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Context: Continuous software engineering (CSE) aims to produce high-
quality software through frequent and automated releases of concurrently
developed services. By replaying workloads that are representative of the
production environment, load testing can identify quality degradation un-
der realistic conditions. The literature proposes several approaches that
extract representative workload models from recorded data. However, these
approaches contradict CSE’s high pace and automation in three aspects:
they require manual parameterization, generate resource-intensive system-
level load tests, and lack the means to select appropriate periods from the
temporally varying production workload to justify time-consuming testing.

Objective: This dissertation addresses the automated generation of tailored
load tests to reduce the time and resources required for CSE-integrated
testing. The tailoring needs to consider the services of interest and select the
most relevant workload periods based on their context, such as the presence
of a special sale when testing a webshop. Also, we intend to support experts
and non-experts with a high degree of automation and abstraction.

Method: We develop and evaluate description languages, algorithms, and
an automated load test generation approach that integrates workload model
extraction, clustering, and forecasting. The evaluation comprises laboratory
experiments, industrial case studies, an expert survey, and formal proofs.
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Results: Our results show that representative context-tailored load tests can
be generated by learning a workload model incrementally, enriching it with
contextual information, and predicting the expected workload using time
series forecasting. For further tailoring the load tests to services, we propose
extracting call hierarchies from recorded invocation traces. Dedicated models
of evolving manual parameterizations automate the generation process and
restore the representativeness of the load tests. Furthermore, the integration
of our approach with an automated execution framework enables load testing
for non-experts. Following open-science practices, we provide supplementary
material online.

Conclusion: The proposed approach is a suitable solution for the described
problem. Future work should refine specific building blocks the approach
leverages. These blocks are the clustering and forecasting techniques from
existing work, which we have assessed to be limited for predicting sharply
fluctuating workloads, such as load spikes.
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Kontext: Die kontinuierliche Softwareentwicklung hat zum Ziel, qualitativ
hochwertige Software durch häufige und automatisierte Releases parallel
entwickelter Dienste zu produzieren. Indem sie für die Produktivumgebung
repräsentatives Lastverhalten wiedergeben, können Lasttests Qualitätsmin-
derungen unter realistischen Bedingungen erkennen. In der Literatur wer-
den verschiedene Ansätze vorgeschlagen, die repräsentative Lastmodelle
aus aufgezeichneten Daten extrahieren. Diese Ansätze stehen jedoch in
drei Aspekten im Widerspruch zu dem Tempo und der Automatisierung der
kontinuierlichen Softwareentwicklung: Sie erfordern eine manuelle Para-
metrisierung, erzeugen ressourcenintensive Lasttests auf Systemebene und
verfügen nicht über die Mittel, aus der zeitlich variierenden Produktivlast
geeignete Zeiträume auszuwählen, die langlaufendes Testen rechtfertigen.

Ziel: Diese Dissertation befasst sich mit der automatisierten Generierung
maßgeschneiderter Lasttests, um die erforderliche Zeit und Ressourcen
für das in die kontinuierliche Softwareentwicklung integrierte Testen zu
reduzieren. Bei dem Maßschneidern sind die Dienste von Interesse zu be-
rücksichtigen und die relevantesten Lastzeiträume auf der Grundlage ihres
Kontexts auszuwählen, wie z. B. der Sonderverkaufsaktion eines Webshops.
Außerdem sollen Nutzer verschiedener Fachkenntnisse mit einem hohen
Automatisierungs- und Abstraktionsgrad unterstützt werden.
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Methode: Entwickelt und evaluiert werden Beschreibungssprachen, Algo-
rithmen und ein automatisierter Ansatz zur Generierung von Lasttests, der
die Extraktion von Lastmodellen, Clustering und Prognosen integriert. Die
Evaluierung umfasst Laborexperimente, Industriefallstudien, eine Experten-
befragung und formale Beweise.

Ergebnisse: Unsere Ergebnisse zeigen, dass repräsentative, auf den Kontext
zugeschnittene Lasttests generiert werden können, indem ein Lastmodell in-
krementell erlernt, mit Kontextinformationen angereichert und das erwartete
Lastverhalten mit Hilfe von Zeitreihenvorhersage berechnet wird. Für die wei-
tere Anpassung der Lasttests an Dienste schlagen wir vor, Aufrufhierarchien
aus aufgezeichneten Aufrufbäumen zu extrahieren. Dedizierte Modelle der
sich verändernden manuellen Parametrisierungen automatisieren den Gene-
rierungsprozess und stellen die Repräsentativität der Lasttests her. Darüber
hinaus ermöglicht die Integration des Ansatzes mit einer automatisierten
Ausführungsumgebung Lasttesten für Nutzer mit geringen Fachkenntnissen.
In Anlehnung an Open-Science-Praktiken wird ergänzendes Material online
zur Verfügung gestellt.

Schlussfolgerung: Der vorgeschlagene Ansatz ist eine geeignete Lösung für
das beschriebene Problem. Zukünftige Arbeiten sollten spezifische Bausteine
verfeinern, auf die der Ansatz zurückgreift. Dabei handelt es sich um die
Clustering- und Vorhersagetechniken aus bestehenden Arbeiten, die limitiert
sind im Hinblick auf die Berechnung stark schwankender Lasten, wie z. B.
Lastspitzen.
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The need for tailored solutions is a commonly known challenge in computer
science— the search query “one size does not fit all” submitted to the dblp
computer science bibliography results in 63 hits.1 In this dissertation, we
face the tailoring of load tests. In the following, we motivate the problem
(Section 1.1), define the research objectives and questions (Section 1.2),
summarize our contributions (Section 1.3), and provide an overview of this
document (Section 1.4).

1.1. Motivation and Problem Statement

Representative Load Testing: Load testing is a powerful means for evaluat-
ing a software application’s behavior under a realistic workload (Jiang and
Hassan, 2015). Being applied in a dedicated test environment, it can iden-
tify load-related functional and non-functional problems without interfering
with the production environment. In doing so, load testing contributes to
business success, e.g., by identifying revenue-decreasing system slowdowns
(Kohavi and Longbotham, 2007) before delivery. The meaningful evaluation

1https://dblp.uni-trier.de/search?q=one+size+does+not+fit+all (visited
on 07/16/2020)

1
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of non-functional quality attributes, such as performance, requires a test
workload that is carefully characterized, i.e., representative of the produc-
tion environment (Ferrari, 1972). Otherwise, relevant issues might remain
undetected (G. Jin et al., 2012). For this reason, several workload charac-
terization approaches have been proposed to replay the resulting workload
models in load tests. Calzarossa et al. (2016) summarize a commonly applied
methodology, which comprises measuring the basic units of work, e.g., the
user sessions, and building a workload model that characterizes these basic
units, e.g., Markov chains representing the average user behavior (Menascé
et al., 1999; Vögele et al., 2018).

Relevance to Research: While representative load testing is generally rele-
vant, it faces both challenges and opportunities when being applied in today’s
industry standard of continuous software engineering (CSE). Opportunities
arise from the neat collaboration of development and operation processes
aiming at high software quality, known as DevOps (Bass et al., 2015). The op-
erational monitoring eases the integration of the workload characterization
methodology into the testing process (Eismann et al., 2020). As opposed to
this, performance engineering tasks, including load testing, are perceived
as challenging (Eismann et al., 2020) and often not applied systematically
(Bezemer et al., 2019). The main reasons are the short release cycles using
automated pipelines (Humble and Farley, 2010) and the architectural style
of microservices, which denote loosely coupled services that are developed
and operated by individual teams (Newman, 2015). The resulting frequent
and concurrent releases conflict with the resource- and time-intensiveness
of—particularly system-wide— load tests (T.-H. Chen et al., 2017).

State of the Art: The literature proposes numerous approaches that address
different aspects of the described challenges. Various workload characteriza-
tion approaches can extract workload models from recorded user sessions or
requests (Barros et al., 2007; Cai et al., 2007; Krishnamurthy et al., 2006;
Lutteroth and Weber, 2008; Menascé and Almeida, 2002; Ruffo et al., 2004;
Vögele et al., 2018), which then can be replayed in load tests. As the ex-
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tracted models typically require manual parameterization (Vögele et al.,
2018) and, thus, are costly to (re-) generate, Syer et al. (2014, 2017) pro-
pose means for checking a load test’s representativeness repeatedly. Works
like the one by Ferme and Pautasso (2017, 2018) deal with automating
the test execution lifecycle, while Versteeg et al. (2016) aim to reduce the
resources required for the test execution by stubbing some of the tested
services. Vögele (2018) proposes to use modeling techniques for selecting
load test cases that most likely induce faults to the tested application. Finally,
in the context of CSE, production testing techniques, such as canary releasing
(Newman, 2015), have emerged, which test an individual service under
(portions of) the real workload.

Limitations of Existing Approaches: These works lack a precise focus on
the most relevant scenarios to fit into the limited time and resources CSE
has for testing. On the one hand, the concurrent development of individual
microservices demands load tests that directly target the respective service—
accompanying service stubbing approaches. On the other hand, application
workloads frequently change (Herbst et al., 2013), to which the testing
needs to adapt. A significant influencer of workload changes is the context
(Chandola et al., 2009). For instance, our evaluation with the student
management system of a large university shows that different contexts, such
as tuition, vacation, and course registration phases, significantly influence
the number of active users and their behavior (see Chapter 14). Thus,
the time and resources saved by prioritizing test scenarios relevant to the
current or near-future context reinforce the already known necessity of
choosing a suitable time frame of recorded data when extracting a workload
model (Ferrari, 1972). Existing workload characterization approaches miss
the means for automating this selection, and, additionally, require manual
parameterization of each generated model. Production testing inherently
uses the current workload, which, however, might not be generalizable to
other scenarios, including the near future (Feitelson, 2002).
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1.2. Objectives and Research Questions

For the reasons described in the previous section, we investigate how to gen-
erate representative load tests that are tailored to the context and services
of interest. As the workload and its contexts vary, the interest may change
over time, e.g., towards handling the course registration load before the
semester starts as opposed to appropriate downscaling during the vacation
phase. Because this evolving interest entails generating load tests repeat-
edly, we furthermore focus on automating the load test parameterization to
achieve a load test generation process that integrates with CSE. Besides, the
tailoring allows us to ease load testing for non-experts and, thus, to tackle
the challenge of rarely adopted performance engineering techniques, which
Bezemer et al. (2019) report.
Our research concentrates on session-based workloads (Menascé et al.,

1999), i.e., workloads consisting of user sessions, each of which comprises
one or multiple consecutive requests to the application under study. As most
customer-faced web applications— including webshops, which are often the
core of a business—manage sessions, this type of workload is particularly
relevant for research.

Summarizing, we postulate and address the following research questions.

RQ1: How can load test parameterizations be evolved without manual
intervention at test generation or execution time?

RQ2: How can representative load tests be tailored to specific services of a
session-based application?

RQ3: How can representative load tests automatically be tailored to the
contexts of a session-based workload?

RQ4: How can we leverage automated tailored load test generation and au-
tomated load test execution for enabling load testing for non-experts?
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Load Testing for Non-experts

uses uses

Automated Parameterization

Service-tailoring Context-tailoring Automated Load
Test Execution
(Ferme and

Pautasso, 2018)

Figure 1.1.: Overview of the contributions of this dissertation. We do not
contribute to automated load test execution, but leverage the
work by Ferme and Pautasso (2018).

1.3. Overview of Contributions

Our contribution is a novel concept and process for generating tailored load
tests automatically. As illustrated in Figure 1.1, we subdivide the contri-
bution according to the research questions. First, we provide an approach
to automating the load test parameterization. Based on that and the ex-
isting session-based workload characterization by Vögele et al. (2018), we
introduce two respective approaches to the tailoring of generated load tests
to particular services and contexts. In collaborative work, we leverage the
automated load test execution engine by Ferme and Pautasso (2018) for
easing load testing for non-experts. Also, we evaluate each of the introduced
approaches, which we consider a separate contribution. As a final contribu-
tion, we provide implementation and evaluation replication artifacts online.
The following sections depict these contributions.

1.3.1. Automated Load Test Parameterization

For the automated parameterization of generated load tests, we introduce
a parameterization language for describing Input Data and Properties An-
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notations (IDPAs). An IDPA separates user-defined parameterizations from
load tests or workload models. As an example, applications managing user
accounts most likely have a login endpoint that requires providing a user
name and a password as parameters. When a load test emulates a user’s
login process, it needs to specify credentials that fit the test environment’s
database, which typically differs from the production database, for secu-
rity and privacy reasons (Jiang and Hassan, 2015). An IDPA can hold the
credentials and automatically apply them to generated load tests.
For maximizing the degree of automation, we provide a feedback-based

evolution strategy of IDPAs in case of typical API changes, as collected in
the literature. Furthermore, we can extract parts of an IDPA from API
specifications (OpenAPI Initiative, 2020) and transform IDPAs into different
load test formats, such as JMeter (Apache Software Foundation, 2020[a])
and BenchFlow (Ferme and Pautasso, 2018). The result is a fully automated
process for transforming production data, i.e., recorded user sessions, into
an executable load test. All manual effort can be applied in advance.

1.3.2. Service-tailoring of Load Tests

According to the microservice architectural style, the teams test their devel-
oped services individually. Accounting for that, we introduce two alternative
algorithms that extend the load test generation process from existing work
(Calzarossa et al., 2016; Vögele et al., 2018) to tailor a generated load test to
one or a set of services. Both algorithms base on collected traces (Okanović
et al., 2016), which document how an individual request propagates through
a distributed application. One of the algorithms modifies the initial artifact
of the generation process, i.e., the recorded logs. The second algorithm
modifies the generated workload model.
Service-tailored load tests smoothly integrate with service stubbing ap-

proaches, such as the work by Versteeg et al. (2016): our approach sends
requests to the services under test, while the stubs receive the requests the
services under test submit themselves. In combination, we can test a single
service in isolation.
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1.3.3. Context-tailoring of Load Tests

We split the established load test generation process into two parts when
generating load tests tailored to particular contexts, such as the course
registration phase of a student information system. First and continually,
we build a workload model. This workload model reflects the evolving
user behavior and the number of concurrently active users of a large time
frame, e.g., one year. We learn the model by incremental clustering based
on existing algorithms. Besides, we enrich it with contextual information,
such as the semester phase.

Second and on-demand, we extract a load test from the workload model
considering the contextual information. Using the introduced Load Test
Context-tailoring Language (LCtL), a user describes a specific workload
scenario, e.g., the sharpest spike during the course registration, and our
approach automatically generates the load test. The scenario can lie in the
future; in this case, we apply time-series forecasting. As opposed to existing
approaches we base on, our predictions also consider the mix of differently
behaving types of users.

1.3.4. Load Testing for Non-experts

In collaboration with Ferme and Pautasso (2017, 2018), we developed an
approach that eases load testing for less experienced users. It leverages our
automated generation of tailored load tests and Ferme and Pautasso’s (2018)
BenchFlow approach, which automates the test execution. We introduce
the Behavior-driven Load Testing (BDLT) language, which allows users
to describe both the load test scenario and its execution. Because it is
based on natural language, the language constitutes a lower barrier for non-
experts. Remarkably, participants of a case study we conducted highlighted
the potential of the language to incorporate non-technical stakeholders, such
as product owners, into the load testing process (see Chapter 15).

As a particular use case of the BDLT language, we describe an approach to
the scalability assessment of microservice deployment alternatives, which we
have developed in collaboration with Avritzer et al. (2018, 2020a). The BDLT
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language allows describing multiple load tests, which our approach generates
and executes. From the results, we calculate a Domain-based metric, which
supports the user in selecting optimal deployment alternatives.

1.3.5. Evaluation

We have qualitatively and quantitatively evaluated our approach in twelve
studies. The studies comprise the following methods: laboratory experi-
ment, case study, expert survey, estimation model, formal proof, and formal
analysis.
In a nutshell, we found our approach reasonably suitable for generating

tailored load tests automatically. We also showed that improper load test
parameterization can lead to significantly distorted test results, which our
approach prevents. The extensibility of our concepts and languages turned
out to be a crucial feature in many cases. Proposing challenges to be ad-
dressed in future work, we also identified several limitations of existing
approaches we used as building blocks. Mainly, the workload characteriza-
tion, modeling, and forecasting techniques used need to be extended for the
accurate prediction of strongly fluctuating workloads, such as load spikes.

1.3.6. Available Artifacts

For replication purposes, we provide several artifacts online. As summarized
in Appendix E, we make the prototypical implementation of our approach
available as open-source software, archived for permanent access (H. Schulz,
2020a; H. Schulz et al., 2020a; H. Schulz and Dang, 2020). Showing
its capabilities of generating industrial-scale load tests, we use it in our
evaluation. Also, we provide an interactive demonstration of selected features
(H. Schulz, 2019). Finally, we publish replication packages as supplementary
material for our evaluation (Avritzer et al., 2020b; H. Schulz et al., 2019b,d,
2020b, 2019f). These packages contain experiment setups, automation
scripts, raw evaluation results, and analysis scripts, enabling researchers to
re-execute and re-analyze our studies.
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1.4. Document Structure

The remainder of this document is structured as follows.

• Part I provides foundations of this research, on which we base in the
following.

– Chapter 2 focuses on CSE, which forms the context we operate
in.

– Chapter 3 describes the established methodologies for workload
characterization and forecasting. In our research, we extend this
methodology, e.g., by adding automated parameterization and
learning workload models incrementally.

– In Chapter 4, we illustrate the concept of load testing. Particularly,
we elaborate on representative load testing, to which this research
contributes.

• Part II introduces our approach to the automated generation of tailored
load tests.

– Chapter 5 describes the research design we applied, consisting of
the precise goal and research questions, assumptions wemake, the
research plan, an overview of the approach, and the collaborations
we participated in.

– In Chapter 6, we introduce the automated load test parameteri-
zation and the evolution of parameterizations over API changes.

– Chapter 7 presents the algorithms for service-tailoring.

– Chapter 8 provides the context-tailoring approach, including the
incremental workload model learning.

– Chapter 9 depicts our collaborative work on load testing for non-
experts.

– In Chapter 10, we present the implementation of our approach,
which is publicly available (H. Schulz, 2020a; H. Schulz et al.,
2020a; H. Schulz and Dang, 2020).
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• Part III comprises the evaluation of the approach introduced in Part II,
including the evaluation method, evaluation results, and discussion of
the research questions.

– In Chapter 11, we describe the evaluation design, provide an
overview of all studies conducted, and introduce evaluation met-
rics we use.

– Chapter 12 evaluates the automated load test parameterization
approach, which consists of two experimental studies, a case
study, and effort estimation models.

– Chapter 13 provides a formal proof of the algorithms developed in
Chapter 7 and an experimental evaluation of the service-tailoring.

– In Chapter 14, we evaluate the context-tailoring approach at the
subject of the student information system of a large university.
We analyze the incrementally learned workload model, conduct
a case study, and perform two experimental studies.

– Chapter 15 concludes the evaluation with two case studies fo-
cussing on the BDLT language introduced in Chapter 9.

– In Chapter 16, we discuss related work.

• Part IV concludes this research with a summary (Chapter 17) and a
discussion of future work (Chapter 18).

The end matter holds the bibliography, lists of acronyms, figures, and
tables, and an appendix. The appendix provides specific details of our ap-
proach, such as schemata and grammars of the languages we introduce and
detailed examples (Appendices A to D). Besides, it summarizes the supple-
mentary material available online for replication purposes (Appendix E).
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The software industry experiences an evolution and acceleration of soft-
ware engineering, named continuous software engineering (CSE). Affecting
the whole software lifecycle from planning to operations, CSE poses new
challenges for load testing, which we address in our research. In this chap-
ter, we introduce the foundations of CSE. First, we provide an overview
in Section 2.1. Section 2.2 discusses the DevOps paradigm, i.e., the neat
collaboration between development and operation practices. In Section 2.3,
we present the microservice architectural style, which is often used in CSE
contexts. Finally, in Section 2.4, we depict the concept of API specifications,
which are relevant to our work. Section 2.5 summarizes the chapter.

2.1. Continuous *

CSE (Bosch, 2014) is a development mainly driven by the industry but also
adopted by research. In general, it describes an acceleration of collaboration,
e.g., delivering new software versions frequently whenever available as
opposed to few releases per year. This acceleration spans multiple aspects
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Business Strategy Development Operations

Continuous 
Planning

Continuous 
Budgeting

Continuous Integration

Continuous Deployment

Continuous Delivery

...

Continuous Verification/
Testing

Continuous Trust

Continuous Use

Continuous 
Runtime 

Monitoring

DevOpsBizDev

Continuous Improvement

Continuous Experimentation and Innovation

Figure 2.1.: The holistic vew of Continuous * (based on Fitzgerald and Stol,
2017).

of the software lifecycle. Fitzgerald and Stol (2017) use the notion of
Continuous * (“Continuous Star”) as a “holistic endeavor,” affecting the main
sub-phases of business strategy, development, and operations.

Figure 2.1 provides an overview of Continuous *. While each sub-phase has
its continuous processes, the collaboration among them is crucial, named as
BizDev andDevOps (Bass et al., 2015). Above all stands a newway of thinking,
including agility (Fowler and Highsmith, 2001; Schwaber and Beedle, 2001)
and continuous learning, as used in the Lean Startup method (Bosch et al.,
2013). Related activities are continuous improvement, experimentation, and
innovation. In the following, we explain selected continuous activities with
particular relevance for our research. We will explain DevOps in Section 2.2.

2.1.1. Continuous Integration, Delivery, and Deployment

When developers complete implementing a new increment of the software,
they commit it to a code repository. CSE aims at automating the handling of
frequent code commits. The first step is the integration of the commit.
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Definition 2.1 (Continuous Integration—Fowler, 2006)
Continuous Integration is a software development practice where members of a
team integrate their work frequently, usually each person integrates at least
daily— leading to multiple integrations per day. Each integration is verified by
an automated build (including test) to detect integration errors as quickly as
possible.

Continuous delivery and continuous deployment extend this definition to
a “holistic, end-to-end approach to delivering software” (Humble and Farley,
2010). The difference between these extensions is that the latter automati-
cally releases the software to clients, i.e., deploys it, while the former only
creates the ability to deploy it (Fitzgerald and Stol, 2017). Humble and Far-
ley (2010) argue that continuous delivery is better suited for many software
systems, e.g., for applying manual testing. The core of all these processes is
a pipeline, which is defined as below.

Definition 2.2 (Deployment Pipeline—Humble and Farley, 2010)
A deployment pipeline is, in essence, an automated implementation of your
application’s build, deploy, test, and release process.

To achieve fast feedback, this pipeline typically has multiple stages (Hum-
ble and Farley, 2010). The first stage reacts to the commit of a developer
by compiling and analyzing the code and running unit tests. If these tests
succeed, the code is assembled into binaries and automatically forwarded to
the acceptance stage. There, longer-lasting acceptance tests are run. If they
succeed, too, the pipeline subdivides into several branches, e.g., for running
tests that require a specific environment, such as load tests, or deploying the
code to production. These final steps do not need to be triggered automati-
cally. Instead, it can be more feasible that the respective person responsible
triggers the stage by clicking a button. For that, they should be provided
with an overview of the previously executed stages and their outcome. Being
triggered, the stages again need to run autonomously. For that, the test and
production environments need to be autonomic, e.g., realized as a Cloud
environment.
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Remarkably, Humble and Farley use the term deployment pipeline, which,
however, is not restricted to continuous deployment. To emphasize that, we
use the generalized term continuous integration and delivery (CI/CD) pipeline
in the remainder of this dissertation, meaning any pipeline that automates
at least the build and testing.

2.1.2. Continuous Testing

A CI/CD pipeline already contains testing of the newly committed soft-
ware version. However, it can also be beneficial to execute tests outside
the pipeline. Continuous testing refers to the execution of unit tests in the
background, aiming at providing early feedback to the developer (Demeyer
et al., 2018; Saff and Ernst, 2004). An agile method that complements
continuous testing is test-driven development (TDD) (Beck, 2003), which de-
notes creating test cases that describe the intended behavior of the software
before implementing a new feature or bug fix.
Load testing, the focus of this work, is not suited for continuous testing,

as it requires an isolated, production-like test environment to obtain reliable
performance measures (Jiang and Hassan, 2015). Using the automated de-
ployment capabilities of CI/CD, it should be instead executed in a dedicated
pipeline stage at a reasonable time.

2.1.3. Continuous Runtime Monitoring

To receive feedback from the operational phase, the running application
must continuously be monitored (van Hoorn et al., 2009). In the context
of Cloud computing, the term observability (Niedermaier et al., 2019) has
emerged, denoting a service’s ability to be monitored. Besides, there are
various open-source monitoring and observability tools available, which the
OpenAPM (Novatec Consulting GmbH, 2020[a]) initiative summarizes.

Continuous monitoring is particularly relevant for our work, as it delivers
the basis for workload characterization (Calzarossa et al., 2016). A model of
the workload can then enable representative load testing. As a standardized
format of monitoring data, we refer to OPEN.xtrace by Okanović et al. (2016).
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There are further standards from the practical domain, such as OpenTracing
(2020), OpenCensus (2020), and OpenTelemetry (2020), parts of which we
have integrated with OPEN.xtrace (H. Schulz, 2020c).

2.2. DevOps

As discussed in the previous section, CSE entails a neat collaboration between
software development and operations. This collaboration, named DevOps, is
often described fuzzily. In this work, we refer to the goal-oriented definition
by Bass et al.

Definition 2.3 (DevOps—Bass et al., 2015)
DevOps is a set of practices intended to reduce the time between committing a
change to a system and the change being placed into normal production, while
ensuring high quality.

For that, DevOps closes the gap between development and operations.
With the support of a high degree of automation, development teams deliver,
support, and maintain their developed service. This reduces the communica-
tion with operations teams and, thus, is more efficient. Some authors use
the term DevOps team (Davis, 2019; Wiedemann and T. Schulz, 2017), and
we adopt it in this thesis to emphasize the team’s responsibilities for tasks
beyond development.
DevOps is strongly coupled with CI/CD. On the one hand, CI/CD is a

mandatory DevOps practice (Bass et al., 2015). On the other hand, Humble

code

operatebu
ild

monitortest

deploy

Dev Ops

Figure 2.2.: DevOps life cycle (based on Davis, 2019).
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and Molesky (2011) argue that successful continuous delivery requires
applying DevOps. Therefore, it is not surprising that the often-shown DevOps
life cycle, illustrated in Figure 2.2, is closely related to the Continuous *
practices summarized in Figure 2.1. Development practices in the life cycle
span the planning, coding, building, and testing, using pipelines for the
latter two. The operations practices are release, deployment, operation, and
monitoring, resulting in feedback for the planning. This infinitely repeating
life cycle enables frequent releases. DORA and Google Cloud (2019) report
that companies they assess as elite in DevOps perform multiple deployments
per day.
DevOps puts specific emphasis on high quality, whereas performance is

one of the most crucial attributes (Brunnert et al., 2015). To this end, DevOps
poses both challenges and opportunities. Opportunities comprise automated
deployment and easily accessible metrics, which ease and accelerate the
testing process (Eismann et al., 2020). Also, the feedback from monitoring to
development can be used to extract performance models, including workload
models (Heinrich et al., 2017). Challenges are the short release cycles,
unstable (Cloud) environments, and a high degree of automation, which
performance engineering tasks need to fulfill (Bezemer et al., 2019; Eismann
et al., 2018). Resulting from that, Bezemer et al. (2019) have found that
many companies do not apply performance engineering systematically.

2.3. Microservices

The rigorously new principle of CSE also requires adapting the architecture
of the developed software. The most frequently applied architectural style is
microservices. Driven by companies such as Netflix and Amazon, the term
microservice was first defined in 2012 (Lewis and Fowler, 2014) and adopted
in many scientific publications starting from 2015 (Francesco et al., 2017;
Pahl and Jamshidi, 2016). At very short, Newman provides the following
definition.

Definition 2.4 (Microservices—Newman, 2015)
Microservices are small, autonomous services that work together.
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Besides, Newman (2015) lists several inevitable characteristics and bene-
fits of microservices, which we describe in the following.

Cohesive and Autonomous: Each microservice realizes a specific business
concept, being an autonomous entity. As an example, otto.de, one of the
largest European webshops, decouples concepts like the product, user, and
order management (Hasselbring and Steinacker, 2017). The separation
is also crucial from a technical perspective, e.g., it is mandatory to have
separate codebases per microservice, and to deploy a microservice indepen-
dently from others. Besides, it is a good practice not to share databases.
For communication between microservices, each provides an application
programming interface (API), often using Representational State Transfer
(REST) or messaging protocols, such as Advanced Message Queuing Protocol
(AMQP) or Kafka.

Aligned with the Organization: Conway (1968) argues that “organizations
which design systems (in the broad sense [...]) are constrained to produce
designs which are copies of the communication structures of these organizations.”
This statement is known as Conway’s law and motivates a fundamental
concept of microservices: the microservice architecture is also reflected
in the organizational team structure. According to small services, small
(DevOps) teams develop the services, typically with one-to-one or one-to-
many mapping of teams to microservices (Hasselbring and Steinacker, 2017).
Having individual CI/CD infrastructure and following DevOps practices,
each team can realize the rapid CSE principles, such as frequent releases.
Also, small autonomous teams support horizontal scaling with an increasing
application, i.e., adding more teams instead of increasing the teams’ size.

Easily Deployable: A key driver of CSE is the automated deployment of the
developed application. This is particularly valid for microservices, which
need to be deployable independently of each other. As a result, small parts
of the application can be exchanged easily, e.g., for bug fixes, without re-
deploying the application as a whole.
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Scalable: Microservices are also meant to be horizontally scalable, i.e.,
serving more requests by adding replicas. Unlike monolithic applications,
microservices scale individually, which allows them to adjust to the specific
workload situation automatically (Hasselbring, 2016; Herbst et al., 2013).
Remarkably, adding replicas might not improve the application’s performance,
as we have found in joint work with Avritzer et al. (2018, 2020a).

Technologically Heterogeneous: Due to the clear separation between mi-
croservices, each can use a different technology stack. For instance, they
might use different programming languages and database implementations.
This allows the DevOps teams to use the technology best suited for the use
case they develop. For communication, the microservices must provide a
technology-independent API, such as REST or Kafka.

Resilient: To avoid cascading failures of the whole application, microservices
should be resilient, i.e., they should be tolerant regarding the failures of other
microservices or the infrastructure they operate on. Nygard (2018) presents a
set of stability patterns, which help to increase a microservice’s resilience. To
this end, an entirely newway of testing has emerged, called chaos engineering,
which randomly causes failures in the production environment “to build
confidence in its capability to withstand turbulent conditions” (Basiri et al.,
2016).

Observable: A fundamental practice of DevOps and CSE is the monitoring
of the production application. Therefore, observability (see Section 2.1.3) is
a crucial attribute of microservices. Due to the distributed and potentially
heterogeneous application landscape, each microservice particularly must
support the collection of end-to-end execution traces (Okanović et al., 2016).
These traces can restore a global view of the whole application’s runtime
behavior.
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1 openapi: 3.0.1
info:

3 title: User
description: Provide Customer login , register ,

retrieval , and card and address retrieval
5 paths:

/login:
7 get:

description: Return logged in user
9 operationId: Get Login

responses:
11 200:

content:
13 application/json;charset=UTF -8:

schema:
15 $ref: ’#/ components/schemas/

Getcustomersresponse ’

Listing 2.1: Excerpt from an exemplary OpenAPI specification1.

2.4. API Specifications

Microservices communicate with each other via APIs they expose. In doing
so, it is crucial to document the API, including how to call the microservice
and which response to expect. API specifications are relevant for our work
because they also document the endpoints to be covered in a load test.
Providing a specific format, we point to the OpenAPI Initiative (2020),

whose previous versions were called Swagger. The YAML-based (YAML 2020)
format allows documenting REST APIs, which we illustrate in Listing 2.1.
The example shows an excerpt from the API of the Sock Shop (Weaveworks,
Inc., 2020) application’s users service, which we also utilize in our evaluation
(see Chapter 13). Besides informal descriptions of the service, it contains
the available paths— in this case, the path to the login endpoint. When the
users service receives a GET request at that path, it returns the logged in

1https://raw.githubusercontent.com/microservices-demo/user/master/
apispec/user.json
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user—as documented— in JavaScript Object Notation (JSON) with a 200
HTTP response code. Besides, the specification refers to the JSON schema
of the response, which we omit for space reasons.

2.5. Summary

In our research, we focus on load testing in continuous software engineering
(CSE). Hence, principles like continuous integration and delivery (CI/CD),
DevOps, and microservices pose specific requirements for our approach.
These are a high degree of automation, resource- and time-efficiency, and
service-tailored testing, accounting for automated CI/CD pipelines, frequent
releases, and the teams’ focus on their developed services. At the same time,
CSE brings opportunities, such as the availability of continuously collected
monitoring data, API specification standards, and easily deployable services.
These opposing factors make the topic of this work particularly relevant for
research.
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For generating a load test that is representative of the production workload,
the workload needs to be characterized and potentially forecasted to the
future. Both techniques have been extensively studied. This chapter de-
scribes their foundations. First, we introduce the fundamental terminology
in Section 3.1. Sections 3.2 and 3.3 describe workload characterization and
forecasting. Finally, Section 3.4 provides a summary.

3.1. Terminology

The central term of this chapter is the workload of a software system or
application, also referred to as operational profile (Musa, 1993) or usage
profile (Koziolek et al., 2007). Calzarossa et al. define workload as follows.
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Definition 3.1 (Workload—Calzarossa et al., 2016)
The term workload refers to all inputs received by a given technological infras-
tructure [software system].

The type of the inputs depends on the software system. For instance, in
the context of a web-based application, the workload consists of all HTTP
requests submitted by a user or client and received by the application. In
other fields, the inputs can be transactions (e.g., database systems), messages
(e.g., e-mail systems), or jobs (e.g., cloud systems) (Calzarossa et al., 2016;
Menascé and Almeida, 2002). This thesis focuses on web-based applications.
We use the term request as a synonym for the smallest unit of work that is part
of the input and to be serviced by the application. Similarly, we denote the
person or entity that submits a request as user, subsuming persons, devices,
client software, or other entities submitting requests.

An important categorization of workloads originating from queuing theory
are closed and open workloads (Balsamo and Marin, 2007; Schroeder et al.,
2007). In a closed workload, a fixed set of users, i.e., the population, interacts
with the system concurrently. Each user runs continuously and submits
requests sequentially. In between of two requests, the users wait a time span
denoted as think time. Hence, each request depends on the response of the
former request of the respective user. In contrast to this, an open workload
comprises requests submitted by users that arrive independently at a given
arrival rate and depart after submitting a request. The single requests are
independent of each other.

Workload characterization is the process of decomposing the global work-
load of the whole software system into its basic components—e.g., the user
sessions of a session-based e-commerce application—and specifying the
two main characteristics intensity and service demands per basic component
(Menascé et al., 1999). For closed workloads, the intensity is defined by
the number of users of the population and the think time. For open work-
loads, the arrival rate or its reciprocal— the inter-arrival time—define the
intensity. The service demands refer to the properties of the individual basic
components that have an effect on the system’s performance, e.g., the size
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of files requested (Menascé et al., 1999). The union of all basic components
with its characteristics and the relative frequencies is typically referred to as
workload mix (Vögele et al., 2018).

The outcome of the workload characterization process is a workload model
that aims at accurately describing the real workload while being compact
and reproducible (Menascé and Almeida, 2002). For session-based systems,
workload models typically comprise a user behavior model describing the
basic components and subsuming several similar user sessions (Vögele et
al., 2018). One of the most important features of a workload model is
representativeness, denoting the similarity to the actual workload in terms of
the utilization of the system (Menascé and Almeida, 2002).
It can be relevant to predict the workload the studied application is ex-

pected to observe in the future, e.g., for proactive resource provisioning
(Herbst et al., 2013) or load testing of future scenarios (see Chapter 8).
The process of this prediction is called workload forecasting. Menascé and
Almeida (2002) argue it should be composed of quantitative and qualitative
methods. Quantitative forecasting is based on historical data. Qualitative
forecasting, in contrast, relies on experts’ judgment and intuition. The lat-
ter method is mainly relevant for workload scenarios that are influenced
by external factors, e.g., planned changes to a platform or technological
changes.

3.2. Workload Characterization

The careful characterization of the production workload is fundamental
for reasonable performance evaluation (Ferrari, 1972; G. Jin et al., 2012;
Menascé and Almeida, 2002). In our work, we require it to derive load tests
that are representative of the production workload. In this section, we detail
the workload characterization process, the notion of a workload model, how
to evaluate representativeness, and the WESSBAS approach by Vögele et al.
(2018) we base on in this research.
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Figure 3.1.: Workload characterization process (based on Menascé and
Almeida, 2002).

3.2.1. Characterization Process

Figure 3.1 illustrates the general use case of workload characterization. The
characterization process operates on an abstraction of the actual production
workload based on measurements. This process outputs a workload model,
which can then be exploited in different studies. Menascé and Almeida
(2002) use it for capacity planning; we transform it into a representative
load test. In doing so, the type of workload exploitation influences the
characteristics and level of detail of the workload model. For instance,
for capacity planning, the impact on the hardware resources needs to be
captured. For load testing, this level is less relevant.

Many approaches realize the characterization process by different analysis
techniques, which Calzarossa et al. (2016) summarize in a methodology.
Statistical analysis is often applied as a preliminary, exploratory step to
understand the workload. Multivariate analysis, such as clustering and
principal component analysis (PCA), is used to describe the workload’s
overall properties. Numerical fitting is useful for modeling temporal patterns,
and stochastic processes are well suited to describe time-varying properties.
Finally, workload models can be derived using graph analysis, e.g., applied
to the overall properties identified using multivariate analysis.

In our work, we focus on session-based workloads. In this type of workload,
a basic component is a user session, consisting of one or multiple user-
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submitted requests. Menascé et al. (1999) introduce a combination of
analysis techniques we adopt in this work. First, they transform each session
into an equally sized matrix. Then, they apply k-means clustering. To finally
obtain a workload model, they apply graph analysis to the cluster centroids.
Vögele et al. (2018) extend this procedure in their WESSBAS approach,
which we describe in Section 3.2.4.

3.2.2. Workload Models

The properties of a workload model— i.e., the result of the characterization
process—are diverse and depend on the type of workload and study. A
general definition is the following.

Definition 3.2 (Workload model—Menascé and Almeida, 2002)
A workload model is a representation that mimics the real workload under
study. It can be a set of programs written and implemented with the goal of
artificially testing a system in a controlled environment. A workload model can
also be a set of input data for an analytical model of a system. [. . . ] Models
should be compact.

To render a more precise definition, we focus on session-based workloads.
In this case, the model needs to capture the behavior of the users. Differently
behaving users might be separated into user groups, e.g., heavy buyers or
occasional buyers of an e-commerce system. For each group, the model
needs to specify the requests s single user submits, e.g., to login to the
system, browse products, and add them to the shopping cart, and the timing,
i.e., think times between the requests. Workload modeling formalisms that
fulfill these criteria include Markov chains (Menascé et al., 1999; Vögele
et al., 2014), stochastic form-oriented models (Cai et al., 2007; Lutteroth
and Weber, 2008), probabilistic timed automata (Abbors et al., 2013a,b,
2014), extended finite state machines (EFSMs) (Shams et al., 2006), and
request sequences (Krishnamurthy et al., 2006). In our work, we focus on
Markov chains, which Z. Li and Tian (2003) have assessed to be suitable for
modeling session-based workloads.
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Another type of model that is relevant for session-based workloads is an
intensity model. For open workloads, this model describes the arrival rate
of new sessions, which might change over time. For closed workloads, it
captures the number of concurrently active sessions, assuming each session
restarts when it reaches an end state. The simplest intensity models are a
single number, such as 500 sessions being active constantly, and a number per
time unit to describe a varying intensity. As a more complex representation,
which primarily allows experts to model a varying intensity manually, the
Descartes Load Intensity Model (DLIM) (von Kistowski et al., 2014b, 2017),
connected with the LIMBO tool (von Kistowski et al., 2014a), composes
trend, seasonal, burst, and noise functions.

3.2.3. Evaluating Representativeness

A workload model that was extracted from the production workload should
be validated concerning its representativeness. The general procedure is
to select a reference workload, e.g., the production workload from which
the model was extracted, and derive metrics for comparison (Menascé and
Almeida, 2002). By emulating the workload defined by the model, e.g., by
executing a load test (see Chapter 4), and collecting measurements during
the emulation, the metrics can be determined for the model the same way
as for the reference workload.

Several metrics have been proposed to compare session-based workloads,
comprising intra-session, inter-session, request-based, and performance met-
rics (Goseva-Popstojanova et al., 2006; Vögele et al., 2018). Intra-session
metrics include the following:

• Session length: Number of requests submitted within one session.

• Session duration: Time elapsed between the first and the response to
the last request within one session. Please note that Goseva-Popstojanova
et al. (2006) denote this metric as session length, while we stick to the
terminology by Vögele et al. (2018).

• Bytes per session: Number of bytes submitted within one session.
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Inter-session metrics address the overall characteristics of all sessions:

• Session arrival rate: Number of sessions started within a defined time
unit, e.g., minute, hour, or day. This metric belongs to an open work-
load.

• Concurrently active sessions: Corresponding metric for closed work-
loads.

• Sessions per user: Number of sessions started by a single user. The
start of a second session of the same user is identified by a new session
ID the application has defined or a predefined time of inactivity, e.g.,
30 minutes.

• Unique sessions: Number of sessions with requests to the same end-
points in the same order.

Request-based metrics disregard the notion of sessions and focus on the
number of requests submitted per time unit, i.e., the request rate. The
request rate can be further subdivided according to the endpoint called and
the response status, e.g., successful, client-side erroneous, or server-side
erroneous.

Naturally, the workload influences the behavior of the application (Ferrari,
1972). Thus, we can also argue about representativeness based on perfor-
mance metrics. Menascé and Almeida (2002) suggest using the response
times; further metrics can be the CPU utilization and memory consumption.
Notably, a test causing the same performance metric values as the reference
workload is not necessarily highly representative. However, differences are
a reliable indicator that the model is not representative of the reference
workload.

3.2.4. The WESSBAS Approach

Vögele et al. (2018) propose the WESSBAS approach, which bases upon
the methodology by Menascé et al. (1999). In this work, we further extend
it for generating tailored load tests. In this section, we present WESSBAS’
characterization process and the WESSBAS-DSL as the output format.
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Figure 3.2.: WESSBAS workload characterization process (based on Vögele
et al., 2018).

3.2.4.1. Characterization Process

Figure 3.2 illustrates the process of extracting a workload model from the
production workload and transforming it into a load test. This process
consists of four steps, which we explain in the following. While WESSBAS is
generally applicable, we focus on its most frequent use case, namely HTTP
workloads.

The first step is the collection of request logs via application monitoring 1�.
These logs contain one entry per request the production system received. For
each request, the timestamp, response time, endpoint called, and session ID
are required. Besides, the characterization process can extract parameter
values sent with the request, such as login credentials. The session ID is
assigned by the production system and returned to the user, who reuses it in
subsequent requests. It can also be approximated using a unique identifier
of the user, e.g., the client IP address.
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1 SESSION_ID;"ENDPOINT_ID":START:END:REQEST_DETAILS;
"ENDPOINT_ID_2":...

SESSION_ID_2 ;...

Listing 3.1: Illustration of the Session Log schema.

Next, the request logs are transformed into a standardized session log by
grouping them according to the session ID 2�. As illustrated in Listing 3.1,
one entry of the log corresponds to one session. The first item of each entry is
the session ID, followed by requests in chronological order. For each request,
the entry contains an endpoint ID, start and end timestamps, and details
about the requests, such as the HTTP path, port number, domain name,
protocol, request method, and request parameters.

The actual workload model extraction happens in step 3� and is subdivided
into three parts. First, the Workload Intensity Extractor determines the
number of concurrently active sessions. For learning varying intensities,
WESSBAS leverages the LIMBO (von Kistowski et al., 2014a) tooling.

Second, the Behavior Mix Extractor extracts Markov-chain-based behavior
models. For that, it transforms each session log entry into a vector, whose
entries represent the absolute transition frequencies between two endpoints.
As an example, if one session contains three times subsequent requests to the
browse and add to cart endpoints, the corresponding vector entry is 3. Then,
the vectors are clustered using X-means. The behavior models are calculated
from the resulting cluster centroids by normalizing the absolute transition
frequencies to relative ones, and computing think time distributions per
transition. Besides, the Behavior Mix Extractor calculates the behavior mix,
i.e., the relative number of sessions aggregated in each behavior model.

In the third part of the extraction step, the WESSBAS-DSL Model Generator
transforms the behavior models and workload intensity into an instance of
the WESSBAS-DSL. In addition, it determines guards and actions (GaAs),
which further control the emulated request behavior. For instance, the
transitions of a behavior model might allow removing several items from the
shopping cart with a non-zero percentage, regardless of the number of items
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in the cart. GaAs can prevent such invalid behavior by ensuring that only as
many items as previously added can be removed. Please note, in the scope of
this dissertation, we exclude the extraction of guards and actions. Integrating
them with our approach is left for future work.
For exploiting the extracted workload model, WESSBAS provides trans-

formations into a load test 4� and a performance model. For our work, the
former transformation is more relevant. While WESSBAS comes with support
for JMeter (Apache Software Foundation, 2020[a]), we further integrate
the BenchFlow approach by (Ferme and Pautasso, 2018) (see Section 6.5.3).

3.2.4.2. The WESSBAS-DSL

WESSBAS provides a domain-specific language (DSL) for the description
of workload models. As Figure 3.3 shows, WESSBAS-DSL instances consist
of four parts. The first part is the application model, which is hierarchical,
i.e., consists of two layers. The session layer is an EFSM describing possible
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Figure 3.3.: Illustration of the WESSBAS-DSL (based on Vögele et al., 2018).
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courses of actions of a user. It consists of states, e.g., the login to the
application, and transitions between the states. The transitions are labeled
with GaAs. Each of these states holds another EFSM at the protocol layer.
Here, the states represent concrete requests. The two layers allow modeling
several requests per user action, e.g., when a user submits a login in the web
user interface (UI), the UI might send two requests to /login and /welcome.
The characterization process, however, always outputs protocol-layer EFSMs
with exactly one state. An exception is the final state $, which does not
include any requests.
The second part of the DSL is the behavior models. They contain states

that relate to the states of the application model. Instead of GaAs, the states
are connected with transition probabilities and think time distributions. That
is, the next state is always determined based on the previous state and the
transition probabilities. Furthermore, when switching to the next state, the
think time defines the time to wait, e.g., according to a normal distribution.

The behavior mix specifies the relative frequencies of the behavior models.
As an example, a WESSBAS-DSL instance might contain three behavior
models with a mix of 40%, 35 %, and 25%. The workload intensity holds
the number of concurrently active sessions over time.

Summing up, we can reconstruct the productionworkload from aWESSBAS-
DSL instance by executing as many sessions as defined by the workload
intensity. Each session emulates one behavior model, whereas the behavior
mix defines the probability of selecting a specific one. The application model
defines which requests to submit for each state, and the GaAs ensure that
no invalid request sequences are produced.

3.3. Workload Forecasting

While the workload characterization approaches described in the previous
section can extract representative models of the production workload, they
are restricted to the past. There can be cases, however, where we are
interested in the expected future workload. For that, we can apply workload
forecasting, which Menascé and Almeida define as follows.
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Definition 3.3 (Workload forecasting—Menascé and Almeida, 2002)
Workload forecasting is the process of predicting how system workloads will
vary in the future.

Forecasting can be done in two ways: qualitatively and quantitatively. We
present both and further introduce the tools we leverage in our work.

3.3.1. Qualitative Forecasting

Qualitative forecasting denotes the prediction of workloads based on per-
sonal estimation by experts (Menascé and Almeida, 2002). While intuitive
assessments tend to be of low accuracy, they can be the only option to ob-
tain a forecast, e.g., because business decisions cause future scenarios that
have never been observed before. An example is from our evaluation (see
Section 15.1), where the operators of an Internet of things (IoT) platform
decided to add more devices to the platform at a defined date. With a man-
ual estimation of the workload increase, we are able to predict the future
workload.

Methods that support the determination of a qualitative forecast can be
group votings or the search for historical analogies. The Delphi method
(Martinich, 2008) is a structured method involving multiple stakeholders. It
presumes that groups of experts provide more accurate forecasts than indi-
viduals. In multiple rounds, the experts answer questionnaires. After each
round, they receive an anonymized summary of the forecasts, to potentially
adapt their own ones, until they reach a predefined stop criterion. In rare
cases, the forecast process is straightforward, e.g., in the example from our
evaluation, which only requires multiplying the current workload with the
fraction of newly added devices.

3.3.2. Quantitative Forecasting

In contrast to qualitative forecasting, its quantitative opponent only relies
on historical data to predict future values (Menascé and Almeida, 2002).
Hence, the forecast accuracy is higher. However, the accuracy also depends
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on the horizon, i.e., the period between the latest known and the latest
predicted value. The longer the horizon is, the lower is the accuracy. As a
result, different methods should be applied to different horizons. Once a
method has been selected, it should be validated, e.g., by using a part of the
recorded workload to predict the remainder.

Established forecasting methods comprise linear or non-linear regression,
moving average, and exponential smoothing (Menascé and Almeida, 2002).
Besides, the decomposition into trend, season, and noise is often applied
(Herbst et al., 2013). The trend is a monotonic function that can be easily
predicted using regression methods. The season is a periodical component
and reflects, e.g., daily and weekly variations. Mahalakshmi et al. (2016)
survey further elaborate forecasting methods, such as machine learning
techniques.
Due to the large number of available methods and the level of expertise

required to select an appropriate one, we rely on tools that support us in
this task. In the next section, we introduce them.

3.3.3. Forecasting Tools

In the following, we introduce the tools we use for workload forecasting in
our approach. These are Telescope by Bauer et al. (2020) and Prophet by
Taylor and Letham (2018). They have in common that they aim to predict
future values of a given time series. That is, they can be used to forecast the
workload intensity.

3.3.3.1. Telescope

Telescope (Bauer et al., 2020) is an automated time series forecasting ap-
proach developed at the University of Würzburg. It takes as input a time
series and outputs the future values until a defined horizon. The forecast is
calculated in three steps. First, Telescope preprocesses the time series, with
methods including Box-Cox transformation (Box and Cox, 1964), Fourier
terms extraction, and seasonal and trend decomposition using Loess (STL)
(R. B. Cleveland et al., 1990). In the second step, Telescope uses the outputs
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of the preprocessing to train a model using eXtreme Gradient Boosting (XG-
Boost) (T. Chen and Guestrin, 2016). Finally, it does the forecasting using,
among other methods, autoregressive integrated moving average (ARIMA)
(Box et al., 2015), pattern forecast, XGBoost, and inverse Box-Cox transfor-
mation. The authors of the tool have also evaluated Telescope to provide
forecasts with a lower error than competitive state-of-the-art approaches
while keeping the time-to-result comparably low (Bauer et al., 2020).

The main benefit for us is the high forecast performance without parameter
tuning. As opposed to the “No-Free-Lunch Theorem” (Wolpert and Macready,
1997), Telescope performs well with various time series. Hence, we can
predict workloads automatedly without distorting evaluation results by poor
manual configuration.
Telescope can be used as an R (R Core Team, 2019) package, whereas

we utilize a modified branch for multivariate forecasting (Chair of Software
Engineering, University of Würzburg, 2020). In addition to the time series,
we can input covariates. These are time series with past and future values
representing contextual information, e.g., the presence of special sales or
weather conditions. The Telescope branch integrates the past values into
the model training and uses the future values to influence the forecast. By
providing adequate covariates, we can further improve forecast accuracy.

3.3.3.2. Prophet

Another open-source forecasting tool developed at Facebook is Prophet
(Taylor and Letham, 2018). Unlike Telescope, it explicitly integrates analysts
into the forecasting process. Being provided with an evaluation of the forecast
accuracy, they should tune the forecasting parameters. Like Telescope,
Prophet is available open-source (Facebook, 2016) as an R package and,
besides, as a Python (Van Rossum and Drake Jr, 1995) library. We use the
R package for integration into a common tooling with Telescope and good
comparability in our work.
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Essentially, Prophet treats the forecasting task as a curve-fitting problem.
Being provided with a time series, it aims at fitting the following function
y(t) of time t into the data.

y(t) = g(t) + s(t) + h(t) + "t

The individual terms of the equation relate to the decomposed time series
components we discussed in Section 3.3.2: g(t) is the trend function, s(t)
represents the seasonality, and "t constitutes the error term, i.e., the noise.
Besides, Prophet integrates the effect of irregularly occurring holidays in the
term h(t). As a generalization of holidays, they allow specifying regressors,
which serve the same functionality as Telescope’s covariates. Hence, we
can fairly compare the forecasting performance of both tools using similar
concepts regarding the input and output.

3.4. Summary

Workload characterization and forecasting are fundamental techniques for
representative load testing. Characterization approaches, such as WESSBAS
(Vögele et al., 2018), extract workload models that accurately represent
recorded production workload. Using forecasting methods, we can further
predict expected future workloads. Our research bases upon the WESSBAS
approach and extends its characterization technique to generate service-
and context-tailored models. Leveraging Telescope (Bauer et al., 2020)
and Prophet (Taylor and Letham, 2018), we also cover future workload
scenarios.
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In this chapter, we introduce the foundations of load testing, which is the
primary discipline of interest in this research. Particularly, we focus on load
tests that are representative of the production workload. Section 4.1 provides
an overview of load testing, followed by its general process in Section 4.2.
In Section 4.3, we discuss input data used by load tests, which significantly
contribute to the success or failure of a load testing strategy. Furthermore,
we introduce tools we leverage in Section 4.4. Section 4.5 summarizes the
chapter.

4.1. Load Testing Overview

In this work, we base upon the load testing definition by Jiang and Hassan,
as follows.

Definition 4.1 (Load testing—Jiang and Hassan, 2015)
Load testing is the process of assessing system behavior under load in order to
detect problems due to one or both of the following reasons: (1) functional-
related problems (i.e., functional bugs that appear only under load), and
(2) nonfunctional problems (i.e., violations in non-functional quality-related
requirements under load).
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Figure 4.1.: Relationship of load, performance, and stress testing (based on
Jiang and Hassan, 2015).

To assess the system behavior under load, this load needs to be generated
artificially in a test. We prefer using the term workload instead of load to
emphasize that it has similar characteristics as the inputs the system receives
in production (see Chapter 3). As an example, a load test might aim at
replaying a recorded workload. Besides, load tests use workload models to
describe the load issued to the system under test (SUT).

As illustrated in Figure 4.1 and described by Jiang and Hassan (2015), load
testing overlaps with other testing disciplines, such as performance testing
and stress testing. Performance testing denotes measuring the performance
of software entities varying from the unit level to the system level. Primary
measures are response time, throughput, and resource utilization. Load
testing that targets the collection and evaluation of performance metrics
is an overlap with performance testing. Stress testing aims at testing a
system’s ability to behave under stressful conditions, e.g., loads that are
higher than expected or limited hardware resources. Hence, tests replaying
with extraordinarily high loads are both load and stress tests.

Our work’s focus is load testing disjoint from stress testing, with a particu-
lar emphasis on the intersection with performance testing. That is, the load
tests we generate using our approach should always be suited to evaluate the
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performance of the SUT. Still, they can be used for detecting functional or
non-function non-performance problems. Furthermore, we test the expected
scenarios under the regular availability of resources, which is different from
stress testing.
A fundamental differentiation of load tests is the design of the workload

they submit to the SUT. Jiang and Hassan (2015) identify two principal
schools of thought. Fault-inducing loads aim to identify and, thus, cause as
many problems as possible. These loads are designed by locating potential
weaknesses of the SUT, e.g., using source code or model-based analysis.
However, as many authors argue (Ferrari, 1972; G. Jin et al., 2012; Menascé
and Almeida, 2002), reasonable performance analysis requires workloads
that are representative of the production environment. Therefore, we con-
tribute to testing with production-representative, i.e., realistic loads. As a
further benefit, this type of load design allows us to evaluate whether a
developed system can perform under a future workload scenario, e.g., a
sharp increase of users accessing a webshop during a special sale. Notably,
fault-inducing and realistic load testing do not need to be disjoint. Vögele
(2018) introduces a multi-objective optimization approach based on WESS-
BAS (see Section 3.2.4) to derive workloads that can both be representative
and likely induce problems.

4.2. Load Testing Process

Load testing is a process that consists of three steps: load test design, load
test execution, and load test analysis (Jiang and Hassan, 2015). Below, we
describe the steps, focusing on representative load testing, which is most
relevant for our work. For a comprehensive review of load testing activities,
we refer to Jiang and Hassan (2015).

• Designing a load test: The first step is to design a load test, primarily
its workload, aligned with the test objectives. Representative load
tests can be derived using workload characterization and forecasting
approaches (see Chapter 3). The period of workload to characterize,
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which should be selected carefully (Ferrari, 1972), depends on the
test objective. For instance, a typical workday workload can be used
to identify the amount of resources the SUT requires under normal
conditions, while expected sharp increases of the near-future workload
are better suited to test whether the system can withstand an upcoming
special sale.

• Executing a load test: While other execution methods exist, such as
human testers or special platforms emulating parts of the SUT, we
base upon driver-based execution. That is, a load driver issues the
workload specified by the load test to the SUT. For session-based
applications, the driver emulates the sessions of a potentially large
number of users. Both the driver and the SUT need to be deployed in a
test environment, preferably on different machines, to prevent mutual
interference. The best results can be achieved with a production-like
setup. Some approaches support users with automated deployment
(BlazeMeter, 2015; Ferme and Pautasso, 2018).

During the load execution, measurement data should be collected.
Open-source and commercial load testing tools, such as JMeter (Apache
Software Foundation, 2020[a]), Gatling (Gatling Corp, 2020), Locust
(Heyman et al., 2020), LoadRunner (Micro Focus, 2020[a]), and
SilkPerformer (Micro Focus, 2020[b]), generate client-side log files
for analysis. Further insights can be gained using SUT-side monitoring
techniques (Brunnert et al., 2015).

Finally, the termination of the test is relevant for the test execution.
An often-applied and straightforward method is to stop the test after a
predefined time. Alternatively, it can be run continuously until stopped
by a human, or until predefined termination criteria are met, e.g., the
performance metrics of interest are statistically stable (Alghamdi et al.,
2020, 2016).

• Analyzing a Load Test: This final step analyzes the measurement data
collected during the execution regarding functional and non-functional
problems, with several approaches automating this step (Jiang et al.,
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2008, 2009; Malik et al., 2010a,b, 2013, 2010c). It can either com-
pare them with predefined thresholds, search for known issues, or
identify behavioral anomalies. The choice of analysis also depends on
the test objectives. For instance, to find the optimal hardware config-
uration that allows the SUT to serve the workload while satisfying a
service-level agreement (SLA), the threshold-based approach is valu-
able. Searching for known issues is more appropriate when checking
whether a bug fix resolves a previously identified memory leak.

4.3. Load Test Input Data

Load tests for session-based applications replay specific user sessions. Fig-
ure 4.2 illustrates one such session, consisting of requests for login, product
browsing, and adding a product to the shopping cart. In between two re-
quests, there are think times. The described type, order, and timing of
requests are the most relevant characteristics of the basic components of a
session-based workload (Menascé et al., 1999). However, the meaningful
execution of the test also requires appropriate input data sent with each
request. As an example, the login request needs a user name and password
as parameters. Presuming the request should result in a successful login,
the data input to these parameters need to be valid credentials; otherwise,
the SUT will behave differently than expected.

POST
 /login

GET
/browse

POST
/add-to-cart

wait 
6s

wait 
11s

password

user name product ID

LEGEND
Action (request or wait) Parameter

Figure 4.2.: Activity diagram of an exemplary user session interacting with
a webshop via HTTP.
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Session-based workload characterization approaches extract workload
models from recorded sessions (see Section 3.2). While doing so, they also
can capture the input data. However, the load test is executed in a test
environment with different databases than in the production environment,
for privacy and security reasons (Jiang and Hassan, 2015). Therefore, most
of the captured input data, including our example of login credentials, are
invalid. Instead, they need to be replaced with comparable data from the test
database. Easing this process, approaches exist that generate test databases,
e.g., by Bainbridge et al. (2009), Barros et al. (2007), Farahbod and Dadashi
(2017), and Grechanik et al. (2010).

Remarkably, the notion of input data, as opposed to the basic workload
components, strongly depends on the type of workload. For instance, an
application might only provide a single Hypertext Transfer Protocol (HTTP)
endpoint, characterized by a path and request method, e.g., for uploading
messages of various sizes. Here, the messages are the basic workload compo-
nents, while they are also input data according to our definition. Therefore,
we introduce the term session-dominated workload, denoting a session-based
workload mainly characterized by the requested endpoints, request order,
and timing. Session-dominated workloads only require the input data to be
“correct”, e.g., be valid login credentials.

4.4. Load Testing Tools

In our research, we use a workload characterization approach to generate
a representative workload model and transform it into a load test. For the
second step of the load testing process, i.e., the test execution, we utilize
two different tools. The first tool is JMeter (Apache Software Foundation,
2020[a]), which is open-source and widely adopted. The BenchFlow ap-
proach by Ferme and Pautasso (2018) provides further automation and
deployment support.
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4.4.1. Apace JMeter

JMeter (Apache Software Foundation, 2020[a]) is an open-source load
testing tool implemented in Java. It was initially designed to test web appli-
cations and extended to other domains, such as Java Database Connectivity
(JDBC) and Java Message Service (JMS). Test plans, which describe the
load test to be executed, are defined as Extensible Markup Language (XML)
files, with editing support by a graphical user interface (GUI). Test plans
model closed workloads consisting of threads that follow a defined tree-based
structure of samplers. Each time a thread reaches the end of the tree, it
restarts again. A sampler executes a request, e.g., to an HTTP endpoint,
and collects functional and performance data about the request. Further
elements of the tree can manage the request timing or define input data.
For executing a test, JMeter provides a command-line interface (CLI). Due
to its extensibility via plugin mechanisms and large community, JMeter is
widely used in practice.

Our approach does not rely on the GUI but uses a transformation of
WESSBAS workload models (see Section 3.2.4) into JMeter test plans. This
transformation utilizes JMeter’s Java API (Apache Software Foundation,
2020[b]) and the Markov4JMeter plugin (van Hoorn et al., 2008), which
enables executing Markov-chain-based workload models. The plugin defines
the test plan tree as one or multiple concurrent Markov chains, with one
sampler per state, similar to the WESSBAS DSL.
Regarding the load test execution, JMeter only supports submitting the

workload to the SUT but not the SUT’s deployment. To increase the level of
automation, we use BenchFlow, which we introduce in the next section.

4.4.2. BenchFlow

Adding more automation and deployment support, Ferme and Pautasso
(2017, 2018) introduce BenchFlow, a model-driven framework to automate
the “end-to-end process of executing performance tests.” They provide a declar-
ative domain-specific language (DSL) based on the YAML format to describe
performance tests. Each test has a stated goal, e.g., a simple load test or
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an exploratory testing strategy to obtain the optimal SUT configuration for
a given workload. Besides, the DSL allows specifying the workload, data
collected during the test execution, quality gates, and the deployment of
the SUT. For the last aspect, the DSL relies on Docker (Docker Inc., 2020)
deployment descriptors. Tests are executed using the Faban (2020) load
driver or, introduced by Palenga (2018), JMeter.
Given a DSL instance, BenchFlow automatically handles the execution

lifecycle. It determines the experiments to execute, e.g., the same workload
with different SUT configurations, deploys the SUT, executes the workload,
and collects monitoring data. Also, it analyzes the results with respect
to the quality gates. Thus, it integrates well with continuous integration
and delivery (CI/CD) practices and provides better support for the whole
test execution phase than JMeter. As we generate workload models in
our approach, the combination with BenchFlow provides a high degree of
automation and abstraction (see Chapter 9).

4.5. Summary

Load testing is a fundamental technique to assess a system’s ability to handle
a given workload and identify load-related problems before delivery. It over-
laps with performance and stress testing, whereas we exclude stress testing
in this work. The main steps of load testing are test design, test execution,
and test analysis. Leveraging workload characterization approaches, we
contribute to the design step by extracting tailored load tests from the pro-
duction workload. For the test execution, we rely on existing tools, such as
JMeter (Apache Software Foundation, 2020[a]) and BenchFlow (Ferme and
Pautasso, 2018). Test analysis, apart from the means provided by JMeter
and BenchFlow, is out of the scope of this dissertation.
In the next part, we introduce our proposed approach to the automatic

generation of tailored load tests. We start by describing the research design.
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In this chapter, we provide an overview of our research design and the
approach we have developed. We define our goal and corresponding research
questions in Section 5.1. We make a few assumptions, which we explain
in Section 5.2. In Section 5.3, we structure our work into work packages.
Section 5.4 provides an overview of our approach. Finally, in Section 5.5,
we describe the collaborations that were carried out in this research.

5.1. Goal and Research Questions

The following defines the goal of our research and introduces the research
questions. There are four main questions, which we further split into sub-
questions.

5.1.1. Overview

The main goal of our research is the following:

Automate the generation of representative load tests that are

tailored to the relevant services andworkload-influencing con-

texts of a session-based, continuously developed application.
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General implications of continuous software engineering (CSE) are short
release cycles, automation, and concurrency, e.g., by multiple teams devel-
oping one microservice each (Bass et al., 2015). In this context, Bezemer
et al. (2019) have found that performance engineering tasks, which include
representative load testing, are rarely applied regularly. The authors partially
attribute this finding to the high level of expertise these tasks require. As a
further reason, T.-H. Chen et al. (2017) report that load tests require a long
execution time and much hardware, which hinders concurrent execution.

Generating load tests tailored to the specific situation addresses several of
these aspects. By tailoring a load test to an individual (micro) service, we
can reduce the required hardware, which eases concurrent execution. As
the workload frequently changes (Herbst et al., 2013; Jiang and Hassan,
2015), influenced by current events and circumstances (Chandola et al.,
2009), the number of load tests to execute can be reduced by focussing
on the current workload context. However, the on-demand generation of
tailored load tests poses the new challenge of automation, which CSE requires
(Bezemer et al., 2019). Existing approaches typically require applying
manual parameterizations to generated representative load tests (Vögele
et al., 2018), which need to be evolved when generating new load tests.
Concluding, we address the challenges of automated load test parame-

terization, tailoring to services, tailoring to workload contexts, and also
easing load testing for non-experts, leading to the following main research
questions.

RQ1: How can load test parameterizations be evolved without manual
intervention at test generation or execution time?

RQ2: How can representative load tests be tailored to specific services of a
session-based application?

RQ3: How can representative load tests automatically be tailored to the
contexts of a session-based workload?

RQ4: How can we leverage automated tailored load test generation and au-
tomated load test execution for enabling load testing for non-experts?
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5.1.2. Details

We further detail each research question into sub-questions regarding specific
aspects to be developed or evaluated.

5.1.2.1. RQ1 — Evolving Load Test Parameterizations

There are two main types of changes that may affect a load test parame-
terization and, thus, need to be considered for parameterization evolution:
workload changes and changes to the tested application’s API. In both cases,
previously generated load tests become outdated, requiring the generation
of new tests. We aim to evolve a user’s parameterizations over the changes
if they have parameterized the load tests manually. In the case of workload
changes, we presume we can fully automate the evolution. The degree of
automation and, thus, reduction of manual maintenance effort in the case of
API changes depends on the change type. Hence, we formulate the following
sub-questions of RQ1 to be investigated.

RQ1.1: How can load test parameterizations be automatically evolved if the
workload changes?

RQ1.2: Which API change types exist that affect load test parameteriza-
tions?

The most crucial property of representative load tests is their represen-
tativeness. Therefore, while we aim to reduce the maintenance effort, our
parameterization evolution approach should impair the representativeness
as least as possible. Compared to newly generated unparameterized load
tests, it should improve this property. Also, we aim at covering generic types
of parameterizations, e.g., as demanded by industrial projects. Hence, we
investigate the following questions in the evaluation.

RQ1.3: To which degree can we reduce the maintenance effort for the
evolution of load test parameterizations if the API changes?

RQ1.4: How much does the parameterization by our approach impair the
representativeness of a load test?
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RQ1.5: To which degree do evolved parameterizations improve the repre-
sentativeness of a generated load test?

RQ1.6: How expressive is our approach compared to parameterizations of
load tests used in industrial projects?

5.1.2.2. RQ2 — Service-tailoring Load Tests

Existing approaches extract load tests from collected user requests by a series
of transformations (Vögele et al., 2018). We aim to extend this process for
integrating tailoring to one or a specific set of services. Hence, we address
the following question.

RQ2.1: How can we extend the load test extraction process for generating
service-tailored load tests?

In the evaluation of the service-tailoring approach, we again focus on the
representativeness of the generated load tests. We explicitly investigate the
impact on performance metrics, such as response times, CPU utilization, and
memory consumption, as an indicator of impaired representativeness. While
service-tailoring naturally reduces the number of services to be deployed
and, thus, the required hardware, it also might reduce the complexity of
the load tests. Hence, the tests might need less time until they reach stable
performance metrics, which indicate the tests can be stopped. Finally, we
aim at identifying multiple service-tailoring approaches, which we compare
qualitatively. Concluding, we evaluate the following research questions.

RQ2.2: How representative are the workloads generated by the service-
tailored load tests compared to an untailored and a request-based
test?

RQ2.3: To which degree do the service-tailored load tests impair the per-
formance metrics of the tested services?

RQ2.4: How much can service-tailoring reduce the test execution time until
measured performance metrics are stable?
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RQ2.5: Which qualitative differences of the service-tailored workload mod-
els exist?

5.1.2.3. RQ3 — Context-tailoring Load Tests

We aim to generate load tests that are tailored to the workload context
relevant to the particular situation. As an example, in early November, the
operator of a webshop will be interested in the workload that is expected
for the upcoming Black Friday—here, Black Friday is the context—, while
they will have a different focus in December. To do so, we need to model
the past workload, which will allow us to extract specific parts or predict it
to the future. As the past workload continually grows, we need to learn the
workload models incrementally, resulting in the following question.

RQ3.1: How can we incrementally learn the workload models from observed
user sessions for predicting future workload scenarios?

Incremental learning is an extension of existing approaches, which might
affect the workload models. Therefore, we analyze this impact. To describe
context-tailored load tests, we introduce a description language that should
be expressive enough for real-world scenarios. Then, we apply our approach
for generating load tests, whose workload models should be able to predict
the future workload accurately. As a further step, we investigate the rep-
resentativeness of workload scenarios that have been predicted using time
series forecasting. Finally, time series forecasting can be time-consuming,
which we evaluate as well. Overall, the evaluation addresses the following
research questions.

RQ3.2: How much does the incremental learning affect the workload mod-
els?

RQ3.3: How expressive is the Load Test Context-tailoring Language con-
cerning workload scenarios of a production system?

RQ3.4: How well do the continuously learned workload models describe
the future workload?
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RQ3.5: How representative for future workload scenarios are workload
models with forecasted intensities?

RQ3.6: How long does it take to calculate an intensity forecast?

5.1.2.4. RQ4 — Enabling Load Testing for Non-experts

For enabling load testing for inexperienced users, we target the integra-
tion of our context-tailored load test generation approach and BenchFlow
(Ferme and Pautasso, 2018, see Section 4.4.2). This integration provides
a high degree of automation, as our approach can generate tailored load
tests automatically, and BenchFlow can automatically manage its execution.
For easing the interaction of a user with the approach, we develop a de-
scription language that is based on template-based natural language. This
Behavior-driven Load Testing (BDLT) language—adopted from Behavior-
driven Development (BDD) (North, 2006)—needs to be able to describe
industrial load test concerns. Also, we investigate how practitioners in the
industry would use the language and which benefits and limitations they
identify compared to manual scripting of load tests. Finally, we also investi-
gate laboratory use cases, resulting in the following research questions to be
evaluated.

RQ4.1: How expressive is the BDLT language in regards to load test concerns
of industrial use cases?

RQ4.2: How would BDLT be used in industrial contexts?

RQ4.3: What are the benefits and limitations of using BDLT in comparison
to defining load test scripts?

RQ4.4: How expressive is the BDLT language regarding the load test con-
cerns coming from laboratory experiments?

5.2. Assumptions

In this dissertation, we focus on load testing in CSE. Hence, we can presume
short release cycles, build, test, and delivery automation, and distributed ap-
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plications, e.g., following the microservice architectural pattern. Additionally,
we make further assumptions that are not necessarily met in such contexts.
However, as explained in the following, our research can be extended to
relaxed assumptions, e.g., by integration with further approaches.

5.2.1. The Tested Application is Operated in Production

Our first assumption is that the software application, for which we aim to
generate load tests, is operated in a production environment and accessed
by real users. Hence, we can record the requests and sessions the users
submit for extracting load tests. As CSE applies iterative development and
aims at releasing the developed software early, we reasonably presume most
applications to be productive.

For applications that are not released yet, we cannot apply our approach
or require workarounds. One workaround is the use of a related application’s
workload, e.g., the legacy application when migrating to a distributed cloud
environment. Future work might investigate mapping strategies in case of
changed APIs.

5.2.2. There is Only One Production Environment

Related to the first assumption, we assume there is a single production
environment. Thus, it is unambiguous which data we need to consider to
extract load tests. Many industrial applications meet this assumption, e.g., if
the application is developed and operated in-house.

However, there can be multiple production environments if the application
is delivered to customers or offered as a software as a service (SaaS) solution.
In such a case, our approach could be applied in two ways: selecting one
production environment—e.g., the one with the highest workload—or
considering all environments separately. We leave the precise strategy to the
users of our approach or to be investigated in future work and focus on a
single production environment in this work.
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5.2.3. There is a Production-like Test Environment

Load tests are commonly executed in laboratory environments to prevent
influences on the production system (Jiang and Hassan, 2015). Such a test
environment should have similar characteristics to the production environ-
ment. Otherwise, the load test results achieved with a workload that is
representative of the production workload are of minor validity. Therefore,
we assume we can execute the load tests we generate in a production-like
test environment.
However, such test environments might not exist in practice. To over-

come this circumstance, we refer to existing work that introduces testing
as a service (TaaS) platforms for production-like deployment of the tested
application (Q. Gao et al., 2013; Yan et al., 2012). Alternatively, as most test
environments are smaller than the production environment, our approach
allows for horizontal (tailoring to specific services and testing only a few
service instances) and vertical (reducing the workload intensity) downscal-
ing. Besides, we refer to Foo et al. (2015), who propose an approach for
performance regression detection using load tests that have been executed
in heterogeneous test environments.

5.2.4. Representative Test Data is Available

In addition to the test environment’s hardware and software settings, Jiang
and Hassan (2015) also emphasize the importance of test data that is repre-
sentative of the production data. That is, the database(s) used in the test
should be similar to the ones of the production system, as they can influence
the application’s behavior and, thus, the test results. Therefore, we presume
the presence of representative test data in this research.
Often, the actual production database(s) cannot be reused in the test

environment due to security or privacy concerns. To overcome this limitation,
we refer to existing approaches that construct a test database by obfuscating
production data (Barros et al., 2007; Farahbod and Dadashi, 2017; Grechanik
et al., 2010).
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Figure 5.1.: Illustration of the work packages, which we approach in the
reverse order compared to the load test generation process.

5.3. Research Plan

We structure our research into work packages that correspond to the main
research questions and target the goal defined at the beginning of this chapter.
As Figure 5.1 illustrates, we approach the goal in reverse order: while a
user first describes a load test, which will be tailored and parameterized, we
start with the parameterization and add the other aspects in sequence. Each
work package comprises the development of an approach and its evaluation.
Following open-science practices, we publish supplementary material for
evaluation replication online (see Appendix E).

The work packages differ methodologically. While WP1 focuses on model-
ing and transformation techniques, WP2 comprises the design of algorithms
and their (formal) verification. In WP3, we design a description language
and apply data science techniques, such as clustering and time series fore-
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casting. Finally, in WP4, we focus on the application of our approach in
industry. The following provides a summary of the work packages.
At the beginning of this research, we have published a vision paper at a

relevant workshop (H. Schulz et al., 2018). Besides, as a summary of our
research planning, we have prepared a proposal document, which we have
refined in collaboration with the Ph.D. supervisor. The vision described in
these documents comprises developing performance stubs. Because mature
work exists (e.g., Versteeg et al., 2016), we have not investigated this field
but focused on load testing for non-experts (WP4) instead.

5.3.1. WP1 — Load Test Parameterzation

The first work package addresses RQ1 and its sub-questions and aims at au-
tomating the load test generation process. For that, we develop and evaluate
an approach for the automated parameterization of repeatedly generated
load tests. We design a domain-specific language (DSL) for describing load
test parameterizations, which a user needs to define. Also, we develop
transformations of the DSL into load tests, such as JMeter (Apache Software
Foundation, 2020[a]) and BenchFlow (Ferme and Pautasso, 2018). To sup-
port the user in the creation of parameterizations, we develop evolution
strategies for our DSL, as well as a transformation from API specifications.
For this purpose, we collect API change types collected in the literature.

The evaluation targets RQ1.3 to 1.6 and comprises experimental studies,
estimation models, and a case study. Hence, we combine quantitative and
qualitative evaluations.

Chapter 6 describes the approach, and Chapter 12 presents the evaluation.

5.3.2. WP2 — Service-tailoring

Utilizing the automated load test generation process, this work package aims
to tailor load tests to a user-defined set of services. We start by analyzing the
existing generation process for identifying extension possibilities. For each
of them, we develop an algorithm that tailors an intermediate artifact to the
services to be tested, such that the resulting load test is service-tailored.
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The evaluation comprises formal verification and an experimental study
that combines quantitative and qualitative methods. For formal verification,
we prove the correctness of the algorithms regarding previously defined
requirements. In the experimental study, we apply our approach to a mi-
croservice application.

We present the approach and evaluation in Chapters 7 and 13, respectively.

5.3.3. WP3 — Context-tailoring

WP3 aims to tailor the generated load tests in a second dimension, namely the
workload context, as requested by RQ3. As the first step, we collect anecdotal
examples of workload contexts reported in blog posts and news articles
and classify them. Corresponding to RQ3.1, we develop multiple session
clustering algorithms for incremental workload model learning. Based on the
context classification, we develop an approach for enriching the workload
model with contexts. Then, we design a DSL that allows users to describe a
context-based load test and develop a process that generates the described
test. In doing so, we leverage time-series forecasting.
The evaluation is based on the student information system (SIS) of a

large university and addresses quantitative—such as representativeness
metrics—and qualitative—such as the DSL’s expressiveness—aspects. For
that, we conduct an expert survey and experimental studies.
Chapters 8 and 14 present the results of the work package.

5.3.4. WP4 — Load Testing for Non-experts

In the final work package, we collaborate with different researchers to enable
load testing for non-experts. In joint work with Ferme and Pautasso (2017,
2018), we integrate our approach with their BenchFlow approach. Hence, we
can automatically generate and execute load tests, which abstracts complex-
ity away from the user. Besides, we develop a description language based on
template-based natural language for easing the use of our approach further.
In a second collaboration with Avritzer et al. (2018, 2020a), we investigate
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use cases of integrated load test generation and execution. Specifically, we
focus on the scalability assessment of microservice applications.

