
 
 
 

Development, mapping and validation of resilience 
and vulnerability indicators across spatial scales for 

climate related hazards 
 
 
 
 

Von der Fakultät Bau- und Umweltingenieurwissenschaften der Universität Stuttgart 
zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.) 

genehmigte Abhandlung 
 
 
 
 
 
 

Vorgelegt von 

Daniel Feldmeyer 
aus Offenburg 

 
 
 
 
 
 
 
 
 

  Hauptberichter:   Prof. Dr.-Ing. Jörn Birkmann 
  Mitberichter:    Prof. Dr.-Ing. Wolfgang Nowak 
  Mitberichter:                          Prof. Dr. William Solecki 
 
  Tag der mündlichen Prüfung:  30.3.2021 

 
 
 
 
 
 

Institut für Raumordnung und Entwicklungsplanung der Universität Stuttgart 
 

2021 





I 
 

DECLARATION 

I hereby declare that this doctoral dissertation is composed independently, and all the sources 

of information and material have properly acknowledged. 

 

 

Daniel Feldmeyer 

Stuttgart, 20-01-2021 

  



II 
 

ACKNOWLEDGEMENTS 

After many years of intensive work, it is now before you: my dissertation. With this, it is time 

to thank those who have accompanied me during this challenging but also immensely 

rewarding phase of my academic career. I am particularly indebted to my professors. As my 

first supervisor Prof. Dr. (Ing.) habil. Joern Birkmann has always supported me with his 

advice and encouragement. I´m thankful to him for trusting me with a research position in his 

team and manifold opportunities during the years, giving me the opportunity to teach and 

work with international students, work in different projects, and contribute to the development 

of proposals and many more. I would also like to thank my second supervisor Prof. Dr. (Ing.) 

Wolfgang Nowak for his positive and constructive feedback on developing a scientific 

manuscript and helping me to structure my thoughts, sentences, work and dissertation. Many 

thanks also to Prof. Dr. William Solecki as my third supervisor for his contribution, making 

this dissertation possible.  

Special thanks go to the entire IREUS-Team, who have repeatedly steered me in new and 

fruitful thematic directions with enriching tips and contributions to discussions over the past 

years. Having worked during my dissertation with many rank classifications, I couldn´t come 

up with a just sequence thanking my team. As each one contributed in a different way and it 

would have been impossible without each and every one of you – Thank you!     

Particular thanks go to my friends and family. I´m grateful for their support and help. Finally, 

I would like to sincerely acknowledge all the individuals who participated and assisted in my 

research. My dissertation would have been impossible without you.  



III 
 

CONTENT 

Declaration I 

Acknowledgement II 

Content III 

List of Figures V 

List of Tables VIII 

Notation X 

Summary XII 

Kurzfassung XVI 

1 Introduction 1 

     1.1 Motivation 1 

     1.2 State of the Art 3 

     1.3 Research Goal and Linkages 12 

     1.4 Research Questions and Approaches 14 

     1.5 Contributions and Structure of Work 24 

     1.6 References 28 

2 Chapter – First Contribution 37 

    Indicators for monitoring urban climate change resilience and adaptation  

3 Chapter – Second Contribution  55 

    Using OpenStreetMap data and machine learning to generate socio-economic  

    indicators  

4 Chapter - Third Contribution 73 

    Regional climate resilience index: a novel multimethod comparative approach for  

    indicator development, empirical validation and implementation  

5 Chapter – Fourth Contribution 87 

    Global vulnerability hotspots: differences and agreement between international  

    indicator-based assessment  

6 Chapter – Fifth Contribution 117 

    An open resilience index: crowdsourced indicators empirically developed from  

    Natural hazard and climatic event data 

  

7 Conclusion 133 



IV 
 

    7.1 Operationalization and the use and applicability of different data – census  

             versus social-network data [Contrib. 1 to 5] 133 

    7.2 Quantitative assessment of multi-faceted complex phenomena in the  

           context of climate change 135 

    7.3 The relevance of spatial scales – and the challenges linked to the “problem  

           space, assessment space and solution space” [Contrib. 1 to 5] 137 

     7.4 Validation of indicator and indices to increase robustness and transparency  

            and analysis of spatial differences [Contrib. 1 to 5] 140 

     7.5 Limitations identified within the research process 143 

     7.6 Future research  144  



V 
 

LIST OF FIGURES 

1  Introduction  

Figure 1. WorldRiskIndex main calculation scheme   4 

Figure 2. Urban Resilience Framework (ARUP and The Rockefeller  

               Foundation 2015) 7 

Figure 3. Climate Resilience Framework For Germany (Kind et al. 2019) 8 

Figure 4. Conceptual linkages of vulnerability, resilience and adaptation 11 

Figure 5. Research Framework of Dissertation 13 

Figure 6. Research process for urban resilience  15 

Figure 7. Workflow to derive Socio-economic indicators based on OSM 17 

Figure 8. Adapted IPCC climate regions for the analysis of socioeconomic   

               vulnerability 21 

Figure 9.  Workflow for empirical resilience and resilience index 23 

Figure 10. Research process and contributions of dissertation 24 

 

2 Chapter – First Contribution  

Figure 1. MONARES—research process 40 

Figure 2. Median importance of indicators grouped into five dimensions 44 

Figure 3. Box-plots of all indicators included in the survey (see Table 2 for  

               indicator codes) 46 

 

3 Chapter – Second Contribution   

Figure 1. Overall workflow of the analysis conducted 58 

Figure 2. Map of study area 59 

Figure 3. Map showing the normalized resident values (left) and predicted  

               values (right) of the municipalities in Baden-Württemberg 62 

Figure 4. Map showing the normalized unemployment values (left) and  

               predicted values (right) of themunicipalities in Baden-Württemberg 63 

Figure 5. Map showing the normalized proportion of elderly people (left) and 

               predicted values (right) of the municipalities in Baden-Württemberg 64 

Figure 6. Map showing the normalized migration balance (left) and predicted 

               values (right) of the municipalities in Baden-Württemberg 64 



VI 
 

 

4 Chapter – Third Contribution  

Figure 1. Map of counties of Baden-Württemberg and selected sub-set  

               for rural-metropolitan comparison 76 

Figure 2. Display of the global sensitivity analysis of the resilience index  

               based on the Wroclaw approach 79 

Figure 3. Correlation plot of the four aggregation methods and three  

               outcomes 80 

Figure 4. Boxplots and statistical test of mean between high and low  

               resilient counties 81 

Figure 5. Boxplots and statistical test of mean between rural and  

               metropolitan counties 81 

Figure 6. Map of the regional climate resilience index in Baden- 

               Württemberg (resilience classes are based on quantiles) 82 

 

5 Chapter – Fourth Contribution  

Figure 1. Adapted IPCC climate regions for the analysis of socio-economic  

               Vulnerability  100 

Figure 2. Variance of vulnerability within climate Regions 102 

Figure 3. Bivariate choropleth map and scatter plot diagram legend showing  

              the agreement 350 between two global vulnerability indices  

              (WorldRiskIndex and INFORM Index) when 351 ranking of climate  

              regions according to their vulnerability. 103 

 

6 Chapter – Fifth Contribution  

Figure 1. Research workflow and products 120 

Figure 2. World Risk Index main calculation scheme (Welle and Birkmann  

               2015) 120 

Figure 3. Type of disaster which affected the highest number of people  

               in each country in the last 20 years (data: EM-DAT) 122 

Figure 4. Empirical Risk Index EmRI (Data: EM-DAT) 123 

Figure 5. EERI based on own methodology (Data: EM-DAT, WRI) 124 

Figure 6. Statistical prediction of resilience based OSM by random forest  

              (Data: OSM) 125 



VII 
 

Figure 7. Statistical prediction of resilience based OSM by random forest  

               (Data: OSM) 126 

  



VIII 
 

LIST OF TABLES 

1  Introduction  

Table 1. Resilience Frameworks 5 

Table 2. Dimensions and action fields of the resilience framework  

            (Feldmeyer et al 2019) 8 

Table 3. Resilience Measurement Core (Cutter 2016) 9 

Table 4. methodology – Concept 19 

 

2 Chapter – First Contribution  

Table 1. Dimensions and action field of the resilience framework 41 

Table 2. Delineated indicators and action fields 43 

Table 3. The five indicators rated as most important in the survey 45 

Table 4. Five lowest rated indicators 45 

Table 5. Indicator set after the survey, workshop and final set 48 

 

3 Chapter – Second Contribution   

Table 1. Data table of spatial attributes per municipality 60 

Table 2. Mean absolute error of the models for the indicators. 61 

Table 3. Most important predictors of residents 62 

Table 4. Most important predictors of unemployment 63 

Table 5. Most important predictors of the elderly 64 

Table 6. The most important predictors of migration 65 

 

4 Chapter – Third Contribution  

Table 1. Methodology – Concept 75 

Table 2. Regional climate resilience indicators based on literature analysis  

             and administrative responsibilities of counties 77 

Table 3. Empirical validation of county resilience indicators 78 

 

5 Chapter – Fourth Contribution  

Table 1. Comparison of the main dimensions and framing of risk and  

             vulnerability in the ND-216 GAIN, WorldRiskIndex and INFORM  



IX 
 

            approach 95 

Table 2. Hazards considered by the ND-GAIN, WorldRiskIndex, INFORM  

             and Global 232 Climate Risk Index 96 

Table 3. Comparison of the indicators used to assess different dimensions of  

             human or societal 253 vulnerability of the INFORM and  

             WorldRiskIndex 97 

 

6 Chapter – Fifth Contribution  

Table 1. The EM-DAT disaster classification 121 

Table 2. Ten most important principal components in predicting EERI  

              with Random Forest 124 

  



X 
 

NOTATION  

Abbreviation Elaboration 

ANZ Australia/New Zealand 

ARP  Arabian Peninsula 

BMBF German Federal Ministry of Education and Research 

CAF Central Africa 

CAR Caribbean 

CEA Central E. Africa 

CEU Central Europe 

CRI City Resilience Index 

DNN Deep neural networks 

EAS E. Asia 

EB E. Siberia 

EERI Empirical Evidence Resilience Index 

EMBRACE Building Resilience Amongst Communities in Europe 

EM-DAT Emergency and Event Data Base 

EmRI Empirical Risk Index 

GIC Greenland/Iceland 

GIS Geographic Information System 

INFORM Index for Risk Management 

IOC Indian Ocean 

IOER Leibniz Institute of Ecological Urban and Regional Development 

IPCC Intergovernmental Panel on Climate Change 

LR Linear Regression 

MAE Mean Absolute  Error 

MED Mediterranean 

MIS MONARES Indicator Set 

MONARES Monitoring of Adaption Measures and Climate Resilience in Cities 

MSE Mean Squared Error 

NCA N. Central America 

NEA N. E. Africa 

NES N.E. South America 

NEU N. Europe 

NNA  N. North America 



XI 
 

NPO N. Pacific Ocean 

NSA N. South America 

NWS N.W. South America 

OECD Organisation for Economic Co-operation and Development 

ORI Open Resilience Index 

OSM OpenStreetMap 

PFI Feature Performance Index 

RAR Russian Arctic 

RF  Random Forest 

RP  Random Prediction 

SAF S.E. Africa 

SAH Sahara 

SAM South American Monsoon 

SAS S. Asia 

SCA S. Central America 

SDG Sustainable Development Goal 

SEA S.E. Asia 

SES S.E. South America 

SPO S. Equatorial Pacific Ocean 

SSA S. South America 

SWA S.W. Africa 

SWS S. W. South America 

TIB Tibetan Plateau 

UN  United Nations 

UNFCC United Nations Framework Convention on Climate Change 

WAF W. Africa 

WCA W. Central Asia 

WRI WorldRiskIndex 

WSB W. Siberia/E. Europe 

BMEL Federal Ministry of Food and Agriculture 

BA Federal Employment Agency 

BKK Company Health Insurance 

RCRI Regional Climate Resilience Index 



XII 
 

SUMMARY 

Climate resilience on all spatial scales is an imperative to tackle climate change. Facing 

climate change, a reactive and backward-faced disaster and risk management does not meet 

the upcoming threats. Natural hazards are projected to increase in frequency and magnitude 

and thus require anticipation and early warning on a local and global scale. The problem for 

the local societies is not only the increase but also the exposure to new and unknown hazards. 

Therefore, risk reduction and an increase in resilience are key and core objectives of the 

Sendai Framework, the Paris Agreement, Sustainable Development Goals, the New Urban 

Agenda and also, on the national scale, a priority of the German research initiative 

“Zukunftsstadt”.  

Unfortunately, the very nature of climate resilience has - despite an exponential increase of 

literature addressing the problem over the last decade - not yet been unveiled. In this sense, 

climate resilience is not a state of a fluent socio-ecological system but a goal that can never be 

achieved. Moreover, Germany´s climate is different to South Africa´s and even Stuttgart´s to 

Hamburg´s. Moreover, the vulnerability to the impacts of climate change and the resilience 

vary from Germany to South Africa, even from Stuttgart to Hamburg.   

The overarching goal of this thesis is to develop, test and improve methods to assess risk, 

resilience at different scales to help strengthening climate resilience. To accomplish this goal, 

climate resilience needs to be monitored and evaluated. The operationalization of resilience 

and risk is a broad research field. The assessment requires multiple spatial scales, complex 

data and challenging validation in order to measure the phenomenon. I therefore approached 

the goal from the spatial, validation as well as data perspective leading to five main 

contributions: 

Urban climate resilience indicators. Firstly, I defined climate resilience and collected a 

master list of all indicators used in literature to measure and monitor resilience. These 

indicators were neither specific for Germany nor all on the same spatial scale. In order to 

condense a set of indicators for Germany, I developed a participatory iterative methodology 

including scientists and practitioners. From the master list, indicators were filtered by the 

urban resilience framework and via survey, scientists and practitioners asked to evaluate the 

set. The results were then presented on a workshop, followed by working groups refining and 
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overturning the survey results. Lastly, expert interviews closed gaps defined by the experts 

within the indicator set. 

Resilience indicators implemented in literature are often ambiguous in regard of the effect on 

resilience they are measuring. This requires the adaptation and validation to the specific 

context and objective. In balancing the competing goals of applicability and 

comprehensiveness, twenty-four indicators measuring five dimensions and twenty action 

fields compromised best. In favour of applicability, the approach is based on secondary data 

despite the acknowledgment of limitations in measuring climate resilience. Especially softer 

and qualitative factors of resilience - although no less important - are not yet adequately 

captured by secondary data. Still, in light of monitoring, municipalities lack resources in the 

sense of labour and knowledge to collect qualitative data on a regular basis.    

Development of a sub-national resilience index and empirical validation. Based on the 

previous contribution on urban scale, the first question was to determine the next higher 

spatial scale and administrative resolution to assess climate resilience. The decision was to 

choose Baden-Württemberg as the spatial scale with its counties as the resolution due to their 

responsibilities in the federal system concerning climate resilience topics. Starting from the 

operationalization of urban resilience, a set of indicators for counties was developed. 

Additionally, indices in general and resilience indices in particular are, by nature, 

controversial and validation to foster legitimacy and transparency is essential but rarely 

conducted. The intense discussion about indicators and their link to climate resilience 

underlined this point. Therefore, a new methodology with a two-stage supervised machine 

learning validation approach including empirical data was developed.  

The statistical approach of the Wroclaw taxonomic method for index aggregation superseded 

all other aggregation methods. Consequently, it was selected for the final index and further 

analysis. None of the five spheres (environment, infrastructure, economy, governance and 

social) was excluded by the validation. Hence, all of them contributed to county climate 

resilience. The metropolitan counties had a statistically significant higher level of overall 

resilience compared to rural counties, despite lower environmental resilience. Life expectancy 

as one outcome for validation of resilience was able to capture many aspects of climate 

resilience as defined. The index did not explain insurance damages well, which was partly 

expected due to the spatial scale and is in line with literature. Nevertheless, further research is 

needed to better understand this aspect.  
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Crowdsourced geodata. Especially in the context of climate resilience - the previous two 

studies confirmed that data availability is the major limitation. Firstly, official data are linked 

to administrative boundaries, and secondly not covering qualitative factors. OpenStreetMap is 

a global database across administrative boundaries and hidden within qualitative attributes of 

municipalities. In this context the dissertation examined where and if so - how - such 

crowdsourced data could be used and applied for resilience assessments. Therefore, the study 

develops a methodology to deduce such attributes for municipalities in Baden-Württemberg 

by means of machine learning. Number of residents, migration, proportion of elderly people 

and unemployment were predicted based on OpenStreetMap data. 

In increasing order by means of the mean absolute error, most reliably predicted was the 

number of residents, followed by migration, elderly people and unemployment. Statistically, 

Neural Nets performed best. Still, the interpretation of Neural Nets provides difficulties as 

well and so does finding the best model. OpenStreetMap provides a unique data source to 

better understand complex interdisciplinary and multifaceted phenomena like vulnerability, 

sustainability or resilience. Further analysis is needed to test the transferability of models 

amongst regions and countries in order to deduce spatially fully scalable indicators from local 

to global meaningful socio-economic indicators.   

Global hotspots of vulnerability. Negative climate consequences rise not only due to the 

increase in frequency and magnitude of events, but are rather the result of the combination 

with the vulnerability of the exposed socio-economic system. Despite the general agreement 

of the importance of vulnerability, complexity and interdisciplinarity of the topic resulted in 

manifold definitions and approaches, consequently questioning the robustness and legitimacy 

of each approach. Moreover, socio-economic vulnerability is not available on the spatial scale 

of physically-derived climate regions. In order to provide a more robust and administrative 

cross-border information basis for risk reduction and resilience building, this research 

compares existing composite indices on the level of the IPCC climate regions. Therefore an 

approach is developed to aggregate socio-economic vulnerability on climate regions and 

assess the robustness of the approach.   

The results show that, despite differences between the approaches, the agreement of the 

approaches is high regarding the most vulnerable areas. The persistence of vulnerability in 

those regions requires transboundary pooling of resources and international assistance. High 

resolution hazard detection will not contribute to solving deep-rooted human vulnerability. 
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Instead, building capacities on local, national and transnational level is needed in order to 

provide enabling conditions and build a sustainable, resilient future.  

Nation´s resilience investigated by disaster data and crowdsourced geodata. The accepted 

approach in constructing an index is by starting off with a framework operationalizing the 

phenomenon. Nevertheless, this means introducing some degree of subjectivity and narrowing 

down the number of indicators under consideration. To overcome this within this research 

firstly, a resilience index based on empirical disaster data and theoretical risk is developed. 

Secondly, with OpenStreetMap, a global database is selected covering qualitative and social 

as well as environmental and economic attributes. In order to investigate resilience in a first 

step, this entire database is used to predict the empirical resilience index and hence important 

attributes deduced therefrom. The most relevant attributes for resilience are:  identity and 

mobility, sustainable infrastructure, social fabric, material supply and social infrastructure. 

The main conclusion is that resilience is scale- and place-specific. Moreover, social factors 

cannot be overestimated and to quantify them for being considered within global adaptation 

strategies, they need to be provided on a global level. Only official data sources do not cover 

resilience and therefore mining of OpenStreetMap complemented existing official data 

usefully. Still, the complexity of data mining overwhelms local authorities. Resilience is not 

yet understood.  
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KURZFASSUNG 

Klimaresilienz auf allen räumlichen Skalen ist imperativ, um die vor uns liegenden 

Herausforderungen zu bewältigen. Angesichts des Klimawandels ist ein reaktives und 

rückwärtsgewandtes Katastrophen- und Risikomanagement den anstehenden 

Herausforderungen nicht gewachsen. Naturgefahren werden voraussichtlich in Häufigkeit und 

Ausmaß zunehmen und die Antizipation derselben ist somit auf lokaler und globaler Ebene 

erforderlich. Das Problem ist also nicht nur die Zunahme, sondern auch die Exposition 

gegenüber neuen und unbekannten Gefahren für die lokalen Gesellschaften. Obwohl im 

Allgemeinen Modelle die Folgen des Klimawandels bereits recht gut vorhersagen, sind die 

sehr lokalen Auswirkungen auf den Umfang der Anpassungsmaßnahmen mit hoher 

Unsicherheit behaftet. Daher ist die Erhöhung der Widerstandsfähigkeit Teil der Ziele der 

nachhaltigen Entwicklung, der Neuen Städtischen Agenda und auch auf nationaler Ebene 

Priorität der deutschen Forschungsinitiative "Zukunftsstadt".  

Leider ist das Wesen der Klimaresilienz trotz einer exponentiellen Zunahme der Literatur, die 

sich in den letzten zehn Jahren mit dem Problem befasst hat, noch nicht enthüllt worden und 

wird es auch nicht werden. In diesem Sinne ist Klimaresilienz kein Zustand eines fließenden 

sozio-ökologischen Systems, sondern ein nie erreichtes Ziel. Darüber hinaus unterscheidet 

sich die Klimaresilienz Deutschlands von der Südafrikas, ja sogar die Stuttgarts von der 

Klimaresilienz Hamburgs. Die Leitfragen für Resilienz sind: Resilienz für wen, was, wann, 

wo und warum?  

Das übergreifende Ziel dieser These ist die Stärkung der Klimaresilienz. Um dieses Ziel zu 

erreichen, muss die Klimaresilienz gemessen und bewertet werden. Die Operationalisierung 

dazu erfordert mehrere räumliche Skalen und Daten zur Messung des Phänomens. Daher 

erforsche ich das Ziel sowohl aus der räumlichen als auch aus der Datenperspektive, was zu 

fünf Hauptbeiträgen führt: 

Städtische Klima-Resilienz-Indikatoren - Zunächst definierte ich die Klimaresilienz und 

sammelte eine Masterliste aller Indikatoren, die in der Literatur zur Messung der Resilienz für 

Monitoring verwendet werden. Diese Indikatoren waren weder spezifisch für Deutschland 

noch alle auf der gleichen räumlichen Skala. Um eine Reihe von Indikatoren für Deutschland 

zu verdichten, entwickelte ich eine partizipative iterative Methodik unter Einbeziehung von 
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Wissenschaftlern und Praktikern. Aus der Masterliste wurden die Indikatoren durch das 

Rahmenwerk zur städtischen Resilienz gefiltert und über eine Umfrage Wissenschaftler und 

Praktiker gebeten, die Indikatoren zu bewerten. Die Ergebnisse wurden dann auf einem 

Workshop Arbeitsgruppen vorgestellt, die diese verfeinerten. Schließlich füllten 

Experteninterviews die von den Experten definierten Lücken innerhalb des Indikatorensatzes 

aus. 

Während des Workshops wurde oft das Verhältnis von literaturbasierten Indikatoren zur 

Klimaresilienz diskutiert und in Frage gestellt. Bei der Abwägung der konkurrierenden Ziele 

der Anwendbarkeit und des Umfangs wurden die 24 Indikatoren, die die fünf Dimensionen 

und zwanzig Handlungsfelder am besten messen, berücksichtigt. Zu Gunsten der 

Anwendbarkeit bestand ein starker Konsens darin, sich auf Sekundärdaten zu stützen, obwohl 

man sich der Grenzen bei der Messung der Klimaresilienz bewusst war. Insbesondere 

weichere und qualitative Faktoren, obzwar nicht weniger wichtig, werden durch 

Sekundärdaten noch nicht angemessen erfasst. Dennoch fehlt es den Kommunen im Hinblick 

auf das Monitoring an Ressourcen im Sinne von Arbeitskraft und Wissen, um regelmäßig 

qualitative Daten zu erheben.    

Regionaler Klimaresilienzindex und empirische Validierung - basierend auf dem 

vorherigen Beitrag zur städtischen Skala war die erste Frage die Bestimmung der nächsten 

räumlichen Skala. Die übergeordnete räumliche Skala war Baden-Württemberg und die 

räumlich auflösenden Landkreise aufgrund ihrer Zuständigkeiten im föderalen System in 

Bezug auf Themen der Klimaresilienz. Ausgehend von der Operationalisierung der urbanen 

Resilienz wurde ein Indikatorensatz für die Kreise entwickelt. Zusätzlich sind Indizes im 

Allgemeinen und Resilienzindizes im Besonderen naturgemäß umstritten und eine 

Validierung zur Förderung von Legitimität und Transparenz ist unerlässlich. Die intensive 

Diskussion über Indikatoren und ihre Verbindung zur Klimaresilienz unterstrich diesen Punkt. 

Daher wurde eine Methodik mit einer zweistufigen Validierung mit empirischen Daten und 

einschließlich statistischer Validierung entwickelt.  

Der statistische Ansatz der Wrozlaw-Methode zur Indexaggregation konnte besser als die 

anderen Methoden die unterschiedlichen Daten homogenisieren und aggregieren. Folglich 

wurde diese Methode für den endgültigen Index und die weitere Analyse ausgewählt. Keiner 

der fünf Bereiche Umwelt, Infrastruktur, Wirtschaft, Governance und Soziales wurde von der 

Validierung ausgeschlossen. Daher tragen sie alle zur Klimaresistenz bei. Die großstädtischen 

Bezirke hatten eine statistisch signifikant höhere Gesamtresilienz im Vergleich zu ländlichen 
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Bezirken, trotz geringerer Umweltresilienz. Die Lebenserwartung, als ein Ergebnis der 

Validierung der Resilienz, konnte viele Aspekte der definierten Klimaresilienz erfassen. 

Weniger gut wurden Versicherungsschäden durch den Index erklärt, was zum Teil aufgrund 

der räumlichen Skala erwartet wurde und mit der Literatur übereinstimmt. Dennoch sind 

weitere Forschungsarbeiten erforderlich, um dies besser zu verstehen.  

Ableitung von sozialökonomischen Indikatoren aus OpenStreetMap. Insbesondere im 

Kontext der Klimaresistenz - zeigten die beiden vorangegangenen Studien die Abhängigkeit 

von Daten auf. Einmal sind amtliche Daten mit administrativen Grenzen verknüpft und 

zweitens decken sie keine qualitativen Faktoren ab. OpenStreetMap ist eine globale 

Datenbank über Verwaltungsgrenzen hinweg und beinhaltet versteckt qualitative Attribute 

von Gemeinden. Die Studie entwickelt daher eine Methodik, um solche Attribute für 

Kommunen in Baden-Württemberg mit Hilfe des maschinellen Lernens abzuleiten. Anzahl 

der Einwohner, Migration, Anteil älterer Menschen und Arbeitslosigkeit wurden auf  

Grundlage von OpenStreetMap-Daten vorhergesagt. 

In absteigender Reihenfolge anhand des mittleren absoluten Fehlers bewertet war die Zahl der 

Einwohner am besten vorhergesagt, gefolgt von Migration, Anteil älterer Menschen und 

Arbeitslosigkeit. Statistisch gesehen schnitten die neuronalen Netze besser ab wie die nächste 

Methode. Dennoch bereitet die Interpretation der neuronalen Netze Schwierigkeiten, ebenso 

wie die Suche nach dem besten Modell. OpenStreetMap bietet eine einzigartige Datenquelle, 

um komplexe, interdisziplinäre und vielschichtige Phänomene wie Verwundbarkeit, 

Nachhaltigkeit oder Resilienz besser zu verstehen. Weitere Analysen sind erforderlich, um die 

Übertragbarkeit von Modellen zwischen Regionen und Ländern zu testen, um räumlich voll 

skalierbare, von lokal bis global aussagekräftige sozioökonomische Indikatoren abzuleiten.   

Globale Hotspots der Verwundbarkeit und Klimaregionen - zwei wichtige 

Forschungsfragen, die zuvor diskutiert wurden, sind: a) die Beschränkung der Daten auf die 

Ebene der Verwaltungsgrenzen und ihre Inkongruenz mit dem Problemraum; b) die 

unbekannte Unsicherheit und Robustheit zusammengesetzter Indikatoren bei der Erfassung 

von vielschichtigen Phänomenen.   

Negative Klimafolgen sind nicht nur auf die Häufigkeit und das Ausmaß eines Ereignisses 

zurückzuführen, sondern vielmehr das Ergebnis der Kombination mit der Verwundbarkeit des 

exponierten sozioökonomischen Systems. Trotz des allgemeinen Einvernehmens über die 

Bedeutung der Verwundbarkeit führen die Komplexität und Interdisziplinarität des Themas zu 
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vielfältigen Definitionen und Ansätzen, die die Robustheit und Legitimität jedes einzelnen 

Ansatzes in Frage stellten. Um eine robustere und administrative Grenzen überschreitende 

Informationsbasis für die Risikominderung und den Aufbau von Widerstandsfähigkeit zu 

schaffen, vergleicht diese Forschung bestehende zusammengesetzte Indizes auf der 

Skalenebene der IPCC-Klimaregionen. Die Ergebnisse zeigen, dass trotz der Unterschiede 

zwischen den Ansätzen die Übereinstimmung der Ansätze in Bezug auf die am stärksten 

gefährdeten Gebiete hoch ist. Das Fortbestehen der Verwundbarkeit in diesen Regionen 

erfordert die grenzüberschreitende Bündelung von Ressourcen und internationale 

Unterstützung. Eine hochauflösende Gefahrenerkennung wird nicht zur Lösung der tief 

verwurzelten menschlichen Verwundbarkeit beitragen. Stattdessen ist der Aufbau von 

Kapazitäten auf lokaler, nationaler und transnationaler Ebene erforderlich, um günstige 

Bedingungen zu schaffen und eine nachhaltig widerstandsfähige Zukunft aufzubauen.  

Nationale Klimaresilienz anhand von Katastrophendaten und OpenStreetMap - der 

akzeptierte Ansatz für die Erstellung eines Index besteht darin, mit einem Rahmen zu 

beginnen, der das Phänomen operationalisiert. Dies bedeutet jedoch, dass ein gewisser Grad 

an Subjektivität eingeführt und die Anzahl der untersuchten Indikatoren eingegrenzt werden 

muss. Um dies im Rahmen dieser Forschung zu überwinden, wird zunächst ein auf 

empirischen Katastrophendaten und theoretischer Vulnerabilität basierender Resilienzindex 

entwickelt. Zweitens wird mit OpenStreetMap eine globale Datenbank ausgewählt, die 

sowohl qualitative und soziale als auch ökologische und ökonomische Attribute abdeckt. Um 

die Resilienz zu untersuchen, wird in einem ersten Schritt diese gesamte Datenbank 

verwendet, um den empirischen Resilienzindex vorherzusagen und daraus wichtige Attribute 

abzuleiten. Die für die Resilienz relevantesten Attribute sind:  Identität und Mobilität, 

nachhaltige Infrastruktur, soziales Gefüge, Materialversorgung, soziale Infrastruktur. Die 

wichtigste Schlussfolgerung ist, dass Resilienz maßstabs- und ortsspezifisch ist. Darüber 

hinaus können soziale Faktoren nicht überschätzt werden und um sie für die Berücksichtigung 

in globalen Anpassungsstrategien quantifizieren zu können, müssen sie auf globaler Ebene 

bereitgestellt werden. Nur offizielle Datenquellen decken die Resilienz nicht ab und Data 

Mining stellt daher eine wertvolle Ergänzung dar.     
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FIRST CHAPTER 

INTRODUCTION 

1.1 MOTIVATION 

Climate change and its negative consequences plunged from the future into our lives! 

Or - in other words - climate change has become a reality for many people around the globe 

who are already facing and fighting it. However, the consequences and impacts of climate 

change significantly depend on the living conditions of human society. 

Concerning natural hazards (also associated with climatic changes), an increase in frequency 

and magnitude is projected, which can threaten the human and environmental systems (IPCC 

2012). In addition, megatrends of an increasing world population and its urbanization 

stressing the human dimension and asking the question how to provide and secure the quality 

of life in some regions of the world and increase it in others. Climate change not only poses a 

threat but also provides opportunities. However, these opportunities and challenges will not 

be equally distributed across the globe. Hence, the inherent challenge will be how to trade and 

balance those challenges as well as opportunities. Moreover, industrialized, developed 

countries that have caused climate change are more likely to benefit, whereas least developed 

countries are more likely to suffer harm.  

The analysis and management of natural hazards has a long scientific tradition. Across the 

European Alps, despite 90 years of hazard mitigation, implementation and spending of public 

money to reduce risk, losses increased documenting a missing part of the strategy (Fuchs et al. 

2017). Sustainability, vulnerability and resilience are three concepts often applied in natural 

hazard and climate change literature and therefore defined in the following, for the clarity of 

this work.  

Sustainability was first defined in the Brundtland report: "Sustainable development is 

development that meets the needs of the present without compromising the ability of future 

generations to meet their own needs." (Brundtland et al. 1987). United Nation’s Sustainable 
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Development Goals (SDGs) have further provided a pathway to bring sustainability in human 

and environmental systems. For example, goal 1 explicitly targets to “build the resilience of 

the poor and those in vulnerable situations, and reduce their exposure and vulnerability to 

climate-related extreme events and other economic, social and environmental shocks and 

disasters” (UN 2015).  

To understand risk and its development the “social construction of risk” (Garschagen and 

Romero-Lankao 2015) is fundamental where vulnerability emerged as a prominent concept 

(Birkmann 2013). Vulnerability is defined by the IPCC as “the propensity or predisposition to 

be adversely affected” (IPCC  2012). A system can be adversely affected when it is 

susceptible to a hazardous event and lacks the necessary capacities to cope or adapt to such an 

event (IPCC 2018). Coping capacity is “the ability of people, institutions, organizations, and 

systems, using available skills, values, beliefs, resources, and opportunities, to address, manage, 

and overcome adverse conditions in the short to medium term” (IPCC 2018). Adaptive capacity 

is defined by the IPCC as “the ability of systems, institutions, humans and other organisms to 

adjust to potential damage, to take advantage of opportunities, or to respond to consequences” 

(IPCC 2018).  

In the realm of natural hazards, resilience became increasingly important and documented by 

an exponential increase in literature. Nevertheless, the term itself dates back a long time. 

Alexander (2013) sees the first use of the term in mechanics in 1858. Here, the Scottish 

engineer William J.M. Rankine (1820-72) used it to summarize the abilities (strength, 

ductility) of steel beams. In the 1950s the term was used in psychology. Werner et al. (1971) 

used it to describe children who were better able to recover from similar traumata. Two years 

later Holling (1973) used the term for ecological systems and defined it as the “measure of 

persistence of systems and of their ability to absorb change and disturbance and still maintain 

the same relationship between population or state variables”. Just before the turn of the 

millennium in the context of an increasing discussion on climate change, the term resilience 

also made its way to describe spatial entities like cities or regions in light of adaptation (Mileti 

1999).  

To understand how the term is used and applied in academia, Meerow analysed 57 definitions 

of resilience. Regarding the fundamental understanding of the term of “bouncing back” vs. 

“bouncing forward” or both, the majority of definitions define or understand resilience as 

“bouncing back” (Meerow et al. 2016). Nevertheless, in urban planning, the window of 
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opportunity widely opened by a disaster, leads to a more dynamic understanding. This 

understanding is also supported by Figueiredo et al. (2018), who stresses the change in 

understanding resilience towards an evolutionary and transformational interpretation.  

In this context, adaptation “refers to adjustments in ecological, social, or economic systems in 

response to actual or expected climatic stimuli and their impacts. It refers to changes in 

processes, practices, and structures to moderate potential damages or to benefit from 

opportunities associated with climate change” (UNFCCC) and is part of resilience (Folke et 

al. 2010). Considering the spatial specificity, urban climate resilience is defined by Feldmeyer 

et al. (2019b) as“the climate resilience of a city depends on the ability of its sub-systems to 

anticipate the consequences of extreme weather and climate change, to resist the negative 

consequences of these events and to recover essential functions after disturbance quickly, as 

well as to learn from these events and to adapt to the consequences of climate change in the 

short and medium-term, and transform in the long term. The more pronounced these abilities 

are, the more resilient a city is to the consequences of climate change.”   

The overarching goal of this thesis is to improve ways to capture and operationalize multi-

faceted concepts through new methods and data mining for assessing vulnerability, urban 

resilience, sub-national and national resilience. 

1.2 STATE OF THE ART 

Vulnerability and resilience are two concepts, which gained increased attention over the last 

two decades. Although distinct concepts, the same thematic goal of reducing negative impacts 

due to natural hazards and climate-induced stresses, led to intermingled and varying 

definitions, even conflicting ones.  

