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Abstract: Accepting the ecological necessity of a drastic reduction of resource consumption and
greenhouse gas emissions in the building industry, the Institute for Lightweight Structures and
Conceptual Design (ILEK) at the University of Stuttgart is developing graded concrete components
with integrated concrete hollow spheres. These components weigh a fraction of usual conventional
components while exhibiting the same performance. Throughout the production process of a
component, the positions of the hollow spheres and the level of the fresh concrete have to be
monitored with high accuracy and in close to real-time, so that the quality and structural performance
of the component can be guaranteed. In this contribution, effective solutions of multiple sphere
detection and concrete surface modeling based on the technology of terrestrial laser scanning (TLS)
during the casting process are proposed and realized by the Institute of Engineering Geodesy
(IIGS). A complete monitoring concept is presented to acquire the point cloud data fast and with
high-quality. The data processing method for multiple sphere segmentation based on the efficient
combination of region growing and random sample consensus (RANSAC) exhibits great performance
on computational efficiency and robustness. The feasibility and reliability of the proposed methods
are verified and evaluated by an experiment monitoring the production of an exemplary graded
concrete component. Some suggestions to improve the monitoring performance and relevant future
work are given as well.

Keywords: graded concrete; production monitoring; TLS; region growing; RANSAC; multiple sphere
detection; surface modeling

1. Introduction
1.1. Background and Motivation

The building sector, especially the concrete industry, is one of the world’s largest
consumers of natural resources and emitters of harmful greenhouse gases [1,2]. To increase
resource efficiency and reduce the emissions, new technologies are needed that aim at
minimizing component mass and embodied energy as well as enabling full recyclability [3].
One approach to reducing the weight of load-bearing concrete components is the use of
graded concrete which was invented by Werner Sobek. This technology is based on a
tailored design of the component interior [4]. Cavities of different shapes and sizes are
arranged inside the component in such a way that a fully stressed design is achieved, which
results in a full material utilization at every point in the component [4,5]. Compared to
conventional concrete components, the weight of the graded component and the associated
use of resources can be reduced by up to 50% with CO2 savings of 30–40% while its
performance is fully maintained [6–8]. The gradation inside the component can be achieved
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by different techniques. One approach is the so-called meso gradation, hereby hollow
concrete bodies (e.g., hollow spheres in this contribution) are placed as close as possible to
the interior of the component, as shown in Figure 1a. The positions and sizes of the hollow
bodies depend on the stress situation in the component (Figure 1b).
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The precise match of the intended and the actual position of each hollow sphere is of
vital importance to the performance of the meso-graded component. A major challenge
for the production is to ensure the precise position of the mineral hollow spheres and
to maintain it throughout the production process. At the ILEK, a layer-by-layer casting
process using self-compacting concrete was developed, which prevents the hollow spheres
from floating when the concrete is cast [4,5]. This process begins after the hollow spheres
and reinforcement are correctly placed and positioned in the formwork of the component.
The positional stability of the spheres during production is influenced by two factors:
the buoyancy forces inflicted on the hollow spheres by the liquid fresh concrete and the
adhesion forces acting between the hardening concrete and the hollow spheres. Both
the time between the casting of two layers and the height of each layer are chosen so
that the adhesive forces together with the weight of the spheres always surmount the
buoyancy forces.

Appropriate monitoring measures are required to meet the quality requirements of
the production of weight-minimized graded concrete components. These must be able to
precisely determine the positions and radii of the hollow spheres in the component with
the accuracy at millimeter level. An undetected deviation between planning and execution
can lead to a situation where the load-bearing capacity of a component no longer meets its
requirements. The level of the fresh concrete surface is supposed to be monitored during
the layer-by-layer casting process. A monitoring system needs to report on the positional
stability of the hollow spheres throughout the production and needs to reconstruct the
increasing concrete level in the formwork. All measurements and data processing should
be completed in a short time before the concrete hardens. With the acquisition of these
data, the casting process can be controlled in a targeted manner and the component can be
produced in high quality in precise accordance with its design.
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1.2. Choice of Sensors

According to the production requirements of the graded concrete component, high-
precision and area-wise spatial data of the component surface is supposed to be acquired
quickly and in a non-contact way. Close-range photogrammetry and terrestrial laser
scanning (TLS) are efficient monitoring methods that meet the demands of this task. These
two approaches are both able to capture abundant geometric information [10]. Compared
with photogrammetry, however, TLS has higher accuracy and independence of texture and
illumination of objects [11,12]. Without artificial targets attached to these concrete spheres,
it will be difficult to detect these objects in images via the deficient and variable natural
textures on them. Therefore, this study aims to develop a practical and reliable approach
for monitoring the geometric parameters of the hollow spheres and concrete level within a
short time by means of TLS. In this way, the data processing step can be regarded as hollow
sphere detection and concrete surface modeling based on the 3D point cloud.

1.3. Algorithms for Sphere Detection

Spherical objects are crucial primitives found in 3D spatial data. Especially sphere
targets are used extensively for camera and laser scanner calibration or data registration in
which robust sphere detection and estimation are necessary to achieve good results [13–15].
Plenty of approaches for sphere segmentation or extraction from point cloud have been
proposed, such as the clustering-based method [16,17], sampling-based method [14,18],
and Hough transform-based method [19,20], etc. However, most of these methods more
or less have limitations, including the robustness to outliers or noise, computation time,
requirements for the exposed spherical area and prior information, etc. For instance,
the clustering-based method using the normal vector and curvature enables multiple
sphere detection without knowing the approximate position of the sphere [17]. For the
detection of hollow spheres during the casting process, however, some fresh concrete may
unintentionally drip on the spherical surface and result in wrong calculations of normal
vectors and curvatures, probably leading to unsatisfactory clustering results. Besides, some
advanced algorithms to handle the multiple sphere detection in a complicated environment
may lead to more complexity and computational load [15], which cannot meet the time
requirement in this monitoring task. Meanwhile, complex parameter tuning also makes
these algorithms difficult to be applied to practical problems.

In order to avoid the high complexity and operational difficulty as well as guarantee
the robustness in a changing scenario, the region growing (RG) and the random sample
consensus (RANSAC) algorithms are considered for multiple sphere segmentation or
detection from the 3D point cloud in this monitoring task due to their superiorities. RG was
first proposed in the field of intensity image segmentation [21] and then was introduced to
3D point cloud segmentation [22–26]. This method has the advantage of unnecessary prior
parameters of spheres (like the design of the sphere layout and the coordinate information).
However, 3D RG may require a long time for the parameter tuning [27] and the calculation
of normal vector and curvature. RANSAC was introduced as a general framework for
model fitting in the presence of outliers [28]. Compared with RG-based segmentation,
RANSAC enables the model (e.g., plane, cylinder and sphere) segmentation and estimation
more robustly and rapidly under a complex circumstance containing lots of noise or
outliers [29]. Nevertheless, only one model can be found in each segmentation. Supposing
performing iterative segmentation to find expected models one by one, the proportion of
inlier will decrease significantly, which may cause RANSAC to be unable to find models
gradually within limited iterations.

