizes the key character-
istics of the considered routes, including the length, the percentage share of road
classes (HERE maps classification), the overall height increment as well as the mean
value of the speed limit and the base speed. The base speed represents the average
speed derived from historical data. Table A.4.1 lists the main characteristics of all
thirty two test cycles, i. e. the duration, the average vehicle speed v̄, the maximum
and minimum acceleration, and the ambient temperature. Maps of each route and
selected speed profiles are presented in Figure A.1 - Figure A.4.

A.4.2 Powertrain Integration Center Test Series

The PIC experimental series is introduced in Section 2.6. The speed, acceleration,
and road grade profiles are shown in Figure A.5 - Figure A.7. A robotic setup was
installed that actuated the speed and brake pedal. By means of a dedicated feedback
loop, this setup is able to follow the commanded speed profile.
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Table A.4: Key characteristics of field study routes.

Urban Suburban
Highway

a)
Highway

b)
Mixed

length (km) 13.3 37.7 67.4 67.7 35.2
hight increment (m) 0 0 -196 196 0
average
base speed (km/h)

39 54 93 104 60

average
speed limit (km/h)

49 63 105 118 72

class 1 share %
(freeway)

0 0 81 80 40

class 2 share %
(hihgway)

0 28 7 8 28

class 3 share %
(priority/main roads)

75 70 10 10 28

class 4 share %
(low priority, urban)

25 3 2 2 4
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A.4 Experimental Study

Table A.5: Key characteristics of field study cycles.

Cycle
Duration

(min)
v̄

(km/h)
max (a)
(m/s2)

min (a)
(m/s2)

Ambient
Temp. (°C)

c1
ur

ba
n

34 24 2.7 -3.2 14
c2 29 28 2.8 -3.9 3
c3 34 23 2.6 -4.0 14
c4 36 22 3.4 -3.1 3
c5 31 26 3.3 -4.3 6
c6 30 26 3.2 -4.9 4
c7

su
bu

rb
an

75 30 4.4 -4.2 3
c8 46 49 2.9 -3.4 4
c9 77 29 3.2 -4.4 2
c10 48 47 2.8 -3.6 3
c11 48 47 3.7 -4.9 4
c12 48 47 3.1 -4.0 4
c13

hi
gh

w
ay

a)

55 72 3.1 -3.9 21
c14 48 84 3.2 -3.9 23
c15 48 84 3.2 -3.5 13
c16 50 80 2.9 -3.0 18
c17 47 85 2.8 -3.1 17
c18 58 69 2.5 -4.8 11
c19 45 88 4.7 -4.7 26
c20 49 82 2.4 -4.5 6
c21

hi
gh

w
ay

b)

50 81 5.0 -4.5 23
c22 50 80 2.5 -3.9 13
c23 51 80 3.4 -3.8 19
c24 46 88 3.3 -3.0 12
c25 55 73 2.5 -4.5 27
c26 49 82 6.4 -3.8 5
c27

m
ix

ed

36 58 2.7 -3.2 28
c28 39 53 3.8 -3.9 30
c29 35 60 3.2 -3.8 28
c30 45 47 3.7 -3.5 30
c31 37 57 6.0 -3.7 29
c32 44 48 4.2 -4.9 30
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A Appendix

Figure A.1: Map and altitude of the urban route; speed profile of cycle c1.
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A.4 Experimental Study

Figure A.2: Map and altitude of the suburban route; speed profile of cycle c7.
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A Appendix

Figure A.3: Map and altitude of the highway route; speed profile of cycle c13 and c21.
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A.4 Experimental Study

Figure A.4: Map and altitude of the mixed route; speed profile of cycle c27.
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A Appendix

Figure A.5: PIC test series: acceleration and braking cycle.
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A.4 Experimental Study

Figure A.6: PIC test series: mixed cycle.
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Figure A.7: PIC test series: urban cycle.
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Acronyms

2DOF Two Degree of Freedom.

ABS Antilock Braking, German Antiblockiersystem.

AC Alternating Current.

AD Automatic Differentiation.

ASR Traction Control System, German Antriebsschlupfregelung.

AWD All-Wheel-Drive.

BEV Battery Electric Vehicle.

CAN Controller Area Network.

CNN Convolutional Neural Network.

CO2 Carbon Dioxide.

DC Direct Current.

DMS Direct Multiple Shooting.

DP Dynamic Programming.

DTC Direct Torque Control.

ED Economic Driving.

EDM Electric Drive Module.

EKF Extended Kalman Filter .

ESC Electronic Stability Control.

EV Electric Vehicle.

FCEV Fuel Cell Electric Vehicle.
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Acronyms

FEA Finite Element Analysis.

FIR Finite Impulse Response.