Measuring vulnerability 

Vulnerability is defined by the IPCC (2012) as “the propensity or predisposition to be 

adversely affected”.  The operationalization of this general definition requires scale- and 

hazard-specific elements. Different approaches exist globally to measure vulnerability on the 

country scale (ND-GAIN 2019; INFORM 2019; Germanwatch 2019; Birkmann and Welle 

2016). Within the WorldRiskIndex  (Welle and Birkmann 2015; Birkmann and Welle 2016) 

vulnerability consists of three pillars: susceptibility, the likelihood of suffering harm; 
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coping capacity, capacities to reduce negative consequences; adaptive capacity, capacities 

for long-term strategies for societal change (Welle and Birkmann 2015)(Fig. 1). Within the 

ND-GAIN (2019), exposure is part of vulnerability besides sensitivity and adaptive capacity. 

The INFORM (2019), in contrast, does not include the lack of coping capacity within 

vulnerability but rather separates it as its own concept. The vulnerability part is split by the 

INFORM-approach into a socio-economic and vulnerable groups’ dimension. 

 
FIGURE 1. WORLDRISKINDEX MAIN CALCULATION SCHEME (WELLE AND BIRKMANN 2015) 

 

Other approaches include multiple stressors (O’Brien et al. 2004) or include specific aspects, 

for example, heat waves (Depietri et al. 2013; Welle et al. 2014). Similar approaches exist for 

flash floods  (Karagiorgos et al. 2016), tsunamis (Birkmann et al. 2010; Jelínek et al. 2012) or 

with thematic special focus on cultural heritage (Vojinovic et al. 2016; Ravankhah et al. 

2017a; Ravankhah et al. 2017b; Ravankhah et al. 2019). Another thematic focus is to 

concentrate on rural-urban linkages as important connections for the rural community, hence 

fundamentally shaping vulnerability of rural communities (Jamshed et al. 2020a; Jamshed et 

al. 2020b; Jamshed et al. 2020c).  

Cities are of special interest on a national level. The adapted BBC framework for the city of 

Cádiz measures the vulnerability to tsunamis based on exposure susceptibility and coping 

capacity (Bogardi, Birkmann, Cardona Framework developed in 2004, for more details see 

Birkmann 2013b: 54). The assessment developed by Karagiorgos (2016) combines a physical 

and social component to vulnerability. The assessment of heat waves within the city of 

Cologne (Germany), based on the MOVE framework, deconstructs vulnerability into 
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exposure, susceptibility and lack of resilience (Depietri et al. 2013, Birkmann et al. 2013). 

Two major challenges remain: First, as shown earlier that numerous approaches exist but no 

agreed-upon assessment of vulnerability exists while the robustness of the vulnerability 

assessment and its congruence with other assessments is missing. Second, on a global scale, 

physical climate regions define the exposure element, but socio-economic data are only 

available on administrative scales. Therefore, vulnerability assessments are only conducted on 

a national scale or sub-national scale. 

Measuring resilience 

Resilience is not resilience is the common denominator. Therefore, frameworks have been 

developed for different objectives (Table 1). Some studies explicitly name climate change as 

an objective where others do not. Another difference is, whether resilience is rather seen as a 

general concept against “any” hazard or closely linked to a specific hazard. The aspect of 

monitoring adds another quality to requirements. Whereas, in a single assessment, the 

completeness is crucial, for monitoring also the effort necessary becomes crucial. The fact of 

climate change makes it indispensable to pay tribute to an evolving, changing, fluent status. 

TABLE 1. RESILIENCE FRAMEWORKS 

Framework Author Climate Hazard M&E 

Building resilience amongst 
communities in Europe 

Birkmann et al. 
(2012) 

no multiple 
hazards 

no 

Urban climate resilience ARUP and The 
Rockefeller 
Foundation (2015) 

yes multiple 
hazards 

no 

Design, monitoring and evaluation 
of resilience interventions: 
conceptual and empirical 
considerations 

Béné et al. (2015) no multiple 
hazards 

yes 

Assessing and monitoring climate 
resilience 

Welle et al. (2014) yes multiple 
hazards 

yes 

Baseline resilience indicators for 
communities 

Cutter et al. (2010) yes multiple 
hazards 

yes 

Smart mature resilience ICLEI Europe 
(2017) 

yes multiple 
hazards 

yes 

Monitor nachhaltige Kommune Riedel et al. (2016) yes multiple 
hazards 

yes 

Asian cities climate change 
resilience 

Rockefeller (2014) yes multiple 
hazards 

yes 

The PEOPLES resilience 
framework 

Renschler et al. 
(2010) 

no multiple 
hazards 

no 
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San Francisco planning and urban 
research association (SPUR) 

Poland (2008) no earthquake no 

The Oregon resilience plan Oregon Seismic 
Safety Policy 
Advisory 
Commission 
(2013) 

no earthquake no 

Disaster resilience scorecard for 
cities 

UNISDR (2017) yes multiple 
hazards, 
not only 
CC 

no 

Community resilience system Plodinec et al. 
(2014) 

yes multiple 
hazards, 
not only 
CC 

yes 

Community advancing resilience 
toolkit 

Pfefferbaum et al. 
(2015) 

no multiple 
hazards, 
not only 
CC 

no 

Coastal community  
resilience indicators  
and rating systems 

NOAA (2015) yes multiple 
hazards 

no 

The concept for community 
resilience indicators 

Mitigation 
Framework 
Leadership Group 
(2016) 

yes multiple 
hazards 

no 

A measurement of community 
disaster 
resilience in Korea 

Yoon et al. (2016) no multiple 
hazards 

no 

A localized disaster-resilience index 
to assess coastal 
communities based on an analytic 
hierarchy process (AHP) 

Orencio and Fujii 
(2013) 

no multiple 
hazards 

no 

Community based resilience 
analysis 

UNDP (2013) yes multiple 
hazards 

yes 

A framework for urban climate 
resilience 

Tyler and Moench 
(2012) 

yes multiple 
hazards 

yes 

 

Each of the above frameworks defines resilience in a slightly different way. However, most of 

them apply a hierarchical structure, defining main dimensions or themes which, again, are 

split into sub-themes. The naming of the categories and levels is different from framework to 

framework. Additional to the categories, in most frameworks, also abilities are introduced 

(Fig. 7).  Despite many approaches, a lack of empirical validation of climate resilience 

indicators and indices exist (Bakkensen et al. 2017; Burton 2015). This also partly explains 

the multitude of approaches and limits the explanatory power of existing approaches due to 

the fact that the effect is not included and assessed. Composite indicators used to measure 
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multifaceted phenomena are criticized in this regard as to be subjective in the selection of 

indicators, the often unclear impact of the aggregation method, the increased amount of data 

needed and being non-robust (Salteli 2007). 

The framework of ARUP and the Rockefeller Foundation (2015) defines four categories on 

the first hierarchical level: “Economy & society”, “Infrastructure & ecosystems”, “Leadership 

& strategy”, “Health & wellbeing” (Fig. 2). Each dimension is split into three sub-dimensions, 

each of which consists of several indicators to measure and quantify the sub-dimension. The 

abilities are added to the concept in such a way that, for each sub-theme, the contribution to 

the ability is defined. As initially stressed, resilience is specific to place, objectives and scale. 

In the context of Germany, a research initiative funded by the Ministry of Education and 

Research (BMBF) funds multiple projects under the roof of resilience. 

 

FIGURE 2. URBAN RESILIENCE FRAMEWORK (ARUP AND THE ROCKEFELLER FOUNDATION 
2015) 
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The cross-cutting project within the funding initiative Monitoring and Evaluating Urban 

Climate Resilience (MONARES) focuses on building the roof.  Urban climate resilience is - 

within this context - built by five dimensions (Governance, Economy, Society, Environment, 

Infrastructure) and six abilities (transform, anticipate, resist, adapt, learn, recover) (Fig 3). 

Each main dimension is further divided into action fields (Table 2). A total of 24 action fields 

define and refine important aspects of urban climate resilience. In this way, the framework 

identifies areas to be measured and monitored. The challenge is how to include and approach 

the context-specificity and the changing nature of risk (Figueiredo et al. 2018) in this 

framework. No German urban and regional set of climate resilience indicators exists, which is 

important as international indicators cannot simply be transferred to the context of Germany 

due to the aforementioned reason.  

 

FIGURE 3. CLIMATE RESILIENCE FRAMEWORK FOR GERMANY (KIND ET AL. 2019) 

TABLE 2. DIMENSIONS AND ACTION FIELDS OF THE RESILIENCE FRAMEWORK (FELDMEYER 
ET AL 2019) 

Dimension Action Field 
Environment Soil and green spaces 

Water bodies 
Biodiversity 
Air 

Infrastructure Settlement structure 
Energy 
Telecommunication 
Traffic 
Drinking and wastewater 

Economy Innovation 
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Business 
Economic structure 

Society Research 
Knowledge and risk competence 
Health care 
Socio-demographic structure 
Civil society 
Civil protection 

Governance Participation 
Municipal budget 
Strategy, plans and environment 
Administration 

 

In a study about specific indicators in literature, Cutter (2016) analysed the frequency of how 

often specific indicators are used by different studies to deduce indicators agreed on in 

scientific literature. The scientific core of resilience measurements comprises 19 specific 

indicators (Table 3).  

TABLE 3. RESILIENCE MEASUREMENT CORE (CUTTER 2016) 

Attribute/assets  Capacities  Most often used proxy 
variable  

Economic    Income (median household)  
Social    Educational attainment/equality; 

health care access (number of 
doctors)  

  Social capital  Civic organizations (number); 
religious organizations/adherents 
(number)  

Institutional    Mitigation plans (% population 
covered), mitigation activities 
(number), or mitigation 
spending (per capita)  

  Community assets and 
functions  

Community services (number), 
community helping  

Information/communication  Information/communication  Prior experience with recovery, 
learning from the past; hazard 
severity  

Infrastructure    Buildings of various types 
(emergency management; 
government, power, bridges, 
commercial)  

  Connectivity  Feeling of belonging to the 
community; proximity to urban 
areas  

  Emergency management  Shelters, evacuation routes  
Environmental    Impervious surfaces 
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Although those indicators are most often applied in measuring resilience, the set does not 

represent a commonly agreed set of indicators on how to measure resilience. An important 

aspect of climate resilience is the social dimension (e.g. community helping, feeling of 

belonging), which is rarely sufficiently addressed due to a lack of data of such soft elements 

(Cutter 2008b; Sorg et al. 2018; Feldmeyer et al. 2019b; Schaefer et al. 2020).   

 

Linkages between resilience and vulnerability 

For the relation between the concept of resilience and vulnerability, no stand-alone definition 

exists. The study of Yoon et al. (2016) analysed the relation of vulnerability, resilience and 

adaptation in the literature (Fig. 4). This analysis revealed a highly ambivalent and 

inconsistent use of the different concepts with regard to one another. Resilience is here seen 

as part of the adaptive capacity or vice a versa. Similar, vulnerability and resilience, where 

resilience is used as a part to explain vulnerability or as a separate concept but with some 

overlay, the relations of the concepts are not defined universally. Considering all three 

concepts, adaptive capacity is seen in literature as the exact intersection of resilience and 

vulnerability, but also in other hierarchical sequences. Cutter et al. (2014) in a data-driven 

analysis of resilience and vulnerability, determined a mainly negative correlation, as expected, 

for the two concepts, but with some common areas. Sherrieb et al. (2010), in their analysis of 

resilience and vulnerability, state a 25% overlay, which consists mainly of social and 

economic attributes. Other attributes like infrastructure, institutional, environmental and 

community capital of this resilience assessment were inconsistent with vulnerability.  
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FIGURE 4. CONCEPTUAL LINKAGES OF VULNERABILITY, RESILIENCE AND ADAPTATION 
(YOON ET AL. 2016) 

 

Four interwoven key challenges arise from the current state of the art in assessing 

vulnerability and climate resilience:  

1. Soft factors (e.g. learning from the past, feeling of belonging) are essential in 

assessing resilience but commonly only measured by surveys. Therefore, new 

data sources are needed to measure and even monitor them area-wide.  

2. Quantification of vulnerability and climate resilience.  

3. The assessment scale of vulnerability and climate resilience does not match the 

adaptation scale and/or problem scale.  
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4. The innumerable approaches for both phenomena also reveal a lack of 

validation and raise the question of robustness and transparency, essential in 

justifying political actions, and provide indisputable arguments. 

1.3 RESEARCH GOAL AND LINKAGES 

The overarching goal of this thesis is to improve ways to capture and operationalize multi-

faceted concepts through new methods and data mining for assessing vulnerability, urban 

resilience, sub-national and national resilience. The operationalization of resilience and risk is 

a broad research field. Within my five contributions, I approached this goal from various 

angles, bound together by four overarching linkages and common elements or challenges: 

1. Operationalization and the use and applicability of different data – census 

versus social-network data  

2. Quantitative assessment of multi-faceted complex phenomena in the context of 

climate change 

3. The relevance of spatial scales – and the challenges linked to the “problem 

space, assessment space and solution space” 

4. Validation of indicators and indices to increase robustness and transparency 

and analysis of spatial differences 

Climate resilience and vulnerability are multi-faceted complex phenomena. Thus, compared 

to a purely single or one-sector approach, the concepts include different dimensions that can 

also lead to the emergence of tensions or questions about the weighting and synergies and 

mismatches between different areas and goals within resilience or vulnerability. Despite many 

approaches and progress achieved in quantifying vulnerability and resilience, many questions 

and challenges remain unsolved. Hence, this is the first cross-cutting dimension and all five 

contributions are augmenting and expanding existing knowledge (Fig. 5). 

The second cross-cutting dimension is the operationalization of vulnerability and resilience. 

Both concepts include multiple sectors, government agencies and additional soft factors like 

personal networks, which combined challenge the quantification and operationalization. 

Traditional data sources do not cover all aspects of both phenomena. Nevertheless, depending 

on the goal of the assessment and the need to monitor over time, the requirement of the 

assessment is also to be cost and time-efficient. For example, in the context of local urban 



13 
 

governments, extensive surveys and complex modelling are not feasible. The trade-off 

between completeness and practicability needs to be balanced. All five contributions present 

solutions and new results to the challenge of operationalization. 

The third cross-cutting dimension is the validation of quantitative multi-faceted phenomena. 

Vulnerability and resilience are not easily validated as, per definition, no single indicator 

exists to validate as many indicators are necessary to capture all aspects. Still, validation is 

fundamental to increase robustness and transparency to provide administrative bodies with the 

justification for action and/or justify the selection of a specific adaptation measure. All five 

contributions include thorough validation through a variety of methods and new approaches. 

 

FIGURE 5. RESEARCH FRAMEWORK OF DISSERTATION 

The fourth cross-cutting dimension is the relevance of the spatial scale for the assessment – 

assessing the incongruence of problem, assessment and solution or adaptation scale. First of 

all, the assessment of vulnerability and resilience is sensitive to the spatial scale of the 

assessment. Second, the spatial scale of the problem most certainly will not coincide as 

administrative boundaries “insufficiently” reflect physical dimensions. Last, the solution 

space for adaptation measures has to be considered for the assessment scale, as specific 

administrative duties are bound to the hierarchical structure of the ministries.  
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1.4 RESEARCH QUESTIONS AND APPROACHES 

To achieve the overall goal of my disserataion five contributions tackle different angles. 

Based on the literature overview (section 1.2) I deduce in this section challenges, goals and 

research question to achieve the overall goal of my dissertation (section 1.3). The subsequent 

section corresponds to the five contributions (named in section 1.5). 

Urban climate resilience indicators 

The operationalization of urban resilience is, by nature, an interdisciplinary approach. The 

urban fabric is a complex and multi-layered system. The MONARES project (monitoring of 

adaptation measure and climate resilience in cities) is funded by the German Ministry of 

Education and Research (BMBF). The main objectives of the project are: first, bringing 

together academia and researchers to create a common understanding of resilience. Second, 

modelling the adaptation process into a guided and transparent governing process. Third, 

linking and combining resilience to adaptation measures.  

In general, the availability of information is not only important for decision makers but also 

for the society to better able to make informed decisions. Monitoring indicators provide 

impartial feedback on the status of the resilience-building process and provide credibility, 

accountability and transparency and especially in times of uncertainty and an unknown future.  

Challenges 

The quantification poses several challenges: first, the conceptual challenge of urban climate 

resilience. Second, the context specificity of indicators requires acknowledgement. Third, the 

very fluent fabric of risk and vulnerability in a changing society impacts the interpretation and 

evaluation of indicators themselves.  

Goal 

The operationalization of urban resilience by quantitative indicators provides the means to not 

only make informed decisions but to also guide and steer the transformation process. 

Moreover, linking resilience indicators to adaptation measures provides the concept to 

evaluate the success and/or effectiveness of those measures in the context of climate change. 

Hence, the goal is a set of quantitative urban climate resilience indicators reflecting the time, 

space and place specificity of Germany.  

Questions 
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To address these challenges an iterative and participatory research design was developed (Fig. 

6). In seven phases including workshops and surveys with practitioners and researchers first, a 

concept of climate resilience was developed and, continuing the process, a set of indicators to 

monitor urban climate resilience was established by answering the following research 

questions: 

1. What are indicators in literature to operationalize climate resilience, and how 

can they be transferred to the context of German municipalities? 

2. What are the key criteria and challenges of quantifying climate resilience to 

effectively monitor and steer municipalities' adaptation processes? 

3. What are attributes for urban indicators applicable for both local administration 

and scientific community? 

4. How to ensure robustness and transparency of climate resilience indicators 

through validation at the science-policy interface? 

 

FIGURE 6. RESEARCH PROCESS FOR URBAN RESILIENCE  
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Resilience data 

In measuring climate resilience, data availability is one of the fundamental challenges. 

Governmental data provided are often limited by administrative boundaries. Moreover, the 

distribution is not centralized and linked to the ministry or agency respectively to the topic. 

Interdisciplinary topics like vulnerability or climate resilience therefore rely on multitudinous 

different data sources. Considering only Germany with its federal structure, the collection of 

data across all federal states requires sustained efforts. Even for data collection and 

calculation methods, no unified methodology is applied and therefore, even once all the data 

have been collected, they are neither comparable nor comprehensive. Some data are only 

available on the municipal level like local development plans and land use plans. The federal 

state of Baden-Württemberg alone comprises 1101 municipalities, moreover vulnerability and 

resilience assessments are often based on surveys or scorecards. But such manual data 

gathering requires a lot of resources and also knowledge. This might still be possible for a 

one-time snapshot but poses a barrier for monitoring purposes.  

Volunteered Geographic Information (VGI) overcomes several of the previously mentioned 

shortcomings. It is not limited to administrative boundaries and exists with high spatial and 

temporal resolution. Specifically, OpenStreetMap (OSM) comprises a massive amount of data 

with global coverage. The challenge for using OSM is to unlock the information hidden 

within the semi-structured database and semi-standardized naming of objects. Nevertheless, 

socio-economic statistics and indicators are concealed and can be excavated by data mining 

(Jokar Arsanjani 2015; Glasze and Perkins 2015). Within these studies, official statistical 

indicators are predicted on a municipal level with machine and deep learning algorithms for 

the federal state of Baden-Württemberg. 

Challenge 

Resilience and vulnerability assessments often rely solely on available governmental data, 

which not only are thematically limited but also limited in temporal frequency and spatial 

resolution. Cutter and Finch underscore the fundamental dependency on data availability and 

quality to measure vulnerability against natural hazards (Cutter and Finch 2008). This also 

counts for climate resilience (Sauter et al. 2019; Schaefer et al. 2020; Feldmeyer et al. 2019a) 
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Goal 

This research aims to develop a machine learning approach to deduce socio-economic 

indicators from OpenStreetMap (OSM) for municipalities (Fig. 7). 

Questions 

The underlying hypothesis is that there are proxies for socio-economic attributes within the 

geodata of the OSM database. To test this hypothesis, the research answered the following 

questions: 

1. Can crowdsourced data be operationalized to expand the database for multi-

faceted phenomena? 

2. What are the challenges and chances of quantification by using machine 

learning algorithms? 

3. How to validate the predictive performance and deduce elements explaining 

the predictions of black-box machine learning algorithms? 

4. What are key elements for the municipalities of Baden-Württemberg predicting 

number of residents, unemployment, migration and proportion of elderly? 

 

FIGURE 7. WORFLOW TO DERIVE SOCIO-ECONOMIC INDICATORS BASED ON OSM 
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Regional climate resilience index 

Resilience is inextricably linked to the objective, the spatial and temporal scale as well as the 

place (Meerow and Newell 2019). Consequently, the indicators previously developed for 

urban climate resilience are not applicable on a regional scale, despite the same geographical 

context of Germany. Nevertheless, the objective of climate resilience and its fundamental 

conceptualization is coherent as well as climate change-induced stresses. 

Challenge 

To measure, monitor and evaluate multi-faceted phenomena, composite indicators are en 

vogue with an exponential increase of publications during the last decade (Greco et al. 2019). 

Becker et al. (2017) identify two reasons for this popularity. First, they provide a 

simplification and enable therefore evaluation and comparison of otherwise too complex 

issues like vulnerability, climate resilience or human development. Second, they can thereby 

foster transformation processes of agencies and governments. Despite their huge popularity 

and possibilities, composite indicators are also harshly criticised. On the one hand, they 

oversimplify matters and therefore misinform, while on the other hand, the selection of 

indicators and aggregation methods for index development can be highly subjective and 

immensely influences the result. To overcome these critics two different approaches are often 

taken. One is the reason-based thematic-driven approach, justifying indicators and 

aggregation based on thematic arguments. The other approach taken is data-driven exploring 

the underlying structure of the data in order to build the index.  

Goal 

Four main objectives are achieved by this approach: first, developing an indicator set for 

regional climate resilience; second, upscaling of urban climate resilience; third, addressing the 

criticisms of composite indicators by testing four different aggregation methods and 

implementing a twofold validation as well as robustness and sensitivity analysis; fourth, 

filling the gap of empirical validation of resilience measuring approaches (Bakkensen et al. 

2017; Burton 2015);  

Questions 

To unfold its potential, the regional climate resilience index needs to withstand the above-

mentioned critics. Therefore, the approach developed here is to combine the thematic as well 

as the data-driven approach (Table 4), answering the following research questions: 
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1. How to operationalize and upscale a climate resilience framework and 

indicators from urban to regional scale in the context of Baden-Württemberg, 

Germany? 

2. What are key elements of the quantification of regional climate resilience and 

explanation of regional differences? 

3. What are relevant aspects of regional climate resilience to link the assessment 

scale to administrative duties and the adaptation or solution space? 

4. What are possible indicators for measuring climate resilience that can be 

utilised for empirical validation and bias reduction of indicator selection and 

aggregation method? 

TABLE 4. METHODOLOGY - CONCEPT 
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Vulnerability hotspots and climate regions 

Besides the lack of data for resilience and vulnerability assessments, discussed in the previous 

section, the incongruence of spatial scale, problem scale and data scale or resolution is 

important to consider. Major efforts have been put into a better understanding of vulnerability 

on a global scale following the IPCC Special Report SREX (IPCC 2012) and the Fifth 

Assessment Report (AR5). In order to assess the systems´ vulnerability to natural hazards and 

climate change, multiple sets of indicators have been developed, following different schools 

of thought (INFORM 2019; Feldmeyer et al. 2017; Birkmann and Welle 2016; ND-GAIN 

2019).  

Challenge 

Despite the agreement about the importance of assessing and subsequently reducing 

vulnerability, global and regional patterns are often neglected due to difficulties in quantifying 

them. Nevertheless, the spatial scale of climate change defined by physical climate regions 

(Fig. 8) lack matching vulnerability assessments to assess risk.  

Goal 

The overarching goal is to increase the robustness and transparency of the assessment of 

human vulnerability and providing the respective spatial scale for physical climate regions to 

assess risk by all parts of the risk equation and therefore provide the means and justification 

for effective adaptation measures and vulnerability reduction. 

Questions 

The purpose of this contribution is to examine and compare some of the key global 

vulnerability assessments, addressing the following questions: 

1. What dimensions do current global assessments of vulnerability to and risk 

from climate change and natural hazards include? 

2. Can these results be usefully up-scaled from the national level to the level of 

climate regions? 

3. What kind of spatial patterns emerge when assessing human vulnerability at 

the level of climate regions? 

4. To what extent do these assessments agree on the classification of regions in 

terms of their vulnerability level (i.e. low versus high vulnerability and 

variance)? 
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FIGURE 8. ADAPTED IPCC CLIMATE REGIONS FOR THE ANALYSIS OF SOCIOECONOMIC 
VULNERABILITY 

 

National climate resilience 

Resilience indicators based on literature are often criticized by practitioners for their lack of 

practical connection (Feldmeyer et al. 2019). Despite many approaches in measuring 

resilience, the vast majority is based on indicators derived from literature. Fewer approaches 

exist developing or validating indicators based on empirical evidence. Therefore, there is a 

clear lack of empirically-derived resilience assessments and of validation of existing ones. 

(Bakkensen et al. 2017; Burton 2015). 
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The Emergency Event Database comprises of national scale 22,000 disasters, ongoing. To 

determine resilience, additional information about the risk is necessary. The WorldRiskIndex 

calculates countries´ risks based on exposure and vulnerability. OpenStreetMap, when 

analysed by means of data mining, not only provides information about streets and houses, 

but also socio-economic and qualitative attributes, which is crucial for understanding climate 

resilience.  

Challenge 

Two key challenges continue to prevail: (a) including the social component of climate 

resilience and (b) validation with empirical data of indices and indicators to measure climate 

resilience.  

Goal 

Our goal is to develop an index for the nations’ climate resilience, validated with empirical 

event data and including the social component of climate resilience.  

Questions 

We have developed a two-step solution to overcome these challenges (Fig. 9), the first step 

involves an empirical resilience index (EERI) based on the Emergency Event Database (EM-

DAT) (EM-DAT) and the WorldRiskIndex (WRI) (Welle et al. 2015). Its basis in disaster 

damage data provides empirical validation. The second step, which involves utilising statistics 

from OpenStreetMap (OSM), will be used to predict the EERI and infer explanatory elements. 

OSM includes not only evidence of the physical world, but also information about the socio-

economic status (Glasze et al., 2015; Jokar Arsanjani et al., 2015), so that the social 

component is included. The following research questions have to be answered during the two-

step research process: 

1. How can countries´ climate resilience be operationalized for measurement 

based on empirical event data and vulnerability? 

2. How to quantify and develop climate resilience indicators, including soft 

factors based on a global crowdsourced database? 

3. What are key elements predicting a nation´s climate resilience? 

4. How can empirical event data validate and develop indicators to create a 

transparent and robust climate resilience index? 
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FIGURE 9.  WORKFLOW FOR EMPIRICAL RESILIENCE AND RESILIENCE INDEX 
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1.5 CONTRIBUTIONS AND STRUCTURE OF WORK 

Figure 10 gives an overview of the contributions, research interests, core methods as well as 

research outputs: 

 

FIGURE 10. RESEARCH PROCESS AND CONTRIBUTIONS OF THE DISSERTATION 

 

The thesis is composed of seven chapters which can be divided into three main parts: 

Introduction – providing the background, motivation, state of the art and structure of the 

work. 

Contributions - chapters 2 to 6 are the main part and contain my contributions to the goal of 

the development of new ways to assess and visualize resilience and vulnerability to 

environmental change by using novel methods and new data:  

1. Chapter 2: Feldmeyer, D.; Wilden, D.; Kind, C.; Kaiser, T.; Goldschmidt, R.; Diller, C.; 

Birkmann, J. (2019b): Indicators for Monitoring Urban Climate Change Resilience and 

Adaptation. In Sustainability 11 (10), p. 2931. DOI: 10.3390/su11102931. 
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2. Chapter 3: Feldmeyer, D., Meisch, C., Sauter, H., & Birkmann, J. (2020). Using 

OpenStreetMap Data and Machine Learning to Generate Socio-Economic Indicators. 

ISPRS International Journal of Geo-Information, 9(9), 498. DOI: 

https://doi.org/10.3390/ijgi9090498  

3. Chapter 4: Feldmeyer, D., Wilden, D., Jamshed, A., & Birkmann, J. (2020). Regional 

climate resilience index: A novel multimethod comparative approach for indicator 

development, empirical validation and implementation. Ecological Indicators, 119, 

106861.DOI: https://doi.org/10.1016/j.ecolind.2020.106861  

4. Chapter 5: Feldmeyer, D., Birkmann, J., McMillan, J., Stringer, L., Leal Filho, W., 

Djalante, R., Pinho, P., Liwenga, E. (2020) Global vulnerability hotspots: differences 

and agreement between international indicator-based assessments. Climatic Change. 

(Status: submitted) 

5. Chapter 6: Feldmeyer, D., Nowak, W., Jamshed, A., Birkmann, J. (2021) An empirically 

developed vulnerability and resilience index based on damage data and OpenStreetMap. 

Science of Total Environment 774(3). DOI: 10.1016/j.scitotenv.2021.145734 

 

Conclusion – the final chapter summarizes the main conclusions across all five publications 

and concludes with an outlook. 

 

CONFERENCES 

I presented and discussed my findings at several international conferences:  

1. Kind, C., Kaiser, T., Feldmeyer, D., Wilden, D. (2019) “Framing and 

monitoring urban climate resilience in German municipalities – insights from 

an ongoing research project” 4th European Climate Change Adaptation 

conference 28 - 31 May, Lisbon, Portugal 

2. Feldmeyer, D., Sauter, H., & Birkmann, J. (2019) “An open risk index with 

learning indicators from OSM-tags, developed by machine learning and trained 

with the world risk index” FOSS4G 2019 26 – 30 August, Bucharest, Rumania 

DOI: 10.5194/isprs-archives-XLII-4-W14-37-2019  

3. Sauter, H., Feldmeyer, D., & Birkmann, J. (2019) “Exploratory study of urban 

resilience in the region of Stuttgart based on OpenStreetMap and literature 
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resilience indicators” FOSS4G 2019 26 – 30 August, Bucharest, Rumania 

DOI: 10.5194/isprs-archives-XLII-4-W14-213-2019  

4. Wilden, D., Feldmeyer, D., Birkmann, J., Diller, C. (2018) “A conceptual 

integrative approach to monitoring, evaluation and validation of Climate 

Change Adaptation measures for urban resilience” 8th International 

Conference on Building Resilience Lisbon, Portugal 

5. Sauter, H., Feldmeyer, D., Birkmann, J. (2018) “Enhancing the spatial and 

temporal resolution of the WorldRiskIndex with new data sources” FOSS4G 

2018 27 – 31 August, Dar es Salaam, Tanzania 

6. Feldmeyer, D. (2018) “Development of human vulnerability:  learning from 

past trends for future directions” 5th International climate Change Adaptation 

Conference 18 – 21 June, Cape Town, South Africa 

 

FURTHER PUBLICATIONS 

Beyond the scope of the thesis, I published and contributed to several additional peer-

reviewed scientific publications in the broader context of extreme events, vulnerability and 

risk management:  

Feldmeyer, D.; Birkmann, J.; Welle, T. (2017): Development of Human Vulnerability 2012–

2017. In Journal of Extreme Events 04 (04), p. 1850005. DOI: 10.1142/S2345737618500057. 

Sorg, L., Medina, N., Feldmeyer, D., Sanchez, A., Vojinovic, Z., Birkmann, J., & Marchese, 

A. (2018). Capturing the multifaceted phenomena of socio-economic vulnerability. Natural 

Hazards, 92(1), 257-282. 

Jamshed, A.; Birkmann, J.; Ahmad Rana, I.; Feldmeyer, D. (2020a): The effect of spatial 

proximity to cities on rural vulnerability against flooding: An indicator based approach. In 

Ecological indicators 118, p. 106704. DOI: 10.1016/j.ecolind.2020.106704. 

Jamshed, A.; Birkmann, J.; Feldmeyer, D.; Rana, I. (2020b): A Conceptual Framework to 

Understand the Dynamics of Rural–Urban Linkages for Rural Flood Vulnerability. In 

Sustainability 12 (7), p. 2894. DOI: 10.3390/su12072894. 

Jamshed, A.; Birkmann, J.; McMillan, J.; Rana, I.; Feldmeyer, D.; Sauter, H. (2020c): How 

rural-urban linkages change after the extreme flood event? Empirical evidence from rural 
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communities in Pakistan. In Science of The Total Environment, p. 141462. DOI: 

10.1016/j.scitotenv.2020.141462. 

Lecina‐Diaz, J., Martínez‐Vilalta, J., Alvarez, A., Banqué, M., Birkmann, J., Feldmeyer, D., 

Vayreda, J., Retana, J. Characterizing forest vulnerability and risk to climate‐change hazards. 

Frontiers in Ecology and the Environment. DOI: https://doi.org/10.1002/fee.2278  

Birkmann, J., Feldmeyer, D., McMillan, J., Solecki, W., Totin, E., Roberts, D., Trisos, C. 

(2021) The adaptation gap: regional clusters of vulnerability require transboundary 

cooperation. Proceedings of the National Academy of Sciences of the United States of 

America (submitted) 

Wilden, D., Feldmeyer, D., (2021) Empirical validated indicator set for measuring 

knowledge and action changes in the light of urban climate resilience. City and environment 

interactions (submitted) 
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Abstract: In the face of accelerating climate change, urbanization and the need to adapt to these
changes, the concept of resilience as an interdisciplinary and positive approach has gained increasing
attention over the last decade. However, measuring resilience and monitoring adaptation efforts have
received only limited attention from science and practice so far. Thus, this paper aims to provide
an indicator set to measure urban climate resilience and monitor adaptation activities. In order
to develop this indicator set, a four-step mixed method approach was implemented: (1) based on
a literature review, relevant resilience indicators were selected, (2) researchers, consultants and
city representatives were then invited to evaluate those indicators in an online survey before the
remaining indicator candidates were validated in a workshop (3) and finally reviewed by sector
experts (4). This thorough process resulted in 24 indicators distributed over 24 action fields based
on secondary data. The participatory approach allowed the research team to take into account the
complexity and interdisciplinarity nature of the topic, as well as place- and context-specific parameters.
However, it also showed that in order to conduct a holistic assessment of urban climate resilience, a
purely quantitative, indicator-based approach is not sufficient, and additional qualitative information
is needed.

Keywords: resilience; indicator; monitoring; climate change; climate adaptation

1. Introduction

Our society is facing multitudinous different challenges—in this paper we are focusing on two
main challenges: climate change and urbanization. In 2015, 3.9 billion people were living in cities.
By 2050, the population in cities is projected to reach up to 6.7 billion people [1]. Urban agglomerations
will continue to grow and are increasingly threatened by the high uncertainty of climate change
impacts [2]. In response to these impacts, cities are already implementing climate change adaptation
measures in order to prepare for uncertain future changes. Adaptation to climate change and climate
variability is not a new phenomenon [3]. However, steadily rising temperatures, increasing magnitude
and frequencies of climate-induced extreme events, such as droughts, floods, storms or intense rainfall,
as well as the growth of the global human population pose new adaptation challenges to humankind [3].
In our research, we use the term adaptation as defined by the United Nations Climate Change [4]:
“Adaptation refers to adjustments in ecological, social, or economic systems in response to actual or
expected climatic stimuli and their effects or impacts. It refers to changes in processes, practices, and
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structures to moderate potential damages or to benefit from opportunities associated with climate
change”. Furthermore, the ability of adaptation is understood as part of resilience, as described
by Folke et al. [5]. The concept of resilience can be attributed to Holling [6] and originates from
ecology. He described resilience as the “measure of persistence of systems and of their ability to
absorb change and disturbance and still maintain the same relationship between population or state
variables” [6]. The original concept of resilience gained increased importance in other disciplines,
whereby the definitions of resilience were steadily differentiated, broadened and deepened. There
are three main understandings of the character of resilience: “bounce back” which refers to the fast
return to an equilibrium state of a system after a shock event, “bounce forward” which focuses on a
system which should have capacities to be adapted to uncertainty and “both” which addresses the
co-occurrence of the capacities for “bounce back” and “bounce forward” [7]. Meerow et al. [2] analysed
57 academic definitions of urban resilience, with particular regard to these fundamental understandings
of urban resilience. The analysis showed that 35 definitions focus on “bouncing back”, 15 on “bouncing
forward” and only seven see both capacities as elementary for resilience. Figueiredo et al. [8] pointed
out that the definitions shifted from an equilibrium-centred understanding of resilience towards an
evolutionary/transformational understanding of resilience. Four main approaches to resilience can
be identified: disaster risk reduction [9], socio-ecological [10], sustainable livelihoods [11] and the
community-oriented approach [12]. Resilience can also be discussed on different scales (county, region,
urban area, city, community and household) [8]. Even though it is important to take action on all scales,
in this work we are focusing on cities—particularly in Germany—and are using the socio-ecological
approach. Besides the definitions and understandings of resilience in academia, it is very important
to also consider how practitioners interpret resilience. Practitioners and policy makers are a central
part of the resilience-transformation process. Therefore, it is remarkable that the term resilience is
interpreted in a much wider range of ways by practitioners than by academia [13].

