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Abstract

Not only in the past decades, material science and other research fields of condensed mat-

ter physics revealed fascinating new phenomena, which had or may have a huge impact

on our daily life. The manifestation of quantum phenomena arising from the interplay

of many particles still results in unexpected effects that have yet to be understood. The

electrical conductivity is one of the fundamental properties of solids and, thus, may lead

to a better understanding of quantum materials that host such phenomena. In order to

describe transport properties in materials theoretically, the concept of bands has proven

to be very powerful. In recent years, there is an increasing interest in transport phenom-

ena that are fundamentally linked to the presence of multiple bands. So-called interband

contributions to the conductivity formulas are, for instance, necessary to capture pure

interband phenomena, which are not describable by a single-band model. They are also

relevant to provide a well understood connection between multiband models and their

measurable consequences.

In this thesis, we develop, discuss, and apply a theory of the electrical conductivity

that includes interband contributions within a microscopic approach. We focus our

study on the conductivity for a general momentum-block-diagonal two-band model as a

minimal model that is able to show interband effects. This model captures a broad variety

of very different physical phenomena. For instance, it describes systems with magnetic

order like Néel antiferromagnetism and spiral spin density waves as well as topological

systems like Chern insulators. We derive formulas for the conductivity tensor σαβ and the

Hall conductivity tensor σαβηH , which describe the current in the presence of an external

electric field and the Hall current in the presence of both an external electric and an

external magnetic field, respectively. We identify two criteria that allow for a unique

and physically motivated decomposition of the conductivity tensors. On the one hand,

we distinguish intraband and interband contributions that are defined by the involved

quasiparticle spectral functions of one or both bands. On the other hand, we distinguish
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Abstract

symmetric and antisymmetric contributions that are defined by the symmetry under the

exchange of the current and the electric field directions. The (symmetric) intraband

contribution generalizes the formula of standard Boltzmann transport theory, whereas

the interband contributions capture effects exclusively linked to the presence of multiple

bands. In order to obtain a non-diverging conductivity, a finite momentum relaxation is

required. We include a phenomenological relaxation rate Γ of arbitrary size. This allows

us to generalize previous results and study the relevance of the interband contributions

systematically.

We apply the microscopic theory to models and experiments of recent interest. The

antisymmetric interband contributions of the conductivity tensor σαβ describe the so-

called intrinsic anomalous Hall effect, a transverse current without any external magnetic

field that is not caused by (skew) scattering. Its deep connection to the Berry curvature

and, thus, to the Chern number can lead to the quantization of the intrinsic anomalous

Hall conductivity. We study the impact of a nonzero relaxation rate Γ on this quan-

tization. The scaling behavior with respect to Γ is crucial for disentangling different

extrinsic, that is, based on scattering off impurities, or intrinsic origins of the anomalous

Hall effect. The validity of the conductivity formulas for Γ of arbitrary size allows us

to identify parameter regimes with typical scaling behavior and crossover regimes of the

intrinsic anomalous Hall conductivity, which are consistent with experimental results.

Recent experiments on hole-doped cuprates under very high magnetic fields, which are

needed to suppress the superconductivity to sufficiently low temperature, show a drastic

change of the Hall number when entering the pseudogap regime. This indicates a Fermi

surface reconstruction at that doping. The onset of spiral antiferromagnetic order, which

is closely related to Néel antiferromagnetic order with a slightly modified ordering wave

vector, is consistent with the experimental findings. We discuss spiral magnetic order

as an example of an order that can be incommensurate with the underlying lattice but

that is still captured by a two-band model. We clarify the range of validity of simplified

Boltzmann-like formulas for the longitudinal and the Hall conductivity, which do not

include interband contributions. Those were used previously in the original theoretical

proposal to describe the Fermi surface reconstruction. We show that these simplified

formulas are valid for the experiments on cuprates not due to a general argument com-

paring energy scales but due to the small numerical size of the previously neglected

contributions.

8



Zusammenfassung

Die Forschung in den Materialwissenschaften und weiteren Feldern der Physik der kon-

densierten Materie hat in ihrer Geschichte immer wieder faszinierende Phänomene auf-

gedeckt, die zum Teil mittlerweile einen großen Einfluss auf unser tägliches Leben haben.

Besonders Quantenphänomene, die durch das Zusammenspiel vieler Teilchen entstehen,

führen weiterhin zu unvorhergesehenen Phänomenen, die im Fokus aktueller Forschung

stehen. Als eine der fundamentalen Eigenschaften von Festkörpern kann die elektrische

Leitfähigkeit dazu beitragen, Quantenmaterialien, die solche Vielteilchenphänomene zei-

gen, besser zu verstehen. Bei der theoretischen Beschreibung der Leitfähigkeit hat sich

das Konzept von Bändern als sehr nützlich erwiesen. Besonders bekannt ist dabei die

Transporttheorie nach Boltzmann, die in einem semiklassischen Ansatz die Impulsablei-

tung der Bänder mit der Leitfähigkeit in Verbindung setzt. In den letzten Jahren hat

sich ein wachsendes Interesse an Transportphänomenen entwickelt, die maßgeblich mit

der Präsenz und dem Zusammenspiel mehrerer Bänder verbunden sind. Um nun die

theoretische Vorhersagbarkeit von messbaren Eigenschaften aus Mehrbandmodellen zu

verbessern, aber auch um Phänomene zu verstehen, für deren Beschreibung ein einzel-

nes Band beziehungsweise mehrere unabhängige Bänder nicht mehr ausreichen, wird ein

besseres theoretisches Verständnis der sogenannten Interbandbeiträge zur Leitfähigkeit

benötigt. Deren theoretische Beschreibung geht über die Standardversion der Boltzmann-

schen Transporttheorie hinaus und kann zum Beispiel mithilfe eines mikroskopischen

Zugangs systematisch erforscht werden.

Im Fokus dieser Doktorarbeit steht die Herleitung, Analyse und Anwendung ei-

ner mikroskopische Theorie der elektrischen Leitfähigkeit, die Interbandbeiträge mit-

berücksichtigt. Wir leiten die Formeln der Leitfähigkeit für ein allgemeines Zweibandmo-

dell her, das blockdiagonal im Impuls ist. Dieses Minimalmodell für ein Mehrbandsystem

beschreibt eine große Bandbreite verschiedener physikalischer Systeme. Die Bandbreite

reicht von Systemen mit magnetischer Ordnung wie Néel-Antiferromagnetismus und spi-
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Zusammenfassung

raler Spindichtewelle bis hin zu topologischen Systemen wie Chern-Isolatoren. Unsere

Herleitung umfasst die longitudinale Leitfähigkeit, die sogenannte intrinsische anoma-

le Hall-Leitfähigkeit sowie die gewöhnliche Hall-Leitfähigkeit. Der intrinsische anomale

Hall-Effekt beschreibt dabei einen transversalen Strom ohne externes magnetisches Feld,

der jedoch nicht auf einer (extrinsischen) asymmetrischen Streuung an Störstellen ba-

siert. Neben der Herleitung von einfach anzuwendenden Formeln liegt ein Fokus dieser

Arbeit auf der Identifizierung und der Anwendung zweier Kriterien, die es uns erlauben,

die Leitfähigkeit in eindeutige Beiträge mit einer sinnvollen physikalischen Interpreta-

tion zu zerlegen. Als erstes Kriterium unterscheiden wir Intra- und Interbandbeiträge,

die darüber definiert sind, ob die Quasiteilchenspektralfunktionen von einem oder bei-

den Bändern Bestandteil dieses Beitrages sind. Als zweites Kriterium unterscheiden wir

symmetrische und antisymmetrische Beiträge. Diese definieren wir über die Symmetrie

unter Vertauschung der Strom- und der elektrischen Feldrichtung. Die (symmetrischen)

Intrabandbeiträge verallgemeinern die Formel der Boltzmannschen Transporttheorie, wo-

hingegen die Interbandbeiträge die Effekte beschreiben, die ausschließlich auf der Präsenz

und dem Zusammenspiel von mehreren Bändern beruhen. Ohne die Verletzung der Im-

pulserhaltung divergiert die Leitfähigkeit und ermöglicht damit keine sinnvolle theore-

tische Beschreibung. Aus diesem Grund führen wir eine phänomenologischen Relaxie-

rungsrate Γ in unsere Theorie ein. Im Gegensatz zu vorherigen Arbeiten erlauben wir in

unserer Herleitung ein Γ von beliebiger Größe, was es uns ermöglicht, vorherige Formeln

zu verallgemeinern und die Relevanz der Interbandbeiträge systematisch zu analysieren.

Als Beispiel der allgemeinen Eigenschaften der neu hergeleitetenden Formeln sowie

um ein tieferes Verständnis zu gewinnen, wenden wir unsere mikroskopische Theorie

auf mehrere konkrete Modelle und Experimente von aktuellem Interesse an. Die an-

tisymmetrischen Interbandbeiträge der normalen Leitfähigkeit beschreiben den intrin-

sischen anomalen Hall-Effekt, der durch seine Verbindung zur Berry-Krümmung und

damit zur Chernzahl quantisiert sein kann. Wir untersuchen den Einfluss der Rela-

xierungssrate Γ auf diese Quantisierung. Wir nutzen die Gültigkeit der neu hergelei-

tetenden Leitfähigkeitsformeln für Γ von beliebiger Größe, um Parameterbereiche mit

typischem Skalierungsverhalten in Bezug auf Γ beziehungsweise in Bezug auf die longi-

tudinale Leitfähigkeit zu identifizieren. Wir zeigen, dass das Skalierungsverhalten sowohl

qualitativ als auch quantitativ konsistent mit experimentellen Messungen der anomalen

Hall-Leitfähigkeit als Funktion der longitudinalen Leitfähigkeit sind.
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Zusammenfassung

Kuprate zählen zu den Hochtemperatursupraleitern, deren Phasendiagramm weiter-

hin im Fokus aktueller Forschung steht. Mit Hilfe starker magnetischer Felder lässt sich

die Supraleitung auch im Bereich der maximalen Sprungtemperatur bei optimaler Loch-

dotierung soweit unterdrücken, dass die Messung der Hall-Leitfähigkeit des normalleiten-

den Kuprats bei ausreichend niedrigen Temperaturen möglich ist. Aktuelle Experimente

zeigen in den lochdotierten Kupraten unter diesen sehr starken magnetischen Feldern eine

drastische Änderung der Hall-Zahl beim Übergang in den Bereich des Phasendiagramms,

der als Pseudogap Phase bezeichnet wird. Die Änderung der Hall-Zahl lässt sich mit einer

Restrukturierung der Fermiflächen bei dieser Dotierung erklären. Eine solche Restruktu-

rierung der Fermifläche kann durch das Einsetzen einer spiral-antiferromagnetische Ord-

nung bei dieser Dotierung hervorgerufen werden und liefert eine Dotierungsabhängigkeit

der Hall-Zahl, die konsistent mit den experimentellen Beobachtungen ist. Eine besondere

Eigenschaft der spiralmagnetischen Ordnung ist, dass der Ordnungsvektor des Spiralma-

gnetismus nicht kommensurabel mit dem zugrunde liegenden Gitter sein muss, um mithil-

fe eines Zweibandmodells beschreibbar zu sein. Die theoretische Beschreibung der Spiral-

ordnung schließt dabei Ferromagnetismus und Néel-Antiferromagnetismus als Spezialfälle

mit ein. Bei der Formel, die in der ursprünglichen theoretischen Arbeit zur Erklärung

der Fermiflächenrestrukturierung genutzt wurden, wurden die Interbandbeiträge in An-

wesenheit der spiralmagnetischen Ordnung nicht berücksichtigt. Unsere Theorie erlaubt

es uns nun, den Gültigkeitsbereich der vereinfachten Formeln ohne Interbandbeiträge zu

klären. Wir zeigen explizit durch einen Vergleich der Intra- und Interbandbeiträge, dass

die vereinfachten Formeln für diese Experimente mit Kupraten und daher auch die da-

mit verbundenen Schlussfolgerungen gültig sind. Die Begründung lässt sich jedoch nicht

auf einen einfachen Vergleich von Energieskalen reduzieren, sondern liegt in der kleinen

numerischen Größe der Interbandbeiträge.
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Introduction

The electrical conductivity is one of the fundamental properties of solids. As such,

measurements of the electrical conductivity are used to explore new physical phenomena,

to characterize new materials, and to find evidence for theoretical predictions, which,

finally, might lead to new technologies and impact our daily life. Thus, an improved

understanding of the electrical conductivity itself is of ongoing interest in physics for both

theory and experiment. In recent years, advances in experimental techniques revealed the

need of reconsidering theoretical descriptions of the conductivity in multiband systems.

An improved theoretical description is required in order to expand our knowledge of

those phenomena that are rooted in the presence of multiple bands.

In this thesis, we will derive and study formulas of the electrical conductivity for a

very general two-band model as the simplest example of a multiband system. The model

under consideration captures a broad spectrum of physically very different systems. This

spectrum includes models with Néel antiferromagnetic or spiral magnetic order as well as

models that involve spin-orbit interaction and are known to show topological properties.

The focus of our discussion will lie on a systematic decomposition of the conductivity

formulas into contributions of distinct physical interpretation and properties. We will

generalize different well-known results and clarify different aspects. We will be able to

give physical and analytical insights and strategies, which may provide a better intuitive

understanding of effects that are specific to multiband systems. In a second part, we will

apply the general formalism to various examples. We will discuss how an improved un-

derstanding of the conductivity formulas affects the interpretation of recent experimental

results.

In this introduction, we summarize some basic aspects of the electrical conductivity

in multiband systems. We give a glimpse which type of multiband effects will be captured

by our general formalism and how they are important in two topics of recent interest,

that is, in experiments on cuprates and topologically nontrivial materials. We close by
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Introduction

a short sketch of two criteria for a useful decomposition of the conductivity formulas.

Those criteria will be introduced in Chapter 1 and will guide us in the derivation. We

will come back to the applications in Chapter 2. Large parts of the presented results are

already published in

� J. Mitscherling and W. Metzner,

Longitudinal conductivity and Hall coefficient in two-dimensional metals with spiral

magnetic order,

Phys. Rev. B 98, 195126 (2018).

� P. M. Bonetti∗, J. Mitscherling∗, D. Vilardi, and W. Metzner,

Charge carrier drop at the onset of pseudogap behavior in the two-dimensional Hub-

bard model,

Phys. Rev. B 101, 165142 (2020).

� J. Mitscherling,

Longitudinal and anomalous Hall conductivity of a general two-band model,

Phys. Rev. B 102, 165151 (2020).

and re-arranged, combined and expanded for a consistent presentation throughout this

thesis [1–4].

Electrical conductivity in multiband systems

Applying external electric and magnetic fields to a material may induce a current. The

current density jα in spatial direction α = x, y, z that is induced by an electric field Eβ

in β = x, y, z direction and a magnetic field Bη in η = x, y, z direction can be expanded

in the form

jα = σαβEβ + σαβηEβBη + ... , (1)

by which we introduce the conductivity tensors σαβ and σαβη. These tensors capture

a broad spectrum of transport phenomena. For instance, the diagonal elements σxx,

σyy and σzz are the longitudinal conductivities. The Hall current in the x-y plane due

*: equal contribution
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Introduction

to a perpendicular magnetic field in z direction is described by the Hall conductivity

σxyzH = −σyxzH , which is a component of the antisymmetric contribution of σαβη with

respect to α ↔ β. A transverse current in the absence of any external magnetic field,

which is known as anomalous Hall current, is captured by the antisymmetric part of σαβ.

Thus, a key task is the calculation of the conductivity tensors σαβ and σαβη for a given

model.

Semiclassical approaches like (standard) Boltzmann transport theory [5–7] leads to

the following formula of the conductivity

σαβ = −e2τ

∫
ddp

(2π)d
f ′(εp − µ)

∂εp
∂pα

∂εp
∂pβ

= e2τ

∫
ddp

(2π)d
f(εp − µ)

∂2εp
∂pα∂pβ

(2)

in the relaxation time approximation for one band with dispersion εp. We do not consider

spin for simplicity. The electric charge is denoted by e. We use the convention e > 0

throughout this thesis. A relaxation time τ is required for momentum relaxation in order

to get a finite, non-diverging conductivity. We introduce the Fermi function f(ω) =

(eω/T + 1)−1 and its derivative f ′(ω) at temperature T with the Boltzmann constant set

to unity, kB = 1. The chemical potential is denoted by µ. The expression is integrated

over momentum in d dimensions. In the second step in (2), we performed a partial

integration in momentum so that the conductivity involves the Fermi function and the

second derivative of the dispersion. Thus for a quadratic dispersion εp = p2/2m with

mass m, we immediately get Drude’s formula σxx = σyy = e2τn/m with the carrier

density n.

We derive the formula of the Hall conductivity σxyzH as the low-field limit of the semi-

classical result in a uniform magnetic field [5]. We show in Appendix A by an expansion

up to linear order in the magnetic field that the formula for the Hall conductivity reads

σxyzH = −e3τ 2

∫
ddp

(2π)2
f(εp − µ)

[
∂2εp
∂px∂px

∂2εp
∂py∂py

−
( ∂2εp
∂px∂py

)2
]

(3)

=
e3τ 2

2

∫
ddp

(2π)2
f ′(εp − µ)

[(∂εp
∂px

)2 ∂2εp
∂py∂py

+
(∂εp
∂py

)2 ∂2εp
∂px∂px

− 2
∂εp
∂px

∂εp
∂py

∂2εp
∂px∂py

]
(4)

for ωcτ � 1, where ωc is the cyclotron frequency, which is proportional to the magnetic
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field. In order to obtain the formula in the second line, we once more performed a partial

integration in momentum. For a quadratic dispersion, we obtain σxyzH = −e3τ 2n/m2 and,

thus, have the useful property of the Hall coefficient RH = σxyzH /σxxσyy to depend only

on the carrier density, RH = −1/en. This suggests the definition of the Hall number nH

as RH ≡ 1/enH. The property of the Hall number to be equal to the carrier density,

that is, nH = −n for electron-like contributions, is strictly valid only for a quadratic

dispersion or in the high-field limit in the external magnetic field, that is, ωcτ � 1 [5].

The two formulas in (2) and (3) are valid for arbitrary dispersions εp and make them

very useful in a broad range of applications, for instance, for lattice models. However,

a natural question arises. What is the correct generalization if more than one band is

present, that is, if we do not have only one dispersion εp but a multiband system with

several dispersions ε
(n)
p ,

εp → {ε(1)
p , ε(2)

p , ...} ? (5)

It seems a reasonable, simple and useful approximation to assume that the conductivity

of the multiband system is simply the sum of the single-band formulas with the bare

dispersion replaced by the dispersion of the respective band,

σαβind = σαβ
[
εp → ε(1)

p

]
+ σαβ

[
εp → ε(2)

p

]
+ ... =

∑
n∈bands

σαβ
[
εp → ε(n)

p

]
. (6)

However, the precise condition on the range of validity of this independent-band approx-

imation remains unclear without further considerations. Furthermore, we might miss

phenomena that rely on the interplay between several bands. We will come back to both

aspects in this thesis.

In order to get a better intuitive picture whether or not the approximation in (6)

might be correct, we consider a simple two-dimensional two-band model, which we will

discuss in more detail as an example in Sec. 2.1.1. We sketch the two bands E±p as a

function of momentum p = (px, 0) within the Brillouin zone in Fig. 1. The upper band

(blue) and the lower band (orange) have no band crossings, but the two bands are close

at zero momentum. They are far apart at the Brillouin zone boundary. Due to, for

instance, impurities, electron-electron interaction or other phenomena, the bands (or,

more precise, the spectral functions corresponding to the two bands) might be smeared

16
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Figure 1: An upper band E+
p (blue) and a lower band E−p (orange) as a function of

momentum p = (px, 0) over the Brillouin zone. We indicate the characteristic scale of
the band broadening by a constant Γ as colored area around the bands with Γ of the left
figure to be smaller than the Γ of the right figure. For sufficiently large Γ (right figure)
the two broadened bands overlap significantly. A certain type of interband contribution
to the conductivities is present in these regions of overlap. Another type is present in the
full area between the two bands (gray). The band structure corresponds to our example
of a Chern insulator, which we will discuss in Sec. 2.1.1 in more detail.

out (or broadened) with a characteristic scale Γ, which is referred to as (momentum)

relaxation rate with Γ = 1/2τ . Other synonyms for relaxation rate as scattering rate or

decay rate are often used in the literature. The relaxation rate is, in general, frequency,

momentum and band dependent. For simplicity, we assume a constant broadening. In

the left and right panel of Fig. 1, we show the bands with Γ of different size. We identify

different regimes: For a broadening much smaller than the direct band gap (left panel),

that is, 2Γ� E+
p −E−p for all momenta, we have two bands that do not overlap. In the

limit 2Γ� E+
p −E−p for some momenta, the two bands are no longer distinguishable over

this momentum range (right panel). For very large Γ, the bands are indistinguishable

for all momenta.

On the one hand, it is quite natural to expect the approximation in (6) to hold if Γ is

chosen to be sufficiently small compared to the direct band gaps. On the other hand, we

expect the interplay between the two bands to be important in regions of large overlap.

As we will see throughout this thesis, this is indeed the case for one type of interband

contributions to the electrical conductivity. Whether or not this type is relevant in a

concrete model, depends on further details like the chemical potential or the size of the
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gap. We will discuss in the next section how the question of interband contributions and

its relevance for the longitudinal conductivity and the Hall number arise in the context

of recent Hall experiments on cuprates.

There is another type of interband contribution that is not restricted to the regions of

overlap of the two bands. This type of interband contribution is, for instance, responsible

for the intrinsic anomalous Hall effect, that is, a transverse current in the absence of any

applied magnetic field that is not caused by (skew) scattering. Under certain conditions,

it is responsible for a quantized current known as the quantum anomalous Hall effect. A

nonzero effect requires a chemical potential in between both bands (gray area in Fig. 1).

We will give an introduction to this type of phenomena after the following section.

There are further phenomena that may be crucial for transport like, for instance, weak

and strong localization, especially, in low dimensions [8]. These phenomena are, however,

beyond the scope of this thesis.

Hall experiments on cuprates

Understanding the ground state in the absence of superconductivity is the key to un-

derstanding the fluctuations that govern the anomalous behavior of cuprate supercon-

ductors above the critical temperature Tc, at which the superconductivity sets in [9].

Superconductivity can be suppressed by applying a magnetic field, but very high fields

are required for a complete elimination in those high-temperature superconductors. In

the past years, magnetic fields up to almost 100 Tesla were achieved, such that the

critical temperature of YBa2Cu3Oy (YBCO) and other cuprate compounds could be

substantially suppressed even at optimal hole doping, at which the critical temperature

is maximal. Charge transport measurements in such high magnetic fields indicate a dras-

tic reduction of the charge-carrier density in a narrow doping range upon entering the

pseudogap regime [10–13], whose origin is still debated. In particular, the Hall number

nH drops from 1 + p to p in a relatively narrow range of hole doping p below the critical

doping p∗ at the edge of the pseudogap regime.

The observed drop in the charge carrier density below p∗ indicates a phase transition

associated with a Fermi-surface reconstruction. The Hall number drop is qualitatively

consistent with the formation of a Néel state [14–16], spiral magnetic order [16–18],

charge order [19, 20], and nematic order [21]. Alternatively, it may be explained by
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strongly fluctuating states without long-range order such as fluctuating antiferromag-

nets [22–25] and the Yang-Rice-Zhang (YRZ) state [14,16,26], while it appears difficult

to relate the experimental data to incommensurate collinear magnetic order [27]. As long

as no direct spectroscopic measurements are possible in high magnetic fields, it is hard

to confirm or rule out any of these candidates experimentally. Most recently, magnetic

scenarios received considerable support from nuclear magnetic resonance (NMR) and ul-

trasound experiments in high magnetic fields by Frachet et al. [28]. They observed glassy

antiferromagnetic order in La2−xSrxCuO4 (LSCO) at low temperatures up to the critical

doping p∗ for pseudogap behavior. By contrast, in the superconducting state forming

in the absence of a strong external magnetic field, magnetic order exists only in the

low doping regime [29]. For strongly underdoped cuprates with respect to their optimal

doping, where superconductivity is found to be absent or very weak, neutron scattering

probes show that the Néel state is quickly destroyed upon doping, in agreement with

theoretical findings [30–35]. For underdoped YBCO, incommensurate antiferromagnetic

order has been observed [36–39].

In this thesis, we will have a closer look on the theoretical proposal that the onset

of planar spiral magnetic state may explain the observed drop in the Hall number [17].

The spiral magnetic state is characterized by two parameters, the magnetic gap ∆ and

the ordering wave vector Q. It includes the two special cases of ferromagnetic order with

Q = (0, 0) and Néel antiferromagnetic order Q = (π, π) for a two-dimensional system.

In Sec. 2.2, we will give a general introduction of spiral magnetic order, which involves

its proper definition, several fundamental properties, and the appearance of the spiral

magnetic state in the two-dimensional Hubbard model, which seems to well capture the

competition between antiferromagnetism and superconductivity in cuprates [40]. In a

spiral magnet, the electron band is split into only two quasiparticle bands in spite of

an arbitrary ordering wave vector, which might be incommensurate with the underlying

lattice, so that the order is never repeated over the full lattice. In this respect, the

spiral state is as simple as the Néel state despite the broken translation invariance.

By contrast, all other magnetically ordered states entail a fractionalization in many

subbands, actually infinitely many in the case of incommensurate order. Hence, only

the spiral magnet forms a metal with a simple Fermi surface topology for arbitrary

wave vectors with only a small number of electron and hole pockets. For a sufficiently

large magnetic gap ∆ there are only hole pockets in the hole-doped system. The spectral
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weight for single-electron excitations is strongly anisotropic, so that the spectral function

resembles Fermi arcs [17], which are a characteristic feature of the pseudogap phase in

high-Tc cuprates [41].

The electromagnetic response of spiral magnetic states has already been analyzed by

Voruganti et al. [42]. They derived formulas for the zero-frequency (DC) longitudinal and

Hall conductivity in the low-field limit ωcτ � 1 up to linear order in the magnetic field.

The spiral states were treated in a mean-field approximation. The resulting expressions

have the same form as in Eqns. (2) and (3), with the bare dispersion relation replaced

by the two quasiparticle bands. Assuming a simple phenomenological form of the spiral

order parameter as a function of doping, Eberlein et al. [17] showed that the Hall con-

ductivity computed with the formula derived by Voruganti et al. indeed exhibits a drop

of the Hall number consistent with the recent experiments [10–12] on cuprates in high

magnetic fields. In Fig. 2, we sketch the evolution of the Fermi surface reconstruction

Figure 2: Assuming a phenomenological form of the spiral magnetic gap ∆ and the order-
ing wave vector Q as a function of hole doping p results in a Fermi surface reconstruction
from a large hole-like Fermi surface (purple) above p∗ to small hole pockets far below p∗.
We have additional electron pockets (green) in the intermediate regime. The observed
drop of the Hall number from 1 + p to p [10–12] is reproduced by this model [17]. We
plot the corresponding local magnetic moments 〈Si〉 of the spiral magnetic order on a
square lattice.
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and the corresponding local magnetic moments of the spiral magnetic order. Recently,

an expression for the thermal conductivity in a spiral state has been derived along the

same lines, and a similar drop in the carrier density has been found [18].

The expressions for the electrical and Hall conductivities derived by Voruganti et

al. [42] have been obtained for small relaxation rates Γ = 1/2τ . However, the relaxation

rate in the cuprate samples studied experimentally is sizable. For example, in spite of

the high magnetic fields, the product of cyclotron frequency and relaxation time ωcτ

extracted from the experiments on La1.6−xNd0.4SrxCuO4 (Nd-LSCO) samples is as low

as 0.075 [12], which is clearly in the low-field limit ωcτ � 1. Since ωc ∝ B, the relaxation

time τ has to be reduced. Moreover, from the derivation of Voruganti et al., the precise

criterion for a “small” relaxation rate is not clear. The direct band gap E+
p −E−p is of the

order of the magnetic gap ∆ for several momenta. Thus, our general argument, which

we discussed previously and sketched in Fig. 1, suggests that interband contributions

might be crucial at the onset of order at p∗, where Γ ∼ ∆, and might have an impact on

the previous conclusions. Therefore, it is worth to reconsider the transport properties

of spiral magnetic states for arbitrarily large relaxation rate Γ in order to clarify the

discrepancy in the arguments and the impact on the interpretation of the experimental

results using the model of spiral magnetic order.

Anomalous Hall effect

The existence of a transverse current perpendicular to an applied electric field in the

absence of any external magnetic field is known as anomalous Hall effect. In contrast,

the (ordinary) Hall effect, which we have just considered in the context of cuprates,

relies on the presence of an external magnetic field. It is important to distinguish the

extrinsic and the intrinsic anomalous Hall effects [43, 44], which differ by their physical

origin. The extrinsic mechanisms are based on the scattering off impurities, which can

be further specified as skew-scattering [45, 46] and side-jump [47] mechanisms. The

intrinsic mechanism was first introduced by an additional contribution to the group

velocity known as anomalous velocity in a semiclassical theory [48]. This anomalous

velocity is nowadays understood in terms of the Berry curvature of the underlying band

structure and the corresponding (Bloch) eigenstates [49, 50] and is, as such, intrinsic.

In recent years, there is an increasing interest in transport properties of systems with
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topological properties in material science [51–53], including Heusler compounds [54–56],

Weyl semimetals [57–59], and graphene [60, 61], and in other physical systems like in

microcavities [62] and cold atoms [63]. The established connection between the intrinsic

anomalous Hall conductivity and the Berry curvature [64–68] combined with ab initio

band structure calculations [69,70] has become a powerful tool for combining theoretical

and experimental results and is state-of-the-art in recent studies [51–63].

The formula in (2) derived in the standard semiclassical transport theory within

a relaxation time approximation does neither capture the intrinsic nor the extrinsic

anomalous Hall effect. A modern semiclassical description of the anomalous Hall effect

can be found in the review of Sinitsyn [71]. Microscopic approaches beyond semiclassical

assumptions provide a systematic framework but are usually physically less transparent

[43]. The combination of both approaches, that is, a systematic microscopic derivation

combined with a Boltzmann-like physical interpretation, in order to find further relevant

mechanisms, is still subject of recent research [72].

In this thesis, we will consider a very general two-band model, which may be topo-

logical and may have a nonzero Berry curvature. Our microscopic approach to calculate

the conductivity of this model should capture the intrinsic anomalous Hall effect if we

are taking interband contributions into account. Indeed, we will see that the anomalous

Hall conductivity arises as one type of interband contribution within our calculation. We

do not assume any restriction on the size of the relaxation rate Γ, which will allow us

to perform a detailed analysis of the limiting behavior of the conductivities with respect

to Γ. We find that the intrinsic anomalous Hall effect is relaxation-rate independent for

sufficiently small Γ consistent with previous results [43]. The anomalous Hall conduc-

tivity can be quantized [64–66]. Within a simple model of a Chern insulator, we will

discuss the modification of the quantized anomalous Hall effect due to a finite relaxation

rate Γ. We will consider a ferromagnetic multi-d-orbital model by Kontani et al. [73]

to discuss the scaling behavior of the anomalous Hall conductivity as a function of the

relaxation rate Γ as well as the longitudinal conductivity. We will see that the result is

both qualitatively and quantitatively in good agreement with experimental results for

ferromagnets (see Ref. [74] and references therein).

The microscopic derivation of conductivities in multiband systems is a longstanding

question. We have already mentioned above that the longitudinal and the Hall conduc-

tivity of a system with spiral magnetic order were discussed by Voruganti et al. [42],
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but both a complete formula including the interband contributions and a detailed dis-

cussions of their importance were still missing. Common microscopic approaches to the

anomalous Hall conductivity, which already include interband contributions in order to

capture the intrinsic anomalous Hall effect, are based on the work of Bastin et al. and

Středa [75–77]. Starting from Kubo’s linear response theory [7] in a Matsubara Green’s

function formalism, Bastin et al. [75] expanded in the frequency ω of the external elec-

tric field E(ω) after analytic continuation and obtained the DC conductivity σαβ, where

α, β = x, y, z are the directions of the induced current and the electric field, respectively.

Středa [76] further decomposed this result into so-called Fermi-surface and Fermi-sea

contributions σαβ,I and σαβ,II that are defined by involving the derivative of the Fermi

function or the Fermi function itself, respectively. This or similar decompositions are

common starting points for further theoretical investigations [43, 72–74, 77–89]. How-

ever, the decomposition by Středa and similar ones are usually not unique, which can be

directly seen by a simple partial integration in the internal frequency, and are a priori

not motivated by stringent mathematical or physical reasons.

Criteria for a useful decomposition

Throughout this thesis, we will motivate, analyze and apply two criteria for a unique

decomposition of the conductivity formulas with, furthermore, clear physical meaning.

Using these criteria will not only provide a deeper physical insight due to unique proper-

ties of the individual contributions but will also help to reduce the technical complexity

of the derivation. Thus, it may also pave the way for future studies of multiband systems

beyond the scope of this thesis. For a first idea, we give a short preliminary definition

of the criteria in the following. We will discuss them in detail in Chapter 1.

The Hamiltonian that we will assume in this thesis is block-diagonal in momentum.

The matrix form of the Hamiltonian, which is a consequence of the two-band structure, is

captured by a momentum-dependent matrix λp, which is called the Bloch Hamiltonian.

We will show in detail that a key ingredient of the conductivity is this matrix λp since

both the Green’s functions and the electromagnetic vertices involve λp in a particular

form, for instance, its derivative. The final conductivity formulas are eventually obtained

by tracing a particular combination of Green’s function and vertex matrices. Changing

to the eigenbasis of λp at fixed momentum will separate the momentum derivative of λp
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into a diagonal quasivelocity matrix, which consists of the momentum derivative of the

eigenvalues, and an off-diagonal matrix, which involves the derivative of the eigenbasis in

a particular form, that is, the Berry connection. The former one leads to the intraband

contribution σαβintra that involves only quasiparticle spectral functions of one band in each

term. The latter one mixes the quasiparticle spectral functions of both bands and leads

to the interband contribution σαβinter. It is this interband contribution that captures the

interplay between the two bands and, thus, the phenomena that are missing in the

semiclassical approach.

Besides the separation into intra- and interband contributions, we will identify a

second criterion. The conductivity depends on the direction of the current and the

external electric field. We can uniquely decompose the conductivity into a symmetric,

σαβ,s = σβα,s, and an antisymmetric, σαβ,a = −σβα,a, contribution. We will see that

the intraband contribution is already symmetric, but the interband contribution consists

of both a symmetric and an antisymmetric part. Thus, we will obtain a decomposed

conductivity tensor of the form

σαβ = σαβintra + σαβ,sinter + σαβ,ainter . (7)

The result of Boltzmann transport theory in (2) will arise from the intraband contribution

in the limit of a small relaxation rate Γ and is shown to be precisely the result of

independent quasiparticle bands, which we motivated in (6). We will show that the

symmetric interband contribution is a correction only present for a finite relaxation rate Γ

and is controlled by the quantum metric. This is the first type of interband contribution,

which we discussed above. We will show that its mayor contributions are from regions of

band overlap sketched in Fig. 1. The antisymmetric interband contribution involves the

Berry curvature and generalizes previous formulas for the anomalous Hall conductivity

[64–68] to a finite relaxation rate Γ. This interband contribution can essentially be only

nonzero for a chemical potential in between both bands, which we indicated as a gray

area in Fig. 1 and referred to as the second type of interband contribution. Similar to the

decomposition of the conductivity tensor σαβ in (7), we decompose the Hall conductivity

σαβηH in order to generalize the semiclassical result in (3). We will motivate, discuss and

apply all these aspects in more detail as part of the derivation in the following Chapter 1.
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In this chapter, we derive and discuss the electrical conductivity of a general momentum-

block-diagonal two-band model including interband contributions within a microscopic

approach. We start by specifying our model under consideration (Sec. 1.1). We describe

the coupling to the electromagnetic fields, calculate the related currents and identify

the conductivity tensors, which act as the starting point for the subsequent derivations.

Several fundamental concepts that will be useful in the derivation in order to obtain the

conductivity formulas in a transparent and simple form are introduced (Sec. 1.2). We

derive and discuss the longitudinal and the anomalous Hall conductivity of the general

two-band model (Sec. 1.3). The goal of this derivation will be a unique decomposition

for disentangling conductivity contributions of different physical origin and unique prop-

erties. We close this chapter by deriving and discussing the Hall conductivity for the

general two-band model with momentum-independent coupling between the two subsys-

tems of the two-band model (Sec. 1.4).

1.1 General two-band model

The model that we consider in this thesis is a general momentum-block-diagonal two-

band model, a minimal model for a multiband system. It captures a broad spectrum

of physically very different systems including models with Néel antiferromagnetic order

and spiral spin density waves as well as models that involve spin-orbit interaction and

are known to show topological properties. In this section, we define and introduce the

model (Sec. 1.1.1) and present the coupling to an external electric and magnetic field

(Sec. 1.1.2). We present the induced currents and give the general expressions of the

conductivities (Sec. 1.1.3), which will be the starting point for the subsequent sections.

More details of the derivations can be found in the Appendices B, C and D.
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1.1.1 Definition of the model

We assume the quadratic momentum-block-diagonal tight-binding Hamiltonian

H =
∑
p

Ψ†pλpΨp , (1.1)

where λp is a hermitian 2 × 2 matrix, Ψp is a fermionic spinor and Ψ†p is its hermitian

conjugate. Without loss of generality, we parameterize λp as

λp =

εp,A ∆p

∆∗p εp,B

 , (1.2)

where εp,ν are two arbitrary (real) bands of the subsystems ν = A,B. The complex

function ∆p describes the coupling between A and B. The spinor Ψp consists of the

annihilation operator cp,ν of the subsystems,

Ψp =

(
cp+QA,A

cp+QB ,B

)
, (1.3)

where Qν are arbitrary but fixed offsets of the momentum. The subsystems A and B

can be further specified by a set of spatial and/or non-spatial quantum numbers like spin

or two atoms in one unit cell. We label the positions of the unit cells via the Bravais

lattice vector Ri. If needed, we denote the spatial position of subsystem ν within a unit

cell as ρν . The Fourier transformation of the annihilation operator from momentum to

real space and vice versa are given by

cj,ν =
1√
L

∑
p

cp,ν e
ip·(Rj+ρν) , (1.4)

cp,ν =
1√
L

∑
j

cj,ν e
−ip·(Rj+ρν) , (1.5)

where L is the number of unit cells. By choosing a unit of length so that a single unit cell

has volume 1, L is the volume of the system. Note that we included the precise position

Ri + ρν of the subsystem ν in the Fourier transformation [90,91].
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The considered momentum-block-diagonal Hamiltonian (1.1) is not necessarily (lat-

tice) translational invariant due to the Qν in (1.3). The translational invariance is

present only for QA = QB, that is, if there is no relative momentum difference between

the spinor components. In the case QA 6= QB, the Hamiltonian is invariant under com-

bined translation and rotation in spinor space. This difference can be explicitly seen in

the real space hoppings presented in Appendix B. Using the corresponding symmetry

operator one can map a spatially motivated model to (1.1) and, thus, obtain a physical

interpretation of the parameters [92].

1.1.2 Coupling to electric and magnetic fields

We couple the Hamiltonian (1.1) to external electric and magnetic fields E(r, t) and

B(r, t) via the Peierls substitution, that is, a phase factor gained by spatial motion, and

neglect further couplings. The derivation in this and the following subsection generalizes

the derivation performed in the context of spiral spin density waves [42]. We Fourier

transform the Hamiltonian (1.1) via (1.4) defining∑
p

Ψ†pλpΨp =
∑
j, j′

Ψ†jλjj′Ψj′ , (1.6)

where the indices j and j′ indicate the unit cell coordinates Rj and Rj′ , respectively.