FOC Field Oriented Control.

FWD Front Wheel Drive.

GHGE Greenhouse Gas Emission.

GPS Global Positioning System.

HDF Harmonic Distortion Function.

HEV Hybrid Electric Vehicle.

ICE Internal Combustion Engine.

IGBT Insulated-Gate Bipolar Transistor .

IM Induction Motor .

IP Interior Point.

IPOPT Interior Point Optimizer .

IVP Initial Value Problem.

KKT Karush-Kuhn-Tucker .

LICQ Linear Independent Constraint Qualification.

LMT Loss Minimizing Technique.

MCU Motor Control Unit.

MEC Magnetic Equivalent Circuit.

MMF Magneto-Motive-Force.

MPC Model Predictive Control.

MRAS Model Reference Adaptive System.

MTPA Maximum Torque Per Ampere.

MTPV Maximum Torque Per Volt.

NMPC Nonlinear Model Predictive Control.
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Acronyms

ODE Ordinary Differential Equation.

PHEV Plug-In Hybrid Electric Vehicle.

PIC Powertrain Integration Center .

PMP Pontryagin’s Maximum Principle.

PMSM Permanent Magnet Synchronous Motor .

PTC Positive Temperature Coefficient.

PWM Pulse Width Modulation.

REST Representational State Transfer .

RMS Root Mean Square.

RWD Rear Wheel Drive.

SLF Switching Loss Function.

SOC State of Charge.

SQP Sequential Quadratic Programming.

STOS Stationary Operational Strategy.

SUV Sport Utility Vehicle.

SVPWM Space Vector PWM .

VSI Voltage Source Inverter .

WFT Winding Function Theory.
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Notation

The following glossary lists the notation of frequently used sets, operators, functions
sub- and superscripts as well as the main model parameters and variables. Sets,
variables and parameters that are only used occasionally are omitted. However, all
are explained at their first occurrence.

Sets
C Complex numbers
R Real numbers
Rn n-dimensional Vectors
Rn×m Matrices with n rows and m columns
R− Negative real numbers
R+ Nonnegative real numbers
Z Integer
N Natural numbers
i(n)j Evenly spaced n ∈ Z integer topology starting at

i ∈ Z and ending at j ∈ Z

B BEV braking
C BEV coasting
Cn Trajectoreis of order n
Oedm EDM speed and torque operating region
Oev BEV speed and torque operating region
T BEV traction
Xcur Operating points of the IM that are limited by the

maximum phase current
Xim IM speed and torque operating region
Xpl Operating points of the IM in the partial load area
Xsat Operating points of the IM that are limited by

saturation
Xvolt Operating points of the IM that are limited by the

maximum phase voltage
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Notation

Functions and Operators
d ·/dt, ˙(·) First time derivative
d2 ·/dt2 , (̈·) Second time derivative
dn ·/dtn , (·)(n) Time derivative of order n
∂ ·/∂x Partial derivative with respect to x
Lf · Lie derivative along the vector field f
∇ · Gradient
H Hessian
|·| Absolute value or modulus
.̄ Average value

�·� Floor function
(·)[k] Discrete variable at time tk

x|y Evaluate variable x at condition y (e.g. time or
temperature)

g ◦ f Composition of functions g and f (g ◦f)(x) = g(f(x))
diag (·) Takes the elements of one or more vectors and returns

a diagonal matrix whose main diagonal contains the
elements of these vectors

sign (·) Signum function
	 {·} Imaginary part of complex number
� {·} Real part of complex number
δ (·) Dirac delta function
εx Relative difference or error of variable x
Ψu Flat input parametrization
Ψx Flat state parametrization
ϑ (·) Penalty term and distance function
ϑf (·) Terminal cost
C(s) Control transfer function
ex Absolute error of variable x
Gyu(s) Transfer function from input u to output y
Jn (·) Bessel function of the first kind and order n
P (s) Plant transfer function

Indices, Sub- and Superscripts
·̂ Estimated value or current/voltage peak value

(.)′ Variation rate or slope
(·)∗ Optimal value, control reference or prediction
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Notation

(·){x,y,z} Set of diefferent variables
(.)aux Auxilliary
(.)bat Battery
(.)dt Drivetrain
(.)edm Electric drive module
(.)fl Flat coordinates
(.)im Induction motor
(.)lb Lower bound
(.)nom Nominal value
(.)·r Rotor
(.)·s Stator
(.)sat Saturation
(.)ub Upper bound
(.)fa EDM front axle
(.)lmt Optimum for unconstrained loss minimizing

technique
(.)mpta Optimum for unconstrained maximum torque per

ampere strategy
(.)mptv Optimum for unconstrained maximum torque per

volt strategy
(.)ra EDM rear axle
(.)st Assuming steady state conditions
(.)tr Assuming transient conditions

