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Abstract

This dissertation presents theoretical results as well as proposed and conducted experiments in the

areas of Quantum Sensing, Quantum State Engineering, Bound Entanglement, Quantum Contex-

tuality and Quantum Random Number Generation. A novel detection scheme to improve Quantum

Sensing by indirect sensing with the help of an ancillary quantum system is introduced. Sensing in-

formation is shown to be obtainable both by direct and indirect sensors, even though their quantum

states are not cloned or explicitly transferred. The steps of sensing an external signal and the trans-

fer of information to an ancillary Qubit are combined in one asymmetric pulse sequence. Squeezed

spin states, which are a well-known resource for Quantum Sensing due to their robustness to De-

coherence, are also discussed. Particularly, their creation in systems of Nitrogen-Vacancy Centers

(NVs) in diamond and surrounding nuclear spins, as well as ensembles of such NVs is imple-

mented with specifically tailored sequences. In terms of Quantum State Engineering, a method

to purify unpolarized Qubits surrounding and coupled to a central spin is introduced. Repeated

projective measurements are used to instil a Zeno-like effect, extendable to a general unpolarized

spin bath. Given a suitable trajectory of measurement outcomes, whose crucial role is explored,

said projections are shown to enable driving the quantum states of the surrounding nuclear spins

towards pure entangled states. Sufficient generality of the approach is shown by applying it to

both NVs and superconducting qubits as physical systems. A wide range of target states of the

environmental spins can be reached, including pairwise correlated Singlet states, while maximal

entanglement is reachable. Advantages for Quantum Sensing granted by specific states obtained

by the introduced Purficiation method are described. Concerning Qudits or quantum systems with

13



Abstract

arbitrarily high dimensionality as a resource, the possibility for generation and measurement of

Bound Entanglement with NVs is investigated and an experimental implementation is proposed.

Additionally, an experimental violation of a KCBS Inequality, in order to demonstrate Quantum

Contextuality with NVs is proposed and details of an implementation are discussed. It is moreover

shown how Contextuality can be used as a resource towards Certified Quantum Random Num-

ber generation with NVs. Other approaches to Quantum Random Number Generation are also

introduced, including a standard single-photon Ansatz using NVs as well as a scheme utilizing the

period-doubling state of an Optical Parametric Oscillator.
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Zusammenfassung

Diese Dissertation präsentiert theoretische Ergebnisse und sowohl vorgeschlagene als auch bereits

durchgeführte Experimente in den Bereichen Quantensensorik, Erzeugung bestimmter Quanten-

zustände, Gebundene Verschränkung, Quantenkontextualität und Quantenzufall. Ein neues De-

tektionsschema zur Verbesserung von Quantensensorik durch indirekte Sensorik mithilfe von zu-

sätzlichen quantenmechanischen Hilfssystemen, wie z.B. ein zusätzliches Qubit, wird vorgestellt.

Weiterhin wird aufgezeigt, dass sensorische Information sowohl durch direkte als auch durch indi-

rekte Sensoren verfügbar gemacht werden kann – obwohl deren Quantenzustände weder geklont

noch explizit transferiert werden. Die Schritte der Erfassung eines externen Signals und des Trans-

fers von Information zu einem Hilfsqubit, werden kombiniert in einer einzelnen asymmetrischen

Pulssequenz. Gequetschte Spinzustände, die dank ihrer Robustheit gegenüber Dekohärenz eine

bekannte Ressource für Quantensensorik sind, werden ebenfalls diskutiert. Insbesondere deren Er-

zeugung in Systemen aus Stickstofffehlstellenzentren in Diamant (NV-Zentren) und umgebenden

Kernspins, sowie Ensembles solcher NV-Zentren wird mit speziell dafür zugeschnittenen Sequen-

zen implementiert. Im Bereich der Quantenzustandserzeugung wird eine Methode zur Bereinigung

unpolarisierter Qubits vorgestellt, die einen zentralen Spin umgeben und an diesen gekoppelt sind.

Wiederholte projektive Messungen werden benutzt, um einen Effekt ähnlich des Quanten-Zeno-

Effekts zu erzeugen, der bis hin zu einem allgemeinen unpolarisierten Spinbad verallgemeinert

werden kann. Wenn eine passende Trajektorie von Messergebnissen gegeben ist, deren zentrale

Rolle ebenfalls untersucht wird, sind diese Projektionen nachweislich in der Lage, die Quanten-

zustände der umgebenden Kernspins in reine, verschränkte Zustände umzuwandeln. Hinreichende

15



Zusammenfassung

Allgemeingültigkeit wird gezeigt, indem der Ansatz sowohl auf NV-Zentren als auch auf supra-

leitende Qubits als physikalische Systeme angewandt wird. Eine Vielzahl von Zielzuständen der

Umgebungsspins sind zugänglich, inklusive paarweise korrelierter Singulett-Zustände, während

maximale Verschränkung ebenso erreichbar ist. Vorteile für Quantensensorik, die aufgrund von

spezifischen, durch die vorgestellte Bereinigungsmethode hervorgebrachten Zuständen gewährt

werden, werden ebenfalls herausgestellt. Qudits oder Quantensysteme von beliebig hoher Dimen-

sionalität als Ressource betreffend, wird die Möglichkeit der Herstellung und Messung gebunde-

ner verschränkter Zustände mit NV-Zentren untersucht und eine experimentelle Umsetzung vor-

geschlagen. Zusätzlich wird die Vorgehensweise für die experimentelle Verletzung einer KCBS

Ungleichung aufgezeigt, um Quantenkontextualität mit NV-Zentren zu demonstrieren, und die

Details einer möglichen Umsetzung werden beschrieben. Weiterhin wird dargestellt wie Quanten-

kontextualität als Ressource zur Erzeugung von quantenmechanisch zertifizierten Zufallszahlen

mit NV-Zentren genutzt werden kann. Andere Ansätze zur Quantenzufallszahlenerzeugung wer-

den ebenfalls vorgestellt, inklusive des bekannten Einzelphotonenansatzes mit NV-Zentren sowie

ein Schema, das den periodenverdoppelten Zustand eines Optischen Parametrischen Oszillators

verwendet.
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Introduction: Resources for Quantum

Technology

“Quantum mechanics was, and continues to be, revolutionary, primarily because it demands the

introduction of radically new concepts to better describe the world. In addition we have argued

that conceptual quantum revolutions in turn enable technological quantum revolutions.”

-Alain Aspect-

Quantum Technology is emerging as one of the most important advances of the 21st century. It

promises potential technological improvements in sensing, random number generation, cryptogra-

phy, optimization, machine learning, computing and hacking. Big IT companies have recognized

this potential by investing millions and billions into research and development, in particular in the

area of quantum computing. Within Europe, the European Commission has answered by funding

a billion-euro quantum technology flagship program and big companies are examining the possi-

bilities of further development. As an example of Quantum Technology, sensing can be enhanced

by using effects at the level of single quanta such as electrons and photons. Quantum mechanical

couplings and correlations – mainly quantum entanglement – enable sensitivities that were previ-

ously unreachable. A prime example is the Nobel-prize winning LIGO interferometer which uses

squeezed light in order to enable gravitational wave detection [12]. Practical applications such

as highly sensitive water sensors or detection of other very weak magnetic signals coming from

brain waves, biological structures or single spins are also surfacing. Random Number Generation
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is greatly enhanced by the inherent non-deterministic structure of Quantum Mechanics. Einstein

famously exclaimed: “God does not play dice.” when confronted with the uncertainties and prob-

abilities of quantum mechanics. Nowadays, after decades of research and in particular due to the

important results of Bell and others, we understand quantum mechanics to be indeed probabilistic

and provably non-deterministic. In Random Number Generation, this leads to quantum mechani-

cal phenomena being a great resource of entropy. Moreover, the violation of a Bell-like inequality

provides a continuous test of the non-deterministic nature of a number-generating device, which

is infeasible with classical, non-quantum mechanical approaches. In Cryptography, quantum key

distribution systems are already commercially available and quantum information is shared over

great length scales trough optical fibers or even via satellite communication [13, 14]. Quantum

Algorithms such as Shor’s algorithm – based on Quantum Fourier Transformation – are proven to

introduce great improvements in number factoring and thus in breaking certain methods of encryp-

tion. Therefore, classical encryption algorithms are being changed to care for potentials attacks

by Quantum Computers. Certain optimization problems – in particular QUBOs (Quadratic uncon-

strained binary optimization) have been shown to be very suitable for Quantum Annealers such

as those provided by a well-known Quantum Optimization company. First advances in pattern

recognition and improved machine learning have also been made. Yet, these machines are still

lacking one dimension in coupling to be considered adiabatic quantum computers [15]. Quan-

tum Computing itself has seen impressive progress by scaling up the number of error-corrected

qubits. In particular, approaches with superconducting qubits and trapped ions have been suc-

cessful and are promising to reach three-digit numbers of coherent qubits soon [15–17]. Yet, the

quest to outperform classical (super)computers in solving practical every-day problems seems to

be rather far away in the future. This is despite the fact that a specific sampling problem has been

successfully engineered in order to show one example of such an out-performance, named Quan-

tum Supremacy [18]. In general, it is difficult to demonstrate exactly what kind of tasks can be

uniquely solved by Quantum Computers. Still, Quantum Technologies already enable important

technological progress in Sensing, Cryptography and Data Science.

28



With all the excitement about Quantum Technology, it should not be forgotten that there are also

important open questions in fundamental research. Is our interpretation of Quantum Mechanics

correct? What role does gravity play in the end? Are extended theories like Quantum Grav-

ity, String Theory or Supersymmetry necessary for a proper understanding of Quantum Mechan-

ics? On a much more basic and technical level, multipartite entanglement is not well understood

in the sense that notions of entanglement are not uniquely defined in systems of large Hilbert

spaces [19–21]. Even the use of Hilbert spaces as a proper description of quantum mechanical

degrees of freedom is under criticism by parts of the scientific community [22]. One symptom

of the possible unsuitability of Hilbert spaces may be the mentioned uncertainties in multipartite

entanglement definition, as well as the fact that some quantum correlations are not represented by

entanglement – or, in other words, by the separability of Hilbert spaces – at all and must be instead

described by Quantum Discord and other generalized measures which may still present a resource

for certain protocols or applications such as sensing.

Both fundamental properties of Quantum Mechanics – such as Bound Entanglement and Quantum

Contextuality – and applications to Quantum Technology such as Sensing and Random Number

Generation are discussed in this thesis. In particular, the certification of random numbers by Quan-

tum Contextuality unifies both of these aspects. The prime physical system considered is the NV

Center, a color defect in diamond. Moreover, applications utilizing superconducting Transmon

qubits and optical parametric oscillators (OPOs) are also presented.
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“Very simply, normal computers work, either there’s power going through a wire, or not. It’s 1,

or a 0, they’re binary systems. What quantum states allow for is much more complex information

to be encoded into a single bit.”

-Justin Trudeau-

The area of Quantum Technology which is likely the closest to an industrial application is Quantum

Sensing. In Quantum Computing, even though the academic exercise of demonstrating Quantum

Supremacy in an experiment has been performed [18] – accompanied by profound scepticism [23]

– a viable improvement of a practical problem that cannot be solved by classical computers is

still not in sight. Quantum Sensors, however, promise a range of practical applications in the near

future. Resources such as coherent Superposition [24], Quantum Memory [25], Entanglement and

Spin Squeezing [26] are mainly used to enable sensing of weak electromagnetic fields [27] down

to the level of single spins [24, 28, 29]. This enables applications in Material Science due to the

detection of spin and ion compositions, in Medicine and Biology due to better detection of signals

and markers [29] and in industrial processes by quality control of involved magnetic fields [30] or

gyroscopic rotations [31, 32]. This short list of possible applications is indeed far from complete.

Specific review papers have been written to address the exciting possibilities of this emerging

technology [24, 28]. In this work, a contribution is made towards the detection of single spins by

using correlations of a central sensor spin to ancillary spins and measurement back-action [4,5].
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1.1 Improving Sensitivity by Indirect Sensing using

Nitrogen-Vacancy Centers

Nitrogen-Vacancy (NV) centers in diamond have been established as very good candidates for a

practical implementation of quantum computing. Indeed, some of the early theoretical predictions

like quantum entanglement can now be demonstrated in the laboratory using these diamond impu-

rities. As can be deducted from their name, NV centers consist of a vacancy replacing one of the

carbon atoms of a diamond. Additionally, one of it’s nearest-neighbour carbon atoms is replaced

by a Nitrogen atom. The spin of this vacancy can be controlled by microwave-radiation whereas

the nuclear spins of the neighbouring atoms can be addressed by radio-frequency pulses [33].

Thus, the vacancy, as well as the surrounding nuclear spins can be used as Qubits for the purposes

of Quantum Computing, Quantum Sensing and other Quantum Technologies. The involved nu-

clear spins of the isotopes 13C and 14N display comparatively long coherence times such that the

information about the quantum state is not lost as quickly as in other systems and is long enough

to initialize the qubits, perform quantum gates and read out the resulting state [34, 35]

Utilizing Nuclear Spins for Sensing Purposes. It is a well-known property in the case of

NV centers, that coherence times of the nuclear spins surrounding the defect are potentially much

longer than the coherence time of the inherent electron spin. This is largely due to the fact that

the magnetic moment of the electron spin is larger than the magnetic moment of, e.g. the inherent

nitrogen nuclear spin by a factor of roughly 3000. Thus, the electron spin couples much more

strongly to external magnetic fields and to the spin bath by dipole-dipole coupling [33]. This is

the main reason why it is beneficial to consider mapping information obtained during active sens-

ing by the electron spin directly to the nitrogen nuclear spin as an ancillary spin. While storing

and classically correlating information such as the phase collected during sensing on the nuclear

spin state is no novelty [36], a pure quantum mechanical treatment of the combined electron spin

nuclear spin system and the mapping of quantum information therein was previously missing. A
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proposal in which the coupled nuclear spin takes over the role of the sensor spin and extends the

detection volume was therefore published and extended by ideas on direct mapping with asym-

metric sequences, as well as considerations of improvements to sensing under decoherence [4].

In particular, it was demonstrated that the utilization of the presented scheme allows for the de-

tection of very weakly coupled carbon nuclear spins in the diamond lattice. A similar experiment

focusing on the nitrogen nuclear spin as an entangled memory qubit was subsequently carried out

and published by our institute [25], moreover an experiment directly following our proposal was

performed later on [5].
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Figure 1.1: 3D model of an NV defect in a diamond lattice. Surrounding 13C nuclear spins are sym-

bolized as red spheres, while the NV is portraied as a Nitrogen atom (orange sphere)

with adjacent vacancy. Note that this model lattice only consists of adjacent cells. In

reality, 13C atoms are less abundant (1.1% natural abundance) and are more likely to

be found further away from a given defect. The most abundant carbon isotope is 14C

which is spin-less and can therefore not be coupled by dipole-dipole interaction, unlike
13C which possesses nuclear spin I = −1/2 . [33]. In the following, the mapping of

spin signals to the NV’s nitrogen nuclear spin is considered, while the spins to sense

are the surrounding 13C nuclear spins.

34



1.1 Improving Sensitivity by Indirect Sensing using NV-Centers

1.1.1 Strongly Coupled Nuclear Spins as Indirect Sensors

In order to improve the detection of spins which are weakly coupled, we propose new mapping

sequences between the sensor spin and the ancillary nuclear spin. The initial signal can then

be inferred by reading out the nuclear spin state, a method which we call Indirect Sensing here.

The electron spin interacts directly with a weakly coupled sample spin, while the nuclear spin’s

magnetic moment is negligible in comparison and is assumed to interact only with the sensor spin.

In particular, by mapping to the ancillary spin, the T1 relaxation time of the sensor spin is no

longer the limiting factor [4]. An increased volume of detection is indeed beneficial, not only

for detection and control of far away and very weakly coupled nuclear spins within the diamond

lattice such as the described 13C carbon spins, but also for the detection of spin species outside the

diamond crystal [37], even up to using these detected spins as a resource for molecular qubit–based

quantum registers [29] and for quantum simulations at room temperature [38].

Detection Sequences used. In order to achieve this magnified detection, we modify exist-

ing detection sequences [3] and tune the occurring waiting times to the coupling frequency of the

sensor spin and the ancillary nuclear spins as follows. Let us first define the Hamiltonian that de-

termines the dynamics between the sensing electron spin S , the strongly coupled ancillary nuclear

spin F and the sample spin I.

H = gS zFz + JS z (cos θ Iz + sin θ Ix) + ωLIz − γeBzS z + DS 2
z (1.1)

Here, g is the mentioned coupling frequency between the sensor S and the ancillary F. In the case

of the NV center and its inherent nitrogen nuclear spin, this is necessarily a z-z coupling due to

the symmetry of the defect [33]. The second term describes the coupling between the sensor S

and the sample spin I. The sample spin is assumed to be described by polar coordinates r and

θ and J is the suitable coupling frequency. An external magnetic field B is applied and aligned

along the z-axis of the electron spin with gyromagnetic ration γe. This external field which causes

the sample nuclear spin to precess with Larmor frequency ωL. D is the standard NV zero-field
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splitting, which causes the electron |−1〉 and |1〉 levels to split. We focus on the case of a single

sample spin I here, while the model can be easily extended to a principally unlimited number of

external spins which are sensed.

1.1.2 Standard Sequence for Direct Detection

In the following, we focus on the most relevant part of the Hamiltonian above, namely the interac-

tion part combined with the applied external field

Hint = gS zFz + JS z (cos θ Iz + sin θ Ix) + ωLIz (1.2)

A standard sequence for the detection of external spins has been introduced by Taminiau et al [3].

In particular, quantum operations are given as non-continuous microwave pulses on the NV elec-

tron spin, combined with unitary evolutions – according to the standard quantum time evolution

from the Schrödinger equation U = e−i/~Ht – of the interaction Hamiltonian Hint in units of a set

time τ. The sequence introduced is specified as in the following figure: When applying this se-

Figure 1.2: Standard sequence for direct detection of external spins [3]. A free time evolution of

the Hamiltonian Hint for a duration τ is combined with applications of a microwave π

pulse on the NV electron spin (S x operator). The sequence is repeated N times. [4]

quence, the dynamics on the electron spin are governed by the coupling to the external spin with

coupling strength J. For simplification, we assume g = 0 here, such that the clear dependence of

the peak position on J is visible. When monitoring the expectation value 〈S x〉, i.e. the expectation
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value of the NV electron spin in x-direction, a sharp transition related to the coupling frequency

J is observed. Namely, when varying the time τ in the sequence, a sharp transition is observed at

τ = π/(2ωL + J cos(θ)) as in Figure 1.3 below.

0.12 0.14 0.16 0.18 0.20
-1.0

-0.5

0.0

0.5

1.0

τ

<
S
x
>

Figure 1.3: Sensing of the coupling frequency J of an external spin coupled directly to the electron

spin of a Nitrogen-Vacancy Center. Here the sequence in Figure 1.2 is repeated with

varying τ for each sequence. The number of repetitions is set to N = 23. Further

numerical parameters of the simulation are J = 1, θ = π/4, ω = 10 − J cos(θ), g = 0.

The expectation value of the NV electron in x-direction shows a transition at τ =

π/(2ωL + J cos(θ)) (dotted line). [4]

If several external spins are present, the resulting expectation value will show multiple transitions,

if all parameters are chosen appropriately. Adding another spin to the simulation as well as a

further J−coupling term to the Hamiltonian results in two visible dips in the signal. Then, the

Hamiltonian reads as

Hint = gS zFz + JS z (cos θ Iz + sin θ Ix) + J1S z
(
cos θ1 Iz

1 + sin θ1 Ix
1

)
+ ωLIzIz

1. (1.3)

The expected resolution of both involved coupling frequencies can be observed in the simulation

37



1 Quantum Sensing
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Figure 1.4: Sensing of multiple coupling frequencies J, J1 of external spins directly by the NV

electron spin. The numerical parameters of the simulation are N = 35, J = 1, J1 = 1/5,

θ = θ1 = π/4, ω = 10, g = 0. Two dips in the signal are visible at τ = π/(2ωL+J cos(θ))

and τ1 = π/(2ωL + J1 cos(θ)) (dotted lines).

as in Figure 1.4, as confirmed by experiments [3,25]. Conclusively, external spins can be detected

directly by the NV electron spin. However, the overall time for any given sequence, including the

necessary (N) repetitions of the sequence, are limited by the coherence time of the NV electron

spin, T1 [36,39]. In order to surpass this limitation, we turn to an indirect detection which includes

the longer-lived Nitrogen nuclear spin.

1.1.3 Novel Pulse Sequences for Indirect Sensing using the Inherent

Nitrogen Nuclear Spin

In the following, we include the Nitrogen nuclear spin more actively into the simulation. Having

in mind that the peak position with relevance to the time τ in the expectation value of S x depends

directly on the coupling, we can motivate the choice of now setting

τ ∝
π

g
, (1.4)
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which is central for the following sequences to work since the time of the free evolution τ is then

adapted to the coupling of the strongly coupled spin, to which the signal is to be mapped. When

using a slightly modified standard sequence, the dynamics of the electron spin become visible on

the strongly coupled nuclear spin.

However, as visible in Figure 1.6, the dynamics do not necessarily agree, i.e. they show different

Figure 1.5: Modified sequence for indirect detection of external spins [3, 4]. Note that the mi-

crowave pulse length is reduced by a factor of two compared to the previous sequence

in Figure 1.2. [4]

frequencies and amplitudes of the signal. In order to map as much of the sensing information from

the electron spin to the nuclear spin as possible, further adaptation of the used sequence may be in

order, including operations with radio frequency waves on the strongly coupled nuclear spin.

Consequently, we introduce a more sophisticated version of the sequences above, in which firstly,

each free evolution by Hint is replaced by another sequence, and secondly, unitary operations are

performed on both the electron spin and the strongly coupled nuclear spin. In the case of reading

out the signal on the electron spin, π-pulses are performed on the electron spin (DS sequence),

while in the other case when the nuclear spin is read out, π-pulses are also performed on the nu-

clear spin (DF sequence). The explicit sequences are composed as in Figure 1.7.

When tuning the experimental parameters appropriately, these sequences lead to very similar ex-

pectation values on both the electron spin and the strongly coupled Nitrogen nuclear spin of an NV

center. This is a remarkable result, since the information is transferred from the NV electron spin,

which is an active sensor, to the nuclear spin, which is passive. Moreover, this is achieved without

explicit two-qubit or multiple-spin gates, but by single spin rotations combined with well-timed
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Figure 1.6: Comparison of the expectation values on the NV electron spin 〈S x〉 and on the strongly

coupled Nitrogen nuclear spin 〈Fx〉 both in presence (solid lines) and in absence (dotted

lines) of the mapping sequence of Figure 1.5. The following parameters were used for

the simulation: g = 40, τ = π/(2g), J ∈ {0, 4g}. The mapping sequence introduces

dynamics on the nuclear spin which reflect the dynamics of the electron spin.

free evolutions which make use of the inherent dipole-dipole coupling. This leads to the possibility

of overcoming the electron spin’s limitation defined by its decoherence time T1. However, it is also

worthwhile to note that the expectation values of the nuclear spin and the electron spin show very

similar dynamics when the parameters are well-tuned, however they do not agree exactly for all

parameters, which also signifies that the states have not been cloned, which would violate the non-

cloning theorem. This can be observed from Figure 1.8, in which the side peaks of the direct and

the indirect detection are slightly varied. Moreover it should also be noted that different sequences

and measurements are performed in both cases, such that cloning is principally excluded and the

situation is better compared with a cut-and-paste situation such as in Quantum Teleportation [40].
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Figure 1.7: Pulse sequences for mapping information to the strongly coupled Nitrogen nuclear spin

(DF), compared to the same sequence with the electron spin as active sensor (DS ). Note

that in each repetition of DF or DS , a single repetition of the mapping sequence UM is

also performed. UM is the sequence introduced before in Figure 1.5. Fx is the operator

in x-direction associated with a strongly coupled nuclear spin, while S x denotes the

same for the electron spin.
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Figure 1.8: Comparison of direct detection of an external nuclear spin on the NV electron spin

when using the sequence DS (Figure 1.7) with the indirect detection on the strongly

coupled nuclear spin when performing the pulse sequence DF . The resulting expec-

tation values agree very well and the peaks show full resolution from the expectation

value +1 to −1. Slight variations of the side peaks show that the expectation values are

not necessarily exactly identical, however the peaks are found at the same frequencies.

Simulation parameters include N = 44, g = 80, J = 1, τ = π/g, θ = π/4. Here, the

frequency ωL of the external field on the external spin is varied in units of the coupling

J of the NV electron spin to the sensed external spin. [4]
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1.1.4 Advantages of the Indirectly Sensing Nuclear Spin under NV

Electron Decoherence

In order to verify the benefit of mapping the sensing information of the electron spin to the nuclear

spin, we now investigate the behaviour of the coupled system under decoherence. Note that we

first assume decoherence effects to only affect the NV electron spin. This assumption is justified

by the fact that the gyromagnetic ratio of the NV electron spin is larger than the gyromagnetic ratio

of the nuclear spin by a factor of roughly 3000 [33]. In other words, since the NV electron is a

much better sensor, it is also much more sensitive to the decohering influence of external fields and

external spins. This is also the main reason why the T1 time of the surrounding nuclear spins is

significantly longer than the coherence time of the NV’s inherent electron spin [33]. We therefore

introduce the following simple decoherence model, which only affects the NV electron spin.

ρdec = p
(1
2
⊗ Tr1 (ρ)

)
+ (1 − p) ρ (1.5)

Here, a portion p with 0 ≤ p ≤ 1 of the electron spin – the first spin in the model – is replaced by

the completely dephased state, the normalized identity. The remaining part of the density matrix

is left intact by tracing out the first spin through the application of the partial trace Tr1. Moreover,

the portion (1 − p) of the original density matrix is left completely intact. This represents a partial

depolarizing channel [41], which is applied each time after the mapping sequence UM, as in Figure

1.7.

Under the influence of decoherence on the actively sensing electron spin, the main advantage of

the presented scheme becomes visible, namely the non-vanishing contrast of the signal on the

ancillary strongly coupled nuclear spin.
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Figure 1.9: When applying depolarization solely on the NV electron spin – related to the observ-

able S x – both the direct signal on the electron spin and the indirect signal observed

on the nuclear spin by the observable Fx are affected. Yet, the contrast of the peak at

the detected coupling frequency of the external spin is clearly higher in the case of the

nuclear spin. The chosen parameters are equal to the parameter set in Figure 1.8, apart

from the introduced decoherence parameter which is here set to p = 10−2.

1.2 Immediate Indirect Signal Transmission by an

Asymmetric Sequence

A surprising find while performing the related simulations was the fact that it is sufficient to per-

form operations on the actively sensing NV electron spin in an asymmetric manner in order to map

the sensing information to the ancillary Nitrogen nuclear spin. Before, the sequence in Figure 1.7

included pulses on each spin, from which the signal is to be read out. However, we now turn to a

single sequence which only includes unitary operations on the central electron spin, regardless of

whether the signal is read off from the nuclear spin or the electron. In this sequence, the first π-

pulse of the previous sequences is replaced by a π/2-pulse, while the second pulse is left unvaried.

This is a central result of our paper [4], indeed also a central result of this thesis. Note that here,
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Figure 1.10: The portrayed asymmetric sequence with unitary operations limited to the electron

spin alone can replace both sequences in Figure 1.7, which includes unitary operations

on the electron spin as well as the strongly coupled nuclear spin. The signal can still

be read out from both the actively sensing electron spin and the passive ancillary

nuclear spin.

the indirect nature of the sensing enhancement mechanism becomes fully apparent. While manip-

ulations are only carried out on the central electron spin, its sensitivity is enhanced by the interplay

with the coupled nuclear spin. This is done by constructing a suitable Quantum Algorithm on the

electron spin, in which the free interaction time τ = π/g crucially mirrors the coupling strength g

of the two involved spin entities.

As seen in figure 1.11, the contrast of the detection is somewhat reduced, i.e. here, the expectation

value does not display the full range between +1 and −1, even though the number of repetitions

is quadrupled compared to the previous image in Figure 1.8. The full contrast can however be re-

stored by performing even more repetitions of the sequence (N ≈ 8∗44). This illustrated that using

the sequence on the electron spin above, the sensing information is distributed equally between the

electron spin and the coupled nuclear spin. While this does not seem an advantage on first sight,

it has to be kept in mind that the behaviour under decoherence is more beneficial when including

the nuclear spin due to its long coherence time. Moreover, the electron spin state is destroyed

during optical readout of an NV [33] while the nuclear spin can repeatedly be read out when using

single-shot readout [42].
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Figure 1.11: Using the asymmetric sequence DS F (Figure 1.10) in both cases, the direct detection

of an external nuclear spin on the NV electron spin is compared with the indirect de-

tection on the strongly coupled nuclear spin. The resulting expectation values agree

even better than when performing separate sequences on the different spins as in Fig-

ure 1.8. Simulation parameters include N = 4 ∗ 44, g = 80, J = 1, τ = π/g, θ = π/4.

The frequency ωL of the external field on the external spin is again varied in units of

the coupling J of the NV electron spin to the sensed external spin. [4]

1.2.1 Performance of the Asymmetric Sequence under Decoherence

This advantage becomes visible as we introduce decoherence by a partial depolarizing channel [41]

again according to the model in equation (1.5). The resulting amplitude signals (Figure 1.12) show

a clear advantage when reading out the signal from the nuclear spin, unsurprisingly, as the depolar-

ization is carried out directly on the electron spin while the nuclear spin only suffers decoherence

effects indirectly by transmission through coupling to the central spin.
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Figure 1.12: Performance of the asymmetric sequence DS F (Figure 1.10) under decoherence. Sim-

ulation parameters are defined in Figure 1.11 above, with the addition of the decoher-

ence parameter p = 10−2 in eq (1.5). A better contrast of the nuclear spin observable

〈Fx〉 as opposed to the electron spin observable 〈S x〉 is clearly visible.

1.2.2 Effects of treating the Ancillary Spin as Spin 1 with additional

Decoherence

Upon publication of the results introduced in the section above in [4], resonance from the scien-

tific community lead to further investigations on our side. Namely, Professor Jiangfeng Du from

the University of Science and Technology of China and his institute took interest and questioned

whether our introduced Quantum Algorithm violates the No-Cloning Theorem of Quantum Me-

chanics due to the surprising overlap of amplitudes that can be produced as in Figure 1.11. Our

reaction was twofold, firstly we show that neither the signal amplitudes nor the quantum states of

the two involved spins are exactly equal. Secondly, given that the spins were not even of the same

dimensionality in our calculations, we show that the No-Cloning propositions and the presented

results still hold in the case when both involved spins are Spin 1 entities.
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1.2 Indirect Signal Transmission by an Asymmetric Sequence

No-Cloning Theorem is not violated

In order to proof that the No-Cloning Theorem is not violated, we firstly zoom in at the minimum

of the signal in Figure 1.11 in order to show that the amplitudes are not exactly identical. Indeed,

it becomes obvious that there is a discrepancy between the expectation values of the two different

spins.
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Direct detection (<Sx>)

Figure 1.13: Zoom-in at the minima of the amplitudes of the expectation values in Figure 1.11 in

order to prove that the signals are not exactly identical. Simulation parameters are as

in the referenced figure.

Definition of the Entanglement Measure Fidelity. Moreover, we portray the fidelity F of the

reduced density matrices of the specific spins, given by the formula [41]

F(ρ1, ρ2) =

(
Tr

(√
√
ρ1 · ρ2 ·

√
ρ1

))2

, (1.6)

for two density matrices ρ1 and ρ2, where the square root is defined as the Matrix Square Root.

Here, ρ1 and ρ2 are the reduced density matrices of the electron spin and the nuclear spin, respec-

tively.
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Note that the electron spin is treated as a Spin 1, however we only work in the ms = 0 and ms = 1

subspace. The nuclear spin is still treated as a Spin 1/2 system. When visualizing the overlap

between the respective density matrices, it is visible that the states differ, especially in the decisive

region, in which the Fidelity between the relevant states drops along with the signal amplitudes in

the figures before. Being initialized in the same state,

|Ψinitial〉el,ns =
1
√

2
(|0〉 + |1〉) (1.7)

the Fidelity is always close to unity, but never reaches 1 during the course of the algorithm, such

that it is obvious that the density matrices of the electron spin and nuclear spin are very similar,

albeit never exactly the same. Therefore, there is no cloning between the spin states or subspaces

thereof.
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Figure 1.14: Fidelity between the density matrices of the central electron spin (ρ1) and the strongly

coupled nuclear spin (ρ2). Simulation parameters are defined as before in Figure 1.11

and the Fidelity is given in equation (1.6). Most significantly, this figure signifies that

the No-Cloning Theorem of Quantum Information Processing [41] is not violated as

the Fidelity between the two reduced density matrices does not reach unity.
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Treating the nuclear spin as Spin 1

In the previous sections, the central electron spin was continuously treated as a Spin 1 entity, by

either using the full spin operator

S Spin1
z =


1 0 0

0 0 0

0 0 −1

 (1.8)

or the reduced spin operator acting on the ms = +1 and ms = 0 subspace

S Spin1,red.
z =

 1 0

0 0

 . (1.9)

By using this operator, the electron Qutrit (Spin 1) is effectively reduced to a Qubit (Spin 1/2).