1.4. Algorithms for Surface Modelling

There are many approximation approaches for surface modeling based on 3D scattered
points, including a polygonal model (e.g., a mesh by interpolation) or a regression model
(e.g., a polynomial or B-spline surface) [30–32]. The difference of the concrete level among
the gaps is typically not too significant owing to uniform casting and the concrete’s fluidity.
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Among these methods utilized in various applications for fitting point cloud data, the
polynomial fitting is usually employed to smooth and regular objects due to its simple
operation and function of global optimization [30].

1.5. Structure of the Contribution

The contribution is organized as follows. Section 2 elaborates the monitoring concept
and the proposed data processing methods, and Section 3 describes the quality evaluation
metrics for surface modeling and sphere detection. Experimental results are presented in
Section 4. Further discussions, including comparative study, error analysis, and limitations,
are provided in Section 5, followed by the conclusions and outlooks in Section 6.

2. Theories and Methods
2.1. Monitoring Concept and Overview of the Processed Method

For the monitoring of hollow spheres and the concrete level during component pro-
duction, a monitoring concept was designed for point cloud data acquisition as shown
in Figure 2. One laser scanner is set up on the stable ground and close to the component
area, and it is fixed on a single station throughout the monitoring process so that the uncer-
tainty of data registration from multi-station measuring could be avoided. By a network
connection to a computer, the scanner can be controlled and transmit data in real-time.
Four or more laser scanner targets are supposed to be fixed around the formwork and kept
stationary as the georeferencing. The scanning range of horizontal angle θHor must cover
the whole component formwork and all fixed targets. Additionally, the scanner should
be mounted as high as possible to ensure that all hollow spheres and the surface of fresh
concrete in the formwork can be scanned without a large area of occlusion.

The first part is to estimate the initial parameters of hollow spheres based on the
first scanning (before casting process) as shown in the left rectangle, and this part is
defined as the first epoch (epoch means a time period defined to be monitored). Taking the
preprocessed point cloud data as the input, a preliminary segmentation and clustering of
spherical objects, including RG and the extraction of the spherical clusters, are performed
to acquire the point clouds of hollow spheres. Then, fine segmentation of spheres using
RANSAC is conducted. Finally, the initial center position and the radius of each sphere are
estimated by least squares (LS) under a rigorous Gauss–Helmert model.
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The flowchart of the proposed method for monitoring hollow spheres and concrete
level is shown in Figure 3. According to the order of scanning, the whole process is
composed of two main parts.
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The second part involves the estimation of the hollow spheres and the concrete level in
current epochs as shown in the right rectangle. At first, the range of region of interest (ROI)
for spheres is determined according to the current height of the concrete level. Then the
ROI of each sphere and concrete level are selected with an adaptive range. The combination
of statistical outlier removal (SOR) and RANSAC-based segmentation is used to obtain
the point set of the exposed spherical surface in each ROI. While the representative point
(RP) of each gap between adjacent spheres is calculated to build the point set of the current
fresh concrete surface. Finally, LS and cubic polynomial fitting (CPF) are adopted to fit
the hollow spheres and concrete level respectively based on the corresponding point sets.
After the first scanning, the radius of each sphere is fixed as a constant in sphere fitting by
using the estimation from the first epoch.

The advantage of the first part is that the prior information is not needed with respect
to approximate positions of spheres. Due to the significant time consumption of RG and
spherical cluster extraction, however, RG-based segmentation should only be used before
concrete casting. For the subsequent scanning, with the initial positions and the estimated
radii, the selection of ROI can be performed to get the local area of each sphere as the input
dataset of RANSAC-based segmentation. The range of ROI for each sphere depends on the
height of the current concrete level, enabling the ROI to cover the whole exposed spherical
part in any case under a high inlier proportion. It is also optional to update the positions of
spheres based on the current-epoch results to select the ROI in the next epoch. In sequence,
the different steps of the proposed method are described in detail.
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2.2. Data Preprocessing
2.2.1. Georeferencing

Since the scanner must keep both position and orientation fixed on one station, a
stable georeferencing based on the local coordinate system of the scanner ought to be
guaranteed during the whole process. After the scanning of each epoch, the position
of each fixed target will be compared to its initial center coordinates. If the locations of
all targets change within the measurement accuracy, the position and orientation of the
scanner can be deemed to be stationary. Otherwise, it is possible to recover the reference
frame by Helmert transformation [33].

2.2.2. Selection of the Object Region and Downsampling

The original point cloud data usually includes redundant parts or points due to the
setting of a large scanning range or a high resolution. In order to efficiently reduce the
computing time and memory usage, the original point cloud is clipped by the boundary of
a polygonal prism that can cover the whole object region and downsampled.

Compared with other downsampling techniques, the voxel grid filter has advantages
of easy implementation, fast execution and uniform filtering [27,34,35]. The selection of
voxel size will significantly influence the computational complexity and segmentation
effect [36]. Theoretically, the smaller the sphere radius is, the smaller the voxel size should
be set, so as to ensure enough points for the calculation of the normal vector and curvature
and enough inliers for RANSAC-based segmentation. Considering the appropriate point
density for sphere detection and overall computational efficiency, 3× 3× 3 mm3 voxel grid
is experimentally determined for the downsampling for spheres with a radius of 74 mm.

2.2.3. Outlier Removal

The outliers occur in point cloud data due to occlusions or sensor imperfections, which
can cause geometrical discontinuities and arbitrary surface shapes with sharp features
inevitably [37–39]. Considering that the outlier removal will be performed repeatedly
in the point cloud processing of this monitoring work, a concise and highly-efficient
method called statistical outlier removal filtering is adopted [40]. The critical parameters of
SOR filtering are k (the number of k-nearest neighbors) and m (the multiple of standard
deviation). In particular, k controls the size of the recognized outlier cluster, while m
determines the proportion of filtered points (e.g., about 2.3% points are deemed as outliers
when m = 2.0). k was set to 30 empirically herein, and it can be set higher if the isolated
outlier clusters with more points are expected to be removed.

2.3. Surface Modeling of Concrete Level

After each layer of casting, the height of the concrete level in the formwork is supposed
to be estimated in order to acquire the current distribution of the fresh concrete. Besides,
the geometric information on the concrete level is needed for the ROI selection of hollow
spheres. However, not all areas of the concrete level can be scanned due to occlusion.
Therefore, a surface model can be established from limited points on the concrete surface to
approximate the actual concrete level. This step consists of the ROI selection of the concrete
level and surface fitting.