We conduct a qualitative evaluation for investigating the usefulness of our
approach in industrial contexts. Precisely, we perform a case study with a
project partner. Also, we enrich the evaluation with quantitative insights
from the scalability assessment.
We present the approach in Chapter 9 and the evaluation in Chapter 15.
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Figure 5.2.: Overview of our approach.
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5.4. Overview of the Approach

Figure 5.2 shows an overview of the approach, which we have developed in
the work packages described above. There are three major constituents: the
continuous learning of a context-enriched workload model, the on-demand
generation of a tailored load test, and load testing for non-experts, which
integrates the on-demand generation with the automated load test execution
by Ferme and Pautasso (2018). In the following, we detail the constituents
as a summary of the remaining chapters of this part. In doing so, we consider
a webshop as an exemplary microservice application to be load tested.

API and Parameterization Description: The first step is always the creation of
an Input Data and Properties Annotation (IDPA) 1�. An IDPA is a model that
describes the API of the system under test (SUT) and the parameterizations
to be applied to generated load tests. While we can automatically generate
the API description based on OpenAPI specifications (OpenAPI Initiative,
2020)—which are commonly used in CSE—, the user has to define the
parameterizations manually. Regarding the webshop, they have to specify
the credentials of test users the load test should use when requesting the
login endpoint. For later use, the parameterizations are connected with
endpoint IDs, such as loginUsingGET. The IDPA is to be maintained by the
developers of the tested application or service. To reduce the maintenance
effort, we provide feedback-based evolution strategies for the IDPA in case
of API changes and reuse it for repeated load test generations. Developing
the IDPA and its evolution mechanisms are part of WP1.

Continuous Workload Model Learning: Using the API description of the
IDPA, we continuously learn a workload model. For that, we collect the trace
logs from our application running in the production environment—e.g., by
application performance management (APM)—and extract user sessions.
This extraction considers the IDPA for assigning IDs to the endpoints of
the traces’ requests, which allows us to synchronize the later generated
load tests with the parameterizations of the IDPA. For example, we label
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requests to the login endpoint with loginUsingGET. If configured, we apply
log-based service-tailoring 2�, which is one approach we have identified in
WP2. It tailors the session logs to specific services, e.g., the users service
of our webshop, by replacing the root endpoints of the traces with those
directly targeting the users service. Then, we cluster the extracted sessions
incrementally, i.e., we integrate former clusterings. The resulting workload
model is stored in a workload model repository (WMR). Also, we enrich
the workload model with contextual information, e.g., the fact that there
was a Black Friday at a specific date. The request labeling is part of WP1,
the log-based service-tailoring belongs to WP2, and the incremental workload
model learning contributes to WP3.

Behavior-driven Load Test Definition: For non-experienced users, we provide
an integration with the BenchFlow load test execution automation by Ferme
and Pautasso (2018). The users can define a load test using our provided
BDLT language 3�, as illustrated by Listing 5.1. The example states to
test the workload expected at the next Black Friday—which relates to the
Black Friday context we have stored in the WMR—tailored to the users
service for testing how many instances of this service need to be deployed
to ensure response times below a defined threshold. The BDLT definition is
readable as natural language, which eases communication with non-technical
stakeholders, such as product owners. To generate the described test, we
transform the BDLT definition into other artifacts 4�. The BDLT language
and its transformation were developed as part of WP4.

Given the next Black Friday
2 and the service users,
when varying the number of users instances between 8 and 12,

4 then ensure the 95th percentile response time is less than 1 second.
Listing 5.1: Exemplary BDLT definition.
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Context-tailoring: The first step for the on-demand generation of a tailored
load test is context-tailoring 5�. It extracts a workload model from the
workload model repository by applying time-series forecasting. For that, a
user needs to define an instance of the LCtL; if they have used the BDLT
language, the LCtL instance is generated automatically. As an example, the
LCtL instance corresponding to Listing 5.1 would state to extract a workload
model from the time frame where the Black Friday context is present. To
achieve that, we apply multivariate time-series forecasting tools (Bauer et al.,
2020; Taylor and Letham, 2018), which consider the context, to the past
workload we have learned incrementally. The result is a WESSBAS (Vögele et
al., 2018) model that reflects the expected number of users and their behavior
for the upcoming Black Friday. The benefit of using the LCtL instead of the
BDLT language are broader and more fine-grained configuration possibilities,
while it requires more technical experience, e.g., for understanding the YAML
(2020) format. The context-tailoring is part of WP3.

Model-based Service-tailoring: We need to apply model-based service-tailor-
ing 6� if we want to test the users service of our webshop directly but have
not used log-based service-tailoring during the incremental workload model
learning. Hence, it constitutes the second option we have developed for
service-tailoring. It takes as input the context-tailored workload model,
which targets the webshop application as a whole, and replaces individual
states with new states that target the users service. The services to be
considered are defined as a simple user-specified list; when using BDLT, we
generate the list. The output of this step is a model that reflects the same
workload as the input did but tailored to the users service. The model-based
service-tailoring belongs to WP2.

Automated Parameterization: For transforming the generated workload
model into an executable load test, we need to parameterize it 7�. We need
to add input data, such as the user credentials for the login endpoint, and
configure the test to be executable in a test environment, e.g., by specify-
ing the correct IP address and port number. These parameterizations are
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part of the IDPA the user has defined in the very beginning. Because the
previous transformations preserved the endpoint IDs, such as loginUsingGET,
which we have assigned to the requests of the session logs, we can map
the parameterizations to the states of the workload model. Hence, we fully
automate the on-demand load test generation, as opposed to existing work
(Vögele et al., 2018). The load test formats we support are JMeter (Apache
Software Foundation, 2020[a]) and BenchFlow (Ferme and Pautasso, 2018),
but further formats can be added. The automated parameterization is part of
WP1.

Automated Execution: Our load testing approach for non-experts also com-
prises the automated execution of the generated load test 8�. Hence, we can
provide the user with the load test results only based on their BDLT definition
(and a previously defined IDPA). In this research, we do not contribute to
the load test execution but rely on the framework by Ferme and Pautasso
(2018).

5.5. Collaborations

During our research, we have collaboratedwithmultiple students, researchers,
and industry partners. The following provides an overview of these collabo-
rations.

5.5.1. Students

Several students contributed to this research while preparing their Master’s
theses at the University of Stuttgart. As detailed below, these students were
co-supervised with the following researchers: André van Hoorn, Dušan
Okanović, Vincenzo Ferme, and Petr Tůma (Charles University, Prague).

• Angerstein (2018) has developed the service-tailoring approaches from
WP2 (Chapter 7) and has performed an initial experimental evaluation,
which we have extended (Chapter 13). Also, we have extended the
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used formalisms. His work resulted in a joint publication (H. Schulz
et al., 2019a).

• Hidiroglu (2019) has contributed to WP3 by developing an initial
version of the context-tailoring (Chapter 8), comprising a context de-
scription language. Some concepts of this language came into our LCtL.
He has also done exploratory work for our evaluation (Chapter 14) by
using the same dataset in his experimental evaluation. His research
was conducted as a collaboration with Charles University, Prague.

• Contributing to WP4 (Chapter 9), Palenga (2018) has developed the
transformation of WESSBAS workload models and IDPAs into Bench-
Flow load tests. Besides, he has implemented a BenchFlow execution
engine based on JMeter.

5.5.2. Researchers and Industry

Our research was part of the ContinuITy (2020) project. Throughout our
research and all publications, we have collaborated with colleagues from the
Reliable Software Systems group of the University of Stuttgart and Novatec
Consulting GmbH.
Regarding the context-tailoring (WP3, Chapter 7), we have furthermore

collaborated with Charles University, Prague. Particularly, Maňásek and
Tůma (2019) have contributed a large dataset of user requests, which we
have used in our evaluation (Chapter 14). Besides, we have jointly supervised
Hidiroglu’s thesis. The collaboration resulted in a joint publication (H. Schulz
et al., 2021).
WP4 (Chapters 9 and 15) comprises multiple collaborations. First, the

BDLT language and integration of our and the BenchFlow approach was
a joint work with the University of Lugano, whereas Ferme was a visiting
researcher at the University of Stuttgart during the collaboration. It resulted
in a joint publication (H. Schulz et al., 2019c). For evaluating our integrated
approach, we have collaborated with an industry partner of the Continu-
ITy project (Section 15.1). Besides, we have developed the domain-based
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approach for microservice scalability assessment (Section 9.3) in collabora-
tion with multiple researchers from EsulabSolutions, Inc, Free University of
Bozen-Bolzano, and Federal University of Rio de Janeiro, resulting in several
publications (Avritzer et al., 2018, 2020a, 2019).
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A fundamental requirement for our approach is the ability to generate load
tests automatically without manual intervention. Based on a given contextual
description and a set of services to be tested, we generate tailored load tests
that represent the expected workload for the context and directly operate
on the set of services. Existing approaches allow extracting load tests with
representative workload specifications from recorded request logs (Barros et
al., 2007; Cai et al., 2007; Krishnamurthy et al., 2006; Lutteroth and Weber,
2008; Menascé and Almeida, 2002; Ruffo et al., 2004; Vögele et al., 2018)
but require manual parameterization of the generated load tests (Vögele
et al., 2018). The parameterization includes adjusting static properties like
the domain name or port number, which will differ in the test environment,
and input data for the individual requests. For instance, an expert needs
to specify the user names and passwords for a login request according to
the test environment’s database. Additionally, they have to consider data
dependencies such as IDs or tokens the system under test (SUT) returns for
the use in later requests. As described by T.-H. Chen et al. (2017) and Jiang
and Hassan (2015), maintaining such generated load tests is an existing
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research challenge. Because of the evolution of the production workload and
the SUT’s API, the generated load tests need to be evolved simultaneously
to stay representative. As an additional challenge, our approach requires
parameterizing newly generated load tests automatically, e.g., as part of a
continuous integration and delivery (CI/CD) pipeline.
Existing approaches determine whether an expert should update a gen-

erated load test by comparing the workload of a load test execution to the
production workload (T.-H. Chen et al., 2017; Syer et al., 2014, 2017).
Commercial load testing tools support users in defining parameterizations
(Micro Focus, 2020[a],[b]). However, these approaches are not capable of
dealing with frequently generated load tests as by our approach. Because
of the sheer amount of combinations of contexts and sets of services that
a load test could simulate, generating load tests once and replacing them
when needed requires significant manual effort for parameterizing the newly
generated load tests. Also, multiple generated load tests will be parameter-
ized similarly, e.g., with the same user names and passwords. Furthermore,
the requirement for generating load tests fully automatically disallows for
parameterizing them manually. The commercial tools can support reducing
the manual effort but still cannot automate the parameterization.
Therefore, we aim at decoupling the manual effort required for parame-

terization from the load test generation process and reusing once defined
parameterizations for multiple load tests. Furthermore, we want to reduce
the manual effort to a minimum. Our approach needs to evolve once created
parameterizations over changing workloads and APIs of the tested applica-
tion. Thus, we address the research question RQ1 defined in Section 5.1:
How can load test parameterizations be evolved without manual intervention
at test generation or execution time?
For this purpose, we introduce the reusable Input Data and Properties

Annotation (IDPA) for load test parameterization separated from a generated
load test. An IDPA stores the parameterizations defined by an expert and
can be automatically merged into the generated test. Hence, it is reusable
for different workloads. For the evolution over API changes, we analyze
API change types proposed in the literature and design a feedback-based
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approach to the evolution of IDPAs over the identified changes. As a result,
the load test generation process can be fully automated because IDPAs can
be defined and updated in advance.

The remainder of this chapter is structured as follows. Section 6.1 summa-
rizes possible load test parameterizations we consider for the design of the
IDPA in a taxonomy. In Section 6.2, we describe the load test parameteriza-
tion process using IDPAs. In Section 6.3, we introduce the IDPA metamodel
and serialization. Section 6.4 depicts the evolution of IDPAs over workload
and API changes. Section 6.5 provides the IDPA transformations used in
our approach. Finally, in Section 6.6, we describe how the load test pa-
rameterization with IDPAs integrates into continuous software engineering
(CSE).

Parts of this chapter have been published in advance in our following publi-
cations, as marked in the text:

• H. Schulz, T. Angerstein, and A. van Hoorn (2018). “Towards Automat-
ing Representative Load Testing in Continuous Software Engineering.”
In: Companion of the 9th ACM/SPEC International Conference on Per-
formance Engineering (ICPE 2018). ACM, pp. 123–126

• H. Schulz, A. van Hoorn, and A. Wert (2020c). “Reducing the Mainte-
nance Effort for Parameterization of Representative Load Tests Using
Annotations.” In: Journal of Software Testing, Verification and Reliability
30.1

6.1. A Taxonomy of Parameterizations

For illustrating required parameterizations of generated load tests and moti-
vating the need for automation, this section introduces a taxonomy of load
test parameterizations. To account for as many parameterization concepts
as possible, we base the taxonomy on multiple load tests used for the case
study systems in our evaluations (see Chapter 12). Precisely, we refer to
the following: the load tests of four industrial projects, which we analyzed
regarding the parameterizations used; a load test derived from recorded

6.1 | A Taxonomy of Parameterizations 69



Load test 
parameterization

Test environment 
property

Execution-
independent

Dynamic

Random

List-based input data

Execution-
dependent

Data dependency

Systematic

Incremental input 
data

Static

CSRF token in HTML response

LE
G

E
N

D

Type

Category

Randomly generated 
input data

Environment-
dependent input data

Application-specific 
input data

Combined input data

Item ID in JSON response

Domain name
Port number

Artifact identifiers list

Random UUID
Random number

User name counter

Timestamp

Authentification token

Combination of random numbers

Example

Constructed JSON body values

Password

Figure 6.1.: Taxonomy of load test parameterizations.
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request logs for the build artifact management system Nexus (Sonatype, Inc.,
2020[a]); and a load test we defined for the e-commerce sample application
Heat Clinic (Broadleaf Commerce, LLC, 2017). We presume that these load
tests cover the most frequently used concepts. However, there can still be
parameterization concepts that any of these load tests use. Therefore, we
respect the potential incompleteness by providing extension possibilities for
our models.
We illustrate the taxonomy in Figure 6.1. We divide the load test param-

eterizations into two main categories of static and dynamic ones. Static
parameterizations are test environment properties that need to be specified,
such as the domain name and port number of the SUT. Especially these
two properties need to be specified in all cases where the extracted load
test is to be executed in a test environment that differs from the production
environment. In the industrial projects, we furthermore identified a need for
changing the base path of requests, e.g., by adding /stage/test as a prefix.

The category of dynamic parameterization denotes the specification of dy-
namic values such as input data to be used for individual requests. We further
divide it into execution-dependent and execution-independent parameteriza-
tions. Execution-dependent parameterizations refer to data dependencies,
which the load test needs to resolve during the execution. Typical examples
are IDs or tokens that the target application generates and returns as a part
of a response, which the (simulated) users need to reuse in the following
requests. For instance, different web applications such as the Heat Clinic
use cross-site request forgery (CSRF) tokens for preventing security vulnera-
bilities. The users need to keep this token in subsequent requests (OWASP,
2020). Another example originates from the industrial projects, where the
virtual users extract an item ID from a JavaScript Object Notation (JSON)
response for later use.

Execution-independent parameterizations are input data that are specified
independently of the actual execution order of the requests of the load test but
are dynamically determined as well. Such input data can be either defined
randomly or systematically. As random parameterizations, we identified list-
based input data, which denote lists of values specified in comma-separated
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values (CSV) files or directly in the load test, and from which the virtual users
take parameter values for the requests randomly. For Nexus, we used CSV
files holding artifact identifiers that the load test should access in random
order. Another type of random parameterization is randomly generated input
data. In contrast to list-based input data, values are entirely generated based
on, e.g., a pattern or a numerical range. Two examples from the industrial
projects are universally unique identifiers (UUIDs), which were randomly
generated based on a pattern, and numbers that were randomly chosen from
a range.

Opposed to random parameterization, systematic execution-independent
parameterization comprises input data that are systematically defined. In-
cremental input data are a compact and systematic specification of numerous
values that only differ in a number. The number is changed, e.g., by counting
the number of starts of new virtual users, for ensuring each of them has a
different number. As an example, we made use of this concept for defining
200 different user accounts for the Heat Clinic, which only differ in a number.
Each time a new user starts, the counter increases, and hence, the user
uses a new account. Furthermore, the industrial projects use environment-
dependent input data. In particular, they generate timestamps based on the
current time and read passwords from environment variables. The final
parameterization type falling into this category is application-specific data
such as an authentication token, which one of the industrial projects used.
In this case, they generated a Java Web Token (JWT) initially and then used
it during the load test execution. Because inputs of this category can highly
depend on the SUT, they can hardly be generalized but rather demand for
extensible input data specifications.

Finally, there is a type of dynamic parameterization that cannot be classi-
fied to be execution-dependent or independent. These are combined input
data, which denote input data consisting of a combination of other input
data. As an example, the load tests of one of the industrial projects combine
multiple randomly generated numbers to a string. Additionally, several of
these projects construct JSON body values based on various other input data,
such as list-based input data and data dependencies.

72 6 | Automating Load Test Parameterization



Execution-independent parameter values can often be learned from pro-
duction requests. However, they are typically not reusable as input data for
the load test because the test database differs from the production database.
Hence, they have to be replaced by values that are suitable for the test
environment. For execution-dependent parameter values, commercial load
testing tools provide support (Micro Focus, 2020[a],[b]) but typically require
at least manual guidance. Our approach takes into account that some or
even all parameterizations of a load test need to be applied manually. Based
on the taxonomy, we develop the IDPA, which stores the parameterizations
separated from generated artifacts such as workload models and load tests.
The IDPA allows for reusing parameterizations when workloads and APIs
evolve. Accounting for the potential incompleteness of the taxonomy, the
IDPA is extensible.
In the next two sections, we describe the process of load test parame-

terization with and without using our approach and present the IDPA in
detail.

6.2. Load Test Parameterization Process Overview

This section describes the process of parameterizing generated representa-
tive load tests using IDPAs compared to solely using existing approaches.
We published the process in previous work (H. Schulz et al., 2018), and
Figure 6.2 illustrates it.
Without using IDPAs, the process consists of workload characterization

and transformation to a load test, as described in Section 3.2.1 (solid black
arrows in the figure). In a first step, state-of-the-art workload characteri-
zation approaches use request logs recorded from a production system for
generating a workload model that represents the actual production work-
load 1�. An example of such an approach is WESSBAS based on Markov
chains (Vögele et al., 2018). The second step is a transformation of the
generated workload model into an executable load test, e.g., a JMeter test
plan (Apache Software Foundation, 2020[a]). Typically, an expert has to
attend this transformation to parameterize the load test 2�.
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Figure 6.2.: Generation of representative load tests using existing ap-
proaches with manual parameterization (a) and parameteri-
zation with an IDPA (b).

The main drawback of this parameterization approach is that it has to be
applied at the time a load test is generated. It does not allow for reusing
parameterizations for multiple generated load tests, e.g., representing differ-
ent workload scenarios. Hence, manual effort is required each time a load
test is generated. In the context of our approach, the manual effort is espe-
cially critical because we generate load tests based on high-level descriptions
directly before testing. As a consequence, the manual effort accumulates
and prevents integration into CI/CD pipelines.
For these reasons, we extend the parameterization process, as shown by

the dashed arrows in the figure. The manual parameterization in step 2� is
replaced by automatically merging an IDPA holding all parameterizations
into the generated load test 3�. Consequently, the transformation chain from
request logs to a load test is entirely automated. For proper merging into
the load test, an IDPA consists of two parts. First, it holds an application
model describing the API of the tested application, including the endpoints
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and parameters. Our approach can transform the application model from
API specifications such as OpenAPI (OpenAPI Initiative, 2020) 4�. This
transformation allows for feedback-based updates of an IDPA in case of
API changes. The second part of an IDPA is an annotation that constitutes
the actual parameterization by annotating the application model elements.
Annotations are to be defined by experts, who, however, can do this offline
from the load test generation process 5�. For ensuring proper recognition of
API elements, we utilize the application model of an IDPA for labeling the
individual requests of the request logs 6�.

Based on the illustrated process, we describe the details of an IDPA in the
following section.

6.3. The Input Data and Properties Annotation

In the two sections before, we derived a taxonomy of load test parameteri-
zations and illustrated how we separate parameterizations from generated
artifacts by using an Input Data and Properties Annotation (IDPA), which
we base on the taxonomy. In this section, we describe the IDPA in detail.
First, in Section 6.3.1, we depict the underlying concepts we applied when
designing the IDPA. Section 6.3.2 presents the metamodel of the IDPA. Fi-
nally, in Section 6.3.3, we illustrate the serialization of IDPAs in the YAML
format (YAML 2020) and provide examples.

6.3.1. Underlying Concepts

We designed the IDPA considering the following concepts (based on H. Schulz
et al., 2020c).

Separation of automatically and manually created artifacts. The main
advantage of the IDPA is the separation of automatically generated
workload models or load tests and manually defined parameterizations.
We pursue this concept of separating automatically and manually cre-
ated artifacts in the internals of the IDPA as well. An annotation needs
to refer to the endpoints and parameters of the target application’s
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API. In practice, API specifications like OpenAPI (OpenAPI Initiative,
2020) are often used to describe REST APIs. Hence, specifying the
API a second time manually in an IDPA constitutes unnecessary effort.
For this reason, we divide the IDPA into an application model that
holds information about the API and can be generated automatically
from API specifications and an annotation model holding the manual
specifications.

Separation of “what” and “where”. Input data specifications consist of
two essential attributes: “what” data to be used and “where” to place
it. The “what” could be list-based input data such as the product
list described in Section 6.1 and the “where” the product parameter
of the product details endpoint. For better understandability and to
avoid duplicated information, we separate “what” and “where”. As
an example, we presume the product list to be needed for several
endpoints, e.g., product details and add to cart. By specifying the
product list once and referring to it for all endpoints, we prevent
redundant specification of the extraction.

Load Testing Tool 1
(e.g., JMeter)

Load Testing Tool 2
(e.g., BenchFlow)

Load Testing Tool 3 (e.g., Gatling)

Common 
parameterization 
concepts

Figure 6.3.: Illustration of the relation of the parameterization concepts of
different load testing tools.
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Tool independence. We designed the IDPA for usage with different work-
load characterization approaches and load testing tools. Thus, we can-
not integrate all possible parameterization concepts. This is illustrated
in Figure 6.3. Considering three different load testing tools—e.g.,
JMeter (Apache Software Foundation, 2020[a]), BenchFlow (Ferme
and Pautasso, 2018), and Gatling (Gatling Corp, 2020)—, each of
them provides a different set of parameterization concepts. If we inte-
grated a concept from one tool into the IDPA that has no equivalent in
one of the other tools, we would lose the tool-independence. However,
there is a large overlap of common concepts. As an example, input
data retrieved from CSV files and regular expression extractions exist
in all tools. Thus, we focus on the common parameterization concepts
but allow using further ones as extensions of the IDPA.

Extensibility. For still enabling any parameterization—e.g., parameteriza-
tion that is specific to the load testing tool or the SUT—, the IDPA
provides several extension points. We focus on a concept and a rea-
sonable subset of all possible parameterizations that are sufficient for
our evaluations and allow us to extend the IDPA easily. Adding further
concepts missing from the practical and scientific load testing projects
on which we have developed the IDPA can be done using the extension
points.

Traceability. To evolve IDPAs over changes in the workload and the target
application’s API, we need to be able to trace the evolution of single
elements of an IDPA, especially the application model. For this purpose,
each element holds a unique ID.

Integration with commonly-used technologies. IDPAs are to be used in
the context of CI/CD pipelines. Therefore, we serialize an IDPA in the
YAML format (YAML 2020), which state-of-the-art technologies such as
Docker (Docker Inc., 2020) and OpenAPI (OpenAPI Initiative, 2020)
use, too.
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6.3.2. Metamodel

Figure 6.4 shows the core metamodel of the IDPA. Figures 6.5 to 6.9 pro-
vide further details. We base the metamodel on the taxonomy depicted in
Section 6.1 and the concepts defined in Section 6.3.1. Hence, we divide it
into an application metamodel and an annotation metamodel, as illustrated
in Figure 6.4. Application models describe an SUT’s API and are meant to
be generated from API specifications such as OpenAPI. Annotation models
hold the manual parameterizations summarized in the taxonomy.
We reach the separation of “where” and “what” by defining the dynamic

parameterizations of the taxonomy in Inputs, which a ParameterAnnota-
tion then maps to a Parameter. Hence, the same Input can be reused for
multiple Parameters. By only integrating core functionality, we ensure tool
independence but allow extension of the application metamodel through ex-
tension points at Endpoint and Parameter and extension of the annotation
metamodel through extension points at Input and specific OverrideKeys.
In the following, we describe the individual elements of the metamodel.

We already published most of these elements in previous work (H. Schulz et al.,
2020c). Others that Angerstein (2018) has introduced or we introduce newly
in this dissertation are marked accordingly.

6.3.2.1. Application Metamodel

The application metamodel is shown on the left side of Figure 6.4 and consists
of the core elements Application, Endpoint, and Parameter. Endpoint
and Parameter have specific implementations— for the protocols Hypertext
Transfer Protocol (HTTP) and Advanced Message Queuing Protocol (AMQP).

Application: The Application is the core element of the application meta-
model. It represents an application, whose load tests are to be parameterized.
It holds a set of Endpoints comprising the application’s API. Furthermore,
for tracing evolving API versions, it holds either a timestamp representing
the date when the API version was introduced or the corresponding API
version.
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Endpoint: The Endpoint is an interface representing a single entity of an
API. It has a generic type as a subtype of Parameter, to which it also holds
a reference parameters of indefinite cardinality.

Parameter: A Parameter denotes an endpoint parameter, which needs
to be served with input data when submitting a request to the endpoint.
According to the Endpoint implementations, there can be different imple-
mentations of Parameter.

HttpEndpoint and HttpParameter: Because we mainly focus on load testing
of web applications, we provide Endpoint and Parameter implementa-
tions HttpEndpoint and HttpParameter belonging to each other. That is,
the type of parameters the HttpEndpoint holds is HttpParameter. The
HttpEndpoint is characterized by a domain name and port number (e.g.,
www.mydomain.org:80), a path (e.g., /login), an HTTP method (e.g., GET),
an optional content encoding (e.g., UTF-8), a protocol (http or https) and a
list of headers. The HttpParameter has a name (e.g., user) and a parameter
type. The parameter type has to be one of the following:

req-param A request parameter, also known as a query string parameter. It
is added to the end of the URL starting with a ’?’, e.g., ?user=Jane.

body The body of a POST, PUT, or PATCH request.

url-part A parameter that is encoded as part of the URL path, resulting in a
dynamically defined path, e.g., /details/{product-id} where product-id
is the parameter. Also, regular expressions can be used for restricting
the allowed values of the parameter. For instance, the following path
only accepts numbers as product-id: /details/{product-id:\d+}.

header A header to be set dynamically.

form A body parameter holding form data of type multipart/form-data or
application/x-www-form-urlencoded.
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AmqpEndpoint and AmqpParameter: Users of our approach can extend the
IDPA by adding more implementations of Endpoint and Parameter with-
out affecting the remainder of the IDPA. As a demonstration, Figure 6.4 holds
the corresponding Endpoint and Parameter implementations AmqpEnd-
point and AmqpParameter to be used for modeling AMQP queues such as
RabbitMQ (Pivotal Software, Inc., 2020[a]). The endpoint implementation
could be characterized by an AMQP host and exchange or queue name and
would hold AmqpParameters. An AmqpParameter could represent the
message or a message header. All entities of the annotation model could be
combined with the AMQP entities, similar to the HTTP entities.

6.3.2.2. Annotation Metamodel

We design the annotation metamodel to represent the parameterization
concepts described in the taxonomy in Section 6.1. The metamodel consists
of three major parts. For the static parameterization, we introduce Over-
rides, which allow specifying static test environment properties such as
the domain name or port number, which will override the respective prop-
erty in the generated load test. For the dynamic parameterization, Inputs
define input data that the load test should use for the parameters of the
requests submitted in the load test. EndpointsAnnotations and Parame-
terAnnotations map Inputs and Overrides to specific Endpoints and
Parameters.

We include all parameterization concepts of the taxonomy into the meta-
model, except for authentication data. Authentication data are highly de-
pendent on the target application and, therefore, cannot be generalized for
the use with any application. Thus, we exclude it from the IDPA. Instead,
we provide extension points, which a user of our approach can utilize for
implementing application-dependent Inputs such as authentication data
inputs.
In the following, we depict all entities of the annotation metamodel and

how they relate to the taxonomy.
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ApplicationAnnotation: The ApplicationAnnotation is the core entity
of the annotation metamodel and is illustrated in Figure 6.4. It implic-
itly refers to an Application that is parameterized and holds the ref-
erences inputs, overrides, and endpoint-annotations. The inputs are a set
of Inputs, which constitute the input data specifications. The overrides
hold application-level Overrides. We will explain the differentiation be-
tween application-, endpoint-, and parameter-level overrides in the following.
Endpoint-annotations is a set of EnpointAnnotationsmapping the Inputs
and Overrides to Endpoints of the API of the parameterized Applica-
tion.

EndpointAnnotation: An EndpointAnnotation refers to one Endpoint
of the parameterized Application and contains a set of ParameterAnno-
tations, which refer to Parameters of the Endpoint. Furthermore, its
overrides allow overriding endpoint-level properties.

ParameterAnnotation: A ParameterAnnotation maps one Input to one
Parameter. That is, a virtual user of a load test should use the input data
defined by the Input when submitting requests to the respective endpoint.
Besides, the annotation holds a set of parameter-level Overrides.

Override: For specifying test environment properties, we introduce the
Override. It is parameterized with a generic subtype of OverrideKey.
The type defines the scope of the Override, which we explain below. An
Override refers to one OverrideKey, which defines the property to be
overridden. The new value to be used is defined as a string. Overrides can
be defined in Application-, Endpoint-, and ParameterAnnotations
(Figure 6.5).

OverrideKey and Sub Types: OverrideKey (Figure 6.5) is a common in-
terface for defining test environment properties that are to be overridden.
Because there are different properties at different levels, we utilize a hi-
erarchical inheritance structure. EndpointOverrideKey extends Over-
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Figure 6.5.: Metamodel of IDPA overrides (based on H. Schulz et al., 2020c).

rideKey, and ParameterOverrideKey extends EndpointOverrideKey.
This inheritance structure allows defining Overrides referring to low-level
entities in higher-level annotations. For instance, a user can define an
Override using an EndpointOverrideKey in Endpoint- and Applica-
tionAnnotations, but not in ParameterAnnotations. Specifying an
Override in higher-level annotations means that all instances of the prop-
erty the OverrideKey defines are overridden in the scope of the annotation,
e.g., all hostnames of all Endpoints of the annotated Application.
Enumerations implementing the respective interfaces define the specific

OverrideKeys that are available. While users or future researchers can add
new enumerations, we provide OverrideKey implementations for HTTP
endpoints and parameters.

HttpEndpointOverrideKey and HttpParameterOverrideKey: The HttpEnd-
pointOverrideKey and HttpParameterOverrideKey are OverrideKey
enumerations referring to HTTP properties. HttpEndpointOverrideKey
defines properties that can be overridden at the endpoint level, namely the
domain, port number, protocol, and base-path of an endpoint. These keys are
especially useful, as load tests are generated based on production request
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logs, which contain the production domain name and port number. Hence,
these properties are to be overridden. Overrides with the base-path key need
to be in the format n/path—e.g., 2/new—, which will override the first n

segments of the original path, e.g., change /old/path/login to /new/login.
On the parameter level, we provide the encoded key as part of HttpParame-
terOverrideKey, which a user can use for ensuring that parameter values
are properly encoded for the use in URLs.

Input: Input is a common interface for input data specifications, i.e., dy-
namic parameterizations. Figures 6.6 to 6.9 illustrate the implementations.
In separating “what” and “where”, an Input defines the “what”. While
we already provide implementations for the most common types of input
data specifications, Input constitutes an extension point for new implemen-
tations. When adding a new implementation, the remainder of the IDPA
metamodel does not have to be adjusted, because ParameterAnnotations
are independent of the specific Input implementation. In the following, we
depict the provided implementations. Because well-known load testing tools
already provide mature means for input data specification, several Input
implementations base on these. Specifically, we rely on existing input con-
cepts of the JMeter tool (Apache Software Foundation, 2020[a]). However,
the Input concepts provided are themselves tool-independent.

ExtractedInput: As described in the taxonomy, there can be data dependen-
cies between different requests of a load test. That is, individual requests
need to use a value—e.g., an ID or token—responded by the SUT to a
previous request. Therefore, we provide the ExtractedInput, which is
illustrated in Figure 6.6, for specifying such data extractions. It represents
a value that is extracted by a set of ValueExtractions. A ValueExtrac-
tion can either be a RegExExtraction or a JsonPathExtraction, for
extracting values based on regular expressions or JSON paths. Each time one
of the ValueExtractions extracts a value, it overwrites the value of the
ExtractedInput. Furthermore, a user can optionally define an initial value
for specifying the value to be used before the first value has been extracted.
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ValueExtraction: A ValueExtraction refers to an Endpoint (from) for
extracting a value from its requests’ responses. Furthermore, it defines a
string response key defining the part of the response that the extraction
targets. The response key can either be the status line, the headers, or the
response body. For handling cases in which no value can be extracted, a user
can define a fallback value. Finally, a match number states which value to
use when the extraction matches several times (0 denotes selecting a value
randomly). ValueExtraction is an abstract type and is implemented by
RegExExtraction and JsonPathExtraction.

RegExExtraction: A RegExExtraction is an implementation of the Val-
ueExtraction containing a regular expression that defines how to extract
the value and a template that states how to assemble the extracted value.
Using a template (1), reference to the appropriate Endpoint, response
body as response key, and a match number 1, the following exemplary
regular expression extracts the CSRF token from the endpoint’s response:
<input name="csrfToken" type="hidden" value="(.*)"/>
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JsonPathExtraction: For extracting values from JSON responses, we provide
the JsonPathExtractions. It holds a json path (Goessner, 2007), which
identifies an entity in a JSON object tree. For extracting the item ID from
the JSON response in the taxonomy’s example, we can use a json path such
as $.item.id for identifying the field id in the object with the key item. The
other attributes are similar to the RegExExtraction before.

ListInput: ListInput is a commonly-used type of input data specification,
shown in Figure 6.7a. It represents the list-based input data of the taxonomy.
The parameter value for a specific request is randomly selected from a list
of values. Multiple ListInputs can be associated, meaning that a request
should use the values from the same list index. For instance, ListInputs
can state the user names and passwords of the test users. In this case, the
virtual users have to ensure to take corresponding parameter values for the
login request. The ListInput has two implementations DirectListInput
and CsvInput, specifying the value lists differently.

ListInput

CsvInput DirectList
Input

associated
*

CsvInput
Group

columns *

Input
(Figure 6.4)

(a) ListInput implementations (based
on H. Schulz et al., 2020c).

Random
NumberInput

Random
StringInput

Input
(Figure 6.4)

(b) RandomNumberInput and Random-
StringInput implementations.

Figure 6.7.: Input implementations for random execution-independent pa-
rameterization.
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DirectListInput: The DirectListInput is a ListInput implementation
that defines the value list directly in the annotation model. It is best suited
for small lists because the annotation would become very long otherwise.
For specifying the exemplary list of product colors, we can use this imple-
mentation, because the colors are limited to black, red, and silver.

CsvInput: The CsvInput is a ListInput that is better suited for large
value lists. Instead of storing the values directly in the annotation model, it
refers to an additional CSV file. Hence, the annotation model is kept short.
The CsvInput refers to the file via a file name and the specific column via
the column index. Furthermore, the separator of the CSV file entries can be
specified. The default value is the semicolon ( ; ). Finally, users can specify
whether the file has a header.

CsvInputGroup.† For specifying CSV files without redundancy, we provide
the CsvInputGroup in addition to the CsvInput. It allows defining inputs
of multiple columns of the same CSV file. For that, the CsvInputGroup has
the properties file name, separator, and header. In addition, it holds multiple
CsvInputs as columns, which inherit these properties. The column index
is determined based on the order of specified columns. Hence, there is no
additional information required per column.

RandomNumberInput.† For the taxonomy category of randomly generated
input data, we provide two Input implementations (Figure 6.7b). The first
implementation is the RandomNumberInput, which generates a random
integer number based on an upper and lower limit. The limits are either
defined by a static value or a dynamically retrieved value from another
Input.

RandomStringInput.† The second randomly generated input data type is
the RandomStringInput. It generates a random string based on a template,

†We first envisioned this Input in previous work (H. Schulz et al., 2020c) and introduce it
anew in this thesis.
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which depicts the structure of the generated string. The template utilizes
regular expression terminology so that the generated strings match the tem-
plate. In the example of a randomly generated UUID, we used the template
[0-9A-D]{8}\-[0-9A-D]{4}\-[0-9A-D]{4}\-[0-9A-D]{4}\-[0-9A-D]{12}.

CounterInput: The CounterInput (Figure 6.8) is another alternative for
specifying large input data lists easily. It falls into the category of incre-
mental input data of the taxonomy (see Section 6.1). It defines a start and
maximum value as well as an increment. Starting from start, a counter value
is incremented by the increment each time a value is retrieved. If the counter
reaches the maximum, it restarts at the start value. A format defines a string
that is built out of the counter value. The counter can be applied to different
scopes, which can be either global, user, or user-iteration. The global scope
means that there is only one instance of the counter, which all virtual users
share. With the user scope, each virtual user has its instance and increments
it independently. In the user-iteration scope, each virtual user has its counter
instance, too, and resets it after each iteration. As an example, a list of 100
user names can be modeled by a CounterInput with a start value of 1,
maximum of 100, increment of 1, the format user-#@test.com for different
e-mail addresses (# is the placeholder for the counter value), and the global
scope for increasing it each time the login request retrieves a value.

Counter
Input

Datetime
Input

Environment
Input

Input
(Figure 6.4)

Figure 6.8.: Input implementations for sytematic execution-independent
parameterization.
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DatetimeInput.† For the category of environment-dependent input data, we
provide the DatetimeInput, which generates a value based on the current
date and time. It has a format and an offset. The format is based on the
SimpleDateFormat of the Java Platform SE 8 (Oracle, 2020) and defines the
date and time format. The offset states a duration to be added to the current
time based on the duration format PnDTnHnMn (ISO 8601). For instance,
we can retrieve the current date plus two days in a form such as 2019/12/14
by using the format yyyy/MM/dd and the offset P2D.

EnvironmentInput.† As the second type of environment-dependent input
data, we introduce the EnvironmentInput. It reads a value from the
environment of the load test, e.g., an environment variable. For that, it
defines a property, which fills the value of the input initially at test startup.
This type of input specification is especially useful if a property is only known
at test startup time or cannot be defined in plaintext due to confidentiality
or security reasons, e.g., a password.

CombinedInput.† The last considered category of the taxonomy is combined
input data. For this category, we introduce three different Input implemen-
tations. The first implementation is the CombinedInput (Figure 6.9a),
which merges several other Inputs into one string. For this, it holds a list
of Inputs and a format defining how to combine the inputs. As an example,
for combining two random numbers, we can use the format (1)-(2) and refer
to two RandomNumberInputs, which result in strings such as 42-73.

JsonInput: Angerstein (2018) introduces the second combined input data
type, which is JsonInput. It is shown in Figure 6.9b. It allows combining
several Inputs into a JSON object tree. Even though there is a new, more
concise implementation, we provide both implementations for downward
compatibility. A JsonInput holds a type, name, list of other JsonInputs
(items), and refers to another Input. Except for the type, all attributes are
optional. The type defines the semantics of the input and can be one out of
object, array, string, and number. In the case of an object, the items represent
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Figure 6.9.: Input implementations for combined parameterization.
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{
2 "profile": {

"name": # retrieved from another input
4 "country": "Germany"

}
6 }

Listing 6.1: Exemplary JSON object tree.

child nodes in the JSON tree. The respective names are used as the keys of
each node. In the case of an array, the items represent the elements of the
array. In the case of a string or number, the input defines the effective value.

ConciseJsonInput.† Because the JsonInput turned out to be cumbersome
(see Section 12.4), we introduce a more concise implementation. The Con-
ciseJsonInput (Figure 6.9c) allows JSON trees to be defined while main-
taining the trees’ structure. For this, it contains a single JsonItem (json),
which can either be a JsonObject, JsonArray, JsonStaticValue, or
JsonDerivedValue. The JsonObject represents an object and has an
items reference to several other JsonItems. Each element in items addi-
tionally has a key, which defines the key in the generated JSON object. The
JsonArray holds a list of other ConciseJsonInputs, which constitute
the content of the array. The JsonStaticValue represents a static value
defined in the field value. Finally, values can be retrieved from other In-
puts using the JsonDerivedValue. The input reference states from which
Input the value is to be retrieved. The main advantage of this new repre-
sentation is the object structure, which is close to the structure of the finally
generated JSON object tree. Hence, it is be more concise.

Comparing JsonInput and ConciseJsonInput: We compare the JsonInput
and ConciseJsonInput in an example. Listing 6.1 shows an exemplary
JSON object tree we want to use in an IDPA application. When we model the
JSON tree, we need to respect the value of the field name, which we need to
retrieve from another Input.
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Figure 6.10.: Comparison of a JsonInput and a ConciseJsonInput. The
root Inputs are highlighted.

As illustrated in Figure 6.10, for modeling the JSON tree as a JsonInput,
we need to define one input per element of the tree. That is, there is one
input with type object for the root object, one with type object for the profile
object, one with type string for the name field, and one with type string
for the country field. Furthermore, we need to define a DirectListInput
containing the value of the country field. Then, each JsonInput refers to the
nested inputs, and each nested input optionally defines its key via the name
attribute. The input for the name field refers to the Input delivering the
name value. This structure has the advantage that nested JsonInputs can
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be used individually. For instance, the JsonInput constituting the profile
(pi in the figure) can be reused for another Endpoint, if only the profile
is required as input. However, the JsonInput decomposes the original
structure of the JSON tree. Hence, the structure is more extensive, and
readability is decreased.

For this reason, we introduced the ConciseJsonInput, which maintains
the original JSON tree structure. In the example, the ConciseJsonInput
is composed of a JsonObject, which represents the root object. In turn,
this JsonObject contains another one, which represents the profile object.
Finally, a JsonStaticValue and a JsonDerivedValue define the values
of the country and name fields. Hence, the original JSON structure is main-
tained. However, this representation does not allow reusing parts of the
whole JSON object.

6.3.3. YAML Serialization

As described in Section 6.3.1, we designed the IDPA for the use in the
context of CSE, and therefore, we use the commonly-used YAML format for
serialization. In the following, we provide an example of a serialized IDPA
and present the precise JSON schemata (Wright, 2019).

6.3.3.1. A YAML Example

Listings 6.2 and 6.3 provide examples of an application model and an an-
notation. The examples are excerpts based on the models we used for the
evaluation with the Heat Clinic (Section 12.3), which is a webshop for hot
sauces. We consider two HTTP endpoints. The hotSaucesDetails endpoint
returns an HTML page, which presents the details of a specific sauce. The
type of the endpoint—http—is defined using a !<·> YAML tag. The ID
of the endpoint is defined using the built-in & operator. The properties of
the endpoint are defined using key-value pairs with values of the respective
type, e.g., a string for the domain and an array for the parameters. Several
properties, such as the lists of headers and parameters, are optional and can
be left out, meaning that the endpoint has no defined headers or parameters.
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---
2 &heat -clinic
timestamp: 2018 -03 -07T17 -57 -00 -000Z

4 endpoints:
- !<http>

6 &hotSaucesDetails
domain: 172.16.145.67

8 port: 8080
path: /hot -sauces /{ sauce}

10 method: GET
parameters:

12 - &hotSaucesDetails_sauce
name: sauce

14 parameter -type: url -part
protocol: http

16 - !<http>
&addToCart

18 domain: 172.16.145.67
port: 8080

20 path: /cart/add
method: POST

22 headers:
- ’Content -Type: application/x-www -form -urlencoded ’

24 - ’X-Requested -With: XMLHttpRequest ’
parameters:

26 - &addToCart_csrfToken
name: csrfToken

28 parameter -type: form
- &addToCart_quantity

30 name: quantity
parameter -type: form

32 - &addToCart_productId
name: productId

34 parameter -type: form
protocol: http

Listing 6.2: YAML serialization of an examplary IDPA application model.

94 6 | Automating Load Test Parameterization



1 ---
overrides:

3 - HttpEndpoint.domain: localhost
- HttpEndpoint.port: 8080

5 inputs:
- !<csv>

7 &Input_sauce_name
file: hot -sauces.csv

9 column: 1
separator: ,

11 - !<extracted >
&Input_csrfToken

13 extractions:
- from: hotSaucesDetails

15 pattern: <input name="csrfToken" type="hidden"
value="(.*)"/>

- !<direct >
17 &Input_quantity

data: [ 1, 2, 3, 4, 5 ]
19 endpoint -annotations:

- endpoint: hotSaucesDetails
21 overrides:

- HttpParameter.encoded: true
23 parameter -annotations:

- parameter: hotSaucesDetails_sauce
25 input: *Input_sauce_name

- endpoint: addToCart
27 parameter -annotations:

- parameter: addToCart_csrfToken
29 input: *Input_csrfToken

- parameter: addToCart_quantity
31 input: *Input_quantity

- parameter: addToCart_productId
33 input: *...

Listing 6.3: YAML serialization of an examplary IDPA annotation.
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This endpoint has one parameter, which specifies the sauce to be visited. The
parameter is encoded as part of the URL (sauce). It is specified using similar
concepts as for the endpoint but as a nested attribute.
The addToCart endpoint adds a specific sauce to the shopping cart. This

endpoint has three parameters, which are all encoded as form parameters.
First, the already mentioned CSRF token has to be specified. Second, a
quantity of sauces to be added to the cart has to be defined. Last, the
endpoint requires the ID of the sauce. By first visiting the product details
and then buying it, end-users typically call the hotSaucesDetails first before
calling addToCart.
The annotation parameterizes a load test that is generated for the Heat

Clinic. First, we define static parameterizations as Overrides in the over-
rides list. We override the host and port of all endpoints using the HttpEnd-
point.domain and .port keys. Second, we specify Inputs, which we use
to define the parameter values of hotSaucesDetails and addToCart. Simi-
lar to Endpoints, the type of each Input is defined by a YAML tag. We
define a CsvInput holding all possible sauce names (Input_sauce_name),
an ExtractedInput using a RegExExtraction for retrieving the CSRF
token from the hotSaucesDetails response and using it for addToCart (In-
put_csrfToken), and a DirectListInput, which defines several valid quanti-
ties that can be passed to addToCart (Input_quantity). Finally, we define
the EndpointAnnotations and ParameterAnnotations, which map the
Inputs to the endpoints and parameters. For the sauce parameter of the
hotSaucesDetails endpoint, we use the Input_sauce_name. Furthermore, we
define this parameter to be encoded with the HttpParameter.encode over-
ride. Note that this Override only applies to this parameter, while the
top-level Overrides apply to all endpoints in the scope of the whole an-
notation model. For the parameters of the addToCart endpoint, we use the
Input_extracted_csrfToken as CSRF token and the Input_quantity as quantity.
For the sake of space, we omit the Input for the product ID parameter,
which we would extract from the hostSaucesDetails request, similar to the
CSRF token.
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1 title: Application Model
type: object

3 properties:
id:

5 type: string
timestamp:

7 type: string
endpoints:

9 type: array
items:

11 oneOf:
- $ref: ’#/ definitions/HttpEndpoint ’

Listing 6.4: Application schema excerpt.

6.3.3.2. YAML Schemata

As a formal definition of the YAML serialization, we define JSON schemata
(Wright, 2019), which are based on the JSON format as well. Because the
YAML and JSON formats are related, JSON schemata can also describe YAML
entities. To stick to the format and for better readability, we represent the
schemata in the YAML format. The complete schemata can be found in
Appendix A. Here, we present a small excerpt for illustrating the concept.

Listing 6.4 shows an excerpt from the Application schema. Each entity
of the IDPA is represented by such a definition. In this case, the title defines
the title of the whole schema. For other entities such as the HttpEndpoint,
a respective name is defined so that other entities can refer to it. The type
defines the general type of the entity. In most cases, it is an object, but for
the JsonItem implementations, other types are used also. For instance,
the JsonArray is of type array (see Listing A.23). In the properties section,
we define the attributes of the elements. For the Application, we define
the ID, the timestamp, and the list of endpoints. Each of the properties
is defined using the same concepts as for the root entity. For the list of
endpoints, we make use of the oneOf notation, which states that one or more
specific types can be used for the respective property. In this case, we only
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refer to the HttpEndpoint schema. However, if we added new Endpoint
implementations such as an AmqpEndpoint, we would add them at this
point.

6.4. Evolving Input Data and Properties Annotations

The core feature of the IDPA is its reusability for multiple generated load tests.
The entailed parameterizations are automatically evolved over changes in
the production system’s workload and, thus, over updated workload models
and load tests. However, the tested application can also change in its API.
Therefore, we need to support evolving IDPAs over API changes.

To address this challenge, we analyze API change types collected in the
literature and develop feedback-based strategies for adjusting an IDPA to
such changes. The identified API change types are additions and removals
of endpoints and parameters, changes of endpoint and parameter properties,
changes of the input data, and changes of the response behavior of an end-
point. While we can handle removals and property changes of endpoints and
parameters automatically, the other change types require an expert’s feed-
back. However, as described in Section 6.2, the feedback can be processed
offline from the test generation and execution.
In the following, we describe the intended IDPA evolution process (Sec-

tion 6.4.1), the collected API changes types (Section 6.4.2), and our proposed
evolution strategies (Section 6.4.3).

The section is based on our already published work (H. Schulz et al., 2020c).

6.4.1. Evolution Process

Every time the API changes, the IDPA for the corresponding application can
be impaired and needs to be adapted. Figure 6.11 illustrates the adaption
process as a refinement of steps 4� and 5� of Figure 6.2 (Section 6.2). First,
an expert such as an application developer introduces a delta to the API 1�.
As a consequence, the API specification changes. Using our automated
transformation from OpenAPI (see Section 6.5.1), we transform the API

98 6 | Automating Load Test Parameterization



specification to an updated version of the IDPA application model 2�. Due to
the ID tracing, the new application model is similar to the old one except for
the introduced delta. Because of the changes to the application model, the
annotation can be invalid 3�. For instance, in the case of endpoint or param-
eter removals, there can be references to non-existing entities, e.g., from an
EndpointAnnotation to a removed Endpoint. Furthermore, endpoint or
parameter additions might require extending the annotation. Therefore, our
approach collects all conflicts such as illegal references and possibly missing
annotation elements and reports it as feedback to the expert 4�. Based on
the API delta and the conflicts, the expert can update the annotation 5�.
Finally, the expert commits the updated IDPA for generating load tests 6�.

As described, our proposed process still entails manual effort for evolving
IDPAs. However, all efforts can be applied offline from load test generation,
e.g., at the time when the API is changed. Precisely, because an API delta is
introduced in a local development environment by a code change, the IDPA
can be updated immediately and before committing the code change to the
central code repository.
The following sections present the considered API change types and de-

scribe the precise strategies applied for handling the individual change types.

Commit

API
Spec.

App Ann

IDPA

Expert
LEGEND:

Delta
Broken annotation
Action
Reference

1

2

3

4 5

6 ... (Using updated IDPA)

Figure 6.11.: Process of adapting an IDPA to API changes (based on H. Schulz
et al., 2020c).
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Table 6.1.: Proposed API Change Types (based on H. Schulz et al., 2020c)

Change Type Code

Add Endpoint AE
Remove Endpoint RE
Change Endpoint [Property] CE
Add Parameter AP
Remove Parameter RP
Change Parameter [Property] CP
Change Input CI
Change Response Behavior CR

6.4.2. API Change Types

In a literature research, we identified four publications by Fokaefs et al.
(2011), J. Li et al. (2013), Sohan et al. (2015), and S. Wang et al. (2014)
providing relevant API change type classifications. In total, the authors
examined the APIs of 25 different applications. Additionally, Wang et al.
provide frequencies of each change type, which we can base on for generating
a representative mix of API changes. From the collected change types, we
derive our own classification, which is most suitable for IDPA evolution. In
doing so, we address the research question RQ1.2: Which API change types
exist that affect load test parameterizations? (see Section 5.1)

In the following, we provide our classification and explain the mapping to
the change types from the literature.

6.4.2.1. Proposed Change Types

We summarize our proposed API change types in Table 6.1. We assign a code
to each type for referencing them later. Each change type has a different
impact on an IDPA. We discuss these impacts under the assumption that after
the API changed, the IDPA application model is automatically updated, e.g.,
based on an API specification. Hence, the annotation needs to be adapted to
the changed application model.
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The first relevant change type is the addition of an Endpoint. For the
annotation, the consequences are that no EndpointAnnotation covers
the newly added Endpoint. Hence, in a generated load test, the new
Endpoint might not be correctly parameterized. For removals of endpoints,
the annotation can hold invalid references to an Endpoint that does not exist
anymore. These invalid references affect both EndpointAnnotations and
ExtractedInputs. Hence, an expert needs to resolve the invalid references.
Note that we base on the unique IDs of the IDPA for tracing the evolution
of a single entity. Hence, if an Endpoint is replaced by a new one that
has a different ID, we classify this change as Add Endpoint plus Remove
Endpoint. Another change type directly affecting an Endpoint is the change
of an endpoint property such as the domain name, port number, or path. In
general, all properties of an Endpoint can be affected. Because the endpoint
properties are solely stored in the application model, the annotation does
not have to be adjusted in this case.

The same set of change types described above also exists for Parameters,
i.e., parameter additions, removals, and property changes. Here, the same
conditions apply as for Endpoints. Exemplary properties that can change
are the parameter name and type. Again, we rely on the unique IDs for
tracing a Parameter. For instance, if the parameter name changes, but the
ID remains the same, we consider it the same. However, if the ID changes but
the name remains the same, we consider it to be two different Parameters.
Change Input is a change type subsuming all API changes that affect the

input data specifications in an annotation. Such changes do not change the
application model, and the IDPA itself remains valid. However, the target
application might not respond as expected anymore. A typical example is a
JSON body whose structure has been changed, e.g., by adding a new required
attribute. If the corresponding (Concise)JsonInput, which defines the
input data for this endpoint, is not adjusted, the required attribute will be
missing and might cause an error. Hence, an expert needs to refine the
defined Inputs.
The final change type of our classification is Change Response Behavior,

which subsumes all changes to the responses of endpoints. Similar to Change
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Input, changes of this type do not affect the application model. However, as
the response value of a specific Endpoint has changed, ExtractedInputs
that refer to this Endpoint might not work anymore. As an example, if the
input uses a regular expression to extract the value, the expression might
not match the new responses anymore. As a consequence, a generated load
test can fail.

6.4.2.2. Mapping to Change Types from the Literature

Having defined the relevant API change types, we illustrate the mapping
to change types presented in the literature. These change types are listed
in Tables 6.2 to 6.5. Some presented change types are not mapped to our
classification, because they do not impact an IDPA. Overall, the change types
from the literature have been derived from 25 different applications.

Table 6.2.: Mapping of the Change Types to J. Li et al. (2013) (based on
H. Schulz et al., 2020c)

Change Type Mapping

Combine/Split Methods AE, RE
Delete Method RE
Unsupport Request Method RE
Rename Method CE[path]
Add or Remove Parameter AP, RP
Rename Parameter CP[name]
Change Format of Parameter CP[encoding], CI
Change XML Tag CI
Change Type of Parameter CI
Change Upper Bound of Parameter CI
Restrict Access to API CI
Change Type/Format of Return Value CR
Expose Data CR
Change Default Value of Parameter –
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Mapping to J. Li et al.: In the list of J. Li et al. (Table 6.2), our Add Endpoint
change type only exists as part of Combine and Split Methods. API changes
of both types entail replacing several endpoints by one or replacing one
endpoint by several ones. Even though there is a semantic relation of the
replaced and new endpoints, the Endpoints in the IDPA will have new IDs
and, thus, will be considered as separate Endpoints.

Remove Endpoint is part of Combine and Split Methods, Delete Method, and
Unsupport Request Method. The latter change type is analogous to removing
an Endpoint from an IDPA because it splits Endpoints according to the
HTTP request method. Hence, if a specific request method is not supported
anymore, the corresponding Endpoint will be removed.

The Rename Method change type refers to our Change Endpoint [Path] type.
J. Li et al. refer to the endpoint path as the method, and hence, renaming
the method means changing the path.

Add and Remove Parameter can be found as similarly named change types.
Furthermore, there are two change types relating to our Change Parameter

[Property]. First, Rename Parameter means renaming the parameter name
while—as presumed— the ID of the corresponding Parameter remains the
same. However, this depends on the precise renaming mechanism. In the
case that the ID has changed, this change type is reflected by subsequent
Remove Parameter and Add Parameter. Second, changes of type Change
Format of Parameter subsume changing the encoding. Therefore, it relates
to our Change Parameter [Encoding].

Change Format of Parameter also relates to our Change Input, because the
input data specifications need to be adapted. Furthermore, the proposed
change types of Change XML Tag, Change Type of Parameter, Change Upper
Bound of Parameter, and Restrict Access to API all relate to our Change Input
because they require adapting the input specifications. While the first two
change types directly affect parts of the format of input values, the latter
two ones have an impact as follows. Change Upper Bound of Parameter can
require adjusting the input data specifications in the case that they use values
higher than the new upper bound. Restrict Access to API can require using
new authentication tokens and thus, changing the authentication input data.
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Our Change Response Behavior type can be found as Change Type or Format
of Return Value. Furthermore, Expose Data is a particular type of changing
the format of a return value. Precisely, it flattens hierarchical data structures.
As a consequence, ValueExtractions might become invalid and need to
be adjusted.
Finally, the Change Default Value of Parameter change type cannot be

mapped to any of our change types. However, we presume this change type
to be irrelevant for the IDPA evolution. Changing a default value will not
change the end user’s behavior. Hence, as IDPAs are meant to be used for
generating representative load tests, the virtual user’s behavior should not
be changed, either.

Mapping to Sohan et al.: In the list of Sohan et al. (Table 6.3), our Add
Endpoint type is part ofMove API Elements, which entails removing endpoints
and adding them at different locations. Such a moving of Endpoints likely
changes their IDs, and thus, our approach will consider the Endpoints to
be new. Similarly, the change type subsumes Remove Endpoint and Add and
Remove Parameter.
Our Change Endpoint [Property] maps to the Rename API Elements and

HTTP Header Change types. Changes of the first type affect the path of an
endpoint, while changes of the second type affect the header. Furthermore,
Rename API Elements also subsumes renaming a parameter, which relates to
our Change Parameter [Name].

The authors define the Behavior Change type similar to our Change Response
Behavior.
Finally, Post and Error Condition Change are not reflected in our change

type classification, because they only affect the user behavior after the request
and the error definition. Hence, the IDPA does not need to be adjusted.

Mapping to Fokaefs et al.: Fokaefs et al. propose change types that affect
the type of parameter or return values (Table 6.4). Because the authors
do not explicitly distinguish between parameter and return types, mostly
all change types are to be classified as Change Input and Change Response
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Behavior. In detail, Aggressive Evolution refers to a massive change of types,
i.e., several parameter values and responses change. Renaming Variables
means renaming the attributes of types. Hence, input specifications can
become invalid—e.g., if JSON attributes are renamed—and ValueExtrac-
tions can break, e.g., because of invalid JSON paths. Adding New Types
refers to adding new attributes to existing types, which requires adaption of
the IDPA if the new attributes are required. Also, RegExExtractions can
be affected because the responses might be formatted differently, e.g., by
inlining the new attributes in the response string. Changing Input or Output
Types subsumes all changes to the type of the parameter or return values.
The final change type of Inline Type does not affect the IDPA, because it

only describes changing the underlying type structure, but does not affect
the interface to the user. Hence, a load test is not affected, either.

Table 6.3.: Mapping of the Change Types to Sohan et al. (2015) (based on
H. Schulz et al., 2020c)

Change Type Mapping

Move API Elements AE, RE, AP, RP
Rename API Elements CE[path], CP[name]
HTTP Header Change CE[header]
Behavior Change CR
Post/Error Condition Change –

Table 6.4.: Mapping of the Change Types to Fokaefs et al. (2011) (based on
H. Schulz et al., 2020c)

Change Type Mapping

Aggressive Evolution CI, CR
Renaming Variables CI, CR
Adding New Types CI, CR
Changing Input or Output Types CI, CR
Inline Type –
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Table 6.5.: Mapping of the Change Types to S. Wang et al. (2014) (based on
H. Schulz et al., 2020c)

Level Change Type Frequency Mapping

API

Change Resource URL CE[domain],
CE[base-path]

Change Authentication Model CI
Change Response Format CR
Delete Response Format CR
Add Response Format –
Add Authentication Model –
Change Rate Limit –

Method

Add Method 41.52% AE
Delete Method 15.65% RE
Change Method Name 11.52% CE[path]
Change Domain URL 0.43% CE[domain]
Change Authentication Model 2.18% CI
Change Response Format 1.52% CR
Add Error Code 0.43% CR
Change Rate Limit 1.52% –

Parameter

Add Parameter 11.09% AP
Delete Parameter 4.57% RP
Change 6.96% CP[name]
Change Format or Type 2.83% CI
Change Require Type 0.87% CI
Change Rate Limit 0.22% –

Mapping to S. Wang et al.: S. Wang et al. distinguish between API-, method-
(endpoint), and parameter-level changes. Furthermore, they provide relative
frequencies of the method- and parameter-level change types.

The API-level change types relate to ours as follows. Change Resource URL
refers to changes to the domain or global base path. Hence, our correspond-
ing change types are Change Endpoint [Domain] and [Base Path]. Change
Authentication Model can require using new authentication tokens and, thus,
adjusting the input data specifications. Change and Delete Response Format
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impact the response of an endpoint and, thus, relate to Change Response
Behavior. Add Response Format and Add Authentication Model are only addi-
tions of new concepts while the old concepts are still available. Hence, the
IDPA is still valid and does not need to be adjusted. Finally, Change Rate
Limit does not relate to load test parameterization but rather to the user
behavior. Thus, there is no corresponding change type in our classification.
The method-level change types are partially identical to ours. Our Add

and Remove Endpoint are similar to Add and Delete Method. Furthermore,
Change Endpoint [Property] can be found as Change Method Name and Change
Domain URL. Similar to the API level, Change Authentication Model relates to
Change Input. Change Response Format and Add Error Code change responses
and, thus, relate to our Change Response Behavior. Finally, as before, we do
not classify Change Rate Limit.

The parameter-level change types also match our classification well. Anal-
ogous change types to our Add and Remove Parameter are Add and Delete
Parameter. The Change type relates to Change Parameter [Name]. Further-
more, our Change Input is part of Change Format or Type and Change Require
Type. Changes of the former type directly affect the input data for a specific
parameter. Changes of the latter type can require adapting the IDPA because
formerly not required parameters were left out and now need to be specified.
Again, there is no mapping for Change Rate Limit.

6.4.3. Evolution Strategies

Knowing the possible API change types that can occur, we develop feedback-
based strategies for handling changes of each type. As illustrated in Fig-
ure 6.11 (Section 6.4.1), all strategies have in common that first, the IDPA
application model is updated, e.g., by transforming it from an updated
API specification. Then, there are four subsequent steps to update possibly
conflicting annotations:

1. Detection step: All changes and possible conflicts are detected.

2. Resolution step: As many conflicts as possible are resolved automatically.
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3. Feedback step: The expert responsible for the API change is informed
about possible conflicts.

4. Update step: The expert updates the annotation model.

In the following, we describe the four steps for each change type.

Add Endpoint: When a new Endpoint is added to the application model,
the IDPA is still valid, because the existing annotations are not affected.
However, in a generated load test, the requests to the new endpoint can fail
because of missing parameterizations. We illustrate such missing parameter-
izations in Figure 6.12. We consider the Heat Clinic we already referred to
in Section 6.3.3.1. We consider a new Endpoint with ID removeFromCart,
which was added to the application model. Requests to this endpoint will
remove a specific product from the shopping cart. For that, the Endpoint
has a Parameter productId, which specifies the product to be removed.

LEGEND

endpoints:
- !<http>
  &removeFromCart
  domain: 172.16.145.67
  port: 8080
  path: /cart/remove
  method: GET
  parameters:
  - &rfm_productId
    name: productId
    parameter-type: form
  protocol: http

inputs:
- ...

endpoint-annotations:
- endpoint: removeFromCart
  parameter-annotations:
  - parameter: rfm_productId
    input: *...

Add Remove Change Conflicting Manually Added

Application: Annotation:

Figure 6.12.: Exemplary Add Endpoint change.
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LEGEND

endpoints:
- !<http>
  &hotSaucesDetails
  domain: 172.16.145.67
  port: 8080
  path: /hot-sauces/{sauce}
  method: GET
  parameters:
  - &hsd_sauce
    name: sauce
    parameter-type: url-part
  protocol: http

inputs:
- !<extracted>
  &Input_csrfToken
  extractions:
  - from: hotSaucesDetails
    pattern: <...>
endpoint-annotations:
- endpoint: hotSaucesDetails
  parameter-annotations:
  - parameter: hsd_sauce
    input: *...

Add Remove Change Conflicting Manually Added

Application: Annotation:

Figure 6.13.: Exemplary Remove Endpoint change.

In the detection step, we automatically detect Endpoint additions by
comparing the application model version before and after the update, based
on the Endpoints’ IDs. The resolution step is omitted for endpoint additions.
In the feedback step, we report the addition of the Endpoint to the expert.
In this example, we report the addition of the removeFromCart Endpoint.
In the update step, the expert is responsible for parameterizing the new

Endpoint. As an example, they could add a new Input for the productId
parameter and add corresponding EndpointAnnotations and Parame-
terAnnotations, which map the Input to the Endpoint and Parameter.

Remove Endpoint: Removing an Endpoint from the application model can
cause illegal references in the annotation. We illustrate this in Figure 6.13.
We consider the hotSaucesDetails Endpoint of the Heat Clinic to be removed.
As a consequence, the references of the corresponding EndpointAnnota-
tion and ParameterAnnotation are invalid, because the hotSaucesDetails
endpoint and hsd_sauce parameter are not existing anymore. Furthermore,
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the RegExExtraction of the Input_csrfToken is broken due to the same
reason.

Similar to Endpoint additions, we detect the removals based on the IDs
in the detection step. Furthermore, we identify all invalid references to the
removed Endpoints and Parameters. In the resolution step, we remove
all EndpointAnnotations and ParameterAnnotations holding such in-
valid references automatically. In the example, we remove the EndpointAn-
notation for the hotSaucesDetails Endpoint and the ParameterAnnota-
tion for the hsd_sauce. Furthermore, we remove all ValueExtractions
holding invalid references. However, if the corresponding ExtractedIn-
puts do not hold any ValueExtractions after the removals, no values will
be extracted, and consequently, the requests using the ExtractedInput
can fail. This is the case for the Input_csrfToken. In such a case, the expert
has to add new ValueExtractions in the update step.
In the feedback step, we report all Endpoint removals to the expert.

Also, we report all removals in the annotation, namely the EndpointAn-
notations, ParameterAnnotations, and ValueExtractions. We also
report if an ExtractedInput is now empty.
In the update step, the expert has to review all removals and possibly

resolve empty ExtractedInputs. In the example, they have to add a new
ValueExtraction to the Input_csrfToken or change it to another Input
type.

Change Endpoint [Property]: The automated updating of the application
model already covers property changes of Endpoints. This is illustrated in
Figure 6.14. The path and protocol of the hostSaucesDetails Endpoint are
changed to /details/sauce and to https. However, all annotation elements
only refer to the Endpoint via its ID hotSaucesDetails. Hence, they are not
affected by the changes.

In the detection phase, we identify all property changes by comparing the
Endpoint attributes before and after the application model update. Because
the annotation is not affected, there are no resolution and update steps. Still,
we report all property changes in the feedback step.
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LEGEND

endpoints:
- !<http>
  &hotSaucesDetails
  domain: 172.16.145.67
  port: 8080
  path: /details/{sauce}
  method: GET
  parameters:
  - &hsd_sauce
    name: sauce
    parameter-type: url-part

  protocol: https

inputs:
- !<extracted>
  &Input_csrfToken
  extractions:
  - from: hotSaucesDetails
    pattern: <...>

endpoint-annotations:
- endpoint: hotSaucesDetails
  parameter-annotations:
  - parameter: hsd_sauce
    input: *...

Add Remove Change Conflicting Manually Added

Application: Annotation:

Figure 6.14.: Exemplary Change Endpoint [Path] and [Protocol] changes.

Add Parameter: Parameter additions are treated similarly as endpoint addi-
tions, as illustrated in Figure 6.15. We consider the addToCart Endpoint,
to which a new color parameter is added. Even though there are no invalid
references in the annotation, we need to define the input data for the color
parameter.

In the detection step, we identify the Parameter additions based on the
IDs. The resolution step is skipped because we cannot resolve anything
automatically. In the feedback step, we report the Parameter additions to
the expert. Finally, the expert is responsible for parameterizing the new
Parameters in the update step. In our example, they could add a new Input
holding the allowed colors and a new ParameterAnnotation mapping the
new Input to the color Parameter.

6.4 | Evolving Input Data and Properties Annotations 111



LEGEND

endpoints:
- !<http>
  &addToCart
  ...
  parameters:
  - &atc_csrfToken
    ...
  - &atc_color
    name: color
    parameter-type: form

inputs:
- ...

endpoint-annotations:
- endpoint: addToCart
  parameter-annotations:
  - parameter: atc_csrfToken
    input: *...
  - parameter: atc_color
    input: *...

Add Remove Change Conflicting Manually Added

Application: Annotation:

Figure 6.15.: Exemplary Add Parameter change.

LEGEND
Add Remove Change Conflicting Manually Added

endpoints:
- !<http>
  &addToCart
  ...
  parameters:
  - &atc_csrfToken
    ...
  - &atc_quantity
    name: quantity
    parameter-type: form

inputs:
- !<direct>
  &Input_quantity
  data: [ 1, 2, 3, 4, 5 ]

endpoint-annotations:
- endpoint: addToCart
  parameter-annotations:
  - parameter: atc_csrfToken
    input: *...
  - parameter: atc_quantity
    input: *Input_quantity

Application: Annotation:

Figure 6.16.: Exemplary Remove Parameter change.
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Remove Parameter: We can handle parameter removals fully automatically.
This is illustrated in Figure 6.16. Again, we consider the addToCart End-
point and the quantity Parameter, which is removed, e.g., because from
now on, every product can only be bought once with one order. As a con-
sequence, the reference of the corresponding ParameterAnnotation is
invalid. However, we can remove the reference automatically as follows.
In the detection step, we identify the Parameter removals based on the

IDs. In the resolution step, we remove all ParameterAnnotations that
refer to the removed Parameter. Hence, we resolve all conflicts of the anno-
tations. In the feedback step, we report the removals of the Parameters and
ParameterAnnotations to the expert. The update step is skipped because
we resolved all conflicts already in the resolution step. In the example, we
remove the invalid reference by removing the ParameterAnnotation for
the quantity Parameter.

Change Parameter [Property]: Similar to Endpoints, changes to Param-
eter properties do not affect the annotation and, thus, are automatically
resolved. We illustrate this in Figure 6.17. We consider the hotSaucesDetails
Endpoint and the sauce Parameter. The type of this parameter is changed

LEGEND

endpoints:
- !<http>
  &hotSaucesDetails
  path: /hot-sauces
  parameters:
  - &hsd_sauce
    name: sauce
    parameter-type: req-param

inputs:
- ...

endpoint-annotations:
- endpoint: hotSaucesDetails
  parameter-annotations:
  - parameter: hsd_sauce
    input: *...

Add Remove Change Conflicting Manually Added

Application: Annotation:

Figure 6.17.: Exemplary Change Parameter [Type] change.

6.4 | Evolving Input Data and Properties Annotations 113



from url-part to req-param, i.e., it is now added as part of the query string:
?sauce=. . . . At the same time, the sauce parameter is removed from the path
of the Endpoint. We handle this Endpoint property change as described
above. The Parameter property change is handled as follows.
In the detection step, we detect all property changes by comparing the

Parameter attributes before and after the application model update. The
resolution step is skipped. In the feedback step, we report the property
changes to the expert. However, they do not have to take action because
there are no conflicts in the annotation.

Change Input: Changes of type Change Input are more complex to resolve
because the precise impact on the annotation is not apparent. We provide an
example in Figure 6.18. We consider a change to the range of the allowed
values of the quantity Parameter of the addToCart Endpoint. While before,
there was no limit, the upper limit is now three. Hence, the Input_quantity
is not a valid Input for the quantity Parameter and needs to be updated.
However, the application model does not reflect the change to the quantity
range. We process this change type as follows.

In the detection phase, we cannot detect anything because the application
model is not changed. However, for future work, we suggest detecting
input changes directly in API specifications such as OpenAPI (OpenAPI
Initiative, 2020), because they can hold information about the allowed
parameter values. Regardless of that, we presume the expert who changed
the input format also updates the annotation. Hence, they know about the
new requirements for the Inputs.
In the current state, the detection, resolution, and feedback steps are

skipped, because no conflicts can be detected automatically. In the update
step, we rely on the expert’s knowledge about input changes to update the
Inputs accordingly. In the example, the expert would need to remove all
quantity values above three from the Input_quantity.
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LEGEND
Add Remove Change Conflicting Manually Added

endpoints:
- !<http>
  &addToCart
  ...
  parameters:
  - &atc_quantity
    name: quantity
    parameter-type: form

inputs:
- !<direct>
  &Input_quantity
  data: [ 1, 2, 3, 4, 5 ]

endpoint-annotations:
- endpoint: addToCart
  parameter-annotations:
  - parameter: atc_quantity
    input: *Input_quantity

Application: Annotation:

Figure 6.18.: Exemplary Change Input change.

LEGEND

endpoints:
- !<http>
  &hotSaucesDetails
  ...
  parameters:
  - ...

inputs:
- !<extracted>
  &Input_csrfToken
  extractions:
  - from: hotSaucesDetails
    pattern: <...>
endpoint-annotations:
- ...

Add Remove Change Conflicting Manually Added

Application: Annotation:

Figure 6.19.: Exemplary Change Response Behavior change.
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Change Response Behavior: The last considered change type is Change Re-
sponse Behavior, which is as complex as Change Input. We illustrate this
in Figure 6.19. We presume that the response format of the hotSaucesDe-
tails Endpoint is changed. As a consequence, the pattern of the RegExEx-
traction of the Input_csrfToken does not match the responses anymore.
Hence, the CSRF tokens are not extracted properly. However, similar to
input changes, the application model does not reflect the response format.
Therefore, we proceed as follows.

Again, the detection phase is skipped due to absent application model
changes. However, directly detecting response behavior changes based on
API specifications are possible future work as well. As an alternative, a dry
run to check all ValueExtractions could be conducted in this step. In the
current state, we again rely on the expert’s knowledge about the changes.

Thus, the resolution and feedback steps are skipped, and the expert has to
update the annotation solely based on their knowledge. In the example, they
have to adjust the pattern of the RegExExtraction to the new response
format.

6.5. Transforming Input Data and Properties Annotations

As described in Section 6.2, there are the following transformations including
an IDPA: transformation from an API specification such as OpenAPI (Ope-
nAPI Initiative, 2020) into an IDPA application model, transformation of
request logs into a workload model based on an IDPA application model, and
transformation of an IDPA and a workload model into an executable load test.
In this section, we described these transformations. Section 6.5.1 describes
the transformation of OpenAPI specifications into an IDPA application model.
Section 6.5.2 describes the transformation of request logs into a workload
model. Section 6.5.3 describes the transformation of an IDPA into a generic
load test as well as to JMeter (Apache Software Foundation, 2020[a]) and
BenchFlow (Ferme and Pautasso, 2018) load tests.
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---
2 openapi: "3.0.2"
info:

4 title: t

version: v

6 servers:
- url: h://d:q/pbase

8 paths:
p

i
:

10 m
i, j 2 {get,put,post,delete,options,head,patch,trace}:
operationId: �

i, j
12 parameters:

- name: n
i, j,k

14 in: ⌧
i, j,k 2 {query,header,path}

required: r
i, j,k 2 {true,false}

16 schema:
type: The type of the parameter

18 requestBody:
content:

20 µ
i, j:
schema:

22 properties:
a

i, j,s:
24 type: The type of the property

responses:
26 c

i, j,l:
description: A textual description

Listing 6.5: Schema of an OpenAPI specification (based on SmartBear
Software, 2020) to be transformed into an IDPA application
model.

6.5.1. Transformation from OpenAPI Specifications

API specifications allow keeping track and using the endpoints of an appli-
cation as a client comfortably. Therefore, it is recommended to use such
a specification (Newman, 2015), especially in microservice environments,
because others need to access the API. Because it comprises the endpoints
with the respective parameters of an application (see Section 2.4), we can
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reuse an API specification to generate an IDPA application model. As the
most prominent representative, we provide a transformation from OpenAPI
specifications (OpenAPI Initiative, 2020).

Listing 6.5 provides the schema of an OpenAPI specification as expected by
the transformation. It is a minimal example, not including any specifications
that are not required for the transformation. For referring to the elements in
the following, we label them with the following symbols:

• t: The title of the API.

• v: The version of the API.

• h: The protocol to be used with the requests. Can either be http or
https.

• d: The domain name to be used.

• q: The port number to be used.

• pbase: The base path to be added before the path of each endpoint.

• pi: The i-th path. There can be multiple endpoints with the same path,
but different HTTP request methods.

• mi, j: The j-th request method of the i-th path. Defines one endpoint.

• �i, j: The unique ID of the endpoint represented by pj and mi, j .

• ni, j,k: The name of the k-th parameter of mi, j .

• ⌧i, j,k: The type of the parameter ni, j,k. Currently, we only support
⌧i, j,k 2 {query,header,path} and not cookie.

• ri, j,k: A Boolean flag indicating whether the parameter ni, j,k is required.

• µi, j: The media type (IANA, 2020) of the request body. Only exists if
the endpoint has a request body.

• ai, j,s: The name of the s-th attribute of the request body. Please note
that the schema focuses on the media types multipart/form-data and
application/x-www-form-urlencoded and can differ for various media
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types such as application/json. However, in this case, the precise schema
is not relevant for the transformation.

• ci, j,l : The l-th response code that can be returned by the endpoint
represented by mi, j .

Based on the OpenAPI schema, we describe the IDPA application model
the transformation generates. For this, we utilize the following functions.
Let S be the set of all strings. type : S! S maps an OpenAPI request type or
media type x to the corresponding IDPA request type:

type(x) =

8
>>>>>>>>>><
>>>>>>>>>>:

’req-param’ x = ’query’

’header’ x = ’header’

’url-part’ x = ’path’

’form’ x 2 {’multipart/form-data’,

’application/x-www-form-urlencoded’}
’body’ else

The function concat� : S ⇥ S ! S concatenates two strings with � as a
separator. As a shorthand for concatenating two strings x1 and x2 without
separator, we use concat(x1, x2). id : S! S transforms a string so that it can
be used as an ID. Especially, it replaces all white space characters with ’_’.
Furthermore, it produces unique IDs by adding a suffix such as ’_2’.