The nuclear spin, however was implicitly treated as a Spin 1/2 entity, mainly for simplicity of

calculations and since the introduced model is generally valid for any dimension of spin subspaces.

In the scenario of the NV-center, both Spin 1/2 and Spin 1 entities are present among the nuclear

spins, namely the isotopes 13C and 14N [33].

We now treat the nuclear spin used as an ancillary for indirect detection explicitly as a Spin 1

system, as in the realistic case when the strongest coupling to the NV’s electron spin is the coupling

to the inherent nitrogen nuclear spin 14N. We will demonstrate that the results above still hold and

this case and moreover, that a direct cloning between the involved two Qutrits can be excluded.

As visible in Figure 1.15, the results of being able to detect the coupling frequency of a third spin

and a good agreement between the signals of the direct sensor and indirect ancillary still hold. As

the dimensionality of the involved spins is different, the signal of the electron spin has a slightly

different shape than before in Figure 1.11 with the same simulation parameters, besides the Spin

dimensionality. The depth of the peaks suggests that more information about the recorded signal

is transferred to the nuclear spin (Indirect Detection Signal(〈Fx〉) with increasing dimensionality

of the same. Most significantly, it is clearly visible that the amplitudes do not exactly agree, but

the peaks are present and indirect sensing still increases the visibility.
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Figure 1.15: Expectation values of the X-Operator when using the same parameters as before in

Figure 1.11, besides elevating the strongly coupled nuclear spin from a Spin 1/2 to

a realistic Spin 1 entity. The peak of the Indirect Detection on the nuclear spin be-

comes enhanced and the signal amplitude of the electron spin shows slight variation in

comparison with the previous amplitude series while the overall effect is maintained.

Introducing additional Decoherence on the Nuclear Spin

Motivated by the realistic scenario in the case of the Nitrogen-Vacancy center, we previously

introduced decoherence effects solely on the electron spin, which are still affecting the nuclear spin

signal due to the strong coupling between the spins, as in Figure 1.9 where the decoherence model

is given by Equation (1.5). A justified scientific question was what happens to the enhanced signal

on the nuclear spin if additional dephasing is introduced. Will the effect on the strongly coupled

spin still remain? Indeed, we find that when introducing a weak decoherence the benefits of

indirect sensing still remain. On the ancillary nuclear spin, we use a decoherence factor 100 times

smaller than on the electron spin, which is still a much stronger decoherence than in the realistic

scenario in which the nuclear spin dipole moment is smaller by a factor of roughly 3000 [33].
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Figure 1.16: Signals on the electron spin and nuclear spin in the presence of decoherence on both

spins. The decoherence factor p in equation (1.5) is 10−3 on the electron and 10−5 on

the nuclear spin. Expectedly, the signal amplitude of the nuclear spin remains more

visible with a more distinct peak.

1.2.3 Decoherence under Periodic Reinitializations

In the presented scheme so far, all manipulations on the spins were unitary gates or regular Quan-

tum Algorithms, in other words. We now turn to a scenario in which these Quantum Gates are

complemented by another operation, namely a reset, more technically a reinitialization of the cen-

tral electron spin. This means that whichever – possibly mixed – state the electron spin may have

evolved to is replaced again by a pure initial state |Ψinitial〉el. This state is defined by the physical

initialization process of populating the energy level |ms = 0〉 through the known optical pumping

process of the NV-center [33], followed by defined local operations that allow for initial superposi-

tion states. Experimentally, it is hard – though possible – to perform those reinitializations without

destroying the quantum states of neighbouring nuclear spins [43]. In a simulation however, the

reinitialization of part of a composed quantum system is easily performed by setting

ρreinit =
∣∣∣Ψinitial,1

〉 〈
Ψinitial,1

∣∣∣ ⊗ Tr1 (ρ(t)) (1.10)
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which means that in a time-evolved collective state ρ(t), the first spin is traced out by the partial

trace Tr1, replaced by an initial pure state and recombined with the remaining part of the density

matrix.
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Figure 1.17: Effect of periodic reinitializations on the Contrast in the Signal Amplitude with in-

creasing decoherence. Simulations were performed with N = 32 repetitions of the

sequence DF on the strongly coupled nuclear spin (see Figure 1.7). The number of

reinitializations is varied from N (solid blue curve) to 0 (dash-dotted red curve). The

performance of a larger number of reinitializations is clearly better, while additional

realistic side-effects of the physical reinitialization mechanism are not considered.

Simulations were performed including reinitializations according to equation (1.10). The number

of reinitializations was varied between a reset at every repetition of the sequence to no reinitializa-

tions at all. As a results, the maximum contrast is calculated, i.e. the depth of the peak in the signal

as in the amplitude plots before, e.g. Figure 1.16. Being the simple difference between Maximum

and Minimum of the signal, this contrast can maximally reach the number 2, as the maximum and

minimum of the expectation value are 1 and −1, respectively. By plotting this contrast over the de-

coherence parameter p introduced above in (1.5) for different numbers of reinitializations, a clear

positive effect of said reinitializations in terms of a better contrast with increasing decoherence is
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seen in Figure 1.17.

From a Quantum Information Processing perspective, this is a somewhat surprising considera-

tion. In a standard sensing scenario, in which one spin detects an external spin, reinitializations

hardly make sense, since they destroy any correlations, especially entanglement, between a sensor

spin and an external spin. Here, with the help of an ancillary spin which is used to enhance sensing,

there is also a possibility of mapping correlations between the sensor spin and external spin to the

ancillary spin. Thus, the ancillary spin can maintain correlations, even when the active sensor spin

is reinitialized. As the sensor spin is also the most active source of decoherence, reinitializations

in our indirect scheme turn out to reduce the effects of decoherence.

1.3 A Quantum Derivative?

A second surprising result during the course of the simulations performed – besides the information

mapping performance of the asymmetric sequence in section 1.2 – is the fact that the amplitude

signal found on the strongly coupled nuclear spin can indeed resemble the derivative of the ampli-

tude signal on the central electron spin.

We use the asymmetric sequence DS F defined above in Figure 1.10, with the difference that instead

of using an even number of sequence repetitions, as before, we now use an odd number of rep-

etitions. The response signal on the strongly coupled coupled nuclear spin changes significantly

in the sense that it no longer resembles the same peak as the signal from direct detection on the

electron spin, but actually resembles a derivative of this signal. More particularly, the amplitude

series coming from indirect detection portrays as the envelope of a numerically constructed deriva-

tive of the signal. This curious observation was not added to our publication in [4]. Even though

the puzzling effect is reproducible in the simulation and only occurs while a third spin is present,

which is sensed, we do not yet have an explanation of the observation of this Quantum Deriva-
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Figure 1.18: The amplitude series on the strongly coupled nuclear spin resembles the envelope of

the derivative of the direct detection signal on the central electron spin. The asymmet-

ric sequence DS F (Figure 1.10) was used with an odd (N = 89) number of repetitions,

which presents the only difference in simulation parameters compared to the standard

set in Figure 1.11. The expectation values on the electron spin 〈S x〉 from numerical

simulation (blue dot-dashed line) are interpolated (red solid line). The derivative of

this interpolation (orange solid line) with respect to ωL is scaled to fit the maximum

of the indirect detection signal 〈Fx〉 from simulation. However it is not shifted on

the horizontal axis
(
parameter ωL

)
and shows surprisingly good agreement with the

numerical Derivative.

tive. Therefore, the simulative observation is included here in order to inspire further theoretical

research, i.e. as an open scientific question alike an experimental measurement that still lacks find-

ing of a deeper mechanism. An explanation of this effect may have implications even in Quantum

Computing, as the possibility of a physically inherent Derivation and Integration is very appealing

to any Computational System. This may therefore present a very interesting topic to be studied

further by future theoretically inclined students and Scientists.
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1.4 Conclusion: Quantum Sensing

Improvements to Quantum Sensing using single Nitrogen-Vacancy Centers in diamond were shown

in this chapter. A protocol to make use of the long coherence time of nuclear spins surrounding the

NV was introduced in section 1.1, in particular by making full use of the dynamics of the collective

Hilbert space of the involved spins, rather than treating ancillary spins as a memory. An Asymmet-

ric Sequence acting directly on the NV electron spin was introduced (1.2, Figure 1.10) and found

to be able to replace the previous novel sequence acting on both the electron and the ancillary,

strongly coupled nuclear spin (1.1.3, Figure 1.7). In both cases, an advantage of the introduced

Indirect Sensing protocols was shown when subjecting the NV electron spin to decoherence (sec-

tions 1.1.4, 1.2.1), as opposed to direct sensing. The effects of treating the ancillary nuclear spin

as a Qutrit, rather than a Qubit were also analysed (1.2.2) as well as the effect of periodic reinitial-

izations of the sensing electron spin (1.2.3). Finally, a curious observation relating signals on the

electron spin and the strongly coupled nuclear spin to the application of a mathematical derivative

operation (1.3) was presented as a phenomenon to inspire future studies.

Here, the focus on entities to be sensed was on the signals of other external spins, such as nuclear

spins passively occurring in the diamond lattice. In the following chapter, Quantum Sensing of

external spin entities will still be addressed – when discussing the benefits of pairwise entangled

Singlet States, generated by the methods introduced therein. The focus then also shifts to Quantum

Sensing of Magnetic Fields and Electrical Fields. These can be sensed more effectively by the aid

of correlated nuclear spin states and, more canonically, by ensembles containing between hundreds

up to millions of NV spins, particularly when those NVs can be brought into a collective Spin

Squeezed State. In general, several methods involving measurement techniques such as repeated

Projections and the generation of effective Hamiltonians will be portrayed with the aim to create

special quantum states as useful resources. This applies again to Quantum Sensing but also to

further protocols in Quantum Information Processing.
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“Basically, quantum mechanics is the operating system that other physical theories run on as

application software (with the exception of general relativity...). There’s even a word for taking a

physical theory and porting it to this OS: ’to quantize’.”

-Scott Aaronson-

An aspect of Quantum Technology which is crucial for different applications such as Sensing,

Error Correction or Computing, is the engineering of specific quantum states. Some states such

as highly entangled states have specific non-classical properties and can also be used for counter-

intuitive protocols such as Quantum Teleportation [40,44]. Other states such as squeezed states are

particularly robust to noise and can thus enhance practical Quantum Sensing applications [6, 12].

Creating such states in the laboratory is often a daunting task due to the general instability of

correlated states under decoherence [45], imperfections in the implementation of quantum gates

and resulting unsatisfactory fidelities. In order to avoid the problem of accumulating gate errors

and infidelities, we follow a different approach. Instead of following the usual steps of a prior

initialization and subsequent application of quantum gates, our approach allows to combine these

two separate steps into one. Specifically, by repeated measurement of one central qubit, that is

coupled to all other qubits in our case, the whole remaining quantum system is projected into

a purified state and specific target states can be addressed. The possible target states include

squeezed states and specific pairwise entangled states [46], depending on the initial parameters,

external fields and the timing between different sequential measurements.
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2.1 Creation of effective Hamiltonians by repeated

measurements

The effect of measurements in Quantum Mechanics have been very surprising in their discovery

and subject to many debates during the formative years of the theory [47]. Here we focus on the

property of quantum mechanical measurements to change the measured state, especially in the

case when only a subsystem (A) of a bigger composite state (A ⊗ B) is measured such that the

measurement operator MA acts as

〈MA〉 =
〈
ΨA,B

∣∣∣ MA ⊗ 1B

∣∣∣ΨA,B
〉

(2.1)

In particular, following the Ansatz of Nakazato et al. [48] we focus on systems evolving under

a composite Hamiltonian, while one subsystem (say A) is repeatedly projected to its initial state.

Then,

HA,B = HA + HB + Hint (2.2)

where Hint is the interaction Hamiltonian. Let ρ0 be the initial state of the total system with the

property

ρ0 = |Φ〉A 〈Φ|A ⊗ ρB (2.3)

Moreover let ρ be subject to repeated projections of system A to it’s initial state by the partial

projection operator

O = |Φ〉A 〈Φ|A ⊗ 1B (2.4)

such that for each projection

VB,Φ(τ) ≡ 〈Φ|A eiHA,Bτ |Φ〉A (2.5)

is the non-unitary operator acting on the environmental system ρB. The most relevant finding of

Nakazato et al. [48] for our interests is that the undefined state ρB is driven towards a well-defined

pure state by the repetition of the projection measurements. Indeed, their 2003 paper finds that
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with a large number of repetitions N, any initial environmental (ρB) state is guaranteed to be driven

to

ρB(N)
N large
−−−−−→

|umax〉 〈umax|

〈umax|umax〉
(2.6)

where |umax〉 is the eigenstate with the property

VB,Φ(τ) |umax〉 = λmax |umax〉 , with λmax > ... > λmin (2.7)

under the assumption that λmax exists as a unique, discrete and maximal eigenvalue of VB,Φ(τ), such

that

VB,Φ(τ)N N large
−−−−−→ λN

max |umax〉 〈umax| . (2.8)

Remarkably then, a repeated projection of one part of the quantum system leads to the purification

of the other part, even towards a calculable, well defined final target state.

2.2 Purification of an unpolarized spin-bath by controlled

non-unitary evolution

Before we apply the introduced method to our specific scenario, let us briefly review and illustrate

the mechanism of Purification at a fundamental level. Consider the following standard example of

purification. Let two qubits be entangled in the Bell state∣∣∣Φ+〉 =
1
√

2
(|↑↑〉 + |↓↓〉) (2.9)

Then obviously, since the two qubits are not separable, a reduced state of one of the qubits is

always mixed. In particular, tracing out yields a fully mixed state in this case

Tr1

(∣∣∣Φ+〉〈Φ+
∣∣∣) =

12

2
(2.10)

which clearly fulfils the condition Tr
(
ρ2

)
< 1 as required for a mixed state. However, when one

of the qubits is measured, the combined state is projected into one of the two the separable pure
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states

|Ψres〉 = |↑↑〉 XOR |Ψres〉 = |↓↓〉 (2.11)

with equal probability. XOR signifies the logical exclusive OR. For both of these states, the partial

trace yields pure states as

Tr1 (|Ψres〉〈Ψres|) = |↑〉〈↑| XOR Tr1 (|Ψres〉〈Ψres|) = |↓〉〈↓| . (2.12)

At the single qubit level, the individual states have thus changed from a mixed state to a pure state

with the property ρ2 = ρ. Therefore, the effect of a local measurement within a combined system

can be the Purification of a coupled qubit. This can also be generalized to higher-level subsystems

or qudits.

We apply the introduced method and propose an implementation using an NV center and sur-

rounding nuclear spins [46]. A heralded optical readout of the NV spin at low temperature [43]

allows for repeated sequential measurements. Depending on the detected outcome, the sequence

of measurements is continued or discontinued. The measurement result signifies whether the cen-

tral NV spin has been successfully projected into a target spin state. We focus mainly on the case

of repeated successful projection. When choosing suitable target states, it is found by numerical

simulations that the surrounding nuclear spins are purified as expected, even when a fully mixed

state is the initial condition.

2.2.1 Repeated measurement of a central spin

In order to approach the realistic situation of an NV spin coupled to surrounding nuclear spins,

we consider a central spin geometry. In the NV case, the direct couplings between neighbouring

nuclear spins can be neglected. The magnetic moment of the central NV electron spin is much

greater than the magnetic moment of the C13 nuclear spins, by a factor of about 3000 [33]. The

interaction is thus dominated by the coupling of the central spin to the individual nuclear spins. In
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practice, the dipole-dipole coupling between NV and nuclear spins is three-dimensional. However,

we begin by assuming dominating z-z coupling and a one-dimensional geometry. We generalize

to two-dimensional and three-dimensional coupling geometries later. The symmetry axis of the

NV center defines a quantization axis and thereby the z-direction. The general Hamiltonian of the

problem is given by

H = S z

∑
k

~gk · ~Ik + ω
∑

k

I(k)
z . (2.13)

Here, S z is the NV electron spin operator, while ~Ik contains the spin operators of the k-th nuclear

spin. The coupling strength in each direction is given by the elements of the respective coupling

vector ~gk. An external magnetic field is applied to the nuclear spins in z-direction with strength ω.

While the external magnetic field is homogeneous for all nuclear spins and introduces a common

preferred direction, the different coupling strengths introduce inhomogeneities that have the im-

portant purpose to perturb the dynamics of preferred directions or symmetries [46]. By tuning the

strength of the external field, the significance of these inhomogeneities can thus be controlled.
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Figure 2.1: Mathematica illustration of the proposed purification experiment. The NV spin (solid

blue arrow) is repeatedly projectively measured – aided by the inherent Nitrogen nu-

clear spin – by illumination with green laser light and subsequent detected emission

of single photons (red sinusoid). Nuclear spins (orange spheres) experience coupling

mediated by the NV spin. In the illustrated scenario, the result is a pairwise entangled

state, as symbolized by the figure-eight curves (lemniscate of Gerono), see A.2.2, [46].
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2.2 Purification by controlled non-unitary evolution

2.2.2 Purification Mechanism

In order to purify the nuclear spins around the NV electron spin, we thus need to develop a se-

quence of unitary operations and measurements on the NV electron spin. As we will see later on,

any superposition state of the electron spin states |+1〉 and |−1〉 is suitable for purification. How-

ever, we first focus on a simple superposition resulting from a Hadamard gate or a π/2 - pulse, in

other terms.

a b

 ( (
1

0

M

Figure 2.2: Proposed Measurement Sequence for Purification and results from simulation.

(a) Sequence for repeated projection of the central spin into a superposition state.

(b) Repeated Projective Measurements result in a purification of the surrounding nu-

clear spins (solid orange curve). Moreover, the probability ps (dashed blue curve) of

projecting the electron spin into the right state is increased with the number of measure-

ments. The 1D scenario considered for this particular calculation is illustrated in the

inset, with the blue arrow signifying the central electron spins whereas orange spheres

symbolize nuclear spins, coupled to the central spin. The z position for all ancillary

spins is equal in this case, while the x positions are distributed equidistantly. [46]

Figure 2.2a shows the sequence used to repeatedly prepare a superposition state of the central NV

spin. The π/2 pulse serves the purpose to create a superposition state after an initialization of the

spin. The system is then evolved freely for a time τ, followed by another pulse in order to map the
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population of the superposition state back to an energy eigenstate for readout purposes. The NV

fluorescence measured corresponds to the population of the eigenstate |0〉. If the projection was

successful, the measurement result is “1” and the sequence can be repeated (M times). Crucially,

in case of an unsuccessful projection, the whole experiment has to be aborted or corrected, since

the purification has been interrupted, leading to ambiguity in the knowledge of the target state.

Therefore, a high preparation and readout Fidelity is of high importance for this experiment.

Note that the probability of obtaining a whole sequence of successful measurements is still low a

priori, as visible in Figure 2.3. However, a successful measurement increases the chance of another

successful repetition in each step, as in Figure 2.2b. This can be interpreted as a non-Markovian

memory effect in the environment surrounding the central spin, due to the described Purification.
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p00011...

p00001...

p00000...

Figure 2.3: Probabilities for selected sequences or trajectories of measurement results, resulting

from repeated projections of a central spin. The scenario considered in this chapter is

a sequence of successful projections, i.e. the sequence corresponding to p111... above

(solid blue line). It is important to keep in mind that the introduced method increases

the success probability for a single measurement (cf. Figure 2.2). Yet the overall

probability of obtaining the proper sequence is still low, even though the probability

of obtaining other particular sequences is lower. This means that a high number of

measurements may be necessary in order to prepare a well-defined bath spin state.
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2.2 Purification by controlled non-unitary evolution

2.2.3 Derivation of the effective Quantum Dynamics on the bath

Let us now move on to investigate theoretically how these results from simulations can be under-

stood and generalized. In brief, spectral decomposition of the Hamiltonian shows that the result of

measuring a superposition state yields a well-defined non-unitary operation on the bath. In more

detail, the Hamiltonian in (2.13) can be rewritten using spectral decomposition as

H =


1 0 0

0 0 0

0 0 −1

 ⊗
∑

k

~gk · ~Ik + ω
∑

k

1 ⊗ I(k)
z

=


∑

k ~gk · ~Ik + ω
∑

k I(k)
z 0 0

0 ω
∑

k I(k)
z 0

0 0 −
(∑

k ~gk · ~Ik

)
+ ω

∑
k I(k)

z


≡ |1〉〈1|H+ + |0〉〈0|H0 + |−1〉〈−1|H−

(2.14)

in block diagonal form such that the Hamiltonian is split into one part H+ containing the coupling

term with a positive sign while the other part H− includes this term with a negative sign. The part

of the Hamiltonian corresponding to the electronic level ms = 0, i.e. H0, does not contain coupling

terms, but only the contribution of the external field. For the dynamics this means that

U = eiHt = |1〉〈1| eiH+t + |0〉〈0| eiH0t + |−1〉〈−1| eiH−t

≡ |1〉〈1|U+ + |0〉〈0|U0 + |−1〉〈−1|U−.
(2.15)

Notice that the remaining unitaries U+,U0 and U− only act on the nuclear spin states. The central

electron NV spin is just represented by its spin states |+1〉 , |0〉 and |−1〉 within the equation (2.15).

Therefore, the action on the nuclear spins can be controlled by projecting the central spin into
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specific states. As an illustrative example, let us chose the central NV spin to be prepared in the

state

|Ψel〉 =
|1〉 + |−1〉
√

2
(2.16)

while the state of all surrounding nuclear spins |Ψns〉 is arbitrary (here assumed to be pure for

clarity w.l.o.g.). So, the action of the time evolution of the Hamiltonian is

U |Ψel〉 ⊗ |Ψns〉
(2.15)
=

1
√

2
(|1〉U+ + |−1〉U−) |Ψns〉 (2.17)

where the overlaps of the states represented in U in (2.15) with |Ψel〉 define the effective operation

on the nuclear spins. For example, the part corresponding to electron state |0〉 is left out. In the

next step, the electron state shall be projected back into the same state |Ψel〉 after the time evolution

with time t.

(|Ψel〉 〈Ψel| ⊗ 1) U (|Ψel〉 ⊗ |Ψns〉) = |Ψel〉
U+ + U−

2
|Ψns〉

≡ |Ψel〉 ⊗ V |Ψns〉 .

(2.18)

We see that the combination of unitary time evolution and projection can be rewritten as an oper-

ator V acting on the nuclear spins. Remarkably, this operator is given as the sum of two unitaries.

As explicitly demonstrated in the appendix, section A.1, and as confirmed by Nakazato et al. [48],

this means that the operator acting on the nuclear spins is in general non-unitary. Physically, it is

not surprising that a non-unitary operation appears when the effect of a measurement is included.

This property has the consequence that the operation has the potential to be an entangling opera-

tion since a non-unitary operation can never be written as product of local unitaries.

The above example can also be generalized to any superposition state. We still restrict to the

qubit subspace |−1〉 , |1〉 and find that

|Ψel〉 =
α |1〉 + β |−1〉√
|α|2 + |β|2

(2.19)

with general {α, β} ∈ C yields the operation on the nuclear spins as

V = |α|2U+ + |β|2U− (2.20)
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2.2 Purification by controlled non-unitary evolution

such that these superposition parameters also represent degrees of freedom that can be chosen in

order to fulfil requirements concerning the target state and the available time of evolution. In other

words, two important resources in Quantum Information Processing are related by this method,

namely superposition and entanglement. When chosing the paramenters appropriately, the super-

position of the initial central spin state is converted into entanglement of the surrounding spins by

the use of time evolution and successful projective measurements.

2.2.4 Optimization of External Parameters for Specific Target States

Within the presented purification mechanism, there are a number of different parameters which

influence the particular state obtained as a result of the purification. If the parameters are not

inherently fixed, as the coupling parameters in a solid state scenario, they can thus be used to

obtain different target states. In particular, these parameters are:

• The coupling parameters ~gk

• The strength of the external field ω

• The time(s) between different measurements τ

• The superposition weights α and β, as in equation (2.19)

• The number of involved spins N (and their dimensionality).

Tuning these parameters leads to very different results in terms of achieved purity, entanglement

and success probability. Figure 2.4 shows contour plots obtained when varying the time τ and

the external field strength ω numerically, as an example. In an experiment, the choice of pa-

rameters can obviously be optimized by simple trial and error. One more intelligent way is to

previously simulate the full quantum mechanical system. This is often a computationally hard

problem though, growing exponentially with the number of spins involved. However, there is a

better numerical method in order to chose the parameters in an ideal way. As observed in 2.1, the
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a b

p≈1

p≈0.5

p
<
0
.5

Figure 2.4: Effects of different choices of the external field (ω) and the free evolution time (τ). In

(a), the focus is on the number of created entangled pairs. A darker (red) colour sig-

nifies more pairs, while a lighter (blue) colour means less entangled pairs. Moreover,

the inset text shows the purity of the nuclear spin state. The scale is in units of the

(inverse) effective coupling g =

√
1/N

∑
k

∣∣∣~gk

∣∣∣2. (b) shows the probability of obtaining

the selected state in the M-th repetition of the sequence. Here, red is the optimal prob-

ability 1, while at the other end of the scale, blue signifies a probability value of 0.8.

The coupling scenario considered is the 1D spin chain as in Figure 2.2. [46]

purified spins will evolve towards an eigenstate of the non-unitary operator V that describes the

combined effect of projection and time evolution of the system, as in equation (2.18). In particular,

in the limit of a large number of repetitions M, the bath spins will assume the eigenstate corre-

sponding to the maximal eigenvalue of V .

We observed this theoretically in (2.6) but re-illustrate it with our concrete example when analysing

the effect of many repetitions in the eigenbasis of V as

ρres =
V MρV†M

NM
norm

=

(
BDB†

)M
ρ
(
B†DB

)M

NM
norm

, (2.21)
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where B is an operator consisting of the eigenstates of V , thus transforming V into a diagonal

operator D. Nnorm is the normalization constant necessary in each step due to the non-unitary

nature of V . Since the eigenvalues {di} fulfil the condition 0 ≤ di ≤ 1 it becomes obvious that

V M =
BDMB†

NM
norm

= B



d1 0 . . . 0

0 d2
. . .

...
...

. . .
. . . 0

0 . . . 0 dN



M

B†/NM
norm

M→∞
−−−−−−−−−→
(d1>d2>...dN )

B



1 0 . . . 0

0 0 . . .
...

...
. . .

. . . 0

0 . . . 0 0


B† = |d1〉〈d1|

(2.22)

since the smaller eigenvalues vanish much quicker with dM
2 → 0 . . . dM

N → 0 while d1 dominates,

such that V M becomes a projection operator into the eigenstate |d1〉 corresponding to the largest

eigenvalue d1. From this, it also obvious to see that the gap (d1 − d2) between d1 and the other

eigenvalues is important. In particular, less repetitions M are necessary when the gap is sufficiently

large. On the other hand, if the gap is too small, there are several conflicting target states which

results in the fact that the resulting state ρres is not fully purified. We also observe in numerical

simulations that a larger gap leads to faster convergence of the system towards a pure target state.

2.3 Specific Target States and their Applications

Having established the mechanism of reaching a well defined pure state in a realistic scenario,

we now turn our attention towards the question which particular states can be reached and what

applications they may serve. While in general, the possibilities of reaching arbitrary target states

is given, we focus here on pairwise entangled singlet states. These states are especially interesting

due to the negligible interactivity of spins in this state with other spin entities. As their net angular
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momentum is vanished and as the involved spins are ideally fully entangled, these states serve to

decrease interactions to coupled spins as well as the environment [49]. Moreover, singlet states

also serve applications in Quantum Simulations, such as excitations in spin models with exact

dimer ground states [50]. However, the described methods are, in general, also suitable to create

other states very useful for Quantum Technology, such as Spin Squeezed states and Multipartite

Entangled States.

2.3.1 Pairwise Entangled Singlet States

In our publication [46] we focus especially on pairwise entangled singlet states of the form

|S 〉 =
1
√

2
(|↑↓〉 − |↓↑〉) . (2.23)

In particular, we demonstrate that in the case of the considered central spin system with inhomo-

geneous couplings and a high (even) number of spins, a repeated projective measurement of the

central spin can remarkably result in a state in which all of the spins are paired up in identical

singlet states as

|Ψ〉res =

N−1⊗
i=1

∣∣∣S i,i+1
〉
. (2.24)

Note that such a pairing can not occur if all spins are coupled with equal coupling strength to the

central spin. It is indeed the dynamics of the interplay of the inhomogeneous couplings with the

externally applied field that paradoxically leads to such a homogeneously distributed entangled

state. However, it has to be stressed again, that this result is heavily dependent on the involved

coupling parameters and the choice of external parameters, such that the number of spins pairing

up in singlets is subject to change as well as the purity of the involved states (see Figure 2.4 above).

However, we can find scenarios in the numerical simulation, in which the involved spins do pair

up into singlets. We demonstrate this singlet formation by extracting the sub-matrix ρ(i,i+1) from

the density matrix resulting from the measurement scheme at a given number of measurements

according to equation (2.21) by partial tracing.
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Note that the Fidelity is defined differently than the direct overlap of density matrices Tr(ρ1, ρ2)
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Figure 2.5: In an exemplary two-dimensional configuration of spins distributed on a plane, four

different Singlet pairs are forming within a set-up of eight spins. With increasing num-

ber of measurements, the Fidelity, as defined in (1.6), is increasing towards unity, ex-

cept for one pair, namely the pair indexed as (1, 2), blue dashed line, for which the

Fidelity saturates. The plot legend includes the spin indices of the respective entan-

gled pair of qubits, as well as the angle Φ within a family of Singlet states defined by∣∣∣S̃ 〉
=

1
√

2

(
|↑↓〉 − eiΦ |↓↑〉

)
.

used in our publication [46]. The qualitative result is the same which confirms the findings of

the publication while the Fidelity – as defined in equation (1.6) – is a better measure for possibly

occurring mixed states.

2.3.2 Advantages for Quantum Sensing

As the central electron spin acts as a sensing spin, the state of the surrounding spins is of rele-

vance for the sensing performance. In the case of the NV center, the dipole-dipole coupling to

the surrounding nuclear spins introduces chaotic phases to the electron spin, if these are in a fully
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mixed state. Intuitively, a well-defined nuclear spin state is thus beneficial. Moreover, due to the

Monogamy of Entanglement [51], any spin can only be fully pairwise entangled with exactly one

other spin. According to the well-established decoherence model by Zurek [52], decoherence ba-

sically means entanglement to an entity outside the desired quantum system. Here, decoherence

on the central spin could be introduced by undesired entanglement to the nuclear spins. Therefore,

pairwise entanglement of the nuclear spins contributes to protecting the information gathered by

the central spin.

Figure 2.6: Three-dimensional scenario for a simple demonstration of benefits to Quantum Sens-

ing by Quantum State Engineering. The sensor spin (blue) is surrounded by ancillary

nuclear spins (orange spheres). Since these are coupled to the central spin, the nu-

clear spins may prohibit the detection of external spins (red, green arrows) or aid in

detection, depending on their engineered quantum states. [46]

In the following, it is demonstrated how subjecting the spins surrounding the sensor spin to pair-

wise entangled singlet states aids in detecting external spins which may otherwise be unresolvable.