2.3.1. Selection of Points on the Concrete Level

Surface points of the concrete level (PoCL) can only be detected in the gap between
several adjacent spheres, even though the surface will rise and change during casting.
This contribution merely focuses on the component simply including equal-radius spheres.
According to [5], there are two dense packing patterns for these identical spheres in one
plane: in cubic-primitive packing (orthogonal pattern) four spheres are touching each
other in one point (see Figure 4b), leading to a maximum in mass savings of 52%, and in
hexagonal-primitive packing (hexagonal pattern) three spheres are touching each other
in one point (see Figure 4c), which leads to a maximum in mass savings of 60%. For both
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patterns, the gap area where PoCL is located can be determined by the geometric relation
between three touching (nearest) spheres in one packing unit, as illustrated in Figure 4.
Accordingly, it is possible to determine these gaps after obtaining the position of every
sphere (see Sections 2.4 and 2.5).
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A method to define the ROI for the concrete level to represent the gap area is proposed
in this contribution. The center of each ROI coincides with the center of its corresponding
gap. Based on the initial or current positions of spheres, a local selection can be made for the
ROI including PoCL. To reduce the time consumption when selecting a circular area (due to
numerous distance calculations), a small square area among three or four adjacent spheres
is selected as the ROI for the concrete level, as shown in Figure 4. The geometric property
of this ROI is that the horizontal distances between the ROI’s center and each sphere’s
center are just equal if these spheres have an identical radius. That means the center of ROI
is the center of the circumcircle of the triangle, which is constructed by the center points
of three adjacent spheres, and this point is also the intersection of perpendicular bisectors
of the three sides of the triangle. For implementation, thus, only the circumcircle’s center
needs to be calculated based on the centers of three adjacent spheres found via the nearest
neighbor search. The central position of ROI (xROI, yROI) can be calculated by

xROI =
(y2−y1)(x2

3+y2
3−x2

2−y2
2)−(y3−y2)(x2

2+y2
2−x2

1−y2
1)

2(y2−y1)(x3−x2)−2(y3−y2)(x2−x1)

yROI =
(x3−x2)(x2

2+y2
2−x2

1−y2
1)−(x2−x1)(x2

3+y2
3−x2

2−y2
2)

2(y2−y1)(x3−x2)−2(y3−y2)(x2−x1)

, (1)

where (x1, y1), (x2, y2), and (x3, y3) are the horizontal positions of the three adjacent
spheres around one gap. The scale of ROI should be smaller than the gap’s area when
the concrete surface and the height of sphere centers are at the same level (the smallest
area of concrete level). Based on the geometric relations in Figure 4b,c, 0.58-times radius
for cubic-primitive packing and 0.21-times radius for hexagonal-primitive packing are
calculated as the side length of the ROI.

2.3.2. Representative Point of Each Gap

On the one hand, the placement errors or unequal radius (due to manufacturing
errors from submillimeter to several millimeters) of spheres may result in the inconsistency
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between the ROI’s center and the gap’s center, and this deviation will possibly cause the
ROI to include some outliers like the points on spheres. On the other hand, these PoCL in a
gap are theoretically at the same height because of the fresh concrete’s flowability, hence it
is not necessary to use all PoCL in one gap to reconstruct the concrete surface.

To simplify the calculation and improve the robustness, only the point with the median
height is taken as the representative point for each gap. This method can not only eliminate
the influence of outliers, but also make the distribution of fitting points more uniform on
the fitted surface.

2.3.3. Surface Modeling Using Cubic Polynomial Fitting

Different-order polynomials perform differently in terms of the number of coefficients
and the fitting accuracy [30]. In this contribution, considering the model performance and
computing time, a cubic (three-order) polynomial fitting (CPF) algorithm is adopted to
model the surface of the concrete. Its function model can be written as

z = a0 + a1x + a2y + a3x2 + a4y2 + a5xy + a6x2y + a7xy2 + a8x3 + a9y3, (2)

where (x, y, z) are the coordinates of the representative point and ai (i = 0, 1, . . . , 9) are
the polynomial coefficients. To determine the ten coefficients in Equation (2), at least ten
points are needed. According to the model of indirect adjustment, the observation equation
can be written as
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where n is the number of observations (representative points), V is the improvement vector
(or error vector), A is the design matrix, L is the observation vector, and X̂ is the parameter
to be estimated. Based on the LS, the optimal solution of the parameters (polynomial
coefficients) is given in Equation (4), where the weight matrix P is regarded as an identity
matrix here. The standard deviation (Std.) σ̂0 of the surface fitting can be calculated by
Equation (5) with u = 10 (for ten coefficients to be estimated).

X̂ = (ATPA )
−1

ATPL (4)

σ̂0 =

√
VTPV
n− u

(5)

2.4. Initial State Estimation of Hollow Spheres

As stated in Section 2.1, the initial positions and radii of hollow spheres are supposed
to be estimated after the first scanning (before casting) if there is no prior information of
sphere parameters. This part consists of preliminary segmentation and spherical cluster
extraction, and the parameters of spheres can be estimated by LS after further RANSAC-
based segmentation (see Section 2.5.2).

2.4.1. Preliminary Segmentation Using 3D Region Growing

The 3D RG typically starts from one or more points (seed points) featuring specific
characteristics and then gathers the nearest neighbors in the seed area on the basis of certain
constraints such as similar surface orientations or curvatures [26]. Constraints of surface
normal vectors and curvatures were widely used to find the smoothly connected areas
that would be clustered as specific regions [23,25,41,42]. The detailed process of the 3D RG
algorithm adopted in this work is described in [23,25]. Vo et al. [27] found that the method
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requires a considerable amount of time for parameter tuning, especially for curved surface
or sphere segmentation.

The influence factors in the standard 3D RG algorithm include the neighborhood
size for normal vector and curvature estimation, the threshold of angle difference (TAD)
between normal vectors of each nearest neighbor point and current seed point, the threshold
of local curvature (TLC) for each point, the neighborhood size for RG searching, and the
threshold of point number as a clustered region, etc. There are two ways to define the
size of neighborhood: the point number of k-nearest neighbors or the radius of the nearest
neighbor (RNN). Herein, RNN is adopted to calculate the normal vector, local curvature
and growing neighborhood, which enables an optimal neighborhood under different
point densities.

In this contribution, principal component analysis (PCA) is applied to estimate the nor-
mal vector and curvature of each point (cf. [43,44]). In consideration of the computational
complexity and the insensitivity to the noise, the ratio between the smallest eigenvalue and
the sum of eigenvalues (derived from the covariance matrix of the neighboring point set
for the query point) is used to approximate the surface variation, and to indicate the local
curvature around the query point indirectly [43].