For one OpenAPI specification, the transformation will generate one IDPA
Application. Listing 6.6 presents the schema of such an Application.
The title t constitutes the ID of the Application, whereas we format t

using the id function. For identifying the API version, we use the version
attribute, which is set to v. Alternatively, we could use the timestamp of the
transformation. However, we presume the version to be more accurate and
required by OpenAPI in any case.
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1 ---
&id(t)

3 version: v

endpoints:
5 - !<http>

&�
i, j

7 domain: d

port: q

9 path: concat(pbase, p
i
)

method: m
i, j

11 parameters:
- &concat’_’(�i, j , n

i, j,k)
13 name: n

i, j,k
parameter -type: type(⌧

i, j,k)
15 - &concat’_’(�i, j , a

i, j,s)
name: a

i, j,s
17 parameter -type: type(µ

i, j)
- &concat’_’(�i, j ,’body’)

19 parameter -type: body
protocol: h

Listing 6.6: IDPA application model generated from an OpenAPI specification
(see Listing 6.5).

For each request method mi, j , the Application holds at least one corre-
sponding Endpoint. If there are one or more request body media types µi, j ,
there is one Endpoint per µi, j . Otherwise, there is precisely one Endpoint.
Because OpenAPI only allows describing REST APIs, every generated End-
point is of type http. The domain name, port number, and protocol are
extracted from the URL defined in the OpenAPI specification as d, q, and h.
The path is constructed by concatenating the base path pbase and the path
pi . The request method mi, j can be reused as it is.
Each Endpoint has several Parameters as defined by the ni, j,k (line 12).

Each ni, j,k both defines the parameter name and the ID of the Parameter
in concatenation with the Endpoint ID. In doing so, we ensure that there
are no ID conflicts due to similar parameters of different endpoints. The
parameter type is transformed from the OpenAPI parameter type ⌧i, j,k using
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the type function. For the OpenAPI parameter types query, header, and path,
there are corresponding IDPA types req-param, header, and url-part. For the
type cookie, there is currently no implementation in the IDPA.
Besides the OpenAPI parameters, the request body of the corresponding

media type µi, j is transformed into Parameters, in case there is one. In
the case of the multipart/form-data and application/x-www-form-urlencoded
media types, we generate one Parameter per attribute ai, j,s (line 15). These
parameters then have the type form, defined by type(µi, j). Furthermore, ai, j,s

defines the name of the parameter. We transform all other media types
into a single body Parameter (line 18). In this case, the ID is based on the
Endpoint’s ID and the string ’body’.

6.5.2. Transformation of Request Logs to Workload Models

The second transformation, in which the IDPA is involved, is the extraction
of a workload model from recorded request logs. In this transformation, the
IDPA is used to label individual requests according to the called endpoint.
Then, the extraction algorithm—e.g., the WESSBAS-DSL extractor (Vögele
et al., 2018, see Section 3.2.4)—uses the labels for grouping the requests to
the same endpoints and for naming the elements of the extracted workload
model. Hence, we can correlate IDPA Endpoints and workload model
elements later on. In the extraction itself, the IDPA is not involved. In the
following, we describe the labeling of the requests. Furthermore, we discuss
how the labeling can be done in the case that the API has changed between
recording the requests and extracting the workload model.

6.5.2.1. Without API Changes

Assuming there are no API changes, the IDPA is involved in the workload
model extraction process as simple labeling of the individual requests. We
illustrate this in Figure 6.20. Starting from the raw request logs, we use
the application model of the IDPA to label each request with the ID of the
corresponding Endpoint. In a second step, the workload model is extracted
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Algorithm 6.1 Find the label for a request.

1: Let d, q, p, m be the domain name, port number, path, and request method
of one request

2: Let E be the set of all Endpoints
3:
4: function F���R������L����(d, q, p, m, E)
5: � ;
6: for all e 2 E do
7: if d = e.domain & q = e.port & m= e.method
8: & p = e.path then
9: � e.id

10: end if
11: end for
12: if � = ; then
13: for all e 2 E do
14: r  R��E�R������(e.path, ’\/’, ’\/’)
15: r  R��E�R������(r, ’\{.+\:(.+)\}’, ’$1’)
16: r  R��E�R������(r, ’\{.+\}’, ’.+’)
17: if d = e.domain & q = e.port & m= e.method
18: & R��E�M������(r, p) then
19: � e.id
20: end if
21: end for
22: end if
23: return �
24: end function

from the labeled request logs. For this, we assume each request to hold at
least the following information:

• domain name d

• port number q

• accessed path p

• HTTP request method m

Based on this information, Algorithm 6.1 defines the label for each request.
First, all Endpoints are traversed and compared to d, q, p, and m. If all are

122 6 | Automating Load Test Parameterization



equal, the algorithm found the correct Endpoint and stores its ID as the
label. If it did not find an appropriate one, it checks each Endpoint again,
but now considers URL variables such as {sauce} in /hot-sauces/{sauce}.
For this, it transforms the URL to a regular expression as follows. It adds
an escape character \ to the slashes / and replaces each variable such as
{sauce} with the expression .+, or the specified expression if present. The
R��E�R������ calls constitute these replacements. Then, we can check
whether the path p matches the regular expression and store the Endpoint’s
ID as a label if so. Non-labeled requests have no corresponding Endpoint
and, therefore, will not be considered for the workload model extraction.
We illustrate the algorithm with an example. We consider the two End-

points hotSaucesDetails and addToCart from Section 6.3.3.1 and a further
Endpoint hotSaucesOverview. For the sake of simplicity, we assume all End-
points and recorded requests to have the same domain name and port
number. The request methods and paths of these Endpoints are:

• hotSaucesDetails: GET /hot-sauces/{sauce}

• hotSaucesOverview: GET /hot-sauces/overview

• addToCart: POST /cart/add

IDPA

Request Logs

Ann

App

Labeled 
Request Logs Workload Model

Workload Model 
Extraction

Figure 6.20.: Transformation process of request logs to a workload model
using an IDPA.
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Furthermore, we consider the following recorded requests:

1. GET /hot-sauces/overview

2. GET /hot-sauces/sudden_death_sauce

3. POST /cart/add

4. POST /hot-sauces/add

For the first and third requests, the Endpoints hotSaucesOverview and
addToCart have the same request methods and path. Hence, the algorithm
labels the requests with hotSaucesOverview and addToCart, respectively. The
second request has a different path than all Endpoints. However, it matches
the regular expression \/hot-sauces\/.+ generated from the path of hot-
SaucesDetails and, therefore, is labeled accordingly. The last request matches
this regular expression, as well. However, it has a different request method
(POST) than the Endpoint (GET) and, therefore, is not labeled. This request
will be ignored when extracting the workload model.

Old IDPA

Request Logs

Ann

App

Labeled 
Request Logs Workload Model

Workload Model 
Extraction

Filtered 
Request Logs

Ann

App

New IDPA

Figure 6.21.: Transformation process of request logs of an old API version
to a workload model for a newer API version using IDPAs.
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6.5.2.2. With API Changes

If the API of the target application changed, the IDPA changes as well (see
Section 6.4). However, only request logs for the old version may be available,
while we need to generate a workload model for the new version. Even
though this can lead to less representative load tests, we provide extracting
workload models based on old request logs as a workaround until new
request logs are available. For this, we need to add an intermediate step to
the transformation process, as illustrated in Figure 6.21. The transformation
starts with the same step as without API changes, namely labeling the
requests using the IDPA for the old API version. In a newly added next step,
the labeled requests are then filtered and updated based on the introduced
API changes of the new IDPA. Finally, the workload model extraction is
applied to the filtered request logs.
The filtering adjusts the individual requests to the new API. For this, it

performs the following actions depending on the particular API change type:

Add Endpoint If a new Endpoint has been added, there will be no requests
targeting this Endpoint, because it did not exist in the old version.
Therefore, we do not need to adjust anything.

Remove Endpoint In the case of removed Endpoints, we remove all re-
quests to these Endpoints.

Add Parameter For newly added Parameters, we add a corresponding pa-
rameter to all requests to the corresponding Endpoint. Furthermore,
we add a default parameter value. This value will be overwritten when
the load test is parameterized (see Section 6.5.3).

Remove Parameter Similar to removed Endpoints, we remove all corre-
sponding parameters from the requests.

Change Endpoint/Parameter [Property] In the case of property changes,
we update the properties of all corresponding requests.

Change Input/Response Behavior Changes of these types do not affect
the application model. Thus, we do not need to update or filter any
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requests. However, such changes can affect the annotation. Using the
annotation of the new IDPA for the parameter will solve this issue.

As an example, we base on the same Endpoints and requests as in
Section 6.5.2.1. Furthermore, we consider the following API changes:

• hotSaucesDetails: The path changed to /details/{sauce}.

• hotSaucesOverview is removed.

• removeFromCart: GET /cart/remove is added.

The resulting filtered and labeled request logs will be the following:

hotSaucesOverview: GET /hot-sauces/overview

1. hotSaucesDetails: GET /details/sudden_death_sauce

2. addToCart: POST /cart/add

POST /hot-sauces/add

The first request is labeled based on the old IDPA but removed in the fil-
ter step because the hotSaucesOverview Endpoint has been removed. The
second request is labeled and kept, but the path is updated from /hot-
sauces/sudden_death_sauce to /details/sudden_death_sauce. The third re-
quest is not changed. The last request is ignored, similar to the example
without API changes before.

Because old requests can not call newly added Endpoints such as re-
moveFromCart in the example, the generated load test will never cover these
new Endpoints. This is a common drawback and open challenge of repre-
sentative load testing that solely bases on recorded user behavior. However,
testing all Endpoints that already existed before the API changed with a
representative workload is better than not testing any Endpoint. For the
newly added Endpoints, we suggest using either a manually defined load
test or a generated one based on added artificial user behavior. Alterna-
tively, request logs retrieved from production testing such as a canary release
(Newman, 2015) can be used.
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6.5.3. Transformation to Load Tests

The last step of the load test generation process is the transformation of the
workload model and the IDPA into a load test. In this step, the workload
model is transformed into a raw load test, which is parameterized with the
IDPA, i.e., the manual parameterizations defined in the IDPA are merged
into the load test. For the transformation of the workload model, we base on
existing works such as the WESSBAS approach (Vögele et al., 2018). In this
section, we describe the transformation of the IDPA into load test elements.
First, we describe how we parameterize a generic load test without focusing
on a specific load testing tool. Second, we provide the particular parame-
terization of JMeter test plans (Apache Software Foundation, 2020[a]) and
BenchFlow tests (Ferme and Pautasso, 2018).

6.5.3.1. Parameterization of Generic Load Tests

Figure 6.22 provides an overview of the transformation of an IDPA to the
following abstract elements of a generic load test. A WorkloadDefinition
describes the amount and order of submitted requests. It refers to one or mul-
tiple RequestDefinitions, which describe the properties of one request.
For instance, for HTTP requests, it defines the domain name, port number,
path, and further request properties. Depending on the implementation,
this reference can also be a composition. Request parameters are defined by
ParameterDefinitions, which hold information such as the parameter
name. Furthermore, a RequestDefinition can hold ExtractionDefi-
nitions, which define the extractions of values from the responses of the
submitted requests. For defining the values to be used for the parameters,
each ParameterDefinition holds a ValueDefinition. For that, it can
refer to an ExtractionDefinition of another RequestDefinition and
also to a GlobalDefinition, which defines certain value sets globally. In
the subsequent sections, we will illustrate the abstract elements by concrete
examples of JMeter and BenchFlow.
All load test elements are generated based on the workload model and

the IDPA. The WorkloadDefinition, RequestDefinitions, and Param-
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Figure 6.22.: Parameterization of a generic load test with an IDPA. For the
sake of clarity, we omitted some elements of the IDPA, such as
an Application or ApplicationAnnotation.
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eterDefinitions constitute the raw load test, which the IDPA should
parameterize. The WorkloadDefinition only relates to the workload
model, e.g., the Markov chains of the WESSBAS-DSL (see Section 3.2.4.2).
The RequestDefinitions and ParameterDefinitions are transformed
from the workload model as well but correlate with respective Endpoints
and Parameters of the IDPA. Depending on the workload model and the
transformation implementation, we could also generate the RequestDefi-
nition and ParameterDefinition based on the IDPA and correlate them
with the elements of the workload model. Both ways will result in the same
load test because we label the requests processed by the workload model
extraction according to the IDPA (see Section 6.5.2).

When parameterizing the raw load test, properties of the RequestDefi-
nitions and ParameterDefinitions can be changed, and Extraction-
Definitions, ValueDefinitions, and GlobalDefinitions are added.
For that, we map the Endpoints and Parameters to the RequestDefi-
nitions and ParameterDefinitions by correlating the IDs of the IDPA
with the analogous concepts of the load test. As a consequence, we can
correlate EndpointAnnotations and ParameterAnnotations as well.
For each RequestDefinition and ParameterDefinition, we apply the
Overrides of the respective EndpointAnnotation or ParameterAnno-
tation. Furthermore, we apply the Overrides of the higher-level scopes
(not displayed in the figure). The Input of a ParameterAnnotation is
transformed into several elements of the load test. First, we generate an
ExtractionDefinition for the IDPA ValueExtractions of Extract-
edInputs and add it to the RequestDefinition from which we want to
extract the values. Second, we generate a GlobalDefinition for large
input data that could be used for several parameters, such as the value list
of a DirectListInput. Finally, we generate a ValueDefinition for the
respective ParameterDefinition, which refers to the ExtractionDefi-
nition or GlobalDefinition in the case we generated ones.
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6.5.3.2. Parameterization of JMeter Test Plans

In this section, we describe the actual parameterization of JMeter test plans
(Apache Software Foundation, 2020[a]). We base on the JMeter version 5.0
with the Markov4JMeter (van Hoorn et al., 2008) and Random CSV Data
Set (Fedorov, 2017) plugins installed. First, we describe how JMeter realizes
the generic concepts presented in Figure 6.22. Then, we introduce the
transformation of each element of the IDPA into a JMeter element. Please
note that the structure and names of elements in the JMeter UI slightly
differ from the metamodel constituted by the Java API (Apache Software
Foundation, 2020[b]). In the following, we refer to the Java API. As an
example, Appendix B.1 provides the JMeter test plan transformed from the
IDPA in Section 6.3.3.1.

Mapping to Generic Load Test Elements: JMeter test plans have a tree-based
structure, whose main elements are illustrated in Figure 6.23. The root
node of a JMeter test plan is a TestPlan entity (not displayed in the figure),
which subsumes one or several subtrees with a ThreadGroup as the root
element. The ThreadGroup nodes summarize a set of virtual users to be
executed and are to be generated based on the workload model. For the
sake of simplicity, we assume that a TestPlan always holds exactly one
ThreadGroup, which is the case for the transformation of a WESSBAS-
DSL instance to a JMeter test plan. However, the parameterization would
work similarly with multiple ThreadGroup nodes. The child nodes of a
ThreadGroup node can be elements of various other types. In the following,
we limit ourselves to the types relevant for the load test parameterization.

First, nodes realize the GlobalDefinition, such as Arguments, Ran-
domCSVDataSetConfig, and CounterConfig. They represent globally de-
fined input data, data retrieved from CSV files, and a counter. Second, there
needs to be a realization of the WorkloadDefinition defining the amount
and order of submitted requests. For illustration purposes, we present the
MarkovController, which defines a Markov-based user behavior and can
be generated based on a WESSBAS-DSL instance. The MarkovController
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holds one or multiple ApplicationStates, which each constitute a state
of the represented Markov chains and subsume the requests to be sub-
mitted as part of the state. For that, an ApplicationState holds one
or multiple HTTPSamplerProxy nodes constituting the RequestDefini-
tion of HTTP requests. For other request types, different but semantically
equal nodes are used. The child nodes of an HTTPSamplerProxy can be
a HeaderManager, Arguments, multiple RegexExtractors, and multiple
JSONPostProcessors. The HeaderManager and the Argument elements
of the Arguments define all headers and parameters to be sent with the
request. These nodes include the header and parameter values as strings,
which can also include function calls (see below). Hence, these two enti-
ties realize the ParameterDefinition and the ValueDefinition at the
same time. The RegexExtractors and JSONPostProcessors realize the
ExtractionDefinition by defining value extractions based on regular
expressions or JSON paths.
The entities with the filled boxes are transformed from an IDPA as pa-

rameterizations. In contrast to that, the non-filled entities are generated by
the workload model transformation. However, our IDPA transformation will
adjust the properties of generated HTTPSamplerProxy nodes and its grand-
child nodes of type HeaderManager and Argument. For that, we assume
the name property of each HTTPSamplerProxy node to correspond with an
ID of an IDPA Endpoint, which we achieve by labeling the requests of the
request logs accordingly (see Section 6.5.2). In the following, we describe
the parameterizations, which are defined by the Overrides and Inputs of
the IDPA annotation.

Parameterization with Overrides: Overrides—regardless if specified un-
der an ApplicationAnnotation, EndpointAnnotation, or Parameter-
Annotation—change individual properties of either an HTTPSampler-
Proxy or one of its Argument grandchild nodes. These changes are sum-
marized in Table 6.6. Overrides with a key of type HttpEndpointOver-
rideKey affect HTTPSamplerProxy properties. Precisely, the domain, port,
protocol, and base-path keys affect the properties domain, port, protocol, and
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Table 6.6.: Parameterization of JMeter Entities with an Override

Override JMeter
Key Type Key Entity Type Property

domain domain
HTTPEndpoint- port HTTP- port
OverrideKey protocol SamplerProxy protocol

base-path path
HTTPParameter- encoded Argument always_encodeOverrideKey

path. While Overrides with one of the first three keys completely override
the old value of the respective property, the base-path only overrides the
first n segments of the path (see Section 6.3.2.2). The encoded key of type
HttpParameterOverrideKey affects the Argument nodes. Overrides
with this key change the always_encode property of an Argument to false or
true—depending on its value.

Parameterization with Inputs: We transform Inputs into the generic el-
ements ValueDefinition, ExtractionDefinition, and GlobalDefi-
nition. In JMeter, a ValueDefinition is realized by a string possibly
including calls to predefined functions added to the path property of an
HTTPSamplerProxy, the header definition of a HeaderManager, or the
value property of an Argument—depending whether the type of the pa-
rameter the Input is used for is url-part, header, or any other type. For
instance, Inputs used for the sauce url-part Parameter of the hotSaucesDe-
tails Endpoint (see Section 6.3.3.1) will be transformed into a string that
is added to the path property of the corresponding HTTPSamplerProxy,
such that it is /hot-sauces/[string], whereas [string] denotes the value string.
JMeter will evaluate the contained functions when retrieving the value.
The string can also read dynamically set variables using the ${·} opera-
tor. An ExtractionDefinition or GlobalDefinition is realized by a
global Argument, a RandomCSVDataSetConfig, CounterConfig, Regex-
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Extractor, or JSONPostProcessor, which will be created depending on
the Input subtype and can be accessed as variables with the ${·} operator.
The transformations of all Input subtypes are summarized in Table 6.7.

It shows the transformed Input subtype, the value string, and potentially
additionally generated elements. We use � as a symbol for the ID of the
transformed Input. Furthermore, regular letters denote letters that are
contained in the value strings as they are while italic letters refer to properties
of the Input. The |· operator denotes replacing certain parts of a property
with another string.

The string generated based on an ExtractedValue directly reads the
ID �. For the initial value, a global Argument is generated, setting the
variable � initially. For each RegExExtraction or JsonPathExtraction
of the ExtractedInput, a RegexExtractor or JSONPostProcessor will
be generated, which will overwrite the variable �. These elements are added
as child nodes of the HTTPSamplerProxies from which the values are to
be extracted.

Table 6.7.: JMeter input strings for an Input with ID �.

Input Type Value String Additional Elements

ExtractedInput ${�} A, R, J
CsvInput ${�} CSV
DirectListInput ${__GetRandomString(${�},;)} A
RandomNumberInput ${__Random(lower, upper,)} –
RandomStringInput template|[A]{n} 7!${__RandomString(n, A,)} –
CounterInput ${�} C
DatetimeInput ${__timeShift(format„ offset„)} –
CombinedInput format|Ii 7!string(Ii) –
EnvironmentInput ${__P(property)} –
JsonInput in JSON format –
ConciseJsonInput in JSON format –

A = Global Argument, CSV = RandomCSVDataSetConfig, C = CounterConfig,
R = RegexExtractor, J = JSONPostProcessor
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A CsvInput is also transformed into a string simply reading the variable
�. Furthermore, a RandomCSVDataSetConfig, which reads the input data
from the CSV file and stores it in the variable �, is generated and added to
the ThreadGroup. Multiple CsvInputs that are connected via the associ-
ated attribute will be subsumed in a single RandomCSVDataSetConfig, for
ensuring the values of the different columns are retrieved from the same row
index. A CsvInputGroup is treated similarly as a collection of associated
CsvInputs.
For a DirectListInput, a global Argument is generated, which holds

the whole list of values separated by commas (,). We use � as the variable
name of the Argument. The value string refers to the Argument via � and
by calling the GetRandomString function, which randomly retrieves a value
from the list.
Functions defined in the value strings realize the RandomNumberInput

and RandomStringInput without additional elements. For the former type,
the Random function is called to generate a random number between the
defined lower and upper bounds. For the latter type, the RandomString
function is used. We assume that the template of the RandomStringInput
consists of one or multiple regular expressions in the form of [A]{n}, e.g.,
[0-9A-D]{8}\-[0-9A-D]{4}\-[0-9A-D]{4}\-[0-9A-D]{4}\-[0-9A-D]{12} for
a UUID. The template is used as the value string, but each [A]{n} is re-
placed by a call to RandomString, which will generate a random string with n

characters from the alphabet A. Because RandomString expects the alphabet
as a list of characters, we enroll A. As an example, the first part of the UUID
definition is replaced with ${__RandomString(8, 0123456789ABCD,)}.

A CounterInput is transformed into a CounterConfig setting the vari-
able � and a value string that reads this variable.
A DatetimeInput is transformed into a call to the timeShift function.

The format defines the format of the generated date and time, and the
offset defines the time to be added. We realize the EnvironmentInput as a
parameter passed to the JMeter process, which can then be accessed via the
__P function. The parameter—e.g., a password—can then be passed to the
load test as -Jpassword=mypassword.
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The string generated for a CombinedInput holds the defined format
where each reference to another Input Ii —e.g., (2)—is replaced by the
string generated from the corresponding Input from the Input list—e.g.,
the second Input. Finally, the JsonInput and ConciseJsonInput are
transformed into a string in JSON format, i.e., to the represented JSON tree.
The value strings for these Inputs replace references to other Inputs.

6.5.3.3. Parameterization of BenchFlow Tests

The second load testing tool for which we provide a transformation of the
IDPA is BenchFlow (Ferme and Pautasso, 2018). We base on the BenchFlow
version introduced by Palenga (2018), which uses JMeter as a test execution
engine. Similar to the previous section, we describe the relation of BenchFlow
test elements to the generic concepts presented in Figure 6.22 and the precise
transformation of each IDPA element to a BenchFlow element. An example
based on the IDPA example in Section 6.3.3.1 can be found in Appendix B.2.

Mapping to Generic Load Test Elements: BenchFlow tests are defined in
the YAML format (YAML 2020) and, thus, have a tree-based layout. The
main elements of a test that are relevant for the parameterization with an
IDPA are illustrated in Figure 6.24. The central element is a Test (not
displayed in the figure), which holds several other elements such as an Sut
and a workload definition, e.g., an HttpWorkload for HTTP endpoints. The
Sut holds a TargetService, which defines the domain name and base
path of all called endpoints. A limitation of the BenchFlow version we use
is that only one TargetService can be defined, i.e., it is not possible to
include multiple services with different domains in one test. Hence, it is a
GlobalDefinition.

The HttpWorkload subsumes the remainder of the relevant parts of the
Test. The second type of GlobalDefinitions are DataSources denoting
a set of values read from CSV files. One or several WorkloadItems realize
the WorkloadDefinition. Each holds a set of Operations defining the
requests to be submitted against the individual endpoints and a Markov-
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chain-based Mix defining the order of the Operations and the think times
between the Operations. At the same time, each Operation realizes a
RequestDefinition.
Parameters (ParameterDefinition) are specified as maps of Parame-

ters for the IDPA parameter types req-param and url-part or a BodyType
for body parameters. In the former case, the keys of the maps define the
parameter names. In the latter case, BenchFlow differentiates between a
Body defining a single body value, a BodyForm defining one or multiple
form parameters, and a BodyFile defining a body value read from a file.
The Body and BodyForm refer to Parameters for specifying the parameter
values. Each Parameter defines a single value, list of values, or reference
to a DataSource or Extraction in the items attribute and hence, realizes
the ValueDefinition. An Extraction, of which an Operation can hold
several, realizes the ExtractionDefinition and allows to specify value
extractions based on regular expressions or JSON paths.
The DataSources and Extractions of a BenchFlow test will be gen-

erated based on an IDPA as a parameterization. All other entities can be
transformed from a workload model. However, the parameterization with
an IDPA can change certain properties of the TargetService, the Op-
erations, and Parameters. For that, we assume the id property of an
Operation is equal to the ID of the corresponding IDPA Endpoint. Bench-
Flow Parameters can be correlated with IDPA Parameters based on the
parameter name.

Parameterization with Overrides: IDPA Overrides are applied to a Bench-
Flow test as summarized in Table 6.8. Overrides using the domain, port,
and base-path HTTPEndpointOverrideKeys change the endpoint of the
TargetService. For instance, the domain name localhost, the port num-
ber 8080, and the base path /test/stage will change the endpoint to local-
host:8080/test/stage. In addition, the base-path key can change the first
segments of the path of each Operation in the case of different base paths
for different Operations. The protocol key refers to the protocol property
of each Operation. In the used BenchFlow version, there is no concept for ex-
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Table 6.8.: Parameterization of BenchFlow Entities with an Override

Override BenchFlow
Key Type Key Entity Type Property

domain
HTTPEndpoint- port TargetService endpoint
OverrideKey base-path

protocol Operation protocol
HTTPParameter- encoded Parameter items
OverrideKey CSV file content

Table 6.9.: BenchFlow Parameter Items for an Input with ID �

Input Type Item(s) Additional Elements

ExtractedInput ${�} Extraction
CsvInput ${�} DataSource
DirectListInput data –
RandomNumberInput ${__Random(lower, upper,)} –
RandomStringInput template|[A]{n} 7!${__RandomString(n, A,)} –
CounterInput ${�} DataSource
DatetimeInput similar to JMeter –
EnvironmentInput similar to JMeter –
CombinedInput similar to JMeter –
JsonInput similar to JMeter –
ConciseJsonInput similar to JMeter –

plicitly encoding an already defined parameter value. Therefore, the encoded
HTTPParameterOverrideKey entails encoding the defined values directly
in the BenchFlow test and the accompanying CSV files. Values extracted by
an Extraction cannot be encoded.

Parameterization with Inputs: Because the used BenchFlow version utilizes
JMeter as an execution engine, we can transform IDPA Inputs very similarly
to JMeter. In particular, we can reuse the JMeter functions and the ${·}
operator for accessing a variable. For each Input, the items attribute of the
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BenchFlow Parameters the Input is to be used for is adjusted. Table 6.9
summarizes the transformed items attribute and potentially additionally
generated elements for an Input with ID �.
The DirectListInput is the only Input for which the BenchFlow Pa-

rameter holds multiple items. It holds the defined data list. For all other
Inputs, only one item is generated. For an ExtractedInput, the gener-
ated item refers to the Input ID �. Furthermore, Extractions are added
to all Operations from which a value is to be extracted. Depending on
the used type of ValueExtraction, the Extraction will hold a regular
expression or a JSON path.
A CsvInput is transformed into ${�} and a DataSource defining how

to read the CSV file. In the case of multiple CsvInputs that are connected
via the associated property, only one DataSource will be generated. The
same applies to a CsvInputGroup. Because BenchFlow reads the variable
name for each CSV column from the column header, we add � as a header
of the respective column in the file.
The RandomNumberInput and RandomStringInput are transformed

into the same function calls as in JMeter. As there is no corresponding entity
for a CounterInput, we transform it to a DataSource. We generate all
values the CounterInput can generate and store it into a CSV file. Then, we
handle it similarly to a CsvInput. Finally, the DatetimeInput, Environ-
mentInput, CombinedInput, JsonInput, and ConciseJsonInput are
transformed similarly to JMeter and do not require additional elements.

6.6. Integration into Continuous Software Engineering

IDPAs are designed for use in CSE and, therefore, in CI/CD pipelines. Pre-
cisely, IDPAs are to be used to generate a load test based on spontaneously
selected user behavior—e.g., the most recent one—automatically within a
CI/CD pipeline. In the previous sections, we already described how to evolve
an IDPA and automatically generate a load test, which are fundamental
requirements. In the following, we describe the integration into the CSE life
cycle. The integration includes evolving the IDPA in the local development
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environment, persisting in a repository, and generating and executing a load
test as part of a CI/CD pipeline.
Figure 6.25 illustrates the intended use of IDPAs in CSE. In the local

development environment, a developer develops, extends, and maintains
the program code 1�. Hence, all API changes are introduced by the developer
in this environment. Therefore, the developer is responsible for creating and
evolving the IDPA based on the introduced API changes. For this, they rely
on the evolution strategies described in Section 6.4.
After the developer implemented a code change and evolved the IDPA

accordingly, both are committed to the central code repository 2�. We
recommend storing the IDPA in the code repository, because it is close to the
program code and hence, close to possible API changes. The same principle is
applied for unit tests, which are typically stored next to the program code as
well. Because the program code and the IDPA are committed simultaneously,
we ensure that the IDPA in the code repository always fits the developed
application’s API.
Generating representative load tests based on recorded user behavior

requires the application to run and be used in a production environment 3�.
From this execution, request logs representing the user behavior are to be
collected 4�, which can be used to generate a load test.
Based on the up-to-date IDPA in the code repository and the recorded

request logs, we can automatically generate a new load test in the CI/CD
pipeline and execute it 5�. In this way, we allow using spontaneously selected
user behavior in the CI/CD pipeline.

Because newly introduced API changes are always first tested in the CI/CD
pipeline before being deployed to the production environment, the described
procedure has the main drawback that after an API change, no request logs
are fitting the new API. In such a case, we apply the labeling approach
described in Section 6.5.2.2, which maps the requests of the old API to the
new one. For this, we need to use the two IDPA versions corresponding
to the API versions, which we can easily retrieve from the code repository.
This approach entails the drawback that newly introduced endpoints are not
tested. However, as canary releases or other production testing approaches
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are common in CSE (Newman, 2015), they can be utilized to collect request
logs for the new API before the actual release. These logs can be used for
generating a load test covering the whole API.
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Figure 6.25.: Use of an IDPA in a CI/CD pipeline.
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6.7. Summary

In this chapter, we introduced our approach to the automated parameteriza-
tion of generated load tests, addressing RQ1: How can load test parameteri-
zations be evolved without manual intervention at test generation or execution
time?
We store the parameterizations an expert needs to do manually in a

separate model— the Input Data and Properties Annotation (IDPA)—and
merge them into the load test when it is generated. Instead of overwriting
the parameterizations, this separation preserves them, also if the workload
changes. Furthermore, it allows us to evolve the parameterizations over
typical API changes, as recorded in the literature, based on an expert’s
feedback. Various transformations—e.g., from or to API specifications,
workload models, and load tests—and the use of the YAML format allow a
neat integration into CSE. In Chapter 12, we provide an evaluation of the
approach.

The automated parameterization forms the basis of our overall approach. It
allows us to generate tailored load tests without manual intervention. Hence,
we can integrate it into a CI/CD pipeline. For instance, a user only needs
to describe the load test, and our approach can generate the test when it is
required, based on the most recent production workload. The spontaneous
load test generation is furthermore helpful because the space of possibly
generated load tests is vast. As an example, load tests can target different
sets of services of a distributed application and can represent the workload
scenarios of different contexts. In the next two chapters, we will introduce
two approaches generating corresponding load tests and making use of the
automated parameterization. First, we introduce tailoring to a given set of
services. Second, we present an approach to generating context-tailored
load tests.
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Generating a representative load test for a session-based microservice appli-
cation requires a focus on the service level. As multiple teams are typically
responsible for developing, testing, deploying, and operating one service of
the application independently following DevOps practices (Bass et al., 2015;
Newman, 2015), each team requires its load tests tailored to the developed
service. Alternatively, for performing integration tests between services, they
require load tests tailored to the set of tested services. Untailored tests target-
ing the whole system would require deploying the complete application for
the test execution, which results in unnecessary resource consumption. No-
tably, as each team uses its independent continuous integration and delivery
(CI/CD) pipeline, system-level tests can result in deploying the application
multiple times in parallel. Furthermore, such a procedure contradicts the
individuality of the teams, as they would need to deal with foreign services.
At the same time, a tailored representative load test needs to preserve the
inter-relations of the requests of each user session, which are only explicitly
present at the user-faced services.
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Several works targeting the described challenge exist. Different approaches
allow extracting representative load tests from user sessions, focussing on
the tested application as a whole (Barros et al., 2007; Cai et al., 2007; Krish-
namurthy et al., 2006; Lutteroth and Weber, 2008; Menascé and Almeida,
2002; Ruffo et al., 2004; Vögele et al., 2018). Approaches using request-
based workload models (Barford and Crovella, 1998) can extract workload
models from requests missing a session context. Finally, approaches trans-
lating workload models from higher-level to lower-level constructs exist
(Graf, 1987; Koziolek, 2008; Koziolek and Reussner, 2008). However, these
approaches lack in generating session-based workload models tailored to
specific services. The load test extraction approaches either cannot consider
the services or the session context. The last mentioned approaches comprise
concepts helping to tailor system-level workload models to service-level ones
but are not adopted in load testing, yet.
Therefore, we aim at extending the existing approaches to the genera-

tion of session-based workload models, introducing means for tailoring the
workload models to specific services. We want to reduce the overall used
resources for load testing and enable DevOps teams to focus on their services.
In doing so, we focus on Markov-chain-based workload models such as the
WESSBAS-DSL (Vögele et al., 2018). We address the research question RQ2
defined in Section 5.1: How can representative load tests be tailored to specific
services of a session-based application?

For identifying possible extensions of the existing approaches, we analyze
the typical load test extraction process. For that, we base on the WESSBAS
approach (Vögele et al., 2018). Then, we introduce two algorithmsmodifying
the artifacts of certain stages of the process. Log-based tailoring adjusts the
collected request or session logs before aggregating them to a workload
model. Model-based tailoring modifies the workload model generated by
the existing approaches. Both algorithms change the process such that the
finally generated load tests are tailored to a set of desired services. In our
evaluation, we will compare the quality of the models produced.

The remainder of the chapter is structured as follows. Section 7.1 provides
a motivating example and puts our approach into context. Section 7.2
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summarizes the notations used in this chapter. In Section 7.3, we explain the
load test extraction process we extend and motivate the choice of algorithms.
In Sections 7.4 and 7.5, we introduce the log-based andmodel-based tailoring
algorithms. Section 7.6 illustrates the integration of the approach described
in this chapter with the automated load test parameterization described in
Chapter 6. Finally, we summarize the chapter in Section 7.7.

This chapter is a revised and extended version of Section 4 of our below pub-
lication. Besides the integration with the automated load test parameterization
(Section 7.6), all extensions are for explanation or (formal) concretization
purposes only and do not add additional research results.

• H. Schulz, T. Angerstein, D. Okanović, and A. van Hoorn (2019a).
“Microservice-tailored Generation of Session-based Workload Models
for Representative Load Testing.” In: Proceedings of the 27th IEEE Inter-
national Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS 2019). IEEE Computer
Society, pp. 323–335

7.1. Motivating Example

For motivating the need for tailored load tests and putting them into context,
we introduce the Sock Shop Microservices Demo (Weaveworks, Inc., 2020),
which we also use in the evaluation (see Chapter 13). Consisting of the
services shown in Figure 7.1, it constitutes a webshop for socks with func-
tionalities such as browsing products, adding them to a cart, and purchasing.
Aderaldo et al. (2017) have assessed the Sock Shop to be a representative
microservice application; hence, we use it as a representative example.

Assuming the services are developed following DevOps practices, they are
to be load-tested individually. As each team is responsible for one service,
they need to focus on only the developed one. As an example, the team
responsible for the orders service needs a load test directly targeting orders.
Besides, it needs stubs mimicking the functional and performance behavior
of the dependent services, for being able to test orders in isolation.
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Figure 7.1.: Services of the Sock Shop and illustration of load drivers and
stubs required for testing the orders service in isolation.

Integration testing (Myers, 2004) uses similar techniques. There are two
basic approaches: top-down testing starts with the top-most service (left-
most in Figure 7.1), replacing dependent ones with stubs; bottom-up testing
starts with the bottom-most services (right-most in the figure), replacing
calling ones with drivers. For full isolation of, e.g., the orders service, we
need to apply both approaches at the same time. In this case, we need to
replace the front-end with a load driver and the carts, user, payment, and
shipping services with stubs.
In this dissertation, we only focus on the bottom-up approach. For top-

down testing, i.e., replacing dependent services with stubs, we refer to
existing work (Baltas and Field, 2012; Becker et al., 2008; Field et al., 2018;
Versteeg et al., 2016). However, generating session-based representative
load tests serving as drivers in this scenario is missing in the literature.
Therefore, we introduce two algorithms extending existing approaches for
tailoring a load test to individual services such as orders or a set of services
such as orders in combination with catalogue.
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The major challenge when generating service-tailored load tests is the
sessions, in which the end-users interact with the application. The application
identifies a session by a session ID, which it sends to the end-users, who reuse
the ID in subsequent requests. The services responsible for the IDs are the
user-faced ones— front-end in the example. For computing the response to a
request, the front-end calls further services, including orders. However, such
sent requests do not have a session ID. Hence, only focusing on orders misses
this information. As an example, if multiple users are checking the status of
their orders, which, for instance, includes two subsequent requests to the
orders service, this service misses a relation of these requests to the users and
the request sequence. Simply replaying the requests at the observed rates in
a load test will most likely result in different inter-request time distributions
and disallows for user-based parameterization, such as using one order per
user.

Therefore, we require algorithms that restore the session context. Precisely,
the algorithms need to assign session IDs to requests of non-user-faced
(backend) services. In the next two sections, we introduce the notations
used and provide an overview of the algorithms, which act at different stages
of the load test extraction process.

7.2. Notations

In this chapter, we use several notations, which we summarize in this section.
Table 7.1 provides an overview. In the next section, we will detail the relation
of the notations to the load test extraction process. We consider an application
with n (micro) services, e.g., the Sock Shop, with its seven services. Each
service mi has a set of endpoints Ei, e.g., POST /carts/{id}/items. M and E

denote the entirety of all existing services and endpoints. We use the script
fontM,E for denoting selected subsets used for tailoring a specific workload
model.
Request logs are designated as R and comprise all end-user requests

that have been observed at the entry points of the application, e.g., the
endpoints of the front-end service. We characterize each request r 2R by
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the called endpoint "(r), a user session ID �(r), a start timestamp t(r), and
a duration �(r). Trace logs T add to R the additional dimension of the
requests internally made by the services to process the end-user request.
We define each trace ⌧ 2 T as a directed tree consisting of the root request
r⌧ 2 R, further requests (nodes) R⌧ to the different services, and the call
relations (edges) C⌧. For convenience, we also use �, t, and � for traces:
�(⌧ = (r⌧, ·, ·)) := �(r⌧). Furthermore, we use r 2 ⌧ as a shorthand for
9(r1, r2) 2 C⌧ : r = r1 _ r = r2.
Session logs S are a different log format, which we obtain by grouping

the requests in R by the session ID:

8s 2 S 8r1, r2 2 s : �(r1) = �(r2)

and by sorting them according to the time stamp:

8s 2 S 8r1, r2 2 s : r1  r2() t(r1) t(r2)

AworkloadmodelW aggregates session logs S clustered by similar user be-
havior. A workload model consists of one Markov chain Wj —corresponding
to a WESSBAS behavior model—per session cluster and a weighting func-
tion f defining the workload mix. Each Markov chain consists of states ⌃ j,
a mapping of the states to endpoints " j, a transition probability function
pj, and a think time distribution function � j. Furthermore, we record the
session cluster S j. ⌃ j allows for multiple states having the same endpoint.
That will be relevant for the model-based tailoring algorithm. The think
times follow a normal distribution. While in general, WESSBAS and other
approaches allow for different distributions as well, we chose the normal
distribution in this work and leave further ones for future work. Finally,
we denote the linear combination (convolution; Montgomery and Runger,
2003) of two normal distributions �1,�2, as follows:

↵�1 ⇤ ��2 ⇠N (↵µ1 + �µ2,↵2�2
1 + �

2�2
2)
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Table 7.1.: Table of Notations

Notation Explanation

M = {m1, . . . , mn} existing (micro) services, |M |= n

M ⇢ M (micro) services of a tailored workload model
Ei = {e1, . . . , eki

} endpoints of mi , |Ei |= ki

E =
S

n

i=1 Ei endpoints of all services
E ⇢ E endpoints of a tailored workload model

R request logs
" : R! E called endpoint of request
� : R! R session ID of request
t : R! R time stamp of request
� : R! R duration of request

T trace logs
⌧= (r⌧, R⌧, C⌧) 2 T trace tree with root request r⌧ and vertices R⌧

C⌧ ⇢ R⌧ ⇥ R⌧ call relations/edges of a trace ⌧

S ⇢R⇤ session logs (R⇤ =
S1

i=1 R
i)

W = ({W1, . . . , Wq}, f ) workload model with q behavior models
f : {W1, . . . , Wq}! [0,1] relative frequency of behavior model
Wj = (⌃ j ," j , pj ,� j ,S j) behavior model with states ⌃ j

†

" j :⌃ j ! E [ {I , $} mapping of states to endpoints†

I , $ initial and final state of a behavior model
pj :⌃ j ⇥⌃ j ! [0,1] state transition probability†

� j :⌃ j ⇥⌃ j !N (µ,�) think time (normal) distribution†

S j ⇢ S sessions aggregated in Wj

↵�1 ⇤ ��2 convolution of normal distributions �1,�2

† In H. Schulz et al. (2019a), we modeled multiple states with the same endpoint implicitly.
Here, ⌃ j and " j allow for this explicitly.
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Figure 7.2.: Load test extraction process.

7.3. Overview of Tailoring Algorithms

In this section, we motivate the choice of algorithms. First, we define the
process of extracting representative session-based load tests from monitored
user behavior, related to the process used in previous chapters and using
the notations introduced in the previous section. Figure 7.2 illustrates it.
We presume a microservice application is running in production, used by
end-users. As a first step, application monitoring collects request logs R,
containing the end-users’ requests 1�. For the algorithms introduced in this
chapter, we additionally collect the trace logs, T . Next, session logs S are
extracted from R 2�. In a third step, the workload clustering extracts a
workload model W from S 3�. Finally, the workload model is transformed
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into a load test and parameterized to be executable (see Chapter 6) 4�.
Without modification, the described process generates untailored load tests
targetting the whole application.

For tailoring a generated load test, we introduce algorithms modifying the
process at different stages. For that, we need the set of target services M
and the corresponding endpoints E as additional inputs to the process. All
algorithms have in common that they use the trace logs T for tailoring. The
output of such a modified process is a load test tailored to the endpoints E .
Based on the load test extraction process, we identify four approaches

to reach this goal. The simplest one is to record only the requests arriving
at E —i.e., the endpoints of the tested services—and to specify the rate at
which the end-users request each endpoint. As motivated previously, such
a request-based workload model will be able to replay the mean request
rates correctly, but misses relevant session information, which is required for
preserving the request orders and inter-request time distributions. Therefore,
we aim at developing more elaborate algorithms but use the request-based
workload model as a baseline in our evaluation.

The first proposed algorithm modifies the request logs R, measured at
the endpoints requested by the end-users and, thus, containing the session
IDs �(·). By using the trace corresponding to each request r 2R, we can
replace r by all requests targeting E while preserving the session ID �(r).
Such modified request logs only target E and allow to reuse the remaining
steps of Figure 7.2. We denote this algorithm as log-based tailoring.
A second algorithm could address the session logs S and replace each

request similar to the first algorithm. However, this would lead to exactly the
same result as the first algorithm does. Therefore, we do not differentiate
between these two algorithms and only focus on the first one.

Finally, an algorithm can modify the workload model W, which we refer
to as model-based tailoring. In doing so, the algorithm needs to replace
each state—which aggregates several requests to the respective endpoint—
in each Markov chain Wj by the aggregate control flow caused by such a
request at the endpoints E . For instance, an end-user request POST /orders
to the front-end can cause a POST /orders request to the orders service and
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several requests to the user service, in potentially varying sequences. The
replacement of the original Markov state needs to reflect this calling behavior.
In the next two sections, we introduce the log-based and model-based

tailoring algorithms in detail.

7.4. Log-based Tailoring

This section introduces the log-based tailoring algorithm. It operates on
the request logs R. Essentially, the request logs are the only artifact of the
load test extraction process that the algorithm modifies. Steps 2� to 4� of
Figure 7.2 remain unchanged. As described earlier, it is also possible to use
the session logs S and run the procedure on them, with the same results.
In the following, we describe the inputs and outputs of the algorithm, a

helper algorithm, and the algorithm itself.

7.4.1. Input and Output

The log-based tailoring algorithm takes the following inputs:

• the recorded trace logs T , which implicitly contain R as root requests,
i.e., R= {r⌧ | ⌧ 2 T },

• the mapping of requests to session IDs: � : R! R,
• the endpoints E of a set of services M = {m1, . . . , mn}, which the

resulting load test should target, i.e., E =
S

n

i=1 Ei for endpoints Ei of
mi .

Based on the inputs, the algorithm calculates the following outputs:

• request logs R0, which directly target the endpoints E ,

• a new mapping of requests to session IDs: �0 : R0 ! R.

For defining the intended output precisely, we define two postconditions.
In Chapter 13, we will use them to validate the proposed algorithm. First, the
tailored request logsR0 need to contain those requests that have an endpoint
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in E and for which no other request (transitively) calling it has an endpoint
in E . Only considering these top-most requests is essential. During the load
test execution, the services will send the lower-level requests as a reaction
to the test’s top-level requests. Hence, the load test should not duplicate the
lower-level ones. Let PE(⌧, r) be the predicate whether a trace ⌧ has a path
(potentially of length 0) to a request r where all nodes (requests) except for
r are not in E:

PE(⌧, r)⌘ 9r1, . . . rl : r1 = r⌧^ rl = r ^
�
8i < l : (ri , ri+1) 2 C⌧^"(ri) /2 E

�

Then, we formally define the postcondition A
(log)
req as follows:

A
(log)
req ⌘ 8r 2 R :

�
r 2R0 $ 9⌧ 2 T : "(r) 2 E ^ PE(⌧, r)

�
(7.1)

The second postcondition A
(log)
ID considers the new session ID �0(r) of each

request in R0, which needs to equal the corresponding trace’s one:

A
(log)
ID ⌘ 8r 2R0 8⌧= (r⌧, R⌧, C⌧) 2 T : r 2 ⌧! �0(r) = �(r⌧) (7.2)

7.4.2. Example

We illustrate the intended behavior of the algorithm in an example. As
shown in Figure 7.3, we consider trace logs T consisting of three traces
with root requests r1 to r3, which we have recorded from the production
system. The requests have different session IDs �1 to �3; hence, they belong
to different sessions. The root requests made further requests, which are
displayed below the root ones, e.g., r2 made requests r5 and r6. Requests
targeting an endpoint in E are highlighted.

The output consists of three requests replacing r1 to r3, which would form
untailored request logs. In the trace of r1, there is one request targeting E:
r4. Hence, r4 replaces r1. Notably, the tailored request logs reflect the start
time and duration of r4, which differ from the ones of r1. Furthermore, r4

has the session ID �1 of r1. Hence, if there were further requests inside the
session with ID �1, their child requests would have �1, too.
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Figure 7.3.: An example of tailoring requests r1 to r3 to E .

In the trace of r2, there are three requests r5 to r7 that target E . However,
the tailored request logs only contain r5 and r6. Because r7 is a child request
of r5 and r5 targets E , too, only r5 as the most top-level request is part of
the output. Similar to r4, r5 and r6 have the session ID of their root request,
which is �2.

Finally, the trace of r3 does not have any requests targetting E . Therefore,
there is no request in the output.
We split the algorithm for the log-based tailoring into two. ������R�-

����� (Algorithm 7.1) takes a single trace as input and extracts all requests
from it that should be part of the tailored request logs. For instance, it
would extract r5 and r6 from r2. ������R������L��� (Algorithm 7.2) uses
������R������ for tailoring a set of traces— i.e., trace logs—and assigns
the correct session IDs to each extracted request. In the next two sections,
we introduce both algorithms.
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Algorithm 7.1 Extract sub-requests targeting endpoints E from trace ⌧

1: function ������R������(⌧, E)
2: R0  ;, T  {⌧}
3: while T 6= ; do
4: ⌧ (r, R, C) 2 T . arbitrarily selected
5: T  T \ {⌧}
6: if "(r) 2 E then
7: R0  R0 [ {r}
8: else
9: T  T [ {(r 0, R, C) | r 0 2 R^ (r, r

0) 2 C}
10: end if
11: end while
12: return R0
13: end function

7.4.3. Algorithm for Tailoring a Single Request

Before we introduce the actual tailoring algorithm, we provide a helper
algorithm tailoring a single request to the endpoints E —������R������
(Algorithm 7.1). It takes one trace ⌧ 2 T and the endpoints E as inputs and
performs a breadth-first search for collecting all relevant requests from ⌧.
The algorithm processes a set T of sub traces, initialized with ⌧ (line 2), and
continues until T is empty. In each iteration, the algorithm selects one trace
⌧ and removes it from T (lines 4 and 5). Then, it checks whether the root
request r of ⌧ targets one of the endpoints in E (line 6). If so, the algorithm
adds r to the resulting set of request logs (line 7). Otherwise, it extracts all
sub traces from ⌧ and adds them to T (line 9).
As an example, we consider the algorithm processes the trace with root

request r2 from our example (Figure 7.1). In the first iteration, it processes
the whole trace. As r2 does not target E , ������R������ adds the two
sub traces with roots r5 and r6 to T . Then, it processes them in arbitrary
order. As both of them target E , the algorithm adds them to R0 and finishes,
because T is now empty. The breadth-first search ensures that only the
highest-level requests that target E are collected, e.g., r7 is not part of R0

because r5 is already.
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Algorithm 7.2 Extract request logs tailored to endpoints E from traces T *

1: function ������R������L���(T , �, E)
2: R0  ;, �0  �
3: for all ⌧ 2 T do
4: R00  ������R������(⌧, E)
5: �0(R00) �(⌧)
6: R0  R0 [R00
7: end for
8: return R0, �0
9: end function

* Opposed to H. Schulz et al. (2019a), the algorithm returns a new session ID mapping �0
instead of adjusting �.

7.4.4. Log-based Tailoring Algorithm

The log-based tailoring algorithm takes as input recorded trace logs T —
which implicitly contain R as root requests—, the session ID mapping �,
and the endpoints E . The outputs are the request logs R0 tailored to E and a
new session ID mapping �0. As described earlier, it is also possible to use
the session logs S and run the procedure on them, with the same results.
We name the algorithm ������R������L��� and present it in Algo-

rithm 7.2. Initially, it starts with empty tailored request logs R0 and an
unchained session ID mapping �0. Then, it iterates over all traces ⌧ in T

and calls ������R������ for getting the relevant requests from ⌧ (line 4).
It sets the session IDs of all these requests to �(⌧) (line 5) and appends the
requests to R0 (line 6).

Again, we consider the example from Figure 7.1. Given ������R������-
L��� iterates over the traces from left to right, it first uses ������R������
to extract r4 as a sub-request of r1. Then, it sets �0(r4) := �(r1) = �1 and
adds r4 to R0. Next, it repeats the same for the second trace, resulting in
r5 and r6 added to R0 and �0(r5) = �0(r6) = �2. Finally, ������R������
returns an empty set for the third trace; hence, R0 remains unchanged. The
result is the output illustrated in Figure 7.3b.
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7.5. Model-based Tailoring

Instead of performing tailoring on the collected traces, the second algorithm
targets the workload model W . While there are several workload modeling
formalisms in the literature (Calzarossa et al., 2016; Draheim et al., 2006),
we chose to use the WESSBAS-DSL (Vögele et al., 2018), which modelsW as
multiple Markov-chain-based behavior models Wj with a relative frequency
f (Wj). In addition to the Markov chains, the DSL allows modeling so-called
guards and actions, which we exclude from this work. The algorithmmodifies
each behavior model individually and replaces or removes states that are
not in the set of targeted endpoints E . Hence, it adjusts step 3� of the load
test extraction process (Figure 7.2), while the others remain unchanged.

In the following, we describe the inputs and outputs of the algorithm, two
helper algorithms, and the algorithm itself.

7.5.1. Input and Output

The model-based tailoring algorithm takes the following inputs:

• the workload model W as generated by the original extraction pro-
cess, consisting of one or several Markov chains W1 to Wq, with Wj =
(⌃ j ," j , pj ,� j , Sj),

• the recorded trace logs T ,

• the endpoints E of the targeted Services M.

The algorithm processes the inputs and generates a modified workload
model W 0 = ({W 0

1, . . . , W
0
q
}, f ). The Markov chains W

0
j
will be modified

while the workload mix f remains unchanged. Precisely, the algorithm
replaces states with sub-Markov chains that model the request order and
timings caused by the user-faced states or removes states that do not entail
any further requests. In the following, we define this behavior in three
postconditions the algorithm should meet. Again, we will use them to
validate the proposed algorithm in Chapter 13.
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For a formal specification of the postconditions, we consider each W
0
j
=

(⌃0
j
,"0

j
, p
0
j
,�0

j
, S
0
j
) individually in relation to the original Wj. We define the

set of traces corresponding to the sessions of the Markov chain:

Tj :=
�
⌧ 2 T | 9s 2 Sj : r⌧ 2 s

 

Besides, we define the trace session, consisting of the requests submitted
within one trace ⌧. Even though there is a similarity to the session definition
for the log-based algorithm (see Equation (7.1) in Section 7.4.1), a trace
session does not consider the session ID �. Instead, it describes the requests
the application did internally for calculating the response to the user request:

s⌧ := {r 2 ⌧ | "(r) 2 E ^ PE(⌧, r)}

With these definitions, we can specify the first postcondition A
(model)
states con-

cerning the states ⌃0
j
of the tailored Markov chain. We require that every

request of every s⌧ has a corresponding state:

A
(model)
states ⌘ 8⌧ 2 Tj 8r 2 s⌧ 9ẽ 2 ⌃0j : "(r) = "0

j
(ẽ) (7.3)

With a second postcondition A
(model)
prob , we describe the proper transition

probabilities defined by p
0
j
. With the algorithm, we will replace several states

of ⌃ j with a set of new states. For describing the relation between the new
states and the original state—which uniquely maps to one endpoint—, we
define the root endpoint as a function root j :⌃ j ! E (orig):

root j(ẽ) = e$
�
9⌧ 2 Tj 9r 2 s⌧ : "(⌧) = e ^ "(r) = " j(ẽ)

�

Notably, root j implies that for each request in E , there can be multiple states
in ⌃0

j
. sub j summarizes these states, i.e., it is the inverse of root j:

ẽ 2 sub j(e)$9e 2 E (orig) : e = root j(ẽ)
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We base the postcondition on the probability to reach one state from
another, regardless of the number of steps required. That is, the tailored
Markov chain must submit the same requests as the untailored one does in
combination with the services calling each other. Remarkably, we cannot
compare individual transitions, due to potential state removals.
Let p

1
j
(e1, e2) be the probability to reach e2 from e1 in any number of

steps and p
01
j
(ẽ1, ẽ2) the corresponding function for the tailored Markov

chain. We state that the corresponding replacing states should preserve the
p
1
j
(e1, e2) in the original Markov chain. That means for every state ẽ1 that

replaces e1, the probability to reach any of the replacing states of e2 should
be equal to p

1
j
(e1, e2). Let p

01
j
(e, X ) be the probability to reach any state in

a set X from e. Then, the postcondition is the following:

A
(model)
prob ⌘ 8ẽ1 2 ⌃0j 8e2 2 E (orig) :

�
sub j(e2) 6= ; ^ ẽ1 /2 sub j(e2)

�

!
Ä
p
01
j
(ẽ1, sub j(e2)) = p

1
j
(root j(ẽ1), e2)

ä
(7.4)

Finally, we define a postcondition A
(model)
time describing the timing behavior

of the tailored Markov chain. Because the algorithm changes the structure
of the Markov chain, we cannot compare individual transitions between the
untailored and tailored ones. Instead, we focus on the highest possible gran-
ularity. We define the time needed on average to execute the whole Markov
chain as time j(I , $) (untailored chain) and time0

j
(I , $) (tailored chain). The

execution includes the think times and the time waiting for the response
of the application after submitting a request. The execution time should
remain the same after the tailoring:

A
(model)
time ⌘ time0

j
(I , $) = time j(I , $) (7.5)

7.5.2. Example

For illustrating the tailoring of a Markov chain, we use an example. Figure 7.4
shows a Markov chain before and after the tailoring. The original Markov
chain W has five states, e1 to e5, plus the initial and final states. The states e1
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to e5 correspond to one endpoint each; hence, we can assume⌃ j = E (orig) and
" j = id. For illustration purposes, we assume each request made in one of the
states to take one second and each transition think time to have a variance
of zero. W

0 should target a different but overlapping set of endpoints, which
is e1 plus e5 to e7. That is, we need to replace or remove states e2 to e4.
For e2, we assume there are two endpoints e6 and e7 that the application

requests as a reaction to a request to e2 —i.e., sub j(e2) = {e6,1, e7} with
"0

j
(e6,1) = e6 and "0

j
(e7) = e7. The differentiation between two states e6,· is

required because they request the same endpoint (see below). We need to
replace e2 with the aggregate request behavior, as illustrated in Figure 7.4b.
In doing so, we have to divide the transitions entering into e2 into the states
of sub j(e2). Here, e6 is called more frequently than e7; hence, p

0
j
(e1, e6) >

p
0
j
(e1, e7). Furthermore, we need to adjust the think times. For example, the

transition from e7 to e4 respects that the replacement takes less time than
the original e2. Thus, the think time is 0.2 seconds longer.

For e3, the application does not request any further endpoints in E . There-
fore, we remove the state. As a consequence, we need to concatenate the
incoming and outgoing transitions. For instance, we add a new transition
from e1 to e5 with a transition probability of p

0
j
(e1, e3) ⇤ p

0
j
(e3, e5) = 0.15.

Duplicate transitions resulting from the concatenation—such as from e1 to
e2 —, we need to merge by adding the transition probabilities.
Furthermore, we need to compute the correct think times. For (e1, e5),

the think time is the sum of the two former transitions and the duration of
the state �3 ⇠N (1, 0): �0

j
(e1, e5) =�0j(e1, e3) ⇤�3 ⇤�0j(e3, e5)⇠N (9, 0). For

(e1, e2), the merge of two parallel transitions requires modeling an “either-or”
think time. Notably, that is not possible when sticking to normal distributions.
Therefore, wewill attempt the best solution using normal distributions, which
preserves at least the correct mean.
The final adjustment of the original Markov chain is the replacement of

state e4. We assume it needs to be replaced by a single request to e6. Hence,
the structure remains unchanged, as a state e6,2 with "0

j
(e6,2) = e6 replaces

e4. Only the think times are affected; in this case, the transition to e5 takes
0.6 seconds longer, due to the shorter duration of the replacement.
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Figure 7.4.: Example of tailoring a Markov chain Wj to endpoints E =
{e1, e5, e6, e7}. The transition are labeled with the transition
probability and the average think time.

The resulting Markov chain conforms to the postconditions formulated
in the previous section. A

(model)
states holds because there is at least one state per

endpoint. For e6, there are even two states, because the replacements of
both e2 and e4 request the endpoint.

A
(model)
prob holds due to the probability adjustments we did. As an example,

we consider the reachability of e2 or its replacement from e1. In the original
Markov chain, there are two ways to reach e2 from e1: via the direct transition
or e3. In sum, the probability of reaching e2 is 0.85. In the tailored Markov
chain, there are also two ways to reach the replacement of e2 from e1: the
direct transitions to e6,1 and e7. In sum, the probability of reaching sub j(e2)
from e1 is 0.85, too.
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Finally, we preserved the think times, as stated by A
(model)
time , by merging

the think times of merged or concatenated transitions, also considering the
duration of states removed or replaced by shorter-lasting ones.
In the following, we introduce three algorithms for the operations illus-

trated above: state removals, state replacements with sub-Markov chains,
and orchestration of the two.

7.5.3. Algorithms for Modifying Markov States

We introduce two helper algorithms for the model-based tailoring, namely
for removing and replacing individual states in a Markov chain.

Algorithm 7.3 Remove state e with normally distributed duration � from
Markov chain Wj

⇤

1: function ������S����(Wj = (⌃ j , pj ,� j ,S j), e,�)
2: ↵ 1

1�pj(e,e) � 1 . geometric series (Hildebrandt, 2006)
3: for all e

0 2 ⌃ j do

4: pj(e, e
0) pj(e,e0)

1�pj(e,e)

5: � j(e, e
0) � j(e, e

0) ⇤↵ ·
�
� j(e, e) ⇤�

�
. correction†

6: end for
7: for all e

0, e
00 2 ⌃ j do

8: p
0  pj(e0, e

00) + pj(e0, e) · pj(e, e
00)

9: � j(e0, e
00) 

h
pj(e0,e00)

p0 ·� j(e0, e
00)
i

⇤
h

pj(e0,e)·pj(e,e00)
p0 ·

�
� j(e0, e) ⇤� j(e, e

00) ⇤�
�i

10: pj(e0, e
00) p

0

11: end for
12: ⌃ j  ⌃ j \ {e}
13: end function
⇤ Opposed to H. Schulz et al. (2019a), we use the revised notation of states and endpoints (see
Section 7.2).
† In the previously published version, we missed including the duration �, which we fix here.
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7.5.3.1. Remove State

Removing a state e with duration distribution � from a Markov chain Wj is
implemented in Algorithm 7.3 and illustrated in Figure 7.5. In this example,
we reuse the Markov chain from Figure 7.4, and we want to remove state e3.
In a first step, the algorithm calculates the expected number of steps the
Markov chain loops in the state e—given that such a cycle exists—, based
on the geometric series

P1
i=1 pj(e, e) (line 2). Because we will remove e, we

need to ensure that the Markov chain preserves the time spent in the loop.

I

$0.�

0.3 0.�

0.�

(a) Input: Markov chain W
j

I

$0.�
0.1�

(b) Step 1: concatenate transitions via e3

I

$

0.1�
(c) Step 2: merge duplicate transitions

Figure 7.5.: Illustration of ������S����(Wj , e3,�) (Algorithm 7.3).
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⎢

0.7

0.85
⋅ Δj(e1, e2)

⎤

⎦
⎥ * 

⎡

⎣
⎢
0.15

0.85
⋅ Δj(e1, e3) * Δj(e3, e2) * δ

⎤

⎦
⎥

0 5 10 15 20
think time [s]

(b) Step 2: merge the two transitions (e1, e2)

Figure 7.6.: Illustration of the think time calculation in
������S����(Wj , e3,� ⇠N (0.5,1)) (Algorithm 7.3).
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For that, we remove the cycle by appending the think time plus the duration
of e to all outgoing transitions from e and by normalizing the probabilities
such that they sum to 1 (lines 3-6).
Then, we concatenate all incoming and outgoing transitions to/from e

(lines 7-11). We do this in two logical steps. First, we concatenate the
transitions, e.g., (e1, e3) and (e3, e2) to (e1, e2), and (e1, e3) and (e3, e5) to
(e1, e5) (Figure 7.5b). The think times we convolve accordingly, as illustrated
in Figure 7.6a, furthermore including the original state’s duration �. In the
second step, we merge potential duplicate transitions, e.g., between e1 and
e2 (Figure 7.5c). The think times we convolve again, weighted by the relative
transition probabilities (Figure 7.6b). Please note that such a resulting think
time deviation is not a stochastically valid junction of the original think
times. However, as the proper junction is not a normal distribution, but the
workload model requires it, this is the closest we can achieve. At least, the
mean think time will be correct.

7.5.3.2. Replace State

When a state is to be replaced, a new (sub-) Markov chain is to be inserted in-
stead of the original state. The replacement is implemented in Algorithm 7.4
and illustrated in Figure 7.7 at the example of replacing state e2 of our
example Markov chain (see Figure 7.4a). The algorithm takes as input the
Markov chain Wj, the state e to be replaced, and the tailored request logs
R0 representing the request behavior that should replace e. The algorithm
interprets the requests in R0 as multiple sessions and, besides, assumes it
contains placeholders I

0 and $0, indicating the start and end of each session.
These placeholders correspond to the start and end of the root request.
Hence, it allows the algorithm to respect the difference in the duration of
the replacement and the original state.
First, the algorithm groups the request logs into session logs—which

correspond to the s⌧ (see Section 7.5.1)—and aggregates them into a new
Markov chain W

0 (lines 2 and 3). For the aggregation, we use the exis-
tent means of the WESSBAS approach. As an example, W

0
j
can appear as
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Algorithm 7.4 Replace state e of Markov chain Wj with a Markov chain
derived from tailored requests R0⇤

1: function �������S����(Wj = (⌃ j , pj ,� j ,S j), e,R0)
2: S 0  �����T�S�������(R0)
3: W

0 = (⌃0, ·, ·, ·) ���������(S 0)
4: ⌃ j  ⌃ j [⌃0
5: for all e

0 2 ⌃ j do
6: pj(e0, I

0) pj(e0, e)
7: � j(e0, I

0) � j(e0, e)
8: end for
9: for all e

0 2 ⌃ j do
10: pj($0, e

0) pj(e, e
0)

11: � j($0, e
0) � j(e, e

0)
12: end for
13: ⌃ j  ⌃ j \ {e}
14: ������S����(Wj , I

0, 0)
15: ������S����(Wj , $0, 0)
16: end function
⇤ Opposed to H. Schulz et al. (2019a), we use the revised notation of states and endpoints (see
Section 7.2).

illustrated in Figure 7.7a. Here, it contains two states e6 and e7, targeting
corresponding endpoints, plus the initial and final states.
Then, this chain replaces e in two steps. In the first step, we replace e

(e2 in the example) with the new chain by changing the target and source
states of the transitions of e (lines 4-8; Figure 7.7a). In the second step, we
remove the artificially inserted states I

0 and $0 using Algorithm 7.3 (lines
13-15; Figure 7.7b). Because I

0 and $0 mark the start and end of the original
state, the incoming and outgoing transitions of the new chain will contain
the duration of the original request as think times.

7.5.4. Model-based Tailoring Algorithm

In this section, we present the actual tailoring algorithm, which utilizes
the two algorithms we introduced before. Algorithm 7.5 implements the
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(a) Step 1: replace e2 with Markov chain
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$

(b) Step 2: remove I
0 and $0 using ������S����

Figure 7.7.: Illustration of �������S����(Wj , e2,R0) (Algorithm 7.4).

model-based tailoring. It takes the workload model W , the collected traces
T , and the set of target endpoints E as input and modifies each Markov
chain Wj of W . Based on the traces and the session logs S j corresponding to
the Markov chain, it replaces all states that are not contained in E by new
endpoints from E . A replacement needs to model the application’s control
flow that is caused by a request of the original state.
For that, the algorithm iterates over all such states (line 4) and collects

all traces from T whose root request is contained in a session S j (line 5).
Then, it sets the session IDs of these traces to unique values (line 6) and
reuses Algorithm 7.2 for extracting request logs tailored to E , as illustrated
in Figure 7.8. Given a trace with root request r2 is processed and there are
nested requests r6,1, r6,2, r7 to endpoints in E , the resulting request logs will
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consist of {r6,1, r6,2, r7}. Because of the changed session IDs, R0 represents
the control flow at the endpoints in E from the perspective of the original
state rather than an end user’s perspective.

Depending on R0, the original state is either removed if R0 does not cause
any requests on E (line 9), or replaced by a Markov chain extracted from R0

(line 13). In the former case, the aggregated duration of the requests to the
original state—represented by a normal distribution �(T 0)—is passed as
a parameter for preserving the delay introduced by the state. In the latter
case, placeholder requests I

0 and $0 are added (lines 11 and 12; Figure 7.8b),
which will ensure that the new Markov chain will take the same time as the
original state does. Both are important for preserving the overall timing of
Wj .

Algorithm 7.5 Tailor workload model W to endpoints E using traces T ⇤

1: function ������W�������M����(W ,T ,E)
2: W 0  W
3: for all W

0
j
= (⌃0

j
, p
0
j
,�0

j
,S 0

j
) 2W 0 do

4: for all e 2 ⌃ j ," j(e) /2 E do
5: T 0  {(r⌧, R⌧, C⌧) 2 T | 9s 2 S j : r⌧ 2 s ^ "(r⌧) = " j(e)}
6: �(T 0) {1, . . . , |T 0|}
7: R0  ������R������L���(T 0,�,E)
8: if R0 = ; then
9: ������S����(W 0

j
, e,�(T 0))

10: else
11: R0  R0 [ {(I 0,�(⌧), t(⌧), 0) | ⌧ 2 T 0}
12: R0  R0 [ {($0,�(⌧), t(⌧) +�(⌧), 0) | ⌧ 2 T 0}
13: �������S����(W 0

j
, e,R0)

14: end if
15: end for
16: end for
17: return W 0

18: end function
⇤ Opposed to H. Schulz et al. (2019a), the algorithm creates a new workload model W 0

instead of changing W . Furthermore, we use the revised notation of states and endpoints (see
Section 7.2).
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Figure 7.8.: Extracting tailored request logs from a trace in Algorithm 7.5.

7.6. Integration with Automated Parameterization

In the previous chapter, we introduced an approach to the automated pa-
rameterization of load tests using Input Data and Properties Annotations
(IDPAs). The algorithms we proposed in this chapter integrate with IDPAs,
as illustrated in Figure 7.9. We consider multiple teams each developing a
service of the application. To each team, we assign a name tag for unique
identification. Furthermore, each team has its IDPA, identified by the same
name.
The IDPA of a team consists of an application and an annotation model.

The application model describes the endpoints of the team’s service. Hence,
it describes the set E of endpoints to which the load test should be tailored.
The annotation model holds the parameterizations to be applied to the load
test. Following DevOps practices (Bass et al., 2015), each team has to specify
its parameterizaion individually.
For generating a load test, e.g., inside a CI/CD pipeline, all teams can

use the same trace logs. However, they will use different IDPAs, resulting
in load tests appropriately tailored to the respective service. In the case
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Figure 7.9.: Integration of tailoring to services with IDPAs for multiple teams.

that a load test should include multiple services as an integration test, we
can use the respective IDPAs, merge the application models, and apply the
parameterizations defined in the annotations subsequently. The name tags
allow the teams to specify which IDPAs and, thus, tailoring to use only by
the names of the services involved.

7.7. Summary

In this chapter, we introduced an approach for tailoring load tests to a
specified set of (micro) services. In doing so, we addressed RQ2: How
can representative load tests be tailored to specific services of a session-based
application?

We introduced two algorithms— log-based and model-based tailoring—,
which modify certain artifacts of the load test extraction process. As a result,
the load tests generated by the modified pipeline directly target the services
to be tested. Hence, DevOps teams do not need to integrate calling services
when applying representative load testing.

Tailored load tests complement existing approaches. In combination with
performance stubs (Baltas and Field, 2012; Becker et al., 2008; Field et al.,
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2018; Versteeg et al., 2016), they allow isolating a service completely during
the load test. Furthermore, our approach to the automated parameterization
of load tests integrates with the tailoring approach.
For each tailoring algorithm, we formally specified requirements to the

artifacts produced. In Chapter 13, we will verify the algorithms to fulfill
these requirements. Furthermore, we will compare the representativeness
and other quality attributes of the load tests tailored by the two algorithms
in an experimental study.
In the next chapter, we introduce tailoring of load tests in a different

dimension, namely the workload context. This will increase the suitability
of the tests and the level of automation. Still, context and service-tailoring
can be combined. In Chapter 9, we present a load test description language
using the capabilities of the service-tailoring approach.
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The workloads of modern session-based applications undergo a significant
variation (Herbst et al., 2013), which needs to be considered when load-
testing the application. Known from detecting contextual anomalies (Chan-
dola et al., 2009), contexts such as special offers, incidents, or weather
conditions can influence the workload, resulting in different workload sce-
narios. For instance, while the normal workload of a webshopmight comprise
1000 concurrent users of a certain mix, a special offer could cause a spike to
up to 5000 users of a different mix. As contexts do not only influence the
number of users but also the workload mix, there is no workload scenario
we can consider to be most demanding. Consequently, when load-testing
the application, we need to consider all scenarios that have already been
observed or might occur in the future. However, continuous software engi-
neering (CSE) has fast release cycles (Humble and Farley, 2010), which do
not allow for such extensive and time-consuming testing.

Existing approaches (Barros et al., 2007; Cai et al., 2007; Krishnamurthy
et al., 2006; Lutteroth and Weber, 2008; Menascé and Almeida, 2002; Ruffo
et al., 2004; Vögele et al., 2018) can extract a load test from recorded
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user sessions representing a workload scenario that occurred in the past.
They generate a workload model—e.g., based on Markov chains— that
represents the behavior of different user groups with a particular mix. Hence,
they reconstruct the past workload scenario. However, past scenarios are
not sufficient for preparing for future scenarios. As most workloads follow a
global trend and seasonal variations (Herbst et al., 2013), they need to be
integrated into the load test. For that, approaches for time series modeling
and forecasting (Bauer et al., 2020; Herbst et al., 2013; von Kistowski et al.,
2014b; Taylor and Letham, 2018) could be used, which, however, mainly
focus on the overall intensity, disregarding a varying workload mix. Also,
they lack support for selecting the relevant scenarios and incorporating
qualitative forecasting (Menascé and Almeida, 2002), e.g., for estimating
unseen future scenarios. Finally, CSE requires automation.

Therefore, we target an approach that automatically generates load tests
tailored to the contexts a user specifies. In doing so, they can express the
scenarios relevant to them and save the time needed for testing less relevant
scenarios. As an example, the operator of a webshop will be interested in
the Black Friday spike in early November, which is, however, less relevant in
December. Also, the user should be able to add external knowledge as a qual-
itative forecast, e.g., planned changes to the platform. Our approach should
then automatically generate a load test tailored to the user’s specification.
Hence, we address RQ3: How can representative load tests automatically be
tailored to the contexts of a session-based workload?

For this purpose, we extend the WESSBAS approach (Vögele et al., 2018)
for learning user groups and their mix incrementally and leverage existing
time series forecasting approaches for predicting the future behavior of these
groups. Furthermore, we introduce the Load Test Context-tailoring Language
(LCtL) for describing a workload scenario based on its context. LCtL instances
serve as input to the forecasting approach, specify how to extract a workload
scenario from a forecast or past data, and allow changing the scenario
for qualitative forecasting. For integration with CSE, the generation of a
context-tailored load test based on an LCtL description is fully automated.
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The remainder of this chapter is structured as follows. Section 8.1 defines
the fundamental notions used in this chapter. As further motivation, Sec-
tion 8.2 provides examples for workload-influencing contexts. In Section 8.3,
we present the suggested context-tailoring process, whose individual steps
we detail in the subsequent sections. First, in Section 8.4, we introduce
an approach for learning a workload model incrementally and enriching it
with contexts. Section 8.5 presents the LCtL. In Section 8.6, we describe the
realization of the LCtL concepts. Section 8.7 depicts the integration with the
approaches introduced in Chapters 6 and 7. We conclude the chapter with a
summary in Section 8.8.

This chapter is an extended version of Section 4 of the manuscript below. Apart
from minor details for comprehensibility, we have added a second incremental
clustering algorithm in Section 8.4.1 and describe the integration with the
remainder of our approach in Section 8.7.

• H. Schulz, D. Okanović, A. van Hoorn, and P. Tůma (2021). “Context-
tailored Workload Model Generation for Continuous Representative
Load Testing.” In: Proceedings of the 12th ACM/SPEC International
Conference on Performance Engineering (ICPE 2021). To appear. ACM

8.1. Definitions

Before presenting and classifying examples of workload contexts and the
corresponding workload scenarios, we detail the definitions of these two
notions.

Definition 8.1 (Workload Context)
A workload context is a set of workload context facets. A workload context
facet is a self-contained circumstance present to a significant number of users of
the application. It has a well-defined state at each point in time. Examples are
special sales offers (which can be present or not) or weather conditions (whose
state set is continuous).

Context facets that have only two states (present or not) we also denote
to occur or not. Notably, also contexts of such facets that all do not occur at
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a certain point in time can exist. The workload at this point in time could
be considered to be normal.
A context-tailored load test aims at replaying a particular workload sce-

nario, which we define as below. Naturally, the context influences a workload
scenario.

Definition 8.2 (Workload Scenario)
A workload scenario is a workload segment of a fixed length with specific
characteristics to be replayed in a load test, e.g., the constant workload of a
specific mix or a workload spike. Workload scenarios can have occurred in the
past, be expected in the future, or be hypothetical, e.g., for what-if analyses.

8.2. Examples of Workload-influencing Contexts

TheWeb collects several examples of contexts that influenced an application’s
workload. Particularly, influences that caused a high workload, which, in
turn, lead to downtimes are reported in blog posts and news articles. Below,
we provide a collection of such contexts, including seven different context
facets (see highlights in the text).

Soper (2012): high workload due to special offers (Boxing Day)

Billington (2014): high workload and resulting downtime due to special
incident (prominent posting)

WeatherAds (2014): varying workloads due to weather condition

Weise (2016): high workload and resulting downtime due to release of new
product (TV series) and weather condition (rainy)

Bradley Web Group (2016): varying workloads depending on the weekday
and holidays

Godlewski (2017): high workload and resulting downtime due to release
of new product (sneakers) and special offers (Black Friday)

Popa (2018): high workload due to special incident (acquisition of competi-
tor)
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Mills (2018): high workload and resulting downtime due to special offers
(Prime Day)

H. Schulz et al. (2019c) (1): increased workload due to planned changes
to the platform (new devices added)1

H. Schulz et al. (2019c) (2): workload spike due to special incident (recov-
ery from message endpoint outage)1

Heckmann (2020): suddenly decreased workload due to current event (new
year’s countdown)

Wikipedia (2020): increased focus on a particular subject influenced by
current events

We classify the context facet examples for developing a meta-model of
contexts and the LCtL. The classification bases upon two attributes: the
predictability of the facet’s state and the (quantitative) predictability of
the influence on the workload. Table 8.1 summarizes the classification and
additionally highlights the regularity of state changes.
The largest category is context facets that recur, i.e., whose state and

influence are well predictable. These context facets comprise special of-
fers—as reported by Soper, Weise, and Mills—, which a company plans.
Some special offers even belong to world-wide sales events such as Black
Friday. Furthermore, the related facet type of product releases, as reported
by Weise and Godlewski, falls into this category. Finally, there are public
holidays (Bradley Web Group, 2016) and public events (Heckmann, 2020;
Wikipedia, 2020). WeatherAds and Weise report about continuous context
facets, namely weather conditions. These are related to the first category,
but with the limitation that the future weather conditions rely on a forecast
with a limited range and accuracy.