We introduce three different external spin species with Larmor frequencies

ω0 = ω, ω1 = ω +
ω

10
, ω2 = ω −

ω

10
. (2.25)
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In the Hamiltonian governing the system dynamics, (2.13), a linear spin chain containing a sig-

nificant number (N = 10) of nuclear spins is assumed. The first two of these spins are precessing

with Larmor frequency ω and are subjected to different states, namely paired as singlets, a pure but

separable state and a completely mixed state. Two additional spins are situated above the linear

chain and are subjected to Larmor frequencies ω1 and ω2 as defined above.
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0.0
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τ [π/ω]

<
S
x
> singlets
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Figure 2.7: Larmor frequencies of three external spins in the setting of Figure 2.6 sensed by a cen-

tral electron spin. Two of the Larmor frequencies, which are slightly shifted from the

dominating frequency ω are only visible as beatings in the case when the surrounding

nuclear spins are paired in singlet states (blue dashed line). On the contrary, these fre-

quencies can not be observed when the external spins are shielded by the nuclear spins,

which can entangle with the central electron spin. This is the case when the nuclear

spins are not prepared in a pairwise entangled singlet state, but in a separable pure state

(polarized, green solid line) or in a completely mixed state (unpolarized, solid orange

line), respectively. The time scale of the free evolution time τ is given in inverse units

of the dominating Larmor frequency ω. The dimensionless expectation value on the

ordinate is the x−coordinate of the electron spin 1. [46]

Clearly, the benefit on engineering the most suitable quantum state in the environment for the task
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at hand is visible. Being paired up as singlets, the nuclear spins can not pairwise entangle to the

central electron spin. Moreover, their net angular momentum is zero such that the dipolar interac-

tion is intuitively minimized in this state. We have thus shown that the obtained pairwise entangled

states of environmental spins are beneficial for sensing external spin entities.

2.4 Results for Different Geometries of Surrounding Spins

Having looked at one-dimensional spin chains and spins distributed in a two-dimensional plane

[46], we now turn to the more realistic scenario of a three-dimensional geometry of the nuclear

spins surrounding an NV center. In order to further analyse the amount of Pairwise Entanglement

in the resulting density matrices, let us introduce the concept of Concurrence [53].

Concurrence The basic idea of this Entanglement Measure defined by Wooters in 1997 is to

compare a density matrix to its spin-flipped counterpart ρ̃ as [53]

ρ̃ =
(
σy ⊗ σy

)
ρ∗

(
σy ⊗ σy

)
. (2.26)

Here, the asterisk (∗) denotes a simple complex conjugate. The comparison is then carried out by

looking at the Hermitian matrix R as by the equation

R =

√
√
ρ · ρ̃ ·

√
ρ. (2.27)

Note that the computation of the overlap is very similar to the Fidelity defined in equation (1.6).

In the case of the Concurrence, however, computation of this matrix overlap is not followed by

a Trace, but by an analysis of Eigenvalues. The Eigenvalues of R are equivalent to the Square

Root of the Eigenvalues of the non-Hermitian overlap matrix O = (ρ · ρ̃) [53], which is also the

matrix used for the usual Trace overlap Ω = Tr (ρ · ρ̃). For the computation of Concurrence, the

Eigenvalues of R are then sorted in decreasing order λR,1 ≥ λR,2 ≥ λR,3 ≥ λR,4. The dimension
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is fixed to four as we only introduce Concurrence as a measure of pairwise entanglement. The

Concurrence is finally computed as

C(ρ) = max
(
0, λR,1 − λR,2 − λR,3 − λR,4

)
. (2.28)

2.4.1 Three-dimensional Geometries of Surrounding Spins

Note that the observation of pairwise singlet states or other entangled or correlated states depends

heavily on the involved couplings and thus on the geometry of the coupled spins, and the tuning of

all other free parameters. In an experimental setting with spins at fixed lattice sites, the observation

of such states is therefore a very non-trivial task, besides the probabilistic nature of the measure-

ment sequences in question. In a simulation however, the positions of the spins can be easily fixed

and adapted to situations in which e.g. pairwise entanglement is favoured. Such a successfully

engineered system is presented in the following with N = 6 spins occupying corners of a cuboid

as in Figure 2.8. Both Purification and Pairwise Entanglement are observed in this scenario, when

a sufficiently high number of repetitions of the measurement sequence is carried out. The results

of the simulation are displayed and discussed in Figures 2.9 and 2.10.
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Figure 2.8: Three-dimensional configuration of nuclear spins (blue dots) used for the Purification

simulation below. The central spin is situated at the origin while the nuclear spins are

elevated in the z-direction and distributed in x and y in a pairwise grouping to increase

the likelihood for singlet formation. The units are arbitrary but influence the coupling

strength by the dipolar coupling ~d =
~r / |~r |
|~r |3 .

Figure 2.9: Plot of the populations of the involved 64x64 density matrices from simulation of the

N = 6 nuclear spins after one repetition (left image) and after 300 repetitions (right

image) of the measurement sequence in Figure 2.2. Dark areas signify entries with an

absolute value close to 0, while bright areas show entries with maximal absolute values.

Notably, the system develops from a nearly completely mixed state with almost only

diagonal entries to a well-structured density matrix with clearly visible off-diagonal

entries, stemming from correlated states.
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Figure 2.10: Pairwise Entanglement of the spins involved in a three-dimensional Purification set-

ting. The Concurrence plot (a,left) is a visualisation of the occurring pairwise Con-

currences, as defined in equation (2.28). The explicit values of the involved Concur-

rences are also given for comparison (b,right). The indices of the matrix, or the labels

of the Concurrence plot are simply indices of the involved spins.
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2.5 Methods for Correlation of a large Number of Bath

Spins

Remarkably, there is no upper limit per se on how many spins can be polarized and purified by

the presented central spin projective measurements. We thus performed simulations with high

numbers of nuclear spins, up to N = 20, on a multi-core IBM Server System. As the dimensions

of the involved density matrices and unitary operations scale as dim(ρ) = 2N · 2N with complex

entries, so 2N · 2N · 2 = 22N+1 real variables in total (e.g. 241 = 2 199 023 255 552 ≈ 2, 2 · 1012 real

variables for the case N = 20), the involved matrix multiplications are very extensive, especially

in terms of RAM, but also CPU-expensive. Methods were thus developed, specifically tailored to

the involved operations, to enable Parallel Computing of the Algorithms in question.

2.5.1 Specific Separable One-Qubit Operations and their Permutations

introduced by Power Expansion

The non-unitary operation V acting on the nuclear spins (Index I) as defined before, e.g. in (2.20),

is now fixed to

V(τ) =
1
2

(
U+

I + U−I
)
. (2.29)

Remember that the sum of two unitaries is in general non-unitary as demonstrated in the appendix,

section A.1 and confirmed by Nakazato et al. [48]. Two observations now help to simplify the

dynamics. Firstly, the summed Unitaries acting on the nuclear spins can be rewritten as separable

tensor products [46].

Vn =
1
2n (U+ + U−)n =

1
2n

⊗
i

U+
i +

⊗
j

U−j


n

. (2.30)

Secondly, a successive application Vn, where n is the total number of repetitions of the sequence,

can be rewritten in terms of Permutations. Here, Vn acts on an already pure, but separable input
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state |Ψ0〉, for further simplicity of the involved calculations. The focus is thus shifted here from

the mere Purification of the system to the question whether the repeated projection of the central

spin leads to entanglement among the attached nuclear spins [46].

Vn |Ψ0〉 =
1
2n

∑
nPerm2

⊗
k

nPerm2(U+
k ,U

−
k )

∣∣∣Ψ0,k
〉
. (2.31)

To better understand this somewhat involved equation, let us first define the terms, before we look

at one illustrative example. The sum is taken over permutations. nPerm2(U+
k ,U

−
k ) is a multiset-

permutation of the simple set of the two operators O = {U+
k ,U

−
k }. [54] A multiset is, by definition

[55], a modified set which allows for an element of the set to occur multiple times, e.g. the multiset

S̃ = {a, b, b, a} has two elements which both have multiplicity 2. Whereas, in a regular set, only

multiplicity 1 is allowed, such that the multiset S̃ would have to be redefined as S = {a, b}, to

obtain a regular set S . Here, the set of operators O = {U+
k ,U

−
k } is thus elevated to a multiset

Õk,n,m+,m− = {U+
k ,U

−
k ,U

−
k , . . . ,U

+
k ,U

+
k ,U

−
k }︸                                 ︷︷                                 ︸

n entries

, (2.32)

where n is both the power applied to the operation V , but also the Cardinality of the multiset, which

is the sum of the individual multiplicities m+ (number of {U+
k } entries) and m−, i.e.

∣∣∣ Õk,n,m+,m−

∣∣∣ = n = m+ + m− (2.33)

Successively, it is inherently understood in (2.31) that the multiset Õk,n,m+,m− originates from the

different terms introduced by the matrix power Vn. Thus, each individual multiset is subsequently

subjected to matrix multiplication, such that it defines a unitary operation Ok,n,m by

Õk,n,m+,m− = {U+
k ,U

−
k ,U

−
k , . . . ,U

+
k ,U

+
k ,U

−
k } → Ok,n,m = U+

k · U
−
k · U

−
k , . . . ,U

+
k · U

+
k · U

−
k , (2.34)

where m is a running index of the different multiset permutations occuring when the matrix power

n is applied to the operator V .

We have thus introduced a formalism for a better description of the involved matrix powers, with

the goal to simplify the involved calculations. Before we see how this is indeed related to counting
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in binary numbers and thus very native to the way a classical computer ‘thinks’, let us first look at

a simple example for the case of N = 2 nuclear spins and n = 3 repetitions.

V3 |Ψ0〉 =
1
23

 N=2⊗
i=1

U+
i +

N=2⊗
j=1

U−j


3

|Ψ0〉 =

U−1 U−1 U−1
∣∣∣Ψ0,1

〉
⊗ U−2 U−2 U−2

∣∣∣Ψ0,2
〉

+ U−1 U−1 U+
1

∣∣∣Ψ0,1
〉
⊗ U−2 U−2 U+

2

∣∣∣Ψ0,2
〉

+

U−1 U+
1 U−1

∣∣∣Ψ0,1
〉
⊗ U−2 U+

2 U−2
∣∣∣Ψ0,2

〉
+ U−1 U+

1 U+
1

∣∣∣Ψ0,1
〉
⊗ U−2 U+

2 U+
2

∣∣∣Ψ0,2
〉

+

U+
1 U−1 U−1

∣∣∣Ψ0,1
〉
⊗ U+

2 U−2 U−2
∣∣∣Ψ0,2

〉
+ U+

1 U−1 U+
1

∣∣∣Ψ0,1
〉
⊗ U+

2 U−2 U+
2

∣∣∣Ψ0,2
〉

+

U+
1 U+

1 U−1
∣∣∣Ψ0,1

〉
⊗ U+

2 U+
2 U−2

∣∣∣Ψ0,2
〉

+ U+
1 U+

1 U+
1

∣∣∣Ψ0,1
〉
⊗ U+

2 U+
2 U+

2

∣∣∣Ψ0,2
〉

(2.35)

This example illustrates the terms generated by nPerm2(U+
k ,U

−
k ), indeed by 3Perm2(U+

k ,U
−
k )

(n = 3), in this case. These permutations are simply all possible permutations of three matri-

ces consistent of U+ and U− for each involved qubit. Note that the permutations are the same for

both qubits simultaneously in this case. In fact, since the entries are summed over, the position of

each term is irrelevant, such that the order of the permutations can also be varied for each qubit

separately, in principle.

2.5.2 Relation of the Involved Permutations to Binary Numbers

Note that the expression above in (2.35) has indeed been explicitly constructed by the use of bi-

nary numbers. Incidentally, the involved multiset permutations of a set of cardinality 2 are equal

to counting in binary numbers. Unsurprisingly, binary numbers are just a multiset of the set {0, 1}.

Thus, compare the expression above with the following expression
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000
∣∣∣Ψ0,1

〉
⊗ 000

∣∣∣Ψ0,2
〉

+ 001
∣∣∣Ψ0,1

〉
⊗ 001

∣∣∣Ψ0,2
〉

+

010
∣∣∣Ψ0,1

〉
⊗ 010

∣∣∣Ψ0,2
〉

+ 011
∣∣∣Ψ0,1

〉
⊗ 011

∣∣∣Ψ0,2
〉

+

100
∣∣∣Ψ0,1

〉
⊗ 100

∣∣∣Ψ0,2
〉

+ 101
∣∣∣Ψ0,1

〉
⊗ 101

∣∣∣Ψ0,2
〉

+

110
∣∣∣Ψ0,1

〉
⊗ 110

∣∣∣Ψ0,2
〉

+ 111
∣∣∣Ψ0,1

〉
⊗ 111

∣∣∣Ψ0,2
〉

(2.36)

Here, the complicated permutations are instead substituted by successive binary numbers from 000

to (111)2 = 8. Note that it is enough to replace each 0 with the respective U− and each 1 with the

U+ operations to reconstruct equation (2.35) above. This is generalizable to arbitrary numbers of

spins and repetitions of the sequence. Conclusively, for this specific problem we have reduced the

challenging task of a matrix power – and thus a diagonalization – of a 2N · 2N complex matrix to a

simple and easily parallelizeable sum with binary indices and single-qubit operations.

2.5.3 Partial Trace of a Large Pure State

As the involved density matrices grow exponentially in size, a simple observation helps to still

enable the calculation of a partial trace. While there may usually not be enough RAM space

available for even containing a large enough density matrix, operations can still be applied to pure

states in order to obtain the desired result. Starting from the usual definition of a partial trace [41]

ρB = TrA(ρAB) =
∑

i

(〈i|A ⊗ 1B) ρAB (|i〉A ⊗ 1B) , (2.37)

observe, that for a pure state ρAB = |ψ〉AB〈ψ|AB = |ψ〉A⊗|ψ〉B 〈ψ|A⊗〈ψ|B, such that the above equation

can be rewritten

TrA(ρAB) =
∑

i

(
〈i|ψ〉A |ψ〉B

)︸        ︷︷        ︸
|ϕ〉B,i

(
〈ψ|i〉A 〈ψ|B

)︸        ︷︷        ︸
〈ϕ|B,i

, (2.38)

which means that it is enough to calculate |ϕ〉B,i = 〈i|ψ〉A |ψ〉B = (〈i|A ⊗ 1B) |ψ〉AB in each summation

step, followed by complex conjugation and transposition to obtain 〈ϕ|B,i. This enables the calcula-

tion of a partial trace from a pure state of high dimensionality, since it drastically lowers the RAM
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requirements compared to calculations involving the full density matrices, and produces an easily

prallelizeable sum.

2.5.4 Results: Simulating Pairwise Entanglement among up to Twenty

Spins

Using the methods described above, it is possible to scale up the simulation of correlating external

spins by the repetitive projective measurement of a central spin to N = 20 external spins. A

one-dimensional geometry is used in numerical simulations, in the sense that the central spin is

assumed to be below the first spin of a linear chain of external spins. The resulting couplings can

be specified as

~Jk = J ·


dk

0

1

 /
∣∣∣∣∣∣∣∣∣∣∣∣∣


dk

0

1


∣∣∣∣∣∣∣∣∣∣∣∣∣

4

(2.39)

where J is a weight of the couplings and dk is the distance in the linear chain spread out along the

x-axis, varied for each spin. For the simulations of a large number of spins, an equidistant spacing

was used. The exact involved parameters and the code for the twenty-spin simulation is given in

the Appendix in A.2.1.

As expected, it was observed that with an increasing number of external spins, it gets increasingly

harder to correlate the spins. See Figure 2.11. This observation has two main reasons. Firstly,

with an increasing linear spin chain, each added spin is further away from the central spin and

thus has lower coupling strength, scaling as 1/|~rk|
3, where ~rk is the position vector of the k-th exter-

nal spin. Secondly, the Purification effect also gets decreased. Indeed, the ratio between the one

central spin and the number of external spins is obviously diminishing. However, intuitively, the

amount of information that spreads from the central spin remains the same. As an effect, a larger

number of repetitions and a stronger external field is necessary when the number of involved spins

82



2.5 Methods for Correlation of a large Number of Bath Spins

increases, in order to still observe pairwise correlations between the involved spins. However, a

larger number of repetitions results in significant increases of the duration of the parallel computa-

tion. For example, simulating twenty spins on two coupled IBM Server Systems x3850 X5 4x 8C

Xeon X7560 2,26GHz 128GB (in total 64 cores, 256GB RAM), took 7h 55min for 22 repetitions

of the measurement sequence, whereas simulating 23 repetitions used up a whole 13h 45min of

calculation time on the IBM Server System.
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Figure 2.11: Development of the sum of all pairwise Concurrences, using the introduced re-

peated central spin projection, when scaling up the number of involved external spins

(Qubits) from four to twenty. Note that the involved parameters were kept as constant

as possible for comparison (τ = 0.3025, J = 20), however at least one parameter

(here ω) had to be optimized manually to fit the respective problem sizes (c.f. Table

2.1). It is clearly observable that the overall Concurrence drops rapidly from a prob-

lem size of ten spins and stabilizes afterwards. Notably, pairwise entanglement is still

observable, even for N = 20 spins.
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2.5.5 Twenty Spin (Qubits) Case

Let us elaborate a bit further on the results from the twenty spin simulation. Firstly, we list the

parameters involved in Table 2.1 to stress that the parameters are comparable, but slightly adapted

for each problem size. Secondly, in the figures below, excerpts from the involved 220 ·220 ≈ 106 ·106

matrices are plotted below. Note that loading the full matrix into RAM is already a huge challenge,

due to roughly 2, 2 · 1012 real parameters. Thus, the Partial Trace methods outlined in 2.5.3 are

applied and the analysis is focused on the first ten and the last ten involved spins, respectively.

Number of Spins External field strength ω Waiting time τ Coupling Weight J Repetitions n

4 17 0.3025 20 23

6 16 0.3025 20 23

8 17 0.3025 20 23

10 19 0.3025 20 23

12 22 0.3025 20 23

14 22 0.3025 20 23

16 23 0.3025 20 23

18 23 0.3025 20 23

20 23 0.3025 20 23

Table 2.1: Numerical parameters used in simulations of large spin numbers, using the introduced

repeated central spin projection. Note that, in order to obtain a qualitative result, the

units are arbitrary, in terms of the (inverse) coupling, with the coupling specified in

(2.39). It was aimed to keep all parameters constant for comparison, however at least

the external field strength ω had to be adapted for higher spin numbers.

Using the parameters in the table above, we further analyse the reduced density matrices and the

Correlations within the final state output from the simulation of the entire Hilbert space in the

following Figures.
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Figure 2.12: Simulated evolution of the density matrices of the first ten out of twenty spins, cor-

related by repetitive measurement of a central spin. The simulation starts with a pure

initial state (left), where each of the spins is in a superposition state 1/
√

2 (|0〉 + |1〉).

The focus of the simulation is thus on Correlation, not on Purification. Each entry

of the initial density matrix, reduced to ten spins, is therefore exactly 1/210, such that

a colour-scaled plot of the density matrix is completely monochrome. Note that af-

ter several repetitions of the measurement sequence, the final 210 · 210 density matrix

(right) shows a distinct pattern of block-diagonal matrices with different individual

weights (darker colours signify higher absolute values), indicating that correlations

between different spins have occurred. Indeed, spins number four and five as well

six and seven are showing non-zero Concurrence in this case. Simulation parame-

ters include: Coupling weight J = 20, external field strength ω = 23, waiting time

τ = 0.3025, in (inverse) units of the coupling J. Number of repetitions n = 23. These

parameters were manually optimized to yield maximal Concurrence.
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Figure 2.13: Pairwise Concurrences (a, left image) and Overlap with Singlet State |S 〉 =

1/
√

2 |0, 1,−1, 0〉 (b, right image) among the first ten out of twenty spins, correlated by

repetitive measurement of a central spin. The labels indicate numbers of the involved

spins. Darker colours signify higher values of Concurrence or Overlap, respectively.

The overlap is calculated as Tr (|S 〉〈S | ρreduced). Note that the Concurrence as a mea-

sure for pairwise entanglement is only non-zero for two pairs (spins 4 and 5 as well

as spins 6 and 7), while the Overlap, as a less ‘strict’ measure is non-zero for all pairs,

but still shows the highest values for the entangled pairs.
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Figure 2.14: Plot of the absolute values of the final density matrix of the last ten out of twenty

spins, correlated by repetitive measurement of a central spin. For completeness, we

also show the density matrix plot of these remaining spins, completing the analysis

in Figure 2.12 before. Note that the absolute values within the density matrix are

significantly lower than those of the first ten spins. This signifies that, while start-

ing from the same pure state, the dynamics have shifted spin population towards the

spins which are most strongly coupled and affected by the central spin. While a clear

repetitive pattern is observable in the structure of the density matrix, pairwise entan-

glement could not be observed for the final ten spins in this simulation. Note that the

overall diagonal of the 1024 · 1024 matrix is quite pronounced, indicating only very

weak correlations, visible as off-diagonal elements.
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2.5.6 Eight Spin Case with Maximal Total Correlation

For comparison, the final state of the simulation involving eight spins is analysed in the following.

While less spins are included, the build-up of entanglement is more readily observable, as the ratio

between the actively projected central spin and the passive external nuclear spins is improved.

Moreover the coupling of each individual spin to the central spin decreases with the spin number,

as in equation (2.39). Results from the simulation in this case are displayed and discussed in the

following Figures 2.15 and 2.16.
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Figure 2.15: Density matrix absolute values of the final state of simulated repeated central spin

measurements and their effects on eight external spins. Involved parameters are listed

in Table 2.1. Labels indicate the position of elements in the matrix, while darker

colours signify higher absolute values. Observe that there is a very clear structure

within the density matrix with pronounced off-diagonal elements.
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Figure 2.16: Pairwise Concurrence (a,left) and Singlet State Overlap (b,right) within the final state

of an eight external spin simulation of repeated central spin projections. The values

are obtained in the same way as before in the twenty-spin case (Figure 2.13). How-

ever, all involved spins are pairwise entangled with their next neighbour, as visible

from high Concurrence values (dark colours) in (a). The Singlet State Overlap shows

the same qualitative structure, while pairs other than nearest neighbours all show zero

Concurrence.

2.5.7 Consequences and Possible Improvements

While it is surely remarkable that twenty spins could be simulated in this case, the insights gained

diminish due to the lack of Correlations building up for higher numbers of spins. This could

be corrected by simulating a much higher number of repetitions, which was beyond the scope

of the presented calculations and the involved computational power. As a consequence of the

observations, in an experimental case, the landscape of possibly involved nuclear spins will have to

be mapped out carefully. If too many spins are involved, it will be very hard to observe correlations,

except if the number of repetitions are scaled up, rendering the experiments very time intensive.

Computationally, the number of involved spins could be further scaled up, obviously by involving
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further computational resources, but also by computational methods avoiding the usage of RAM,

instead using high-performance hard disks to stream and write the data directly.

2.6 Experimental Implementations using NV-Centers

We can summarize from the simulation results above that the experimental implementation of the

described Purification procedure is surely a non-trivial task. Parameters such as the strength of the

external field ω, the time τ between different measurements and the superposition state (2.19) have

to be chosen carefully in order to observe Purification and possible Correlation. Moreover, the

number of involved spins and the involved coupling parameters have to be mapped out carefully

in order to enable a relevant simulation aiding the experimental effort. A pure trial-and-error

strategy is not recommended due to the large parameter space and the dependence on the coupling

geometry. It has to be noted again that a repeated projection of the central spin into a superposition

state without affecting the associated nuclear spin states is most accessible at low temperature NV

experiments [5, 43]. Many repetitions of the described measurements, including post-selection

of the results depending on individual measurement outcomes, require a significant amount of

measurement time. Both the spin-landscape and the parameter space should thus be analysed

carefully and should be accompanied by simulations before aiming to show Correlations or even

Singlet States arising among the spins coupled to an NV.

However, performing experiments with the introduced methods also presents many advantages.

The achievable states are useful in Quantum Sensing and for the coherence time of the involved

NV, as we have seen in the previous sections. Moreover, there is also a profound advantage in

performing Quantum Simulations. While a simulation of a specific Hamiltonian on a regular

Quantum Computer requires to first translate the dynamics into specific Quantum Gates, at the

expense of a regular dynamic evolution, an effective Hamiltonian can here be generated by mere

application of a suitable repeated projective measurement of just one central spin.
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2.6.1 Existing Purification Experiment using NVs

An experiment using the methods described in our proposal paper [46] has already been performed

using the described projective readout of an NV electron spin at low temperatures [5]. While the

publication in [5] also provides interpretations of the results in terms of Quantum Random Walks,

we focus on the Purification aspect, while providing a short summary of the experimental results

and possible future experiments here.

Figure 2.17: Experimental results from the Purification experiment using NV-Centers at low tem-

perature in [5].The left image (a) shows different traces from an experiment with n =

246 measurements (x-axis), repeated 600 times (y-axis). Violet colour signifies that at

least one photon was detected in an individual measurement (bright state |b〉), while

yellow colour means that no photon was detected (dark state |d〉) in the associated

individual measurement. The analysis within the right image (b) demonstrates ef-

fects of the involved measurement back-action. Several cases of 40 consecutive mea-

surements are extracted from the experimental data. The dashed blue curve shows

occurrences of individual measurement strings from this experimental data. This is

confirmed to differ from a Gaussian distribution (red curve), which would occur if

there was no measurement back-action. Illustration directly adapted from [5].
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Figure 2.18: Probability of consecutively obtaining the same measurement result after n identical

measurement results in a low-temperature Purification eperiment using NV-Centers.

The probability (red dots, y-axis) is clearly seen to rise with the number of measure-

ments (x-axis) when extracting the cases of successive successful photon measure-

ments, i.e. finding the system in the bright state |b〉, from the experimental data (inset

(a), as in Figure 2.17). Note that the rise of the projection probability therefore ex-

perimentally confirms the observation in our proposal paper [46] and the qualitative

results from the simulations above, e.g. in Figure 2.2. Illustration directly adapted

from [5].

2.6.2 Open Questions addressable in further Purifications Experiments

using NV-Centers

We have seen a clear confirmation of the measurement back-action instilled by the methods de-

scribed above and laid out in our Purification proposal paper [46]. In particular, the probability

of repeatedly projection the central NV spin into the selected superposition state increases with

each successful repetition of the measurement sequence. This also hints towards a Purification

of the associated nuclear spins [5]. However, the other central aspect of our proposal, namely
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Correlation of the involved bath spins and even the observation of Entanglement or projection

into Singlet states has not yet been directly observed. This would necessitate either a full density

matrix tomography of the associated nuclear spins or, preferably, suitable measurements directly

designed to detect entanglement within the spin bath – avoiding errors accumulating within the

density matrix tomography and entanglement measure retrieved thereof [56, 57]. Such measure-

ments have not yet been carried out, but are prepared at the time of writing. Moreover, the pre-

pared states and effective dynamics can then be used for Quantum Simulation of specific relevant

Hamiltonians [49, 50] as well as for the implementation of target states which would otherwise

require complicated Quantum Algorithms. As discussed in section 2.3.2, a successful Purification

measurement sequence can further be used as a starting point for successive Quantum Sensing

measurements, which benefit from the Purification and Correlation of the bath spins.

2.7 Application of Repetitive Projections to

Superconducting Qubits

The presented method of repetitive projections of a central spin can in principle be applied to

any physical Quantum System, regardless of the specific ‘hardware’. In order to demonstrate

this, a simulation was carried out of a Superconducting Transmon Qubit system with parameters

available from the IBM Quantum Experience, on the second version of the first ever Quantum

Computer available on a public cloud system [16]. However, since repetitive measurements were

not available as a functionality at the time, these parameters were used for a simulation of the

system on a classical machine. Yet, using realistic parameters, a build-up of pairwise entangle-

ment, even formation of Singlet states, was observed for the two pairs of qubits which were not

directly measured, starting from a completely mixed state of all qubits. As before, a central qubit,

named QC here, was assumed to be repeatedly projected in a superposition state. Purification and

Entanglement of the remaining qubits takes place by Measurement back-action alone.
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C
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Figure 2.19: Coupling topology of the simulated five-Qubit system provided by the IBM Quantum

Experience in early 2017. The central Qubit QC, coupled to all other Qubits, is re-

peatedly projected into a superposition state here. The remaining Qubits Q1 to Q4 are

shown to be projected into a Singlet state by this mechanism. Lines indicate non-zero

coupling between the Qubits, with coupling strengths provided in Table 2.2. Circles

symbolize Qubits, labelled with Qubit indices.

QC Q1 Q2 Q3 Q4

QC 0 42.2 37.8 74.6 38.9

Q1 42.2 0 38.9 0 0

Q2 37.8 38.9 0 0 0

Q3 74.6 0 0 0 64.

Q4 38.9 0 0 64. 0

Table 2.2: Absolute values (in kHz) of the coupling parameters between the five superconducting

Qubits publicly available on the IBM Quantum Experience. The values were adapted

from the IBM Quantum Experience in early 2017 and used for simulation of repetitive

projection and readout of the central Qubit QC, in order to correlate the remaining four

Qubits.
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Figure 2.20: Results of simulated central-spin projections within a five-Qubit system provided by

the IBM Quantum Experience in 2017. Parameters used include the free evolution

time τ = 2π µs ≈ 6.28µs, external field strength ω = 200kHz. The probability of

measuring the central spin in a superposition state (blue dashed line) increases with

each repetition of a Measurement. Moreover, the purity increases (orange solid line),

starting from a completely mixed state. Two pairs of entangled Qubits build up, with

both pairs constantly increasing the overlap with a Singlet state (green dashed line,

red solid line). The numerical Concurrence (2.28) obtained for the pairs was 0.984

(1,2) and 0.999 (3,4) , respectively.
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2.8 Squeezed Spin States

The properties that qualify spin squeezed states [58, 59] for applications in quantum metrology or

quantum information [60] are the reduction of uncertainty in one component of angular momen-

tum as well as their stability in presence of decoherence [6] in comparison with fully entangled

states [45]. This leads to an improvement in sensitivity in realistic systems when an external field

is measured as a phase Φ which is collected during the time evolution of the quantum system. Ex-

perimentally, the creation of spin squeezed states has been demonstrated in systems of high spin

numbers and at low temperatures such as ensembles of cold atoms [61–64] or in Bose-Einstein

condensates [64–66]. On the theoretical side, it has been shown that squeezing is well defined in

an individually addressable multi-qubit system as opposed to the more frequently studied case of

collective symmetric multi-particle states [67].

2.8.1 Heisenberg’s Uncertainty Relation

Since Heisenberg’s uncertainty relation is at the core of a certain understanding of squeezed

states, we will review it briefly and give a quick derivation thereof. To do so, given the standard

Hilbert space formalism of quantum mechanics, we only need to assume two theorems, namely

the Cauchy-Schwarz inequality and the triangle inequality. Recall that for two Operators A and B

acting on a Hilbert space such that a scalar product is defined as

〈A, B〉 ≡ 〈Ψ|A.B|Ψ〉 ; |Ψ〉 ∈ H , (2.40)

the Cauchy-Schwarz inequality reads

〈A, A〉 · 〈B, B〉 =
〈
A2

〉
·
〈
B2

〉
≥ |〈A, B〉|2 . (2.41)

Secondly, due to the triangle inequality it is true that

∀z ∈ C, |z|2 ≡
∣∣∣<(z)2 + =(z)2

∣∣∣ ≥ |=(z)|2 (2.42)
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where<(z) and =(z) are the Real and Imaginary parts of z, respectively. Now if we define 〈A, B〉 =

c ∈ C and assume A and B to be hermitian operators, we have

∣∣∣=(c)
∣∣∣ ≡ ∣∣∣∣∣ 1

2i
(c − c∗)

∣∣∣∣∣ =
1
2
|〈A, B〉 − 〈B, A〉| =

1
2
|〈[A, B]〉| . (2.43)

Therefore,

|〈A, B〉|2 ≥
∣∣∣= (〈A, B〉)

∣∣∣2 =

∣∣∣∣∣12 〈[A, B]〉
∣∣∣∣∣2 . (2.44)

In combining the above inequalities we obtain

〈
A2

〉
·
〈
B2

〉
≥ |〈A, B〉|2 ≥

1
4
|〈[A, B]〉|2 . (2.45)

We finally set A = C − 〈C〉 1 and B = D − 〈D〉 1 which leaves the commutator invariant such that

upon taking the square root, the resulting equation is the Heisenberg uncertainty relation

(∆C)(∆D) ≥
1
2
|〈[C,D]〉| (2.46)

with the standard deviation ∆ defined as (∆C)2 ≡
〈
(C − 〈C〉)2

〉
=

〈
C2

〉
− 〈C〉2.