To verify the feasibility of 3D RG algorithm for multiple sphere segmentation and
to investigate the optimal selection of critical parameters, a setup of eight plastic spheres
with a radius of 74 mm was used to simulate the layout of hollow spheres. Figure 5 shows
the placement of spheres and the point cloud of this setup. Part of the background was
retained to show the process of the sphere being detected from a complex scenario.
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The calculations of normal vector and curvature for each point are the basis of the 
RG-based segmentation, while the size of the corresponding neighborhood will influence 
the PCA-based normal estimation directly. Figure 6 shows part of the segmentation re-
sults under different normal and curvature calculations, where RNN was set to different 
sizes (from 10 mm to 50 mm) while other parameters are fixed with empirical values. The 
segmented clusters are labeled with random colors, and the red parts are not considered 
as a cluster because of too few points (less than the minimum point number as a region). 
The bad or wrong segmentations are marked by black dotted rectangles according to the 
visual comparison with the ground truth. 

Figure 5. The multiple-sphere scanning test: (a) The placement of multiple spheres; (b) Original point cloud; (c) Preprocessed
point cloud (voxel size in downsampling: 3 × 3 × 3 mm3; parameters in SOR: k = 30, m = 2.0).

The calculations of normal vector and curvature for each point are the basis of the
RG-based segmentation, while the size of the corresponding neighborhood will influence
the PCA-based normal estimation directly. Figure 6 shows part of the segmentation results
under different normal and curvature calculations, where RNN was set to different sizes
(from 10 mm to 50 mm) while other parameters are fixed with empirical values. The
segmented clusters are labeled with random colors, and the red parts are not considered as
a cluster because of too few points (less than the minimum point number as a region). The
bad or wrong segmentations are marked by black dotted rectangles according to the visual
comparison with the ground truth.
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on the spheres (see Figure 7a), while a large TAD setting led to under-segmentation to a 
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Figure 8. The segmentation results of multiple spheres with different TLC (RNN = 20 mm, TAD = 3.00°): (a) TLC = 0.01; 
(b) TLC = 0.05; (c) TLC = 20.0. 

Figure 6. The segmentation results of multiple spheres under different RNN (TAD = 3.00◦, TLC = 0.10): (a) RNN = 10 mm;
(b) RNN = 20 mm; (c) RNN = 50 mm.

Figure 6 shows that smaller neighborhood selection caused over-segmentation (see
Figure 6a) while a large RNN setting led to under-segmentation (see Figure 6c). For this
multiple-sphere test, the optimal RNN is empirically from 20 mm to 30 mm according to
the segmentation effects within the investigated range of RNN.

In addition to the neighborhood size in normal and curvature calculations, TAD and
TLC also influence the effect of 3D RG-based segmentation. Figures 7 and 8 show part of
segmentation results under different settings of TAD (from 2.00◦ to 4.00◦) and TLC (from
0.01 to 20.0).
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Figure 7 indicates that the segmentation result was sensitive to the change of TAD.
Similar to the results under different RNN, a small TAD setting caused over-segmentation
on the spheres (see Figure 7a), while a large TAD setting led to under-segmentation to
a certain extent (see Figure 7c). If only concerning whether the spherical points can be



Remote Sens. 2021, 13, 1622 11 of 26

segmented independently and completely, the range from 2.75◦ to 3.75◦ of TAD is suggested
for the sphere with the given radius.

Compared to TAD, TLC has not such a significant influence on the segmentation
effects (see Figure 8). For a TLC between 0.05 and 10, all obvious geometric primitives
could be segmented and clustered almost perfectly. There was a slight under-segmentation
when TLC reached 20 (see Figure 8c). This is because TLC only determines the generation
of seed points rather than region points, while the clustering of region points depends on
TAD merely. However, too small TLC may hinder the generation of seed points and stop
the process of region growing in the large-curvature regions, like edges and spheres. These
regions would be independently clustered from the point cloud and were labeled as red
due to less points to be treated as a cluster (see Figure 8a), which caused discontinuity on
the spherical surfaces. Therefore, TLC from 0.05 to 10 is suggested for this scanning test.
As for the point number of the searching neighborhood for 3D RG, an empirical value from
10 to 30 is chosen taking into account the point density, since the result of RG is also not
sensitive to this parameter.

2.4.2. Screening Conditions for Spherical Clusters

Spherical clusters are supposed to be extracted from the preliminary segmentation
results completely and quickly. In this contribution, two simple screening conditions based
on the spatial ranges and the medians of sorted curvatures of segmented clusters are
proposed to extract the spherical clusters from RG-based segmentation. The extraction
steps can be summarized as follows:

1. The spatial ranges in the direction of three axes of each cluster whose number of
points is greater than a threshold will be calculated.

2. The curvature of each cluster within the threshold of spatial ranges (TSR) will be
calculated and sorted.

3. The cluster of which the median of sorted curvatures is within a specific threshold (TCM)
will be regarded as a sphere and extracted into the dataset storing spherical points.

The determination of TSR ought to refer to the radius of the sphere and the proportion
of visible part. When scanning with a single station, normally less than 50% of the surface
of a sphere is exposed, and it may be even less under the occlusion of other spheres.
Considering the radius of these spheres is 74 mm in this multiple-sphere scanning test, the
range of TSR is set from 0.05 m to 0.16 m in the direction of X and Y axes and from 0.02 m
to 0.16 m in the direction of Z-axis empirically.

The curvature estimations of spherical clusters may be not consistent because of the
errors at some edge points. Figure 9 shows the curvature distributions of two extracted
spherical clusters in the scanning test (results of other spheres are offered in Figure A1 in
Appendix A). The mean and median of point curvatures are also displayed. The average
curvatures of these spherical clusters are between 0.014 to 0.017, while the median is slightly
higher than the mean of curvatures. To weaken the influence of outlier curvatures at some
edge points and make a more stable threshold setting, the median of sorted curvatures of a
cluster is adopted as the second screening condition for the extraction of spherical clusters.
According to Figure 9, the range of TCM was set from 0.014 to 0.018 in this scanning test.

The extracted spherical clusters from the RG-based segmentation result by the two
screening conditions are shown in Figure 10. These eight spheres were extracted from the
segmented point cloud respectively and completely. However, these spherical clusters may
still contain some outliers or noise which could be further eliminated by RANSAC-based
segmentation (see Section 2.5.2). Then the center coordinates and radii of spheres are
estimated by LS fitting (see Section 2.5.3) after obtaining the finely segmented spherical
points. In addition, for an unorganized point cloud, the extracted clusters will be sorted by
their number of points in RG-based segmentation, resulting in that the actual sequences are
disordered in the horizontal direction. It is thus crucial to reorder these spherical clusters
according to their center positions and number these spheres in accordance with the X-axis
or Y-axis direction.
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2.5. Current State Estimation of Hollow Spheres

Owing to the dense packing of the hollow spheres, their horizontal movements would
normally be in a small extent during the casting process. Therefore, it is possible to
estimate the current state of a hollow sphere within a limited horizontal range (i.e., ROI).
In this case, the sphere can be segmented by RANSAC with fewer iterations under a
higher proportion of spherical points (inliers) in a ROI. Moreover, the time consumption
is significantly less than that of RG-based segmentation, which enables timely feedback
during the production process. Thus, this RANSAC-based segmentation is adopted to
estimate the current positions of the hollow spheres after the first epoch.