Significantly different categories are irregular and singleton context facets.
Irregular means that future states are unknown in advance, but the former
state has been observed and can be used to predict the influence. An example

1These examples can also be found in the evaluation presented in Chapter 15.
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Table 8.1.: Classification of the Collected Workload Context Facets

state influence
predictable unpredictable

predictable

recurring
Soper (2012)
Weise (2016)
Bradley Web Group (2016)
Godlewski (2017)
Mills (2018)
Heckmann (2020)
Wikipedia (2020)

singleton
H. Schulz et al. (2019c)
(1)

semi-
predictable

continuous
WeatherAds (2014)
Weise (2016)

unpredictable irregular
H. Schulz et al. (2019c) (2)

singleton
Billington (2014)
Popa (2018)

is from our work (H. Schulz et al., 2019c (2)), where outage recoveries
occurred and will occur on a random basis.
The influence of singleton context facets (H. Schulz et al., 2019c (1);

Billington, 2014; Popa, 2018) cannot be quantitatively predicted based on
past states. As the name indicates, these facets occur only once. Here,
qualitative forecasting methods are required for predicting the influence.
Especially in the case of known future occurrences, e.g., a planned change
to the platform (H. Schulz et al., 2019c (1)), qualitative forecasting can be
applied.

Besides the differences in predictability, contexts also differ in the type of
workload scenario. While some cause increased but generally steady work-
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load—e.g., Soper (2012)—, others entail a workload spike—e.g., H. Schulz
et al. (2019c) (1). Notably, contexts do not only influence the workload
intensity, but also the mix. For instance, Wikipedia reports changing focus
on different subjects depending on current events. As a consequence, there
is no most-demanding workload we could use in a load test for covering
all scenarios. Instead, we need load tests tailored to those contexts and
scenarios that are currently relevant.

8.3. Context-tailoring Process Overview

Figure 8.1 illustrates the process of tailoring a load test to a context. It
consists of twomajor parts: a continuously repeated one for filling a workload
model repository (WMR) and one executed on demand for extracting load
tests from the WMR. In this section, we provide an overview of the individual
steps of both parts. In the following sections, we will detail the steps.
The continuously repeated part consists of two streams of data. First,

session logs are clustered incrementally 1�. Here, we base on the WESSBAS
approach (Vögele et al., 2018) and extend the clustering algorithm. The
result is a workload model consisting of multiple Markov-chain-based be-
havior models—each corresponding to one user group—and the intensity
(number of users) per group over time. Concurrently to the session cluster-
ing, we store all relevant context facets into the WMR 2�. They can be used
for querying the stored workload model and intensity and for influencing a
workload forecast. Hence, the WMR constitutes the single knowledge base
for generating context-tailored load tests.
The part executed on demand always starts with a user’s input, who

describes a context-tailoring using the Load Test Context-tailoring Language
(LCtL) 3�. For integration into CSE, the processing of this description is fully
automated. As a first step, we use the description for querying all relevant
behavior models, intensities, and context data from the WMR 4�. Also, the
description can state to modify particular context facets for what-if analyses.
The intensities and context are input to a time series forecasting approach 5�.
Because we forecast the intensities of each user group separately, we can
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Figure 8.1.: Overview of the context-tailoring process.
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respect varying workload mixes. Then, we apply an aggregation and an
optional set of adjustments to the intensity forecasts and behavior models 6�.
The aggregation extracts individual workload scenarios from the forecast.
The adjustments can be used to incorporate qualitative forecasts by changing
the scenario, e.g., by increasing the intensity of a particular user group.
The result is a WESSBAS workload model with potentially varying in-

tensities per user group. As a final step, our automated parameterization
approach (Chapter 6) transforms the workload model into a load test 7�.

8.4. Continuous Learning of the Workload Model

The learning of the workload model comprises the incremental clustering of
the user sessions into behavior models and intensities and the enrichment
with contexts. In Sections 8.4.1 and 8.4.2, we introduce our approaches to
the two aspects.

8.4.1. Incremental Session Clustering

Existing approaches, such as WESSBAS (Vögele et al., 2018), extract a
Markov-chain-based workload model from a set of sessions by clustering. For
that, each of the sessions is encoded as a matrix consisting of the number of
transitions between two endpoints (see Section 3.2.4) and treated as one data
point. Each cluster is transformed into a Markov-chain-based behavior model
representing a user group by determining a representative, e.g., the mean,
and relativizing the absolute transition frequencies to probabilities. The
workload model then comprises the behavior models and relative frequencies
(mix) of them. The used clustering algorithms are k-means (Menascé et al.,
1999) or its enhanced version X-means (Vögele et al., 2018).

However, these approaches are not designed for updating a once extracted
workload model with newer sessions. Still, we require exactly this feature
for building the workload knowledge base in the WMR. This requirement
corresponds to RQ3.1: How can we incrementally learn the workload models
from observed user sessions for predicting future workload scenarios?
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We can extend the clustering for incremental updating by either modify-
ing the clustering based on k-means or by choosing a different clustering
algorithm. One such candidate is DBSCAN (Ester et al., 1996), which has a
promising set of parameters different from k-means. Remarkably, neither
the number of clusters nor a range needs to be defined. However, DBSCAN
also entails several drawbacks over algorithms based on k-means. In a nut-
shell, DBSCAN can efficiently identify new clusters after several iterations,
while k-means is better suited for selecting a cluster representative, which
also eases incremental updating of existing clusters. After weighing all the
arguments, we chose using k-means. In the following sections, we introduce
two incremental clustering algorithms—one based on k-means and one
using DBSCAN—and discuss the differences and our choice in detail.

Figure 8.2 illustrates a common framework we apply for both algorithms.
We process the sessions in batches of a manageable size, e.g., one day or
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week. We wait until a new batch is ready and cluster it using one of the
mentioned algorithms. Then, we calculate the think times per cluster and
store the resulting behavior models— i.e., a representative per cluster with
the calculated think times— into the WMR. Concurrently, we calculate the
per-cluster intensities. Finally, we store the behavior models and intensities
and wait for the next batch. Accounting for changes in the API, e.g., additions
of endpoints, we re-encode the sessions before each clustering iteration.

In the following, we present the clustering algorithms and our algorithms
for calculating the think times and intensities per session cluster, which are
independent of the clustering algorithm.

8.4.1.1. Incremental Session Clustering based on k-means

k-means or related algorithms aim at finding a predefined number (or range
of numbers) of clusters with centroids that minimize the inertia. The centroid
µi of each cluster Ci is the mean of all data points S —sessions in our case—
of the cluster:

µi =
1
|Ci |

X

s2Ci

s

The inertia is the sum of squared distances between each session and the
closest centroid:

X

s2S

min
Ci

(ks�µik2)

An important characteristic of k-means is that all clusters are convex.
When clustering the sessions incrementally, i.e., updating the behavior

models with new sessions, it is crucial that once classified sessions remain in
the same cluster. As we need to calculate the per-cluster intensity, changing
a session’s cluster would require updating the already calculated intensity.
As a consequence, the complexity of the clustering and intensity calculation
would increase over time, until it will necessarily exceed an acceptable limit,
e.g., new sessions arrive more frequently than they are clustered.
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Algorithm 8.1 Initial session clustering using k-means++.

1: function �������K�����(S, k, ⌘, ↵)
2: d(s) mins02S\{s}{ks� s

0k} for s 2 S

3: D q 1+↵
2
(d(S)) + 1.5 ·

Ä
q 1+↵

2
(d(S))� q 1�↵

2
(d(S))

ä

4: C�1 {s 2 S | d(s)> D}
5: {C1, . . . , Ck} ������++({s 2 S | d(s) D}, k, ⌘)
6: for i 2 {�1, 1, . . . , k} do
7: µi  1

|Ci |
P

s2Ci

s

8: ri  maxs2Ci
{ks�µik}

9: r̂i  ����������R�����(Ci , µi)
10: end for
11: return {C�1, . . . , Ck}, {µ�1, . . . ,µk}, {r�1, . . . , rk}, {r̂�1, . . . , r̂k}
12: end function
13:
14: function ����������R�����(C , µ)
15: r̂ 1dim(µ)

16: for j 2 {1, . . . , dim(µ)}, µ[ j]> 0 do
17: r̂[ j] maxs2C{|s[ j]�µ[ j]|}
18: end for
19: return r̂
20: end function

Therefore, we process the sessions in batches and apply the framework
from Figure 8.2. For the first clustering, we apply Algorithm 8.1 based
on k-means++ (Arthur and Vassilvitskii, 2007)—an improved version of
k-means reducing the risk of reaching local optima—for determining the
initial clusters Ci, their centroids µi, and radiuses ri and r̂i. As the inertia
is very sensitive to outliers, we first remove them from the set of sessions
applying a generalization of the inter-quartile range (IQR) method. First,
we calculate the distance d(s) of each session to its closest neighbor (we
interpret s as a vector with each entry corresponding to one transition).
Then, we move all sessions to a separate noise cluster C�1 if d(s) exceeds the
range of the two centered quantiles with distance ↵ (↵ = 0.5 corresponds
to the IQR method). We call k-means++ on the remaining sessions with ⌘
repetitions. The resulting centroids µi are the basis for the behavior models.
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Algorithm 8.2 Incremental cluster update based on minimum distance.

1: M := {µi}, R := {ri}, R̂ := {r̂i}, N := {ni} for i = �1,1, . . . , k

2: function �����������U�����(S, M, R, R̂, N , � , ⌘, m)
3: C

0
i
 ; for i 2 {�1, 1, . . . , k}

4: m
0  0, � 2t

5: for s 2 S do
6: i arg min

i2{1,...,k}
�
⇠� (s,µi , ri , r̂i)

 
. see Equation (8.1)

7: if i 6= ; then .1 is never considered to be minimum
8: C

0
i
 C

0
i
[ {s}

9: end if
10: end for
11: C0  {C 01, . . . , C

0
k
}, R0  R, R̂0  R̂

12: C
0
k+1 ����L������C������(S \

S
C2C0 C , � ·maxi2{1,...,k}{ri}, ⌘)

13: if |C 0
k+1|� m then

14: C0  C0 [ {C 0
k+1}, µ0k+1 1

|C 0
k+1|
P

s2C
0
k+1

s

15: R0  R0 [ {maxs2C
0
k+1
{ks�µ0

k+1k}}
16: R̂0  R̂0 [ { ����������R�����(C 0

k+1, µ
0
k+1) }

17: end if
18: C0  C0 [ {C 0�1} for C

0
�1 = S \

S
C2C0 C

19: M0  
S

C
0
i
2C0
¶

1
ni+|C 0i |

Ä
ni ·µi +

P
s2C

0
i

s

ä©

20: return C0, M0, R0, R̂0

21: end function
22:

23: function ����L������C������(S, rmax, ⌘)
24: for j 2 {1, . . . ,⌘} do
25: µ 0, µ( j) random element from S

26: while µ 6= µ( j) do
27: C

( j) 
�
s 2 S | ks�µ( j)k< rmax

 

28: µ µ( j), µ( j) 1
|C ( j)| ·

P
s2C ( j) s

29: end while
30: end for
31: return arg max

C2{C (1),...,C (⌘)}{|C |}
32: end function
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In further clusterings, we use radiuses to determine whether a new session
belongs to an existing cluster. We consider both the total radius ri, which
we calculate as the maximum distance of a session to the corresponding
centroid, and a per-transition radius r̂i , which we calculate analogously but
elementwise. Here, each entry of the vector r̂i is the radius of the respective
transition. If an entry of the mean µi is zero, i.e., none of the sessions
of cluster Ci includes such a transition, we set the per-transition radius to
1. This allows us to assign sessions to the cluster Ci, also if they differ in,
e.g., few requests to a new endpoint. The total radius ri will ensure that
the difference between new and previously clustered sessions is within an
acceptable range. As the initial clustering builds the basis for incremental
updates, it is preferable to cluster a range of sessions as large as possible.
For incremental updates, Algorithm 8.2 assigns new sessions S to the

existing clusters or identifies a new one. It does not process the previously
clustered sessions again but operates on the existing centroids µi, total
radiuses ri, per-transition radiuses r̂i, and number of sessions per cluster
ni. Hence, its processing time is independent of the number of clustering
iterations. The algorithm is based on the radius criterion ⇠� with tolerance
factor � � 1, which defines whether a session s belongs to the i-th cluster
(with e being the elementwise comparison of two vectors):

⇠� (s,µi , ri , r̂i) :=

®
ks�µik , (ks�µik  � · ri)^ (s�µi e � · r̂i)
1, else

(8.1)

According to ⇠� , some sessions might not belong to any cluster (⇠� =1
for all clusters). Among these sessions, we try to identify a new cluster
(����L������C������, line 23). We loosely base upon Lloyd’s Algorithm
(Lloyd, 1982) for finding the largest agglomeration of sessions that has a
radius of at most the largest radius of an existing cluster. If this agglomeration
contains at least m sessions, we handle it as a new cluster (lines 13 to 17).
Finally, we assign the remaining sessions to the noise cluster C�1 and update
the centroids (lines 18 and 19). To avoid exponential growth, we leave the
radiuses of the previous clusters unchanged.
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The algorithm is capable of identifying new clusters if they have a non-
greater radius than the existing ones. Also, it handles sessions that do not fit
into any cluster. Future works might improve it by detecting multiple new
clusters in one iteration.

8.4.1.2. Incremental Session Clustering using DBSCAN

DBSCAN follows a different approach for clustering a set of data points S.
It interprets dense areas as clusters, separated by sparse areas. To identify
these, it takes as argument a positive value " and a minimum number of
samples m. It detects all data points s 2 S as core samples if the number
of other samples in the "-range of s is greater or equal to m. Then, it
incrementally constructs clusters by starting with a core sample and adding
further data points lying inside the "-range of the current cluster. Hence,
the algorithm can identify the number of clusters without a user’s input;
for finding appropriate values of " and m, the literature suggests several
heuristics, e.g., based on the distances to the k-th neighbors for a certain k

(Schubert et al., 2017). Furthermore, DBSCAN will detect outliers outside
the neighborhood of any clusters as noise. Finally, it also can detect clusters
that are not convex, which is a limitation of k-means.
Even though these attributes of DBSCAN are superior over k-means, in-

crementally clustering sessions with DBSCAN bears the challenge that the
algorithm bases upon the sessions’ neighborhood rather than the minimum
distance to a centroid. Thus, we cannot follow a similar approach as with
k-means. Furthermore, using the existing clusters for assigning new sessions
would require comparing the sessions with increasingly larger clusters, and,
thus, increasing clustering durations.
Therefore, we apply the framework from Figure 8.2 and additionally

introduce a sliding window w1 larger than the batch size. Each clustering
of one sliding window results in one workload model. Of these models, we
consider the last p instances within a second sliding window w2 >> w1, for
calculating a mapping of the new clusters. We formalize this in Algorithm 8.3.
It takes as input the sessions S to be clustered, the p previous workload
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models—represented by sets M(1) to M(p) of behavior models (cluster
means)—, a mapping f of behavior models to labels, and the DBSCAN
parameters " and m. It clusters S using DBSCAN and calculates the mean of
each cluster. For the first cluster, the algorithm assigns each of the means a
unique label and returns them as the behavior models.

When clustering a second or further batch of sessions, we map the newly
calculated cluster means to the p previous workload models based on the
neighborhood (�����C������M����). Due to the sliding window w1 and
the resulting overlap of sessions between two subsequent clusterings, the
likelihood that the clusterings are related is high. Therefore, we can sensibly
map the identified clusters to previous ones. Precisely, we compare each
mean with all behavior models of all p workload models and select a label by
a majority vote among the p closest ones. However, if the distance between
a cluster mean and the behavior models with the chosen label is too high,
we consider it a new cluster. Several cluster means may be assigned to the
same label. In that case, we merge them. Finally, the algorithm returns the
(potentially merged) cluster means as behavior models and the calculated
label mapping.

The algorithm clusters the sessions without a predefined number of clus-
ters. Each iteration may result in a different number. Still, the sliding window
w1 allows a sensible comparison with previous clusterings. At the same time,
w1 and w2 limit the duration of the algorithm. Besides, it can detect clusters
that are not convex, and the parameters " and m can be defined with the
support of heuristics. Hence, DBSCAN appears to be a suitable replacement
of k-means for session clustering. However, as we discuss in the next section,
the absent guarantee for convexity constitutes a significant limitation rather
than a benefit, at least for Markov-chain-based behavior models.
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Algorithm 8.3 Incremental session clustering using DBSCAN.

1: function �����������DBSCAN(S, {M(1), . . . ,M(p)}, f , ", m)
2: {C1, . . . , Ck} DBSCAN(S, ", m)
3: µ0

i
 1
|Ci |
P

s2Ci

s for i = 1, . . . , k

4: f
0  �����C������M����({µ01, . . . ,µ0

k
}, {M(1), . . . ,M(p)}, f , ")

5: C
0  ;, M0  ;

6: for � 2 f
0({µ1, . . . ,µk}) do

7: C� 
S

i2{1,...,k} | f 0(µ0
i
)=� Ci

8: C
0  C

0 [ {C�}
9: µ0� 

1
|C�|

P
s2C�

s, M0  M0 [
�
µ0�
 

10: f
0(C�) �

11: end for
12: return C

0,M0, f
0

13: end function
14:

15: function �����C������M����({µ01, . . . ,µ0
k
}, {M(1), . . . ,M(p)}, f , ")

16: f
0(µ0

i
) fresh label for i = 1, . . . , k

17: M 
S

p

j=1 M
( j)

18: if M= ; then
19: return f

0

20: end if
21: g  ��������C�������������({µ01, . . . ,µ0

k
}, M, f , p)

22: for i 2 {1, . . . , k} do
23: �i  g(µ0

i
)

24: M(�i) {µ 2M | f (µ) = �i}
25: µ(�i) 1

|M(�i )|
P
µ2M(�i ) µ

26: if kµ0
i
�µ(�i)k maxµ2M(�i ){kµ�µ(�i)k}+ " ^

27:
Ä
|M(�i)|> 1_ {µ0

j
| j 2 {1, . . . , k}^ g(µ0

j
) = �i}= {µ0i}

ä
then

28: f
0(µ0

i
) �i

29: end if
30: end for
31: return f

0

32: end function
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Table 8.2.: Comparison of Incremental Session Clustering Algorithms

attribute k-means DBSCAN

initial clusters (k),
repetitions (⌘), ", min. sessions per
quantile range (↵), cluster (m),

parameters radius factor (�), clustering window (w1),
min. sessions per mapping window (w2)
new cluster (m)

num. initial clusters fixed determined
detects new clusters no yes
cluster shape convex various
cluster representative mean ?

8.4.1.3. Discussion and Choice of Clustering Algorithm

We chose to use the incremental session clustering based on k-means. In
the following, we discuss this choice. Both proposed algorithms aim at
resolving the drawbacks of k-means or DBSCAN for incremental session
clustering. Based on k-means, we added mechanisms for incrementally
assigning sessions to existing clusters and detecting new clusters. Using
DBSCAN, we rely on the built-in detection of new clusters and map them to
previous ones for incremental processing. The k-means-based algorithm is
preferable because it produces convex clusters while we cannot make such
assumptions for DBSCAN. In the following, we compare the two algorithms
more detailed and explain why the missing convexness is critical.

Table 8.2 summarizes the essential attributes of the algorithms. Regarding
the parameters a user needs to specify, DBSCAN appears superior over k-
means. While k-means requires the hardly estimable number of (initial)
clusters, we can use heuristics for estimating the DBSCAN parameters. As a
result, DBSCAN determines the number of initial clusters on its own. Also,
the DBSCAN-based algorithm has fewer parameters in general. Furthermore,
it detects any number of new clusters arising in a later clustering iteration,
while we only detect a single one with k-means.
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Another advantage of DBSCAN over k-means is that it can detect non-
convex clusters. That is, given a set of sessions arranged in several strongly
skewed agglomerations, it will be able to classify each of them as one cluster.
In contrast, k-means attempts to find convex clusters, which will likely differ
from the actual agglomerations. At the same time, the lacking assumption
of convexness is critical for identifying cluster representatives, which serve
as behavior models. With k-means, we can use the centroids. With DBSCAN,
the mean of a cluster can lie outside the cluster’s outer shape, e.g., in case
it resembles a banana. In such a case, the mean is not representative of
the cluster. Consequently, we cannot rely on the representativeness of the
behavior models extracted by Algorithm 8.3.
Therefore, we use the k-means-based algorithm, but also publish the

DBSCAN-based one here. Future works might improve both of them by
either supporting estimating the number of initial clusters for k-means or by
using a different representative of a DBSCAN cluster. Here, the challenge
will be to ensure the comparability of existing representatives and new
clusters. Besides, using our k-means-based algorithm in different scenarios
might help to find parameter value recommendations, which ease the use
of the algorithm. Also, further clustering algorithms could be investigated.
A promising type of algorithm is interactive clustering (Bae et al., 2020),
which incorporates a user’s interaction for, e.g., deriving explainable behav-
ior models. However, it has to be ensured that humans do not block the
incremental clustering and, thus, the automation of our approach.

8.4.1.4. Think Time Calculation

Regardless of the clustering algorithm, after we have clustered a new batch
of sessions, we calculate the think times per cluster. Here, we base on the
previous work (Vögele et al., 2018) for extracting the accumulated think
times per transition of the cluster’s Markov chain. Hence, there is one
think time specification per pair of Markov states. Furthermore, we use the
provided encoding as a normal distribution but suggest investigating other
distributions in future work.
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For ensuring a non-increasing calculation duration, we only use the newly
clustered sessions for calculating the think times and merge these with
the previously calculated ones. For each Markov transition, we calculate
the resulting think time distribution based on the previously calculated
one � ⇠ N (µ�,�2

�), the newly calculated one �0 ⇠ N (µ0�,�02�), and the
respective numbers n and n

0 of sessions from which we have calculated the
distributions:

� ⇤�0 ⇠N (n ·µ� + n
0 ·µ0�, n

2 ·�2
� + n

02 ·�02�)

Please note, similar to the model-based service-tailoring presented in
Section 7.5, this operation does not result in the correct merging of the
normal distributions. Instead, it would need to result in a different type
of distribution. Therefore, future work should investigate other think time
specifications that accurately allow for merging.
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Figure 8.3.: Illustration of the calculation of the intensity from sessions.
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8.4.1.5. Intensity Calculation

As a last step of the incremental clustering, we calculate the varying inten-
sity— i.e., the number of concurrent user sessions—per cluster. For that,
we consider the sessions of each new cluster separately and calculate the
intensity per time interval T , e.g., T = 1 minute. For that, we apply an
algorithm based on Hidiroglu (2019), which we illustrate in Figure 8.3.
First, we discretize the time into timestamps ti with ti+1 � ti = T . Then,

we calculate the intensity value per ti by summing the time sessions spent
between ti and ti+1. For instance, in the figure, session s1 started before t1

and ended at t1 + 0.6 T . Therefore, we add 0.6T . s2 completely overlapped
t1 to t2; thus, we add T . s3 started at t2 � 0.5 T and ended after t2, which
adds another 0.5 T . Similarly, s4 adds 0.8 T . The sum of the time sessions
spent between t1 and t2 is 2.9 T . The intensity value results from the sum
divided by the time interval T , i.e., 2.9.

8.4.2. Enrichment with Contexts

Concurrently to the incremental session clustering, our approach aims at
continuously annotating the clustering results— i.e., the behavior models
and intensities—with the relevant context facets. Such annotation, which
includes both past observations and known future states, has two benefits:
(1) a user can describe a time range, from which they want to extract a
load test, based on the context facets’ states; (2) our approach can use the
future facet states for improving the intensity forecast. The behavior models,
intensities, and stored context information build the knowledge base for
the context-tailored load test generation. For proper storing and utilization,
we derive a context facet schema. Furthermore, we allow users to register
extensions that implement custom handling of certain context facets.
The types of context facets we are interested in are those whose state

or influence (or both) is predictable (see Section 8.2). Context facets with
unpredictable states and influence can neither be used for describing the
time range nor for improving the forecast. For the remaining ones, we store
at least the past states we have observed; for those with a predictable state,
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we also store the future states. For storing the context facets to the WMR,
we provide a generic endpoint that can be used for syncing with various
data sources, e.g., calendars for sales events, corresponding platforms for
weather forecasts, or application monitoring tools for platform incidents.

To find an appropriate schema for these types of context facets, we consider
the scales of the collected examples (Section 8.2):

• Many facets, such as special offers (with different types of offers) or
product releases (with different products), have a nominal scale. A
special case is facets that can either be true or false, e.g., the occurrence
of a special event or a recovery from an outage. Also, special offers
could be encoded as separate facets with true or false states.

• Other facets, such as weather conditions, can be seen to have an ordinal
scale, e.g., rainy, cloudy, and sunny weather in an order.

• Finally, facets are having an interval or ratio scale, such as the tem-
perature. Also, the recovery from an outage could be encoded with
different strengths or outage durations.

Given we aim at using the facets as an input to quantitative forecasting
tools, and these require numerical inputs, we do not consider ordinal scales.
As the distance between two values of such a scale is undefined, we cannot
encode it as numerical values. Therefore, we require users to encode facets
either in numerical (interval or ratio) scales or to drop the ordering and use a
nominal scale. Furthermore, we differentiate between multi-valued nominal
scales and boolean scales. Thus, we allow a user or application to define
context facets by specifying a context record in JavaScript Object Notation
(JSON)— for compatibility with common CSE tooling—per timestamp using
the JSON schema (Wright, 2019) in Listing 8.1. As illustrated in Listing 8.2,
boolean facets can be specified by adding their name to the respective array.
Multi-valued nominal-scaled facets are specified as key-value pairs with
string values. Interval- or ratio-scaled facets can be described similarly, but
with number values.
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{
2 "$schema": "http ://json -schema.org/draft -04/

schema#",
"title": "Workload Context Record",

4 "type": "object",
"additionalProperties": false ,

6 "properties": {
"boolean": {

8 "type": "array",
"items": { "type": "string" }

10 },
"string": {

12 "type": "array",
"items": {

14 "type": "object",
"additionalProperties": {

16 "type": "string"
}

18 }
},

20 "numeric": {
"type": "array",

22 "items": {
"type": "object",

24 "additionalProperties": {
"type": "number"

26 }
}

28 }
}

30 }

Listing 8.1: Workload context record schema.
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{
2 "boolean": [ "black_friday" ],

"string": {
4 "product_release": "sneakers"

},
6 "numeric": {

"temperature": 21
8 }
}

Listing 8.2: Example of a workload context record.

When we receive a new context record, we extract the names and types
(boolean, string, or numeric) from the specified facets. For new facets, we
register the type. For previously seen facets, we compare the specified type
with the stored type and reject the record if they differ. Furthermore, a user
can define an optional extension per context facet. For that, they need to
implement a code snippet in the R programming language (R Core Team,
2019), which will be called prior to the workload forecasting. The snippet
can then change the context facets based on their original states and the
intensities. An example where such an extension was required is the recovery
from an outage of the message endpoint (H. Schulz et al., 2019c, also see
Chapter 15). For achieving accurate forecasts, we had to specify the recovery
severity— i.e., an approximation of the number of buffered messages. For
that, we based on the duration of the preceding outage, calculated the
severity, and set the corresponding facet’s state.

Concluding, we internally register each context facet with its type out of
boolean, string, and numeric, and potentially store an extension for custom
handling of the facet. Also, we will refer to the context types in the LCtL.

8.5. Load Test Context-tailoring Language

When a user wants to extract a load test from theWMR, they need to describe
the workload scenario the test will simulate. For that, we provide the Load
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context:

timeframe

timeframe: \n

context

\n

aggregation: aggregation

adjustments:

adjustments

\n

(a) Top-level scenario clause.

terminal

nonterminal

Symbols:

\n

Special symbols:
newline respecting 
indentation

indent>>

<< dedent

clause start

clause end

Start and end markers:

(b) Legend.

Figure 8.4.: Meta-model of the Load Test Context-tailoring Language (LCtL).

Test Context-tailoring Language (LCtL), which uses the YAML format (YAML
2020) for viable integration with CSE. In the following, we provide the meta-
model of the language as an extended Backus–Naur form (EBNF), visualized
as syntax diagrams (Jensen and Wirth, 1975) and formatted to highlight
the YAML structure. In Appendix C, we provide the pure EBNF.
The root clause of an LCtL instance describes a workload scenario (Fig-

ure 8.4a) based on the contexts stored in the WMR in up to four sections:

• The timeframe section specifies a time frame fromwhich the workload
model should be extracted. It can be in the past— then, the load test
will replay observed workload—or in the future— for predicting the
future workload using quantitative forecasting methods.
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• Users can use the context section to influence the quantitative forecast
by qualitative information. Instead of only relying on the context facet
stored in the WMR, they can add additional facet states—e.g., for
those with unpredictable states—or change the stored states. Such
changes are particularly useful for what-if analyses. The context
section is optional.

• The aggregation section specifies how to extract a workload scenario
from the (forecasted) workload of the specified time frame. We allow
for replaying the whole time frame, selecting parts of it, or extracting
steady-state workloads.

• The final adjustments section is optional and allows a user to change
the extracted workload scenario. They can use this section for qualita-
tive forecasting exceeding the changed context facets.

Using the four sections, a user can specify all kinds of workload scenarios
we classified based on collected examples (see Section 8.6). Scenarios based
on recurring or continuous context facets they can define by referring to
the stored contexts in the timeframe section. Irregular context facets they
can specify in the context section, for performing what-if analyses. In this
case, the workload forecasting will use the past states of the facets and the
specified ones for predicting the workload. Finally, for singleton facets, a
user can add qualitative forecasts—which they need to do manually— in
the adjustments section. Notably, entirely unpredictable singleton context
facets— such as the extraordinarily prominent posting on a social network
(Billington, 2014)—can only be integrated by making assumptions. This is
a natural limitation of such facets, which we cannot bypass.
In the following, we introduce the LCtL sections and provide examples.

8.5.1. Timeframe Section

In the timeframe section, a user can specify the time frame from which
the workload model of the load test will be extracted. Hence, it acts as
a query language for selecting data from the WMR. As illustrated in Fig-
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ure 8.5a, we provide several sub-clauses—timerange, conditional, and
extended—, which define sequential restrictions or extensions to an un-
bound time frame. That is, we start with the unbound time frame and
process the sub-clauses from top to bottom, whereas each restricts or ex-
tends the time frame specified by the above ones. Alternatively, the time
frame can remain unrestricted, expressed by the empty list symbol [ ].

1 timeframe:
- !<timerange >

3 from: 2020 -04 -28 T00:00:00
duration: P3M

5 - !<conditional >
product_release:

7 is: sneakers
- !<extended >

9 beginning: P1D
end: P1D

Listing 8.3: Exemplary timeframe section.

conditional

timerange

extended

[ ]

(a) timeframe clause.

\n-

>> from: date \n

duration

to: date \n

duration: \n

<<

!<timerange>

(b) timerange clause.

Figure 8.5.: Elements of the timeframe section (I).
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Listing 8.3 provides a timeframe example using all sub-clause types.
Below, we explain the meta-models of these clauses.

Timerange (Figure 8.5b): A timerange defines a time range starting at a
defined date and time and having a potentially unbound duration. For that,
users can define a from date defining the start and a to date defining the end.
Alternatively, they can specify a duration starting from from or ending at to.
For the date and duration specifications, we utilize the ISO 8601 format. If
only the from or to date is specified, the time range is unbound. A duration
without specified from or to date we interpret to start at the current date
and time. In the example, we define a time range starting from midnight on
April 28, 2020, and lasting three months.

Conditional (Figure 8.6a): For easing time frame specification, we allow
users to refer to the context facets stored in the WMR. For that, we provide
the conditional clause. It maps the name of a facet (name element) to a
condition (Figure 8.6b). The allowed conditions then depend on the type
of facet. For all types (boolean, string, and numeric), the is keyword can be
used. It means that only those time frames should be selected where the
facet’s state equals the specified value. Notably, we check whether the value
type fits the facet’s type, e.g., we reject a boolean value if the facet is numeric.
For string facets, users can also restrict to time ranges where the facet exists,
i.e., has a non-empty state. For numeric facets, we allow comparisons, e.g.,
whether the temperature is in a range of 20 to 25�C. Here, we treat absent
values as 0. In the example, we require the product_release facet to equal
the string sneakers, related to the example by Godlewski (2017). Hence, we
restrict the time frame to the range between April 28 and July 28, 2020,
and those dates where new sneakers are released. Remarkably, these can be
multiple periods.

Extended (Figure 8.7): While the timerange and conditional clauses
restrict the time frame, we also allow extending it with the extended clause.
It allows specifying a beginning and end duration, which extend the current
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!<conditional> \n-

>>

<<

condition

name

>>

: \n

<<

(a) conditional clause.

greater:

is: \n

\n

exists:

less:

numeric

numeric \n

boolean \n

value

(b) condition clause.*

*The exists keyword was added as part of the evaluation (Chapter 14).

Figure 8.6.: Elements of the timeframe section (II).

!<extended> \n-

>> beginning: \n

end: \n

<<

duration

duration

Figure 8.7.: Elements of the timeframe section (III): extended clause.
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time frame by these durations. This is especially useful if users are interested
in the time before or after a specific state of a facet. For instance, in the
example, we extend the time range to include one day before and after each
sneakers release.

8.5.2. Context Section

While the timeframe section only queries data from the WMR, we allow
users to modify the queried data in the context section. Principally, they
can change the stored states of the facets for performing what-if analyses,
e.g., simulating an outage recovery. The modification is only for the specific
load test extraction and does not change the values in the WMR. Figure 8.8a
shows the structure of the clause, which is a simple mapping of facets—
identified by their name—to one or multiple context-def clauses. Each
of these clauses defines how to change the state of that facet. We provide an
example in Listing 8.4.
For changing the facet’s state, the context-def clause (Figure 8.8c)

provides three keywords, whose usage again depends on the type of facet.
For all types, the is keyword can be used to set the state to a specific value.
For numeric facets, we additionally provide the keywords multiplied and
added, which can be used individually or in combination. They base on the
stored numeric states and multiply these or add a number. A use case for

context:
2 temperature:

- added: 5
4 outage:

- is: false
6 - is: true

during:
8 - !<timerange >

to: 2020 -04 -28 T16:00:00
10 duration: PT3H

Listing 8.4: Exemplary context section.
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>>

<<

context-def

name : \n

(a) context clause.

value

>>

<<

name : \n

\n{ }

(b) properties clause.

during:

added: numeric

>>

<<

- multiplied: numeric \n

\nadded: numeric

-

>>

is: \nvalue-

\n

timeframe

\n

(c) context-def clause.

Figure 8.8.: Elements for context definition and properties.
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such modification from the examples is the temperature, which could be
adjusted to be, e.g., 5�C warmer.
Besides is, added, and multiplied, the context-def clause also has a

during keyword. It allows a user to restrict the state modification of the facet
to a time frame. For specifying these, we reuse the timeframe clause. If no
during is specified, we apply the context-def to the whole time frame of
the timeframe clause. In the example, we make use of during for setting
the state of an outage facet, which belongs to the recovery example (see
Section 8.4.2). It is a boolean facet, so we first set it to false, meaning
no outage happens. Remarkably, this will likely be the default state in the
WMR, as we cannot foresee outages in the future, but we make it explicit
here. Then, we add another context-def that overrides the state with
true from 1 to 4 pm on April 28, 2020. Hence, the forecasting tool will
incorporate the effects of an outage during that time frame, which the load
test might—depending on the aggregation—simulate.

8.5.3. Aggregation Section

The third section of the LCtL is aggregation, which is mandatory again. It
defines how to extract a workload scenario from the selected or forecasted
per-group intensities. As the defined time frame can be large, a feasible
aggregation is crucial. As shown in Figure 8.9, the aggregation section
consists of a single clause, which we design to be natively extensible. For that,
we proceed similar to context facet extensions (see Section 8.4.2). Users can

aggregation: !<percentile >
2 p: 95

Listing 8.5: Exemplary aggregation section.

!< name > properties

Figure 8.9.: aggregation clause.
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register code snippets implemented in the R programming language (R Core
Team, 2019) with unique names and refer to them in the aggregation section.
A code snippet gets as input the (potentially forecasted) intensity values
per group for the specified time range and needs to extract parts of it. Fur-
thermore, the snippets can be parameterized with properties (Figure 8.8b),
which are either empty ({ }) or plain key-value maps. As an example, in
Listing 8.5, we specify an aggregation with the name percentile and a
property p defining the percentile.

While users can define various aggregations, we introduce four provided by
default—as-is, maximum, percentile, and shapest-spike—, which
we explain in the following.

As-is Aggregation: The as-is aggregation is the simplest conceivable: it
returns the input it receives. It is useful if small time frames are specified or
for long-lasting tests, which should replay, e.g., one day. However, it should
be used with care, as a load test will replay the whole time frame.

Maximum Aggregation: In contrast to the as-is aggregation, which returns
a varying workload, the maximum aggregation extracts a workload with a
stable intensity. As illustrated in Figure 8.10a, it selects the point of time
from the input intensities with the maximum total intensities, i.e., the sum
of all per-group intensities. Then, it returns the per-group intensity of that
point of time as a stable workload. This aggregation is particularly useful for
testing whether the system under test (SUT) can withstand the maximum
expected workload.

Percentile Aggregation: Because the maximum also includes rare anomalies,
which might be significantly higher than the regular intensities, we provide
the percentile aggregation. As shown in Listing 8.5, it takes as property
the percentile number p. As illustrated in Figure 8.10b, it selects the intensity
vector—with one entry per group—with the total intensity closest to the
p-th percentile. Similar to the maximum aggregation, it returns a stable
workload.
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Figure 8.10.: Illustration of extracting workload scenarios from an excerpt of
the intensities from our evaluation (Chapter 14) using different
aggregations.
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Sharpest-spike Aggregation: Another aggregation returning a varying work-
load is sharpest-spike. It identifies the sharpest increase in the input
intensities and returns a subset around it, representing a spike. For that, it
takes a window property as additional input and processes the input inten-
sities, as illustrated in Figure 8.10c. First, it computes the rolling averages
with the window size of the total intensities. Then, it calculates the slope
per time point from the resulting values. From the slope, the aggregation
selects the highest value, which represents the sharpest increase. Starting
from the corresponding point of time, it takes the latest earlier point of time
that has a slope of less than 10% of the sharpest increase. Furthermore, it
identifies the earliest point of time afterwards that is higher than �10% but
later than the first negative slope after the sharpest increase. Then, it returns
the intensities within these two points of time.

The rolling average removes local extrema, which would be too short for
a load test. Hence, the window property controls the sensitivity of spike
detection. It is optional, with a default value of 31 minutes, which is a good
value from our experience. Also, we always ensure using a non-even window
size, such that the same number of values left and right to each intensity
value is aggregated into the rolling average.

adjustments:
2 - !<users -multiplied >

factor: 1.2
4 - !<users -added>

amount: 200
6 group: 1

Listing 8.6: Exemplary adjustments section.

!<- name > properties

Figure 8.11.: adjustments clause.
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8.5.4. Adjustments Section

The final LCtL section is adjustments, which is optional. Here, a user can
incorporate a qualitative forecast into the workload scenario extracted by
the aggregation. Similar to the aggregation, adjustments are natively
extensible. Figure 8.11 shows the meta-model. Again, users can register R
code snippets, refer to them via their registered name, and pass properties.
A difference to the aggregation is that multiple adjustments can be
specified, which our approach will execute sequentially. In Listing 8.6,
we specify two adjustments—users-multiplied and users-added—,
which apply the respective operations to the intensities. Besides, adjustments
can modify the per-group intensities and also the behavior models per group.
By default, we provide two types of adjustments, namely those from

Listing 8.6, which modify the intensities of all or individual groups. Hence,
they can both adjust the total intensity and the workload mix.

Users-multiplied Adjustment: With users-multiplied, a user can specify
to multiply the per-group intensities with a factor. For that, it takes the
properties factor and group. The latter property specifies the group whose
intensity should be adjusted. It can be left out; in that case, all intensities
are adjusted. In Listing 8.6, we specify to add 20% to all intensities. This
relates to the example of adding new devices to the platform at a given
date (Section 8.2). Hence, the workload change cannot be predicted by
quantitative forecasting, but easily added using this adjustment.

Users-added Adjustment: Besides users-multiplied, we provide users-
added. It works similarly but adds a fixed amount to the intensities instead of
multiplying the original values. In the example, we specify to add 200 users
to the group with ID 1. Please note, as we specified two adjustments, the
order is relevant. In this case, our approach will first multiply the intensities
of all groups with 1.2 and then add 200 users to group 1. Specifying the
adjustments in reverse order will fist add the 200 users to group 1 and then
multiply all intensities, resulting in different values.
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8.6. Context-tailored Load Test Extraction

In this section, we detail the part of the context-tailoring process executed
on demand (see Section 8.3) as a realization of the LCtL sections. We explain
the workload and context preparation, workload forecasting, aggregation,
and adjustments. For that, we introduce an exemplary LCtL instance in
Listing 8.7, which is related to the previously shown LCtL section examples
but simplified. We consider we have collected request logs from 26 days
until April 25. Thus, the LCtL instance demands to forecast the workload to
April 28. Furthermore, we adjust the context facet with the name outage
for conducting a what-if analysis simulating the recovery after the outage
(see Section 8.4.2). Then, we apply the sharpest-spike aggregation and
adjust the number of users of group 1. In the following, we explain how an
LCtL instance, such as the described one, influences the on-demand load
test extraction process.

timeframe:
2 - !<timerange >

from: 2020 -04 -28 T00:00:00
4 duration: P1D
context:

6 outage:
- is: true

8 during:
- !<timerange >

10 to: 2020 -04 -28 T16:00:00
duration: PT3H

12 aggregation: !<sharpest -skipe> {}
adjustments:

14 - !<users -added>
amount: 200

16 group: 1

Listing 8.7: Exemplary LCtL instance.
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Figure 8.12.: Illustration of intensities and context retrieved from the WMR
based on a modified excerpt from our evaluation (Chapter 14).
The temperature values are available online.1

1https://www1.ncdc.noaa.gov/pub/data/uscrn/products/hourly02/2019/
CRNH0203-2019-AL_Clanton_2_NE.txt (visited on 07/16/2020)
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8.6.1. Workload and Context Preparation

In this step, we select all relevant data from the WMR based on the time-
frame section and potentially adjust the retrieved context based on the
context section. Furthermore, we apply the extensions registered per con-
text facet. Below, we provide detailed explanations of these three sub-steps.

Workload and Context Selection: First, we select all relevant data from the
WMR based on the time frame specified in the timeframe section. These
are the latest behavior models per group that are before the start of the time
frame, the past per-group intensities and context, and the future context until
the end of the time frame. The behavior models and intensities constitute
the latest state of the incrementally learned workload model. The past and
future context we will use for forecasting the workload. We illustrate the
intensities and context in Figures 8.12a and 8.12b. We show the context
facets temperature and outage retrieved from the WMR. For the temperature,
future states are present, while for the outage, only past states are known.

As we aim at using the context facet’s states for influencing the workload
forecast, we need to transform them into a representation that is usable for
the forecasting approach. That is, we need to transform each facet into one or
several variables that have numeric values per point of time. We distinguish
between the context facet type and proceed as follows. Numeric facets
already have an appropriate format. Therefore, they remain unchanged. A
boolean facet we transform into one variable by setting its value to 0 if the
facet does not occur and to 1 if it occurs. We illustrate this in Figure 8.12b,
which represents the boolean outage facet as a variable with values out of
0 and 1. For string facets, we treat each of the states as a boolean facet,
i.e., we transform one string facet into one {0, 1}-valued variable per state.
Regardless of the facet type, we treat missing facet states as 0.

Context Modification by Context Section: If the LCtL instance contains a
context section, wemodify the context retrieved from theWMR. Section 8.5.2
describes the precise operations applied. In the example, we specified to
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modify the state of the outage facet from 1 to 4 pm on April 28. Hence, for
further processing, the outage facet occurs as stored in the WMR and at the
specified time frame as well.

Context Modification by Extensions: Finally, we apply all extensions regis-
tered per context facet. These extensions may adjust the values of the variable
belonging to the facet or generate new variables. For that, extensions get
as input the context and intensities retrieved from the WMR, modified and
transformed as described above.
As described previously, the outage context facet is an example that re-

quires customized handling by an extension (H. Schulz et al., 2019c). Here,
we conceive an extension that transforms the outage into a recovery severity.
This variable describes the severity of the recovery spike, which will occur
after the end of the outage. The higher the value of is, the sharper and
higher the recovery spike will be. The forecasting approach will calculate
the actual spike steepness and height. In Figure 8.12c, we illustrate the
recovery severity calculated based on the outage length and intensity during
the outage.

8.6.2. Workload Forecasting

If the LCtL instance specifies a timeframe in the future, such as the example
in Listing 8.7, we need to forecast the future workload. For that, we base on
the data prepared in the previous step, i.e., the per-group behavior models,
intensities, and context. Then, we apply forecasting approaches to the
intensities of each group, also considering the contexts. As a result, we yield
the future intensities, which, in combination with the behavior models, build
the total workload mix. This procedure is superior over a pure forecast of
the total intensity, as it also can predict the mix.
As forecasting approaches, we utilize Telescope (Bauer et al., 2020),

Prophet (Taylor and Letham, 2018), and a perfect forecast. The latter one
is only relevant for evaluation purposes, as it returns the actual intensities
that lie in the future from a defined perspective. Hence, we can evaluate the
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quality of the incrementally learned workload model without the effect of
potentially inaccurate forecasts. However, in real scenarios, future intensities
will be unknown, and we have to rely on actual forecasting. In the following,
we describe the forecasting of the workload using Telescope and Prophet.

Telescope: We utilize a version of Telescope for multivariate forecasting
available online (Chair of Software Engineering, University of Würzburg,
2020). This version can predict the future values of numerical time series
and also include so-called covariates. Each covariate is another time series
Telescope will use for adjusting the forecast. Hence, we can use them to
integrate the prepared context. We predict the intensities of each group
separately. For this, Telescope takes as input the past intensity values and
the past formatted values of the context variables, whereas each variable
corresponds to one covariate. Furthermore, we specify the future values of
the variables as future covariates. Telescope will then learn the impact of
the covariates from the past data and calculate the forecast appropriately.

Prophet: Prophet is another time series forecasting tool related to Telescope.
Similarly, it provides forecasts for numerical time series that can include
so-called regressors, which correspond to Telescope’s covariates. Thus, we
proceed similarly as with Telescope and predict each group’s intensities
individually. For that, we specify the context variables as regressors and
input them in addition to the past intensities. Prophet then outputs the
intensity forecast. As the concepts of covariates and regressors correspond,
we can sensibly compare Telescope and Prophet in our evaluation.

8.6.3. Workload Aggregation

The workload aggregation step corresponds to the aggregation section of
the LCtL and extracts a workload scenario from the intensity forecast— in
case of a future timeframe—or the intensities selected from the WMR.
Hence, the potentially long period of intensities is reduced to one that a
load test can replay. As described in Section 8.5.3, we provide multiple
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aggregations and also allow for custom ones, which can extract steady-state
or varying intensities. In the example, we specified applying the sharpest-
spike aggregation, which extracts the spike with the highest slope of the
total intensity. We illustrate the result of this aggregation in Figure 8.13a,
which shows the varying intensities of three groups. As we have defined an
outage, the intensities represent the recovery spike caused by the outage.

8.6.4. Workload Adjustments

For integrating qualitative forecasts, we can adjust the workload scenario
extracted by the aggregation using the adjustments section of the LCtL.
Qualitative forecasts need to be done by a user and can, e.g., change the
intensity of one group. In Figure 8.13b, we illustrate adding 200 users to
group 1, as defined in the exemplary LCtL instance. In combination with the
respective behavior models, these intensities constitute the workload model
that will be transformed into the load test.

0

1000

2000

3000

16:00 17:00 18:00 19:00
date and time

in
te

ns
ity

(a) Intensities extracted using the
aggregation section.

0

1000

2000

3000

16:00 17:00 18:00 19:00
date and time

group

0

1

2

(b) Intensities adjusted using the adjust-
ments section.

Figure 8.13.: Illustration of intensities extracted and adjusted using the LCtL
instance from Listing 8.7.
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8.7. Integration with Service-tailoring and Automated
Parameterization

In this section, we describe the integration of the context-tailoring approach
with the approaches introduced in the previous chapters. These approaches
are the automated parameterization of the generated load test using an
Input Data and Properties Annotation (IDPA) (see Chapter 6) and the two
service-tailoring approaches (see Chapter 7). As log-based and model-based
service-tailoring addresses artifacts at different stages, we need to integrate
them differently.

We provide an overview of all integrations in Figure 8.14. For automatically
generating a service- and context-tailored load test, a user needs to specify
an IDPA, the list of services to be tested, and an LCtL description 1�. Notably,
they need to specify them at different points in time. While the list of services
and the LCtL description are required at test generation time, the IDPA can
be defined in advance and reused for subsequent load test generations.

During the continuous learning of the workload model, we utilize the IDPA
for labeling the requests (see Section 6.5.2) 2�. At the same time, if log-based
service-tailoring (see Section 7.4) should be applied, it is applied here. As
a consequence, log-based service-tailoring needs to be configured before
learning the workload model. Then, we build separate behavior models and
corresponding intensities per list of services.
Based on the LCtL description, we extract a context-tailored workload

model from the WMR, as described in this chapter 3�. When using model-
based service-tailoring (see Section 7.5), we apply it as the next step 4�.
It modifies the extracted workload model to target the services under test
directly. Finally, we transform the workload model into a load test and apply
the automated parameterization with the IDPA (see Section 6.5.3) 5�. Using
the same IDPA for labeling the requests and the parameterization ensures
that the workload model’s states and the IDPA fit. If the API changes during
the workload model learning, a user needs to adjust the IDPA, which allows
for extracting a load test for the latest API version.
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Figure 8.14.: Integration of context-tailoring with service-tailoring and au-
tomated parameterization.

Because we have to apply log-based and model-based service-tailoring
at different stages, the model-based approach has several advantages over
the log-based one. First, it does not require specifying the list of services
to be tested in advance. Instead, it modifies the context-tailored workload
model for the whole application. Second, it underlies fewer fluctuations in
the intensities. As the workload arriving at a non-user-faced service depends
on the call behavior of other services, which can change frequently and
significantly when new service versions are introduced, the intensities of the
log-based approach have lower predictive power for the future workloads.
In contrast, the model-based approach is based on the non-service-tailored
intensities and can always use the most current traces. For these reasons,
we recommend using model-based service-tailoring in combination with
context-tailoring.
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8.8. Summary

In this section, we introduced our approach for tailoring load tests to work-
load contexts, addressing RQ3: How can representative load tests automati-
cally be tailored to the contexts of a session-based workload?

Relying on a continuously learned workload and context knowledge base,
a user can generate a context-tailored load test by specifying an appropriate
description. For that, we provide the Load Test Context-tailoring Language
(LCtL). Then, leveraging the automated load test parameterization, our
approach automatically generates a load test that fits the description. The
context-tailoring accompanies the service-tailoring for generating resource-
efficient and time-efficient load tests, as these approaches allow generating
load tests that restrict to the relevant contexts and services.
In the next chapter, we leverage context- and service-tailoring for en-

abling load testing for non-experts. In Chapter 14, we provide an evaluation
of the context-tailoring approach using the request logs from the student
information system of Charles University, Prague.
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Even though load testing is widely considered a crucial quality assurance
technique (Jiang and Hassan, 2015), Bezemer et al. (2019) have found that
it is often not conducted regularly and adequately. The authors attribute
this finding to a barrier of a significant amount of knowledge and expertise
required for conducting sound performance engineering such as load testing.
This reasoning is especially valid for complex load-testing-based tasks, such as
assessing the scalability of different deployment alternatives of a microservice
application (Avritzer et al., 2020a). Consequently, Walter et al. (2016) have
introduced the notion of declarative performance engineering, demanding for
decoupling a user’s performance concern from the specific solution approach.

In the previous chapters, we have introduced approaches that ease specific
parts of the load testing process. Precisely, we allow for generating tailored
load tests automatically. Other approaches solve the challenge of automating
the test execution lifecycle (Ferme and Pautasso, 2018) or the comprehensi-
ble presentation of the load test results (Okanović et al., 2019). Also, as an
example of a complex load-testing-based task, we have developed a unified
process and measures for assessing the scalability of microservice deploy-
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Figure 9.1.: Overview of the contributions of this chapter.

ment alternatives (Avritzer et al., 2020a), which we realized based on the
previously mentioned approaches. However, automated integration of the
test generation and the test execution approaches is missing. Furthermore,
the approaches require technical specifications, e.g., in the YAML format,
that still can form a barrier for sound adoption. In the scalability assessment
case, a user also needs to coordinate specific steps of the experiment process.
Therefore, we aim at easing the load testing process for non-experts by

coherently integrating automated load test generation and execution. Users
shall specify their load test concerns abstracted from technical constructs
using template-based natural language. Also, they shall define complex
tasks such as the scalability assessment as a single specification. This aim
addresses RQ4: How can we leverage automated tailored load test generation
and automated load test execution for enabling load testing for non-experts?
As a solution, we base upon the Gherkin language (Wynne et al., 2017)

used for Behavior-driven Development (BDD) (North, 2006) for providing the
Behavior-driven Load Testing (BDLT) language. As illustrated in Figure 9.1,
it integrates the features of our approaches for the automated tailored load
test generation (Chapters 6 to 8) and the BenchFlow approach by Ferme
and Pautasso (2018) for automated load test execution. Furthermore, we
integrate the scalability assessment of microservice deployment alternatives
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(Avritzer et al., 2020a) as an example of a complex load testing task. For
ensuring a high degree of comprehensibility, BDLT specifications are readable
in natural language, as illustrated by the following example:

Given the next Black Friday, when varying the CPU cores between 1
and 4, then ensure the maximum CPU utilization is less than 60%.

The remainder of this chapter is structured as follows. In Section 9.1,
we describe the process of automatically processing a BDLT specification.
Section 9.2 introduces the BDLT language. In Section 9.3, we present the
scalability assessment of microservice deployment alternatives as a use case
of BDLT, followed by a summary in Section 9.3.

This chapter is based on the following joint publications, which appeared in
advance:

• H. Schulz, D. Okanović, A. van Hoorn, V. Ferme, and C. Pautasso
(2019c). “Behavior-Driven Load Testing Using Contextual Knowledge
— Approach and Experiences.” In: Proceedings of the 10th ACM/SPEC
International Conference on Performance Engineering (ICPE 2019). ACM,
pp. 265–272

• A. Avritzer, V. Ferme, A. Janes, B. Russo, H. Schulz, and A. van Hoorn
(2018). “A Quantitative Approach for the Assessment of Microser-
vice Architecture Deployment Alternatives by Automated Performance
Testing.” In: Proceedings of the 12th European Conference on Software
Architecture (ECSA 2018). Vol. 11048. Lecture Notes in Computer
Science. Springer, pp. 159–174

• A. Avritzer, V. Ferme, A. Janes, B. Russo, A. van Hoorn, H. Schulz,
D. Menasché, and V. Rufino (2020a). “Scalability Assessment of Mi-
croservice Architecture Deployment Configurations: A Domain-Based
Approach Leveraging Operational Profiles and Load Tests.” In: Journal
of Systems and Software 165, p. 110564
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Figure 9.2.: Overview of the Behavior-driven Load Testing process.

9.1. Behavior-driven Load Testing Process Overview

In this section, we provide an overview of the process of generating and
executing a load test using the BDLT language. In the next section, we
will introduce the language and detail the individual steps of this process.
Figure 9.2 illustrates it.
The only points where a user needs to interact are the initial input and

final output. As input, a user needs to specify a BDLT definition 1�, such as
the example in the chapter introduction. With this definition, they describe
their load testing concern, consisting of three parts: the initial context and
configurations (given), changes made to the initial state (when), and the
expected outcome of and behavior during the test (then). The example
uses the Black Friday context for specifying the workload, states to vary
the number of CPU cores, and expects the CPU utilization to be less than a
threshold. Our approach relies on this definition for generating and executing
a BenchFlow load test fully automatically, such that we can present the test
results to the user.
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For that, we transform the BDLT definition into several other models 2�.
BenchFlow provides a declarative domain-specific language (DSL) that allows
for specifying a load test, including the workloadmodel and the configuration
of the system under test (SUT) (see Section 4.4.2). Hence, those parts of the
BDLT definition describing the load test execution and setup of the SUT are
transformed directly into a BenchFlow DSL instance. In the example, such
parts are the CPU core variation and the CPU utilization expectation. For also
specifying the workload model, we extract the list of services to be tested—
if defined—and a Load Test Context-tailoring Language (LCtL) instance.
The Black Friday from the example forms a context the LCtL instance will
hold. Then, we use our load test tailoring approaches (Chapters 7 and 8)
for generating the workload model 3�. Using the transformation from the
WESSBAS-DSL to the BenchFlow DSL by Palenga (2018) and our automated
load test parameterization (Chapter 6), we complete the BenchFlow load
test 4�.
Finally, we utilize BenchFlow for executing the load test 5�. In doing so,

it automates the whole test lifecycle, including the deployment of the SUT.
Besides, it manages the execution of several experiments. For instance, given
the example BDLT definition, BenchFlow will execute four experiments—
one per number of CPU cores— for evaluating the behavior of the differently
configured SUT under the same workload. After the load test execution has
finished, we can finally provide the user with the load test results. In this
work, we do not include specific preparation of the results for non-experts.
For that, we refer to the work by Okanović et al. (2019).

9.2. Behavior-driven Load Testing Language

The BDLT language is the core of our load testing approach for non-experts.
It allows users to define load tests and their execution using template-based
natural language. For designing the language, we adopt concepts from the
Gherkin language (Wynne et al., 2017) used in BDD (North, 2006). In
the following, we describe the relation of the BDLT language to Gherkin
(Section 9.2.1), introduce the metamodel (Section 9.2.2), and describe
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the transformation to the LCtL (Section 9.2.3). We omit details on the
transformation to the BenchFlow DSL. For that, we refer to our previous
publication (H. Schulz et al., 2019c).

9.2.1. Behavior-driven Development as a Basis

BDD (North, 2006) is a paradigm for better integrating functional unit testing
into software development. It builds upon test-driven development (TDD)
(Beck, 2003), which aims at using tests as a specification for the expected
results of the developed software. BDD emphasizes that the tests should
define the intended behavior. For that, it utilizes simple phrases describing
the behavior, which can then be mapped to unit tests. Hence, non-technical
stakeholders can be better involved in the testing and development process.
With BDLT, we follow a similar approach, as we want to allow users to specify
an SUT’s intended behavior under a particular configuration and workload.
Instead of unit tests, we need to map the phrases to load tests.

For that, we leverage concepts from the Gherkin language (Wynne et al.,
2017), which is used in the context of BDD. A Gherkin behavior description
is a single natural-language sentence that is structured according to a three-
part template. It starts with the keyword given, followed by a description
of the initial state of the software part, such as a class, to be tested. The
second part starts with when, followed by changes to be made to the initial
state. Finally, the sentence holds postconditions identified by then. For
testing whether the software fulfills the behavior description, the sentence
is mapped to classes and unit tests. The postconditions define whether the
test should fail.
For the BDLT language, we reuse the three-part template. However, we

need to define specific clauses we can map to load tests rather than unit
tests. Specifically, we apply the following structure, which we detail in the
next section.

• Starting with given, a user can describe the initial workload context,
services to be tested, and configuration of the SUT. The example from
the introduction defines Black Friday as the workload context.
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• The when clause holds changes to the initial state, e.g., for testing
varying configurations such as in the example or conducting what-if
analyses based on irregular workload-influencing contexts.

• In the then clause, a user can specify the expected behavior during the
test as requirements—such as the example’s CPU utilization thresh-
old—and how to react when a requirement is violated.

9.2.2. Metamodel

We introduce the metamodel of the BDLT language in extended Backus–Naur
form (EBNF) notation, which we present here using syntax diagrams (Jensen
and Wirth, 1975) with the same symbols as in Section 8.5. We provide the
pure EBNF in Appendix D. The BDLT language was first published in our
previous work (H. Schulz et al., 2019c).
As previously described and illustrated in Figure 9.3a, a BDLT definition

consists of three types of clauses starting with given, when, and then, re-
spectively. Multiple clauses of the same type can be concatenated using the
and keyword. Besides, clause types can be left out. For instance, the exam-
ple from the introduction without the when clause is sufficient for testing
whether the CPU utilization is below the threshold under the Black Friday
workload:

Given the next Black Friday, then ensure the maximum CPU uti-
lization is less than 60%.

We provide 11 different types of given, when, and then clauses (see Fig-
ures 9.3b to 9.3d), which we explain in the remainder of this section. The
language can easily be extended by adding further clauses.

9.2.2.1. Given Clause

Following the given keyword, one out of five clauses can be used to describe
the initial context and configuration of the load test. daterange and nex-
tevent describe time frames from which the workload model should be
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Figure 9.3.: Meta-model of the Behavior-driven Load Testing (BDLT) lan-
guage (based on H. Schulz et al., 2019c).

extracted. alterusers changes the number of users. With assignment,
a user can describe an initial configuration. services should be used to
state the services to be tested. Below, we describe the clauses in detail and
provide examples.

Daterange: The most straightforward description of the time frame is the
daterange clause (no figure). It explicitly states a time range, e.g., given 4
days starting from April 1, 2020. We allow for different date formats, which
the BDLT language parser needs to interpret. Based on our context-tailoring
approach, we can select the workload that happened during the defined
time range— if it was in the past—or predict the future workload.
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Figure 9.4.: Elements of the given clause (based on H. Schulz et al., 2019c).
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Nextevent (Figure 9.4a): As a more implicit description of the time frame,
a nextevent clause states to use the workload that is expected to happen
during a future event. An example is given the next Black Friday. We utilize
our context-tailoring approach to predict the workload. For that, a user—
e.g., an expert setting up our approach—needs to register Black Friday as a
context facet in advance (see Section 8.4.2).

Alterusers (Figure 9.4b): With an alterusers clause, a user can change
the number of users simulated in the load test, which is initially determined
based on the daterange and nextevent clauses. It can either add or
subtract a specific percentage of users or set it to a fixed value. In the latter
case, a user can also refer to the initial value, such as the following clause:
given the number of users set to the maximum increased by 20%. The clause
refers to the adjust and number clauses, which we describe in Paragraph
Utility Clauses.

Assignment (Figure 9.4c): The assignment clause is for setting the con-
figuration of the SUT. For that, it maps a configuration property such as
the amount of memory to a value, e.g., given the memory is 4GB. The value
can be a number, string, or enumeration of strings for a complex property.
For executing the load test, we transform the property assignments to the
exploration_space field of the BenchFlow DSL, such that BenchFlow will
configure the SUT correspondingly.

Services (Figure 9.4d): We added the services clause in addition to the
previously published version of the language to allow users to test specific
services explicitly. The services are defined as a simple list, such as given the
services carts and payment. Then, we utilize our service-tailoring approach
for generating a workload model that targets the specified services directly.

Utility Clauses (Figure 9.5): In the previous paragraphs, we referred to
several utility clauses, which we introduce here. The first one is the adjust
clause, which increases or decreases a value by a percentage. We use it to
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Figure 9.5.: Utility clauses (based on H. Schulz et al., 2019c).

change the number of users determined by our approach. For specifying
numbers, we provide the number clause. It can either define an exact number
or an aggregator, which refers to the surrounding clause. As an example,
we can set the number of users to the maximum determined value in the
alterusers clause.

9.2.2.2. When Clause

As we describe in the following paragraphs, the when clause can modify
the workload and SUT configuration defined in the given clause. vary can
vary the number of users or a configuration property among a set of values.
event can emulate the occurrence of a workload-influencing event.
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Figure 9.6.: Elements of the when clause (based on H. Schulz et al., 2019c).

Vary (Figure 9.6a): The vary clause has two purposes. First, it allows users
to test the SUT under different configurations. For example, the following
clause will test three different memory configurations: when varying the
memory among (2GB, 4GB, 8GB). With the same mechanism, users can test
the SUT under multiple numbers of simulated users, such as when varying the
number of users between the average and the maximum in steps of 100. Again,
users can state exact numbers or refer to the initially determined number
of users. For varying configurations or numbers of users in the load test,
we utilize the exploration_space field of the BenchFlow DSL—similar
to the assignment clause. For determining aggregate values based on the
determined number of users, we additionally utilize our context-tailoring
approach.
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Event (Figure 9.6b): To account for workload-influencing events whose
occurrence is irregular, we provide the event clause. A user can state
that a specific event happens, such that the load test constitutes a what-if
analysis. An example is when the operators of a webshop want to find an
appropriate date for a bargain-sale such that their system will be able to
handle it. For checking the effect at a particular date, they can state when
a bargain-sale happens from April 1 to April 4, 2020. For predicting the
expected workload, we use our context-tailoring approach. The bargain-sale
needs to be registered as a context facet, potentially with custom handling
using an extension (see Section 8.4.2).

9.2.2.3. Then Clause

As the final part of a BDLT definition, users can influence the runtime be-
havior of the load test and define requirements. They can explicitly set the
test duration using run or define termination criteria using break. Also,
they can collect specific metrics and define pass/fail criteria based on
the metrics using ensure. We transform all these clauses into properties
of the BenchFlow DSL, namely steady_state, termination_criteria,
observe, and quality_gates. BenchFlow will then take care of control-
ling the runtime, collecting metrics, and determining whether the load test
has failed. The following provides the metamodels of the clauses.

Run (Figure 9.7a): With run, a user can explicitly set the test duration,
e.g., then run the experiment for 1 h. The clause is not mandatory, as for
some workloads, e.g., varying ones, the workload scenario to be replayed
implicitly defines the duration. However, users can override the duration,
e.g., for simulating only the beginning of the scenario, or specify one for
steady-state workloads.

Collect (Figure 9.7b): Using the collect clause, a user can configure
BenchFlow to collect a specific metric. As an example, then collect the CPU
utilization will cause BenchFlow to measure and collect the specified metric.
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It does not perform any analyses on the metric. For that, one of the following
clauses should be used.

Ensure (Figure 9.7c): ensure is similar to collect but defines a check
on the collected metric besides. As an example, a user can state to collect
the CPU utilization and fail the test if its maximum is above a threshold,
e.g., then ensure the maximum CPU utilization is less than 60%. BenchFlow
automatically performs the check and determines whether the test failed.

Break (Figure 9.7d): Finally, the break clause is similar to ensure but
additionally controls the test duration. For that, BenchFlow evaluates the
check already during the test execution. If the check fails, the test will stop.
The clause helps minimize the test duration in case of failures, such that
the user receives fast feedback. However, it reduces analysis possibilities,
as it shortens the test duration. Therefore, ensure might often be a better
alternative, as it does not stop the test and defines the same pass/fail criteria.
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(c) ensure clause.

checkbreak if
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Figure 9.7.: Elements of the then clause (based on H. Schulz et al., 2019c).
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9.2.3. Transformation to Load Test Context-tailoring Language

We execute a load test defined using the BDLT language by transforming
it into the BenchFlow DSL. While we can transform some clauses directly,
others require preprocessing, e.g., for calculating the expected workload
during a specified event. For that, we utilize our service-tailoring and context-
tailoring approaches. The service-tailoring approach only needs the list of
services defined in the services clause. The context-tailoring approach
is based on the LCtL. Hence, we need to transform the BDLT definition to
an LCtL instance. The clauses that are relevant for the transformation are
daterange, nextevent, alterusers, vary, and event.
Before describing the transformation, we introduce two new LCtL aggre-

gations (see Section 8.5.3) using the extension mechanism. The first one
is fixed, which takes as input a list of intensities. Then, it returns multiple
per-group intensities, which sum to the passed intensities. The second one
is intensity-range, which takes as input a lower, upper, and step value.
It behaves similarly as fixed, but determines the intensities based on the
provided range and step. As lower and upper values, it can both process
numbers and aggregators. In the latter case, it calculates the range borders
based on the intensity values before the aggregation.

In the following, we explain the transformations of the daterange, nex-
tevent, alterusers, vary, and event clauses to LCtL sections, also using
the fixed and intensity-range aggregations. In the case that the BDLT
does not specify an aggregation explicitly, we use the as-is aggregation
replaying the observed or predicted workload.

9.2.3.1. Transformation of Daterange

The daterange clause defines to extract a workload scenario from the
range between two specific dates. The analogous concept of the LCtL is the
timerange clause in the timeframe section. Hence, given a daterange
clause in the BDLT definition, we generate a timerange clause as illustrated
in Listing 9.1.
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timeframe:
2 - !<timerange >

from: [start of daterange]
4 to: [end of daterange]

Listing 9.1: timeframe section transformed from a daterange clause.

timeframe:
2 - !<conditional >

[eventId]:
4 is: true
- !<timerange >

6 from: [current or specified date]

Listing 9.2: timeframe section transformed from a nextevent clause.

# for plain numeric:
2 aggregation: !<fixed >

intensities: [numeric]
4 # for aggregators except percentile:
aggregation: !<[aggregator]> {}

6 # for percentile:
aggregation: !<percentile >

8 p: [numeric]

10 # only for adjust:
adjustments:

12 - !<users -multiplied >
factor:

⇥
1+ numeric

100

⇤
: # for ’increased ’

14 factor:
⇥
1� numeric

100

⇤
: # for ’decreased ’

Listing 9.3: aggregation and adjustments sections transformed from an
alterusers clause.
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9.2.3.2. Transformation of Nextevent

The LCtL analog to the nextevent clause is the conditional clause. As
Listing 9.2 shows, we generate one such clause that states the context facet
with the specified eventId needs to be true. Hence, the context-tailoring will
extract a workload scenario from the time frame where the event occurs. To
ensure only future dates or those after the specified date are considered, we
add a timerange clause.

9.2.3.3. Transformation of Alterusers

Altering the number of users with the LCtL can be done in the aggrega-
tion and adjustments sections. The section we generate depends on the
specific instance of the clause. If it contains set to, we overwrite the default
aggregation as follows and shown in Listing 9.3:

• If the number following set to is fixed, we use the fixed aggregation
with the specified number as single-element intensities list.

• If it is a percentile, we use the percentile aggregation (see Sec-
tion 8.6.3).

• If it is an aggregator different from percentile, we use the respective
aggregation without any additional properties.

Regardless of the existence of set to, if the clause contains an adjust
sub-clause, we add a multiply-users adjustment (see Section 8.6.4). We
transform the specified percentage to a factor to increase or decrease the
number of users accordingly.

9.2.3.4. Transformation of Vary

We only consider the vary clause in the LCtL if it varies the number of
users. In this case, we define an appropriate aggregation—as shown in
Listing 9.4—, which depends on the sub-clause used:

• If the enumeration clause is used, we generate a fixed aggregation
with the intensities list holding all specified numbers of users.
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• For the sub-clause starting with between, we generate an intensity-
range aggregation with the lower, upper, and step values defined. If
the clause does not contain a step value, we use 1 as default.

In both cases, the context-tailoring returns multiple intensity values, for
which BenchFlow will execute one load test each.

9.2.3.5. Transformation of Event

The final BDLT clause relevant for the LCtL is event. It explicitly defines an
event as a workload context, which we need to consider when generating the
workload model. Therefore, we add a context section to the LCtL instance
stating the value of the context facet corresponding to the event should be
true. Furthermore, we restrict the value to the specified date or daterange by
adding a timerange clause to the during field.

# for enumeration
2 aggregation: !<fixed >

intensities: [enumeration]
4 # for ’between ’:
aggregation: !<intensity -range>

6 lower: [number]
upper: [number]

8 step: [numeric] # default is 1

Listing 9.4: aggregation section transformed from a vary clause.

context:
2 [id]:

- is: true
4 during:

- !<timerange >
6 from: [date or start of daterange]

# only for daterange:
8 to: [end of daterange]

Listing 9.5: context section transformed from an event clause.
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9.3. Use Case: Scalability Assessment of Microservice
Deployment Alternatives

In joint work with Avritzer et al. (2018, 2020a), we have developed an
approach for assessing the scalability of different deployment alternatives of
a microservice application. Finding an optimal deployment configuration
can be challenging, as the application needs to be able to handle various
workloads. Also, the configuration space is plentiful, including different vir-
tualization and containerization technologies, such as Docker (Docker Inc.,
2020), the number of microservice replicas, and the hardware resources avail-
able to each microservice. Therefore, we introduced the Domain-based metric,
which assesses the ability of a deployment alternative to handle the workload
scenarios occurring in production, and a unified experimentation process
for determining the Domain-based metric. Comparing the Domain-based
metric for different deployment alternatives allows microservice application
operators to choose the best alternative easily.

As the determination of the Domain-based metric comprises multiple load
tests, we can use the BDLT language for easing the experimentation process.
Precisely, we can utilize our context-tailoring approach for extracting the
relevant workload scenarios, BenchFlow for executing the load tests for dif-
ferent deployment alternatives, and the BDLT language as a shared interface.
Hence, the BDLT language enables a high degree of automation and high
understandability for non-experts in addition.
In the following, we introduce the details of the scalability assessment

approach with the Domain-based metric and describe how to leverage the
BDLT language for these experiments. In the evaluation (Chapter 15), we
will furthermore investigate the expressiveness of the BDLT language for the
experiments we already have executed in our previous work.
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Figure 9.8.: Overview of the Domain-based metric calculation (based on
Avritzer et al., 2020a).

9.3.1. Assessing the Scalability with the Domain-based Metric

The goal of the Domain-basedmetric is to rate the scalability of a microservice
deployment alternative. Given a set of deployment alternatives and collected
production workload (operational profile), we execute several load tests per
alternative for calculating the metric for each of them. Then, we provide
a comparison for recommending an optimal deployment configuration. As
depicted in Figure 9.8, the Domain-based metric calculation comprises four
steps, which we describe in the following.

9.3.1.1. Analysis of Operational Data

In the first step, we analyze the production workload and extract relevant
test cases. For that, we treat each point of time of the workload as a work-
load situation characterized by a specific metric, e.g., the number of users.
Compared to our previously used terminology, a workload situation equals
a steady-state workload scenario. As we cannot execute a load test for all
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identified workload situations, we aggregate them into k bins. As a result,
we yield the empirical workload distribution represented by k workload
situations with a frequency of occurrence in the production workload. The
frequencies we will use for weighting the test results.

9.3.1.2. Experiment Generation

The second step is the generation of the experiments to be executed. Each of
them consists of a load test replaying a workload situation and an architec-
tural configuration. Hence, we cross-join the workload situations extracted in
the first step with the set of deployment alternatives. For instance, given we
have obtained ten workload situations and need to analyze three deployment
alternatives, we generate 30 experiments.

9.3.1.3. Baseline Computation

The Domain-based metric is composed of the ratio of requests made during
the load tests that passed a particular criterion. The criterion is based on a
target metric— in our previous work, we have used the response time—and
a baseline value per endpoint called by the load tests. For determining the
baseline, we execute the first experiment with a low workload, e.g., two
users, and assess the mean and standard deviation of the target metric per
endpoint. Then, we define the per-endpoint baseline value as the mean
plus three times the standard deviation. For the actual experiments, we
will compare the mean target metric value with the baseline and mark the
endpoint to pass if its mean value is below the baseline or to fail, otherwise.
We presume that higher workload will stress the system more, such that
the target metric’s value increases, which is especially valid for performance
metrics like the response time.

9.3.1.4. Experiment Execution

The fourth and final step is the execution of the experiments. We utilize
BenchFlow for executing all of them and retrieving the target metric per
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experiment and endpoint. Then, we evaluate the pass/fail criterion and
calculate the Domain-based metric per deployment alternative. For each
alternative, we proceed as follows. Let � j be the fraction of requests to
the j-th endpoint among all requests and c j be the pass/fail criterion per
endpoint and experiment, i.e.,

c j =

®
1, endpoint j passes
0, endpoint j fails

Given the SUT consists of microservices with n endpoints overall, we define
the fraction ŝ(�) of passed requests for the workload situation � as below.

ŝ(�) =
nX

j=1

� j c j

Finally, we calculate the Domain-based metric as the sum of fractions ŝ(�)
for all workload situations �1, . . . ,�z weighted with the respective frequency
of occurrence p(�i) (see the first step):

D(↵, S) =
zX

i=1

p(�i) ŝ(�i) (9.1)

Here, ↵ stands for the deployment alternative and S for the test suite con-
sisting of the workload situations.

For visualizing and comparing the Domain-based metric per deployment
alternative, we further introduce a specific plot. We define the Domain-based
metric per workload situation as below.

D(↵, S, i) = p(�i) ŝ(�i)

Hence, D(↵, S) (Equation (9.1)) is the sum of all D(↵, S, i). Then, we generate
a plot as the final output of the Domain-metric calculation, as in Figure 9.9.
It consists of the maximum metric value, i.e., p(�i), visualized as an outer
polygon. Besides, it holds one polygon per deployment alternative. The
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Figure 9.9.: Exemplary Domain-based metric plot (based on Avritzer et al.,
2020a). The outer polygon is the maximum metric value per
workload situation �i .

example figure shows the Domain-based metric for two deployment alter-
natives with different numbers of instances of a particular microservice. It
illustrates that a single instance is better suited for handling lower workloads,
while two instances are preferable for high workloads.

9.3.2. Expressing Scalability Experiments with the BDLT Language

Even though the scalability assessment with the Domain-based metric pro-
vides a high degree of automation, it still requires expert knowledge. For
instance, users have to deal with the production workload, which is an input
to the assessment process. Using the BDLT language, we can add another
abstraction layer, which provides the users with an easy-to-understand inter-
face. Namely, a user can assess the scalability of a microservice application
using the template shown in Listing 9.6.

Given such a BDLT definition, our context-tailoring approach will automat-
ically select the relevant workload—e.g., the last half-year—and extract

9.3 | Use Case: Scalability Assessment 243



Given [a workload time range],
2 when varying the number of users between the minimum and the maximum

in steps of [step size],
4 and varying [certain configurations]
then collect the Domain�based metric.

Listing 9.6: BDLT template for scalability assessment.

all workload situations with the specified step size. The result is an em-
pirical distribution of workload situations as output by the first step of the
Domain-metric calculation process. Then, these workload situations are
automatically forwarded to BenchFlow, which executes the corresponding
load tests for all specified configurations. These configurations correspond
to the deployment alternatives.
The only extension we need to add to the original BDLT approach is a

custom data collector that computes the Domain-based metric. For that, we
can utilize the extension mechanism of BenchFlow, which allows implement-
ing and adding such custom collectors. By connecting the collector with the
Domain-based metric keyword, BenchFlow calculates and returns the metric
automatically.

9.4. Summary

In this chapter, we introduced the Behavior-driven Load Testing (BDLT)
language, which allows non-experts to express load tests. For that, a BDLT
definition is readable in natural language, consisting of the given, when, and
then clauses known from Behavior-driven Development (North, 2006). For
generating and executing a defined load test automatically, we leverage our
approaches introduced in Chapters 6 to 8 and the experiment automation
framework BenchFlow (Ferme and Pautasso, 2018).
While the BDLT language is less expressive than the LCtL introduced

Chapter 8—which we use as an intermediate artifact in the BDLT process—,
it is less technical and easier to understand. Still, it can be used for expressing
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complex load testing tasks such as the scalability assessment of different
deployment alternatives of a microservice application. Besides, it integrates
the load test execution, which is out of the scope of the LCtL. Hence, we
presume the BDLT language to bemore usable for non-experts. For evaluating
the usefulness and expressiveness in industrial and laboratory contexts, we
present two case studies in Chapter 15.
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For evaluation purposes, we implemented a prototype of our approach as
part of the ContinuITy (2020) project. Besides the approach presented in the
previous chapters, we also developed services that extend interoperability or
support experimentation. The source code is available in different reposito-
ries on GitHub, as specified below. Besides, we deliver all services as Docker
(Docker Inc., 2020) containers on DockerHub (H. Schulz, 2020d). In the
following, we provide an overview of the implementations. Section 10.1
focuses on our core approach, while Section 10.2 describes the additional
implementations.