We modify the entries of the real space hopping matrix λjj′ = (tjj′, νν′) by

tjj′, νν′ → tjj′, νν′ e
−ie

∫Rj+ρν
Rj′+ρν′

A(r,t)·dr
. (1.7)

A(r, t) is the vector potential. We have set the speed of light c = 1 and the reduced

Planck’s constant ~ = 1 to unity. We have chosen the coupling charge to be the electron

charge q = −e with our convention e > 0. Note that we have included hopping inside the

unit cell by using the precise position Rj + ρν of the subsystems ν [90, 91]. Neglecting

ρν would lead to unphysical results [3, 90,91]. The coupling (1.7) does not include local

processes induced by the vector potential, for instance, via c†j,Acj,B if the two subsystems

are at the same position within the unit cell, ρA = ρB. Using the (incomplete) Weyl

gauge such that the scalar potential is chosen to vanish, the electric and magnetic fields

are entirely described by the vector potential via E(r, t) = −∂tA(r, t) and B(r, t) =
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∇ × A(r, t), where ∂t = ∂
∂t

is the time derivative and ∇ = ( ∂
∂x
, ∂
∂y
, ∂
∂z

) is the spacial

derivative.

We are interested in the long-wavelength regime of the external fields and, in par-

ticular, in the zero-frequency (DC) conductivity. Assuming that the vector potential

A(r, t) varies only slowly over the hopping ranges defined by nonzero tjj′, νν′ allows us to

approximate the integral inside the exponential in (1.7). As shown in Appendix B, we

get

H[A] =
∑
p

Ψ†pλpΨp +
∑
p,p′

Ψ†pVpp′Ψp′ . (1.8)

The first term is the unperturbed Hamiltonian (1.1). The second term involves the

electromagnetic vertex Vpp′ that captures the effect of the vector potential and vanishes

for zero potential, that is, Vpp′ [A = 0] = 0. The Hamiltonian is no longer block-diagonal

in momentum p due to the spatial modulation of the vector potential. The vertex is

given by

Vpp′ =
∞∑
n=1

en

n!

∑
q1,...,qn
α1,...,αn

λα1...αn
p+p′

2

Aα1
q1

(t) ... Aαnqn(t) δ∑
m qm,p−p′ . (1.9)

The n-th order of the vertex is proportional to the product of n modes Aq(t) of the

vector potential given by

A(r, t) =
∑
q

Aq(t)eiq·r . (1.10)

Aαq denotes the α = x, y, z component of the mode. The Dirac delta function assures

momentum conservation. Each order of the vertex is weighted by the n-th derivative of

the bare Bloch Hamiltonian in (1.2), that is,

λα1...αn
p = ∂α1 ...∂αnλp , (1.11)

at momentum (p + p′)/2, where ∂α = ∂
∂pα

is the derivative of momentum p = (px, py, pz)

in α direction. As can be seen in the derivation in Appendix B, both the use of the

precise position of the subsystems in the Fourier transformation [90, 91] as well as the
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momentum-block-diagonal Hamiltonian are crucial for this result. Note that λα1...αn
p is

symmetric in the indices α1 to αn.

1.1.3 Current and conductivity

We derive the current of Hamiltonian (1.8) induced by the vector potential within an

imaginary-time path-integral formalism in order to assure consistency and establish no-

tation. The matrices, which are present due to the two subsystems, do not commute in

general and, thus, the order of the Green’s function and the vertex matrices are crucial.

We sketch the steps in the following. Details of the derivation are given in Appendix C.

We have set kB = 1 and ~ = 1.

We rotate the vector potential modes Aq(t) in the vertex (1.9) to imaginary time

τ = it and Fourier transform Aq(τ) via

Aq(τ) =
∑
q0

Aq e
−iq0τ , (1.12)

where q0 = 2nπT are bosonic Matsubara frequencies for n ∈ Z and temperature T . We

combine these frequencies q0 and the momenta q in four-vectors for shorter notation,

q = (iq0,q). The real frequency result will be recovered by analytic continuation, iq0 →
ω+ i0+, at the end of the calculations. After the steps above, the electromagnetic vertex

Vpp′ involving Matsubara frequencies is of the same form as (1.9) with the momenta

replaced by the four-vector p and p′. The Dirac delta function assures both frequency

and momentum conservation. The (euclidean) action of (1.8) reads

S[Ψ,Ψ∗] = −
∑
p

Ψ∗pG
−1
p Ψp +

∑
p,p′

Ψ∗pVpp′Ψp′ (1.13)

where Ψp and Ψ∗p are (complex) Grassmann fields. The inverse (bare) Green’s function

is given by

G −1
p = ip0 + µ− λp + iΓ sign(p0) . (1.14)

We include the chemical potential µ. p0 = (2n + 1)πT are fermionic Matsubara fre-

quencies for n ∈ Z and temperature T . We assume the simplest possible momentum-
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relaxation rate Γ > 0 as a constant imaginary part proportional to the identity matrix.

sign(p0) = ±1 is the sign function for positive and negative p0, respectively.

The assumed phenomenological relaxation rate Γ is momentum and frequency inde-

pendent as well as diagonal and equal for both subsystems ν = A,B. Such approxi-

mations on Γ are common in the literature of multiband systems [16, 17, 73, 82, 89]. A

microscopically derived relaxation rate Γ, for instance, due to interaction or impurity

scattering depends on details of the models, which we do not further specify in our gen-

eral two-band system. A microscopic derivation can, for instance, be performed within a

Born approximation [6], which then can be used to concretize the range of validity. We

are aware that each generalization of Γ may effect parts of the following derivations and

conclusions. We do not assume that Γ is small and derive the current for Γ of arbitrary

size.

The current density jαq in α = x, y, z direction that is induced by the external electric

and magnetic fields is given by the functional derivative of the grand canonical potential

Ω[A] with respect to the vector potential [93],

jαq = − 1

L

δΩ[A]

δAα−q
. (1.15)

The explicit form of Ω[A] is given in Appendix C.1. We are interested in the current up

to second order in the vector potential. We define

jαq = jα0 −
∑
β

Παβ
q Aβq −

∑
βγ

∑
q′

Παβγ
q,q′ A

β
q′A

γ
q−q′ +O(A3) . (1.16)

In Appendix C.2, we present the derivation of the current and the expansion up to second

order, so that we can identify the zeroth-, first- and second-order contributions jα0 , Παβ
q

and Παβγ
q,q′ explicitly. An explicit formula of the current jα0 , that is, a current without any

external fields, is given in Appendix C.3. It vanishes for all cases that we will discuss.

Thus, we will omit it in the following. The expansion of the current in (1.16) describes a

broad variety of different physical transport phenomena. We specify two different cases

in the following.

The current jαE (ω) induced by only a uniform electric field Eβ(ω) and no magnetic

field can be described by a conductivity tensor σαβE (ω). The current jαEB(ω) induced
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by a uniform electric field Eβ(ω) and a static magnetic field Bη can be described by a

conductivity tensor σαβηEB (ω). The indices α, β, η = x, y, z indicate the component of the

respective spatial direction. We have

jαE (ω) =
∑
β

σαβE (ω)Eβ(ω) , (1.17)

jαEB(ω) =
∑
β,η

σαβηEB (ω)Eβ(ω)Bη . (1.18)

We perform the calculations at finite frequency, but we will mainly focus on the zero

frequency (DC) limit. Note that the order of momentum and frequency limit is crucial

in order to obtain the correct DC conductivities. First, we perform the limit q→ 0 for

uniform external fields, and secondly, we perform the limit ω → 0 for static external

fields. The reversed order would describe properties of the system at equilibrium instead

of transport properties [93]. For a transparent notation, we will label the component

index of the current as α, the component index of the electric field as β and the component

index of the magnetic field as η.

We identify the relation between the conductivity tensors in (1.17) and (1.18) and the

corresponding components of the polarization tensors Παβ and Παβγ
q,q′ in (1.16) by using the

identities Eβ(ω,q) = iωAβ(ω,q) and Bη(ω,q) =
(
iq×A(ω,q)

)η
= i
∑

δγ q
δεηδγAγ(ω,q),

where εηδγ is the Levi-Civita symbol. We get

σαβE (ω) = − 1

iω
Παβ

E (ω) ≡− 1

iω
Παβ

E,iq0

∣∣∣
iq0→ω+i0+

, (1.19)

∑
η

εηγδσαβηEB (ω) =− 1

ω
Παβγδ

EB (ω) ≡− 1

ω
Παβγδ

EB,iq0

∣∣∣
iq0→ω+i0+

, (1.20)

where iq0 → ω + i0+ indicates the analytic continuation from Matsubara to real fre-

quencies. It is intuitive to specify several components. For instance, we have σxyzEB (ω) =

−Πxyxy
EB (ω)/ω and σxxzEB (ω) = −Πxxxy

EB (ω)/ω.

We present the derivation of Παβ
E,iq0

in Appendix C.4. We obtain

Παβ
E,iq0

= e2T

L

∑
ip0,p

tr
[
Gip0+iq0,p

λβp Gip0,p λ
α
p − (iq0 = 0)

]
. (1.21)
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The polarization tensor involves a product of Green’s function and (first-order) vertex

matrices defined in (1.14) and (1.11), which may not commute. It vanishes at zero ex-

ternal Matsubara frequency since the iq0 = 0 contribution of the first term is subtracted.

The final result is obtained by a trace over the matrix, the Matsubara frequency and

the momentum summation. We present the derivation of Παβγδ
EB,iq0

in Appendix C.5. We

obtain

Παβγδ
EB,iq0

=
(
Παβγδ

EB,iq0

)(tri)
+
(
Παβγδ

EB,iq0

)(rec)
. (1.22)

We separated the contribution that involve three vertices and four vertices into a trian-

gular and a rectangular contribution, respectively, following the terminology introduced

by Nourafkan and Tremblay [91]. The triangular contribution with three vertices reads

(
Παβγδ

EB,iq0

)(tri)
=

1

4
TrEB

[
Gip0+iq0,p

λβpGip0,pλ
δ
pGip0,pλ

αγ
p − Gip0+iq0,p

λβγp Gip0,pλ
δ
pGip0,pλ

α
p

+Gip0−iq0,pλ
α
pGip0,pλ

δ
pGip0,pλ

βγ
p − Gip0−iq0,pλ

αγ
p Gip0,pλ

δ
pGip0,pλ

β
p

]
.

(1.23)

We introduced the compact notation TrEB[ · ] = e3TL−1
∑

p tr[ · − (iq0 = 0) − (γ ↔ δ)],

where the dot · indicates the argument over which the trace is performed. The com-

pact notation includes the prefactors, both summations over Matsubara frequencies and

momenta, the matrix trace as well as the subtraction of the zero Matsubara frequency

contribution of the argument and the subtraction of the previous terms with γ ↔ δ ex-

changed. Thus when writing all terms explicitly, each product in (1.23) gives four terms.

The rectangular contribution with four vertices reads

(
Παβγδ

EB,iq0

)(rec)
=

1

2
TrEB

[
Gip0+iq0,p

λβpGip0,pλ
δ
pGip0,pλ

γ
pGip0,pλ

α
p

+Gip0−iq0,pλ
α
pGip0,pλ

δ
pGip0,pλ

γ
pGip0,pλ

β
p

]
. (1.24)

We see that both contributions involve different combinations of Green’s function and

vertex matrices. All contributions involve the first-order vertex. The second-order vertex

is also present in the triangular contribution. Note that the decomposition of the form in

(1.23) and (1.24) is not unique due to the possibility of partial integration in momentum.

The presented form turns out to be a convenient decomposition for further calculations.
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Both contributions and, thus, the polarization tensor Παβγδ
EB,iq0

in (1.22) are antisymmetric

with respect to γ ↔ δ as required by the relation (1.20) and vanishes at zero iq0. Note

that the Green’s function matrices and the vertex matrices do not commute in general.

We respected this issue in the derivation.

1.2 Fundamental concepts

Our goal is to derive conductivity formulas, which decompose into contributions with

unique properties and involve quantities of clear physical interpretation. For given Bloch

Hamiltonian λp, chemical potential µ, temperature T and relaxation rate Γ, the polariza-

tion tensors in (1.21) and (1.22) can be evaluated directly by performing the Matsubara

summation explicitly. However, we are interested in an analytic result and are faced with

two key steps in the following derivation: performing the trace over the two subsystems

and the analytic continuation from Matsubara frequency to real frequency. Both steps

are tedious and not physically transparent without any further strategy. Before perform-

ing the actual derivation in the next Sec. 1.3 and 1.4, we present different fundamental

concepts that will eventually guide us to a deeper understanding of the underlying struc-

ture and, thus, not only to a transparent calculation but also to a physically motivated

decomposition of the conductivities.

We structure this section as follows: We introduce a different representation of the

Bloch Hamiltonian λp in (1.2). The Bloch Hamiltonian λp is the crucial quantity for

both the Green’s function and the vertex matrices. The eigenvalues and eigenbasis of λp

are particular simple in this different representation (Sec. 1.2.1). We express the Green’s

function and the vertex matrices in the eigenbasis of λp. Interband contributions for the

first-order vertex, that is, for the momentum derivative of the Bloch Hamiltonian ∂αλp,

after the basis change are found and analyzed (Sec. 1.2.2). We have a more general view

on interband contributions for more than two bands and draw connection to concepts

of quantum geometry, in particular, to the quantum metric and the Berry curvature

(Sec. 1.2.3). Those concepts are then applied and specified for our two-band model

(Sec. 1.2.4). We close this section by performing similar steps to the second derivative

of the Bloch Hamiltonian ∂α∂βλp in a general multiband system and for our two-band

model (Sec. 1.2.5).
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1.2.1 Spherical representation

The crucial quantity to evaluate (1.21) and (1.22) is the Bloch Hamiltonian matrix λp,

which is present in the Green’s function Gip0,p and the first- and second-order vertices

λαp and λαβp . The basic property of the 2 × 2 matrix λp is its hermiticity, which allows

us to expand it in the identity matrix 1 and the three Pauli matrices

τx =

(
0 1

1 0

)
, τy =

(
0 −i
i 0

)
, τz =

(
1 0

0 −1

)
, (1.25)

which we combine to the Pauli vector τ = (τx, τy, τz). The indexing x, y, z must not be

confused with the spatial directions. We get the compact notation

λp = gp 1+ dp · τ (1.26)

with a function gp and a vector-valued function dp [62, 94–97]. It is very useful to

represent the vector dp via its length rp and the two angles θp and ϕp in spherical

coordinates [62, 96,97], that is,

dp = rp


cosϕp sin θp

sinϕp sin θp

cos θp

 . (1.27)

The Bloch Hamiltonian matrix λp in spherical coordinates reads

λp =

gp + rp cos θp rp sin θp e
−iϕp

rp sin θp e
iϕp gp − rp cos θp

 . (1.28)

The momentum derivative of λp, in particular, the first- and second-order vertices λαp

and λαβp , can be expressed in the derivatives of these functions gp, rp, θp, and ϕp. In a

two-dimensional system, we can visualize gp as a surface on top of which we indicate the

vector dp by its length and direction. We give an example in Fig. 1.1.

Both (1.2) and (1.28) are equivalent and impose no restriction on the Hamiltonian

other than hermiticity. In the following, we exclusively use λp in spherical coordinates.

For given εp,A, εp,B and ∆p in (1.2) the construction of (1.28) is straightforward. We
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Figure 1.1: We can represent the Bloch Hamiltonian λp by a function gp and a vector-
valued function dp. For a two-dimensional system, we can visualize gp as a surface on
top of which we indicate the vector dp by its length rp (color from purple to red) and
direction given by the angles θp and ϕp. The conductivity is given by the modulation of
these functions. Here, we show λp of the example in Sec. 2.1.2.

give the relations explicitly since they may provide a better intuitive understanding of

the involved quantities. We have

gp =
1

2
(εp,A + εp,B) , (1.29)

hp =
1

2
(εp,A − εp,B) , (1.30)

rp =
√
h2
p + |∆p|2 , (1.31)

where we defined the function hp. The radius rp involves hp and the absolute value of

∆p. The angle θp describes the ratio between hp and |∆p|. The angle ϕp is equal to the

negative phase of ∆p. They are given by

cos θp =
hp
rp

sin θp =
|∆p|
rp

, (1.32)

cosϕp = Re
∆p

|∆p|
sinϕp = −Im

∆p

|∆p|
, (1.33)
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where the real and imaginary part are denoted by Re and Im, respectively. The advantage

of the spherical form (1.28) is its simplicity of the eigenvalues and eigenvectors. We

denote the eigensystem at momentum p as ±p. The eigenenergies are

E±p = gp ± rp (1.34)

with corresponding eigenvectors

|+p〉 = eiφ
+
p

 cos 1
2
θp

eiϕp sin 1
2
θp

 , (1.35)

|−p〉 = eiφ
−
p

−e−iϕp sin 1
2
θp

cos 1
2
θp

 . (1.36)

These eigenvectors are normalized and orthogonal, that is, 〈+p|+p〉 = 〈−p|−p〉 = 1 and

〈+p|−p〉 = 〈−p|+p〉 = 0. The two phases φ±p reflect the freedom to choose a phase of the

normalized eigenvectors when diagonalizing at fixed momentum p, that is, a “local” U(1)

gauge symmetry in momentum space. We include it explicitly for an easier comparison

with other gauge choices and to make gauge-dependent quantities more obvious in the

following calculations.

1.2.2 First-order vertex

The polarization tensors in (1.21) and (1.22) are the trace of the product of Green’s

function matrices and vertex matrices. A trace is invariant under unitary transformations

(or, in general, similarity transformations) due to its cyclic property. We transform all

matrices by the 2 × 2 unitary transformation Up =
(
|+p〉 |−p〉

)
, whose columns are

composed of the eigenvectors |±p〉. The matrix Up diagonalizes the Bloch Hamiltonian

matrix

Ep = U †pλpUp =

(
E+

p 0

0 E−p

)
, (1.37)
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where we defined the quasiparticle band matrix Ep. We transform the Green’s function

matrix in (1.14) and get the diagonal Green’s function

Gip0,p = U †pGip0,pUp =
[
ip0 + µ− Ep + iΓ sign(p0)

]−1
. (1.38)

Note that the assumptions of Γ to be proportional to the identity matrix is crucial to

obtain a diagonal Green’s function matrix by this transformation.

In general, the vertex matrices λαp and λαβp will not be diagonal after unitary trans-

formation with Up, since they involve the momentum derivative λαp = ∂αλp and λαβp =

∂α∂βλp. The derivatives do not commute with the momentum-dependent Up. In a first

step, we focus on λαp. Expressing λp in terms of Ep we get

U †pλ
α
pUp = U †p

[
∂αλp

]
Up = U †p

[
∂α
(
UpEpU †p

)]
Up . (1.39)

The derivative of Ep leads to the eigenvelocities Eαp = ∂αEp. The two other terms from

the derivative contain the momentum derivative of Up. Using the identity
(
∂αU

†
p

)
Up =

−U †p
(
∂αUp

)
of unitary matrices we end up with

U †pλ
α
pUp = Eαp + Fαp , (1.40)

where we defined Fαp = i
[
Ep,Aαp

]
with

Aαp = iU †p
(
∂αUp

)
. (1.41)

Since Fαp involves the commutator with the diagonal matrix Ep, it is an off-diagonal

matrix. Thus, we see already at this stage that Fαp causes the mixing of the two quasi-

particle bands and, thus, captures the interband effects induced by the vertex λαp. We

refer to Fαp as “(first-order) interband matrix”.

Let us have a closer look at Aαp defined in (1.41). The matrix Up consists of the

eigenvectors |±p〉. Its complex conjugation U †p consists of the corresponding 〈±p|. Thus,

we can identify the diagonal elements of Aαp as the Berry connection of the eigenstates

|±p〉, that is Aα,±p = i〈±p|∂α±p〉, where |∂α±p〉 = ∂α|±p〉 is the momentum derivative

of the eigenstate [49, 50]. Aαp is hermitian due to the unitarity of Up. This allows us to

express it in terms of the identity and the Pauli matrices, Aαp = Iαp + X α
p + Yαp + Zαp ,
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where

Iαp = −1

2

[
φ+,α
p + φ−,αp

]
1 , (1.42)

X α
p = −1

2

[
ϕαp sin θp cos ϕ̃p + θαp sin ϕ̃p

]
τx , (1.43)

Yαp = −1

2

[
ϕαp sin θp sin ϕ̃p − θαp cos ϕ̃p

]
τy , (1.44)

Zαp = −1

2

[
φ+,α
p − φ−,αp + ϕαp

(
1− cos θp

)]
τz , (1.45)

and ϕ̃p = ϕp + φ+
p − φ−p . We calculated the prefactors by using (1.35) and (1.36) and

used the short notation θαp = ∂αθp and ϕαp = ∂αϕp for the momentum derivative in α

direction. Each component of Ap is gauge dependent by involving ϕ̃p or φ±,αp = ∂αφ
±
p .

The interband matrix Fαp involves only the off-diagonal matrices X α
p and Yαp since the

diagonal contributions Ip and Zp vanish by the commutator with the diagonal matrix

Ep. We see that the interband matrix Fαp is gauge dependent due to ϕ̃p.

1.2.3 Quantum geometric tensor

The identification of a matrix Aαp in (1.40), which involves the Berry connection, suggests

a deeper and more general connection to concepts of quantum geometry. Expressing the

momentum derivative ∂αλ̂p of a general multiband (and not necessarily two-band) Bloch

Hamiltonian λ̂p in its orthonormal and complete eigenbasis |np〉 with eigenvalues En
p

naturally leads to intraband and interband contributions via

〈np|(∂αλ̂p)|mp〉 = δnmE
n,α
p + i(En

p − Em
p )Aα,nmp (1.46)

after treating the momentum derivative and the momentum dependence of the eigenba-

sis carefully. The first term on the right-hand side involves the quasiparticle velocities

En,α
p = ∂αE

n
p and is only present for n = m. The second term involves the Berry connec-

tion Aα,nmp = i〈np|∂αmp〉, where |∂αmp〉 is the momentum derivative of the eigenstate

|mp〉 [49, 50], and is only present for n 6= m.

The Berry connection Aα,nmp is not invariant under the “local“ U(1) gauge transfor-

mation |np〉 → eiφ
n
p |np〉 in momentum space and, thus, should not show up in physical

quantities like the conductivity. In other words, not the Hilbert space but the projective
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Hilbert space is physically relevant [98–101]. In general, the transformation of the Berry

connection with respect to the gauge transformation above reads

Aα,nmp → Aα,nmp e−i(φ
n
p−φmp ) − δnmφn,αp (1.47)

with φn,αp = ∂αφ
n
p only present for n = m. Obviously, the combination

T αβ,np =
∑
m6=n

Aα,nmp Aβ,mnp (1.48)

is gauge independent. The quantity T αβ,np is a momentum-dependent tensor for each

band n with components α and β. The tensor of band n involves the summation over all

other bands. We rewrite (1.48) by using the orthogonality and the completeness of the

eigenbasis, 〈np|∂αmp〉 = −〈∂αnp|mp〉 and
∑

m 6=n |mp〉〈mp| = 1− |np〉〈np|, and obtain

T αβ,np = 〈∂αnp|∂βnp〉 − 〈∂αnp|np〉〈np|∂βnp〉 . (1.49)

We have recovered the quantum geometric tensor, which is the Fubini-Study metric of

the projective Hilbert space [97–101].

It turns out to be convenient to decompose the quantum geometric tensor T αβ,np

into its symmetric and antisymmetric part with respect to α ↔ β. This decomposition

is unique. Using the property of the Berry connection under complex conjugation in

(1.48), we see that the symmetric part is the real part and the antisymmetric part is the

imaginary part of T αβ,np , respectively. We define

T αβ,np =
1

2

(
Cαβ,n

p − iΩαβ,n
p

)
(1.50)

with the symmetric real-valued function Cαβ,np = Cβα,np and the antisymmetric real-valued

function Ωαβ,n
p = −Ωβα,n

p .

Both Cαβ,np and Ωαβ,n
p have a clear physical interpretation. By the latter one, we have

recovered the Berry curvature

Ωαβ,n
p = −2 ImT αβ,np = ∂αAβ,np − ∂β Aα,np . (1.51)
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The Berry curvature is the curl of the Berry connection. Using (1.48), one can show that∑
n Ωαβ,n

p = 0, that is, the Berry curvature summed over all bands vanishes. In order to

understand the meaning of the symmetric part Cαβ,n
p we consider the squared distance

function

D
(
|np〉, |np′〉

)2
= 1− |〈np|np′〉|2 , (1.52)

where |np〉 and |np′〉 are two normalized eigenstates of the same band En
p at different

momenta [97–101]. The distance function is invariant under the gauge transformations

|np〉 → eiφ
n
p |np〉. It is maximal, if the two states are orthogonal, and zero, if they

differ only by a phase. We can understand the function in (1.52) as the distance of the

projective Hilbert space in the same manner as ||np〉−|np′〉| is the natural distance in the

Hilbert space, which is, in contrast, not invariant under the upper gauge transformation

[98]. If we expand the distance between the two eigenstates |np〉 and |np+dp〉, whose

momenta differ only by an infinitesimal momentum dp, up to second order, we find a

metric tensor gαβ,np that is given by the real part of the quantum geometric tensor. We

see that

Cαβ,n
p = 2 gαβ,np = 2 ReT αβ,np . (1.53)

We summarize that the momentum derivative of the Bloch Hamiltonian, or first-order

vertex, expressed in the eigenbasis of the Bloch Hamiltonian in (1.46) naturally leads to a

quasiparticle velocity and a Berry-connection term. A gauge-independent combination of

the latter one defines the quantum geometric tensor, which decomposes into the quantum

metric and the Berry curvature of the corresponding band.

1.2.4 Quantum metric factor and Berry curvature of the

two-band model

After the general considerations in the previous section, we apply those concepts explic-

itly to our two-band model. In the decomposition of the first-order vertex in (1.46), the

first term corresponds to Eαp in (1.37), the second term to Fαp in (1.40) and the Aα,nmp
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are the elements of the matrix Ap in (1.41) with indices n,m for both bands ±, that is

Ap = iU †p∂αUp =

 Aα,+p Aα,+−p

Aα,−+
p Aα,−p

 . (1.54)

We used the short notation Aα,+p ≡ Aα,++
p and Aα,−p ≡ Aα,−−p for the diagonal elements.

The diagonal elements Aα,+p and Aα,−p correspond to Iαp + Zαp in (1.42) and (1.45). The

off-diagonal elements Aα,+−p and Aα,−+
p correspond to X α

p +Yαp in (1.43) and (1.44). We

consider the gauge dependence of Aα,nmp in (1.47) by allowing the phases φ±p in (1.35)

and (1.36) explicitly. The quasiparticle velocity Eαp is gauge independent, whereas the

interband matrix Fαp is gauge dependent. In analogy to (1.48), the product FαpFβp is

gauge independent, which can be see by

FαpFβp ∝
(
X α

p + Yαp
)(
X β

p + Yβp
)
∝

(
0 e−iϕ̃p

eiϕ̃p 0

)(
0 e−iϕ̃p

eiϕ̃p 0

)
∝ 1 , (1.55)

where we dropped gauge-independent quantities in each step. The (diagonal) elements

of the product FαpFβp are proportional to the quantum geometric tensor T αβ,±p .

The product FαpFβp is neither symmetric nor antisymmetric with respect to α ↔ β.

Up to a prefactor, its symmetric and antisymmetric parts read

FαpFβp + FβpFαp ∝ {X α
p ,X β

p }+ {Yαp ,Yβp} = Cαβp , (1.56)

FαpFβp −FβpFαp ∝ [X α
p ,Yβp ] + [Yαp ,X β

p ] = −iΩαβ
p , (1.57)

which defines the symmetric function Cαβp and antisymmetric function Ωαβ
p , which are

both real-valued diagonal matrices. Using (1.43) and (1.44) we get

Cαβp =
1

2

(
θαpθ

β
p + ϕαpϕ

β
p sin2 θp

)
1 , (1.58)

Ωαβ
p =

1

2

(
ϕαpθ

β
p − ϕβpθαp

)
sin θp τz . (1.59)

We see explicitly that Cαβp and Ωαβ
p are gauge independent. Note that Cαβp involves

equal contributions for both quasiparticle bands, whereas Ωαβ
p involves contributions of

opposite sign for the two quasiparticle bands. We have Ωαβ
p = ∂αZβp − ∂βZαp since Ωαβ

p is
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the Berry curvature of the eigenbasis |±p〉. The two definitions (1.58) and (1.59) are the

matrix versions of the general expressions in (1.51) and (1.53). The matrix Cαβp involves

the quantum metric of the two quasiparticle bands, which are equal in this case. Thus,

we refer to Cαβp as ”quantum metric factor“ in the following, which is more precise than

the previous used ”coherence factor“ [42]. Note that both Cαβp and Ωαβ
p only involve the

angles θp and ϕp.

1.2.5 Second-order vertex

Whereas the considerations above are sufficient to study the polarization tensors Παβ
E,iq0

in

(1.21), the polarization tensor Παβγδ
EB,iq0

in (1.22) does also involve the second derivative of

the Bloch Hamiltonian λαβp = ∂α∂βλp, the second-order vertex. In order to identify the

interband contributions due to λαβp , we can perform similar steps as for the first-order

vertex in (1.39) by calculating

U †pλ
αβ
p Up = U †p

[
∂α∂βλp

]
Up = U †p

[
∂α∂β

(
UpEpU †p

)]
Up . (1.60)

We see that we obtain nine contributions after evaluating the derivatives: The second

derivative of Eαβp = ∂α∂βEp gives the inverse quasiparticle effective mass. We have four

contributions involving the quasiparticle velocity Eνp = ∂νEp and the Berry connection

matrix Aνp = iU †p
(
∂νUp

)
with ν = α, β. We have two contributions involving the prod-

uct of Aαp and Aβp. The remaining two contributions are involving U †p
(
∂α∂βUp

)
and(

∂α∂βU
†
p

)
Up. The final result is symmetric in α↔ β.

The derivation above is straightforward and gives an idea about the contributions

that are present. However, the final result is not transparent with respect to the gauge

transformation |np〉 = eiφ
n
p |np〉 of the eigenbasis and, thus, is not sufficient for the iden-

tification of different terms that are physical individually. Thus, before deriving our

final result of λαβp in our two-band model, we consider again a general (not necessarily

two-band) Bloch Hamiltonian λ̂p with orthonormal eigenbasis |np〉 in a first step and

specify the result for our two-band model in a second step.

We express ∂α∂βλ̂p in the eigenbasis. After carefully taking the momentum depen-

dence of the eigenbasis into account, we can express the final result in only the eigenen-

ergies En
p, the Berry connection Aα,nmp and their derivatives. We present the derivation
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in Appendix D. The diagonal elements read

〈np|
(
∂α∂βλ̂p

)
|np〉 = En,αβ

p +
∑
l

(
El

p − En
p

)(
Aα,nlp Aβ,lnp + Aβ,nlp Aα,lnp

)
(1.61)

with the inverse quasiparticle effective mass En,αβ
p = ∂α∂βE

n
p. We sum over all bands

in the second term on the right-hand side, which we indicate by the summation over l.

This term vanishes in a one-band system and is, thus, a pure interband contribution.

Note that the second term is close to the combination T αβ,np + T βα,np of the quantum

geometric tensor in (1.48) but not equal due to the prefactor El
p. Both terms in (1.61)

are gauge invariant. The off-diagonal elements for n 6= m read

〈np|
(
∂α∂βλ̂p

)
|mp〉 = i

(
En,α

p − Em,α
p

)
Aβ,nmp (1.62)

+
i

2

(
En

p − Em
p

)[
∂α − i

(
Aα,np − Aα,mp

)]
Aβ,nmp (1.63)

+
∑
l 6=n,m

[
El

p −
1

2

(
En

p + Em
p

)]
Aα,nlp Aβ,lmp (1.64)

+ (α↔ β) . (1.65)

The third term (1.64) is only present for more than two bands and captures the interband

effects due to all other bands than the considered n and m. The first term (1.62) has

a form very similar to the off-diagonal component of the first-order vertex in (1.46) but

involves the quasiparticle velocities instead of the eigenenergies. The second term (1.63)

involves the derivative of the Berry connection in a gauge covariant form, ∂α − i
(
Aα,np −

Aα,mp

)
. We find that each line transforms individually with a phase factor e−i(φ

n
p−φmp )

under the ”local“ gauge transformation |np〉 → eiφ
n
p |np〉 in momentum space.

We return to our two-band model in the following. By considering the diagonal and

off-diagonal components in (1.61) and (1.62), respectively, for the two eigenstates |+p〉
and |−p〉, we identify a diagonal and an off-diagonal part of U †pλ

αβ
p Up, which we label as

U †pλ
αβ
p Up = (M−1)αβp + Fαβp . (1.66)

We use the upper notation to indicate the interpretation of (M−1)αβp as ”inverse gen-

eralized effective mass“ and to symbolize the analogy of the ”(second-order) interband
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matrix“ Fαβp with respect to the first-order interband matrix Fαp in (1.40). The inverse

generalized effective mass (M−1)αβp reads

(M−1)αβp = Eαβp − 2rpτz Cαβp , (1.67)

where Eαβp = ∂α∂βEp is the inverse quasiparticle effective mass, that is, the second deriva-

tive of the quasiparticle dispersion. The second term on the right-hand side involves the

quantum metric factor Cαβp with different sign for the upper and the lower band due to

the Pauli matrix τz [102].

We calculate the second-order interband matrix Fαβp for our two-band model in the

following. We combine the four contributions in (1.62) that involve Eνp and Aνp to two

commutators and expand Aνp in the identity and the Pauli matrices. Due to the com-

mutator, only X ν
p and Yνp contribute, which are given in (1.43) and (1.44), respectively.

We calculate the second factor in (1.63) explicitly in a first step and decompose it into

two terms proportional to τx and τy in a second step. We obtain the off-diagonal matrix

entries with n 6= m

[
∂α − i

(
Aα,np − Aβ,mp

)]
Aβ,nmp ≡

(
X αβ

p + Yαβp

)nm
(1.68)

of the matrices

X αβ
p = −1

2

[(
ϕαβp sin θp +

(
θαpϕ

β
p + ϕαpθ

β
p

)
cos θp

)
cos ϕ̃p

+
(
θαβp − ϕαpϕβp cos θp sin θp

)
sin ϕ̃p

]
τx , (1.69)

Yαβp = −1

2

[(
ϕαβp sin θp +

(
θαpϕ

β
p + ϕαpθ

β
p

)
cos θp

)
sin ϕ̃p

−
(
θαβp − ϕαpϕβp cos θp sin θp

)
cos ϕ̃p

]
τy . (1.70)

We defined the short notation for the first derivative ϕνp = ∂νϕp, the second derivative

ϕαβp = ∂α∂βϕp and equivalently for θp. Note that X αβ
p and Yαβp are symmetric in α↔ β.

Combining all results, the second-order interband matrix Fαβp reads

Fαβp = i
[
Eαp ,X β

p

]
+ i
[
Eβp ,X α

p

]
+ i
[
Ep,X αβ

p

]
+ i
[
Eαp ,Yβp

]
+ i
[
Eβp ,Yαp

]
+ i
[
Ep,Yαβp

]
.

(1.71)
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It is symmetric in α ↔ β as expected. Note that Fαβp is gauge dependent due to

ϕ̃p = ϕ+ φ+
p − φ−p in X ν

p , Yνp, X αβ
p and Yαβp . Thus, Fαβp is not a good physical quantity

by itself. The combination FαpFβγp is gauge independent for arbitrary indices α, β and

γ, which can be seen in analogy to (1.55). We can identify a particular combination as

derivative of the quantum metric factor and the Berry curvature

1

2

[(
X α

p X βγ
p + Yαp Yβγp

)
+
(
α↔ β

)]
=

1

4

(
∂γ Cαβp

)
, (1.72)

1

2

[(
X α

p Yβγp + Yαp X βγ
p

)
−
(
α↔ β

)]
=
i

4

(
∂γ Ωαβ

p

)
. (1.73)

Note that the results, which we derived above for the general Bloch Hamiltonian in (1.28),

drastically simplify for a constant angle ϕp = ϕ, that is, for a momentum-independent

phase of the coupling between the two subsystems of the two-band model ∆p.

1.3 Longitudinal and anomalous Hall conductivity

After the introduction of our general two-band model, the conductivity formulas in

imaginary-time formalism and several fundamental concepts in the last two sections, we

continue by deriving the longitudinal and the anomalous Hall conductivity. Therefore,

we assume only a uniform electric field and no magnetic field in the following. An electric

field with frequency ω in direction β = x, y, z induces a current in direction α = x, y, z.

The proportionality is described by the conductivity tensor σαβ(ω) ≡ σαβE (ω) in (1.19),

where we omit the lower index for shorter notation in the following. The tensor describes

two conceptional different phenomena: the longitudinal conductivity and the anomalous

Hall conductivity. In a simplified picture, the difference between those conductivities

is whether the current is induced parallel or transverse to the applied electric field. A

more precise definition is given in the derivation. In the following presentation, we have

a special focus on a unique and physically meaningful decomposition of the conductivity

formulas.

This section is structured as follows: In the first three subsections, we present the

derivation of the conductivity formulas, which we analyze in the last four subsections. We

use the matrix structure and properties of the matrix trace to decompose the polariza-

tion tensor (Sec. 1.3.1). After having performed the Matsubara summation (Sec. 1.3.2),
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we identify the distinct form of the different contributions, which results in our main for-

mulas for the DC conductivity (Sec. 1.3.3). We relate our result to the commonly used

approach by Bastin and Středa (Sec. 1.3.4), which can be seen as a different derivation.

We discuss the reduction of the computational effort due to the used decomposition

(Sec. 1.3.5) and, in detail, the limits of small and large relaxation rate, and the low

temperature limit (Sec. 1.3.6). Finally, we relate our result to the anomalous Hall ef-

fect, discuss the possibility of anisotropic longitudinal conductivity and quantization

(Sec. 1.3.7).

1.3.1 Decomposition

With the general concepts that we derived in the previous Sec. 1.2, we evaluate the

polarization tensor Παβ
iq0
≡ Παβ

E,iq0
given in (1.21), where we omit the lower index for

shorter notation. Using the invariance under unitary transformations of the matrix trace

as well as the Green’s function (1.38) and first-order vertex matrices (1.40) expressed in

the eigenbasis, we obtain

Παβ
iq0

= Tr
[
Gip0+iq0,p

(
Eβp + Fβp

)
Gip0,p

(
Eαp + Fαp

)]
. (1.74)

We have introduced the compact notation Tr[ · ] = e2TL−1
∑

p tr[ · −(iq0 = 0)], where the

dot · indicates the argument over which the trace is performed. The compact notation

involves the prefactors, the summation over Matsubara frequencies and momenta, the

matrix trace as well as the subtraction of the argument at iq0 = 0. The Green’s function

matrices (1.38) are diagonal, whereas the vertices (1.40) contain the diagonal matrix Eαp
and the off-diagonal matrix Fαp . The matrix trace only gives a nonzero contribution if

the product of the four matrices involves an even number of off-diagonal matrices, that

is, zero or two in this case. Thus, the mixed terms involving both Eαp and Fαp vanish.