Squeezed States defined by the Heisenberg Inequality

Squeezed states are collective quantum states |Ψ〉 ∈ H of minimal Uncertainty, which means that

for squeezed states, the above inequality is minimized to yield the equality

(∆C)(∆D) =
1
2
|〈[C,D]〉| . (2.47)

Moreover, uncertainties are unevenly distributed between the operators, such that

∆C , ∆D (2.48)

which distinguishes squeezed states from coherent quantum states for which the uncertainties con-

cerned are equal. To quantify the squeezing given in a state, the squeezing parameter ξ is de-

fined. However, different definitions of squeezing parameters exist depending on the context [68].
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Usually in spin physics the operators of interest are angular momenta with commutation relation

[Ji, J j] = iεi jkJk (where i, j, k ∈ {x, y, z}) and a possible definition of the squeezing parameter can

be read off from the uncertainty relation

(∆Ji)(∆J j) =
1
2
〈Jk〉

∆Ji=∆J j
−−−−−−→ ∆Ji =

√
1
2
〈Jk〉 . (2.49)

In the case of a squeezed state, the equality on the right of the above formula becomes an inequality

since ∆Ji , ∆J j. More particularly, it can be tested whether squeezing is persistent by checking

whether

(∆Ji)2 ?
<
〈Jk〉

2
. (2.50)

Therefore, squeezing is given if

ξh =
∆Ji
√
〈Jk〉/2

, 1 (2.51)

where usually the focus is on the component of lower uncertainty such that ξh < 1 constitutes

squeezing.

A Coordinate-Independent Refinement of the Definition of Squeezed Spin States

It has been noticed by Kitagawa and Ueda [58] that the definition of squeezed states in the direc-

tions x,y and z is generally not coordinate independent. Specifically, a rotation of the coordinate

system of a coherent state already leads to a squeezed state by means of the definition of ξh as in

equation (2.51) above. In order to obtain a rigorous definition of spin squeezing, it is therefore nec-

essary to refer to the quantization axis of the system and a direction orthogonal to it. The refined

definition of the squeezing parameter is therefore given by

ξq =
∆J⊥
√

J/2
. (2.52)

where J/2 is the sum over all variances of individual spin 1/2 systems and the orthogonal direction

is defined such that ∆(~n · ~J) is minimized [68].
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2.8 Squeezed Spin States

Squeezing parameter definition by Wineland et al. Furthermore, another definition of the

squeezing parameter is motivated by the improvement of signal-to-noise ratio in Ramsey-type

spectroscopy [69] or equally by improvement of the phase sensitivity in Mach-Zehnder interfer-

ometers [70]. It is related to the previous definition ξq by Kitagawa and Ueda and defined by

Wineland et al [69, 70] as

ξR ≡
√

J
∆J⊥√
|〈 ~J〉|/2

=
J√
|〈 ~J〉|

ξq (2.53)

Squeezed states and entanglement in spin systems Note that a squeezed spin state is only

given if there are correlations between individual spins. Therefore, as correlation is a necessary

condition for squeezing, the detection of a squeezed state also implies correlation and moreover

even entanglement between the spins such that a squeezed spin state also becomes a useful resource

in quantum information processing [59, 60].

2.8.2 General Dynamics for Generation of Spin Squeezed States

Kitagawa and Ueda presented two exemplary mechanisms and Hamiltonians in order to instil Spin

Squeezing in their landmark paper entitled ”Squeezed Spin States" [58].

One-Axis Twisting Hamiltonian

The first standard Hamiltonian to induce Spin Squeezing is a simple quadratic Hamiltonian of the

total angular momentum S z with a free parameter χ.

H1a = χS 2
z . (2.54)

The total angular momentum is explicitly calculated as S z = Σ
i
S z,i. In the following, we briefly

review the time evolution of this Hamiltonian and look at the effects on the involved Uncertainties.

As an example, we analyse the time evolution of this Hamiltonian for two qubits initially in a pure
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superposition state |+〉 = 1/
√

2 (|↑〉 + |↓〉). For this case, we can calculate the analytical evolution

as

|Ψ1(t)〉 = eiχS 2
z t |++〉 =

1
2

(
eitχ |↑↑〉 + |↓↑〉 + |↑↓〉 + eitχ |↓↓〉

)
. (2.55)

From this time-dependent state we can then calculate a squeezing parameter according to equa-

tions (2.52) and (2.65). The evolution of this parameter is displayed in Figure 2.21.

π 2π

0.0

0.2

0.4

0.6

0.8

1.0

π 2π

t(arb.u.)

1-
ξ2
(t
)

One axis twisting

Figure 2.21: Time Evolution of the Squeezing Parameter ξR, calculated according to equation

(2.65), in the case of the state in equation (2.55), stemming from a One-Axis Twist-

ing Hamiltonian (2.54). Squeezing is plotted as 1 − ξR
2 over time t in arbitrary units.

The free parameter χ in the Hamiltonian is set to one. Note that higher values on the

y-axis denote higher amounts of squeezing, as ξR < 1 indicates squeezing.

Moreover, in order to illustrate the effect of the evolution on the involved Uncertainties, we con-
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2.8 Squeezed Spin States

struct and plot the overlap with a general reference state

|Ψ〉re f =

(
cos

(
θ

2

)
|↓〉 + eiφ sin

(
θ

2

)
|↑〉

)⊗2

. (2.56)

The overlap of the state in (2.55) and the reference state then illustrate the dynamics of the involved

Uncertainties. The construction of the Quasiprobability Distribution (QPD) follows reference [58].

See Figure 2.22 for the evolved QPD from the one-axis twisting Hamiltonian.

Figure 2.22: Evolved Quasiprobability Distribution constructed as overlap of the evolved state re-

sulting from a One-Axis Twisting Hamiltonian for Spin Squeezing with the reference

state in (2.56). The parameters θ and Φ then constitute the angles of a spherical plot,

while weights (coloring) is given by the overlap
∣∣∣∣〈Ψre f

∣∣∣Ψ1(t)
〉∣∣∣∣2, with |Ψ1(t)〉 defined

in equation (2.55). Red colour signifies an overlap close to one, while dark blue de-

notes zero. The parameter χ is set to one. The time evolution is to be read from left

to right, beginning at t = 0 and ending at t = 2π. Note that the QPD is squeezed

together (spheres 2 and 3), then twisted (sphere 5) and finally restored (last sphere).

The Mathematica Code for this evolution is explicitly given in the Appendix in section

A.2.3.

A final note on the effect of the One-Axis Twisting Hamiltonian and squeezing in general is the

fact that entanglement is also persistent along with squeezing here. We can explicitly calculate the

reduced density matrix of any one of the two qubits from state |Ψ1(t)〉 from equation 2.55 as

Tr1(|Ψ1(t)〉 〈Ψ1(t)|) =

 1
2

cos t
2

cos t
2

1
2

 . (2.57)
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From this, we can further extract the entanglement Entropy

S (t) =
∑

i

λi(t) log2 λi(t), (2.58)

where λi are the Eigenvalues of the reduced density matrix above. The time-evolution of the

Entanglement Entropy is given in Figure 2.23. As entanglement is clearly building up, we can thus

confirm in this example the observation that Squeezing always implies pairwise entanglement [59].
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Figure 2.23: Entanglement among the Qubits subjected to a One-Axis Twisting Hamiltonian (2.54)

over time is analysed by the measure of Entanglement Entropy S (t), defined in (2.58).

Clearly, the Entanglement Entropy rises and falls analogously to the Squeezing Pa-

rameter in Figure 2.21. Observe that Correlation is a necessary condition for Squeez-

ing [58] and Squeezing in turn provably implies pairwise entanglement [59].
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2.8 Squeezed Spin States

Two-Axes Countertwisting Hamiltonian

The second canonical Hamiltonian for Spin Squeezing brought forth by Kitagawa and Ueda [58]

is the Two-Axes Countertwisting Hamiltonian

H2a =
χ

2i

(
S 2

+ − S 2
−

)
(2.59)

Where S ± = S x ± iS y is composed of the total angular momenta in x and y direction. We can

furthermore analytically provide an explicit expression for a time evolved state in a two-qubit

example as

|Ψ2(t)〉 = ei χ2i (S 2
+−S 2

−)t |++〉

=
1
2

(sin(tχ) + cos(tχ) |↓↓〉 + |↓↑〉 + |↑↓〉 + sin(tχ) − cos(tχ) |↑↑〉)
(2.60)

From this, we can plot the time evolution of the squeezing parameter ξR and the Entanglement

Entropy S (t) as before in Figures 2.21 and 2.23 for the case of the One-Axis Twisting Hamil-

tonian. We provide the analysis for the Two-Axes Countertwisting Hamiltonian in Figure 2.25.

The Quasiprobability Distribution is also calculated analogously to Figure 2.22, with the overlap

adjusted to
∣∣∣∣〈Ψre f

∣∣∣Ψ2(t)
〉∣∣∣∣2.

Figure 2.24: QPD of the exemplary state in equation (2.60), a superposition state evolved by a

Two-Axis Countertwisting Hamiltonian. Here, the Quasiprobability Distribution is

rather rotated around the sphere than visibly squeezed. For better visualisation of the

effect, the timescale is set here from t = 0 (Leftmost sphere) to t = 7π/4 (Rightmost

sphere).
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Figure 2.25: Evolution of the Spin Squeezing parameter ξ(t) (left image) and the Entanglement

Entropy S (t) (right image) in a Two-Axes Countertwisting Hamiltonian two-qubit

example. We note faster dynamics than in the comparable One-Axis Twisting exam-

ple (Figure 2.21). Moreover, note that the scale in the case of the squeezing parameter

is rescaled to the maximum of 1/2. We thus observe less Squeezing, but still see max-

imal Entanglement Entropy, evolving analogously. The squeezing parameter ξ̃q,gen is

calculated according to equation (2.66), while interestingly, ξ̃q calculated according

to equation (2.65) yields no squeezing in this case, due to the involved assumptions.

Any Correlating Hamiltonian is a Candidate to instil Spin Squeezing

The close relation between Spin Squeezing and pairwise Entanglement has become clear from the

previous discussions [59]. I want to stress here, that the creation of Spin Squeezed states – be it

in an experimental or theoretical setting – by no means requires the involved Hamiltonians to be

exactly, or even approximately described as the introduced One-Axis Twisting Hamiltonian or the

Two-Axes Countertwisting Hamiltonian [6, 71]. Kitagawa and Ueda chose these Hamiltonians in

their seminal paper [58] simply as exemplary Hamiltonians to induce correlations between spins.

All that is required is a non-linear interaction beyond what is known as single-qubit gates today, in

order to establish correlations among the spins [58]. The One-Axis Twisting Hamiltonian (2.54)
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2.8 Squeezed Spin States

or the Two-Axes Countertwisting Hamiltonian (2.59) are simply somewhat obvious examples of

non-linear Hamiltonians. Of course there are many other theoretical and experimental ways of

correlating spins. As an example, we look at the time evolution of a simple z-z coupling Hamilto-

nian

Hzz =
∑

i, j

Ji jS z
i S

z
j (2.61)

where Ji j is the matrix of couplings between the involved spins. The resulting squeezing parameter

is analysed in Figure 2.26 for two different choices of spin numbers and different coupling geome-

tries. This demonstrates that Spin Squeezing can not only result from the described canonical

Hamiltonians, but also, for example, from simple two-qubit z-z interactions.
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Figure 2.26: Evolution of the Squeezing Parameter ξ̃q (2.65) in the case of simple z-z coupling be-

tween spins in different coupling geometries, for the case of four spins (top) and nine

spins (bottom). Four different coupling geometries are analysed, namely linear (blue

curve), circular (orange curve), all-to-all (green curve) and Central Spin coupling (red

curve), as indicated by the graphs in the Plot Legend. The coupling strength is fixed

to 1kHz for each existing connection in the coupling graph. Squeezing is clearly per-

sistent in all cases. For the higher number of spins (bottom plot), it is visible that a

Central Spin geometry becomes less effective, while all-to-all couplings show highest

squeezing after short evolution times.
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2.8 Squeezed Spin States

2.8.3 Nuclear Spin Squeezed States in Diamond

Spin squeezing is of great interest for applications in quantum metrology and as a possible re-

source in quantum information. We develop a method to create a squeezed state of nuclear spins

surrounding a nitrogen-vacancy defect in diamond. Recent results have shown that the sensitivity

of diamond based magnetometers can approach the order of spin projection noise [27]. Sensitivity

exceeding this standard quantum limit is demonstrated for direct phase accumulation in the nu-

clear spin register, even in the presence of decoherence. Furthermore, readout improvements of

a phase imprinted on the nitrogen-vacancy electron spin directly are discussed. Here we propose

spin squeezing of a well controllable system [72, 73] with low spin numbers (n ∼ 10), namely a

register of one 14N and several 13C nuclear spins contained in the modified diamond lattice around

a nitrogen-vacancy (NV) defect at room temperature. This quantum register is particularly well

controllable since nuclear spins with quantization axes parallel to the NV axis are preselected and

aligned to an external magnetic field. Therefore, couplings between the electron spin and the

nuclear spins are predominant in the z-direction parallel to the magnetic field and contributions

in x or y direction can safely be neglected. Furthermore, direct interactions between the nuclear

spins are negligible, leading to a central spin model. Rotations of individual nuclear spin states

are stimulated via controlled application of external radio frequency fields and are resolvable in

the fluorescence of the diamond vacancy by optically detected magnetic resonance (ODMR) [33].

The high degree of controllability presents an advantage for the realization of spin squeezing in

solid-state systems against other proposals involving a high number of nitrogen-vacancy electron

spins [6]. Moreover, as a recent development [25], the strength of each electron spin - nuclear

spin interaction can be controlled in a co-moving coordinate frame such that it is possible to engi-

neer a hyperfine interaction Hamiltonian between the electron and n nuclear spins with a uniform

coupling strength J as

Hint =

n∑
k=1

JS zI(k)
z . (2.62)
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Figure 2.27: Sequence to create Spin Squeezing among nuclear spins in diamond. Starting from

an intial superposition state of all involved spins, free evolutions of the interaction

Hamiltonian (2.62) are followed by π/2-pulses on the NV electron spin. Text above the

individual free interaction Hamiltonian evolutions indicates their respective function.

Yet, no squeezing is observed in the subsystem of the nuclear spins after a simple time evolution of

this Hamiltonian. Squeezing does however occur when additional rotations of the central electron

spin are included. The time evolution operator of the sequence is given by

U = e−iHintα e−
i
2σ

(el)
x

π
2 e−iHintφ e−

i
2σ

(el)
x

π
2 e−iHintα, (2.63)

as further illustrated in Figure 2.27. The input state can be initialized by optical pumping with the

electron spin and successive transfer of polarization to all n nuclear spins, followed by controlled

radio-frequency pulses in x-direction such that the state after p iterations of the sequence is

∣∣∣Ψ(tp)
〉

= U p
n+1⊗
i=1

|0〉i + |1〉i
√

2
. (2.64)

Here, |0〉 and |1〉 denote the ms = 0 and ms = −1 state for the electron spin but mI = −1/2 and

mI = 1/2 for the 13C, as well as mI = 0 and mI = 1 in the case of the 14N nuclear spin, respectively.

ξq given by Kitagawa and Ueda (2.52) can then be calculated explicitly for the case 〈Iy〉 = 〈Iz〉 = 0,

〈Ix〉 , 0 as [74]

ξ̃q =

√
2
n

〈I2
y + I2

z

〉
−

√〈
I2
y − I2

z

〉2
+

〈{
Iy, Iz

}〉2


1
2

(2.65)
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where I j =
∑

k
1
2σ

(k)
j is the nuclear spins’ collective angular momentum operator in the respective

spatial direction. The curly brackets denote the anti-commutator, such that {A, B} = AB + BA.

Squeezing occurs in the nuclear spin register when ξ̃q < 1.

Generally, while the definition of ξ̃q as in equation (2.65) according to reference [74] is useful

in certain contexts, the involved assumptions are a great restriction for a state resulting from a free

evolution. Thus, following the calculation in [74], but dropping the previous assumption, such that

〈Ix〉 , 0, 〈Iy〉 , 0 and 〈Iz〉 , 0 we arrive at a more general definition

ξ̃q,gen =

√
2
n

〈I2
y + I2

z

〉
− 〈Iy〉

2 − 〈Iz〉
2
−

√(〈
I2
y − I2

z

〉
+

〈
Iy

〉
2−

〈
Iz

〉2
)2

+
(〈{

Iy, Iz

}〉
− 2〈Iy〉 〈Iz〉

)2


1
2

.

(2.66)

Working with this definition enables us to calculate a squeezing parameter directly from the expec-

tation values of angular momentum operators without additional assumptions. A full model of the

system shows a high amount of squeezing (i.e. a decrease of ξ̃q,gen) depending on the number of

involved nuclear spins n when the free parameters α, φ and number of repetitions p (c.f. equation

(2.64)) are optimized numerically (see Figure 2.30).

A similar optimization has been carried out for the measure of Squeezing ξR defined by Wineland

(2.53), with more focus on metrological advantages [69,70] as illustrated in Figure 2.31. A further

comparison of the two different spin squeezing measures is given in Figure 2.32.
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Figure 2.28: 3D Plots of Spin Squeezing (left image) among seven nuclear spins and the associated

total angular momentum 〈Ix〉 expectation value (right image) under variation of both

free parameters α and φ in two iterations of the sequence in Figure 2.27. A high

amount of squeezing is observable already for small parameters α and φ, i.e. for short

evolution times. However good experimental control of those parameters is necessary

as the peaks are rather sharp. The expectation value 〈Ix〉 is importantly non-zero for

regions of high squeezing. There is a trade-off between creation of spin squeezing

and reduction of the readable signal 〈Ix〉 for some parameters, which motivates the

definition of a different benefit factor in (2.72).
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nuclear spins 1-ξ2 Iterations α ϕ ϕ/α

2 1. 3 1.15199 4.30458 3.73665

3 0.666667 4 1.26306 3.14159 2.48729

4 0.927051 1 3.14159 1.5708 0.5

5 0.761036 5 0.428446 6.91633 16.1428

6 0.859479 7 5.75974 2.40068 0.416803

7 0.770855 5 0.409523 5.79337 14.1466

8 0.788919 8 6.53712 6.70496 1.02568

9 0.743739 4 12.1439 12.14 0.999674

Figure 2.29: Parameters obtained from numerical optimization for different numbers of nuclear

spins involved in a Spin Squeezing sequence mediated by the central NV electron

spin. All free parameters in equations (2.63) and (2.64) were numerically optimized

under the constraints p ∈ N and {α,Φ} ∈ (0, 4π). The resulting values are listed here

and used for the plot in Figure 2.30.
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Figure 2.30: Optimized Squeezing over the number of involved nuclear spins, where all involved

free parameters have been numerically optimized. Squeezing is calculated according

to the generalized definition ξ̃q,gen in equation (2.66). Observe that even numbers of

involved spins are preferred, intuitively due to the strong relation between Squeezing

and Pairwise Entanglement. Since the correlation is mediated by the central NV elec-

tron spin, the maximally achieved Squeezing drops with higher numbers of involved

spins, as the ratio between one Central Spin and several nuclear spins decreases. Note

that the exact ideal number of involved spins (here n = 4 in the non-trivial case)

depends on the involved coupling strengths in a realistic scenario. The parameters

resulting from numerical optimization are listed in Figure 2.29.
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Figure 2.31: Results of numerical optimization within the Squeezing Scheme (2.63) when min-

imizing the Squeezing Parameter ξR defined by Wineland (2.53). Note that lower

values (dark blue) indicate better Squeezing in this case, as opposed to higher values

(red), which signify non-squeezed states. Note that the lowest parameters obtained

stem from the trivial case n = 2 with ξR = 0.645 as well as n = 6 obtaining ξR = 0.646,

using six iterations, like in the case of n = 5, where ξR = 0.670 was obtained. Using

n = 4 spins and seven iterations, a minimal value of ξR = 0.684 results from the

optimization. Note that the direction of Squeezing is completely free here, and is part

of the optimization. Here, the previous trend of preferably even numbers of involved

nuclear spins can not be fully confirmed. Moreover, it is interesting to observe how

strongly the optimal squeezing can change with the number of iterations.
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Figure 2.32: Direct comparison between the Squeezing Parameters ξR defined by Wineland (2.53)

and ξq defined by Kitagawa and Ueda (2.52) in a specific numeric example (n =

4 spins, p = 2 iterations) following the introduced sequence in (2.63). Note that

lower values indicate higher amounts of Squeezing. While all other parameters are

fixed by numerical optimization, the parameter α of the first free evolution is varied.

Even though the goal function of the optimization was the parameter ξR introduced

by Wineland (orange curve), the parameter ξq by Kitagawa and Ueda (green curve)

displays more squeezing. ξR by Wineland is thus a stricter measure of Squeezing in

this case and could be preferable in a realistic setting.
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2.8.4 The Squeezed Nuclear Spin Register as a Coprocessor for the

Electron Spin Sensor

The squeezing sequence introduced above in (2.63) is here adapted and rewritten in terms of Quan-

tum Gates in order to come closer to an experimental implementation of squeezing nuclear spins.

In order to optimize the sensitivity of a single NV’s electron spin to external fields, we propose to

repeatedly map the phase collected by the electron spin onto the squeezed register of nuclear spins,

followed by a collective readout. In order to map the phases to the nuclear spins, the electron is

reinitialized once in state |0〉. A sequence of CnNOTel−R(el)
z (τ)−CnNOTel then has the same effect

as a single qubit z-rotation on the nuclear spin.

Figure 2.33: Quantum Circuit to illustrate the mapping of a phase collected by the electron spin

onto a single nuclear spin. Using two CNOT gates with an intermediate phase col-

lection on the NV electron spin is equal to mapping the inverse phase directly on the

nuclear spin.

This equivalence also holds when the scheme is extended to several nuclear spins which are each

subjected to the same sequence after a single reinitialization of the electron spin. Therefore, the

operation on the nuclear spins is equal to⊗
k

eiσ(k)
z φ = ei

∑
k σ

(k)
z φ = eiIzφ. (2.67)

Where we have used [σ( j)
z , σ

(k)
z ] = 0. Consequently, the nuclear spins experience a collective

rotation, if the phase φ is identical in each step as assumed above. In effect, the described operation

thus yields a direct phase accumulation in the nuclear spin register

ρ̃n(φ) = e−iIzφ ρn eiIzφ. (2.68)
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Figure 2.34: Sequential mapping of phases collected individually by the NV electron spin, onto

nuclear spins. The individual mapping operations are done as in Figure 2.33. Here,

the successive mapping on different nuclear spins is illustrated.

Figure 2.35: Proposed total operation in Quantum Gate notation for squeezing of nuclear spins

surrounding an NV-Center. Note the similarities to the sequence before in Figure

2.27, including the commenting text for the collective operations, above the Quantum

Circuit. The notation with experimentally realizable Quantum Gates aids in potential

conduction of experiments.
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A sensed phase is thus mapped sequentially to each individual nuclear spin. The different nuclear

spins are correlated during the total operation, leading to a nuclear spin squeezed state. When

measuring each individual nuclear spin state, a correlation between the nuclear spins is expected

to be translated into a more precise measurement of the total inflicted phase φ.

Interferometric improvements are then canonically quantified by the sensitivity [45]

δφ =

√
1
n

(∆Iz)2

(∂φ 〈Iz〉)2 . (2.69)

Here however, we first introduce an a priori benefit factor b which reflects the competition between

the squeezing factor and the measurement signal available from the squeezed nuclear spins. We

obtain the Signal to Noise Ratio (SNR)

S
N sqzd

=
2 〈Ix〉

ξ
√

N
(2.70)

We want to compare this SNR with the standard shot-noise limit [75]

S
N std

=
2 〈Ix〉
√

N

〈Ix〉=
N
2

−−−−−→
√

N (2.71)

and define a benefit factor b that is one when reaching the shot-noise limit and greater then one for

when going beyond such that we arrive at

b ≡
2 〈Ix〉

ξN
. (2.72)

When optimizing this factor numerically upon application of the introduced sequence, we see

in Figure 2.36 an increase with increasing numbers of spins and can clearly demonstrate that

surpassing the shot-noise-limit (b = 1) is possible.
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Figure 2.36: Numerical Optimization of the benefit factor b introduced in (2.72) for up to eight nu-

clear spins. The number of iterations is fixed to ten and the involved angles (evolution

times) α and φ are chosen suitably small (< π/n) for experimental implementations.

b > 1 indicates that sensing beyond the shot-noise limit is possible. The benefit factor

is observed to increase with the number of involved nuclear spins.

2.8.5 Robustness of the Nuclear Spin Squeezed State against

Decoherence

One of the central benefits of Spin Squeezed States is their stability under decoherence. Indeed,

numerical calculations show a sensitivity beyond the shot-noise limit, even in the presence of

decoherence (Figure 2.37). Since the coherence times of the nuclear spins are much longer (∼1ms)

than those of the NV electron spin (∼ 200µs) [33], we can assume dephasing on the electron spin

alone such that the density matrix of the composite system after preparation of the squeezed state

becomes, in a simple dephasing model, decreasing the off-diagonal elements of the electron spin

density matrix as

ρ(t) =
1
2

 1 e−γt

e−γt 1

 ⊗ ρn. (2.73)
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In addition to the previous definition of sensitivity (2.69), for the presented experimental scenario

of individually controllable nuclear spins, an experimentally more accessible [72] operator is in-

stead defined as

O ≡
⊗

k

σ(k)
x ,

∑
k

σ(k)
x (2.74)

such that the Sensitivity is redefined in terms of this operator, yielding

δφO ≡
∆O∣∣∣∣∣∂〈O〉∂φ

∣∣∣∣∣ . (2.75)

In a numerical simulation, this sensitivity is calculated for different values of the dephasing factor.

Sensitivity beyond the shot-noise limit is demonstrated in Figure 2.37.
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Figure 2.37: Sensitivity of a Nuclear Spin Squeezed state composed of n = 4 nuclear spins, com-

pared to the shot-noise limit and the Heisenberg limit. The phase inflicted on the

nuclear spins according to (2.68) is assumed as φ ≈ 2π
5 , while the evolution times are

fixed to π/2 and π, respectively. Qualitatively, the shot-noise limit is clearly beaten,

while for larger dephasing factors (γ defined in (2.73)), the sensitivity naturally starts

to worsen such that the shot-noise limit may no longer be achieved.
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2.8.6 Analytical Model of Nuclear Spin Squeezing in Fock Basis

Since the numerical model grows exponentially with the number of nuclear spins, it is beneficial

to obtain an analytical model. We thus analyse the dynamics in the basis of Fock states, where m

is the number of excitations in the given state, while n represents the number of involved spins,

such that n/2 is the maximum number of excitations for a spin-1/2 system [76]. The operation on

the nuclear spins can thus be written in terms of the excitations m such that

ei f (Iz)t
n/2∑

m=−n/2

cm

∣∣∣∣∣n2 ,m
〉

=

n/2∑
m=−n/2

ei f (m)tcm

∣∣∣∣∣n2 ,m
〉

(2.76)

The prefactor cm is generally fixed here as

cm =

√(
n

m + n
2

)
· 2−n, (2.77)

where the parentheses denote the binomial coefficient in this case. For n=4, the effect of the

optimal sequence coincides with an intersting class of states given by f(m)=|m|, which even yields

better squeezing than a quadratic Hamiltonian for low spin numbers. We define four different

functions f (m) of interest for the evolution in (2.76).

f|m| = |m|

fm,linear = m

eit fm,sequence =
1
2

(
eimt + 2i cos(mt) − 1

)
fm,1a = m2.

(2.78)

Where f|m| is the described curious function agreeing with the results from evolution of the standard

one-axis twisting Hamiltonian fm,1a as in (2.54) for small spin numbers. The function fm,sequence is

constructed to reflect the effects of the introduced sequence, while fm,linear is just introduced for

reference and does not induce squeezing. The results of a numerical simulation of the above func-

tions for squeezing in the Fock basis are displayed in Figure 2.38. Moreover, in this framework,
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Figure 2.38: Comparison of different squeezing mechanism, as defined in (2.78) with analytical

expression in a Fock basis for up to twenty spins. The time evolution is according

to equation (2.77) with n = 4 nuclear spins and evolution times are numerically op-

timized in each case with the boundary condition 0 ≤ t < π such that the squeezing

parameter ξ̃q (2.65) is minimized. Note that for lower spin numbers, the sequence

(green curve) and the exotic |m| interaction (blue curve) are advantageous, while the

one-axis twisting Hamiltonian (S 2
z , red curve) is preferable for higher spin numbers.

dephasing is introduced by

ρ 7→
∑
m,m′

= cmc∗m′e
−γ|m−m′ | |m〉 〈m′| (2.79)

and a comparison is made between a global maximally entangled state and a squeezed state stem-

ming from the f|m| function introduced above, in terms of reachable sensitivity in Figure 2.39,

compared to shot-noise limit and Heisenberg limit. Note that the fully entangled GHZ state [1] al-

lows a sensitivity reaching the Heisenberg limit, as expected. An interesting literature observation

at this point is that even scaling beyond the Heisenberg limit has been theorized [75].
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Figure 2.39: A GHZ state and a squeezed state are compared under dephasing by (2.79) in terms

of the Sensitivity in (2.75). The great benefit of Squeezed States is visible here,

namely the robustness against Decoherence, compared to otherwise preferable fully

entangled state. The squeezed state is here created by the f|m| interaction from (2.76)

and the inflicted phase is set to φ ≈ π/4. Note that the GHZ state (blue curve) starts at

the Heisenberg limit, but is quickly outdone by the Squeezed State (orange curve), as

the dephasing parameter γ rises.

2.8.7 Outlook and Possible Improvements for Nuclear Spin Squeezing

We have seen a proposal for a NV nuclear spin squeezed state at room temperature and found

that sensitivity beyond the shot noise limit is possible, even in the presence of decoherence. An

experimental realization has not yet been carried out presently, to my knowledge, but is possible

due to short process times. Dynamical decoupling can further extend the coherence time T2 [77].

Possible improvements of the performed simulations include scaling up nuclear spin and electron

spin numbers with realistic parameters, accompanying a possible experiment. In particular, when

coupling several NV electron spins, surrounded by nuclear spins as in Figure 2.40, for the pur-
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pose of Sensing with the aid of Spin Squeezed Nuclear Spin states, collective improvements in

sensitivity can be expected and theoretical questions can be answered. In particular, a surely very

challenging – due to low-noise requirements in the experimental setup – but unquestionably im-

pactful demonstration would be to examine sensitivity beyond the Heisenberg-limit by interacting

probes [75, 78].

Figure 2.40: Illustration of the proposed coupled NV electron system with surrounding nuclear

spins for Interferometry with nuclear spin squeezed states. While individual electron

spins aided by nuclear spin states can reach sensitivities beyond the shot-noise limit

and just short of the Heisenberg limit as in Figures 2.37 and 2.39, an even greater gain

in sensitivity is possible by interacting probes [75, 78], combined with nuclear spin

assisted sensing [4, 25].

2.8.8 Spin Squeezing with NV Ensembles

Due to the experimental accessibility, Nuclear Spin Squeezing of the nuclear spin entities sur-

rounding an individual NV center was first introduced here. However, for more applicable sensing

purposes such as sensing of magnetic fields [27] or electric fields [79, 80], it is preferable to use

ensembles of NVs. Within such ensembles, NVs are not controlled individually, but collective op-

erations by different geometries of wires for applying microwave control fields are possible [81]. In

the following, a literature analysis and initial preparation of experiments for Spin Squeezing with
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NV ensembles is therefore presented. In particular, a proposal paper by Cappellaro and Lukin [6]

is examined and its potential implementation discussed, accompanied by additional simulations

and work towards producing the right diamond sample to use for such experiments and sensitivity

enhancements. In particular, given the daunting engineering work of noise reduction is suitably en-

abled, a further improvement of the subpicotesla sensitivity of a magnetic Quantum Sensor based

on NVs reported by Wolf et al. in [27] is possible.

We begin by discussing the basic mechanism and requirements laid out in the proposal in [6].

Therein, in particular an implementation of the canonical One-Axis Twisting Hamiltonian (2.54)

and the Two-Axis Countertwisting Hamiltonian (2.59) is sought. Let me stress again that – as out-

lined in Section 2.8.2, in [82] and briefly mentioned in [6] – while the introduced proposal mainly

focuses on these particular Hamiltonians, any Hamiltonian describing the Correlation of several

spins is in principle a good candidate in order to create Spin Squeezing. The main concept of

the proposal in [6] is a mechanism to create Spin Squeezing by introducing a preferred direction

within a three-dimensional dipolar coupling scenario involving the angular momenta of individual

NV centers denotes as ~S . This is done by using particular decoupling sequences in which the time

evolution of one direction of the coupling (here the z-z interaction) is evolved slightly longer, by a

time τ + ε, as highlighted in Figure 2.80. An approximate One-Axis Twisting Hamiltonian is then

achieved as

H1a,H = εHzz + HH ≡ ε
∑

l, j

dl jS z,lS z, j + dl j~S l · ~S j, (2.80)

where dl j are the dipolar coupling parameters among the spins and ~S are the spin operators. In

particular, following an earlier publication [83], a suitable collective subspace is chosen to ensure

the creation of correlations while generally disordered couplings are present. Here, the subspace

m = N/2 is chosen. So, the most significant term for the evolution of Spin Squeezing is the projec-

tion of the Hzz part of the Hamiltonian treated as a perturbation, onto this manifold.