10.1. Approach Implementation

We have implemented our approach—which we introduced in Chapters 6
to 9— in a framework with an extensible service architecture. It allows
for automated generation of tailored load tests, and we have used it in our
evaluation. Multiple services provide different features for load test genera-
tion, such as parameterization management (see Chapter 6), incremental
workload model learning (see Chapter 8), and automated extraction of a
load test from this workload model (see Chapters 7 and 8). The services
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are implemented in Java (Arnold et al., 2005), Python 2 (Van Rossum and
Drake Jr, 1995), and R (R Core Team, 2019); for technology-independent
communication, we base upon the Advanced Message Queuing Protocol
(AMQP) and Representational State Transfer (REST) over the Hypertext
Transfer Protocol (HTTP). We provide the source code of the services online
(H. Schulz, 2020a; H. Schulz et al., 2020a; H. Schulz and Dang, 2020).

In the remainder of this section, we detail the service architecture, provide
an overview of the available services, introduce a command-line interface
(CLI) for interacting with our framework, and describe its essential processes.

10.1.1. Extensible Service Architecture

Our implementation consists of multiple services, each providing a specific
functionality required for generating tailored load tests. Figure 10.1 illus-
trates their architecture. The Orchestrator constitutes the API gateway for
the users. They can interact with the service via REST, and the Orchestrator
will then orchestrate further services if required. Cobra is responsible for
incremental workload model learning and preparation of a context-tailored
workload model—as described in Chapter 8. For that, it utilizes the services
Forecastic and Clustinator. The IDPA service manages Input Data and Prop-
erties Annotation (IDPA) instances. Finally, multiple services are responsible
for transforming workload models into load tests— such as WESSBAS—or
parameterizing and executing load tests— such as BenchFlow and JMeter.

The services communicate via REST and RabbitMQ (Pivotal Software, Inc.,
2020[a]), which is an implementation of AMQP. For abstracting from IP
addresses or hostnames and for dynamic service discovery, all services need
to register at a central Eureka (Netflix, Inc., 2012) service. Besides, there are
global message queues, at which the services can register using their name
and type of artifact they generate as routing key. Hence, users can state which
services to use, and the Orchestrator can consider the respective services for,
e.g., generating a load test. As a result, several services are interchangeable,
allowing for extending our framework efficiently. For instance, for using a
specific load testing tool, such as Gatling (Gatling Corp, 2020), a service
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Figure 10.1.: Overview of the service architecture (H. Schulz et al., 2020a).
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that transforms workload models into Gatling load tests can be added by
registering it at Eureka and the corresponding message queue.
Some essential services, however, are the Orchestrator, Cobra (including

its helper services), and IDPA, because they implement specific parts of our
approach. For instance, users can upload monitored requests or sessions
for the incremental workload model learning 1�, which the Cobra service
processes. The IDPA service receives and stores IDPAs a user uploads 2�. The
Orchestrator receives orders from a user 3�, orchestrates the other services
for processing the orders, and allows the user to retrieve the orders’ results 4�.
In the following sections, we describe these processes in more detail.

10.1.2. Available Services

The following list provides an overview of all services that are currently
available. If not stated otherwise, the services are implemented in Java
using the Spring Boot (Pivotal Software, Inc., 2020[b]) framework. All
services with a REST API provide an OpenAPI (OpenAPI Initiative, 2020)
specification. Not listed explicitly, there are also a Eureka and a RabbitMQ
management service. Besides, we provide a CLI, which a user can execute
locally and which we describe in the next section.

Orchestrator: As mentioned previously, the Orchestrator constitutes the API
gateway and orchestrates the other services. Furthermore, it manages
service configurations, which a user can define. Besides Spring Boot,
it uses the Zuul (Netflix, Inc., 2013) application gateway.

IDPA: The IDPA service stores IDPAs (see Chapter 6), which users upload,
and allows other services to retrieve them.

Cobra: This service is the start of most load test generations, as it prepares
the initial data. It implements the context-tailoring (see Chapter 8),
including the incremental session clustering. Also, it implements the
log-based service-tailoring (see Section 7.4). It employs Forecastic and
Clustinator as helper services and an Elasticsearch (Elasticsearch B.V.,
2020) instance for storing workload models, intensities, and contexts.
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Forecastic: Forecastic is implemented in R and aids Cobra in forecasting
workload intensities. We have chosen R, because it provides forecasting
tools, such as Telescope (Bauer et al., 2020) and Prophet (Taylor and
Letham, 2018), as libraries. The service is triggered by Cobra via REST
and accesses the intensities stored in Elasticsearch.

Clustinator: For clustering sessions incrementally, we provide the Clusti-
nator service. It is implemented in Python, as this language provides
the powerful scikit-learn (Pedregosa et al., 2011) library. It accesses
Elasticsearch for retrieving sessions and storing clustering results, and
it is triggered via an asynchronous message queue.

WESSBAS: TheWESSBAS service is a workloadmodel service and awrapper
around the WESSBAS approach (Vögele et al., 2018). It can extract
WESSBAS-DSL instances from sessions and transform these instances
into load tests. Here, we also implemented the model-based service
tailoring (see Section 7.5).

RequestRates: This service is an alternative to WESSBAS and extracts and
transforms request-based workload models. We use it in Chapter 13
for generating baselines of service-tailored load tests.

BenchFlow: BenchFlow (Ferme and Pautasso, 2018) is a load test automa-
tion framework, as described in Section 4.4.2. This service generates
parameterized instances of the BenchFlow DSL, which then can be
executed by BenchFlow.

JMeter: As an alternative to BenchFlow, we provide the JMeter service. It
parameterizes JMeter (Apache Software Foundation, 2020[a]) load
tests, which it receives from a workload model service. Also, it can
execute the load tests and return the tests’ results.

10.1.3. Command-line Interface

For suitable interaction with the framework, we provide a CLI, which we have
implemented using Spring Shell (Pivotal Software, Inc., 2020[c]). Users
can execute the CLI locally, submit commands to the CLI, which will then
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1 continuity:> app� i d myapp
continuity (myapp@latest):> v e r s i o n v1

3

continuity (myapp@v1):> idpa
5 continuity/idpa (myapp@v1):> open
Opened the IDPA application model with app -id myapp

7 Opened the IDPA annotation with app -id myapp
continuity/idpa (myapp@v1):> app upload

9 Successfully uploaded application models for app -ids
[myapp]: (details omitted)

continuity/idpa (myapp@v1):> . .
11

continuity (myapp@v1):> order
13 continuity/order (myapp@v1):> c r e a t e

Created and opened a new order.
15 continuity/order (myapp@v1):> submit

There is no jmeter service available to produce a
load -test!

17 continuity/order (myapp@v1):> submit
Submitted the order , order ID is myapp�1. For further

actions: (details omitted)
19 continuity/order (myapp@v1):> wai t

---
21 order -id: myapp -1

number: 1
23 max: 1

successful: true
25 artifacts:

intensity: cobra/intensitiy/myapp -1
27 app -id: myapp

behavior -model:
29 type: markov -chain

link: cobra/behavior -model/myapp/all/latest?
before =1536537600000

31

continuity/order (myapp@v1):> ge t behavior -model

Listing 10.1: Exemplary interaction with the CLI. Statements following the
continuity:> prompt are user inputs, while all other lines
are output by the CLI.
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forward requests to the REST API of the Orchestrator. Listing 10.1 illustrates
such an interaction between a user and the CLI. The user first defines an
app-id and version, which identify the application they aim to test. Then, they
edit the IDPA of this application (lines 4ff), create and submit an order for
load test generation (lines 12ff), and retrieve the created artifact (line 32).
The CLI is structured hierarchically, corresponding to the processes that

the framework supports, which we detail in the next section. For instance,
the idpa command switches to the corresponding process (line 4), for
viewing, editing, and updating IDPAs. Similarly, users can switch to the
order process (line 12), where they can trigger the generation of load tests
or other artifacts. For switching to the parent process, the .. command can
be used (line 10).
The CLI also provides auto-completion of the commands and sends feed-

back to the user. For instance, when an error occurs, the user receives an
error message (line 16). The help command shows a list of all available
commands or explains specific commands.

10.1.4. Essential Processes

The framework implements three essential processes, which users can apply
for generating tailored load tests. First, they can manage, i.e., store and
update, IDPAs for load test parameterization. Second, they can upload
monitored requests or traces, which our framework clusters incrementally.
Third, users can submit orders for generating tailored load tests or other
artifacts. In the following, we describe these processes.

10.1.4.1. Parameterization Management

The first step a user should do when using our framework is the definition
of an IDPA for the application they want to test. The framework will use this
IDPA for labeling requests and parameterizing the generated load tests. For
that, users can utilize the CLI, as illustrated in Listing 10.1, which uploads
the IDPA application and annotation models to the respective endpoints of
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the IDPA service ( 2� in Figure 10.1). Other services can then request these
artifacts from the IDPA service.
For easing the creation and updating of IDPAs, we provide means for

generating application models from OpenAPI specifications, as described in
Section 6.5.1. Also, users can generate empty annotation templates with
a single command. We demonstrate these mechanisms in detail online
(H. Schulz, 2019).

The IDPA management in a dedicated service is especially valuable for
evaluation purposes. For integration with continuous software engineering
(CSE), as described in Section 6.6, using a source code repository, such as
Git, would be a suitable alternative. However, the IDPA service can also be
synchronized with a source code repository via the REST API.

10.1.4.2. Incremental Workload Model Learning

The Cobra service is responsible for the incremental workloadmodel learning,
which we describe in Section 8.4. Users can upload requests or traces,
from which the framework extracts sessions, via a REST endpoint of the
Orchestrator ( 1� in Figure 10.1). Because the processing of the uploaded
data can be long-lasting, the Orchestrator forwards the data asynchronously
to the Cobra service via a dedicated message queue (X b in the figure).
Cobra then retrieves the required IDPA application model from the IDPA
service, extracts and labels the requests (see Section 6.5.2)—applying log-
based service-tailoring (see Section 7.4) if configured—, and groups the
labeled requests into sessions. It stores the sessions into Elasticsearch and
sends an asynchronous message to Clustinator, which clusters the sessions
incrementally. Finally, Clustinator reports back to Cobra, which calculates
the per-group intensities and stores them into Elasticsearch.
The Cobra service accepts multiple data formats. First, requests can be

uploaded in the Apache common log format (Apache Software Foundation,
2020[c]). As many web servers use this format for request logging, the
format covers many use cases. For more generic use cases, Cobra can also
parse comma-separated values (CSV) files with predefined column names
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and one request per row. Third, Cobra can process session logs in the format
used by the WESSBAS approach (Vögele et al., 2018). Finally, users can up-
load traces—which are required for service-tailoring— in the OPEN.xtrace
(Okanović et al., 2016) format. For integration with standard application
performance management (APM) tooling, we also provide a transformation
from Zipkin (Zipkin, 2020) traces to OPEN.xtrace (see Section 10.2.1).

For adding contexts to the learned intensities, the Cobra service provides
a REST API that accepts context records (see Section 8.4.2). These records
are added to the stored intensity values, which allows querying intensities
based on context definitions. Uploading contexts is synchronous because it
does not require long-lasting processing.

10.1.4.3. Orchestration of Load Test Generation

The most extensive process is the generation of a load test. Instead of a
load test, a user can also generate intermediate artifacts, such as a workload
model. For that, they need to define an order containing the type of artifact
to be generated, the tested application’s app-id and version, a list of services
for the service-tailoring, a Load Test Context-tailoring Language (LCtL)
instance, and the services the framework should use for generating the
artifact. Optionally, an order can also contain links to artifacts from previous
generations, which the framework reuses. The CLI supports the user in the
creation and submission of an order, as illustrated in Listing 10.1.
When the Orchestrator receives an order via a POST request ( 3� in Fig-

ure 10.1), it confirms the reception and processes the order asynchronously.
The confirmation message contains a link, which the user can request for
checking the processing status ( 4� in the figure). Then, the Orchestrator dy-
namically determines the services to invoke. Precisely, it applies the following
steps.

1. Creation of a recipe: Essentially, the generation of a load test is a series
of transformations. Each service registers at Eureka with the artifacts
it can produce and those it needs as an input. Hence, based on the
registered services, the target artifact, and the services specified in the
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order, the Orchestrator computes the recipe as a list of tasks. Each task
defines the (intermediate) artifact to be created and the service that
should perform the transformation. As an example, the default recipe
for generating a load test is a transformation of the stored sessions
into a behavior model by Cobra, followed by a transformation into
a workload model by WESSBAS, followed by a transformation into a
parameterized load test by JMeter.

2. Checking available artifacts: If the order contains previously generated
artifacts, the Orchestrator checks whether they can be reused. For
instance, if a WESSBAS workload model is specified, the generation
only requires a transformation to a load test, and the Orchestrator
skips the other transformations.

3. Sending tasks to services: Next, the Orchestrator processes the first task
of the recipe by sending a message to the global message queue with
name continuity.taks.global.create. The routing key is a combination of
the invoked service’s name and the type of artifact to be created. Also,
it sends links to the available artifacts, which the invoked service can
retrieve. This prevents unnecessary sending of large artifacts.

4. Handling finished tasks: After the invoked service has finished the
transformation, it publishes an event to the message queue with name
continuity.event.global.finished. Hence, the Orchestrator can react and
decide about the next steps. Considering the recipe, it decides whether
the target artifact has been created— in this case, it sends a report to
the user—or whether further tasks need to be sent to services.

5. Reporting failures: Individual services may fail to perform their trans-
formation. As we explicitly designed the framework for evaluation
purposes, we make failures explicit rather than applying failover mech-
anisms, such as typically applied in microservice applications (Newman,
2015). On failures, the services send messages to a dedicated queue.
The Orchestrator reacts to these messages by stopping the recipe and
reporting the failure to the user.
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6. Sending a report to the user: When the recipe is processed entirely—or
aborted due to failure— the Orchestrator sends a report to a message
queue (Xa in the figure). The user can then retrieve the report via the
link they have received when submitting the order ( 4� in the figure).

10.2. Additional Implementations

In the following sections, we describe further services we have implemented
for experimentation purposes or better integration with common formats.
These are a service that converts Zipkin traces into the OPEN.xtrace format
and a service that mocks a system under test (SUT).

10.2.1. Zipkin to OPEN.xtrace Converter Service

Zipkin (Zipkin, 2020) is widely used for open-source APM and can, among
other data, collect traces. It conforms toOpenTracing (2020) andOpenCensus
(2020), which are open standards for trace collection. Hence, being able
to process the traces that Zipkin collects enables the integration with many
application setups. Therefore, we have implemented a converter service.
This service integrates with the framework described in the previous

section as a proxy. It is implemented in Java using Spring Boot, and its
source code is available on GitHub (H. Schulz, 2020c). It needs to be
configured with the IP address or hostname of a Zipkin server, from which
it can retrieve traces. Furthermore, it provides an endpoint for retrieving
traces in the OPEN.xtrace (Okanović et al., 2016) format, which it serves
by requesting traces from the Zipkin server and transforming them. Hence,
when uploading traces to the framework, users can define a link to the
endpoint of the converter service, which will automatically transform the
Zipkin traces into a format the framework can process.

10.2.2. System under Test Mock

For experimentation, we have implemented a service that mocks an SUT
during the execution of a load test. It is written in Java using Spring Boot,
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with the source code being available on GitHub (H. Schulz, 2020b). The
service responds to all HTTP requests it receives and logs them. It buffers
the requests in a queue, and consumer threads write the requests to local
files asynchronously. For performance reasons, requests that do not fit
into the queue are discarded and responded with a 500 error status code.
Furthermore, the service provides endpoints for retrieving all logged requests
and restarting the service. Hence, experiment automation scripts can execute
multiple load tests in a row, while restarting the SUT mock remotely. The
restarts ensure a clean environment for every test execution.

10.3. Summary

This chapter describes the implementation of our approach, which covers
the concepts presented in the previous chapters. The implementation has
an extensible architecture that allows adding further services with further
functionality, e.g., the transformation of workload models to specific load
test formats. Also, we have implemented services for transforming traces into
a standard format and for mocking SUTs. We have used the implementation
in our evaluation, which we provide in Part III.
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We have introduced our approach in the previous part, consisting of auto-
mated load test parameterization, service-tailoring, context-tailoring, and
integration with BenchFlow (Ferme and Pautasso, 2018) addressing non-
experts. In the following, we provide an extensive evaluation of all four parts.
It is structured according to the work packages and approach parts. This
chapter provides an overview of the studies (Section 11.1) and introduces
the evaluation metrics (Section 11.2).

11.1. Overview of Evaluation

Overall, we have conducted twelve studies with ten different subjects. Ta-
ble 11.1 provides an overview. As shown in the table, we have evaluated each
work package separately. In this section, we summarize the evaluation per
work package and highlight results. Chapters 12 to 15 provide precise eval-
uation methods, results, and discussions. For study replication, we provide
supplementary material online (see Appendix E).
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Table 11.1.: Overview of Studies Conducted
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WP1—Load Test Parameterization

Effort estimation models 12.1 • •
Neuxs (Sonatype, Inc., 2013) 12.2 • •
Heat Clinic (Broadleaf Com-
merce, LLC, 2017) 12.3 • •
Four industrial projects 12.4 • •

WP2—Service-tailoring

– 13.1 •
Sock Shop (Weaveworks, Inc.,
2020) 13.2 • • •

WP3—Context-tailoring

SIS of Charles University, Prague
(Maňásek and Tůma, 2019)

14.2 • •
14.3 • • •
14.4 • •
14.5 • •

WP4—Load Testing for Non-experts

Project partner 15.1 • •
Avritzer et al. (2018, 2020a) 15.2 � • � •

• primary method/scale � study basis
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11.1.1. WP1 — Load Test Parameterization

The evaluation of WP1 addresses RQ1: How can load test parameterizations
be evolved without manual intervention at test generation or execution time?
We derived effort estimation models, conducted two experimental studies
to assess the representativeness of generated load tests, and performed an
industrial case study to assess the expressiveness of the Input Data and
Properties Annotation (IDPA).

Our results show that our approach is a suitable answer to RQ1. Separating
parameterizations from generated workload models or load tests with an
IDPA does not require manual intervention at test generation or execution
time, because all parameterizations can be defined in advance. Besides, our
approach reduces themaintenance effort from a quadratic to a linear function
of time. Simultaneously, the representativeness of load tests parameterized
with an IDPA is high, especially for session-dominated workloads. Session-
dominated means that the order and timing of requests within a session
are more relevant to the SUT than the requests’ payloads. Also, due to its
extensibility, the IDPA can express various parameterizations required by
industrial projects.
We present the evaluation in Chapter 12.

11.1.2. WP2 — Service-tailoring

The evaluation of WP2 addresses RQ2: How can representative load tests
be tailored to specific services of a session-based application? The studies we
conducted are a correctness proof of the log-based and model-based service-
tailoring algorithms we introduced in Chapter 7 and an experimental study
for assessing quantitative and qualitative differences.
We found both algorithms to generate representative service-tailored

load tests with differences in several aspects. In a nutshell, the model-
based algorithm generates slightly more representative load tests, while
the load tests of the log-based algorithm are smaller, i.e., scale better with
an increasing number of endpoints. For integration with context-tailoring,
model-based service-tailoring is preferable because it can tailor load tests
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on-demand, while log-based service-tailoring needs to be configured before
learning the workload models. However, the model-based algorithm needs
to approximate think time distributions, which should be resolved in future
work.

Chapter 13 provides the evaluation.

11.1.3. WP3 — Context-tailoring

The evaluation of WP3 addresses RQ3: How can representative load tests
automatically be tailored to the contexts of a session-based workload? The
evaluation bases upon a publicly available dataset of the student information
system (SIS) of Charles University, Prague (Maňásek and Tůma, 2019). We
analyzed the workload models we incrementally learned using our approach,
conducted a case study for expressiveness evaluation, which also included
an expert survey, and performed two series of experiments to evaluate the
representativeness of workload scenarios predicted with perfect and real
forecasting.
Generally, we assess the overall framework of our approach, which com-

prises incremental workload model learning and on-demand load test gen-
eration based on the Load Test Context-tailoring Language (LCtL), to be
suitable for context-tailored representative load testing. Notably, the clus-
tering into user groups and the use of contexts significantly improve the
representativeness of generated load tests compared to predicting the total
number of users without considering contexts. However, we also identified
limitations of existing work we have leveraged, especially regarding pre-
dictions of sharp spikes. Future work needs to address this issue, e.g., by
integrating think times into the session clustering—which we presume to
increase the accuracy of the learned workload models during spikes—and
by extending forecasting tools for predicting the shapes of spikes instead of
only the height.
The evaluation of WP3 is presented in Chapter 14.
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11.1.4. WP4 — Load Testing for Non-experts

The evaluation of WP4 addresses RQ4: How can we leverage automated
tailored load test generation and automated load test execution for enabling
load testing for non-experts? In two case studies, we evaluated the suitability
of our approach for industrial and laboratory use cases.
The case studies show that our Behavior-driven Load Testing (BDLT)

approach, which integrates our load test tailoring with the BenchFlow test
execution by Ferme and Pautasso (2018), has multiple use cases in industrial
and laboratory contexts. The industrial case study participants rated the
easy-to-understand load test descriptions and the high degree of automation
positively. We also found that the BDLT language encourages collaboration—
e.g., when identifying relevant load test scenarios—, which is beneficial
even without automated test generation or execution. We conclude that the
BDLT approach allows non-experts, such as product owners, to perform load
testing or at least actively participate in it. An important lesson we learned
is the requirement for customizable load tests, which the BDLT language
provides via extension mechanisms. In the laboratory context, we mainly
found the integration of load test generation and execution to be useful, e.g.,
for microservice scalability assessment.
We present the case studies in Chapter 15.

11.2. Metrics

In our evaluation, we utilize several metrics for assessing different properties
of generated load tests. This section summarizes these metrics. It contains
a metric that can be used for determining the manual effort required for
maintaining load tests (Section 11.2.1), five metrics describing different
aspects of the representativeness of a workload based on request and ses-
sion characteristics (Sections 11.2.2 to 11.2.6), and a metric defining the
minimum required test execution duration (Section 11.2.7).

The following sections are revised versions of the below publications as follows:
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• Sections 11.2.1 and 11.2.2: H. Schulz, A. van Hoorn, and A. Wert
(2020c). “Reducing the Maintenance Effort for Parameterization of
Representative Load Tests Using Annotations.” In: Journal of Software
Testing, Verification and Reliability 30.1, Section 5.2

• Sections 11.2.5 and 11.2.7: H. Schulz, T. Angerstein, D. Okanović, and
A. van Hoorn (2019a). “Microservice-tailored Generation of Session-
based Workload Models for Representative Load Testing.” In: Proceed-
ings of the 27th IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS
2019). IEEE Computer Society, pp. 323–335, Section 5.C

• Sections 11.2.3, 11.2.4, and 11.2.6: H. Schulz, D. Okanović, A. van Hoorn,
and P. Tůma (2021). “Context-tailored Workload Model Generation
for Continuous Representative Load Testing.” In: Proceedings of the
12th ACM/SPEC International Conference on Performance Engineering
(ICPE 2021). To appear. ACM, Section 5.B

11.2.1. Maintenance Effort for Parameterization

To measure the maintenance effort required for creating and evolving load
test parameterizations, we introduce a metric ✓ . It is based on the change
types defined in Section 6.4.2 and summarizes the effort for applying changes
to individual elements. Even though the change types refer to elements of
an IDPA, we presume we also can apply it to manually parameterized load
tests, because the same logical operations are done. This presumption is
especially valid as we only use the metric for qualitative comparison.

Each change c = (tc , oc , kc) consists of the changed element’s type tc , the
change operation oc 2 {A, C,R} denoting add, change, and remove opera-
tions, and the number of changes kc of that type and operation. The types
of possibly changed elements are EndpointAnnotation, ParameterAn-
notation, and subtypes of Input. We denote the effort introduced by one
change as �(tc , oc). Hence, �(tc , oc) depends on the complexity of applying
a particular operation to a particular IDPA element type. Given C holds all
changes introduced to an IDPA, we can express the resulting formula for the
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overall effort metric as follows:

✓ (C) =
X

c2C

kc · �(tc , oc) (11.1)

Calculating precise values for ✓—e.g., measured in person-hours— requires
extensive empirical studies for determining the precise values of �(tc , oc).
This is out of the scope of this dissertation, and we leave it for future work.
Instead, we still can use the metric for qualitative comparisons. In doing so,
we consider the �(tc , oc) as abstract but constant variables, based on which
we derive formulas describing the asymptotic effort. The results of empirical
studies can then be used to parameterize the formulas and compute precise
values.

11.2.2. Representativeness of Parameterized Load Tests

In our evaluation, we need to assess the representativeness (see Section 3.2.3)
of a generated load test compared to a reference workload. In the cases
where we want to evaluate our approach to automated parameterization (see
Chapter 6), we need to pay special attention to the mix of called endpoints
and their responses. For that, we introduce a metric ⇢ comparing the
measurements of the load test execution with a reference measurement. The
closer the load test measurement is to the reference measurement, the better
is the value of ⇢.
We designed ⇢ to have the following characteristics.

1. ⇢ has an optimum at 0, i.e., smaller values indicate better representa-
tiveness.

2. ⇢ can be used to compare multiple load test executions with the same
reference, each resulting in one scalar value.

3. ⇢ is based on the request rates per endpoint.

4. Because wrong input data often lead to HTTP error response codes
(e.g., 400 or 500), the metric accounts for that.
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5. ⇢ considers the percental deviation of the request rates to all endpoints
equally,

6. except for minimal request rates, which have a lower impact on the
metric value, because high percental deviations are likely in this case.

7. ⇢ accounts for workload deviations over time, i.e., while the request
rates and response codes might be met well in summary after the
whole test, there can be more considerable differences during some
periods.

To calculate the metric value, we consider endpoints ei of the system under
test (SUT) and the respective request rates xi,c to endpoint ei with response
code c, e.g., c 2 {200, 302,400, 500}. For further calculations, we arrange
the request rates in matrix X(·) := (xi,c). For instance, a part of the matrix
resulting from one of our experiments is the following.

200 302 400 5000
@

1
A

ehome 81.3 0 0 0
eadd 49.4 1.5 0 0

elogout 0 70.2 0 0

(11.2)

In the following, let Xref be the reference measurement. Let Xgen further-
more be the measurement of a generated load test execution. The Frobenius
distance

��Xref � Xgen

��
F
constitutes a metric conforming characteristic 1 to

4. To meet characteristic 5 as well, we normalize the measurements with a
matrix

N := diag(Xref · 1)�1, 1= (1, . . . , 1)T (11.3)

To meet characteristic 6— i.e., reduced impact of small request rates—,
we introduce a weight function for the request rates. We want to have low
weights on low request rates and high weights on high request rates with an
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asymptotic value of 1. Therefore, we use the logistic function

w(x) =
1

1+ e�kx

Ä
1

w(0) � 1
ä (11.4)

To determine the steepness k, we define values of w. We define w(0) := 0.01
and, because we only want to have low weights on the lowest request rates,
w(10) := 0.9. These values result in k = 0.6792. For x = (x1, . . . , xn)T , we
define w(x ) := (w(x1), . . . , w(xn))

T and obtain a weight matrix:

W := diag(w(Xref · 1)), 1= (1, . . . , 1)T (11.5)

Then, we define the representativeness metric ⇢ for the measurement
Xgen of a generated load test as

⇢(Xgen) :=
��N ·W · (Xref � Xgen)

��
F

(11.6)

Finally, for accounting for the factor of time as requested by characteristic 7,
we will consider the metric for a small unit of time like one minute and
calculate the cumulative sum as an overall measure for the whole test. For
distinguishing between them, we use ⇢ as a symbol for the per-minute
representativeness and abbreviate the cumulative sum with

P
⇢.

To obtain an SUT-specific metric baseline, we execute one load test p

times and retrieve measurements X j , j = 1, . . . , p. Then, we calculate ⇢(X j),
j � 2 per minute using X1 as the reference. We calculate the mean µ⇢ and
standard deviation �⇢ from the resulting measures and use µ⇢ ± 3�⇢ as a
baseline. tµ⇢ ± 3

q
t2�2

⇢ defines a baseline for
P
⇢ after t minutes.

11.2.3. Representativeness of Request Mixes

The ⇢ metric introduced in the previous section considers both the total
request rates and the request mix, i.e., the relative frequencies of the end-
points called. However, there are cases where we are interested in the total
request rates and request mix separately. Therefore, we define the ⇢ metric,
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which has the same characteristics as ⇢, except for characteristic 3, which
we replace with, ⇢ is based on the relative frequencies per endpoint called.

For calculating the metric, we apply a slightly modified version of Equa-
tion (11.6). Let X gen/ref := Xgen/ref/kXgen/refk1 be the request mixes of the
test execution and the reference. Let furthermore N := diag(X ref · 1)�1 be
the normalization matrix. Then, ⇢ is calculated as below. Remarkably, the
weight matrix W is similar to Equation (11.6), i.e., it is calculated based on
the absolute request rates.

⇢(Xgen) :=
��N ·W · (X ref � X gen)

��
F

(11.7)

11.2.4. Request Gap

For an isolated assessment of the representativeness of the total request rate,
we introduce the request gap. Given the number xgen of requests submitted
by a load test and the number xref of requests of a reference workload, we
define the absolute request gap as |xgen � xref|. For a single test execution,
we calculate the cumulative absolute request gap per small time unit, e.g.,
per minute. For comparing multiple executions with each other, we utilize
the relative average request gap per small time unit. Similar to the ⇢ metric,
we can calculate a baseline from multiple executions of the same load test.
This baseline describes the normal request gap variation.

11.2.5. Representativeness of Microservice Workloads

Measuring the representativeness of a session-based workload arriving at a
microservice requires a specific metric. While we can characterize the user
sessions for examining a user-faced service, other services receive requests
not explicitly bundled in sessions. Thus, we cannot use session information
for a representativeness metric. However, we still want to cover variations in
the workload stemming from the overlay of several user sessions. Therefore,
we use the arrival rate of requests or its reciprocal, the inter-arrival time.
Similar to the ⇢ metric (see Section 11.2.2), we consider a reference and a
generated workload. The metric is a distance between the two workloads.
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Given we collected two samples Xref,e and Xgen,e of inter-arrival times
for an endpoint e for the reference and generated workload, we calculate
the Kolomogorov-Smirnov statistic De for the significance level ↵. De is a
measure for the distance of the inter-arrival time distribution for e. The
Kolmogorov-Smirnov test rejects a null hypothesis H0 : FXgen,e

(x) = FXref,e
(x)

if the following holds for the critical value c(↵) (Massey Jr., 1951):

De > c(↵) ·
vut |Xref,e|+ |Xgen,e|
|Xref,e| · |Xgen,e|

Hence, we yield an aggregate measure for all endpoints E involved in one
load test by calculating the weighted average of the De:

D :=
1
|E |

X

e2E
De ·

vut |Xref,e| · |Xgen,e|
|Xref,e|+ |Xgen,e|

We name D the workload distance and use it as representativeness measure
in evaluations with microservice applications.

11.2.6. Session Length and Duration

Assessing the representativeness of session-based workloads should not only
consider the requests but also characteristics of the sessions. We reuse the
session length and session duration metrics from existing work (Vögele et al.,
2018). The session length is the number of requests submitted in one session,
while the session duration describes the time elapsed between the first and
last request of a session.
For aggregating the individual session lengths or durations to a measure

for the overall test execution, we use the Kolmogorov-Smirnov statistic. For
inter-test comparison, we normalize it in the same way as in the previous
section. Notably, Vögele et al. (2018) have found load tests with Markov-
chain-based workload models to generate sessions that tend to be longer
than real sessions.
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11.2.7. Load Test Duration

One aspect of a load test or performance test, in general, is the time it needs
to be executed. Existing works decide whether to stop a test by detecting a
stable state of performance measures at runtime (Alghamdi et al., 2016).
Here, we follow a similar approach.

Presuming a steady-state load, aggregate measures such as the median re-
sponse time at test end are of interest for performance evaluation. Therefore,
we determine the required test duration by comparing the median response
time calculated at a particular timestamp with the final value. Given a
sample of median response times (x (e)1 , . . . , x

(e)
n
) per time unit—e.g., one

second— for endpoint e, we calculate the distance to the finally determined
median response time x

(e)
n

at index i:

ex (e)
i

:=
|x (e)

i
� x

(e)
n
|

x
(e)
n

Then, we define the required test duration for � = 0.01 and tested endpoints
E as

max
e2E

Ä
min{i | 8 j � i : ex (e)

j
 �}

ä

272 11 | Evaluation Design



C
�
��

��
� 12

E���������
A�������� L��� T���

P���������������

In Chapter 6, we describe our approach to the automated parameterization
of load tests. We introduced the Input Data and Properties Annotation (IDPA)
for decoupling parameterizations from load tests and removing the manual
effort from the test generation. In this chapter, we evaluate this approach
in four different studies relating to the sub-questions RQ1.3 to 1.6 of RQ1:
How can load test parameterizations be evolved without manual intervention
at test generation or execution time?
The first study analyzes the reduction of the maintenance effort using

estimation models. In an experimental study with Nexus (Sonatype, Inc.,
2020[a])—a build artifact management system—, we evaluate the impair-
ment of the representativeness when using an IDPA instead of the original
parameterization. A second experimental study evaluates how much the
representativeness of a generated load test can be improved by proper pa-
rameterization with an IDPA. As system under test (SUT), we utilized the
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Heat Clinic (Broadleaf Commerce, LLC, 2017). Finally, we present a case
study assessing the expressiveness of the IDPA for the requirements of four
industrial projects. Details about all studies are available online as part of
the replication package (H. Schulz et al., 2019f).
According to the evaluation, our IDPA approach can be used for parame-

terizing generated load tests with low manual effort. The effort estimation
models show that it significantly reduces the cumulative effort for maintain-
ing load tests. When parameterizing load tests directly without an IDPA,
the cumulative effort is a quadratic function of time for a typical mix of
API changes. Our approach reduces it to a linear function of time. The two
experimental studies with Nexus and the Heat Clinic reveal that the parame-
terization by an IDPA preserves the representativeness of the load test under
particular circumstances. Notably, the workload needs to be dominated by
the type and order of requests— i.e., the user sessions—rather than the
input data. For Nexus, the IDPA slightly decreased the representativeness
compared to the original workload, because the input data partially influ-
enced the SUT’s behavior. However, we could not observe such a decrease
with the Heat Clinic. In contrast, the IDPA restored the representativeness
while an unparameterized generated load test resulted in significantly differ-
ent behavior of the SUT and, hence, in falsified test results. By making use
of the extension mechanisms, we were able to express the parameterizations
required by the industrial projects. However, some of them appeared to be
cumbersome. Therefore, we added most of the missing concepts and more
concise versions of the cumbersome ones to the IDPA after the study (see
Section 6.3.2).

The chapter is structured as follows. In Sections 12.1 to 12.4, we present
the four studies, including their methods and results. In Section 12.5, we
discuss the results with respect to the addressed research questions. Finally,
Section 12.6 summarizes potential threats to the validity of our work.
This chapter is a revised version of Section 5 of the below publication, in

which we have published the studies and discussions presented in the following
in advance:
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• H. Schulz, A. van Hoorn, and A. Wert (2020c). “Reducing the Mainte-
nance Effort for Parameterization of Representative Load Tests Using
Annotations.” In: Journal of Software Testing, Verification and Reliability
30.1

12.1. Maintenance Effort Estimation Models

In the following, we analyze the difference of the maintenance effort required
for evolving an IDPA compared to not using an IDPA, i.e., repeatedly param-
eterizing a load test directly. RQ1.3 formulates this: To which degree can we
reduce the maintenance effort for the evolution of load test parameterizations
if the API changes?

As described in Section 11.2.2, determining the precise maintenance effort
requires empirical studies related to the work of Benestad et al. (2010),
which we leave for future work. Here, we utilize the ✓ metric introduced
in Section 11.2.1 for deriving formulas we can compare asymptotically. We
first introduce our method for deriving the formulas and then present the
results of the analysis.

12.1.1. Analysis Method

The goal of our analysis is to compare the asymptotic effort required for
evolving IDPAs compared to parameterizing a load test repeatedly. In doing
so, we assume that the amount and distribution of changes introduced
to the target system’s API are constant over time. Even in the case that
this assumption does not hold, it affects both parameterization approaches
equally and thus, allows for a fair comparison. As a second assumption, we
consider the effort to change an IDPA element and the respective load test
element to be equal. For instance, we assume the effort to map an Input to
a parameter using a ParameterAnnotation is equal to setting the input
value of a JMeter request parameter. This assumption is valid, as we are only
comparing the asymptotic behavior.
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For deriving the formulas, we consider multiple iterations. In each itera-
tion, a new load test is generated and parameterized. Between two iterations,
several API changes can be introduced. In a first step, we derive formulas
depending on the average amount of introduced changes per iteration. These
formulas will be different for IDPA evolution and direct load test parameteri-
zation. In a second step, we then determine the amount of different IDPA or
load test element changes based on the frequencies presented by S. Wang
et al. (2014) and the API composition of Nexus (Sonatype, Inc., 2020[a]),
which we used in the experiment presented in the next section. As a result,
we obtain more concrete formulas only depending on a few variables, which
we can compare.

12.1.2. Results

The following analysis uses the ✓ effort metric and corresponding notations
introduced in Section 11.2.1. For convenience, we introduce several terms.
We use change as a synonym for a change to an IDPA or a load test parame-
terization. In contrast to that, an API change denotes a change to the API
of the SUT. With ✓0, we denote the effort to create an initial load test. This
effort will be the same for both parameterization approaches because it
requires adding the same parameterizations. With C , we denote a set of
changes introduced in one iteration while C denotes all possible changes,
i.e., all combinations (tc , oc) of possible values of the changed element’s
type tc and the change operation oc. We furthermore define n :=

P
c2C

kc

as the number of changes per iteration. We define ↵(tc , oc) as the average
number of changes per type and operation to be applied because of one API
change. In the first step, we consider ↵(tc , oc) as an abstract variable, and
we parameterize it in the second step based on the average distribution of
API changes.

Using these definitions, we can express the effort required for evolving
an IDPA from iteration i � 1 to i depending on n and ↵(tc , oc). Furthermore,
we can abstract from the precise efforts �(tc , oc) by defining the maximum
value � :=max(�(tc , oc)):
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✓IDPA(C , i) =
X

c2C

kc · �(tc , oc)

⇡ n ·
 X

c2C

↵(tc , oc) · �(tc , oc)

!

 n · � ·
X

c2C

↵(tc , oc)

= const.

Hence, the upper estimate of ✓IDPA is constant and notably does not depend
on the iteration i.
The main difference when directly parameterizing a load test is in the

set of changes applied in each iteration. In contrast to using an IDPA, all
parameterizations have to be redefined from scratch. However, there are no
remove or change operations. Instead, the corresponding parameterizations
can be left out or defined correctly according to the new version. As a con-
sequence, when reusing the �(tc , oc) of the IDPA, the ✓ formula is different.
First, we need to apply all changes from the previous iteration again plus
the changes with an add operation. However, we need to subtract all remove
operations but with the effort of adding a parameterization of the particular
type. Then, we can estimate the formula with the ↵(tc , oc) and the minimum
effort � :=min(�(tc , oc)). In the formula, we use T as the set of all possibly
changed types tc. The effort for direct load test parameterization (dltp) in
iteration i is then:
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✓dltp(C , i) = ✓dltp(C , i � 1) +
X

c2C

oc=A

kc · �(tc , A)�
X

c2C

oc=R

kc · �(tc , A)

⇡ ✓dltp(C , i � 1) + n ·
X

tc2T

(↵(tc , A)�↵(tc , R)) · �(tc , A)

� ✓dltp(C , i � 1) + n · � ·
X

tc2T

(↵(tc , A)�↵(tc , R))

= ✓0 + i · n · � ·
 X

tc2T

↵(tc , A)�
X

tc2T

↵(tc , R)

!

We can see that in contrast to using an IDPA, the effort depends on the
iteration i. Furthermore, the relation of the average number of element
additions ↵(tc , A) and removals ↵(tc , R) is the main influencing factor of the
overall effort.
For sustainably comparing ✓IDPA and ✓dltp, we parameterize the formulas

with the actual values of ↵(tc , oc). For that, we base on the API change
frequencies determined by S.Wang et al. (2014). As illustrated in Figure 12.1,
we can translate the API change frequencies to IDPA change frequencies. For
that, we first translate them to API change frequencies based on our API
change types introduced in Section 6.4.2. Then, we determine the IDPA
changes that would be required and translate the frequencies. Hence, each
number attached to a change operation and element type denotes the number
of respective changes to be applied for one API change. These numbers are
equal to ↵(tc , oc). Because additions or removals of EndpointAnnotations
can also require additions or removals of ParameterAnnotations and
Inputs, we base on the average number of parameters per endpoint based
on Nexus. It has 135 endpoints with 149 parameters overall and hence,
1.1037 parameters per endpoint on average.

Setting the ↵(tc , oc) to the determined values results in the following
formulas of ✓IDPA. Also, we calculate the cumulative sum, which represents
the overall effort spent on parameterizing load tests until an iteration p. As
the average number of changes per API change is 2.2252, it is:
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✓IDPA(C , i)  n · � · 2.2252
pX

i=0

✓IDPA(C , i)  ✓0 + p · n · � · 2.2252

We do the same for ✓dltp. The average number of additions per API change
is 1.5536, while the average number of removals is 0.5933. Hence, the
difference is 0.9603, resulting in the following formulas:

✓dltp(C , i) � ✓0 + i · n · � · 0.9603
pX

i=0

✓dltp(C , i) � (p+ 1)✓0 +
1
2

p(p+ 1) · n · � · 0.9603

We can see that the cumulative effort is linear when using an IDPA while
it is quadratic when parameterizing load tests directly. As illustrated in
Figure 12.2, the precise relation of the two approaches depends on the initial
effort ✓0 and the relation of the effort maximum � andminimum �. The figure
shows the upper estimate of the cumulative effort with IDPA and the lower
estimate of the cumulative effort with direct parameterization. The values
we chose are arbitrary but show the three different scenarios we identified.
The first scenario is that in the beginning, there is no significant difference
between the two approaches, which, however, increases with more iterations
(Figure 12.2a). In the second scenario, the effort for direct parameterization
is significantly higher right from the first iteration (Figure 12.2b). Finally,
the effort of direct parameterization could be lower than with an IDPA in
the beginning but, finally, become larger (Figure 12.2c). Regardless of the
scenario, the parameterization using an IDPA will always have less effort in
the long term because of the linear asymptotic behavior compared to the
quadratic behavior of the direct load test parameterization.
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Figure 12.1.: Changes to an IDPA resulting from API changes. The numbers
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for one API change according to the distribution determined
by S. Wang et al. (2014).
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Figure 12.2.: Upper estimate of the cumulative ✓IDPA (solid line) and lower
estimate of the cumulative ✓dltp (dashed line) measured in
multiples of n · � over the number of iterations.

12.2. Experimental Study with Sonatype Nexus

In this study, we address RQ1.4: How much does the parameterization by our
approach impair the representativeness of a load test? For that, we executed
an experiment series with Nexus (Sonatype, Inc., 2020[a]), which is a
widely used open-source build artifact management system. We generated a
representative load test based on real-world access logs and parameterized
it using an IDPA. Then, we can compare the results of the original test
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to the parameterized test results. In the following, we first describe the
experimental method and then present the experiment results.

12.2.1. Experimental Method

In the following, we describe the method of this study. We describe the SUT,
the prerequisites, and the experiment process and setup.

12.2.1.1. System Under Test

We utilized the Nexus mentioned above as the SUT in our experiments. Its
intent is the management of build artifacts such as Maven Project Object
Models (POMs) or Java Archives (JARs). Its most famous public instance
is Maven Central (Sonatype, Inc., 2020[c]), which world-wide software
development projects use. The program code of Nexus is open-source and
available on GitHub (Sonatype, Inc., 2015). In our experiments, we utilized
Nexus version 2.11, which is available as a Docker image on Docker Hub
(Sonatype, Inc., 2020[b]). The Nexus API we based on comprises 135
endpoints for uploading, browsing, searching, and retrieving build artifacts.
Besides, there are endpoints for user management.

12.2.1.2. Prerequisites

Before executing the actual experiments, we needed to meet several prereq-
uisites. First, we required a representative load test for Nexus. For that, we
recorded the access logs of the publicly available Nexus instance of an IT
company (Novatec Consulting GmbH, 2020[b]) within three months. Our
goal was to replay the same load that happened on this Nexus instance. For
increasing the workload and, thus, increasing the reliability of the experi-
ment results, we proceeded as follows. First, we split the logs into sessions
based on the client IP address and interaction pauses of at least 30 minutes.
Then, we randomly sampled and concatenated sessions for 100 concurrent
threads until each thread lasted at least 30 minutes. When concatenating
two sessions, we added a wait time of 5 minutes. A load test can replay
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Figure 12.3.: Annotation of a thread using the IDPA.

the resulting threads, representing a varying and representative load that
is high enough for reliable comparison. For repeated execution of different
workloads, we generated 20 sets of 100 threads each. In the following, we
refer to these threads as the original.

As a second prerequisite, we derived an IDPA application model from the
official Nexus API description (Sonatype, Inc., 2013) and the access logs.
Furthermore, we extracted all requested artifacts and other parameter values
from the logs and stored it into an IDPA annotation as DirectListInputs
and CsvInputs. In addition, we used a JsonInput for the rarely occurring
POST requests. Hence, we aimed at parameterizing the load tests similarly
as the original requests. For that, we annotated the previously generated
threads as illustrated in Figure 12.3. Given a request of an original thread, we
mapped it to an IDPA Endpoint by comparing the request method and path.
Then, we constructed the path to be parsed by JMeter (Apache Software
Foundation, 2020[a]) by replacing the parameter placeholders and query
string values—e.g., repositoryId in the figure —with the value strings of
the corresponding Inputs (see Section 6.5.3.2)—e.g., Input_repoId in the
figure. Finally, we used this newly constructed path as a replacement of the
original path. We name the resulting threads annotated. Furthermore, we
stored all artifacts that were successfully requested in the access logs into a
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separate file for populating the Nexus for the experiments. As a consequence,
we could execute the original access logs without modification against our
test instance of Nexus and result in the same responses as in the logs.

The last prerequisite was the definition of load tests that replay the gener-
ated sessions. For that, we used JMeter. We utilized 100 basic loops, which
each have their thread as generated above and send the defined requests
with the defined wait times. For the parameterized threads, we transformed
the IDPA to JMeter test plan elements so that the parameterized requests of
the threads use the specified input data. All threads, JMeter load tests, and
the IDPA are part of the replication package (H. Schulz et al., 2019f).

12.2.1.3. Experiment Process

We performed the experiments as shown in Figure 12.4. We executed 20
iterations, which each used one of the 20 sets of original threads 1� and
the corresponding annotated threads 2�. We merged them with the defined
JMeter tests 3� and executed the two tests against a dedicated Nexus instance
sequentially for 30 minutes each 4�. Finally, we collected the JMeter results
for comparison 5� and continued with the next iteration. Furthermore, for
determining a baseline of the ⇢ metric, we executed the first iteration 20
more times in both the original and annotated variant. Before each load test
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execution, we restarted and redeployed Nexus and populated it using the
artifacts extracted from the access logs.

12.2.1.4. Experiment Setup

For executing the experiments, we utilized two machines, as illustrated in
Figure 12.5. The two machines were connected with a 1 Gbit switch. Both
had an Intel® Xeon® CPU E5620 with 2.40GHz clock frequency, 4 cores,
and 8 threads. The first machine had 8GiB memory and hosted Nexus in
a Docker container and a lightweight Spring Boot (Pivotal Software, Inc.,
2020[b]) service offering a REST API for restarting Nexus. The second
machine had 32GiB memory and hosted the JMeter load driver and a shell
script process that ran the experiment series automatically.

12.2.2. Results

In the following, we review the results of the experiment series with Nexus.
The raw data and the analysis scripts are available online as part of the
replication package (H. Schulz et al., 2019f). First, we consider the first
iteration individually. Figure 12.6 shows the requests per minute divided by
the endpoint and response code. We can see that the number of requests
varies over time. The most frequent response code is 404 (Not Found),
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Figure 12.6.: Requests per minute divided by endpoint and response code
for the first experiment iteration.

which we attribute to clients that are checking whether a particular artifact
is present. On a first sight, there is no visual difference between the request
rates of the original and the annotated results.
For analyzing potential differences further, we calculate the ⇢ metric.

Additionally, we calculate a baseline for the ⇢ metric using the experiment
series we executed for this purpose. For both the original and annotated
tests, we consider the first iteration as a reference and calculate the ⇢
metric for each of the remaining 20 executions per minute. For the resulting
20 · 30 values of ⇢, we calculate the mean and the standard deviation,
which describe the mean error and variance of the results of the same test.
These are µ⇢,orig = 0.0018 and �⇢,orig = 0.0038 for the original baseline, and
µ⇢,ann = 0.0490 and µ⇢,orig = 0.0431 for the annotated baseline. We then
use µ⇢,· ± 3�⇢,· as the baseline.
Figure 12.7 shows the cumulative

P
⇢ metric per minute calculated for

the annotated results with the original results as reference, compared to
the two baselines. We can see that ⇢ is higher than the original baseline.
Hence, the representativeness is impaired, which we cannot explain with
the natural variation of the original test results. However, for the annotated
baseline, it is only slightly higher than µ⇢,ann and lies inside the range of
three standard deviations. Hence, we can explain most of the inaccuracy
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with the natural variations of the annotated test results, which is higher than
for the original test. We explain this finding by the difference in the original
and annotated JMeter tests. While the original test only replays the recorded
requests, the annotated test also loads CSV files, which serve as feeders for
the parameterized requests. Before each request, it loads a new line of each
CSV file. Hence, it introduces small delays, which can slightly change the
inter-request timings. This effect especially impairs the ⇢ metric when there
are requests of many different endpoints, such as between minutes 5 and 7
in the first iteration, because some requests can be counted in a different
minute. ⇢ is relatively high during this time range, as we can see in the sharp
increase of the cumulative plot. The fact that most of the highest values of
our baseline calculation were at minute 7 supports this hypothesis.
The remaining iterations 2 to 20 produce similar results compared to

the first iteration, as illustrated in Figure 12.8a. We show the cumulativeP
⇢ metric at the end of the test per iteration compared to the annotated

baseline. Except for iteration 9, ⇢ is slightly higher than µ⇢,ann but still
inside the baseline. Iteration 9 is even less than the baseline. We can
conclude that most of the inaccuracy of the annotated test results can be
explained with the natural variation. However, because of the high amount
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of iterations with ⇢ values higher than the baseline mean, we also conclude
that the representativeness is slightly but systematically impaired. As already
mentioned before, the most frequent response code is 404, which Nexus
returns if a requested artifact is not present. Hence, if the annotated tests
request a different amount of artifacts that are not present, the number of 404
responses will differ from the original tests, and ⇢ will increase. Therefore,
we correlate the difference in the number of 404 responses between the
original and the annotated test—� in the following—with

P
⇢, as shown

in Figure 12.8b. Except for one outlier—which is iteration 8—, a clear trend
can be seen. The trend is supported by a fitted linear model

P
⇢ = �1+�2�,
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which results in �1 = 1.7730, �2 = 0.0032, and deviance of 0.8594. We
explain this finding by an imperfect IDPA annotation, which parameterized
the requests slightly different than it was originally. We used the overall
distribution of requested artifacts in the IDPA annotation, but the original
test of each iteration only uses a subset of all artifacts.
To conclude, the representativeness of the annotated tests compared to

the original tests—measured by ⇢—is slightly impaired. We attribute this
to a higher variance of the results of the annotated tests, which is due to the
CSV files that need to be loaded. Furthermore, a smaller influencing factor
is slightly different input data. However, the ⇢ values of all iterations are
clearly within a baseline of µ⇢,ann ± 3�⇢,ann.

12.3. Experimental Study with Broadleaf Heat Clinic

In this experimental study, we address RQ1.5: To which degree do evolved
parameterizations improve the representativeness of a generated load test?
We utilize the WESSBAS approach (Vögele et al., 2018) to generate load
tests based on recorded requests and parameterize the generated tests using
an IDPA. The study is composed of two experiment series. The first series
only considers changes in the workload to investigate whether an IDPA
can be used to preserve the representativeness of a generated load test
repeatedly. The second series additionally includes API changes of the SUT.
In the following, we describe the method we applied and present the results.

12.3.1. Experimental Method

This section outlines the method of this study. It comprises the SUT, prereq-
uisites to be met before executing the experiments, the experiment process,
and the setup.

12.3.1.1. System Under Test

As SUT, we used the Heat Clinic (Broadleaf Commerce, LLC, 2017), which
is a showcase implementation of the Broadleaf Commerce Community Edi-
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Figure 12.9.: Number of changes per operation and element between ver-
sions v1 to v20 of the Heat Clinic.

tion (Broadleaf Commerce, LLC, 2020). Broadleaf Commerce is an enterprise
e-commerce platform built on current open-source technologies. The Heat
Clinic is a webshop for hot sauces, providing standard webshop functional-
ities like browsing products, collecting them in a cart, and purchasing, as
well as managing accounts, including addresses, payments, and wishlists.
Overall, it provides an API with 184 endpoints as per April 16, 2018. Even
though the Heat Clinic is a sample application, we expect it to be elaborate
and representative for real webshop applications, because it intends to show
the capabilities of the Broadleaf Commerce.
For our evaluation, we needed to have different versions with different

APIs. In the commit history of the Git repository (Broadleaf Commerce,
LLC, 2017), we identified one commit (010f8a2 on August 3, 2017) that
introduced API changes. In the following, we refer to the version before this
commit as v1. As the second version v2, we denote the current version as
per April 16, 2018. For further versions v3 to v20, we adapted version v2 by
adding a randomly chosen number between 1 and 5 of the most common
change types identified in Section 6.4.2. We applied the changes in random
order with the frequencies of occurrence provided by S. Wang et al. (2014)
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(see Section 6.4.2). Figure 12.9 illustrates the result. We focused on the
change types that can be (semi-) automatically evolved by our approach
and have a frequency of at least 1 %. These change types are Add/Remove
Endpoint, Change Endpoint [Path], Add/Remove Parameter, and Change Pa-
rameter [Name]. Furthermore, we presume that the change operations can
be generalized to all kinds of Change Endpoint [Property] and Change Pa-
rameter [Property], as they have in common that only the application model
has to be adjusted while the annotation remains unchanged. In order not to
break functionality, we duplicated randomly chosen elements as additions
and removed only duplicated elements. The list of applied changes is part of
the replication package (H. Schulz et al., 2019f).

12.3.1.2. Prerequisites

To run the experiments, we needed two main prerequisites. First, we had
to define an IDPA for parameterizing load tests. Second, we required a
reference load test that mimics the production workload. To ensure that
the input data specifications of the IDPA and the reference load test are
equal, we used the JMeter load testing tool (Apache Software Foundation,
2020[a]) for both the reference load test and the generated representative
load tests. Furthermore, we defined the IDPA first and specified the inputs
in JMeter similarly. For adapting the IDPA to the duplicated endpoints and
parameters of the Heat Clinic versions, we duplicated the respective IDPA
elements as well. In order to vary the simulated production workload, we
designed the reference load test to hold a Markov chain as the workload
model. Each state of the Markov chain holds the transition probability from
one endpoint of the Heat Clinic to another. In order to gain different user
behavior, we varied the transition probabilities. To make sure there are only
state transitions that are possible by using the user interface of the Heat
Clinic, we defined the allowed transitions in a template, which we used as
the basis for changing the Markov chain.
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12.3.1.3. Experiment Process

We executed two experiment series with 20 iterations each. In the following,
we describe a single iteration of each series.

With the first experiment series, we evaluated whether the IDPA can be
automatically applied to a generated load test for preserving the represen-
tativeness of the test. Therefore, we used version v2 for all iterations and
varied the simulated production workload. Figure 12.10 illustrates one itera-
tion of this series. First, we generated a random Markov chain representing
the production workload and replaced the original Markov chain of the
reference load test 1�. In this way, we had a different simulated production
workload in each iteration. In the next step, we executed the reference
load test against the Heat Clinic 2� and collected measurement data using
the open-source APM tool inspectIT (inspectIT, 2020) 3�. Then, we used
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the WESSBAS approach (Vögele et al., 2018) to extract a representative
workload model from the measured request logs 4�. Next, we transformed
the workload model into a JMeter load test once considering the IDPA 5�
and once without any additional modifications 6�. Finally, we executed both
generated load tests subsequently 7� and collected measurement data 8�.
For evaluation, we compared the results of the three executed load tests. In
order to have a clean environment, we restarted the Heat Clinic before each
load test execution and populated with 200 user accounts, which were then
used by the load tests.

With the second experiment series, we evaluated the effect of API changes.
Therefore, we executed the same experiment series as before, but increased
the version of the Heat Clinic at the beginning of each iteration, starting
at v1. Furthermore, we used the IDPA evolution mechanisms to adapt it to
the APIs of the respective versions and adjusted the reference load test. All
IDPAs and reference tests can be found in the replication package (H. Schulz
et al., 2019f).

12.3.1.4. Experiment Setup

For executing the experiments, we utilized the same machines as for the
Nexus experiments (see Section 12.2), as illustrated in Figure 12.11. The
first machine hosted the Heat Clinic and a lightweight Spring Boot service
offering a REST API for restarting the Heat Clinic. The second machine
hosted the following services:

• our IDPA evolution approach,

• JMeter for executing load tests,

• the WESSBAS approach as workload model extractor,

• the inspectIT server for collecting measurement data,

• an InfluxDB (InfluxData, 2020) time-series database for storing the
measurement data,

• a Java process that ran the experiment series automatically.
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12.3.2. Results

In this section, we provide the results of the experimental study with the Heat
Clinic. The raw data and the analysis results of all iterations are available
online as part of the replication package (H. Schulz et al., 2019f).

12.3.2.1. Varying the Workload Only

We start the analysis of the results with the request rates. Figure 12.12
shows the request rates per endpoint, HTTP response code, and minute for
the first iteration. We can see that, except for small variations, the load
tests generated with an IDPA have similarly looking bars as the reference
load tests. In contrast, the load tests without additional adjustments have a
significant number of erroneous requests in addition. These requests target
the error page of the Heat Clinic with path /error. Furthermore, it turns
out that the overall request rates of the generated tests are slightly smaller
than the ones of the reference tests when ignoring for the additional error
requests.
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⇢ at test end per iteration vs. µ⇢ ± 3�⇢.

Investigating the differences in the load test executions in more detail,
we calculate the cumulative

P
⇢ metric and a baseline for

P
⇢ shown in

Figure 12.13 for the selected iterations 1 and 16. For the baseline, we use
the results of the reference test, which we executed 20 times for this purpose
with the first iteration as the reference test and the remaining 19 iterations
as generated tests. That results in µ⇢ = 0.7753 and �⇢ = 0.1744 per minute.
We can see that the metric is higher when not parameterizing the generated
load test—⇢N in the following—compared to using the IDPA—⇢W in the
following. While ⇢W is very close to µ⇢ in iteration 1, ⇢N is significantly
larger than the baseline area. However, in iteration 16, ⇢N is close to µ⇢,
too, even though it is slightly larger, while ⇢W is continuously less than µ⇢.

Figure 12.14 shows the cumulative ⇢metric at the test end for all iterations.
We can see that iteration 16 is an outlier, while in all other iterations, ⇢N

is significantly larger than ⇢W . Especially, ⇢N is greater than the baseline
µ⇢ + 3�⇢ in all iterations except for 14 and 16. In contrast, ⇢W is within the
baseline area in all iterations and even less than µ⇢ in 17 iterations. The
average cumulative values at the test end are 11.8374 for ⇢W and 34.5529
for ⇢N . Furthermore, there is no significant trend when using the IDPA. Let
v be the iteration number. Fitting a linear model

P
⇢W = �1 + �2v results

in �1 = 12.0722, �2 = �0.0224, and deviance of 7.8675, not indicating any
significant upward trend. We conclude that the generated tests without
parameterization significantly impair the representativeness. In contrast to
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Figure 12.15.: Response time of the home endpoint (without outliers).

that, the representativeness of the tests generated with IDPA is clearly within
normal variations of the reference test results.

Finally, we analyze the consequences of less representative load tests. For
this purpose, we investigate the response times of the home endpoint of the
Heat Clinic during each load test, shown in Figure 12.15. This endpoint has
no parameters and always returned the response code 200. The box plots of
the reference test and the generated test with IDPA look relatively similar,
while the response times of the generated tests without adjustments appear
to be smaller. To verify that the difference is significant and to measure
the effect size, we apply a two-sided t-test and Cohen’s d. Even though our
samples do not follow a normal distribution, they have large sample sizes
between 670 and 1536. Thus, we can apply the t-test due to the central
limit theorem. As the significance level, we use 0.05. Our null hypothesis
for iteration j is Hj,0 : µResponseTimeref, j = µResponseTimegen, j

.
For the IDPA tests, the t-test rejects Hj,0 and accepts Hj,A for nine iterations

while it cannot reject Hj,0 for the remaining 11 iterations. Cohen’s d is
smaller than 0.2 and, thus, negligible for all 20 iterations with a maximum
absolute value of 0.1997. For the tests without adjustments, Hj,0 is rejected
for all iterations. Cohen’s d is small for eight iterations with values between
0.3183 and 0.4888 andmedium for 12 iterations with values between 0.5346
and 0.7377.
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Figure 12.16.:
P
⇢ metric of the experiments with varied API vs. µ⇢ ± 3�⇢

for the generated tests with (W/solid line) and with no (N/
dashed line) IDPA.

12.3.2.2. Varying the Workload and the API

The request rates of the second experiment series look very similar to the
ones shown in Figure 12.12. The ⇢ metric appears similar to the one before
as well, as shown in Figure 12.16. As before, ⇢W is close to µ⇢ in all iterations
and clearly within µ⇢ ± 3�⇢. Also, there are iterations where the difference
between ⇢W and ⇢N is vast—such as iteration 1 (Figure 12.16a)—and
others, where it is less—such as iteration 15 (Figure 12.16b). A visible
difference in Figure 12.16c is that ⇢N decreases and stays small after itera-
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tion 10. We explain this finding by a change in the API. A potential candidate
is the duplicate of the logout endpoint, which was introduced in version v11.
Furthermore, the difference between ⇢W and µ⇢ appears to be slightly larger
than in the first experiment series. However, ⇢W is still smaller than ⇢N in all
iterations. Again, we fit a linear model

P
⇢W = �1 + �2v into the measured

cumulative values at test end. It results in �1 = 11.9536, �2 = 0.2699, and
deviance of 47.0205. Hence, the fitted model indicates a small upward trend,
but with a high fitting error compared to the first experiment series.

12.4. Industrial Case Study

In this industrial case study, we address RQ1.6: How expressive is our approach
compared to parameterizations of load tests used in industrial projects? For
this purpose, we analyzed the load tests used in four different industrial
software development projects. In the following, we provide the method,
present the results, and provide the lessons we learned while conducting the
case study.

12.4.1. Case Study Method

In this section, we describe how we approached the case study in terms of
case study design and planning, data collection, and data analysis.

12.4.1.1. Design and Planning

We selected the case study subjects from our existing contacts. The subjects
were four different industrial projects from the construction and automo-
tive sector. In each of the projects, a web-based software application was
developed, which comprised both user-faced and backend applications. For
the sake of confidentiality, we refer to the projects as A, B, C, and D in the
following.
Each of the projects created and executed load tests for the developed

application, including IDPA-related parameterization concepts, which con-
stituted our source of information. We considered them to reach a high
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diversity of parameterization concepts. We were given full access to the load
tests for analysis purposes.
At the time this study was executed, not all IDPA Inputs introduced in

Section 6.3 were existing. Essentially, the results of the study motivated
adding new Inputs. The list of Inputs that already existed is:

• ExtractedInput with both RegExExtraction and JsonPathEx-
traction

• DirectListInput

• CsvInput

• CounterInput

• JsonInput

12.4.1.2. Data Collection

The precise artifacts we were given access to were all load tests, including
accompanying artifacts that were needed to execute the tests. Table 12.1
provides a summary of the number of targeted endpoints, the number of load
tests per project, and the evaluation results. All load tests were implemented
in Scala using the Gatling tool (Gatling Corp, 2020). Furthermore, the load
tests of each project utilized a common codebase, e.g., with implementations
of requests to specific endpoints of the application and configuration files
such as CSV or JSON files specifying input data. All load tests have been
implemented manually by the respective development team, based on the
known or intended usage of the application. Hence, they were not repre-
sentative as presumed in this work. However, the set of parameterizations
used in a load test is independent of the fact whether the test is generated
or manually implemented. For conducting the case study, we had access to
the load tests, including the common codebases and all configuration files of
each project.
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Table 12.1.: Overview of the Case Study Results

Project A Project B Project C Project D

#Endpoints 7 17 1 34
#Load Tests 2 1 1 3+ 12

Overrides

domain ÿ ÿ ÿ ÿ
base-path ÿ
header ÿ

Core Inputs

Direct 3 3 174 9
Csv 3 11 6
Extracted (Json) 2 10
Extracted (RegEx) 4 44
Json 17 470 19

Custom Inputs

RandomString* 1 1
RandomNumber* 1 3
Auth 1
Filtered 1
Datetime* 3 1 1
Environment* 1 1
Combined* 2

Summary

% Custom Inputs 0.00 % 17.07% 0.30 % 9.30 %

*Added to the IDPA after the study (see Section 6.3)
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12.4.1.3. Data Analysis

For each of the projects, we analyzed the provided load tests. We identified
all specifications that were used to parameterize the tests. These were all
specifications defining input data for parameters or modifying the execution
of a request from its default. For instance, if a specific header was explicitly
defined for a request, we considered it being such a specification. Also, we
identified all specifications that would be necessary to transform a request
from the production system to the test system. That is, assuming a request
was extracted from production request logs, we determined the changes that
would need to be made to bring the request into the actual form. Having all
parameterizations identified, we tried to express them using the IDPA. In
case this was not possible, we introduced new concepts using the provided
extension points.

We performed the steps described above for each project individually and
sequentially, starting from project A and ending with project D. In each
step, we introduced extensions of the IDPA if necessary and reused them in
the next project if possible. In this way, we could determine whether the
introduced extensions can be generally used and, thus, could be added to
the core IDPA, or whether each project requires individual parameterization
concepts.

12.4.2. Results

Table 12.1 provides an overview of the results of our industrial case study.
We show the number of load tests, utilized Overrides, utilized Inputs
contained in the IDPA metamodel at the time of the study, and utilized
custom Inputs, which we introduced using the extension points of the
IDPA. Also, we provide the percentage of custom Inputs across all utilized
Inputs.
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12.4.2.1. Project A

The first project we investigated had two different load tests that targeted
seven endpoints and were implemented using the same code base. We iden-
tified two overrides that would need to be used for transforming production
requests into requests to the test system. First, the domain name needed
to be changed with the HttpEndpoint.domain override. Second, each stage
in this project had a specific base path, such as /stage/test or /stage/dev1.
Hence, we needed to override this base path using theHttpEndpoint.base-path
override.

The input data concepts used in the load tests correspond to the IDPA en-
tities DirectInput, CsvInput, and ExtractedInput. For the Extract-
edInputs, we used JsonPathExtractions to extract the input data from
returned JSON bodies. We were able to represent all parameterizations
solely using the provided IDPA concepts. Hence, the percentage of custom
inputs is 0 %.

12.4.2.2. Project B

Project B had one load test, which targeted 17 endpoints and consisted
of several Scala code files. As Overrides, we only identified HttpEnd-
point.domain for adjusting the domain name of the requests. The utilized
core inputs were DirectInput, ExtractedInput, and JsonInput. The
ExtractedInputs were both used with RegExExtractions and Json-
PathExtractions. The JsonInputs were used to define JSON values,
which consisted of both static values and dynamically retrieved values, e.g.,
from ExtractedInputs.
However, the load test of this project utilizes several parameterization

concepts we could not represent using the core inputs. Therefore, we intro-
duced custom inputs using the Input extension point. First, the load test
uses randomly generated universally unique identifiers (UUIDs) as an input.
We introduced the RandomStringInput, which generates a random string

1These base paths do not reflect the actual paths and are only for illustration purposes.
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based on a template (see Section 6.3.2.2). For the UUIDs, we used a template
to generate random strings in the appropriate format. The second exten-
sion we introduced is the RandomNumberInput, which randomly selects a
number between a lower and an upper limit (see Section 6.3.2.2). In this
case, the lower limit was set to 0, while the upper limit was extracted from
a JSON response. Next, the load test utilizes an application-specific authen-
tication mechanism. This mechanism generates a specific header to be used
in all requests. For that, we introduced the AuthInput, which generates
these headers. We used a FilteredInput for selecting a certain percentage
of multiple values from another Input, in this case, an ExtractedInput
utilizing a JsonPathExtraction. Finally, for generating dates, which are
used as input to some parameters, we introduced the DatetimeInput (see
Section 6.3.2.2). This Input produces the current date and time in a defined
pattern (e.g., yyyy-MM-dd) and with an optionally defined offset. Overall,
seven of the 41 utilized Inputs were of the newly introduced custom types,
which is 17.07%.

12.4.2.3. Project C

Project C had one load test defined in a single source file, accompanied
by configuration files. It targets a single endpoint. As before, the HttpEnd-
point.domain override would need to be used for transferring production
requests to the test system. The used core inputs are DirectInput, Csv-
Input, and JsonInput.
For this project, we also had to make use of custom extensions. First,

we could reuse the DatetimeInput introduced for Project B. This time,
the pattern used was the time stamp in seconds. Furthermore, we had
to add an ability to use input data defined as environment variables. For
that, we introduced the EnvironmentInput, which reads the value of an
environment variable and also allows us to define a particular template
into which the value should be inserted (see Section 6.3.2.2). Overall, the
percentage of custom inputs is 0.3 %.
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While we were able to represent all parameterizations as an IDPA, we
encountered limitations of the JsonInput and the CsvInput. The JSON
body of one request of the load test is defined by a JSON file with 1250 lines.
We represented this JSON by a JsonInput but resulted in a much longer
description with 3094 lines. Furthermore, due to the recursive structure of
the JsonInput, we had to define 470 nested JsonInputs. Because of this
and because the JsonInput does not precisely show the JSON structure,
readability is degraded. This finding motivates implementing a new input,
which allows specifying long JSON strings more concisely. The limitation of
the CsvInput is because this load test uses a CSV file with multiple columns.
However, the CsvInput only allows using one column. Hence, we needed
to add one CsvInput per column and associate the inputs, which resulted
in a less concise definition and redundant information, such as the CSV file’s
name.

12.4.2.4. Project D

The last project we investigated contained three different load tests. Ad-
ditionally, there were twelve small tests, which were used for synthetic
monitoring, i.e., for executing them against the production system regularly
to check whether the system behaves as intended. Because the technology
of these tests was similar to the load tests, we considered both test types for
our evaluation. Overall, the tests targeted 34 different endpoints.

The overrides we utilized areHttpEndpoint.domain andHttpEndpoint.header
for adding a set of defined headers to the requests. The used core inputs are
DirectInput, CsvInput, ExtractedInput with a RegExExtraction,
and JsonInput. From the already introduced custom inputs, we made
use of the RandomStringInput, RandomNumberInput, DatetimeInput,
and EnvironmentInput. However, we also had to introduce another custom
input for combining the values of several other inputs. The CombinedInput
consists of a list of Inputs and a template that defines how to combine the
Inputs (see Section 6.3.2.2). In this case, we utilized CombinedInputs for
defining a combination of randomly chosen numbers, which we generated
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using the RandomNumberInput, to obtain a random but valid date string.
Overall, the percentage of custom inputs is 9.3 %

Another kind of parameterization we identified in this project is explicitly
defined HTTP cookies. Before sending several requests, the load tests dynam-
ically set a cookie. With the existing concepts of the IDPA, we were not able
to represent cookies, because they can neither be mapped to Overrides
nor Inputs. Overrides are not suitable because they cannot deal with
dynamically defined values. Inputs are not appropriate, because they can
only define the full value of a parameter — in this case, the cookie header —
and cannot add a value to the existing list of cookies. Therefore, we did not
take the cookies into account in the IDPA.

12.4.3. Lessons Learned

During the execution of the case study, we learned several lessons, which we
summarize in the following.

12.4.3.1. Most Input Data Specifications Are Common

As is can be seen in Table 12.1, the clear majority of input data specifications
used in the projects are list-based, extracted, and JSON input data. Precisely,
97.85% of all input data specifications fall into these types. This fact indicates
that the data flow of most applications can be described with these means.
As a consequence, load testing tools or input data models, such as the IDPA,
should at least implement these kinds of input data specifications.

12.4.3.2. Individual Input Data Specifications Are Required

Even though the input data specifications that do not fall into the aforemen-
tioned common categories are only 2.15 %, there still exist cases in which
they are required to parameterize a load test properly. Mainly, there is a
need for adding application-specific input data specifications, such as the
AuthInput in Project B. Without this Input, the authentication header re-
quired in each request could not be generated. Hence, load testing or input
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data specification approaches should consider custom input data specifica-
tions. The original load test implemented in Gatling used the comprehensive
capabilities of the underlying Scala language. Other load testing tools such
as JMeter allow adding plugins implementing custom functionality. In our
IDPA, we addressed this challenge by extending the Input, to implement
custom inputs such as the AuthInput.

12.4.3.3. Input Data Can Be Large

A challenge we faced when defining the IDPA was the size of some input
data. An example is the large JsonInput based on a JSON file with 1250
lines in Project C. Hence, the solution used to define this JSON value needs
to be scalable. Other examples of extensive input data are CSV files, such
as one in Project C with more than 25000 lines. Furthermore, CSV files can
have multiple columns that each define a set of input data. Therefore, it is
crucial to provide input specifications such as the CsvInput, which allows
referring to external files instead of inlining its content. In our approach, we
encountered limited scalability of the JsonInput and CsvInput, which we
addressed after the study.

12.4.3.4. Common Input Data Specifications Are Often Sufficient

Another finding is that people tend to use comprehensive specification mech-
anisms if they are available, even if more standard mechanisms would be
sufficient. For instance, Project D utilized the CombinedInput and several
RandomStringInputs for generating a random date. The same result could
be achieved either by using a single RandomStringInput with an appro-
priate template, or even by using a CsvInput with a CSV file prefilled with
random dates. The same applies to the DatetimeInput used in this project,
which was utilized for generating a random but unique number. However,
the specifications used by the project are most convenient, because neither
complex templates have to be defined nor long lists of input values have to
be specified. Furthermore, there are also cases where the DatetimeInput,
RandomNumberInput, and RandomStringInput are required, because ei-
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ther the current date has to be defined, or a random value based on extracted
values has to be generated. Both are the case in Project B.

Concluding, most input data can be defined with the common types of
specification, but with potentially less convenience. At the same time, there
can be specifications that cannot be mapped to the standard types. As a
consequence, input data models such as the IDPA do not need to implement
all variants of imaginable input data specifications, but also need to provide
means for several non-standard specifications for being usable in industry.

12.5. Discussion of Research Questions

In this section, we discuss the research questions defined in Section 5.1
based on our approach to automated load test parameterization (Chapter 6)
and the evaluation presented in the previous sections.

12.5.1. RQ1.1 — Automated Parameterization Evolution

How can load test parameterizations be automatically evolved if
the workload changes?

For evolving load test parameterizations over changing workloads, we intro-
duced the Input Data and Properties Annotation (IDPA). It externalizes all
parameterizations of a generated load test and can be applied to the load
test automatically. We provide parameterizing JMeter (Apache Software
Foundation, 2020[a]) and BenchFlow (Ferme and Pautasso, 2018) load tests,
and our approach can be extended to any load testing tool. Hence, users
of our approach can specify tool-independent parameterizations without
knowledge about the workload in advance. This includes re-applying the
parameterizations to a load test generated from a changed workload model.

12.5.2. RQ1.2 — Relevant API Changes

Which API change types exist that affect load test parameteriza-
tions?
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As the API of the SUT can change as well, we investigated API change types
collected in the literature and analyzed their impact on an IDPA.We extracted
and summarized the relevant change types in a new classification, which we
provide in Section 6.4.2. The relevant change types comprise endpoint and
parameter additions, removals, and property changes, and changes in the
input and response behavior. We used these types for developing strategies
to handle API changes.

12.5.3. RQ1.3 — Reducing the Maintenance Effort

To which degree can we reduce the maintenance effort for the
evolution of load test parameterizations if the API changes?

For supporting the evolution of IDPAs if the API of the SUT changes, we
developed evolution mechanisms for each of the identified relevant change
types. Hence, an IDPA can be semi-automatically adapted based on an
expert’s feedback. The IDPA can be adjusted directly when the API changes
and before a new load test is to be generated. Hence, new load tests can be
generated and executed fully automatically without manual effort at test
generation or execution time.

For the further evaluation of the reduction of the total maintenance effort,
we derived estimation models and compared them asymptotically. Even
though we could not determine the precise effort in units such as person-days,
our models show that using an IDPA reduces a quadratic cumulative effort
over time to a linear one. Irrespective of the precise values of the model’s
parameters, this will lead to a significantly reduced effort when using an
IDPA in the long term. For future work, we suggest parameterizing our
derived models with actual values, which could be determined by empirical
studies.

12.5.4. RQ1.4 — Impairing the Representativeness

How much does the parameterization by our approach impair the
representativeness of a load test?
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In our first experimental study with Nexus, we were able to parameterize
representative load tests, which replayed recorded requests from a produc-
tive Nexus instance, while mostly preserving the representativeness. The
representativeness metric ⇢ we calculated was within a baseline representing
the natural variations of such parameterized load tests. However, we also
encountered two factors that slightly impaired representativeness. First, the
variation of the parameterized tests was higher than the original tests, which
is because of CSV files the load test loaded before each request. Second and
more important, there was a small but systematic variation from the baseline
mean, because we were not able to achieve the same ratio of artifacts suc-
cessfully requested to those that could not be found (response code 404). We
attribute this to the fact that the parameter values of the requests influence
whether an artifact will be found and, thus, how the internal program flow
behaves. Opposed to Nexus, in our second experimental study with the
Heat Clinic, we could not observe such effects, as the input data do not
significantly influence the program flow, as long as they are defined correctly.

We conclude that for applications whose workload and internal behavior
are dominated by the order and rate of submitted requests, the IDPA can be
used for reliably parameterizing a load test without impairing the represen-
tativeness. In contrast to that, load tests for applications with significantly
different behavior for different parameter values can only be as represen-
tative as the input data defined in the IDPA. Hence, the benefit added by
a parameterization through an IDPA is less because the dominant part of
the workload model has to be defined manually. The load tests for Nexus
slightly suffered from this effect, even though we still were able to define
input data resulting in representativeness within the baseline range.

12.5.5. RQ1.5 — Improving the Representativeness

To which degree do evolved parameterizations improve the repre-
sentativeness of a generated load test?

In the second experimental study, we used the IDPA for its intended
purpose, namely the parameterization of generated load tests. Compared
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to unparameterized load tests, the IDPA could significantly improve the
representativeness. This difference was reflected in the ⇢ metric. While the
metric values for the parameterized tests can be well explained with the
natural variations of the reference tests, the values for the unparameterized
tests were much higher than the baseline in general. Also, we could not
detect any trend, at least when only the workload was changing. With
a changing API, there were more variations, and we could also detect a
small trend of decreasing representativeness with the IDPA, even though the
linear correlation was not statistically significant. In the end, all ⇢ values
were clearly within the baseline for the parameterized tests in all iterations,
while they were outside the baseline for the unparameterized tests in most
iterations.
An important finding is that reduced representativeness can also impair

the behavior of the tested application, such as the response times. In our
experiments, the response times of the unparameterized tests were signifi-
cantly different from the ones of the reference tests with small to medium
effect sizes. In contrast to this, the tests parameterized with the IDPA only
had significantly different response times in less than half of the iterations
with a negligible effect size. We can conclude that improper or missing
parameterization of generated load tests can lead to different behavior of the
tested application and, thus, to corrupt load test results. The IDPA turned out
to be one possibility to add the required parameterizations to the generated
tests repeatedly.