This leads to the decomposition of Παβ
iq0

into an intraband and an interband contribution:

Παβ
iq0

= Παβ
iq0,intra + Παβ

iq0,inter . (1.75)

In the intraband contribution, the two eigensystems ±p are not mixed, whereas they

mix in the interband contribution due to the interband matrix Fαp . The individual

contributions in (1.75) are gauge independent due to (1.55).
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The matrix trace is invariant under transposition of the matrix, of which the trace is

performed. For the product of several symmetric and antisymmetric (or skew-symmetric)

matrices A, B, C, D this leads to tr
(
ABCD

)
= tr

(
DTCTBTAT

)
= (−1)n tr

(
DCBA

)
with AT being the transposed matrix of A, and so on, and n the number of antisymmetric

matrices involved. We call the procedure

tr
[
M1...Mn

]
→ tr

[
Mn...M1

]
(1.76)

with arbitrary square matrices Mi “trace transposition” or “reversing the matrix order

under the trace” in the following [1]. We call the trace that remains equal with a

positive overall sign after trace transposition symmetric and a trace that remains equal

up to a negative overall sign after trace transposition antisymmetric. Every trace of

arbitrary square matrices can be uniquely decomposed in this way. We analyze the

intra- and interband contribution in (1.75) with respect to their behavior under trace

transposition. The intraband contribution involves the quasiparticle velocities Eαp and

the Green’s functions, that is

Παβ
iq0,intra = Tr

[
Gip0+iq0,p

EβpGip0,pE
α
p

]
. (1.77)

All matrices are diagonal and, thus, symmetric. We see that the intraband contribution

is symmetric under trace transposition. The interband contribution involves diagonal

Green’s functions and Fαp , which is neither symmetric nor antisymmetric. We decompose

it into its symmetric and antisymmetric part

Fα,sp =
1

2

(
Fαp + (Fαp )T

)
= i
[
Ep,Yαp

]
, (1.78)

Fα,ap =
1

2

(
Fαp − (Fαp )T

)
= i
[
Ep,X α

p

]
. (1.79)

By this, the interband contribution decomposes into a symmetric and antisymmetric

contribution under trace transposition,

Παβ
iq0, inter = Παβ,s

iq0, inter + Παβ,a
iq0, inter , (1.80)
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where

Παβ,s
iq0, inter = Tr

[
4r2

pGip0+iq0,p
X β

pGip0,pX
α
p

]
+ Tr

[
4r2

pGip0+iq0,p
YβpGip0,pY

α
p

]
, (1.81)

Παβ,a
iq0, inter = Tr

[
4r2

pGip0+iq0,p
X β

pGip0,pY
α
p

]
+ Tr

[
4r2

pGip0+iq0,p
YβpGip0,pX

α
p

]
. (1.82)

We used Ep = gp + rpτz and performed the commutator explicitly. Interestingly, the

symmetry under trace transposition, which is due to the multiband character, is con-

nected to the symmetry of the polarization tensor or, equivalently, of the conductivity

tensor σ = (σαβ) itself: Trace transposition of (1.77), (1.81) and (1.82) is equal to the

exchange of α↔ β, the directions of the current and the external electric field.

1.3.2 Matsubara summation

We continue by performing the Matsubara summations and the analytic continuation.

The sum over the (fermionic) Matsubara frequency p0 in (1.77), (1.81) and (1.82) is of

the form

Iiq0 ≡ T
∑
p0

tr
[
(Giq0 − G)M1GM2

]
(1.83)

with two matrices M1 and M2 that are symmetric and/or antisymmetric. T is the

temperature. We omit the momentum dependence for simplicity in this subsection. We

further shorten the notation of the Green’s functions G ≡ Gip0 and G±iq0 ≡ Gip0±iq0 . If

Iiq0 is symmetric under trace transposition, that is, for the intraband and the symmetric

interband contribution, we split (1.83) into two equal parts. In the second part, we reverse

the matrix order under the trace and shift the Matsubara summation ip0 → ip0 − iq0.

We get

Is
iq0

=
T

2

∑
p0

tr
[(

(Giq0 − G) + (G−iq0 − G)
)
M1GM2

]
. (1.84)

If Iiq0 is antisymmetric, that is, for the antisymmetric interband contribution, we obtain

Ia
iq0

=
T

2

∑
p0

tr
[
(Giq0 − G−iq0)M1GM2

]
(1.85)
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after the same steps. We perform the Matsubara summation and analytic continuation

iq0 → ω + i0+ of the external frequency leading to Is
ω and Ia

ω. We are interested in the

zero-frequency (DC) limit. The detailed Matsubara summation and the zero frequency

limit are performed in Appendix F. We end up with

lim
ω→0

Is
ω

iω
=
π

2

∫
dε f ′ε tr

[
AεM1AεM2 + AεM2AεM1

]
, (1.86)

lim
ω→0

Ia
ω

iω
= −i

∫
dε fε tr

[
P ′εM1AεM2 − P ′εM2AεM1

]
, (1.87)

where fε = (eε/T + 1)−1 is the Fermi function and f ′ε its derivative. Furthermore, it

involves the spectral function matrix Aε = −(GRε − GAε )/2πi and the derivative of the

principle-value function matrix P ′ε = ∂ε(GRε + GAε )/2, where GRε and GAε are the retarded

and advanced Green’s function matrices, respectively.

In (1.86) and (1.87), we exclusively used the spectral function Aε and the principle-

value function Pε, which are both real-valued functions, and avoided the complex-valued

retarded or advanced Green’s functions. As we have a real-valued DC conductivity, the

combination of M1 and M2 has to be purely real in (1.86) and purely complex in (1.87).

The symmetric part (1.86) involves the derivative of the Fermi function f ′ε, whereas

the antisymmetric part (1.87) involves the Fermi function fε. This suggests to call the

latter one the Fermi-surface contribution and the former one the Fermi-sea contribution.

However, this distinction is not unique, since we can perform partial integration in the

internal frequency ε. For instance, the decomposition proposed by Středa [76] is different.

Using the explicit form of the Green’s function in (1.38), the spectral function matrix

reads

Aε =

(
A+
ε 0

0 A−ε

)
(1.88)

with the spectral functions of the two quasiparticle bands

A±ε =
Γ/π

(ε+ µ− E±p )2 + Γ2
. (1.89)

For our specific choice of Γ, the spectral function is a Lorentzian function, which peaks
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at E±p −µ for small Γ. Using (1.89), the derivative of the principle-value function P ′ε can

be rewritten in terms of the spectral function as

P ′ε = 2π2A2
ε −

π

Γ
Aε . (1.90)

When inserting this into (1.87) the second, linear term drops out. We see that (1.86) and

(1.87) can be completely expressed by combinations of quasiparticle spectral functions.

Note that (1.90) is valid only for a relaxation rate Γ that is frequency-independent as

well as proportional to the identity matrix.

We apply the result of the Matsubara summation (1.86) and (1.87) to the symmetric

and antisymmetric interband contributions (1.81) and (1.82). Since M1 and M2 are off-

diagonal matrices in both cases, the commutation with the diagonal spectral function

matrix Aε simply flips its diagonal entries, that is MiAε = AεMi where Aε is given

by (1.88) with A+
ε ↔ A−ε exchanged. We collect the product of involved matrices and

identify

Aε
(
X βX α + X αX β + YβYα + YαYβ

)
Aε = AεC

αβ Aε , (1.91)

A2
ε

(
X βYα − YαX β + YβX α −X αYβ

)
Aε = i A2

ε Ωαβ Aε , (1.92)

where Cαβp and Ωαβ were defined in (1.58) and (1.59).

1.3.3 Formulas of the conductivity tensor

As the final step of the derivation, we combine all our results. The conductivity and the

polarization tensor are related via (1.19). We write out the trace over the two quasipar-

ticle bands explicitly. The zero-frequency (DC) conductivity σαβ ≡ σαβE decomposes into

five different contributions:

σαβ = σαβintra,+ + σαβintra,− + σαβ,sinter + σαβ,ainter,+ + σαβ,ainter,− . (1.93)

These contributions are distinct by three categories: (a) intra- and interband, (b) sym-

metric and antisymmetric with respect to α↔ β (or, equivalently, with respect to trace

transposition) and (c) quasiparticle band ±. As the symmetric interband contribution

σαβ,sinter is shown to be symmetric in +↔ − for our two-band model, we dropped the band
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index for simplicity. Each contribution consists of three essential parts: i) the Fermi

function f(ε) or its derivative f ′(ε), ii) a spectral weighting factor involving a specific

combination of the quasiparticle spectral functions Anp(ε) of quasiparticle bands n = ±,

that is,

wnp,intra(ε) = π
(
Anp(ε)

)2
, (1.94)

wsp,inter(ε) = 4πr2
pA

+
p (ε)A−p (ε) , (1.95)

wa,np,inter(ε) = 8π2r2
p

(
Anp(ε)

)2
A−np (ε) , (1.96)

with −n denoting the opposite band, and iii) a momentum-dependent weighting factor

involving the quasiparticle velocities E±,αp , the quantum metric factor Cαβ
p or the Berry

curvatures Ωαβ,±
p given as

E±,αp = gαp ± rαp , (1.97)

Cαβ
p =

1

2

(
θαpθ

β
p + ϕαpϕ

β
p sin2 θp

)
, (1.98)

Ωαβ,±
p = ±1

2

(
ϕαpθ

β
p − ϕβpθαp

)
sin θp , (1.99)

where gαp = ∂αgp, rαp = ∂αrp, θαp = ∂αθp and ϕαp = ∂αϕp with the momentum derivative

in α direction ∂α = ∂
∂pα

. The conductivity is expressed in units of the conductance

quantum 2πσ0 = e2/~ by writing ~ explicitly, which is set to unity in the rest of this

thesis. We perform the thermodynamic limit by replacing L−1
∑

p →
∫

ddp
(2π)d

, where d is

the dimension of the system. We end up with

σαβintra,n= −e
2

~

∫
ddp

(2π)d

∫
dε f ′(ε)wnp,intra(ε)En,α

p En,β
p , (1.100)

σαβ,sinter =−e
2

~

∫
ddp

(2π)d

∫
dε f ′(ε)wsp,inter(ε)C

αβ
p , (1.101)

σαβ,ainter,n=−e
2

~

∫
ddp

(2π)d

∫
dε f(ε)wa,np,inter(ε) Ωαβ,n

p . (1.102)
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If we restore SI units, the conductivity has units 1/Ω md−2 for dimension d. Note that

we have σαβ ∝ e2/h in a two-dimensional system and σαβ ∝ e2/ha in a stacked quasi-

two-dimensional system, where a is the interlayer distance. For given λp, µ, T and Γ

the evaluation of (1.100), (1.101) and (1.102) is straightforward. The mapping of λp to

spherical coordinates is given in (1.29)-(1.33). The spectral function A±p (ε) is defined in

(1.89).

1.3.4 Relation to the Bastin and the Středa formula

Microscopic approaches to the anomalous Hall conductivity are frequently based on the

formulas of Bastin et al. [75] and Středa [76]. A modern derivation is given by Crépieux

et al. [77]. We present a different derivation that follows the steps of Bastin et al. [75] in

our notation and discuss the relation to our results. We omit the momentum dependence

for a simpler notation in this section.

We start with the polarization tensor Παβ
iq0

in (1.21) before analytic continuation.

In contrast to our discussion above, we perform the Matsubara sum and the analytic

continuation in (1.19) immediately and get

σαβω = − 1

iω
Trε,p

[
fε
(
Aελ

βG A
ε−ωλ

α + G R
ε+ωλ

βAελ
α −Aελ

βPελ
α −Pελ

βAελ
α
)]
. (1.103)

We combined the prefactors, the summation over momenta and the frequency integration

as well as the matrix trace in the short notation Trε,p
[
·
]

= e2L−1
∑

p

∫
dε tr

[
·
]
, where

the dot · indicates the argument. The first two and the last two terms are obtained

by the argument explicitly given in (1.21) and its (iq0 = 0) contribution, respectively.

Details of the Matsubara summation and the analytic continuation are given in Appendix

F. G R
ε and G A

ε are the retarded and advanced Green’s function of (1.14), respectively.

Aε = −(G R
ε − G A

ε )/2πi is the spectral function matrix and Pε = (G R
ε + G A

ε )/2 is the

principle-value function matrix. fε is the Fermi function.

We derive the zero-frequency (DC) limit by expanding σαβω in the frequency ω of the

external electric field E(ω). The diverging term ∝ 1/ω vanishes, which can be checked

by using G R
ε = Pε − iπAε and G A

ε = Pε + iπAε. The constant term is

σαβBastin = iTrε,p
[
fε
(
−Aελ

β(G A
ε )′λα + (G R

ε )′λβAελ
α
)]
, (1.104)
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which was derived by Bastin et al. [75]. The derivative with respect to the inter-

nal frequency ε of the retarded and advanced Green’s function matrices is denoted by(
G R/A
ε

)′
= ∂εG

R/A
ε , respectively. The expression in (1.104) is written in the subsystem

basis, in which we expressed the Bloch Hamiltonian λp in (1.2). Due to the matrix trace,

we can change to the diagonal basis via (1.38) and (1.40).

In Sec. 1.3.1, we identified the symmetry under exchange of α↔ β as a good criterion

for a decomposition. The Bastin formula is neither symmetric nor antisymmetric in

α↔ β. When we decompose σαβBastin into its symmetric and antisymmetric part, we can

easily identify our result (1.93), that is,

1

2

(
σαβBastin + σβαBastin

)
= σαβintra,+ + σαβintra,− + σαβ,sinter , (1.105)

1

2

(
σαβBastin − σ

βα
Bastin

)
= σαβ,ainter,+ + σαβ,ainter,− . (1.106)

This identification is expected as the decomposition into the symmetric and antisym-

metric part is unique. We note that this separation naturally leads to a Fermi-surface

(1.105) and a Fermi-sea contribution (1.106) of the same form that we defined in Sec. 1.3.

Based on our derivation, we argue that we should see the symmetry under α↔ β as the

fundamental difference between (1.105) and (1.106) instead of the property involving fε

or f ′ε.

The Bastin formula (1.104) is the starting point for the derivation of the Středa

formula [76,77]. We split σαβBastin into two equal parts and perform partial integration in

the internal frequency ε on the latter one. We obtain

σαβBastin =
i

2
Trε,p

[
fε
(
−Aελ

β(G A
ε )′λα + (G R

ε )′λβAελ
α
)]

(1.107)

− i
2

Trε,p
[
f ′ε
(
−Aελ

βG A
ε λ

α + G R
ε λ

βAελ
α
)]

(1.108)

− i
2

Trε,p
[
fε
(
−A ′

ε λ
βG A

ε λ
α + G R

ε λ
βA ′

ε λ
α
)]
. (1.109)

We replace the spectral function by its definition Aε = −(G R
ε − G A

ε )/2πi and sort by fε

and f ′ε. By doing so, the Středa formula decomposes into two contributions, historically

labeled as

σαβStreda = σαβ,IStreda + σαβ,IIStreda (1.110)
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with the “Fermi-surface contribution”

σαβ,IStreda =
1

4π
Trε,p

[
f ′ε
(
− (G R

ε − G A
ε )λβG A

ε λ
α +GR

ε λ
β(G R

ε − G A
ε )λα

)]
, (1.111)

and the “Fermi-sea contribution”

σαβ,IIStreda = − 1

4π
Trε,p

[
fε
(
G A
ε λ

β(G A
ε )′λα − (G A

ε )′λβG A
ε λ

α

+(G R
ε )′λβG R

ε λ
α − G R

ε λ
β(G R

ε )′λα
)]
. (1.112)

The decomposition (1.110) explicitly shows the ambiguity in the definition of Fermi-

sea and Fermi-surface contributions due to the possibility of partial integration in the

internal frequency ε. Following our distinction by the symmetry with respect to α ↔
β, we notice that the second contribution (1.112) is antisymmetric, whereas the first

contribution (1.111) is neither symmetric nor antisymmetric. If we decompose (1.111)

into its symmetric and antisymmetric part and combine the latter one with (1.112), we

recover our findings

1

2

(
σαβ,IStreda + σβα,IStreda

)
= σαβintra,+ + σαβintra,− + σαβ,sinter , (1.113)

1

2

(
σαβ,IStreda − σ

βα,I
Streda

)
+ σαβ,IIStreda = σαβ,ainter,+ +σαβ,ainter,− , (1.114)

as expected by the uniqueness of this decomposition. We see that the antisymmetric

interband contribution, which will be shown to be responsible for the anomalous Hall

effect, is given by parts of Středa’s Fermi-surface and Fermi-sea contributions combined

[88]. In the literature different parts of (1.111) and (1.112) are identified to be relevant

when treating disorder effects via quasiparticle lifetime broadening or beyond [43,72–74,

77–89]. Due to the mathematical uniqueness and the clear physical interpretation we

propose (1.106) or, equivalently, (1.114) as a good starting point for further studies on

the anomalous Hall conductivity.

1.3.5 Basis choice and subsystem basis

The polarization tensor Παβ
iq0

in (1.21) is the trace of a matrix and is, thus, invariant under

unitary (or, more general, similarity) transformations of this matrix. In other words, the
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conductivities can be expressed within a different basis, for instance, the eigenbasis, which

we used for the final formulas in (1.100)-(1.102) in Sec. 1.3.3. The obvious advantage of

the eigenbasis is that we can easily identify terms with clear physical interpretation like

the quasiparticle spectral functions A±p (ε), the quasiparticle velocities E±,αp , the quantum

metric factor Cαβ
p , and the Berry curvature Ωαβ,±

p .

In general, we can use any invertible matrix Up and perform similar steps as we

did in our derivation: In analogy to (1.37) and (1.38), we obtain a transformed Bloch

Hamiltonian matrix λ̃p = U−1
p λpUp and a corresponding Green’s function matrix. Re-

considering the steps in (1.39), we obtain a new decomposition (1.40) of the velocity

matrix with an analogue of the Berry-connection-like matrix in (1.41). We see that the

following steps of decomposing the Berry-connection-like matrix, separating the involved

matrices of the polarization tensor into their diagonal and off-diagonal parts and split-

ting the off-diagonal matrices into their symmetric and antisymmetric components under

transposition are possible but lengthy.

A special case is Up = 1, by which we express the conductivity in the subsystem

basis, in which we defined the Bloch Hamiltonian λp in (1.2). Following the derivation

in Sec. 1.3.4, we obtain (1.104), which we further decompose into the symmetric and

antisymmetric part with respect to α↔ β, σαβ = σαβ,s + σαβ,a. We obtain

σαβ,s = −πTrε,p
[
f ′ε Aε λ

β Aε λ
α
]
, (1.115)

σαβ,a = 2π2 Trε,p
[
fε
(
A 2
ε λ

β Aε λ
α − Aε λ

β A 2
ε λ

α
)]
. (1.116)

We replaced P ′
ε by using (1.90). These expressions still involve the matrix trace. Ob-

viously, an immediate evaluation of this trace without any further simplifications would

produce very lengthy expressions.

A major reduction of the effort to perform the matrix trace is the decomposition into

symmetric and antisymmetric parts with respect to the trace transposition, which was

defined in (1.76). We expand Aε, λ
α and λβ into their diagonal and off-diagonal compo-

nents, which we further decompose into parts proportional to τx and τy. For instance in

(1.115), we obtain 81 combinations, where several combinations vanish by tracing an off-

diagonal matrix. We get symmetric as well as antisymmetric contributions under trace

transposition. However, the latter ones will eventually vanish due to the antisymmetry
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in α ↔ β. Similarly, the symmetric contributions under trace transposition will drop

out in (1.116).

1.3.6 Small and large relaxation rate Γ and low temperature

In our derivation in Sec. 1.3.1 to Sec. 1.3.3, we did not assume any restrictions on the size

of the relaxation rate Γ. Thus, the formulas (1.100)-(1.102) are valid for a relaxation

rate Γ of arbitrary size. In the following, we discuss both the clean limit (small Γ)

and the dirty limit (large Γ) analytically. We are not only interested in the limiting

behavior of the full conductivity σαβ in (1.93), but also in the behavior of the individual

contributions (1.100)-(1.102). The dependence on Γ is completely captured by the three

different spectral weighting factors wnp,intra, wsp,inter and wa,np,inter, which involve a specific

product of quasiparticle spectral functions and are defined in (1.94)-(1.96).

The spectral weighting factor of the intraband conductivities wnp,intra in (1.94) involves

the square of the spectral function of the same band,
(
Anp(ε)

)2
, and, thus, peaks at the

corresponding quasiparticle Fermi surface, which is defined by En
p − µ = 0, for small Γ.

If Γ is so small that the quasiparticle velocities E±,αp are almost constant in a momentum

range in which the variation of E±p is of order Γ, we can approximate

wnp,intra(ε) ≈ 1

2Γ
δ(ε+ µ− En

p) ∼ O(Γ−1) . (1.117)

Thus, the intraband conductivities σαβintra,± diverge as 1/Γ, consistent with Boltzmann

transport theory [7].

The spectral weighting factor of the symmetric interband conductivity wsp,inter in

(1.95) is the product of the spectral functions of the two bands, A+
p (ε)A−p (ε). For small Γ,

wsp,inter peaks equally at the Fermi surface of both bands. For increasing Γ, the gap starts

to fill up until the peaks merge and form one broad peak at (E+
p +E−p )/2−µ = gp−µ. It

decreases further for even larger Γ. Since each spectral function Anp(ε) has half width of

Γ at half the maximum value, the relevant scale for the crossover is 2Γ = E+
p −E−p = 2rp.

We sketch wsp,inter in Fig. 1.2 for several choices of Γ. If the quantum metric factor Cαβ
p

is almost constant in a momentum range in which the variation of E±p is of order Γ and,
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Figure 1.2: The spectral weighting factors wsp,inter (top) and wa,+p,inter (bottom, solid), and

its primitive W a,+
p,inter (bottom, dashed) for different choices of Γ.

furthermore, if Γ� rp, we can approximate

wsp,inter(ε) ≈ Γ
∑
n=±

δ(ε+ µ− En
p) ∼ O(Γ1) . (1.118)

We see that the symmetric interband conductivity σαβ,sinter scales linearly in Γ and is sup-

pressed by a factor Γ2 in the clean limit compared to the intraband conductivities.

The spectral weighting factor of the antisymmetric interband conductivities wa,np,inter

in (1.96) is the square of the spectral function of one band multiplied by the spectral
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function of the other band,
(
Anp(ε)

)2
A−np (ε). In the clean limit, it is dominated by a

peak at En
p −µ. For increasing Γ, the peak becomes asymmetric due to the contribution

of the spectral function of the other band at E−np − µ and develops a shoulder. For

2Γ� E+
p −E−p = 2rp, it eventually becomes one broad peak close to (E+

p +E−p )/2−µ =

gp− µ. We sketch wa,+inter in Fig. 1.2 for several choices of Γ. If the Berry curvature Ωαβ,n
p

is almost constant in a momentum range in which the variation of En
p is of order Γ and,

furthermore, if Γ� rp, we can approximate

wn,ap,inter(ε) ≈ δ(ε+ µ− En
p) ∼ O(Γ0) . (1.119)

Thus, the antisymmetric interband conductivities σαβ,ainter,± become Γ independent, or “dis-

sipationless” [43]. The symmetric interband conductivity is suppressed by a factor Γ

compared to the antisymmetric interband conductivities. The antisymmetric interband

conductivities are suppressed by a factor Γ compared to the intraband conductivities.

However, note that the leading order might vanish, for instance, when integrating over

momenta or due to zero Berry curvature.

Using (1.117), (1.118) and (1.119) we see that the intraband conductivities and the

symmetric interband conductivity are proportional to −f ′(E±p − µ) whereas the anti-

symmetric interband conductivities involve the Fermi function f(E±p − µ) in the clean

limit. Thus, the former ones are restricted to the vicinity of the Fermi surface at low

temperature kBT � 1. In contrast, all occupied states contribute to the antisymmetric

interband conductivities. The consistency with the Landau Fermi liquid picture was

discussed by Haldane [103].

The Fermi function f(ε) and its derivative f ′(ε) capture the temperature broadening

effect in the different contributions (1.100)-(1.102) of the conductivity. In the following,

we have a closer look at the low temperature limit. Since f ′(ε)→ −δ(ε) for kBT � 1 the

spectral weighting factors of the intraband and the symmetric interband conductivity

read −wnp,intra(0) and −wsp,inter(0), respectively, after the frequency integration over ε.

The antisymmetric interband conductivities involve the Fermi function, which results in

the Heaviside step function for kBT � 1, that is f(ε) → Θ(−ε). Thus, the frequency

integration has still to be performed from −∞ to 0. In order to circumvent this com-

plication, we define the primitive (W n,a
p,inter(ε))

′ = wn,ap,inter(ε) with the boundary condition

W n,a
p,inter(−∞) = 0. The zero temperature limit is then performed after partial integration
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in ε by ∫
dεf(ε)wn,ap,inter(ε) = −

∫
dεf ′(ε)W n,a

p,inter(ε) ≈ W n,a
p,inter(0) . (1.120)

In Fig. 1.2, we sketch W n,a
p,inter(ε) for Γ = 0.3 rp. At finite Γ, it is a crossover from zero to

approximately one, which eventually approaches a step function at En
p−µ for small Γ. At

low temperature kBT � 1, the occupied states with En
p − µ < 0 contribute significantly

to the antisymmetric interband conductivities as expected. Note that
∫
dεwn,ap,inter(ε) =

r2
p(r2

p+3Γ2)/(r2
p+Γ2)2 ≈ 1+Γ2/r2

p, so that a step function of height 1 is only approached

in the limit Γ→ 0.

In the following, we discuss the limiting cases of the spectral weighting factors

wnp,intra(0), wsp,inter(0), and W n,a
p,inter(0), that is, in the low or zero temperature limit. We

start with the case of a band insulator in the clean limit and assume a chemical po-

tential below, above or in between the two quasiparticle bands as well as a relaxation

rate much smaller than the gap, Γ � |En
p − µ|. Within this limit, we find very distinct

behavior of the spectral weighting factors of the intraband conductivities and of the

symmetric interband conductivity on the one hand and the spectral weighting factor of

the antisymmetric interband conductivities on the other hand. The former ones scale as

wnp,intra(0) ≈ Γ2

π(µ− En
p)4
∼ O(Γ2) , (1.121)

wsp,inter(0) ≈
4r2

pΓ2

π(µ− E+
p )2(µ− E−p )2

∼ O(Γ2) . (1.122)

We see that the intraband and the symmetric interband conductivity for filled or empty

bands are only present due to a finite relaxation rate. The spectral weighting factor of

the antisymmetric interband conductivities has a different behavior whether the bands

are all empty, all filled or the chemical potential is in between both bands. By expanding

W n,a
p,inter(0) we get

W n,a
p,inter(0) =

1

2

[
1 + sign(µ− En

p)
]

+
[
2 +

∑
ν=±

sign(µ− Eν
p)
] Γ2

4r2
p

+O(Γ3) . (1.123)

Note that a direct expansion of wn,ap,inter(ε) followed by the integration over ε from −∞
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to 0 is not capable to capture the case of fully occupied bands, which shows that the

regularization by a finite Γ is crucial to avoid divergent integrals in the low temperature

limit. For completely filled bands µ > E+
p , E

−
p we have W n,a

p,inter(0) ≈ 1 + Γ2/r2
p in

agreement with the discussion above. For completely empty bands µ < E+
p , E

−
p we have

W n,a
p,inter(0) ∝ Γ3. If the chemical potential lies in between both bands E−p < µ < E+

p we

have W−,a
p,inter(0) = 1 + Γ2/2r2

p and W+,a
p,inter(0) = Γ2/2r2

p. The antisymmetric interband

conductivities involve the Berry curvature, which is equal for both bands up to a different

sign, Ωαβ,+ = −Ωαβ,−. Thus, the antisymmetric interband conductivity summed over

both bands involves

W+,a
p,inter(0)−W−,a

p,inter(0)

=
1

2

[
sign(µ− E+

p )− sign(µ− E−p )
]
−

16r3
pΓ3

3π(µ− E+
p )3(µ− E−p )3

+O(Γ5) . (1.124)

We see that a scattering-independent or “dissipationless” term is only present for a

chemical potential in between the two bands. The next order in Γ is at least cubic. Note

that different orders can vanish in the conductivities after the integration over momenta.

Our formulas (1.100)-(1.102) are valid for an arbitrarily large relaxation rate Γ. We

study the dirty limit (large Γ) in the following. In contrast to the clean limit, it is crucial

to distinct the two following cases: fixed chemical potential and fixed particle number

(per unit cell) ρN = N/L. We use the notation ρN here to avoid confusion with the band

index, but we will use the standard notation n ≡ ρN elsewhere throughout this thesis.

The condition of fixed particle number density leads to a scattering-dependent chemical

potential µ(Γ), which modifies the scaling of the spectral weighting factors. To see this,

we calculate the total particle number per unit cell at small temperature and get

ρN =
∑
ν=±

∫
dε

∫
ddp

(2π)d
Aνp(ε)f(ε) (1.125)

≈ 1−
∑
ν=±

1

π

∫
ddp

(2π)d
arctan

Eν
p − µ
Γ

(1.126)

≈ 1− 2

π
arctan

c− µ
Γ

. (1.127)
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In the last step, we assumed that Γ is much larger than the band width, that is, (E+
max−

E−min)/2 = W � Γ, where E+
max is the maximum of the upper band and E−min is the

minimum of the lower band. We denote the center of the bands as c = (E+
max +E−min)/2.

Solving for the chemical potential gives the linear dependence on Γ, µ(Γ) = c + µ∞Γ

with

µ∞ = − tan
(1− ρN)π

2
. (1.128)

Note that at half filling, ρN = 1, the chemical potential becomes scattering independent,

µ∞ = 0. At ρN = 0, 2 we have µ∞ = ∓∞. We assume a relaxation rate much larger

than the bandwidth W � Γ in the following.

In a first step, we consider the case of fixed particle number density. We discuss the

limiting cases of the spectral weighting factors wnp,intra(0), wsp,inter(0) and W n,a
p,inter(0) by

expanding up to several orders in 1/Γ. If needed, the expansion to even higher orders

is straightforward. The expansion of the spectral weighting factor of the intraband

conductivities wnp,intra(0) in (1.94) reads

wnintra(0) ≈ 1

(1 + µ2
∞)2

1

πΓ2
+

4µ∞
(1 + µ2

∞)3

En
p − c
πΓ3

− 2(1− 5µ2
∞)

(1 + µ2
∞)4

(En
p − c)2

πΓ4
. (1.129)

The prefactors involve µ∞ at each order and an additional momentum-dependent pref-

actor at cubic and quartic order. The expansion of the spectral weighting factor of the

symmetric interband conductivity wsp,inter(0) in (1.95) reads

wsinter(0) ≈ 4

(1 + µ2
∞)2

r2
p

πΓ2
+

16µ∞
(1 + µ2

∞)3

r2
p(gp − c)
πΓ3

−
[

8(1− 5µ2
∞)

(1 + µ2
∞)4

r2
p(gp − c)2

πΓ4
+

8(1− µ2
∞)

(1 + µ2
∞)4

r4
p

πΓ4

]
. (1.130)

Note that all orders involve a momentum-dependent prefactor. In both wnintra(0) and

wsinter(0) the cubic order vanishes at half filling by µ∞ = 0. The expansion of the spectral
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weighting factor of the antisymmetric interband conductivities W n,a
p,inter(0) in (1.96) reads

W a,±
inter(0) ≈

[
3π

2
+3 arctanµ∞+

µ∞(5 + 3µ2
∞)

(1 + µ2
∞)2

]
r2
p

πΓ2
− 8

3(1 + µ2
∞)3

3r2
p(gp − c)± r3

p

πΓ3
.

(1.131)

Note that the expansion of wa,±inter(ε) with subsequent frequency integration from −∞ to 0

leads to divergences and predicts a wrong lowest order behavior. Due to the property of

the Berry curvature, Ωαβ,+
p = −Ωαβ,−

p , the quadratic order drops out of the antisymmetric

interband conductivity summed over the two bands, leading to

W a,+
inter(0)−W a,−

inter(0) ≈ − 16

3(1 + µ2
∞)3

r3
p

πΓ3
− 32µ∞

(1 + µ2
∞)4

r3
p(gp − c)
πΓ4

+

[
16(1− 7µ2

∞)

(1 + µ2
∞)5

r3
p(gp − c)2

πΓ5
+

16(3− 5µ2
∞)

5(1 + µ2
∞)5

r5
p

πΓ5

]
. (1.132)

The antisymmetric interband conductivity summed over the two bands is at least cubic

in 1/Γ in contrast to the intraband and the symmetric interband conductivity, which

are at least quadratic. The integration over momenta in the conductivities can cause

the cancellation of some orders or can reduce the numerical prefactor drastically, so

that the crossover to lower orders take place far beyond the scale that is numerically or

physically approachable. By giving the exact prefactors above, this can be checked not

only qualitatively but also quantitatively for a given model.

The dirty limit for fixed chemical potential does not involve orders due to the scat-

tering dependence of µ(Γ), however modifies the prefactor due to a constant µ. The

corresponding expansion of the different spectral weighting factors can be obtained sim-

ply by setting µ∞ = 0 and c = µ in (1.129) - (1.132).

The scaling behavior σxx ∼ Γ−2 of the longitudinal conductivity and σxy ∼ Γ−3 of

the anomalous Hall conductivity (for zero σxyintra,±) is consistent with Kontani et al. [73]

and Tanaka et. al. [82]. We emphasize, however, that a scattering dependence of µ and

the integration over momenta may modify the upper scalings. Thus, the scaling relation

σxy ∝ (σxx)ν useful in the analysis of experimental results (see, for instance, Ref. [74]) is

not necessarily ν = 1.5 in the limit W � Γ [82]. We will give an example in Sec. 2.1.2.
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1.3.7 Anomalous Hall effect, anisotropic longitudinal

conductivity and quantization

The Berry curvature tensor Ωαβ,n
p is antisymmetric in α ↔ β and, thus, has three in-

dependent components in a 3-dimensional system, which can be mapped to a Berry

curvature vector Ωn
p =

(
Ωyz,n

p , −Ωxz,n
p , Ωxy,n

p

)
. In order to use the same notation in

a 2-dimensional system we set the corresponding elements in Ωn
p to zero, for instance,

Ωyz,n
p = Ωxz,n

p = 0 for a system in the x-y plane. By using the definition of the conduc-

tivity and our result (1.102) of the antisymmetric interband contribution we can write

the current density vector jan of band n = ± induced by Ωn
p as

jan =−e
2

~

∫
ddp

(2π)d

∫
dε f(ε)wa,np,inter(ε) E×Ωn

p (1.133)

The Berry curvature vector Ωn
p acts like an effective magnetic field [43,44] in analogy to

the Hall effect induced by an external magnetic field B. We see that the antisymmet-

ric interband contribution of the conductivity in (1.102) is responsible for the intrinsic

anomalous Hall effect, that is, a Hall current without an external magnetic field that is

not caused by (skew) scattering.

In a d-dimensional system, the conductivity tensor is a d×dmatrix σ = (σαβ). Besides

its antisymmetric part, which describes the anomalous Hall effect, it does also involve

a symmetric part σsym due to the intraband and the symmetric interband contributions

(1.100) and (1.101). We can diagonalize the, in general, non-diagonal matrix σsym by a

rotation R of the coordinate system, which we fixed to an orthogonal basis ex, ey, ez

when labeling α and β in (1.16). If the rotation R is chosen such that RTσsymR is

diagonal, the antisymmetric part in the rotated basis is described by the the rotated Berry

curvature vector RTΩn
p. We see that a rotation within the plane of a two-dimensional

system does not affect Ωn
p, which highlights the expected isotropy of the anomalous Hall

effect consistent with the interpretation of Ωn
p as an effective magnetic field perpendicular

to the plane. The possibility to diagonalize the symmetric part σsym shows that the

diagonal and off-diagonal intraband and symmetric interband contributions in (1.100)

and (1.101) are part of the (anisotropic) longitudinal conductivity in a rotated coordinate

system.

Finally, we discuss the possibility of quantization of the anomalous Hall conductivity.
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Let us assume a two-dimensional system that is lying in the x-y plane without loss of

generality. The Chern number of band n is calculated by the momentum integral of the

Berry curvature over the full Brillouin zone (BZ), that is,

Cn = − 1

2π

∫
BZ

Ωn
p · dS = −2π

∫
d2p

(2π)2
Ωxy,n

p (1.134)

and is quantized to integer numbers [43, 44, 64]. We can define a generalized Chern

number dependent on the temperature, the relaxation rate and the chemical potential

as

Cn(T,Γ, µ) =−2π

∫
d2p

(2π)2

∫
dε f(ε)wa,np,inter(ε) Ωxy,n

p , (1.135)

which is weighted by the Fermi function as well as by the spectral weighting factor

wa,np,inter(ε) defined in (1.96). Thus, we include the effect of band occupation, tempera-

ture and finite relaxation rate. The antisymmetric interband conductivity, that is the

anomalous Hall conductivity, then reads

σxy,ainter,n =
e2

h
Cn(T,Γ, µ) . (1.136)

In the clean limit Γ � 1, we recover the broadly used result of Onoda et al. [67] and

Jungwirth et al. [68]. If we further assume zero temperature kBT � 1 and a completely

filled band n, we recover the famous Thouless-Kohmoto-Nightingale-Nijs (TKNN) for-

mula for the quantized anomalous Hall effect [64], where the anomalous Hall conductivity

is quantized to e2

h
Cn due to the quantized integer Chern number Cn. Note that finite

temperature, finite relaxation rate Γ and partially filled bands break the quantization.

Furthermore, we may be able to relate the antisymmetric interband conductivity to

topological charges and, by this, obtain a quantized anomalous Hall conductivity. The

Berry curvature Ωn
p is the curl of the Berry connection Anp =

(
Ax,np , Ay,np , Az,np

)
,

see (1.51). Via Stokes’ theorem, the integral over a two-dimensional surface within the

Brillouin zone can be related to a closed line integral. This line integral may define a

quantized topological charge, which leads to a quantized value of σαβ,ainter,n integrated over

this surface. For instance, this causes a quantized radial component of the current in a

PT -symmetric Dirac nodal-line semimetal [104].
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1.4 Hall conductivity

After having derived and analyzed the formulas for the longitudinal and the anomalous

Hall conductivity in the last section, we continue with the derivation of the formulas for

the (ordinary) Hall conductivity. In the following, we consider the presence of both an

electric and a magnetic field. The conductivity tensor σαβηEB (ω) in (1.20), which describes

the induced current in α direction due to an electric field in β and a magnetic field in η

direction, does not only capture the Hall conductivity. For instance, σxxzEB (ω) describes the

modification of the longitudinal conductivity σxx due to a perpendicular magnetic field,

that is, the effect of (linear) magnetoresistance. In this thesis, we are mainly interested

in the antisymmetric contribution of σαβηEB (ω) with respect to α ↔ β, which describes

the Hall conductivity. Later on, we will denote this contribution as Hall conductivity

tensor σαβηH (ω), which involves the particular component σxyzH (ω) = −σyxzH (ω) of interest

for a two-dimensional system in the x-y plane with an perpendicular magnetic field in

z direction. However, the majority of the derivations are performed for general indices,

which may, thus, serve as a starting point for generalizations. In this section, we continue

the evaluation of σαβηEB (ω) in (1.20) by simplifying the polarization tensor Παβγδ
EB,iq0

in (1.22)

with a subsequent analytic continuation from Matsubara to real frequencies. The two

additional indices γ and δ are present since we have expressed the magnetic field as the

curl of the corresponding vector potential.