PN/2(Hzz) =
D

N − 1

(
J2

z −
N
4

1
)
, (2.81)
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Figure 2.41: Decoupling sequences for Spin Squeezing of NV ensembles introduced by Cappellaro

and Lukin in [6]. Images are directly adapted from [6]. Highlighting and arrangement

mine. Note in particular the highlighted prolongation of the evolution time for one

preferred coupling direction within the decoupling sequence in (c). τ± in (a) and (b)

qualitatively denotes the same time modification by τ ± ε.

where N is the number of involved spins, Jz is the total angular momentum in z direction and D

is the average dipolar coupling under the condition D = 1
N

∑
l, j dl, j � 0. Note that the factor

1
4

is

missing in [6]. This is by no means a severe mistake since the prefactor of the identity operator

(1) does not contribute to the dynamics. However the observation can be confirmed by explicitly

calculating the part of the Hamiltonian with J = N/2 as

Hzz =
∑

j,l

dl jS z,lS z, j =

N∑
l

N∑
j,l

dl jS z,lS z, j +
∑
j=l

dl jS z,lS z, j

=

∑
j,l dl j

N(N − 1)

∑
l

S z,l(Jz − S z,l) + H(J, N
2 ) =

D
N − 1

(J2
z −

N
4

1) + H(J, N
2 ).

(2.82)

Having established the basic mechanism for squeezing NV spin ensembles, we now turn to the con-

ditions for a successful implementation of this protocol. Firstly, since a projection to the J = N/2

subspace is considered to be the crucial part of the dynamics, a sufficient energy gap Eg between

the associated energy level manifold to other manifolds is necessary, as illustrated in Figure 2.42
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a) [83]. Additionally, in a realistic scenario, for dynamics to be rightly described by a dipolar cou-

pling Hamiltonian as (2.80), dipolar couplings must be the dominating interaction and particularly,

nuclear bath effects should be the dominating noise, which also signifies that a low number of P1

centers [33] should be present [6]. Very notably, the proposal also requires a rather low number

of involved NV electron spins (N ≈ 102) and a good conversion efficiency f of NV centers from

single Nitrogen defects during fabrication, in order to reach suitable sensitivities [6]. This is illus-

trated in Figure 2.42 b).

As these conditions for a successful experiment are quite demanding, we further investigate what

kind of diamond sample could fulfil the requirements.

Figure 2.42: Conditions for Spin Squeezing with NV ensembles as proposed by Cappellaro and

Lukin in [6]. The left image (a) is directly adapted from [83], referenced as well

in [6], from which (b) is directly adapted with added comments. (a) displays the

necessity of a suitable energy gap Eg between the energy level manifolds J = N/2

and J = N/2 − 1, for the projection in (2.81) to be the dominating term. On the right

hand, (b) signifies reachable (preferably low) Sensitivity versus the number of sensing

NV centers, which is notably small. Moreover, sensitivities for different decoupling

sequences introduced in [6] are given, assuming different conversion efficiencies f

during fabrication of NV centers, as specified in the added labels.
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2.8.9 Diamond Samples and Coupling Geometries Suitable for NV

Ensemble Spin Squeezing

Given the restraining conditions introduced in the previous section, we here elaborate on which

constellations of NV ensembles are suitable for Spin Squeezing. While usual NV ensemble ex-

periments involve a number of NV spins at the order of N ≈ 104 − 106, a much smaller number

of N ≈ 102 is required here. This could be achieved by either addressing sub-regions of involved

NV spins by sophisticated decoupling protocols, e.g. spins with uniform coupling frequencies,

opening up a whole set of needed developments to obtain Spin Squeezing. Alternatively, a specific

diamond sample could be fabricated in order to maximize the average dipole-dipole coupling D,

as in equation (2.81) which can likely average out in a sample with randomly distributed NVs in

terms of orientation and placement. While a random spin orientation is generally possible for the

implementation of [6], a non-vanishing D is critical. Moreover, the energy gap Eg, see Figure

2.42, has to be maximized. While preferential growth [84] of NV centers is surely helpful for

this requirement, sophisticated methods to place the involved NVs at certain lattice spaces may

also be needed. In order to improve our understanding on the required coupling geometries and

placements of the involved NV spins, we analyse possible coupling configurations arising for NVs

in a diamond lattice in general. For this purpose, a simulation of the diamond lattice including NV

centers in all possible orientations was carried out. Diamond unit cells were thus arranged in a

spherical manner, in order to find regions of identical couplings, as in Figure 2.43, for increasing

distances and thus the generally obtainable coupling frequencies can be calculated as displayed in

Figure 2.44.

Preferable Geometries of NVs for Ensemble Spin Squeezing. We see from the obtained

coupling frequencies between individual NVs in diamond that there is a diverse landscape of pos-

sible coupling frequencies, such that a carelessly chosen diamond sample would likely not fulfil

the conditions for Spin Squeezing according to [6], especially the requirement for the total dipolar
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Figure 2.43: Schematic Illustration of the method used to calculate coupling frequencies between

NV centers in diamond, with diamond unit cells arranged in a spherical manner. From

left to right, a display of several diamond unit cells with one central NV center (blue)

and several other possible NV sites (red), from which the occuring couplings are

inferred. The middle image shows the “squaring of the sphere”, i.e. an approach

to construct unit cells around a central NV in such a way that nearly identical cou-

plings can be found in a certain radius. The right image shows a 3D-illustration of

an approximately spherical diamond obtained from this method. Resulting coupling

frequencies are shown in Figure 2.44.

coupling D = 1
N

∑
l, j dl, j � 0. Moreover, NVs generally appear in several different orientations

within the diamond lattice, further cancelling out dipolar moments in three dimensions, illustrated

in Figure 2.45. So, carefully engineered diamond samples featuring Quasi-2D-regions of NV elec-

tron spins are instead proposed, such as portrayed on the right side of Figure 2.45. A volume of

300nm2 · 10nm is proposed in [6] as a suitable size of such a sample, whose fabrication would

require involved implantation techniques [85,86]. Alternatively, instead of focusing on fabrication

techniques, addressing sub-regions of spins would also be possible by external control, such as

magnetic field gradients [30, 87].
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Figure 2.44: Possible occurrences of coupling frequencies within an ensemble of NV centers dis-

tributed in three dimensions, for all possible orientations and lattice sites in a distance

of up to 1024 diamond unit cells from a central NV. Note especially the inhomogene-

ity of couplings for the involved discussion. Couplings are binned in this graph, such

that the diversity of possible coupling frequencies is even underestimated. Extending

the simulation beyond the calculated radius of up to 1024 diamond unit cells would

result in a sharper peak of lower coupling frequencies.

Alternative Ways to achieve Spin Squeezing. Further alternatives to sophisticated fabrica-

tion or involved external control techniques include the transfer of already squeezed states. Initially

inspired by a footnote in [58] (Footnote 14), several approaches to direct absorption of correlated

states are finally listed here. Firstly, the collective absorption of squeezed light is possible, with

the benefit that there is no need to transfer single photon information, as in previous low tempera-

ture experiments with NV centers [88]. Instead, the transfer of correlations between photons onto

spins by collective absorption has already been demonstrated with atoms [61, 89, 90]. This should

also be possible using NV centers, due to the presence of polarization-dependent transitions [91].
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Figure 2.45: Exemplary three-dimensional geometries of NV Centers and resulting total dipolar

coupling D as proposed for experiments to investigate possibilities of Spin Squeezing

with NV ensembles. NV centers are randomly distributed within a cubic geome-

try with different NV orientations (left image) and in the described Quasi-2D-region

within a three-dimensional sample (right image). Importantly, the total dipolar cou-

pling is significantly higher in the Quasi-2D case, noted below the images.

While arbitrary polarization-squeezed states of light can be used, following the cited approaches, a

more fundamental – and little-studied – alternative investigation would be to consider the effects of

absorbing Phase-Amplitude Squeezed Light [92]. Moreover, absorption of squeezed microwaves

is a possibility, as polarization-squeezing of microwave photon has been demonstrated [93, 94].

However a challenge here is that squeezed microwaves are usually obtained at mK temperatures.

Further alternatives include Squeezing by controlled dissipation [92, 95, 96] or by a piezoactive

layer [97]. Finally the perspective of involving nuclear spins in NV Spin Squeezing, either by

actively using their individual couplings at low temperature, or by Squeezing the nuclear spin reg-

ister through control of a single NV electron spin as introduced in the previous sections from 2.8.3,

should not be forgotten.
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2.9 Conclusion: Quantum State Engineering

Several concepts to create and make use of specific Quantum States were presented in this chap-

ter. A method to create pairwise entangled states, generalizable to further states of interest by

repeated projections of a Central Spin was introduced in Section 2.1. The possibility to even pu-

rify completely mixed states was highlighted (2.2) as well as the benefits in terms of Monogamy

of Entanglement and Quantum Sensing enhancements resulting especially from pairwise entan-

gled Singlet States (2.3). Varied coupling geometries with different dimensionalities of nuclear

spins surrounding an NV Center in diamond were analysed (2.4) as well as methods to scale up

simulations of these nuclear spins to large spin numbers (2.5). Existing and proposed experiments

using the introduced method were briefly discussed (2.6), accompanied by applications to other

physical systems such as Transmon qubits (2.7). Methods and theoretical preparations for future

experiments implementing Spin Squeezing haven then been introduced (2.8), with particular focus

on both Squeezing of nuclear spin states (2.8.3) and Spin Squeezing within NV ensembles (2.8.8).

Particularly, Spin Squeezed States as a valuable resource in presence of Decoherence have been

outlined (2.8.5).

There are thus several uncommon approaches beyond usual pulse sequences, in order to create

correlated states, which can then be used as a resource in protocols for Quantum Sensing or Quan-

tum Algorithms in general. While we have focused on Entangled States and Spin Squeezed States

here, in the following we will also discuss more a more exotic version of entanglement called

Bound Entanglement. The role of measurements has already played a role by using secondary

effects such as measurement-back-action and induced Purification of previously mixed states by

repeated Projections. We will continue on this path by examining the phenomenon of Quantum

Contextuality and the possibility of an experimental observation thereof using NV-Centers. The

overarching topic of the following chapter will be the use of high-dimensional quantum systems

which enable the observation of said particularities of Quantum Information Processing.
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“We always have had . . . a great deal of difficulty in understanding the world view that quantum

mechanics represents . . . every new idea, it takes a generation or two until it becomes obvious

that there’s no real problem. It has not yet become obvious to me that there’s no real problem. I

cannot define the real problem, therefore I suspect there’s no real problem, but I’m not sure

there’s no real problem.”

-Richard Feynman-

Qubits, i.e. quantum mechanical two-level systems, are surely the dominating quantum system

used in modern Quantum Information Processing. However, besides the obvious increase of di-

mensionality for the resources of Superposition and Entanglement, higher-dimensional systems

such as Qutrits (three-level systems) or generalized Qudits (n-level systems), also enable the ob-

servation of phenomena which are inaccessible in a single two-dimensional system. A single Qutrit

enables measurements of the phenomenon of Quantum Contextuality [2] and fully entangling the

Hilbert spaces of two Qutrits allows to observe so-called Bound Entanglement [51, 98], a curious

kind of entanglement which can not be converted to regular entangled states. The fact that the

NV center in diamond is a natural spin-1, i.e. a Qutrit, thus provides a somewhat hidden oppor-

tunity to observe fundamental quantum mechanical properties on the one hand, and could provide

unexpected and largely unexplored resources for Quantum Information Processing on the other

hand, since both Quantum Contextuality and Bound Entanglement have been shown to be useful

in Quantum Technology for Certification and Security [8, 99], Heisenberg-limited Sensing [100]
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and Entanglement Activation [98, 101], rather than just being interesting theoretical phenomena.

Initially inspired by the paper “Quantumness of spin-1 states” [102], I conceived that the simple

presence of three or more levels in a Quantum System may present a valuable resource for Quan-

tum Information Processing and started the investigation presented in the following, on how this

quantum resource can be beneficially used in the case of the natural Spin-1 systems occurring in

NV-Centers.

3.1 Bound Entanglement

The definition of entanglement proves to be non-trivial for higher-dimensional quantum systems

[20, 103], especially in the case of mixed quantum states, fulfilling Tr(ρ2) < 1, where commonly

used entanglement measures fail [103]. Bound Entanglement is a special kind of entanglement

of mixed states, which can indeed not be converted (’distilled’) to entanglement of pure states in

singlet form [104]. In terms of physical relevance, the quantum system with minimal dimension-

ality in order to observe Bound Entanglement is the space of two Qutrits, i.e. a coupled Quantum

System of two Spin-1 entities, as present in the case of NV-Centers. A further motivation for the

experimental preparation of Bound Entangled states is the fact that, unlike early assumptions which

deemed these states as useless for Quantum Technology, Bound Entanglement was found to be a

useful Quantum Resource for several protocols in Quantum Information Processing [98,105–108],

while non-Distillability was found to be related to irreversibility in Thermodynamics [109, 110].

Significantly for the application to NV-Centers, Bound Entanglement has also been theoretically

demonstrated to enable Quantum Sensing up to the Heisenberg-limit [100, 111].

The discussion in the following sections presents work towards an experimental observation of

Bound Entanglement in a solid-state system. Bound Entanglement is related to the Peres-Horodecki

criterion [112], also known as Positive Partial Transpose (PPT) criterion, as we will outline below.
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To begin the revision of Bound entanglement, we define the notion of a partial transpose by

ρTB(ρ) ≡ (1A ⊗ T ) (ρ), (3.1)

where T is a transposition operator, solely acting on the subspace B of a combined density matrix

ρ ∈ HA ⊗HB. For separable states, the partial transpose can also be obtained by partial tracing

ρTB(ρ)
ρ = ρA ⊗ ρB︸        ︷︷        ︸

= TrB(ρ) ⊗ (TrA(ρ))T (3.2)

Since the transposition preserves eigenvalues and as ρ ≥ 0 is a condition on Eigenvalues of any

physical density operator, it makes sense to investigate whether the density matrix of a subsystem

is still physical after transposition. This motivates the Peres-Horodecki criterion [112]

(ρ = ρA ⊗ ρB) ⇒
(
ρTB(ρ) ≥ 0

)︸         ︷︷         ︸
PPT Criterion

. (3.3)

It is also indicated in (3.3) that separability implies satisfaction of the PPT criterion, following triv-

ially from (3.2). For two-Qubit and Qubit-Qutrit states the logical implication in (3.3) can also be

reversed, such that the PPT criterion is a sufficient condition for separability in this specific case.

This does not hold for higher dimensions [104]. Instead, for two Qutrits and for density matrices

of even higher dimensions, it has been shown that states exist which are are inseparable despite

the fact that they satisfy the PPT Criterion [104]. These states are called bound entangled states,

since they can not be distilled, i.e. converted to pure entangled singlet states by local operations

and classical communication (LOCC) [104].

In fact, while the PPT criterion is sufficient in order to prove that a state is bound entangled, if

it is also non-separable, it is an open problem whether the converse is also true. It is currently not

known whether there are bound-entangled states which are provably non-distillable, but possess

a non-positive partial transpose (NPT) [113]. A further interesting observation is that, due to the

fact that copies of a matrix ρ with positive Eigenvalues and positive partial transposes will still be
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positive, such that the same properties of ρ are also maintained by

ρ⊗N = ρ ⊗ . . . ⊗ ρ︸      ︷︷      ︸
N

. (3.4)

I.e., even N copies of a bound entangled state will remain bound entangled and are not distillable

to pure entangled singlet states by LOCC [104]. We have thus established the concept of Bound

Entanglement and move on towards criteria in order to measure and make use of this curious kind

of entanglement.

3.2 Measuring Bound Entanglement in two-Qutrit Systems

In order to progress further towards an experimental implementation, criteria must be defined what

kind of states can be considered Bound Entangled. While the Positive Partial Transposition is ac-

cessible after experimental reconstruction of a density matrix, a simple trial-and-error sampling

of states obtained from density matrix tomography would not only be time-consuming but is also

prone to systematic errors [56], caused by a bias due to the assumption of positive semi-definite

density matrices a priori [114]. While this presents a general problem in density matrix tomog-

raphy, it is especially significant in the case when positivity is the deciding criterion for Bound

Entanglement. So, a family of target states to reach in experiments, which contain quantifiable

amounts of Bound Entanglement were defined in [113] . Indeed, the publication in [113] is likely

the first entanglement quantification for PPT-entangled states. The target states considered for the

analysis of Bound Entanglement [113] are given for clarity in their explicit two-Qutrit matrix form
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here as

ρ�target =
1
9

+



α 0 0 0 β 0 0 0 β

0 −α2 − γ 0 0 0 0 0 0 0

0 0 γ − α
2 0 0 0 0 0 0

0 0 0 γ − α
2 0 0 0 0 0

β 0 0 0 α 0 0 0 β

0 0 0 0 0 −α2 − γ 0 0 0

0 0 0 0 0 0 −α2 − γ 0 0

0 0 0 0 0 0 0 γ − α
2 0

β 0 0 0 β 0 0 0 α



, (3.5)

where α, β, γ ∈ R are free, real parameters which define Bound Entanglement according to [113].

Notice that there are only very few (six) off-diagonal elements consistent of the free parameter

β. While it is very helpful to known what kind of states to aim for in experiments, engineering

these particular states with a very limited protected subspace is experimentally hard. Conference

discussions surrounding the proposal paper by Sentís [113] lead to a refined, experimentally more

accessible joint publication targeted towards measurements with NV-Centers [114]. In particular

the question which candidate states are most suitable in order to experimentally verify bound en-

tanglement is addressed by introducing states that have a large enough distance to non-physical,

distillable and separable states.

Here, a family of candidate states is introduced in a similar manner to (3.5) as

ρ = a |φ3〉〈φ3| + b
2∑

k=0

|k, k ⊕ 1〉〈k, k ⊕ 1| + c
2∑

k=0

|k, k ⊕ 2〉〈k, k ⊕ 2| (3.6)

with |φ3〉 =
∑2

k=0 |kk〉 /
√

3, while a, b, c ∈ R are free parameters [114]. In order to specify the

suitability of these states for robustness of bound entanglement detection in experiments, a ball of
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states is introduced according to the Hilbert-Schmidt norm ‖X‖2 =
√

Tr(X†X)

B ≡ ρ + rX

∀X :: ‖X‖2 =
√

Tr(X†X) ≤ 1,
(3.7)

with a real parameter r ≥ 0 [114]. This enables to check the criteria of PPT (3.3), as well as to

verify that the state is entangled at all, here by resorting to the measure of the Computable Cross

Norm Criterion (CCNR), introduced by Gühne and Tóth in [115].

Figure 3.1: Illustration of the ball of states with radius r (3.7) in terms of the Hilbert-Schmidt norm

‖X‖2 =
√

Tr(X†X), in order to identify bound-entangled states, starting from a well-

defined family of states (3.6). PPT signifies the Positive Partial Transpose Criterion

(3.3), which is sufficient to ensure bound entanglement (BE), as long as the states

in question are entangled at all, as verified by the Computable Cross Norm Criterion

(CCNR) [115] in this case. The third line symbolizes the physical states, fulfilling

ρ ≥ 0 and Tr(ρ) = 1, which is not assumed a priori. This concept is introduced in our

publication in [114], in which the illustration also appears.
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Experimental Scenarios for Bound Entanglement Measurements using NVs

Two-Qutrit scenarios necessary for the verification of bound entanglement with the families of can-

didate states introduced in (3.6) from [114] arise when considering the negatively charged NV−,

a natural spin 1 system, i.e. a solid state Qutrit [33]. Bipartite entanglement between two qutrits

or subspaces thereof has been experimentally demonstrated in two scenarios: Firstly, two separate

NV− can be entangled by using either direct dipolar interaction at room temperature [116] or by in-

direct single-photon mediated entanglement swapping at cryogenic temperatures [117]. Secondly,

the NV− electronic spin 1 within the vacancy can be correlated with the nuclear spin of the adjacent

Nitrogen atom. This entanglement is mediated by hyperfine or dipolar interaction and is routinely

used in experiments [42]. While entanglement of qubit-subspaces is known, techniques have to be

developed in order to entangle the full qutrit space and to produce specific mixed states. There are

several approaches to producing mixed states with NVs, as presented in the following. For proof

of concept, it is sufficient to statistically prepare different pure states and conclude that bound en-

tanglement was present from the measurement data. However, especially if bound entanglement

should be used as a resource, e.g. for entanglement activation [98, 101] or Heisenberg limited

sensing [100], it is worthwhile to examine dynamics that lead to the specific target states. This can

be done by entangling to ancillary quibts, namely C13 nuclear spins in the diamond lattice followed

by suitable non-local gates [72] and tracing out of the ancillary spins. Repeated projections of the

NV electron spin and subsequent controlled preparation of specific mixed states, stopping short of

full Purification – similar to the methods introduced in section 2.1 – can also be engineered to fit

the necessary target states [46]. Another possibility is to introduce controlled channels of deco-

herence by varying external fields such as the laser used for initialization and readout [118], the

external magnetic field and the radio frequency and microwave pulses used for spin manipulation.

In particular, established concepts to experimentally dissipate an NV electron state in a controlled

manner include illumination by orange laser light in addition to the green laser used for excitation,

in order to repolarize the NV or even change its charge state between NV− and NV0 [118].
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We have thus introduced the phenomenon of Bound Entanglement [104], discussed its potential

use in Quantum Technology in general [98, 105–108] as well as Quantum Sensing in particu-

lar [100, 111] and pointed towards the analysis of candidate states for experimental verification

of Bound Entanglement, as presented in equations (3.5) and (3.6) from our joint publication with

Sentís et al in [114]. This presents a step towards the first experimental verification of Bound En-

tanglement in a solid-state system as well as the further analysis and use of Bound Entanglement

as a Quantum Resource. A similar particularity of Quantum Mechanics, in the sense that its mea-

surement is only accessible if the involved Quantum Systems at least have the dimensionality of

Qutrits, is presented by Quantum Contextuality.
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3.3 Quantum Contextuality

“Each new generation of students learns quantum mechanics more easily than their teachers

learned it. The students are growing more detached from prequantum pictures. [...] Quantum

mechanics will be accepted by students from the beginning as a simple and natural way of

thinking, because we shall all have grown used to it. By that time, if science progresses as we

hope, we shall be ready for the next big jump into the unknown.”

-Freeman Dyson-

The phenomenon of Contextuality is the logical description of the notion of a context for certain

questions or, as equivalently formulated later on, for measurements and was first conceived by

Specker. Starting from very fundamental questions about logic and the relation between different

commuting or non-commuting implications between simple logical sentences, he defined sets of

exemplary questions, in which the answer depends on the order of questions asked [119, 120].

Moreover, he was concerned about the possibility of mutually exclusive questions, which can not

be asked at the same time without influencing each other [119]. Quantum Mechanics turned out

to be the perfect physical theory for observation of such questions. Indeed, together with Kochen,

a formalisation of Contextuality in Quantum Mechanics was successful, resulting in the Kochen-

Specker theorem [121], which interestingly requires at least three quantum levels, i.e. a Qutrit, in

order to be demonstratable in principle. From these first theoretical concepts, Quantum Contex-

tuality has since proven to be experimentally measurable in Quantum Technology [2, 7, 122–126]

and was identified as a useful resource in Quantum Computation with Qubits [127]. Quantum

Contextuality is even identified as a candidate for the specific Quantum Resource supplying the

’magic’ for Quantum Computation [128], i.e. the ingredient within Quantum Mechanics that es-

sentially causes Quantum Computers to outperform their classical counterparts.

Tests of Quantum Contextuality are however non-trivial in the sense that assumptions on the mea-

surements involved have to be carefully stated and followed during measurements in order to deal
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with several potential loopholes such as Finite Precision and Compatibility [8, 129–132]. There-

fore, in the case of NV-Centers, it is especially useful to consider experiments with a reduced set

of assumptions and involved quantum systems. Quantum Contextuality experiments using NV-

Centers have already been performed using several separated entangled qubits [126]. However, it

is desirable to reduce the number of involved spin entities by performing either two-Qutrit mea-

surements [132] or even, in the spirit of the original Kochen-Specker theorem [133] and with a

reduced set of assumptions, direct verification of Contextuality in a single, indivisible Qutrit sys-

tem [2, 134]. While similar experiments using NV-Centers have been performed [135, 136], a

loophole-free verification of Quantum Contextuality or further use of Contextuality as a Quantum

Resource, such as for Certification of a QRNG, has not yet been demonstrated with this physical

system.

3.3.1 The Peres-Mermin Square

The basic concept of Quantum Contextuality is most readily understood by considering collective

measurements on a two-qubit system, as introduced by Peres and Mermin [137, 138]. Their sem-

inal works in 1990 have led to a canonical set of operators which define different contexts, now

known as the Peres-Mermin Square, see Figure 3.2. Each row and each column in this square rep-

resent operators that are jointly measured. This means that after a projective measurement, which

keeps the resulting quantum state alive, the next operator in the same row or column, i.e. in the

same context, is measured. In the example of the set of operators in last column of the Square, two

spin-1/2 particles are jointly measured in z-, x- and y-direction. Indeed the order of measurements

does not matter, since the joint operators are commuting. This is an important property, since

it would be no surprise if the outcomes would depend on the order of measurements or on the

context, if the associated operators were non-commuting. Now, in order to illustrate the effect of

Quantum Contextuality against a classical, predetermined measurement outcome, Peres and Mer-

min introduced the following calculation. The individual measurement outcome for each operator

140



3.3 Quantum Contextuality

Figure 3.2: The Peres-Mermin Square, defining sets of commuting operators in its rows and

columns which are jointly measured in projective measurements and thus define con-

texts for a test of Quantum Contextuality. [120, 137, 138]

O in the Peres-Mermin Square is 〈O〉 = ±1. The product of the measurement outcomes in each

column or row is denotes as Ci and Ri, respectively. These measurement outcomes of each context

consisting of the operator sets in rows and columns is then multiplied such that the parameter

P = C1C2C3R1R2R3 (3.8)

is obtained. In classical determinism, in which the measurement outcome would have been defined

a priori, this product would always have to be Pclassical = 1, since each individual outcome is

multiplied twice, in a row or column and the individual outcomes are 〈O〉 = ±1. Instead, in

Quantum Mechanics, the overall product of the expectation values is Pquantum = −1. This is due to

the commutation and anti-commutation rules of the involved Pauli Matrices, leading to the product

rule

σaσb = δabI + iεabc σc. (3.9)

Applying this to all sets of operators defined in the Peres-Mermin square (Figure 3.2) shows that

all rows and columns but the last column yield the identity 1 when multiplied, except for the last

column which yields −1. In essence, the phenomenon of Quantum Contextuality uses the property

of Quantum Mechanics, that jointly measured operators will always project the measured quantum

states into their joint Eigenbasis. Compare, for example, the joint basis states of row one, in matrix
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notation

Basis(R1) =





1

0

0

0


,



0

1

0

0


,



0

0

1

0


,



0

0

0

1




, (3.10)

to the basis of the last column

Basis(C3) =





−1

0

0

1


,



0

1

1

0


,



1

0

0

1


,



0

−1

1

0




. (3.11)

The joint operator ZZ = σz ⊗σz appears in both contexts, and the listed basis vectors in both cases

are Eigenstates of this operator ZZ. The state resulting from a projective measurement of ZZ is

thus projected into one of the basis sets in question by the other operators in the respective context.

This simple observation forms the basis of Quantum Contextuality, but has profound implications

for Quantum Technology [127, 128].

3.4 The KCBS inequality

Applied to a Spin-1 or three-level-system, a comparatively simple way was found for a test of

Quantum Contextuality by Klyachko, Can, Binicioğlu and Shumovsky in 2008 [2]. The inequality

found reduces the problem to the projective measurement of five operators, projectors correspond-

ing to five pairwise orthogonal states which can be graphically represented in a pentagram as in

the figure below. These operators are binary in the sense that the outcomes of a measurement are

limited to the values {−1, 1}. The resulting inequality was subsequently named KCBS-inequality

after the authors and has the simple form: [7]

〈A1A2〉 + 〈A2A3〉 + 〈A3A4〉 + 〈A4A5〉 + 〈A5A1〉 ≥ −3 (3.12)
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3.4 The KCBS inequality

It is easy to verify the classical bound on the right hand side of (3.12), when assigning fixed

classical values to individual operators combined with minimising the sum on the left hand side.

The operators are defined as

Ai = 2 |li〉 〈li| − 1 (3.13)

where the projectors

P1,i = |li〉 〈li| , P2,i = 1 − |li〉 〈li| (3.14)

are defined implicitly and associated with the measurement outcomes +1 and −1, respectively. The

operators have the (cyclic) property:

〈li| |li+1〉 = 0 ⇒ [Ai, Ai+1] = 0 (3.15)

such that subsequent measurements always commute, which is a necessary requirement for any

test of Contextuality. Remember that the essence of Contextuality is a dependence on the order in

which operators are measured, which is already trivially given when operators are non-commuting.

Here, the notion of a context is given by the pairs of observables in the KCBS-inequality (3.12),

where each operator is included in two different contexts.
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3 Multiple Quantum levels or Qudits

Figure 3.3: KCBS pentagram. The states |li〉 in the equations above form a pentagram when con-

necting pairwise orthogonal states. The corresponding observables build up the KCBS

inequality as in equation (3.14). Illustration adapted from Jerger et al [7].
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3.5 Experimental KCBS Inequality Violation

For practical Quantum Technology applications, in particular for the certification of Quantum Ran-

dom numbers, it is of interest to use inequalities that are particularly simple in their conception.

Therefore, more profound approaches such as state-independent inequalities [139] or inequalities

using qudits of higher dimensions are less suitable than the KCBS inequality, which utilizes the

minimal system possible to demonstrate Contextuality, namely a qutrit. Experimental demonstra-

tions of the violation of this inequality by quantum mechanics have recently been shown using

superconducting qubits [7, 140], single ions [141] and single photons [125]. Here, a realization

with NV centers is proposed and tailored to the technological possibilities and challenges specific

to this quantum system.

3.5.1 Proposal for an Implementation with NV centers

Besides the novelty of a loophole-free realization with NV centers – as opposed to previous related

experiments [135,136] – the main motivation to realize another experimental KCBS inequality vi-

olation is the vision to construct a certified Quantum Random Number Generator. Unlike other

systems which have to operate at cryogenic temperatures (superconducting qubits) or at high vac-

uum (trapped ions), the NV can be operated at ambient conditions. Therefore, a practical and

economical certified Quantum Random Number Generator is feasible. In comparison to other ap-

proaches, technological challenges are reduced and a single portable solution can be produced as

opposed to approaches which rely on no-signalling and certification by Bell-like inequalities [142].

The specific steps and requirements for an implementation are described below.
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Possible NV Setups for KCBS Inequality Violations

There are two basic requirements for a violation of the KCBS inequality:

1. Good experimental control of a three-level-system

2. The ability to perform projective measurements.

Both of these criteria can be satisfied when performing experiments with Nitrogen-Vacancy cen-

ters. There are two obvious possibilities to perform such a measurement, either at room tempera-

ture or in a low temperature setup.

Figure 3.4: An NV− center consisting of two spin-1 entities in a modified diamond lattice, namely

the inherent electron spin of the Vacancy (blue), as well as the adjacent 14N nuclear

spin (orange); both spins can in principle be used for KCBS inequality violations by

projective readouts.

Low Temperature Electron Single-Shot Readout It is possible to use the NV’s inherent

electron spin 1 directly for projective readouts. With the help of a solid immersion lens and low

temperature operation, the detected fluorescence and the coherence properties are controllable
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as demonstrated by Robledo et al [143]. At room temperature, the necessary levels can not be

resolved or addressed individually. A great advantage of using the NV’s electron spin directly,

however, is the conceptual advantage of using a natural spin 1 system, without further assumptions

and qudit constructions.

Nuclear Spin Single-Shot Readout The preferred possibility, in terms of engineering over-

head, is to make use of the NV center’s inherent 14N nuclear spin at room temperature. It has

the desired property of the nuclear spin I = 1 and thus represents a qutrit or three-level system.

Moreover, projective readout has been demonstrated as single-shot readout of the 14N nuclear spin.

The NV’s inherent electron spin is used for readout and initialisation purposes through its coupling

to the nuclear spin in a now standard procedure described in detail in a landmark paper by Neu-

mann et al [42]. In the following, we assume this experimental situation for the measurement

procedure.