Adaptation measures are implemented in different sectors of the city system. Since cities are
complex and multifaceted systems, which in turn contain other systems, measuring the success
of resilience-increasing activities poses a particular challenge. However, measurement is of great
importance in order to be able to govern and steer the adaptation and transformation process. Every city
has its specific context and needs, and its exposure to risk and vulnerability is dynamic and changes
over time [8].

However, it is important to develop measurable indicators for different reasons. Indicators
enable monitoring of the resilience-building process, as they provide regular and impartial feedback.
They build an evidence base and make resilience more tangible for decision and policy makers as well
as society at large. Furthermore, indicators can help to govern and steer the transformation process
because they help to structure the new field of urban climate resilience. Clear indicators are not only
important for the general measurement of resilience, but also for the analysis of whether adaptation
measures were effective and whether the expected results were achieved [14]. Indicators also contribute
to the credibility, transparency and accountability of the measures implemented. This in turn is very
important for local policy makers to support further adaptation measures.

However, the development of indicators in this context poses particular challenges. In addition to
the conceptual challenges of urban climate resilience, context specificity represents another challenge
for the development of resilience indicators. Consequently, it is very important to consider how to
include context specificity in the indicator set. Another fundamental consideration is in regard to the
context-specific, dynamic and ever-changing nature of risk and vulnerability [8].

MONARES (monitoring of adaptation measures and climate resilience in cities), a project funded
by the German Federal Ministry of Education and Research (BMBF), was initiated in order to address
the main challenges of (1) developing a consistent understanding of resilience for both practitioners
and academia, (2) shaping the adaptation and transformation process into a transparent process
of governing and steering and (3) the use of resilience and adaptation measurements. The aim
of MONARES is to create application-oriented methodologies for monitoring and evaluating local
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adaptation measures. As we are focusing on the special needs for cities in Germany, we are working
together with 14 other projects of the funding initiative “Climate resilience through action in cities and
regions” of the BMBF, who are focusing on climate change adaptation measures and urban resilience,
as well as doing on-the-ground research in municipalities across Germany. These projects and cities
differ considerably concerning scale (street, district, city, suburbs and region), inhabitants and type of
adaptation measure (e.g., planning, physical infrastructure, capacity building or greening). Important
commonalities of the projects are their interdisciplinary approach, the aim to enhance urban climate
resilience and that they conduct on-the-ground research. However, the projects test many different
pathways to improve resilience, and MONARES is focusing on how to measure the success and impact
of these different projects and activities with a common set of indicators. In order to ensure applicability,
we began to involve the projects at an early stage of our research. The first key step (Figure 1 Phase 1)
before developing the indicators was to develop a framework [15] to describe urban resilience. Based
on 19 frameworks described in the literature [16–34], our first draft was developed, which then was
modified together with the projects. This process was indispensable as it resulted in a definition of
urban resilience that is suitable for all projects so that there was agreement on common basic principles.
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Based on steps 1 to 3 as shown in Figure 1, the final definition of urban resilience in MONARES is
as follows:

The climate resilience of a city depends on the ability of its sub-systems to anticipate the
consequences of extreme weather and climate change, to resist the negative consequences of these
events and to recover essential functions after disturbance quickly, as well as to learn from these events
and to adapt to the consequences of climate change in the short and medium term, and transform in
the long term. The more pronounced these abilities are, the more resilient a city is to the consequences
of climate change. All abilities are important.

Based on this preliminary work, a four-step mixed-method approach (Figure 1 Phases 4–7) was
designed to develop the indicators for urban climate resilience on which this paper focuses.
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2. Materials and Methods

The exponential growth of literature concerning urban resilience contains a multitude of
approaches, indicators and methods stressing the resistance of an urban system. The development of
the method of this paper was guided by the questions: resilience for whom, for what and where [35].
A reflexive approach of input and feedback loops was developed in order to adapt and validate
international indicators. A main challenge was to adapt the indicators to the specific context of German
communities in the face of climate change.

2.1. Literature Review: “Resilience Indicators”

The selected frameworks (see Figure 1 Phase 1) were identified through an extensive literature
review using the key search terms “resilience”, “urban resilience”, “climate resilience”, “adaptive
capacity + urban/city”, “resistibility + urban” and “learning capacity + urban/city” (in German and
English). Based on these frameworks and their operationalisation of resilience, an extensive list of
indicators was deduced. These indicators were matched with the MONARES framework, developed
in steps 1–3, which consists of dimensions and action fields (see Table 1).

Table 1. Dimensions and action field of the resilience framework.

Dimension Action Field

Environment

Soil and green spaces

Water bodies

Biodiversity

Air

Infrastructure

Settlement structure

Energy

Telecommunication

Traffic

Drinking and wastewater

Economy
Innovation

Business

Economic structure

Society

Research

Knowledge and risk competence

Healthcare

Socio-demographic structure

Civil society

Civil protection

Governance

Participation

Municipal budget

Strategy, plans and environment

Administration

As we have the aim to develop a user-friendly, applicable and transparent indicator set, we firstly
reduced the indicators to two indicators per action-field. The two most important selection criteria
were (1) context specificity of industrial nations, especially Germany, and (2) data availability. Context
specificity is important because many of the indicators in the literature are suitable for the context
of the Global South but not for the Global North, and even indicators that might be suitable for the
Global North might not be suitable in the German context. The second criteria—data availability—is
therefore important because municipalities have, on the one hand, good access to a lot of data but have,
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on the other hand, resource problems regarding time, finances and human resources. Action fields
without literature-based indicators required the development of new ideas within the project. Given
the available data, some action fields were difficult to measure without significantly neglecting the
complexity of the action field.

2.2. Survey to Assimilate the Indicators for Context Specificity

Based on the literature review (see Figure 1 Phase 4) and the described selection process, an
online-survey was developed (see Figure 1 Phase 5). The survey was used because, given that the
indicators should be transparent and user-friendly, not only the scientific background is important, but
a clear understanding of the indicators in the broad community is important also. The survey was
sent to all persons who are working in one of the 14 projects mentioned above. 39 people answered
the survey.

The main aim of the survey was to measure how participants assess the different indicators.
They were requested to rate the importance of every indicator regarding urban climate resilience on a
scale from one (low importance) to five (high importance). Each action field was represented by at
least one indicator (Table 1). Besides the rating of indicators, the survey consisted of four chapters:
First, some general background; Second, the context of urban climate resilience; Thirdly, the indicators;
Fourthly, the possibility of extending the set of indicators by indicators without existing data sources,
and some final remarks.

2.3. Workshop Following the Survey

As mentioned previously, the explanatory power of an indicator set of urban climate resilience
is hugely dependent on the context, and therefore we discussed the results of the survey again with
the 14 projects (see. Figure 1 Phase 6). Moreover, this feedback loop increases the transparency of the
process and the robustness of the results. The workshop started with presenting the survey results
and then the participants were split into two groups in order to create two independent feedback
loops and cross-validation of the indicator set. For each group, a poster was prepared, listing all
indicators included in the survey. The indicators that were ranked lower in the survey were written
on the poster in light grey (compared to black), for an improved visualization of the survey results.
Hence, both groups had the visual results to discuss and were asked to compare each pair in detail and
find explanations for the survey results. In addition, the overall set remained visible, which allowed
participants to keep the important question of the overall themes in mind. Therefore, indicators could
be moved across the set or could become more important if they were deemed a missing piece in the
mosaic. The guiding questions for this phase of the workshop were: (1) Are there enough indicators?
(2) How many indicators are needed and sufficient? (3) Are the selected indicators the right ones or
should they be changed? And (4) are there important gaps in the set that are yet to be filled?

2.4. Finalizing the Indicators Set

In Step 7 (see Figure 1) we analyzed the results of the workshop. Furthermore, expert interviews
with practitioners were conducted with the aim to develop indicators in action fields where neither the
literature review nor survey and workshop produced results. On this basis, we finalized the urban
resilience indicator set.

3. Results

In our review of the academic literature, 19 indicator-based resilience frameworks were analyzed.
Based on the indicators of these frameworks a list of 498 indicators (including duplicates) was generated.
The indicator list was used as an important starting point for developing the MONARES Indicator Set
(MIS). After screening the indicators through the lens of the MONARES-framework, some action fields
remained empty and were filled by proposed indicators of the MONARES project-team. One to four
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indicators were selected per action field in order to cover all topics and include sufficient redundancy.
Table 2 shows the selected and proposed indicators.

Table 2. Delineated indicators and action fields.

Dimension Action Field Indicator Code Literature

Environment

Soil and green spaces
Degree of soil sealing A_a_1 [31]

Land consumption A_a_2 [21]

Recreational area A_a_3 [21]

Water bodies
Share of water bodies A_b_1 [36]

State of water bodies A_b_2 [23]

Biodiversity Share of nature conservation and protection areas A_c_1 [23]

Wetlands and retention areas A_c_2 [36]

Air Cold air parcels A_d_1 [23]

Infrastructure

Settlement structure
Density of buildings B_a_1 [37]

Accessibility of green spaces B_a_2 [38]

Energy Share renewable energy B_b_1 [18]

Diversity renewable energy B_b_2 [18]

Telecommunication Broadband access B_c_1 [37]

Traffic Concept for sustainable traffic B_d_1 [21]

Drinking and wastewater Number of springs B_e_1 [8]

Economy

Innovation Innovation index C_a_1 [37]

Business Ratio of insolvencies to start-ups C_b_1 [22]

Economic structure
Share of employees in largest sector C_c_1 [39]

Employees in research intensive companies C_c_2 [40]

Society

Research Number of research projects D_a_1 [18]

Knowledge and risk
competence

Citizen information about heat, heavy rain and
flooding D_b_1 [37]

Experience with extreme events in last five years D_b_2 [37]

Health care
Accessibility of hospitals D_c_1 [41]

Doctors per 10,000 citizens D_c_2 [40]

Socio-demographic
structure

Share of citizens ABV6/U65 D_d_1 [42]

Share of employees D_d_2 [30]

Civil society Voter turnout D_e_1 [42]

Number of associations D_e_2 [42]

Civil protection Fire brigade D_f_1 [37]

Citizens in honorary positions D_f_2 [31]

Governance

Participation Number of participation processes E_a_1 [37]

Contact point for participation E_a_2 [37]

Municipal budget Depth per citizen E_b_1 [21]

Tax income E_b_2 [21]

Strategy, plans and
environment

Risk and vulnerability analysis E_c_1 [26]

Strategies against heavy rain and heat in plans E_c_2 [26]

Landscape plan legally binding E_c_3 [37]

Climate change adaptation part of urban
development plan E_c_4 [30]

Administration
Inter-office working group regarding risk,

climate change and resilience E_d_1 [37]

Climate manager E_d_2 [37]
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3.1. Survey about Resilience Indicators

The survey was structured based on the results of Phase 4. The survey (Figure 1 Phase 5)
was filled out by 39 respondents within the funding initiative “Climate resilience through action
in cities and regions” of the BMBF. The overall mean perceived importance of the indicators was
3.63 within the complete range from one to five. Considering the complexity of the urban system and
the interdisciplinary character of the indicator set, this rating was regarded as high. The median of
four was also high. The standard deviation of 1.17 together with the entire evaluation range reflected
the diversity of interpretations. Nevertheless, despite this diversity, these core numbers show that the
indicators were overall judged as important. Splitting the indicators into the five main dimensions
(Figure 2), the median shows that only the indicators within the dimension of economy were rated
less important, they are rated in the middle of the range, which might indicate a slight indecisiveness.
Several reasons could explain this, such as that the indicators selected were not covering the dimension
in a satisfactory manner or that the dimension is perceived as unrelated to urban climate resilience.
Those questions were discussed in the workshop (Figure 1 Phase 6) in detail.
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Figure 2. Median importance of indicators grouped into five dimensions.

All top five ranked indicators had a median rating of 5. The mean values ranged from 4.4 to 4.6.
Only two respectively three respondents did not rate the indicators, showing the general agreement
regarding the importance. Nevertheless, regarding the minimum values, all had a large range from 2
to 5.

The set of five indicators in Table 3 shows that the three dimensions environment, governance
and society were seen as particular important. The indicator rated as the most important was the
environment indicator cold air parcels. Second and fourth ranked were governance indicators, namely
inter-offices working groups regarding risk, climate change and resilience and strategies against heavy rain and
heat in plans. Third and fifth ranked were two indicators from the dimension society. The respondents
saw the importance of experience with extreme events in the last five years and citizen information about heat,
heavy rain and flooding as particularly crucial for building urban resilience.
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Table 3. The five indicators rated as most important in the survey.

Dimension Action field Indicator Min. 1st
Quartile Median Mean 3rd

Quartile Max N/A

Environment Air Cold air parcels 2 4 5 4.6 5 5 3

Governance Administration
Inter-offices working group

regarding risk, climate change
and resilience

2 4 5 4.5 5 5 2

Society Knowledge and
competence

Experience with extreme events
in last five years 3 4 5 4.5 5 5 3

Governance Strategy, planned
and environment

Strategies against heavy rain
and heat in plans 2 4 5 4.5 5 5 3

Society Knowledge and
competence

Citizen information about heat,
heavy rain and flooding 2 4 5 4.4 5 5 2

Table 4 displays the five lowest ranked indicators in context of their relevance related to urban
climate resilience. The overall lowest rated indicators were both from the society dimension, namely
voter turnout and number of associations. The respondents did not think that they were relevant for
measuring and monitoring urban resilience. The third lowest indicator was the infrastructure indicator
broadband access. Fourth and fifth were two economic indicators measuring ratio insolvencies to start-ups
and share employees in largest sector.

Table 4. Five lowest rated indicators.

Dimension Action field Indicator Min. 1st
Quartile Median Mean 3rd

Quartile Max N/A

Society Civil society Voter turnout 1 2 3 2.4 3 4 1
Society Civil society Number of associations 1 2 3 2.6 3 4 2

Infrastructure Telecommunication Broadband access 1 2 3 2.8 4 5 3
Economy Business Ration insolvencies to start-ups 1 2 3 2.8 3.5 5 4

Economy Economic
structure

Share Employees in largest
sector 1 2 3 2.8 3 4 6

Figure 3 displays boxplots of all indicators. The main tendency has already been shown in
a more condensed form previously in Figure 2. Share of nature conservation and protection areas
(A_c_1) was the lowest ranking in the dimension environment. The second indicator of the action
field biodiversity, however, received high approval, which emphasised the perceived importance of
biodiversity considerations for climate resilience in the urban context. Settlement structure (B_a_1&2)
was seen as vital for structural climate change adaptation, similar to the first action fields of soil and
green spaces (A_a_1-3).

Energy (B_b_1&2) indicators, in contrast, not only ranged from a rating of one to five, but the
quartiles of the boxplot also show a comparably high range around the middle of the scale.
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3.2. General Workshop Results Regarding the MIS

The discussion of the indicators during two discussion groups yielded important feedback on
the overarching attributes and requirements of the MIS. They were mentioned several times from
different persons and related to different indicators. Firstly, one important aspect was the size of the
municipality and hence the scaling of the indicator. No universal scaling was found appropriate, since
the different units and scales required indicator-specific scaling. Nevertheless, the scaling was seen as
an important factor in order to reach the goal of acquiring indicators for municipalities and therefore
an interpretable result on this level of administrative organization.

The overall discussion about applicability and feasibility was touched on in many ways from
different angles, most prominently regarding data availability, numbers of indicators and total effort
needed. The balancing of the loss of information related to simpler indicators or vice versa with more
complex indicators with higher explanatory power but with an infeasibility to be handled by the target
group was seen as a key challenge. Therefore, the participants agreed that the indicators should be
based solely on existing data, thereby reducing the overall effort and simplifying the calculations and
data management.

The idea of detailed factsheets describing the data source and calculation of the indicator and
helping with the interpretation of the result was raised by participants and received wide support.
Factsheets also help to communicate the meaning of an indicator to uninitiated persons, which was
also mentioned as a crucial aspect.

The total number of indicators to be feasible was seen at around 25. Certain gaps were identified
during the workshop due to the fact that specific expertise related to certain action fields was missing
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in the room, specifically regarding the action fields energy, wastewater and civil protection. Here, single
expert interviews were carried out after the workshop to fill in the gaps.

3.3. Indicator Specific Workshop Results

Table 5 summarizes the process of indicator development during the three phases of the survey,
the workshop and ending in the final set of indicators. The indicators highlighted in grey are those
of the initial indicator set that were seen as important by survey respondents and therefore stayed
on the list. The indicators highlighted in orange were updated or modified as a result of the survey
and/or workshop. The yellow indicators were moved from one action field to another. The indicator
degree of soil sealing was inverted to degree of unsealed ground, as sealing is not per se negative, even may
even be desirable or unavoidable in urban areas. The cold air parcels was seen as an important factor of
resilience but should be updated, adding cold air streams to the indicators. Biodiversity was discussed
in contradictory ways, as it was not clear to the participants how it is related to climate hazards. Hence,
the workshop resulted in representing urban biodiversity with the indicator wetland and retention areas
in order to include flood protection arguments into the indicator of biodiversity.

Infrastructure was seen undoubtedly as a key area for achieving urban climate resilience, but also
related to secondary data and its inherent complexity most difficult to quantify currently. Accessibility of
green spaces was rather seen as an indicator of social justice and less as a settlement structural indicator
and hence the second indicator building density, slightly lower ranked in the survey, was included
instead. The share of renewable energy indicator focused strongly on climate protection and less on
resilience factors, such as robustness and redundancy. These factors were seen to be better covered by
the diversity of renewable energy sources. However, it was also argued that even conventional energy
should be included in the indicator. This observation was followed by the consideration that no
climate resilience can be achieved without climate protection in the long term. Therefore conventional
energy sources cannot be regarded as a positive contribution to climate resilience in the long term.
The action field of telecommunication was deleted in accordance with the participants’ perception of this
as being less important than the other action fields, lacking data and having low to no influence of
the municipality. Instead, the action field wastewater treatment was included, as there was agreement
on its importance additionally to the supply side. No specific indicator was defined in the workshop
due to missing competence in this regard. Transportation was discussed as an important action field
for municipalities, but participants agreed that its complexity cannot be covered by one indicator.
Therefore, the action field remained as an action field of the framework, reminding of the importance
of the topic and urging municipalities to consider and discuss it qualitatively.

The discussion around the economic dimension reflected the lower ranking of its indicators in
the survey. The dimensions environment and infrastructure were seen to be more naturally linked to
resilience than the economic dimension. Nevertheless, discussing the importance of a resilient economy
for an urban system generated acceptance for the dimension and its components. This example
illustrates one very important lesson of the workshop: the need for explanation and building a common
understanding. Innovation was seen to be covered best by the number of employees in research intensive
companies not by the innovation index. The tax income from companies was considered an important
resource for the financial ability of the municipality to adapt. This indicator was part of the action field
municipal budget in the survey and has since been moved to business. Similar to energy, a diverse economy
was considered more robust, flexible and redundant when facing uncertainty of climate impacts. It was
also discussed whether there might be sectors with crucial or higher relevance than others, but the
group agreed that no single sector could be selected.

There was a general agreement on the importance and contribution of society to urban climate
resilience, but less agreement on how to measure it quantitatively. Literature shows that the experience
with extreme events contributes positively to citizens’ resilience. In addition, citizen information about
heat, heavy rain and flooding (Table 3) was amongst the top five rated indicators. However, regarding the
spatial scale of municipalities, it was argued that information is not only provided by the local authority
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and therefore the indicator was not further considered. Civil society started an intense discussion on
how to measure it and if the proposed indicators were adequate. In contrast to the survey, where the
indicator voter turnout ranked higher, the workshop participants disliked this indicator, arguing that
voter turnout nowadays cannot be seen as a proxy indicator for solidarity and community in Germany.
The indicator associations was also critically reflected upon as being unable to capture civil society
entirely. Still, the participants were in favour of the imperfect indicator associations instead of deleting
the action field. In the survey, the dimension governance and its indicators were ranked high, and this
result was confirmed in the workshop. Only one change was decided: replacing the contact point for
participation processes with the number of conducted participation processes. Both were ranked very close in
the survey with a mean of 3.3 and 3.4, respectively.

Table 5. Indicator set after the survey, workshop and final set.

Dimension Action Field Survey Result Workshop MIS

Environment

Soil and green spaces Degree of unsealed ground Degree of unsealed ground Degree of unsealed ground
Water bodies State of water bodies State of water bodies State of water bodies

Biodiversity Wetlands and retention
areas Wetlands and retention areas Nature conservation and

protection areas
Air Cold air parcels Cold air parcels and flows Ventilation status

Infrastructure

Settlement structure Accessibility of green
spaces Building density Building density

Energy Share renewable energy Diversity of renewable
energy

Diversity of renewable
energy

Per capita energy
consumption

Per capita energy
consumption

Water supply and
wastewater treatment

Number of springs Number of springs Number of springs
(Including wastewater
indicator) Adapted sewer system

Economy
Innovation Innovation index Employees in research

intensive companies
Employees in research
intensive companies

Business Ration insolvencies to
start-ups Commercial tax per capita Commercial tax per capita

Economic structure Employees in research
intensive companies Diversity of business Diversity of business

Society

Research Number of research
projects Number of research projects Number of research projects

Knowledge and risk
competence

History with extreme
events History with extreme events History with extreme events

Health care Accessibility of hospitals Accessibility of hospitals Number of doctors
Sociodemographic
structure

Share of citizens
ABV6/U65 Share of citizens ABV6/U65 Share of citizens ABV6/U65

Civil society Voter turnout Associations per 10000
capita

Associations per 10000
capita

Civil protection Fire brigade Fire brigade Fire brigade volunteers

Governance

Participation Contact point for
participation

Number of participation
processes

Number of participation
processes

Municipal budget Depth per citizen Depth per citizen Depth per citizen

Strategy, plans and
environment

Risk and vulnerability
analsysis

Risk and vulnerability
analsysis

Risk and vulnerability
analsysis

Strategies against heavy
rain and heat in plans

Strategies against heavy rain
and heat in plans

Strategies against heavy rain
and heat in plans

Administration

Inter-offices working
group regarding risk,
climate change and
resilience

Inter-offices working group
regarding risk, climate
change and resilience

Inter-offices working group
regarding risk, climate
change and resilience

updated switched action field no change

3.4. Urban Climate Resilience Indicator Set

Since even the diverse group of participants of the workshop did not cover all topics of the
indicator set, experts were interviewed. Furthermore, the results of the survey and the results of the
workshop were summarized and merged.
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The final set of indicators is shown in Table 5 in the column MIS. Compared with the workshop
set, the action field of biodiversity was seen crucial in its own right and better approximated by the
indicator nature conservation and protection areas. Moreover, wetlands and retention areas were already
covered by the state of the water bodies in line with the European Water Framework Directive regarding
good ecological and chemical status. Hence, in order to create a balanced set of indicators, it was
seen that the latter indicator added thematically more information and another aspect to the overall
set. Secondly, the air action field was further developed, as cold air parcels and flows was difficult to
interpret. The simple number or share of cold air parcels and streams were not clearly related to
resulting air status. The ventilation status including the effects of air streams and cold air production
parcels was therefore selected. For the wastewater action field introduced by the workshop, an expert
interview recommended the indicator share of adopted sewer system. Another interview was conducted
with the lower civil protection agency. The interviewee stressed the importance of volunteers across
organizations, but as no data were gathered assessing the total numbers of volunteers, the most
important one of the fire brigade was considered. Moreover, the municipality may have to consider
this important topic even more in the future, as the principle of volunteers may be endangered due to
demographic development. Finally, yet importantly, the accessibility of hospitals was interchanged with
the density of doctors.

4. Discussion

The results from the work on indicators for monitoring urban climate resilience presented above
yields a number of important insights and implications—with respect to previous studies but also for
future research and for practitioners in this field.

Existing indicator sets are a good starting point, but adapting and extending them for the context
at hand is crucial. There are numerous indicator sets for urban resilience; these provided a good
basis from which the MONARES indicator set could be developed. However, many of the indicators
analysed in the literature review were aimed at the context of developing countries. To adapt indicators
identified in the review for the German context, four steps were important: (A) Disregarding indicators
that do not allow sufficient distinction between cities, e.g., literacy rate is favoured as an indicator
in many sources, but in Germany the literacy rate is rather high and differences between cities are
marginal. (B) Disregarding indicators for which the data availability was rather limited in Germany.
(C) Adding new indicators for action fields that are deemed important in the context of MONARES
but which were not touched upon in the literature. (D) Focusing on municipalities as the key player
for climate change adaptation. These level of municipalities require the set to be manageable in terms
of data availability as well as size and complexity of the calculations.

Step A did not pose any major difficulties. Further, step B based on research concerning data
availability did not cause problems. However, step C and D need to be examined in more detail.

First, the workshop clearly stated here the conflicting goals when discussing single action fields.
It was felt that one indicator does not reflect the entirety of the topic, but at the same time all action fields
were considered important and the total number of indicators should not exceed around 20, in order to
stay manageable, which is far less than the proposed 52 indicators by the City Resilience Index (CRI) [22]
and comparable to the core of 14 by the project Building Resilience Amongst Communities in Europe
(embrace) [37] or Cutter’s [43] core of 22. Since researchers, as well as practitioners, participated in our
workshop, we had the impression that researchers tended to prefer larger, encompassing indicator
sets. Compared with the scientists, practitioners were more in favour of concise and compact sets.
The discussions in the workshop showed that persons with a research background had numerous ideas
for new indicators for all dimensions, and advocated for their inclusion. During the workshop and its
aftermath, practitioners working in municipalities displayed a different tendency—their perspective
tended to focus more on how to handle the indicators in practice. Hence, what some researchers
considered a concise indicator set was perceived by practitioners as overwhelming and too extensive.
In order to find an adequate balance between a broad coverage and good usability in practice, it
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is important to involve both researchers and practitioners in the development of an indicator set.
This finding is consistent with the literature and is one strength of the current study. Meerow and
Stults [13], for example, stress the need for including practitioners in the process. Consequently, the
trade-off between practicability and completeness had to be balanced, leading to the fact that some
indicators that were considered important were still sorted out in order to cover all action fields and
still achieve a manageable amount of indicators.

Second, it was mentioned that the indicators just by title were not clear in terms of their effect on
and relation to urban climate resilience, and were consequently rated around the middle. This fact was
considered while developing the survey, but an in-depth explanation of indicators was removed from
the survey in favour of including more indicators covering all action fields and in consideration of
the time needed to fill out the survey. However, this lack of explanations meant that the disciplinary
background of respondents affected the ratings.

Third, indicators from the dimension environment were met with relatively high consensus while
indicators from the dimension economy were faced with more diverging opinions. The indicator
selection was dependent on the conceptualization of urban resilience and the urban context. The results
contribute to the gap between the understanding of urban resilience by scholars and practitioners [13].
This became apparent both in the survey and the workshop and shows that more research is warranted
on what characterizes a climate resilience urban economy. Supporting evidence for this can be taken
from the fact that much more has been published on climate resilience and environmental issues
than on climate resilience and economic issues. Moreover, this discussion displayed the importance
of a negotiation-focused approach for defining place-specific attributes of urban resilience and its
measures [44].

Fourth, secondary data was seen as crucial for monitoring purposes in order to reduce resource
expenditure by the administration. In other words, “The best indicator is inoperable if there is no
feasible way to obtain the required data.” [37]. Moreover, there was a strong request from the local
administrations for more provision of data from the higher administrations. They argued that data
handling, data collection and finances for these activities are lacking. They stressed the need for data
provision to be handled at the higher level of administration to avoid scaling and data comparability
issues. Hence, data availability for indicators on a municipal level is a strong limiting factor, especially
when it comes to indicators concerning infrastructure and social aspects [45]. Parts of the infrastructure
related to energy, transport and communication are owned or organized by entities on a higher
administrative level, such as the national government or by private entities. This tends to lead to
limited data availability when it comes to data with a sufficient resolution on a municipal level. Here it
would be favourable if entities in charge of the respective infrastructure made access to data easier
and provided data with a resolution that is suitable for analyses on a municipal level. Moreover, the
discussion centred around technical measures and physical impacts and less about social drivers and
demographic changes. The latter are seen as core aspects of the community’s ability to resist unforeseen
threats. Nevertheless, the intense discussion around the proxies suggested by literature displayed
vividly the intricacy of social dynamics. New data and methods from the higher administration or
crowd-sourced databases are needed to better understand and monitor the indicators [43].

Fifth, it is important to mention that a conflict of goals among indicators can arise and can
lead to a competition for the scarce resources. These reciprocal processes cannot be completely
avoided. For example: impervious surfaces are seen negative regarding heavy rain, fresh air and
heat island effects, but they are necessary for a redundant infrastructure and other urban functions.
Another example is provided by Meerow and Newell [35] who analysed the negative correlation of
park access and stormwater management goals, concluding that resilience measures create winners
and losers. This also requires transparency of the data and the method of the indicator definition to
understand the root causes of the conflicting goals and find adequate solutions. Here the Rockefeller [22]
approach seems like a black box because it is difficult to deduce what adaptation measures are used
as a data basis, and indicator calculations are unclear. During the workshop, several practitioners
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mentioned consequently the necessity of transparency and the need for precise communication and
non-scientific language.

Sixth, following the previous point, many indicator approaches are used to build a composite
index for resilience [19,22,45–47], vulnerability [18,48–52] or risk [53–55]. Specifically, at the scale of
urban resilience, indexing across the multitude of action fields was discussed critically. The different
scales, topics and units appeared to not be logically linkable. Moreover, a combined index value
was seen to not tell much about the level of resilience. It was seen as more important to see the
contribution of each action field to the overall resilience. Also, considering the next step of adaptation
measures, it is more relevant to have a resilience profile displaying specific topics to be addressed in
the municipal context.

Working at the science-policy interface was challenging for all sides. The mixed method approach
proved invaluable in finding a common language, tolerance and understanding. This created an
environment that allowed for constructive criticism, which is indispensable for finding a compromise.

5. Conclusions

In this study, we developed an indicator set to measure and monitor urban climate resilience
for municipalities, thereby assessing the requirements of indicators and implementing a method for
adapting global approaches to the local context.

The mixed method approach proved to be essential for the process of indicator development.
It provided an adequate frame and time to develop a mutual understanding across disciplines,
researchers and practitioners, which is needed in order to select indicators or accept indicators from
different fields of expertise. Transparency in the process and the inclusion of feedback builds acceptance
and trust. The concept of resilience provided the required assembly hall and saw climate change
as the imperative. Even the often-criticized ambiguity of the resilience concept was helpful as it
created room for discussion. The number of 24 indicators based on secondary data balanced as well as
possible the diverging interests. Amongst the indicators, conflict of goals is unavoidable. Making the
conflicts visible is a helpful basis for making informed decisions, which is a strength of this indicator
set. In general, the softer and more qualitative aspects of resilience are challenging. They were seen as
crucial but very hard to assess by quantitative proxies based on secondary data. Still, representative
surveys to cover them in more detail on a regular basis were rejected by municipalities as too expensive
and labour-intensive.

Developing an indicator set tends to be easier than assessing the significance or validity of an
indicator over time and it requires an extended period of observations to be able to make statements
about the significance of a certain indicator. Nevertheless, in order to advance this field of research, it
is necessary to pursue this path and start inquiries into the significance or validity of the numerous
indicators that are permeating the ongoing discussions. In further research, the indicators need to be
tested in reality, and there needs to be more research that addresses the validation of the indicators.
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Abstract: Socio-economic indicators are key to understanding societal challenges. They disassemble
complex phenomena to gain insights and deepen understanding. Specific subsets of indicators have
been developed to describe sustainability, human development, vulnerability, risk, resilience and
climate change adaptation. Nonetheless, insufficient quality and availability of data often limit their
explanatory power. Spatial and temporal resolution are often not at a scale appropriate for monitoring.
Socio-economic indicators are mostly provided by governmental institutions and are therefore limited
to administrative boundaries. Furthermore, different methodological computation approaches for the
same indicator impair comparability between countries and regions. OpenStreetMap (OSM) provides
an unparalleled standardized global database with a high spatiotemporal resolution. Surprisingly,
the potential of OSM seems largely unexplored in this context. In this study, we used machine learning
to predict four exemplary socio-economic indicators for municipalities based on OSM. By comparing the
predictive power of neural networks to statistical regression models, we evaluated the unhinged resources
of OSM for indicator development. OSM provides prospects for monitoring across administrative
boundaries, interdisciplinary topics, and semi-quantitative factors like social cohesion. Further
research is still required to, for example, determine the impact of regional and international differences
in user contributions on the outputs. Nonetheless, this database can provide meaningful insight into
otherwise unknown spatial differences in social, environmental or economic inequalities.

Keywords: indicators; machine learning; OpenStreetMap; vulnerability; resilience; climate
change adaptation

1. Introduction

In current policy and research on adaptation to climate change, resilience and vulnerability are key
concepts for understanding the human dimension of strategies and measures to adapt to global change.

Vulnerability is a society’s inability to act and hence influence the impacts of global change on its
people’s wellbeing. Increasing the resilience of societies, reducing disaster risk, and hence reducing the
impacts of climate change, requires consideration of the social aspects of sustainable development and
tackling causes, not symptoms. Socio-economic indicators are important measures to assess spatial
or societal dimensions. Factors such as people’s economic or employment status are considered to
influence their adaptation and coping capacity [1–4].

Although official socio-economic data from governmental and non-governmental institutions
are reliable, comprehensive, and often the best choice to describe societal phenomena, they are only
available at specific temporal and spatial resolutions and lack standardization between administrative
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levels, even within countries. Huge efforts to address this include, for example, the INSPIRE directive of the
European Commission with a vision of unprecedented sharing of geospatial data. However, this initiative
has not been able to reach its full potential yet, due to many barriers to its implementation [5]. Until now,
elaborate surveys have often been necessary to generate knowledge about societal relationships with
the natural, cultural, and economic environment.

The growing amount of data, open data policies, and crowd-sourced data has led to an increased
availability and accessibility of socio-economic indicators. Nevertheless, the measurement of complex
multifaceted phenomena (e.g., resilience, vulnerability, sustainability, adaptation) is still often limited
due to unavailability of data [2,4,6,7]. Hence, the need for methods that allow deriving indicators from data
sources, that are permanently available and offer spatially scalable information, has become very clear.

In recent years, artificial intelligence, and especially machine learning methods, have been developed
and tested in many scientific disciplines in order to predict social characteristics and structures by
analyzing implicit patterns in data of the observed systems. Random forest (RF) is one machine learning
algorithm widely applied for geodata: e.g., for land cover classification from openly available geodata
sets [8], mapping vegetation morphology types [9], habitat prediction of fisher (Pekania pennanti) [10],
a multi-data approach to enhance crop classification [11], or downscaling census data [12]. Another
machine learning algorithm applied across disciplines is neural networks (NN). Examples are seismic
vulnerability assessment [13], modeling of the surface of the sea floor [14], flood hazard assessment [15],
and analyzing land pattern evolution [16]. Within machine learning, neural networks belong to the
deep learning category.

This research aimed to develop a machine learning approach to deduce socio-economic indicators
from OpenStreetMap (OSM) for municipalities. The underlying hypothesis was that there are proxies
for socio-economic attributes within the geodata of the OSM database. For example, can park benches be
a predictor for an elderly population? Can the size of industrial areas or density of public transportation
or infrastructure provide an indication of unemployment rates? Is nature or industry more predictive
for migration? With four indicators (residents, unemployment, migration, and elderly) selected based
on official statistical data, we tested the suitability of OSM as a data source and compare the predictive
performance of three approaches: (1) random prediction as a baseline with linear regression; (2) one
machine learning algorithm; and (3) one deep learning algorithm. We assessed the predictive power of
each approach by comparing them to the testing regions where we know the actual situation.

This research paper is based on earlier investigations by the authors [17,18] and represents a refined
approach to the analysis of the OSM database with artificial intelligence (AI). Section 2 introduces the
study area and develops the methodology adopted, including the target indicators and the machine
learning algorithms exploited. Section 3 presents the prediction results of the models, including a
comparative performance evaluation. Section 4 discusses the findings in regard to each indicator
and cross-cutting challenges amongst them, leading to opportunities for future research. Section 5
concludes by summarizing the research question and main results.