We structure this section as follows: We use the symmetry under trace transposition

to decompose the polarization tensor. Like for the longitudinal and the anomalous

Hall conductivity, we will show that this symmetry is equivalent to the symmetry of

the conductivities in the current and electric field directions. By this, we are able to

disentangle the contributions that describe the effect of linear magnetoresistance and the

(ordinary) Hall effect (Sec. 1.4.1). We assume a Bloch Hamiltonian with momentum-

independent coupling between the two subsystems, which is, for instance, sufficient for

the planar spiral magnetic state, and show that this drastically simplifies the involved

quantities (Sec. 1.4.2). These simplifications eventually lead to a compact form of the

polarization tensor (Sec. 1.4.3), for which we can perform the Matsubara summation and

the analytic continuation analytically (Sec. 1.4.4). We summarize our final results for

the Hall conductivity (Sec. 1.4.5), specify the components for a two-dimensional system,

and discuss the limit of a small relaxation rate (Sec. 1.4.6).
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1.4.1 Symmetry in current and electric field directions

In Sec. 1.3 in the context of the longitudinal and the anomalous Hall conductivity, we

found the equivalence between the symmetry in trace transposition, which was defined

in (1.76), and the symmetry in the indices α↔ β, that is, the current and electric field

directions. We can decompose any product of n square matrices Mi into its symmetric

and antisymmetric part under trace transposition by

tr
[
M1...Mn

]
=

1

2
tr
[
M1...Mn +Mn...M1

]
+

1

2
tr
[
M1...Mn −Mn...M1

]
. (1.137)

Note that the involved matrices may not commute in general, so that the precise order

is crucial. Let us consider the triangular and rectangular part of Παβγδ
EB,iq0

in (1.23) and

(1.24). We apply (1.137) to the triangular contribution and define

(
Παβγδ

EB,iq0

)(tri)
=
(
Παβγδ,s

EB,iq0

)(tri)
+
(
Παβγδ,a

EB,iq0

)(tri)
(1.138)

with the symmetric and antisymmetric parts

(
Παβγδ,s

EB,iq0

)(tri)
=

1

8
TrEB

[ (
Gip0+iq0,p

− Gip0−iq0,p
)
λβpGip0,pλ

δ
pGip0,pλ

αγ
p

+
(
Gip0+iq0,p

− Gip0−iq0,p
)
λαγp Gip0,pλ

δ
pGip0,pλ

β
p

]
− (α↔ β) , (1.139)

(
Παβγδ,a

EB,iq0

)(tri)
=

1

8
TrEB

[ (
Gip0+iq0,p

+ Gip0−iq0,p
)
λβpGip0,pλ

δ
pGip0,pλ

αγ
p

−
(
Gip0+iq0,p

+ Gip0−iq0,p
)
λαγp Gip0,pλ

δ
pGip0,pλ

β
p

]
+ (α↔ β) . (1.140)

Equivalently, we decompose the rectangular contribution into

(
Παβγδ

EB,iq0

)(rec)
=
(
Παβγδ,s

EB,iq0

)(rec)
+
(
Παβγδ,a

EB,iq0

)(rec)
(1.141)

with the symmetric and antisymmetric parts

(
Παβγδ,s

EB,iq0

)(rec)
=

1

8
TrEB

[ (
Gip0+iq0,p

− Gip0−iq0,p
)
λβpGip0,pλ

δ
pGip0,pλ

γ
pGip0,pλ

α
p

+
(
Gip0+iq0,p

− Gip0−iq0,p
)
λαpGip0,pλ

γ
pGip0,pλ

δ
pGip0,pλ

β
p

]
−(α↔ β) ,

(1.142)
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(
Παβγδ,a

EB,iq0

)(rec)
=

1

8
TrEB

[ (
Gip0+iq0,p

+ Gip0−iq0,p
)
λβpGip0,pλ

δ
pGip0,pλ

γ
pGip0,pλ

α
p

−
(
Gip0+iq0,p

+ Gip0−iq0,p
)
λαpGip0,pλ

γ
pGip0,pλ

δ
pGip0,pλ

β
p

]
+(α↔ β) .

(1.143)

We recapitulate the short notation TrEB[ · ] = e3TL−1
∑

p tr[ · − (iq0 = 0) − (γ ↔ δ)],

which was introduced below (1.23). We used the sign change due to the antisymmetry

in γ ↔ δ in order to bring all expressions in a similar, comparable structure for further

analysis. The obtained structure of the formulas in (1.139), (1.140), (1.142) and (1.143)

emphasizes several aspects: We see that the symmetric part under trace transposition is

antisymmetric in the indices α ↔ β. The antisymmetric part under trace transposition

is symmetric in α ↔ β. Thus, the contributions that describe the Hall effect and the

effect of linear magnetoresistance are clearly separated by their symmetry under trace

transposition. For instance, we find the (symmetric) tensor component σxxzEB (ω), which

describes the linear magnetoresistance in x direction due to a magnetic field in z direction,

to be antisymmetric under trace transposition, whereas the antisymmetric part in x↔ y

of the tensor component σxyzEB (ω) is symmetric under trace transposition and captures

the (ordinary) Hall effect. Note that tensor element σxyzEB (ω) may, in general, involve

a symmetric contribution in x ↔ y as part of the antisymmetric contribution under

trace transposition. Such a term leads to an anisotropy of the longitudinal conductivity

as described in Sec. 1.3.7. A nonzero symmetric or antisymmetric contribution under

trace transposition is clearly connected to the symmetry of the involved matrices under

transposition, which we will use in the following. We find a characteristic dependence

on the external Matsubara frequency iq0. The zeroth component with iq0 = 0 vanishes

for (1.139) and (1.142), whereas it is, in general, nonzero for (1.140) and (1.143).

1.4.2 Simplifications for a momentum-independent gap

In analogy to the derivation of the formulas for the longitudinal and the anomalous

Hall conductivity in Sec. 1.3.1, we will use the invariance of the trace under unitary

transformations of the involved matrices. We express all Green’s functions and vertices

in (1.139), (1.140), (1.142) and (1.143) in the eigenbasis |±p〉 of the Bloch Hamiltonian

λp. The Green’s function matrices are diagonal in this basis and are given in (1.38).

By decomposing the vertices into diagonal and off-diagonal parts, which are given in
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(1.40) and (1.66) for the first-order and second-order vertex, respectively, we will be

able to separate intra- and interband contributions. In a second step, we will use the

symmetry under transposition of the individual matrices in order to take advantage of

our decomposition with respect to the symmetry under trace transposition. Whereas the

Green’s function matrices are diagonal and, thus, symmetric under transposition, the off-

diagonal matrices Fνp and Fνµp have to be decomposed into their parts proportional to the

Pauli matrices τx and τy, which are symmetric and antisymmetric under transposition,

respectively.

In this thesis, we will not perform this procedure for the general Hamiltonian in (1.2)

but for a special case, which is, for instance, sufficient to capture the model of planar

spiral magnetic order, which we will discuss in the context of recent Hall experiments

in cuprates in Chapter 2. We assume a constant and real coupling between the two

subsystems A and B of the two-band system ∆p = −∆ so that the simplified Bloch

Hamiltonian is given by

λp =

εp,A −∆

−∆ εp,B

 . (1.144)

We will refer to ∆ as gap in the following. The angle ϕp, which was shown to capture

the negative phase of the gap ∆, is thus constant and given by

ϕp = −π . (1.145)

Eventually, the decomposition into diagonal and off-diagonal components does only lead

to gauge-independent quantities under the “local” U(1) gauge transformation in momen-

tum space, |±p〉 → eiφ
±
p |±p〉. For simplicity, we fix the gauge to φ+

p = φ−p = 0 in the

following. Note that the choice of the interband coupling to be real (and positive) is with-

out loss of generality for the following reason: All gauge-dependent quantities involve

the modified phase ϕ̃ = ϕ+ φ+
p − φ−p , where ϕ is the negative phase of ∆. Thus, we can

always choose an adequate momentum-independent gauge for a momentum-independent

∆. For a complex gap ∆ = |∆|e−iϕ, we can choose φ+
p = −ϕ and φ−p = 0. The constant

angle ϕp = −π drastically simplifies the different contributions of the interband matrices
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Fαp and Fαβp in (1.43), (1.44), (1.69) and (1.70). We have

X α
p = 0 , Yαp = −1

2
θαp τy , (1.146)

X αβ
p = 0 , Yαβp = −1

2
θαβp τy . (1.147)

Thus, the quantum metric factor and the Berry curvature are

Cαβp =
1

2
θαpθ

β
p 1 , Ωαβ

p = 0 . (1.148)

We see that a non-vanishing Berry curvature is connected to a momentum-dependent

angle ϕp. The eigenenergies read

E±p = gp ±
√
h2
p + ∆2 (1.149)

with gp =
(
εp,A + εp,B

)
/2 and hp =

(
εp,A − εp,B

)
/2. We can express the derivative of

the angle θp by the derivatives of the function hp via

θαp = −
∆hαp

h2
p + ∆2

, θαβp = −
∆hαβp
h2
p + ∆2

+
2hph

α
ph

β
p(

h2
p + ∆2

)2 . (1.150)

Using this and the derivative of rp =
√
h2
p + ∆2 =

(
E+

p − E−p
)
/2, we end up with the

simplified form of the interband contributions of the first- and second-order vertices

Fαp = −rpθαp τx =
2∆hαp

E+
p − E−p

τx , (1.151)

Fαβp = −
(
rαpθ

β
p + rβpθ

α
p + rpθ

αβ
p

)
τx =

2∆hαβp
E+

p − E−p
τx . (1.152)

For the last step in (1.152) note that the second term of θαβp in (1.150) multiplied with

rp is canceled by rαpθ
β
p +rβpθ

α
p. In order to summarize, we see that the interband matrices

(1.151) and (1.152) have a very similar structure. They involve the first or second

momentum derivative of hp and the ratio between the interband coupling ∆ and the

direct gap E+
p − E−p . They are proportional to τx due to the specific gauge choice that

we have chosen. For the following calculations, we define the momentum-dependent
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prefactors Fα
p = 2∆hαp/

(
E+

p − E−p
)

and Fαβ
p = 2∆hαβp /

(
E+

p − E−p
)

via Fαp = Fα
p τx and

Fαβp = Fαβ
p τx, respectively.

As a consequence of the momentum-independent gap and an appropriate gauge

choice, both the Green’s function and the vertex matrices in the eigenbasis are symmet-

ric under transposition. Thus, the antisymmetric contributions in (1.140) and (1.143)

vanish,
(
Παβγδ,a

EB,iq0

)(tri)
=
(
Παβγδ,a

EB,iq0

)(rec)
= 0. The polarization tensors

(
Παβγδ

EB,iq0

)(tri)
and(

Παβγδ
EB,iq0

)(rec)
in (1.138) and (1.141) are entirely given by the remaining symmetric con-

tributions in (1.139) and (1.142) and, thus, antisymmetric in α ↔ β. Using the trace

transposition, we obtain

(
ΠH,αβγδ
iq0

)(tri) ≡
(
Παβγδ,s

EB,iq0

)(tri)
=

1

4
TrH

[
Gip0+iq0,p

λαp Gip0,p λ
γ
p Gip0,p λ

βδ
p

]
, (1.153)

(
ΠH,αβγδ
iq0

)(rec) ≡
(
Παβγδ,s

EB,iq0

)(rec)
=

1

4
TrH

[
Gip0+iq0,p

λαp Gip0,p λ
γ
p Gip0,p λ

δ
p Gip0,p λ

β
p

]
. (1.154)

We redefined the notation of the polarization tensor in order to shorten the notation

and to highlight the connection to the Hall conductivity. We introduced the compact

notation TrH[ · ] = e3TL−1
∑

ip0,p
tr[ · − (iq0 → −iq0) − (γ ↔ δ) − (α ↔ β)], where the

dot · denotes the argument of the trace. The compact notation captures the prefactors,

the summation over frequency and momentum as well as the antisymmetry in γ ↔ δ

and α ↔ β. We used the fact that the iq0 = 0 contribution vanishes and introduced

the notation (iq0 → −iq0) for the argument with replaced external Matsubara frequency.

The subtraction of the corresponding contributions with replaced Matsubara frequency

and exchanged indices apply to all previous terms, such that (1.153) and (1.154) consist

of eight terms each when writing them explicitly. Note that we changed simultaneously

both indices α↔ β and γ ↔ δ, which does not change the overall sign.

1.4.3 Decomposition and recombination

We further simplify the triangular and rectangular contributions in (1.153) and (1.154),

so that we will eventually be able to perform the Matsubara summation and the analytic

continuation to real frequency analytically. In the following, we extensively use the sim-

plifications for a momentum-independent gap, which we derived in the previous section.

The detailed calculation is presented in Appendix E. We summarize the different steps
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and required identities for the calculation in the following.

We start by expressing both contributions in (1.153) and (1.154) in the eigenbasis

|±p〉. The Green’s function matrices Gip0,p = U †pGip0,pUp are diagonal. We apply the

transformation of the first- and second-order vertices U †pλ
α
pUp = Eαp +Fαp and U †pλ

αβ
p Up =

(M−1)αβp + Fαβp , which were defined in (1.40) and (1.66), respectively. We split the

expressions by using these decompositions into diagonal and off-diagonal components.

All terms that involve an odd number of off-diagonal matrices vanish by the matrix trace.

We show that several terms vanish by the antisymmetry in the indices γ ↔ δ when using

the simplified form of Fνp ∝ τx explicitly. The antisymmetry in the indices α↔ β allow

for further recombinations.

The rectangular contribution involves four Green’s function matrices, whereas the

triangular contribution only involves three Green’s function matrices. In order to provide

a path for combining the rectangular and the triangular contribution, we reduce the

number of Green’s function matrices in the rectangular contribution by using the identity

Gip0,pF
δ
p Gip0,p = F δp Gip0,p Sp + Sp Gip0,pF

δ
p . (1.155)

The identity can be verified by purely algebraic steps using the explicit form of the

Green’s function in (1.14) and F δp ∝ τx. We defined the short notation Sp = 1/(E+
p −

E−p ) τz. A second useful identity is based on the explicit form of Fα
p in (1.151). We have

E+,ν
p − E−,νp = 2rνp = 2hp

∆
F ν
p and, thus, the identity

F δ
p

(
E+,β

p − E−,βp

)
= F β

p

(
E+,δ

p − E−,δp

)
. (1.156)

Note that both identities (1.155) and (1.156) rely on the simplifications that were derived

by considering a momentum-independent gap.

Using those two identities and the explicit expressions provided in the previous section

as well as performing partial integration in momentum, we can combine all terms of the

rectangular contribution with the terms of the triangular contribution. The result of this

decomposition and recombination reads

ΠH,αβγδ
iq0

= ΠH,αβγδ
iq0,intra + ΠH,αβγδ

iq0,inter , (1.157)
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where we defined the intraband and interband contributions

ΠH,αβγδ
iq0,intra =− 1

4
TrH

[
Gip0+iq0,p

Eαp Gip0,p E
δ
p Gip0,p E

βγ
p

]
, (1.158)

ΠH,αβγδ
iq0,inter =− 1

4
TrH

[
Gip0+iq0,p

Fαp Gip0,p E
δ
p Gip0,pF

βγ
p

]
(1.159)

− 1

2
TrH

[
Gip0+iq0,p

Fαp Gip0,pF
δ
p Gip0,p E

βγ
p

]
. (1.160)

When performing the matrix trace explicitly, the three Green’s functions are of the same

band in each term in the intraband contribution. In the interband contribution, the

three Green’s functions of the two bands mix. Note that the final result does involve the

inverse quasiparticle effective mass Eβγp instead of the inverse generalized effective mass

(M−1)βγp . Be aware that the steps from (1.153) and (1.154) to (1.157) crucially rely on

the assumption of a momentum-independent gap.

1.4.4 Matsubara summation

In the following, we perform the Matsubara summation and the analytic continuation

of the intra- and interband contributions in (1.158), (1.159) and (1.160). We omit the

momentum dependence and introduce the reduced notation G ≡ Gip0 and G±iq0 ≡ Gip0±iq0
for simplicity in this section. The involved Matsubara summation over the (fermionic)

Matsubara frequency p0 is of the form

IHiq0 ≡ T
∑
p0

tr
[(
Giq0 − G−iq0

)
M1 GM2 GM3

]
(1.161)

with three different particular choices of the matrices Mi. T is the temperature. After

performing the Matsubara summation and the analytic continuation of the external

Matsubara frequency iq0 → ω + i0+ as shown in Appendix F, we obtain the general

result

lim
ω→0

IHω
ω

= 2

∫
dε fε tr

[
+ π2AεM1A

′
εM2AεM3 + π2AεM1AεM2A

′
εM3 (1.162)

+ P ′εM1 PεM2AεM3 + P ′εM1AεM2 PεM3 (1.163)

− AεM1 P
′
εM2 PεM3 − AεM1 PεM2 P

′
εM3

]
. (1.164)
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for the zero frequency limit. The six terms involve the Fermi function fε = (eε/T + 1)−1,

the spectral function matrix Aε = −(GRε − GAε )/2πi and the principle-value function

matrix Pε = (GRε +GAε )/2. We denote the derivative with respect to the internal frequency

ε as A′ε = ∂εAε and P ′ε = ∂εPε. Note that the involved matrices may not commute so

that the order is crucial. Using the explicit form of the retarded and advanced Green’s

function, G
R/A
ε = [ε− E ± iΓ]−1, we have the identity P ′ε = 2π2A2

ε − π Aε/Γ, which have

already been used in the derivation of the formula for the anomalous Hall conductivity.

Plugging this into (1.163) and (1.164), the second term, which is linear in Aε, drops. We

get

lim
ω→0

IHω
ω

= 2π2

∫
dε fε tr

[
+ AεM1A

′
εM2AεM3 + AεM1AεM2A

′
εM3 (1.165)

+ 2A2
ε M1 PεM2AεM3 + 2A2

ε M1AεM2 PεM3 (1.166)

− 2AεM1A
2
ε M2 PεM3 − 2AεM1 PεM2A

2
ε M3

]
. (1.167)

In order to perform further simplifications, we consider the three terms in (1.158), (1.159)

and (1.160) explicitly. We use that Eν , Eνµ ∝ 1 and Fν ,Fνµ ∝ τx for all combinations

of indices ν, µ = α, β, γ, δ. Thus, Eν and Eνµ do commute with the diagonal matrices

Aε, A
′
ε and Pε. The off-diagonal matrices Fν and Fνµ flip the diagonal elements of the

diagonal matrices Aε, A
′
ε and Pε under commutation, for instance AεFν = FνAε with Aε

being the (diagonal) matrix with diagonal elements A+
ε ↔ A−ε exchanged. The intraband

contribution in (1.158) involves M1 = Eα, M2 = Eδ and M3 = Eβγ. The two lines in

(1.166) and (1.167) cancel. We have

IHintra ≡ 4π2

∫
dε fε tr

[
Eα Eδ Eβγ A2

ε A
′
ε

]
= −4π2

3

∫
dε f ′ε tr

[
Eα Eδ Eβγ A3

ε

]
, (1.168)

where we used the chain rule and performed partial integration in the internal frequency

ε. The first term of the interband contribution in (1.159) involves M1 = Fα, M2 = Eδ

and M3 = Fβγ. We have

IHinter,1 ≡ 4π2

∫
dε fε tr

[
Fα Eδ Fβγ

(
AεA

′
εAε + 2A2

ε PεAε − 2AεA
2
ε Pε
)]
. (1.169)
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Note that A′εAε = A′ε Aε, and for PεAε and A2
ε Pε accordingly, since the involved matrices

are diagonal. Using the explicit form of the spectral function, Aε = Γ/π [(ε−E)2 +Γ2]−1,

we can write its derivative as the product of the principle-value function Pε = (ε−E)[(ε−
E)2 + Γ2]−1 and the spectral function itself, that is, A′ε = −2PεAε. Using this, we obtain

IHinter,1 = 4π2

∫
dε fε tr

[
Fα Eδ Fβγ

(
2A2

ε PεAε − 4AεA
2
ε Pε
)]
. (1.170)

We can relate the second term to the frequency derivative of A2
εAε by using the identity

−4AεA
2
ε Pε =

(
A2
εAε
)′

+ 2AεA
2
εPε. This identity can be checked by using the explicit

form of the spectral function. Thus, we obtain

IHinter,1 = 4π2

∫
dε fε tr

[
Fα Eδ Fβγ

((
A2
ε Aε

)′
+ 2AεAε

(
Aε Pε + Aε Pε

))]
. (1.171)

In a final step, we can use the identity AεPε+AεPε = Aε S+Aε S with S = 1/(E+−E−) τz

in order to express the full result only in combinations of the spectral function or its

derivative. We obtain

IHinter,1 =− 4π2

∫
dε f ′ε tr

[
Fα Eδ Fβγ A2

ε Aε
]

(1.172)

+ 8π2

∫
dε fε tr

[
Fα Eδ Fβγ

(
A2
ε AεS + AεA

2
εS
)]
, (1.173)

where we performed partial integration in the internal frequency ε in the first term. We

have, thus, obtained one contribution proportional to the derivative of the Fermi function

and one contribution proportional to the Fermi function itself. The second term of the

interband contribution in (1.160) involves M1 = Fα, M2 = F δ and M3 = Eβγ. We have

Iinter,2 ≡ 2π2

∫
dε fε tr

[
FαF δ Eβγ

(
AεA

′
εAε+AεAεA

′
ε+2A2

ε Aε Pε−2AεA
2
ε Pε
)]
. (1.174)

Expressing the derivative of the spectral function as A′ε = −2PεAε and using the identity

AεPε + AεPε = Aε S + Aε S, we get

Iinter,2 =− 4π2

∫
dε fε tr

[
FαF δ Eβγ

(
A2
ε Aε S + AεA

2
ε S
)]
. (1.175)
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Note that (1.175) involves the same combination of spectral functions as (1.173). The

polarization tensor limω→0 ΠH,αβγδ
iq0→ω+i0+/ω is obtained by combing (1.168) with (1.158),

(1.172) and (1.173) with (1.159), and (1.175) with (1.160).

1.4.5 Formulas for the Hall conductivity tensor

As the final step of the derivation, we combine all our results for the Hall conductiv-

ity under the assumption of a momentum-independent gap. We have shown that the

tensor σαβηEB is purely antisymmetric in α ↔ β. Thus, we can identify it with the Hall

conductivity tensor σαβηH = −σβαηH . The (Hall) conductivity tensor is related to the

polarization tensor via (1.20). We write out the trace over the two bands explicitly.

The zero-frequency (DC) Hall conductivity tensor σαβηH decomposes into four different

contributions:

σαβηH = σαβηH,intra,+ + σαβηH,intra,− + σαβηH,inter,+ + σαβηH,inter,− . (1.176)

Each contribution consists of three essential parts: i) the Fermi function f(ε) or its

derivative f ′(ε), ii) a spectral weighting factor involving a specific combination of the

quasiparticle spectral functions Anp(ε) of band n = ±, that is,

wH,np,intra(ε) =
2π2

3

(
Anp(ε)

)3
, (1.177)

wH,np,inter(ε) = 2π2(E+
p − E−p )2

(
Anp(ε)

)2
A−np (ε) ≡ wa,np,inter(ε) , (1.178)

with −n denoting the opposite band, and iii) a momentum-dependent weighting factor

involving the momentum derivatives of gp = (εp,A + εp,B)/2 and hp = (εp,A − εp,B)/2.

Note that the spectral weighting factor of the interband contribution in (1.178) is equal

to wa,np,inter in (1.96). For consistency of notation in this section, we replaced rp = (E+
p −

E−p )/2. The spectral weighting factor of the intraband contribution in (1.177) is very

similar to wnp,intra in (1.94), but involves the quasiparticle spectral function to the power

of three instead to the power of two. The diagonal elements of the eigenenergy Ep, the

quasiparticle velocity Eαp and the inverse quasiparticle effective mass Eαβp in terms of the
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simplified Bloch Hamiltonian in (1.144) are given as

E±p = gp ±
√
h2
p + ∆2 , (1.179)

E±,αp = gαp ±
2hph

α
p

E+
p − E−p

, (1.180)

E±,αβp = gαβp ±
(

2hph
αβ
p

E+
p − E−p

+

[
1−

h2
p

∆2 + h2
p

]
2hαph

β
p

E+
p − E−p

)
. (1.181)

The off-diagonal elements of Fαp and Fαβp read

Fα
p =

2∆hαp
E+

p − E−p
, Fαβ

p =
2∆hαβp
E+

p − E−p
. (1.182)

We write gνp = ∂νgp , gνµp = ∂ν∂µgp and similar for hp with the momentum derivative in

ν = x, y, z direction ∂ν = ∂/∂pν . We express the Hall conductivity in units of e3/~2 by

restoring ~, which is set to unity throughout this thesis. We perform the thermodynamic

limit by replacing L−1
∑

p →
∫

ddp
(2π)d

, where d is the dimension of the system. We have

σαβηH,intra,n =−
∑
γ,δ

εηγδ

2

e3

~2

∫
ddp

(2π)d

∫
dε f ′(ε)wH,np,intra(ε)

[
En,α

p En,βγ
p En,δ

p −(α↔β)
]
, (1.183)

σαβηH,inter,n = −
∑
γ,δ

εηγδ

2

e3

~2

∫
ddp

(2π)d

∫
dε f ′(ε)wH,np,inter(ε)

[
Fα
p F

βγ
p En,δ

p

(E+
p − E−p )2

−(α↔β)

]

+
∑
γ,δ

εηγδ
e3

~2

∫
ddp

(2π)d

∫
dε f(ε)

(
wH,+p,inter(ε)− w

H,−
p,inter(ε)

)
×
[
Fα
p F

βγ
p En,δ

p − Fα
p E

n,βγ
p F δ

p

(E+
p − E−p )3

−(α↔β)

]
. (1.184)

If we restore SI units, the conductivity has units [Ω md−2 T]−1 for dimension d. For a

given Bloch Hamiltonian λp of the form (1.144), chemical potential µ, temperature T

and relaxation rate Γ, the evaluation of (1.183) and (1.184) is straightforward.
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1.4.6 Hall coefficient and Hall number

The Hall conductivity σαβηH is a tensor with indices α, β and η, where the first index

α = x, y, z is the direction of the induced Hall current density jαH, the second index

β = x, y, z is the direction of the external electric field Eβ and the third index η =

x, y, z is the direction of the external magnetic field Bη. The Hall conductivity tensor is

antisymmetric in the indices α↔ β and, thus, has nine independent elements. Therefore,

we can write the induced current density in a vector form as

jH = E× (σHB) (1.185)

with the vectors jH = (jαH), E = (Eβ) and B = (Bη). The matrix σH is defined as

σH =

 σyzxH σyzyH σyzzH

−σxzxH −σxzyH −σxzzH

σxyxH σxyyH σxyzH

 , (1.186)

involving the nine independent elements of σαβηH . We consider a two-dimensional system,

which is assumed to lie in the x-y plane without loss of generality. Then, the dispersion is

independent of the z direction, so that ∂zεp,A = ∂zεp,B = 0. By writing the components

in (1.183) and (1.184) explicitly, we find that only the component σxyzH is nonzero as

expected. This drastically simplifies (1.186). The only nonzero components read jxH =

σxyzH EyBz and jyH = −σxyzH ExBz. This is a transverse current with strength |jH| =

σxyzH Bz|E|.
The Hall conductivity tensor σαβηH for the simplified Bloch Hamiltonian in (1.144)

decomposes into four components in (1.176). These components were given in (1.183)

and (1.184) for arbitrary indices. In the following, we give the Hall conductivity

σxyzH = σxyzH,intra,+ + σxyzH,intra,− + σxyzH,inter,+ + σxyzH,inter,− (1.187)

explicitly for a two-dimensional system in the x-y plane with a perpendicular external

magnetic field in z direction. The intraband contributions for the quasiparticle bands
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n = ± read

σxyzH,intra,n =
1

2

e3

~2

∫
d2p

(2π)2

∫
dε f ′(ε)wH,np,intra(ε)

[
(En,x

p )2En,yy
p − En,x

p En,y
p En,xy

p + (x↔ y)
]
.

(1.188)

We write ~ explicitly here and in the rest of this section. We indicated the additions

of the previous terms with exchanged x and y indices via (x ↔ y). The interband

contribution reads

σxyzH,inter,n = −1

2

e3

~2

∫
d2p

(2π)2

∫
dε f ′(ε)wH,np,inter(ε)

[
F x
p F

yx
p En,y

p − F y
p F

xx
p En,y

p

(E+
p − E−p )2

+ (x↔ y)

]

+
e3

~2

∫
d2p

(2π)2

∫
dε f(ε)

(
wH,+p,inter(ε)− w

H,−
p,inter(ε)

)
×
[
F x
p F

yx
p En,y

p − F y
p F

xx
p En,y

p − F x
p E

n,yx
p F y

p + F y
p E

n,xx
p F y

p

(E+
p − E−p )3

+ (x↔ y)

]
.

(1.189)

Note that the exchange of x and y in (1.188) and (1.189) is not equivalent with the

symmetry in α↔ β of the tensor σαβηH itself and, thus, not in contradiction with its anti-

symmetry, σxyzH = −σyxzH . The Hall conductivity σxyzH and the longitudinal conductivities

determine the Hall coefficient

RH =
σxyzH

σxxσyy
. (1.190)

where σxx and σyy are the longitudinal conductivities given in (1.93). We assumed that

σxy = σyx = 0. Unlike the longitudinal and the Hall conductivities, the Hall coefficient is

finite in the limit of small relaxation rate Γ. In order to see this, note that the formulas

in (1.188) and (1.189) hold for a relaxation rate Γ of arbitrary size. The dependence

on Γ is captured by the spectral weighting factors wH,np,intra(ε) and wH,np,inter(ε), which were

defined in (1.177) and (1.178), respectively. We can perform the limit of small relaxation

rate for these spectral weighting factors and obtain

wH,np,intra(ε) ≈ 1

(2Γ)2
δ(ε+ µ− En

p) ∼ O(Γ−2) , (1.191)

wH,np,inter(ε) ≈ δ(ε+ µ− En
p) ∼ O(Γ0) . (1.192)
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The limit applies under the same conditions as for the ordinary conductivity, which

we discussed in detail in Sec. 1.3.6: The momentum-dependent functions E±,αp , Fα
p ,

and so on, must be almost constant in the momentum range in which the variation of

E±p is of order Γ, and Γ must be much smaller than the direct band gap E+
p − E−p .

Here, for the Hall conductivity, the interband contributions are suppressed by a factor

Γ2 compared to the intraband contributions. Such a suppression was also found for the

interband contribution compared to the longitudinal conductivity. Since the longitudinal

conductivity scales as σxx ∼ σyy ∼ Γ−1 and the Hall conductivity scales as σxyzH ∼ Γ−2

in the clean limit, we see that the Hall coefficient in (1.190) is independent of Γ in the

clean limit.

After having performed the limit of a small relaxation rate, we can integrate over the

internal frequency ε and obtain

σxyzH,intra,n →
1

2

e3τ 2

~2

∫
d2p

(2π)2
f ′(En

p)
[
(En,x

p )2En,yy
p − En,x

p En,y
p En,xy

p + (x↔ y)
]
, (1.193)

where we replaced the relaxation rate by the relaxation time τ = 1/2Γ. Using f ′(En
p)En,α

p =

∂αf(En
p), and performing a partial integration in momentum, this can also be written as

σxyzH,intra,n → −
e3τ 2

~2

∫
d2p

(2π)2
f(En

p)
[
En,xx

p En,yy
p − En,xy

p En,yx
p

]
. (1.194)

These results in (1.193) and (1.194) agree with the corresponding expressions derived by

Voruganti et al. [42] and are equivalent to the result obtained in Boltzmann transport

theory in (3) when replacing the bare dispersion with the dispersion of the quasiparticle

band.

There are special cases where the Hall coefficient is determined by the charge density

ρc via the simple relation RH = ρ−1
c . For free electrons with a parabolic dispersion, this

relation holds for any magnetic field, with ρc = −ene. Note that we use the convention

e > 0. For band electrons, it still holds in the high-field limit ωcτ � 1, if the semiclassical

electron orbits of all occupied (or all unoccupied) states are closed [5]. For Fermi surfaces

enclosing unoccupied states, the relevant charge density is then ρc = +enh, where nh is

the density of holes. If both electron and hole-like Fermi surfaces are present, one has

ρc = e(nh − ne) [5]. Results for the Hall conductivity are, thus, frequently represented
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in terms of the so-called Hall number nH, defined via the relation

RH =
1

e nH

. (1.195)

We use the convention that electron-like contributions are counted negatively and hole-

like contributions are counted positively in the Hall number nH . However, nH is given

by the electron and hole densities only in the special cases described above. We will see

an example in Sec. 2.2.

We finally emphasize that our derivation is valid under the assumption of a momentum-

independent gap ∆p = −∆ and a momentum-independent relaxation rate Γ. A general-

ization to a momentum-dependent gap is not straightforward, since numerous additional

terms appear and the simplifications in Sec. 1.4.2 are not valid anymore.
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The general two-band model that we introduced in Chapter 1 captures a broad variety

of very different physical systems. We discussed the longitudinal conductivity as well as

the anomalous and ordinary Hall conductivity in this general context and derived several

formulas including interband contributions, which we analyzed in detail. In this chapter,

we now apply our general theory to different physically motivated models in order to

exemplify the general conclusions and to gain further insight into physical problems that

were not possible to obtain before without formulas that include interband contributions.

We split this chapter into two parts. In Sec. 2.1, we focus on the conductivity in

the context of material with topological properties. The anomalous transport behavior

is intrinsically linked to the interplay between the two bands. The generalization to

a relaxation rate of arbitrary size as well as the unique decomposition allows us to

clarify several aspects that remained unclear in earlier treatments. We go beyond the

“dissipationless” limit of the quantum anomalous Hall effect and discuss the scaling

behavior of the anomalous Hall conductivity with respect to the relaxation rate and

with respect to the longitudinal conductivity in application to experimental results on

ferromagnets. In Sec. 2.2, we analyze the phenomenology and the transport properties

of a two-dimensional tight-binding model with onsite spiral magnetic order. This model

breaks translational symmetry but has combined lattice translation and spin rotation

symmetry and has, thus, several unconventional properties. We relate this model to

recent experiments on cuprates and discuss the relevance of interband contributions

in the analysis of the Hall number, which was studied experimentally in very strong

magnetic fields.
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2.1 Anomalous Hall effect

In recent years, there is an increasing interest in the transport properties of systems with

topological properties [51–63]. The established connection between the intrinsic anoma-

lous Hall effect and the Berry curvature [64–68] has become a powerful tool for combining

theoretical predictions and experimental results. In the following two sections, we ap-

ply our general theory to two examples, a Chern insulator and a quasi-two-dimensional

ferromagnetic multi-d-orbital model, which both involve a nonzero Berry curvature and,

thus, show the anomalous Hall effect.

In Sec. 2.1.1, we discuss the quantum anomalous Hall effect, the quantized version

of the anomalous Hall effect, in a Chern insulator. The Berry curvature integrated

over a full band is quantized to integer values [64], where a zero or a nonzero integer

is the defining character of a topologically trivial or non-trivial band, respectively. A

Chern insulator may involve such topological non-trivial bands for certain parameter

ranges. Due to the direct link between the Berry curvature and the intrinsic anomalous

Hall effect, the anomalous Hall conductivity can, thus, be quantized in this range. We

motivate a model of a Chern insulator via a tight-binding model presented by Nagaosa et

al. [43] and discuss its transport properties. We identify a regime of quantized anomalous

Hall conductivity, study the impact of the relaxation rate Γ on the quantization, and

discuss the different contributions to the conductivities.

The formulas that we derived in our general theory are valid for a relaxation rate

Γ of arbitrary size. This allows us to study the scaling behavior of the conductivities

with respect to the relaxation rate for both small and large Γ. As a consequence, we can

apply those results in order to understand the scaling of the anomalous Hall conductivity

with respect to the longitudinal conductivity, σxy ∝ (σxx)ν , which is often used in the

analysis of experimental results (see, for instance, Ref. [74]). In Sec. 2.1.2, we re-discuss

the scaling behavior of a quasi-two-dimensional ferromagnetic multi-d-orbital model with

spin-orbit coupling proposed by Kontani et al. [73] and show that a formerly proposed

non-integer scaling behavior can be understood as a crossover regime in good agreement

with experimental results.
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2.1.1 Quantum anomalous Hall effect in a Chern insulator

We discuss the Wilson fermion model, a two-dimensional lattice model of a Chern insu-

lator [105]. The main focus lies on the quantized anomalous Hall effect due to a finite

Chern number of the fully occupied band in order to illustrate our discussion in Sec. 1.3.7.

The Wilson fermion model is motivated via a tight-binding model presented by Nagaosa

et al. [43], which we recapitulate in the following. We assume a two-dimensional square

lattice with three orbitals s, px, py, and spin. The three orbitals are located at the

same lattice site. We include the hopping between these sites and a simplified spin-orbit

interaction between the z component of the spin and the orbital moment. Furthermore,

we assume to be in the ferromagnetic state with spin ↑ only. Due to the spin-orbit

interaction, the p-orbitals are split into px ± ipy. We identify that the effective two-

band low-energy model has an Hamiltonian of the form in (1.1) with the two subsystems

A = (s, ↑) and B = (px − ipy, ↑) and with ρA = ρB = 0 and QA = QB = 0. The Bloch

Hamiltonian reads

λp =

εs − 2ts
(

cos px + cos py
) √

2 tsp
(
i sin px + sin py

)
√

2 t∗sp(−i sin px + sin py
)

εp + tp
(

cos px + cos py
)
 , (2.1)

where εs and εp are the energy levels of the two orbitals. The real numbers ts and

tp describe the hopping within one orbital and the complex number tsp describes the

hopping between the two orbitals. We refer for a more detailed motivation to Nagaosa et

al. [43]. In the following, we further reduce the number of parameters by setting ts = t,

tp/t = 2, tsp/t = 1/
√

2 and εs/t = −εp/t = m. We recover the two-dimensional Wilson

fermion model [105] with only one free dimensionless parameter, which we labeled as m,

and energy scale t. We discuss the conductivity of this model as a function of m and the

chemical potential µ.

We give some basic properties of the model. The quasiparticle dispersions are

E±p /t = ±
√

(m− 2 cos px − 2 cos py)2 + sin2 px + sin2 py . (2.2)

The gap closes in form of a Dirac point at (px, py) = (±π,±π) for m = −4, at (0,±π)

and (±π, 0) for m = 0, and at (0, 0) for m = 4. For instance, the linearized Hamiltonian

for m = 4 near the gap reads λp/t = pyτx − pxτy. The Chern number of the lower
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band calculated by its formula in (1.134) is C− = −1 for −4 < m < 0, C− = 1 for

0 < m < 4, and C− = 0 for |m| > 4. As expected for the Chern number of the upper

band, C+ = −C−. The bandwidth is W/t = 4 + |m|.
We calculate the diagonal conductivity σxx and the off-diagonal conductivity σxy by

using (1.100)-(1.102) in the zero temperature limit. The intraband and the symmetric

interband contribution to the off-diagonal conductivity vanish after integrating over mo-

menta, so that σxx = σyy is the longitudinal conductivity and σxy is the (antisymmetric)

anomalous Hall conductivity. In Fig. 2.1, we plot σxx = σxxintra,+ + σxxintra,− + σxx,sinter (upper

figure) and σxy = σxy,ainter,+ +σxy,ainter,− (lower figure) as a function of the parameter m at half

filling, µ = 0. For a small relaxation rate Γ = 0.1 t, we find peaks of high longitudinal

conductivity (blue) only when the gap closes at m = ±4 and m = 0, indicated by the

vertical lines. For an increased relaxation rate Γ = 0.5 t (orange), the peaks are broaden

and the conductivity inside the gap is nonzero. For an even higher relaxation rate Γ = 1 t

(green), the peak structure eventually disappears and a broad range of finite conductivity

is present. The anomalous Hall conductivity σxy is quantized to e2/h due to a nonzero

Chern number of the fully occupied lower band for low relaxation rate Γ = 0.1 t (blue).

At higher relaxation rates Γ = 0.5 t (orange) and Γ = 1 t (green), the quantization is no

longer present most prominent for m = ±4 and m = 0, where the gap closes.

In Fig. 2.2, we show the different contributions to the longitudinal and the anomalous

Hall conductivity as a function of the chemical potential µ for m = 2 and Γ = 0.5 t. The

lower and upper band end at µ/t = ±6, respectively, and we have a gap of size 2 t between

µ/t = ±1, both indicated by vertical lines. In the upper figure, we show the longitudinal

conductivity σxx (blue) and its three contributions, the intraband conductivity of the

lower band σxxintra,− (green), the intraband conductivity of the upper band σxxintra,+ (orange)

and the symmetric interband conductivity σxx,sinter (red). We see that for −6 < µ/t < −1

the conductivity is dominated by the lower band, whereas it is dominated by the upper

band for 1 < µ/t < 6. Inside the gap −1 < µ/t < 1 the main contribution is due to

the symmetric interband conductivity. We further see smearing effects at µ/t = ±6 and

µ/t = ±1. In the lower figure, we show the anomalous Hall conductivity σxy (blue) as well

as their two contributions, the antisymmetric interband conductivity of the lower band

σxy,ainter,− (green) and the upper band σxy,ainter,+ (orange). Both contributions are essentially

zero for µ/t . −1. The nonzero tail is caused by the finite relaxation rate Γ and is

suppressed for smaller values of Γ. Inside the gap −1 < µ/t < 1, only the contribution
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Figure 2.1: The longitudinal conductivity σxx and the anomalous Hall conductivity σxy

for different Γ/t = 0.1, 0.5, 1 at µ = 0 and T = 0. The vertical lines indicate the gap
closings at m = ±4 and m = 0.

of the lower band rises to approximately e2/h, whereas the contribution of the upper

band remains close to zero. Thus, we obtain a nonzero anomalous Hall conductivity.