2.5.1. Selection of Regions Including Spheres

Since the standard RANSAC algorithm typically segments a single object, the input
dataset should only contain one sphere, and the proportion of inliers ought to be as high
as possible. Based on the initial position and the radius estimated from the first epoch, it
is possible to select a local area as the ROI including one single sphere. Supposing that
the horizontal movement of each sphere is within the range of 0.3-times radius, the region
with a range of 1.3-times radius from the center of each sphere should be selected as the
ROI. A horizontal square area of which sides are along the X-axis and Y-axis direction is
selected as the ROI for each sphere, as demonstrated in Figure 11. These ROIs are merely
determined by the center position and side length, and half of the side length is defined as
the range of ROI.
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Figure 11. The diagram of the selection of ROI for hollow spheres: (a) Top view of the whole component; (b) Front view of
one sphere.

The center position of any ROI is entirely consistent with its corresponding spheres,
and they can be acquired from the initial state estimation and updated by the current state
estimations (when the horizontal movement tends to be significant). In order to ensure
that ROI can completely cover the sphere and maintain a high inlier proportion as well, the
range of ROI can be set by

RROI =

{
1.3 · R H ≤ R√

R2 − (H − R)2 + 0.3 · R H > R
, (6)

where RROI is the range of ROI after each casting, R is the radius of the sphere and H is the
current height of the concrete level from the bottom of the sphere. H can be obtained from
the surface modeling of concrete level, i.e., the height of the fitted surface at the position
of sphere center by Equation (2). Equation (6) makes the selection of ROI more adaptive
and ensures the inlier ratio accordingly with the decrease of the sphere’s exposed part.
Figure 12 shows the ROI for each sphere (RROI is 1.3-times radius) in the multiple-sphere
scanning test.
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2.5.2. Sphere Segmentation Using RANSAC

As an efficient and robust method of model segmentation from the dataset with a
high amount of noise and outliers, RANSAC can be performed in each ROI to segment
the included sphere. The descendants of RANSAC (e.g., least median of squares (LMEDS),
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randomized RANSAC (RRANSAC), progressive sample consensus (PROSAC), etc.) are
able to promote the robustness and efficiency to a certain extent, limitations or imperfections
still exist in specific cases [45]. Considering the comprehensive performance on computing
time and robustness, standard RANSAC of which detailed paradigm is given in [29] is
employed for the segmentation of hollow spheres herein. Taking into account the accuracy
and density of the point cloud as well as the size of the spheres, 2 mm was empirically
set as the distance threshold (DT) between the inlier point and the estimated model in
RANSAC method.

In order to eliminate the points that do not belong to the target sphere and further
improve the proportion of inlier, the SOR filter is used to preprocess the point cloud in
each ROI before segmentation.

2.5.3. Sphere Fitting and Parameter Estimation

Sphere fitting is the process of estimating the center coordinate and radius of each
sphere based on a certain number of spherical points. A sphere in the Cartesian coordinate
system can be described as Equation (7) by its center point (xc, yc, zc) and radius r.

r2 = (xi − xc)
2 + (yi − yc)

2 + (zi − zc)
2, (7)

where (xi, yi, zi) with i = 1, 2, . . . , n are the coordinates of observed points on the
sphere. Considering the measurement errors, the improvements V = [vxi . . . vyi . . . vzi ]

T

are introduced for the observation vector L = [x1 y1 z1 x2 y2 z2 . . . xn yn zn]
T , thus the

nonlinear observation equation can be written as

Yi(L + V, X) = (xi + vxi − xc)
2 + (yi + vyi − yc)

2 + (zi + vzi − zc)
2 − r2. (8)

Equation (8) can be linearized and solved by Gauss–Helmert model in an iterative
process [46]. The initial approximate parameters X̂o could be determined by solving the
linear Equation (9) which regards xc, yc, zc, and r2 − x2

c − y2
c − z2

c as the parameters. The
optimal estimation of the parametric vector is given in Equation (4) based on the linear
LS [47], then the initial parameter X̂o

= [xo
c yo

c zo
c ro]T will be easily obtained. The initial

improvements Vo can be zero vector.
v1
v2
...

vn


︸ ︷︷ ︸

V

=


2x1 2y1 2z1 1
2x2 2y2 2z2 1

...
...

...
...

2xn 2yn 2zn 1


︸ ︷︷ ︸

A


xo

c
yo

c
zo

c
ro2 − xo

c
2 − yo

c
2 − zo

c
2


︸ ︷︷ ︸

X̂

−


x2

1 + y2
1 + z2

1
x2

2 + y2
2 + z2

2
...

x2
n + y2

n + z2
n


︸ ︷︷ ︸

L

(9)

In the adjustment process of the Gauss–Helmert model, the model matrices A and B
arise after the linearization of Equation (8) and are denoted as follows:

A(V, X) =

(
∂Yi
∂X

∣∣∣∣
Li+vo

i ,Xo

)
n×4

= −2 ·


x1 + vo

x1
− xo

c y1 + vo
y1
− yo

c z1 + vo
z1
− zo

c ro

x2 + vo
x2
− xo

c y2 + vo
y2
− yo

c z2 + vo
z2
− zo

c ro

...
...

...
...

xn + vo
xn − xo

c yn + vo
yn − zo

c zn + vo
zn − zo

c ro

 (10)

B(V, X) =

(
∂Yi
∂V

∣∣∣∣
Li+vo

i ,Xo

)
n×3n

= 2 ·
[

diag(xi + vo
xi
− xo

c) diag(yi + vo
yi
− yo

c) diag(zi + vo
zi
− zo

c)
]

(11)

Then, the observation equation will be linearized and written as

∆Yi(V, X) = Ax̂ + BV + w = 0, (12)
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where x̂ = X̂ − Xo, w = −BVo + Y(Vo, Xo). At each iteration, the solution of the
increment of the parameters x̂ and the improvements V are as follows, where QL is the
cofactor matrix of the observations. Then, the current estimated parameters X̂ are obtained
from Equation (15) and used to update the approximate parameters Xo while Vo is updated
by Equation (14) directly after each iteration until ‖∆x̂‖ is less than the selected accuracy
limit (e.g., 10−6 m).

x̂ = − (AT(BQLBT)
−1

A)
−1

AT(BQLBT)
−1

w (13)

V = − QLBT(BQLBT)
−1

(Ax̂ + w) (14)

X̂ = Xo + x̂ (15)

The fitting errors of the estimated sphere center (σxc , σyc , σzc ) and the radius (σr) are
listed in Equation (16) where the square root of the posteriori variance factor σ̂0 can be

calculated by Equation (5) with u = 4. QX̂ = (AT(BQLBT)
−1A)

−1
is the cofactor matrix of

the estimated parameters.