3.5.2 The Problem of Maintaining Coherence in Quantum

Measurements

One condition of projective measurements is that the sum of projection operators is the identity,

also known as the completeness relation [41]∑
m

MmM†
m = 1 (3.16)

As the Kochen-Specker theorem demands at least three levels of the involved quantum system,

the requirements in this case are either three one-dimensional projectors or one one-dimensional

projector accompanied by a two-dimensional projector. For illustration, if we denote the involved

levels as |−1〉 , |0〉 , |1〉 , a one-dimensional projector projects into exactly one of these levels as

P1 = |0〉 〈0| (3.17)
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while a two-dimensional projector projects into the remaining two-dimensional subspace as

P2 = |−1〉 〈−1| + |1〉 〈1| . (3.18)

Fundamental Treatment of the Coherence Question

A question of relevance for the measurement of a KCBS Inequality violation is whether it is pos-

sible in practice to implement a two-dimensional projector. To understand the discussed problem,

consider the effect of a successful projection on the density matrix. If the projection is successful,

i.e. 〈Ψ| P1 |Ψ〉 = 〈P1〉 = 1, the resulting state will surely be exactly the eigenstate of the projector,

here |Ψres〉 = |0〉 and equivalently ρres = |0〉 〈0|. In matrix notation this means that

ρ =


R ∗ ∗

∗ R ∗

∗ ∗ R


〈P1〉= 1
−−−−−→


0 0 0

0 1 0

0 0 0

 = ρres (3.19)

Here, R ∈ � are real numbers, while ∗ ∈ � are complex numbers. Obviously, the conditions

Tr(ρ) = 1 and ρ ≥ 0 still need to be fulfilled for the density matrices [41]. The crucial question is

now, what effect the projection has in the case 〈P1〉 = 0, i.e. when the projection is not successful.

Long before the possibility of experimental quantum mechanical measurements, this was also

discussed as a Gedankenexperiment and fundamental question by von Neumann and Lüders who

maintained two opposing views [47, 144]. Von Neumann was convinced that no coherence can be

preserved after a measurement, i.e.

ρ =


R ∗ ∗

∗ R ∗

∗ ∗ R


〈P1〉= 0

−−−−−−−−−→
von Neumann


R 0 0

0 0 0

0 0 R

 = ρres. (3.20)

Note that the resulting density matrix is mixed and has no off-diagonal entries. This means that

any superposition or coherence between the remaining levels |−1〉 and |1〉 is lost. In the case of
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a projective measurement that maintains coherence, as promoted by Lüders [144], the effect is as

follows

ρ =


R ∗ ∗

∗ R ∗

∗ ∗ R


〈P1〉= 0
−−−−−→

Lüders


R 0 ∗

0 0 0

∗ 0 R

 = ρres. (3.21)

Oberserve that the only entries vanishing are the ones associated to the eigenstate of the projec-

tor, |0〉, while the remaining subspace is left intact. Off-diagonal elements are still present and

superposition between the remaining levels is thus preserved. While the preservation of these co-

herences was assumed necessary in some experiments [7], indeed the measurement of s subspace

with reduced dimensionality is also sufficient [8,145], as independently verified in the following.

3.5.3 Measurement of One-dimensional projectors

In an actual measurement, it is very hard not to destroy off-diagonal elements of the system’s den-

sity matrix when a projective measurement is performed. In the case of NV centers, a sequence

of repeated interaction of the NV spin with green Laser light, accompanied by two-qubit gates,

is necessary in order to perform one single-shot measurement of a nuclear spin [42]. Since the

NV spin is brought up to its excited state in each readout, it introduces decoherence, even on the

nuclear spin it is coupled to by dipole-dipole interaction. Therefore, a measurement resulting in a

density matrix as in equation (3.21) seems impossible and was identified as an initial crucial prob-

lem in experimental KCBS inequality violation with NVs. It was understood that 2-dimensional

projectors like P2 in equation (3.18) could not be implemented successfully, which would pose a

threat to the implementation of the KCBS inequality as a whole.

However, as initially pointed out by M. Kleinmann in private correspondence, it is sufficient to

measure one-dimensional projection operators, as we will confirm in the following, directly from

the inequality. By equations (3.13) and (3.14), each operator can be written solely in terms of the
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one-dimensional projector as

Ai = 2P1,i − 1. (3.22)

Plugging this in to the KCBS inequality

〈A1A2〉 + 〈A2A3〉 + 〈A3A4〉 + 〈A4A5〉 + 〈A5A1〉 ≥ −3 (3.23)

yields an inequality in terms of one-dimensional projectors as

P1,1P1,2 + P1,2P1,3 + P1,3P1,4 + P1,4P1,5 + P1,5P1,1 −

 5∑
i=1

P2
1,i

 ≤ −2 · 1 (3.24)

⇔

5∑
i=1, j=(i+1 mod 5)

P1,iP1, j −

5∑
i=1

P1,i ≤ −2 · 1 (3.25)

Mathematically, this inequality is completely identical to the KCBS inequality, with the added

benefit that it only contains the one-dimensional projectors P1,i. We used P2
1,i = P1,i, as for any

projector. However, it can be useful in experiments to measure the same projector twice, in order

to compare with the measurements of other contexts, especially in terms of repeatability of the

individual measurements. Moreover, the positive terms on the left of the equations above should

ideally be zero. This is obvious since the projectors project to pairwise orthogonal states, easy to

see when the equation is again rewritten as

5∑
i=1, j=(i+1 mod 5)

∣∣∣li

〉 〈
li

∣∣∣l j

〉︸︷︷︸
= 0 (ideally)

〈
l j

∣∣∣ − 5∑
i=1

∣∣∣li

〉 〈
li

∣∣∣ ≤ −2 · 1. (3.26)

However, this mathematically vanishing overlap should necessarily be verified in experiments

since it depends on the preparation and readout fidelity of the involved states.

In summary, this already provides an experimental concept on how to measure the violation of

a KCBS inequality on an NV setup, by only measuring one-dimensional projectors according to

equation (3.25). However, we will look at more details of the implementation and the involved

unitary operations in particular in the following section.
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3.5.4 Operations and Measurements to violate the KCBS inequality

In order to measure operators in different contexts, it has to be stressed that the operations have to

be separate and measurements need to be projective. I.e., the qutrit states should not be destroyed

during the measurement and the involved unitary operations should be seen as completely separate,

withstanding the obvious temptation to combine two adjacent unitaries into one, as for example U†

and V in the figure below. The most important point here is to avoid the loopholes of compatibility

Figure 3.5: General procedure for a measurement of operators U and V in one context. Note that

U† and V should not be combined in order to guarantee individual-existence. Also

note that any rotation is reversed after the projective measurement to restart from the

original basis. Illustration based on reference [8], modified.

and individual-existence, which would render the contextuality test useless as a whole, if its ba-

sic assumptions are not fulfilled [7]. Compatibility means that jointly measured operators always

have to commute, which is diluted by experimental imperfections, leading to fundamental theoret-

ical questions [146]. Individual-existence requires the projections to be meaningful as individual

measurements, thus they are required to be completely separate from other measurements [7].

Necessary Unitary Operations

In order to realize the proposed experiment, it is surely helpful to have the required unitary op-

erations ready at hand. In known implementations, two ways are presented to implement the
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necessary unitary gates. While Jerger et al [7] optimize the problem numerically and find five suit-

able pentagram states, a careful analysis of Um et al [8] revealed fundamental theoretical problems

concerning the involved states.

Unitary Operations according to Jerger et al

One possible choice of pentagram states is well defined in the reference of Jerger et al [7]. Each

operation Ui is composed of two primitive rotations R01
y and R12

y which represent rotations in y-

direction between two of the three involved levels. The operators are not explicitly defined in the

publication but were reconstructed from the notation and verified in calculations as

R01
y =


cos φy − sin φy 0

sin φy cos φy 0

0 0 1

 , R12
y =


1 0 0

0 cos φy − sin φy

0 sin φy cos φy

 . (3.27)

The explicit construction of the involved unitaries is given in the figure below for completeness.

Note that the numerically optimized rotation angle in R01
y can be reconstructed by minimizing the

pairwise overlap of the pentagram states to zero. Each pentagram state results from its respective

unitary, applied to the basis state |0〉 which equals the vector (1 0 0)T in our matrix notation. It is

easy to verify that the implicitly defined states do not overlap and are linearly independent, thus

form a proper set of pairwise orthogonal qutrit states. The primitives in (3.27) are in general not

hard to implement experimentally, since they only require transitions between two levels.
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Figure 3.6: Explicit construction of the involved unitaries U1 to U5 in Jerger et al [7]. The image

on the left shows the composed trajectory of the unitary U4 as an example, which maps

the basis state |0〉 to the forth pentagram state.

Alternative Operations in Um et al

The following operations are suggested as primitives in Um et al [8], as they evolve naturally from

Rabi oscillations in the trapped-ion context

R1(θ1, φ1) =


cos

(
θ1
2

)
0 −iei(φ1+ π

2 ) sin
(
θ1
2

)
0 1 0

−ie−i(φ1+ π
2 ) sin

(
θ1
2

)
0 cos

(
θ1
2

)
 ,

R2(θ2, φ2) =


1 0 0

0 cos
(
θ2
2

)
−iei(φ2+ π

2 ) sin
(
θ2
2

)
0 −ie−i(φ2+ π

2 ) sin
(
θ2
2

)
cos

(
θ2
2

)


(3.28)

Note that the definition of R2 is slightly different from the publication in [8], since a sign mistake

therein would render it non-unitary. The actual operations used for the pentagram states set φi = 0,

thus effectively getting unitaries very similar to (3.27) as

R1(γ, 0) =


cos

(
γ

2

)
0 sin

(
γ

2

)
0 1 0

− sin
(
γ

2

)
0 cos

(
γ

2

)
 , R2(γ, 0) =


1 0 0

0 cos
(
γ

2

)
sin

(
γ

2

)
0 − sin

(
γ

2

)
cos

(
γ

2

)
 . (3.29)
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Here, the angle of rotation is fixed as γ = 51.83◦ ≈ 0.288π. This angle is interestingly close to

cos−1(1/φ), with the Golden Ration φ = 1
2

(√
5 + 1

)
. However, there is no justification for this

particular choice of angle in the publication, there is also no relation to the angle used by Jerger

et al [7], as above in Figure 3.6. The choice of pentagram states is summed up for clarity in Table

3.1. During careful analysis of the paper in reference [8], I noted a substantial notational or

Pentagram state (rotated) Basis state

|ν1〉 |1〉

|ν2〉 |2〉

|ν3〉 R1(γ, 0) |1〉

|ν4〉 R2(γ, 0) |2〉

|ν5〉 R1(γ, 0)R1(γ, 0) |1〉∣∣∣ν′1〉 R2(γ, 0)R2(γ, 0) |2〉

Table 3.1: Pentagram states used by Um et al [8] for an experimental test of Contextuality by

KCBS-inequality violation. Note that an additional state
∣∣∣ν′1〉 is introduced for experi-

mental convenience. Moreover this choice of pentagram states can not be recommended

due to overlaps inconsistent with the assumptions of Contextuality, as described below.

operational problem in the definition of these pentagram states. From the matrix notation of the

paper, it becomes obvious that |1〉 ≡ (0 0 1)T and |2〉 ≡ (0 1 0)T . However, with this choice of basis

states, it is easy to verify that pentagram states |ν2〉 and |ν3〉 show non-zero overlap and are thus

not pairwise orthogonal as required. Therefore, all possible choices of initial basis states were

analysed in the table in Figure 3.7, including all their pairwise overlaps, i.e. the dot product of

neighbouring states. The last column of the table in Figure 3.7 shows these overlaps as elements

of an overlap vector, including the cyclic overlap of
∣∣∣ν′1〉 and |ν1〉. This vector should indeed be

composed of zeroes, as in the third row of the table, in order to guarantee the required properties for

the involved pentagram states, especially the commutativity of the associated operators. However,

this is not the case, even for any choice of basis states, except in row three. Here however, the set
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Figure 3.7: All possible choices of pentagram states according the operations described in Um et

al [8]. Overlaps are shown as elements of the vector in the last column and are found

to be largely non-vanishing. The non-orthogonality of pentagram states poses a vital

thread to the results obtained in the publication or at least suggests notation errors

therein.

of basis states suffers from the problem of linear dependence, in this case even identity of the basis

states, e.g. |ν1〉 = |ν3〉 = |ν5〉. This is of course also fatal for the test of Contextuality, since the

associated operators then only form two different Contexts, instead of different Contexts for each

pair, as required. No viable set of pentagram states could be constructed from the definitions in

Um et al [8], according to equation (3.29) and Table 3.1.
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Corrigendum of Um et al

During the course of writing of this thesis, the findings above were confirmed by the authors of

reference [8]. Moreover a new approach focusing on Random Number Expansion was published at

the time of writing [145]. The authors have since published a Corrigendum of [8], in which several

fundamental notational mistakes were admitted [11]. In particular, the basis states outlined above

in Table 3.1 were corrected as in Table 3.2. Moreover, the angle γ was corrected to γ̃ = 103.68◦.

Pentagram state (rotated) Basis state

|ν1〉 |1〉

|ν2〉 |2〉

|ν3〉 R−1
1 (γ̃, 0) |1〉

|ν4〉 R−1
1 (γ̃, 0)R2(γ̃, 0) |2〉

|ν5〉 R−1
1 (γ̃, 0)R−1

2 (γ̃, 0)R−1
1 (γ̃, 0) |1〉∣∣∣ν′1〉 R−1

1 (γ̃, 0)R−1
2 (γ̃, 0)R−1

1 (γ̃, 0)R2(γ̃, 0) |2〉

Table 3.2: A corrected set of Pentagram states, published by Um et al in [11]. The matrix opera-

tions are defined as before in equation (3.29). Note that the angle γ is also corrected.

Consequently, it was confirmed that the original publication in Scientific Reports [8]

contained fundamental notational errors and can not be followed in future experiments.

It is instead recommended to consider the Corrigendum in [11] or the correct imple-

mentation by Jerger [7].

In order to avoid mistakes in an experimental implementation, instead of following the original

publication by Um et al. [8, 11], it is recommended to use the set of operations in Jerger et al. [7]

as described above in subsection 3.5.4 and summarized in Figure 3.6.

In Summary, the concept of Quantum Contextuality was presented (Section 3.3), with a focus

on experimental verification in a single indivisible Spin-1 system by the KCBS inequality (3.4).

Moreover, the possibility to reduce this Inequality to measurements of 1-dimensional projectors,

156



3.5 Experimental KCBS Inequality Violation

see Equation (3.25), was introduced in Section 3.5.3. Comparable experiments using trapped ions

and superconducting Qutrit were analysed (Section 3.5.4) in order to present the operations and

measurements necessary for future experiments demonstrating and further using the resource of

Quantum Contextuality.
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3.6 Conclusion: Qudits

Motivated by the special properties of Spin-1 Quantum Systems [102], such as naturally occurring

in the NV-Center in diamond and its inherent 14N nuclear spin, two applications making use of

this higher dimensionality, compared to commonly used Qubits, were proposed. Bound Entangle-

ment was identified as an insufficiently demonstrated phenomenon of Quantum Mechanics, with

recent results enabling its detection in the two-Qutrit case (Section 3.2). Moreover, theoretically

established protocols making use of the resource of Bound Entanglement in Quantum Information

Processing [105–108] and Quantum Sensing up to the Heisenberg-limit in particular [100, 111]

were pointed out, such that the steps presented towards experimental implementations with NV-

Centers may constitute valuable resources for future developments. In the case of Quantum Con-

textuality (Section 3.3), measures for experimental verification are better established than in the

case of Bound Entanglement, such that several experiments have already been performed in op-

tical, superconducting and trapped ion systems [7, 123, 125, 126, 145]. However, subtleties such

as the avoidance of several loopholes [122, 132] and memory assumptions [147] were pointed

out along with the benefits of using a well-controllable naturally occurring Spin-1 system such

as the NV-Center in diamond. Preparation towards an experimental implementation using this

physical system were thus presented in Sections 3.5ff. One of the possible applications of Quan-

tum Contextuality as a resource, due to Inequalities such as the KCBS Inequality (Section 3.4), is

the certification of Quantum Random Number Generation, which indeed presents the topic of the

following chapter.
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4 Quantum Random Number Generation

“Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet the real

thing. The theory says a lot, but does not really bring us any closer to the secret of the "old one."

I, at any rate, am convinced that He does not throw dice.”

- Albert Einstein -

“You ought not to speak for what Providence can or can not do.”

- Niels Bohr -

In the Digital Age of Smartphones, Social Networks, Big Data, Cryptocurrencies, Industry 4.0

and the Internet of Things, Cryptography has developed from a profession of secret agencies,

specialists and scientists to a field of high relevance for our daily lives and work. Digital data

is everywhere, even in our pockets, and is often considered private or of special value to the

holder. It is thus very relevant to consider new ways of encryption and secure communication.

Quantum Technology promises to deliver new securities through Quantum Key Distribution and

Quantum Random Number Generation. On the other hand, Shor’s algorithm famously proves

that common prime number factoring algorithms can be broken with a fully-fledged Quantum

Computer at hand [148]. Here, we focus on random numbers which are a crucial resource for

classical encryption. Since any algorithm is per se deterministic, a random seed is always required

to offer true protection against eavesdroppers. Recent studies have shown that the supply of random

numbers with low entropy is a very effective attack on encryption, since the complexity of an attack
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is dramatically reduced [149, 150]. Moreover, common classical, so-called True Random Number

Generators (TRNG) suffer from inherent problems since the promised Randomness is often just

based on ignorance of the underlying physics of a hardware Random Number Generator or is

even provably deterministic as in the case of computer-based Pseudo Random Number Generators

(PRNG) [151]. Unlike any such system governed by classical physics, Quantum Mechanics on

the other hand promises indeed that – even with full knowledge of the underlying physics – the

measurement results will be probabilistic and therefore yield random numbers with high entropy.

4.1 Certified Quantum Random Number Generation

Different experimental approaches, mainly in Quantum Optics, have been used as Quantum Ran-

dom Number Generators (QRNG) [152–159]. However, one important drawback remains: It is

difficult to prove that the specific implementation really corresponds to the modelled quantum

random number generation. It has to be shown that quantum effects truly are the only source of

randomness in the system, even in continuous operation and beyond any reasonable doubt. This

leads back to the fundamental discussion in Quantum Mechanics, whether the seemingly prob-

abilistic behaviour is actually governed by latent deterministic mechanisms called Hidden Vari-

ables. If this possibility can not be excluded for a particular system, QRNG are rightfully named

device-dependent [160]. On the other hand, a violation of Bell-like classical inequalities offer the

possibility of device-independent Quantum Random Number Generation [142, 161].

4.1.1 Quantum Indeterminism and Bell-like Inequalities

Albert Einstein famously assumed that the laws of physics should not be governed by randomness,

illustrating his point by considering games of dice a non-godly behaviour [162]. This assumption

lead physicists to look for a hidden mechanism or hidden variables explaining the phenomena of
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Quantum Mechanics, including superpositions and particularly entanglement [163]. However, it

was shown decades later that classical inequalities based on the assumptions of hidden variables

and an assignment of values prior to measurement can be violated by quantum mechanics [164].

Within the limitations of our understanding this indeed favours the interpretation that there is an

inherently random aspect in Quantum Mechanics.

Figure 4.1: Schematic illustration of a Bell-like inequality violation based on deterministic as-

sumptions and a priori assignment of values.

In order to illustrate the concept of Bell-like inequalities let us briefly review the basic concept of

the CHSH inequality by Clauser, Horne, Shimony and Holt [165].

Let a, a′, b and b′ be real variable with a fixed (a priori) assignment that allows them to take

exclusively the values −1 or +1.

{a, a′, b, b′} ∈ {−1, 1}. (4.1)

Then, it can be easily verified that the following (classical) inequality holds

〈ab〉 + 〈ab′〉 + 〈a′b′〉 − 〈a′b〉 ≤ 2. (4.2)
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However, in Quantum Mechanics we can define the following measurement operators on an en-

tangled state |ϕ+〉

Â = σx, Â′ = σz, B̂ =
σx − σz
√

2
, B̂′ =

σx + σz
√

2
,
∣∣∣ϕ+〉 =

|00〉 + |11〉
√

2
(4.3)

which leads to the expectation values

〈
ϕ+

∣∣∣ ÂB̂
∣∣∣ϕ+〉 = 〈AB〉 = 〈AB′〉 = 〈A′B′〉 = − 〈A′B〉 =

1
√

2
(4.4)

and therefore yields a violation of the classical inequality (4.2) by

〈AB〉 + 〈AB′〉 + 〈A′B′〉 − 〈A′B〉 = 2
√

2. (4.5)

This shows that such a Bell-like inequality can easily be set up and violated in theory. In practice,

however, the situation is much more delicate. A number of landmark experiments have shown

violations of Bell-like inequalities [166, 167]. However, a great difficulty arises with the am-

bition to convince any sceptic that all the assumptions involved in the experiment have indeed

been addressed. Several loopholes have been identified, namely the loopholes in detection (fair

sampling), communication (non-signalling), rotational invariance, coincidence, memory, nonre-

currence, free choice of detector orientations [168, 169]. Moreover, a sceptic can pose the argu-

ment that the exclusion of a certain deterministic model does not exclude all possible deterministic

models (cf. [170]) and refer to a general theory-loophole, indicating that our understanding and

interpretation of Quantum Mechanics is still subject to future change. There are indeed currently

unanswered fundamental questions such as the quantization of Gravity, the possibility of extra

dimensions or the hierarchy problem, a missing Grand Unified Theory and diverging integrals of

Quantum Field Theory which lead to theories beyond the Standard Model of particle physics, such

as Supersymmetry and String Theory. For practical purposes, however it is safe until the next

big shift of paradigms to work with the common understanding of Quantum Mechanics. Yet it is

difficult enough to engineer any practically useful Quantum Random Number Generator that vio-

lates a Bell-like inequality beyond reasonable doubt. In optics, experiments that rightfully close

the communication loophole either require extremely fast time-resolution or devices that extend
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over large distances (up to kilometers) to ensure no classical signals nullifying the effects of the

involved Quantum channels can be transmitted between different parties. Moreover, the rates at

which random numbers are produced are extremely low in such experiments [168]. It is therefore

desirable to find alternative approaches to Certified Quantum Random Number Generation, which

circumvents some of these challenges. A novel approach based on a solid-state spin system and

certification by Quantum Contextuality will be examined in the following.

4.2 Quantum Random Number Generation Certified by

Quantum Contextuality

In principle, the proposed violation of a KCBS-inequality, as from Section 3.4 offers the possi-

bility of generating Random Numbers certified by an Inequality ensuring the Quantum nature of

the underlying process. Similar experiments have been carried out using trapped ions or effective

optical Qutrits, aiming at Quantum Random Number Generation certified by Quantum Contex-

tuality [8, 140, 145]. The theoretical foundation of QRNG Certification by Quantum Contextual-

ity [171] however is less established than in the case of the more commonly used Certification by

Bell-inequalities [172, 173]. A central advantage of Contextuality-certified QRNG on the other

hand is be the avoidance of the famous Locality Loophole present in any Certification based on

Bell-Inequalities [174]. While the Locality Loophole has been shown to be in principle avoid-

able by experiments [168, 169], it presents a huge challenge in engineering a QRNG device based

on Bell-Inequalities as optimizing the size of such a device and the related time-resolution in or-

der to demonstrate non-signalling is difficult. Quantum Contextuality on the other hand, can be

demonstrated on a single indivisible Quantum System [2]. Detection presents a possible loop-

hole in both cases, as the Certification depends on fair sampling and efficiency of the involved

detectors [8,168,169]. A number of specific loopholes need to be addressed in the case of Certifi-

cation by Quantum Contextuality. In particular, the Compatibility loophole concerns the fact that
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operators in each context have to commute, which has to be demonstrated separately in experi-

ments [129,132,175]. This is related to the effect of Finite Precision, i.e. the observation that both

the orthogonality of states and the statistical uncertainty on measurement results is never perfect

in experiments, which presents an existential threat to the basic assumptions of Quantum Contex-

tuality [131], but several approaches to overcome this loophole have been presented [176, 177].

Moreover, the individual-existence loophole [7,178] is relevant, as a verification of Quantum Con-

textuality requires joint measurements, the existence of a meaningful operational definition of an

individual measurement has to be ensured [7]. Finally, it has to be ensured that no classical mem-

ory is influencing the measurement results, since Contextuality effects can be simulated classically

by the use of external memory [130, 179]. It is debatable whether this presents an additional

loophole since simulation of Bell-Inequality violation is also possible when allowing for classical

signalling [168].

For practical purposes, random bits related to the KCBS inequality can be extracted from the ex-

periment presented above, section 3.4, by following the min-entropy extraction presented by Um

et al [8]. Therein, the original KCBS inequality (3.12) is rewritten in terms of a measurable ex-

pectation value L in terms of conditional probabilities on the agreement of measurement outcomes

such as [8]

L ≡
∑
i,ai,a j

(p(ai = ai+1|AiAi+1)) − p(ai , ai+1|AiAi+1) ≤ 3, (4.6)

according to their definition of measurement configurations Ai with possible results ai = ±1. This

is then related to a min-Entropy of the kind [8]

H∞ = −p(Ai) log2(maxai p(ai|Ai)), (4.7)

such that the entropy is minimized in terms of the possible measurement outcomes. The approach

in [8] should be taken cum grano salis due to notational mistakes, as specified in Section 3.5.4 and

in the Corrigendum published [11]. Moreover, bounds obtained in [8] are based on the theoretical

reference by Pioronio [173], which however is based on Bell-Inequalities rather than the required
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analysis based on Quantum Contextuality, with a different set of assumptions and possible loop-

holes. However, an analysis similar to the conditional probabilities and entropies presented above

should be followed as in [160, 173]. A renewed attempt of obtaining secure bounds in terms of

Randomness Expansion by the same authors as [8] is presented in [145]. Obtainable entropies are

then, as also attempted in [8], based on the underlying properties of Quantum Physics rather than

being based on mere analysis of the random output, which is an important step towards Certifica-

tion [160, 173].

In essence, experimental violation of the KCBS inequality as proposed in Section 3.4ff thus offers

the potential for Certification of Random Numbers. A number of subtleties and potential loop-

holes [180] have been listed and compared to the Bell-Inequality case. While the underlying theory

needs to be solidified [171, 172], the necessity to avoid the Locality Loophole for Bell Inequali-

ties favours QRNGs certified by Quantum Contextuality for practical applications, due to reduced

engineering requirements and applicability in single, irreducible quantum systems [8, 140]. In the

following, another Ansatz towards Quantum Certification of Random Numbers, based on single

photons emitted from NVs, will be presented.

4.3 The NV-Center as Single-Photon Emitter for Quantum

Random Number Generation

Making use of the NV Center’s property to be able to emit single photons, the implementation of

a canonical Quantum Random Number Generator (QRNG) of single photons impinging is possi-

ble. While single photons impinging on a beam splitter are often described as a basic example in

discussions of QRNG [152, 153, 181], surprisingly few examples of such systems are experimen-

tally implemented in the literature [182–184], using spontaneous parametric down-conversion and

integrated optics. The reason for the rarity of implementations is likely due to the experimental
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challenges involved [185], including the need for a stable single-photon source, for which the NV

Center in diamond is very well suitable [186], even enabling a 24/7 operation as a single-photon

source at ambient conditions [187].

In comparison to the OPO-Ansatz presented in section 4.4, a QRNG based on single photons

from an NV Center presents a clearer picture in terms of the quantum origin of Randomness, at

first sight. On the other hand, random number generation by a period-doubling fibre-feedback

OPO is shown to have exceptionally advantageous unambiguity and requires no post-processing

per se [10]. Moreover, a more detailed analysis of the quantum origin of the randomness from

a single-photon experiment, yields several challenges. Cauchy-Schwarz inequalities do present

clear measures for non-classicality in terms of phase-amplitude relations, or photon numbers [188].

However, in order to properly use this quantum resource, the experimental measurements should

include photon number statistics experiments such as optical homodyne detection [189]. If, on the

other hand, path information is used like in the case of the standard beam splitter experiment, certi-

fication of quantum random numbers would necessitate cross-correlation detection [190] or, in the

case of using time-arrival information as for anti-bunching [191], temporal Bell inequalities such

as Leggett-Garg inequalities should be used [192,193] in order to demonstrate the quantumness of

the mechanism for the output of random numbers. Here, a unique Ansatz is developed instead, in

an aim to work towards certification of random numbers by a single-photon experiment. The setup

consists of the NV-Center as a single photon source, a beam splitter and two APDs registering the

arrival of photons at the respective location, displayed in Figure 4.2.

A first naive approach to implement a quantum random number generator is to process the recorded

time stamps simply by taking the time-ordered sequence of detected clicks. We associate the re-

flected detected photons with the outcome 1 and the other one with the outcome 0. Consequently,

all clicks are interpreted as random bits. This procedure exhibits a number of problems: The ex-

perimentally observed bias of a higher count rate on one detector (about 20%) affects the balance

166



4.3 The NV-Center as Single-Photon Emitter for QRNG

Figure 4.2: Experimental Setup for Random Number Generation with single photons originating

from a NV-Center, by using a beam splitter with detectors on each path. Image adapted

from our publication in [187].

of the bits. Furthermore, the Avalanche Photodiode (APD) dead time and the APD’s afterpulsing

issues will influence the independence of bits. The given dead time on the order of 45 ns influ-

ences a fraction of the recorded bits only. The raw data, from which the excistence of a bias can

be observed without difficulty, is depicted in Figure 4.3.

A very simple scheme of unbiasing a biased random bit sequence is the so-called von Neumann-

unbiasing procedure [194]. In this procedure, the bits are collected into non-overlapping tuples and

only such tuples with a bit flip (1,0 and 0,1) are counted as 1 or alternatively as 0; other sequences

(0,0 and 1,1) are ignored. The resulting bit sequence is unbiased, simply since the probability of

1 can be associated with p and therefore, the counter-probability (of 0) will be 1 − p. Thus, the

joint probability of 1, 0 is p× (1− p), being equal to the probability for 0, 1, which is (1− p)× p.

Higher-order unbiasing schemes of this procedure are also reported in the literature [195] which

can even extract more random bits per input bit. The von Neumann procedure reduces the amount

of random bits. To which extend the random bit stream is reduced depends on the bias, and in the

limes, a quarter of the tuples will generate a random bit. From n bits, consequently, only n/4 bits

can be extracted. With a bias δ, this equation changes to (p−δ)(1− p+δ)). The resulting bit stream
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Figure 4.3: Experimental data (in thousand counts per second) recorded of the single-photon

QRNG based on an NV-Center in a 24/7 operation at ambient conditions. A bias

towards Detector “1" (orange curve) is clearly visible. Image adapted from our publi-

cation in [187].

is now unbiased but might still contain some memory effects. The described unbiasing procedure

is comparable to the recording of anti-bunching. Whereas we utilize time-ordered tuples of bits

to derive a next bit in the von Neumann procedure, we intrinsically determine reordered bit tuples

in the anti-bunching. Then these bits are equally balanced around zero time delay. While many

papers examine the theoretical background of anti-bunching [191, 196] it is considered instructive

to list the necessary steps to experimentally analyse anti-bunching:

1. Register a click in one detector, e.g. detector “0", record the time-stamp.

2. Measure the time until a click is registered in the other detector, e.g. detector “1"

3. Create a histogram by binning the time-axis and record number of events per bin

4. Obtain from the data a correlation-function

g(2)(τ) =
〈I1(t)I2(t + τ)〉
〈I1(t)〈I2(t)〉

, (4.8)

which essentially correlates the expectation value to detect a photon after a time t + τ when

a previous photon has been detected at time t.
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5. g(2)(0) < 1 indicates non-classical light [191], while g(2)(0) < 1/2 moreover confirms the

single-photon nature of the light source [187, 196].

Performing such anti-bunching measurements firstly confirmed the non-classicality and the single-

photon nature in the presented NV experiment [187]. Moreover, the output bits stemming from

the associated measurements were filtered according to the correlation function. This means that

only bits for which the non-classical nature of the light impinging on the beam-splitter was con-

firmed was post-selected, as indicated in Figure 4.4. While this surely asserts the quantum nature

of the QRNG based on single-photons from NV-Centers, it is an interesting open question whether

filtering according to anti-bunching measurements can lead to Certified Quantum Random Num-

ber Generation [142]. As discussed in the introduction of this section, anti-bunching presents a

statement about temporal correlation, requiring loophole-free temporal Bell Inequalities to make

qualitative statements about certification of the randomness involved [192]. As the output bits are

essentially measured depending on the path taken, a deeper analysis of the path-information includ-

ing cross-correlation measurements or homodyne detection could present a promising endeavour

towards Certified Quantum Random Number Generation [189, 190]. A further optical experiment

producing random numbers, in which quantum effects play a significant role, is discussed below.
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Figure 4.4: Correlation data obtained from the NV-Center based single-photon Random Number

Generator. Only measurement outcomes satisfying the non-classicality bound g(2)(τ) <

1 are chosen as random bits. Anti-bunching is therefore shown and used as a physical

mechanism to post-process the data in such a way that only bits relating to quantum

effects are chosen. The single-photon nature is also demonstrated, with the bound

g(2)(τ) < 0.5 clearly violated. This represents a further, stricter bound by which random

bits could be filtered. The illustration is adapted from our publication in [187].