Above µ/t & 1, the contribution of the upper band compensates the contribution of the

lower band. The finite relaxation rate Γ leads to a crossover regime with incomplete

compensation. A large anomalous Hall effect is only present for a chemical potential

inside the band gap. We see that a finite relaxation rate Γ leads to a maximal value

of the anomalous Hall conductivity of the two individual bands that is larger than e2/h
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Figure 2.2: The different contributions to σxx and σxy as a function of the chemical
potential µ for m = 2, Γ = 0.5 t and T = 0. The vertical lines indicate the upper and
the lower end of the bands at µ/t = ±6, and the gap between µ/t = ±1.

as shown in Sec. 1.3.6. Inside the gap the total anomalous Hall conductivity is reduced

due to the nonzero contribution of the upper band. Around µ/t = ±1, we see smearing

effects due to finite Γ, which we have described above for the individual contributions.

2.1.2 Scaling behavior in Ferromagnets

We discuss a quasi-two-dimensional ferromagnetic multi-d-orbital model with spin-orbit

coupling based on the work of Kontani et al. [73]. Similar to the previous example
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this model involves a nonzero Berry curvature and we expect a nonzero anomalous Hall

conductivity, which is, by contrast, not quantized. We mainly focus on the scaling

dependence with respect to the relaxation rate Γ of the different contributions using our

results of Sec. 1.3.6. We comment on the consequences when analyzing experimental

results in the dirty limit by determining the scaling behavior σxy ∝ (σxx)ν .

Following Kontani et al. [73], we consider a square lattice tight-binding model with

onsite dxz and dyz orbitals. We assume nearest-neighbor hopping t between the dxz

orbitals in x direction and between the dyz orbitals in y direction. Next-nearest-neighbor

hopping t′ couples both types of orbitals. We assume a ferromagnetic material with

magnetic moments in z direction that is, completely spin-polarized in the spin ↓ direction.

The Hamiltonian is of the form (1.1), when we identify the two subsystems with quantum

numbers A = (dxz, ↓) and B = (dyz, ↓). We have ρA = ρB = 0 and QA = QB = 0. The

Bloch Hamiltonian reads

λp =

(
−2t cos px 4t′ sin px sin py + iλ

4t′ sin px sin py − iλ −2t cos py

)
. (2.3)

We included spin-orbit coupling λ. Further details and physical motivations can be

found in Kontani et al. [73]. We take the same set of parameters setting t′/t = 0.1 and

λ/t = 0.2 as in Ref. [73]. We fix the particle number per unit cell to n = 0.4 and adapt

the chemical potential adequately. We consider temperature zero.

The chemical potential µ becomes a function of the relaxation rate for fixed particle

number (per unit cell) n ≡ ρN according to (1.127). Whereas it is constant in the clean

limit, the linear dependence on Γ in the dirty limit is crucial and has to be taken into

account carefully via a nonzero µ∞ = − tan(1 − n)π/2 ≈ −1.376 for n = 0.4. The

center of the two bands c = (E+
max + E−min)/2 = 0 drops out in (1.127). In Fig. 2.3, we

plot the (negative) chemical potential µ/t as a function of the relaxation rate Γ/t, which

was obtained by inverting n(µ,Γ) = 0.4 numerically for fixed Γ. We find the expected

limiting behavior in the clean and the dirty limit indicated by dashed lines. The vertical

lines are at those Γ/t, where Γ/t is equal to the spin-orbit coupling λ/t = 0.2, which is the

minimal gap between the lower and the upper band E±p , and the band width W/t = 2.2.

Both scales give a rough estimate for the crossover region between the constant and the

linear regime of the chemical potential.
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Figure 2.3: The (negative) chemical potential µ as a function of the relaxation rate Γ for
t′/t = 0.1 and λ/t = 0.2 at n = 0.4. The chemical potential µ is Γ independent below
Γ/t � 0.2 and scales linearly µ = µ∞Γ above Γ/t � 2.2 with µ∞ = −1.376 (dashed
lines).

We discuss the diagonal conductivity σxx = σyy and the off-diagonal conductivity σxy

as a function of the relaxation rate Γ/t. The off-diagonal symmetric contributions σxyintra,±

and σxy,sinter vanish by integration over momenta. We calculate the longitudinal conductivity

σxx = σxxintra,+ + σxxintra,− + σxx,sinter and the (antisymmetric) anomalous Hall conductivity

σxy = σxy,ainter,+ + σxy,ainter,− by using (1.100)-(1.102) at zero temperature. In a stacked quasi-

two-dimensional system, the conductivities are proportional to e2/ha, where a is the

interlayer distance. When choosing a ≈ 4�A [73, 74], we have e2/ha ≈ 103 Ω−1cm−1. In

this chapter, we express the conductivities in SI units 1/Ω cm for a simple comparison

with experimental results on ferromagnets (see Ref. [74] and references therein).

In Fig. 2.4, we plot the longitudinal (top) and the anomalous Hall (bottom) conduc-

tivity (blue lines) and their nonzero contributions as a function of the relaxation rate Γ/t.

In the clean limit, Γ/t� 0.2, we obtain the expected scaling (1.117)-(1.119) indicated by

dashed lines. The intraband contributions (orange and green lines in the upper figure)

scale as 1/Γ, whereas the symmetric intraband contribution (red line) scales as Γ. The

anomalous Hall conductivity becomes “dissipationless” [43] with Γ0 in the clean limit. In

absolute scales both the longitudinal and anomalous Hall conductivity are dominated by
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Figure 2.4: The longitudinal (top) and anomalous Hall (bottom) conductivity and their
nonzero contributions as a function of the relaxation rate Γ/t for t′/t = 0.1 and λ/t = 0.2
at n = 0.4. For Γ/t� 0.2, we find the scaling of the clean limit given by (1.117)-(1.119)
(dashed lines). For Γ/t � 2.2, we find the scaling of the dirty limit given by (1.129)-
(1.132) with vanishing lowest order for σxy (dashed lines). For 0.2 < Γ/t < 2.2, we have
a crossover regime.

the lower band E−p (green lines), consistent with a filling of n = 0.4. In the dirty limit,

Γ/t� 2.2, the intraband and the symmetric interband contributions of the longitudinal

conductivity scale as Γ−2, which is the lowest order in the expansions in (1.129) and

in (1.130). The anomalous Hall conductivities σxy,ainter,± scale as Γ−3 in agreement with
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Figure 2.5: The anomalous Hall conductivity σxy as a function of the longitudinal con-
ductivity σxx for t′/t = 0.1 and λ/t = 0.2 at n = 0.4. The two vertical and the two
horizontal lines indicate the values of σxx and σxy at Γ/t = 0.2 and Γ/t = 2.2, re-
spectively. In the clean and the dirty limit, we find σxy ∝ (σxx)0 and σxy ∝ (σxx)2,
respectively, in agreement with the individual scaling in Γ (gray dashed lines). The
crossover regime can be approximated by a scaling σxy ∝ (σxx)1.6 (red dashed line).

(1.131). The lowest order Γ−2 in (1.131) vanishes after integration over momenta. We

have σxy,ainter,+ = −σxy,ainter,− that leads to a Γ−4-dependence of the anomalous Hall conduc-

tivity summed over both bands, which is different than expected previously [73,82]. The

dashed lines in the dirty limit are explicitly calculated via our results in Sec. 1.3.6. In

the intermediate range 0.2 < Γ < 2.2, we find a crossover between the different scalings.

We could only reproduce results consistent with those of Kontani et al. [73] by assuming

a constant chemical potential that is fixed to its value in the clean limit, that is, if we

neglect the Γ dependence of the chemical potential in (1.127) for fixed particle number

n = 0.4 within our calculation.

In Fig. 2.5, we plot the anomalous Hall conductivity as a function of the longitudi-

nal conductivity. The representation is useful for comparison with experimental results,

where the dependence on the relaxation rate is not known explicitly. The result is both

qualitatively and quantitatively in good agreement with experimental results for fer-

romagnets (see Ref. [74] and references therein). We find three regimes: In the clean

regime, we get σxy ∝ (σxx)0 since the anomalous Hall conductivity becomes Γ indepen-
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Figure 2.6: The logarithmic derivative of the anomalous Hall conductivity σxy as a
function of the longitudinal conductivity σxx for different particle numbers n, next-
nearest neighbor hoppings t′/t, and spin-orbit couplings λ/t. In between σxx = 10− 3×
104 (Ω cm)−1 (red lines), we have a crossover regime between the scaling σxy ∝ (σxx)0 in
the clean limit and σxy ∝ (σxx)2 in the dirty limit (gray lines). The range is insensitive
to parameters over a broad range.

dent. In the dirty regime, we have σxy ∝ (σxx)2, which can be easily understood by the

scaling behavior that shown in Fig. 2.4. The black dashed lines are calculated explicitly

via (1.129)-(1.132). We indicated the regime boundaries by gray lines that correspond

to the conductivities at Γ/t = 0.2 and Γ/t = 2.2. In the intermediate regime that

corresponds to the crossover between the different scalings in Fig. 2.4, we get a good

agreement with a scaling σxy ∝ (σxx)1.6 (red dashed line).

The scaling behavior σxy ∝ (σxx)1.6 is observed experimentally and discussed theo-

retically in various publications in the recent years (see [74, 79, 83, 106–110] and refer-

ences therein). Within our theory, we clearly identify the intermediate regime, σxx ≈
100 − 5000 (Ω cm)−1, as a crossover regime not related to a (proper) scaling behavior.

This is most prominent when showing the logarithmic derivative of the anomalous Hall

conductivity as a function of the longitudinal conductivity in Fig. 2.6 for different particle

numbers n = 0.2, 0.4, 0.6, next-nearest neighbor hoppings t′/t = 0.1, 0.2, and spin-orbit

couplings λ/t = 0.1, 0.2. We see a clear crossover from σxy ∝ (σxx)0 to σxy ∝ (σxx)2

in a range of σxx = 10 − 30000 (Ω cm)−1 (red vertical lines), which is even larger than
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estimated by the scales Γ = λ = 0.2 t and Γ = W = 2.2 t indicated by the gray lines in

Fig. 2.5. This crossover regime is insensitive to parameters over a broad range. Interest-

ingly, various experimental results are found within the range 10− 30000 (Ω cm)−1 (see

Fig. 12 in Ref. [74] for a summary). We have checked that a smooth crossover similar

to the presented curve in Fig. 2.5 qualitatively agrees with these experimental results

within their uncertainty.

Following the seminal work of Onoda et al. [74, 79], which treated intrinsic and ex-

trinsic contributions on equal footing, the experimental and the theoretical investigation

of the scaling that includes, for instance, vertex correction, electron localization and

quantum corrections from Coulomb interaction is still ongoing research [83,107–110] and

is beyond the scope of this thesis.

2.2 Spiral magnetic order

Recent experimental results in very high magnetic fields [10–12] shed new light on the

non-superconducting ground state of the cuprate high-temperature superconductors,

whose phase diagram is not yet fully understood [29]. A drop of the Hall number as

a function of hole doping was found at a critical doping p∗ at the edge of the pseu-

dogap regime, which indicates a Fermi surface reconstruction at p∗. Assuming spiral

magnetic order for hole dopings below p∗ within a phenomenological model, Eberlein et

al. [17] showed that this order can cause a drop of the Hall number consistent with the

experimental results. There are various other theoretical proposals that lead to similar

conclusions [14–16,18–26], which have already been discussed in the introduction of this

thesis. However, it is hard to confirm or rule out any of these candidates experimentally

since not many tools can be applied in the very high magnetic fields. In this thesis, we

focus on the proposal of spiral magnetic order by Eberlein et al. [17]. They calculated the

Hall number by using the expressions of Voruganti et al. [42], which suggest to replace

the bare dispersion by the dispersion after Fermi surface reconstruction in the semiclas-

sical transport formulas in (2) and (3). However, the validity of those formulas, which

do not include interband contributions, remained unclear. Although the experiments are

performed at very high magnetic field, it was shown that the low-field limit ωcτ � 1

is still valid [12]. Thus, a sizable relaxation rate Γ = 1/2τ might cause that interband
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contributions are not negligible and relevant at the onset of the spiral magnetic order,

where the magnetic gap and the relaxation rate are of similar size. After having derived

a generalization for both the formulas of the longitudinal and the Hall conductivity in-

cluding interband contributions within Chapter 1, we are now able to provide an answer,

whether or not interband contributions are relevant in the application of spiral magnetic

order to cuprates and how this might affect the previous conclusions.

This section is structured as follows: We give the definition and fundamental proper-

ties of the spiral magnetic order (Sec. 2.2.1). The broken lattice-translational invariance

of the model leads to a spectral function of single-particle excitations with Fermi-arc

characteristics resembling those found in the pseudogap phase of cuprates (Sec. 2.2.2).

We discuss spiral magnetic order in the two-dimensional Hubbard model and present

results found by a Hartree-Fock approximation and by dynamical mean-field theory

(Sec. 2.2.3). In the subsequent chapters, we focus on transport properties. The spiral

magnetic order reduces the lattice symmetry and, thus, may lead to an asymmetry of

the longitudinal conductivities in x and y direction (Sec. 2.2.4). We discuss the impact

of interband contributions on the longitudinal conductivity and the Hall number within

a simplified phenomenological model for the doping dependence of the spiral magnetic

order as well as using ab initio results of the Hubbard model obtained via dynamical

mean-field theory. We relate them to the experimental results for cuprates (Sec. 2.2.5).

2.2.1 Definition of spiral magnetic order

We assume a two-dimensional tight-binding model with spin. Using our notation in

Sec. 1.1, the two subsystems are the spins A = ↑ and B = ↓ located at the lattice sites

Ri with ρ↑ = ρ↓ = 0. Furthermore, we set Q↑ = Q and Q↓ = 0 and assume a Bloch

Hamiltonian

λp =

εp+Q −∆

−∆ εp

 , (2.4)

where the dispersion reads

εp = −2t(cos px + cos py)− 4t′ cos px cos py − 2t′′(cos 2px + cos 2py) , (2.5)
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which includes nearest-, next-nearest-, and next-next-nearest neighbor hopping t, t′, and

t′′, respectively, on a two-dimensional square lattice with lattice constant a = 1. Different

choices of Q↑ and Q↓ are equivalent by redefining the momentum summation in the

Hamiltonian in (1.1) as long as Q↑ −Q↓ = ±Q. We choose t as our unit of energy. To

make connection to experiments, hopping amplitudes in cuprates have been determined

by downfolding ab initio band structures on effective single-band Hamiltonians [111,112].

We assume a real, positive, and momentum- and frequency-independent onsite coupling

∆ between the states |p + Q, ↑〉 and |p, ↓〉. A finite momentum difference Q = Q↑−Q↓

between the two subsystems in the spinor (1.3) breaks the lattice-translation invariance

of the Hamiltonian (1.1). However, the Hamiltonian is still invariant under a combined

translation in real space and rotation in spin space [92].

The coupling ∆ leads to a nonzero onsite magnetic moment of the form

〈Si〉 =
1

2

∑
ν,ν′=↑,↓

〈c†i,ν τ νν′ ci,ν′〉 = mni (2.6)

with direction ni and magnetization amplitude m. c†i,ν and ci,ν are the fermionic creation

and annihilation operators for site i and spin ν, respectively. The vector τ = (τx, τy, τz)

is composed of the three Pauli matrices. The direction vector ni lies in the x-y-plane

and is given by

ni =


cos(Q ·Ri)

− sin(Q ·Ri)

0

 . (2.7)

The direction ni between neighboring sites i and j differs by an angle Q · (Ri − Rj).

The global phase, which rotates all ni by the same angle, is captured by the complex

phase of the onsite coupling and is, thus, fixed by choosing ∆ to be real and positive.

The magnetization amplitude m is uniform and controlled by the coupling via

m = −∆

L

∑
p

∫
dεf(ε)

A+
p (ε)− A−p (ε)

E+
p − E−p

, (2.8)

where Eν
p are the two quasiparticle bands and Aνp(ε) are the quasiparticle spectral func-
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(a) (b)

(c) (d)

Figure 2.7: The magnetization patterns 〈Si〉 ∝ ni for different ordering vectors (a)
Q = (π, π), (b) Q = (0.95π, π), (c) Q = (π/2, π/2) and (d) Q = (π/

√
2, π/

√
2) on

a square lattice. We have Néel antiferromagnetic and spiral order in (a) and (b)-(d),
respectively. The spiral order shown in (d) is incommensurate with the underlying lattice.

tions.

The magnetic moment of the form 〈Si〉 = mni is the defining character of a spiral

spin density wave in contrast to collinear spin density waves with magnetic moments of

the form 〈Si〉 = mi n, where the direction remains constant but the length is modulated.

Collinear spin density waves are not invariant under combined translation and spin-

rotation. In Fig. 2.7, we show magnetization patterns 〈Si〉 ∝ ni of spiral spin density

waves for different wave vectors Q on a square lattice. The two special cases Q =

(0, 0) and Q = (π, π) correspond to ferromagnetic and Néel-antiferromagnetic order,
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respectively. We show Néel-antiferromagnetic order in Fig. 2.7 (a). We refer to an order

different than these two special cases as (purely) spiral. For instance, Q = (π/2, π/2)

describes a 90◦ rotation per lattice site in both x and y direction as shown in Fig. 2.7

(c). Due to the invariance under combined translational and spin-rotation, this case

can be described via (2.4) without considering a four-times larger unit cell. The 2 × 2

structure of the Hamiltonian also captures order wave vectors Q that are incommensurate

with the underlying lattice, when enlarging the unit cell to any size does not restore

translation symmetry [92]. In Fig. 2.7 (d), we show such an incommensurate order with

Q = (π/
√

2, π/
√

2). Spiral order of the form Q = (π − 2πη, π) or symmetry related

with η > 0, where η is the so-called incommensurability, is found in the two-dimensional

t− J model [30–33] and in the two-dimensional Hubbard model [2, 113–121] by various

theoretical methods. We will discuss this in more detail in Sec. 2.2.3. A visualization of

the magnetization pattern for η = 0.025 is shown in Fig. 2.7 (b).

2.2.2 Quasiparticle and single-electron spectral functions

As we have just seen, the nonzero difference Q = Q↑ −Q↓ is essential and the defining

property of the spiral magnetic state. The following analysis is even valid beyond the

specific case of spiral magnetic order, so that we will use again ν = A,B for arbitrary

subsystems in this section. A key difference between a zero and a nonzero momentum

difference Q = QA − QB in the spinor (1.3) is the distinction between the spectral

function for quasiparticles and the spectral function for single-electron excitations. This

distinction is relevant, for instance, for spectroscopic measurements like angle-resolved

photoemission spectroscopy (ARPES) but also in the context of our discussion later

in this chapter when we will discuss the change of the Fermi surface topology due to

the onset of spiral magnetic order and when we interpret the contribution of different

momenta to the conductivities.

The spectral functions of single-electron excitations Ap,ν(ε) with ν = A,B involve

the respective creation and annihilation operators in the form c†p,νcp,ν . In contrast, the

quasiparticle spectral functions involve a mixture of the particle operators c†p+Qν ,ν
cp+Qν ,ν

of both subsystems, whose momenta are furthermore shifted by Qν . We can relate

both types of spectral functions by taking the diagonal elements of UpAp(ε)U †p and

shift the momenta of those diagonal elements by Qν [17]. The diagonal matrix Ap(ε)
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consists of the quasiparticle spectral functions A±p (ε) in (1.89). The transformation

matrix Up =
(
|+p〉 |−p〉

)
contains the eigenstates |±p〉 in (1.35) and (1.36). We get the

spectral functions of single-electron excitations

Ap,A(ε) = A+
p−QA

(ε) cos2 θp−QA

2
+ A−p−QA

(ε) sin2 θp−QA

2
, (2.9)

Ap,B(ε) = A+
p−QB

(ε) sin2 θp−QB

2
+ A−p−QB

(ε) cos2 θp−QB

2
. (2.10)

We see that the quasiparticle spectral function are summed up with momentum-dependent

weighting factors, which are controlled by the angle θp defined in (1.32). If QA −QB =

Q = 0, that is, in a lattice-translational-invariant system, the weighting factors drop out

in the total spectral function Ap,A(ε) + Ap,B(ε) and the momentum shift QA = QB is

a simple shift of the full Brillouin zone, which is physically irrelevant. Thus, the sum

of the quasiparticle spectral functions is equal to the sum of the spectral functions of

single-electron excitations. However, for a system that is no longer translational invari-

ant, but has an invariance under combined translation in real space and rotation in the

subsystem space, that is, QA 6= QB or Q 6= 0, this is no longer the case. The two types

of spectral functions are different even after summation.

In Fig. 2.8, we plot the sum of the quasiparticle spectral functions A+
p + A−p (left

column) and the sum of the single-electron spectral functions Ap,↑+Ap,↓ (right column)

at zero frequency for two different sets of parameters (upper and lower row). In the upper

row, we show the spectral functions for an ordering wave vector Q = (π/2, π/2), whose

magnetization pattern is shown in Fig. 2.7 (c). At particle number n = 0.2 only the lower

band contributes to the quasiparticle spectral function. We see explicitly that the spiral

magnetic order lowers the symmetry. The single-electron spectral function consists of two

copies of the quasiparticle spectral function of the lower band with one of them shifted by

momentum Q. The momentum-dependent weighting factors in (2.9) and (2.10) cause a

reduction of the spectral weights at specific parts of the quasiparticle Fermi surfaces. This

reduction must not be confused with the reduction due to a momentum- or frequency

dependent relaxation rate Γ(ε,p). Furthermore, the inversion symmetry is restored for

Ap,A(ε) + Ap,B(ε) for inversion-symmetric dispersion relations (εp = ε−p), as for the

dispersion in (2.5): The Fermi surface corresponding to peaks in Ap(ε) = Ap,↑(ε)+Ap,↓(ε)

at ε = 0 is given by the points in momentum space obeying E±p −µ = 0 or E±p−Q−µ = 0.

97



Applications

Figure 2.8: The spectral function A+
p + A−p of the quasiparticles (left column) and the

spectral function Ap,↑ + Ap,↓ for single-electron excitations (right column) at zero fre-
quency for t′/t = 0.1, t′′/t = 0, ∆/t = 1, Q = (π/2, π/2), n = 0.2 (upper row) and
t′/t = −0.17, t′′/t = 0.05, ∆/t = 0.5, Q = (π − 2πη, π) with η = 0.1 and n = 0.9 (lower
row) with Γ/t = 0.05.

The latter equation is equivalent to E±−p − µ = 0 for inversion symmetric εp. We have

Ap,↑(ε) = A−p,↓(ε). Thus, the quasiparticle dispersions E±p and the quasiparticle Fermi

surfaces are not inversion symmetric, while the total single-electron spectral function
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Ap,↑(ε) +Ap,↓(ε) is. The spectral weight is maximal for momenta close to the bare Fermi

surface, where εp − µ = 0.

In the lower row of Fig. 2.8, we show the total quasiparticle spectral function A+
p +A−p

and the total single-electron spectral function Ap,↑ + Ap,↓ at zero frequency for band

parameters that are commonly used for the cuprate compound La2−xSrxCuO4 (LSCO).

At small hole doping p = 1− n = 0.1 and Q = (π − 2πη) with η = p the Fermi surface

consists only of two hole pockets. The inversion symmetry is restored in the spectral

function of single-electron excitations. Since the spectral weights are maximal close to

the bare Fermi surface εp−µ = 0, only the inside half of the four pockets has significant

spectral weight, whereas the weight at the backside is strongly suppressed. The result

resembles the Fermi arcs observed in underdoped cuprates in the pseudogap phase [41].

It is consistent with theoretical calculations of the ARPES spectral functions for the

hole pockets in the Néel antiferromagnetic state of YBa2Cu3Oy (YBCO) close to half

filling [122]. A shadow of the upper band can be seen in the lower left figure. For larger

hole doping, electron-like pockets will eventually appear at those regions.

2.2.3 Spiral magnetic order in the Hubbard model

The competition between antiferromagnetism and superconductivity in cuprates seems

to be well captured by the two-dimensional Hubbard model [40]. The Hamiltonian of

the Hubbard model reads

H =
∑
ν=↑,↓

∑
p

εpc
†
p,νcp,ν +

∑
i

Uni,↑ni,↓ , (2.11)

where ni,ν = c†i,νci,ν is the particle number operator for lattice site i and spin ν =↑, ↓. U
is the (repulsive) on-site interaction for doubly-occupied lattice sites. The dispersion εp

for a square lattice including nearest-, next-nearest- and next-next-nearest-neighbor hop-

pings is given in (2.5). For the two-dimensional Hubbard model, antiferromagnetic order

with wave vectors Q away from the Néel point (π, π) was found in numerous mean-field

calculations [113–118], and also by expansions for small hole density, where fluctuations

are taken into account [119, 120]. At weak coupling (small U), magnetic order with

Q 6= (π, π) was confirmed by functional renormalization group calculations [121, 123],

and at strong coupling (large U) by state-of-the-art numerical techniques [124]. Recent
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dynamical mean-field calculations with vertex corrections suggest that the Fermi-surface

geometry determines the (generally incommensurate) ordering wave vector not only at

weak coupling, but also at strong coupling [125]. For the two-dimensional t-J model,

which is the strong-coupling limit of the Hubbard model, expansions for small hole den-

sity indicate that the Néel state is stable only at half filling, and is replaced by a spiral

antiferromagnet upon doping [30–35]. Long-range magnetic order is forbidden at fi-

nite temperature T 6= 0 in a two-dimensional system according to the Mermin-Wagner

theorem [126, 127]. Nevertheless, it was shown for the t-J model that also dynamic

antiferromagnetic fluctuations can cause a Fermi surface reconstruction [128]. In the

Hubbard model, the correlation length of the magnetic order can become sufficiently

large at low temperature, so that the electrons experience a local environment of antifer-

romagnetic order, which has an impact on the low-lying states, for instance, by opening

a pseudogap [129].

There is a whole zoo of distinct magnetic states. The most favorable, or at least the

most popular, are planar spiral states and collinear states, combined with charge order to

form spin-charge stripes. Stripe order has been observed in Lanthanum-based cuprates

[130]. Theoretically, commensurate stripe order was shown to minimize the ground-state

energy of the strongly interacting Hubbard model with pure nearest-neighbor hopping

at doping 1/8 [124]. However, this is a very special choice of parameters, and stripe

order is not ubiquitous in cuprates. Recently, it was shown that it is difficult to explain

the recent high-field transport experiments in cuprates by collinear magnetic order [27].

Generally, the energy difference between different magnetic states seems to be rather

small.

We recapitulate how planar spiral antiferromagnetic order arises in a Hartree-Fock

approximation of the Hubbard model. The Green’s function of the noninteracting Hamil-

tonian with U = 0 reads

G 0
ip0,p

=

(
ip0 + µ− εp+Q 0

0 ip0 + µ− εp

)−1

. (2.12)

In order to prepare for the following calculation, we separated the parts of spin ↑ and ↓
and used the momentum summation to shift the momentum of the spin-↑ component by

an arbitrary vector Q, which will eventually be the ordering vector of the spiral state,
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which we discussed previously. We added a chemical potential µ. We assume a full

Green’s function of the form

Gip0,p =

(
ip0 + µ− ε↑p ∆

∆ ip0 + µ− ε↓p

)−1

, (2.13)

where the bands ε↑p and ε↓p as well as the (real and constant) gap ∆ has to be determined.

Thus on the one hand, the self-energy takes the form

Σip0,p =
(
G 0
ip0,p

)−1 −
(
Gip0,p

)−1
=

(
ε↑p − εp+Q −∆

−∆ ε↓p − εp

)
. (2.14)

On the other hand, we determine the self-energy by a diagrammatic expansion that

includes the Hartree and the Fock contribution. The diagonal components of the self-

energy are

(
Σiq0,p

)
νν

= U
T

L

∑
ip0,p

(
Gip0,p

)
νν

= Unν (2.15)

with ν =↑, ↓, where ν indicates the opposite spin. n↑ and n↓ are the occupation number

of the respective spin. The off-diagonal components of the self-energy are

(
Σiq0,p

)
νν

= −U T

L

∑
ip0,p

(
Gip0,p

)
νν

= U
∆

L

∑
p

f+
p − f−p

E+
p − E−p

. (2.16)

We introduced the Fermi function f±p = f(E±p − µ) with f(ω) = (1 + eω/T )−1 of the

quasiparticle bands E±p = gp ±
√
h2
p + ∆2 with gp = 1

2
(ε↑p + ε↓p) and hp = 1

2
(ε↑p − ε↓p),

which are obtained by diagonalizing the full Green’s function matrix in (2.13). The

Hartree term (2.15) combined with (2.14) leads to the condition ε↑p − εp+Q = U n↓ and

ε↓p − εp = U n↑, so that we can read off

gp =
1

2
(εp+Q + εp) +

Un

2
, (2.17)

hp =
1

2
(εp+Q − εp)− Umz , (2.18)

where we defined the total particle number n = n↑+n↓ and the relative particle number
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mz = (n↑−n↓)/2, which corresponds to the out-of-plane magnetization. We expect that

mz = 0 since the Hubbard Hamiltonian is symmetric in spin. A Zeeman term in the

Hamiltonian would lead to a nonzero mz. The Fock term (2.16) combined with (2.14)

leads to the gap equation

1

U
= − 1

L

∑
p

f+
p − f−p

E+
p − E−p

. (2.19)

Comparing with (2.8) we can read of the magnetization amplitude m = ∆/U for the

onsite magnetic moment 〈Si〉 = mni. The grand canonical potential is given by

Ω = Φ− Tr (ΣG)− Tr ln(−G−1) , (2.20)

where Tr is understood as the trace over the Green’s function and self-energy matrices

G and Σ involving all degrees of freedoms [131]. Φ is the Luttinger-Ward functional, of

which we only consider the Hartree and the Fock contribution,

Φ = ΦHartree + ΦFock + ... . (2.21)

The Hartree contribution reads

ΦHartree = Un↑n↓ = U

(
n2

4
−m2

z

)
, (2.22)

where we expressed the occupation number of the individual spins by the total and the

relative particle number n and mz. The Fock contribution reads

ΦFock = −U
(

∆

L

∑
p

f+
p − f−p

E+
p − E−p

)2

= −U
(

∆

U

)2

= −∆2

U
, (2.23)

where we used the gap equation (2.19) in the second step. After performing the trace over

the spin and using (2.13) and (2.14), the second term of the grand canonical potential

in (2.20) reduces to

Tr (ΣG) = 2

(
U n↑n↓ −

∆2

U

)
= 2

(
ΦHartree + ΦFock

)
. (2.24)
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Performing the Matsubara summation of the last term in (2.20) leads to the grand

canonical potential within the Hartree-Fock approximation

Ω = −Un
2

4
+ U m2

z +
∆2

U
−
∑
ν=±

T

L

∑
p

ln
(
1 + e−(Eνp−µ)/T

)
. (2.25)

A similar result can be obtained by a Hubbard-Stratonovich transformation of the

fermionic interaction in the Hubbard model into bosonic fields with a subsequent saddle-

point approximation [42]. However, the decoupling is not unique, which is called Fierz

ambiguity, and, thus, leads to different results under approximations [132].

The grand canonical potential is a function of the chemical potential µ. In our

application, we will treat the hole doping p = 1 − n as the fixed variable. Thus, it is

convenient to perform the Legendre transformation to the free energy F = Ω + µn by

inverting the total particle number

n(µ) =
1

L

∑
p

(
f+
p + f−p

)
(2.26)

numerically and using the thermodynamic identity ∂Ω/∂µ = −n. Besides the depen-

dence on the model parameters t, t′, t′′ and U , the free energy F (n,mz,∆,Q, T ) is a

function of the total particle number n, the relative particle number mz, the three pa-

rameters ∆ and Q = (Qx, Qy) of the spiral magnetic order as well as the temperature T .

We determine mz, ∆ and Q by minimizing the free energy numerically. The stationary

condition for mz reads

∂F

∂mz

=
∂Ω

∂mz

= 0⇔ mz =
1

L

∑
p

hp
E+

p − E−p

(
f+
p − f−p

)
, (2.27)

which has to be determined self-consistently, since all quantities on the right-hand side

also involve mz. We see that mz = 0 is a solution to (2.27) due to the inversion symmetry

of the bare band εp = ε−p in (2.5). We find that minimizing the free energy always leads

to mz = 0 in agreement with Ref. [117] and as expected by the symmetry in spin of the

Hubbard model. We recover the vanishing z component of the direction ni of the onsite

magnetic magnetic moment in (2.7). We set mz = 0 in the following. The stationary

condition for the gap, ∂F/∂∆ = ∂Ω/∂∆ = 0, reproduces the gap equation in (2.19).

103



Applications

Figure 2.9: The free energy after minimizing ∆ and Q for t′/t = t′′/t = 0 and U/t = 4
at T/t = 0.1 as a function of hole doping p = 1− n. We compare the free energy F for
different wave vectors with respect to the free energy F0 of the non-ordered state (top).
We find three different regions (vertical lines), where the energy gain for one type of Q
is the largest. The energy difference between these types is small (bottom). We indicate
a region of phase separation by a shaded blue area.

In Fig. 2.9, we show the free energy after minimizing ∆ and Q for t′/t = t′′/t = 0

and U/t = 4 at T/t = 0.1 as a function of hole doping p = 1 − n. In the upper figure,

we show the free energy F relative to the bare free energy F0 that is obtained by setting

∆ = 0. We compare three different types of spiral magnetic order that are known to be

relevant for this parameter range [42, 117]: Néel antiferromagnetic order with ordering
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Figure 2.10: The free energy after minimizing ∆ and Q for the same parameters as in
Fig. 2.9 but different dispersion t′/t = −0.17 and t′′/t = 0.05 as a function of hole doping
p = 1 − n. We see that an ordering wave vector Q = (Q, π) causes the largest energy
gain over almost the entire doping range. There is no region of phase separation.

wave vector Q = (π, π) as blue curve and spiral magnetic order with Q = (Q, π) as

orange and Q = (Q,Q) as green curve. The value Q is obtained by the minimization of

the free energy. We see that magnetic order reduces the free energy for a large doping

range from p = 0 up to p ≈ 0.39. For large hole doping beyond p ≈ 0.11, the largest

energy gain is obtained for Q = (Q, π). For small hole doping up to p ≈ 0.04, we find

Néel antiferromagnetism. In the intermediate range, magnetic order with Q = (Q,Q) is

favored as can be seen by comparing the difference between the free energies of ordering
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vector (Q, π) and (Q,Q) in the lower figure. Overall, we see explicitly that the energy

difference between the different magnetic states are very small. The finite region of

Néel antiferromagnetism at low doping is a finite temperature effect [42]. The chemical

potential as a function of doping, which is obtained by inverting Eq. (2.26), violates the

thermodynamic stability criterion ∂µ/∂n = −∂µ/∂p > 0 over some doping range, which

indicates a region of phase separation. We obtain the region of phase separation by a

Maxwell construction [117]. The region (blue shaded area) ranges form p ≈ 0.02 up

to p ≈ 0.18. The range is already slightly reduced due to finite temperature. We see

that spiral magnetic order with Q = (Q,Q) is completely covered by the area of phase

separation and is, thus, not physical. Our result and conclusions are consistent with

the zero temperature results of Igoshev et al. [117] and the finite temperature results of

Voruganti et al. [42].

In Fig. 2.10, we show the energy gain for a different dispersion with t′/t = −0.17 and

t′′/t = 0.05, which is commonly used to describe the cuprate LSCO [16]. The ordering

wave vector Q = (Q, π) has the lowest energy over the full doping range from p ≈ 0.025 to

p ≈ 0.55 except of very close to half filling. The finite region of Néel antiferromagnetism

close to half filling is again a finite temperature effect. Next-nearest- and next-next-

nearest hopping t′ and t′′ generally reduces the region of phase separation [117]. For our

set of parameter we do not find any phase separation.

So far, we have focused on the energy gain due to spiral magnetic order but not on the

precise doping dependence of the magnetic gap and the ordering wave vector. In Fig. 2.11,

we show the gap ∆(p) (blue) and the incommensurability η(p) (orange) with Q = π−2πη

as a function of hole doping p for the two sets of band parameters that we discussed

so far. The gap ∆(p) decreases from its largest value at half filling and eventually

vanishes at a critical doping p∗. It is nearly linear at low and intermediate doping.

Close to the (second-order) phase transition at p∗, it takes the form ∆(p) ∝
√
p∗ − p

as expected for a mean-field-like calculation. The incommensurability η(p) is zero in

the Néel antiferromagnetic state at low doping and increases within the spiral magnetic

state. It is nearly linear for large p and vanishes continuously at the second-order phase

transition into the Néel state. For t′/t = t′′/t = 0 in the upper figure, we have a first-

order transition between Q = (Q,Q) and (Q, π), which is hidden beneath the region of

phase separation and, thus, unphysical [117].

The Hartree-Fock result generally overestimates order since fluctuations of the order
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Figure 2.11: The gap ∆ (blue) and the incommensurability η (orange) with Q = π−2πη
as a function of hole doping p. We used the two sets of parameters in Fig. 2.9 and Fig. 2.10
for the upper and lower figure, respectively. We find a nearly linear dependence over a
large doping range. A second-order phase transition is present between the paramagnetic
and the spiral magnetic state and the spiral magnetic and Néel antiferromagnetic state.
There is a first-order transition between the states with Q = (Q,Q) and Q = (Q, π),
which is hidden beneath the region of phase separation (blue shaded area).

parameter are neglected within this approach. In Bonetti et al. [2, 4], the Hubbard

model (2.11) was studied by using the dynamical mean-field theory (DMFT) [133, 134]

in the strong-coupling regime. Spiral magnetic order in a DMFT solution of the Hubbard

model has been analyzed previously for the square lattice by Fleck et al. [135] and for the

triangular lattice by Goto et al. [136]. Similar to the Hartree-Fock approach, the non-

superconducting ground state is stable within DMFT even without an external magnetic
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field since there is no pairing instability for U > 0 within DMFT. In the experiments on

cuprates, high magnetic fields are required in order to suppress superconductivity. We

expect a reduction of the spiral magnetic gap due to the inclusion of local fluctuations.

Nonlocal fluctuation of the magnetic order parameter orientation are not included, so

that the presence of magnetic long-range order is expected also at low finite temperature

irrespective of the low dimensionality of the system. We study the order parameter for

two sets of parameters relevant for the cuprates LSCO and YBCO. In the following and

when we study the conductivities based on the following DMFT results, we assume a

dispersion with t′/t = −0.17 and t′′/t = 0.05 and an onsite repulsion U/t = 8 for LSCO.

We assume a dispersion with t′/t = −0.3, t′′/t = 0.15 and an onsite repulsion U/t = 10

for YBCO. We incorporate the bilayer structure of YBCO, which is known to be crucial

for this cuprate compound [35], by modifying the dispersion via

εp,pz = εp − t⊥p cos pz (2.28)

with two value 0 and π for pz, which correspond to the bonding and antibonding band,

respectively. The interband hopping t⊥p = t⊥
(

cos px − cos py
)2

is set to t⊥/t = 0.15. We

express all results in units of t. For comparison, t = 0.35 eV. The DMFT calculations are

performed at T/t = 0.027 and T/t = 0.04 for LSCO and T/t = 0.04 for YBCO. We do

not find any phase separation. The gap ∆ is obtained by a zero-frequency extrapolation

of the off-diagonal self-energy, which is in general frequency dependent in DMFT. The

incommensurability η is determined by minimizing the DMFT free energy. A more

detailed description of the methodology can be found in Bonetti et al. [2].