σxc = σ̂0

√
QX̂(1,1), σyc = σ̂0

√
QX̂(2,2), σzc = σ̂0

√
QX̂(3,3), σr = σ̂0

√
QX̂(4,4) (16)

In this monitoring case, a precise radius of each sphere derived from the initial
parameter estimation before casting can be utilized in the subsequent epochs, considering
the sizes of the hollow spheres will not change during the production process. This would
mean that the radius r can be set to a constant and the parametric vector only contains

the center coordinates of spheres (X̂
′
= [xc yc zc ]

T) after the first epoch. In this way, the
Jacobian matrix A will be in the form of Equation (17), while the iterative process remains
the same as above.

A =

(
∂Yi

∂X
′

∣∣∣∣
Li+vo

i ,Xo

)
n×3

= −2 ·


x1 + vo

x1
− xo

c y1 + vo
y1
− yo

c z1 + vo
z1
− zo

c
x2 + vo

x2
− xo

c y2 + vo
y2
− yo

c z2 + vo
z2
− zo

c
...

...
...

xn + vo
xn − xo

c yn + vo
yn − zo

c zn + vo
zn − zo

c

 (17)

2.6. Deformation Analysis of Hollow Spheres

The deformation analysis in this contribution only refers to the movement of the
sphere (i.e., the displacement of the sphere center), not including the change of the sphere
shape. Based on the estimated parameters from sphere fitting, the deformation of a hollow
sphere in epoch-i (Di) is defined as the change of its center coordinates compared to the
first epoch (epoch-1):

Di = [DX, i DY, i DZ, i]
T = X̂epoch_i − X̂epoch_1 = [xc,i − xc,1 yc,i − yc,1 zc,i − zc,1]

T . (18)

To verify the significance of the deformations, the statistical hypothesis testing should
be performed on the results. Herein, the test quantity for localizing the sphere movements
is defined as

Fepoch_i =
DT

i Σ−1
D,i Di

p
=

DT
i

(
s2

0 ·QD, i + Σgeore f

)−1
Di

p
, (19)

where p is the dimension of the sphere center (i.e., p = 3), ΣD, i is the variance-covariance
matrix of deformations which also considers the variance of georeferencing Σgeore f (equal
to the root mean square (RMS) of the deviation of the control measurements to the fixed

targets after each epoch), s2
0 =

V1
TQ−1

L,1V1+Vi
TQ−1

L,i Vi
f1+ fi

(V1, Vi and f1, fi are the fitting residuals
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and the degrees of freedom respectively in epoch-1 and epoch-i) and the cofactor matrix
QD,i = QX̂,1 + QX̂,i.

Assuming the zero-hypothesis is that the sphere in epoch-i did not move compared to
epoch-1, then a significant deformation of the sphere will be detected statistically at the
significance level of α when the test quantity is larger than the corresponding reference
value (Fp, fi ,1−α) in the F-distribution.

3. Quality Evaluation

Since the number of RP is merely relevant to the number of hollow spheres rather
than the point cloud, only a small number of RP are involved in the CPF-based surface
modeling. Thus, the computing time of the surface modeling part is millisecond-level,
which does not play a role in the whole data processing time. To evaluate the accuracy of
surface modeling, check points (CP) can be selected from the actual concrete level in the
original point cloud after casting, then the modeling error at CP (ECP) can be calculated by

ECP = | HCP − Z |, (20)

where HCP is the actual height of CP and Z is the estimated height from the surface
model by Equation (2). Moreover, the standard deviation (Std.) of the surface fitting from
Equation (5) are adopted to evaluate the modeling accuracy as well.

To assess the performance of the proposed method for multiple sphere detection, a
quality evaluation metric for engineering geodesy processes developed by IIGS (cf. [48,49])
is adopted in this contribution. Three characteristics in this quality model to describe the
product-oriented quality are used here: completeness (Com), accuracy (Acc), and real-time
capability (RtC).

Herein, these characteristics are substantiated by specific parameters respectively. Com
is defined by the ratio of detected spheres with respect to the total sphere number, and it
reflects the quality of the segmentation process.

Acc is quantified by the average/maximum position errors of sphere fitting. The
position error (σP) of each fitted sphere can be calculated by

σP =
√

σxc
2 + σyc

2 + σzc
2, (21)

where the standard deviations of the estimated sphere center (σxc , σyc , σzc ) can be acquired
from Equation (16). Then, Acc is denoted by the average σP and maximum σP of the
detected spheres.

RtC is parameterized as the time consumption of the acquisition and processing of
the point cloud data. The time of point cloud acquisition depends essentially on the
performance of the scanner, the range of target area, and the scanning settings of resolution
and quality. Here, only the computing time of the sphere detection and estimation is
considered for the evaluation of RtC.

4. Experiments and Results

An experiment was conducted to verify and evaluate the proposed methods for
monitoring the production process of meso-graded concrete components, and to make a
deformation analysis for the hollow spheres during production. The center position and
radius of each sphere were acquired as reference values by manually selecting the spherical
points from the original point cloud and making an optimal estimation in a commercial
software called Geomagic Studio [50].

4.1. Experiment Description

In this experiment, the production of a small-scale meso-graded concrete component
was monitored in the laboratory of ILEK. The monitoring configuration and casting process
are shown in Figure 13. 25 spheres with a designed radius of 50 mm were placed in an
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orthogonal packing pattern within the formwork. Leica HDS7000 laser scanner was set up
on a tripod about 2 m away from the formwork. Four black and white planar targets were
set around the working area for georeferencing. Owing to the indoor environment and
short measuring distance, the influence of atmospheric variation on the measurement is
negligible. The sample was produced manually by casting a defined amount of liquid fresh
concrete into the gaps between the hollow spheres. As a result of the manual production,
the surface of some hollow spheres was partially obstructed with concrete (see Figure 13e,f).
However, these unintentional imperfections allow to improve and evaluate the robustness
of the sphere detection method against such outliers.
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There were four epochs of scanning during the monitoring process. Epoch-1 was the
first scanning to estimate the initial center position and the radius of each sphere before
casting, thus the initial parameters of spheres were estimated and compared to the reference
values in epoch-1, while the movements of hollow spheres and the concrete level were
monitored from epoch-2 to epoch-4.

The relevant algorithms were implemented based on Point Cloud Library (PCL) [51]
and Microsoft Visual Studio development platform. All data processing in this experiment
was performed on a 2.80 GHz Intel Core i7-7700 processor and 8.0 GB of RAM.