4.4 Unambiguous Quantum Random Number Generation by

Optical Parametric Oscillators

A very common problem in random number generation is that raw data is usually biased towards

one of the possible outcomes, such that post-processing of the data is necessary. An advantage of

Optical Parametric Oscillators (OPOs), in particular when operated in the period-doubling state, as

opposed to the more common degenerate operation [197, 198], is that the measurement outcomes

are very well-defined, unambiguous and it is even possible to obtain random numbers from the

raw data that can be considered unbiased for all practical purposes [10]. Due to the fast rates

of possible measurements and the accessibility of quantum mechanical effects, optical processes

are favourable for quantum random number generation in general. However, e.g. in the case

of single photon random number generation, there are several disadvantageous effects such as

170



4.4 Unambiguous QRNG by Optical Parametric Oscillators

dead time or unequal efficiencies of detectors, beam splitter imperfections, time measurement

imprecisions [185] and rate limitations by the saturation of single-photon detectors [199]. Even

the most canonical classical random number generator, a coin, suffers the possibility of landing on

the side, which represents an ambiguous measurement that has to be ignored for the purpose of

randomness generation. The fact that random number generation by period-doubling OPOs can

be regarded as unambiguous and unbiased thus presents a very subtle and applicable advantage

towards other Random Number Generators (RNGs), especially since post-processing algorithms

in RNGs also open back doors for cryptographical attacks [150].

4.4.1 The Optical Parametric Oscillator and Period Doubling

The basic, simplified working principle of an OPO involves a pulsed pump laser impinging on

a gain crystal, within an optical cavity consisting of said gain crystal and a decoupler enabling

variable output. Here, a polarizing beam splitter is used as decoupler [10]. For period-doubling,

it is moreover necessary to include a non-linear element. This is in the present case constituted

by a non-linear feedback fibre, resulting in a fibre-feedback OPO (also denoted as ffOPO). Period-

doubling (P2-cycle) means that in the equilibrium state achieved, only every second pulse is iden-

tical in energy within a pulse train. It is experimentally very challenging to prepare an OPO in a

P2-cycle such that the presented Random Number Generation protocol is understood to be the first

application of an OPO using period-doubling [10]. Here, the described setup is further enriched

by an optical chopper which provides the possibility for the system to randomly alternate between

two different equilibrium states by interrupting and resetting the resonator, and a reference signal,

obtained by halving the pump laser frequency, see Figure 4.5.
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Figure 4.5: Simplified schematic illustration of a Period-Doubling Fibre-Feedback Optical Para-

metric Oscillator (OPO), featuring the experimental setup used (a) and a description of

period-doubling (P2-state) by plotting Pulse Energy of the equilibrated OPO against

Power of the pump laser (b). Image directly adapted from our publication in [10].

4.4.2 Unambiguous all-optical Random Number Generation with

OPOs

Random numbers are generated from the period-doubling OPO in the following manner. While the

OPO is off or blocked by the Chopper, there is no equilibrated state of pulse trains showing a clear

repetitive pattern. During the transient process, the OPO pulse train builds up and may reach two

different states within the P2-cycle. In the equilibrated state, the pulse train displays alternating

pulse energies of high (H) and low (L) energy. In comparison with the reference signal, which is

obtained by halving the frequency of the pump laser, the high-energy pulses (H) of the equilibrated

P2-cycle can either be in phase or out of phase. When the OPO signal and the reference are

measured to be in phase, the outcome is interpreted as random number 1. Instead, if there is a

phase difference of π, or equally the OPO low-energy pulse (L) and the reference signal are in

phase, the measurement result is interpreted as number 0 instead. See Figure 4.6 for an illustration

of the method to obtain random numbers from the OPO. Uncertainties on the phase measurement

are negligible, as the two possible outcomes are separated by more than 400 standard deviations
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4.4 Unambiguous QRNG by Optical Parametric Oscillators

Figure 4.6: Transient process for Equilibration of a Period-Doubling Fibre-Feedback OPO (a) and

method to obtain random numbers (b) by comparison of the OPO pulse-train with a

reference signal. Image directly adapted from our publication in [10].

[10]. This renders the described OPO very suitable for random number generation and presents

the reason for the featured Unambiguity. Moreover, the unprocessed data obtained directly from

measurements displays no bias, i.e. the probabilities to obtain 0 or 1 can be considered equal [10],

which builds the foundation of the positive outcomes of the randomness analysis in the following

section.
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4.5 Analysis of Random Numbers

“Anyone who considers arithmetical methods of producing random digits is,

of course, in a state of sin.”

- John von Neumann -

Whenever random numbers are obtained, it is necessary to perform checks on the quality and the

underlying mechanism of the RNG involved, in order to demonstrate that the obtained numbers

can be considered random. Indeed, Randomness is a rather fundamental concept related to Pre-

dictability, Determinism and even the limits of the Scientific Method in general [142]. Every test

of Randomness therefore is only valuable when the involved assumptions are clearly stated, which

may in turn limit the applicability of the random numbers involved, such that ideally, Random-

ness is not qualified or certified by the numbers that are output, but by the physical system in

question and the underlying mechanism which produces those numbers [160]. It is common to

use standard randomness tests such as the NIST test suite [200]. However, these test are initially

designed for algorithmic pseudo-random number generators and provide no sufficient proof of ran-

domness [10, 201]. Indeed, it is impossible to search all possible patterns occurring in strings of

random numbers, such that any test may miss a pattern and indeed, many numbers created from

deterministic algorithms or even real numbers such as π or e do pass most of these test [10,142]. In

the case of the presented OPO, a complete a priori analysis of the involved entropies as in [160] was

not feasible due to the complexity of the system and the open questions concerning proofs of the

origin of randomness as discussed in [10]. In brief, the generation of single photons by spontaneous

parametric down-conversion in the non-linear gain crystal present in the cavity plays a significant

role in the transient process of the described OPO, along with cavity losses [10]. However, the

qualitative contribution of these processes to the build-up of the period-doubling state is still under

investigation [10] and expression of this state in terms of density matrices could not be readily

obtained. Instead, an analysis of the output from N ≈ 2.25 · 108 measurements is presented, which
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does not follow the presented standard tests, but examines Feller’s Coin Tossing Constants [9] and

conditional entropies obtained from sub-sequences of the measurement results [10, 185].

4.5.1 Feller’s Coin Tossing Constants

A routine check on the output of a RNG is the balance between 0 and 1, which ideally occur with

identical probability. This analysis can be extended to tuples, as in the case of the conditional

entropy analysis performed later on. Yet, it is desirable to analyse tuples of higher order, enabled

e.g. by the Coin Tossing Constants introduced by Feller [9]. The basic idea behind this concept

is to analyse whether patterns of subsequent identical outcomes such as 00 . . . 0︸  ︷︷  ︸
k

do occur, and to

which order k. The probability for such sequences of k consecutive heads (or tails) to not appear

in n independent tosses of a fair coin, is denoted as p(n, k). In formal terms and specified to the

problem at hand in a calculable way, we define the event En,k and the associated probability as

Ek,n :: k consecutive 1s appear inn independent outcomes of a fair RNG. (4.9)

p(n, k) ≡ p(Ek,n). (4.10)

The bar over Ek,n denotes negation of this event. For completeness, n is the size of the analysed

(sub-)sample of measurement outcomes and k is the length of the consecutive sequence in question,

as specified. These probabilities are calculated from the raw measurement data and compared to

the ideal Feller’s constants αk given by the smallest positive real root of the polynomial [9]

xk+1 − 2k+1(x − 1) = 0 (4.11)

where k a priori is a general order parameter. The constant βk is defined in terms of αk and k

as [9]

βk ≡ 2 − αk/(k + 1 − kαk). (4.12)

The relation between p(n, k) and the coin tossing constants is

lim
n→∞

p(n, k)αn+1
k = βk, (4.13)
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in the limit of an infinite sample size. For large n, this expression also yields an approximation

p(n, k) ≈ βkα
−(n+1)
k . (4.14)

It is possible to avoid the need of numerically solving the roots of the polynomial in (4.11), since

p(n,k) as defined in (4.13) can also be calculated explicitly with the use of generalized Fibonacci

numbers from [202]

p(n, k) =
F(k)

n+k

2n (4.15)

where F(k)
n+k is the (n + k) − th element of the k-step Fibonacci sequence. These general Fibonacci

numbers extend the more commonly known notion of standard Fibonacci numbers in the sense that

a number of k entries are summed up to obtain the next number in the sequence as opposed to the

usual definition, where kstandard ≡ 2 is fixed, see Figure 4.7. Note that the notation p(n, k) = F̃(k)
n+2/2n is

also present in the literature, with the difference to (4.15) being the index (n + 2) instead of (n + k).

This applies when the first element is F̃(k)
0 ≡ 1. For the calculations used here, the leading zeros

F(k)
0 ≡ 0 are included in the definition [10].

k=2 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10 946 17 711
k=3 1 1 2 4 7 13 24 44 81 149 274 504 927 1705 3136 5768 10 609 19 513 35 890 66 012 121 415 223 317
k=4 1 1 2 4 8 15 29 56 108 208 401 773 1490 2872 5536 10 671 20 569 39648 76 424 147 312 283 953 547337
k=5 1 1 2 4 8 16 31 61 120 236 464 912 1793 3525 6930 13 624 26 784 52 656 103519 203 513 400 096 786 568
k=6 1 1 2 4 8 16 32 63 125 248 492 976 1936 3840 7617 15 109 29 970 59 448 117 920 233 904 463 968 920 319
k=7 1 1 2 4 8 16 32 64 127 253 504 1004 2000 3984 7936 15 808 31 489 62 725 124 946 248 888 495 776 987568
k=8 1 1 2 4 8 16 32 64 128 255 509 1016 2028 4048 8080 16 128 32 192 64 256 128 257 256 005 510 994 1 019 960
k=9 1 1 2 4 8 16 32 64 128 256 511 1021 2040 4076 8144 16 272 32 512 64960 129 792 259 328 518 145 1 035 269
k=10 1 1 2 4 8 16 32 64 128 256 512 1023 2045 4088 8172 16 336 32 656 65 280 130496 260 864 521 472 1 042 432
k=11 1 1 2 4 8 16 32 64 128 256 512 1024 2047 4093 8184 16 364 32 720 65 424 130 816 261 568 523 008 1 045 760
k=12 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4095 8189 16 376 32 748 65 488 130 960 261 888 523 712 1047 296
k=13 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8191 16 381 32 760 65 516 131 024 262 032 524 032 1 048 000
k=14 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16 383 32 765 65528 131 052 262 096 524 176 1 048 320
k=15 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16 384 32 767 65 533 131064 262 124 524 240 1 048 464
k=16 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16 384 32 768 65 535 131 069 262 136 524 268 1 048 528
k=17 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16 384 32 768 65536 131 071 262 141 524 280 1048 556
k=18 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16 384 32 768 65536 131 072 262 143 524 285 1 048 568
k=19 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16 384 32 768 65536 131 072 262 144 524 287 1 048 573
k=20 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16 384 32 768 65536 131 072 262 144 524 288 1 048 575

Figure 4.7: Generalized Fibonacci numbers F(k)
n+k used in (4.15) to calculate the probabilities as-

sociated to Feller’s Coin Tossing Constants [9], displayed up to order k = 20. Order

parameters are listed in the first column, while the rows present the first 21 entries of

each k-step Fibonacci sequence. Leading zeroes are not included. Note that each num-

ber is obtained by summing the previous k elements. For higher orders, the sequences

naturally tend to include more powers of 2, highlighted in red colour.
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The probabilities p(n, k) are thus calculated with the use of generalized Fibonacci numbers (4.15)

or from the approximation presented by Feller (4.14). The difference between both methods is

negligible, as demonstrated in the Supplementary Material of [10], for large enough sample sizes.

In order to find a good balance between non-vanishing probabilities p(n, k) for low numbers of

k, resulting in non-zero expectation values of occurrences in the sample of N ≈ 2.25 · 108 (c.f.

Table 4.1), and the possibility to make qualitative and calculable statement for higher orders, a

sub-sample size of n = 400 is chosen for the analysis of sequences occurring. This means that

among the N = 224, 919, 337 bits analysed, all possible sequences of length n = 400, including

overlaps are searched for sequences such as 11 . . . 1︸  ︷︷  ︸
k

. The number of occurrence Ω of substrings in

which such a sequence is not found, is counted and compared to the ideal value resulting from

Ωideal = p(n, k) · N, (4.16)

see Table 4.1. From the actual number of occurrences in the data, a value

p̃0(n, k) =
Ωreal

N
(4.17)

can be inferred. From this, according to equations (4.12) and (4.14), the Coin Tossing Constants

α can be obtained, as done in Table 4.2, where the outcome is also compared to the ideal Coin

Tossing Constants. Note that the mere counting of occurrences in overlapping strings of n = 400

bits within the whole sample of N ≈ 2.25 · 108 is extensive in terms of RAM and CPU, such that

the calculations for each order k lasted between 4h and 5h using 20 CPU cores on an IBM Server

System x3850 X5 4x 8C Xeon X7560 2,26GHz 128GB. The obtained occurrences are in very

good agreement with the the ideal numbers calculated from Feller’s Coin Tossing Constants. This

is especially visible from the fraction of the observed and expected numbers in the last column of

Table 4.1, in which the difference to unity is less than 2·10−3 in all cases from k > 5 and continues to

decrease. The raw and unprocessed measurement data can thus reproduce the expected behaviour

following the principles introduced by Feller [9] and it was shown that indeed Feller’s Coin Tossing

Constants can be reproduced to very good accuracy, which is remarkable. However, on the critical
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side, one may ask whether this passed test has any fundamental difference to the statistical standard

tests commonly used on random numbers [200]. These tests were heavily criticized in [10] and

elsewhere [142]. However they have in common with the presented method that very specific

patterns are searched and analysed, while other patterns may be missed. Yet, the retrieval of

Feller’s Coin Tossing Constants [9] represents a way to make statements about tuples of high

order within a sequence of random numbers.

k p(n,k) Expected occurrences Occurrences in data data/expected

2 1.7846 × 10−37 0 0 -

3 3.1894 × 10−15 0 0 -

4 4.2602 × 10−7 96 131 1.36458

5 0.00109933 247260 247909 1.00262

6 0.0382887 8611853 8602356 0.998897

7 0.203962 45874935 45822724 0.998862

8 0.457264 102847303 102947552 1.00097

9 0.678849 152685938 152710004 1.00016

10 0.824992 185556222 185490825 0.999648

11 0.908715 204387118 204276752 0.99946

12 0.95344 214446648 214336752 0.999488

13 0.976518 219637428 219591262 0.99979

14 0.988224 222270275 222294422 1.00011

15 0.994111 223594365 223598120 1.00002

Table 4.1: The ideal probabilities p(n, k) related to Feller’s Coin Tossing Constants, and occur-

rences of associated sequences in the measurement data from the OPO operated as

a Random Number Generator. The expected occurrences are calculated according to

equation (4.16). Within a number of N = 224919337 ≈ 2.25 · 108 random bits, all oc-

curring substrings of length n = 400 were searched for sequences of identical outcomes

of length k. This length of the substrings is chosen in order to obtain non-vanishing

probabilities, from which the extracted Coin Tossing Constants are calculated, see Ta-

ble 4.2. This analysis is also performed in the Supplementary Material of [10].
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k αideal − 1 αextracted − 1 Relative change

2 2.36067977 × 10−1 – –

3 8.73780254 × 10−2 – –

4 3.75801274 × 10−2 3.67635407 × 10−2 2.17292158 × 10−2

5 1.73207833 × 10−2 1.73140575 × 10−2 3.88306337 × 10−4

6 8.27651672 × 10−3 8.27932857 × 10−3 −3.39738506 × 10−4

7 4.03411036 × 10−3 4.03700659 × 10−3 −7.17936380 × 10−4

8 1.98835585 × 10−3 1.98587729 × 10−3 1.24653524 × 10−3

9 9.86236573 × 10−4 9.85835060 × 10−4 4.07116415 × 10−4

10 4.90924534 × 10−4 4.91824333 × 10−4 −1.83286681 × 10−3

11 2.44858952 × 10−4 2.46240818 × 10−4 −5.64351724 × 10−3

12 1.22264478 × 10−4 1.23579053 × 10−4 −1.07518985 × 10−2

13 6.10873757 × 10−5 6.16278254 × 10−5 −8.84715938 × 10−3

14 3.05315574 × 10−5 3.02515619 × 10−5 9.17068859 × 10−3

15 1.52625157 × 10−5 1.52191234 × 10−5 2.84306455 × 10−3

Table 4.2: Feller’s Coin Tossing Constants (second column) compared to the constants extracted

from measurement data provided by the OPO experiment (third column). The extracted

Coin Tossing Constants are calculated from the data in Table 4.1. The reason why no

Coin Tossing Constants could be inferred for k < 4 can also be seen in Table 4.1, namely

no occurrences of the sequences in question were detected due to the vanishing associ-

ated probabilities. Note that this table differs from the one presented in the publication

in [10]. Portrayed are the Coin Tossing Constants α subtracted with one, i.e. α − 1.

The relative change, calculated by αideal−αextracted
αideal−1 , is significantly lower than the relative

change presented in the paper [10], which is calculated directly from the Coin Tossing

Constants without subtraction. In [10], a scaling of the relative change in terms of
√

N

is speculated, which can not be confirmed by the above analysis. Yet, the extracted Coin

Tossing Constants are in good agreement with the ideal case.
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4.5.2 Conditional Entropy Analysis of Random Numbers

Further tests were performed on the numbers output by the OPO experiment [10], in order to obtain

conditional entropies from the data. These entropies are based on conditional probabilities defined

in terms of joint probability and single probability by

p(x|y) =
p(x ∧ y)

p(y)
, (4.18)

where the wedge “∧" represents the logical AND operator. Here, we define conditional entropies

and associated conditional probabilities by events

E0(i) :: the i-th bit is 0

E0(i + 1) :: the (i + 1)-th bit is 0
(4.19)

such that the conditional probability to obtain a 0 on the (i + 1) − th bit of a string ob bits in the

case when a 0 is already obtained on bit i reads as

pi(0|0) ≡ p (E0(i + 1) |E0(i)) =
p (E0(i + 1) ∧ E0(i))

p(E0(i))
. (4.20)

So, the conditional Shannon entropy in this case can be written down in the following exemplary

manner.

HS h(E0 |E1) =
∑

i

p(E1(i)) · HS h(E0 |E1(i))

= −
∑

i

p(E1(i)) · p (E0(i + 1) |E1(i)) · log2 (p (E0(i + 1) |E1(i))) .
(4.21)

Here, when the events E are given without index, a unification is implicitly assumed such as

E0 ≡
⋃

i E0(i). Definitions for other tuple combinations of 0 and 1 are equally defined. A similar

unification over the whole set of bits is implied when defining conditional probabilities for the

overall sequence as

p(0|0) ≡
n−1∑

i

pi(0|0)
n − 1

=
p(0 ∧ 0)

p(0)

≡
Ω(0 ∧ 0))

Ω(0 ∧ 0) + Ω(0 ∧ 1) + Ω(1 ∧ 0) + Ω(1 ∧ 1)
/

Ω(0)
Ω(0) + Ω(1)

(4.22)
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Note that at most, (n − 1) tuples can occur within a sequence. Ω denotes occurrences of tuples

within the overall sequence such that

Ω(0 ∧ 0) ≡
∑
i=1

(E0(i + 1) ∧ E0(i)) , (4.23)

where the sum is taken over the boolean outcomes of the AND operation (∧), in the sense that

true = 1 and false = 0. In simple terms, this just counts how many tuples of 0s are found in

the sequence, such that the conditional probabilities and entropies are easily calculable. In that

sense, the Shannon entropy defined by events in (4.21) can be rewritten in terms of conditional

probabilities of the overall sequence of bits

HS h = −
∑

y∈{0,1}

p(y)
∑

x∈{0,1}

p(x|y) log2 p(x|y). (4.24)

In an equal manner, the min Entropy H∞ is defined in terms of probabilities obtained from the

data. In difference to the Shannon entropy, there is no summation over all possible conditional

probability terms, but the maximal conditional probability is selected by

H∞ = − log2

 1∑
y=0

p(y) max
x∈{0,1}

{p(x|y)}

 . (4.25)

Applying the above definitions on sub-samples of the overall sequence containing N = 224919337 ≈

2.2 ·108 bits results in the plot given in Figure 4.8. Note that a few subtleties have to be considered

when calculating the conditional entropies. So, the sample size N has to be even, such that the

ideal case p(0) = p(1) is possible to be inferred from the data. Equally p(0|0) = ... = p(1|1) is

only possible to obtain when N is divisible by four [10]. It was initially intended to calculate the

entropies for all possible permutations of overlapping sub-sequences of the overall measurement

data, however with the IBM Server System available, this calculation was estimated to yield a total

calculation time of approximately 2400 years of CPU time. This calculation was thus perceived

to be beyond the scope of this PhD thesis. Instead, the sub-sample chosen in each calculation is

simply given by the first N bits.
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Figure 4.8: Shannon Entropies and Min Entropies calculated from the sequence of random bits

produced by our OPO experiment in [10]. Indeed, the difference to perfect entropy, i.e.

(1 − H) is displayed over the length N of the respective sample sequence taken from

the overall Nmax ≈ 2.25 · 108 measurement results. The “forbidden areas" are obtained

a priori by analysing the effect of one bit-flip from a perfectly distributed bit sequence

(upper, light blue area) and the bound of 11.5σ (lower, light red area) is obtained by er-

ror propagation from a perfect distribution in the Supplementary Material of [10]. The

inset on the upper left corner shows that a few sequences with lower sample sizes show

perfect entropy, i.e. the single bit probabilities such as p(0) and the conditional tuple

probabilities such as p(0|1) are all equally likely to occur. This plot is also provided in

our publication in [10].
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Note that, as in the case of Feller’s Coin Tossing Constants obtained in the previous section 4.5.1,

this analysis of Conditional Entropies represents a test of patterns within the overall sequence of

random bits. The test for Conditional Entropies is basically a search of tuples of bits occurring

within the overall data from measurements. In this sense, this analysis is not fundamentally differ-

ent to the statistical tests within the NIST test suite [200]. However, the entropies obtained show

a clear scaling behaviour and reach remarkably high values. The most significant feature of the

presented analysis is the fact that some bounds for the entropies in question can be obtained a

priori, as seen in Figure 4.8, by analysing the effect of single bit-flips and realistic bounds as in the

Supplementary Material of [10]. However, for future attempts to quantify Randomness, it would

be desirable to obtain a different kind of conditional entropies a priori, namely entropies that can

be inferred directly from the underlying physical processes and assumptions such as presented by

Frauchinger, Renner and Troyer in [160].
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4.6 Conclusion: QRNG

Three different approaches for generation of random numbers due to an underlying quantum me-

chanical process were presented. Steps towards rigorous Certification by Quantum Contextuality

(Section 4.2), in particular by the KCBS-Inequality, introduced in Section 3.4, were given. While

experiments aiming at such a certified Random Number Generation were presented [8, 140, 145],

the need to solidify the underlying assumptions and implications was pointed out. In the case of

the canonical single-photon beam-splitter QRNG experiment (Section 4.3), of which surprisingly

few implementations were previously found, the quantum nature of the random numbers in ques-

tion was confirmed by an Anti-Bunching analysis. Measurement results are filtered according to

their correlation properties, which ensures Quantumness, but as of yet presents work towards a

consistent Certification. In the case of the period-doubling Optical Parametric Oscillator (OPO)

(Section 4.4), the quantum origin of the random output is harder to prove, even though sponta-

neous parametric down-conversion, as well as gain and loss processes within the optical cavity

are be identified as relevant processes. However, the raw bits stemming from OPO-measurements,

without further post-processing, were confirmed to be very well suitable for Random Number

Generation. They display excellent properties in terms of Unambiguity, are bias-free and were

moreover found to perform in an excellent manner by an analysis of Feller’s Coin Tossing Con-

stants (Section 4.5.1) and Conditional Entropies (Section 4.5.2) obtained from the output. The

inherent randomness in Quantum Mechanics was thus used, applied to different physical systems

and settings, as a resource to certify the quality of the underlying physical process for Random

Number Generation. This is impossible to obtain from any other non-probabilistic or (seemingly)

chaotic physical process, underlining the unparalleled usefulness of Quantum Resources for future

technological developments.
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Appendix

“The Quantum Universe has a quotation from me in every chapter

— but it’s a damn good book anyway.”

-Richard Feynman-

A.1 Non-unitary Sum of two Unitaries

This section shows that the sum of two unitaries is non-unitary in almost all cases. This result is

used in section 2.2.3, where the purification of spins surrounding a repeatedly projected central

spin is discussed. Let

U =
U1 + U2

2
, (A.26)

where the division by two is necessary in order for the sum to be unitary, even for the trivial

example U1 = U2. Then

U†U =
1
4

(U1 + U2) (U1 + U2)†

=
1 + U1U†2 + U2U†1 + 1

4
=

1
2

+
U1U†2 + U2U†1

4
.

(A.27)

This implies that the condition

U1U†2 +
(
U1U†2

)† !
= 2 · 1 (A.28)
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must be fulfilled in order to satisfy the unitarity requirements det(U) = 1 as well as UU† = 1.

Obviously the trivial solution is

(U1 = U2)⇒
(
U1U†2 +

(
U1U†2

)†
= 2 · 1

)
(A.29)

whereas the other direction of equivalence, i.e. (A.28)
?
⇒ (U1 = U2), remains open at this point.

Considering the individual terms we can observe that

(
U1U†2 = 1

)
⇒ (U1 = U2) (A.30)

but we can not strictly draw this conclusion for the sum of both terms. However, (A.28) is surely

a very strong constraint which is, at most, only fulfilled by a small class of matrices, such that we

can conclude that the sum of two unitaries is non-unitary in almost all cases.

A.2 Selected Mathematica Code

Some examples of Mathematica Code of Simulations and Illustrations are provided here for pos-

sible use by future researchers.

A.2.1 Correlation of Twenty Spins by Repetitive Measurements of a

Central Spin

The code below was used for the simulation of the Purification method introduced [46], here

focused on the possibility to establish correlations among up to twenty spins, see Section 2.5.4.
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Listing A.1: Mathematica Code for Correlation of twenty spins by repetitive measurements of a

central spin

1 nuclearSpinsN = 20;

2 initState = N@1/Sqrt[2] {1, 1};

3 couplings = 20∗N@Chop@Table[{d, 0, 1}/Norm[{d, 0, 1}]^4, {d,.1, 10, .1}][[;; nuclearSpinsN]];

4 \[ Omega] = 23.; \[Tau] = 0.3025;

5 reps = 23; repspartition = 16;

6 HplusSingleQubit = Table[Sum[couplings[[i,j]]∗PauliMatrix[ j ]/2, { j ,3}] + \[ Omega] PauliMatrix[3]/2, { i ,

nuclearSpinsN}];

7 HminusSingleQubit = Table[Sum[−couplings[[i,j]]∗PauliMatrix[j ]/2, { j ,3}] + \[ Omega] PauliMatrix[3]/2, { i ,

nuclearSpinsN}];

8 UplusSingleQubit = MatrixExp[I # \[Tau]] & /@HplusSingleQubit;

9 UminusSingleQubit = MatrixExp[I # \[Tau]] & /@HminusSingleQubit;

10 DateObject[]

11 {timing, totalState } = Sum[ { t [ j ], res} = AbsoluteTiming[ParallelSum[KroneckerProduct @@ Table[(Dot

@@ (PadLeft[IntegerDigits[i, 2], reps] /. {1 −> UplusSingleQubit[[k]], 0 −> UminusSingleQubit[[k]]})).

initState, {k,nuclearSpinsN}],{i,j∗2^repspartition + 1, ( j + 1)∗2^repspartition }]]; { t [ j ], res }, { j , 0, 2^

reps/2^repspartition − 1}];

12 timeConvert[timing]

13 totalState = Flatten[ totalState ];

14 totalState = totalState /Norm[totalState];

15 filePathName = NotebookDirectory[] <> "/data/" <> FileBaseName[NotebookFileName[]] <> "−" <>

IntegerString[nuclearSpinsN] <>"QubitState�freq" <> StringReplace[ToString[\[Omega]], "." −> ","] <> "�

time" <> StringReplace[ToString[\[Tau]], "." −> ","] <> "reps" <> IntegerString[reps] <> ".mx";

16 DumpSave[filePathName, totalState];

A.2.2 Purification Measurement Scheme Illustration

The following generates the Illustration of our Purfication Measurement scheme, introduced above

in Section 2.2.1. In particular the implementation of the Lemniscate of Gerono for general coordi-
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nates of selected spin pairs may be of interest (Lines 24,25 below).

Listing A.2: Code for 3D figure of measurement scheme

1 newcone=Graphics3D[{EdgeForm[None],Opacity[.5],Glow[Green],Green,Specularity[1],newconeRegion=

Cone[{{1.75,0,−.8},{−5.5,0,−.8}},.4],RegionFunction−>Function[{x,y,z},z>−1]},Boxed−>False,PlotRange

−>{{−1,1},{−1,1},{−1,1}}];

2 focusedLaser=ParametricPlot3D[RotationMatrix[\[Theta],{1,0,0}].{x,0,.1x^2+.3} +{0,0,−.8},{x ,−1.6,1.6},{\[

Theta ],0,2\[ Pi ]}, Boxed−>False,Mesh−>None,Axes−>False,PlotStyle−>Directive[Opacity[.5],Glow[

Green],Green,Specularity[1]]];

3 cube=Graphics3D[{Black,Opacity[.2],EdgeForm[None],Cuboid[{−1,−1,−1.2},{1,1,−.005}]}];

4 p=Polygon [{{−1,−1,0},{1,−1,0},{1,1,0},{−1,1,0}}];

5 plane=Graphics3D[{EdgeForm[None],Black,Opacity[.3],p},Boxed−>False];

6 arrow=Graphics3D[{Lighter@Blue,Arrowheads[0.06],Arrow[Tube[{{0,0,−1.1},{0,0,−.5}},0.02]]},Boxed−>False];

7 pcords={{−0.56608,−0.594118,0.},{−0.536717,0.649914,0.},{−0.507535,−0.130824,0.},

8 {+0.173559,−0.624683,0.},{0.130172,0.685553,0.},{0.333096,0.0370521,0.},

9 {0.445469,−0.296539,0.},{−0.170616,0.102843,0.},{0.737797,−0.743911,0.},

10 {0.757756,−0.489728,0.}};

11 points=Graphics3D[{Orange,Specularity[.2],Ball[pcords,.05]}];

12 connectionLines=Graphics3D[{Blue,Opacity[.35],Dashed,Thick,Line[Table[{{0,0,−.5},pcords[[i]]},{i,Length[

pcords]}]]}];

13 x1Photon=−.2(∗+.27∗);x2Photon=x1Photon+.4;zPhoton=−1.35;

14 beziercords={{x1Photon,0,zPhoton},{Mean[{x1Photon,x2Photon}],0,zPhoton+.2},{Mean[{x1Photon,x2Photon

}],0,zPhoton−.2},{x2Photon,0,zPhoton}};

15 photonwiggle=Graphics3D[{Red,Thickness[.01],(∗Arrow[∗)BezierCurve[beziercords](∗,−.1]∗)(∗,BezierCurve

[#+{0,0,0.15}&/@beziercords],BezierCurve[#+{0,0,−0.15}&/@beziercords]∗)},Boxed−>False];

16 xa=−1.2;xb=−1.7;

17 newPhotonWiggle=Graphics3D[{Red,Thickness[.003],BezierCurve[Table[{.15∗Sin[50/Abs[xb−xa]∗(x−Mean[{

xa,xb}])]∗E^−((x−Mean[{xa,xb}])∗5∗1/Abs[xb−xa])^2,0,x},{x,Min[xa,xb],Max[xa,xb],Abs[xb−xa]/100}]]},

Axes−>True];

18 r=.3;xDetect=0;zDetect=−1.75;

19 semiSphere=ImplicitRegion[(x−xDetect)^2+y^2+(z−zDetect)^2<=r^2&&(z−zDetect)<=0,{x,y,z}];

20 detector=Show[RegionPlot3D[semiSphere,Boxed−>False],Graphics3D[{Thickness[.01],Line[{{xDetect,0,

zDetect−r},{xDetect,0,zDetect−2r}}]},Boxed−>False]];
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21 measureBox=Graphics3D[{Darker@Green,Cylinder[{v={0,−.21,zDetect−2r−.2},v+{0,.01,0}},.1],Black,Opacity

[.65],EdgeForm[Black],Cuboid[{−.2,−.2,zDetect−2r−.4},{.2,.2,zDetect−2r}]}];

22 allSpins=GatherBy[Table[{pcords[[i ]],Min@Table[Norm[pcords[[i]]−pcords[[j]]],{ j ,Delete[Table[k,{k,Length[

pcords]}],i ]}]},{ i ,Length[pcords]}],Last];obviousPairs=Select[allSpins,Length[#]==2&];remainigPairs=

GatherBy[Table[{#[[i]],Min@Table[Norm[#[[i]]−#[[j]]],{j,Delete[Table[k,{k,Length[#]}], i ]}]},{ i ,Length[#]}]&

@Flatten[Complement[allSpins,obviousPairs][[All,All,1]],1],Last];

23 lines=Graphics3D[{Dashed,Line[{#[[1,1]],#[[2,1]]}]&/@obviousPairs,Table[Line[{#[[i ]],#[[ i +1]]}],{ i ,1,Length

[#],2}]&[remainigPairs]},Boxed−>False];

24 paraFunc=ParametricPlot3D[Norm[#1−#2]/1.2 RotationMatrix[{{1,0,0},#1−#2}].{ Cos[t]/(1+Sin[t]^2),( Cos[t]

Sin[t])/(1+Sin[t]^2),0}+Mean[{#1,#2}],{t ,−\[Pi ],\[ Pi ]}, PlotStyle−>Directive[Glow@Orange,Tube[.01]],

PlotRange−>All]&;

25 graphic=Show[detector,focusedLaser,plane,cube,arrow,points,paraFunc@@@obviousPairs[[All,All,1]],

paraFunc@@@remainigPairs[[All,All,1]],(∗connectionLines,∗)newPhotonWiggle,measureBox,

RotationAction−>"Clip",PlotRange−>{{−1.75,1.75},{−1,1},{.1,zDetect−2r−.4}},ImageSize−>Large,

ViewPoint−>{0.184966,−3,1.3},ImageResolution−>1000]
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A.2.3 Spin Squeezing Uncertainty Spherical Plot

This code snippet generates the spherical illustrations of Quasi-Probability Distributions used for

Spin Squeezed states in Section 2.8.2.