2. Method

The workflow follows the narrative of the research (Figure 1). Firstly, the OSM dataset was
downloaded. Secondly, in a spatial query everything within the area of a municipality was counted.
Thirdly, in a data processing step, a principal component analysis (PCA) was conducted to reduce
the number of dimensions, resulting in uncorrelated principal components as indicator candidates.
Fourthly, the indicator candidates were subsequently used to predict the four socio-economic indicators
(unemployment, residents, migration, elderly). Fifthly, the model results were validated and, lastly,
they were mapped.

In the following section, the case study and the selected socio-economic indicators are firstly
described. Secondly, OSM is described as the data source with its key characteristics and implications
for calculating spatial attributes for each municipality. Thirdly, the machine learning algorithms and
their implementation, functions, and settings are discussed.
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2.1. Test Region

As a compromise between computational resources, data handling, and model complexity,
the regional scale was chosen. Baden-Württemberg is the south-western federal state of Germany
bordering France in the west and Switzerland in the south (Figure 2). The administrative territory
with a size of 35,751.46 km2 is subdivided into four administrative districts (Regierungsbezirke)
which contain 35 counties (Landkreise) and nine independent cities (Stadtkreise). In total, there are
1101 municipalities populated with around 11 million inhabitants. The density of the population is
310 inhabitants per km2, higher than that of Germany overall which is 232 inhabitants per km2 [19].
Economically, Baden-Württemberg is one of the strongest regions in Europe and is ranked third in
Germany in terms of purchasing power after Hamburg and Bavaria [20]. Family-owned businesses
are typical for the region. The overall unemployment rate is 3.1% and lower in rural areas [21].
In 2018, the average age was 43.5 years, an increase of 9 years from 1970. Although there has been
considerable emigration of young people, the number has not changed much in recent years [22].
Currently, 294,000 people are 85 years or older. This is six times higher than in 1970. The current
forecast expects the number to increase up to 805,000 people by 2060 [23].

2.2. Selected Socio-Economic Indicators

The selected socio-economic indicators for the purpose of this study were: (a) residents;
(b) unemployment; (c) elderly; and (d) migration. Residents refers to the number of inhabitants per
municipality. Unemployment refers to the percentage of unemployed people as part of the total
number of employable people. The proportion of elderly people gives the percentage of people older
than 65 years as part of the total population. Migration is calculated by subtracting emigration from
immigration. A positive balance means that more people moved in to the municipality than out of
it. These four metrics explain societal and economic conditions and are a common basis for many
socio-economic indicators and of relevance for assessing and evaluating complex phenomena such as
resilience, vulnerability, and sustainability [6,24–26].

58



ISPRS Int. J. Geo-Inf. 2020, 9, 498 4 of 16

ISPRS Int. J. Geo-Inf. 2020, 8, x FOR PEER REVIEW 4 of 17 

 

 
Figure 2. Map of study area. 

2.2. Selected Socio-Economic Indicators 

The selected socio-economic indicators for the purpose of this study were: (a) residents; (b) 
unemployment; (c) elderly; and (d) migration. Residents refers to the number of inhabitants per 
municipality. Unemployment refers to the percentage of unemployed people as part of the total 
number of employable people. The proportion of elderly people gives the percentage of people older 
than 65 years as part of the total population. Migration is calculated by subtracting emigration from 
immigration. A positive balance means that more people moved in to the municipality than out of it. 
These four metrics explain societal and economic conditions and are a common basis for many socio-
economic indicators and of relevance for assessing and evaluating complex phenomena such as 
resilience, vulnerability, and sustainability [6,24–26]. 

2.3. OpenStreetMap—Developing Spatial Features for Municipalities 

OSM is a free and collaborative project founded in 2004 [27]. The goal of the project is to create 
an open access map of the world. All elements of a topographic map, such as houses, streets, railways, 
and forests are mapped by volunteers around the globe [28]. Crowdsourced data are made public 
under the Open Database License. Current statistics show more than six million registered users, 5.75 
billion nodes, and 3.5 million map changes per day [29]. 

Every element is described within the database by at least one tag in plain text. The tag consists 
of a key and a value. The key can describe the represented objects with the functional characteristics 
or other attributes such as names or owner. The keys are unique and categorical (e.g., land use) and 
describe the classes or domains that each object belongs to. Values can be used to further specify 
individual characteristics and explanations (e.g., tag: key = landuse; value = farmland). 

For the purpose of this study, we first downloaded the full OSM dataset for the federal state of 
Baden-Württemberg from the Geofabrik website (https://download.geofabrik.de; October 2019). The 
downloaded .pbf file was then imported into a PostgreSQL database with PostGIS extension using 
osm2pgsql (https://github.com/openstreetmap/osm2pgsql). During the import, an initial data 
reduction took place through the used default import “style”, which excludes certain keys and 

Figure 2. Map of study area.

2.3. OpenStreetMap—Developing Spatial Features for Municipalities

OSM is a free and collaborative project founded in 2004 [27]. The goal of the project is to create an
open access map of the world. All elements of a topographic map, such as houses, streets, railways,
and forests are mapped by volunteers around the globe [28]. Crowdsourced data are made public
under the Open Database License. Current statistics show more than six million registered users,
5.75 billion nodes, and 3.5 million map changes per day [29].

Every element is described within the database by at least one tag in plain text. The tag consists of
a key and a value. The key can describe the represented objects with the functional characteristics
or other attributes such as names or owner. The keys are unique and categorical (e.g., land use) and
describe the classes or domains that each object belongs to. Values can be used to further specify
individual characteristics and explanations (e.g., tag: key = landuse; value = farmland).

For the purpose of this study, we first downloaded the full OSM dataset for the federal state
of Baden-Württemberg from the Geofabrik website (https://download.geofabrik.de; October 2019).
The downloaded .pbf file was then imported into a PostgreSQL database with PostGIS extension
using osm2pgsql (https://github.com/openstreetmap/osm2pgsql). During the import, an initial data
reduction took place through the used default import “style”, which excludes certain keys and additional
information without explanatory relevance from the dataset. The resulting PostGIS geometry and
attribute tables (point, line and polygon) contained 60 of the most relevant keys as columns and
respective values as rows. In a further pre-processing step, the OSM data were intersected with the
administrative boundaries of the municipalities within the federal state. Consequently, the sums of the
geometries (area and length) and point counts for each occurrence of a unique key-value-pair were
computed with SQL-queries for every municipality, resulting in a table with 1101 rows, each row
representing one sample, meaning one municipality (Table 1).
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Table 1. Data table of spatial attributes per municipality.

Name Key_Value
[Count/Municipality]

Key_Value
[km/Municipality]

Key_Value
[km2/Municipality]

Municipality 1 Value Value Value
Municipality 2 Value Value Value

The previous steps resulted in three distinct layers (points, lines, polygons), with the keys and
values and the respective sums of their observed spatial occurrence (count, sqm, km). Each line or
sample counted for one spatial feature, and therefore, there was an unrestricted number of lines per
tag per municipality. All the following steps were conducted using R with R Studio [30,31] (additional
packages: “tidyr”; “dplyr” [32,33]). The three tables were imported into R Studio from the PostGIS
database (function: dbReadTable(); package: “RPostgres” [34]). In a preliminary data cleaning step,
six keys (addr, name, xmas, contact, TMS, openGeoDB) were removed, as they did not contain relevant
information for the task ahead. Moreover, only tags appearing in 100 or more municipalities were
considered. The key and value columns were then joined to one tag column. Afterwards, the tags were
aggregated by sum per municipality and written into one column per tag (function: dcast(); package:
“reshape2” [35]). The same steps were taken for the three tables (points, lines, polygons), and the
resulting tables were joined by the municipality code to one table. In the next step, these raw data
were pre-processed for the machine learning part.

The population of the municipality as well as the area were imported (function: read_excel();
package: “readxl” [36]). The data set was split rather cautiously via random number generation into
50% test municipalities and 50% training municipalities to test the predictive power and increase
generalization. To adjust for the different sizes of municipalities, the predictors were set into relation
per 1000 capita. The training data were standardized and PCA conducted (function: preProcess();
package: “caret” [37]). The pre-process parameters from the training data were also taken for the
test data so as to not blend in future information into the training process via standardization of the
entire data set. The PCA was used to reduce dimensions and to have a set of uncorrelated indicator
candidates to predict the four socio-economic indicators (see Appendix A).

2.4. Machine Learning to Predict Socio-Economic Indicators

The following section describes the predictive algorithms and their R functions that were applied
to this analysis, including model parameters. Firstly, the baseline was established by random prediction
and a linear model. Secondly, random forest and deep neural networks (DNN) were applied as a
machine learning and deep learning approach. Thirdly, these models were compared to the ground
truth and evaluated for predictive power.

For the random prediction (RP), random values within the range of the test data were generated.
The mean absolute error (MAE) on the test data was calculated and compared as a baseline. The MAE
was selected to test for model performance, which is reported in Table 2. The mean squared error
(MSE) was neglected due to the potential overestimation of model performance as all outcome values
were min–max normalized for comparison among them. Hence, calculating the square of values
between zero and one would have resulted in significantly smaller absolute values and obscured
the performance.

Linear regression (LR) was conducted as a basic statistic prediction method to better understand
the performance of the machine learning algorithms (function: lm(); package: R base library).
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Table 2. Mean absolute error of the models for the indicators. RP, random prediction; DNN, deep
neural networks; LR, linear regression; RF, random forest.

Dataset RP LR RF DNN

Residents 0.489 0.049 0.038 0.021
Unemployment 0.280 0.119 0.099 0.095

Elderly 0.311 0.090 0.074 0.071
Migration 0.405 0.041 0.035 0.025

Random forest (RF) is a machine learning algorithm based on the statistic of decision trees.
In a randomized learning process, multiple uncorrelated decision trees are calculated. In the standard
setting, 500 trees are built by subsets of the predictors to avoid the dominance of one very strong
predictor (function: randomForest(); package: randomForest [38]). The importance of assessment of the
predictors is set to true for detecting relevant predictors. The relevance of the predictors is determined by
their contribution in reducing the test error over all trees.

Artificial neural networks are machine learning algorithms that function in a similar way to the
human brain. A number of hidden layers and nodes, structure, organize, and detect patterns within
data. Multiple sequential models are trained with a maximum of four hidden layers and 256 nodes for
each of the four indicators (function: sequential(); package: “keras” [39]). Finally, the best four DNN,
one for each indicator, with the lowest MAEs are selected.

Within the keras package, no method is yet included to assess the predictor importance and
analyze the black box of the neural network. Similar to the random forest recording of the contribution
to the reduction of the error, the permutation feature importance (PFI) was implemented. Here,
the approach by Fioruzi (2018) was adopted, which is based on [40,41]. Although methodologically
not defined, the method was implemented on the test data. For each predictor, the values are randomly
permutated and the error of the neural network calculated. Afterwards, the absolute PFI was calculated
by subtracting the original model error from the permutation error, resulting in a value about the
contribution of the predictor on the reduction of the MAE.

The method described above was performed for all four outcomes, split into the same test and
training sets. The final mapping of the indicators was done implementing a quantile classification with
eight classes.

3. Results

The following section starts with the overall comparison of the performance of all applied machine
learning algorithms on the four indicators. Subsequently, the spatial distribution and predictive
elements of OSM for each indicator are presented.

3.1. Comparison of Machine Learning Algorithms and Model Performance

The first column represents the resulting MAE for randomly predicting values to establish the
baseline for comparison (Table 2). The second, third, and fourth columns are the LR, RF, and DNN
errors. In general, linear regression was better than random prediction, RF was better than LR,
and DNN was better than RF. For the DNN model, the number of residents per municipality was best
predicted with the lowest error, followed by migration, elderly, and unemployment.

3.2. Spatial Features of Number of Residents

The number of residents of each municipality was in decreasing order of the MAE modeled by
random, linear, RF, and best DNN.

The DNN model clearly outperformed the RF model but resulted in the challenge of understanding
the model. Performing the feature performance index (PFI), the four most important predictors of
residents were (Table 3): Train system, Infrastructure, Shopping and culture, and Rurality.

61



ISPRS Int. J. Geo-Inf. 2020, 9, 498 7 of 16

Table 3. Most important predictors of residents.

PFI Rank Predictor

1 Train system
2 Infrastructure
3 Shopping and culture
4 Rurality

The highest error was for the state capital of Stuttgart (Figure 3). In fact, Stuttgart was not part
of the training data and had a normalized value of over two due to its unmatched size within the
training set. The DNN model failed to extrapolate the extraordinary size of the capital from the
training data. This is the difficulty of the min–max normalization, which can result in test data values
not seen within the training data. Additionally, the city of Karlsruhe emerged as having one of the
worst predictions, which again shows the difficulties that the model has in making predictions for
relatively large cities compared to the majority of smaller municipalities. Mudau and Talheim, with
5009 and 4830 inhabitants respectively, achieved the lowest errors. The mean number of residents
over all 1101 municipalities in Baden-Württemberg is 10,054. Hence, the model performs well around
the median and less well in predicting outliers. The areas without value (NA) do not have the legal
administrative status of a municipality and are therefore not included in the statistics.
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3.3. Predictors of Unemployment

The level of unemployment as a share of the total population per municipality was the most
difficult to predict compared to the other socio-economic indicators. Additionally, there was not much
difference between DNN and RF. There is close to full employment throughout the entire federal state,
with many hidden champions in the countryside. This explains the lower unemployment of rural
regions compared to metropolitan areas (Figure 4).
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municipalities in Baden-Württemberg.

The PCA of Tourism scored the highest PFI, followed by Natural sights, Historic rural, Train
system, and Social care (Table 4). Hence, PCAs describing the typology of the municipality dominated.
Schluchsee, located in the Black Forest, showed the highest error among all municipalities.

Table 4. Most important predictors of unemployment.

PFI Rank Predictor

1 Tourism
2 Natural sights
3 Historic rural
4 Train system
5 Social care

The prediction overestimated the unemployment in the municipality. The second highest MAE
was reported for Heidenheim an der Brenz, where the real unemployment was underestimated.
Interestingly, in the spatial proximity of Heidenheim, Ulm had the lowest error, followed by Hochdorf,
Häusern, and Aalen.

3.4. Predictive Features for the Proportion of Elderly People

The proportion of elderly people in the municipality was modeled slightly better than unemployment.
Again, there was only a marginal difference between RF and DNN, though both were superior to the linear
model (Table 2). Across Baden-Württemberg, there is no clear pattern between rural and metropolitan
areas (Figure 5). In the western Black Forest region, the share of older people is comparatively high,
whereas in the north of Stuttgart and in the south-eastern region, the share of the younger population
is higher.

Spatial features related to an older population with the highest PFI score are in the Nature recreation
category, followed by Infrastructure, including roads and other elements of infrastructure (Table 5).
The third-highest scoring dimension is another facet of the first with Nature, followed by Suburban and
Nursing home.

In Untermarchtal, the share of elderly people was underestimated based on OSM, having the highest
MAE. Furthermore, Steinheim am Albuch had the second worst prediction scores, as the proportion of
elderly people was overestimated. At the other end of the scale are Wittighausen and Kappelrodeck,
where the error is close to zero.
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3.5. Spatial Attributes of Migration Balance

The balance between emigration and immigration and overall spatial attractiveness of a municipality
was the third best model. The river Rhine below Freiburg is a highly attractive region after the metropolitan
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The Train system is again important for the model, as already observed in the model for the
residents. As in the previous model of the elderly population, the dimensions of Nature recreation
and Infrastructure are of permutational importance (Table 6). These are followed by the Metropolitan
and Industrial area. Similar to the number of residents, the model fails to explain outliers in this
category, namely, the cities of Stuttgart and Mannheim. By contrast, the model performs excellently for
Schönaich and Oberderdingen.

Table 6. The most important predictors of migration.

PFI Rank Predictor

1 Train system
2 Nature recreation
3 Infrastructure
4 Metropolitan
5 Industrial

4. Discussion

Developing dynamic socio-economic indicators for measuring development or vulnerability and
describing complex phenomena remains a challenge despite the overall growth of data availability.
In this study, socio-economic indicators for residents, unemployment, elderly, and migration are
spatially predicted from OSM data with machine learning algorithms.

4.1. Residents

The DNN model, which performed best for all options, predicted the number of residents with
the feature elements from the categories Train systems, Infrastructure, Shopping, and Cultural rurality.
Stuttgart, the largest urban agglomeration in the dataset, was misrepresented, showing the struggle of
the model to differentiate outliers from extreme values. This shows the problem of reproducing extreme
values with machine learning algorithms and the need for complete datasets. As these models produce
more reliable estimates the more complete the data are, they show weaknesses for the extreme values
in narrow datasets when detection of outliers and differentiation from extreme values is unreliable due
to similarity in numbers.

4.2. Unemployment

Looking deeper into the modeling of the unemployment rates, we saw that the model largely
explained unemployment with Tourism, Natural sights, and Historic rurality. This shows the direct link
of natural and cultural heritage to tourism and employment rates in the Black Forest region. If not
protected, cultural and natural assets can be shown to have large negative impacts on employment rates.

Unemployment is, however, overestimated for the metropolitan regions. This can be explained by
several facts. Firstly, the model explains employment with Natural and Cultural heritage, which does
not reproduce urban agglomerations where the labor market is close to full employment. Furthermore,
a specific characteristic of the federal state is a highly decentralized economy with hidden champions
on the countryside providing excellent jobs in rural areas but also struggling to get highly qualified
employees. The study on the region of Stuttgart revealed similar trends [18]. To further investigate and
not only predict unemployment, the normalization of the data needs exploration, which is in line with
preceding studies to adjust for OSM spatial diversity in contribution [17,18]. Furthermore, training
the model with a larger dataset incorporating more large cities, thus stabilizing the extreme value
distribution, might resolve this issue for the machine learning algorithms.

Furthermore, the model showed errors in predicting unemployment for Schluchsee and Heidenheim
an der Brenz. The municipality of Schluchsee profits from its large number of recreational options
around the lake. A variety of recreational options, such as hiking, diving, sailing, and swimming,
and in winter, skiing, makes it a popular tourist destination. Therefore, the better performance of the
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municipality compared to the region partially explains the higher MAE. In Heidenheim, unemployment
increased by 12.6% within the last year, far more than in the rest of the region [42].

Nonetheless, a major strength of the methodology presented is revealed by displaying this spatial
assessment of connections. By focusing on the distillation of very complex interrelations, regional
decision-makers can see the complex relations between the protection of cultural and natural heritage
and employment in the tourism industry displayed on the map. This method has the potential to be
developed in further research to extract unknown connections, combining target-oriented regional
management with success control.

4.3. Elderly

For elderly people, the DNN model focuses strongly on nature-related variables and care facilities.
Looking deeper into the third indicator of elderly people, the model performance of the municipality
Untermarchtal stands out. Due to the unique setting of Untermarchtal, with its active monastery,
including a special care home and only 893 inhabitants, the model underestimates the high proportion
of elderly people. Similar to the findings of [22], rural sites can be dominated by a single economic player,
and this situation is not well represented by the models. It could also be helpful to screen the municipalities
with very low MAEs, such as Schönaich, Oberderdingen, Wittighausen, and Kappelrodeck, which are
well represented due to the median values.

Interestingly, the third explanatory variable was mobility. Relating elderly to public transport,
the strength of the method provided here can be seen. In the OSM dataset, information on infrastructure,
nature, and cultural heritage, but also mobility and connectivity, can be assessed in depth, gaining
knowledge about new relations and connections with machine learning algorithms. This study results
in spatial information about the dependence of elderly people on reliable public transport. As such,
in combination with ongoing demographic change, a decision-maker would now have the possibility
to assess future demand for mobility capacity needs and target the development of specific public
transport for the elderly according to the distilled spatial distribution.

4.4. Migration

In addition to the cross-cutting dimension, each indicator is specified by explicit dimensions.
Migration can be described by Infrastructure, Economic, Provision of services, and Natural characteristics.

In line with residents and unemployment, the DNN model also struggled to predict extreme
values for migration balance. The problem was aggravated in cases where extreme values were part of
the test data. Predicting the migration balance, the two largest cities of Baden-Württemberg, Stuttgart
and Karlsruhe, were not well reproduced.

4.5. Model Comparison

When deepening the analysis of the different model performances, we saw that DNN performs most
reliably. The two machine learning algorithm MAEs were much closer to one another. Still, DNN was
better than or equal to RF in all four cases. This is in line with current research, as deep neural networks
have outperformed many models in previous studies [43–49]. Despite the slightly worse performance
of RF, it is worth mentioning that the DNN required substantial model configuration, without which
it performed much worse than both other methods. Moreover, RF is easier to communicate and
understand. The feature importance of the RF was implemented within the approach. Here, DNN is
often seen as a black box, making it difficult to understand driving factors [49]. In addition, the RF
proved to be more robust and much easier to execute. Without extensive training, we could observe a
deterioration in the DNN model performance, as a sensitivity to the training and test data selection
became apparent. RF produced robust and less sensitive results compared to random sampling.
The computational needs for RF were also much lower than for DNN. Hence, in cases where maximal
model performance is needed, DNN is the model of choice, whereas for data mining and understanding,
RF often seems to perform quite well.

66



ISPRS Int. J. Geo-Inf. 2020, 9, 498 12 of 16

In increasing order, starting with the lowest MAE of the DNN, the indicator population was best
predicted, followed by migration, elderly, and unemployment. Although DNN had superior predictive
power, the model performed badly on the outliers and in the extreme values. This could especially be
seen when reproducing the number of residents on a regional scale, as estimations for residents in
the larger cities were worse. This was mainly the case for Stuttgart and for Karlsruhe. This might,
however, be resolved by deepening the research with larger datasets incorporating more large cities, so
that the extreme value distribution is stabilized and produces more reliable estimates.

4.6. Challenges

An important part of socio-economic indicators is their explanatory power of unusual phenomena
or in extreme situations. Machine learning, and especially DNN, is often seen as a black box, which
limits its acceptance and applicability [50]. Nonetheless, the PFI is a very condensed way of interpreting
the global feature importance. As the approach is linked to the error of the model, it is only possible to
perform with access to the outcome and not for the assessment of a standalone model [51]. By leaving
out different explanatory variables, the assessment of their contribution to the overall outcome distills
the interconnections of social indicators and spatial attributes, which is key in understanding regional
development issues and helps in making target-oriented decisions.

Furthermore, one major challenge that kept coming up in all the indicators was the representation
of extreme values. As such, it could be shown in this study that the representation of extreme
value distribution is, as is in any modeling effort, one major flaw in the methodology. This being
an interwoven problem of the availability of wide-ranging datasets for model training, the complex
process of differentiating between outliers and extreme values, and the simultaneous training of models
to represent normal distributions and extreme value distributions.

An important common constraint of OSM data is the spatially unbalanced contribution and, hence,
the variations in spatial coverage and density of information, especially on a global level. Germany,
and especially the selected study region, is among the regions with a comparatively high number
of contributors and a high coverage of information, represented, for example, by a completeness
index of above 50% in 2016 for Germany [52]. Nevertheless, the completeness within the country still
shows a disparity between rural areas and urban regions regarding data coverage and quality [53,54],
which could limit the explanatory power of the model results in this study. Therefore, it would be
interesting to see if certain thresholds could be established for regions with lower coverage or if the
absence of OSM data themselves can be used in this context as a predictor. Another shortcoming is
that the handling of the method is not user-friendly. Machine learning techniques remain difficult to
handle and require a statistical and analytical skillset. Furthermore, the management of the OSM data
structure within the model is not very intuitive which, all in all, makes the approach difficult to be
used by decision makers. Nevertheless, we have succeeded in showing that OSM data sets contain a
great deal of knowledge about socio-economic realities, and that these can be extracted with machine
learning. It is not insignificant that these indicators can be represented spatially in map form, which
increases their contribution to decision-making.

4.7. Future Research

After having tested the method in the small-scale region of Stuttgart, we further developed the
approach. As a compromise between computational resources, data handling, and model complexity,
the regional scale was chosen. In further research, the potential at a global scale and transferability
of models between regions should be assessed, given the potentially high impact on the results due
to different levels of completeness of OSM data and/or the use of different (local) tagging guidelines.
In line with a larger dataset, emphasis should be put on better consideration of extreme values.
Often decision makers are mainly interested in special cases, i.e., extreme values. Further efforts are
needed to be able to provide stable answers to these complex questions at the outer ends of the dataset.
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5. Conclusions

Living in a globally interwoven world, rarely is any problem restricted to one singular specific
point in space and time. As such, the big challenges of global change and, subsequently, resilience,
vulnerability, and sustainability that we are facing are not stationary.

In this light, first understanding and later monitoring multifaceted phenomena demands a
global temporal interdisciplinary source of data. OSM is a valuable source of data, and machine
learning provides the means of deducing interdisciplinary indicators. OSM documents the physical
manifestation of human activities, and these data can be used to perform socio-economic analyses
by means of machine learning. Neural networks have succeeded in terms of model performance
compared to Random Forest. Here we have shown the attractiveness of this untapped potential for
knowledge generation by combining machine and deep learning algorithms with OSM for developing
socio-economic indicators. The evaluation provided encouraging insights into the manifestation of
socio-economic attributes in OSM data. The approach we developed exposes several advantages,
but also several issues that need more consideration.

To fully exploit the opportunities of OSM in terms of spatial coverage, personal computers
reach their limitations in data wrangling. Further exploration is required into global predictors and the
transferability of models across regions or countries. Additional temporal analyses might further improve
the performance of models and their predictive power and help to deduce the most relevant predictors.
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Appendix A. Predictor Related Tags

Predictor Tags (Highest Loadings)

Nature recreation landuse_forest; route_bycicle; operator_Baden-Würtemberg
Infrastructure Highway_traffic_signals; route_train; highway_crossing_railway_rail
Train System Route_tracks; railway_rail; operator_DB Netz; route_railway
Natural sights Tourism_viewpoint; width_1; boundary_natural; natural_mountain_range; food_yes
Tourism Shop_books; tourism_museum; historic_castle; tourism_hotel
Metropolitan Route_bus; oneway_yes; highway_milestone
Suburban Building_garage; route_power; landuse_recreation_ground; waterway_drain; power_line

Nature
Natural_mountain_range; place_region; boundary_natural; route_ski;
amenity_waste_basket

Historic rural Highway_living_street; historic_archeological; man_made_bridge; operator_DHL
Industrial Landuse_idustrial; sport_multi; surface_gravel; leisure_track
Rurality power_cable; place_hamlet; bicycle_use_sidepath; building_public
Social care Building_kindergarten; amenity_nursing_home; leisure_track;
Nursing home amenity_nursing_home, width_10; denomination_new_apostolic
Shopping & culture Shop_deli; amenity_arts_center; shop_beverages
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A B S T R A C T

High uncertainty in the occurrence of extreme events and disasters have made resilience-building an imperative
part of society. Resilience assessment is an important tool in this context. Resilience is multidimensional as well
as place-, scale- and time-specific, which requires a comprehensive approach for measuring and analysing. In this
regard, composite indicators are preferred, and extensive literature is available on resilience indices on all spatial
and temporal scales as well as hazard-specific or multi-hazard related indicators. However, transparent, robust,
validated and transferable metrics are still missing from the scientific discourse. Hence, the research follows a
novel composite index development approach: First, to develop and operationalise climate resilience on the
county level in the state of Baden-Württemberg, Germany; second, to develop multiple composite indices in
order to assess the impact of the construction methodology to increase transparency and decrease uncertainty;
third, validating the index by statistical as well as empirical data and machine learning models - which is a novel
endeavour so far. The results underscored that the two-step inclusive validation of data-driven statistical analysis
in combination with empirical data proved to be essential in developing the index during the selection and
aggregation of indicators. The results also highlighted a lower climate resilience of rural regions compared to
metropolitan regions despite their better environmental status. Overall, machine learning proved to be essential
in understanding and linking indicators and indices to policy, resilience and empirical data. The research con-
tributes to a better understanding of climate resilience as well as to the methodological construction of com-
posite indicators.

1. Introduction

Uncertainty in the occurrence of climate change-related extreme
events and disasters is growing. The need to deal with this uncertainty
has made resilience-building an imperative part of society. Therefore,
the application and development of resilience assessment is an essential
tool to better understand, identify and deal with these multi-
dimensional and complex challenges.

Typically, composite indicators are used for the assessment of many
multidimensional phenomena and intend to capture all facets. Over the
last decade, literature references on composite indicators grew ex-
ponentially (Greco et al. 2019). However, composite indicators are
highly criticized, with three major objections cited against them: a)
they can send misleading and non-robust messages, b) they are not
objective as judgement is included in selecting indicators, c) the amount

of data needed is increased, which leads to difficulties in applying the
indicators (Saltelli 2007). The construction of indices is often im-
plemented either by solely data-driven approaches criticized for ne-
glecting the phenomena or purely reasoning-driven approaches refusing
statistics. Despite this criticism, two main reasons are responsible for
their apparent popularity and common use for complex issues: Firstly,
they can provide a simple picture, enable comparison and evaluation of
complex multidimensional phenomena; secondly, they can function as
drivers for behavioural change of governments or agencies (Becker
et al. 2016). Therefore, composite indicators became increasingly
popular in the complex realm of natural hazards.

Composite indicators have been developed on different scales (e.g.,
global, country, urban, household, individual) for risk (Welle and
Birkmann, 2015; Birkmann and Welle, 2016; Marin-Ferrer et al., 2017),
vulnerability (Welle et al., 2014; Depietri et al., 2013; Sorg et al., 2018;

https://doi.org/10.1016/j.ecolind.2020.106861
Received 11 November 2019; Received in revised form 10 August 2020; Accepted 15 August 2020

⁎ Corresponding author.
E-mail addresses: daniel.feldmeyer@ireus.uni-stuttgart.de (D. Feldmeyer), daniela.wilden@geogr.uni-giessen.de (D. Wilden),

Ali.jamshed@ireus.uni-stuttgart.de (A. Jamshed), Joern.birkmann@ireus.uni-stuttgart.de (J. Birkmann).

Ecological Indicators 119 (2020) 106861

1470-160X/ © 2020 Elsevier Ltd. All rights reserved.

T

74

http://www.sciencedirect.com/science/journal/1470160X
https://www.elsevier.com/locate/ecolind
https://doi.org/10.1016/j.ecolind.2020.106861
https://doi.org/10.1016/j.ecolind.2020.106861
mailto:daniel.feldmeyer@ireus.uni-stuttgart.de
mailto:daniela.wilden@geogr.uni-giessen.de
mailto:Ali.jamshed@ireus.uni-stuttgart.de
mailto:Joern.birkmann@ireus.uni-stuttgart.de
https://doi.org/10.1016/j.ecolind.2020.106861
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolind.2020.106861&domain=pdf


Karagiorgos et al., 2016; Balica et al., 2009; Jamshed et al., 2019;
Cutter et al., 2003) and resilience (Cutter et al., 2010a, 2014; ARUP and
Rockefeller Foundation, 2014; Suárez et al., 2016; Keating et al., 2014).
However, the criticism mentioned above is addressed less in the sci-
entific discourse.

Present extreme events and disasters are increasing uncertainty, and
major efforts are put into researching trends, scenarios and models. In
light of this uncertainty, resilience is a positive as well as an inter-
disciplinary concept which is first defined in ecology by Holling (1973).
According to Holling (1973), resilience is a “measure of persistence of
systems and of their ability to absorb change and disturbance and still
maintain the same relationship between population or state variables”.
Many frameworks have been developed following Holling’s work to
evaluate resilience, but there is neither an agreed set of variables nor a
comprehensive definition. Moreover, frameworks are established for
specific threats and only some are considering climate change (ARUP
and Rockefeller Foundation, 2014; Welle et al., 2014; Riedel et al.,
2016; United Nations Office for Disaster Risk Reduction (UNISDR),
2017; Morrow, 2008; NOAA, 2015; Tyler and Moench, 2012; United
Nations Development Program (UNDP), 2013) whereas in others it is
not explicitly targeted (Birkmann et al., 2012; Béné et al., 2015;
Renschler et al., 2010; Poland, 2008; Oregon Seismic Safety Policy
Advisory Commission, 2013; Yoon et al., 2016). Some approaches are
developed to focus on the resilience against specific hazards such as
earthquakes (Poland, 2008; Oregon Seismic Safety Policy Advisory
Commission, 2013), while others see resilience more generally and
consider it is addressing multiple hazards (Cutter et al. 2008).

Besides the specificity of resilience to a particular hazard, resilience
depends on the objective, the spatial scale, the temporal scale and the
place (Meerow and Newell 2019). Stating the importance of scale and
place in measuring resilience, assessment tools need to pass through a
scaling process. For connecting resilience monitoring and adaptation
measures, it is crucial to consider the scale and country-specific ad-
ministrative duties. Authorities can only implement measures in the
field of their legal competences, which is defined by the legal structure
of the state. Therefore, indicators have to measure these areas of
competence in regard to resilience that authorities can deduce, imple-
ment and evaluate adaptation measures. With the aim to transfer an
already existing indicator set on a lower (e.g. urbane) scale to a higher
(e.g. regional) scale, an upscaling process - including the mandatory
duties of the scale-responsible authorities as well as testing reliability
and validation - is needed. Upscaling has the advantage that the overall
country-specific themes and challenges of climate change are already
considered.

This study uses the case of the federal state of Baden-Württemberg,
Germany. Regional climate resilience is not yet defined in Germany,

however, urban climate resilience was defined within the German re-
search project MONARES (www.monares.de). Hence we are using the
following definition of urban climate resilience as a starting point for
the upscaling process: “the climate resilience of a city depends on the
ability of its sub-systems to anticipate the consequences of extreme
weather and climate change, to resist the negative consequences of
these events and to recover essential functions after disturbance
quickly, as well as to learn from these events and to adapt to the con-
sequences of climate change in the short and medium-term, and
transform in the long term. The more pronounced these abilities are,
the more resilient a city is to the consequences of climate change”
(Feldmeyer et al. 2019).

The main aims of the research are 1. upscaling of urban climate
resilience; 2. addressing the criticisms of composite indicators by
testing four different aggregation methods and implementing a twofold
validation as well as robustness and sensitivity analysis; 3. filling the
gap of empirical validation of resilience measuring approaches
(Bakkensen et al., 2017; Burton, 2015); 4. developing an indicator set
for regional climate resilience.

2. Methodology

The methodological concept is divided into five major parts (see
Table 1). The first step includes the definition of the spatial scale (Step
1.1), the upscaling of urban climate resilience to adequately resemble
regional resilience (Step 1.2), selection of the initial indicator set (1.3)
and the normalisation of all chosen indicators (1.4). Secondly, the in-
dicators of Step 1 are validated using the machine learning package
“RandomForest” (Step 2). Based on the outcome, the indicator set is
updated accordingly. In Step 3, an index is constructed by applying
different aggregation methods (Step 3.1. a.-d.) in order to understand
the method’s influence on the results. Subsequently, the reliability (Step
4.1) of both the indicators and index is tested, and a sensitivity analysis
(Step 3.2) is executed. In Step 5, a validation for the aggregation
methods, based on non-linear and non-parametric correlation, is ap-
plied. Eventually, the final index is applied to the federal state and a
spatial analysis is conducted (Step 6).

2.1. Spatial scale and initial indicator set

The spatial scale is important because of the context- and space
specificity of climate resilience. Due to the decentralized structure of
the Federal Republic of Germany, each administrative level has specific
responsibilities resulting in the freedom to adapt to the local char-
acteristics. Therefore, climate resilience cannot be assigned to a single
scale only. All levels of administration have responsibilities for

Table 1
Methodology - Concept.

STEP SUBSTEP CALCULATIONS

1. Spatial scale & initial indicators 1. Definition of the spatial scale
2. Upscaling from urban resilience to regional resilience
3. Development of the initial indicator set
4. Transformation of the initial indicators (normalization) a. min–max-transformation

2. Validation of indicators 1. Empirical validation a. Machine learning (random forest)
3. Aggregation of the index 1. Aggregation of the index equal weights (eqw)

mixed equal hierarchical weights (hw)
Wroclaw Taxonomic
Mazziotta-Pareto-Index (mpi)

4. Calculation of robustness & sensitivity 1. Reliablity a. Cronbachs alpha
b. Guttman's Lamda

2. Global sensitivity analysis a. Bayesian approach
5. Validation of aggregation method 1. Empirical validation a. Non linear & non parametric correlation
6. Application of the index to the spatial scale 1. Application of the final index to the Federal State of Baden-Wurttemberg

(Germany)
2. Analysis of the regional climate resilience of the counties of Baden-
Wurttemberg
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influencing spatial climate resilience. Additional interdependences be-
tween scales, up- and downwards, influence the selection of indicators
since the effect can be local but the cause regional.