12.5.6. RQ1.6 — Expressing Industrial Parameterizations

How expressive is our approach compared to parameterizations of
load tests used in industrial projects?

In our case study with four different industrial projects, we were able to
represent the adjustments of static properties and input data of all investi-
gated load tests in IDPAs. However, we had to use the extension points of the
IDPA to introduce new Inputs. Most of the newly introduced Inputs could
be shared between the investigated projects. In particular, while we had
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to add five new Inputs for Project B, we only had to add one new Input
for Project C and D, respectively. Hence, we presume we already covered
a majority of all relevant input types. In summary, our core input types
covered more than 97.85 % of all inputs of all investigated projects.

The newly introduced input types motivate adding them to the core IDPA
metamodel. However, this is not suitable for all of them. In particular, the
AuthInput is specific to Project B. It should not be added to the metamodel,
as other projects cannot reuse it. In contrast, the AuthInput is a good
example where extension points are required. Furthermore, the Filtered-
Input was used only once in Project B as a specific operation and might not
be implementable in all load testing tools. The remaining input types are
independent of the project or tested application. Therefore, we integrated
them into the IDPA metamodel for reuse, as described in Section 6.3.2.
The case study also revealed three limitations of the core IDPA. First, we

encountered that large JSON files cannot be defined concisely using the ex-
isting Inputs. The JsonInput enables such definitions, but is cumbersome
and decreases readability. Therefore, we added the ConciseJsonInput for
better use with long JSONs (see Section 6.3.2.2). As it merely holds the
JSON object tree formatted in YAML, it is less flexible than the current im-
plementation but scales better with large JSON values. Second, CsvInputs
turned out to define redundant information in the case of multiple rows in
the CSV file. The CsvInput is designed in this way because the Parameter-
Annotations need to link to one individual column directly. As a solution,
we introduced the CsvInputGroup, which holds multiple CsvInputs to
which the ParameterAnnotations can refer. In doing so, we can define
all the information about the CSV file once in the CsvInputGroup. Last,
Project D required setting a defined HTTP cookie. We were not able to map
this to an IDPA concept. However, we presume that explicitly setting cookies
is not required for representative load testing, which extracts the request
model from recorded requests and represents the behavior of real users. A
real user would interact with the system without setting cookies explicitly.
In contrast to that, the load tests of Project C were manually defined and
did not precisely represent a real user’s behavior.
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Overall, we conclude that the IDPA is suitably expressive for defining
parameterizations of extracted representative load tests of industrial applica-
tions. The version used for the study lacked in several Input types that were
required for multiple applications, which we added after the study using
the Input extension point. Furthermore, we encountered the usefulness of
the extension mechanism, because Project B required an input type that is
specific to the project and should not be added to the core IDPA, namely the
AuthInput.

12.6. Threats to Validity

We see the following threats to the validity of our approach to the automated
parameterization of load tests and its evaluation. We group the threats by
the conclusion, internal, construct, and external validity.

12.6.1. Conclusion Validity

In our evaluation, we derived several conclusions that can bear threats to
the validity of our study. In the experimental study with the Heat Clinic,
we compared response time means using a two-sided t-test. However, the
boxplots of the response times appeared asymmetric and, thus, indicated a
distribution other than a normal distribution. However, as all samples had a
size of at least 670, we could apply the t-test according to the central limit
theorem.

In the study with Nexus, we based our analysis on the results of the JMeter
load tests rather than server-side monitoring tools. Hence, there was latency
between the first machine hosting the load test and the second machine
hosting Nexus, which could potentially have impaired the results. However,
we presume this latency was relatively small, as the machines were connected
with a 1 Gbit switch. Furthermore, as the low original baseline indicates,
there was low variation in the results except for the CSV file loading. Thus,
we conclude that there was no significant impairment.
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12.6.2. Internal Validity

We defined a metric ⇢ that bases on a weight function w. Potentially, this
weight function could have slightly impaired our results. However, w only
reduces the impact of minimal request rates, because they are likely to deviate
strongly in percentage. Thus, w smoothens the metric without changing the
value for higher, reliable request rates.

Our second metric ✓ assumes that all changes with a particular operation
to a specific type of element require the same effort. In practice, there will
be more variation. However, for an asymptotic comparison, the assumption
is sufficient. When parameterizing our derived effort estimation models with
measured values, future works might consider the variation of the effort,
e.g., as a probability distribution per change operation and type.
Another threat is that we evaluated the IDPA’s expressiveness with non-

representative load tests in the industrial case study. Hence, the findings
might not be relevant for generated representative load tests. However, we
presume the parameterization concepts used in load tests are independent
of the representativeness, as they mostly depend on the tested application.

12.6.3. Construct Validity

Our approach and experimental studies assume that test data with the
same quality and quantity as the production data are available. In fact,
in the experimental studies, we used the same database for the reference
and generated load tests. In practice, this might not be the case. However,
generating and managing representative test data is not our research focus.
For this purpose, we refer to existing approaches by Barros et al. (2007) and
Farahbod and Dadashi (2017).

Another potential threat is the use of Markov-chain-based workload mod-
els. In practice, request sequences are used more often. However, as the IDPA
is entirely independent of the workload model, we can assume that there
were no side effects due to Markov chains. Furthermore, Markov chains are
treated to be suitable for load testing (Z. Li and Tian, 2003), and we use
them as a central modeling concept in this dissertation.
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Finally, we artificially introduced API changes to the Heat Clinic for as-
sessing the influence of such changes on the representativeness of load tests
parameterized by an IDPA. Hence, our findings could originate from changes
that are uncommon in practice. Therefore, we based on S. Wang et al. (2014)
to implement changes according to a typical distribution. Besides, we con-
sidered API changes that were already contained in the commit history
between version v1 and v2, which did not result in fundamentally different
measurements.

12.6.4. External Validity

We concluded from our industrial case study that the IDPA is suitably expres-
sive for defining load test parameterizations. Also, we presumed we covered
most of the required Input types with the introduced extensions because
most of these types could be shared between the projects. However, this
finding might stem from a similarity of the investigated projects. We faced
this issue by investigating four different industrial projects. Furthermore,
the Input types, including the ones identified in the study, appeared to
be sufficient for all of our other studies as well. In the end, the provided
extension points allow adding new input types, which can— if generally
applicable—be integrated into the core metamodel.
Finally, we only investigated web applications having REST APIs. We

cannot generalize our results to applications that do not meet this assumption.
Even though the IDPA is not limited to a particular type of application, such
a generalization is not a goal of this work. For future work, we suggest
additional studies complementing ours, especially in other domains and
contexts, e.g., other than web-based applications.

12.7. Summary

In this chapter, we presented the evaluation of our approach to the automated
parameterization of load tests using the IDPA. It comprised four different
studies, including estimation models, experimental studies, and an industrial
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case study. We can conclude that our IDPA is suitable for parameterizing
load tests and, thus, generating load tests automatically.
In the following chapters, we provide evaluations of our further work

packages. In these studies, we use the IDPA for parameterization. Due to
the automation, this parameterization is not only required for the use in
continuous software engineering (CSE) but also eases experimentation.
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In this chapter, we evaluate our approach for tailoring load tests to services
(see Chapter 7). We introduced two algorithms— log-based andmodel-based
tailoring—, which extend the existing extraction process for generating load
tests that directly target a particular set of services. Thus, fewer services
need to be deployed for the test, and resources can be saved. Our evaluation
addresses the sub-questions of RQ2: How can representative load tests be
tailored to specific services of a session-based application?
The evaluation comprises a formal correctness verification and an ex-

perimental study with a representative microservice application. In the
verification, we prove that both algorithms fulfill the requirements defined
in Sections 7.4.1 and 7.5.1. As previously described, only the think time
variation is an approximation, which we cannot prove to be correct. Fur-
thermore, we compare the algorithm’s number of states, workload model
structure, transition probabilities, and think time variations.

Therefore, we investigated the quality of the tailored load tests further in
an experimental study with the Sock Shop (Weaveworks, Inc., 2020), which
Aderaldo et al. (2017) assess to be a representative microservice application.
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Load tests tailored using our algorithms generate slightly less representative
workloads than an untailored load test does but in an acceptable range.
In contrast, simple request-based load tests perform significantly worse.
Regarding representativeness and qualitative characteristics, the model-
based algorithm performs better than the log-based one. However, there are
indicators that the latter becomes more relevant for large-scale applications.
We provide a replication package online (H. Schulz et al., 2019b).

The chapter consists of five sections. Section 13.1 presents the formal
verification of the algorithms’ correctness. In Section 13.2, we present the ex-
perimental study. In Sections 13.3 and 13.4, we discuss the evaluation results
concerning the research questions and the threats to validity. Section 13.5
summarizes the chapter.
This chapter is a revised version of Chapter 5 of our below publication,

extended by a correctness proof of the introduced algorithms (Section 13.1).

• H. Schulz, T. Angerstein, D. Okanović, and A. van Hoorn (2019a).
“Microservice-tailored Generation of Session-based Workload Models
for Representative Load Testing.” In: Proceedings of the 27th IEEE Inter-
national Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS 2019). IEEE Computer
Society, pp. 323–335

13.1. Correctness Verification

In the following, we verify the correctness of the service-tailoring algorithms,
related to RQ2.1: How can we extend the load test extraction process for
generating service-tailored load tests?
In Sections 7.4.1 and 7.5.1, we defined requirements to the log-based

and model-based algorithms, formulated in the postconditions A
(log)
req , A

(log)
ID ,

A
(model)
states , A

(model)
prob , and A

(model)
time . Here, we prove that both algorithms fulfill

the postconditions, given that the input is appropriate. Furthermore, we
compare the algorithms on the basis of the postconditions. In Section 13.2,
we will present an experimental study complementing the formal insights.
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13.1.1. Log-based Tailoring

In this section, we prove that the log-based tailoring algorithm (Algorithm 7.2)
fulfills the postconditions A

(log)
req and A

(log)
ID we defined in Section 7.4.1. We

prove each postcondition individually.

13.1.1.1. Requests—A
(log)
req

For the first postcondition, we define the following theorem, which we prove
in the following.

Theorem 13.1 (A(log)req )
Given a set T of well-formed non-empty traces, a mapping � : R! R of the
traces’ root requests to session IDs, and a set of endpoints E , ������R������L���
(Algorithm 7.2) returns request logs R0 to which the following applies:

8r 2 R :
�
r 2R0 $ 9⌧ 2 T : "(r) 2 E ^ PE(⌧, r)

�

We prove the theorem by first proving that certain invariants apply to
������R������ (Algorithm 7.1), which ������R������L��� uses. We
formalize these invariants in the following lemma.

Lemma 13.2
Given a well-formed non-empty trace ⌧ and a set of endpoints E , the following
invariants apply to the while-loop in ������R������ (Algorithm 7.1; lines 3 to
11):

INV
(log)

1 ⌘ 8r 2R0 : "(r) 2 E ^ PE(⌧, r)

INV
(log)

2 ⌘ 8⌧̃ 2 T : PE(⌧, r⌧̃)

INV
(log)

3 ⌘ 8r 2 ⌧ :
�
"(r) 2 E ^ PE(⌧, r)

�
!
�
r 2R0 _ 9⌧̃ 2 T : r 2 ⌧̃

�

Proof. We prove Lemma 13.2 by induction. We mark the artifacts after the
i-th iteration with the superscript (i). Furthermore, we use the notations
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from the algorithm, e.g., T
(i)

,R(i) denote the T ,R0 of the algorithm, and
⌧,E denote the inputs.
Base Case:

R(0) = ;=) INV
(0)

1Ä
T
(0)
= {⌧}

ä
^ PE(⌧, r⌧) =) INV

(0)
2

T
(0)
= {⌧}=)8r 2 ⌧ 9⌧̃ 2 T

(0)
: r 2 ⌧̃=) INV

(0)
3

Inductive Step (i† i + 1): Given INV
(i)

1 to INV
(i)

3 hold for i � 0, INV
(i+1)

1 to
INV

(i+1)
3 hold, too. For proving that, we differentiate between two cases,

according to the if and else branches (lines 6 and 8 in Algorithm 7.1). We
refer to the trace the algorithm chose from T in iteration i + 1 as ⌧.
Case "(r) 2 E:

INV
(i)

1 ^
�
⌧ 2 T

(i) ^ "(r) 2 E
�

INV
(i)

2
=)

�
8r 2R(i) : "(r) 2 E ^ PE(⌧, r)

�
^
�
PE(⌧, r)^ "(r) 2 E

�
R(i+1)=R(i)[{r}
=) 8r 2R(i+1) : "(r) 2 E ^ PE(⌧, r)
=) INV

(i+1)
1

INV
(i)

2

=) 8⌧̃ 2 T
(i) \ {⌧} : PE(⌧, r⌧̃)

T
(i+1)
=T

(i)\{⌧}
=) INV

(i+1)
2

INV
(i)

3 ^ "(r) 2 E ^ PE(⌧, r)^ r 2R(i+1)

=)8r 2 ⌧ :
�
"(r) 2 E ^ PE(⌧, r)

�
!
�
r 2R(i+1) _ 9⌧ 2 T

(i+1)
: r 2 ⌧

�

=) INV
(i+1)

3
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Case "(r) /2 E:

INV
(i)

1 ^
�
R(i+1) =R(i)

�
=) INV

(i+1)
1

INV
(i)

2 ^ "(r) /2 E ^8⌧̃ 2 T
(i+1) \ T

(i)
: (r, r⌧̃) 2 C

INV
(i)

2 !PE (⌧,r)
=) INV

(i)
2 ^8⌧̃ 2 T

(i+1) \ T
(i)

: PE(⌧, r⌧̃)
=) INV

(i+1)
2

INV
(i)

3 ^ "(r) /2 E ^
�
8r
0 2 ⌧ : r

0 6= r ! 9⌧̃ 2 T
(i+1)

: r
0 2 ⌧̃

�

=) 8r 2 ⌧ :
�
"(r) 2 E ^ PE(⌧, r)

�
!
�
r 2R(i) _ 9⌧̃ 2 T

(i+1)
: r 2 ⌧̃

�
R(i+1)=R(i)

=) INV
(i+1)

3

É
Because ������R������ processes each request r 2 ⌧ at most once, it

will always finish and T = ; after the final iteration. Thus, we can conclude
the following from INV

(log)
3 :

8r 2 ⌧ :
�
"(r) 2 E ^ PE(⌧, r)

�
! r 2R0

We, therefore, can derive the following corollary from INV
(log)

1 ^ INV
(log)

3 :

Corollary 13.2.1
Given a well-formed non-empty trace ⌧ and a set of endpoints E , ������R������
(Algorithm 7.1) returns request logs R0 to which the following applies:

8r 2 ⌧ :
�
r 2R0 $ "(r) 2 E ^ PE(⌧, r)

�

Proof (Theorem 13.1). We can prove Theorem 13.1 using Corollary 13.2.1.
Regarding the request logs R0, ������R������L��� (Algorithm 7.2) does
nothing else than invoking ������R������ for every trace ⌧ 2 T and merg-
ing the return values. Let R0[⌧] be the R0 from the corollary for a fixed ⌧.
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Then, we can follow:

8r 2 R :
�
r 2R0 $ 9⌧ 2 T : r 2R0[⌧]

�

Corollary 13.2.1
=) 8r 2 R : (r 2R0 $ 9⌧ 2 T : "(r) 2 E ^ PE(⌧, r))
=) A

(log)
req

É

13.1.1.2. Session IDs—A
(log)
ID

For the postcondition related to the session IDs, we define the following
theorem, which we will prove.

Theorem 13.3 (A(log)ID )
Given a set T of well-formed non-empty traces, a mapping � : R! R of the
traces’ root requests to session IDs, and a set of endpoints E , ������R������L���
(Algorithm 7.2) returns a session ID mapping �0 : R0 ! R to which the
following applies:

8r 2R0 8⌧= (r⌧, R⌧, C⌧) 2 T : r 2 ⌧! �0(r) = �(r⌧)

Proof. From Corollary 1, it follows that all requests in R00 (line 4 in ������-
R������L���) are derived from Trace ⌧. Hence, as the algorithm explicitly
sets the session ID of these traces to �(⌧) (line 5), A

(log)
ID follows automatically.

É

13.1.2. Model-based Tailoring

For the model-based tailoring algorithm (Algorithm 7.5), we defined three
postconditions A

(model)
states , A

(model)
prob , and A

(model)
time (see Section 7.5.1) concerning

the states, probabilities, and timing behavior of the tailored Markov chains.
In the following, we show that the algorithm fulfills all three postconditions.

322 13 | Evaluating Service-tailored Load Testing



13.1.2.1. States—A
(model)
states

The first postcondition describes the requirements of the states of the tailored
Markov chains. As defined in Section 7.5.1, the following theorem needs to
hold.

Theorem 13.4 (A(model)
states )

Let W = ({W1, . . . , Wq}, f ) be a workload model with states ⌃ j = E (orig) for
1 j  q, T a set of traces with root requests to endpoints in E (orig), and E a
set of endpoints. Let Tj furthermore be the traces corresponding to Wj and s⌧

the session of requests in a trace ⌧ targeting E , i.e., for Wj = (⌃ j ," j , pj ,� j , Sj):

Tj :=
�
⌧ 2 T | 9s 2 Sj : r⌧ 2 s

 

s⌧ :=
�

r 2 ⌧ | "(r) 2 E ^ PE(⌧, r)
 

Given W , T , and E , ������W�������M���� (Algorithm 7.5) returns a work-
load model W 0 = ({W 0

1, . . . , W
0
q
}, f ) such that the following applies to each

W
0
j
:

8⌧ 2 Tj 8r 2 s⌧ 9ẽ 2 ⌃0j : "(r) = "0
j
(ẽ)

We prove the theorem by first considering each iteration of the inner loop
of ������W�������M����. For that, we state and prove the following
lemma.

Lemma 13.5
LetW , T , E , Tj , and s⌧ be as in Theorem 13.4. After each iteration of the inner
loop of ������W�������M���� (lines 4 to 15), the following applies to each W

0
j
,

with e being the state processed in the iteration:

A13.5 ⌘ 8⌧ 2 Tj :
�
"(r⌧) = " j(e)

�
!
�
8r 2 s⌧ 9ẽ 2 ⌃0j : "(r) = "0

j
(ẽ)
�

13.1 | Correctness Verification 323



Proof. As stated in Theorem 13.1, the R0 in line 7 contains exactly those
requests from traces in T 0 (line 5) that target an endpoint in E:

A13.5.1 ⌘ 8r 2 R :
�
r 2R0 $ 9⌧ 2 T 0 : "(r) 2 E ^ PE(⌧, r)

�

()8r 2 R :
�
r 2R0 $ 9⌧ 2 T 0 : r 2 s⌧

�

Based on that, we differentiate between two if -else cases (lines 8 and 10).
Case R0 = ;: As it holds r /2R0 for all r, we can follow from A13.5.1:

8r 2 R 8⌧ 2 T 0 : r /2 s⌧ =)8⌧ 2 T 0 : s⌧ = ;=) A13.5

Case R0 6= ;: First, the following is easy to see:

A13.5.2 ⌘ ⌧ 2 T 0 $ ⌧ 2 Tj ^ "(t⌧) = " j(e)

�������S���� adds states with exactly those endpoints to ⌃0
j
for which a

request in R0 exists (line 4 in Algorithm 7.4). In other words, it adds a state
for each request:

8r 2R0 9ẽ 2 ⌃0
j
: "(r) = "0

j
(ẽ)

A13.5.1
=) 8⌧ 2 T 0 8r 2 s⌧ 9ẽ 2 ⌃0j : "(r) = "0

j
(ẽ)

A13.5.2
=) 8⌧ 2 Tj :

�
"(t⌧) = " j(e)

�
!
�
8r 2 s⌧ 9ẽ 2 ⌃0j : "(r) = "0

j
(ẽ)
�

=) A13.5

É
Proof (Theorem 13.4). We can prove Theorem 13.4 using Lemma 13.5.
Because ������W�������M���� processes each e 2 ⌃ j once, A13.5 holds
for all of them. Using the precondition of Theorem 13.4 that all traces in T
(and, thus, in Tj) target an endpoint in E , we conclude the following:
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8e 2 ⌃ j : A13.5

=) 8⌧ 2 Tj :
�
9e 2 ⌃ j : "(t⌧) = " j(e)

�

!
�
8r 2 s⌧ 9ẽ 2 ⌃0j : "(r) = "0

j
(ẽ)
�

precondition
=) A

(model)
states

É

13.1.2.2. Probabilities—A
(model)
prob

The second postcondition targets the probabilities of reaching one state from
another. As stated in Section 7.5.1, the tailoring needs to preserve them.

Theorem 13.6 (A(model)
prob

)

Let W , T , E , E (orig), Tj , and s⌧ be as in Theorem 13.4. Let p
1
j
(e1, e2) further-

more be the probability to reach state e2 from e1 in any number of steps (see
Section 7.5.1). Given W , T , and E , ������W�������M���� (Algorithm 7.5) re-
turns a workload model W 0 = ({W 0

1, . . . , W
0
q
}, f ) such that the following applies

to each W
0
j
:

8ẽ1 2 ⌃0j 8e2 2 E (orig) :
�
sub j(e2) 6= ; ^ ẽ1 /2 sub j(e2)

�

!
Ä
p
01
j
(ẽ1, sub j(e2)) = p

1
j
(root j(ẽ1), e2)

ä

For proving the theorem, we introduce several notations and conditions.
First, we consider the probability to reach the final state $ from the any state
e in any of the Markov chains occurring in this context. By construction,
they are absorbing Markov chains, i.e., each state can reach $ (Grinstead
and Snell, 2012). Thus, we can state the following lemma without proof.

Lemma 13.7
Let W = (⌃, p,�, S) be any Markov chain occurring in the context of this chap-
ter with final state $ 2 ⌃. Let p

1(e1, e2) furthermore be as in Theorem 13.6.
Then, the following always applies to W :
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8e 2 ⌃ : p
1(e, $) = 1

Second, we introduce the notion of a path through a Markov chain. Paths
will be useful for proving the overall probability of reaching one state from
another. Thus, we define the following.

Definition 13.1 (Paths)
Let W = (⌃, p,�, S) be a Markov chain. We call a sequence of states ⇡ =
(e1, . . . , ek+1) 2 ⌃⇤ a path through W . k is the length of ⇡, e1 the start state,
and ek+1 the end state. Furthermore, the probability of ⇡ is the product of the
probabilities of all transitions of the path:

p(⇡) =
kY

i=1

p(ei , ei+1)

⇧(e, e
0) denotes the set of all paths from state e to e

0 of any length. We denote
the concatenation of paths ⇡1 2 ⇧(e, e

0) and ⇡2 2 ⇧(e0, e
00) by ⇡1 � ⇡2 =

(e, . . . , e
0, . . . , e

00) 2⇧(e, e
00).

Next, we define and prove postconditions for the helper algorithms. Later,
we will use them to prove Theorem 13.6. For ������S����, we state the
following.

Lemma 13.8
Let Wj = (⌃ j ," j , pj ,� j , Sj) be a Markov chain as usual, e 2 ⌃ j a state, and
� 2 R. Let furthermore be ⌃(b)

j
and ⌃(a)

j
the ⌃ j before and after the execution

of ������S���� (Algorithm 7.3) and ⇡ a path in ⌃(a)
j
. Finally, let ⇡(i) =

(e1, . . . , ei , e, ei+1, . . . ek+1) be the path resulting from ⇡ by adding e after ei and,
correspondingly, ⇡(i1,...,iq) the path resulting from adding e after ei1

to eiq
each.

Then, the following applies to ⇡ for all � = (1, . . . , 1, 2, . . . , 2, . . . , k, . . . , k) 2
{1, . . . , k}l1+···+lk , li � 0:

A13.8 ⌘ p
(a)
j
(⇡) =

X

�

p
(b)
j
(⇡(�))
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Proof. We prove the lemma by induction over the length k of path⇡. However,
we first extract the transition probability p

(a)
j
(e0, e

00) for all pairs e
0, e
00 of

endpoints in ⌃(a)
j
. According to lines 4, 8, and 10 of ������S����, it is:

p
(a)
j
(e0, e

00) = p
(b)
j
(e0, e

00) +
p
(b)
j
(e0, e) · p(b)

j
(e, e

00)

1� p
(b)
j
(e, e)

Base Case (k = 1): In this case, ⇡ = (e1, e2) and (using geometric series,
Hildebrandt, 2006):

X

�

p
(b)
j
(⇡(�)) =

1X

i=0

p
(b)
j
(⇡(

i timesz }| {
1, . . . , 1))

= p
(b)
j
(e1, e2) +

1X

i=0

p
(b)
j
(e1, e) · p(b)

j
(e, e)i · p(b)

j
(e, e2)

= p
(b)
j
(e1, e2) +

p
(b)
j
(e1, e) · p(b)

j
(e, e2)

1� p
(b)
j
(e, e)

= p
(a)
j
(e1, e2) = p

(a)
j
(⇡)

Inductive Step (k† k+ 1): Given a path ⇡k = (e1, . . . , ek+1) in ⌃
(a)
j

of length

k to which A13.8 applies and ek+2 2 ⌃(a)j
, A13.8 applies to the path ⇡k+1 =

⇡k � (ek+1, ek+2) of length k+ 1:

X

�

p
(b)
j
(⇡(�)

k+1) =
X

�

p
(b)
j
(⇡(�)

k
) ·
X

�0
p
(b)
j
((ek+1, ek+2)(�

0))

= p
(a)
j
(⇡k) ·

Ä
p
(b)
j
(ek+1, ek+2)

+
1X

i=0

p
(b)
j
(ek+1, e) · p(b)

j
(e, e)i · p(b)

j
(e, ek+2)

ä

= p
(a)
j
(⇡k) ·

 
p
(b)
j
(ek+1, ek+2) +

p
(b)
j
(ek+1, e) · p(b)

j
(e, ek+2)

1� p
(b)
j
(e, e)

!

= p
(a)
j
(⇡k) · p(a)j

(ek+1, ek+2) = p
(a)
j
(⇡k+1)
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É
We can interpret Lemma 13.8 as follows. Each path ⇡ in ⌃(a)

j
subsumes

⇡ in ⌃(b)
j

and, additionally, all paths in ⌃(b)
j

that only differ from ⇡ in one

or several visits of the removed state e. Hence, ⇡ in ⌃(a)
j

preserves the
probability “removed” by removing e. As this holds for all paths from state
e1 to e2, we can follow the corollary below.

Corollary 13.8.1
Let Wj = (⌃ j ," j , pj ,� j , Sj) be a Markov chain as usual, e 2 ⌃ j a state, and
� 2 R. Given these inputs, ������S���� (Algorithm 7.3) changes Wj such that
the following applies to the version before and after the execution:

A13.8.1 ⌘ 8e1, e2 2 ⌃(a)j
: p
(a)1
j
(e1, e2) = p

(b)1
j
(e1, e2)

Now, we consider �������S����, for which we state the following.

Lemma 13.9
Let Wj = (⌃ j ," j , pj ,� j , Sj) be a Markov chain as usual, e 2 ⌃ j a state, and R0

request logs. Let W
0 furthermore be the aggregation of R0, as in �������S����

(Algorithm 7.4). Given Wj, e, and R0, �������S���� changes Wj such that the
following statements apply to the version before (W (b)

j
) and after (W (a)

j
) the

execution:

A13.9.1 ⌘ 8e1 2 ⌃(a)j
\⌃0 : p

(a)1
j
(e1, sub j(e)) = p

(b)1
j
(e1, e)

A13.9.2 ⌘ 8e1 2 ⌃0 8e2 2 ⌃(a)j
\⌃0 : p

(a)1
j
(e1, e2) = p

(b)1
j
(e, e2)

A13.9.3 ⌘ 8e1, e2 2 ⌃(a)j
\⌃0 : p

(a)1
j
(e1, e2) = p

(b)1
j
(e1, e2)

Proof. We prove Lemma 13.9 by considering the intermediate Markov chain
that �������S���� constructs after line 13. We denote this Markov chain
as W

(int)
j

. The only difference to W
(a)
j

is that it contains the inner initial
and final states I

0 and $0. Thus, we can use Corollary 13.8.1 for deriving
conclusions about W

(a)
j

. We prove each of the statements individually.

A13.9.1: In W
(int)
j

, I
0 is the only state connecting W

0 with the rest of the Markov
chain via incoming transitions. Hence, the probability of reaching a state
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in ⌃0 from outside is equal to reaching it via I
0. Furthermore, as I

0 has the
incoming transition probabilities from e (line 6), we can conclude:

8e1 2 ⌃(int)j
\⌃0 8e2 2 ⌃0 : p

(int)1
j

(e1, e2) = p
(int)1
j

(e1, I
0) · p(int)1

j
(I 0, e2)

=) 8e1 2 ⌃(int)j
\⌃0 : p

(int)1
j

(e1, sub j(e)) = p
(int)1
j

(e1, I
0)

=) 8e1 2 ⌃(int)j
\⌃0 : p

(int)1
j

(e1, sub j(e)) = p
(b)1
j
(e1, e)

Corollary 13.8.1
=) A13.9.1

A13.9.2: In W
(int)
j

, $0 is the only state connecting W
0 with the rest of the Markov

chain via outgoing transitions. Hence, the probability of reaching a state
outside ⌃0 from a state inside is equal to reaching it via $0. Furthermore, as
$0 has the outgoing transition probabilities from e (line 10), we can conclude:

8e1⌃
0 8e2 2 ⌃(int)j

\⌃0 : p
(int)1
j

(e1, e2) = p
(int)1
j

(e1, $0) · p(int)1
j

($0, e2)
Lemma 13.7
=) 8e1⌃

0 8e2 2 ⌃(int)j
\⌃0 : p

(int)1
j

(e1, e2) = 1 · p(int)1
j

($0, e2)
=) 8e1⌃

0 8e2 2 ⌃(int)j
\⌃0 : p

(int)1
j

(e1, e2) = p
(b)1
j
(e, e2)

Corollary 13.8.1
=) A13.9.2

A13.9.3: In W
(b)
j

, a state e2 6= e can be reached from another state e1 6= e either
by passing e or by not passing e. Similarly, e2 can be reached from e1 in
W
(int)
j

either by passing the replacement of e or not. �������S���� does

not change any parts of W
(b)
j

except for e. Thus, the probability of reaching
e2 from e1 without passing e or its replacement is equal in both Markov
chains. Hence, we only need to show the part with e remains unchanged.
The probability of reaching e2 via the replacement is to reach I

0, then reach
$0, and then reach e2.
Let X be the probability to reach e2 from e1 without passing e or its

replacement. Then, we can state:

13.1 | Correctness Verification 329



p
(int)1
j

(e1, e2) = p
(int)1
j

(e1, I
0) · p(int)1

j
(I 0, $0) · p(int)1

j
($0, e2) + X

= p
(b)1
j
(e1, e) · 1 · p(b)1

j
(e, e2) + X

= p
(b)1
j
(e1, e2)

Therefore, according to Lemma 13.7, A13.9.3 applies to W
(a)
j

. É

Proof (Theorem 13.6). Finally, we can prove Theorem 13.6 using the
lemmata and corollaries defined above. We do that by induction over the
iteration of the inner for-loop (lines 4 to 15) of ������W�������M����.
In each iteration, we prove that A

(model)
prob holds under the assumption that E

contains only those endpoints the algorithm already processed; we denote
that as A

(model,i)
prob . Hence, A

(model)
prob follows from A

(model,i)
prob after the last iteration.

We denote the version of W
0
j
after the i-th iteration as W

(i)
j
.

Base Case: For the base case, i.e., before the execution of the algorithm, it is
root j(e) = e for each e 2W

(0)
j

. Hence, A
(model,0)
prob holds.

Inductive Step (i† i + 1): We assume A
(model,i)
prob holds after the i-th iteration

and consider state e to be processed in iteration i + 1. Furthermore, we
distinguish between the following two cases.
Case R0 = ;: In this case, the algorithm only makes one call to ������-

S����. According to Corollary 13.8.1, this does not change the probabilities
of reaching one state from another; thus, A

(model,i+1)
prob holds, too.

Case R0 6= ;: In this case, the algorithm replaces the state e with a sub-
Markov chain consisting of the states sub j(e). According to Lemma 13.9,
the statements A13.9.1 to A13.9.3 hold. As the probabilities to reach one state
outside sub j(e) from another is unchanged (A13.9.3), we only need to consider
the combination from one state outside and one inside sub j(e).
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A13.9.1

=) 8ẽ1 2 ⌃(i+1)
j
\ sub j(e) : p

(i+1)1
j

(ẽ1, sub j(e)) = p
(i)1
j
(ẽ1, e)

A
(model,i)
prob
=) 8ẽ1 2 ⌃(i+1)

j
\ sub j(e) : p

(i+1)1
j

(ẽ1, sub j(e)) = p
1
j
(root j(ẽ1), e)

A13.9.2

=) 8ẽ1 2 sub j(e) 8ẽ2 2 ⌃(i+1)
j
\ sub j(e) :

p
(i+1)1
j

(ẽ1, ẽ2) = p
(i)1
j
(e, ẽ2)

A
(model,i)
prob
=) 8ẽ1 2 sub j(e) 8e2 2 E (orig) \ {e} :

p
(i+1)1
j

(ẽ1, sub j(e2)) = p
(i)1
j
(e, sub j(e2)) = p

1
j
(e, e2)

Hence, we can follow:

A
(model,i)
prob ^ A13.9.1 ^ A13.9.2 ^ A13.9.3 =) A

(model,i+1)
prob

É

13.1.2.3. Time—A
(model)
time

The last postcondition targets the time the Markov chain takes to execute.
We decided to use a model with normally distributed think times. In the
algorithms, there are operations on the Markov chain that require deviating
from the actual think time distribution, for sticking to normal distributions.
However, they always preserve the think time mean and model the variation
as accurately as possible. Therefore, we validate the postcondition only
based on the think time mean. In an experimental evaluation, we will assess
the goodness of the tailored Markov chains without this restriction.
First, we define the notion of time in a Markov chain.

Definition 13.2 (Time)
Let Wj = (⌃ j ," j , pj ,� j , Sj) be a Markov chain as usual and e, e1, e2 2 ⌃ j states.
Then, µ j(e1, e2) defines the average think time of a transition (e1, e2), i.e., for
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a certain �:

� j(e1, e2)⇠N (µ j(e1, e2),�)

Furthermore, µ j(e) defines the average response time of a request to " j(e).
For a path ⇡ 2 ⇧(e1, e2) of length k in ⌃ j (see Definition 13.1), µ j(⇡)

describes the time it takes to walk the path:

µ j(⇡) = µ j(e1, e2) +
kX

i=2

µ j(ei) +µ j(ei , ei+1)

With that, we can define time j(e1, e2), which denotes the average time it takes
to come from state e1 to e2:

time j(e1, e2) =
X

⇡2⇧(e1,e2)

pj(⇡) ·µ j(⇡)

We state the following theorem as a postcondition for ������M�����C����.

Theorem 13.10 (A(model)
time )

GivenW , T , and E as in Theorem 13.4, ������W�������M���� (Algorithm 7.5)
returns a workload model W 0 = ({W 0

1, . . . , W
0
q
}, f ) such that the following

applies to each W
0
j
:

time0
j
(I , $) = time j(I , $)

First, we consider the Markov chains resulting from aggregating session
logs. We use existing approaches for that and assume they create represen-
tative Markov chains, which also includes the timing. Therefore, we state
the following lemma without proof.

Lemma 13.11
Let S be session logs and W = (⌃, p,�,S) the Markov chain resulting from
aggregating S. Then, the average time it takes to execute W is equal to the
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average duration of each session:

time(W ) =
1
|S|

X

s2S
max

r2s

(t(r) +�(r))�min
r2s

(t(r))

With that, we can show the two helper algorithms preserve A
(model)
time . We

start with ������S����.

Lemma 13.12
Let Wj = (⌃ j ," j , pj ,� j , Sj) be a Markov chain as usual, e 2 ⌃ j a state, and
� ⇠N (µ j(e),�). Let furthermore be ⌃(b)

j
and ⌃(a)

j
the ⌃ j before and after the

execution of ������S���� (Algorithm 7.3) and ⇡ a path in ⌃(a)
j
. Finally, let

⇡(i1,...,iq) be as in Lemma 13.8.
Then, the following applies to ⇡ for all � = (1, . . . , 1, 2, . . . , 2, . . . , k, . . . , k) 2
{1, . . . , k}l1+···+lk , li � 0:

A13.12 ⌘ p
(a)
j
(⇡) ·µ(a)

j
(⇡) =

X

�

p
(b)
j
(⇡(�)) ·µ(b)

j
(⇡(�))

Proof. From lines 5 and 9 of ������S����, we can extract the think time
mean of each transition (e1, e2) after the execution. Given ↵ = 1

1�p
(b)
j
(e,e)
� 1,

it is:

µ(a)
j
(e1, e2) =

p
(b)
j
(e1, e2)

p
(a)
j
(e1, e2)

·µ(b)
j
(e1, e2) +

p
(b)
j
(e1, e) · p(b)

j
(e, e2)

p
(a)
j
(e1, e2) · (1� p

(b)
j
(e, e))

·
Ä
µ(b)

j
(e1, e) +↵ ·µ(b)

j
(e, e) + (↵+ 1) ·µ j(e) +µ

(b)
j
(e, e2)

ä

Then, we prove the lemma by induction over the length k of the path ⇡.
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Base Case (k = 1): In this case, ⇡= (e1, e2) and:

X

�

p
(b)
j
(⇡(�)) ·µ(b)

j
(⇡(�))

=
1X

i=0

p
(b)
j
(⇡(�)) ·µ(b)

j
(⇡(

i timesz }| {
1, . . . , 1))

= p
(b)
j
(e1, e2) ·µ(b)j

(e1, e2) +
1X

i=0

p
(b)
j
(e1, e) · p(b)

j
(e, e)i · p(b)

j
(e, e2)

·
Ä
µ(b)

j
(e1, e) + i ·µ(b)

j
(e, e) + (i + 1) ·µ j(e) +µ

(b)
j
(e, e2)

ä

= p
(b)
j
(e1, e2) ·µ(b)j

(e1, e2) +
Ä
p
(b)
j
(e1, e) · p(b)

j
(e, e2)

ä

·

0
@µ

(b)
j
(e1, e) ·µ(b)

j
(e, e2)

1�µ(b)
j
(e, e)

+
p
(b)
j
(e, e) ·µ(b)

j
(e, e)

Ä
1�µ(b)

j
(e, e)

ä2 +
µ j(e)Ä

1�µ(b)
j
(e, e)

ä2

1
A

= p
(a)
j
(⇡) ·µ(a)

j
(⇡)

Inductive Step (k† k+ 1): We reuse the base case and Lemma 13.8. Given
a path ⇡k = (e1, . . . , ek+1) in ⌃

(a)
j

of length k to which A13.12 applies and

ek+2 2 ⌃(a)j
, A13.12 applies to the path ⇡k+1 = ⇡k � (ek+1, ek+2) of length k+ 1:

X

�

p
(b)
j
(⇡(�)

k+1) ·µ
(b)
j
(⇡(�)

k+1)

=
X

�

X

�0
p
(b)
j
(⇡(�)

k
) · p(b)

j
((ek+1, ek+2)(�

0))

·
Ä
µ(b)

j
(⇡(�)

k
) +µ j(ek+1) +µ

(b)
j
((ek+1, ek+2)(�

0))
ä

= p
(a)
j
(⇡k) · p(a)j

(ek+1, ek+2) ·
Ä
µ(a)

j
(⇡k) +µ j(ek+1) +µ

(a)
j
(ek+1, ek+2)

ä

= p
(a)
j
(⇡k+1) ·µ(a)j

(⇡k+1)

É
Lemma 13.12 tells us that the modified probabilities and think times

preserve the time ������S���� “removes” from the Markov chain. As a
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consequence, the time spent in the Markov chain overall remains the same:

time(a)
j
(I , $) =

X

⇡2⇧(a)
p
(a)
j
(⇡) ·µ(a)

j
(⇡)

=
X

⇡2⇧(a)

X

�

p
(b)
j
(⇡(�)) ·µ(b)

j
(⇡(�))

=
X

⇡2⇧(b)
p
(b)
j
(⇡) ·µ(b)

j
(⇡) = time(b)

j
(I , $)

We record that in the following corollary.

Corollary 13.12.1
Let Wj = (⌃ j ," j , pj ,� j , Sj) be a Markov chain as usual, e 2 ⌃ j a state, and
� ⇠ N (µ j(e),�). Let furthermore be W

(b)
j

and W
(a)
j

the Wj before and after
the execution of ������S���� (Algorithm 7.3). Then, the following holds:

time(a)
j
(I , $) = time(b)

j
(I , $)

Next, we consider �������S����. Similar to ������S����, it preserves
the time in the Markov chain, given that the input is appropriate.

Lemma 13.13
Let Wj = (⌃ j ," j , pj ,� j , Sj) be a Markov chain as usual, e 2 ⌃ j a state, and R0

request logs. Let W
0 furthermore be the aggregation of R0, as in �������S����

(Algorithm 7.4) with time(W 0) = µ j(e). Given Wj, e, and R0, �������S����
changes Wj such that the following statements apply to the version before (W (b)

j
)

and after (W (a)
j

) the execution:

time(a)
j
(I , $) = time(b)

j
(I , $)

Proof. The lemma follows directly from the fact that the request logs R0

represent the average duration of e. Similar to Lemma 13.9, we consider
the intermediate Markov chain W

(int)
j

after line 13. From Lemma 13.11, it

follows that the time it takes on average to come from I
0 2 ⌃(int)

j
to $0 2 ⌃(int)

j

is equal to µ j(e). Furthermore, the probability and time to come from any
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e
0 2 ⌃(int)

j
\⌃0 to I

0 are equal to the ones from e
0 to e in W

(b)
j

. The same applies

to $0 and e
0. Hence, W

(int)
j

preserves the time, as stated by Lemma 13.13.
According to Corollary 13.12.1, the two calls to ������S���� preserve the
overall timing, too. É
Proof (Theorem 13.10). Finally, we can prove Theorem 13.10. We consider
the inner for-loop of ������W�������M���� (lines 4 to 15 of Algorithm 7.5).
We show that after each iteration, the average time to come from I to $ is
the same as before the iteration. First, we want to highlight that T 0 (line 5)
contains those traces that belong to the Markov chain Wj and have a root
request to endpoint e. Then, we distinguish between two cases.

Case R0 = ;: In this case, e is removed from Wj. The duration passed to
������S���� follows the distribution of the duration of the traces in T 0.
Hence, by construction, �(T 0) = µ j(e). According to Corollary 13.12.1, the
timing of the Markov chain remains unchanged on average.

Case R0 6= ;: Here, the algorithm extends R0. Each trace ⌧ has its own
session ID and two placeholder requests I

0 and $0, such that:

t($0)� t(I 0) = t(⌧) +�(⌧)� t(⌧) = �(⌧)

Thus, the Markov chain that �������S���� creates by aggregating R0 will
take the time µ j(e) to execute on average. Consequently, the preserving of
the timing of Wj follows from Lemma 13.13. É

13.1.3. Comparison of the Algorithms

Considering the load test extraction process (see Section 7.3), we can identify
several differences between the service-tailoring algorithms. The log-based
algorithm produces request logs that perfectly explain the workload. How-
ever, the workload clustering uses heuristics for classifying sessions, resulting
in potentially imperfect workload models. The model-based tailoring suffers
from this, too— it modifies the output from the session clustering—but
at least preserves the basic structure of the untailored workload model.
However, it approximates the think time variation (see Section 7.5.3).
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Table 13.1.: Differences of Log-based and Model-based Service-tailoring

log-based tailoring model-based tailoring

states one per endpoint in E
one per endpoint in E
and state in the original
Markov chains

workload model
structure

depends on the clus-
tering

similar to the untailored
Markov chains

transition proba-
bilities locally correct

locally correct & similar
to the untailored workload
model

think times depend on the cluster-
ing approximated variation

Under certain assumptions, the extraction process adjusted with log-based
and model-based tailoring will output the same load test. These are the
following:

• Each endpoint in E is only called within the context of one state of the
untailored Markov chain.

• The workload clustering is perfect, i.e., it will categorize a tailored
session similarly as its untailored correspondent.

• The model-based tailoring calculates the think time variations correctly.

In most of all cases, all of these assumptions are invalid. Therefore, we
summarize several differences between the algorithms stemming from viola-
tions of the assumptions. We summarize them in Table 13.1. First, the states
of the Markov chains can be different. While the model-based algorithm
replaces the states of the original chains individually, the log-based algorithm
produces one state per endpoint. Hence, the model-tailored Markov chains
can have more states than the log-tailored ones. Notably, this is the case
when the first of the above-listed assumptions is violated.
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Second, the workload clustering is not perfect. That is, it can happen that
the tailored session logs are being clustered differently than the untailored
ones. This results in a different structure of the workload model— it may
have a different number of Markov chains, different transition probabilities,
and think times. However, it is formally undecidable whether these differ-
ences decrease representativeness. In contrast, the model-based algorithm
preserves the structure of the untailored Markov chain.

Even though the workload model structure can differ, the transition proba-
bilities of both tailored Markov chains are locally correct, i.e., the probability
of requesting one endpoint after another is the same. This follows from A

(log)
req

and A
(model)
prob . However, the sessions generated by the tailored load tests can

be different, because they depend on the workload clustering and the states.
Finally, we can identify differences in the think times of each transition. For

the log-based algorithm, the workload clustering might introduce an error,
especially to the variation. Notably, the type of think time distribution—
e.g., normal distribution—might be inappropriate. Again, the model-based
algorithm produces Markov chains with think times similar to the original
Markov chains, but with an approximated variation.
We can conclude that even though we proved that both tailoring algo-

rithms are correct regarding several requirements, the workload clustering
and approximated think time variations introduce an error to the repre-
sentativeness, which we cannot assess formally. Therefore, we conduct an
experimental study for evaluating the approaches without assumptions and
quantifying the differences between the algorithms.

13.2. Experimental Study with Sock Shop

In this study, we evaluate the following research questions.

• RQ2.2: How representative are the workloads generated by the service-
tailored load tests compared to an untailored and a request-based test?

• RQ2.3: To which degree do the service-tailored load tests impair the
performance metrics of the tested services?
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• RQ2.5: Which qualitative differences of the service-tailored workload
models exist?

We executed a series of experiments with the Sock Shop Microservices
Demo (Weaveworks, Inc., 2020). In each experiment, we executed a load
test tailored to a specific set of services using a particular tailoring algorithm.
Then, we compared the representativeness, impact on performance met-
rics, and qualitative differences, as asked by the research questions. In the
following, we describe the method and results. We will discuss the results
concerning the research questions in Section 13.3.

13.2.1. Experimental Method

In the following, we describe the method of this study, including the system
under test (SUT), experiment setup, and experiment process.

13.2.1.1. System Under Test

In our experiment series, we used the Sock Shop Microservices Demo men-
tioned earlier (Section 7.1) as SUT, on which we executed the generated
load tests. The Sock Shop serves functionalities such as browsing, shopping
cart management, purchasing, and user management via the following mi-
croservices (with databases for some): front-end (14 endpoints), catalogue
(4 endpoints), carts (4 endpoints), orders (2 endpoints), payment (1 end-
point), shipping (1 endpoint), and user (6 endpoints). In addition to the
Sock Shop itself, we utilized the open-source monitoring systems Zipkin
(Zipkin, 2020) for trace collection, a Java service converting the Zipkin traces
into OPEN.xtrace (Okanović et al., 2016) to allow for monitoring tool inde-
pendence, and Prometheus (Prometheus, 2020) for collecting performance
metrics.

13.2.1.2. Experiment Setup

As illustrated in Figure 13.1, we deployed the Sock Shop on a bare-metal
machine with 80 cores (2 threads each) at 2300MHz, 896GiB RAM, and a
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Figure 13.1.: Experiment setup for load test execution.

magnetic disk with 15000 rpm. We deployed each microservice as a Docker
container with two isolated CPU cores and 4GiB of RAM. Besides, the
machine hosted a lightweight Java service for restarting the application
remotely. Zipkin, the OPEN.xtrace converter, and Prometheus were deployed
on a second machine with 24 cores (2 threads each) at 2300MHz and 32GiB
RAM, connected via a shared 10Gbit/s network infrastructure. The second
machine also hosted the JMeter (Apache Software Foundation, 2020[a])
load tests we executed and a script automating the experiment (see below).
JMeter had a heap size of 512MiB, except for the untailored test, which
needed 2GiB.

13.2.1.3. Experiment Process

Our evaluation consists of an experiment series in three steps, which we
describe in the following.

340 13 | Evaluating Service-tailored Load Testing



Simulate Production Workload: As representative load testing uses produc-
tion monitoring data for generating load tests, we needed to simulate the
production workload first. For that, we designed a load test mimicking three
different types of users, namely users that visit products (80 users), browse
and buy products (60 users), and visit the status of their orders (60 users).
An experiment automation script executed this load test, as depicted in
Figure 13.1. First, it restarted the Sock Shop to ensure that the load test was
executed in a clean and comparable environment 1�. Then, it executed the
load test 2�. During the load test, the Sock Shop sent traces to Zipkin and
CPU and memory metrics to Prometheus. After the load test had finished,
the metrics and traces—via the OPEN.xtrace converter, which retrieved the
Zipkin traces—were collected 3� and stored into a results folder for later
analysis 4�. In the following, we refer to the workload (model) of this load
test as the reference workload (model).

Generate Load Tests: After the execution of the reference workload, we used
the collected traces to generate tailored load tests by using the log-based and
model-based approaches. As baselines, we generated an untailored (system-
level) load test using the plain WESSBAS (Vögele et al., 2018) and request-
based load tests, which simply replayed all requests at a rate extracted
from the reference workload. We applied the request-, log-, and model-
based approaches for generating load tests for the following combinations
of microservices, considering the dependencies shown in Section 7.1:

• catalogue—4 endpoints

• user—6 endpoints

• carts, orders, payment, shipping, user—10 endpoints

• catalogue, user—10 endpoints

• catalogue, carts, orders, payment, shipping, user—14 endpoints

• catalogue, carts, user—14 endpoints

• catalogue, carts, payment, shipping, user—16 endpoints
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Please note that we always included dependent microservices, i.e., for the
orders service, we also included carts, payment, shipping, and user. If orders
was to be tested in isolation, load-test-ready stubs needed to replace the
dependent services, which could, however, influence orders’ performance.
Therefore, we used the actual services as “perfect” stubs.

For parameterizing the generated load tests, we utilized our approach from
Chapter 6. For each microservice, we defined one Input Data and Properties
Annotation (IDPA), and for each load test, we chose the ones corresponding
to the tested services to parameterize the test. For good comparability, we
used the same parameterization for all tailoring approaches. Besides, this
procedure allowed a high degree of automation of the experiments.

Execute Load Tests: The last step was the execution of the generated load
tests. Again, we utilized the setup depicted in Figure 13.1. The experiment
automation took care of executing all tests for 30 minutes and restarting the
Sock Shop before each test to yield comparable results.

13.2.2. Results

In this section, we present the results of the experiment, separated by the
research question. For convenience, we denote the load tests transformed
from a workload model by the used tailoring approach, e.g., log-based load
test or untailored load test.

13.2.2.1. Representativeness

For assessing the representativeness of the executed load tests, we calculate
the distance metric D (see Section 11.2.5) for each of them. Also, we
distinguish between the number of endpoints involved in the load test,
because we expect it to influence D. Figure 13.2 shows the resulting values
including the convex hull per tailoring approach and a line for the critical
value c(↵) = 1.36 (Massey Jr., 1951) for ↵ = 0.05. We can see that mostly
all values are higher than c(↵), indicating a significant difference. However,
for our approaches, D is only slightly higher than for the untailored test but
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Figure 13.2.: Aggregated Kolmogorov-Smirnov statistic D.

lower than for the request-based tests, which increase D by a factor between
3.57 and 9.22 compared to the untailored test.

In general, the model-based load tests generate more representative re-
sults— they increase the distance by a factor in the range of 1.02 to 1.86—
than the log-based tests with factors between 1.42 and 3.46. However, the
log-based approach becomes better with an increased number of endpoints,
while the model-based approach has a slight but ambiguous upward trend.
When testing 16 endpoints, the difference between the two approaches is
negligible.
For investigating the difference of the inter-arrival time distributions in

more detail, we use quantile-quantile (Q-Q) plots (Figure 13.3). For shorter
inter-arrival times, e.g., in case of the GET /catalogue/size endpoint when
testing the catalogue microservice individually (4 endpoints), it can be seen
that the request-based test has a different distribution than the reference
test. The other generated tests are close to the reference test. For longer
inter-arrival times such as the POST /orders endpoint measured when testing
the orders microservice in combination with the dependent ones, the tail of
all distributions is different from the one of the reference test. However, the
tails of the untailored, log-based, and model-based tests appear similar.
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Figure 13.3.: Q-Q plots of the inter-arrival times compared to the reference
workload for different endpoints.

13.2.2.2. Performance Metrics

For assessing the influence of potentially less representative load tests, we
compare performance metrics. Precisely, we analyze the response times
of the requests, the CPU utilization, and the memory consumption during
each load test. We extract the response times from the collected traces.
Prometheus collected the CPU and memory metrics in 5-second granularity.
Table 13.2 provides a summary of t-tests and Cohen’s d applied to the

response times, CPU utilization, and the change of used memory per second.
Each t-test compares the measurements of a tailored test with the untailored
one with H0 : FX (x) = F0(x) and HA : FX (x) 6= F0(x). The numbers count the
occurrence of a particular combination of a significant difference, detected
by the t-test, and an effect size. For all metrics, there are cases where H0

is rejected and others in which no significant difference is detected. The
most differences— including larger effect sizes—are detected in the CPU
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Table 13.2.: Summary of the Statistical Tests

t-test not sign. sign. sign. sign. sign.
Cohen’s d negligible negligible small medium large

response time

request-based 19 31 24
log-based 28 20 26
model-based 29 23 22

CPU utilization

request-based 7 7 7 28
log-based 12 6 9 22
model-based 9 8 7 25

memory change per second

request-based 38 3 8
log-based 33 10 6
model-based 36 8 5

utilization, which we attribute to the naturally high fluctuation of this metric.
For the response times and the memory, the most frequent effect size is
negligible. Between the three tailoring approaches, there is no apparent
difference, even though for the response times, there are more cases with a
significant difference for the request-based test.

13.2.2.3. Required Test Duration

Figure 13.4 shows the test duration required until the median response time
reaches its final value except for an error of 1 % (see Section 11.2.7). In
relation, it shows the number of tested endpoints. We use the untailored
test as a baseline and include the convex hull for illustrating the overall
relation. We calculate the duration based on the response times of the tested
endpoints, i.e., for the untailored test, we consider the endpoints of the front-
end service, while we use the endpoints of the respective microservices for the
tailored tests. We can see in the figure that the untailored test requires the
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Figure 13.4.: Required test duration per number of tested endpoints and test
type.

longest execution time with 24.2 minutes, except for the log-based test for
one service combination (catalogue, carts, orders, payment, shipping, user),
which needs 24.33 minutes. In general, fewer endpoints under test reduce
the required test duration. The request-based test could reach the shortest
duration of 4.33 minutes for the catalogue and user service (10 endpoints),
followed by the log-based test for the user service (6 endpoints) with 4.62
minutes. Furthermore, among the tailoring approaches, the request-based
approach tends to require the shortest duration, while the model-based
approach requires the longest duration. However, the difference becomes
small for an increasing amount of endpoints.

13.2.2.4. Qualitative Differences

Analyzing the behavior models that have been generated during the experi-
ment series, we identify three significant differences between the log-based
and the model-based tailoring approaches. These differences support the
insights from Section 13.1.3. First, the number of Markov chains (behavior
models) is different: while the model-based algorithm reuses the Markov
chains generated by the untailored approach—which are five in our case—,
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the log-based approach generated five chains in most cases, but only three
for the users microservice tested in isolation. Hence, the clustering of the
session logs is different. In general, even though the number of Markov
chains is equal for most of the tests, we cannot assume that the clustering is
equal.

The second difference is the number of states of each Markov chain. The
log-based approach always has as many states as the number of endpoints
involved in the test. In contrast to that, the model-based approach can have
more endpoints. For instance, the user GET /customers/id endpoint is used
in the replacements of the GET /customers/id and POST /orders endpoints of
the front-endmicroservice. Hence, it occurs two times in the tailored Markov
chain. In our experiments, the chains of the model-based tests have between
25% and 50 % (34 % on average) more states than the log-based approach.

Finally, the states of the model-based tailored Markov chains correspond
to states of the untailored chains. By tracking the origin of each state—e.g.,
we keep the original state’s name in the name of the new state—, this
relationship allows for analyzing and changing the Markov chain based on
end-user behavior, e.g., removing a particular end-user request due to a
changed API. In contrast to that, the session logs tailored by the log-based
algorithm are newly created by clustering, resulting in entirely different
Markov chains.

13.3. Discussion of Research Questions

In the following, we discuss the research questions defined in Section 5.1.
We refer to our service-tailoring approach described in Chapter 7 and the
corresponding evaluation presented in this chapter.

13.3.1. RQ2.1 — Extraction Process Extension

How can we extend the load test extraction process for generating
service-tailored load tests?

We identified two algorithms that extend the load test extraction process
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for tailoring the load test to a set of services while preserving the session-
based structure. The typical load test extraction process generates several
(intermediate) artifacts, which we investigated for tailoring. We identified
log-based and model-based tailoring. Both algorithms utilize recorded traces
for determining the call relations between multiple services.
Log-based tailoring modifies the monitored request logs, which contain

the end-users’ requests. For each request in the logs, it identifies the ones
the user-faced services (transitively) make to the target services and uses
these as a replacement. The remainder of the extraction process remains
unchanged, using the modified request logs.

Model-based tailoring uses the original request logs but changes the work-
load model, which is generated based on the session logs. Here, we presume
a Markov-chain-based workload model, as generated by the WESSBAS ap-
proach (Vögele et al., 2018). The algorithm replaces each state with a
sub-Markov chain representing the aggregated request behavior caused by
the end-user request.
We proved that both algorithms are correct according to several require-

ments, but also differ in the finally generated load tests. Hence, we cannot
sustainably conclude their suitability compared to each other. For this reason,
we conducted an experimental study, which we use to discuss the research
questions below.

13.3.2. RQ2.2 — Representativeness

How representative are the workloads generated by the service-
tailored load tests compared to an untailored and a request-based
test?

According to the experimental study, our introduced tailoring algorithms
slightly reduce the representativeness compared to an untailored load test
but significantly increase it compared to a simple request-based load test.
The log-based load tests are less representative than the model-based tests
but become increasingly representative with more tested endpoints.
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We identified the reduction of the representativeness in the aggregated
Kolmogorov-Smirnov statistic D, which was, however, only slightly higher
than for the untailored test. In contrast to that, the request-based approach
was more than two times less representative. For the model-based algorithm,
we attribute the reduction to the calculation of the think times. As previ-
ously described, when merging state transitions, we need to convolve the
think time distributions into another normal distribution (see Section 7.5.3).
However, the resulting distribution does not accurately represent the origi-
nal think time distribution. While the mean remains correct, the variance
and distribution function is impaired. Hence, the think time between two
requests can be different than in the untailored load test, which influences
the inter-arrival times.
In the log-based approach, all applied operations are valid. However, as

described in Section 13.1.3, the clustering might classify the tailored request
or session logs differently than the original ones, resulting in different Markov
chains. The fact that the log-based load test for the user microservice has
only three chains while the untailored test has five supports this reasoning.
For a higher number of tested endpoints, the difference in the Markov chains
appears to be less critical.

13.3.3. RQ2.3 — Performance Metrics

To which degree do the service-tailored load tests impair the per-
formance metrics of the tested services?

The performance metrics support the findings of RQ2.2: there are small
differences between the tailored load tests and the untailored one. However,
these metrics do not reflect the more substantial differences to the request-
based tests.

We identified the differences using t-tests and Cohen’s d. A possible expla-
nation for the unexpectedly small differences between the request-based load
tests and the ones tailored with our algorithms is that the average number
of requests per endpoint and second is the same. As a result, the Sock Shop
can behave similarly. Regardless of that, a small difference in performance
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metrics does not implicate a small difference in the representativeness. In
contrast, the workload distance discussed in the previous section indicates a
higher difference than the performance metrics do.

13.3.4. RQ2.4 — Required Test Duration

How much can service-tailoring reduce the test execution time until
measured performance metrics are stable?

A higher number of tested endpoints requires a longer test duration. For a
small number of endpoints, the request- and log-based approaches require the
shortest durations, but this is at the expense of representativeness, especially
for the request-based approach.
We can derive this finding from the calculated test duration metrics, but

also need to take into account that there can be individual endpoints that
require a longer duration. For instance, the POST /orders endpoint of the
orders service required between 22.42 and 24.33 minutes, while the GET
/customers/ endpoint of the user service required only between 8 seconds
and 4.97 minutes. This finding indicates that the longer duration is not only
due to the sheer number of endpoints but also to the higher likelihood to
include an endpoint requiring a longer duration.

Besides, we would like to highlight that the tailoring approaches can only
reduce the test duration from the perspective of all tested microservices. If
only a particular set of microservices, e.g., user, is considered to determine
the test duration also in the untailored test, the tailoring approaches cannot
reduce it without impairing the representativeness, as it would require the
workload arriving at user to be changed. In contrast to that, the tailoring
approaches can always save resources because only the tested services,
including its dependents, need to be deployed. By combining them with
stubbing approaches (Baltas and Field, 2012; Becker et al., 2008; Field et al.,
2018; Versteeg et al., 2016), the dependent microservices can be removed
from the deployment as well.
Concluding, the fewer services are included in a load test, the more

resources can be saved by only deploying the tested services and potentially
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stopping the test after a shorter time. For that, we suggest using existing
approaches (Alghamdi et al., 2016).

13.3.5. RQ2.5 — Qualitative Differences

Which qualitative differences of the service-tailored workload mod-
els exist?

As we identified in the formal comparison and the experimental study, the
model-based tailoring approach generates Markov chains with states that
correlate with end-user requests and, thus, can better explain the effect of
the end user’s behavior. In contrast to that, the log-based approach does not
allow for such analyses. As a drawback, the model-based approach generates
Markov chains with 36% more states on average.

Even though the sizes of the Markov chains in our experiment are not crit-
ical, it can become memory-critical for large-scale applications. Furthermore,
duplicated states hinder manual maintainability. However, as the Markov
chains are generated automatically and not meant to be changed manually in
the first place, this drawback is less relevant. Therefore, our results indicate
that the model-based approach is preferable over the log-based approach
regarding qualitative attributes.

13.4. Threats to Validity

We identify the following threats to the validity of our work.

13.4.1. Conclusion Validity

In the analysis of the performance metrics, we applied the t-test for detecting
significant differences between the tailored and untailored tests. These
metrics are not necessarily normally distributed, which is an assumption of
the t-test. However, as the sample sizes are large with at least 305 entries,
the t-test can be used according to the central limit theorem.
Furthermore, performance metrics such as CPU utilization can be fluctu-

ating and, thus, unreliable in general. Therefore, the conclusions we have
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drawn are based on a combination of several performance metrics and also
workload metrics.

13.4.2. Internal Validity

After the study, we detected a bug in Algorithm 7.3 (������S����). This
bug affects the think time of model-tailored Markov chains when states with
loop transitions are removed. Precisely, we missed adding the time spent in
the state while looping. Hence, the think time can be too short. However, we
assessed the model-based tailoring to be more representative than the other
tailoring approaches. Therefore, the fixed version could only reinforce our
findings. For future work, we strongly recommend using the fixed version of
the algorithm presented in this dissertation.
Our evaluation consists of a series of experiments, which we executed

automatically in a sequence. For preventing influences of former test exe-
cutions, we restarted the tested Sock Shop application and the JMeter load
driver have before each execution, including a completely new deployment
of the Sock Shop. For preventing interactions between microservices running
concurrently, we applied CPU pinning and memory reservation.

Another potential threat is that the metrics measured during the reference
workload appeared to bear small inconsistencies. This manifested with
the steady increase of the response times of the carts microservice. During
all generated load tests, we could not observe such an effect. Hence, the
comparison to the reference test is impaired. However, as the input, i.e., the
request logs, for all workload model generation approaches was the same,
we presume no side effects regarding the comparability among these tests.
Also, we could not detect any trends in the request rates of the reference
workload, justifying the steady-state execution of the generated load tests.

13.4.3. Construct Validity

In this paper, we assume normally distributed think times in the Markov
chains modeling the workload. In general, think times do not need to
be normally distributed, and workload modeling languages such as the
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WESSBAS-DSL allow for different distribution functions as well. We chose the
normal distribution because it is commonly used in related work. Evaluating
other distribution functions, we leave for future work.

13.4.4. External Validity

As the Sock Shop is not an industrial application, it is questionable whether it
can represent real-world microservice applications. However, we base on an
existing study, which assessed the Sock Shop to be representative (Aderaldo
et al., 2017). For future work, we suggest evaluating the tailoring algorithms
with another industrial application.

13.5. Summary

In this chapter, we presented the evaluation of our service-tailoring algo-
rithms. We proved that both of them fulfill the postconditions we defined
and conducted an experimental study. Our approach allows DevOps teams
to tailor load tests to their developed services with little representativeness
reduction.
In the next chapter, we evaluate our approach to context-tailored load

test generation. In combination, both tailoring approaches allow generating
load tests targeting the services of interest and executing the most relevant
workload.
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This chapter provides the evaluation of our approach to context-tailored
load test generation (Chapter 8). Based on a tailoring description specified
in the Load Test Context-tailoring Language (LCtL), it extracts a load test
from an incrementally learned workload knowledge base. In doing so, we
utilize time series forecasting approaches for predicting future workload
scenarios. For easing the load test description and improving the forecast,
users can define workload contexts. Overall, the evaluation addresses the
sub-questions of RQ3: How can representative load tests automatically be
tailored to the contexts of a session-based workload?
We evaluated our approach using the publicly available requests of the

student information system (SIS) of Charles University, Prague of half a
year (Maňásek and Tůma, 2019). We learned a workload model from the
requests and investigated four different aspects. First, we analyzed the
evolution of the workload model when being updated incrementally. Then,
we investigated to which degree the LCtL can express relevant workload
scenarios we identified. For assessing the general predictive power of the
workload model, we generated and executed several load tests using the
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perfect forecasting approach. Compared to the original requests, the requests
these load tests submit indicate how representative the workload model is,
without impairment by potentially inaccurate forecasts. Finally, we generated
and executed load tests using forecasting tools. A replication package and
supplementary material are available online (H. Schulz et al., 2020b).

While there was some fluctuation between the versions, incremental learn-
ing did not change the behavior models significantly. However, we observed
fluctuating session durations, which motivate the need for incremental learn-
ing that better integrates the think times. The LCtL is suitably expressive
for the real-world scenarios and contexts of the SIS. Also, our approach is
suited for generating representative context-tailored load tests. Predicted
workload scenarios are particularly representative when considering the
user groups separately and enriching the forecasts with contexts. However,
the calculations of these forecasts are also long-lasting. Future work needs
to address several limitations of the existing workload modeling and fore-
casting approaches, which we identified. These include the session duration
fluctuations, predictions of sharp spikes, and forecasting durations.
This chapter is structured as follows. In Section 14.1, we introduce the

data set this evaluation bases on and describe its preparation. In Section 14.2,
we present the analysis of the workload model. Section 14.3 presents the
evaluation of the expressiveness of the LCtL. Sections 14.4 and 14.5 comprise
the experimental studies. In Section 14.6, we discuss the results of all studies
concerning the research questions. We discuss threats to the validity of our
work in Section 14.7. Finally, we summarize this evaluation in Section 14.8.

The chapter is an extended version of Section 5 of the manuscript below. We
have added the workload model analysis in Section 14.2, the investigation of
workload phases as part of the expressiveness evaluation in Section 14.3, and a
forecasting duration analysis in Section 14.5.

• H. Schulz, D. Okanović, A. van Hoorn, and P. Tůma (2021). “Context-
tailored Workload Model Generation for Continuous Representative
Load Testing.” In: Proceedings of the 12th ACM/SPEC International
Conference on Performance Engineering (ICPE 2021). To appear. ACM
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14.1. Preparation

This section describes the preparation we applied for the evaluation. We
introduce the dataset we base on in the following, the incremental learning
of the workload model, and the enrichment of the workload model with
contexts.

14.1.1. SIS Dataset

We utilized a publicly available dataset comprising the Web server request
logs of the SIS of Charles University, Prague (Maňásek and Tůma, 2019).
Most of the users of the SIS are students and scientific staff, who manage
their daily routine with the system. Among other activities, students can
apply for courses and exams, check exam grades, and access course material.
Scientific staff can schedule courses and exams, communicate with the
students, and publish course materials and exam results.

The dataset contains the anonymized HTTP request logs the users of the
SIS submitted. Relevant for our research, each request holds the client IP
address, a timestamp, the HTTP request method, and the requested path.
Hence, we can derive endpoints from the request method and path and
identify the user sessions based on the client IP addresses. Overall, the
dataset contains about 5.7 million user sessions from May 23 to November
22, 2018. In this time frame, the users submitted about 20.7 million requests
to 98 different endpoints—excluding requests to static resources such as
images or Cascading Style Sheets (CSS).

14.1.2. Workload Model Learning

For evaluating our context-tailoring approach, we needed to transform
the request logs into a Makov-chain-based workload model. For that, we
mapped the requests to endpoints by using an Input Data and Properties
Annotation (IDPA) (see Section 6.5.2) and grouped them into sessions by
using the client IP addresses as session IDs. Furthermore, we split the
sessions after 30 minutes of inactivity. Then, we applied our approach
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Table 14.1.: Parameters for the Clustering of the SIS Dataset

Parameter Value

initial clusters (k) 20
repetitions (⌘) 30
quantile range (↵) 0.95
radius tolerance factor (�) 1.1
min. sessions per new cluster (m) 500

to the incremental session clustering (see Section 8.4.1). We utilized the
session clustering based on k-means with the parameters shown in Table 14.1.
Besides, the initial clustering with k-means++ processed the sessions of four
weeks, while further iterations processed one week each. We have identified
the parameters by starting with an educated guess and trying to improve
the resulting clustering. The parameters presented led to the best result
regarding separated and tight clusters, low noise, and a reasonable number
of new clusters in later clustering iterations. Furthermore, we calculated the
intensities per cluster with a granularity of one minute.

We obtained 20+1 initial behavior models—each representing one cluster
or user group and one for the noise—with an updated state every week and
the varying intensities per group. Over time, five further clusters appeared.
In Figure 14.2a, we show the intensities. The figure shows daily and weekly
seasonalities and also several phases with a uniform workload. Besides, we
can identify intensity spikes.

We executed the clustering on a bare-metal machine with 32GiB RAM and
an Intel® Xeon® CPU E5620 with 2.40GHz clock frequency, 4 cores, and 8
threads. Figure 14.1 shows the duration and the number of sessions clustered
in each iteration. The initial clustering with k-means++ took the longest
time (27.6 hours) but also processed the most sessions. It spent the most time
on detecting and removing the outliers, followed by the actual clustering. The
further iterations, which assigned sessions based on the minimum distance,
took between 0.5 and 2.5 hours, whereas they spent most of the time on the
actual assignment. Remarkably, all clustering iterations lasted substantially
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Figure 14.1.: Duration of the clustering of the SIS sessions per phase.

less than the time range of sessions clustered (four weeks and one week for
initial and further iterations, respectively).

14.1.3. Context Enrichment

For explaining the different phases visible in Figure 14.2a and for creating a
basis for the LCtL, we enriched the intensities with contexts. Defining the
relevant context facets, Charles University publishes the semester calendar
(Charles University, Faculty of Mathematics and Physics, 2017, 2018). Also,
we considered public holidays. Each of the calendar entries we transformed
into the state of a context facet, as illustrated in Figure 14.2b. The precise
facets and their encoding are as follows.

vacation: We modeled the semester vacation as a boolean facet.

tuition: As it also can be seen in the intensity plot, tuition phases typically
have a higher workload in the beginning than later. Accounting for
that, we modeled the corresponding facet numerically. The higher the
facet’s value, the higher the workload. As a base value indicating the
presence of tuition, we used 1. At the beginning of each tuition phase,
we set the value to 10, decreasing negative exponentially to 1 within
three weeks.
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Figure 14.2.: Illustration of the per-group intensities and context of the SIS
dataset.
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examination: The examination phase we modeled as a boolean facet. Op-
posed to the calendar, we did not explicitly separate between Bachelor’s
and Master’s examination phases, as we expect them to influence the
workload similarly.

final_exam: We modeled the final exams as another boolean facet.

deadline: Deadlines we modeled as a string facet with the type of deadline
as the state. The states comprise the thesis submission, registration
for higher year programs, and the decision on the Bachelor’s topic.

course_enrolment: We modeled the enrolment of the courses as a string
facet. Corresponding to the calendar, we distinguished between the
priority and open mode enrolment. Furthermore, we labeled strong
spikes, which occurred during the course enrolment, as having the
special state.

events: University events such as an open day, graduation ceremony, dean’s
sports day, or the first year matriculation we modeled as separate
boolean facets.

public_holiday: Public holidays we modeled as a boolean facet without
distinguishing the type of holiday.

Remarkably, the context well explains the different workload phases. Dur-
ing the initial exam phase, there are irregular spikes, which we attribute to
differently scheduled exams. During the vacation, the workload is signifi-
cantly lower but increases again when the next examination phase starts.
The course enrolments cause high spikes, as the students try to register for
their favorite courses. The tuition phase has a relatively stable workload,
which is high in the beginning and normalizes within the first few weeks.

Some of the facets appeared not to influence the workload. Therefore, we
only considered the following facets in the evaluation: tuition, examination,
final_exam, vacation, course_enrolment, and graduation_ceremony.

14.1 | Preparation 361



14.1.4. Intensity Augmentation

A drawback of the dataset is that it only contains the workload of half a year,
i.e., the length of one semester. As the figure shows, the different phases
mostly occur only once, representing the half-yearly seasonality. However,
forecasting tools require multiple seasons for properly predicting the future.
Therefore, for the fourth study, we augmented the per-group intensities by
another half year. As precisely documented in the supplementary mate-
rial (H. Schulz et al., 2020b), we constructed the augmentation as follows:

1. We defined the context of the augmented time range, as described
in Section 14.1.3. Then, we re-assembled the per-group intensities
according to the context. As an example, we used the first tuition
weeks from October 2018 for the first tuition weeks in February 2019.

2. We calculated the resulting total per-minute intensities and the relative
per-minute frequencies per group. In the following, we modified the
total intensities.

3. We applied locally estimated scatterplot smoothing (LOESS) (W. S. Cleve-
land et al., 1991) to the intensities.

4. We multiplied the intensities of each day with a factor randomly se-
lected according to the variance of the original days.

5. We jittered the intensities with gaussian randomness based on the
difference of each original intensity value to its predecessor. Hence, we
obtained intensities with the same variance, but with locally different
values.

6. The previous steps reduced the intensity of the highest spikes and lead
to a few negative values. Therefore, we re-increased the highest spikes
and removed the negative values.

7. We calculated the per-group intensities by multiplying the per-group
frequencies with the modified total intensities.
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14.2. Analysis of Incrementally Learned Workload Model

This study addresses RQ3.2: Howmuch does the incremental learning affect the
workload models? We analyzed the incrementally learned and such evolved
versions of the workload model. We considered the distances, the expected
number of steps and duration of a session emulating a specific behavior
model, and the expected request rates. In the following, we describe the
analysis method and present the results.

14.2.1. Analysis Method

We analyzed the workload model formally, i.e., by calculation rather than
simulation. For that, we utilized the behavior models of the workload model
versions, which each have oneMarkov chain describing the request sequences
users of the respective group submit and a think time distribution per Markov
transition (see Section 3.2.4.2 for details). We analyzed the distances be-
tween the behavior models, expected session length (number of requests),
expected session duration (time between first and last request), and expected
requests per endpoint and time. Furthermore, for putting these measures
into context, we analyzed the number of sessions that have been aggregated
into each behavior model. In the following, we describe how we calculated
the measures.

14.2.1.1. Distance between Behavior Models

We determined the distances between all versions of all behavior models
by principal component analysis (PCA) (Pearson F.R.S, 1901). For that, we
used the average number of transitions users have taken per behavior model
as principal components. These 5729 components correspond to the session
representation used for the clustering and form the basis for the Markov
chain representation, whereas each Markov transition corresponds to one
(normalized) component. The PCA attempted to reduce the components to
two for plotting, preserving the distances between the behavior models.
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14.2.1.2. Requests per Endpoint and Session

As the Markov chains are absorbing by construction, we could use existing
formulas (Grinstead and Snell, 2012) for calculating the expected number
of requests per endpoint and sessions. Given a matrix representation M of a
Markov chain and the fact that a load test always starts simulating a Markov
chain with the initial state, we calculated the expected number of requests
as below. First, we obtained the fundamental matrix N (Grinstead and Snell,
2012) of M . Then, the first row of N described the expected number of
requests submitted to the corresponding endpoint:

r= (1,0, . . . , 0) · N T

14.2.1.3. Session Length

We calculated the expected session length, i.e., the number of requests
per session, based on the values calculated in the previous section. Given
the vector r of requests per endpoint and session, the session length is the
following.

r · (1, . . . , 1)

Furthermore, we calculated the session length variance based on the funda-
mental matrix N and using the Hadarmard (elementwise) product �.

(2N � diag(1)) · r� r � r, 1= (1, . . . , 1)T

14.2.1.4. Session Duration

We calculated the session duration by merging the expected number of
requests with the think time distributions. Precisely, we calculated the
convolution (Montgomery and Runger, 2003) of all think time distributions
weighted with the expected number of times the respective transitions will
be taken. Hence, we summed the time a session spends waiting. Remarkably,
this calculation does not include the time spent waiting for a response of
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the system under test (SUT). However, in our test executions, the response
times only added a negligible delay of about 1ms on average. Furthermore,
the calculation is an approximation disregarding the variance of the number
of requests.
Let M be the matrix representation (excluding the row and column of

the final state) of a Markov chain, r the vector of requests per endpoint
and session, �µ the matrix holding the think time means in a similar row
and column order as N , and ��

2
the corresponding matrix of think time

variances. Then, we calculated the expected session duration as

1T · ((diag(r) ·M) ��µ) · 1, 1= (1, . . . , 1)T

and the variance as

1T ·
Ä
(diag(r) ·M) � (diag(r) ·M) ���2

ä
· 1, 1= (1, . . . , 1)T .

14.2.1.5. Requests per Endpoint and Time

Finally, we were interested in the number of requests a user emulating one
of the behavior models submits per time and endpoint. We calculated the
expected number based on the vector r of requests per endpoint and session
and the expected session duration d as 1

d
· r.

14.2.2. Results

In this section, we provide the results of our analysis. Due to limited space,
we only show selected excerpts from the results. The supplementary material
(H. Schulz et al., 2020b) also contains the remaining results.