In Fig. 2.12, we show the gap ∆ obtained by the DMFT calculation as a function

of hole doping for LSCO (top) and YBCO (bottom). The results are qualitatively very

similar to those that were obtained within the Hartree-Fock approach, which is shown

in Fig. 2.11. The onset of order is drastically reduced to lower doping as expected by

including order parameter fluctuations. The onset of order for LSCO is at p∗ ≈ 0.18 at

T/t = 0.04 and p∗ ≈ 0.19 at T/t = 0.027, whereas it is smaller for YBCO at p∗ ≈ 0.13

at T/t = 0.04 due to larger in-plane hoppings. The inter-plane hopping of the bilayer

YBCO slightly increases the onset. In the vicinity of p∗, both electron and hole pockets

are present (vertical lines for T/t = 0.04). For smaller doping, there are only hole-like

pockets. We will discuss the evolution of the Fermi surface topology in more detail in
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Figure 2.12: The gap ∆ as a function of hole doping p obtained by the DMFT calculation
for LSCO (top) and YBCO (bottom). The vertical line indicates the presence of electron
pockets beyond that doping for T/t = 0.04. A linear extrapolation yields an estimate
for a gap at T = 0 (gray dashed lines).

Sec. 2.2.5. We see that a lower temperature only slightly modifies the linear regime but

increases p∗. We can give an estimate of the gap in the zero temperature limit by a linear

approximation

∆(p) = D · (p∗ − p) (2.29)

for p < p∗ with a prefactor D to be determined. We obtain p∗ = 0.21 with D/t = 8.2 for
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Figure 2.13: The incommensurability η as a function of hole doping p obtained by the
DMFT calculation of LSCO (orange) and YBCO (blue). We show η = p for comparison.

LSCO and p∗ = 0.15 withD/t = 18.7 for YBCO. The onset of order for LSCO parameters

is remarkably close to the critical value that was found in recent experiments [28].

Comparing different ordering wave vectors within the DMFT calculation showed that

spiral magnetic order with Q = (Q, π) is favored. In Fig. 2.13, we show the incommensu-

rability η with Q = π − 2πη as a function of doping obtained by minimizing the DMFT

free energy. The incommensurability increases linear for both materials. For LSCO,

we find two linear regimes. At higher doping, the slope of the second linear regime is

reduced. We show η(p) = p for comparison. Experimentally, a linear doping dependence

η(p) = p is approximately valid for LSCO in the doping range 0.06 < p < 0.12. It

saturates at a value η ≈ 1/8 beyond that doping range [36]. In YBCO, the incommen-

surability η(p) is found to be significantly smaller than p [39]. The precise value of η is

not only doping but also strongly temperature dependent. The free energy depends only

very weakly on η so that an optimal choice of η crucially depends on details. We will

clarify in the following discussions on the conductivities that the Hall coefficient only

slightly depends on η, whereas it plays an important role for the anisotropy in the x and

y direction of the conductivities.
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2.2.4 Symmetric off-diagonal conductivity

After the discussion on the theoretical evidence of spiral magnetic order in the Hubbard

model, we continue with the transport properties of a spiral magnetic state. The real

and constant coupling ∆ in the Hamiltonian (2.4) leads to the angle ϕp = −π in the

spherical representation (1.28), which we considered within our general theory in Sec. 1.

This angle, which describes the negative phase of the interband coupling, is momentum

independent for a spiral magnetic state. As a consequence, the Berry curvature (1.99)

and, thus, the antisymmetric interband contributions (1.102) are identically zero. We

express the diagonal and the (symmetric) off-diagonal conductivity

σαβ = σαβintra,+ + σαβintra,− + σαβ,sinter (2.30)

with α, β = x, y in an orthogonal basis ex and ey aligned with the underlying square

lattice (see Fig. 2.7). We calculate the different contributions via (1.100) and (1.101) at

zero temperature.

We have three independent quantities that are described by σαβ for the spiral mag-

netic state in the two-dimensional plane: the two diagonal conductivities σxx and σyy

and the off-diagonal conductivity σxy = σyx. We have a closer look at the condition,

under which the off-diagonal conductivity σxy vanishes. The off-diagonal intraband con-

ductivities σxyintra,± of the two bands ± involve the product of the two quasiparticle ve-

locities E±,xp E±,yp in x and y direction. Besides the trivial case of a constant quasi-

particle band, we expect a nonzero product for almost all momenta. Thus, in general,

σxyintra,± only vanishes by integration over momenta. Let us consider the special cases

Q = (Q, 0) and Q = (Q, π), where we fixed the y component to 0 or π. The x com-

ponent is arbitrary. The following arguments also holds for fixed x and arbitrary y

component. Those two special cases include ferromagnetic (0, 0), Néel antiferromagnetic

(π, π) and the order (π − 2πη, π) found in the Hubbard model. For those Q, the two

quasiparticle bands E±p ≡ E±(p) are symmetric under reflection on the x axis, that is,

E±(px,−py) = E±(px, py). Thus, the momentum components of the off-diagonal conduc-

tivity are antisymmetric, σxy(px,−py) = −σxy(px, py), which leads to a zero off-diagonal

conductivity when integrating over momenta.

As discussed in Sec. 1.3.7, a non-diagonal symmetric conductivity matrix σ = (σαβ)
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Figure 2.14: The relative angle between the principle axis and the ordering vector Q ∝
(cos ΘQ, sin ΘQ) as a function of ΘQ for t′/t = 0.1, t′′/t = 0, ∆/t = 1, Γ/t = 0.05,
n = 0.2 and different lengths |Q|. Both axes are aligned for 0◦, ±90◦ and ±180◦ since
σxy vanishes as well as for ±45◦ and ±135◦ since σxx = σyy are equal (vertical lines).

due to nonzero off-diagonal conductivities σxy = σyx can be diagonalized by a rotation

of the coordinate system. So far, we have expressed all quantities in the basis vectors

ex and ey that are aligned with the underlying square lattice (see Fig. 2.7). In our

two-dimensional case, we can describe the rotation of the basis by a single angle Θ.

In Fig. 2.14, we plot the difference between the rotation angle Θaxis that diagonalizes

the conductivity matrix σ = (σαβ) and the direction of the ordering wave vector Q ∝
(cos ΘQ, sin ΘQ) as a function of ΘQ for t′/t = 0.1, t′′/t = 0, ∆/t = 1, Γ/t = 0.05 and

n = 0.2 at different lengths |Q|. The chemical potential is adapted adequately. We

see that both angles are close to each other but not necessarily equal with a maximal

deviation of a few degrees. The angles ΘQ = 0◦,±90◦, ±180◦ corresponds to the case of

vanishing σxy that we have discussed above, so that the rotated basis axes are parallel

to the original ex and ey axes. At the angles ΘQ = ±45◦,±135◦, the ordering vector

Q is of the form (Q,Q). Thus, the x and y direction are equivalent, which results in

equal diagonal conductivities σxx = σyy. A 2 × 2 conductivity matrix σ = (σαβ) with

equal diagonal elements is diagonalized by rotations with angles Θaxis = ±45◦,±135◦

independent of the precise value of the entries and, thus, independent on the length of

Q. These angles are indicated by vertical lines.

112



Applications

Figure 2.15: The off-diagonal conductivity σxy as a function of Q = (Q,Q) for the same
parameters as in Fig. 2.14 at different particle numbers n = 0.1, 0.2, 0.3.

In the following, we focus on the special case of an ordering vector Q = (Q,Q).

The conductivity matrix is diagonal within the basis (ex ± ey)/
√

2, which corresponds

to both diagonal directions in Fig. 2.7. The longitudinal conductivities are σxx ± σxy

with σxx = σyy. Thus, the presence of spiral magnetic order results in an anisotropy

(or ”nematicity“) of the longitudinal conductivity. The ”strength“ of the anisotropy is

given by 2σxy for Q = (Q,Q). In Fig 2.15, we show σxy as a function of Q = (Q,Q)

for the same parameters as in Fig. 2.14 at different particle numbers n = 0.1, 0.2, 0.3.

The chemical potential is adapted adequately. The values |(π/
√

2, π/
√

2)| = π and

|(π/2, π/2)| = π/
√

2 correspond to the cases presented in Fig. 2.14. We see that the

anisotropy vanishes for ferromagnetic (0, 0) and Néel-antiferromagnetic (π, π) order as

expected. The largest anisotropy for the presented set of parameters is close to (π/2, π/2).

In Fig. 2.7 (a), (c) and (d), we show the corresponding magnetization patterns.

In Fig. 2.16, we show the off-diagonal conductivity, that is, the anisotropy, and its

three different contributions as a function of the chemical potential µ/t for t′/t = 0.1,

t′′/t = 0, ∆/t = 2, Q = (π/
√

2, π/
√

2) and Γ/t = 1. The value of the conductivity is

reduced compared to the previous examples by approximately one order of magnitude as

expected by the scaling σxy ∝ 1/Γ. As we vary the chemical potential, we get nonzero

conductivity within the bandwidth given by approximately −4.9 t to 4.2 t. Both the
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Figure 2.16: The off-diagonal conductivity σxy and its nonzero contributions as a function
of the chemical potential µ/t for t′/t = 0.1, t′′/t = 0, ∆/t = 2, Q = (π/

√
2, π/

√
2) and

Γ/t = 1. The vertical lines indicate the bandwidth and the band gap.

off-diagonal conductivity and its different contributions given in (2.30) take positive and

negative values in contrast to the diagonal conductivities σxx and σyy, which are always

positive. For ∆/t = 2, we have a band gap between −0.3 t and 0.1 t with nonzero

conductivities due to the large value of Γ. We see that for negative and positive chemical

potential outside the gap, σxy is mainly given by the contribution of the lower band σxyintra,−

or the upper band σxyintra,+, respectively. Inside the gap, we have both contributions of

the two bands due to smearing effects and the symmetric interband contribution σxy,sinter,

which are all comparable in size.

In Fig. 2.17, we show the diagonal (blue) and off-diagonal (orange) conductivity as a

function of the relaxation rate Γ/t for t′/t = 0.1, t′′/t = 0, ∆/t = 1 and Q = (π/2, π/2)

at n = 0.2. We fixed the particle number by calculating the chemical potential at

each Γ. In the clean limit (low Γ), both σxx and σxy scale as 1/Γ as expected for the

limiting behavior of the intraband contributions in (1.117) (dashed lines). In Sec. 1.3.6,

we showed that, in the dirty limit (large Γ), both the diagonal and the off-diagonal

conductivities scale as Γ−2 in first order due to their intraband character. However for

the considered parameters, the diagonal conductivity σxx scales as Γ−2, whereas the off-

diagonal conductivity σxy scales as Γ−4. The dashed lines are calculated via (1.129) for

the respective order. The off-diagonal conductivity eventually scales as Γ−2 for Γ far
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Figure 2.17: The diagonal (blue) and off-diagonal (orange) conductivity as a function of
Γ/t for t′/t = 0.1, t′′/t = 0, ∆/t = 1 and Q = (π/2, π/2) at n = 0.2. The calculated
limiting behaviors in the clean and the dirty limit are indicated by dashed lines.

beyond the numerically accessible range due to very small prefactors in the expansion.

We see explicitly that the analysis of the individual prefactors of the expansion in the

dirty limit as discussed in Sec. 1.3.6 is useful in order to understand this or similar

unexpected scaling behaviors.

2.2.5 Longitudinal conductivity and Hall number in cuprates

We continue with the transport properties of a spiral magnetic state. The onset of spiral

magnetic order can explain the drop in the longitudinal conductivity and the Hall number

[17] seen first experimentally by Badoux et al. [10]. However, the range of validity of the

used formulas that relate the model of spiral magnetic order with its transport properties

remained unclear. As we have already discussed in the introduction of this thesis and

recapitulated at the beginning of Sec. 2.2, a general argument suggests that interband

contributions, which were neglected in the previous formulas, may be important at the

onset of order. After having provided our general theory of the longitudinal and the Hall

conductivity including interband contributions in Chapter 1, we are now able to discuss

the recent charge transport experiments in cuprates in more detail.

In Sec. 2.2.3, we have obtained the doping-dependence of the magnetic gap ∆(p)

and the incommensurability η(p), which describes the ordering wave vector of the form
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Q = (π−2πη, π), for the spiral magnetic order via a DMFT calculation. We will use these

results to calculate the corresponding conductivities and the Hall number as a function

of doping for LSCO and YBCO. Furthermore, we will calculate the conductivities by

using a simplified phenomenological model for the doping dependences. In particular,

we will use this simplified ansatz to study the importance of interband contributions

systematically.

Phenomenological model of the spiral magnetic order in cuprates

We give a more detailed description of the phenomenological model that we will use in

the following. Some details have already been mentioned throughout this thesis when

discussing the model that was used by Eberlein et al. [17]. The phenomenological model

is in close analogy to previous theoretical studies [14,17,18]. Theoretical results for spiral

states in the two-dimensional t-J model [31] suggest a linear dependence of the magnetic

gap on the hole doping p of the form

∆(p) = D (p∗ − p) Θ(p∗ − p) , (2.31)

where D is a prefactor and p∗ is the critical doping, at which the magnetic order vanishes.

Θ(x) is the Heaviside step function, so that the gap is zero for p > p∗. We have seen

explicitly in Sec. 2.2.3 that such a form is reasonable for an approximation of the magnetic

gap ∆(p) that was obtained for the Hubbard model by a Hartree-Fock approximation and

via DMFT. Both D and p∗ are material-dependent parameters of the phenomenological

model and, thus, need to be fitted to experimental data. For comparison, we have

obtained p∗ = 0.21 with D/t = 8.2 for LSCO and p∗ = 0.15 with D/t = 18.7 for YBCO

in the DMFT calculation. A linear doping dependence of the gap for p < p∗ is also

found in resonating valence bond mean-field theory for the t-J model [26]. In Ref. [17],

a phenomenological quadratic doping dependence of ∆(p) was considered, too.

The wave vector of the incommensurate magnetic states obtained in the theoretical

literature [30–35, 113–121, 123–125] has the form Q = (π − 2πη, π) or a form that is

symmetry related to Q, that is, (−π + 2πη, π), (π, π − 2πη), and (π,−π + 2πη). The

incommensurability η > 0 measures the deviation from the Néel wave vector (π, π).

Peaks in the magnetic structure factors seen in neutron-scattering experiments are also

situated at such wave vectors [36–39]. The incommensurability η is a monotonically
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increasing function of doping. In Ref. [17], the doping dependence of η was determined

by minimizing the mean-field free energy, resulting in η ≈ p, which is roughly consistent

with experimental observations in LSCO [36]. A linear doping dependence of η was also

found in the t-J model in the underdoped regime close to half filling [34,35]. In YBCO,

η values below p are observed [39], and functional renormalization group calculations

for the Hubbard model also yield η < p [121]. Some further aspects of the doping

dependence of η for the Hubbard model have already been discussed in Sec. 2.2.3. Our

results supported the approximately linear doping dependence of η. In the following, we

choose η = p in the phenomenological model for simplicity and discuss consequence of a

different doping dependence if required. We have already sketched the reconstruction of

the Fermi surface and the corresponding magnetization pattern of the phenomenological

model in Fig. 2 in the introduction of this thesis. We will discuss the change in the Fermi

surface topology throughout this section in detail.

Relaxation rate for cuprates

Due to the specific form of the interband coupling ∆, there are no interband contributions

to the conductivity based on the Berry curvature. Thus for small relaxation rates Γ, the

interband contributions of the longitudinal and the Hall conductivity in the spiral state

are suppressed by a factor Γ2 compared to the intraband contributions (see Sec. 1.3.6

and 1.4.6). Nevertheless, it has still to be clarified whether interband contributions are

relevant for certain parameter choices. To get a feeling for the typical size of Γ in the

recent high-field experiments, we estimate Γ from the experimental result ωcτ = 0.075

reported for La1.6−xNd0.4SrxCuO4 (Nd-LSCO) samples at zero temperature by Collignon

et al. [12]. The cyclotron frequency can be written as ωc = e|B|/mc, which defines the

cyclotron mass mc. For free electrons, mc is just the bare electron mass me. Inserting the

applied magnetic field of 37.5 Tesla and assuming mc = me, one obtains Γ = (2τ)−1 ≈
0.03 eV. With the typical value t ≈ 0.3 eV for the nearest-neighbor hopping amplitude

in cuprates, one thus gets Γ/t ≈ 0.1. The cyclotron mass in cuprates is actually larger

than the bare electron mass. Mass ratios mc/me equal to 3 or even larger have been

observed [137]. Hence, Γ/t = 0.1 is just an upper bound; the actual value can be

expected to be even smaller. Indeed, an estimate from the observed residual resistivity

in Nd-LSCO yields Γ ≈ 0.008 eV [138].
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The relaxation rates in cuprate superconductors are actually momentum dependent.

However, we do not expect the momentum dependence to affect the order of magnitude

of interband contributions. Concerning the doping dependence of Γ, we are using ex-

perimental input. Magnetoresistance data suggest that the electron mobility does not

change significantly in the doping range where the Hall number drop is observed [12].

Since the mobility is directly proportional to the inverse relaxation rate, it is a reasonable

assumption to consider a relaxation rate Γ that is independent of doping.

Interband contributions for the longitudinal conductivity in cuprates

We have raised the question of the relevance of interband contributions to the conduc-

tivities, which were often neglected in earlier calculations for Néel and spiral magnetic

states. In our theory, the interband effects are captured by the symmetric interband

contribution of the longitudinal conductivities σxx,sinter and σyy,sinter in (1.101) and the inter-

band contributions of the Hall conductivity σxyzH,inter,± in (1.189). In order to discuss its

relevance in the context of recent transport measurements [10–12], we have a closer look

at the size of those interband contributions using the phenomenological model in (2.31).

We first discuss the interband contributions for the longitudinal conductivity and come

back to the interband contributions to the Hall number later on. Interband contributions

have been taken into account in a calculation of the optical conductivity in a d-density

wave state [139], and in a very recent evaluation of the longitudinal DC conductivity in

the spiral state [18].

In Fig. 2.18, we show results for the longitudinal conductivity σxx of the phenomeno-

logical model in (2.31) with parameters D/t = 12, p∗ = 0.19, and η = p. The conduc-

tivity is obtained from Eq. (2.30) at zero temperature for two values of the relaxation

rate Γ. We chose hopping parameters that are used for YBCO in the literature (see, for

instance, [16]). We neglected the double-layer structure of YBCO for simplicity. The

critical doping p∗ = 0.19 is the onset doping for the Hall number drop observed in the

experiments on YBCO by Badoux et al. [10]. The total conductivity σxx, which is cal-

culated via (2.30), is compared to the intraband contribution σxxintra = σxxintra,+ + σxxintra,−,

where the interband contribution is not taken into account. Note that ~ = 1, so that

σαβ/e2 is dimensionless. The conductivities can be written in units of the conductance

quantum e2/h simply by multiplying with 2π. Here, we rescaled the longitudinal con-
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Figure 2.18: Longitudinal conductivity σxx at zero temperature as a function of doping
p for a doping-dependent magnetic order parameter ∆(p) = 12t(p∗ − p)Θ(p∗ − p) with
p∗ = 0.19. The intraband contribution σxxintra is also shown for comparison. We use
the hopping parameters t′/t = −0.3 and t′′/t = 0.2 and the relaxation rates Γ/t = 0.1
(top) and Γ/t = 0.3 (bottom). The vertical lines indicate changes of the Fermi-surface
topology at the three doping values p∗e, p

∗
h, and p∗ (from left to right).

ductivity by the leading order in Γ so that the plots for different Γ are easier to compare.

One can see a pronounced drop of the conductivity for p < p∗, as expected from the drop

of charge-carrier density in the spiral state. For Γ/t = 0.1, the interband contributions
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are practically negligible, while they are already sizable for Γ/t = 0.3. In particular, the

interband contributions shift the drop of σxx induced by the spiral order towards smaller

values of p, and they smooth the sharp kink exhibited by σxx at p∗ for Γ → 0. We

see that the interband contributions are of particular importance at the onset of order,

where the gap and the relaxation rate are comparable in size, in agreement with the

general argument that we gave in the introduction. In other words, there is no general

theoretical argument that holds so that those interband contributions are negligible for

all dopings. However, the interband contributions are indeed also negligible close to the

onset of order due to their small numerical value for relaxation rates Γ/t . 0.1, which

is a reasonable estimate of the size of the relaxation rate for the recent experiments on

cuprates.

Chatterjee et al. [18] have derived expressions for the electrical and the heat conduc-

tivities in the spiral state, for a momentum-independent relaxation rate, and showed that

the two quantities are related by the Wiedemann-Franz law. While their formulas for

the conductivities have a different form than ours, we have checked that the numerical

results are consistent.

Fermi surface topology

The presence and the doping dependence of the spiral magnetic order has a big impact

on the Fermi surface topology. The change from a large Fermi surface with volume of

size 1 + p to (several) pockets with total volume of size p led to the naive explanation

of the observed drop in the Hall number. Although this explanation may not be correct

in general for the regime ωcτ � 1, which is relevant for those experiments, but only

for ωcτ � 1 or the particular case of parabolic dispersions, the evolution of the Fermi

surface still gives useful insights to understand the different regimes of the longitudinal

conductivity, which we indicated by vertical lines in Fig. 2.18, and of the Hall number,

which we will discuss later on.

In Fig. 2.19, we plot the Fermi surfaces of the phenomenological model for different

dopings p = 0.09, 0.115, 0.17. We use the the same parameters as in Fig. 2.18. We

identify different doping regimes with different Fermi surface topologies. For p < p∗e,

the quasiparticle Fermi surface consists exclusively of hole pockets (orange), while for

p∗e < p < p∗ also electron pockets (blue) are present. Note that p∗e depends (slightly)

120



Applications

0

0

0

0

0

0

Figure 2.19: Quasiparticle Fermi surfaces for p = 0.09 (top), p = 0.115 (bottom left), and
p = 0.17 (bottom right). Fermi-surface sheets surrounding hole (orange) and electron
(blue) pockets correspond to zeros of E−p − µ and E+

p − µ, respectively. The green
“nesting line” indicates momenta p satisfying the condition εp = εp+Q. The band and
gap parameters are the same as in Fig. 2.18, with Γ/t = 0.1.

on the relaxation rate Γ since the relation between the chemical potential µ and the

hole doping depends on Γ. For p < p∗h, there are only two hole pockets, while a second

(smaller) pair of hole pockets appears for p∗h < p < p∗. The dopings in Fig. 2.19 are

chosen to give an example for those three regimes with p < p∗e (top), p∗e < p < p∗h (bottom
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left), and p∗h < p < p∗ (bottom right). At p = p∗, electron and hole pockets merge, and,

for p > p∗, there is only a single large Fermi-surface sheet, which is closed around

the unoccupied (hole) states. In Fig. 2.18, the doping dependence of the conductivity

changes its slope at p∗e, while there is no pronounced feature at p∗h. However, choosing

a smaller relaxation rate Γ/t � 0.1, a change of the slope of σxx is visible also at p∗h,

while no pronounced feature in σyy is visible. The sequence of Fermi-surface topologies

as a function of doping depends on the doping dependence of the incommensurability η.

The above results were obtained for η = p. Choosing, for example, a smaller η(p), one

may have four (not just two) hole pockets at low doping. The green lines in Fig. 2.19

indicate momenta p that satisfy the condition εp = εp+Q. At those momenta, the band

gap E+
p − E−p = 2∆ is minimal. For Néel antiferromagnetic order with Q = (π, π), this

line corresponds to the antiferromagnetic Brillouin zone boundary independent of the

band parameters.

Note that the spiral order with ordering vector component Qx = π−2πη and nonzero

η breaks the mirror symmetry in x direction, which is reflected by the asymmetry in the

Fermi surfaces in Fig. 2.19. Inversion symmetry is restored in the spectral function

of single-electron excitations as discussed in Sec. 2.2.2. In the lower row of Fig. 2.8,

we plotted the spectral function of the quasiparticle and the single-electron excitations

for the regime, where only two hole-pockets are present. The shown spectral functions

corresponds to a Fermi surface similar to the one shown in Fig. 2.19 (top). Besides the

Fermi surface, which is clearly visible in the spectral functions in Fig. 2.8, there are also

precursors of the electron pockets due to the finite relaxation rate, which will eventually

appear at higher doping and are shown in Fig. 2.19 (bottom left).

Momentum-resolved longitudinal conductivity

It is instructive to see which quasiparticle states yield the dominant contributions to the

conductivity. In two dimensions, the conductivity formulas in (1.100) and (1.101) are

given by a momentum integral of the form σαβ =
∫

d2p
(2π)2

σαβ(p). The Fermi function

derivative f ′(ε) restricts the energies ε up to values of order T . For a temperature T = 0,

one has f ′(ε) = −δ(ε). For a small relaxation rate Γ, the quasiparticle spectral functions

A±p (ε) are peaked at the quasiparticle energies. Hence, for low T and small or moderate

Γ, the dominant contributions to the conductivity come from momenta where either
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Figure 2.20: Top: Color plot of the momentum resolved intraband contribution to the
longitudinal conductivity σxxintra(p) for p = 0.09 (left) and p = 0.17 (right). Bottom:
Interband contribution σxxinter(p) for the same choices of p. The band and gap parameters
are the same as in Fig. 2.18, and the relaxation rate is Γ/t = 0.3. The Fermi surfaces
and the nesting line (cf. Fig. 2.19) are plotted as thin black lines.

|E+
p −µ| or |E−p −µ| is small, that is, in particular from momenta near the quasiparticle

Fermi surfaces.

In Fig. 2.20, we show color plots of σxxintra(p) and σxxinter(p) in the Brillouin zone. Al-

though a sizable Γ/t = 0.3 has been chosen, the intraband contributions are clearly

restricted to the vicinity of the quasiparticle Fermi surface. Variations of the size of

intraband contributions along the Fermi surfaces are due to the momentum dependence

of the quasiparticle velocities E±,xp = ∂E±p /∂p
x. The interband contributions are par-

ticularly large near the “nesting line” defined by εp+Q = εp, where the direct band
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gap between the quasiparticle energies E+
p and E−p assumes the minimal value 2∆. For

p = 0.09, the largest interband contributions come from regions on the nesting line

remote from the Fermi surfaces. Note, however, that they are much smaller than the in-

traband contributions, and |E−p −µ| has a local minimum in these regions. For p = 0.17,

the interband contributions are generally larger, and they are concentrated in regions

between neighboring electron and hole pockets.

Longitudinal conductivity obtained by using the DMFT results

So far, we have discussed the longitudinal conductivity for the phenomenological model.

In Sec. 2.2.3, we have presented results for the Hubbard model within a dynamical

mean-field theory (DMFT) approach. In principle, one could compute charge transport

properties from linear response theory within the DMFT approximation [140]. However,

this involves a rather delicate analytic continuation from Matsubara to real frequencies.

Moreover, the relaxation rates obtained from the DMFT cannot be expected to provide

a good approximation in two dimensions. Hence, we compute only the magnetic gap,

the incommensurability, and the so-called Z-factor from the DMFT, while we take the

relaxation rates from estimates obtained from experiments. By this approach, the doping

dependence of the quantities as well as their size are no longer parameters that have to

be adjusted but that have been obtained ab initio from the Hubbard model itself.

In Bonetti et al. [2, 4], the gap ∆ was extracted via the zero-frequency limit of the

off-diagonal term of the self-energy. The Z-factor captures one of the main effects of the

normal (diagonal) term Σ(ip0) of the self-energy at low energies and low temperature

besides the renormalization of the quasiparticle energies, which can be incorporated into

a modified chemical potential. The self-energy is momentum independent within DMFT

but, in general, frequency dependent, where ip0 is the fermionic Matsubara frequency.

It reduces the quasiparticle weight by a factor

Z =

[
1− ∂ ImΣ(ip0)

∂p0

∣∣∣∣
p0=0

]−1

. (2.32)

At finite temperatures, the differential quotient may be approximated by the quotient

ImΣ(iπT )/(πT ), where πT is the lowest positive Matsubara frequency. The Z-factor re-

duces the bare single-particle excitation energy and the gap to Zεp and Z∆, respectively,
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Figure 2.21: Z-factor as a function of doping p for LSCO and YBCO at T/t = 0.04
obtained by the DMFT calculation (cf. Sec. 2.2.3). The Z-factor obtained from the
unstable (below p∗) paramagnetic solution is also shown for comparison (dashed lines).
We also show the Gutzwiller factor 2p/(1 + p) [26] for comparison (gray line).

and, thus, also the quasi-particle energies to ZE±p . In other words, it narrows the overall

bandwidth by rescaling the unit of energy t. Moreover, it reduces the quasi-particle

contributions in the spectral functions in Eqs. (2.9) and (2.10) by a global factor Z. The

missing spectral weight is shifted to incoherent contributions at higher energies.

In Fig. 2.21, we show the Z-factor as obtained from the DMFT calculation [2,4], which

was presented in Sec. 2.2.3, as a function of hole doping p. For p < p∗, we also show

the Z-factor that is found in the unstable paramagnetic solution. One can see that the

magnetic order enhances Z compared to the paramagnetic phase. The Z-factor exhibits

only a moderate doping dependence and assumes material-dependent values between 0.2

and 0.4. The strongest renormalization is found for YBCO. Note that the paramagnetic

Z-factors do not vanish for p → 0, because the paramagnetic DMFT solution at half-

filling is still on the metallic side of the Mott transition for the choice of parameters

in the DMFT calculation. The overall scale is similar to the one that is obtained by

a Gutzwiller factor, which captures phenomenologically the loss of metallicity in the

doped Mott insulator. Such a factor is used in the Yang-Rice-Zhang (YRZ) ansatz for

the pseudogap phase [26].

To take the renormalization of the quasi-particle energies into account, we replace
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Figure 2.22: Longitudinal conductivity as a function of doping for LSCO at T/t = 0.027
(squares) and T/t = 0.04 (circles) and for YBCO at T/t = 0.04 (circles), together with
an extrapolation to zero temperature (dashed lines). The conductivity in the unstable
paramagnetic phase is also shown for comparison at T/t = 0.04 (gray lines). The param-
eters ∆(p), η(p) and Z(p) were extracted from the DMFT calculation (cf. Sec. 2.2.3).

the dispersion and the gap by Zεp and Z∆, respectively, in the conductivity formulas

in (1.100) and (1.101). Note that the reduction of the spectral weight of single-particle

excitations by the Z-factor does not apply to the conductivities. The reduction of the

quasi-particle contribution to the Green’s functions by Z is canceled by vertex corrections

to the conductivities [141]. For the bilayer compound YBCO, we modify the momentum

integration to 1
2

∑
kz=0,π

∫
d2k

(2π)2
. We assume the doping independent value Γ/t = 0.025
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for the relaxation rate, which corresponds to the estimate for La1.6−xNd0.4SrxCuO4 (Nd-

LSCO) at low temperatures, which we discussed above. We re-calculate the chemical

potential with the new parameters for a consistent description at fixed doping. The

magnetic gap in the zero temperature results is based on a linear extrapolation of ∆(p)

as shown in Fig. 2.12. The zero temperature limit of η(p) and Z(p) was obtained by

a linear temperature extrapolation at each doping, and a subsequent linear fit in p up

to the zero temperature extrapolation of p∗. The linear extrapolation in temperature is

based on data for T/t = 0.027 and T/t = 0.04 for LSCO, and data for T/t = 0.04 and

T/t = 0.05 for YBCO.

In Fig. 2.22, we show the longitudinal conductivity σxx as a function of doping for

LSCO parameters at T = 0.027t and T = 0.04t, and for YBCO parameters at T = 0.04t,

together with an extrapolation to zero temperature. The conductivities were calculated

for the respective set of parameters and the corresponding temperature. We used the

complete conductivity formulas including the interband contribution in (2.30). Note that

σxx/e2 is a dimensionless quantity since we use natural units where ~ = 1. Our results

for the two-dimensional conductivity correspond to three-dimensional resistivities of the

order 100µΩcm, in agreement with experimental values. In order to see this, note that

h/e2 is the von Klitzing constant RK ≈ 25813 Ω. The two-dimensional conductivity

of a CuO-layer in SI units is, thus, obtained by multiplying our dimensionless result

by 2π/RK . To obtain the conductivity of the three-dimensional sample, one has to

divide by the average distance between the layers. The expected drop below p∗ is clearly

visible. It is particularly steep at T > 0, which is due to the square root type onset

of the order parameter at finite temperature, see Fig. 2.12. Since the relaxation rate

is fixed in our calculations, the drop of σxx is exclusively due to a drop of the charge

carrier concentration related to the Fermi surface reconstruction by the magnetic gap.

The results are consistent with the results that were obtained by the phenomenological

model and are shown in Fig. 2.18. Note the rescaling by the leading order in Γ when

comparing the overall scale.

Anisotropy or “nematicity” of the conductivity in cuprates

The breaking of the tetragonal symmetry of the square lattice by a spiral order with η > 0

naturally leads to an anisotropy (or “nematicity”) in the longitudinal conductivity, as we
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Figure 2.23: Anisotropy ratio of the longitudinal conductivity σyy/σxx at zero tempera-
ture as a function of doping p for three choices of D. The band parameters are the same
as in Fig. 2.18, and the relaxation rate is Γ/t = 0.1.

have already discussed in Sec. 2.2.4. In Fig. 2.23, we show the ratio σyy/σxx as a function

of doping for the phenomenological model with the same band parameters as in Fig. 2.18.

We plot the anisotropy for several choices of D, which is the slope of the linear doping

dependence of the gap, at Γ/t = 0.1. For an ordering wave vector Q = (π− 2πη, π) with

an incommensurability in the x direction, the conductivity in the y direction is larger

than in the x direction. The anisotropy increases smoothly upon lowering the doping

from the critical point p∗, and it decreases upon approaching half filling, where η vanishes

such that the square lattice symmetry is restored. In Fig. 2.24, we show the ratio σyy/σxx

as a function of doping for LSCO and YBCO at T = 0.04t using our DMFT results. We

clearly see the same general behavior. Note that a smaller anisotropy is expected since the

gap ∆(p) is reduced by the Z-factor. A pronounced temperature and doping-dependent

in-plane anisotropy of the longitudinal conductivities with conductivity ratios up to 2.5

has been observed in YBCO by Ando et al. [142]. The observed anisotropy is, thus,

much larger than those obtained in our calculation. There is no further contribution to

the anisotropy due to a rotation of the coordinate system within our model since the

off-diagonal contribution σxy = σyx vanishes for spiral states with a wave vector of the

form Q = (π − 2πη, π) as discussed in Sec. 2.2.4.
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Figure 2.24: Ratio σyy/σxx as a function of doping for LSCO (orange) and YBCO (blue)
at T/t = 0.04. The parameters ∆(p), η(p) and Z(p) were extracted from the DMFT
calculation (cf. Sec. 2.2.3).

Interband contributions for the Hall number in cuprates

So far, we have focused on the longitudinal conductivity. We continue by calculating

and discussing both the Hall number both for the phenomenological model and the Hall

number that we calculate by using our DMFT results in Sec. 2.2.3. In both approaches,

we again use parameters that are common for cuprates in order to make connection to

the recent transport measurements [10–12]. We calculate the Hall conductivity

σxyzH = σxyzH,intra,+ + σxyzH,intra,− + σxyzH,inter,+ + σxyzH,inter,− (2.33)

via the formulas presented in (1.188) and (1.189). The Hall number is obtained by the

ratio between the product of the longitudinal conductivities and the Hall conductivity via

(1.195). We use the convention that hole-like contributions count positively to the Hall

number, whereas electron-like contributions count negatively. In Fig. 2.25, we show the

Hall number nH for the phenomenological model in (2.31) with D/t = 12 and p∗ = 0.19 at

zero temperature. It is calculated by including all contributions of the Hall conductivity

in (2.33) and all contributions of the longitudinal conductivity in (2.30). Again, we used

η = p. The used gap parameters as well as the hopping parameters are the same as in

Fig. 2.18. We plot the Hall number nH,intra that is calculated by neglecting all interband
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Figure 2.25: Hall number nH as a function of doping p for a doping dependent magnetic
order parameter ∆(p) = 12t(p∗−p)Θ(p∗−p) with p∗ = 0.19. The intraband contribution
nH,intra is also shown for comparison. The straight dashed lines correspond to the naive
expectation for large and reconstructed Fermi surfaces, nH = 1 + p and nH = p, respec-
tively. We use the hopping parameters t′/t = −0.3 and t′′/t = 0.2 and the relaxation
rates Γ/t = 0.1 (top) and Γ/t = 0.3 (bottom). The vertical lines indicate the three
special doping values p∗e, p

∗
h, and p∗ (from left to right).

contributions of the conductivities in (2.30) and (2.33) for comparison.

For p ≥ p∗, where ∆ = 0, the Hall number is slightly above the value 1 + p corre-

sponding to the density of holes enclosed by the (large) Fermi surface. This is also seen
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in experiment in YBCO [10] and Nd-LSCO [12]. Note that nH is not expected to be

equal to 1 + p for ωcτ � 1, since the dispersion εp is not parabolic. For p < p∗ the Hall

number drops drastically. For Γ/t = 0.1, the interband contributions are again quite

small, as already observed for the longitudinal conductivity in Fig. 2.18, and the Hall

number gradually approaches the value p upon lowering p. Hence, the naive expectation

that the Hall number is given by the density of holes in the hole pockets turns out to be

correct for sufficiently small p. Visible deviations from nH = p set in for p > p∗e, where

the electron pockets emerge. For Γ/t = 0.3, interband contributions are sizable. They

shift the onset of the drop of nH to smaller doping. We can make the same conclusion

on the relevance of interband contributions to the Hall number that we have obtained

for the longitudinal conductivity: Whereas a general argument for negligible interband

contributions does not hold for dopings sufficiently close to the onset of the order, the

interband contributions are practically negligible due to their small numerical value for

a relaxation rate Γ/t . 0.1, which is relevant for the recent experiments.

Momentum-resolved Hall conductivity

We have already identified the momenta that contribute to the longitudinal conduc-

tivity in Fig. 2.20 and continue by the same analysis for the Hall conductivity. The

Hall conductivity in (1.188) and (1.189) is given by a momentum integral of the form

σxyzH =
∫

d2p
(2π)2

σxyzH (p). To see which momenta, that is, which quasiparticle states, con-

tribute most significantly to the Hall conductivity, we show color plots of σxyzH,intra(p) and

σxyzH,inter(p) for two choices of hole doping p, which represent a different Fermi surface

topology, in Fig. 2.26. The Fermi surface only consists of hole pockets at p = 0.09,

whereas a second set of hole pockets and electron pockets are present at p = 0.17. The

intraband contributions are concentrated near the quasiparticle Fermi surfaces, due to

the peaks in f ′(ε) and in the spectral functions, as for the longitudinal conductivity.

Contributions from hole pockets count positively, and those from electron pockets neg-

atively, as expected. The intraband contributions are particularly large near crossing

points of the Fermi surfaces with the nesting line defined as εp = εp+Q, where the Fermi

surfaces have a large curvature. The interband contributions lie mostly near the nesting

line, not necessarily close to Fermi surfaces. For p = 0.17, they are concentrated in small

regions between electron and hole pockets.
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Figure 2.26: Top: Color plot of the momentum resolved intraband contribution to the
Hall conductivity σxyzH,intra(p) for p = 0.09 (left) and p = 0.17 (right). Bottom: Interband
contribution σxyzH,inter(p) for the same choices of p. The band and gap parameters are the
same as in Fig. 2.25, and the relaxation rate is Γ/t = 0.3. The Fermi surfaces and the
nesting line (cf. Fig. 2.19) are plotted as thin black lines.