In Step 1.1. the spatial scale is defined. This case study is focused on
the regional scale and uses the Federal State of Baden-Württemberg as
an example. Baden-Württemberg is divided into four districts, twelve
regions and 44 counties (Fig. 1). 69% of the land area of the Federal
State of Baden-Württemberg is covered by rural areas (landwirtschaft-
bw, 2019). Each region has a regional planning authority. In total, there
are 1,101 municipalities, some of which established municipal asso-
ciations to execute their administrative affairs jointly.

Step 1.2. focuses on the upscaling process from urban to regional
resilience. The starting point for the regional climate resilience index
were the urban climate resilience indicators developed by Feldmeyer
et al. (2019). The process included the upscaling from urban to a re-
gional level. The applied framework is using a hierarchical system:
general spheres, theme and indicator. Due to the thematic congruence of
the framework the general spheres (Table 2) of resilience - environment,
infrastructure, economy, society and governance - were completely
adapted to the new regional resilience framework.

The second framework level of themes was thoroughly modified in
consideration of the planning duties of the county level. Each county
has mandatory duties as well as some voluntary duties and duties im-
posed by the federal government and/or state. The following duties are
mandatory (Landeszentrale für politische Bildung (LpB), 0000):

• Waste management
• Health system
• Social and youth welfare services
• Public transport
• Environment and nature conservation
• Forest administration

• Road administration
• Agriculture
• Surveying and mapping
• Commercial inspectorate
• Pension office
• Veterinary

In order to develop meaningful indicators on the county level, these
mandatory duties have to be considered, so that the authorities can
deduce adaptation measures in their area of legal competence. Later on,
the indicators should provide the means to monitor and evaluate im-
plemented measures.

During the process of developing the indicator set (Step 1.3), 17
themes were selected for the regional scale. On this basis, a set of 23
indicators was deduced considering the spatial scale at county level
(Table 2). The final themes and indicators are shown in Table 2. It also
shows the linkage of the themes to a county’s planning duties. Further,
the public availability of indicator data was a selection criteria, because
the developed index should be low-threshold for the application.

Compared to the urban resilience indicator set of Feldmeyer et al.
2019 some indicators were introduced and removed. In the environ-
mental sphere, the theme of Agriculture and forest was additionally in-
troduced. The sphere of infrastructure is subdivided into Street, Health
care (epidemiological & individual citizen), Local supply and Public trans-
portation. Those themes replaced the urban themes (Feldmeyer et al.
2019) of Settlement structure, Energy and Drinking and wastewater. For the
economic sphere, a locally-focused view on Business was exchanged
with the more general descriptive theme of Unemployment. The people-
centred theme of Knowledge and risk competence was disregarded as well
as the municipality focused theme of Research projects within the mu-
nicipality. Similarly, on the governance level Participation was dropped.

In Step 1.4. the transformation of the initial indicator set is

Fig. 1. Map of counties of Baden-Württemberg and selected sub-set for rural-metropolitan comparison.
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performed, as the indicators are measured in different measurement
scales. For using them in calculations such as aggregations, they need to
be transformed.

For the transformation of data, the normalization method was
chosen. Several normalization methods exist from which the min–max
normalization is selected as depicted in equation (Joint Research
Centre-European Commission (JRC), 2008). This normalization results
in values from zero to one and shifts the distribution. Important to note
is that the distribution of the data itself is not changed.

Equation 1: min–max transformation

=z
X X

X X
ij (min)

(max) (min)

2.2. Validation of initial indicators

The amount of literature concerning resilience has exponentially
grown over the last decade. Resilience indices are developed for dif-
ferent hazards, scales and definitions of resilience. The vast majority is
based on thorough theoretical deduction, but only a few attempts for
empirical validation or verification exist (Burton, 2015; Bakkensen
et al., 2017). Therefore, although the indicators are theoretically sound,
they are not tested if they measure climate resilience in reality.

Indices are used to measure complex phenomena where no single
indicator captures all aspects of the indicandum (phenomenon of in-
terest). Hence, starting with the objective of the index stating the in-
dicandum is appropriate (Bastianoni et al. 2012). In order to validate
indicators and indices empirically the choice of an outcome to validate
against is essential, although the selected outcome can only be a helpful
tool to assess for a better understanding. In case of dealing with a
multidimensional indicandum, such as resilience, no single outcome
exists and different outcomes need to be considered. For example,
Bakkensen et al. (2017) selected property damages, fatalities and fre-
quency of disaster declaration as outcomes for the validation of disaster

resilience and vulnerability indices. They further stated that resilience
and vulnerability are limited to those three outcomes. Burton (2015)
used images to measure the recovery process after Hurricane Katrina to
validate resilience indicators of communities empirically. This example
states, indicators of the same indicandum – in this case disaster resi-
lience – can be validated against different outcomes, which contributes
to a broader understanding of the indicandum.

Applied to the context of indicandum climate resilience, life ex-
pectancy seems to be able to cover a wide range of the aims of the
indicandum. Life expectancy is the number of years a newborn can
hope to live, based on the latest mortality table calculations of the
federal state of Baden-Württemberg. In order to live a long and healthy
life, essential factors are healthcare, health, wealth, education and de-
velopment (Otoiu et al. 2014). Since climate change projections predict
an increasing frequency and magnitude of climate-induced hazards,
extreme event related outcomes should be considered. Consequently,
insurance data about damages due to floods and storm, reported over a
period of 15 years (GDV 2018), are selected as the second and third
outcome. The damage data of the insurance companies in Baden-
Württemberg have excellent spatial coverage of 95% of all buildings
due to the historically compulsory insurance until 1993 (GDV 2018).

In order to validate the indicators, the preliminary analysis shows
that non-linearity and violation of the normal distribution (histogram,
Kolmogorv-Smirnov-Test) assumption have to be considered.
Therefore, a random forest model implemented in the RandomForest
Package as a non-linear method is selected (Step 2.1) (Liaw and Wiener,
2002). Three models are calculated, one with each of the three defined
outcomes as a prediction. The evaluation criterion was the contribution
to reducing the test error. Indicators not decreasing the test error in at
least one of the three models (storm, flood, life expectancy) were
consequently removed from the index (Table 3).

Table 2
Regional climate resilience indicators based on literature analysis and administrative responsibilities of counties.

Sphere Theme Indicator Duty Justification

Environment Soil and green spaces en_pe Degree of ground sealing1 Environment and nature
conservation

(Yoon et al. 2016)

Water bodies en_wa Proportion of structurally shaped settlement and
traffic area in the official flood area1

Environment and nature
conservation

following (Geis and Kutzmark 1995)

Biodiversity en_bi Share of nature conservation and protection areas1 Environment and nature
conservation

(US Indian Ocean Tsunami Warning
System Program 2007)

Air en_ap Air emission index4 Environment and nature
conservation

(Riedel et al., 2016; Mitigation Framework
Leadership Group, 2016)

Agriculture and forest en_ag Degree of organic farming4 Agriculture administration (Welle et al., 2014; Renschler et al., 2010)
en_fo Proportion of undissected forests1 Forest administration (Cutter et al., 2008; Mitigation Framework

Leadership Group, 2016)
Infrastructure Streets in_sp Accessibility of large centres3 Road administration (Becker et al. 2015)

Health care in_ho Hospital beds2 Health system (Cutter et al. 2010a)
in_dp Nearby doctors3 Health system (Cutter et al. 2010a)

Local supply in_lp Accessibility of supply with daily goods3 Road administration (Renschler et al. 2010)
Public transport in_pu Proximity of public transport2 Public transport (ARUP and Rockefeller Foundation 2014)

Economy Innovation ec_re Employees in research intensive companies2 Business development (ARUP and Rockefeller Foundation 2014)
Employment ec_em Employment5 Business development (Oregon Seismic Safety Policy Advisory

Commission 2013)
Economy ec_gr Gross Domestic Product4 Business development (Becker et al. 2015)

Society Health so_he Sick days6 Health system (Becker et al. 2015)
Sociodemographic so_ag Share of citizens ABV6/U654 Social and youth welfare (Cutter et al. 2010b)
Civil society so_vo Voter turnout4 Democracy (Poland 2008)
Social security so_sp People in need communities4 Social and youth welfare
Civil protection so_pp Nearby police stations3 Civil protection (Becker et al. 2015)

so_ap Proximity of hospitals3 Civil protection (ARUP and Rockefeller Foundation 2014)
Governance Budget go_dp Municipal debt4 not directly (Abel Schumann 2016)

go_in Municipal income4 not directly (Abel Schumann 2016)
Administration go_su Support of climate protection agreement4 Climate protection following (Mitigation Framework

Leadership Group 2016)

Data sources: 1(IOER 2019) 2(BBSR 2019)3 (BMEL 2019) 4 (statistik-bw, 2019) 5 (BA 2019) 6 (BKK 2019).
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2.3. Aggregation of the index

The aggregation of indicators to a composite index requires two
main steps, which both crucially influence the final index (Becker et al.
2017). The aggregation method can be done by different mathematical
means. All mathematical calculations are done with R (Team 2019)
within R Studio (Team, RStudio, 2016).

To build a composite index, it is important to define indicator
weights. There are two main methodological approaches which can be
used to build a composite index:

1. The first approach can be described as topic-driven, where weights
are developed by experts, surveys or according to thematic groups
and are then chosen equally or hierarchically. Equal or hierarchical
weights are easier to communicate to stakeholders which are espe-
cially important in the science-policy interface. Moreover, trans-
ferability and transparency are increased, and the weights appear
logically justified (Birkmann and Welle, 2016; Cutter et al., 2010b;
Rød et al., 2012).

2. The second approach proposes purely data-driven, statistical
weights for the indicators. However, as Becker et al. (2017) argue,
different variances as well as possible correlations distort the se-
lected weights and result in an undesired impact. Although, even
correlated indicators can measure different phenomena and do not
necessarily duplicate, hence overstating the same phenomena which
cannot be discerned adequately by purely data-driven approaches.

Against this background and acknowledging the logic and correct-
ness of both sides, the present paper implements both approaches and
validates them using empirical data to justify the aggregation method.
Within these two approaches, four methods were identified and used
(Table 1). The implementation of the methods allows to assess the
impact of the aggregation method on the index. This contributes to the
transparency, robustness and sensitivity assessment of the index. The
first method (Step 3.1.a.) explores and understands the data as well as
its characteristics when constructing the index with equal weights

(eqw).

1. The second method (Step 3.1.b.) implements the mixed equal hier-
archical expert weights approach (hw). Within climate resilience,
two hierarchical levels are developed. On the first level, five main
dimensions are equally weighted. The number of themes within
each dimension varies but is covered by a single indicator.
Consequently, each theme is represented by a single indicator.
Hence, equal weights are assigned within each dimension to each
theme resulting in different weights for indicators on an index level.
For example, environment has the weight one fifth due to five di-
mensions. Within the theme environment, air also has one fifth due
to five themes within the environment.

2. The third method (Step 3.1.c) is the Wroclaw Taxonomic Method
(wroclaw). This method is widely applied for the development of
social, as well as economic, indicators (Schifini, 1982; Quirino,
1990; Muro et al., 2011; Cwiakala-Malys, 2009). The method selects
one indicator as the benchmark, which comes closest to an ideal
unit. For the other indicators thereafter, the Euclidian distances to
this benchmark indicator are calculated and ordered in respect of
the proportion of the distance to the optimal situation (Vidoli and
Fusco, 2018).

3. The fourth method (Step 3.1.d) is the Mazziotta-Pareto-Index
method (mpi). This method measures two aspects: the mean level
and the unbalance of each indicator. The method is based on a linear
aggregation but a penalty in case of unbalance corrects for this
unbalance (Muro et al. 2011).

2.4. Calculation of robustness and sensitivity

In Step 4.1. the intra-methodological influence is assessed, which
contributes to the overall need of a composite index to be transparent,
robust and traceable (Welle and Birkmann 2015). Cronbach’s Alpha
(Step 4.1.a) and Guttman’s Lambda (Step 4.1.b) are commonly used
tests to describe reliability. These tests assess the homogeneity of items
for constructing an index. Considering regional climate resilience, re-
liability explains the internal consistency of the indicators to the in-
dicandum. According to the JRC (2008), Cronbach́s Alpha within the
range 0.6 to 0.8 is desirable. Guttmańs Lambda calculates six lambdas
in succession, where Lambda 3 is equal to Cronbach́s Alpha. Guttmańs
Lambda presents lower bounds of reliability.

In Step 4.2.a. a global sensitivity analysis (GSA) is applied to all four
indices calculated in Step 3.1.a – 3.1.d. The sensitivity analysis adds
and quantifies the uncertainty of the composite index, to the knowledge
of the internal consistency of the items (Saltelli 2002). For conducting
the GSA the free open source tgp package (Gramacy 2007) is applied. In
a GSA, all input items are changed at the same time. In contrast, the
local sensitivity analysis changes one item at a time. The sensitivity
function of the tgp package is an implementation of a Bayesian ap-
proach. Normally distributed Gaussian noise is added to the function of
each item. The Bayesian approach significantly reduces the computa-
tional effort and still produces reliable results (Oakley and O'Hagan
2004).

2.5. Validation of indices

In Step 5.1.a. an empirical validation of the aggregation methods is
conducted. As already stated in Chapter 2.2, validation is crucial at all
stages of the index creation. Therefore, a double validation is performed
in this paper. Firstly for the individual indicators (Step 2.1.a) and sec-
ondly for the aggregation method (Step 5.1). Hence, a nonlinear and
nonparametric correlation was performed for each index in order to
assess the impact of the different aggregation method.

Table 3
Empirical validation of county resilience indicators.

Code Indicator Storm Flood Life expectancy

en_pe Degree of ground sealing No Yes Yes
en_wa Proportion of structurally shaped

settlement and traffic area in the
official flood area

No No No

en_bi Share of nature conservation and
protection areas

Yes Yes No

en_ap Air emission index No Yes Yes
en_ag Degree of organic farming Yes Yes Yes
en_fo Proportion of undissected forests No No No
in_sp Accessibility of large centres Yes Yes Yes
in_ho Hospital beds No Yes No
in_dp Nearby doctors Yes Yes Yes
in_lp Accessibility of supply with daily

goods
Yes Yes Yes

in_pu Proximity of public transport Yes No No
ec_re Employees in research-intensive

companies
No No No

ec_em Employment No No Yes
ec_gr Gross Domestic Product Yes No No
so_he Sick days Yes No Yes
so_ag Share of citizens ABV6/U65 Yes Yes No
so_vo Voter turnout Yes No Yes
so_sp People in need communities Yes No Yes
so_pp Nearby police stations No No Yes
so_ap Proximity of hospitals No Yes No
go_dp Municipal debts No No No
go_in Municipal income No No No
go_su Support of climate protection

agreement
No No Yes
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2.6. Application of the final index to the spatial scale

Finally, the validated indicators and the most adequate aggregation
method are selected, and the index is implemented for the federal state
of Baden-Württemberg. With the resulting climate resilience index for
the state, including a county resolution, the index is initially analysed
with regards to indicators which may explain high or low resilience.
Furthermore, rural and metropolitan counties are compared (see
Fig. 1). For both comparisons, boxplots are plotted. The mean value
comparison was conducted with the non-parametric Wilcoxon-Test.

3. Results

The results follow the stated objectives and each section builds on
the previous but also includes stand-alone results. First, the selection of
indicators and reducing them based on statistical tests. Second, the
building of the composite index within the sensitivity analysis and
second stage validation. Third, the analysis results of regional climate
resilience based on the index developed in the previous two sections.

3.1. Regional climate resilience indicators (Step 1 – 2)

The proposed indicators are based on literature, administrative re-
sponsibilities and the framework for climate resilience (Table 2). They
are tested regarding their suitability for a composite index and by their
contribution in explaining one of the three outcomes (storm, flood, life
expectancy).

Preliminary analysis steps are indicating a violation of the as-
sumption of normality as well as linearity. Therefore, correlation ana-
lysis is based on a pairwise nonparametric and nonlinear analysis. High
correlation (R > 0.70) reveals the three pairwise combinations of the
indicators: Accessibility of supply with daily goods, Nearby doctors and
Nearby police stations. All three are covering important aspects of cli-
mate resilience but stating a similar problem of the supply of services in
rural areas compared to metropolitan areas, thus summarizing the
question of accessibility. Based on this analysis, the indicator Nearby
doctors was removed as not only the accessibility but also the “per ca-
pita” number is important while the medical capacity in emergencies is

additionally covered by Hospital beds. The other two indicators were
kept although they are highly correlated because they cover different
aspects in different spheres of the framework.

Degree of ground sealing was highly negatively correlated with
Accessibility of large centres, Nearby doctors, Accessibility of supply with
daily goods, Proximity of hospitals and Nearby police stations. The negative
correlations here are somehow expected and revealing conflicting goals
within climate resilience. Hence itś not incoherence of the framework
but rather strength in incorporate both perspectives. The necessity of
both aspects requires the inclusion of both sides.

In order to the supervised machine learning approach is considering
all resilience indicators as input and storm, flood or life expectancy as
output (Table 3). Within Table 3, Yes states that the indicator con-
tributes to reducing the test error, and No declares indicators are irre-
levant in the model. The five most important indicators regarding the
output life expectancy were Voter turnout, Degree of organic farming,
Nearby police stations, Sick days and Accessibility of supply with daily
goods.

For the damage related to the storm, the five most important in-
dicators were Degree of organic farming, Share of citizens ABV6/65, Gross
Domestic Product, Employment, Sick days, and Voter turnout. The five
most important indicators regarding the prediction of flood damage
were: Share of citizens ABV6/U65, Accessibility of large centres,
Accessibility of supply with daily goods, Hospital beds, and Air emission
index. In all three models, five indicators did not contribute to reducing
the test errors on the test data: Proportion of structurally shaped settlement
and traffic area in the official flood area, Proportion of undissected forest,
Municipal debts, Municipal income and Employees in research-intensive
companies (Table 3). These five indicators were consequently removed
from the further construction of the index.

3.2. Regional climate resilience index (Step 3–5)

After determining the reliability of the validated and reduced set of
indicators (Step 2), the four aggregation methods are calculated (Step
3). Subsequently, based on the sensitivity analysis in conjunction with
the correlation analysis against the outcomes (Step 4), one final index is
selected (Step 5).
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Fig. 2. Display of the global sensitivity analysis of the resilience index based on the Wroclaw approach.
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The reliability (Step 4.1.a + 4.1.b.) of the indicator set is with a
Cronbach's Alpha of 0.84, the lower boundary of the 95% confidence
interval of 0.78 and the upper boundary of 0.91, well within re-
commended values (Revelle and Revelle 2015). Cronbach́s Alpha is the
most frequently used measure. Still, it tends to underrate the reliability
and overrate the first factor saturation. The Guttmańs Lambda for the
indicator set is 0.95. Summarizing the set has strong reliability and is
suitable for constructing an index.

For all four indices, the global sensitivity analysis was conducted
(Step 4.2.a). The result of the Wroclaw aggregation method is shown in
Fig. 2. Based on the comparison, the Wroclaw method is best suited to
aggregate the set of indicators. Within the other methods (hw, mpi,
eqw), the first order, as well as total effect, was unequally distributed
amongst the indicators.

Fig. 3 displays the correlation matrix for the indices with the out-
come validators. Overall, resilience indices are positively correlated. All
indices are also, as expected, positively correlated with life expectancy
and negatively correlated with the damages associated with floods and
storms. The highest correlation for life expectancy showed the
Wroclaw-Index with 0.44, which also correlated negatively with the
storm and flood damages. The negative correlation to damages is only
slightly better covered by the Equal-Weight-Index. Therefore, con-
sistent with the sensitivity analysis, the Wroclaw-Index performs best.
Consequently, the resilience indicators aggregated with Wroclaw
Taxonomic are validated as the best Regional-Climate-Resilience-Index
(RCRI), which is used for further calculations.

3.3. Regional climate resilience implemented on county level (Step 6)

The newly created and validated RCRI is applied to the case study
region of Baden-Württemberg. For explaining the spatial attributes in
detail, the dataset is split into the most and least resilient counties

(Fig. 4) as well as into rural and metropolitan areas (Fig. 5). Further-
more, the county climate resilience is presented in a spatial map (see
Fig. 5).

In Fig. 4, the ten most resilient counties were grouped into one
group and the ten least resilient counties into a second group. As an-
ticipated, the life expectancy of the top group is significantly higher and
the damages caused by storm and flood lower, although not statistically
significant. The lower group has higher values in the environmental
sphere (e.g., Degree of ground sealing (en_pe) or Share of nature con-
servation and protection (en_bi). Statistically significant indicators in fa-
vour of the top group are GDP (ec_gr), Degree of ground sealing (en_pe),
Voter turnout (so_vo), Support of climate protection agreement (go_su), Air
emission index (en_ap), Accessibility of large centres (in_sp), Proximity of
hospitals (so_ap), Nearby doctors (in_dp), Accessibility of supply with daily
goods (in_lp) and Nearby police stations (so_pp). Eight indicators are not
significantly different.

Fig. 5 demonstrates the comparison of the seven metropolitan
counties with seven rural counties. These counties are classified as city
and rural by the Statistical Office of Baden-Württemberg (statistik-bw,
2019). The results of the aggregated Wroclaw Index suggest that the
metropolitan counties are (statistically) significantly more resilient than
the rural counties, which is consistent with lower damages although not
statistically significant. Life expectancy, in contrast, is slightly higher by
means of the mean but also has a greater variance. The rural counties
have higher resilience concerning Employment (ec_em), Degree of ground
sealing (en_pe), Share of organic farming (en_ag), and people in need
communities (so_sp). Reciprocal metropolitan areas have a higher GDP
(ec_gr), Accessibility of supply with daily goods (in_lp), Proximity of hos-
pitals (so_ap), Nearby doctors (in_dp) and Nearby police stations (so_pp).

The map (Fig. 6) shows that the metropolitan regions (Stuttgart,
Freiburg im Breisgau, Baden-Baden, Mannheim) tend to have a higher
resilience compared to the more rural areas. The obvious exception
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within this pattern is Pforzheim, which is a metropolitan area but with
only low resilience. A deep structural transformation effects the city of
Pforzheim due to the decline of the jewellery industry. The rural county
of Rottweil, on the other hand, is located in the black forest and is
highly resilient despite its rurality.

4. Discussion

The accomplished methodological approach and the results are
giving interesting insights regarding the importance of indicator se-
lection, indicator validation, aggregation, validation of index

Fig. 4. Boxplots and statistical test of mean between high and low resilient counties (ns: p > 0.05; *: p<= 0.05; **: p<= 0.01; *** : p<= 0.001 ****: p<=
0.0001).

Fig. 5. Boxplots and statistical test of mean between rural and metropolitan counties (ns: p > 0.05; *: p<= 0.05; **: p<= 0.01; *** : p<= 0.001 ****: p<=
0.0001).
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aggregation methods and the spatial scale which will be examined in
the following chapter. Also, the limits of this approach, for example,
lack of data or completeness of the indicator set, need to be discussed.

4.1. General

The selection of the indicators proved to be equally important as the
selection of the aggregation method. Moreover, the only theory-based
approach established on the climate resilience framework and in-
dicators based on literature did not perform as predicted by the theory
which is in line with the results of Bakkensen et al. (2017). The ap-
plication of the global sensitivity analysis (Step 4.2.a) proved to be very
useful. Comparing the four aggregation methods (Step 3), the Wroclaw-
Index (Step 3.1.c.) achieved the best results. The Wroclaw-Index is able
to balance the impact and direction of all indicators equally. Subse-
quently, the correlation (Step 5.1.a.) with the outcomes was also in
favour of the Wroclaw-Index approach. The moderate values of the
correlation coefficient are due to the fact that the index is designed for a
stressor-independent assessment of resilience and not specifically for
life expectancy, nor flood damage or storm damage. In comparison, the
empirical model and resilience index designed by Burton (2015)
achieved low to moderately low model explanatory power. Designed
independently of the stressor, the new regional climate resilience index
still performed as expected and displayed the stressor-independent re-
silience of regions. Moreover, the part of climate resilience which was
not exposed by the index might be explained by contextual factors such
as social networks, feeling of belonging, trust in authorities, knowledge,
risk perception - which are quantitatively based on secondary data hard
to measure but are also part of climate resilience.

4.2. Indicators

Five indicators were removed during the first stage of empirical
validation on the indicator level (Step 2.1.a). In the case of water and
forest, the included indicators were only second choice. For forest and
water, the status of the water bodies and respectively the status of the
forest were to be included as indicators. This data based on measures of
the status exist but are only published via a WMS service. Hence, it was
not possible to aggregate them on the county level to a meaningful
indicator. The respective authorities did not want to share the data
upon request. As a result, the included indicators were substituted
based on available data, but this approach did not allow to capture the
themes of water bodies or forests, respectively. The empirical validation
revealed that a lack of accessible data in this regard. Thus, such vali-
dations suggest a clear need for open data in order to monitor and
evaluate interdisciplinary phenomena and climate resilience. Regarding
municipal income and debt, two lines of argumentation appear. Firstly,
financial ability does not result in any dedicated action by the corre-
sponding communities at the moment. It can be seen as a necessary, but
not imperative condition and other factors overrule it. Secondly, the
municipal budget is not on the same administrative level as the other
indicators. Although the county resilience is based on the munici-
palities, the county budget would have been a better and more appro-
priate spatial and administrative scale. The fifth indicator removed,
Employees in research-intensive companies might have been related to the
selected outcomes. The contribution regarding climate resilience is an
important aspect for a future resilient economy and the ability to adapt
and evolve, which might not have been covered sufficiently within the
outcomes.

Fig. 6. Map of the regional climate resilience index in Baden-Württemberg (resilience classes are based on quantiles).
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4.3. Assessment of climate resilience

The assessment of resilience is not seen as a substitute for detailed
hazard, vulnerability and risk assessment. On the municipal or site
level, a detailed multi-hazard assessment (including sudden and slow-
onset) and vulnerability assessment on a high spatial resolution may
need to be conducted within a multi-criteria assessment framework
(Ravankhah et al. 2019). The resilience assessment could be seen within
a Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis as
the strength, vulnerability as the weakness analysis and the hazard
assessment looking into the threats. Understanding all parts of the
SWOT analysis is indispensable for effective strategic planning.

In explaining the three empirical outcomes (storm, flood, life ex-
pectancy), four out of five spheres proved to be relevant: Environment
(Degree of organic farming, Air emission index), Infrastructure
(Accessibility of large centres, Accessibility of supply with daily goods),
Economic (GDP, Employment), Social (Share of citizens ABV6/U65, Sick
days, Voter turnout, Nearby police stations). Governance (Support of cli-
mate protection agreement) is not amongst the top five determinants but
statistically significant regarding climate resilience (Fig. 5). Thus, all
five spheres are essential and underline the socio-economic a socio-
ecological character of climate resilience.

By taking a closer look at the five most important indicators re-
garding the outcome of life expectancy, the most important variable is
voter turnout. Non-voting attitude is strongly dependent on the social
class, and statistically, non-voters have lower incomes and lower edu-
cation (Güllner, 2013) which are important aspects of resilience in line
with literature. Degree of organic farming is also a predictor of life ex-
pectancy. This might be due to a general higher awareness of organic
food, resulting in healthier nutrition. Organic farming also results in a
healthier environment, e.g. because of reduced input of pesticides and
therefore with a positive impact on health. Sick days are an obvious
determinant of life expectancy. Nearby police stations and Accessibility of
daily goods can be summarized as the provision of security and other
services.

4.4. Climate resilience and empirical validation

The empirical validation with damages from storm and flooding
events reveals two difficulties regarding the applied definition of cli-
mate resilience. Firstly, compared to other resilience approaches, e.g.
flooding resilience (Qasim et al., 2016; Shah et al., 2018), the used
definition is not specific to one particular threat. Consequently, this
approach stresses the importance of increasing the general climate re-
silience due to the high uncertainty of further extreme events and cli-
mate change. This underlying concept results in a lower extreme event
specificity of the index, which is reflected in a lower correlation to
storm and flood. Hence, it reflects the trade-off between extreme event-
specific resilience vs general climate resilience and inclusiveness. Sec-
ondly, because of the pronounced context-specific of climate resilience,
interpreting the machine learning results of nonlinear problems, where
monodirectional effects exist, is challenging. Though, this finding
highlights the complexity and multidimensionality of social systems
and the phenomenon of climate resilience and offers insights to mul-
tifaceted effect directions.

Opportunities for future research are indicators to measure disaster
resilience in Baden-Württemberg but also outcome indicators for em-
pirical validation. For example, the voluntary fire brigade is one of the
pillars of civil protection, but a number of manpower available at the
state level does not exist, although increasing pressure and deployments
regarding natural hazards are reported. The number of indicators
within this study was relatively limited and the selection based on
theory but still to some degree subjective. Further empirical analysis
into more indicators can contribute to the understanding of climate
resilience. In addition, the combination of machine learning and, e.g.
twitter data, phone records or open street map for developing indicators

to measure soft attributes of resilience (such as the feeling of belonging
or social networks) opens huge opportunities regarding the measure-
ment of resilience. Lastly, heat stress and wildfires - both projected to
increase in frequency and magnitude - could not be considered within
this study.

4.5. Climate resilience and spatial scale

The comparison of rural vs metropolitan areas pointed out a sig-
nificantly higher resilience of metropolitan areas within Baden-
Württemberg (Fig. 5). The rural areas have higher environmental re-
silience and higher employment, which were overbalanced by the other
spheres. The high employment level of rural areas is one particular
feature of Baden-Württemberg with hidden champions in those areas
and in general a very low unemployment rate. The indicator sick days
(so_he) needs to be examined because a higher rate of sick days might
not be entirely negative. It could also be a sign of health awareness as
the balance of working culture and self-awareness can be different
between urban and rural regions. The provision of goods, services and
connectivity of rural areas - as general themes of the rural development
debate - is also reflected within the regional climate resilience. Urban
areas are offering benefits in their infrastructure.

In light of this analysis, the recommendation for action regarding
the improvement of the infrastructure in rural areas gets more critical.
In addition, it becomes apparent that urban areas in Baden-
Württemberg need to enhance their environmental resilience and parts
of social resilience to boost their overall resilience. Nevertheless, both
rural and urban areas need to address all aspects of resilience in bal-
ance.

5. Conclusion

Only a small number of approaches for empirical validation of re-
silience indicators are existing, and machine learning approaches are
very less used. The study demonstrates the necessity of carefully eval-
uating every single step in constructing a composite index. Moreover, a
thorough theoretical framework for climate resilience in conjunction
with literature-based indicators does not necessarily capture the phe-
nomenon. Empirical validation is indispensable but challenging due to
the future outcome of climate resilience and lack of empirical data.
Especially at the stage of indicator selection and at the stage of choosing
the aggregation method, machine learning can be effectively used to
reduce bias and improve the index. It was found that different outcomes
are essential, where life expectancy was found to be a good approx-
imation in combination with damages from natural hazards. Fostering
climate resilience is essential to tackle foreseen and unforeseen chal-
lenges which require measurements and the development of composite
indicators due to the complex phenomena.