Space Vectors, Vectors and MatricesMVParameter and Variables
x Complex valued space vector
(·)α Space vector reference frame orientation (α = 0

stationary frame; α = ωe rotor frame; α omitted
for the reference frame in field orientation)

(·)α Real component of space vector in stationary
reference frame fixed to the stator (phase a)

(·)β Imaginary component of space vector in reference
frame fixed to the stator (phase a)

(·)d Direct (real) component of space vector in field
orientation

(·)q Quadrature (imaginary) component of space vector
in field orientation

0n×m Zero matrix with n rows and m columns
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Notation

In×m Identitiy matrix with n rows and m columns
M Matrices are represented by bold variables and

capital letters
x Column vectors are represented by bold variables
xi Element i ∈ N of vector x

xi:j Subvector composed of elemets i ∈ N to j ∈ N of
vector x

Parameter and Variables
α IM refernce frame angle rad
α̇ IM refernce frame angular frequency rad/s
αgr Golden ratio -
αR Temperautre coefficient 1/K
εx Relative error or difference of variable x
η Efficiency -
γ Road grade rad
ιdt Drivetrain paramter: gear ratio -
λabc,{s,r} IM stator and rotor flux linking coils a, b, and c,

balanced set λabc,{s,r} =
(
λa{s,r}, λb{s,r}, λc{s,r}

)T Wb

λ′ Slope of optimized torque trajectory V
λr IM rotor flux linkage Wb
λr,cur IM rotor flux level of maximum phase current Wb
λlb IM lower bound of rotor flux linkage Wb
λlmt IM loss minimizing rotor flux level Wb
λmtpa IM phase current minimizing rotor flux level Wb
λmtpv IM phase voltage minimizing rotor flux level Wb
λub IM upper bound of rotor flux linkage Wb
λr,volt IM rotor flux level of maximum phase voltage Wb
μ· Lagrange multiplier -
ω0 IM fundamental elctrical angular frequency rad/s
ωe IM elctric rotor angular frequency rad/s
ωm IM rotor angular frequency rad/s
ωnom Nominal angular frequency rad/s
ωsl IM slip angular frequency rad/s
ωwhl Drivetrain wheel angular frequency rad/s
ϕ IM power factor angle rad
ρ Air density kg/m3
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Notation

σ IM paramter: leakage coefficient -
τc IM paramter: current time constant s
τd VIS parmeter: computational delay of regular

sampled PWM method
s

τλ Time constant of optimized rotor flux trajectory s
τr IM parmeter: rotor time constant s
τTe Time constant of optimized torque trajectory s
θe IM electrical rotor angle rad
θm IM rotor angle rad
θspl Torque split coefficient between front and rear axle -
ς· l1 norm regularization factor used in optimization

problems as tuning parameter
-

ϑ0 Reference temperature ◦C
ϑamb Ambient temperature ◦C
ϑbat Battery temperature ◦C
ϑs IM stator temperature ◦C
a Vehicle acceleration m/s2

apwm VSI paramter: maximum attainable voltage range of
the PWM method

-

Af BEV paramter: projectred vehicle frontal area m2

Amn, Bmn VSI coefficients of the double Fourier series expansion
of the PWM switching signal

-

cd BEV paramter: drag coefficient -
cr BEV paramter: rolling resistance coefficient -
dd IM disturbance in the direct component of voltage

control
V

dq IM disturbance in the quadrature component of
voltage control

V

E Energy J
Eaux Auxiliary energy consumption J
EB Braking energy J
Ebat Battery energy J
E′

rec VSI paramter: average variation rate of the diode
reverse recovery energy ∂Erec/∂iD

Vs

El Dissipated energy J
El,B Dissipated energy of powertrain losses during braking J
El,T Dissipated energy of powertrain losses during traction J
Eon,off VSI transistor switching energy J
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Notation

Erec VSI diode reverse recovery energy J
ex Absolute error of variable x
ET Traction energy J
E′

on,off VSI paramter: average variation rate of the turn-off
and turn-on transistor switching energy ∂Eon,off/∂iTr

Vs

fc VSI parameter: PWM carrier frequency Hz
Fres Sum of aerodynamic resistance, rolling firction force

and the force induced by gravity
N

g Acceleration due to gravity m/s2

hpwm VSI harmonic factor of the PWM method -
iabc,s IM balanced set of stator phase currents

iabc,s = (ias, ibs, ics)T
A

iαs IM stator phase current real component of space
vector in the stationary reference frame

A

iβs IM stator phase current imaginary component of
space vector in the stationary reference frame