Hall number obtained by using the DMFT results

After having discussed the Hall number within the phenomenological approach, we con-

tinue by calculating the Hall number by using our results obtained by the DMFT cal-

culations. We do this in the same fashion as we did previously for the longitudinal

conductivity. We consider all contributions of the longitudinal and the Hall conduc-

tivity in (2.30) and (2.33) including the interband contributions. The calculation was

performed at the corresponding finite temperature. The Hall numbers as a function of

doping are shown in Fig. 2.27, again for LSCO at T/t = 0.027 and T/t = 0.04, and for
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Figure 2.27: Hall number as a function of doping for LSCO at T/t = 0.027 (square) and
T/t = 0.04 (circle) and for YBCO at T/t = 0.04 (circle), together with an extrapolation
to zero temperature (dashed lines). The Hall number in the unstable paramagnetic
phase is also shown for comparison at T/t = 0.04 (gray lines). The black dashed lines
correspond to the naive expectations nH = p for hole pockets and nH = 1 + p for a large
hole-like Fermi surface. The parameters ∆(p), η(p) and Z(p) were extracted from the
DMFT calculation (cf. Sec. 2.2.3).

YBCO parameters at T/t = 0.04, together with an extrapolation to zero temperature.

The extrapolation was obtained in the same way as discussed for the longitudinal con-

ductivity. A pronounced drop is seen for doping values below p∗, indicating once again

a drop of the charge carrier concentration. In the high-field limit ωcτ � 1, the Hall

number would be exactly equal to the charge carrier density enclosed by the Fermi lines,
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that is, 1 + p in the paramagnetic phase and p in the magnetically ordered phase, even

in the presence of electron pockets [5]. However, the experiments, which motivated our

analysis are in the low-field limit ωcτ � 1, since τ is rather small, and our expression

for the Hall conductivity has been derived in this limit. In the low field limit, the Hall

number is equal to the carrier density only for a parabolic dispersion. For low doping,

the Hall number nH(p) shown in Fig. 2.27 indeed approaches the value p, which indicates

a near-parabolic dispersion of the holes in the hole pockets for small p. For large doping,

in the paramagnetic phase, the Hall number is only slightly above the naively expected

value 1+p in YBCO, while it shoots up to significantly higher values in LSCO, indicating

that the dispersion of charge carriers near the Fermi surface cannot be approximated by

a parabolic form. The increase of nH(p) way above 1 + p is a precursor of a divergence

at the doping p = 0.33, well above the van Hove point at p = 0.23, which is due to a

cancellation of positive (hole-like) and negative (electron-like) contributions to the Hall

coefficient RH.

Fitting of the phenomenological model to the experimental results

The phenomenological model of the gap ∆(p) in (2.31) with its free parameters D and

p∗ allows us to make closer connection to the experimental results of Badoux et al.

[10]. To get a better estimate for the required set of parameters, we have fitted the

parameters p∗ and D such that we obtain quantitative agreement with the observed data

points for YBCO. For the phenomenological model, we used so far the onset p∗ = 0.19

extracted from the experimental data by Badoux et al. [10] and D/t = 12, which was

used previously by Verret et al. [16]. The Hall number in Fig. 2.25 was calculated with

those parameters.

The fit, obtained for a fixed η = p and Γ/t = 0.05, and shown in Fig. 2.28, is

optimal for p∗ = 0.21 and D/t = 16.5. Here we also compare to results obtained with

the same values of p∗ and D, but with a different choice of the incommensurability

η(p), namely η = p/2 and η = p − 0.03. These alternative functions are closer to the

incommensurabilities observed for YBCO [39]. While the doping dependence of the

Fermi-surface topologies depends on the choice of η(p), one can see that the doping

dependence of the Hall number is only weakly affected for hopping parameters that are

relevant for YBCO.
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Figure 2.28: Fit of the Hall number as a function of doping to the experimental data (red)
from Badoux et al. [10]. For the relaxation rate chosen as Γ/t = 0.05, best agreement
for η = p is obtained for p∗ = 0.21 and D/t = 16.5. Also shown are results obtained
with the same parameters but η(p) = p/2 and η(p) = p− 0.03.

The value of D is unreasonably large. For a hopping amplitude t ≈ 0.3 eV, the

magnetic gap ∆(p) = D(p∗ − p) would rise to a value ∆ ≈ 0.5 eV at p = 0.1. Large

values for D were also assumed in previous studies of the Hall effect in Néel and spiral

antiferromagnetic states, to obtain a sufficiently steep decrease of the Hall number [14,

16, 17]. The required size of D can be substantially reduced, if the bare hopping t is

replaced by a smaller effective hopping

teff =
2p

1 + p
t , (2.34)

where the doping-dependent prefactor of t, the Gutzwiller factor, on the right-hand side

captures phenomenologically the loss of metallicity in the doped Mott insulator. Such

a factor is used in the Yang-Rice-Zhang (YRZ) ansatz for the pseudogap phase [26].

Replacing t by teff with t = 0.3 eV, a prefactor D = 1.5 eV of the gap ∆ is sufficient

to obtain the best fit for nH, leading to ∆ ≈ 0.15 eV at p = 0.1. This value is similar

to the magnetic energy scale J in cuprates. The value of D obtained by fitting to

the experimental result is comparable to the one that was obtained within the DMFT
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calculation in the zero temperature limit, namely D/t = 18.7, although the onset of order

is strongly reduced for the DMFT result. The effect of the effectively reduced hopping

due to the Gutzwiller factor is consistent with the renormalization of the dispersion and

the gap by the Z-factor. The Gutzwiller factor and the Z-factor are shown in Fig. 2.21

for comparison.

All our results of the phenomenological model including the fitting has been computed

by evaluating the conductivity formulas with a Fermi function at zero temperature. We

have checked that the temperature dependence from the Fermi function is negligible at

the temperatures at which the recent transport experiments in cuprates [10–12] have

been carried out. The temperature effects are however important in the evaluation

of the conductivity formulas for the temperatures, at which the DMFT calculations

were performed. Thus, we performed the calculations for the DMFT results at the

corresponding finite temperature and provided the zero temperature limit for comparison.

Comparison of the transport properties of the spiral magnetic state to the

experiments in cuprates

We have already discussed several aspects of our theory in comparison with the experi-

mental results. We now summarize the most important conclusions. Qualitatively, the

pronounced drop of the longitudinal conductivity and the Hall number observed in ex-

periment is captured by our theory, both by the phenomenological ansatz proposed by

Eberlein et al. [17] and by the ab initio results obtained by DMFT calculations by Bonetti

et al. [2, 4]. In the DMFT calculation, the onset of the drop at p∗ = 0.21 in the zero

temperature extrapolation for LSCO (see Fig. 2.12) is slightly above the experimental

value 0.18 for LSCO [11], but below the value 0.23 observed for Nd-LSCO [12]. Why

the observed p∗ differs so much between LSCO and Nd-LSCO is unclear. For YBCO,

we obtain p∗ = 0.15 (see Fig. 2.12), while the charge carrier drop seen in experiment

starts at p∗ = 0.19 [10]. Cluster extensions of the DMFT [143], which go beyond the

assumption of a momentum-independent self-energy, yield critical doping strengths for

the onset of pseudogap behavior, which are also below the experimental value [144,145].

Hence, for a better quantitative agreement one probably needs to go beyond the single-

band Hubbard model. The effect of interband contributions to both the longitudinal

and the Hall conductivity are most prominent at the onset of order. They smooth the
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kink that was seen in the conductivities, when interband contributions were neglected,

and they shift the onset of the drop to lower doping than the onset of the order itself.

For an estimated relaxation rate Γ . 0.1 for cuprates, the interband contributions are

small in numerical size and, thus, do not have any consequence on previous conclusions

of Eberlein et al. [17], which neglected interband contributions completely.

The relatively narrow doping range of a few percents, in which the steep charge

carrier drop occurs, also agrees between theory and experiment. The analysis of the

phenomenological model shows that the doping range of the drop is mainly controlled by

the prefactor D of the phenomenological model. In order to get a good agreement with

the experimental results, an unreasonably large prefactor D is needed, which could be

suppressed to reasonable values by introducing a Gutzwiller factor. The DMFT results

for YBCO yield a gap of similar size, where the Z-factor plays the role of the Gutzwiller

factor. A square-root onset further narrows the range, which is shown by comparing the

finite and zero temperature results of the DMFT calculations. The Hall number obtained

from our calculations reaches the value nH(p) = p only at much lower dopings than in the

experiments. The convergence is particularly slow for LSCO (see Fig. 2.27) and can be

attributed to the non-parabolic dispersion of the charge carriers in the hole-pockets. In

the experiments, the behavior nH ≈ p is observed over an extended doping range only at

low doping far below p∗, too. At larger doping, a few percent below p∗, the Hall number

becomes equal to p only at a single doping value. Upon further reducing the doping,

it drops below p and even becomes negative, presumably due to charge density wave

order [146]. To obtain the steep drop of the Hall number down to nH = p and below in a

theoretical description, one therefore needs to take the charge order into account. Charge

order on top of spiral order was discussed by Eberlein et al. [17], but the corresponding

transport properties were not yet computed.

For dopings p ≥ p∗, the Hall number for YBCO is close to 1 + p as naively expected.

More precisely, it is slightly larger in agreement with the experimental observations [10].

By contrast, for LSCO parameters nH is much larger than 1 + p for p ≥ p∗ with an in-

creasing deviation for larger doping. From a theoretical point of view this behavior is not

surprising, since there is no reason why nH should be close to the charge carrier density

for the strongly non-parabolic dispersion near the van Hove filling. In the experiments,

p∗ practically coincides with the van Hove filling in Nd-LSCO, and nH is nevertheless

only slightly above 1 + p for p near p∗ [12].
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A drop by a factor p/(1 + p) in a narrow doping range below p∗ has also been

observed for the longitudinal conductivity in Nd-LSCO [12]. This drop corresponds to

the expectation based on a Drude formula for the conductivity only if the relaxation rate

and the effective electron mass remain constant, while the charge carrier concentration

drops from 1 + p to p. The drop of σxx below p∗ obtained from our calculation for LSCO

parameters is less pronounced (see Fig. 2.22). Since we assumed a doping-independent

relaxation rate, this reduction of the drop compared to the carrier concentration ratio

must be due to an increase of the average Fermi velocities below p∗, that is, a decrease

of the effective electron mass meff in a Drude picture. A priori, there is no reason why

these quantities should remain constant when the Fermi surface gets fractionalized into

pockets. Of course, it can be reconciled with the theory by assuming a suitable doping-

dependent enhancement of the relaxation rate below p∗ [15, 18], so that the mobility

µ ∝ 1/Γmeff remains constant as seen in experiment [12].
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The electrical conductivity is one of the fundamental properties of solids and, as such, of

ongoing interest in physics for both experiment and theory. Recent experimental results

revealed the need of reconsidering the electrical conductivity in systems with more than

one valence band [13, 51, 59]. In this thesis, we developed and analyzed a theory of the

longitudinal conductivity, the intrinsic anomalous Hall conductivity and the ordinary

Hall conductivity, which we used to explore several electrical transport phenomena that

are directly linked to the presence of multiple bands. In the following, we summarize

and conclude the main results that were presented throughout this thesis. We combine

it with a short outlook on potential expansions beyond the scope of this thesis.

External electric and magnetic fields can induce a current in a solid. The induced

current density up to first order in the electric and the magnetic field is captured by

the electrical conductivity tensors σαβ and σαβη, where the indices α, β, and η indicate

the directions of the current, the electric field, and the magnetic field, respectively.

From a theoretical point of view, the derivation of formulas for these two conductivity

tensors is a crucial step in order to gain better insights in the physical mechanisms

behind the related transport phenomena. The very successful band theory for solids

is a key concept for a theoretical description of the conductivity, which is apparent,

for instance, in the well-known semiclassical Boltzmann transport theory, where the

conductivity is related to the momentum derivatives of the band dispersion [7]. However,

the original approach of Boltzmann does not incorporate the effects that might arise due

to the presence and interplay of several valence bands and, thus, a different approach

is required. Microscopic approaches beyond the semiclassical approximations are indeed

able to provide a systematic handling of interband effects [42,43], so that it is possible to

go beyond a one-band model or the simple summation of independent band contributions

in a multiband model.

In Chapter 1, we presented a microscopic derivation of the conductivity formulas at
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finite temperature for a general momentum-block-diagonal two-band model combined

with detailed discussions of several aspects that arose during the derivation. In Chap-

ter 2, we applied those formulas and results to models of recent interest. Our two-band

model, which we specified in Sec. 1.1.1, acts as a minimal model that involves more

than one band and, thus, potentially hosts interband effects. We were able to describe a

broad variety of physically very different systems by the considered model ranging from

systems with magnetic order like Néel antiferromagnetism and spiral spin density waves

to systems that involve topological properties like non-zero Chern numbers. Despite the

simplicity of our model, we could, thus, gain a broader and more general insight inde-

pendent of details that might be particular for a more specific model. We derived the

formulas for the longitudinal, the ordinary Hall and the intrinsic anomalous Hall conduc-

tivity. The longitudinal conductivity captures the induced (parallel) current due to an

external electric field. The ordinary Hall conductivity describes a transverse current in

the presence of a transverse external magnetic field. The intrinsic anomalous Hall con-

ductivity describes a transverse current that is present without any external magnetic

field and that is not caused by (skew) scattering but by the properties of the eigenstate

manifold itself. Our main formulas of the longitudinal and the anomalous Hall conduc-

tivity are summarized in Sec. 1.3.3. The formulas of the ordinary Hall conductivity are

summarized in Sec. 1.4.5. We will go through several key results of this thesis in the

following.

Criteria for a unique and physically motivated decomposition

On the one hand, microscopic approaches may have a tendency not to be very trans-

parent and easy to interpret physically, which is seen as a disadvantage in comparison

to semiclassical approaches, but, on the other hand, they can provide a more systematic

treatment, which can be useful for identifying further relevant phenomena [43]. In Chap-

ter 1, we combined the derivation of the conductivity formulas with a systematic analysis

of the underlying structure of the involved quantities, which led to the identification of

two fundamental criteria for a unique and physically motivated decomposition of those

formulas. Intraband and interband contributions are defined by the involved quasiparti-

cle spectral functions of one or both bands, respectively. Symmetric and antisymmetric

contributions are defined by the symmetry under the exchange of the current and the
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electric field directions.

We identified the symmetry under the exchange of the current and the electric field

directions as a powerful criterion for disentangling conductivity contributions of differ-

ent physical origin. We found that this symmetry is strongly intertwined with a second

symmetry that is fundamentally based on the presence of multiple bands. The two-band

structure of our considered model is manifested by 2×2 Green’s function and vertex ma-

trices that capture the occupation and the coupling of the external fields and the current

to the conductivity, respectively. The trace over the product of those matrices eventually

provides the conductivity formulas. The matrix structure that arises in contrast to an

one-band system and its property to be, in general, non-abelian is crucial. We identified

an one-to-one correspondence between the symmetry of these matrix quantities under

transposition and the symmetry under the exchange of the current and the electric field

directions.

The intraband contribution of the conductivity tensor σαβ, where α and β are the

direction of the current and the external electric field, respectively, is purely symmetric

in α ↔ β. The interband contribution of σαβ decomposes into a symmetric and an

antisymmetric part. The symmetric interband contribution is shown to be caused by

the quantum metric. The antisymmetric interband contribution is related to the Berry

curvature and describes the intrinsic anomalous Hall effect. The conductivity tensor σαβη,

where α, β and η are the directions of the current, the external electric and magnetic

fields, respectively, describe both the ordinary Hall effect and linear magnetoresistance.

The former one is captured by the antisymmetric part of σαβη with respect to α ↔ β,

which we denoted as σαβηH , whereas the latter one is described by the symmetric part. In

this thesis, we focused on the ordinary Hall conductivity and its interband contribution.

Momentum-relaxation rate of arbitrary size

In order to obtain a non-diverging conductivity, a momentum relaxation process is re-

quired. We incorporated this in our theory by considering a simplified phenomenological

momentum-relaxation rate Γ. It is assumed to be constant in frequency and momentum

and both diagonal and equal for the two bands. We did not assume any restriction on

the size of Γ, which allowed us to study the scaling behavior of the conductivity contri-

butions in the clean (small Γ) and the dirty (large Γ) limit. We showed that so-called
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spectral weighting factors, which involve the product of quasiparticle spectral functions

of one or both bands only, entirely capture the dependence on the relaxation rate Γ.

In the clean limit, we obtained the expected 1/Γ scaling of the longitudinal conduc-

tivity [7] and the constant (or ”dissipationless“ [43]) limit of the intrinsic anomalous

Hall conductivity. The widely used formula of the anomalous Hall effect by Onoda et

al. [79] and Jungwirth et al. [68] are obtained by our formula of the intrinsic anomalous

Hall effect in the clean limit. We have, thus, generalized those formulas to finite Γ.

The symmetric interband contribution of σαβ scales as Γ in the clean limit and is, thus,

suppressed. We derived the ordinary Hall conductivity for a momentum-independent

coupling between the two subsystems of the two-band model. We found that the inter-

band contribution to the Hall conductivity tensor σαβηH obeys the expected 1/Γ2 scaling

in the clean limit [42]. The interband contributions are suppressed by a factor of the

order Γ2. The relevant energy scale for comparison with Γ is the direct band gap be-

tween the lower and upper band. Therefore, interband contributions are of particular

importance for small gaps, for instance, at the onset of order.

The validity of the derived formulas for a relaxation rate of arbitrary size allowed us

to perform a systematic scaling analysis of the different contributions in the dirty (large

Γ) limit. We provided the precise prefactors of the expansion in powers of 1/Γ, which

were shown to be helpful in our applications that we will specify below.

Relation to quantum geometry

The coupling of the current to the external electromagnetic fields are described by the

vertex matrices. We showed that those vertex matrices, which are essentially given

by the momentum derivative of the Bloch Hamiltonian, split into a diagonal and an

off-diagonal part when expressing them in the eigenbasis of the Hamiltonian. The off-

diagonal parts eventually led to the interband contributions. Since the eigenbasis is, in

general, momentum dependent, the change of the basis results in terms that involve the

momentum derivatives of the eigenbasis, that is, the Berry connection. This suggested a

deeper connection to concepts of quantum geometry. Indeed, we found that the interband

contributions of the conductivity tensor σαβ are controlled by the quantum geometric

tensor T αβ,np of the underlying eigenbasis manifold of the lower and upper bands n = ±.

Its real (symmetric) part is the quantum metric and its imaginary (antisymmetric) part is
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the Berry curvature. The symmetry in α↔ β shows again its usefulness in disentangling

contributions of different physical origin. We saw that the intraband contribution of the

Hall conductivity tensor σαβηH involves the quasiparticle effective mass since the quantum

metric correction was shown to drop out. This was already recognized by Voruganti et

al. [42] without noticing the connection to quantum geometry.

Intrinsic anomalous Hall effect

We identified the antisymmetric interband contribution of σαβ to describe the intrinsic

anomalous Hall effect, which is caused by the Berry curvature and not by (skew) scat-

tering. Our formulas of σαβ are closely related to the formulas derived by Bastin et

al. [75, 77] and Středa [76, 77]. We gave a new derivation following Bastin et al. [75] in

our notation and discussed the precise relation to our formulas.

In Sec. 1.3.4, we proposed a different definition of the so-called Fermi-sea and Fermi-

surface contributions of the conductivity than previously proposed by Středa [76]. His-

torically, the definition is based on the involved Fermi function or its derivative so that

the relevant energy states are restricted to the Fermi sea or the Fermi surface, respec-

tively. However, this definition is not unique due to the possibility of partial integration

in the integration over the internal frequency. In contrast, we have based our definition

on the symmetry under exchange of the current and the electric field directions. We

found that the symmetric contributions and the antisymmetric contribution of the con-

ductivity tensor σαβ involve the derivative of the Fermi function and the Fermi function,

respectively, when we expressed the contributions entirely in terms of quasiparticle spec-

tral functions. The same decomposition naturally arises when decomposing the Bastin

formula [75] into its symmetric and antisymmetric part. Therefore, we argued that the

symmetry in α↔ β is the fundamental property to split contributions of different physi-

cal origin, whereas the distinction in Fermi-sea and Fermi-surface contributions is merely

a change of view.

In Chapter 2, we applied our general theory to different models of recent interest. By

this, we exemplified the broad and easy applicability, and highlighted different aspects

of the general insights. In the first part of the applications in Sec. 2.1, we focused

on the anomalous Hall effect. The anomalous Hall conductivity is connected to the

(integer) Chern number, which is a topological invariant, via their dependence on the

143



Conclusion

Berry curvature. This can lead to a quantized anomalous Hall conductivity under certain

conditions, which we discussed in our general theory in Sec. 1.3.7. Our result is consistent

with previous work [64–68], which we have obtained in the clean (low Γ) limit of our

formulas. In the first example in Sec. 2.1.1, we discussed the quantized anomalous Hall

conductivity for a Chern insulator at finite Γ. We saw that the quantization is violated

for larger Γ in the parameter range, where the band gap closes and the Chern number

changes its value. We understood this effect by a partial occupation of the former

unoccupied (upper) band due to finite Γ. This reduces the conductivity since the Berry

curvature of the upper band is equal to the Berry curvature of the lower band except of

the overall sign.

In a second example in Sec. 2.1.2, we used our conductivity formulas for a relaxation

rate Γ of arbitrary size and their scaling behavior for small and large Γ, which we derived

and summarized in Sec. 1.3.6. We analyzed the scaling behavior of the anomalous Hall

conductivity with respect to the longitudinal conductivity for a ferromagnetic multi-d-

orbital model, which was proposed by Kontani et al. [73]. Our results are qualitatively

and quantitatively in good agreement with experimental findings (see Ref. [74] for an

overview). Whereas there is a proper scaling of the anomalous Hall conductivity with

σxy ∝ (σxx)0 and σxy ∝ (σxx)2 in the clean and dirty limit, respectively, we identified

a crossover regime without any proper scaling behavior for intermediate conductivities

σxx = 10− 30000 (Ω cm)−1. The conductivity of various ferromagnets were found in this

range [74]. The treatment of intrinsic and extrinsic contributions on equal footing as

well as the experimental and theoretical investigation of the scaling behavior for systems

and models that involve, for instance, vertex corrections, electron localization effects and

quantum corrections from Coulomb interaction is still ongoing research [74, 79, 83, 107–

110] and beyond the scope of this thesis.

Spiral antiferromagnetic order in cuprates

We allowed for a relative momentum shift Q in the spinor of our two-band system. The

system is no longer lattice-translational invariant for a nonzero Q, but has a combined

symmetry in lattice-translation and rotation inside the spinor space, for instance, in

spin space [92]. In Sec. 2.2, we discussed spiral spin density waves as an example of

such systems. A key property of spiral spin density waves, which are described by two
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parameters, the magnetic gap ∆ and the ordering wave vector Q, is that the order needs

not to be commensurate with the underlying lattice to be describable by the two-band

model. The ordering wave vector Q is precisely the relative momentum shift in the

spinor. The magnetic gap ∆ in the spiral magnetic state is momentum independent

and, thus, consistent with our assumption that we used in the calculation of the Hall

conductivity.

We were interested to relate spiral magnetic order with recent Hall conductivity

measurements on cuprates in very strong magnetic fields, so that the superconducting

state is substantially suppressed even at low temperature [10–13]. Following the proposal

by Eberlein et al. [17], the observed drop in the Hall number, which is naively related to

the volume of the Fermi surface, can be explained by a Fermi surface reconstruction due

to the onset of spiral magnetic order at a critical doping p∗. This critical doping p∗ was

experimentally found close to the onset of the pseudogap regime of cuprates, whose origin

is still debated. The longitudinal and Hall conductivity for a spiral magnetic state was

already derived by Voruganti et al. [42]. However, interband contributions were neglected

so far. In this thesis, we provided the conductivity formulas for the spiral magnetic state

including interband contributions as a special case of our results in Sec. 1.4.6.

In Sec. 2.2.3, we discussed spiral magnetic order in the two-dimensional repulsive

Hubbard model, which is known to describe the valence electrons in the CuO2-planes of

the cuprate high-temperature superconductors [40]. Spiral magnetic order was already

found in previous theoretical studies [113–121]. We computed the magnetic gap ∆(p)

and the ordering wave vector Q(p) as a function of doping p for cuprate band parameters

in a Hartree-Fock approach and by dynamical mean-field theory (DMFT) [4]. Whereas

order parameter fluctuations are neglected in the Hartree-Fock approach, local fluctu-

ations are included in DMFT. The wave vector has the form Q = (π − 2πη, π), where

the incommensurability η increases with doping. The magnetic gap ∆ decreases mono-

tonically as a function of doping and vanishes at a critical doping p∗. An extrapolation

of the DMFT results (obtained at low finite T ) to zero temperature yields an approxi-

mately linear doping dependence ∆(p) ∝ p∗ − p in a broad doping range below p∗. The

magnetic order leads to a Fermi surface reconstruction with electron and hole pockets.

Electron pockets exist only in a restricted doping range near p∗. The spectral function

for single-particle excitations, which can, for instance, be seen in angular resolved pho-

toemission spectroscopy (ARPES), seems to exhibit Fermi arcs instead of hole-pockets
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due to a strong momentum dependence of the spectral weight along the reconstructed

Fermi surface [17]. This is a consequence of the broken translational invariance of the

spiral magnetic state as pointed out in Sec. 2.2.2.

Whereas the onset of order in the Hartree-Fock approach is far off the experimentally

observed p∗, the zero temperature extrapolation of our DMFT results for ∆(p) yields

p∗ = 0.21 for La2−xSrxCuO4 (LSCO) and p∗ = 0.15 for bilayer YBa2Cu3Oy (YBCO)

parameters. These values are close to those found experimentally [10,12], but we are ob-

viously not in a position to provide accurate predictions for the experimentally observed

critical doping p∗. For a better agreement one probably needs a material dependent

modeling beyond the single-band Hubbard model.

In Sec. 2.2.5, we calculated the longitudinal and the Hall conductivity for the phe-

nomenological model proposed by Eberlein et al. [17] and for the ab initio results obtained

by DMFT. We used the phenomenological model in order to study the importance of

interband contributions. A general comparison of energy scales suggests that interband

contributions are of particular importance at the onset of order, where the magnetic gap

∆ is of the order of a (doping-independent) relaxation rate Γ. A numerical evaluation

of the conductivities for band parameters as in YBCO and various choices of the relax-

ation rate Γ showed that interband contributions start playing a significant role only for

Γ/t > 0.1, where t is the nearest-neighbor hopping amplitude. Relaxation rates observed

in recent high-field transport experiments for cuprates are smaller [12, 138], so that we

concluded that the interband contributions are not important not due to a general ar-

gument comparing energy scales but due to the small numerical value at the relevant

parameters for YBCO. The application of the formulas derived by Voruganti et al. [42]

in previous studies was, thus, justified.

Using our DMFT results, the longitudinal and Hall conductivities were computed by

inserting the magnetic gap, the magnetic wave vector, and the quasi-particle renormal-

ization Z as obtained from the DMFT into transport equations for spin-density wave

states with a phenomenological scattering rate. A pronounced drop of the longitudinal

conductivity and the Hall number in a narrow doping range of few percent below p∗

is obtained in agreement with the corresponding high-field experiments. Note that our

expansion of the current up to first order in the magnetic field is still sufficient for those

high-field experiments since ωcτ � 1 still holds despite the high magnetic field [12].

ωc is the cyclotron frequency and τ = 1/2Γ the relaxation time. The doping range in
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which electron pockets exist matches approximately with the range of the steepest Hall

number drop, but there is no simple theoretical relation between these two features. For

p > p∗ the calculated Hall number nH(p) is close to the naively expected value 1 + p for

YBCO parameters, but significantly higher for LSCO. From a theoretical point of view,

this is not surprising since the band structure near the Fermi surface of LSCO cannot

be approximated by a parabolic band in a broad doping range around p∗. For p < p∗

the Hall number approaches the value p from above, but converges to this limiting value

only for dopings well below the point where the electron pockets disappear. nH(p) ≈ p is

obtained only in a regime where the hole pockets are sufficiently small so that the quasi-

particle dispersion in the pockets is approximately parabolic. In the cuprates, nH(p)

does not converge to p but rather crosses the line nH(p) = p at a doping value a few

percent below p∗, and becomes negative at lower doping, presumably due to electron

pockets associated with charge density wave order [146]. Computing charge transport

properties in the presence of charge density wave order on top of magnetic order could

thus be an interesting extension of this work.

To conclude, spiral magnetic order is consistent with transport experiments in cuprates,

where superconductivity is suppressed by high magnetic fields. We finally note that fluc-

tuating instead of static magnetic order should yield similar transport properties, as long

as pronounced magnetic correlations are present.

Outlook and closing remarks

Both the theoretical study in Chapter 1 and the applications in Chapter 2 provided

insights that raise further questions beyond the scope of this thesis. In the following, we

shortly present several paths for extensions.

The conductivity tensor σαβη does not only capture the Hall conductivity but also

the effect of linear magnetoresistance. We could relate the formula of the linear magne-

toresistance to the symmetric contribution of σαβη with respect to the exchange of the

current and electric field directions, that is, the exchange of α↔ β. The further deriva-

tion of a real-frequency formula for the linear magnetoresistance was not the focus of this

thesis. Nevertheless, the provided general formulas in Sec. 1.4.1 may act as a starting

point for this derivation. We see already at this stage that linear magnetoresistance is a

pure interband effect since the intraband contribution of the symmetric contribution of
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σαβη vanishes identically.

In this thesis, we considered a general two-band model as a minimal model for a

system with multiple bands. A treatment of a model with more than two bands is both

interesting in order to broaden the range of applicability and to potentially gain deeper

structural insights. Some of our derivations in Chapter 1 were already performed for an

arbitrary number of bands, which gave evidence that our developed concepts might be

applicable even for more than two bands and that further phenomena might arise. An

obvious key difference for a n-band system is the presence of n×n matrices instead of the

2×2 matrices in this thesis. During our derivation, the conductivity involved the matrix

trace over the two subsystems of the two-band model. In general, the evaluation of this

matrix trace may lead to numerous terms and, thus, may make an analytical treatment

tedious or even impossible for multiple bands. We presented the analysis of the involved

matrices with respect to their behavior under transposition as a useful strategy to reduce

this computational effort. This strategy may also be useful for an analytical treatment of

multiband systems. Furthermore, it could be used for higher order expansions in electric

and magnetic fields.

We could relate the different interband contributions to concepts of quantum geom-

etry. A nonzero quantum metric and Berry curvature are responsible for the symmetric

and antisymmetric interband contribution of σαβ, respectively. It might be an interesting

question how those or other concepts of quantum geometry can be connected to transport

phenomena beyond the scope of this thesis. Our microscopic derivation suggests that

the precise way in which those concepts have to be included in other transport quantities

is nontrivial. We presented the gauge invariance with respect to the U(1) gauge in mo-

mentum space as a potential guide for identifying further physical (gauge-independent)

quantities beyond the quantum metric and the Berry curvature.

We considered a phenomenological relaxation rate Γ that is constant in momentum

and frequency as well as diagonal and equal for both bands. Abandoning any of those

assumptions needs a re-analysis of the presented derivation. We expect that several

concepts, which we found throughout this thesis under those assumptions on Γ, will

still be useful for these generalizations. A microscopically derived relaxation rate Γ,

for instance, due to interaction or impurity scattering depends on details of the models,

which we did not further specify in our general two-band model. A microscopic derivation

can, for instance, be performed within a Born approximation [6], which then can be used
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to concretize the range of validity. For example in the context of the anomalous Hall

effect, such a microscopically derived Γ is important to treat intrinsic and extrinsic effects

on equal footing as we have already pointed out above.

To conclude, we presented a theory of conductivity that includes interband contribu-

tions. In our analysis of the conductivity for a very general two-band model, we could

identify several concepts that helped us to gain deeper insights, which were not only

useful for the analysis and applications in this thesis but may also be useful for further

research beyond the presented scope. The application to recent experiments showed that

the consideration of interband phenomena is not only important to gain a solid assess-

ment of the applicability of formulas but also for a better understanding of fascinating

phenomena that are intrinsically linked to the presence and interplay of multiple bands.
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A Conductivity in the low-field limit

For a given dispersion εp, the conductivity tensor σαβ[B] that includes the effect of the

external magnetic field B(r, t) is shown to be

(σαβ)[B] = −e2τ

∫
ddp

(2π)d
f ′(εp − µ) vpvp . (A.1)

where vp ≡ v(p) is the average velocity over the history of the electron orbit [5]. For

simplicity, we assumed the lifetime τ to be constant. The weighted average of the velocity

is given by

vp =

∫ 0

−∞

dt

τ
et/τ vp(t) , (A.2)

where vp(t) is the solution of the semiclassical equation of motion in a uniform magnetic

field,

∂t r(t) = vp(t) ≡ ∇pεp|p=p(t) , (A.3)

∂t p(t) = −evp(t) ×B , (A.4)

with initial condition p = p(t = 0) and momentum derivative ∇p = (∂px , ∂py , ∂pz).

Solving (A.4) up to linear order in B, we obtain the velocity

vp(t) ≈ vp−evp×B t ≈ vp − eM−1
p

(
vp ×B

)
t , (A.5)

where we introduced the effective mass tensor

(
M−1

p

)αβ ≡ (∇pv
α
p)β =

∂2εp
∂pα∂pβ

. (A.6)
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After performing the remaining integration over time t, we obtain the weighted average

of the velocity up to linear order

vp = vp + eτM−1
p

(
vp ×B

)
. (A.7)

For a quadratic dispersion εp = p2/2m, we have eτ |B|M−1 = ωcτ 1 with cyclotron

frequency ωc = e|B|/m. The first term in (A.7) gives (2). The y component of (A.7) for

a magnetic field in z direction B = B ez reads

vyp = vyp + eτB

(
∂2εp
∂px∂py

∂εp
∂py
− ∂2εp
∂py∂py

∂εp
∂px

)
. (A.8)

By inserting this result in σxy[B]/B in (A.1) and performing partial integration in mo-

mentum by using the chain rule f ′(εp−µ) ∂εp/∂p
α = ∂f(εp−µ)/∂pα, we obtain σxyzH in

(3).
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B Peierls substitution

B.1 Hopping in real space

The Peierls substitution adds a phase factor to the hoppings in real space. Thus in order

to apply (1.7), we Fourier transform the diagonal elements εp,ν of the two subsystems

ν = A,B and the coupling between these two systems ∆p of Hamiltonian (1.1) to real

space. The Fourier transformation of the creation operator ci,ν and cp,ν were defined in

(1.4) and (1.5). The intraband hopping tjj′,ν ≡ tjj′,νν of one subsystem, which is defined

by ∑
p

c†p+Qν ,ν
εp,νcp+Qν ,ν =

∑
j,j′

c†j,νtjj′,νcj′,ν , (B.1)

is given by

tjj′,ν =

(
1

L

∑
p

εp,ν e
irjj′ ·p

)
eirjj′ ·Qν . (B.2)

We see that the intraband hopping is only a function of the difference between the unit

cells, rjj′ = Rj −Rj′ . The fixed offset Qν leads to a phase shift. The interband hopping

tjj′,AB between the two subsystems, which is defined by∑
p

c†p+QA,A
∆pcp+QB ,B

=
∑
j,j′

c†j,Atjj′,ABcj′,B , (B.3)

is given by

tjj′,AB =

(
1

L

∑
p

∆p e
ip·(rjj′+ρA−ρB)

)
eirjj′ ·(QA+QB)/2

× eiRjj′ ·(QA−QB) ei(ρA·QA−ρB ·QB) . (B.4)
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We see that it is both a function of rjj′ and the mean position between the unit cells

Rjj′ = (Rj + Rj′)/2, which breaks translational invariance and is linked to nonequal

QA 6= QB. Similar to (B.2), we have different phase shifts due to ρν and Qν . Those

phases are necessary to obtain a consistent result in the following derivations.

B.2 Derivation of the electromagnetic vertex Vpp′

We derive the Hamiltonian H[A] given in (1.8) after Peierls substitution. We omit the

time dependence of the vector potential A[r] ≡ A(r, t) for a shorter notation in this

section. The Peierls substitution in (1.7) of the diagonal and off-diagonal elements of

λjj′ defined in (1.6) and calculated in (B.2) and (B.4) in the long-wavelength regime read

tjj′,ν → tAjj′,ν ≡ tjj′,ν e
−ieA[Rjj′+ρν ]·rjj′ , (B.5)

tjj′,AB → tAjj′,AB ≡ tjj′,AB e
−ieA[Rjj′+

ρA+ρB
2

]·
(
rjj′+ρA−ρB

)
. (B.6)

In a first step, we consider the diagonal elements. We expand the exponential of the

hopping tAjj′,ν after Peierls substitution given in (B.5) and Fourier transform the product

of the vector potentials
(
A[Rjj′ + ρν ] · rjj′

)n
via (1.10). We get

tAjj′,ν =
∑
n

(−ie)n

n!

∑
q1...qn

tjj′,ν e
i
∑
m qm·(Rjj′+ρν)

n∏
m

rjj′ ·Aqm . (B.7)

After insertion of the hopping (B.2), we Fourier transform tAjj′,ν back to momentum space

defining εApp′,ν via ∑
jj′

c†j,νt
A
jj′,νcj′,ν =

∑
pp′

c†p+Qν ,ν
εApp′,νcp′+Qν ,ν . (B.8)

The summation over Rjj′ leads to momentum conservation. The phase factor propor-

tional to the position ρν inside the unit cell cancels. During the calculation, we can

identify

− i

L

∑
p

∑
rjj′

εp,ν e
irjj′ ·(p−p0)

(
rjj′ ·Aq

)
=
∑

α=x,y,z

∂εp,ν
∂pα

∣∣∣∣
p=p0

Aαq (B.9)
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as the derivative of the band εp,ν at p0 = (p + p′)/2. We continue with the off-diagonal

element. The derivation of the interband coupling after Peierls substitution, which we

label as ∆A
pp′ , is analogue to the derivation above. The phase factors in (B.4) assure that

we can identify the derivative of the interband coupling ∆p via

− i

L

∑
p

∑
rjj′

∆p e
i(rjj′+ρA−ρB)·(p−p0)

(
rjj′ + ρA − ρB

)
·Aq =

∑
α=x,y,z

∂∆p

∂pα

∣∣∣∣
p=p0

Aαq .

(B.10)

As in the diagonal case, the summation over Rjj′ leads to momentum conservation and

additional phase factors drop. Finally, we write the result in matrix form and separate

the zeroth element of the exponential expansion. We end up with the Hamiltonian of

the form (1.8) and the electromagnetic vertex Vpp′ given in (1.9).
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C Current

C.1 Grand canonical potential

Since the action S[Ψ,Ψ∗] in (1.13) is quadratic in the Grassmann fields Ψ and Ψ∗, the

Gaussian path integral leads to the partition function Z = det
(
G −1 − V

)
, where the

Green’s function G and the electromagnetic vertex V are understood as matrices of both

Matsubara frequencies and momenta. The grand canonical potential Ω is related to the

partition function via Ω = −T lnZ with temperature T and kB = 1. We factor out the

part that is independent of the vector potential, that is Ω0 = −T Tr ln G −1, and expand

the logarithm ln(1− x) = −
∑

n x
n/n of the remaining part. We obtain

Ω[A] = Ω0 + T
∞∑
n=1

1

n
Tr
(
G V

)n
. (C.1)

Using the definition of the Green’s function and the vertex in (1.9) and (1.14), one can

check explicitly that Ω[A] is real at every order in n.