4.2. Data Acquisition and Preprocessed Data

The point cloud data acquisition consists of data transmission and format conversion.
To obtain unified-format point cloud data in real-time, an independent program with a
user interface for the HDS7000 laser scanner was developed based on the corresponding
software developer kits (SDK). The scanner can be controlled to scan the objects with
predetermined angle range, resolution and quality. In this experiment, the scanning
process in each epoch took about 2 min with a high-resolution setting and 90◦ horizontal
scanning range (to cover the target area) in the scanner. The point cloud data will finally be
stored in PCD format by the format conversion module.

During the experiment, the scanner was fixed in one station. Georeferencing was per-
formed in each epoch to check the stability of the scanner, and the changes of fixed targets
were calculated to correct the point cloud. Using the voxel grid filter with 3 × 3 × 3 mm3

grid size and SOR filter with the threshold of double standard deviation, the preprocessed
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point clouds of component areas were obtained as shown in Figure 14, followed by the
detailed descriptions in Table 1.
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Figure 14. Preprocessed point clouds in the experiment: (a–d) Epoch-1~Epoch-4.

Table 1. Descriptions of the preprocessed point clouds.

Description Epoch-1 Epoch-2 Epoch-3 Epoch-4

Number of Points 64,711 65,081 64,825 62,305
Average Point Spacing 2.31 mm 2.29 mm 2.28 mm 2.23 mm
Size of Selected Area 600 × 600 × 200 mm3

4.3. Experimental Results

Figure 15 presents the sphere segmentation for initial parameter estimation in the first
epoch based on the combination of RG and RANSAC. According to the parameter tuning
described in Section 2.4, the optimal parameters of TAD, TSR, and TCM were obtained
and listed in Table 2. The errors of estimated position (EX, EY, EZ) and radius (ER) of
each sphere by comparing with the reference values from Geomagic Studio are given in
Figure 16. All errors are below 1 mm, and thus the initial positions and radii of spheres
estimated in epoch-1 can be used for the following epochs.
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Figure 15. Sphere segmentation for initial parameter estimation in epoch-1: (a) Segmentation result by RG; (b) Extracted
spherical clusters from (a); (c) Segmentation of (b) by RANSAC.

Table 2. The parameter settings in the experiment.

RNN TAD TLC TSR TCM DT

20 mm 4.0◦ 0.5
Horizontal:
0.02~0.12 m 0.025~0.035 2 mm

Vertical: 0.02~0.12 m
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Figure 16. The estimation errors of initial parameters of spheres in epoch-1.

In this experiment, to improve the robustness of sphere detection against the marked
impact of outliers, the radius of each sphere was fixed as a geometric constraint in the
sphere fitting process after the first epoch. Moreover, the limit of the maximum num-
ber of iterations in RANSAC was increased to get a more reliable estimation. The final
segmentation and fitting results of the hollow spheres are offered in Figure 17.
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The movement of each hollow sphere compared to epoch-1 was calculated by Equation (18)
after getting the positions of sphere centers. To test whether these spheres were moved sig-
nificantly or not, statistical hypothesis testing was conducted for each sphere by Section 2.6.
The level of significance α was set to 0.3% in this experiment based on the 3-sigma rule,
which means that the error probability of deformation analysis is 0.3%. The deformation
(movement) results from epoch-2 to epoch-4 are shown in Figure 18, where the spheres
with significant movements tested (with a 99.7% level of confidence) are marked on the
X-axis with a red box.

The results in Figure 18 show that only one sphere moved below 1 mm in epoch-2
and no sphere moved in epoch-3 significantly. In epoch-4, three spheres moved within
1.5 mm in the three orthogonal directions. These movements are probably caused by the
manual casting process in this experiment, which will be improved by an automatic casting
procedure currently under development that utilizes a concrete extrusion machine. In
any case, this level of movement of these spheres is so negligible that it will not affect
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the functionality of the component negatively. Therefore, this meso-graded concrete
component was successfully produced in the experiment.
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Figure 18. The movements of each sphere in epoch-2 (a), epoch-3 (b) and epoch-4 (c).

The quality evaluation of the sphere detection is shown in Table 3. All spheres
were detected and estimated with submillimeter-level accuracy in this experiment. The
computing time of sphere segmentation and fitting is closely related to the number of
hollow spheres as well as the hardware configuration of the computer. Since the detection
of hollow spheres is performed one by one, the processing time will increase linearly with
the number and size of hollow spheres theoretically.

Table 3. Quality evaluation of sphere detection.

Evaluation Epoch-1 Epoch-2 Epoch-3 Epoch-4

Acc (avg/max) [mm] 0.18/0.42 0.12/0.21 0.14/0.23 0.22/0.63
Com [%] 100 100 100 100
RtC [s] 10.74 2.57 2.45 2.28

The surface modeling of the concrete level after each casting was also conducted in
the experiment, as shown in Figure 19. Herein, 16 RPs of the corresponding 16 gaps among
hollow spheres were obtained and used to build the fitting surface based on CPF. The
absolute height of the formwork’s bottom was subtracted from the height of the modeled



Remote Sens. 2021, 13, 1622 21 of 26

surface, hence the Z-value in Figure 19 is the relative height of the modeled surface from
the bottom of the formwork.
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The target levels of the cast concrete from epoch-2 to epoch-4 are 15 mm, 30 mm,
60 mm, while the average heights of the actual level according to the reconstructed surface
model are 13 mm, 30 mm, and 71 mm in the three epochs, respectively. From Figure 19, it
can be seen that the range of the height difference (along the Z-axis) between the actual
casting level and the target level is from −6 mm to +2 mm in epoch-2, from −7 mm to
+9 mm in epoch-3, and from +6 mm to +19 mm in epoch-4. These height differences also
reflect the flatness of the actual concrete surface after casting.

In addition to the standard deviation (Std.) derived from the surface fitting by
Equation (5), 16 CPs (located on the concrete level) were selected from the original point
cloud to evaluate the modeling accuracy in each epoch by Equation (20). The related errors
are listed in Table 4. The accuracy has reached millimeter-level in this experiment, while the
increasing errors in the later epoch are mainly due to a limited number of RP that cannot
represent all characteristic points of the actual concrete surface. Hence, the significant
height difference to the target level in epoch-4 may be caused by the reduced accuracy of
surface fitting or even by the manual casting process.

Table 4. Quality evaluation of surface modeling.

Errors [mm] Epoch-2 Epoch-3 Epoch-4

Std. of RP 1.81 3.43 4.59
max/min ECP * 4.32/1.21 5.73/0.92 6.28/1.58
average ECP * 2.48 4.02 4.97

* ECP: the modeling error at the check point.
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5. Discussion
5.1. Comparative Studies of Sphere Detection

The performance of the proposed method for multiple sphere detection from 3D point
cloud is compared with two commonly used algorithms (eSphere in [15] and RansacSD
in [18]). Although eSphere exhibits good performance with respect to the completeness,
accuracy and robustness of sphere detection, the computing time is much longer than
the other two methods due to its complexity (over 20 s for detecting 25 spheres in the
experiment). Hence, the low RtC enables eSphere not applied to the sphere detection in
the real-time monitoring of the large-scale concrete component production. RansacSD has
developed the traditional RANSAC and enabled it to segment multiple models in one
dataset [18]. However, the disadvantages of RansacSD are the sensitivity to parameter
changes and the possible incompleteness of model detection, especially when the inlier
ratio is small or excessive outliers are around models.