14.2.2.1. Inter-group Comparison

For getting an overview, we compare selected measures of all versions of
all behavior models with each other. Hence, we analyze the inter-group
differences. We provide the number of sessions aggregated into each behavior
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model, investigate the distances between the behavior models using PCA,
and compare the average session length and duration.

Number of Sessions: The number of sessions that have been aggregated
in each version of a behavior model can help to rate specific changes. Fig-
ure 14.3 shows this measure per group over time. As each version of a
behavior model also includes the sessions of the previous version, the num-
ber of sessions is monotonically increasing. The behavior models of different
groups appear to have different numbers of sessions; group 0 is the one
with the most sessions, followed by 16 and 12. The ratio is relatively stable
over time, indicating a stable clustering. The slope of the top-level (stacked)
curve is highest during September. This month entails the course enrolment
phase (see Figure 14.2), where the highest workload occurred.

Distance between Behavior Models: Figure 14.4 shows the result of the PCA,
which we use for visualizing the distances between the behavior models. The
shown axes correspond with the principal components of all versions of all
behavior models but are rotated and shifted for better visibility. Furthermore,
the plot marks the date— i.e., the version—of the behavior models.
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Figure 14.3.: Stacked number of sessions that have been aggregated into
each group. The top six groups are shown individually.
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Most of the behavior models stay in a small range around the initial version
and are separate from the models of different groups. Exceptions to this rule
are the noise group (-1), group 9, and some of the groups that appeared
after several iterations. For the noise group, fluctuations are natural and
acceptable. For the newly discovered groups, the fluctuation might stem
from a small initial cluster size, such that newly assigned sessions have a
higher impact on the centroid. The same effect can apply to group 9, as it is
a relatively small group.
An interesting effect can be observed in groups 1 to 5, 7, 8, 15, and 19,

which are arranged on a slightly curved line. Further investigations revealed
that these groups have a similar request mix but different session lengths.
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Finally, several groups, including 0, 6, 10, 14, 16, and 17, lie in a narrow
range and seem to overlap. However, the overlap also can stem from a
potential bias of the PCA. Therefore, we investigate further properties of the
behavior models. Precisely, we consider the session length and duration.

Session Length and Duration: Figure 14.5 shows the average session length
and duration per behavior model version with similar labeling as Figure 14.4.
Hence, we can identify the effects of potentially changed behavior models.
Here, we can see more fluctuation, but mainly in the dimension of session
duration. The session length of most groups remains mostly unchanged.
This finding is not surprising, as the incremental clustering assigns sessions
by the transition probabilities—which influence the session length—and
adjusts the think times—which influence the session duration—afterward.
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The groups with more strongly fluctuating session lengths correspond
to those with higher variation in the PCA. The groups �1, 9, and 20 to 24
have maximum relative differences of a behavior model version’s session
length between 22.34 % and 71.43 % compared to the respective initial
version. Furthermore, groups 0 and 12 have a maximum difference of
18.55% and 29.35 %, respectively, but also a relatively small session length.
The remaining groups vary by up to 8.68%. These differences indicate that
somemodels changed over time. However, the impact of the changes remains
unclear. Therefore, we provide an analysis of the per-group evolution later.
Finally, Figure 14.5 shows that the session length and duration of the

groups having close principal components differ significantly and overlap
less, as opposed to Figure 14.4. We conclude that the overlap stems from
the PCA rather than an actual overlap of the models. In the next section,
we investigate the differences between these models and the discussed
fluctuation in more detail.

14.2.2.2. Intra-group Comparison

The inter-group comparison has shown that most behavior models evolved in
a narrow range, but some of them also varied. Therefore, we investigate the
evolution of the behavior model of each group in more detail. We consider
the session length, the session duration, and the number of requests per
endpoint. The following per-group analysis focuses on groups 0, 16, 21,
and 14, which are the top-, second-, sixth-, and seventh-largest clusters.
Furthermore, group 21 is the largest one that has been discovered later. We
provide an analysis of the remaining groups in the supplementary material
(H. Schulz et al., 2020b).

Session Length: We have analyzed the session length already as part of
the inter-group comparison. Here, we analyze it in more detail per group.
Figure 14.6 shows the expected average session length plus and minus the
standard deviation of the four selected groups. We can see that the session
length differs between different groups. Group 0 is the shortest with 8.36
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Figure 14.6.: Session length (mean and standard deviation) of selected
groups.

requests per session, and group 8 is the longest with 2316.83 requests on
average. Furthermore, as previously assessed, the session length of most
groups is stable over time.

Group 21 is one example where the session length is less stable. After the
discovery of the group at the end of August, the length decreases significantly.
A similar effect can be observed for the other groups that occur in a later
iteration. Furthermore, the number of requests per session of group 0 and
a few others increase during the course enrolment phase. Hence, during
this phase, there were sessions different from the ones that were clustered
before that were longer— i.e., had more requests— than the previous ones.
Before and after that phase, the session length appears to be stable, except
for the groups discussed before.

Session Duration: Similar to the session length, we investigate the session
duration in more detail. Figure 14.7 shows the session duration of the se-
lected groups in similar plots as Figure 14.6. A first sight reveals that the
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Figure 14.7.: Session duration (mean and standard deviation) of selected
groups.

session duration is varying more strongly than the session length. For in-
stance, for group 21, the average duration differs by up to 47.08 % compared
to the initial version. For group 10, it varies even by 172.53%. The standard
deviation fluctuates for most of all groups, which we attribute to the incre-
mental clustering, which does not include the think times. Remarkably, for
groups 14 and 16—and some others—, the mean minus the standard devi-
ation is negative. In the next step, we assess the impact of these variations
on the number of requests per minute.

Number of Requests per Endpoint: Finally, we investigate the effects of the
slight variations of the session length and duration. Both affect the number of
requests a single user submits per minute: more requests per session increase
the number, while higher durations decrease it. Furthermore, we consider
the number of requests per endpoint. Changes to this number indicate a
change in the behavior model structure, e.g., that specific paths through the
Markov chain become more likely than before.
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Figure 14.8 shows the number of requests per endpoint a single user
submits per minute for the same groups as before. A first insight is that most
behavior models have visually different request mixes. Furthermore, users
belonging to different groups may submit a different number of requests.
This finding indicates that the session clustering is valuable and results in
significantly different user behavior per group.

As previously discussed, the course enrolment phase also affects the num-
ber of requests per endpoint. For several groups, such as 0, 16, and 21,
it increases during this phase. Others, such as 14, do not react to the en-
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rolment phase. While for most groups, the ratio of requests per endpoint
stays stable, and only the total number of requests changes, the ratio also
changes slightly for some groups, such as 21. Concluding, there are sessions
during the enrolment phase that differ from the previous ones. Most of them
are aggregated in new clusters, such as groups 22 to 24, but some are also
assigned to existing clusters. For several groups, they change the session
length or duration, while for a few others, they also affect the endpoints
each user requests.

14.3. Case Study for Expressiveness Evaluation

This study addresses RQ3.3: How expressive is the Load Test Context-tailoring
Language concerning workload scenarios of a production system? We analyzed
the workload and context of the SIS for identifying use cases for our approach.
Then, we aimed at expressing the workload scenarios corresponding to the
use cases with the LCtL and assessed the accuracy of the descriptions. The
following sections present the details of the case study method and the
results.

14.3.1. Case Study Method

We base the evaluation upon the data described in Section 14.1, the publicly
available information from Charles University, Prague, and an expert survey.
As we aimed to identify relevant use cases and use the LCtL for describing
corresponding load tests, we analyzed the learned workloadmodel, workload
context, and further potential influences on the workload. We came up
with three different questions, which each target different features of the
language:

1. Users can utilize the LCtL for describing time frames, from which they
want to extract a load test. In doing so, they can rely on collected
context facets. We analyzed the facets of the SIS and identifiedmultiple
phases, e.g., examination, vacation, and tuition periods, and also
combinations of facets. Then, we expressed these phases as an LCtL
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timeframe section. Hence, we addressed the question, How precisely
and accurately can the LCtL express the workload phases of the SIS?

2. The second source of information is the workload— i.e., the learned
workload model and per-group intensities—, which comprises differ-
ent workload scenarios, and an expert survey. The survey showed
the participants the SIS workload, as presented in Figure 14.2, and
asked for relevant load test scenarios. Precisely, we asked about (a) the
participant’s load testing experience according to the model of skill
acquisition by S. E. Dreyfus and H. L. Dreyfus (1980), (b) relevant
scenarios without knowing the context, and (c) relevant scenarios
when knowing the context. We provide the full survey as part of the
supplementary material (H. Schulz et al., 2020b). In order to ob-
tain plausible scenarios, we invited known experts from industry and
academia. Then, we defined LCtL instances for all specified scenarios,
which a second author of the study (H. Schulz et al., 2021) double-
checked. The addressed question is, How precisely can we describe the
relevant scenarios occurring in the SIS workload?

3. The first two questions mostly target quantitative forecasting. For
analyzing further use cases and incorporating qualitative forecast-
ing, we considered the COVID-19 pandemic, which started in spring
2020. Universities, including Charles University, had to interrupt the
attendance teaching and switch to (online) remote teaching. These
circumstances likely influence the SIS workload. Therefore, we inves-
tigated load testing concerns originating from this unusual situation,
addressing the question, How well can the LCtL describe load tests for
special circumstances?

In the next section, we detail the identified use cases for the three questions
and present the results of our expressiveness analysis.
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14.3.2. Results

In the following, we present the results of our expressiveness evaluation,
separated by the questions defined above. In Section 14.6, we will discuss
the results in order to answer the research questions.

Workload Phases: By analyzing the context facets, we have identified 27
different workload phases. Figure 14.9 provides an overview. We grouped
the phases into seven groups, which relate to the particular context facets.
For instance, we grouped all phases related to the tuition facet into Tuition
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- !<conditional >
2 course_enrolment:

exists: true

Listing 14.1: Phase of the Course Enrolment group.

1 timeframe:
- !<timerange >

3 from: 2018 -07 -01 T00:00:000
to: 2018 -08 -15 T00:00:000

5 aggregation: !<percentile >
p: 95

Listing 14.2: LCtL instance describing a specific period.

and the ones related to the course_enrolment facet into Course Enrolment.
For the examination and final_exam facets, we separated the phases directly
after the tuition in May and before the next tuition.
We could express all phases in a timeframe section of the LCtL. For the

sake of space, we provide the sections only as part of the supplementary
material. For all phases, we used a conditional clause, whereas we used
an additional timerange clause in seven cases. The timerange clause was
required for separating between the first and second Examination and Final
Exams phases. Besides, we identified the need for the exists keyword of the
conditional clause. This was the only way to define a phase that either
spans the whole course_enrolment—regardless whether it is priority,
open, or special—or nothing of it. As an example, Listing 14.1 provides the
timeframe section of the top-most phase of the Course Enrolment group.

Relevant Scenarios: The survey had six participants who self-assessed as
competent or expert in load testing. Overall, they specified 36 scenarios.
We collect all of them and provide the LCtL instances we derived in the
supplementary material (H. Schulz et al., 2020b). In the following, we
provide an excerpt from the answers.
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timeframe:
2 - !<weekday >

days: [ monday , tuesday , wednesday , thursday ,
friday ]

4 aggregation: !<percentile >
p: 95

Listing 14.3: LCtL using the weekdays clause.

1 timeframe:
- !<conditional >

3 examination:
is: true

5 course_enrolment:
exists: true

7 aggregation: !<percentile >
p: 95

Listing 14.4: LCtL instance for overlap of examination and course_enrolment.

Without knowing the context, most participants specified workload scenar-
ios representing a specific period, such as illustrated in Listing 14.2. Many of
these periods correspond to the phases defined by the context. None of the
participants explicitly stated to use a varying workload intensity; therefore,
we default to the percentile aggregation. One participant also distinguished
between weekdays, i.e., workdays and weekends. The LCtL presented in
Section 8.5 does not provide a means for expressing this. However, we can
easily add a corresponding clause to the timeframe section, as illustrated
in Listing 14.3. Another participant differentiated between the load of “peak
days,” “middle amount,” and “base amount,” which we expressed using the
maximum, 50th percentile, and newly introduced minimum aggregations.
When knowing the context, the participants defined similar workload

scenarios as before but stated them more precisely. For instance, instead of
a date period, they referred to context facets. Several participants stated to
test the workload during the overlap of multiple facets, e.g., examination and
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course_enrolment, as illustrated in Listing 14.4. Besides, for some scenarios,
they specified to test them only under specific conditions, such as the vacation
phase only if “the application can be downscaled” or to “only care about
graduation ceremony if I knew that complaints existed in that time frame in
the past.” Also, it was suggested to prioritize the examination period lower,
as “Students might forgive SIS if the application struggles on these days, but
not to [sic] often as they want to know their grades.” In one case, it was
unclear whether the statement “starting with relatively high load 1500 users;
ending up with 500 users” describes a workload phase or a varying workload
intensity to be replayed in the load test. In the latter case, we would need
to introduce a new aggregation using the provided extension mechanism.
Regarding the answers of one participant, we were not able to derive

LCtL instances. They stated to define the relevant scenarios “based on logi-
cal/business steps based on assumed risk” instead of the recorded workload.
We presume they follow a different school of load design than we do, namely
fault-inducing rather than representative (Jiang and Hassan, 2015), which
our approach does not cover. Still, the LCtL can help “figure out throughput/
number of users” of specific groups, which the participant aimed to do.

Special Circumstances: Due to the COVID-19 pandemic, Charles University
has taken various measures, which they report online (Charles University,
Faculty of Mathematics and Physics, 2020). Among others, the measures we
consider to be especially relevant for load testing are the following.

• As of March 11, 2020, students were prohibited from attending class
in presence. Teachers were recommended to continue teaching re-
motely via online tools. The students were required to complete all
assignments electronically.

• As of March 16, 2020, all employees had to work from home as far as
possible.

• The graduation ceremonies, which should have taken place on April
21, 2020, were canceled. The university planned to have an alternative
ceremony at a date to be announced.
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timeframe:
2 - !<timeframe >

from: 2020 -03 -11 T00:00:00
4 duration: P4W
aggregation: !<percentile >

6 p: 95
adjustments:

8 - !<users -multiplied >
factor: 1.2

10 group: 0
- !<users -multiplied >

12 factor: 1.5
groups: [ 12, 14, 21, 22, 23, 24 ]

Listing 14.5: LCtL instance for testing online tuition.

From these measures, we deduced the following load test scenarios, which
cover the special circumstances. For each of them, we provide an LCtL
instance in the following.

1. As of March 11, 2020, students and teachers access the SIS more than
usual, especially for exchanging course material. Hence, we can test
whether the SIS can handle such an increased steady-state workload.

2. In a past occurrence, there was a workload spike during the graduation
ceremony phase. If this spike overlaps with other effects, it may stress
the system extraordinarily. Once the new date is announced, we can
execute a load test with the corresponding spike workload.

Listing 14.5 shows the LCtL instance for the first scenario. We consider a
time range of four weeks starting from March 11. As it was unclear how long
the online teaching will last when it was announced, we use the four weeks
as a first estimate. Also, we expect the workload to decrease rather than
increase with ongoing online teaching. Furthermore, we use the steady-state
intensity of the 95th percentile. For incorporating the workload increase, we
analyzed the groups of the workload model. In the first place, we expect
the intensities of the groups related to course material exchange to increase.
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1 timeframe:
- !<timeframe >

3 from: XT00:00:00
duration: P1D

5 context:
graduation_ceremony:

7 is: true
aggregation: !<sharpest -spike> {}

Listing 14.6: LCtL instance for testing the delayed graduation ceremony.

The groups we found to be particularly relevant are the following.

• Groups 12 and 21 to 24 frequently (9.3% to 22.1 %) access the end-
point courseBrowserUsingGET, which we correlate with tasks such as
accessing course details and material. Furthermore, they call the end-
points courseCatalogueUsingGET and courseScheduleBrowserUsingGET,
which students might use to find the course sites.

• Users of group 14 frequently access the studentApplicationUsingGET
endpoint (70.4 %), which we identify as being relevant for online
learning and study management.

• Group 0 users call many endpoints, including the previously mentioned
ones, with a frequency of 4.2% or more. The most frequent endpoint
is overviewUsingGET, with 14.8%. We consider this group to represent
normal student activities, which are likely to increase, too, but less
than the other groups.

Hence, we can, e.g., increase the intensity of group 0 by 20 % and the
intensities of the further listed groups by 50%. In doing so, we noticed that
it is helpful to specify multiple groups per adjustment. As a result, the load
test reflects the workload predicted by quantitative forecasting, enriched
with the manually estimated qualitative forecast of online tuition. Here, we
refer to the groups by IDs; labeling them with user-friendly names would
increase the comprehensibility of the LCtL instance.
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For testing the second scenario, which comprises the spike workload of the
rescheduled graduation ceremonies, we can utilize the graduation_ceremony
context facet. Listing 14.6 illustrates this. As the new date of the graduation
ceremony was not set at the time of the study, we use X as a placeholder
for the date. X could also be replaced with different values for assessing
the effect of different graduation ceremony dates. Then, we define the
graduation_ceremony to be true—such that the forecast will incorporate
the effect learned from previous occurrences—and extract the sharpest
spike. The difference to the first scenario is that we can rely on quantitative
forecasting: the ceremony date is a qualitative information that influences
the quantitative forecast.

14.4. Experimental Study with Perfect Forecasting

In this study, we executed an experiment series, addressing RQ3.4: How well
do the continuously learned workload models describe the future workload? We
used our context-tailoring approach with perfect forecasting for generating
multiple load tests for the SIS. These tests differ in multiple dimensions, such
as the predicted phase, e.g., tuition, the aggregation used, e.g., sharpest-
spike, and the forecast, e.g., each group individually. We executed the
tests against a mock service and compared the results with the recorded SIS
workload for evaluating the incrementally learned workload model’s ability
to predict the recorded workload— i.e., requests and sessions—of the SIS.
In this section, we present the experimental method and results. We provide
a discussion of RQ3.4 in Section 14.6.

14.4.1. Experimental Method

We generated and executed multiple load tests using our context-tailoring ap-
proach with perfect forecasting. In the following, we describe the experiment
process and setup we applied.
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Table 14.2.: Evaluated Scenarios

phases aggregations forecasts perspectives total

4 2 2 2 28

start
vacation percentile individual start*

enrolment sharpest-spike total before phase*

tuition

*For the start phase, the perspectives are equal.
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Figure 14.10.: Experiment process.

14.4.1.1. Experiment Process

As illustrated in Figure 14.10, the experiment process comprises the following
five steps.

Load Test Generation 1�. As summarized in Table 14.2, we generated 28
load tests, which differed in the following dimensions.
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1. We predicted different phases using the LCtL timeframe section. The
first phase is the start shortly after the initial clustering period, which
we used to assess the ability of the workloadmodel without incremental
updates to predict the workload it was built from, which corresponds
to existing work (Vögele et al., 2018). Further phases we have based on
the phases identified in the previous study. These are vacation, (course)
enrolment, and tuition (see Figure 14.9). For preventing overlaps
between neighbored phases, we only consider the second half of the
vacation phase (starting from August 1), exclude tuition from the
enrolment phase, and only use the tuition phase in October.

2. We generated steady-state and varying workloads using the 95th per-
centile and sharpest-spike aggregations.

3. We varied the perspective, i.e., the date of the workload model version
used, between the start and directly before each phase. In doing so,
we could assess how much incremental updates change the workload
model and its ability to predict the reference workload.

4. For evaluating the beneficence of predicting the workload mix in addi-
tion to the total intensity, we forecasted the groups’ intensities individ-
ually or all in total using the workload mix of the workload model.

Load Test Execution 2�. We executed the spike load tests for the duration of
the spike and the steady-state tests for three hours (plus ramp-up and cool-
down). As a replacement for the SIS, we utilized the SUT mock described in
Section 10.2.2. Between two test executions, we restarted the SUT mock
using the provided endpoint. Besides, for calculating baselines of the metrics,
we executed the load test with start phase and perspective, individual forecast,
and percentile aggregation ten further times.

Test Result Preparation 3�. For comparison with the reference, we collected
the SUT-side requests. We grouped them into sessions using the same
IDPA as in the preparation of the SIS workload data (see Section 14.1.2).
Hence, we ensured comparability. Furthermore, we calculated the effective
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Figure 14.11.: Illustration of the sessions used for calculating request and
session metrics.

intensity— i.e., the number of concurrent sessions—generated by the load
tests per minute. From the baseline executions, we obtained metric baselines
describing the normal variation of a single test execution by using the first
execution as the reference (see Section 11.2.2).

Reference Data Selection 4�. For assessing the representativeness of the
workloads the load tests generated, we selected reference sessions and inten-
sities from the prepared SIS workload. For the spike tests, we selected the
sessions and intensities overlapping the time frame of the workload predic-
tion. The percentile tests have a steady-state workload, i.e., the prediction
spans only one timestamp. Therefore, we selected the sessions overlapping
the timestamp plus the test duration, i.e., three hours, and the intensity at
the timestamp.

Result Analysis 5�. We analyzed the representativeness of the load tests by
comparing their results with the respective references we selected. Mainly,
we calculated the ⇢ metric, request gap, and session length and duration.
Figure 14.11 illustrates the sessions and requests we used. Here, t1 is
the start timestamp of the workload prediction, t2 the end timestamp, and
t3 = t1+ test duration. That is, for spike tests, t2 = t3 and for percentile tests,
t2 = t1 + 1minute (the intensity granularity) and t3 = t2 + 3hours. For the
request metrics, we used the reference requests (extracted from the sessions)

384 14 | Evaluating Context-tailored Load Testing



SUT Mock

8 GiB Memory32 GiB Memory

start

restart

JMeter

Automation 
Script

load

Context-
tailoring

trigger/
start/stop

provide 
load tests

Figure 14.12.: Experiment setup.

between t1 and t2, which we extrapolated until t3 for percentile tests. For
preventing overrepresentation of long sessions, we used the sessions starting
between t1 and t3 for the session metrics.

14.4.1.2. Experiment Setup

Figure 14.12 shows the experiment setup. We used two bare-metal machines,
which both had an Intel® Xeon® CPU E5620 with 2.40GHz clock frequency,
4 cores, and 8 threads, and were connected via a 1Gbit switch. The first
machine had 8GiB RAM and hosted the SUT mock that collected the requests
submitted by the load tests. The second machine had 32GiB RAM and hosted
our context-tailoring approach for generating the load tests, JMeter (Apache
Software Foundation, 2020[a]) for executing the load tests, and a script
automating the experiment process. It triggered the context-tailoring, started
JMeter, and restarted the SUT mock between the test executions. Besides, it
stopped the context-tailoring approach to free resources for JMeter when
executing the tests. JMeter ran with a heap size of 24GiB.

14.4.2. Results

In the following, we provide highlights of the results of the experiment series.
In the supplementary material (H. Schulz et al., 2020b), we provide all
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details. We separate the results by the aggregation used, i.e., percentile
and sharpest-spike.

14.4.2.1. Percentile Aggregation

Figure 14.13 provides an overview of the request and session metrics. In the
following, we refer to the baseline calculated in step 3 of the experiment
process. The average ⇢ exceeds its baseline µ for all tests and, except for
the test for the start phase with total forecast, µ+ 3�. Hence, the request
mix differs (only slightly for some tests) from the reference. For the tests
with individually forecasted intensities and perspective before the phase, the
difference is the smallest. The phase with the overall largest difference is the
course enrolment, which differs sharply from other phases (see Figure 14.2).
The request gap is different from its baseline, too.

Analyzing the differences further, we identified the gap to the expected
numbers of requests, which we obtained as we did in Section 14.2, to be
significant as well. As a potential reason, we found that the think time
specifications between two endpoints—which are normal distributions,
similar to existing work (Vögele et al., 2018)—had a significant negative
portion stemming from large variances. These variances are also reflected
in the session durations determined in Section 14.2.2. As a load test cannot
simulate negative think times, it replaces them with zero, resulting in a
biased mean think time. Let � ⇠N (µ,�2) be the think time specification
and f its density function. Then, the biased mean can be calculated as
follows.

µbiased =

1Z

0

x · f (x) d x �
1Z

�1

x · f (x) d x = µ

Our explanation is supported by the fact that the lost time correlates with
the gap to expected requests with a Pearson correlation coefficient of 0.952,
as shown in Figure 14.14. Indicating that it does not stem from bottlenecks
in the load driver, the gap does not correlate with the number of concurrent
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Figure 14.13.: Summary metrics of the scenarios with percentile aggre-
gation. The dashed horizontal line and gray area illustrate a
baseline, which is the critical value c(↵) = 1.358 for ↵= 0.05
(session length and duration) or based on the mean and
standard deviation of the baseline executions (⇢ metric and
request gap). The phases are arranged by date.
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Figure 14.14.: Correlation of the gap to the expected requests of the per-
centile tests with different metrics.

users, where the coefficient is �0.131. Besides, the lost time differs among
the groups of the workload model. Hence, it also affects the request mix,
which, in turn, affects the ⇢ metric.

The session metrics (length and duration) give a slightly different picture.
As shown in Figure 14.13, the Kolmogorov-Smirnov statistics for the tests
with total forecast are below the ones with individual forecast, but still
above c(↵). An exception is the course enrolment phase, highlighting its
peculiarity. Here, the Kolmogorov-Smirnov statistic of the session length
with total forecasting is significantly higher than with individual forecasting.
For the other phases, quantile-quantile (Q-Q) plots (Figure 14.15) show that
the sessions of tests with individual forecasts are longer, except for the tail,
while the ones with total forecasts are shorter than the reference. The Q-Q
plot for the session duration appears similar, but with the additional effect
of time lost due to negative think times, which increases the duration.
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Figure 14.15.: Q-Q plots for the vacation phase with percentile aggrega-
tion. The percentiles are highlighted.

14.4.2.2. Sharpest-spike Aggregation

From an overview perspective, the results of the tests with sharpest-spike
aggregation have similar characteristics as described before. As Figure 14.16
illustrates, the tests with individual forecast and perspective before the phase
generally have the lowest request metrics. Regarding the session metrics,
the differences are less pronounced than with the percentile aggregation.
Another notable difference to the percentile aggregation is the ⇢ metric,
whose maximum achieved value is significantly higher with the sharpest-
spike aggregation. The phase with the maximum metric value is the course
enrolment.

The spike of the corresponding workload is notably sharp, as illustrated in
Figure 14.17, at the example of the individual forecast and perspective before
the phase. The number of concurrent sessions of the reference workload
increases from 479 to 3334 within 100 minutes, and the load tests were able
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Figure 14.16.: Summary metrics of the scenarios with sharpest-spike
aggregation. The dashed horizontal line and gray area illus-
trate a baseline, which is the critical value c(↵) = 1.358 for
↵= 0.05 (session length and duration) or based on the mean
and standard deviation of the baseline executions (⇢ metric
and request gap). The phases are arranged by date.
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Figure 14.17.: Intensity and submitted requests for the enrolment phase
with sharpest-spike aggregation, individual forecast, and
perspective before the phase.

to replay this increase precisely. However, the reference workload contains
an increase in the requests submitted at around the intensity peak, which the
load tests could not replay. The reason is that the request spike is significantly
sharper—with an increase of 2394%—than the sessions spike—with an
increase of 696 %. As the load tests only can vary the number of sessions, the
request spike cannot be sharper than the sessions spike. As a consequence,
the request gap and ⇢ metric sharply increase during the spike, which is
most dominant for the test with the total forecast and start perspective but
significant for all.
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Table 14.3.: Evaluated Scenarios

phases & aggregations forecasts tools data bases total

2 2 2 2 16

enrolment/highest-spike individual Telescope context
tuition/percentile total Prophet pure

14.5. Experimental Study with Real Forecasting

The second experimental study with the SIS addresses the following research
questions.

• RQ3.5: How representative for future workload scenarios are workload
models with forecasted intensities?

• RQ3.6: How long does it take to calculate an intensity forecast?

We generated sixteen further load tests using the forecasting tools Telescope
(Bauer et al., 2020) and Prophet (Taylor and Letham, 2018). Hence, as
opposed to the previous study, the load tests’ workloads were realistically
influenced by potentially inaccurate forecasts. Because the SIS dataset is
relatively short and, thus, limited regarding time series forecasting, we used
the augmented dataset (see Section 14.1.4). We describe the experimen-
tal method and present the study results in the following and discuss the
research question in Section 14.6.

14.5.1. Experimental Method

For evaluating the ability of workload models with forecasted intensities to
predict a reference workload, we reused the experiment setup and a slightly
modified version of the process from Section 14.4.1. The modifications are
the following.

Load Test Generation 1�. We generated a different set of load tests, for
which we used the augmented intensities (see Section 14.1.4) for forecasting
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the workload. The generated load tests varied in the following dimensions,
as summarized in Table 14.3.

1. They replayed workload scenarios predicted for two specific days after
the end of the (augmented) intensities (May 23, 2019), namely the
highest workload during course enrolment (Sep. 25, 2019) and the first
tuition day (Oct. 2, 2019), for which we had access to the request logs.
For the tuition, we predicted the 95th percentile. Past course enrol-
ment days entailed sharp spikes. Therefore, we used the highest-
spike aggregation, which is a modification of the sharpest-spike.
Instead of locating the spike with the sharpest increase, it detects
a spike pattern around the peak load. We applied this aggregation
instead of sharpest-spike because we found that the tools used
calculated forecasts that lead to wrongly predicted sharpest spikes. We
report more on that in the results section.

2. Similar to before, we forecasted the intensities individually and in total.

3. We used the Telescope (Bauer et al., 2020) and Prophet (Taylor and
Letham, 2018) tools for computing the intensity forecasts.

4. We expected the context to improve the intensity forecast. For vali-
dating this hypothesis, we supported the forecasting tools with the
context or executed it purely, i.e., without context. In the enrolment
case with context, we defined a special enrolment from 9:30 to 11:00
using the context section of the LCtL.

The test with the property combination Telescope/enrolment/highest-
spike/individual resulted in a total intensity that was too high for our ex-
periment infrastructure. Therefore, we scaled the workload with a factor
of 0.75 and divided the resulting request rates by 0.75 before applying the
analysis. For the scaling, we utilized the users-multiplied adjustment.

Reference Data Selection 4�. For analyzing the load test results, we compared
the requests and sessions the tests submitted with the corresponding ones
from the two days. For the course enrolment, we aligned the intensity
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peaks of the load tests and reference. For the tuition, we extracted the 95th

percentile.

14.5.2. Results

Here, we present the results of the experiment series. First, we consider the
load tests predicting the 95th percentile of the first tuition day; then, we
provide the results of the load tests simulating the course enrolment spike.
Besides, we have identified the duration required to calculate the forecasts
to be significantly different among the load tests. Therefore, we analyze it,
as well.

14.5.2.1. Tuition Percentile

Figure 14.18 provides a summary of the load test results. The request and
session metrics are in a similar range as for the tests with perfect forecasting
but generally higher, e.g., the average ⇢ for the test with Telescope and
individual forecast considering the context is 6.297, as opposed to 2.338
for its counterpart with perfect forecasting. In general, Telescope generates
more representative workload predictions than Prophet. An exception is the
request gap, which is smaller for Prophet than for Telescope. However, all
metric values for the two tools are close to each other.

The individual forecast has the strongest effect on the request metrics. It
reduces ⇢ by 48% to 71% compared to the total forecast. Also, the request
gap is smaller with individual forecasting compared to total forecasting, with
differences between 8 % and 25 %. The data basis has a small effect. In all
cases except one, using the context reduces ⇢ by 2% to 39%. For the test
with Telescope applied to the total intensities, the context slightly increases
⇢ by 6 %. However, the context reduces the request gap in all cases.
As before, the total forecast produces smaller session metrics, with Q-Q

plots similar to Figure 14.15. Besides, Telescope predicts workloads with
slightly smaller session metric values than Prophet does in most cases. As all
tests’ workloads significantly differ from the reference workload, we cannot
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Figure 14.18.: Summary metrics of the tuition scenarios with percentile
aggregation. The dashed horizontal line and gray area illus-
trate a baseline, which is the critical value c(↵) = 1.358 for
↵= 0.05 (session length and duration) or based on the mean
and standard deviation of the baseline executions (⇢ metric
and request gap).
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deduce significant differences between Telescope and Prophet regarding the
session metrics.

14.5.2.2. Enrolment Spike

Predicting the sharpest spike during the course enrolment appeared to be
challenging for the forecasting tools. In several cases, namely Telescope
with total forecasting and Prophet with the pure data basis, the predicted
workload did not contain a notable spike. The extracted workload scenarios
lasted between ten and twenty hours. Therefore, we only executed the
remaining load tests.

Figure 14.19 provides an overview of the resulting metrics. It shows a high
variation among the tests. The most representative workload was predicted
by Telescope with individual forecasting, using the context. Its metrics are
close to the enrolment spike predicted with perfect forecasting. Somemetrics,
such as the request metrics, are even lower, with ⇢ = 6.093 and a request
gap of 0.437 as opposed to 9.185 and 0.447, respectively. The prediction
without context resulted in a doubled request gap and a ⇢ about as 5.5 times
as high as with context. With Prophet, both tests have a similar request gap,
but the individual forecast generates a better request mix, as assessed by ⇢.
The session metrics are diverse, too. The generally best-predicted session
metrics resulted from Telescope with the pure data basis, which, considering
the weak request metrics, might be accidental.
The reason for several inaccuracies regarding the representativeness of

the predicted workload scenarios is the shape of the intensity curve, as
illustrated in Figure 14.20a. The curve shapes of the numbers of concurrent
sessions generated by the tests differ significantly from the reference. Mainly,
there are sharp increases shortly after the start, which do not exist in the
reference. The increases correlate with the start of the special enrolment.
Still, Telescope was able to predict the peak intensity accurately when using
the context. Remarkably, when not using the context, the intensity curve
is not a spike and significantly too low, which explains the high request
metrics.
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Figure 14.19.: Summary metrics of the course enrolment scenarios with
highest-spike aggregation. The dashed horizontal line
and gray area illustrate a baseline, which is the critical value
c(↵) = 1.358 for ↵ = 0.05 (session length and duration) or
based on the mean and standard deviation of the baseline
executions (⇢ metric and request gap).
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(c) Legend.

Figure 14.20.: Intensity and submitted requests for the spike tests for the
enrolment phase.

Similar to perfect forecasting, none of the generated load tests were able
to replay the spikes in the request rates. As illustrated in Figure 14.20b, the
reference request rate contains three sharp spikes that do not correlate with
the intensity. Hence, as the load tests only vary the number of users, they
cannot generate the request spikes.

14.5.2.3. Forecast Duration

The time needed to compute the intensity forecast differs significantly among
the load tests we generated. Figure 14.21 illustrates the forecasting duration
in correlation with the ⇢ metric as a measure for the representativeness of
the tests. A general trend is that individual forecasting lasts longer than total
forecasting, and forecasting considering the context takes more time than
pure intensity forecasting. Besides, Telescope is faster than Prophet.
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Figure 14.21.: Time needed to calculate the intensity forecast correlated
with the ⇢ metric per aggregation. The dashed line illustrates
the Pareto frontier.

For the tuition percentile tests, the Pareto frontier only contains load tests
generated using Telescope. Telescope’s pure total forecast is the fastest, with
3.6 minutes, while its per-group individual forecast using the context is the
most representative and took 106 minutes. As a comparison, we ran the
load tests for three hours. The ⇢ values are 20.203 and 6.297, respectively.
Hence, there are significant differences in both dimensions.
For the enrolment spike tests, the Pareto frontier contains Telescope’s

per-group individual forecast and Prophet’s total forecast, both with context.
The forecast with Prophet is the fastest with 55 minutes and ⇢ = 25.990,
while the one with Telescope is the most representative with a duration of
104 minutes and ⇢ = 6.093. Here, the difference in the duration is smaller
than for the percentile aggregation, as Telescope’s forecast took less than
twice as long as Prophet, while its ⇢ is only about 23% of Prophet’s ⇢.
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14.6. Discussion of Research Questions

In the following, we discuss the research questions RQ3.1 to RQ3.5 defined
in Section 5.1. We refer to the context-tailoring approach (Chapter 8) and
the studies we have conducted for this purpose, which we presented in the
previous sections.

14.6.1. RQ3.1 — Incremental Workload Model Learning

How can we incrementally learn the workload models from observed
user sessions for predicting future workload scenarios?

Clustering sessions using an algorithm based on k-means leads to valuable
workload models, as our evaluation with the SIS dataset shows. This finding
correlates with previous work, which uses k-means and related algorithms
for clustering a single bunch of sessions (Menascé et al., 1999; Vögele et al.,
2018). Our proposed algorithm applies outlier detection and k-means++
(Arthur and Vassilvitskii, 2007) for the initial clustering and assigns further
sessions based on the minimum distance to the cluster centroids and their
radiuses. In doing so, it detects up to one new cluster per iteration.

As a crucial aspect of the algorithm, it is fast enough for online execution on
a moderately-sized machine. As we intend to apply the algorithm periodically
to learn the latest user behavior incrementally, it should not last longer than
the time range of sessions clustered. With the SIS dataset, it only needed
27.6 hours for clustering four weeks and up to 2.5 hours for clustering a
single week. Hence, it can be applied to an industry-scale application, such
as the SIS of a large university, without requiring disproportionate hardware.
However, the outlier detection was slow in relation to the actual clustering,
which future work might improve.

Limitations of our algorithm are the many parameters to be defined manu-
ally and the disability to detect more than one new cluster per iteration. For
the SIS dataset, we based on our experience and applied a try-and-improve
approach for finding suitable parameter settings. Future work should aim
at supporting the user in finding appropriate parameters. As we discuss
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in Section 8.4.1, alternative algorithms, such as DBSCAN (Schubert et al.,
2017), may solve the limitations but do not produce convex clusters. How-
ever, we require convexness for selecting a cluster representative, such as
the centroid. Hence, future work can also try to adapt our DBSCAN-based
algorithm and cope with non-convex clusters by, e.g., selecting different
representatives.

14.6.2. RQ3.2 — Influence on Workload Model

How much does the incremental learning affect the workload mod-
els?

As assessed in the workload model analysis (Section 14.2), the incremental
session clustering resulted in a workload model that slightly fluctuates over
time. The behavior models of most of the 26 groups vary in the session
duration. Some of them also vary in the session length— i.e., the number of
requests submitted per session—or the ratio of requests per endpoint. Most
of the fluctuation happens during the course enrolment phase, which has
the highest workload.
The fact that new groups occur after several iterations shows the impor-

tance of identifying new clusters rather than assigning all sessions to existing
groups. Still, the changing request ratio and session length during the course
enrolment phase indicate that our clustering algorithm can be improved
regarding the assignment of sessions.
Another aspect to be improved in future work is the session duration

fluctuation. We observed that it was themost fluctuating session property. We
attribute this to the session clustering, which only considers the Markovian
request order. The think times between two requests, which dominate the
session duration, are added afterward. Future work should decrease the
session duration fluctuation by integrating the think times into the clustering.

Finally, we observed that for some groups, the mean session durationminus
the standard deviation was negative, stemming from think time specifications
with a significant negative portion. As a load test cannot simulate them, it
will replace negative think times with zero. Hence, the resulting average
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session duration is higher than specified. In turn, the request rates are
lower than specified. Future work should address this issue in two ways.
First, integrating the think times into the clustering might help to separate
differently timed sessions and, thus, prevent high think time variances.
Second, we propose investigating think time specifications different from
normal distributions. One option could be empirical distributions, which also
allow for merging think time specifications, as demanded by the incremental
updating and the model-based service-tailoring (see Section 7.5).
Concluding, we presume the incremental session clustering to produce

valuable workload models if the workload is stable. Highly varying workloads
introduce fluctuations, which can impair the representativeness of predicted
workload scenarios. Therefore, identifying new clusters, as our algorithm
does, is crucial. Future work should investigate improvements of the algo-
rithm, such as detecting more than one cluster per iteration, integrating the
think times, and using different think time specifications. The improvements
may extend the two algorithms proposed in Section 8.4.1.

14.6.3. RQ3.3 — Expressing Workload Scenarios

How expressive is the Load Test Context-tailoring Language con-
cerning workload scenarios of a production system?

Due to its flexibility, the LCtL is suitably expressive for workload scenarios
of the SIS. We conclude this finding from the expressiveness evaluation.
First, we were able to express all workload phases we identified using the
timeframe section. Second, we could define LCtL instances for most of
all scenarios the participants of the expert survey specified. Last, we also
showed the LCtL is suited for describing complex scenarios that require
qualitative forecasting, such as during the COVID-19 pandemic.
The flexibility, i.e., the ability to add further clauses or constructs easily,

was a vital feature of the language. For instance, many workload scenarios
required an exists keyword for selecting the course enrolment phase, which
we, therefore, added to the core language. Also, specific concerns, such as

402 14 | Evaluating Context-tailored Load Testing



selecting weekdays, can be integrated by adding new clauses to the time-
frame section. For aggregations and adjustments, we even provide an
extension endpoint, which we had to use in few cases of the expert survey.

A limitation of the LCtL is the design of non-representative workloads, such
as fault-inducing ones (Jiang and Hassan, 2015), which our approach does
not cover by design. However, LCtL instances can describe specific aspects,
such as the number of users of specific groups, which an expert can then
assemble to a fault-inducing workload specification. Besides, as our approach
uses the WESSBAS-DSL, it can be integrated with the work by Vögele (2018),
which closes the gap between representative and fault-inducing load tests.
Precisely, the approach can select expectedly highly-demanding scenarios
from the workload our approach predicts.

14.6.4. RQ3.4 — Describing Future Workload

How well do the continuously learned workload models describe
the future workload?

The incrementally learned workload model describes the reference work-
load accurately, except for two influences. First, as also discussed for RQ3.2,
the think time specifications have a too large variance, which induces a signif-
icant request gap. As the user groups are affected differently, the request mix
and, thus, the ⇢ metric are affected, too. Taking that into account, the latest
version of the workload model, in combination with individual forecasting,
generates representative load tests, while especially total forecasting gives a
worse result. Hence, predicting the workload mix is superior over predicting
the total intensity only. The fact that the sessions of the individually fore-
casted tests tend to be longer than the reference, while the tests with total
forecasts have shorter sessions, supports this finding, as Markov chains have
generally been found to generate long sessions (Vögele et al., 2018).
Second, the workload model is limited regarding predictions of sharp

spikes. While corresponding load tests executed the correct number of con-
current sessions, the request rate and mix were different from the reference.
A reason might be that the think times during the spike differ from other
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phases. Hence, as previously suggested, integrating the think times into the
session clustering might improve spike predictions, as the workload model
can then separate user groups with different timings. Also, modeling an open
instead of closed workload (Schroeder et al., 2007)— i.e., considering the
session arrival rates instead of concurrent sessions—might help to predict
spikes, which, however, requires careful modeling of the session length and
duration. As our and previous evaluations (Vögele et al., 2018) indicate,
Markov chains are not suited for that, as they tend to generate too long
sessions.

A final aspect we propose to investigate in future work is the fact that the
perspective before the predicted phase was more representative than the
start perspective in most cases. Applying the incremental session clustering
to datasets spanning a longer time frame can reveal whether this effect
dissolves, oscillates with the workload’s seasonality, or even strengthens over
time. The first case is desirable, as it means that the workload model can be
used for long-term predictions if it has been learned from a large enough
time frame. The second case is acceptable for short-term predictions. In the
last case, the clustering algorithm needs to be refined.

14.6.5. RQ3.5 — Representativeness of Forecasted Workload Models

How representative for future workload scenarios are workload
models with forecasted intensities?

Load tests with forecasted intensities can be mostly as representative as
with real forecasting when considering the context and per-group intensities.
For steady-state workloads, the tests are only slightly less representative
compared to perfect forecasting. Here, the individual forecasts made the
largest difference. When predicting spikes, it is crucial to use the context,
as all other tests did not contain a notable spike. We presume that, on the
one hand, the context helps the forecasting tool separating the spikes from
anomalies, while, on the other hand, the group’s individual intensities allow
detecting the spike better, as it occurs differently in different groups.
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A limitation of the spike forecast is predicting transitions between context
facet states, e.g., open to special course enrolment, which can cause a sharp
change in the intensity curve. We presume the reason is that the tools
learn the average influence of a specific state in the past and apply it to the
whole state in the future. For our purposes, we rather need a forecasting
approach that also learns the change in the intensity curve, which needs to
be addressed by future work.
Regarding the forecasting tools used, Telescope predicts slightly more

representative workloads than Prophet does. For steady-state workloads,
this is mainly reflected in the request metrics. For spike workloads, Tele-
scope also predicts intensity curves that are closer to the reference, even if
it suffers from the context transitions and the uncorrelated request rates.
However, Telescope necessarily requires the context and individual per-group
intensities, while Prophet performs better on total intensities.

14.6.6. RQ3.6 — Forecasting Duration

How long does it take to calculate an intensity forecast?

The forecasting duration strongly depends on the tool and input used. In
general, Telescope is faster than Prophet. As we also assessed Telescope
to predict slightly more representative workload scenarios, we conclude it
is preferable over Prophet, especially because some of Prophet’s forecast
calculations take significantly more time than the generated load tests run.
Within each tool, more representative workload scenarios require a longer
forecasting duration. For instance, the tuition percentile load test with
the shortest forecasting duration only took 3.6 minutes, while the most
representative one took 106 minutes. However, the fastest test also has a
high ⇢; thus, we cannot consider it to be representative of the reference
workload.

Hence, forecasts for representative workload scenario prediction in our
specific case require about 100 minutes on the average-sized infrastructure
we used. For the load tests we executed, this is more than half the execution
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time. The reasons why high representativeness requires long-lasting fore-
casting are the consideration of the context and the per-group individual
intensities. Both add information to the forecasting tool, which increases its
calculation duration. The individual forecast has a higher impact because
each group’s intensity needs to be forecasted individually, and the current
implementation does not apply parallelization.

Two opportunities for speeding up the forecasting are parallelization and
reduction of the number of groups. Parallelization is mainly promising
because the per-group intensity forecasts are independent of each other.
Hence, in our case, it can decrease the forecasting duration by a factor
of almost 26, which is the number of groups. However, this requires a
larger infrastructure than we used, especially with more CPU cores. Fewer
groups allow for fast forecasting without larger infrastructure. Besides, one
of the expert survey participants, who self-assessed as an expert, found
that “26 user group sounds too much.” In order not to reduce the behavior
modeling precision, one approach is to forecast groups with similar intensity
seasonalities together in total, without merging the behavior models.

14.7. Threats to Validity

We identified the following threats to the validity of our context-tailoring
approach and its evaluation, grouped by the validity type.

14.7.1. Conclusion Validity

Typically, statistical tests are an essential means for drawing conclusions
from numerical measures. Here, we have not applied statistical testing for
assessing the representativeness of the generated load tests. Statistical tests
are not suited for comparing predicted workload scenarios with a reference
workload, as the predictions naturally deviate from the reference. Instead,
we have measured the distance to the reference with metrics introduced and
successfully applied in existing work (H. Schulz et al., 2020c; Vögele et al.,
2018, and Chapter 12).
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14.7.2. Internal Validity

During three short-term (up to few hours) periods of the session clustering,
we lost a low percentage (< 1 %) of data due to platform issues and clock
change. These data losses might have influenced our results. However, they
are negligible compared to the total size of the dataset and likely to happen in
realistic settings. During test execution, we prevented interactions between
the load driver and the system under test by using separate machines. Also,
we validated that the load driver did not run into overload situations by
correlating the request gap with the intensity.

For applying real forecasting, we augmented the SIS dataset, which might
have influenced the forecasts. Using a dataset with a longer period of data
available would be beneficial. However, to the best of our knowledge, the
SIS dataset is unique regarding the information content and extent of real-
world session-based workloads. Also, time series augmentation is commonly
applied (Wen et al., 2020).

14.7.3. Construct Validity

We identified several limitations of existing workload modeling and fore-
casting approaches. For preventing limitations due to the tool choice, we
used state-of-the-art concepts and tools that have extensively been evaluated
(Bauer et al., 2020; Taylor and Letham, 2018; Vögele et al., 2018). Particu-
larly, Markov chains have been assessed a reasonable modeling concept for
load tests (Z. Li and Tian, 2003). Also, the limitations do not stem from our
implementations, as they are related to the session clustering and Markov-
chain-based workload modeling introduced by Menascé et al. (1999) and
Vögele et al. (2018), and time-series forecasting, which we have applied as
a black box. Besides, our framework allows using different tools, which can
be evaluated in future work.
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14.7.4. External Validity

The SIS dataset has particular characteristics, such as semester phases sharply
differing in the workload. The workloads of other systems can have different
characteristics leading to different results. Therefore, future work should aim
at finding more datasets related to the one used in this paper and evaluate
our context-tailoring approach on them.

14.8. Summary

In this chapter, we have evaluated our context-tailoring approach in four
different studies with the SIS of Charles University, Prague. While the gen-
eral approach was well suited for expressing and generating representative
workload scenarios, we have encountered limitations of existing approaches
we used as building blocks, which need to be resolved in future work. On the
one hand, the prediction accuracy needs to be improved, e.g., by integrating
the think times into the session clustering. On the other hand, this likely
will lead to an increased number of user groups, which, in turn, will increase
the time needed for calculating forecasts. Hence, the challenge is to find
a combination of workload modeling concepts and forecasting approaches
that capture user behavior accurately while enabling efficient predictions.

In the next chapter, we evaluate our Behavior-driven Load Testing (BDLT)
approach, which bases upon the context-tailoring. There, we focus on further
expressiveness and usability evaluation.
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In this chapter, we provide two case studies evaluating our load testing
approach for non-experts (Chapter 9). We have introduced the Behavior-
driven Load Testing (BDLT) language, which allows a user to define load
tests in template-based natural language. Based on such a definition, we
automatically generate and execute the load test leveraging our approaches
to automated parameterization, service-tailoring, context-tailoring, and the
BenchFlow test execution approach by Ferme and Pautasso (2018). The
evaluation of the BDLT approach addresses the sub-questions of RQ4: How
can we leverage automated tailored load test generation and automated load
test execution for enabling load testing for non-experts?
The two case studies presented in this chapter comprise an industrial

and laboratory setting. The first study assesses the expressiveness and use
cases of the BDLT language for a DevOps team developing and operating
an Internet of things (IoT) system. In collaboration with the team, we
developed four BDLT definitions and received feedback. The second case
study evaluates the expressiveness for complex laboratory load test concerns
at the example of microservice scalability assessment. Here, we based on the
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approach presented in Section 9.3 and experiments conducted in a previous
study.
The case studies show that the BDLT language is sufficiently expressive

for many load testing concerns. In the industrial case study, we were able to
express all concerns of the DevOps team, even thoughwe had to use extension
mechanisms for handling outage scenarios, which entailed a high recovery
spike. The feedback we received from the team was consistently positive. In
particular, they highlighted the benefits of natural language, which appeared
to foster collaboration. Furthermore, they suggested using the language in
the acceptance criteria of Scrum user stories. In the laboratory case study, we
were able to express all experiments from our previous work in a single BDLT
definition, but at the expense of executing more experiments than before.
The reason is that we were not able to express parameter combinations as
concisely as in the previous work, due to limitations of natural language. We
provide supplementary material online (H. Schulz et al., 2019d).

The remainder of the chapter is structured as follows. In Section 15.1, we
present the industrial case study, followed by the laboratory case study in
Section 15.2. In Sections 15.3 and 15.4, we discuss the research questions
and lessons we learned, considering the case study results. Section 15.5
discusses threats to the validity of our work. We conclude the chapter with
a summary in Section 15.6.
This chapter is a revised version of Chapter 4 of our previous publication

(H. Schulz et al., 2019c) and the corresponding supplementary material
(H. Schulz et al., 2019b), extended by content from our joint publications
below.

• H. Schulz, D. Okanović, A. van Hoorn, V. Ferme, and C. Pautasso
(2019c). “Behavior-Driven Load Testing Using Contextual Knowledge
— Approach and Experiences.” In: Proceedings of the 10th ACM/SPEC
International Conference on Performance Engineering (ICPE 2019). ACM,
pp. 265–272

• A. Avritzer, V. Ferme, A. Janes, B. Russo, H. Schulz, and A. van Hoorn
(2018). “A Quantitative Approach for the Assessment of Microser-
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vice Architecture Deployment Alternatives by Automated Performance
Testing.” In: Proceedings of the 12th European Conference on Software
Architecture (ECSA 2018). Vol. 11048. Lecture Notes in Computer
Science. Springer, pp. 159–174

• A. Avritzer, V. Ferme, A. Janes, B. Russo, A. van Hoorn, H. Schulz,
D. Menasché, and V. Rufino (2020a). “Scalability Assessment of Mi-
croservice Architecture Deployment Configurations: A Domain-Based
Approach Leveraging Operational Profiles and Load Tests.” In: Journal
of Systems and Software 165, p. 110564

15.1. Industrial Case Study

In this case study, we applied our BDLT approach to an industrial context for
evaluating the research questions below.

• RQ4.1: How expressive is the BDLT language in regards to load test
concerns of industrial use cases?

• RQ4.2: How would BDLT be used in industrial contexts?

• RQ4.3: What are the benefits and limitations of using BDLT in comparison
to defining load test scripts?

We collaborated with an industrial partner from the logistics sector for
using the BDLT language to express their relevant load testing concerns.
Furthermore, we received feedback. In the following, we describe the case
study method we applied and present the results. In Section 15.3, we will
discuss the results concerning the research questions.

15.1.1. Case Study Method

In this section, we describe the case study design and planning, the data we
have collected, and the analysis we applied to the data.
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Figure 15.1.: Illustration of the architecture of the IoT system.

15.1.1.1. Design and Planning

We applied our approach to an industrial partner from the logistics sector.
Following DevOps practices (Bass et al., 2015), the company developed and
operated an IoT system running in a Cloud environment. The underlying
Cloud technologies were Docker (Docker Inc., 2020) and Kubernetes (The
Linux Foundation, 2020). Figure 15.1 sketches the architecture of the IoT
system. Devices are sending messages to an IoT endpoint, which forwards the
messages to the backend application via messaging queues. The messages
are processed depending on a contained message type. The device IDs and
the order, timing, and type of the messages build a structure similar to user
sessions.
In order to answer the research questions, we developed BDLT defini-

tions that express the load test concerns the industrial partner had and
collected feedback regarding the benefits of these definitions. In doing so,
we proceeded as follows. We had five meetings in total with the industrial
partner. In the first two meetings, we presented our general research plan
and discussed high-level architectural and organizational aspects of their IoT
system. As an outcome, we focused on one DevOps team that was working
on load testing. In the third meeting, we defined the scope of the collabora-
tion and received production data to use in our case study. After that, we
had two iterations, each consisting of the two steps of (1) internally defin-
ing BDLT definitions that met the state of knowledge we had at this point
and (2) refining the BDLT definitions in another meeting with the DevOps
team and collecting feedback. In each of these meetings, we presented the
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BDLT definitions as well as representations of the generated load tests to be
executed: BenchFlow load tests and graphs visualizing the workload models.

15.1.1.2. Data Collection

Our primary source of information was the BDLT definitions we derived
in collaboration with the DevOps team. Furthermore, our partner gave us
access to the following data1, which we incorporated into the discussions
with the DevOps team for illustrating the meaning of the BDLT definitions:

• the message logs of a small subset of devices from one week, where
each log consists of a timestamp, a device ID, and a message type,

• the load intensity over time, i.e., the number of messages per hour for
one year,

• contexts we identified, which influence the load intensities.

Finally, we received oral feedback in the meetings with our partner, which
we documented and analyzed.

15.1.1.3. Data Analysis

For transforming the BDLT definitions into the load tests and visualizations
we presented our partner, we preprocessed the data. Using the WESSBAS
approach (Vögele et al., 2018), we transformed the message logs into a
workload model representing the device behaviors as Markov chains and
the relative frequencies (mix) of the Markov chains. From the number of
messages per hour, we extracted the load test intensities. Regarding the
workload context, we identified two specific context facets in the data: public
holidays and recoveries from outages of the Cloud infrastructure that can
happen irregularly. Public holidays turned out to decrease the intensity.
Recoveries, in contrast, significantly increase it, because the devices buffer
all messages locally during an outage and send them during the recovery.

1For the sake of confidentiality, we do not provide the exact dates or values in the
following and add randomly chosen obfuscation factors per hour, day, and week as well as for
the global trend to all plots.
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Figure 15.2.: Illustration of the recovery detection. Only the first anomaly is
labeled as a recovery: the second misses a spike, the third an
outage, and the fourth is de- and increasing too slowly.

Hence, it is essential to prepare for potential future recoveries as a what-if
analysis.

We identified past recoveries by processing the message rates, as illustrated
in Figure 15.2. We labeled a workload spike as a recovery with a specific
severity if the intensity fit the following template: first, it is less than a tenth
of the average intensity for that hour and weekday and then, it is higher
than two times the average intensity, which constitutes the recovery spike.
The recovery severity we calculated as the difference between the messages
sent during the outage and the usually sent messages.
For forecasting the workload intensity during expected future outages,

we registered an extension, as described in Sections 8.4.2 and 9.2.2.2. If the
event clause when an outage happened from <start> to <end> is specified,
the extension determines the expected number of buffered messages by
doing separate forecasting. The actual forecasting of the test workload is
done in a second step, using the determined number of buffered messages.

Using the data prepared as described above, we were able to transform the
BDLT definitions into load tests and visualizations of the tests’ workload mod-
els. We showed these artifacts to the DevOps team and asked whether they
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Table 15.1.: Overview of BDLT Definitions and Corresponding LCtL Instances

name timeframe context aggregation adjustments

configuration
exploration timerange – maximum –

continuous
quality assur-
ance

timerange – percentile –

recovery spike timerange outage as-is –

more devices timerange – maximum users-
multiplied

correspond to their expectations. Based on their feedback, we assessed the
expressiveness, usefulness, benefits, and limitations of the BDLT language.

15.1.2. Results

Our industrial partner reported four different load test concerns, which we
defined using the BDLT language. Table 15.1 provides an overview. The
configuration exploration test aims at identifying the optimal configuration
of the system under test. After that configuration has been established, the
continuous quality assurance test is executed continuously, e.g., every night, to
detect whether the performance of the system remains stable. For preparing
for future outage recoveries, our partner demanded the recovery spike test.
Finally, the more devices test covers the planned scenario of adding more
devices to the system. In the following, we present the BDLT definitions and
describe their transformation to BenchFlow tests using our context-tailoring
approach. As we did not make use of the services clause—which did not
exist at that time—, the service-tailoring approach was not involved.

Please note that we conducted this case study before introducing the LCtL.
Therefore, we performed parts of the transformation of a BDLT definition to
a BenchFlow test manually. Using the LCtL, the transformation would have
been automated. Thus, we provide details about the LCtL instances derived
from the BDLT definitions as an addition to our previous publication.
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Given the next three months
2 and the number of users set to the maximum,
when varying the CPU cores between 0.5 and 4 in steps of 0.5

4 and varying the number of instances between 1 and 5
and varying the RAM among (1GB, 2GB, 4GB),

6 then run each experiment for 1 hour
and ensure the average CPU load is less than 15%

8 and ensure the message latency is less than 2 seconds.
Listing 15.1: BDLT definition: configuration exploration.

15.1.2.1. Configuration Exploration

Listing 15.1 provides the BDLT definition for the configuration exploration
test. It uses the maximum expected intensity of the next three months to
assess the performance of the system under test (SUT) under different config-
urations of the CPU, the number of instances, and the RAM. Each experiment
should last one hour, and CPU load and message latency thresholds define
whether an experiment passes or fails.

The context-tailoring for transforming the BDLT definition to a BenchFlow
test is illustrated in Figure 15.3. The LCtL instance contains a timerange
clause corresponding to the first given clause and a maximum aggregation
corresponding to the second clause in given. Hence, our approach calculates
a forecast, as illustrated in the figure, and extracts the maximum value. The
result is a steady-state workload model with a constant intensity.

Therefore, the load_function of the BenchFlow test is a constant value.
Because the varying keyword is used in the when clause to vary system con-
figurations, the BenchFlow goal exhaustive_exploration is used, testing
all configuration combinations. The then clause defines each experiment to
run for at most one hour, defined using the steady_state field. Besides,
the ensure keywords define qualiy_gates on CPU and message latency
metrics.
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Figure 15.3.: Observed intensities and forecast for the configuration explo-
ration test (obfuscated).

Given 2018
2 and the number of users set to the 95th percentile,
then run the experiment for 1h

4 and ensure the number of instances is less than 3
and ensure the summarized cost is less than X.

Listing 15.2: BDLT definition: continuous quality assurance.

15.1.2.2. Continuous Quality Assurance

The continuous quality assurance test is a simple load test and is easily
expressible in the BDLT language, as shown in Listing 15.2. Instead of relying
on a workload forecast, the given clause states to use the 95th percentile of
the number of users for the year 2018. Hence, repeated generations of this
test result in the same workload model, allowing for comparison. Because
it is a simple load test, there is no when clause. The then clause defines to
execute the test for one hour and to compare its results with the number of
instances and cost thresholds. These metrics are of interest because the test
is to be executed in an environment with auto-scaling in place.

15.1 | Industrial Case Study 417



The corresponding LCtL instance contains a timerange clause for the
year 2018 and a percentile aggregation. Hence, the context-tailoring uses
the past intensities for calculating a steady-state workload. The resulting
BenchFlow test is similar to several aspects of the configuration exploration
test, but with the difference that the test goal is load, denoting a single load
test. Besides, it holds different metrics in the quality_gates field, namely
the number of instances and cost, which is retrieved from the Cloud services.

15.1.2.3. Recovery Spike

The recovery spike test has the goal of preparing for load intensity spikes
that might happen in the future because of outages. Listing 15.3 provides
the BDLT definition. Because the current intensity strongly influences the
number of messages that get buffered and, thus, the spike height, the test
focuses on a specific date in the given clause. The when clause defines the
expected outage by utilizing the event statement. The then clause defines to
execute the test for two hours, which is one hour for the spike and one hour
for the usual load, and the queue length at the end of the test as the pass
criterion.
The LCtL holds the defined time range in a timerange clause and addi-

tionally sets the outage context facet to true. Because there is no different
statement in the BDLT definition, the aggregation is as-is. The context-
tailoring predicts the spike load curve for the test in a two-step forecast using
the registered extension, as illustrated in Figure 15.4. First, the extension
calculates the recovery severity as the expected number of buffered messages.
For that, it calculates a forecast assuming that no outage happened. Then,

1 Given 2018/10/15 9:00,
when an outage happened from 2018/10/15 7:00 to 2018/10/15 9:00,

3 then run the experiment for 2 hours
and ensure the final queue length is less than 100.

Listing 15.3: BDLT definition: recovery spike.
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Figure 15.4.: Two-step forecasting of the recovery spike load curve using the
outage extension, which calculates the recovery severity.

it determines the number of buffered messages as the number of sent ones
during the outage and sets the recovery severity facet accordingly. In the sec-
ond step, the regular forecasting is done, incorporating the recovery severity.
The as-is aggregation extracts the spike load curve.

The resulting BenchFlow test is a simple load test because there is no
configuration exploration. The load_function is a step function replaying
the expected spike curve. The steady_state is two hours, as defined, and
the queue length threshold is the single quality_gate.

15.1.2.4. More Devices

We provide the last BDLT that was relevant for our industry partner in
Listing 15.4. It covers the scenario when more devices are added to the
system at a known point in time in the future. This circumstance is unknown
to the forecaster and has to be added as a user-defined input. For that,
the given clause defines the date in the future when the devices will be
added. The number of users is defined as the maximum forecasted intensity
increased by a given percentage, e.g., 30 %. Besides, a custom configuration
of the system is used, which our industry partner planned to use on that
date. Here we use the number of instances as an example. Because there is
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Given calendar week 5 in 2019
2 and the number of users set to the maximum increased by 30%
and the number of instances is 4,

4 then run the experiment for 5 hours
and ensure the average CPU load is less than 20%.

Listing 15.4: BDLT definition: more devices.

only a fixed set of test parameters, there is no when clause. The then clause
defines to run the experiment for five hours and to use the CPU load as the
pass criterion.

The context-tailoring predicts the steady-state maximum workload using
the same forecasting mechanism as for the configuration exploration test.
Additionally, it multiplies the determined intensity with 1.3, to account for
the increased by 30% statement. For that, the LCtL holds a timerange clause
defining the calendar week 5 in 2019 and the maximum aggregation. Besides,
it contains a multiply-users adjustment with a factor of 1.3. Again, the
generated BenchFlow test has the load goal and a constant load_function.
The steady_state is five hours, and there is a quality_gate on the CPU
load metric.

15.2. Laboratory Case Study

In this second case study, we investigate the expressiveness of the BDLT lan-
guage for laboratory concerns, addressing RQ4.4: How expressive is the BDLT
language regarding the load test concerns coming from laboratory experiments?
We consider an experiment series from our previous work (Avritzer et al.,
2020a), which assesses the scalability of different deployment alternatives
of a microservice application. In Section 9.3, we have introduced a template
for defining such experiments. In this study, we investigate how accurately
we can express the specific experiments. Below, we provide the case study
method and results. The research question we will discuss in Section 15.3.
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15.2.1. Case Study Method

In this section, we describe the method we applied for this case study.

15.2.1.1. Design and Planning

For investigating the expressiveness of the BDLT language for complex load
test concerns, such as from laboratory contexts, we have selected a series
of experiments from our previous work. These experiments belong to the
scalability assessment approach we described in Section 9.3. Due to two
reasons, the experiments are adequate for challenging the expressiveness of
our language: they vary the configuration of the SUT and comprise multiple
load tests per configuration.
The SUT we have utilized in the experiments is the Sock Shop (Weave-

works, Inc., 2020), which we have introduced in Chapter 13 already. We
decided to use this SUT, as it is known to be a representative microservice
application (Aderaldo et al., 2017) and allows for different deployment al-
ternatives. As summarized in Table 15.2, we have executed load tests for ten
different configurations comprising different amounts of memory, numbers
of CPU shares, and numbers of instances of the carts service. Furthermore,
we have executed load tests with six different intensities ranging from 50 to
300. Hence, there are 60 load test executions overall, which we aimed to
express in a single BDLT definition.

15.2.1.2. Data Collection

The data we collected for the study comprises the experiment configuration
and results from our previous work. While we have conducted multiple
experiment series in different environments, we focus on the bare-metal
environment (HPI in the publication). The data we base on is:

• the SUT configurations as shown in Table 15.2,

• the load tests executed,
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• the experiment results (Domain-based metric values), as also shown
in Table 15.2.

Furthermore, we attempted to define the same experiments using the
BDLT language, resulting in a BDLT definition. As we were involved in the
experiment design and execution, we were suitably able to decide whether
the definition corresponds to the experiments.

15.2.1.3. Data Analysis

We assessed how accurately the BDLT definition describes the experiments by
deriving the hypothetically executed—givenwewould apply our approach to
the definition—experiments. Then, we compared the hypothetical with the
executed experiments, checking for missing or additional ones. Furthermore,
we investigated the implications of potential differences on the scalability
assessment.

15.2.2. Results

We were able to define all experiments from our previous work in a single
BDLT definition but had to include a few further experiments. In the follow-
ing, we introduce and explain the BDLT definition and provide highlights
from the scalability assessment.

1 Given the <time range>,
when varying the number of users between the minimum and the maximum

in steps of 50
3 and varying the RAM among (0.5GB, 1GB)
and varying the CPU shares among (0.25, 0.5)

5 and varying the number of instances among (1, 2, 4),
then run each experiment for 30 minutes

7 and collect the Domain�based metric.

Listing 15.5: BDLT definition: scalability assessment of microservice
deployment alternatives.
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Table 15.2.: Microservice Deployment Alternatives and Corresponding
Domain-based Metric Values (Avritzer et al., 2020a)

RAM CPU #instances Domain-based metric

0.5 GB 0.25 1 0.6150
1 GB 0.25 1 0.7763
1 GB 0.5 1 0.5356

0.5 GB 0.5 1 0.5154
0.5 GB 0.5 2 0.5100
1 GB 0.25 2 0.7408
1 GB 0.5 2 0.5340

0.5 GB 0.5 4 0.5053
1 GB 0.25 4 0.3716
1 GB 0.5 4 0.5672

15.2.2.1. BDLT Definition

Listing 15.5 provides the BDLT definition comprising all experiments. It
defines using a workload from a specific time range in the given clause. As
we did not define the time range in our previous work, we leave it open
here, too. The when clause defines the different levels of numbers of users
in steps of 50. Given the minimum and maximum are 50 and 300, it results
in the same load tests as in the experiments. However, it is more flexible,
as our approach determines the boundaries automatically. Alternatively, we
could have set the boundaries explicitly to 50 and 300. Furthermore, the
when clause defines the variations of the configurations RAM, CPU shares,
and number of instances. In the then clause, we defined the run time and
specified to collect the Domain-based metric, which is calculated based on
the number of requests and the response times of the requests.

For transforming the BDLT definition into a BenchFlow test, the generated
LCtL would hold the time range as a timerange clause and an intensity-
range aggregation extracting the different intensity levels. The BenchFlow
test would have the exhaustive_exploration goal with CPU, RAM, and
number of instances parameters as defined above. The load function would
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be constant and vary between the different user levels in subsequent
experiments. The Domain-based metric—which we needed to pre-configure
in the data_collection section—would be collected using the observe
keyword.
As the BDLT definition defines six different intensities, two RAM config-

urations, two CPU configurations, and three different numbers of service
instances, it results in 72 experiments. These are 12 more than we executed
originally. The reason is that we did not test the configurations (0.5GB,
0.25 CPU shares, 2 instances) and (0.5GB, 0.25 CPU shares, 4 instances)
because we knew they would result in poor performance. However, the BDLT
language does not allow for such non-trivial combinations of configuration
parameters. Therefore, we had to include them in the definition. As a conse-
quence, the experiment execution lasts six hours longer than the required
30 hours (not considering SUT deployment, ramp-up, and cooldown).

15.2.2.2. Scalability Assessment

The Domain-based metric values per deployment alternative resulting from
the scalability assessment are contained in Table 15.2. Also, we show the
values per workload situation for selected deployments in Figure 15.5. Sur-
prisingly, the generally best alternative has relatively few resources with 1GB
of RAM, 0.25 CPU shares, and one instance of the carts service. Using the
same configuration with more carts instances results in a lower Domain-based
metric value. At least, the deployment with the most resources performed
best for low workloads. This finding indicates that careful scalability assess-
ment is strongly preferable compared to adding more resources. In a poorly
designed application, more resources can even reduce performance under
high workloads, e.g., due to synchronization effects.
Transforming the BDLT definition into experiments and executing them

would have led us to the same result. As they only comprise two additional
deployment alternatives, which we knew to perform worse, the optimal
deployment would remain the same. However, the experiments would have
lasted 20 % longer (36 instead of 30 hours).
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Figure 15.5.: Domain-based metric D(↵, S, i) (Avritzer et al., 2020a).

15.3. Discussion of Research Questions

In this section, we discuss the sub-questions of RQ4, which we defined in
Section 5.1, considering the results of the two case studies.

15.3.1. RQ4.1 — Expressiveness for Industrial Concerns

How expressive is the BDLT language in regards to load test concerns
of industrial use cases?

Using the BDLT language, we were able to express all load test concerns our
industrial partner named. In doing so, we covered a broad scope of available
features, such as steady-state and spike workloads, past and expected future
workload, what-if analyses (recovery spike test), qualitative forecasts added
on top (more devices test), specific and varying system configurations, and
different pass/fail criteria. However, we had to make use of the extension
mechanism for custom events. For predicting recovery spikes, we had to add
a custom implementation calculating the recovery severity from the outage
length. Because there is no silver bullet for custom events, such custom
implementations are inevitable. We conclude that the BDLT language is
suitably expressive, while many of the provided features are required.
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15.3.2. RQ4.2 — Use in Industry

How would BDLT be used in industrial contexts?

The members of the DevOps team we collaborated with reported about
several use cases of the BDLT language. First, they stated they would use it
instead of defining load tests manually, as they currently do. Besides, they
noticed that the usage of the natural language makes the test definitions
easily understandable for non-experts such as product owners. Hence, also
non-experts could specify BDLT definitions, or at least participate in the
specification. Furthermore, a BDLT definition could be used as an acceptance
criterion of a Scrum user story (Schwaber and Beedle, 2001). In general, in
the meetings with the DevOps team, we noticed that the BDLT definitions
had stimulated a discussion, also with team members with a less technical
background.

15.3.3. RQ4.3 — Benefits and Limitations

What are the benefits and limitations of using BDLT in comparison
to defining load test scripts?

In general, our industrial partner found that our BDLT approach “has
potential,” and they were interested in further development. Primarily, they
rated the use of natural language positively, as mentioned before, which espe-
cially eases discussing load testing concerns with less technically experienced
team members.

The identified limitations of BDLT are the need for extensions for custom
events, such as the outage recovery, and the current focus of our approach
to HTTP APIs. For this reason, executing the generated tests in the context
of the industrial case study requires additional implementations. One option
would be to extend BenchFlow to support the used messaging protocol and
add a transformation to Gatling load tests (Gatling Corp, 2020), which our
industrial partner used already. Another alternative would be to implement
a REST proxy that receives requests from the current implementation of our
approach and forwards them as messages to the IoT endpoint.
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As feedback for future improvements, our industrial partner mentioned
the requirement to compare test executions, such as the BDLT definition for
continuous quality assurance. Furthermore, we discussed that in some cases,
the and keyword means a logical or instead. For instance, if a then clause
contains a break and a run statement, the test should be executed for the
defined duration or stopped if the break condition is fulfilled. However,
we decided not to introduce new keywords but to stick to the ones already
used in Behavior-driven Development (BDD). Instead, we paid attention
to separating related statements such as ensure and break, which both
define acceptance criteria.

15.3.4. RQ4.1 — Expressiveness for Laboratory Concerns

How expressive is the BDLT language regarding the load test con-
cerns coming from laboratory experiments?

As the laboratory case study shows, the BDLT language can also express
more complex load test concerns, such as the scalability assessment of dif-
ferent microservice deployment alternatives. In doing so, a single BDLT
definition can comprise multiple experiments and, thus, ease selecting the
optimal alternative. However, we also noticed that the language has limita-
tions regarding non-trivial parameter combinations. While it only allows for
testing all combinations of all specified parameters, our previous experiments
only contained a subset. Hence, we introduced additional test overhead.
Future work might investigate possibilities for specifying parameter subsets
using the BDLT language. However, we also presume that natural language
is limited. At the same time, BDLT definitions should be kept simple to be
usable by non-experts.

15.4. Lessons Learned

In the following, we present the lessons we learned when conducting the
case studies. In general, we found the template-based natural language to be
well understood and well-received by practitioners. Furthermore, it was able
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to express more complex load test concerns. However, there are also some
open challenges motivating future research in BDLT and load test definition
in natural language in general.

15.4.0.1. Natural Language is Easy to Understand

In the meetings we had with our industrial partner, they understood the BDLT
definitions we presented well, which we attribute to the natural language.
Primarily, the team members were able to extend the definitions and express
load test concerns on their own. Furthermore, they rated the language to be
understandable for non-experts such as product owners, allowing utilization
as acceptance criteria in Scrum user stories.

15.4.0.2. Natural Language Helps Identifying Load Testing Concerns

We also noticed that discussing load tests defined in BDLT reveals new
concerns. In our meetings, the precise but well understandable load test
definitions in natural language have formed a good basis for discussing
the test’s concern and shaping it. Also, our industrial partner came up
with new concerns that arose based on BDLT definitions we already had.
These discussions appeared to be beneficial in themselves, regardless of the
automated generation and execution of load tests.

15.4.0.3. Special Concerns Require Extensibility

An important finding of our industrial case study is that there are specific
load testing concerns that cannot be expressed through standardized lan-
guage templates. An example is the outage recovery, which requires custom
preprocessing for determining the recovery severity. We conclude that BDLT
or related languages cannot be universal but need to be extensible. Our
approach is to enable users to register extensions, which react on a partic-
ular keyword. Notably, adding such extensions requires expert knowledge.
Hence, experts need to set up our BDLT approach—and most likely any
related approach—, such that non-experts can use it.
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15.4.0.4. Natural Language is Limited

There can be constructs such as load test parameter combinations where
natural language lacks in concise descriptions. For example, it is hard to
concisely describe the deployment alternatives from the scalability assess-
ment experiments, because they are a non-trivial subset of all combinations
of the parameters RAM, CPU shares, and number of instances. Hence, future
works should focus on expressing such complex constructs and assessing the
limitations of the natural language for load test definition. Still, the BDLT
language is valuable for less experienced users, as we were able to comprise
all experiments in one definition.

15.4.0.5. Scalability Assessment is Crucial

As reported by Avritzer et al. (2020a), carefully assessing the scalability of dif-
ferent deployment alternatives of a microservice application is inevitable and
superior over adding more resources. In our experiments, the Domain-based
metric shows that adding more resourced can even reduce the application’s
ability to handle high workloads. With the BDLT language, we ease scalabil-
ity assessment also for non-experts. However, to overcome the limitations
discussed above, expert users might prefer using our context-tailoring ap-
proach (Chapter 8) and BenchFlow (Ferme and Pautasso, 2018) directly,
without the BDLT language as an additional level of abstraction.

15.5. Threats to Validity

In the following, we discuss the threats to the validity of our work we
identified, structured by conclusion, internal, construct, and external validity.
In general, we have focused on gaining experience in an industrial context
rather than applying rigorous methods. Future works should extend our
experience with profound measures.
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15.5.1. Conclusion Validity

In the industrial case study, we derived our conclusions from oral discussions
in meetings. Hence, we missed a structured interview protocol, which might
have influenced our findings. However, we found that such unstructured
meetings are most valuable for gaining experience from an industrial partner.
The team we collaborated with could add their opinion and feedback without
being asked explicitly. Due to the same reason, we did not collect quantitative
measures but focused on qualitative feedback. Future work should add
quantitative measures, e.g., through surveys or experiments.

15.5.2. Internal Validity

The fact that we selected the industrial case study subject from our existing
contacts bears the threat that they might have responded more positively
than other subjects would have. However, conducting case studies that
include several personal meetings requires considerable acceptance from
the subject, which can be achieved by mutual familiarity. Also, because
they were intrinsically interested in the topic, we presume they rated our
approach critically.
Another threat is the discussions in which we might have influenced the

team. However, we aimed at a bilateral exchange such that we can learn
from each other and gain as much experience as possible. Still, we cannot
preclude an influence on the team. Therefore, future works should evaluate
our approach in more rigorous settings.

15.5.3. Construct Validity

In the laboratory case study, we have applied the BDLT language to the
experiments from our own previous work. Hence, we could have had this
load testing concern in mind when designing the language, and the concern
might not be representative of general complex concerns. However, the
case study still shows that the language is capable of expressing laboratory
concerns. Also, the BDLT language does not contain clauses we exclusively
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used in the laboratory case study. For evaluating the language regarding its
general applicability, we presume it has to be applied to various contexts. In
doing so, it might be extended by adding more clauses.

15.5.4. External Validity

As we only evaluated the BDLT language with one industrial and one lab-
oratory subject, we cannot reason the current version of the language is
generally expressible. Other subjects can have further load testing concerns.
However, we have shown that template-based natural language has relevant
use cases, which was our primary goal. Furthermore, the BDLT language
is easily extensible by adding further clauses. Future works should apply
our approach to further subjects from industrial and laboratory contexts to
extend it by the required clauses to bring it into a generally usable state.