The empirical validation essentially contributes to the performance
of the index by giving evidence in selecting the indicators and method.
The theory-based expected outcome does not have to coincide with the
empirical reality. Global sensitivity analysis further helps in under-
standing the model and adds to the empirical validation. Life ex-
pectancy was found to be a good outcome due to its inclusion of many
aspects of resilience, in combination with natural hazards. All five
spheres - environment, infrastructure, economy, governance and so-
ciety - are empirically important for climate resilience. The en-
vironmentally better situation of the rural areas does not compensate
for the lack of the other spheres and results in an overall lower climate
resilience compared to metropolitan areas.
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ABSTRACT 1 

Climate change impacts and their consequences are determined not only by the intensity and 2 

frequency of different climatic hazards but also by the vulnerability of the system, society or 3 

community exposed. While general agreement exists about the importance of assessing 4 

vulnerability to understand climate risks, there is still a tendency to neglect global and 5 

regional vulnerability patterns because they are hard to quantify, despite their value in 6 

informing adaptation, disaster risk and development policies. Several approaches to 7 

quantifying global vulnerability exist. These differ in terms of the indicators they use and how 8 

they classify countries or regions into vulnerability classes. The paper presents the structure of 9 

selected approaches and explores two indices in depth. The aim of this paper is to assess the 10 

level of agreement between selected international indicator-based assessments of 11 

vulnerability, at the level of climate regions. Results suggest that the two major global 12 

vulnerability assessments analysed largely agree on the location of the most and least 13 

vulnerable regions when these assessments are aggregated to a regional scale using the 14 

IPCC’s climate regions. The paper then discusses the robustness of the information derived 15 

and its usefulness for adaptation, disaster risk and development policies. Measuring progress 16 

towards reducing vulnerability to climate change and hazards is key for various agencies and 17 

actors in order to be able to develop informed policies and strategies for managing climate 18 

risks and to promote enabling conditions for achieving the SDGs and building resilience.  19 

Keywords: vulnerability, hotspots, indicators, climate change, global mapping  20 

  21 
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1 INTRODUCTION 22 

Since the IPCC Special Report SREX (IPCC 2012) and the Fifth Assessment Report (AR5) 23 

(IPCC 2014a) of the Intergovernmental Panel on Climate Change (IPCC) there have been 24 

increasing efforts to quantify climate risk at a global scale. Such assessments include 25 

examinations of human vulnerability to both climate change and natural hazards (INFORM 26 

2019; ND-GAIN 2019; Feldmeyer et al. 2017). These global assessments all make an 27 

important contribution to quantifying human vulnerability and thus to understanding climate 28 

risk.   29 

Climate risk is not just determined by the likelihood of climate-related hazards (e.g. extreme 30 

heat, flooding, drought) but also by where these occur and how vulnerable the exposed 31 

systems are to these hazards (Birkmann 2013; IPCC 2014b, p. 3, IPCC 2019, p. 88). 32 

Vulnerability is defined by the IPCC as “the propensity or predisposition to be adversely 33 

affected” (IPCC 2018a, p. 560). A system is vulnerable when it is both susceptible to being 34 

harmed by (or is sensitive to) a hazardous event and lacks the ability to cope and adapt to this 35 

event (IPCC 2018a, p. 560). Adaptive and coping capacity are two important components of 36 

vulnerability—adaptive capacity being “the ability of systems, institutions, humans and other 37 

organisms to adjust to potential damage, to take advantage of opportunities, or to respond to 38 

consequences” (IPCC 2018a, p. 542) and coping capacity being “the ability of people, 39 

institutions, organizations, and systems, using available skills, values, beliefs, resources, and 40 

opportunities, to address, manage, and overcome adverse conditions in the short to medium 41 

term” (IPCC 2018a, p. 546).  42 

While vulnerability is accepted as an important factor in determining climate risk, its 43 

quantification is lagging behind that of global exposure to climate hazards, preventing an 44 

effective and targeted adaptation process to reduce risk. Recent research developments and 45 

new methods, such as the Shared Socio-Economic Pathways (SSPs) (O’Neill et al. 2017), 46 

have improved the consideration of societal development in climate adaptation research. 47 

These tools are important for informing adaptation policies. However, there is a need for them 48 

to better capture the multi-dimensional factors that shape human vulnerability—such as issues 49 

of poverty, human wellbeing, inequality, access to basic services, governance and safety nets 50 

for people at risk—in order to be able to address these issues more effectively. This 51 

information and analysis is missing at the transnational scale and needs consideration in order 52 

to capture all parts of the risk equation and effectively reduce negative consequences. Global 53 

vulnerability assessments have the potential to capture such factors and thus support better 54 
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exploration of social scenarios and improve the SSPs. Existing global assessments of climate 55 

risk and vulnerability (INFORM 2019; Hallegatte et al. 2016; Birkmann and Welle 2016; 56 

Feldmeyer et al. 2017; Cardona and Carreño 2013; Birkmann et al. 2011) each use different 57 

approaches anchored in different schools of thought. Global climate risk assessments that 58 

include measurement of vulnerability to climate change and natural hazards consider a variety 59 

of different factors that operationalize human vulnerability (INFORM 2019; Feldmeyer et al. 60 

2017; Birkmann and Welle 2016; ND-GAIN 2019). Likewise, different global vulnerability 61 

assessments use different indicator sets to assess and evaluate levels of national vulnerability. 62 

Some global assessments encompass indicators that measure wealth and/or poverty, education 63 

and access to basic services; others capture in addition issues of governance (state fragility, 64 

corruption) and conflict. Despite the use of different indicators, these studies agree that 65 

vulnerability to climate change and natural hazards is multi-dimensional and requires the use 66 

of indicators that represent these diverse themes and dimensions.  67 

Climate hazard information must be complemented with vulnerability information in order to 68 

provide a sound information base for decision making. This has been underscored within 69 

IPCC reports since 2012 (IPCC 2012), including the last IPCC assessment report (IPCC 70 

2014a) and the newer IPCC special report (SROCC / IPCC 2019), which have repeatedly 71 

highlighted the need to not only to focus on climate hazards, but also to consider exposure and 72 

vulnerability (see the so called propeller figure, e.g. IPCC 2012). Newer IPCC Assessment 73 

Reports use geographical reference regions to analyse global climate change and related 74 

hazards (IPCC 2013). An urgent question is whether such regions—referred to as “climate 75 

regions”—intended for the analysis of physical phenomena of climate change can also be 76 

used to assess human vulnerability. If this is possible it would provide a way to visualise 77 

human vulnerability issues in a way that is compatible with hazard data and disregards 78 

national boundaries.  79 

Against this background, the paper addresses the following research questions: 80 

a) Can the results of quantitative vulnerability analyses be usefully aggregated from the 81 

national level up to the level of physical climate regions to complement climate hazard 82 

assessments? 83 

b) To what extent do these assessments agree on the classification of regions in terms of 84 

their level of vulnerability (i.e. low versus high vulnerability and variance)? 85 
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c) What kind of spatial patterns emerge when assessing human vulnerability at the level 86 

of climate regions? 87 

We answer these questions by comparing the approaches of two prominent global risk 88 

assessments: the INFORM Index (Marin-Ferrer et al. 2017) and the WorldRiskIndex 89 

(Birkmann et al. 2011; Birkmann and Welle 2016). We chose to compare these two indices in 90 

more detail because both indicator systems aim explicitly to capture human vulnerability, 91 

while other indices, such as the Global Climate Risk Index (Germanwatch 2019), primarily 92 

focus on past harm and losses rather than vulnerability to assess climate risks (e.g. Number of 93 

deaths, Sum of losses in US$ in purchasing power parity). Furthermore, these two indices 94 

assess vulnerability more comprehensively with larger sets of indicators capturing context 95 

conditions as well as issues of access to resources, information and education, which are 96 

particularly relevant when aiming to reduce community and individual vulnerability. 97 

Additional justification for focusing on these two indices is: a) their international orientation, 98 

b) the fact that they are widely acknowledged as valid, c) their inclusive nature, which take 99 

into account trends in both industrialised and developing nations, d) the fact that they offer 100 

concrete support for adaptation efforts, and c) based on reliable data sources e.g. World Bank, 101 

Food and Agriculture Organization of the United Nations (FAO), World Health Organization 102 

(WHO).  103 

These two assessments (WorldRiskIndex and INFORM Index) were undertaken by different 104 

institutions and groups and each contributes in different ways to a more comprehensive 105 

representation of human vulnerability compared to conventional economic risk assessments. 106 

In many senses these two approaches are similar in their understanding of vulnerability as 107 

conditions that make people more susceptible and likely to face adverse consequences in the 108 

context of climate change and extreme events independent of the hazard intensity or past 109 

fatalities and harm. Each of these global assessments also have their limitations. Indicator-110 

based quantitative assessments of vulnerability can only capture specific characteristics and 111 

not all aspects that determine human vulnerability to climate change hazards. Furthermore, 112 

the use of mean values for factors such as poverty has been criticised (Pelling and Garschagen 113 

2019). Nevertheless, the global vulnerability patterns uncovered by these assessments provide 114 

new insights into which regions should be prioritised for adaptation and vulnerability 115 

reduction, and indicate where issues of governance and state failure are major factors of 116 

concern. 117 
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In this paper, we analyse the 2019 results of the vulnerability components of the INFORM 118 

Index (INFORM 2019) and WorldRiskIndex (Feldmeyer et al. 2017). This detailed 119 

comparison of the INFORM and WorldRiskIndex is done by first aggregating the results of 120 

the two indices from country-level vulnerability rankings to regional rankings, adapting the 121 

climate regions used by climate modellers contributing to the IPCC Sixth Assessment Report 122 

(AR6) (IPCC 2020). Climate regions are spatial boundaries delineated for the purpose of 123 

better representing climatic data and model result a sub-continental scale. These regions are 124 

designed through the lens of physical climate science and disregard sovereign borders. This 125 

means they lack the socio-economic dimension at the same spatial scale which often leads to a 126 

hazard focused perspective and the negation of the socio-economic dimension at this scale. 127 

The IPCC also calls for more integrated perspectives linking climate hazard, exposure and 128 

vulnerability information in order to assess risk (IPCC 2014). Therefore, it is important to 129 

examine the ability to aggregate socio-economic and demographic information for assessing 130 

vulnerability at the level of climate regions. Aggregation and comparison of the two global 131 

vulnerability assessments reveals that although there are differences in how the assessments 132 

rank the vulnerability of countries in certain regions, they do largely agree on the regions of 133 

high human vulnerability to climate change risks, despite their use of different indicators. 134 

In this paper, we first describe the state of the art of global climate risk and vulnerability 135 

assessments. Thereafter, we compare two global assessments – namely the WorldRiskIndex 136 

and the INFORM Index. We then examine the results of the two indices at the level of climate 137 

regions in detail. Finally, we discuss the benefits and limitations of such assessments and our 138 

proposed methodology used to represent human vulnerability at the level of physical climate 139 

regions.  140 

2 STATE OF THE ART OF RISK AND VULNERABILITY ASSESSMENT 141 

2.1  Four Global Approaches 142 

A variety of different assessment approaches exist, based on different schools of thought and 143 

therefore based on different indicators, each with a different focus, leading to different results. 144 

To capture the variety in assessing risk and human vulnerability the following section 145 

provides on overview of key differences and similarities of four approaches, with global 146 

orientation, acknowledged as valid and including a link to adaptation.  147 

The INFORM Index was developed by international experts of the EU’s Joint Research 148 

Center. It uses a composite indicator system that identifies and ranks countries at risk to 149 
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climate change and natural hazards, focusing on national capacities to respond to crises and 150 

vulnerability to disaster risk. INFORM aims to support a proactive crisis and disaster 151 

management by means of assessing key dimensions of risk: hazard, exposure, vulnerability 152 

and lack of coping capacity. The index is based on 54 core indicators, applied to at least the 153 

five previous years of data to assess the risk that specific hazards and crises pose to each 154 

country (Marin-Ferrer et al. 2017). 155 

The WorldRiskIndex is a mathematical model and a visualization and communication tool 156 

that combines the physical and spatial exposure to natural hazards with societal vulnerability, 157 

presenting risk values and charts. The methodology was developed by Birkmann and Welle in 158 

close cooperation with colleagues from the United Nations University and practitioners of the 159 

Alliance Development Works (see Birkmann et al. 2011). The index is based on the analysis 160 

of 28 indicators, assessing global risk patterns of over 170 countries. The WorldRiskIndex 161 

encompasses human vulnerability as a core component, capturing it in terms of three 162 

components: susceptibility, coping capacities and adaptive capacities. The analysis of 163 

vulnerability identifies regions and countries that have severe difficulties in dealing with 164 

natural hazards and climate change and those countries that are in a better position to cope 165 

with and adapt to these impacts. The indicators measure both specific living conditions (for 166 

example, access to basic infrastructure and services), and coping capacities determined by 167 

larger framework conditions (such as the governance context, which influences people’s 168 

ability to deal with extreme events directly or indirectly, such as insurance coverage or 169 

corruption) (Birkmann et al. 2011; Welle and Birkmann 2015; Birkmann and Welle 2016). 170 

Individual indicator values are transformed and aggregated and thereafter mapped within a 171 

Geographic Information System (GIS) to visualize the relative level of vulnerability of 172 

different regions and countries. 173 

The Global Climate Risk Index is calculated annually and examines the extent to which 174 

countries and regions have been affected by the impacts of weather-related loss events (e.g. 175 

storms, floods, heat waves) considering data from the past decade (i.e. the 2019 report used 176 

data from 1998 to 2017). The Climate Risk Index aims to serve as a kind of information and 177 

warning system, showing existing vulnerability that may further increase in regions where 178 

extreme events will become more frequent or more severe due to climate change. The index 179 

especially focuses on the effects of past impacts of weather-related events on countries and 180 

regions. The Global Climate Risk Index 2019 shows that high income countries experienced 181 

the impacts of climate change more strongly in this year than in previous decades. In this 182 
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regard, the losses and damages considered within the index also hint towards the necessity to 183 

act both in developing and developed countries. 184 

The Notre Dame Global Adaptation Index (ND-GAIN) has been published annually by the 185 

University of Notre Dame since 1998. This index ranks countries’ vulnerability to climate 186 

change and readiness to adapt. The goal of the index is to inform decision makers in the 187 

public and private sector to allow them to prioritize investments and increase resilience. 188 

Readiness is measured within social, economic and governance dimensions. The vulnerability 189 

matrix is organized into six life supporting sectors (health, food, ecosystems, habitat, water, 190 

infrastructure) and three dimensions (adaptive capacity, sensitivity and exposure).   191 

2.2 Comparison of the Assessment Approaches 192 

All four assessments described above have a resolution at the individual country scale. While 193 

each uses a different set of indicators, most contain parameters that cover aspects of economic 194 

poverty, inequality, access to basic infrastructure services (water, sanitation), life expectancy, 195 

adult literacy rate and the level of social protection (e.g. insurance). The assessments differ, 196 

for example, in terms of their consideration of aspects of governance, such as corruption and 197 

conflict, as well as in terms of their consideration of losses experienced in the past (see 198 

Feldmeyer et al., 2017). 199 

The Global Climate Risk Index differs most significantly from the other three (Table 1), as it 200 

documents what happened in a specific period. It does not include a probabilistic analysis of 201 

frequencies and return periods of the events. ND-GAIN is also different from the other indices 202 

in that it defines exposure as a component of vulnerability. The WorldRiskIndex and 203 

INFORM have separate exposure and vulnerability components, with INFORM also having a 204 

component called “lack of coping capacity”. 205 

Table 1 Comparison of the main dimensions and framing of risk and vulnerability in the ND-206 
GAIN, WorldRiskIndex and INFORM approach (ND-GAIN 2019; INFORM 2019; 207 
Germanwatch 2019; Birkmann and Welle 2016) 208 

ND-GAIN WorldRiskIndex INFORM Climate 
Index 

Vulnerability Exposure Vulnerability Hazard & 
Exposure Vulnerability 

Lack of 
Coping 

Capacity 
Risk 
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 209 

In terms of the hazard and exposure components of risk, the four approaches include different 210 

aspects (Table 2). The WorldRiskIndex focuses on exposed population to natural hazards; 211 

namely earthquakes, cyclones, floods, drought and sea level rise. INFORM considers 212 

exposure in a similar way, in that it considers people exposed to natural hazards, but also 213 

considers human conflict. The Global Climate Risk Index specifically addresses hazards 214 

intensified by climate change, thus excludes earthquakes but includes temperature extremes 215 

and mass movements. ND-GAIN uses a significantly different approach in that it defines 216 

exposure as “the extent to which human society and its supporting sectors are stressed by the 217 

future changing climate conditions” (Chen et al. 2015, p. 3) and thus considers the effects of 218 

climatic change on a range of sectors using different exposure indicators for each sector – for 219 

example, for the water sector one exposure indicator is “projected change of annual 220 

groundwater recharge” (Chen et al. 2015, p. 16). 221 

Table 2 Hazards considered by the ND-GAIN, WorldRiskIndex, INFORM and Global 222 
Climate Risk Index (ND-GAIN 2019; INFORM 2019; Germanwatch 2019; Birkmann and 223 
Welle 2016) 224 

ND-GAIN WorldRiskIndex INFORM Global Climate  
Risk Index 

The extent to which 
the following sectors 
are stressed by the 
future changing 
climate conditions: 

The potential average 
annual number of 
individuals who are 
exposed to: 

The expected number 
of people located 
within the hazard zone 
for each type of the 
following hazards: 

Deaths and economic 
losses (absolute and 
proportional) due to 
the following  
hazards:  

• Food 
• Water  
• Health  
• Ecosystem services 
• Human habitat 
• Infrastructure 
• Governance 

readiness 
• Social readiness 

• Earthquake  
• Cyclones  
• Floods  
• Droughts  
• Sea level rise 

Natural  
• Earthquake  
• Cyclones 
• Flood 
• Droughts  
• Tsunami  

 

Human 
• Projected conflict 

risk 
• Current conflict 

intensity 

• Storm 
• Floods  
• Temperature 

extremes 
• Mass movements 
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 225 

3 A COMPARISON OF THE INFORM INDEX AND WORLDRISKINDEX 226 

3.1 Comparison of the Indicators used by each Index 227 

In this section we compare the indicators used by the WorldRiskIndex and INFORM Index to 228 

measure vulnerability and identify similarities and differences between the two indices. We 229 

selected these two indices to compare, of the four described above, because they most 230 

comprehensively and explicitly assess vulnerability. They also clearly differentiate exposure 231 

and vulnerability. The WorldRiskIndex considers vulnerability a function of susceptibility, 232 

lack of coping and lack of adaptation, while INFORM considers vulnerability as a function of 233 

socio-economic vulnerability and vulnerable groups and calculates lack of coping capacity 234 

separately (see Table 1).  235 

A closer examination of these vulnerability components of the WorldRiskIndex and 236 

INFORM, found that these have eight indicators in common (Table 3): namely, the Gini 237 

Coefficient, adult literacy rate, access to improved sanitation facilities, access to improved 238 

water source, physician density, health expenditure per capita, corruption perception index 239 

and prevalence of undernourishment. Moreover, two similar indicanda are measured by 240 

different indicators: poverty and gender inequality. The WorldRiskIndex has 12 additional 241 

indicators with emphasis on the environment. INFORM has 21 additional indicators focusing 242 

more on connectivity and diseases. 243 

Table 3 comparison of the indicators used to assess different dimensions of human or societal 244 
vulnerability of the INFORM and WorldRiskIndex (INFORM 2019; Birkmann and Welle 245 
2016) 246 

Common indicator 
categories assigned by 
authors 

INFORM  
Indicators of Vulnerability & Lack of Coping 
Capacity  

WorldRiskIndex  
Indicators of Vulnerability 

Income equality Gini Coefficient Gini-Index 

Poverty Multidimensional Poverty Index Extreme poverty (pop living on less than 1.25 
USD) 

Development 
Human Development Index Gross Domestic Product per capita 
Public Aid per capita 

  
Net ODA Received (% of GNI) 

Gender equality 
Gender Inequality Index Gender parity in education 

  Share of female representatives in the National 
Parliament 

Corruption Corruption perception Index Corruption perception index 
Governance Government effectiveness Failed State Index 
Literacy Adult literacy rate Adult literacy rate 
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Education   Combined gross school enrolment 

Health 

Physicians density Number of physicians per 10,0000 pop 

Health expenditure per capita  
Public health expenditure 
Private health expenditure  

Child Mortality Life expectancy at birth  
Prevalence of HIV-AIDS above 15-years Number of Hospital beds per 10,000 pop 
Tuberculosis prevalence 

  Malaria mortality rate 
Measles immunisation coverage 

Nourishment &  
Food Security 

Prevalence undernourishment Share of undernourished population 
Children underweight 

 Average dietary supply adequacy 
Domestic Food Price Level Index 
Domestic Food Price Volatility Index 

Sanitation  Access to improved sanitation facilities  
(% of pop with access) 

Share of population without access to improved 
sanitation 

Drinking water Access to improved water source (% of pop 
with access) 

Share of population without access to clean 
water 

Disaster preparedness 
Hyogo Framework for Action  Insurance 
Relative number of affected population by 
natural disasters in the last three years   

Environment   

Protection of biodiversity and habitats 
Forest management 
Agricultural management 
Water resources 

Infrastructure 

Road density (km of road per 100 km2 of land 
area) 

  Mobile cellular subscription (per 100 people) 
Internet Users (per 100 people) 
Access to electricity (% of population) 

Other vulnerable 
groups 

Number of refugees, returned refugees, 
internally displaced persons (absolute and 
relative) 

Dependency ration (proportion of under 15- and 
above 65-year olds in relation to working pop) 

 247 
            Same indicators    Similar indicators  Different indicators 248 

 249 

3.2 Comparing Vulnerability Assessments at the Level of Climate Regions: INFORM 250 
and WorldRiskIndex 251 

3.2.1 Methodology 252 

In this section we aggregate the country-level vulnerability rankings of the WorldRiskIndex 253 

and INFORM Index to the level of climate region. We then average the two indices to deliver 254 

an average vulnerability ranking for each region, achieving an overall ranking of regions in 255 

terms of their relative vulnerability. Finally, we calculate the level of agreement between the 256 

two indices at this aggregated scale. These steps will be explained in more detail in the 257 

following paragraphs.  258 

On a global scale, socio-economic statistics are accessible for individual countries. Climate 259 

impacts, in contrast, cross borders and are better approximated by climate regions. Climate 260 
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regions are geographic areas defined for use in the context of the IPCC Assessment Reports 261 

for the purpose of assessing the climate projections produced by climate modellers. We use 262 

climate regions in order to better link vulnerability information with information on climate 263 

change and its impacts, adapting those used in the Sixth Assessment Report (AR6) for our 264 

own purposes of aggregating vulnerability rankings. Figure 1 displays the climate regions 265 

used for the analysis of socio-economic vulnerability. With the spatial join tool of ArcGIS 266 

10.5.1 and the intersect option selected, countries were allocated to climate regions. Some 267 

changes had to be made to the climate regions because vulnerability rankings are based on 268 

socio-economic data, which is mostly collected at a country-level. This means that, for 269 

example, although North America contains several different climate regions, it only contains 270 

two countries, so we therefore had to combine the seven climate regions into one North 271 

American region. Similarly, for the Indian Ocean, New Zealand and Australia, East Europe 272 

and Western Siberia and South and Equatorial several smaller climate regions were merged to 273 

the higher order of climate regions. Arctic-Ocean, East-Antarctica, West-Antarctica and 274 

South-Ocean climate regions were not included. 275 
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 276 

Fig. 1 Adapted IPCC climate regions for the analysis of socio-economic vulnerability 277 

The WorldRiskIndex calculates vulnerability as a composite index of the dimensions 278 

susceptibility, lack of coping and lack of adaptation. INFORM calculates vulnerability as 279 

socio-economic vulnerability and vulnerable groups, and calculates lack of coping capacity 280 

separately (see Table 1). We first combine the vulnerability and lack of coping capacity 281 

indices of INFORM to make a composite vulnerability index that is comparable to the 282 

vulnerability component of the WorldRiskIndex. Subsequently, we calculate the mean 283 

vulnerability score for each climate region based on both indices. We then use these 284 

vulnerability scores to rank the climate regions (1 low to 35 high) for each index. We use this 285 

ranking method because one index (WorldRiskIndex, see Fig. 2) had in general higher 286 

vulnerability scores but for the classification of countries or regions the relative ranking is 287 

more important and what we aim to analyse.  288 
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We then compare the ranking of the climate regions according to vulnerability scores given 289 

by the WorldRiskIndex and the INFORM Index as follows (see Fig 3). Firstly, we plot the 35 290 

climate regions on a scatter plot according to how they were ranked according to their 291 

vulnerability—on the x-axis showing the rankings derived from the INFORM index and on 292 

the y-axis those from the WorldRiskIndex. We then classify the 35 climate regions into four 293 

classes (i.e. ranks 1-10, 11-20, 21-30, 31-35 to make 4 classes of vulnerability from lowest to 294 

highest). We then overlay these two classifications of the climate regions to create 16 classes 295 

using a cartography method described by Strode et. al. (2019) called a “bivariate choropleth 296 

map”. Each of the 16 classes is assigned a colour, as shown behind the scatter plot, and each 297 

climate region is mapped according to the colour of the class in which they are ranked (Fig. 298 

3). The darker more saturated colours show regions of higher vulnerability. This map and 299 

corresponding scatter plot diagram show the spatial pattern of vulnerability globally, and also 300 

shows the agreement between the two indices on this pattern. This approach therefore 301 

includes the assessment of uncertainties in line with the IPCC AR5: “Confidence in the 302 

validity of a finding, based on the type, amount, quality, and consistency of evidence (e.g., 303 

mechanistic understanding, theory, data, models, expert judgment) and the degree of 304 

agreement” (Mastrandrea et al. 2010, p.2). We conduct the spatial analysis in ArcGIS 10.5.1, 305 

the data modelling with R in Rstudio. 306 

3.2.2 Results 307 
3.2.2.1 Aggregation of, and agreement between, vulnerability indices 308 

Figure 2 shows the results of the aggregation of the country-level vulnerability scores of the 309 

INFORM and WorldRiskIndex to climate regions. The box plot shows the average 310 

vulnerability score for each climate region for each index, as well as the spread and variability 311 

of the country-level scores within each region. It can be seen that within each climate region 312 

there is often a large variance, especially in the larger climate regions. Overall, the 313 

WorldRiskIndex ranks regions to be more vulnerable than the INFORM Index does, with 314 

North-East Africa as the single exception. The test for statistical difference of the mean values 315 

(Wilcoxon test) with alpha 0.01, shows for 35 climate regions there is no significant 316 

difference (ns) while statistically significant differences were revealed for seven regions (W. 317 

Africa, S.E. Asia, Mediterranean, Caribbean, S.E. South-America, Central Europe, North 318 

Europe) (see Fig. 2). Both assessments agree on the ranking of climate regions for most of the 319 

regions examined.  320 
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For example, there is high agreement on the three most vulnerable climate regions. In 321 

contrast, the mean values of two of the three lowest regions are significantly different between 322 

the WorldRiskIndex and INFORM. The disagreement for West-Africa is rooted in a very high 323 

lack of coping within the WorldRiskIndex, with 85 points, and a lower score for vulnerable 324 

groups in INFORM, with 42 points. For Central Europe the mean vulnerability of the 325 

WorldRiskIndex is 34 points whereas in INFORM it is only 18 points. The interquartile range 326 

supports the aggregation on climate region scale, showing a clear trend and ranking of them. 327 

Moreover, in terms of vulnerability assessment, single outliers cannot counterbalance the 328 

overall regional trend. A single country that is much more vulnerable than the rest of the 329 

region might benefit and a single country much better is in danger of being affected 330 

negatively. Hence the regional classification gives important insights into the regional 331 

vulnerability level, despite single outliers.   332 

 333 

Fig. 2 Variance of vulnerability within climate regions (Box-plots: ns: p > 0.01; *: p <= 0.01) 334 

Figure 3 shows that the two indices agree on the most and least vulnerable regions. While 335 

there is some disagreement, especially for regions in the middle of the rankings, there are no 336 

regions where the indices completely disagree (i.e. there are no cases in which one index 337 
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ranks a region at the lowest end and the other at the highest end of the list of regions ranked 338 

by vulnerability). If the indices completely agreed on the order of regions from lowest to 339 

highest vulnerability, the dots of the scatter plot would be in a straight diagonal line from the 340 

bottom left to the top right corner of the graph – there is some deviation from this perfect 341 

agreement but there are no dots in the top left or bottom right corner of the scatter plot 342 

diagram, meaning there are no major disagreements. 343 

 344 

Fig. 3 Bivariate choropleth map and scatter plot diagram legend showing the agreement 345 
between two global vulnerability indices (WorldRiskIndex and INFORM Index) when 346 
ranking of climate regions according to their vulnerability. Darker colours show regions of 347 
higher vulnerability. The diagram legend shows how the 35 climate regions are ranked by 348 
each index. Source: Own map based on the rankings of the INFORM Index (INFORM, 2019) 349 
and the WorldRiskIndex (Feldmeyer et al., 2017) 350 
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The following paragraphs will take a closer look at some specific climate regions and how 351 

their ranking can be explained by the mean vulnerability scores of the two indices and their 352 

sub-components. The climate region Australia & New Zealand (ANZ) is judged to be more 353 

vulnerable than North America (Fig. 3) by both the WorldRiskIndex, which rates ANZ 354 

according to the mean vulnerability score 10 points more vulnerable than North America, and 355 

INFORM, which calculates ANZ to be 5 points more vulnerable than North America. ANZ is 356 

considered more vulnerable in every aspect of both the WorldRiskIndex (susceptibility, lack 357 

of coping, lack of adaptation) and INFORM (socio-economic vulnerability, vulnerable 358 

groups) indices. The most significant difference between the two regions being their 359 

susceptibility as rated by the WorldRiskIndex, which rates ANZ as 13 points more susceptible 360 

than North America. INFORM considers ANZ to be more socio-economically vulnerable but 361 

less vulnerable in regard to vulnerable groups. ANZ is also considered more vulnerable than 362 

South East South America (SES), although the WorldRiskIndex considers them to have the 363 

same level of vulnerability. In addition, the INFORM considers ANZ more vulnerable due to 364 

the indicators of vulnerable groups (16 points higher in ANZ than in SES).  365 

Comparing South Central America (SCA) and the Sahara (SAH) climate regions, the latter is 366 

more vulnerable. INFORM rates SAH as 16 points more vulnerable than SCA and the 367 

WorldRiskIndex rates it 11 points more vulnerable. The high rating in the case of INFORM is 368 

due to more people belonging to vulnerable groups (18 points higher in SAH than in SCA) 369 

and in the case of the WorldRiskIndex is due to a higher susceptibility rating (14 points higher 370 

in SAH than in SCA).  371 

For most of the climate regions, the relative vulnerability rankings of each index did not differ 372 

by more than 3 ranks out of 20 and for no climate region was the difference between the 373 

indices more than 6 ranks. This suggests a high level of agreement between the vulnerability 374 

assessments of the INFORM Index and WorldRiskIndex.  375 

3.2.2.2 Global spatial patterns of vulnerability 376 

High agreement was found for regions of very high vulnerability. In particular, West, East and 377 

Central Africa and South Asia and in part the Pacific Islands were determined to be highly 378 

vulnerable by both indices. Agreement between INFORM and the WorldRiskIndex exists 379 

despite the use of different indicators, leading us to conclude that there is high confidence as 380 

to the locations of major vulnerability hotspots on a global scale.  381 
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The two global assessments examined in detail used 56 indicators overall to assess different 382 

dimensions of vulnerability. There are several differences in the indicator sets used, especially 383 

in the measurement of environmental and governance factors. However, comparison of the 384 

two assessments reveal that there is high agreement regarding global hotspots of vulnerability 385 

(regions classified as highly vulnerable) at the level of climate regions. It was found that the 386 

impact of differences in the indicators used seems to be less significant for countries classified 387 

as highly vulnerable. The combined ranking thus shows high agreement on those regions 388 

ranked as highly vulnerable, while there is less agreement on those ranked as having medium 389 

or low vulnerability for example the climate regions Southeast South America (SES) and 390 

South American Monsoon (SAM). In this regard, the hotspots of vulnerability are robust 391 

considering that even differences in the sets of indicators do not change them significantly.  392 

Various regions in Africa (e.g. particularly West-Africa, Central-Africa, North-East-Africa, 393 

South-East Africa and Sahara) followed by South Asia, appear as climate regions highly 394 

vulnerable to climate change due to their socio-economic, demographic, environmental and 395 

governance conditions. For example, the proportion of people living with less than 1.9USD a 396 

day is 60 times higher in the climate region South-East-Africa compared to the climate region 397 

Central-Europe. Next to different levels of poverty, it is also inequality which is higher in 398 

most vulnerable regions. In South-East-Africa inequality measured with the Gini coefficient is 399 

1.8 times higher than for Central-Europe. Poverty and inequality are acknowledged as factors 400 

that increase human vulnerability to climate change.  401 

In addition, Southeast and Central Asia and the Pacific Island Regions are characterized by 402 

high levels of human vulnerability. Central America, parts of South America and East Asia 403 

follow as vulnerable regions thereafter, showing still a relatively high level of human 404 

vulnerability (see Figure 3). In these regions, climate change adaptation and risk reduction 405 

require not only information about future climatic stressors, but also strategies that address the 406 

deeper underlying issues that cause human vulnerability and that make people more 407 

susceptible to the actual and potential impacts of climate change (Thomas et al. 2018). In 408 

these regions, strategies for climate resilience and climate resilient development pathways 409 

must address development issues not only at the local or national scale but also particularly at 410 

the regional scale, in order to ensure that enabling framework conditions for climate change 411 

adaptation of communities are enhanced and strengthened. 412 
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In contrast to the regions mentioned above, the regions around the Mediterranean, Australia & 413 

New Zealand, and Southern South America show a lower human vulnerability level. North 414 

and Central Europe and North America rank among those regions that show a low level of 415 

human vulnerability in comparison to other regions (see Figure 3). The level of agreement in 416 

the classification of low and medium vulnerable regions, however, is lower compared to the 417 

ranking of climate regions in terms of high vulnerability.  418 

3.2.3 Discussion 419 

The comparative assessment of two global index systems for vulnerability points to various 420 

similar climate regions classified as highly vulnerable and therefore there is high agreement 421 

regarding global hotspots of human vulnerability. However, there is medium agreement in 422 

terms of the ranking of climate regions into medium and low vulnerability levels. The analysis 423 

revealed that even if larger indicator systems use in part different indicators for assessing 424 

human vulnerability, certain regions appear to be consistently ranked as most vulnerable. 425 

Therefore, there appear to be structural differences between the climate regions. 426 

Consequently, regions with a high level of vulnerability have a strong predisposition to be 427 

negatively affected by climate change due to a variety of context conditions that make them 428 

more susceptible to the impact and adverse consequences of sudden-onset and slow-onset 429 

climate hazards. Furthermore, communities in these regions face the challenge that national 430 

institutions and capacities are severely constrained to support risk reduction and adaptation, 431 

such as in Sub-Saharan Africa. Various regions classified as highly vulnerable also face 432 

governance challenges and problems in terms of chronic poverty. 433 

The identification of spatial hotspots of human vulnerability at the global level is an important 434 

prerequisite for the formulation and development of preventive adaptation and risk reduction 435 

measures at regional level. In this regard, the two indicator-systems examined in detail fulfil 436 

their function to serve as a communication and visualization tool and inform policies or drive 437 

behavioural changes (e.g. Becker et al., 2017, Feldmeyer et al. 2021). The global hotspots 438 

identified are a first layer of information that show where, independent of a specific hazard, 439 

attention and action is needed to improve enabling conditions for adaptation.  440 

The relative assessment of human vulnerability, however, also has some limitations. For 441 

example, countries in Latin America are also vulnerable to climate change, however, they 442 

often appear to be have a medium level of vulnerability, but do not appear to be hotspots in 443 

the global analysis, since various climate regions in Africa and also South Asia are more 444 
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constrained and characterized by higher levels of human vulnerability. Consequently, the 445 

global maps presented show and define human vulnerability in relative terms – highly 446 

vulnerable regions are more vulnerable compared to other regions at the global scale. This 447 

information is primarily useful for a first global screening, while more detailed information 448 

and assessments are needed if specific countries or sectors are going to be addressed. Within 449 

large countries and large climate regions, specific pockets of highly vulnerable areas are 450 

barely visible. This is because many indicators focus on averages or distributional patterns at 451 

the national scale (e.g. GINI index). For example, the newest report on extreme poverty and 452 

inequality in the United States and the UK (Alston 2018) shows that extreme poverty is 453 

increasing in some high income countries despite a relatively low average poverty level at the 454 

national scale. However, the context in which these groups might experience climate-related 455 

hazards is different from that of highly vulnerable climate regions, such as those in Africa, 456 

which are characterised by overall high levels of poverty, limited access to functioning 457 

infrastructure and governance challenges. In addition, the vulnerability information might 458 

need to be complemented with information about present and future exposure patterns to 459 

climatic hazards, such as sea-level rise, flooding or droughts. In this context, also the medium 460 

vulnerability of some Pacific Islands is problematic, since it is likely that with severe 461 

increases in exposure the overall risk will also increase.  462 

This paper finds that there is lower agreement between the global vulnerability assessments 463 

examined in terms of regions classified as having medium vulnerability. For these regions, the 464 

indicators that are different between the two assessments seem to be playing a stronger role. 465 

For example, the differences of the WorldRiskIndex and the INFROM Index in terms of the 466 

consideration of environmental aspects within the WorldRiskIndex versus the integration of 467 

specific infrastructure indicators and issues of displacement in the INFORM Index. These 468 

differences might be less relevant in countries and regions classified as highly vulnerable, 469 

since in these regions various indicators point towards significant challenges and contextual 470 

deficits that make societies more susceptible to the impact of climate change. The cumulative 471 

effect of multiple challenges dominate the results for highly vulnerable region. Regarding the 472 

spatial pattern of human vulnerability specific indicators are less influential. Overall clear 473 

differences between the climate regions emerge. This provides important contextual 474 

understanding of vulnerability for climate change adaptation at the level of physically defined 475 

climate regions. These indicators and assessments show structural development challenges 476 

that increase human vulnerability to climate change and simultaneously also constrain 477 
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adaptation options independent of the specific hazards. These challenges are not equally 478 

distributed between climate regions, rather the assessment clearly reveals regional, spatial 479 

patterns that require spatially specific adaptation policies.   480 

The paper also shows that the ranking of regions differs between the WorldRiskIndex and the 481 

INFORM Index and the variance of country values can be significant within regions. 482 

However, we demonstrated that the variance and disagreement between the assessments is 483 

overall lower in climate regions with particularly high or low vulnerability rankings. The 484 

study by Hagenlocher & Garschagen (2018) comparing five disaster risk indices, including 485 

WorldRiskIndex and INFORM, at the country level, concludes that for disaster risk there is 486 

high agreement on low risk and high risk countries. In addition, Garschagen et al. (2021) 487 

conclude that spatial hotspots for socio-economic vulnerability at national scale are  more 488 

robust and contain a higher agreement between the indicator systems examined than for 489 

exposure. .  490 

Overall, each of the global assessments underscore that climatic hazards of the same 491 

magnitude, intensity and frequency would cause significantly more harm, damage and 492 

suffering within regions classified as highly vulnerable (INFORM 2019, WorldRiskIndex 493 

2019, Germanwatch 2019, Feldmeyer et al., 2017, Hallegatte et al., 2017). While it is crucial 494 

to reduce the exposure of people and assets to climatic hazards and to mitigate global 495 

warming, our results underscore that it is also essential to address challenges linked to high 496 

levels of inequality and poverty and a lack of access to safety nets for most inhabitants in 497 

these regions, if climate risks are to be reduced. This need emerges from the assessment of the 498 

overall vulnerability of climate regions and specific indicators, as shown above for poverty 499 

and the Gini-coefficient. That means risk reduction and adaptation has to address, next to 500 

climate hazards, also deeper structural development challenges, captured within the indicator 501 

system by, for example, income equality, poverty, literacy, corruption, health, nourishment 502 

and food security (Table 3). These findings are confirmed by studies that examine past 503 

impacts of climate-related hazards and disasters within different world regions (Formetta and 504 

Feyen 2019). However, even moderate changes in the global mean temperature—as identified 505 

in the recent IPCC 1.5 report (IPCC 2018b) and the newer published peer-reviewed literature 506 

(see Hoegh-Guldberg et al. 2019)—are likely to result in substantial increases in risk due to 507 

irreversible environmental degradation combined with high levels of vulnerability for regions 508 

such as West Africa and the Sahel or the Pacific. 509 
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4 CONCLUSION 510 

This paper contributes to the literature by showing how international indicator-based 511 

assessments of vulnerability are comparable and to what extent different assessments point 512 

towards the same or towards different geographic areas in terms of high, medium and low 513 

vulnerability. Our analysis reveals that vulnerability can also be visualized at the level of 514 

physical climate regions used by the IPCC and thereby can complement hazard information at 515 

this scale. Moreover, the comparison of two comprehensive vulnerability index systems 516 

(INFORM and WorldRiskIndex) showed that there is high agreement on most vulnerable and 517 

least vulnerable regions, even if different indicators are used. Thus, the two comprehensive 518 

global approaches for assessing human vulnerability come to the same conclusion in terms of 519 

regional hotspots of human vulnerability.  520 

The findings of the paper and the aggregated results of vulnerability at climate region scale 521 

contribute to a more comprehensive information base for adaptation and risk reduction. 522 

Various approaches within the international discourse, for example the Reasons of Concern of 523 

past IPCC reports (IPCC 2007, 2012, 2014a) and also the discussion of Shared-Socio-524 