Listing A.3: Mathematica Code for Squeezing Uncertainty Plots, here using a One-Axis Twisting

Hamiltonian.

1 spinsN = 2;

2 referenceState = KroneckerProduct@@Table[{Cos[\[Theta]/2], E^(I \[Phi]) Sin[\[Theta ]/2]}, { i ,spinsN}] //

Flatten;

3 oneaxisState = Normalize[{E^(I t ) , 1, 1, E^(I t ) }];

4 overlap = Abs[oneaxisState.referenceState]^2;

5 ParallelTable [Quiet[overlapFunc = Inactive[Function][{x, y, z }, ColorData["DarkRainbow", TransformedField["

Spherical" −> "Cartesian", overlap /. t −> a, { r , \[ Theta], \[ Phi]} −> {x, y, z }]]]];

6 SphericalPlot3D[1, {theta, 0, Pi }, {phi, 0, 2 \[ Pi ]}, ColorFunction −> Activate[overlapFunc],

ColorFunctionScaling −> False, PlotPoints −> 50, Boxed −> False, Axes −> False, SphericalRegion

−> True, ViewPoint −> {1.7, 0, 0}, ImageSize −> 200, Mesh −> None] , {a, 0, 2 \[Pi], (2 \[Pi])/8}]
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dreas Wallraff, Kenneth Goodenough, Stephanie Wehner, Kristinn Juliusson, Nathan K.

Langford, and Arkady Fedorov. Contextuality without nonlocality in a superconducting

quantum system. Nature Communications, 7, October 2016. doi:10.1038/ncomms12930.

[cited on pp. 23, 139, 142, 144, 145, 149, 151, 152, 153, 154, 156, 158, and 164]

[8] Mark Um, Xiang Zhang, Junhua Zhang, Ye Wang, Shen Yangchao, D. L Deng, Lu-Ming

Duan, and Kihwan Kim. Experimental Certification of Random Numbers via Quantum

Contextuality. Scientific Reports, 3, April 2013. doi:10.1038/srep01627. [cited on pp.

23, 25, 131, 140, 149, 151, 152, 153, 154, 155, 156, 163, 164, 165, and 184]

[9] William Feller. An introduction to probability theory and its applications. Vol. 1. Wiley

series in probability and mathematical statistics. Wiley, S.l., 3. ed., rev. print., [nachdr.]

edition, 2009. OCLC: 837266385. [cited on pp. 23, 175, 176, 177, and 178]

[10] Tobias Steinle, Johannes N. Greiner, Jörg Wrachtrup, Harald Giessen, and Ilja Ger-

hardt. Unbiased All-Optical Random-Number Generator. Physical Review X, 7(4):041050,

November 2017. doi:10.1103/PhysRevX.7.041050. [cited on pp. 23, 166, 170, 171,

172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 191, 193, and 195]

[11] Mark Um, Xiang Zhang, Junhua Zhang, Ye Wang, Yangchao Shen, D.-L. Deng, Lu-Ming

Duan, and Kihwan Kim. Corrigendum: Experimental Certification of Random Numbers

200

http://dx.doi.org/10.1103/PhysRevA.100.022307
http://dx.doi.org/10.1103/PhysRevA.100.022307
http://dx.doi.org/10.1103/PhysRevA.80.032311
http://dx.doi.org/10.1103/PhysRevA.80.032311
http://dx.doi.org/10.1038/ncomms12930
http://dx.doi.org/10.1038/srep01627
http://dx.doi.org/10.1103/PhysRevX.7.041050


Bibliography

via Quantum Contextuality. Scientific Reports, 8:46927, February 2018. doi:10.1038/

srep46927. [cited on pp. 25, 156, and 164]

[12] J. Aasi et al. Enhanced sensitivity of the LIGO gravitational wave detector by using

squeezed states of light. Nature Photonics, 7(8):613, August 2013. doi:10.1038/

nphoton.2013.177. [cited on pp. 27 and 57]

[13] Boris Korzh, Charles Ci Wen Lim, Raphael Houlmann, Nicolas Gisin, Ming Jun Li, Daniel

Nolan, Bruno Sanguinetti, Rob Thew, and Hugo Zbinden. Provably secure and practical

quantum key distribution over 307 km of optical fibre. Nature Photonics, 9(3):163–168,

March 2015. doi:10.1038/nphoton.2014.327. [cited on p. 28]

[14] Sheng-Kai Liao, Wen-Qi Cai, Wei-Yue Liu, Liang Zhang, Yang Li, Ji-Gang Ren, Juan Yin,

Qi Shen, Yuan Cao, Zheng-Ping Li, Feng-Zhi Li, Xia-Wei Chen, Li-Hua Sun, Jian-Jun

Jia, Jin-Cai Wu, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Yi-Lin

Zhou, Lei Deng, Tao Xi, Lu Ma, Tai Hu, Qiang Zhang, Yu-Ao Chen, Nai-Le Liu, Xiang-

Bin Wang, Zhen-Cai Zhu, Chao-Yang Lu, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, and

Jian-Wei Pan. Satellite-to-ground quantum key distribution. Nature, 549(7670):43–47,

September 2017. doi:10.1038/nature23655. [cited on p. 28]

[15] Jacob D. Biamonte and Peter J. Love. Realizable Hamiltonians for universal adiabatic quan-

tum computers. Physical Review A, 78(1):012352, July 2008. doi:10.1103/PhysRevA.

78.012352. [cited on p. 28]

[16] A. D. Córcoles, A. Kandala, A. Javadi-Abhari, D. T. McClure, A. W. Cross, K. Temme,

P. D. Nation, M. Steffen, and J. M. Gambetta. Challenges and Opportunities of Near-

Term Quantum Computing Systems. Proceedings of the IEEE, pages 1–15, 2019. doi:

10.1109/JPROC.2019.2954005. [cited on pp. 28 and 93]

[17] K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam, N. Grzesiak, J.-S. Chen,

N. C. Pisenti, M. Chmielewski, C. Collins, K. M. Hudek, J. Mizrahi, J. D. Wong-

201

http://dx.doi.org/10.1038/srep46927
http://dx.doi.org/10.1038/srep46927
http://dx.doi.org/10.1038/nphoton.2013.177
http://dx.doi.org/10.1038/nphoton.2013.177
http://dx.doi.org/10.1038/nphoton.2014.327
http://dx.doi.org/10.1038/nature23655
http://dx.doi.org/10.1103/PhysRevA.78.012352
http://dx.doi.org/10.1103/PhysRevA.78.012352
http://dx.doi.org/10.1109/JPROC.2019.2954005
http://dx.doi.org/10.1109/JPROC.2019.2954005


Bibliography

Campos, S. Allen, J. Apisdorf, P. Solomon, M. Williams, A. M. Ducore, A. Blinov,

S. M. Kreikemeier, V. Chaplin, M. Keesan, C. Monroe, and J. Kim. Benchmarking

an 11-qubit quantum computer. Nature Communications, 10(1):1–6, November 2019.

doi:10.1038/s41467-019-13534-2. [cited on p. 28]

[18] Frank Arute, John M. Martinis, et al. Quantum supremacy using a programmable su-

perconducting processor. Nature, 574(7779):505–510, October 2019. doi:10.1038/

s41586-019-1666-5. [cited on pp. 28 and 31]

[19] Szilárd Szalay. Multipartite entanglement measures. Physical Review A, 92(4), October

2015. arXiv: 1503.06071. doi:10.1103/PhysRevA.92.042329. [cited on p. 29]

[20] J. Sperling and W. Vogel. Multipartite Entanglement Witnesses. Physical Review Letters,

111(11):110503, September 2013. doi:10.1103/PhysRevLett.111.110503. [cited on

pp. 29 and 132]

[21] Otfried Gühne, Géza Tóth, and Hans J. Briegel. Multipartite entanglement in spin chains.

New Journal of Physics, 7(1):229, 2005. doi:10.1088/1367-2630/7/1/229. [cited on

p. 29]

[22] A. Döring and C. J. Isham. A topos foundation for theories of physics: II. Daseinisation

and the liberation of quantum theory. Journal of Mathematical Physics, 49(5):053516, May

2008. doi:10.1063/1.2883742. [cited on p. 29]

[23] Edwin Pednault, John A. Gunnels, Giacomo Nannicini, Lior Horesh, and Robert Wisni-

eff. Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore Circuits. October

2019. [cited on p. 31]

[24] C. L. Degen, F. Reinhard, and P. Cappellaro. Quantum sensing. Reviews of Modern Physics,

89(3):035002, July 2017. doi:10.1103/RevModPhys.89.035002. [cited on p. 31]

202

http://dx.doi.org/10.1038/s41467-019-13534-2
http://dx.doi.org/10.1038/s41586-019-1666-5
http://dx.doi.org/10.1038/s41586-019-1666-5
http://dx.doi.org/10.1103/PhysRevA.92.042329
http://dx.doi.org/10.1103/PhysRevLett.111.110503
http://dx.doi.org/10.1088/1367-2630/7/1/229
http://dx.doi.org/10.1063/1.2883742
http://dx.doi.org/10.1103/RevModPhys.89.035002


Bibliography

[25] Sebastian Zaiser, Torsten Rendler, Ingmar Jakobi, Thomas Wolf, Sang-Yun Lee, Samuel

Wagner, Ville Bergholm, Thomas Schulte-Herbrüggen, Philipp Neumann, and Jörg

Wrachtrup. Enhancing quantum sensing sensitivity by a quantum memory. Nature Commu-

nications, 7:12279, August 2016. doi:10.1038/ncomms12279. [cited on pp. 31, 33, 38,

107, and 122]

[26] P. Cappellaro, J. Emerson, N. Boulant, C. Ramanathan, S. Lloyd, and D. G. Cory. En-

tanglement Assisted Metrology. Physical Review Letters, 94(2):020502, January 2005.

doi:10.1103/PhysRevLett.94.020502. [cited on p. 31]

[27] Thomas Wolf, Philipp Neumann, Kazuo Nakamura, Hitoshi Sumiya, Takeshi Ohshima,

Junichi Isoya, and Jörg Wrachtrup. Subpicotesla Diamond Magnetometry. Physical Review

X, 5(4):041001, 2015. doi:10.1103/PhysRevX.5.041001. [cited on pp. 31, 107, 122,

and 123]

[28] Jörg Wrachtrup and Amit Finkler. Single spin magnetic resonance. Journal of Magnetic

Resonance, 269:225–236, August 2016. doi:10.1016/j.jmr.2016.06.017. [cited on

p. 31]

[29] Lukas Schlipf, Thomas Oeckinghaus, Kebiao Xu, Durga Bhaktavatsala Rao Dasari, Andrea

Zappe, Felipe Fávaro de Oliveira, Bastian Kern, Mykhailo Azarkh, Malte Drescher, Markus

Ternes, Klaus Kern, Jörg Wrachtrup, and Amit Finkler. A molecular quantum spin network

controlled by a single qubit. Science Advances, 3(8):e1701116, August 2017. doi:10.

1126/sciadv.1701116. [cited on pp. 31 and 35]

[30] S. Bodenstedt, I. Jakobi, J. Michl, I. Gerhardt, P. Neumann, and J. Wrachtrup. Nanoscale

Spin Manipulation with Pulsed Magnetic Gradient Fields from a Hard Disc Drive

Writer. Nano Letters, 18(9):5389–5395, September 2018. doi:10.1021/acs.nanolett.

8b01387. [cited on pp. 31 and 127]

203

http://dx.doi.org/10.1038/ncomms12279
http://dx.doi.org/10.1103/PhysRevLett.94.020502
http://dx.doi.org/10.1103/PhysRevX.5.041001
http://dx.doi.org/10.1016/j.jmr.2016.06.017
http://dx.doi.org/10.1126/sciadv.1701116
http://dx.doi.org/10.1126/sciadv.1701116
http://dx.doi.org/10.1021/acs.nanolett.8b01387
http://dx.doi.org/10.1021/acs.nanolett.8b01387


Bibliography

[31] Ashok Ajoy and Paola Cappellaro. Stable three-axis nuclear-spin gyroscope in diamond.

Physical Review A, 86(6):062104, December 2012. doi:10.1103/PhysRevA.86.062104.

[cited on p. 31]

[32] J.-C. Jaskula, K. Saha, A. Ajoy, D.J. Twitchen, M. Markham, and P. Cappellaro. Cross-

Sensor Feedback Stabilization of an Emulated Quantum Spin Gyroscope. Physical Review

Applied, 11(5):054010, May 2019. doi:10.1103/PhysRevApplied.11.054010. [cited

on p. 31]

[33] Marcus W. Doherty, Neil B. Manson, Paul Delaney, Fedor Jelezko, Jörg Wrachtrup, and

Lloyd C. L. Hollenberg. The nitrogen-vacancy colour centre in diamond. Physics Reports,

528(1):1–45, July 2013. doi:10.1016/j.physrep.2013.02.001. [cited on pp. 32, 34,

35, 42, 44, 49, 50, 51, 60, 107, 117, 125, and 137]

[34] P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski,

D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin. Room-

Temperature Quantum Bit Memory Exceeding One Second. Science, 336(6086):1283–

1286, June 2012. doi:10.1126/science.1220513. [cited on p. 32]

[35] F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, and J. Wrachtrup. Observation of

Coherent Oscillation of a Single Nuclear Spin and Realization of a Two-Qubit Conditional

Quantum Gate. Physical Review Letters, 93(13):130501, September 2004. doi:10.1103/

PhysRevLett.93.130501. [cited on p. 32]

[36] Abdelghani Laraoui, Florian Dolde, Christian Burk, Friedemann Reinhard, Jörg Wrachtrup,

and Carlos A. Meriles. High-resolution correlation spectroscopy of 13c spins near a

nitrogen-vacancy centre in diamond. Nature Communications, 4:1651, April 2013. doi:

10.1038/ncomms2685. [cited on pp. 32 and 38]

[37] F. Shagieva, S. Zaiser, P. Neumann, D. B. R. Dasari, R. Stöhr, A. Denisenko, R. Reuter,

C. A. Meriles, and J. Wrachtrup. Microwave-Assisted Cross-Polarization of Nuclear Spin

204

http://dx.doi.org/10.1103/PhysRevA.86.062104
http://dx.doi.org/10.1103/PhysRevApplied.11.054010
http://dx.doi.org/10.1016/j.physrep.2013.02.001
http://dx.doi.org/10.1126/science.1220513
http://dx.doi.org/10.1103/PhysRevLett.93.130501
http://dx.doi.org/10.1103/PhysRevLett.93.130501
http://dx.doi.org/10.1038/ncomms2685
http://dx.doi.org/10.1038/ncomms2685


Bibliography

Ensembles from Optically Pumped Nitrogen-Vacancy Centers in Diamond. Nano Letters,

18(6):3731–3737, June 2018. doi:10.1021/acs.nanolett.8b00925. [cited on p. 35]

[38] Jianming Cai, Alex Retzker, Fedor Jelezko, and Martin B. Plenio. A large-scale quantum

simulator on a diamond surface at room temperature. Nature Physics, 9(3):168–173, 2013.

doi:10.1038/nphys2519. [cited on p. 35]

[39] H. J. Mamin, M. Kim, M. H. Sherwood, C. T. Rettner, K. Ohno, D. D. Awschalom, and

D. Rugar. Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor.

Science, 339(6119):557–560, February 2013. doi:10.1126/science.1231540. [cited

on p. 38]

[40] Johannes Greiner. Bell Measurement and Quantum Teleportation using Entangled

Single Spins in Nitrogen-Vacancy Diamond Defects. Bachelor’s Thesis, University

of Stuttgart, 2011. URL: http://homepage.cem.itesm.mx/jose.luis.gomez/

quantum/baateleportation.pdf. [cited on pp. 40 and 57]

[41] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.

Cambridge University Press, October 2000. [cited on pp. 42, 45, 47, 48, 81, 147, and 148]

[42] Philipp Neumann, Johannes Beck, Matthias Steiner, Florian Rempp, Helmut Fedder,

Philip R. Hemmer, Jörg Wrachtrup, and Fedor Jelezko. Single-Shot Readout of a Single

Nuclear Spin. Science, 329(5991):542–544, July 2010. doi:10.1126/science.1189075.

[cited on pp. 44, 137, 147, and 149]

[43] E. Togan, Y. Chu, A. Imamoglu, and M. D. Lukin. Laser cooling and real-time measurement

of the nuclear spin environment of a solid-state qubit. Nature, 478(7370):497–501, 2011.

doi:10.1038/nature10528. [cited on pp. 51, 60, and 90]

[44] W. Pfaff, B. J. Hensen, H. Bernien, S. B. van Dam, M. S. Blok, T. H. Taminiau, M. J.

Tiggelman, R. N. Schouten, M. Markham, D. J. Twitchen, and R. Hanson. Unconditional

205

http://dx.doi.org/10.1021/acs.nanolett.8b00925
http://dx.doi.org/10.1038/nphys2519
http://dx.doi.org/10.1126/science.1231540
http://homepage.cem.itesm.mx/jose.luis.gomez/quantum/baateleportation.pdf
http://homepage.cem.itesm.mx/jose.luis.gomez/quantum/baateleportation.pdf
http://dx.doi.org/10.1126/science.1189075
http://dx.doi.org/10.1038/nature10528


Bibliography

quantum teleportation between distant solid-state quantum bits. Science, 345(6196):532–

535, August 2014. doi:10.1126/science.1253512. [cited on p. 57]

[45] S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac. Im-

provement of Frequency Standards with Quantum Entanglement. Physical Review Letters,

79(20):3865–3868, November 1997. doi:10.1103/PhysRevLett.79.3865. [cited on

pp. 57, 96, and 116]

[46] Johannes N. Greiner, Durga Bhaktavatsala Rao Dasari, and Jörg Wrachtrup. Purification

of an unpolarized spin ensemble into entangled singlet pairs. Scientific Reports, 7(1):529,

April 2017. doi:10.1038/s41598-017-00603-z. [cited on pp. 57, 60, 61, 62, 63, 68,

70, 71, 72, 73, 74, 78, 79, 91, 92, 137, 186, 191, and 195]

[47] G. Lüders. Concerning the state-change due to the measurement process. Annalen der

Physik, 15(9):663–670, September 2006. doi:10.1002/andp.200610207. [cited on pp.

58 and 148]

[48] Hiromichi Nakazato, Tomoko Takazawa, and Kazuya Yuasa. Purification through Zeno-

Like Measurements. Physical Review Letters, 90(6):060401, February 2003. doi:10.

1103/PhysRevLett.90.060401. [cited on pp. 58, 66, and 78]

[49] Iñigo Urizar-Lanz, Philipp Hyllus, Iñigo Luis Egusquiza, Morgan W. Mitchell, and

Géza Tóth. Macroscopic singlet states for gradient magnetometry. Physical Review A,

88(1):013626, July 2013. doi:10.1103/PhysRevA.88.013626. [cited on pp. 70 and 93]

[50] Brijesh Kumar. Quantum spin models with exact dimer ground states. Physical Review B,

66(2):024406, June 2002. doi:10.1103/PhysRevB.66.024406. [cited on pp. 70 and 93]

[51] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum

entanglement. Reviews of Modern Physics, 81(2):865–942, June 2009. doi:10.1103/

RevModPhys.81.865. [cited on pp. 72 and 131]

206

http://dx.doi.org/10.1126/science.1253512
http://dx.doi.org/10.1103/PhysRevLett.79.3865
http://dx.doi.org/10.1038/s41598-017-00603-z
http://dx.doi.org/10.1002/andp.200610207
http://dx.doi.org/10.1103/PhysRevLett.90.060401
http://dx.doi.org/10.1103/PhysRevLett.90.060401
http://dx.doi.org/10.1103/PhysRevA.88.013626
http://dx.doi.org/10.1103/PhysRevB.66.024406
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/RevModPhys.81.865


Bibliography

[52] Wojciech H. Zurek. Decoherence and the Transition from Quantum to Classical. Physics

Today, 44(10):36–44, 1991. doi:10.1063/1.881293. [cited on p. 72]

[53] William K. Wootters. Entanglement of Formation of an Arbitrary State of Two Qubits.

Physical Review Letters, 80(10):2245–2248, March 1998. doi:10.1103/PhysRevLett.

80.2245. [cited on p. 74]

[54] Richard A. Brualdi. Introductory combinatorics. Pearson/Prentice Hall, Upper Saddle

River, N.J, 5th ed edition, 2010. OCLC: ocn245024866. [cited on p. 79]

[55] James L. Hein. Discrete mathematics. Jones and Bartlett Publishers, Boston, 2nd ed edition,

2003. [cited on p. 79]

[56] Christian Schwemmer, Lukas Knips, Daniel Richart, Harald Weinfurter, Tobias Moroder,

Matthias Kleinmann, and Otfried Gühne. Systematic Errors in Current Quantum State

Tomography Tools. Physical Review Letters, 114(8):080403, February 2015. doi:

10.1103/PhysRevLett.114.080403. [cited on pp. 93 and 134]

[57] Iagoba Apellaniz, Matthias Kleinmann, Otfried Gühne, and Géza Tóth. Optimal wit-

nessing of the quantum Fisher information with few measurements. Physical Review A,

95(3):032330, March 2017. doi:10.1103/PhysRevA.95.032330. [cited on p. 93]

[58] Masahiro Kitagawa and Masahito Ueda. Squeezed spin states. Physical Review A,

47(6):5138–5143, June 1993. doi:10.1103/PhysRevA.47.5138. [cited on pp. 96, 98,

99, 101, 102, 103, 104, and 128]

[59] Xiaoguang Wang and Barry C. Sanders. Spin squeezing and pairwise entanglement for

symmetric multiqubit states. Physical Review A, 68(1):012101, July 2003. doi:10.1103/

PhysRevA.68.012101. [cited on pp. 96, 99, 102, and 104]

[60] N. Killoran, M. Cramer, and M. B. Plenio. Extracting Entanglement from Identical Particles.

207

http://dx.doi.org/10.1063/1.881293
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevLett.114.080403
http://dx.doi.org/10.1103/PhysRevLett.114.080403
http://dx.doi.org/10.1103/PhysRevA.95.032330
http://dx.doi.org/10.1103/PhysRevA.47.5138
http://dx.doi.org/10.1103/PhysRevA.68.012101
http://dx.doi.org/10.1103/PhysRevA.68.012101


Bibliography

Physical Review Letters, 112(15):150501, April 2014. doi:10.1103/PhysRevLett.112.

150501. [cited on pp. 96 and 99]

[61] J. Hald, J. L. Sørensen, C. Schori, and E. S. Polzik. Spin Squeezed Atoms: A Macroscopic

Entangled Ensemble Created by Light. Physical Review Letters, 83(7):1319–1322, August

1999. doi:10.1103/PhysRevLett.83.1319. [cited on pp. 96 and 128]

[62] R. J. Sewell, M. Koschorreck, M. Napolitano, B. Dubost, N. Behbood, and M. W. Mitchell.

Magnetic Sensitivity Beyond the Projection Noise Limit by Spin Squeezing. Physical

Review Letters, 109(25):253605, December 2012. doi:10.1103/PhysRevLett.109.

253605. [cited on p. 96]

[63] T. Fernholz, H. Krauter, K. Jensen, J. F. Sherson, A. S. Sørensen, and E. S. Polzik. Spin

Squeezing of Atomic Ensembles via Nuclear-Electronic Spin Entanglement. Physical Re-

view Letters, 101(7):073601, August 2008. doi:10.1103/PhysRevLett.101.073601.

[cited on p. 96]

[64] Jian Ma, Xiaoguang Wang, C. P. Sun, and Franco Nori. Quantum spin squeezing. Physics

Reports, 509(2–3):89–165, December 2011. doi:10.1016/j.physrep.2011.08.003.

[cited on p. 96]

[65] M. Vengalattore, J. M. Higbie, S. R. Leslie, J. Guzman, L. E. Sadler, and D. M. Stamper-

Kurn. High-Resolution Magnetometry with a Spinor Bose-Einstein Condensate. Physical

Review Letters, 98(20):200801, 2007. doi:10.1103/PhysRevLett.98.200801. [cited

on p. 96]

[66] C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K. Oberthaler. Nonlinear atom inter-

ferometer surpasses classical precision limit. Nature, 464(7292):1165–1169, April 2010.

doi:10.1038/nature08919. [cited on p. 96]

[67] A. R. Usha Devi, Xiaoguang Wang, and B. C. Sanders. Spin Squeezing Criterion with Local

208

http://dx.doi.org/10.1103/PhysRevLett.112.150501
http://dx.doi.org/10.1103/PhysRevLett.112.150501
http://dx.doi.org/10.1103/PhysRevLett.83.1319
http://dx.doi.org/10.1103/PhysRevLett.109.253605
http://dx.doi.org/10.1103/PhysRevLett.109.253605
http://dx.doi.org/10.1103/PhysRevLett.101.073601
http://dx.doi.org/10.1016/j.physrep.2011.08.003
http://dx.doi.org/10.1103/PhysRevLett.98.200801
http://dx.doi.org/10.1038/nature08919


Bibliography

Unitary Invariance. Quantum Information Processing, 2(3):207–220, June 2003. doi:

10.1023/B:QINP.0000004125.12489.f4. [cited on p. 96]
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Marcin Wieśniak, and Anton Zeilinger. Experimental non-classicality of an indivisible

quantum system. Nature, 474(7352):490–493, June 2011. doi:10.1038/nature10119.

[cited on pp. 139 and 158]

216

http://dx.doi.org/10.1038/nphys2545
http://dx.doi.org/10.1038/nature12016
http://dx.doi.org/10.1038/nature12016
http://dx.doi.org/10.1038/s41467-017-00964-z
http://dx.doi.org/10.1111/j.1746-8361.1960.tb00422.x
http://dx.doi.org/10.1103/PhysRevA.93.032102
http://dx.doi.org/10.1038/nature10119


Bibliography

[124] Alley Hameedi, Armin Tavakoli, Breno Marques, and Mohamed Bourennane. Communi-

cation Games Reveal Preparation Contextuality. Physical Review Letters, 119(22):220402,

November 2017. doi:10.1103/PhysRevLett.119.220402. [cited on p. 139]

[125] Andrea Crespi, Marco Bentivegna, Ioannis Pitsios, Davide Rusca, Davide Poderini, Gon-

zalo Carvacho, Vincenzo D’Ambrosio, Adán Cabello, Fabio Sciarrino, and Roberto Osel-

lame. Single-Photon Quantum Contextuality on a Chip. ACS Photonics, 4(11):2807–

2812, November 2017. doi:10.1021/acsphotonics.7b00793. [cited on pp. 139, 145,

and 158]

[126] S. B. van Dam, J. Cramer, T. H. Taminiau, and R. Hanson. Multipartite Entanglement Gen-

eration and Contextuality Tests Using Nondestructive Three-Qubit Parity Measurements.

Physical Review Letters, 123(5):050401, July 2019. doi:10.1103/PhysRevLett.123.

050401. [cited on pp. 139, 140, and 158]

[127] Juan Bermejo-Vega, Nicolas Delfosse, Dan E. Browne, Cihan Okay, and Robert

Raussendorf. Contextuality as a Resource for Models of Quantum Computation with

Qubits. Physical Review Letters, 119(12):120505, September 2017. doi:10.1103/

PhysRevLett.119.120505. [cited on pp. 139 and 142]

[128] Mark Howard, Joel Wallman, Victor Veitch, and Joseph Emerson. Contextuality supplies

the ’magic’ for quantum computation. Nature, 510(7505):351–355, June 2014. doi:10.

1038/nature13460. [cited on pp. 139 and 142]

[129] Xiao-Min Hu, Jiang-Shan Chen, Bi-Heng Liu, Yu Guo, Yun-Feng Huang, Zong-Quan Zhou,

Yong-Jian Han, Chuan-Feng Li, and Guang-Can Guo. Experimental Test of Compatibility-

Loophole-Free Contextuality with Spatially Separated Entangled Qutrits. Physical Review

Letters, 117(17):170403, 2016. doi:10.1103/PhysRevLett.117.170403. [cited on pp.

140 and 164]

217

http://dx.doi.org/10.1103/PhysRevLett.119.220402
http://dx.doi.org/10.1021/acsphotonics.7b00793
http://dx.doi.org/10.1103/PhysRevLett.123.050401
http://dx.doi.org/10.1103/PhysRevLett.123.050401
http://dx.doi.org/10.1103/PhysRevLett.119.120505
http://dx.doi.org/10.1103/PhysRevLett.119.120505
http://dx.doi.org/10.1038/nature13460
http://dx.doi.org/10.1038/nature13460
http://dx.doi.org/10.1103/PhysRevLett.117.170403


Bibliography

[130] Matthias Kleinmann, Otfried Gühne, José R. Portillo, Jan-Åke Larsson, and Adán Cabello.

Memory cost of quantum contextuality. New Journal of Physics, 13(11):113011, 2011.

doi:10.1088/1367-2630/13/11/113011. [cited on pp. 140 and 164]

[131] David A. Meyer. Finite Precision Measurement Nullifies the Kochen-Specker Theo-

rem. Physical Review Letters, 83(19):3751–3754, November 1999. doi:10.1103/

PhysRevLett.83.3751. [cited on pp. 140 and 164]

[132] Adán Cabello and Marcelo Terra Cunha. Proposal of a Two-Qutrit Contextuality Test

Free of the Finite Precision and Compatibility Loopholes. Physical Review Letters,

106(19):190401, 2011. doi:10.1103/PhysRevLett.106.190401. [cited on pp. 140,

158, and 164]

[133] Simon Kochen and E. P. Specker. The Problem of Hidden Variables in Quantum Mechanics.

In C. A. Hooker, editor, The Logico-Algebraic Approach to Quantum Mechanics, number 5a

in The University of Western Ontario Series in Philosophy of Science, pages 293–328.

Springer Netherlands, 1975. doi:10.1007/978-94-010-1795-4_17. [cited on p. 140]

[134] Radek Lapkiewicz, Peizhe Li, Christoph Schaeff, Nathan K. Langford, Sven Ramelow,
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