15.6. Summary

In this chapter, we evaluated the BDLT language in two case studies. We
found that expressing load tests in template-based natural language entails
several benefits, such as including technically less experienced teammembers
in a discussion. The concepts from the automated generation of tailored
load tests, as presented in this thesis, and the text execution automation by
Ferme and Pautasso (2018) abstract from technical details.
This chapter concludes the evaluation of our approach. For an overview

of all conducted studies, we refer to Chapter 11. In the next chapter, we
discuss existing works that are related to ours.
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In this chapter, we discuss existing work that is related to ours. We structure
it according to the research plan we introduced in Section 5.3. Section 16.1
focuses on work that relates to our whole approach or multiple work pack-
ages. Section 16.2 discusses the related work of WP1, i.e., the automated
parameterization of load tests. In Section 16.3, we collect work that is mainly
related to the service-tailoring of WP2. Section 16.4 belongs to WP3, which
targets the context-tailoring of load tests. Finally, in Section 16.5, we focus
on Behavior-driven Load Testing (BDLT) for non-experts, as defined by WP4.
Section 16.6 summarizes the chapter.

16.1. Overall Approach

In this dissertation, we introduce an approach to the automated generation of
tailored load tests. We automate the parameterization of load tests required
for fully automated load test generation. Also, we tailor the load tests to
specific (micro-) services, to reduce the required hardware, and to relevant
contexts, e.g., an upcoming sales event. Based on these contributions, our
BDLT language for non-experts integrates automated load test generation
and execution leveraging BenchFlow (Ferme and Pautasso, 2018).
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Figure 16.1.: Overview of work related to parts of our approach.

As illustrated in Figure 16.1, numerous research fields are related to our
overall approach or several work packages. In the following, we discuss
these fields. Two essential techniques we base upon in all work packages
are workload characterization and model-based testing (Sections 16.1.1
and 16.1.2). An alternative approach to representative load testing is testing
in production (Section 16.1.3). Related to service- and context-tailoring
are general test case selection or prioritization approaches (Section 16.1.4).
The automation of (load) tests (Section 16.1.5) is a goal we also target with
the automated load test parameterization and the BDLT approach. Finally,
we propose several languages to be used for load or performance testing
(Section 16.1.6). Besides, there is related work specific to each work package,
which we discuss in Sections 16.2 to 16.5.
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16.1.1. Workload Characterization

Deriving a representative load test requires characterizing the workload. For
instance, Ferrari (1972) emphasizes that careful characterization is manda-
tory for reasonable performance evaluation. The literature contains many
works that contribute to this field, including summarizing methodologies by
Calzarossa et al. (2016), Calzarossa and Serazzi (1993), Feitelson (2002),
Menascé and Almeida (2002), and Menascé et al. (1999). These authors
agree on two fundamental steps: measuring the basic workload units and
extracting a workload model, e.g., by clustering the basic units. The derived
model should represent the expected workload, which is also referred to as
an operational profile (Musa, 1993).

In this research, we focus on session-based workloads, i.e., the basic units
are user sessions consisting of requests to the system under test (SUT).
Z. Li and Tian (2003) have assessed Markov chains as a suitable modeling
formalism for this type of workload, and several approaches leverage it
(Barros et al., 2007; Menascé, 2002; Menascé et al., 1999; Ruffo et al., 2004;
van Hoorn et al., 2008; Vögele et al., 2018). An often-cited formalism is
the Customer Behavior Model Graph by Menascé et al. (1999), which uses
the endpoints of the SUT as states connected with transition probabilities.
Related are probabilistic timed automata (Abbors et al., 2013a,b, 2014),
which differentiate between probabilistic and timed transitions. A drawback
of Markov-chain-based approaches is that they are not able to model so-called
inter-request dependencies. These dependencies denote requests that are
only valid after another request was made, e.g., a logout from a website has
to be preceded by a login. Addressing this limitation, Krishnamurthy et al.
(2006) and Shams et al. (2006) handle inter-request dependencies using
sequences of requests and extended infinite state machines but lack the
probabilistic modeling capabilities of Markov chains. A further formalism is
the stochastic form-oriented workload model (Cai et al., 2007; Draheim et al.,
2006; Lutteroth and Weber, 2008), which merges probabilistic transitions
with reactions to the SUT’s responses. Finally, Zhou et al. (2014a,b) use a
formalism named sequential action model.
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We highlight the work by van Hoorn et al. (2008) and Vögele et al. (2018),
which merges the probabilistic Markov chains and inter-request dependency
handling. The introduced WESSBAS approach extracts workload models
from recorded sessions while automatically finding so-called guards and
actions describing the inter-request dependencies. In our work, we leverage
the WESSBAS approach and extend its model extraction algorithm to be
incremental and specific to microservices. Notably, we leave the integration
with guards and actions for future work.

When modeling a session-based workload, it is relevant to capture the
session’s behavior and quantify it. The quantity is referred to as workload
intensity (Menascé and Almeida, 2002) and defines the number of concur-
rently active sessions or the session arrival rate of a closed or open workload,
respectively (Schroeder et al., 2007). Several studies characterize real work-
loads (Arlitt and T. Jin, 2000; Goseva-Popstojanova et al., 2006; Menascé
et al., 2003), with the conclusion that the grouping of requests into sessions
is crucial. von Kistowski et al. (2014b, 2017) propose the Descartes Load In-
tensity Model (DLIM) that can express arrival rates decomposed into trends,
seasonalities, bursts, and noise with the LIMBO (von Kistowski et al., 2014a)
tool support. Also, DLIM instances can be extracted from recorded logs. In
our research, we incrementally learn the number of concurrent sessions per
group and represent it as a time series. This format is suitable for forecasting
and, therefore, we would not benefit from extracting DLIM models from
the time series. However, the extraction could be used for integrating our
incremental learning with the tooling by von Kistowski et al.

16.1.2. Model-based Testing

Model-based testing (Utting and Legeard, 2007) aims at improving testing
practices by leveraging models of the SUT. Abbors et al. (2013a) discuss the
differences between systemmodels and test models, which describe the SUT’s
behavior from different perspectives: the former focus on the SUT’s internals
while the latter see the SUT as a black box from a user’s or environment’s
viewpoint. According to this terminology, the workload models we use for
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load testing are test models, and representative load testing is a specific form
of model-based testing. While we have discussed the most related works in
Section 16.1.1, we refer to Jiang and Hassan (2015) for a comprehensive
overview of (model-based) load testing approaches.
Apart from load testing, the applicability of model-based testing is man-

ifold. Dias Neto et al. (2007) and Javed et al. (2016) provide literature
surveys of existing approaches that differ in multiple dimensions. The first
is the size of the tested software part, i.e., at the unit (Kamma and Maruthi,
2014; Padgham et al., 2013; Usman et al., 2020), service (Bertolino et al.,
2008b), integration (Basanieri et al., 2002), and system level (Menascé
et al., 1999; Shams et al., 2006; Vögele et al., 2018). Second, works focus
on different quality characteristics, such as functional correctness (Basanieri
et al., 2002; Mahali and Mohapatra, 2018), performance (Abbors et al.,
2013b; Shams et al., 2006; Usman et al., 2020; Vögele et al., 2018), reli-
ability (Avritzer and Weyuker, 2009), and security (Botella et al., 2019;
Felderer et al., 2016; Peroli et al., 2018). Finally, the type of models used
varies. In addition to the models listed in Section 16.1.1, Unified Modeling
Language (UML) diagrams are frequently used, including class (Basanieri
et al., 2002), activity (Ahmad et al., 2019), and sequence diagrams (Mahali
and Mohapatra, 2018). In our work, we use Markov-chain-based models for
testing both functional and non-functional attributes, with a particular focus
on performance, at the system, integration, and service levels.

16.1.3. Testing in Production

With the increasing adoption of continuous integration and delivery (CI/CD)
(Humble and Farley, 2010) and cloud technologies, a trend in applying
software testing in the production environment has started. Schermann et al.
(2018) summarize different applied strategies when deploying new versions
of a software or service. These strategies have in common that both the new
and old versions are deployed simultaneously. Canary releasing (Humble and
Farley, 2010) redirects a small portion of the traffic to the new version, to test
whether it behaves as intended. With A/B testing (Kohavi et al., 2013), both
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versions are compared regarding functional and non-functional properties.
Gradual rollouts (Humble and Farley, 2010) start with a small portion of
traffic directed to the new version, which gradually increases. Furthermore,
there are sophisticated approaches, e.g., for shifting user traffic between
datacenters (Veeraraghavan et al., 2016) or executing specific experiments
(Schermann et al., 2016). These testing strategies allow investigating the
tested system’s behavior under the real load and, therefore, can be seen as
an alternative to representative load testing. However, as Feitelson (2002)
argues, the redirection of live traffic has several drawbacks compared to
workload modeling. As the live traffic is arbitrary, it cannot be generalized
to the overall workload. Also, the comparability of multiple testings, e.g., for
regression detection, is not ensured. For these reasons, we learn workload
models from live traffic and apply testing in a dedicated environment.
Further approaches apply testing after the release. For instance, Pietran-

tuono et al. (2018, 2020) test the reliability of microservice applications
in their operational phase. For that, they use a combination of monitoring,
adaptive sampling-based testing, and estimation. Gerostathopoulos et al.
(2016) systematically conduct experiments with a distributed system based
on declarative specifications. While consistently repeated testing might
overcome some limitations described above, it still can only test with the cur-
rent workload. Hence, it is not suitable for preparing for a rarely-occurring
workload-influencing event, such as a yearly special sale. Our approach, in
contrast, leverages the long-term recorded workload to cover such scenarios.

A finally worth mentioning production testing technique is chaos engineer-
ing (Basiri et al., 2016). Related to resilience benchmarking (Vieira et al.,
2012), but performed in the production environment, it randomly conducts
experiments with the application “to build confidence in its capability to with-
stand turbulent conditions” (Basiri et al., 2016). A core concept of these
experiments is the injection of faults (Natella et al., 2016), e.g., by shutting
down service instances or introducing software bugs, with the support of
various tools, such as Simian Army (Izrailevsky and Tseitlin, 2011), Gremlin
(Heorhiadi et al., 2016), Chaos Monkey (Chang et al., 2015), Screwdriver
(Nagarajan and Vaddadi, 2016), and Chaos Toolkit (2020). For investigat-
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ing the resilience with respect to performance, Keck et al. (2016) propose
injecting performance problems based on antipatterns. Fault injection is
also used in test environments, e.g., Meinke and Nycander (2015) use it
combined with incremental learning to test microservice applications. To
improve the low efficiency of chaos engineering, which stems from its ran-
domness, van Hoorn et al. (2018) investigate the more systematic execution
of resilience experiments in a test environment. Here, we can contribute by
supplying representative workload models to be used in the experiments.

16.1.4. Test Case Selection and Prioritization

Test case selection is a long-standing discipline for reducing the testing time
and effort. As summarized in different surveys (Biswas et al., 2011; Engström
et al., 2010, 2008; Kazmi et al., 2017), many approaches focus on functional
testing while using various methods, including model-based testing (see
Section 16.1.2). In our research, we focus more on non-functional properties,
such as performance. Therefore, we discuss related work in this domain in
the following.

Much work has been done for selecting or prioritizing performance regres-
sion tests. For instance, Huang et al. (2014) apply prioritization based on
static code analysis, which they name performance risk analysis. Mostafa et
al. (2017) extend this technique with profiling while specializing in collection-
intensive software. The approaches by de Oliveira et al. (2017) and Alcocer
et al. (2020) utilize static analysis and prior test executions for selecting or
prioritizing tests. Related to that, Reichelt and Kühne (2018) and Reichelt
et al. (2019) leverage functional unit tests for performance testing and apply
static code analysis and comparison of invocation traces to select the tests
to execute. The main difference between these approaches and ours is the
tested piece of software. While they focus on the code, i.e., unit level, we
test the software at higher levels with a representative workload.
At this level, the size of the space of workloads that could be executed

is almost infinitely large. Therefore, several works aim at generating test
workloads that fulfill given objectives. Avritzer and Weyuker (1995a,b)
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model telecommunication systems as large Markov chains and select only the
most likely occurring states for load testing. Other approaches focus on fault-
inducing or resource-saturating workloads. J. Zhang and Cheung (2002)
use symbolic execution to generate test suites that maximize performance
measures. The method by Penta et al. (2007) is based on genetic algorithms
that create workloads violating service-level agreements (SLAs). Briand et al.
(2005) follow a similar goal, but for real-time systems with deadlines instead
of SLAs.
A large number of works utilize feedback from test executions to reach

their goal iteratively, using different techniques to improve the tests in each
iteration. Barna et al. (2011a,b) use two-layer queuing models to identify
performance bottlenecks. Having the same goal, the FOREPOST approach
by Grechanik et al. (2012) and Q. Luo et al. (2017) applies a machine
learning classification algorithm. P. Zhang et al. (2011a,b) utilize Petri nets
to stress multimedia applications as highly as possible. The approach by
Bayan and Cangussu (2006, 2008) contains a feedback controller that drives
an embedded system to a defined utilization of one or several resources.
Works specifically focusing on cloud applications are by Segall and Tzoref-
Brill (2015), who use a combinatorial test design and feedback from cloud
monitoring, and Gambi et al. (2013), who test the elasticity with a model-
based approach.
While the listed approaches are designed to efficiently identify perfor-

mance or other issues, they do not take into account the likelihood of the
occurrence of the executed workloads. In contrast, our load test tailoring con-
cept allows generating those workloads the application likely needs to handle
in the future. The work by Vögele (2018) closes the gap between these ob-
jectives. He uses representative workload models extracted by the WESSBAS
approach (Vögele et al., 2018) and a Palladio Component Model (Becker
et al., 2009) of the SUT. Then, he applies an evolutionary multi-objective
optimization process to derive workload specifications that satisfy the given
objectives. The objectives can include, among others, resource utilization,
response time, number of test cases, and workload representativeness. Here,
our tailoring approach can deliver a set of likely occurring workloads mod-
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eled with the WESSBAS-DSL, of which, e.g., the most resource-demanding
ones are selected. Furthermore, our service-tailoring can choose only those
tests that are relevant for a specific microservice.

16.1.5. Test Automation

For automating the whole load testing process, several steps need to be
considered, including the workload characterization (see Section 16.1.1),
selection of workloads to be executed (see Section 16.1.4), deployment of
the SUT, workload execution, and analysis of the test results (Jiang and
Hassan, 2015). While our approach mainly contributes to the first two steps,
the remaining ones are also required for, e.g., integrating the load testing
into a CI/CD pipeline.

In particular, our approach needs to interact with works that execute the
generated load tests automatedly. Several proposed approaches leverage the
automatable capabilities of cloud environments. Astyrakakis et al. (2019)
automate the deployment of the SUT to validate it, e.g., using stress tests.
Barve et al. (2018) propose a model-driven approach to automate perfor-
mance evaluation tasks, including profiling and testing. Most relevant for us
is the BenchFlow framework by Ferme and Pautasso (2017, 2018), which
automates the end-to-end process of executing performance tests based on
inputs formulated in a domain-specific language (DSL). Hence, it can deliver
the test results for the load tests we generate without manual intervention.
For that, Palenga (2018) has implemented a transformation of WESSBAS
(Vögele et al., 2018) workload models to BenchFlow DSL instances, which
we have used to develop the BDLT approach (see Chapter 9).

Load tests tend to need much time to execute (T.-H. Chen et al., 2017).
Therefore, it is beneficial to reduce the execution time to a minimum. To
this end, Alghamdi et al. (2020, 2016) introduce approaches that stop a
load test automatically as soon as the measurements are reliable.
When a load test finished its execution, the results need to be analyzed.

For automating this final step, we refer to the work by Jiang et al. (2008,
2009) and Malik et al. (2010a,b, 2013, 2010c). Another approach comes
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from Okanović et al. (2019), who generate load test reports tailored to the
user’s concern. Their concept complements well our BDLT approach, to
automate the end-to-end testing process starting with a tailored workload
characterization and ending with a concern-tailored report.

16.1.6. Performance Testing Languages

In this work, we have developed three DSLs for different aspects of the
load testing process. The Input Data and Properties Annotation (IDPA)
parameterizes generated load tests for being executed. Using the Load Test
Context-tailoring Language (LCtL), users can describe workload scenarios
based on their context. Finally, the BDLT language reuses LCtL concepts
more conveniently and integrates load test generation with execution. The
literature contains further DSLs relevant for performance testing.

Related to the IDPA are workload modeling languages, which we discuss
in Section 16.2.1. One of these is the BenchFlow DSL by Ferme and Pautasso
(2017, 2018), which allows specifying, apart from the workload, the input
data and details for the test execution. Therefore, we transform a BDLT
description into an LCtL instance and a BenchFlow DSL instance to automate
the test generation and execution process (Chapter 9). Also, we transform
IDPA instances into the BenchFlow input data (Section 6.5.3.3). Hence, all
DSLs complement each other.
Furthermore, there are approaches related to BenchFlow, which specif-

ically focus on Cloud environments. Michael et al. (2017) test the cloud
infrastructure according to SLAs negotiated between the provider and tenant.
The Crawl language by Cunha et al. (2013) describes performance tests
in Infrastructure-as-a-Service (IaaS) clouds. Scheuner et al. (2015, 2014)
specify cloud benchmarks based on the Infrastructure-as-Code principle.

Primarily related to the BDLT language is the Gherkin language (Wynne
et al., 2017) used in Behavior-driven Development (BDD) (North, 2006).
We adopted the given–when–then structure. While initially designed for
functional unit testing, the concept is also used for other testing purposes,
such as safety analysis (Y. Wang and Wagner, 2018) and acceptance testing
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(Rahman and J. Gao, 2015). Bernardino et al. (2016) introduce Canopus,
which is a DSL for modeling performance tests. In some parts, it also uses the
BDD structure. Further natural languages are proposed by Okanović et al.
(2020, 2019), for generating load test reports tailored to a user concern and
describing load tests to a chatbot interface.
To the best of our knowledge, there is no other DSL that describes a

workload scenario on the same level of abstraction as the LCtL and BDLT
language do. In contrast to the description based on the context, existing
DSLs require the definition of the workload model directly.

16.2. Load Test Parameterization

We describe our contribution to the automated load test parameterization
in Chapter 6. We propose the IDPA that separates manually created input
data specifications and adjustments of static properties from generated
workload models and load tests. Parameterized and, thus, executable load
tests can be generated from the workload model and an IDPA without manual
intervention. Furthermore, IDPAs can be evolved over changing APIs with
little manual effort, which is only due at development time. Hence, the
IDPA allows generating and executing load tests in CI/CD pipelines. In the
following, we discuss works related to our approach. We group them into
input data and properties in existing workload models, continuous validation
of generated load tests, generation of test data, change propagation, model-
driven engineering techniques, and commercial approaches.

16.2.1. Input Data and Properties in Workload Models

Many of the existing workload models for load testing comprise input data
the load test should use when submitting requests. By nature, these modes
contain the static properties of the IDPA Overrides, too. However, all
workload models lack different aspects regarding the automated evolution
of parameterizations.
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Several proposed approaches model input data as intrinsic elements of
the workload model or the request generation process. The main drawback
of such approaches is the lack of separation of the automatically generated
user behavior model and manual parameterizations like the input data. If
the user behavior needs to be changed, the whole workload model and the
finally executed load test have to be generated again, overwriting the param-
eterizations. As one such approach, Ruffo et al. (2004) append a query string
and a POST body to an HTTP request when submitting it. The query string
consists of a list of name-value pairs that are to be specified by an analyst
before executing a load test. Similarly, Krishnamurthy et al. (2006) store
information about name-value pairs in system-specific URL formation rules
and generate query strings dynamically. Based on this, Shams et al. (2006)
use extended finite state machines (EFSMs) for handling data dependencies
explicitly. That is, if a request requires parameter values contained in the
response of a different request, the EFSM ensures appropriate request or-
ders. Scientific and open-source load testing frameworks such as BenchFlow
(Ferme and Pautasso, 2018) and Taurus (BlazeMeter, 2015) allow modeling
input data as a part of the load test definition. Even though these definitions
are independent of the load test executor, the input data are not separated
from the user behavior model.
The WESSBAS workload model (van Hoorn et al., 2008; Vögele et al.,

2018) stores input data in a dedicated application model as possible param-
eter values. Also, the approach extracts the parameter values from the input
request logs. However, as load tests are typically executed in dedicated test
environments with databases differing from the production environment,
the extracted input data are unlikely usable for the test and, thus, have to
be adjusted manually. Besides, the workload model does not support data
dependencies, which have to be configured in the finally generated load test
(Vögele et al., 2018). In contrast to the presented approaches, our IDPA sep-
arates the manual parameterizations from automatically generated models.
By its extensible design, all required input data can be specified, avoiding
manual changes to the generated load tests. Hence, workload models can
be regenerated automatically without overwriting manual specifications.
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Opposed to intrinsic input data modeling, other approaches separate the
input data from the user behavior. The stochastic form-oriented models by
Draheim et al. (2006) and Lutteroth and Weber (2008) comprise a separated
data model that is used for both defining the parameter values and deter-
mining the next state based on the previous request’s response. Hence, the
data model is specific to the stochastic form-oriented model. Furthermore,
the authors do not provide a means for generating workload models from
monitoring data. In contrast to this, the IDPA is independent of the used
workload model and is explicitly designed for workload model generation.
Zhou et al. (2014b) introduce a workload parameter specification language
that separates run-time specifications from the modeled user behavior. Sim-
ilar to the stochastic form-oriented model, the approach is not designed
for the usage in combination with various workload models. Generating
workload models is left for future work, as well. Finally, the authors do
not provide an approach for evolving the run-time specifications over API
changes, which we do for the IDPA.

16.2.2. Continuous Validation of Generated Load Tests

In order to limit the manual effort required for evolving generated parame-
terized load tests over workload changes, approaches to continuous repre-
sentativeness validation have been proposed. Such approaches determine
whether a modeled workload differs from the actual workload in the produc-
tion environment and whether corresponding load tests need to be updated.
T.-H. Chen et al. (2017) and Syer et al. (2017) validate the representative-
ness of load tests by comparing test and production logs. They identify
execution events that explain the workload differences, which can be used
to update the load tests manually. The authors claim to apply their approach
regularly (e.g., every few months). Hence, manual effort is still entailed
regularly each time the workloads differ sufficiently. In contrast to that, the
IDPA allows generating and parameterizing new load tests automatically
without manual intervention. Hence, we reduce the manual effort, and the
generated load tests can be better integrated into CI/CD pipelines.
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16.2.3. Test Data Generation

Another field related to load test parameterization is the automatic gener-
ation of test data, i.e., parameter values the load driver should use for the
requests submitted. Howden (1975) and Ince (1987) propose some of the
first approaches focusing on functional tests. Later, approaches explicitly
targeting performance or load tests have been proposed as well. Barros et al.
(2007) and Farahbod and Dadashi (2017) introduce related approaches that
generate test data based on the composition and the relationships of the
production data. Because production data typically cannot be used in test
environments due to privacy regulations, the authors apply obfuscation tech-
niques, e.g., data sanitization (Barros et al., 2007). Grechanik et al. (2010)
introduce a similar approach, which anonymizes a production database
based on the k-anonymity algorithm, aiming to test database-centric appli-
cations under strong privacy regulations. As an alternative to obfuscation
or anonymization techniques, Bainbridge et al. (2009) propose to create
test databases from scratch. However, their creation process is application-
specific and cannot be generalized. The approaches differ from our IDPA
approach, as we do not investigate the generation of test data, but the spec-
ification of them in a load test. Hence, the test data generation and IDPA
approaches complement each other.

16.2.4. Change Propagation

In the literature, several approaches to change propagation are proposed,
which are related to the IDPA evolution. The primary objective of change
propagation is to resolve inconsistencies introduced by changes to certain
software entities (e.g., classes, methods, or models), respecting the incon-
sistencies these secondary changes cause (Gwizdala et al., 2003; Rajlich,
1997). A related technique is change impact analysis, which solely detects
or predicts the impact of a change (Alam et al., 2015). Selected approaches
to change propagation rely on graph rewriting techniques using snapshots
(Rajlich, 1997), incremental and interactive resolution of inconsistencies
(Gwizdala et al., 2003), heuristics (Hassan and Holt, 2004), and machine-
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learning techniques using dependency networks (Lee and Hong, 2018).
Applied to the IDPA evolution, the primary changes are made to the appli-
cation model, introducing inconsistencies in the annotation model. These
inconsistencies have to be resolved by secondary manual changes. The main
difference to change propagation techniques is the lack of inconsistencies
introduced by the secondary changes. Because changes to the annotation
model cannot introduce further inconsistencies, we do not need to rely on
such complex change propagation approaches.

16.2.5. Model-Driven Engineering Techniques

In the field of model-driven software engineering (MDSE) (Brambilla et al.,
2017; Stahl et al., 2006; Steinberg et al., 2008), several approaches are
related to ours. Similar to the context of the IDPA, a typical MDSE technique
is the generation of program code from models. The generated code is often
enriched by manually created code. The similarity to the IDPA approach is
the merge of generated and manually created models (in this case, program
code). In MDSE, it is recommended to separate generated and non-generated
code. Similarly, our approach separates parameterizations in the form of
IDPAs from generated workload models.
Fritzsche and Gilani (2012) propose another approach that is analogous

to ours. While our approach enriches load tests generated from workload
models with IDPAs, they use model annotations to enrich the transformation
of development models to resulting models.
Finally, the evolution of workload models, API models, and the IDPA can

be seen as a particular case of evolving parallel models, also known as co-
evolution (Getir et al., 2018; Kramer et al., 2013; Milovanovic and Milicev,
2015). Approaches to co-evolution take care of adapting associated models
as soon as one of them changes. Also, approaches utilizing the change
propagation mentioned above exist (Demuth et al., 2016). However, the
IDPA evolution is less complex than model co-evolution in general, because
only changes in the API model require updating the other models. Besides,
the workload model can always be easily updated by generating a new one.
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16.2.6. Commercial Approaches

Apart from scientific approaches, several commercial load testing tools are
used in practice, e.g., LoadRunner (Micro Focus, 2020[a]) and Silk Performer
(Micro Focus, 2020[b]). Such tools provide ameans for recording load scripts
and assisting the specification of IDPA-related parameterizations. Often, it
is possible to correlate IDs that are to be extracted from responses and
placed into parameters of subsequent requests. However, these tools do not
support the generation of load tests based on production monitoring data
and, thus, do not need to evolve once created load scripts over changes in
the production workload.
With particular regards to integration into CI/CD pipelines, continuous

load testing arose (BlazeMeter, 2017; Dunne, 2018; Tricentis, 2020). Like us,
such approaches aim to integrate load testing in CI/CD pipelines by reducing
the test overhead and adding automation. However, representative load
testing based on generated workload models is rarely applied in practice,
and commercial tools do not natively support it. Hence, they do not support
the evolution of load tests over workload changes, either.

16.3. Service-tailoring

Our service-tailoring approach (see Chapter 7) modifies the standard load
test generation process, such that the generated tests directly target the
(micro-) services under test. For that, we introduce two alternative algo-
rithms that change specific intermediate artifacts of the generation process:
log-based tailoring operates on the input request logs, while model-based
tailoring modifies the extracted workload model.
We structure the related work according to the test pyramid by Cohn

(2009). He suggests executing few long-running system-level tests, some
more service-level tests, and a high number of unit tests. Related work on
the system level we discussed in the previous Sections 16.1.1 and 16.1.2.
For performing the service-tailoring, we use techniques similar to workload
transformation for performance prediction, which we explain in the following.
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Integration testing is in between of system-level and service-level testing and
can be performed top-down or bottom-up (Myers, 2004). With our approach,
we support bottom-up testing by simulating the requests of consuming
services. Complementing this, we discuss service stubs, which mimic the
behavior of provider services for top-down testing. Besides, we elaborate
on further microservice testing approaches. Finally, we focus on the lowest
level, namely non-functional unit tests.

16.3.1. Workload Transformation for Performance Prediction

From a certain point of view, our service-tailoring approach tackles the chal-
lenge of transforming a workload specification from the system level to the
service level. The field of software performance modeling and prediction
faces similar challenges, as it needs to transform workload specifications be-
tween different levels and representations, e.g., user-oriented and resource-
oriented descriptions (Graf, 1987). As surveyed by Balsamo et al. (2004),
different approaches exist that transform user-oriented models such as UML
into analytical models to be solved for performance prediction, including
queuing networks, Petri nets, stochastic processes, and also Markov chains.
An example is a work by Cortellessa and Mirandola (2000, 2002), which
transforms UML models such as activity diagrams into queuing networks.
Bernardo et al. (2011) derive queuing networks from architectural descrip-
tions in the Æmilia language. The main difference between our work and
the listed ones is that ours does not include user-oriented models, but only
operates on analytical models such as Markov chains. Furthermore, the listed
approaches focus on the system-level while we tailor to specific services.
A subset of performance prediction approaches that focus on smaller

units of an application is those for component-based systems, where it is
essential to model inter-component dependencies (Becker et al., 2004),
related to call dependencies between services. Denning and Buzen (1978)
formalize the general problem in the Forced Flow Law, which states that
the throughput Xi of a particular component or resource i with visit count
Vi originates from the throughput X of the entire system as Xi = X · Vi.
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The Palladio Component Model (Becker et al., 2009) is one approach for
component-based performance prediction. For transforming instances of this
model into analytical models, Koziolek (2008) has introduced the Dependency
Solver, which calculates the resource usage originating from inter-component
dependencies and a workload specification. Utilizing the Dependency Solver,
transformations to stochastic regular expressions (Koziolek, 2008), layered
queuing networks (Koziolek and Reussner, 2008), and queueing Petri nets
(Meier et al., 2011) exist. Ciancone et al. (2014) propose an intermediate
language to be transformed into Markov chains. While these works utilize
similar mechanisms as we do—using a system-level workload description
and inter-component or -service dependencies for calculating the workload
arriving at a specific component or service—, they base upon different
models. While we utilize individually measured traces, they rely on aggregate
dependency models. Also, the domain of usage is different: we generate
load tests to be executed, while they derive performance measures by model
solving or simulation.

Somemodeling approaches, such as the previously mentioned Dependency
Solver and works by Bondarev et al. (2005) and Eismann et al. (2018), put
particular emphasis on capturing input-parameter dependencies. As the
behavior of a component can differ for different input parameters, they
consider the parameter values for determining the workload arriving at a
particular component. Remarkably, we do not consider parameter values,
but rather focus on the traces as instances of individual calls propagating
through the system.

16.3.2. Service Stubs for Load Testing

In terms of integration testing, our service-tailoring approach generates
drivers that can be used for bottom-up integration. The opposite approach—
top-down integration—requires stubs that replace the services the tested
ones call. There are several works in this field. A bunch of approaches
addresses the early or ongoing development phase, where parts of the devel-
oped application are not available yet. Denaro et al. (2004) provide stubs for
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missing components, which they tailor to the specific test case. Becker et al.
(2008) generate so-called performance prototypes from performance mod-
els, which can be executed similarly to a real component. Baltas and Field
(2012) and Field et al. (2018) create mock objects based on performance
models and tackle the synchronization of the models’ virtual time with the
performance tests’ real time. Besides, they integrate their mock objects with
performance unit tests (Chatley et al., 2019), i.e., operate at a lower level
of the testing pyramid than we do. Due to the focus on early development
phases, these approaches provide stubs with limited accuracy for the real
implementation. As we focus on a later phase, approaches that learn the
stubs’ performance and functional behavior from production data would
be preferable. Remarkably, the approach by Becker et al. uses the Palladio
Component Model, which can be learned from production measurements
(e.g., Brunnert et al., 2013; Mazkatli et al., 2020).

Another set of approaches originates from the service-oriented architec-
ture (SOA) field, where multiple testbeds have been introduced. Typically,
testbeds are created based on high-level models or other descriptions and con-
tain both performance tests and stubs for services that are not available, e.g.,
external services. The stub definition ranges from high-level architectural
descriptions (Grundy et al., 2005), over scripts—such as the Genesis2 ap-
proach by Juszczyk and Dustdar (2010)—, and models— including work by
Grundy et al. (2006) and the SOABench approach by Bianculli et al. (2010)—
to service contracts. The PUPPET approach by Bertolino et al. (2008a) falls
into the latter category, which integrates SLAs for non-functional behavior
(Bertolino et al., 2007) and contracts for functional behavior (Bertolino et al.,
2008b) into the stubs. While the listed approaches focus on the service-level,
which is the level we focus on, too, they still lack support for learning stub
behavior from production measurements.
To this end, approaches that emulate individual services or even whole

systems, which then can be called by other services, are relevant. Hine
et al. (2009) emulate enterprise software based on deterministic finite state
machines with a particular focus on scalability, which makes the approach
interesting for load testing. Yu et al. (2017) follow a similar approach using
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Petri nets. An approach that integrates production measurements is the one
by Cui et al. (2006), which captures and replays the client- and server-side of
sessions. Versteeg et al. (2016) emulate services by learning their behavior
from message traces with an approach more elaborate than capture and
replay. Besides, their approach is integrated into the commercial CA Service
Virtualization tool (Michelsen and English, 2013). Hence, we presume it to
be production-ready, making it a perfect complement to our service-tailoring
approach. In combination, both approaches can completely isolate one or
several services in a load test by learning the behavior of the calling services
or users and the called services from production measurements.

16.3.3. Testing of Microservices

Many testing approaches not explicitly designed for microservices can be
used in this context. For instance, SOA testbeds, which we describe in
Section 16.3.2, are suited for testing distributed applications. Besides, some
approaches explicitly target microservice applications. In Section 16.1.3, we
discuss testing in production, which assumes microservices in most cases,
e.g., regarding the deployment strategies (Humble and Farley, 2010) or
resilience experimentation (Basiri et al., 2016). We also refer to the test
automation frameworks (see Section 16.1.5): the approaches by de Camargo
et al. (2016), Ferme and Pautasso (2018), and Portillo-Dominguez et al.
(2014) support the testing of microservices applications.

Further related approaches originate from the functional testing domain.
Lehvä et al. (2019) introduce microservice testing based on contracts be-
tween consumer and producer services. Hence, consumers can mock their
providers, while providers can replay the requests of the consumers. Sim-
ilarly, we replay the requests of consumers but rely on monitored data
instead of contracts. G. Luo et al. (2019) tackle the challenge of verifying
whether a test succeeded, which they state to be particularly challenging for
microservice systems, using metamorphic testing.
Regarding the testing of non-functional properties, such as performance,

microservices bear opportunities and challenges compared to monolithic sys-
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tems. Heinrich et al. (2017) argue that the neat collaboration of operations
can improve testing practices by using monitoring data from production. At
the same time, they highlight the unfeasibility of long-lasting performance
tests, which requires careful selection. Eismann et al. (2020) further high-
light that performance metrics, such as response times measured during a
test, can be less stable than with monoliths. In our research, we leverage
production monitoring data, as suggested by Heinrich et al., to generated
tailored load tests. Hence, we also contribute to the selection of relevant test
cases.
A specific approach related to ours is the one by Grambow et al. (2020).

The authors propose benchmarking microservices that expose a Representa-
tional State Transfer (REST) API. The benchmark workload is described in
abstract patterns by users. In contrast, in our work, we generate workload
models based on recorded data. In joint work with Avritzer et al. (2018,
2020a), we introduce the Domain-based scalability assessment described in
Section 9.3. Here, we utilize the observed production workload to generate
a series of load tests, e.g., using our approach. The Production and Perfor-
mance Testing Based Application Monitoring (PPTAM) tool (Avritzer et al.,
2019) is a prototypical implementation of the approach. Janes and Russo
(2019) introduce PPTAM+ for supporting the transition from monolithic
applications to microservices.

16.3.4. Non-functional Unit Tests

Most of the work regarding non-functional unit tests focus on performance.
Also, there is extensive tool support, such as by Java Microbenchmarking
Harness (JMH) (Oracle Corporation, 2020), Caliper (Google, 2015), Conti-
Perf (Carro, 2019), or JUnitPerf (noconnor, 2017). However, the adoption
of performance unit testing is low. Stefan et al. (2017) found that only
3.4% of all open-source projects apply it. The authors attribute this finding
to existing challenges concerning test automation, implementation, and
execution duration.
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To this end, several works aim at solving some of these challenges. For in-
stance, Bulej et al. (2017, 2012) introduce the Stochastic Performance Logic
(SPL), which allows expressing performance requirements mathematically.
Based on such expressions, their proposed framework executes performance
unit tests automatically and evaluates the results. Horký et al. (2013) use
SPL to generate performance documentation, aiming at increasing the aware-
ness for performance. Reichelt et al. (2019) leverage existing functional unit
tests to conduct performance testing automatically. In doing so, they lower
the execution time by test case selection (Reichelt and Kühne, 2018). Hill
et al. (2009) are not limited to performance, but apply unit testing to appli-
cations in their early development stages regarding general non-functional
properties. Also, there exist performance unit test approaches for specific
domains, such as mobile applications (Kim et al., 2009; Usman et al., 2020).
The main difference between all unit testing approaches and ours is the

granularity of the tested piece of software. While we focus on specific
services, unit tests address smaller units that can be part of a service. As
a result, unit tests tend to be faster regarding their execution, while our
approach evaluates the performance and further quality attributes under
more realistic conditions.

16.4. Context-tailoring

In Chapter 8, we describe our approach to the context-tailored generation
of load tests. We continuously learn a workload model by clustering the
sessions incrementally and enriching them with contextual information. The
result is behavior models for multiple user groups with an intensity— i.e.,
the number of concurrent sessions per time unit— time series each. A user of
our approach can trigger the generation of a tailored load test by submitting
an LCtL instance. We then use multivariate time series forecasting to predict
the expected workload.
Related work can be found in various fields, such as workload charac-

terization, model-based testing, testing in production, test case selection
or prioritization, and performance testing languages (see Sections 16.1.1
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to 16.1.4 and 16.1.6). In this section, we elaborate on incremental clustering
and workload forecasting, specifically relevant to the context-tailoring.

16.4.1. Incremental Session Clustering

Existing workload characterization approaches cluster the user sessions with
algorithms such as k-means (Menascé et al., 1999) or X-means (Vögele et al.,
2018). However, these algorithms can only process a single dataset as a
whole, while our continuous workload model learning requires repeated
updates. Therefore, we have extended the k-means-based clustering to
be incremental and have designed a further algorithm based on DBSCAN
(Schubert et al., 2017). T. Wang et al. (2014) introduce a similar k-means-
based algorithm to be used for workload-aware anomaly detection. Like
us, they assign new sessions to existing clusters based on the minimum
distance and detect new clusters based on a distance threshold. However,
they recalculate the threshold in each iteration and require all clusters to
have the same radius while we maintain per-cluster radiuses. We suggest
comparing both algorithms experimentally in future work.
Regarding general-purpose clustering, which can also be applied to ses-

sions, there are many algorithms for incremental (Joshi and Kulkarni, 2012)
or stream (Silva et al., 2013) processing. To provide some examples, Incre-
mentalDBSCAN by Ester et al. (1996) is an often-cited one that incrementally
updates the clustering. Regarding k-means, Lloyd’s Algorithm (Lloyd, 1982)
could be executed online, which Ailon et al. (2009), however, have found
to perform poorly. Therefore, they propose an improved algorithm based
on k-means++ by Arthur and Vassilvitskii (2007). Related to that are the
works by Ackermann et al. (2012) and Shindler et al. (2011). However,
most of the proposed algorithms miss some of our requirements, e.g., they
might change the cluster membership of an already processed session or
miss newly occurring clusters. The DBSCAN-based algorithms additionally
suffer from the missing convexness, as we discuss in Section 8.4.1. Still,
as much effort has been investigated already, these algorithms might be
considered for improving ours.
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16.4.2. Workload Forecasting

Menascé and Almeida (2002) argue that workload forecasting is an essential
part of workload characterization. They propose predicting the expected
workload intensity via basic techniques such as linear or non-linear regres-
sion, moving average, and exponential smoothing. Besides, there are more
complex forecasting techniques, including the use of autoregressive inte-
grated moving average models, support vector machines, and artificial neural
networks, as surveyed by Mahalakshmi et al. (2016). Abstracting from such
technical details, Bauer et al. (2020) and Taylor and Letham (2018) intro-
duce the tools Telescope and Prophet, which chose an appropriate forecasting
method autonomously. A common use case of workload forecasting is the
proactive provisioning of cloud resources (Herbst et al., 2013). According to
the forecast, hardware resources can be added before the workload intensity
increases. Our use case is the load test generation. While we leverage Tele-
scope and Prophet, the main difference is that we also predict the workload
mix, while the tools are limited to the intensity. As our evaluation shows,
this results in more representative load tests.
A technique with a related but different goal is the prediction of user

behavior. For instance, Nguyen and Cho (2020) predict online users’ next
actions to support, e.g., recommendation and personalization systems. A
similar goal has resource planning for business processes (Verenich et al.,
2019). As opposed to these approaches, we predict the overall workload
of the application. Still unpublished but more related work is by Albertetti
and Ghorbel (2020), which predicts the (human) workloads of business
processes using process mining and recurrent neural networks. However, it
only aims at mid-term predictions, while we also require long-term horizons.

16.5. Load Testing for Non-experts

To ease load testing for unexperienced users, our BDLT approach integrates
the tailored load test generation with BenchFlow (Ferme and Pautasso,
2018), as depicted in Chapter 9. The BDLT language acts as the interface
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and allows describing the workload, runtime configurations, including SUT
deployment options, and quality gates. We also integrate the scalability
assessment approach we have developed in joint work with Avritzer et al.
(2018, 2020a).

Several research fields we discussed in previous sections are related to the
BDLT approach (see Sections 16.1.1 to 16.1.3, 16.1.5, and 16.1.6). Mainly
related to this part of our work are BDD, whose concept we leverage, and
declarative performance engineering (DPE). In the following, we elaborate
on these fields.

16.5.1. Behavior-driven Development

BDD (North, 2006) is an extension of test-driven development (TDD) (Beck,
2003) and aims at specifying the intended behavior of software before
implementing it. This behavior is defined in the Gherkin (Wynne et al.,
2017) language and automatically transformed into software tests. Gherkin
consists of natural language templates starting with the keywords given,
when, and then to describe the initial state, changes to the state, and expected
outcomes. BDD has been widely adopted for different use cases, such as
microservice testing (Rahman and J. Gao, 2015) and safety analysis (Y. Wang
and Wagner, 2018). An approach that is related to BDLT is Canopus by
Bernardino et al. (2016), which uses BDD syntax to describe performance
tests. Oruç and Ovatman (2016) transform BDD statements into JMeter
(Apache Software Foundation, 2020[a]) load tests. The main difference
between these works and ours is the level of abstraction. While they have to
specify the workload model directly, we can rely on our tailoring approach
and refer to the context and services to be tested.

While we have not focused on the specification process of BDD definitions,
works investigating this direction exist. Soeken et al. (2012) allow users
to specify BDD definitions in a dialog with the computer. N. Gao and Z. Li
(2016) provide a web tool for collecting requirements models from multiple
stakeholders, transforming them into BDD user scenarios. The case study we
have conducted (Chapter 15) indicates that BDD—or in this case, BDLT— is
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easy to understand for non-technical stakeholders, such as product owners.
Sarinho (2019) builds on the same insight and uses BDD in game-based
teaching.

16.5.2. Declarative Performance Engineering

DPE (Walter et al., 2016) aims at hiding complexity from the user when
conducting performance engineering tasks, such as model-based prediction,
monitoring, or testing. It separates a user’s concern, i.e., what question they
want to answer, from the selection of a specific solution approach, i.e., how
to solve the task. For that, DPE requires a high-level description language,
e.g., Descartes Query Language (DQL) by Gorsler et al. (2014), and decision
support regarding the applied performance engineering approach. We have
previously discussed several works that contribute to DPE, such as BenchFlow
by Ferme and Pautasso (2017, 2018), the Crawl language by Cunha et al.
(2013), and the concern-driven reporting by Okanović et al. (2019). Walter
et al. (2018) collect further tools to be used in this context.
Our BDLT approach conforms to DPE as well. We mainly achieved that

by integrating BenchFlow for declarative test execution. Besides, we add a
high-level and, thus, declarative description of the workload. As users only
need to describe the context and services under test, we hide complexity
from them and automatically choose the appropriate workload model.

16.6. Summary

Our research relates to existing works in many aspects: it bases upon existing
workload characterization andmodel-based testing techniques, complements
test automation, test data generation, and service stubbing approaches, uses
concepts from model-driven software engineering (MDSE), and conforms to
principles from declarative performance engineering (DPE). The next part
concludes this dissertation with a summary and suggestions for future work.
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In this dissertation, we have developed an approach for the automated
generation of tailored representative load tests. The automation enables the
integration with continuous software engineering (CSE) concepts, such as
continuous integration and delivery (CI/CD) pipelines (Humble and Farley,
2010). We can also generate load tests that focus on the relevant services
and context, being time- and resource-efficient. For instance, the DevOps
team developing a specific microservice of a webshop can test its service with
the expected Christmas shopping workload in early December, while putting
less emphasis on the Black Friday workload. Finally, we have integrated our
tailoring approach with automated test execution, easing load testing for
non-experts.

In the following, we summarize our work and draw conclusions according
to the research questions we have postulated in Chapter 1. Furthermore, we
summarize the implementations and supplementary material we provide.

17.1. Automated Load Test Parameterization

RQ1: How can load test parameterizations be evolved without
manual intervention at test generation or execution time?
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Our solution is a user-specified parameterization model named Input Data
and Properties Annotation (IDPA). Users can define IDPAs in advance, and
our approach automatically parameterizes generated load tests by trans-
forming the IDPAs. To further reduce the maintenance effort, we developed
feedback-based evolution mechanisms regarding the API changes collected
in the literature. Hence, we reduce the manual effort and prevent manual
intervention when generating or executing load tests.
Our evaluation, which comprises effort estimation models, experimental

studies, and a case study, shows that the IDPA reduces the cumulative main-
tenance effort from a quadratic to a linear function of time. Furthermore, we
found that proper parameterization is inevitable for reasonable load testing.
Unparameterized load tests may fail to, e.g., login to the system under test
(SUT) and, thus, lead to significantly different performance behavior of
the SUT. An IDPA can prevent this, providing extensible parameterization
concepts ready for industrial use. The benefit of using an IDPA is the highest
if the sessions dominate the workload, i.e., the order and timing of requests
influence the SUT more than the choice of parameter value from the correct
input data set does. Otherwise, the IDPA can still be used but requires more
careful modeling of the input data.

17.2. Service-tailoring

RQ2: How can representative load tests be tailored to specific
services of a session-based application?

By analyzing the load test extraction process used in existing work (Vögele
et al., 2018), we identified two possible modifications that tailor load tests to
services. In both cases, we used recorded traces documenting how a request
propagates through the distributed application (Okanović et al., 2016). The
log-based service-tailoring algorithm modifies the recorded logs, i.e., operates
on the traces at the instance level. Themodel-based service-tailoring algorithm
changes the workload model based on the aggregate call behavior, which it
extracts from the traces.
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Both algorithms provenly fulfill the requirements we have defined. An ex-
perimental study shows that the model-based algorithm generates load tests
that are slightly more representative than log-based generated tests. How-
ever, the difference decreases with an increasing number of SUT endpoints
involved, and both algorithms lead to significantly higher representativeness
than simple request-based tailoring does. The model-based approach is
preferable for integration with context-tailoring (see next section) because
it can tailor load tests to services specified on demand. Log-based tailoring
requires defining the services in advance.

17.3. Context-tailoring

RQ3: How can representative load tests automatically be tailored
to the contexts of a session-based workload?

We split the load test generation process into a continually repeated part
and a part executed on demand. In the first part, we cluster the user sessions
incrementally, resulting in a continually updated workload model and work-
load intensity. Here, we introduced two algorithms, whereas we chose to use
the one based on k-means (Arthur and Vassilvitskii, 2007). Furthermore, we
enrich the workload model with contextual information, e.g., the presence
of special sales or the temperature. The second part generates a load test
on-demand by predicting future intensities using time-series forecasting
(Bauer et al., 2020; Taylor and Letham, 2018) and extracting a workload
scenario from the prediction. For that, users describe the scenario in the
Load Test Context-tailoring Language (LCtL). For instance, they can de-
scribe the expected spike workload during the next sales event, potentially
modifying the prediction with qualitative information, such as the effect of
extraordinarily high temperatures.
Our evaluation—consisting of an analysis of the incrementally learned

workload model, a case study, and two experiment series with the student
information system (SIS) of Charles University, Prague— indicates that this
approach is suitable for generating context-tailored load tests. Except for
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particular influences, the load tests we generated were representative, and
the LCtL could specify the relevant scenarios accurately. The influences,
however, reveal challenges to be addressed in future work. First, we found
strongly fluctuating think time specifications in the workload model stem-
ming from the session clustering, which ignores the session timings, similar
to existing work (Vögele et al., 2018). The fluctuations affected the duration
of the simulated sessions and, thus, decreased representativeness. Further-
more, the predictions of sharp spikes were inaccurate due to the inability of
the forecasting tools used to predict the time series shape. Apart from the
representativeness, the workload prediction duration can be improved.

17.4. Load Testing for Non-experts

RQ4: How can we leverage automated tailored load test generation
and automated load test execution for enabling load testing for
non-experts?

We enable load testing for non-experts by integrating load test generation
and execution with the Behavior-driven Load Testing (BDLT) language.
The language uses the given–when–then template from Behavior-driven
Development (BDD) (North, 2006) and is based on natural language. Hence,
it constitutes a lower barrier for technically inexperienced users. Showing
that the language still can be used for complex load testing concerns, we
integrated the Domain-based microservice scalability assessment from joint
work with Avritzer et al. (2018, 2020a).

The two case studies we conducted show that the BDLT language is ex-
pressive enough for industrial use cases. Similar to the IDPA, extensibility
was a key feature. The case study participants particularly highlighted that
natural language is easy to understand and fosters collaboration also with
non-technical stakeholders, such as product owners. An insight we gained
is that the explicit specification of load test concerns in natural language
forms a helpful basis for discussions that lead to further relevant concerns.
A limitation of natural language is complex expressions, which can hinder
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the sharp definition of advanced load testing concerns. Here, we suggest
using the LCtL as an alternative, which is more technical and better suited
for advanced specifications.

17.5. Implementations & Supplementary Material

We have implemented our approach as a prototypical distributed application,
which we have used in the evaluations. The source code is available online
on GitHub and archived for permanent access (H. Schulz, 2020a; H. Schulz
et al., 2020a; H. Schulz and Dang, 2020), with container images being
available on DockerHub (H. Schulz, 2020d) for easy deployment. Besides,
we made additional implementations, such as an SUT mock and a trace
converter service, publicly available (H. Schulz, 2020b,c).

For replication of our evaluations, we published the following supplemen-
tary material:

• Evaluation of automated load test parameterization: H. Schulz et al.
(2019f)

• Evaluation of service-tailoring: H. Schulz et al. (2019b)

• Evaluation of context-tailoring: H. Schulz et al. (2020b)

• Evaluation of load testing for non-experts: H. Schulz et al. (2019d)
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There are several directions we suggest investigating in future work, which
we describe in this chapter. These directions comprise improvements and
enhancements of the automation of the load test parameterization, think
time modeling, workload model learning, and workload forecasting. Besides,
we propose exploring further use cases of our approach and conducting
additional evaluations.

18.1. Extended Automation of Parameterization

In Chapter 6, we have introduced the automated parameterization of gener-
ated load tests with Input Data and Properties Annotations (IDPAs) and the
evolution of parameterizations over API changes. Hence, we have reached
our goal of automating the load test generation process. However, the de-
gree of automation when maintaining IDPAs can be further increased. For
instance, OpenAPI specifications (OpenAPI Initiative, 2020) can also hold
information about the allowed parameter inputs and return type of an end-
point. This information could be leveraged to decide whether API changes
of the type Change Input or Change Response Behavior are present. For that,
the IDPA application model would need to be extended.
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Furthermore, the IDPA could be extended by further types of parameteri-
zation, e.g., sanity checks. While the BenchFlow DSL (Ferme and Pautasso,
2018) and our Behavior-driven Load Testing (BDLT) language (see Chap-
ter 9) already cover quality gates that are evaluated after the test execution,
e.g., based on performance measures, IDPAs could be used to define endpoint-
level checks. These checks would focus on functional requirements, e.g.,
whether the response to a request contains specific fields.

Finally, we propose modeling endpoint types other than HTTP in the
IDPA application model. For instance, message queuing protocols, such as
Advanced Message Queuing Protocol (AMQP) and Kafka, are often used
in continuous software engineering (CSE) projects. The application model
offers an extension point for new endpoint types; thus, they can be added
easily.

18.2. Different Think Time Specification

In this research, we utilized the WESSBAS-DSL (Vögele et al., 2018) for
modeling workloads, with normal distributions as think time specifications.
We have chosen normal distributions because existing work uses them as
well. However, in mostly all parts of our approach, we encountered think-
time-related issues: the experiments with the automated parameterization
(Chapter 12) showed too low request rates; the model-based service tailoring
algorithm (Section 7.5) has to approximate think time convolutions; the
incremental session clustering (Section 8.4) has the same problem; the
evaluation of the context-tailoring (Chapter 14) suffered from negative think
time portions.
Therefore, we suggest using a different type of think time specification,

such as empirical distributions related to the resource demand specification of
the Palladio Component Model (Becker et al., 2009). Empirical distributions
allow for more accurate merging than normal distributions do and also
prevent negative portions. Adding this specification type does not require to
change the WESSBAS-DSL, as its think time specification is designed to be
extended.
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18.3. Improved Workload Model Learning

The most relevant direction for future work is improving the continuous
workload model learning (Section 8.4). Similar to existing work (Vögele
et al., 2018), we calculate the distance between sessions only based on the
Markovian request order, ignoring the inter-request think times. When apply-
ing one-time clustering, this proceeding is sufficient. However, incremental
updates of the workload model can lead to strongly fluctuating session dura-
tions (see Section 14.2). As a solution, we suggest integrating the think times
into the clustering— in addition to changing the type of specification— to
respect the varying timing behavior of the users. A challenge is that the
number of clusters can increase, which can lead to scalability issues, e.g.,
when forecasting the cluster’s intensities individually.

For better predicting sharp workload spikes, we propose switching to
an open workload model (Schroeder et al., 2007). In contrast to a closed
workload model, which we utilized, it defines the session arrival rate instead
of the number of concurrent users. We hypothesize that the arrival rate
correlates with the request rates better than the number of users does (see
Section 14.4). However, open workloads require accurate modeling of the
session length and duration. As our and the evaluation of Vögele et al.
(2018) show, Markov chains are not suited for that. In contrast, they tend to
generate too long sessions, leading to an increased request rate. Here, using
the guards and actions from the WESSBAS-DSL, which we excluded in this
research, might improve the accuracy.
Finally, the incremental session clustering can be further improved. One

aspect is detecting multiple new clusters in one iteration. The algorithm
we introduced only can detect one. Furthermore, for better describing
group-based qualitative intensity forecasts—e.g., increasing the number
of students checking their exam results by 20 %—, we suggest labeling the
workload model’s groups accordingly. For that, interactive clustering (Bae
et al., 2020) might be helpful, as an expert might be able to identify specific
types of users and influence the clustering. However, the interaction must
restrict to a calibration phase, without blocking continuous learning.
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18.4. Improved Workload Intensity Forecasting

Regarding the forecasting of the workload intensities, we see two challenges
to be addressed. First, the tools we used (Bauer et al., 2020; Taylor and
Letham, 2018) were not able to predict the shape of the intensity curve accu-
rately (see Section 14.5). Instead, the forecasts contained sharp changes at
context state transitions. Hence, future work should find a way of predicting
the intensity curve. One option is to adopt the tools. Another, maybe more
promising option is to preprocess the context for preventing sharp context
changes. For instance, the context during a sharp intensity spike could be
changed from a boolean specification to a smooth in- and decrease according
to the spike’s slope.
The second challenge is the forecasting duration, i.e., the time the tools

need to calculate a forecast. Especially for per-group intensity predictions,
which require applying the tools on the groups individually, the duration
was too high in our evaluation. We see two approaches to accelerating
the forecasts. First, per-group predictions can be parallelized. However,
for high numbers of groups, this requires large-scale machines with a high
number of CPU cores. Therefore, another option is to predict specific groups
together. If the intensities of some groups correlate, they could be summed
up, forecasted in total, and split again afterward.

18.5. Further Use Cases

In this work, we have used our approach to generate tailored load tests
automatically and, in combination with BenchFlow (Ferme and Pautasso,
2018), executed automatically. By integrating further approaches, additional
use cases could be covered. First, our parameterization approach could be
integrated with test data generation approaches, resulting in an even higher
degree of automation. Second, the service-tailoring, combined with load-test-
capable stubs, e.g., the ones by Versteeg et al. (2016), enables load testing a
microservice in isolation. Further integrations could ease the specification of
load tests and evaluation of their results. Here, we refer to Okanović et al.
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(2020, 2019), who have introduced concern-driven reporting and a software
engineering chatbot. These approaches fit particularly well with our BDLT
language (Chapter 9).
Furthermore, an intelligent test case selection approach could be added

on top of our approach. With the Load Test Context-tailoring Language
(LCtL) (Chapter 8) and the service-tailoring algorithms (Chapter 7), we
enable generating load tests that fit a given context and set of services.
Hence, our approach could be used to generate load tests for all expected
workload scenarios, from which only the most relevant ones that can be
executed within a given time frame could be selected. Determining the
relevance could be done based on the expected number of faults caused
by the workload, e.g., using the work by Vögele (2018). Combining all
these integrations may lead to an intelligent load testing platform, related
to testing as a service (TaaS) (Yan et al., 2012).

18.6. Further Evaluation

Finally, we propose conducting further studies complementing ours by eval-
uating the following aspects.

• The expressiveness of the languages we have introduced (IDPA, LCtL,
and BDLT) in different domains than our evaluation was.

• A quantitative assessment of the maintenance effort when using IDPAs
to parameterize the effort estimationmodels introduced in Section 12.1.
For that, a study related to the one by Benestad et al. (2010) can be
appropriate.

• The representativeness of service-tailored load tests for industrial ap-
plications.

• The representativeness of load tests generated using service-tailoring
combined with context-tailoring. Here, we hypothesize that the model-
based service-tailoring is preferable over log-based tailoring because
the call behavior between services can frequently change. However,
this hypothesis should be evaluated experimentally.
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• The behavior and applicability of the context-tailoring applied to a
further dataset. This dataset should come from a different domain than
education, and should preferably be large enough to apply forecasting
without intensity augmentation.

• A quantitative evaluation of the BDLT approach, as we mostly focused
on qualitative aspects.

As several aspects require large amounts of data or a realistic evaluation
setting, we recommend conducting one large case study that covers several
or all of them.
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This chapter provides the JavaScript Object Notation (JSON) schemata
(Wright, 2019) of the Input Data and Properties Annotation (IDPA). We
represent it in the YAML format (Ben-Kiki et al., 2009) for better readability
and because there is a direct mapping between the JSON and the YAML
format. Furthermore, we utilize a @type property denoting YAML tags, e.g.,
the @type value http is represented by !<http>. We use this workaround
that is not part of the JSON schema definition because currently, there is no
support for such YAML tags.
There are two schemata: one for the application model and one for the

annotation model. We split the respective schemata into meaningful parts
for better readability. The subsequently presented parts are also subsequent
in the YAML file. Three dots (. . . ) indicate that the subsequent part is a sub
item and are not part of the YAML file (see Listing A.1 and Listing A.5).
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A.1. Application Model Schema

1 ---
$schema: http://json -schema.org/draft -04/ schema#

3 title: Application Model
type: object

5 additionalProperties: false
properties:

7 id:
type: string

9 version:
type: string

11 timestamp:
type: string

13 pattern: \d{4}-\d{2}-\d{2}T\d{2}-\d{2}-\d{2}-\d
{3}\w* #yyyy -MM -dd’T’HH-mm-ss-SSSX

endpoints:
15 type: array

items:
17 oneOf:

- $ref: ’#/ definitions/HttpEndpoint ’
19 required:

- timestamp
21 definitions:

...

Listing A.1: Application schema.
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HttpEndpoint:
2 type: object

additionalProperties: false
4 properties:

"@type":
6 type: string

enum:
8 - http

default: http
10 id:

type: string
12 domain:

type: string
14 port:

type: string
16 path:

type: string
18 method:

type: string
20 encoding:

type: string
22 default: <no -encoding >

headers:
24 type: array

items:
26 type: string

parameters:
28 type: array

items:
30 $ref: ’#/ definitions/HttpParameter ’

protocol:
32 type: string

required:
34 - "@type"

- domain
36 - port

- path
38 - method

- protocol

Listing A.2: HttpEndpoint schema.
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1 HttpParameter:
type: object

3 additionalProperties: false
properties:

5 id:
type: string

7 name:
type: string

9 parameter -type:
type: string

11 enum:
- req -param

13 - body
- url -part

15 - header
- form

17 required:
- name

19 - parameter -type

Listing A.3: HttpParameter schema.
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A.2. Annotation Model Schema

1 ---
&any_input

3 oneOf:
- $ref: ’#/ definitions/ExtractedInput ’

5 - $ref: ’#/ definitions/DirectListInput ’
- $ref: ’#/ definitions/CsvInput ’

7 - $ref: ’#/ definitions/CsvInputGroup ’
- $ref: ’#/ definitions/RandomNumberInput ’

9 - $ref: ’#/ definitions/RandomStringInput ’
- $ref: ’#/ definitions/CounterInput ’

11 - $ref: ’#/ definitions/DatetimeInput ’
- $ref: ’#/ definitions/EnvironmentInput ’

13 - $ref: ’#/ definitions/CombinedInput ’
- $ref: ’#/ definitions/JsonInput ’

15 - $ref: ’#/ definitions/ConciseJsonInput ’

Listing A.4: List of all provided Input implementations, where other
schemata can refer to.
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1 $schema: http://json -schema.org/draft -04/ schema#
title: Annotation Model

3 type: object
additionalProperties: false

5 properties:
id:

7 type: string
overrides:

9 type: array
items:

11 oneOf:
- $ref: ’#/ definitions/HttpEndpointOverride ’

13 - $ref: ’#/ definitions/HttpParameterOverride ’
inputs:

15 type: array
items: *any_input

17 endpoint -annotations:
type: array

19 items:
$ref: ’#/ definitions/EndpointAnnotation ’

21 definitions:
...

Listing A.5: ApplicationAnnotation schema.
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EndpointAnnotation:
2 type: object

additionalProperties: false
4 properties:

id:
6 type: string

endpoint:
8 type: string

overrides:
10 type: array

items:
12 oneOf:

- $ref: ’#/ definitions/HttpEndpointOverride ’
14 - $ref: ’#/ definitions/HttpParameterOverride ’

parameter -annotations:
16 type: array

items:
18 $ref: ’#/ definitions/ ParameterAnnotation ’

required:
20 - endpoint

Listing A.6: EndpointAnnotation schema.
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ParameterAnnotation:
2 type: object

additionalProperties: false
4 properties:

id:
6 type: string

parameter:
8 type: string

input: *any_input
10 overrides:

type: array
12 items:

oneOf:
14 - $ref: ’#/ definitions/HttpParameterOverride ’

required:
16 - parameter

- input

Listing A.7: ParameterAnnotation schema.
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1 HttpEndpointOverride:
type: object

3 additionalProperties: false
properties:

5 HttpEndpoint.domain:
type: string

7 HttpEndpoint.port:
type: string

9 HttpEndpoint.encoding:
type: string

11 HttpEndpoint.protocol:
type: string

13 HttpEndpoint.header:
type: string

15 HttpEndpoint.base -path:
type: string

17

HttpParameterOverride:
19 type: object

additionalProperties: false
21 properties:

HttpParameter.encoded:
23 type: string

Listing A.8: Override schemata.
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1 ExtractedInput:
type: object

3 additionalProperties: false
properties:

5 "@type":
type: string

7 enum:
- extracted

9 default: extracted
id:

11 type: string
initial:

13 type: string
extractions:

15 type: array
items:

17 oneOf:
- $ref: ’#/ definitions/RegExExtraction ’

19 - $ref: ’#/ definitions/JsonPathExtraction ’
required:

21 - "@type"
- extractions

Listing A.9: ExtractedInput schema.
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RegExExtraction:
2 type: object

additionalProperties: false
4 properties:

id:
6 type: string

from:
8 type: string

pattern:
10 type: string

response -key:
12 type: string

enum: [ body , header , status ]
14 default: body

template:
16 type: string

default: (1)
18 match -number:

type: integer
20 default: 1

fallback:
22 type: string

default: NOT FOUND
24 required:

- from
26 - pattern

Listing A.10: RegExExtraction schema.
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JsonPathExtraction:
2 type: object

additionalProperties: false
4 properties:

id:
6 type: string

from:
8 type: string

json -path:
10 type: string

response -key:
12 type: string

enum: [ body , header , status ]
14 default: body

match -number:
16 type: integer

default: 1
18 fallback:

type: string
20 default: NOT FOUND

required:
22 - from

- json -path

Listing A.11: JsonPathExtraction schema.
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1 DirectListInput:
type: object

3 additionalProperties: false
properties:

5 "@type":
type: string

7 enum:
- direct

9 default: direct
id:

11 type: string
data:

13 type: array
items:

15 type: string
associated:

17 type: array
items:

19 oneOf:
- $ref: ’#/ definitions/DirectListInput ’

21 - $ref: ’#/ definitions/CsvInput ’
required:

23 - "@type"
- data

Listing A.12: DirectListInput schema.
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CsvInput:
2 type: object

additionalProperties: false
4 properties:

"@type":
6 type: string

enum:
8 - csv

default: csv
10 id:

type: string
12 file:

type: string
14 column:

type: integer
16 separator:

type: string
18 default: ;

header:
20 type: boolean

default: false
22 associated:

type: array
24 items:

oneOf:
26 - $ref: ’#/ definitions/DirectListInput ’

- $ref: ’#/ definitions/CsvInput ’
28 required:

- "@type"
30 - file

- column

Listing A.13: CsvInput schema.
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1 CsvInputGroup:
type: object

3 additionalProperties: false
properties:

5 "@type":
type: string

7 enum:
- csv

9 default: csv
id:

11 type: string
file:

13 type: string
separator:

15 type: string
default: ;

17 header:
type: boolean

19 default: false
columns:

21 type: array
items:

23 type: object
properties:

25 id:
type: string

27 required:
- "@type"

29 - file
- columns

Listing A.14: CsvInputGroup schema.
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RandomNumberInput:
2 type: object

additionalProperties: false
4 properties:

"@type":
6 type: string

enum:
8 - randnum

default: randnum
10 id:

type: string
12 lower:

type: integer
14 lower -input:

type: *any_input
16 upper:

type: integer
18 upper -input:

type: *any_input
20 required:

- "@type"

Listing A.15: RandomNumberInput schema.
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1 RandomStringInput:
type: object

3 additionalProperties: false
properties:

5 "@type":
type: string

7 enum:
- randstring

9 default: randstring
id:

11 type: string
template:

13 type: string
required:

15 - "@type"
- template

Listing A.16: RandomStringInput schema.
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CounterInput:
2 type: object

additionalProperties: false
4 properties:

"@type":
6 type: string

enum:
8 - counter

default: counter
10 id:

type: string
12 format:

type: string
14 scope:

type: string
16 enum:

- global
18 - user

- user -iteration
20 start:

type: integer
22 increment:

type: integer
24 maximum:

type: integer
26 required:

- "@type"
28 - scope

- start
30 - increment

- maximum

Listing A.17: CounterInput schema.
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1 DatetimeInput:
type: object

3 additionalProperties: false
properties:

5 "@type":
type: string

7 enum:
- datetime

9 default: datetime
id:

11 type: string
format:

13 type: string
offset:

15 type: string
required:

17 - "@type"
- format

Listing A.18: DatetimeInput schema.

EnvironmentInput:
2 type: object

additionalProperties: false
4 properties:

"@type":
6 type: string

enum:
8 - environment

default: environment
10 id:

type: string
12 property:

type: string
14 required:

- "@type"
16 - property

Listing A.19: EnvironmentInput schema.
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CombinedInput:
2 type: object

additionalProperties: false
4 properties:

"@type":
6 type: string

enum:
8 - combined

default: combined
10 id:

type: string
12 format:

type: string
14 inputs:

type: array
16 items: *any_input

required:
18 - "@type"

- format
20 - inputs

Listing A.20: CombinedInput schema.
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JsonInput:
2 type: object

additionalProperties: false
4 properties:

"@type":
6 type: string

enum:
8 - json

default: json
10 id:

type: string
12 type:

type: string
14 enum:

- string
16 - number

- object
18 - array

name:
20 type: string

input:
22 type: *any_input

items:
24 type: array

items: *any_input
26 required:

- "@type"
28 - type

Listing A.21: JsonInput schema.
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ConciseJsonInput:
2 type: object

additionalProperties: false
4 properties:

"@type":
6 type: string

enum:
8 - json

default: json
10 id:

type: string
12 json:

type:
14 oneOf:

- $ref: ’#/ definitions/JsonStaticValue ’
16 - $ref: ’#/ definitions/JsonDerivedValue ’

- $ref: ’#/ definitions/JsonObject ’
18 - $ref: ’#/ definitions/JsonArray ’

required:
20 - "@type"

- json

Listing A.22: ConciseJsonInput schema.
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1 JsonStaticValue:
type: string

3

JsonDerivedValue:
5 type: *any_input

7 JsonObject:
type: object

9 additionalProperties:
type:

11 oneOf:
- $ref: ’#/ definitions/JsonStaticValue ’

13 - $ref: ’#/ definitions/JsonDerivedValue ’
- $ref: ’#/ definitions/JsonObject ’

15 - $ref: ’#/ definitions/JsonArray ’

17 JsonArray:
type: array

19 items:
oneOf:

21 - $ref: ’#/ definitions/JsonStaticValue ’
- $ref: ’#/ definitions/JsonDerivedValue ’

23 - $ref: ’#/ definitions/JsonObject ’
- $ref: ’#/ definitions/JsonArray ’

Listing A.23: JsonItem schemata for the JsonInput.
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This chapter provides exemplary JMeter (Apache Software Foundation,
2020[a]) and BenchFlow (Ferme and Pautasso, 2018) tests that have been
transformed from a WESSBAS (Vögele et al., 2018) workload model and
the Input Data and Properties Annotation (IDPA) in Section 6.3.3.1. The
workload model specifies to call the two endpoints hotSaucesDetails and
addToCart sequentially.

B.1. JMeter

Figures B.1 to B.5 illustrate the generated JMeter test plan as JMeter UI
screen shots based on the JMeter version 5.0 with the Markov4JMeter
(van Hoorn et al., 2008) and Random CSV Data Set (Fedorov, 2017) plugins
installed.
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Figure B.1.: JMeter test plan tree transformed from the IDPA example in
Section 6.3.3.1.

Figure B.2.: RandomCSVDataSetConfig for the Input_sauce_name.
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Figure B.3.: HTTPSamplerProxy for the addToCart request.

Figure B.4.: HTTPSamplerProxy for the hotSaucesDetails request.
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Figure B.5.: RegexExtractor for the Input_csrfToken.
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B.2. BenchFlow

Listings B.1 and B.2 contain the BenchFlow DSL instance based on the
version introduced by Palenga (2018). It is assumed that the hot-sauces.csv
file contains a header Input_sauce_name.

sut:
2 configuration:

target_service:
4 name: sock -shop

endpoint: localhost:8080/
6

data -sources:
8 - path: hot -sauces.csv

delimiter: ’,’
10

workload -items:
12 gen_behavior_model0:

popularity: 100.0%
14 inter_operation_timings: fixed -time

driver_type: http
16 mix:

matrix:
18 - [ 0.0%, 0.0%, 100.0% ]

- [ 0.0%, 0.0%, 0.0% ]
20 - [ 0.0%, 100.0% , 0.0% ]

Listing B.1: BenchFlow test transformed from the IDPA example in
Section 6.3.3.1 (part 1).
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operations:
22 - id: INITIAL_STATE

- method: POST
24 body:

csrfToken: ${Input_csrfToken}
26 quantity: [ ’1’, ’2’, ’3’, ’4’, ’5’ ]

productId: ’42’
28 id: addToCart

endpoint: /cart/add
30 think -time:

mean: 0.0
32 deviation: 0.0

headers:
34 X-Requested -With: XMLHttpRequest

Content -Type: application/x-www -form -
urlencoded

36 protocol: http
- method: GET

38 extract -regexp:
Input_csrfToken:

40 pattern: <input name="csrfToken" type="
hidden" value="(.*)"/>

default: NOT FOUND
42 match -number: 1

id: hotSaucesDetails
44 url -parameter:

sauce: ${Input_sauce_name}
46 endpoint: /hot -sauces/${sauce}

think -time:
48 mean: 0.0

deviation: 0.0
50 protocol: http

Listing B.2: BenchFlow test transformed from the IDPA example in
Section 6.3.3.1 (part 2).
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Below, we provide the formal grammar of the Load Test Context-tailoring
Language (LCtL). We express it in extended Backus–Naur form (EBNF). The
diagrams presented in Section 8.5 hold the same information but format-
ted for improved readability. Similar to the diagrams, we use the special
terminals ‘>>’ and ‘<<’ for indents and dedents as well as ‘\n’ for newlines
respecting the current indentation.

scenario ::= (’timeframe:’ ’\n’ timeframe)
2 (’context:’ ’\n’ context)?

(’aggregation:’ aggregation)
4 (’adjustments:’ ’\n’ adjustments)?

Listing C.1: EBNF of the root scenario clause of the LCtL.
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timeframe ::= ’{}’ | (timerange | conditional |
2 extended)+

4 timerange ::= ’- ’ ’!<timerange >’ (’{}’ | ’\n’ ’>>’
(’from: ’ date ’\n’ (’to: ’ date ’\n’)?

6 (’duration: ’ duration ’\n’)?) |
(’to: ’ date ’\n’ (’duration: ’ duration ’\n’)?) |

8 (’duration: ’ duration ’\n’) ’<<’)

10 conditional ::= ’- ’ ’!<conditional >’ ’\n’ ’>>’
(name ’: ’ ’\n’ ’>>’ condition ’<<’)+ ’<<’

12

condition ::= (’is: ’ value ’\n’) | (’exists: ’
14 boolean ’\n’) | ((’greater: ’ numeric ’\n’)

(’less: ’ numeric ’\n’)?) |
16 (’less: ’ numeric ’\n’)

18 extended ::= ’- ’ ’!<extended >’ ’\n’ ’>>’
((’beginning: ’ duration ’\n’)

20 (’end: ’ duration ’\n’)? |
(’end: ’ duration ’\n’)) ’<<’

22

context ::= ’>>’ (name ’: ’ ’\n’ context -def+)+ ’<<’
24

context -def ::= (’- ’ ’multiplied: ’ numeric ’\n’ ’>>
’

26 (’added: ’ numeric ’\n’)? | (’- ’ ’added:
’ numeric ’\n’ | ’- ’ ’is: ’ value ’\n’) ’>>’)

28 ’during:’ ’\n’ timeframe ’<<’

30 aggregation ::= ’!<’ name ’>’ properties

32 adjustments ::= (’- ’ ’!<’ name ’>’ properties)+

34 properties ::= ’{}’ | ’\n’ ’>>’ (name ’: ’ value
’\n’)+ ’<<’

Listing C.2: EBNF of the LCtL sections.
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Below, we provide the formal grammar of the BDLT language in extended
Backus–Naur form (EBNF), corresponding to the system diagrams in Sec-
tion 9.2.2 and our previous publication (H. Schulz et al., 2019c).

1 bdlt ::= ’GIVEN’ given (’AND’ given)* ’WHEN’ when
(’AND’ when)* ’THEN’ then (’AND’ then)*.

3

given ::= (daterange | nextevent | alterusers |
5 assignment | services)

7 when ::= (vary | event)

9 then ::= ( run | collect | ensure | break )

Listing D.1: EBNF of the BDLT root clauses (H. Schulz et al., 2019c).

555



1 daterange ::= date ’to’ date

3 nextevent ::= ’the’? ’next’ eventId (’after ’ date)?

5 alterusers ::= ’the number of users’ (adjust
’set to’ number adjust ?)

7

assignment ::= (’the’)? id ’is’ (number | string |
9 enumeration)

11 services ::= (’the’)? (’service ’ id |
’services ’ (id (’and’ | ’,’))+)

Listing D.2: EBNF of the given clauses of the BDLT language (H. Schulz et al.,
2019c). The services clause is not contained in the previous
publication.

vary ::= ’varying ’ (’the number of users’ |
2 (’the’)? id) (’between ’ number ’and’ number

(’in steps of’ numeric)? | ’among’ enumeration )
4

event ::= (’a’ | ’an’)? id (’happened ’ | ’happens ’)?
6 (’on’ date | ’from’ daterange)

Listing D.3: EBNF of the when clauses of the BDLT language (H. Schulz et al.,
2019c).
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run ::= ’run ’ (’each’ | ’the’) ’ experiment for ’
2 duration

4 collect ::= ’collect ’ id

6 ensure ::= ’ensure ’ check

8 break ::= ’break if’ check

10 check ::= (’the’)? (aggregator)? id ’is’
comparison number

Listing D.4: EBNF of the then clauses of the BDLT language (H. Schulz et al.,
2019c).

1 adjust ::= (’increased ’ | ’decreased ’) ’by’
numeric ’%’

3

number ::= numeric | (’the’)? aggregator
5

aggregator ::= ’maximum ’ | ’minimum ’ | ’final ’ |
7 ’average ’ | ’summarized ’ | numeric ’th percentile ’

9 enumeration ::= ’(’ string ( ’,’ string )+ ’)’

11 comparison ::= ’less than’ | ’greater than’ |
’equal to’ | ’less or equal to’ |

13 ’greater or equal to’

Listing D.5: EBNF of the utility clauses of the BDLT language (H. Schulz
et al., 2019c).
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Table E.1 summarizes the artifacts and material we publish online as a
supplement to this dissertation. Relating to the specified dissertation chapters
and containing the listed types of artifacts, we refer to the following material:

• Several repositories contain the source code, documentation, and
Docker container images of our implementation (Chapter 10). We
differentiate between the implementation of the introduced approach
(Section 10.1) and additional implementations (Section 10.2).

• We demonstrate the usage of parts of our approach, specifically the
Input Data and Properties Annotation (IDPA) (Chapter 6). We provide
an HTML document that describes individual steps to be replayed.

• To replicate or extend our evaluation, we have previously published
replication packages supplementary to our conference and journal
papers, evaluating the automated load test parameterization (Chap-
ter 12), service-tailoring (Chapter 13), context-tailoring (Chapter 14),
Behavior-driven Load Testing (BDLT) (Chapter 15), and Domain-based
microservice scalability assessment (Section 15.2) approaches.
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Table E.1.: Overview of Supplementary Material

Artifact type

Reference Chapter Sc
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Approach implementation

H. Schulz et al., 2020a 10.1 • •
H. Schulz and Dang, 2020 10.1 • •
H. Schulz, 2020a 10.1 • •
H. Schulz, 2020b,c 10.2 • •
H. Schulz, 2020d 10 •

Approach demonstration

H. Schulz, 2019 6 • •
Evaluation replication

H. Schulz et al., 2019f 12 • • • • •
H. Schulz et al., 2019b 13 • • • •
H. Schulz et al., 2020b 14 • • • • • • •
H. Schulz et al., 2019d 15 • •
Avritzer et al., 2020b 15.2 • • • • • •
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