Economic Pathways often avoids being spatially specific. While this approach is strategically 525 

useful for the communication of results to heads of state, a systematic and informed 526 

enhancement of climate risk management and climate resilient development requires also 527 

information on where regional or spatial priorities should be. In this regard, the paper shows 528 

not only climate regions that should be targeted as a priority, but also reveals spatial patterns 529 

of human vulnerability that span over different climate regions. That means, independent of a 530 

specific climate hazards, international and transnational adaptation approaches are needed that 531 

can build capacities at the local, national and regional levels to enhance adaptation and risk 532 

reduction. While different approaches exist to measure vulnerability at the global scale, two 533 

very comprehensive approaches differ in terms of single country values or specific indicators, 534 

but their relative ranking of vulnerability higher or lower compared to another country or 535 

region points in the same direction. Consequently, our paper provides evidence about the fact 536 

that high agreement and robustness exist in terms of the spatial patterns of high and low 537 

vulnerability at the level of climate regions. These global patterns can inform future 538 

adaptation and risk reduction policies in the sense that they indicate the importance of the 539 

coordination of such policies beyond national borders, particularly in climate regions 540 

classified as most vulnerable. These regions need a climate resilient development approach 541 

that addresses the broader development deficits.  542 
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Finally, the analysis also reveals limitations of the global assessments. The ranking of each 543 

region is influenced by a variety of factors and indicators. Consequently, the ranking of a 544 

region alone does not explain the specific development challenges and vulnerability profiles 545 

of the countries within it. Nevertheless, the global assessment does show that some global 546 

hotspots of human vulnerability have a spatial concentration, for example, in central and Sub-547 

Saharan Africa. Our results underscore the necessity for stronger international cooperation 548 

and indicate that some of the structural vulnerabilities might require significant changes also 549 

in how we approach adaptation to climate change, shifting the focus from specific climate 550 

hazards towards the consideration of drivers of human vulnerability within these regions. This 551 

is an important message to agencies dealing with adaptation to climate change, human 552 

development programs and disaster risk reduction, since efforts to coordinate approaches to 553 

these issues are needed in regions where the lack of community resilience and the individual 554 

vulnerability of people is closely interwoven with structural vulnerability at the national and, 555 

importantly, the regional scale. Particularly in countries with persistent levels of poverty and 556 

severe governance challenges, international assistance and regional cooperation will be 557 

needed in order to provide conditions that enable different institutions and social groups to 558 

build resilience. 559 
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ANNEXE I – CLIMATE REGIONS 697 

Table 5 Climate regions of the sixth assessment report and their adaptation for the present 698 
study 699 

Region Code Aggregated 
Greenland/Iceland GIC  
N.E.Canada NEC 

North America 

C.North-America CNA 
E.North-America ENA 
N.W.North-America NWN 
W.North-America WNA 
N.Central-America NCA 
S.Central-America SCA  
Caribbean CAR  
N.W.South-America NWS  
South-American-Monsoon SAM  
S.South-America SSA  
S.W.South-America SWS  
S.E.South-America SES  
N.South-America NSA  
N.E.South-America NES  
N.Europe NEU  
C.Europe CEU  
Mediterranean MED  
West-Africa WAF  
Sahara SAH  
North-East-Africa NEAF  
Central-East-Africa CEAF  
South-West-Africa SWAF  
South-Eeast-Africa SEAF  
Central-Africa CAF  
Russian-Arctic RAR  
Russian-Far-East RFE  
E.Siberia ESB  
E.Europe EEU East Europe West Siberia 
W.Siberia WSB 
W.C.Asia WCA  
Tibetan-Plateau TIB  
E.Asia EAS  
Arabian-Peninsula ARP  
S.Asia SAS  
S.E.Asia SEA  
N.Australia NAU 

Australia/New Zealand C.Australia CAU 
S.Australia SAU 
New-Zealand NZ 
E.Antarctica EAN Not included 
W.Antarctica WAN Not included 
Arctic-Ocean ARO Not included 
S.Pacific-Ocean SPO South Equatorial Pacific 
Equatorial.Pacific-Ocean SPO 
N.Pacific-Ocean NPO  
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S.Atlantic-Ocean SAO  
Equatorial.Atlantic-Ocean EAO  
N.Atlantic-Ocean NAO  
Equatorial.Indic-Ocean EIO 

Indian Ocean S.Indic-Ocean SIO 
Arabian-Sea ARS 
Bengal-Gulf BOB 
South-Ocean SOO Not included 

 700 

ANNEXE II – INFORM AND WRI VULNERABILITY 701 

 702 

 703 

 704 

Vulnerability Susceptibility
Lack of 
Coping

Lack of 
Adaptation

Vulnerability
Socio-

economic
Vulnerable 

groups
Arabian-Peninsula 44,1 19,8 69,1 43,4 31,7 27,0 34,8
Australia and New Zealand 44,2 29,2 62,6 41,0 27,3 25,0 29,3
C.Europe 34,2 17,2 52,5 32,9 18,7 11,5 24,4
Caribbean 43,3 25,2 64,3 40,5 28,8 30,0 26,0
Central-Africa 64,3 49,2 86,8 56,9 62,7 61,2 63,8
Central-East-Africa 65,2 58,1 84,2 53,4 66,7 68,0 64,2
E.Asia 46,2 26,8 68,3 43,4 33,5 32,7 33,5
East Siberia 40,5 24,3 58,1 39,2 27,8 25,5 29,3
Greenland/Iceland 28,3 14,8 43,5 26,6 14,0 4,5 22,5
Indian Ocean 51,8 30,0 74,8 50,5 35,5 36,5 34,0
Mediterranean 42,1 20,7 65,6 40,0 32,8 25,1 38,3
N.Central-America 38,0 20,0 60,4 33,8 32,5 21,0 42,0
N.E.South-America 43,9 24,5 67,8 39,5 25,0 32,0 17,0
N.Europe 30,6 16,8 45,4 29,7 20,1 7,5 30,2
N.South-America 46,4 25,7 72,8 40,7 34,3 33,4 33,0
N.W.South-America 46,1 26,6 72,3 39,6 35,8 32,3 37,8
North-East-Africa 67,5 53,5 87,5 61,5 71,5 69,7 72,3
North America 33,5 16,5 49,9 34,2 22,0 12,7 29,0
North Pacific 36,1 19,7 54,5 34,3 33,9 33,6 32,1
Russian-Arctic 39,6 21,4 59,0 38,5 27,0 20,0 33,0
S.Asia 55,9 33,8 81,0 53,0 46,3 42,8 48,4
S.Central-America 49,2 29,5 74,4 43,8 35,1 38,3 31,3
S.E.Asia 52,1 31,9 76,2 48,1 35,0 36,4 32,7
S.E.South-America 44,7 27,0 67,2 40,0 23,2 31,6 13,2
S.South-America 38,0 20,8 58,7 34,6 17,0 21,5 12,5
S.W.South-America 44,2 27,3 67,7 37,7 26,0 31,5 19,8
Sahara 60,3 43,6 80,9 56,5 50,9 51,2 49,2
South-American-Monsoon 49,1 30,4 75,0 41,9 29,8 38,0 19,8
South-Eeast-Africa 61,8 52,6 79,9 52,8 53,2 59,2 45,7
South-West-Africa 55,8 45,1 74,8 47,5 50,7 53,0 47,5
South Pacific 51,0 32,5 73,9 46,5 38,7 48,3 25,7
Tibetan-Plateau 51,8 31,9 74,5 49,1 35,8 37,6 33,5
W.C.Asia 49,5 26,8 74,4 47,3 37,6 32,0 41,2
West-Africa 66,4 51,9 85,1 62,1 54,2 63,3 42,3
West Siberia 44,6 24,7 65,9 43,3 28,0 25,3 29,2

World Risk Index INFORM Risk Index
Vulnerability Vulnerability

Climate Regions
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The climate resilience of nations is imperative for a sustainable future. The way that nations respond to climate
change needs to adapt from a reactive and backward-focused disaster management approach, to become more
proactive and to anticipate what is yet to come. Two key challenges restrict climate resilience. First, the social as-
pects are relevant to resilience, yetmany such aspects are not adequately reflected by available statistics. Second,
validating indicators of climate resilience is demanding in terms of data availability and methodology. To over-
come these challenges, we develop an Empirical Evidence Resilience Index (EERI) based on the Emergency
Event Data Base (EM-DAT) to measure resilience. However, just themeasurement of resilience does not provide
the explanation necessary to determine planning strategies. Therefore, to understand resilience better, we also
use statistics from OpenStreetMap (OSM) to predict the EERI and deduce explanatory elements. This step is
achieved with a random forest method. We call the resulting prediction of resilience (EERI) from OSM data the
Open Resilience Index (ORI). The used explanatory elements from OSM not only cover the physical characteris-
tics of infrastructures, but also include country-level socio-economic information. The results show the relevance
of social cohesion (identity &mobility; religion); human development (leisure & recreation, social fabric); econ-
omy (economic status; material supply); sustainable infrastructure (available infrastructure; spatial develop-
ment); and nature conservation for resilience.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

The increasing frequency and magnitude of droughts, storms and
floods, alongwith growing temperatures andpopulations, is confronting
nations around the world (Biagini et al., 2014; IPCC, 2018). “Climate
change” has transformed from an abstract theoretical concept into a
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reality that is now apparent when monitoring databases of natural di-
sasters. Despite major efforts and investments in hazard mitigation
strategies, overall exposure to natural hazards has increased over the
last 90 years (Fuchs et al., 2017).

Different international agreements and agendas compete in seeking
to address challenges posed by natural hazards and climate change im-
pacts. In terms of Sustainable Development Goals (SDGs), target 1.5 of
goal 1 calls “…build the resilience of the poor and those in vulnerable
situations, and reduce their exposure and vulnerability to climate-
related extreme events and other economic, social and environmental
shocks and disasters”, goal 11 calls to “make cities and human settle-
ments inclusive, safe, resilient and sustainable”, while goal 13 calls for
urgent climate action (United Nations, 2018). Several paragraphs of
UNHABITAT's New Urban Agenda have also focused on building the
resilience of human settlements to disasters and climatic changes
(UNHABITAT, 2016). Goal, Targets and Priorities of UNDRR's Sendai
Framework for Disaster Risk Reduction also acknowledged strengthen-
ing resilience to reduce disaster risk (UNDRR, 2015). UNFCCC's Paris
Agreement also binds nations to build the resilience of human and nat-
ural systems (UNFCCC, 2015).

Considering these international discourses, research efforts have
contributed well in providing valuable information for further imple-
mentation of these agreements and agendas (e.g. Keesstra et al., 2016,
2018; Zhang et al., 2019; Jamshed et al., 2020a, 2020b; Jamshed et al.,
2021). Before going into the description of key gaps and problems,
three key concepts (adaptation, vulnerability and resilience) that are
widely and interchangeably used in literature are discussed to provide
a clearer context for our discussion.

Adaptation here is defined as “adjustments in ecological, social, or
economic systems in response to actual or expected climatic stimuli
and their impacts. It refers to changes in processes, practices, and struc-
tures to moderate potential damages or to benefit from opportunities
associated with climate change” (UNFCCC, 2021).

Vulnerability deconstructs risk and reveals societal drivers, elements
and components, crucial to understand and prevent risk (Adger, 2006;
Fuchs, 2009; Wolf and McGregor, 2013; Garschagen and Romero-
Lankao, 2015; Rana and Routray, 2018). Since vulnerability is hazard-
specific and related to the spatial scale of analysis, numerous ap-
proaches have been developed (e.g. Cutter et al., 2003; Sorg et al.,
2018; Karagiorgos et al., 2016; Jamshed et al., 2017; Jamshed et al.,
2020a, 2020b). Indicators can be utilized to evaluate vulnerability and
risk and to provide the means for risk-informed decisions (Mach et al.,
2016; de Almeida et al., 2016; Birkmann et al., 2020).

Resilience is described by Holling (1973) as a “measure of persis-
tence of systems and of their ability to absorb change and disturbance
and still maintain the same relationship between population or state
variables”. It is a concept that has evolved and grown in popular use
over recent years. Stressing the fact that the bigger endof climate change
is yet to come, nations' disaster policies need to be adjusted from reac-
tive to proactive, and strategies need to be developed to increase resil-
ience for what is yet to come (Cutter et al., 2013). The concept of
resilience gained huge popularity over the last decade,with an exponen-
tial increase in academic publications. In recent years, the understanding
of resilience evolved more into the direction of a transformational and
evolutionary understanding in contrast to an equilibrium-focused un-
derstanding (Figueiredo et al., 2020). Different operationalization ap-
proaches have been proposed to measure resilience to climate change
(ARUP and Rockefeller Foundation, 2014; Welle et al., 2014; Riedel
et al., 2016; UNISDR, 2017; Morrow, 2008; NOAA, 2015; Tyler and
Moench, 2012; UNDP, 2013; Schaefer et al., 2020), earthquake (Poland,
2008; OSSPAC, 2013),multiple hazards (Cutter et al., 2008) or unspecific
stressors (Birkmann et al., 2012; Béné et al., 2015; Renschler et al., 2010;
Poland, 2008; OSSPAC, 2013; Yoon et al., 2016).

Indices are used to measure, monitor and evaluate vulnerability
(Welle et al., 2014; Depietri et al., 2013; Sorg et al., 2018; Karagiorgos
et al., 2016; Balica et al., 2009; Jamshed et al., 2019; Cutter et al.,
2

2003), risk (Welle and Birkmann, 2015; Birkmann and Welle, 2016;
Marin-Ferrer et al., 2017) or resilience (Cutter et al., 2010; ARUP and
Rockefeller Foundation, 2014; Suárez et al., 2016; Keating et al., 2014;
Cutter et al., 2014). Similar to resilience, the literature about indices in
various disciplines has increased exponentially (Greco et al., 2019).
The reason for their popularity is that they can easily summarize com-
plex problems and communicate them in a simple way. Indices justify
decisions or inform policies and drive behavioural changes (Becker
et al., 2017). However, indices have been criticized for their subjectivity
in the selection of individual aspects aswell as in their aggregation to get
a composite score. Hence, indices can generate false or over-simplified
results (Saltelli, 2007; Brito, 2018).

Despite themany approaches that exist, there is a real lack of empir-
ical validation of indices (Bakkensen et al., 2017; Burton, 2015). The
phenomena of vulnerability, resilience and adaptation often lack data
on the social dimension and on specific temporal or spatial scales
(Cutter and Finch, 2008; Sorg et al., 2018; Feldmeyer et al., 2019b;
Schaefer et al., 2020). Different approaches to fill this gap have been de-
veloped in other research fields using satellite imagery, phone records,
news, Twitter, social media and Volunteered Geographic Information
(VGI) (Deville et al., 2014; Blondel et al., 2015; Stevens et al., 2015;
Capineri et al., 2016; Rosales Sánchez et al., 2017; Thakuriah et al.,
2017; Di Bella et al., 2018). On the methodological side, machine learn-
ing has been successfully applied in this context to improve natural haz-
ard prediction, like landslide susceptibility (Achour and Pourghasemi,
2020).

Thus, for buildingmeaningful indicators for climate resilience, two key
challenges continue to prevail: (a) including the social component of cli-
mate resilience and (b) validationwith empirical data of indices and indi-
cators.Wedevelop a two-step solution to overcome these challenges. The
first step results in an Empirical Evidence Resilience Index (EERI). The
EERI uses empirical disaster data related to climate change to measure
empirical resilience, which is a way to provide an empirical basis for val-
idation. The second step utilises selected statistics from OpenStreetMap
(OSM) that we use to predict the EERI and infer explanatory elements.
We call the obtained (end empirically validated) prediction model for
the EERI from OSM data the Open Resilience Index (ORI). As the used
OSMdata includes not only evidence of the physical world, but also infor-
mation about the socio-economic status (Glasze and Perkins, 2015; Jokar
Arsanjani et al., 2015), the social component is included.

2. Materials and methods

The narrative of our workflow towards the ORI (Fig. 1) is guided by
the two challenges indicated above: (a) including the social component
and (b) empirical validation.

To tackle challenge (a), we search for and use explanatory elements
fromOSM to predict the EERI fromOSMdata. To solve the challenge (b),
we build the EERI from empirical damage data on storms, droughts,
floods and earthquakes. These disaster data are taken from the Emer-
gency Event Database (EM-DAT) (EM-DAT, 2021). This requires, as a
pre-step, the Empirical Risk Index (EmRI) that is yet to be defined. The
final EERI is a combination of the EmRI and WorldRiskIndex (WRI)
(Welle and Birkmann, 2015). The combination of challenge (a) & (b) is
ourfinal product, theORI. It is validated through the EERI, and it includes
social components of climate resilience bymeans of OSM. In this section,
we start in Section 2.1 by explaining the data used and the spatial focus.
In Section 2.2, we describe the construction of the EERI from EmRI and
WRI (step one). In Section 2.3, we describe the statistical analysis to
infer explanatory elements from OSM to obtain the ORI (step two).

2.1. Data and study area

Three openly accessible data sets are used here; Open Street Map
(OSM), theWorld Risk Index (WRI) and the Emergency Event Database
(EM-DAT):
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Fig. 1. Research workflow and products.
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1. OpenStreetMap (OSM) was founded in 2004 and provides not only
physical but also socio-economic characteristics for each country
(www.openstreetmap.org).

2. The WorldRiskIndex (WRI) was first published in 2011 and calcu-
lates countries risk to natural hazards by exposure and vulnerability
(Welle and Birkmann, 2015).

3. The Emergency Event Database (EM-DAT) was founded in 1988 and
comprises records of 22.000 disasters, still ongoing and growing
(www.emdat.de).

The study focusedon a global levelwithout the countries ofNorth- and
Latin-America. The included countries cover all levels of socio-economic
status as well as a variety of characteristics regarding crowdsourced
data. More details on the data are provided in the following.

OSM was created to be a free, open and editable world map
(OpenStreetMap contributors, 2020). It is a collaborative project, where
the crowdsourced data is made public under the Open Database License.
The OSM dataset used for this analysis is part of the dataset used in an
earlier study by Feldmeyer et al. (2019a). For this, Feldmeyer et al.
WorldRiskIndex

Natural hazard sphere

Exposure to natural 
hazards

Exposure Suscep�bili

Likelihood
suffering ha

Fig. 2.World Risk Index main calculation
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(2019a) downloaded the entire world planetary file of OSM and
imported it into a PostGIS database (PostGIS, 2020; PostgreSQL, 2020).
Each map object is described by a tag, consisting of a key and a value
(e.g. key: building; value: residential). Then, the authors reduced the
data-set by removing generic OSM tags, names and addresses. Subse-
quently, they conducted a spatial query counting the appearance of
each tag per country. Hence, each country is described by the count of
each of the 1340 tags remaining after the reduction. This is the final
OSM dataset we used within our current analysis.

The WRI calculates the risk of nations by multiplying an exposure
index with vulnerability (Fig. 2) (Birkmann and Welle, 2016; Welle
and Birkmann, 2015). The exposure index calculates the average num-
ber of inhabitants affected by earthquake, storms, floods, droughts and
sea-level rise. The probability and magnitude of the event(s) are in-
cluded. Vulnerability is described as the product of three factors:
(1) “Susceptibility” is understood here as the severity of impact due to
the hazard and is explained by public infrastructure, housing conditions,
nutrition, poverty and dependencies as well as the economic capacity
and income. (2) “Coping capacity” covers the short-term aftermath of
Vulnerability – Societal sphere

ty Coping Capacity Adap�ve Capacity

 of 
rm

Capaci�es to
reduce nega�ve 
consequences

Capaci�es for
long-term

strategies for
societal 
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scheme (Welle and Birkmann, 2015).
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the event. Here, elements of disaster preparedness and early warning,
medical services, social networks and material coverage and more gen-
erally government and authorities are key elements. (3) The “adaptive
capacity” is the ability of the society to adapt its habits and activities
to avoid future collision with hazards, for which education, gender
equity, environment, adaptive strategies and investments are sub-
elements. The values of the WRI are between zero and one for each
country, where a value of one signifies a large risk.

The EM-DAT provides numbers of fatalities and people affected per
country. It applies a hierarchical classification by disaster group, sub-
group, main-type, sub-type and sub-sub-type (see Table 1). The groups
distinguish between natural and technological disasters. Table 1 pre-
sents the classification of natural disasters (EM-DAT, 2021).

As mentioned above, the WRI considers earthquake, storm, flood,
drought and sea-level rise. Therefore, data of all these five disaster
main-types were taken from the EM-DAT database. The disaster type
“flood” includes coastal floods. The database request was natural disas-
ters from 2000 until 2019 per country. Afterwards, in a second query,
the aforementioned main types of disasters were selected. The EM-
DAT records give people died in the event(s) (fatalities= F) and people
affected per country (affected = A) (Fig. 3).

2.2. The empirical risk index (EmRI) and the empirical evidence resilience
index (EERI)

To tackle the challenge of empirical validation, we develop in this
study the Empirical Evidence Resilience Index (EERI) from disaster fa-
talities and affected people. This is the first step mentioned in Section 1.
Table 1
The EM-DAT disaster classification.

Disaster
group

Disaster
subgroup

Definition Disaster main type

Natural Geophysical A hazard originating from solid
earth. This term is used
interchangeably with the term
geological hazard.

Earthquake
Mass movement (dry)
Volcanic activity

Meteorological A hazard caused by short-lived,
micro- to meso-scale extreme
weather and atmospheric
conditions that last fromminutes
to days.

Extreme temperature
Fog
Storm

Hydrological A hazard caused by the
occurrence, movement, and
distribution of surface and
subsurface freshwater and
saltwater.

Flood
Landslide
Wave action

Climatological A hazard caused by long-lived,
meso- to macro-scale atmospheric
processes ranging from
intra-seasonal to multi-decadal
climate variability.

Drought
Glacial lake outburst
Wildfire

Biological A hazard caused by the exposure
to living organisms and their toxic
substances (e.g. venom, mold) or
vector-borne diseases that they
may carry. Examples are
venomous wildlife and insects,
poisonous plants, and mosquitoes
carrying disease-causing agents
such as parasites, bacteria, or
viruses (e.g. malaria).

Epidemic
Insect infestation
Animal accident

Extraterrestrial A hazard caused by asteroids,
meteoroids, and comets as they
pass near-earth, enter the Earth's
atmosphere, and/or strike the
Earth, and by changes in
interplanetary conditions that
effect the Earth's magnetosphere,
ionosphere, and thermosphere.

Impact
Space weather

4

In the first part of this step, we calculate a-so called EmRI. We de-
signed this new risk index to incorporate the human and economic di-
mension of risk based on two decades of data. It uses Fatalities (F) and
Affected People (A) from the EM-DAT database. To obtain F and A per
country, we downloaded the EM-DAT data as a .csv file and then
imported them into the “R studio” environment (R Core Team, 2019;
RStudio Team, 2019). We calculated the fatalities and number of af-
fected people per country for the selected hazards (package: dplyr,
Wickham et al., 2019).

Thenwemin-max normalize the obtained Fatalities (F) and Affected
People (A) per country (Eq. (1)). Without a justification for other
weights, we build the EmRI by equal weights (Eq. (2)). The values
range from zero to one for all countries, where a value of one signifies
a large risk. The involved equations are:

X′ ¼ X−Xmin

Xmax−Xmin
ð1Þ

X′ = transformed value.x = value of the indicator.xmin = minimum
value of the indicator.xmax = maximum value of the indicator.

EmRI ¼ 1�
2 � Fatalities′þ Affected′ð Þ ð2Þ

Fatalities′=Total deaths: Sumof death andmissing.Affected′=Total af-
fected: Sum of injured, homeless, and affected.

In the next step, we compute the EERI (Eq. (3)). It is the average of
two aspects: (1) the difference between the theoretical risk given by
the WRI and the empirical EmRI and (2) the overall absence of risk.
The absence of risk is the antipode to EmRI. Obviously, the second part
includes elements of vulnerability. Nevertheless, literature justifies
this or even requires to some extent to include vulnerability from a
data perspective into resilience because both concepts have an overlap
(Cutter et al., 2014; Sherrieb et al., 2010). The resulting EERI is:

EERI ¼ 1=2⁎ WRI−EmRIð Þ þ 1=2⁎ 1−EmRIð Þ ð3Þ

WRI = WorldRiskIndex.EmRI = Empirical Risk Index.
The resulting EERI is again between zero and one for each country,

where a value of one signifies the largest resilience. Due to the terms
in Eq. (3), the EERI has a negative correlation with EmRI.

2.3. Explanatory elements of resilience: the open resilience index ORI

The EERI alone has no explanatory power of resilience. Therefore, in
the subsequent section, explanatory elements are derived by means of
machine learning, trying to predict EERI from infrastructural and social
components in the OSM. The resulting explained prediction of resil-
ience, validated through the EERI, is the Open Resilience Index ORI.

To obtain the ORI, we normalized the OSM data again using Eq. (1),
and then reduced their dimension to the most relevant components by
a Principal Component Analysis (PCA; function: preProcess(); package:
caret; Kuhn et al., 2019). The normalization is known to not affect PCA re-
sults. The PCA analysis resulted in 80 principal components out of the
1340 tags per country. In the following we use these 80 dimensions of
OSM as candidate indicators to predicting the EERI and construct the ORI.

First preliminary results indicated a non-linear relationship between
OSM indicators and EERI. Thus, for finding statistical determinants of re-
silience, we used Random Forest as a non-linear method (function:
randomForest(); package: RandomForest; Liaw and Wiener, 2018).
The Random Forest algorithm is an advancement of the classic decision
tree and can be used for regression with built-in variable selection.
Compared to decision trees, random forests build many (here: 1000)
trees and summarizes the results. The many random trees are achieved
by bootstrapping from the data available for training, and by drawing a
random sub-set of predictors from the candidate predictors for each
tree. Together, this provides statistical robustness and avoids domi-
nance of one single very strong predictor. The relevance of each single
121



Fig. 3. Type of disaster which affected the highest number of people in each country in the last 20 years (data: EM-DAT).
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indicator/predictor is determined by their contribution to reduce the
test error over all trees of the forest and bootstrap samples, reported
by the “%IncMSE” (per cent increase in mean squared error).

The result of random forest is the ORI that predicts (with minimum
squared error) the EERI while using themost powerful explanatory var-
iables among the offered 80 PCA components. The individual contribu-
tion to ORR reported by random forest quantifies the relevance of the
respective component and helps explain and lay open the elements
that make up empirically measureable resilience.

3. Results

This section is split into three sub-divisions. In Section 3.1, we present
the resulting risk according to EmRI, based on EM-DAT data over the last
twenty years, and compare it across the study region. Section 3.2 discusses
the resulting resilience based on our EERI, and again compares it across the
study region. Section 3.3 presents the statistical analysis to help under-
stand resilience and its components, along with the final ORI map.

3.1. Empirical risk (EmRI) from EM-DAT

The empirical risk of being killed or affected according to our EmRI
(Section 2.2, Eq. (2)) from earthquake, storm, flood and drought over
the last two decades is shown in Fig. 4. The classification into a 5-step
color scale is added to avoid the impression of pseudo-accuracy. Details
on the class borders for the map are provided in the Appendix.

The ten countries with the lowest risk in increasing order from the
bottom are: Latvia, United Arab Emirates, Cyprus, Finland, Estonia,
Kuwait, Qatar, Netherlands, Iceland and Denmark.

Six of the top ten (lowest risk) countries are in Europe and four in
Asia. All of the top ten countries are, according to the World Bank
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classification, high-income countries. Looking at political stability (Indi-
cator Id: PV.EST), the countries are ranked from medium to high.

The countries with the highest risk in decreasing order from the top
are: Somalia, Micronesia, Myanmar, Swaziland, Mauritania, Philippines,
China, Thailand and Lesotho. In the World Bank income classification,
these countries are ranked uppermiddle income to low income. The po-
litical stability is low or very low, except for Micronesia which is ranked
in the top quantile, very high stability. From a continental perspective;
five are in Asia, four in Africa and one in Oceania. Asia appears on both
ends of the ranking, where Europe is mostly very low to low risk, and
Africa and Oceania are mostly in the medium to high-risk categories.

3.2. Resilience according to the empirical evidence resilience index (EERI)

The EERI based on EmRI andWRI from the last twenty years (Eq. (3))
is displayed in Fig. 5.

The lowest EERI resilience scores are achieved in decreasing order
by Zimbabwe, the Philippines, Namibia, Lesotho, Thailand, China,
Mauritania, Swaziland, Myanmar and Sri Lanka. These countries are
equally split between the continents of Asia and Africa. They are
ranked in themiddle to low-income groups and the political stability
is low or very low with the exception of Sri Lanka (medium) and
Namibia, which is ranked high.

The highest EERI resilience scores, in decreasing order, are achieved
by: Mauritius, Cameroon, Sierra Leone Timor-Leste, Côte d'Ivoire, Neth-
erland, Togo, Liberia, andGuinea Bissau. The income level is fromhigh to
low and also the political stability ranges from high to low.

3.3. Open resilience index (ORI)

The most important determinants for predicting resilience applying
the random forest method (Section 2.3) were the principal components:



Fig. 4. Empirical risk index EmRI (data: EM-DAT).
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identity & mobility, sustainable infrastructure, social fabric, material sup-
ply, social infrastructure, economic status, religion, spatial development,
leisure & recreation, nature conservation (Table 2) (see Annex II).

The lowest resilience points, as predicted by theORI, scored: Sri Lanka,
Mauritania, Lesotho, Swaziland and Malawi (Fig. 6). These countries are
ranked in the low and lower middle income classes and low to medium
political stability. The highest resilience score is achieved by the
Netherlands, a country with a long history of high exposure and also
very low vulnerability followed by Turkmenistan, Romania, Jordan and
Hungary.

Nevertheless, an indicator is rather a semi-quantitative ranking than
a quantitative number. Therefore, the most important aspect is that the
rank correlation for the classification within the ordinal color scale is
high, i.e. that the ordering of countries is maintained. The resulting
Spearman's rank correlation value is 0.73, which we find a satisfying
performance of the explained ORI (Fig. 7).

4. Discussion

In previous sections, we constructed an empirical risk index (EmRI)
from two decades of disaster data (EM-DAT), and then blended it with
the existing World Risk Index (WRI) into an Empirical Resilience Index
(EERI); finally, we constructed an Open Resilience Index (ORI) that was
trained on the EERI. The ORI uses, among others, social components
from Open Street Map to explain the resilience values indicated by EERI.
In the following, we digest the above results against income, political sta-
bility and softer social components; we also discuss the interrelation
between our results.
6

4.1. EmRI versus economical aspects

Based on our EmRI results in Section 3.1, the countries with the
highest risk of natural hazards over the last two decades are located
in Africa and Asia. High risk coincides with lower political stability
and with lower income as also indicated by Byers et al. (2018).
These findings underline the importance of socio-economic vulner-
ability as a determining factor for risk to natural hazards. In both
regions, global hotspots of vulnerability are located, with high per-
sistence and cumulative interwoven socio-economic vulnerabilities
(Birkmann et al., 2020).

When comparing the risk of countries, in rich developed countries,
the economic losses due to natural hazards are often dominant over
the number of people affected. This is the effect of corresponding invest-
ments into protection andmitigationmeasures. In less developed coun-
tries, the economic losses are lower due to lower exposed values, but
the number of people negatively affected is much higher. This finding
is also supported by Formetta and Feyen (2019).
4.2. EERI versus income, political stability and social components

Resilience based on the vulnerability component of the WRI and on
the historic consequences of natural hazards in EmRI paints a differenti-
ated picture/world map. While the lowest resilience scores are attained
by countries in Africa and Asia, the overall map is much more differen-
tiated. Generally, low resilience goes hand-in-hand with low income
and low political stability (Cutter and Derakhshan, 2020; Lassa et al.,
123



Fig. 5. EERI based on own methodology (data: EM-DAT, WRI).
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2019). In contrast, high resilience shows income from low to high and
political stability from high to low (see Annex III).

This indicates that high income and political stability is sufficient,
but not necessary for high resilience: Low resilience has a strong linkage
to low income and low political stability, but high resilience seems to be
additionally influenced by other factors besides the economic situation.
This is in linewith literature that attests the importance of softer factors,
such as social networks, feelings of belonging, learning, experience
(Cutter, 2016, Feldmeyer et al., 2019b, Jamshed et al., 2020a, 2020b).

The making (and name) of the EERI was selected to capture empiri-
cal evidence for resilience. Thus, it captures implicitly the effects all the
above soft factors (social networks, feelings of belonging etc.) that are
typically not available in countries' statistics for building a theoretical
index. Nevertheless, the results differentiate between income and
Table 2
Ten most important principal components in predicting EERI with random forest.

PCA Name %IncMSE

PC1 Identity and mobility 8,45
PC57 Sustainable Infrastructure 5,98
PC5 Social fabric 4,33
PC7 Material supply 3,38
PC20 Social infrastructure 3,22
PC13 Economic status 3,16
PC16 Religion 3,11
PC55 Spatial development 2,57
PC40 Leisure & Recreation 2,48
PC45 Nature conservation 2,42
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political stability and resilience. Hence, we conclude that our EERI
index empirically captures all the desired factors, i.e. income, stability
and soft factors.

4.3. Open resilience index ORI

The Open Resilience Index (ORI) is based on the principal compo-
nents (PCA) per country of the OSM-dataset as explanatory variables.
It is derived by predicting the developed EERI with the Random Forest
machine learning algorithm, which includes a mechanism for variable
selection among the principal components. When manually organizing
the tenmost predictive indicators fromTable 2 into themes,five themes
prevail: Social cohesion (identity &mobility; religion); Human develop-
ment (leisure & recreation, social fabric); Economy (economic status;
material supply); Sustainable infrastructure (available infrastructure;
spatial development); and Nature conservation.

To counter any issueswith the completeness or quality of theOSMas a
crowdsourced data-set, we validated the functional purpose of the data
for predicting EERI. The scatterplot shows a clear positive correlation be-
tween EERI and ORI and a lowMAE (0.017). Fig. 7 plots the EERI on the x-
axis against the predicted ORI on the y-axis. In general, the frequency dis-
tribution is skewed to the upper end around a resilience level of 0.5. Those
countries with the highest absolute difference (>0.15) are labelled. For
the lower values (Sri Lanka, Mauritania, Swaziland, Thailand), resilience
is slightly overestimated. In contrast, on the upper end, ORI tends to un-
derestimate the level of resilience (Nigeria, Cote d'Ivoire, Cape Verde,
Mauritius, Cameroon, Togo). The reported Mean Absolute Error (MAE)
is low i-e., 0.017.



Fig. 6. Statistical prediction of resilience based OSM by random forest (data: OSM).
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Moreover, resilience assessment is often limited due to the lack
of existing indicators assessing soft factors, in line with previous
studies (Sauter et al., 2019; Feldmeyer et al., 2019a). OSM in con-
junction with machine learning is not only able to predict resilience
but also have additional benefits of providing new insights into
resilience.

4.4. Explanatory elements of resilience in ORI

The literature based disaster resilience indicator core by Cutter
comprises six assets and five capacities (Cutter, 2016). In several
areas, Cutter's core is consistent with our ten empirically derived el-
ements in Table 2). Congruent elements are economy (economic
status), social capital (social fabric, social infrastructure, religion),
infrastructure (available infrastructure, material supply), environ-
ment (nature conservation). The remaining attributes in Cutter's
core, i.e., institutional, information and emergency management,
have no equivalent within our ten empirically most important pre-
dictors from the OSM dataset. Instead, our OSM-based predictors in-
clude spatial development and leisure & recreation, which are not
included in Cutter's core.

Our two additional elements (spatial development; leisure & recrea-
tion) underline the potential of OSM data to include information typi-
cally not covered by governmental data (leisure & recreation) and not
available on a global scale available (spatial development) into resil-
ience analysis.

In contrast to that, information and communication is not di-
rectly part of the OSM database, but this does not mean that it is
8

not included. The major question here is to what extent difficult
social aspects like social capital or feelings of belonging and net-
works among the population do manifest, directly or indirectly,
within OSM. This part is often not quantitatively measured due
to high costs of surveys and workshops, and hence less monitored
(Birkmann, 2013). Nevertheless, these social aspects contribute
substantially to resilience. Here, the results indicate that OSM pro-
vides evidence for including such elements in line with previous
studies (Feldmeyer et al., 2020).