Table 5 shows the performance comparison of RansacSD and the proposed method
in this experiment. It can be seen that the completeness of RansacSD is only 92% in
epoch-4 because Sphere-5 and Sphere-21 were not detected. Besides, the accuracy and
real-time capability of RansacSD is inferior to the proposed methods from epoch-2 to
epoch-4. However, RansacSD shows a better performance than the proposed method in
the initial epoch in terms of the computing time. In general, the proposed method has
superiorities in robustness and real-time capability compared to the other two methods.

Table 5. Comparison of the sphere detection algorithms in the experiment.

Epoch Method Acc * (avg/max) [mm] Com * [%] RtC * [s]

Epoch-1 RansacSD [18] 0.21/0.42 100 5.86
Proposed method 0.18/0.42 100 10.74

Epoch-2 RansacSD 0.14/0.25 100 6.02
Proposed method 0.12/0.21 100 2.57

Epoch-3 RansacSD 0.17/0.35 100 5.88
Proposed method 0.14/0.23 100 2.45

Epoch-4 RansacSD 0.37/0.62 92 5.52
Proposed method 0.22/0.63 100 2.28

* Acc: accuracy; Com: completeness; RtC: real-time capability.

5.2. Error Analysis of Sphere Detection

From the results of the experiment, the estimation errors of sphere parameters (by
comparing with the reference values or calculated from the sphere fitting process) are all
submillimeter-level, and they typically increase with the casting process (see Table 3). This
is mainly because the corresponding spherical points (regarded as inliers) segmented from
ROI are not all located on the hollow spheres or not enough to cover a whole sphere. The
reasons for inaccurate or incomplete segmentation may be as follows:

1. Insufficient spherical points or low point density: this can be caused by the gradual
reduction of the exposed surface of spheres due to the increasing concrete layer,
the mutual occlusion between spheres, the improper distance and scanning angle
between the concrete component and the scanner, etc.

2. The interference of the fresh concrete sticking on the exposed surface of spheres after
casting: this may lead to RANSAC classifying these outliers as inliers when there is a
large obstruction area of exposed spheres by the concrete slurry. Too many outliers
contained in the segmentation will result in wrong fitting results.

In the sphere fitting process, the spatial correlations between the observation points
are neglected in the stochastic model and all spherical points are considered to be equally
weighted. Hence, the variance–covariance matrix was simply defined as an identity matrix
in this work. This may also affect the accuracy of sphere estimation to a certain degree.
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Based on the error analysis above, the hollow sphere with a larger exposed surface
in the scanning range and less disturbance by fresh concrete is easier to be detected
and get a more accurate estimation. Hence, here are some suggestions to improve the
monitoring performance:

1. Setting up the scanner as high as possible to reduce the occlusion between the front
and rear spheres and increase the exposed surface, and keeping the scanner close to
the component to ensure a high data density.

2. Reducing the range of ROI for hollow spheres manually to improve the proportion of
inliers if the ratio of spherical points (inliers) in ROI is too low.

5.3. Limitations

The experimental results indicate that the completeness of sphere segmentation and
the accuracy of sphere fitting may decrease with the rising concrete level. Thus, the
proposed method exhibits limitations in terms of monitoring the spheres with a small,
exposed surface. After some time for the respective layers, however, it is permissible that
the gradually hardening concrete at the bottom can restrain the movements of spheres, if
there is a sufficient adhesive bond between the fresh concrete and hollow spheres. The time-
dependent adhesion and cohesion properties of the concrete can be specifically influenced
by admixtures, thus enabling the control of the casting process. Therefore, the monitoring
frequency for hollow spheres can be reduced after enough time for the bottom concrete
to harden.

The spheres in this experiment have the same or quite similar radius. If the radii of
the multiple spheres in the component were significantly different (as shown in Figure 1),
however, the proposed method cannot recognize all spheres at once in the initial epoch.
To solve this problem, the RG-based segmentation and spherical cluster extraction can be
performed iteratively to extract spheres with different radii respectively. Each iteration
with specific parameter settings can screen the spheres with a similar radius. In addition,
the quantitative relationships between the parameter tuning and the sphere radius are not
given in this contribution. This could be investigated thoroughly by sufficient tests on the
spherical objects of different sizes in the future work.

6. Conclusions

A complete concept for monitoring the production process of meso-graded concrete
components using TLS is proposed in this study, including automatic detection and estima-
tion of the hollow spheres and surface modeling of the concrete level. The 3D point cloud
data are acquired from the laser scanner in real-time and preprocessed to improve the
data quality and availability. The efficient combination of RG and RANSAC algorithms is
developed to segment the spherical points from the point cloud quickly after each scanning.
The LS-based fitting method is used to estimate the position and radius of each hollow
sphere, and deformation analysis is conducted to find the significantly moved spheres. The
surface of the fresh concrete is modeled based on the sampling of representative points
and cubic polynomial fitting.

The proposed methods are experimentally validated and evaluated, and the results
show their good performance on automatic multiple-sphere detection and concrete sur-
face modeling from point cloud data. During the production process of the exemplary
meso-graded concrete component in this contribution, all hollow spheres were detected
and estimated with submillimeter-level accuracy in a few seconds. A movement of 3–4
spheres was statistically detected, but this was insignificantly small for the load-bearing
capacity of a concrete component. However, the questions of allowable tolerances for
a component production process and how these can be integrated into the monitoring
procedure arise. In addition to this research task, further work will involve investigating
the quantitative relationship between the sphere size and parameter tuning in sphere seg-
mentation. Besides, the spatial correlations and intensity information of the point cloud can
be taken into consideration when building the stochastic model of TLS observations [52].
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More adaptive downsampling algorithms [53] and optimized parallel processing [54] of
multiple-sphere detection are possible for the production monitoring of large-scale graded
concrete components integrated with hundreds of hollow spheres.
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CP Check Point
CPF Cubic Polynomial Fitting
DT Distance Threshold in RANSAC
LS Least Squares
PoCL Points of the Concrete Level
RANSAC Random Sample Consensus
RG Region Growing
RNN Radius of the Nearest Neighbor
ROI Region of Interest
RP Representative Point
SOR Statistical Outlier Removal
TAD Threshold of Angle Difference
TCM Threshold of the Median of Sorted Curvatures
TLC Threshold of Local Curvature
TSR Threshold of Spatial Ranges
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