C.2 Expansion of the current in the vector potential

The current density jαq in direction α = x, y, z and Matsubara frequency and momentum

q = (iq0,q) is given as functional derivative of the grand canonical potential with respect

to the vector potential, jαq = −1/L δΩ[A]/δAα−q. The Green’s function G in (1.14) has

no dependence on the vector potential. We denote the derivative of the electromagnetic

vertex, the current vertex, as ˙V α
q = −1/L δV /δAα−q and expand Ω[A] in (C.1) up to

third order. We obtain

jαq = T Tr
(
G ˙V α

q

)
+ T Tr

(
G ˙V α

q G V
)

+ T Tr
(
G ˙V α

q G V G V
)

+ ... , (C.2)
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where we used the invariance of the trace under cyclic permutation to recombine the

terms of the same order. Both the electromagnetic vertex V and the current vertex ˙V α
q

are a series of the vector potential. In the following, we expand the current up to second

order in the vector potential. The expansion of the electromagnetic vertex V is given in

(1.9). The expansion of the current vertex reads

˙V α
q,pp′ =− e

L

∞∑
n=0

en

n!

∑
q1...qn
α1...αn

λαα1...αn
p+p′

2

Aα1
q1
...Aαnqn δ∑

m qm,p−p′+q . (C.3)

Note that the current vertex ˙V α
q,pp′ has a zeroth order, which is independent of the vector

potential, whereas the electromagnetic vertex Vpp′ is at least linear.

We expand the three terms in (C.2) in the following. The first term in (C.2) involves

Tr
(
G ˙V α

q

)
=− eT

L

∑
p

tr
[
Gpλ

α
p

]
δq,0 (C.4)

− e2
∑
β

T

L

∑
p

tr
[
Gpλ

αβ
p

]
Aβq (C.5)

− 1

2

∑
βγ

T

L

∑
p,q′

tr
[
Gpλ

αβγ
p

]
Aβq′A

γ
q−q′ (C.6)

+O(A3) . (C.7)

The first term (C.4) corresponds to a current without any external fields. The second

term (C.5) is known as diamagnetic contribution of the linear conductivity. We expand

the second term in (C.2) up to second order in the vector potential and obtain

Tr
(
G ˙V α

q G V
)

=− e2
∑
β

T

L

∑
p

tr
[
Gpλ

α
p+ q

2
Gp+qλ

β
p+ q

2

]
Aβq (C.8)

− 1

2

∑
βγ

T

L

∑
p,q′

tr
[
Gpλ

α
p+ q

2
Gp+qλ

βγ
p+ q

2

]
Aβq′A

γ
q−q′ (C.9)

− 1

2

∑
βγ

T

L

∑
p,q′

tr
[
Gpλ

αγ

p+ q′
2

Gp+q′λ
β

p+ q′
2

]
Aβq′A

γ
q−q′ (C.10)
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− 1

2

∑
βγ

T

L

∑
p,q′

tr
[
Gp+qλ

γ

p+ q′
2

+ q
2

Gp+q′λ
αβ

p+ q′
2

+ q
2

]
Aβq′A

γ
q−q′ (C.11)

+O(A3) . (C.12)

The first term (C.8) is known as paramagnetic contribution of the linear conductivity.

The two contributions (C.10) and (C.11) are equal by shifting and renaming the sum-

mations. The third term in (C.2) up to second order in the vector potential involves

Tr
(
G ˙V α

q G V G V
)

=− 1

2

∑
βγ

T

L

∑
p,q′

tr
[
Gpλ

α
p+ q

2
Gp+qλ

γ

p+ q′
2

+ q
2

Gp+q′λ
β

p+ q′
2

]
Aβq′A

γ
q−q′ (C.13)

− 1

2

∑
βγ

T

L

∑
p,q′

tr
[
Gp+qλ

γ

p+ q′
2

+ q
2

Gp+q′λ
α
p+ q

2
+q′Gp+q+q′λ

β

p+q+ q′
2

]
Aβq′A

γ
q−q′ (C.14)

+O(A3) . (C.15)

The two terms (C.13) and (C.14) are equal by shifting and renaming the summations.

By collecting the zeroth-, first- and second-order contributions we can identify jα0 , Παβ
q

and Παβγ
q,q′ defined in (1.16), respectively. Note that the involved Green’s function and

vertex matrices in the expressions above do not commute in general. Our derivation

above respects this issue.

C.3 Current without any external fields

The current without any external fields, that is the first term of (1.16), is independent

of the vector potential and is given by

jα0 = −eT
L

∑
p

tr
[
Gpλ

α
p

]
δq,0 . (C.16)
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We perform the Matsubara summation and diagonalize the Bloch Hamiltonian λp. The

current without any external fields reads

jα0 = − e
L

∑
p

∫
dε f(ε)

∑
n=±

Anp(ε)En,α
p , (C.17)

involving the Fermi function f(ε), the quasiparticle velocities En,α
p = ∂αE

n
p of the two

quasiparticle bands E±p = 1
2
(εp,A + εp,B) ±

√
1
4
(εp,A − εp,B)2 + |∆p|2 and the spectral

functions A±p (ε) = Γ/π
[
(ε − E±p )2 + Γ2

]−1
. In general, the contributions at momentum

p are nonzero. If the quasiparticle bands fulfill E±(p) = E±(−p − p±) for a fixed

momentum p±, we have E±,α(p) = −E±,α(−p− p±). Thus, the current jα0 vanishes by

integrating over momenta [42].

C.4 Linear electrical conductivity

We combine the linear terms (C.5) and (C.8) in order to identify the polarization tensor

Παβ
q in (1.16). We write the Matsubara frequencies and the momenta explicitly, shift the

momentum summation and obtain

Παβ
iq0,q

= e2T

L

∑
ip0,p

tr
[
Gip0,p−q/2 λ

α
p Gip0+iq0,p+q/2 λ

β
p + Gip0,p λ

αβ
p

]
. (C.18)

Note that the second term is the
(
(iq0,q) = 0

)
contribution of the first term: We use

the definition λαβp = ∂αλ
β
p in (1.11) and perform partial integration in the momentum

integration over pα. The derivative of the Green’s function is ∂αGip0,p = Gip0,p λ
α
p Gip0,p,

which follows by (1.14).

We assume a uniform electric field E(t), which is entirely described by a uniform

vector potential AE(t). Thus, the corresponding vector potential after Wick rotation

and Fourier transformation yields Aβq = AE,βiq0
δq,0. We drop the momentum dependence

of the current and set q = 0 in (C.18). After using the invariance of the matrix trace

under cyclic permutation, we obtain (1.21).
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C.5 Hall conductivity

We assume a uniform electric field E(t) and a static magnetic field B(r), which can be

described by the sum of a uniform and a static part of the vector potential A(t, r) =

AE(t) + AB(r). After Wick rotation and Fourier transformation, we have Aβiq0,q =

AE,βiq0
δq,0 + AB,βq δiq0,0. The product of two spectral functions with this form yields

Aβq′A
γ
q−q′ = AE,βiq′0

AB,γq−q′ δq′,0δiq′0,iq0 + AB,βq′ A
E,γ
iq0−iq′0

δiq′0,0 δq′,q + · · · , (C.19)

where we do not consider the terms that will be eventually quadratic in the electric

and in the magnetic field. We combine the six second-order terms (C.6), (C.9), (C.10),

(C.11), (C.13) and (C.14) to Παβγ
q,q′ . We use (C.19), which defines the polarization tensor

of the Hall conductivity via jαEB,q = −
∑

βγ Παβγ
EB,qA

E,β
iq0
AB,γq with q = (iq0,q). We obtain

after shifting the momentum integration

Παβγ
EB,q = e3T

L

∑
ip0,p

tr
[

Gip0,p λαβγp (C.20)

+ Gip0,p λαγp Gip0+iq0,p
λβp (C.21)

+ Gip0,p−q
2
λαβp Gip0,p+q

2
λγp (C.22)

+ Gip0,p−q
2
λαp Gip0+iq0,p+q

2
λβγp (C.23)

+ Gip0,p−q
2
λαp Gip0+iq0,p+q

2
λγp Gip0+iq0,p−q

2
λβ
p−q

2
(C.24)

+ Gip0,p−q
2
λαp Gip0+iq0,p+q

2
λβ
p+q

2
Gip0,p+q

2
λγp

]
. (C.25)

By partial integration in momentum pγ, we find that (C.20) and (C.21) are equal up to

a negative sign to (C.22) and to (C.23)-(C.25) at zero q, respectively. We will indicate

this subtraction by the notation (q = 0) in the following. We get

Παβγ
EB,q = e3T

L

∑
ip0,p

tr
[

Gip0,p−q
2
λαβp Gip0,p+q

2
λγp (C.26)

+ Gip0,p−q
2
λαp Gip0+iq0,p+q

2
λβγp (C.27)

+ Gip0,p−q
2
λαp Gip0+iq0,p+q

2
λβ
p+q

2
Gip0,p+q

2
λγp (C.28)

+ Gip0,p−q
2
λαp Gip0+iq0,p+q

2
λγp Gip0+iq0,p−q

2
λβ
p−q

2
(C.29)

− (q = 0)
]
. (C.30)
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After partial integration in momentum pβ, we see that (C.26) is equal up to a negative

sign to the three other contributions at zero iq0. We denote this subtraction by (iq0 = 0)

in the following and get

Παβγ
EB,q = e3T

L

∑
ip0,p

tr
[

Gip0+iq0,p+q
2
λβγp Gip0,p−q

2
λαp (C.31)

+ Gip0+iq0,p+q
2
λβ
p+q

2
Gip0,p+q

2
λγp Gip0,p−q

2
λαp (C.32)

+ Gip0−iq0,p−q
2
λαp Gip0,p+q

2
λγp Gip0,p−q

2
λβ
p−q

2
(C.33)

− (q = 0)− (iq0 = 0)
]
. (C.34)

We continue by an expansion in q. The constant zeroth order drops. The linear order

Παβγδ
EB,iq0

= ∂/∂qδ Παβγ
EB,q|q=0 with q = (iq0,q) and qδ the δ component of q reads

Παβγδ
EB,iq0

=
1

2

T

L

∑
ip0,p

tr
[

Gip0+iq0,p
λβδp Gip0,p λγp Gip0,pλ

α
p (C.35)

+ Gip0−iq0,p λ
α
p Gip0,p λδp Gip0,pλ

βγ
p (C.36)

+ Gip0+iq0,p
λβp Gip0,p λδp Gip0,pλ

γ
p Gip0,p λ

α
p (C.37)

+ Gip0−iq0,p λ
α
p Gip0,p λδp Gip0,pλ

γ
p Gip0,p λ

β
p (C.38)

+ Gip0+iq0,p
λδp Gip0+iq0,p

λβp Gip0,pλ
γ
p Gip0,p λ

α
p (C.39)

− (iq0 = 0)− (γ ↔ δ)
]
, (C.40)

where we indicated the subtraction of the same terms with exchanged indices by (γ ↔ δ).

We perform partial integration in momentum pδ of the term (C.35) and obtain

Παβγδ
EB,iq0

=
1

2

T

L

∑
ip0,p

tr
[

Gip0+iq0,p
λβp Gip0,p λ

δ
p Gip0,p λ

αγ
p (C.41)

+ Gip0−iq0,p λ
α
p Gip0,p λ

δ
p Gip0,p λ

βγ
p (C.42)

+ Gip0+iq0,p
λβp Gip0,p λ

δ
p Gip0,p λ

γ
p Gip0,p λ

α
p (C.43)

+ Gip0−iq0,p λ
α
p Gip0,p λ

δ
p Gip0,p λ

γ
p Gip0,p λ

β
p (C.44)

− (iq0 = 0)− (γ ↔ δ)
]
. (C.45)

In a last step we split (C.41) and (C.42) into two equal contributions and perform partial

integration in pγ. We separate the four contributions that involve three vertices and the

two contributions that involve four vertices and end up with (1.23) and (1.24).
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D Second-order vertex of a multi-

band system

We calculate the second-order vertex λ̂αβp = ∂α∂βλ̂p of a general multiband (and not

necessarily two-band) Bloch Hamiltonian λ̂p in its orthonormal and complete eigenbasis

|np〉 with eigenvalues En
p. By considering the momentum dependence of the eigenbasis

and the product rule, we get

〈np|
(
∂α∂βλ̂p

)
|mp〉 =

1

2
∂α∂β

(
〈np|λ̂p|mp〉

)
(D.1)

− 1

2

(
〈∂α∂βnp|λ̂p|mp〉+ 〈np|λ̂p|∂α∂βmp〉

)
(D.2)

−
(
〈∂αnp|λβp|mp〉+ 〈np|λαp|∂βmp〉

)
(D.3)

− 〈∂αnp|λp|∂βmp〉 (D.4)

+ (α↔ β) . (D.5)

The expression is symmetric in α ↔ β. We indicate the addition of all previous terms

with exchanged indices as (α ↔ β). We use λ̂p|np〉 = En
p|np〉 and 〈np|λ̂p = En

p〈np|
in the terms (D.1), (D.2) and (D.4). The first term (D.1) is the inverse quasiparticle

effective mass En,αβ
p = ∂α∂βE

n
p. In order to calculate the first terms in (D.2), we use the

identity

〈∂α∂βnp|mp〉 =
1

2

[
∂α

(
〈∂βnp|mp〉

)
− 〈∂βnp|∂αnp〉+ ∂β

(
〈∂αnp|mp〉

)
− 〈∂αnp|∂βnp〉

]
,

(D.6)

which can be checked by performing the derivatives on the right-hand side, explicitly.

We immediately identify the definition of Aα,nmp = i〈np|∂αmp〉 in the first and third term

and after inserting the identity 1 =
∑

l |lp〉〈lp| in the second and the forth term. After
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similar steps for the second term in (D.2), we obtain

〈∂α∂βnp|mp〉 =
i

2

(
∂αA

β,nm
p + ∂βA

α,nm
p

)
− 1

2

∑
l

(
Aβ,nlp Aα,lmp + Aα,nlp Aβ,lmp

)
, (D.7)

〈np|∂α∂βmp〉 =− i
2

(
∂αA

β,nm
p + ∂βA

α,nm
p

)
− 1

2

∑
l

(
Aβ,nlp Aα,lmp + Aα,nlp Aβ,lmp

)
. (D.8)

In order to further simplify (D.3), we insert the identity 1 =
∑

l |lp〉〈lp| and use 〈lp|λ̂βp|mp〉 =

δlmE
m,β
p + i

(
El

p − Em
p

)
Aβ,lmp , which is given in (1.46). We get

〈∂αnp|λ̂βp|mp〉 = iAα,nmp Em,β
p −

∑
l

(
El

p − Em
p

)
Aα,nlp Aβ,lmp , (D.9)

〈np|λ̂αp|∂βmp〉 =−iEn,α
p Aβ,nmp −

∑
l

(
El

p − En
p

)
Aα,nlp Aβ,lmp . (D.10)

We re-express the last term (D.4) by inserting the identity 1 =
∑

l |lp〉〈lp| and using

that λ̂p|lp〉 = El
p|lp〉. We obtain 〈∂αnp|λ̂p|∂βmp〉 =

∑
lE

l
pA

α,nl
p Aβ,lmp . After combining

all terms, we end up with the generalized effective mass in the orthonormal eigenbasis

of the Bloch Hamiltonian

〈np|
(
∂α∂βλ̂p

)
|mp〉 (D.11)

=
1

2
δnmE

n,αβ
p (D.12)

+ i
(
En,α

p − Em,α
p

)
Aβ,nmp (D.13)

+
i

2

(
En

p − Em
p

)(
∂αA

β,nm
p

)
+
∑
l

[
El

p −
1

2

(
En

p + Em
p

)]
Aα,nlp Aβ,lmp (D.14)

+ (α↔ β) . (D.15)

Note that the expression only involves the eigenenergies or its derivatives as well as the

Berry connection or its derivative. The full expression is symmetric in α↔ β. Perform-

ing the gauge transformation Aα,nmp → Aα,nmp e−i(φ
n
p−φmp ) − δnm φ

n,α
p in the result above

explicitly shows that each line individually transforms with a phase factor e−i(φ
n
p−φmp ).

The momentum derivatives of φnp and φmp drop. The diagonal component for n = m is

explicitly given in (1.61). The off-diagonal component for n 6= m reads (1.62)-(1.65).
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E Simplifying the triangular and the

rectangular contributions

We present the detailed derivation from Eqs. (1.153) and (1.154) to Eq. (1.157). We start

by expressing all involved matrices of the triangular and the rectangular contributions in

the eigenbasis of the Bloch Hamiltonian λp. We decompose the first-order and second-

order vertices in their diagonal and off-diagonal components via U †pλ
α
pUp = Eαp + Fαp

and U †pλ
αβ
p Up = (M−1)αβp + Fαβp , which were defined in (1.40) and (1.66), respectively.

Using that only an even number of off-diagonal matrices give a nonzero matrix trace, the

triangular contribution in (1.153) decomposes into four contributions, which we label as

(tri, I) =
1

4
TrH

[
Gip0+iq0,p

Eαp Gip0,p E
γ
p Gip0,p (M−1)βδp

]
, (E.1)

(tri, II) =
1

4
TrH

[
Gip0+iq0,p

Fαp Gip0,p E
γ
p Gip0,pF

βδ
p

]
, (E.2)

(tri, III) =
1

4
TrH

[
Gip0+iq0,p

Eαp Gip0,pF
γ
p Gip0,pF

βδ
p

]
, (E.3)

(tri, IV) =
1

4
TrH

[
Gip0+iq0,p

Fαp Gip0,pF
γ
p Gip0,p (M−1)βδp

]
. (E.4)

We use our results in (1.149), (1.151) and (1.152) for the considered special case of a

momentum-independent gap. The inverse generalized effective mass is given by (M−1)αβp =

Eαβp − 2SpFαpFβp , where we defined Sp = 1/
(
E+

p −E−p
)
τz. The part of the fourth contri-

bution involving 2SpFβpF δp vanishes by the antisymmetry in δ ↔ γ, so that

(tri, IV) =
1

4
TrH

[
Gip0+iq0,p

Fαp Gip0,pF
γ
p Gip0,p E

βδ
p

]
. (E.5)

Performing the same decomposition and dropping zero contributions due to the matrix

trace, the rectangular contribution in (1.154) decomposes into eight contributions, which
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we label as

(rec, I) =
1

4
TrH

[
Gip0+iq0,p

Eαp Gip0,p E
γ
p Gip0,p E

δ
p Gip0,p E

β
p

]
, (E.6)

(rec, II) =
1

4
TrH

[
Gip0+iq0,p

Eαp Gip0,p E
γ
p Gip0,pF

δ
p Gip0,pF

β
p

]
, (E.7)

(rec, III) =
1

4
TrH

[
Gip0+iq0,p

Eαp Gip0,pF
γ
p Gip0,p E

δ
p Gip0,pF

β
p

]
, (E.8)

(rec, IV) =
1

4
TrH

[
Gip0+iq0,p

Eαp Gip0,pF
γ
p Gip0,pF

δ
p Gip0,p E

β
p

]
, (E.9)

(rec, V) =
1

4
TrH

[
Gip0+iq0,p

Fαp Gip0,p E
γ
p Gip0,p E

δ
p Gip0,pF

β
p

]
, (E.10)

(rec, VI) =
1

4
TrH

[
Gip0+iq0,p

Fαp Gip0,p E
γ
p Gip0,pF

δ
p Gip0,p E

β
p

]
, (E.11)

(rec, VII) =
1

4
TrH

[
Gip0+iq0,p

Fαp Gip0,pF
γ
p Gip0,p E

δ
p Gip0,p E

β
p

]
, (E.12)

(rec, VIII) =
1

4
TrH

[
Gip0+iq0,p

Fαp Gip0,pF
γ
p Gip0,pF

δ
p Gip0,pF

β
p

]
. (E.13)

The four contributions

(rec, I) = (rec, IV) = (rec, V) = (rec, VIII) = 0 (E.14)

vanish due to their antisymmetric counterpart in (γ ↔ δ), which follows from EγpGip0,pE
δ
p =

EδpGip0,pE
γ
p and FγpGip0,pF

δ
p = F δpGip0,pF

γ
p . Note that (E.14) is only valid under the as-

sumptions and resulting simplifications of the momentum-independent gap and the spe-

cific gauge choice, such that Fνp ∝ τx. Furthermore, we have (rec, II) = (rec, VII) and

(rec, III) = (rec, VI). In order to see this, note that all terms are symmetric under

matrix transposition and do not change sign under simultaneous change of both indices

α ↔ β and γ ↔ δ. We continue by applying the identity (1.155) to the remaining two

contributions. We get

(
rec, II

)
+
(
rec,VII

)
= +

1

2
TrH

[
Gip0+iq0,p

Eαp Gip0,p E
γ
p F δp Gip0,p Sp F

β
p

]
(E.15)

+
1

2
TrH

[
Gip0+iq0,p

Eαp Gip0,p E
γ
p Sp Gip0,pF

δ
pFβp

]
, (E.16)
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(
rec,VI

)
+
(
rec, III

)
= +

1

2
TrH

[
Gip0+iq0,p

Fαp Gip0,p E
γ
p F δp Gip0,p Sp E

β
p

]
(E.17)

+
1

2
TrH

[
Gip0+iq0,p

Fαp Gip0,p E
γ
p Sp Gip0,pF

δ
p Eβp

]
. (E.18)

Let us first combine the two lines (E.15) and (E.17). Similar to (1.155), we have the

algebraic relation G+
ip0,p

G−ip0,p =
(
G+
ip0,p
−G−ip0,p

)
/
(
E+

p − E−p
)

with G±ip0,p = [ip0−E±p +

iΓsign(p0)]−1. Thus, it immediately follows that

T
∑
p0

G+
ip0,p

G−ip0,p
(
G+
ip0+iq0,p

−G+
p,ip0−iq0

)
(E.19)

=T
∑
p0

G+
ip0,p

G−ip0,p
(
G−ip0+iq0,p

−G−p,ip0−iq0
)
. (E.20)

Thus, summing up the two lines (E.15) and (E.17) and performing the matrix trace,

explicitly, leads to

(E.15) + (E.17) =
1

2L

∑
p

[
Fα
pF

δ
p

E+
p − E−p

(E+,γ
p + E−,γp )(E+,β

p − E−,βp )−(α↔β)−(δ↔ γ)

]
× T

∑
p0

G+
ip0,p

G−ip0,p(G+
ip0+iq0,p

−G+
p,ip0−iq0) . (E.21)

It involves the eigenenergies E±p , their derivatives as well as the off-diagonal component

F ν
p of the first-order vertex Fνp. After using the identity (1.156), the bracket [· · · ] in

(E.21) vanishes by antisymmetry in the indices α↔ β, so that

(E.15) + (E.17) = 0 . (E.22)

We continue with the term in line (E.16). We commute the two diagonal matrices Sp
and Gip0,p. We identify 2SpFβpF δp = Eβδp − (M−1)βδp . Thus, we get

(
tri, II

)
+ (E.16) =

1

4
TrH

[
Gip0+iq0,p

Eαp Gip0,p E
γ
p Gip0,p E

βδ
p

]
. (E.23)

We consider the remaining term in (E.18). We split it into two equal parts. In the

first part, we reintroduce the derivative with respect to pγ of the Green’s function after
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commuting the diagonal matrices Sp and Gip0,p:

1

2
× (E.18) =

1

4
TrH

[
Gip0+iq0,p

Fαp
(
∂γGip0,p

)
SpF δp Eβp

]
. (E.24)

In the second part, we first shift the Matsubara summation ip0 → −ip0 and change

the overall sign via its corresponding contribution in (ip0 → −ip0). After reversing

the matrix order under the trace, commuting Sp with Gip0+iq0,p, and reintroducing a

derivative with respect to pγ of a Green’s function, we get

1

2
× (E.18) = −1

4
TrH

[(
∂γGip0+iq0,p

)
Fαp Gip0,p E

β
p F δp Sp

]
. (E.25)

We use the identity EβpF δpSp = SpFβpEδp + EδpFβpSp−SpF δpEβp , which immediately follows

from (1.156). Only the last term is nonzero. The first two terms vanish by the antisym-

metry in α ↔ β. We sum up (E.24) and (E.25) and perform a partial integration in pγ

in (E.24). The term with a derivative acting on the Green’s function cancels (E.25), and

we obtain four remaining contributions:

(E.18) =− 1

4
TrH

[
Gip0+iq0,p

(
∂γFαp

)
Gip0,p SpF

δ
p Eβp

]
(E.26)

− 1

4
TrH

[
Gip0+iq0,p

Fαp Gip0,p
(
∂γSp

)
F δp Eβp

]
(E.27)

− 1

4
TrH

[
Gip0+iq0,p

Fαp Gip0,p Sp
(
∂γF δp

)
Eβp
]

(E.28)

− 1

4
TrH

[
Gip0+iq0,p

Fαp Gip0,p SpF
δ
p

(
∂γEβp

)]
. (E.29)

We go through the four terms: (1) The derivative in (E.29) is by definition ∂γEβp = Eβγp .

(2) The term in (E.27) containing ∂γSp cancels by the corresponding part in (γ ↔
δ), since (∂γSp)F δp = ∂γ

(
1

E+
p−E−p

)
F δ
p τzτx = − 1

(E+
p−E−p )2

2hp
∆
F γ
pF

δ
p τzτx, where we used the

explicit form of Fγp in (1.151). (3) In order to see the cancellation of (E.28) containing

∂γF δp we use F δp = F δ
p τx = 2∆

E+
p−E−p

hδp τx given in (1.151). The derivatives of 1/(E+
p −E−p )

and hδp cancel by the corresponding part in (γ ↔ δ). (4) For (E.26) containing ∂γFαp , we

use the explicit form of Fαp in (1.151). Whereas the derivative of 1/(E+
p −E−p ) cancels due

to the corresponding part in (γ ↔ δ), the derivative of hαp now produces the off-diagonal

matrix of the second-order vertex Fαγp = 2∆
E+

p−E−p
hαγp τx given in (1.152). Thus, the four
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terms finally reduce to

(E.18) =− 1

4
TrH

[
Gip0+iq0,p

Fαγp Sp Gip0,pF
δ
p Eβp

]
(E.30)

− 1

4
TrH

[
Gip0+iq0,p

Fαp Sp Gip0,pF
δ
p Eβγp

]
. (E.31)

We commuted Sp and Gip0,p. We reinstall three Green’s functions in both terms by using

the identity SpGip0,pF
δ
p = Gip0,pF

δ
pGip0,p − F

δ
pGip0,pSp. The terms containing Sp cancel

by the corresponding term in (iq0 ↔ −iq0) when shifting the Matsubara summation and

commuting the matrices. We end up with identifying

(E.18) = −(tri, III) + (tri, IV) . (E.32)

Combining all contributions leads to the final result in (1.157).
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F Matsubara summation

We perform the summation over the internal Matsubara frequency ip0 and the subsequent

analytic continuation of the external Matsubara frequency iq0 → ω + i0+ of the three

relevant quantities Isiq0 , I
a
iq0

and IHiq0 in (1.84), (1.85) and (1.161), respectively. In this

section, we omit the momentum dependence for shorter notation. We can represent any

Matsubara Green’s function matrix Gip0 in the spectral representation as

Gip0 =

∫
dε

A(ε)

ip0 − ε
(F.1)

with corresponding spectral function matrix A(ε) ≡ Aε. The retarded and the advanced

Green’s function matrices are

GR
ε =

∫
dε′

A(ε′)

ε− ε′ + i0+
, (F.2)

GA
ε =

∫
dε′

A(ε′)

ε− ε′ − i0+
. (F.3)

We define the principle-value matrix P (ε) ≡ Pε via

P (ε) = P.V.

∫
dε′

A(ε′)

ε− ε′
, (F.4)

where P.V. denotes the principle value of the integral. Using the integral identity
1

ε−ε′±i0+ = P.V. 1
ε−ε′ ∓ iπ δ(ε− ε

′), we have

Aε = − 1

π
ImGR

ε ≡ −
1

2πi

(
GR
ε −GA

ε

)
, (F.5)

Pε = ReGR
ε ≡

1

2

(
GR
ε +GA

ε

)
. (F.6)
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Note that Aε and Pε are hermitian matrices. The functions to be continued analytically

have the following structure

Im,niq0
≡ T

∑
p0

tr

[(
Gip0+iq0 M1 . . . Gip0+iq0 Mm

)(
Gip0 N1 . . . Gip0 Nn

)]
, (F.7)

where M1, . . . ,Mm and N1, . . . , Nn are frequency-independent 2× 2 matrices. The first

m Green’s function matrices involve the bosonic external Matsubara frequency q0. The

last n Green’s function only involve the internal fermionic Matsubara frequency p0. We

grouped the corresponding matrices by brackets. We insert the spectral representation

(F.1) for each Green’s function and perform the Matsubara frequency sum over the

resulting product of energy denominators. Using Resip0 [f(ε)] = −T , where f(ε) =

(eε/T + 1)−1 is the Fermi function and kB = 1, we apply the residue theorem to replace

the Matsubara frequency sum by a contour integral encircling the fermionic Matsubara

frequencies counterclockwise. We then change the contour such that only the poles from

the energy denominators are encircled. Applying the residue theorem again yields

T
∑
p0

(
1

ip0 + iq0 − ε1
. . .

1

ip0 + iq0 − εm

)(
1

ip0 − ε′1
. . .

1

ip0 − ε′n

)

= f(ε1)

(
1

ε1 − ε2
. . .

1

ε1 − εm

)(
1

−iq0 + ε1 − ε′1
. . .

1

−iq0 + ε1 − ε′n

)
+ . . .

+ f(εm)

(
1

εm − ε1
. . .

1

εm − εm−1

)(
1

−iq0 + εm − ε′1
. . .

1

−iq0 + εm − ε′n

)
+ f(ε′1)

(
1

iq0 + ε′1 − ε1
. . .

1

iq0 + ε′1 − εm

)(
1

ε′1 − ε′2
. . .

1

ε′1 − ε′n

)
+ . . .

+ f(ε′n)

(
1

iq0 + ε′n − ε1
. . .

1

iq0 + ε′n − εm

)(
1

ε′n − ε′1
. . .

1

ε′n − ε′n−1

)
, (F.8)

where we grouped the product of m and n energy denominators for a more transparent

representation. This expression can be analytically continued to real frequencies, easily,

by replacing iq0 with ω+ i0+. Performing the integrals over ε1, . . . , εm and ε′1, . . . , ε
′
n then
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yields

Im,nω =

∫
dεfε tr

[(
AεM1 PεM2 . . . PεMm + · · ·+ PεM1 . . . PεMm−1AεMm

)
×GA

ε−ωN1 . . . G
A
ε−ωNn

]
+

∫
dεfε tr

[
GR
ε+ωM1 . . . G

R
ε+ωMm

×
(
AεN1 PεN2 . . . PεNn + · · ·+ PεN1 . . . PεNn−1AεNn

)]
,

(F.9)

where we identified the retarded Green’s function matrix GR
ε+ω in (F.2) at frequency

ε + ω, the advanced Green’s function matrix GA
ε−ω in (F.3) at frequency ε − ω and the

principle-value matrix Pε in (F.4). We can understand the sum in the brackets as all

combinations to place one spectral function Aε at all positions before the matrices Mi

and Ni. Note that the involved matrices do not commute in general. The special case of

no external Matsubara frequency iq0 reads

I0,n
ω =

∫
dεfε tr

[
AεN1 PεN2 . . . PεNn + · · ·+ PεN1 . . . PεNn−1AεNn

]
. (F.10)

Evaluating Im,n−iq0 , that is (F.7) with bosonic Matsubara frequencies at opposite sign,

results in (F.9) with exchanged GR
ε+ω ↔ GA

ε−ω.

F.1 Matsubara summation of Isiq0 and Iaiq0

We continue by performing the Matsubara summation and the analytic continuation

of Isiq0 and Iaiq0 in (1.84) and (1.85), respectively. They consist of three distinct cases.

We use our general result in (F.9). The first case involves the Green’s function matrix

Gip0+iq0 leading to

T
∑
p0

tr
[
Gip0+iq0M1Gip0M2

]∣∣
iq0→ω+i0+

=

∫
dε fε tr

[
AεM1G

A
ε−ωM2 +GR

ε+ωM1AεM2

]
.

(F.11)
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The second case involves the Green’s function matrix Gip0−iq0 leading to

T
∑
p0

tr
[
Gip0−iq0M1Gip0M2

]∣∣
iq0→ω+i0+

=

∫
dε fε tr

[
AεM1G

R
ε+ωM2 +GA

ε−ωM1AεM2

]
.

(F.12)

The third case involves no bosonic Matsubara frequency iq0 and is given by

T
∑
p0

tr
[
Gip0M1Gip0M2

]∣∣
iq0→ω+i0+

=

∫
dε fε tr

[
AεM1PεM2 + PεM1AεM2

]
. (F.13)

We can rewrite these three cases by using

GR
ε = Pε − iπAε , (F.14)

GA
ε = Pε + iπAε , (F.15)

which follows by (F.5) and (F.6), in order to express all results only by the hermitian

matrices Aε and Pε. The Matsubara summation of (1.84) after analytic continuation

reads

Isω =
1

2

∫
dε fε tr

[
AεM1

(
(Pε+ω − Pε) + (Pε−ω − Pε)

)
M2

+
(

(Pε+ω − Pε) + (Pε−ω − Pε)
)
M1AεM2

− iπAεM1

(
(Aε+ω − Aε)− (Aε−ω − Aε)

)
M2

− iπ
(

(Aε+ω − Aε)− (Aε−ω − Aε)
)
M1AεM2

]
. (F.16)

We divide by iω and perform the zero frequency limit leading to the frequency derivatives

limω→0(Pε±ω − Pε)/ω = ±P ′ε and limω→0(Aε±ω −Aε)/ω = ±A′ε, which we denote by (·)′.
The first and the second line of the sum vanish. We get

lim
ω→0

Isω
iω

= −π
∫
dε fε tr

[
AεM1A

′
εM2 + A′εM1AεM2

]
. (F.17)

176



Appendix F

We can apply the product rule and partial integration in ε and end up with (1.86). The

Matsubara summation of (1.85) after analytic continuation is

Iaω =
1

2

∫
dε fε tr

[
− AεM1

(
(Pε+ω − Pε)− (Pε−ω − Pε)

)
M2

+
(

(Pε+ω − Pε)− (Pε−ω − Pε)
)
M1AεM2

+ iπAεM1

(
(Aε+ω − Aε) + (Aε−ω − Aε)

)
M2

− iπ
(

(Aε+ω − Aε) + (Aε−ω − Aε)
)
M1AεM2

]
. (F.18)

We divide by iω and perform the zero frequency limit. The two last lines of the summa-

tion drop. We end up with (1.87).

F.2 Matsubara summation of IHiq0

We continue by performing the Matsubara summation and analytic continuation of IHiq0
in (1.161). We use our general result in (F.9). We have

T
∑
p0

tr
[
Gip0+iq0M1Gip0M2Gip0M3

]∣∣
iq0→ω+i0+

=

∫
dε fε tr

[
AεM1G

A
ε−ωM2G

A
ε−ωM3 +GR

ε+ωM1AεM2PεM3 +GR
ε+ωM1PεM2AεM3

]
(F.19)

and subtract

T
∑
p0

tr
[
Gip0−iq0M1Gip0M2Gip0M3

]∣∣
iq0→ω+i0+

=

∫
dε fε tr

[
AεM1G

R
ε+ωM2G

R
ε+ωM3 +GA

ε−ωM1AεM2PεM3 +GA
ε−ωM1PεM2AεM3

]
.

(F.20)
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We use GR
ε = Pε−iπAε and GA

ε = Pε+iπAε in order to express IHiq0 only by the hermitian

matrices Aε and Pε. We obtain the lengthy expression

IHω =

∫
dε fε tr

[
− AεM1

(
(Pε+ωM2Pε+ω−PεM2Pε)− (Pε−ωM2Pε−ω−PεM2Pε)

)
M3

+ π2AεM1

(
(Aε+ωM2Aε+ω−AεM2Aε)− (Aε−ωM2Aε−ω−AεM2Aε)

)
M3

+
(

(Pε+ω−Pε)− (Pε−ω−Pε)
)
M1PεM2AεM3

+
(

(Pε+ω−Pε)− (Pε−ω−Pε)
)
M1AεM2PεM3

+ iπAεM1

(
(Pε+ωM2Aε+ω−PεM2Aε) + (Pε−ωM2Aε−ω−PεM2Aε)

)
M3

+ iπAεM1

(
(Aε+ωM2Pε+ω−AεM2Pε) + (Aε−ωM2Pε−ω−AεM2Pε)

)
M3

− iπ
(

(Aε+ω−Aε) + (Aε−ω−Aε)
)
M1PεM2AεM3

− iπ
(

(Aε+ω−Aε) + (Aε−ω−Aε)
)
M1AεM2PεM3

]
. (F.21)

We divide by ω and perform the zero frequency limit leading to the frequency derivatives

limω→0(Pε±ω−Pε)/ω = ±P ′ε and limω→0(Pε±ωM2Pε±ω−PεM2Pε)/ω = ±(PεM2Pε)
′ as well

as the respective combinations with one or two Pε replaced by Aε. The last four lines

drop. We get

lim
ω→0

IHω
ω

= 2

∫
dε fε tr

[
− AεM1

(
PεM2Pε

)′
M3 + π2AεM1

(
AεM2Aε

)′
M3

+ P ′εM1PεM2AεM3 + P ′εM1AεM2PεM3

]
. (F.22)

We perform the product rule and end up with (1.162)-(1.164).
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[115] R. Frésard, M. Dzierzawa, and P. Wölfle, Slave-Boson Approach to Spiral Magnetic

Order in the Hubbard Model, Europhys. Lett. 15, 325 (1991).

[116] M. Raczkowski, R. Frésard, and A. M. Oleś, Interplay between incommensurate
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Besides the scientific support, the institute provides tremendous administrative help.

I want to thank our secretary Jeanette Schüller-Knapp and our senior executive manager

Michael Eppard representatively for the full administration. A special thanks go to

194



Acknowledgments

Regine Noack, Michaela Asen-Palmer and Anette Schleehauf.

The institute was much more than a working place for me. I really enjoyed being

part of the PhD representatives 2018 and for organizing various events and our PhD trip

together. A very special highlight was the opportunity of joining the organizing team for

the TEDx MPIStuttgart event in 2019, the first TEDx event of a Max Planck institute

in Germany. I want to express my deepest gratitude to Shai Mangel who proposed his

idea of hosting a TEDx event at the institute at a very early stage to me. A special

thanks go to Hrag Karakachian for bringing me on board of the institute band, the Band

Gap.

Finally, I want to thank my family for their unconditional love and support. Espe-

cially, I want to thank my mother Birgit and my father Jörg. Dear Stefanie, thank you

very much for your love, patience and support. This thesis would not have been possible

without you.

195





List of publications

4. J. Mitscherling,

Longitudinal and anomalous Hall conductivity of a general two-band model,

Phys. Rev. B 102, 165151 (2020).

Selected as #PRBTopDownload by @PhysRevB on Twitter (9. Sept. 2020)

3. P. M. Bonetti∗, J. Mitscherling∗, D. Vilardi, and W. Metzner,

Charge carrier drop at the onset of pseudogap behavior in the two-dimensional

Hubbard model,

Phys. Rev. B 101, 165142 (2020).

2. J. Mitscherling and W. Metzner,

Longitudinal conductivity and Hall coefficient in two-dimensional metals with spi-

ral magnetic order,

Phys. Rev. B 98, 195126 (2018).

Selected as Editors’ suggestion

1. C. Texier and J. Mitscherling,

Nonlinear conductance in weakly disordered mesoscopic wires: Interaction and

magnetic field asymmetry,

Phys. Rev. B 97, 075306 (2018).

*: equal contribution

197

https://doi.org/10.1103/PhysRevB.102.165151
https://twitter.com/PhysRevB/status/1325798050124673025
https://doi.org/10.1103/PhysRevB.101.165142
https://doi.org/10.1103/PhysRevB.98.195126
https://doi.org/10.1103/PhysRevB.97.075306



	Abstract
	Zusammenfassung
	Introduction
	Theory of electrical conductivity
	Applications
	Conclusion
	Conductivity in the low-field limit
	Peierls substitution
	Current
	Second-order vertex of a multiband system
	Simplifying the triangular and the rectangular contributions
	Matsubara summation
	Bibliography
	Acknowledgments
	List of publications