A

iD VSI diode current A
īD,{u,l} VSI per fundamental average diode current of the

upper and lower switch
A

idc DC-link or terminal current A
ids IM stator phase current direct component of space

vector
A

î IM stator phase current peak value A
îub IM upper bound of phase current peak value A
iqs IM stator phase current quadrature component of

space vector
A

irms IM stator phase current RMS value A
is IM stator phase current A
iTr VSI transistor current A
īTr,{u,l} VSI per fundamental average transistor current of

the upper and lower switch
A

J Drivetrain paramter: inertia of all rotating
components

kg m2

L′
lr IM paramter: rotor leakage self-inductance related

to the stator coils
H

Ll{s,r} IM paramter: stator and rotor leakage self-
inductance

H

Lm IM paramter: mutual inductance, is equal to three
halves of the stator self-inductance

H
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Notation

Lm{s,r} IM paramter: stator and rotor self-inductance H
Lr IM paramter: rotor inductance H
Ls IM paramter: stator inductance H
Ls,r IM paramter: mutual stator and rotor inductance H
m BEV paramter: vehicle mass kg
Mi VSI modulation index -
N{s,r} IM paramter: turns of stator and rotor coils -
p PWM carrier ratio -
p{0,1,2}dt,{T ,B} Drivetrain parameter: emperically determined

quasitationary model of the parasitic friction torqe
N

p{0,1}dt Drivetrain parameter: emperically determined
quasitationary model of the parasitic friction torqe

N

Pbat Battery power demand W
Pe Electric power W
Pe,aux Auxiliary power demand W
Pe,edm EDM input power W
Pe,im IM electrical input power W
PEV Overall electric power demand W
Pl Power loss W
Pl,core IM core losses W
Pl,edm EDM power loss W
Pl,im IM cundoction, leakage and core losses W
Pl,vsi VSI conduction and switching losses W
Pm Mechanical power W
Qnom Battery paramter: nominal capacity C
Rbat Battery paramter: internal resistance Ω
RD VSI paramter: conduction resistance diode Ω
Rfe IM paramter: core loss resistance Ω
Rr IM paramter: rotor resistance Ω
R′

r IM paramter: rotor resistance related to the stator
coils

Ω

Rs IM paramter: stator resistance Ω
RTr VSI paramter: conduction resistance transistor Ω
rwhl Drivetrain paramter: wheel radius m
s Laplace variable
s{a,b,c} PWM switching or gating signal of the upper phase

switches
-
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Notation

s̄{a,b,c} PWM switching or gating signal of the lower phase
switches

-

sn Slack variable for negative values
SOC Battery state of charge -
sp Slack variable for postive values
ssl IM slip factor -
t Time s
t0 Initial time s
td Discrete time interval of shooting/dsicretization grid s
tf Time at the end of a scenario/transition s
tk Discrete time s
tmpc MPC update rate s
Tbrk Drivetrain friciton brake torque Nm
Tdt Drivetrain parasitic friction torque Nm
Te IM electromagnetic rotor torque Nm
Te,{lb,ub} IM upper and lower bound of electromagnetic rotor

torque
Nm

Te,whl Drivetrain electrical wheel torque Nm
Tfric Drivetrain friction brake offset Nm
Tnom Nominal torque Nm
Twhl Drivetrain wheel torque Nm
Twhl,{lb,ub} Drivetrain upper and lower bound of wheel torque Nm
uabc,s IM balanced set of stator lin-to-neutral voltages

uabc,s = (uas, ubs, ucs)T
V

uαs IM stator phase voltage real component of space
vector in the stationary reference frame

V

uas,n PWM reference voltage of phase a V
uβs IM stator phase voltage imaginary component of

space vector in the stationary reference frame
V

uD VSI diode voltage V
ūTr,{u,l} VSI per fundamental average transistor voltage of

the upper and lower switch
V

udc DC-link or terminal voltage V
UD VSI paramter: diode forward voltage V
uds IM stator phase voltage direct component of space

vector
V

ufl Input of flat system
uocv Battery open cirquit voltage V
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Notation

û IM stator phase voltage peak value V
uqs IM stator phase voltage quadrature component of

space vector
V

us IM stator phase voltage V
uTr VSI transistor voltage V
ūD,{u,l} VSI per fundamental average diode voltage of the

upper and lower switch
V

UTr VSI paramter: transistor forward voltage V
uub IM upper bound of stator phase voltage V
v Vehicle speed m/s
w· Weighting factor used in optimization problems as

tuning parameter
-

x System state
xfl State of flat system
x PWM time variable of the modulation carrier wave rad
y PWM time variable of the reference wave rad
z Flat output
ZIM IM input inpedance Ω
Zp IM paramter: number of pole pairs -
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