Challenges: interpretability, dynamic changes and computation.
Both predictive and explanatory elements are needed to develop

a comprehensive index for measuring climate resilience. Machine
learning is often criticized in this context to be a black-box with
low transparency and low explanatory power (Ribeiro, 2016). How-
ever, the variable selection of the random forest approach indeed has
a high interpretability and allows for meaningful discussion. Only
the specific functional-mathematical shape between the inferred ex-
planatory elements and the ORI value are a black box, simply because
a non-linear function of 10 or more variables is hard to visualize and/
or imagine. Of course, the trained random forest could be used to up-
date the ORI map in the future, but in a changing world one should
probably re-evaluate the EERI and then repeat the random forest ap-
plication to update the ORI.

Updating the ORI when longer historical data are available will
require a discussion between the length of statistical records and
the dynamics in a changing world. Twenty years of disaster may
not be comprehensive in terms of a rigorous probabilistic hazard as-
sessment. Nevertheless, these data clearly illustrate the current
125



Fig. 7. Statistical prediction of resilience based OSM by random forest (data: OSM).
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situation and helps in understanding the current spatial distribution.
And even within these twenty years, there are already huge develop-
ments in the key characteristics of fast-developing countries, in cli-
mate, in implementing hazard mitigation and climate change
adaptation measures. In this regard, the crowdbased OSM database
is important to capture the fast changes occurring. Balancing differ-
ent timeframes and impacts pose a challenge without one single
final solution.

Despite the rapid development of personal computers, computa-
tional power is still a limitation to run data-intensive machine learning
algorithms (Huntingford et al., 2019). First, the global OSM-dataset cur-
rently has about 1.3 TeraByte, which is clearly beyond the capacity of a
current common PC. Second, querying this kind of data additionally re-
quires extensive RAM or sophisticated deconstruction of the problem
into smaller bites, digestible by the hardware. The tools applied in our
current study were rather manual, including command-line tools and
R programming. Considering these limitations related to computational
power and capabilities of the computer system available to authors, the
Americas had to be left out so that machine learning based on OSM
could be processed without overloading the computer system. Thus,
both hardware and software are issues to overcome.

4.5. Future research

We identified the following three future research directions based
on our discussions and findings:

• Social aspects (like social networks and feelings of belonging) are
often neglected in resilience assessments due to difficulties inmeasur-
ing them. Hence, more research is needed to integrate the social di-
mension into monitoring programmes.
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• The scalability of indicators to be aligned with scales of the natural
problem space needs further exploration, for example to construct re-
silience indices on the scale of river basins, climate regions, wildlife
parks etc.

• The different levels of hazards as well as cascading effects of natural
hazards were beyond the scope of the current research. To deeper un-
derstand the nature of resilience, both aspects pose specific challenges
and therefore are fields of future research.

• A complete analysis of all the countries (including countries in
Americas) can be done using similar methodology on computers with
higher computational power and capabilities.

• While using the wider data set of OSM proved a successful strategy
for learning about resilience, more data sources may be included,
such as Twitter, phone records, satellite imagery; they might pro-
vide additional inputs on aspects not yet captured or improve the
prediction capability. Any new results then need to be translated
and integrated into policy frameworks and adaptation strategies
in order to bring about change.

5. Conclusion

Monitoring and evaluation of climate resilience across scales in
time and space is key to developing proactive management strate-
gies in which to sustainably face climate change. Current challenges
in measuring resilience are the empirical validation of resilience in-
dices and the inclusion of soft social factors. In this study, we pro-
vided an Open Resilience Index (ORI) that is based on empirical
disaster data from the world-wide emergency database EM-DAT,
yet lays open explanatory elements provided by OpenStreetMap,
and these include social factors. The results provide an evidence-



P

P

P

P

D. Feldmeyer, W. Nowak, A. Jamshed et al. Science of the Total Environment 774 (2021) 145734
based approach for disaster resilience and deeper knowledge at a na-
tional scale. This understanding contributes to the urgent need to
change from a reactive to a proactive approach in managing natural
hazards.

Empirical validation of resilience remains challenging, due to the
fact that the outcome of resilience is the absence of damage, which is
difficult to measure. This is in contrast to risk, where the negative
consequences of an event are documented and measurable. The em-
pirical evidence resilience index (EERI) developed as an intermedi-
ate step on the way to ORI indicates these absences of negative
consequences which cannot be explained by exposure, hazard and
vulnerability. An additional difficulty is that hard-to-measure soft
factors are influential for resilience. In this light, machine learning
with crowdsourced data provided new insights into resilience. The
results show the relevance of social cohesion (identity & mobility;
religion); human development (leisure & recreation, social fabric);
economy (economic status; material supply); sustainable infrastruc-
ture (available infrastructure; spatial development); and nature
conservation.

Our results also show that high income and political stability is
sufficient, but not necessary for high resilience, and this again un-
derlines the importance of softer factors. Correspondingly, in fu-
ture research, it would be interesting to tap even more sources of
openly available data, such as Twitter or satellite data; however,
more computing power would then be needed. Resilience is dy-
namic in a changing world, so that resilience indicators have to be
updated frequently. A further task is the adaptation of resilience
indices to other special or temporal scales that are relevant for re-
gional or continental management structures. Finally, this research
can provide useful information for further implementation of SDGs,
SFDRR, Paris Agreement and New Urban Agenda by highlighting
the hotspots where resources can be invested to build climate
and disaster resilience.
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Annex I. Classification of maps

EmRI – quantile classification and subsequent classes.
10
EERI - quantile classification and subsequent classes.
ORI - quantile classification and subsequent classes.
Annex II. Principal components
PCA
P

P

P

Name
 Tag (highest loading)
C1
 Identity and mobility
 amenity_bicycle_parking
shop_florist
bicycle_no
historic_memorial
C57
 Sustainable Infrastructure
 bicycle_parking_rack
capacity_2
amenity_charging_station
power_compensator
C5
 Social fabric
 railway_signal
healthcare_doctor
healthcare_psychotherapist
building_entrance
craft_tiler
C7
 Material supply
 shop_fabric
direction_S
shop_lamps
shop_tiles
cuisine_italian.pizza
C20
 Social infrastructure
 cuisine_fish_and_chips
traffic_signals_crossing
shop_charity
crossing_yes
sport_fitness
C13
 Economic status
 amenity_yes
office_association
toilets.wheelchair_yes
C16
 Religion
 landuse_cemetery
amenity_public_building
leaf_type_leafless
religion_jewish
highway_ford
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continued)
PCA
P

P

P
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Name
 Tag (highest loading)
C55
 Spatial development
 cuisine_breakfast
capacity_32
railway_construction
emergency_assembly_point
capacity_36
C40
 Leisure & Recreation
 amenity_spa
amenity_food_court
shop_lighting
C45
 Nature conservation
 amenity_ranger_station
historic_tomb
power_connection
Annex III. EERI, GDP and political stability

Scatterplot of EERI against GDP.
Boxplot of political stability and EERI.
11
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Annex IV. List of countries included

ISO3 Name Main hazard ISO3 Name

AFG Afghanistan Drought HRV Croa�a Flood PHL Philippines Storm

AGO Angola Drought HUN Hungary Flood PLW Palau Epidemic

ALB Albania Storm IDN Indonesia Earthquake PNG Papua New 
Guinea

Drought

ARE United Arab 
Emirates 

Flood IND India Drought POL Poland Flood

ARM Armenia Drought IRL Ireland Epidemic PRK Korea Drought

ASM American Samoa Storm IRN Iran Flood PRT Portugal Wildfire

AUS Australia Flood IRQ Iraq Flood PSE Pales�ne, 
State of

Storm

AUT Austria Flood ISL Iceland Earthquake PYF French 
Polynesia

Flood

AZE Azerbaijan Flood ISR Israel Storm QAT Qatar Flood

BDI Burundi Drought ITA Italy Flood REU Reunion Epidemic

BEL Belgium Flood JOR Jordan Drought ROU Romania Flood

BEN Benin Flood JPN Japan Flood RUS Russian 
Federa�on

Flood

BFA Burkina Faso Drought KAZ Kazakhstan Flood RWA Rwanda Drought

BGD Bangladesh Flood KEN Kenya Drought SAU Saudi Arabia Flood

BGR Bulgaria Flood KGZ Kyrgyzstan Drought SCG Serbia 
Montenegro

Flood

BIH Bosnia and 
Herzegovina

Flood KHM Cambodia Flood SDN Sudan Drought

BLR Belarus Extreme 
temperature 

KIR Kiriba� Storm SEN Senegal Drought

BTN Bhutan Earthquake KOR Korea Flood SGP Singapore Epidemic

BWA Botswana Flood KWT Kuwait Epidemic SHN Saint Helena Storm

CAF Central African 
Republic

Flood LAO Lao People's 
Democra�c 
Republic (the)

Flood SLB Solomon 
Islands

Flood

CHE Switzerland Flood LBN Lebanon Storm SLE Sierra Leone Flood

CHN China Flood LBR Liberia Insect 
infesta�on

SOM Somalia Drought

CIV Ivory Coast Flood LBY Libya Flood SPI Canary Is Flood

CMR Cameroon Flood LKA Sri Lanka Flood SRB Serbia Flood

COD Congo Epidemic LSO Lesotho Drought SSD South Sudan Drought

COG Congo Epidemic LTU Lithuania Drought STP Sao Tome and 
Principe

Epidemic

COK Cook Islands Storm LUX Luxembourg Storm SVK Slovakia Storm

COM Comoros Storm LVA Latvia Epidemic SVN Slovenia Extreme 
temperature 

CPV Cabo Verde Drought MAC Macao Epidemic SWE Sweden Epidemic

CYP Cyprus Drought MAR Morocco Extreme 
temperature 

SWZ Swaziland Drought

CZE Czech Republic Flood MDA Moldova Storm SYC Seychelles Storm

DEU Germany Flood MDG Madagascar Storm SYR Syrian Arab 
Republic

Drought

DJI Djibou� Drought MDV Maldives Earthquake TCD Chad Drought

DNK Denmark Storm MHL Marshall Islands Drought TGO Togo Flood

DZA Algeria Extreme 
temperature 

MKD Macedonia Wildfire THA Thailand Flood

EGY Egypt Storm MLI Mali Drought TJK Tajikistan Drought

ERI Eritrea Drought MMR Myanmar Flood TKL Tokelau Storm

ESP Spain Flood MNE Montenegro Flood TKM Turkmenistan Earthquake

EST Estonia Storm MNG Mongolia Extreme 
temperature 

TLS Timor-Leste Drought

ETH Ethiopia Drought MNP Northern 
Mariana Islands 
(the)

Storm TON Tonga Storm

FIN Finland Flood MOZ Mozambique Flood TUN Tunisia Flood

FJI Fiji Storm MRT Mauritania Drought TUR Turkey Earthquake

FRA France Storm MUS Mauri�us Storm TUV Tuvalu Storm

FSM Micronesia Drought MWI Malawi Drought TWN Taiwan Storm

GAB Gabon Flood MYS Malaysia Drought TZA Tanzania Drought

GBR United Kingdom Flood NAM Namibia Drought UGA Uganda Drought

GEO Georgia Drought NCL New Caledonia Epidemic UKR Ukraine Flood

GHA Ghana Flood NER Niger Drought UZB Uzbekistan Drought

GIN Guinea Flood NGA Nigeria Flood VNM Viet Nam Flood

GMB Gambia Drought NIU Niue Storm VUT Vanuatu Storm

GNB Guinea-Bissau Drought NLD Netherlands Extreme 
temperature 

WLF Wallis and 
Futuna

Storm

GNQ Equatorial 
Guinea

Epidemic NOR Norway Flood WSM Samoa Storm

GRC Greece Earthquake NPL Nepal Earthquake YEM Yemen Flood

GUM Guam Storm NZL New Zealand Earthquake ZAF South Africa Drought

HKG Hong Kong Storm OMN Oman Storm ZMB Zambia Flood

PAK Pakistan Flood ZWE Zimbabwe Drought
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SEVENTH CHAPTER 

CONCLUSION 

Four intermingled and cross-cutting challenges were identified in chapter one, binding all five 

contributions together: First, operationalization and the use and applicability of different data 

– census versus social-network data. Second, quantitative assessment of multi-faceted 

complex phenomena in the context of climate change. Third, the relevance of spatial scales – 

and the challenges linked to the “problem space, assessment space and solution space”. 

Fourth, validation of indicators and indices to increase robustness, transparency and analysis 

of spatial differences. The five different contributions add different aspects on different scales 

to the four challenges recalled here. 

The subsequent sections (sections 7.1 to 7.4) discuss these four challenges one by one, cutting 

through and combining the five contributions, and concluding with a paragraph on climate 

resilience. Followed by a brief summary, they lead to limitations (section 7.5) and needs or 

opportunities for future research (section 7.6). Closing the circle, some final remarks are 

stated.  These sections include statements a) which are previously stated as part of the five 

articles but are important to be restated here and b) statements evolved during the synthesis of 

the entire work.  

7.1 OPERATIONALIZATION AND THE USE AND APPLICABILITY OF DIFFERENT DATA – 
CENSUS VERSUS SOCIAL-NETWORK DATA [CONTRIB. 1 TO 5] 

The topic of data in general is crucial in assessing and monitoring climate resilience across 

scales and poses several implications as a result and synthesis of my research conducted:  

Data availability is the most important criterion [Contrib. 1]. The interdisciplinary and scale-

crossing nature of climate resilience, in combination with the importance of soft and 

qualitative attributes, poses a great challenge in terms of data needs. Existing data are not yet 

able to cover all fields of climate resilience sufficiently [Contrib. 1, 2, 3, 5]. Instead, 
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traditional administrative data sources need to be complemented with new data sources. But 

also administrative data need to be available across departments and across administrative 

hierarchical levels [Contrib. 2 & 3]. The missing integration of data management, besides 

neglecting to share data, aggravates the assessment of climate resilience. Last but not least, 

new data need to be collected by governments in order to successfully monitor climate 

resilience and to create a data base for informed decision-making on all spatial scales from 

local, regional, national to global.  

There is need for a spatially inclusive and comprehensive indicator base, covering social and 

qualitative factors [Contrib. 1 to 5]. To be more specific than the previous paragraph, in the 

context of climate resilience, many projects also focus on increasing knowledge, participation, 

learning, trust, awareness, solidarity, community, building networks or other qualitative 

aspects of climate resilience. Even on project level, monitoring and evaluation of these factors 

is sparsely done due to methodological difficulties in the assessment of such factors. 

Moreover, such measures would need continuous monitoring even after the finalisation of the 

project. To set the project into a larger context and to be able to evaluate the success or 

failure, these aspects need to be monitored and/or integrated, e.g. into the census. Essentially, 

climate resilience cannot be monitored without these soft factors.  

Only secondary data were seen to be feasible for monitoring purposes [Contrib. 1, 2, 4]. 

Already on the local level, expensive surveys or workshops were not considered feasible for 

monitoring purposes [Contrib. 1]. This is even more important on national or even global 

scale [Contrib. 3, 4]. The reasoning for using secondary data is twofold. First, surveys to 

gather statistically representative data are expensive and require trained administrative 

personnel. Even medium-sized municipalities do not have the capacities financially and 

personnel-wise to conduct extensive surveys every four years [Contrib. 1]. The implications 

to base the assessment on secondary data need consideration. Important aspects of climate 

resilience are soft factors (e.g. feeling of belonging, networks, knowledge) which are not yet 

monitored in municipalities. Hence, selected indicators are only proxies and do not measure 

the phenomenon directly. How efficiently such proxies, like voter turnout, still capture this 

phenomenon, is seen differently and is also specific to the place or even city block. Having 

said that, two crucial requirements arise from my research. First, existing data need to be 

available and shared. Second, new data need to be collected.  

The new option of machine learning provides the means to generate indicators which are not 

covered by traditional data sources across administrative boundaries [Contrib. 3, 5]. In light of 
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the previous discussed shortcomings of existing data, new ways and approaches need to be 

explored. OpenStreetMap in combination with machine learning proved to be one possible 

valuable addition [Contrib. 3, 5]. Most importantly, the scepticism against crowdsourced data 

needs to be overcome in order to fully access its possibilities. Methods for data quality and 

new methods for validation - as developed within this dissertation - contribute in achieving 

this goal [Contrib. 3, 5].  

Missing temporal data sets and emerging effects of climate change aggravate detection of 

trends and spatio-temporal effects [Contrib. 3, 5]. The shrinking of the presence in 

combination with the acceleration of climate change adds another challenge to data. 

Especially on global level, it takes years until the data are provided. First, the data are 

outdated when available. Second, temporal effects are not sufficiently included to detect 

shifting baselines. Twitter, news, OSM or satellite imagery need to be further exploited to 

cover highly fluent and dynamic aspects of resilience.  

Data do not provide the means to measure vulnerability and resilience in a dynamic way. 

Climate resilience and socio-economic vulnerability are highly dynamic concepts in space and 

time and even change within days or hours. These dynamic, spatio-temporal effects are not 

yet measurable by existing data and all approaches assess resilience and vulnerability only in 

a static way whereas hazards are monitored fluently adding to the gap in scales also a 

temporal gap. 

7.2 QUANTITATIVE ASSESSMENT OF MULTI-FACETED COMPLEX PHENOMENA IN THE 
CONTEXT OF CLIMATE CHANGE 

The synthesis of all five contributions regarding quantitative assessment of multi-faceted 

complex phenomena leads to following core conclusions: 

The vertical dilemma is that municipalities have the data but not the capacities, while higher 

levels have the capacities but not the data. Hence, local administrations require provision of 

data for complex topics from higher administrative levels [Contrib. 1]. This statement links 

straight to the previous paragraph and continues the line of thought. Higher administrative 

levels have the respective personnel at their disposal – trained in the fields of statistics, data 

and geodata. Lower administrative levels lack such personnel.  But local data are still only 

available on the very local level. The federal structure of Germany further complicates the 

situation as the same data are often not the same data and are not comparable amongst federal 
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states [Contrib. 2 & 3]. In order to overcome this dilemma, new databases have to provide 

essential indicators for climate resilience area-wide, which could be achieved by including 

important aspects to already existing regularly conducted surveys like the census.  

 
The number of indicators and robustness is important in the science-policy interface in 

order to communicate results [Contrib. 1, 2, 4]. Considering the complexity of climate 

resilience and the number of dimensions and actions fields, this requires careful balancing of 

indicators [Contrib. 1, 2]. Practitioners and researchers tended to include more indicators 

when just considering a single topic. No single action field was sufficiently covered by one 

indicator, so for the best covering the most important aspects needed to be selected. It should 

be noted that removed indicators often were also considered important but just slightly less 

contributing in regard to the definition of urban climate resilience. Overall, researchers strived 

to include more indicators and practitioners urged for fewer but robust, transparent and clearer 

indicators [Contrib. 1]. The effect measured and its cause direction on climate resilience was 

an important aspect. New methods to assess the robustness of indices, e.g. as developed in 

contribution 4, are necessary if indices shall be used to justify political actions [Contrib. 4]. 
 
It is better to not have an indicator if the data source of choice does not exist, than having an 

indicator not measuring its indicandum [Contrib. 1, 2, 5]. The empirical validation of regional 

resilience indicators removed two indicators: Proportion of structurally-shaped settlement and 

traffic area in the official flood area and proportion of undissected forest were removed. The 

initial idea was to include the status of the water bodies and the status of the forest. 

Unfortunately, both data sets actually exist, but are neither freely accessible nor provided by 

the authorities upon request [Contrib. 2]. The substituted indicators could not cover the field. 

If they had not been excluded by the empirical validation, wrong information would have 

been communicated. Therefore, no information is better than wrong information, which leads 

to the conclusion of carefully-considered substitutions.  

Conflicting goals between indicators and negative correlations have to be expected when 

measuring climate resilience [Contrib. 1, 2, 5]. From a theoretical index-composition 

perspective, negative correlations are sometimes questioned. For climate resilience this cannot 

be applied, hence, on all spatial scales negative correlations exist, despite the fact that both 

indicators contribute positively to resilience. One obvious example is the provision of 

infrastructure vs. environmental indicators. The concept of resilience includes conflict of 

goals, where trade-offs need to be carefully balanced. This is not a weakness of the concept to 
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be unidimensional but strength, because it fosters the transparent discussion and evidence-

based decision-making of conflict topics.   

There is high agreement regarding areas with high vulnerability [Contrib. 4]. Areas of high 

vulnerability are characterised by multiple and persistent challenges. Therefore, different 

approaches coincide and the selection of indicators is less relevant due to the fact that multiple 

indicators point in the same direction. The agreement is lower for regions with low 

vulnerability, where single challenges shape the overall vulnerability strongly.  

Political stability is a prerequisite for low vulnerability but not for low resilience [Contrib. 4 

& 5]. Political stability and vulnerability correlates strongly on a global scale. Political 

stability is persistently low for hotspots - regions of vulnerability which have been further 

decreasing over the last two decades. These contextual challenges make societies more 

susceptible to impacts of climate change. But also negative impacts of climate change, e.g. 

increasing food prices and war for water further destabilize political systems, thus 

accelerating the downward spiral. In contrast, high resilience shows income from low to high 

and political stability from high to low [Contrib. 5]. Generally, low resilience goes hand in 

hand with low income and low political stability. In contrast, high resilience shows income 

from low to high and political stability from high to low. So in case of an absent state, people 

organise themselves and create structures to overcome hardships thus building resilience. 

Hence it is not surprising that resilience is also shown by low-income countries or even 

especially by them as social aspects are key for a resilient society.   

7.3 THE RELEVANCE OF SPATIAL SCALES – AND THE CHALLENGES LINKED TO THE 
“PROBLEM SPACE, ASSESSMENT SPACE AND SOLUTION SPACE” [CONTRIB. 1 TO 5] 

The assessment of climate resilience and vulnerability is specific to the spatial scale. The 

assessment across different scales within this dissertation leads to several core conclusions: 

Single indicators or composite index - a spatial perspective. Aggregation of indicators to an 

index was seen critically on urban scale [Contrib. 1]. Practitioners on urban scale were not in 

favour of an aggregated resilience index. One reason might be that it was not intended to 

compare and rank municipalities due to the danger of a bad rating. Also, it was argued that the 

included topics are too different to be combined to a meaningful composite index. The main 

objective was a profile of the municipalities to identify key topics for adaptation measures. In 

contrast, higher scales not only consider a singular spatial entity, so the objective is to rank 
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and rate in order to identify first key areas and subsequently key topics. Therefore, a 

composite index is helpful to aggregate the information to one score in order to rank spatial 

entities.     

Resilience indicators are mostly developed for the Global South [Contrib. 1, 2]. Resilience as 

a concept is often applied to the development context. Hence, a vast majority of the indicators 

are developed in the context of the Global South. The specificity of resilience is often not 

sufficiently incorporated. Transferring indicators from one place to another requires 

validation. Even indicators developed in the Global North might not be suitable in the context 

of Germany.  

Practitioners and scholars understand urban resilience differently [Contrib. 1]. Despite the 

fact, that the definition of urban climate resilience was developed in a participatory approach 

with researchers and practitioners, it still caused the most discussions when selecting 

indicators. Depending on the understanding, indicators were seen included or excluded. In 

general, resilience was more often linked to disaster resilience than to climate resilience and 

interpreted more short-term hazard-oriented. One reason is that in the administrative structure 

it is often linked or included to the civil engineering department. Therefore, also technical 

solutions and measures are favoured. Climate resilience cannot be localized at one 

department. Hence, the integral understanding of the concept is in conflict with the 

administrative divisions. In contrast to literature, climate resilience is understood by 

practitioners more as an environmental and ecological concept [Contrib. 1]. In general, 

environmental indicators received higher acceptance rates and less discussion on urban scale. 

Much less intrinsically-linked are economic indicators. Interestingly, during the workshop 

when discussing reasons for economic indicators, general consent was achieved. On regional 

scale economic indicators were also approved by the empirical validation process. But two 

environmental indicators were removed. The reason was not the topic of the indicator but that 

the primary data source was not available and the secondary choice was insufficient. Also on 

national level the empirical evidence index included the economic component.  

Dimensions of resilience are consistent across scales but not indicators. The three dimensions 

environment, governance and society are of particular importance for urban resilience 

[Contrib. 1]. Overall, the three dimensions environment, governance and society were seen as 

most important. Most important indicators were listed in decreasing order: cold air parcels, 

inter-office working groups regarding risk, experience with extreme events in the last 5 years, 

climate change and resilience, strategies against heavy rain and heat in plans, citizens´ 
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information about heat, heavy rain and flooding. Infrastructure was also decided on with high 

agreement. Least agreement was found in the area of economy. Still, having a diverse and 

robust economy was regarded as important to face climate change, but it was least 

intrinsically- linked to climate resilience but rather regarded as a part of sustainability.  All 

five spheres are important and underline the socio-economic and socio-ecological character of 

climate resilience [Contrib. 1, 2, 5]. The most important determinants of the empirical 

validation for regional climate resilience were: environment (degree of organic farming, air 

emission index), infrastructure (accessibility of large centres, accessibility of supply with 

daily goods), economic (GDP, employment), social (share of citizens ABV6/U65, sick days, 

voter turnout, nearby police stations). Governance (support of climate protection agreement) 

is not amongst the top five determinants but statistically significant regarding climate 

resilience. The most important determinants for predicting resilience applying the random 

forest method  were the principal components: identity & mobility, sustainable infrastructure, 

social fabric, material supply, social infrastructure, economic status, religion, spatial 

development, leisure & recreation, nature conservation [Contrib. 5]. The disaster resilience 

indicator core by Cutter comprises six assets and five capacities (Cutter, 2016). In several 

areas, Cutter´s core is consistent with the ten elements derived within my empirically-derived 

elements. Congruent elements are economic (economic status), social capital (social fabric, 

social infrastructure, religion), infrastructure (sustainable infrastructure, material supply), 

environmental (nature conservation). The attributes institutional and information, as well as 

the capacity emergency management, have no equivalent within the ten most important 

predictors from the OSM dataset. Not within the resilience core but amongst the OSM 

predictors, spatial development and leisure & recreation can be found. Those two elements 

also underline the potential of OSM data, due to the fact that information not covered by 

governmental data (leisure & recreation) or not available on a global scale (spatial 

development) are documented. 

Urban, regional and national indicators are overlapping but also have distinct elements 

[Contrib. 1, 2, 5]. The main dimensions of the framework remain the same throughout the 

scales: environment, economic, society, government, and infrastructure. For the environment, 

agriculture and forest was added, moving from urban to regional scale. Settlement structure, 

drinking water, wastewater and energy as urban action fields were removed and streets, health 

care, local supply and public transportation introduced. Public transportation is also of 

concern on urban scale, but data limitation limits quantitative indicators. The very specific 

field of business on urban scale was replaced by unemployment for the economic dimension. 
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For the social dimension the people-centred indicators of knowledge and risk competence and 

the municipality-specific indicator number of research projects were disregarded. In contrast 

to the urban and regional assessment, the national assessment is not based on traditional data 

sources but OSM indicators, which does not allow a straight comparison. Public transport is 

replaced by the more general topic of sustainable infrastructure. The economic dimension is 

very generally assessed by the economic status. Similar, for the environment no single topic 

e.g. water, soil etc. remain but instead more generally nature conservation. For the 

government dimension, a planning aspect is covered by spatial development. OSM does not 

include politics, plans and strategies; it only monitors their effects or implementation. 

Interestingly, the most important dimension even on national scale is society with four 

indicators out of ten: identity & mobility, social fabric, religion, leisure & recreation. 

The problem space needs to be coherent with the assessment and solution space [Contrib. 1 

to 5]. A consideration often untouched is the incongruence of data, problem and solution 

space. All three spaces and spatial scales need to be linked. The increase of the global mean 

temperature is of no interest to a specific city, nor can a single city change it on its own. River 

basin-wide approaches are one example where data, problem and solution space is brought 

together. Less obvious are often socio-ecological spaces spanning across administrative 

borders with a long historic background. The assessment of vulnerability on climate region 

level shows the necessity for international and transnational adaptation measures to build 

capacities, create enabling conditions and merge assessment, problem and solution space.  

7.4 VALIDATION OF INDICATOR AND INDICES TO INCREASE ROBUSTNESS AND 
TRANSPARENCY AND ANALYSIS OF SPATIAL DIFFERENCES [CONTRIB. 1 TO 5] 

Indicators and indices only provide justification for action if they are robust and well 

accepted. Within my dissertation I developed new methods to implement validation for multi-

faceted phenomena. Key elements and reasons of empirical and statistical validation are as 

follows: 

Bias is unavoidably introduced at all steps of index construction [Contrib. 1 to 5]. Most 

importantly the interdisciplinarity of climate resilience results in the fact, that nobody has 

studied all areas and each and every one has a different background. Besides this personal 

bias, scale and data bias always exist. The biggest bias - but often neglected - is the selection 

or non-selection of indicators. The results showed that also the selection of the aggregation 
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methodology introduced another bias. Equal weights or expert weights failed to understand 

the data and their hidden structure resulting in unequal contribution of the themes to the 

index. Data-driven approaches neglect logic facts and resulted in the removal of important 

aspects. The hybrid-approach, including and acknowledging both sides, proved to be crucial 

in order to reduce bias.  

Unclear cause-effect relation of many resilience indicators due to the ambiguity of the 

concept and conflicting goals cause misunderstandings [Contrib. 1 to 5]. The direction of 

many indicators often cited in literature is unclear. Or it is clear for one goal but might be 

negative for another goal of resilience. This ambiguity reduces robustness, transparency and 

trust thus making it hard for policy makers to deduce measures and decisions. The knowledge 

about the negative impact is key in order to make informed decisions. Validation increases 

transparency, points out such conflicting goals and subsequently supports decision-making. 

But not only decision-making enables evaluation and monitoring of adaptation measures. The 

measure in itself might be a success, but the negative impacts on other fields might outbalance 

the total effects in a negative way. Therefore, workshops and participatory approaches for 

validation including practitioners are essential [Contrib. 1]. Last but not least a common 

language and understanding are essential. The inclusion of different departments of the 

administrative bodies and scientific disciplines is crucial to cover all aspects of climate 

resilience. This requires a lot of time and most important an open environment fostering 

discussion and conflicts. The discourse provided important insights and increased the validity 

of the data but also its acceptance.   

The uncertainty about the uncertainty is the only certainty in climate change and also for 

composite indicators. The biggest source of uncertainty, which is mostly not even considered, 

is the selection of indicators [1, 2, 5]. The total number of indicators for resilience or 

vulnerability is unknown and assessing the ones which have not been measured is rather 

difficult. Different approaches claiming to assess vulnerability include varying sets of 

indicators. One possibility to reduce the uncertainty regarding the selection of indicators is to 

compare different approaches and assess the level of agreement. The comparison of two 

vulnerability indices shows that there is high agreement on global hotspots. Vulnerability is 

shaped by multiple intertwined and linked topics. Hence, the selection of indicators is less 

relevant because all are negative. There is less agreement regarding regions with medium or 

low vulnerability where single topics dominate vulnerability. Uncertainty regarding the 

impact of the aggregation method [Contrib. 2, 4, 5]. Another important source of uncertainty 
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is the impact of the method on the result. The combination of different methodologies, often 

neglected due to the expenses, can give insights into the influence of a method. This increases 

robustness and transparency whilst reducing uncertainty. The combination of purely data-

driven approaches in combination with thematic reasoning was essential in understanding the 

method and its data in order to compute a meaningful index.  Uncertainty regarding the 

impacts of climate change [Contrib. 2, 5]. The fact that climate change is already part of the 

presence reduces uncertainty about the impacts we are already able to measure. Also with 

respect to certain climate change consequences the models predict, with increasing quality 

and certainty, what will happen. But far less certainty exists about socio-ecological responses 

and chains of effects. Climate resilience and vulnerability are socio-economic constructs. 

Where climate models are able to predict future changes in high resolution with high 

certainty, predictions of vulnerability and climate resilience remain absent. At best, scenarios 

describe possible development pathways, but models are not able to predict future socio-

economic vulnerability. Examples of this inability are the failures to predict the global 

recession 2007-08 or the COVID-19 pandemic. Still, negative consequences are mainly due to 

socio-ecological factors, which remain vastly underestimated and the strong focus on physical 

models obscures the real area of concern. Most importantly the high certainty of such models 

pretending to know what will happen, but in fact we have no idea hence the uncertainty is 

exponentially higher than these models suggest. We might get an idea what will happen 

regarding physical parameters but we do not know what this means for the socio-ecological 

systems.   

Better and new data and indicators as outcomes for empirical validation are necessary 

[Contrib. 2 to 5].  Some aspects of climate resilience are not yet measured and consequently 

lack empirical validation. New methods and data sources such as phone records, twitter, OSM 

etc. need to be analysed as to how they can provide the means to monitor such elements. 

Empirical validation of climate resilience solely based on traditional data sources will not be 

successful. Still, a small number of approaches for empirical validation of resilience exist 

[Contrib. 2, 5]. The majority of resilience assessment tools are literature-based. Only few 

approaches exist validating resilience with empirical data. As previously mentioned one 

reason is the lack of data, but also the hesitation to use new data sources. Life expectancy was 

one indicator found to capture many aspects of resilience - often available with high spatial 

resolution and quality. Still, this only includes indirectly economic losses due to natural 

hazards. Unfortunately, the best data are owned by insurance companies not willing to share 

it. On global scale the EM-DAT provides a unique source of data which can be used.   
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7.5 LIMITATIONS IDENTIFIED WITHIN THE RESEARCH PROCESS 

Every research undertaken is facing certain challenges and is limited to some extent by 

constraints which are difficult to overcome. Limitations within this research were: 

1. Measuring and understanding of vulnerability and climate resilience as 

complex multi-faceted concepts is still limited by missing social spatio-

temporal data. 

2. Developing an indicator set tends to be easier than assessing the significance or 

validity of an indicator over time and it requires an extended observation 

period to be able to make statements about the significance of a certain 

indicator.  

3. The number of indicators for regional climate resilience was relatively 

limited and the selection based on theory but still, to some degree, subjective. 

Further empirical analysis into more indicators can contribute to the 

understanding of climate resilience. 

4. For regional vulnerability, there are limitations in terms of the relevance of 

some of the indicators used for different country groups or types. For example, 

the INFORM captures the road density and number of internet users, which 

may lead to countries with a stronger rural context being rated differently 

compared to countries that are more urbanized. However, it is important to 

note that the INFORM and WorldRiskIndex represent approaches that cover 

human vulnerability more comprehensively and, therefore, these specific issues 

are not key for the overall results of the assessment.  

5. Computational power is still a limiting factor despite its rapid development of 

personal computers. The global OSM-dataset has currently a size of ~1.3 TB 

which is clearly more than the RAM available in common PCs. Second, 

querying those kinds of data additionally requires extensive RAM or 

sophisticated deconstruction of the problem into smaller bites, digestible by the 

hardware. The tools applied included command line tools and R-programming. 

Both, the hardware and software are issues to overcome.  

6. An important part of socio-economic indicators is their explanatory power of 

unusual phenomena or in extreme situations. Machine learning and especially 

DNN is often seen as a black box, which limits its acceptance and 

applicability. Nonetheless, the  Feature Perforance Index is a very condensed 
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way of interpreting the global feature importance. As the approach is linked to 

the error of the model, it is only possible to perform with access to the outcome 

and not for the assessment of a stand-alone model. By leaving out different 

explanatory variables, the assessment of their contribution to the overall 

outcome distils the interconnections of social indicators and spatial attributes, 

which is key in understanding regional development issues and helps in 

making target-oriented decisions. 

7. Limited spatio-temporal event data including detailed losses across scales 

and hazards. For Germany no event database exists documenting direct and 

indirect losses spatially explicit for different hazards. At best some physical 

events are spatially documented but only to a limited extent. On national and 

global level the EM-DAT database is a unique approach closing this gap and 

also showing the importance. Twenty years of disaster records are not 

comprehensive in terms of probabilistic hazard assessment, but this goes above 

and beyond the scope of this study. Nevertheless, the data clearly illustrates the 

current situation and helps in understanding the current spatial distribution. 

Moreover, twenty years makes a huge difference with respect to the 

development of fast-developing countries and also in implementing hazard 

mitigation and climate change adaptation measures. In this regard, the crowd-

based OSM database is important to capture the fast changes occurring. 

Balancing different timeframes and impacts poses a challenge without a single 

final solution. 

7.6 FUTURE RESEARCH 

Opportunities for future research revealed through the dissertation: 

1. Generate an event database for all major hazards, an automated approach 

using news, satellite imagery, twitter and weather records needs to be 

developed, including direct and indirect economic as well as human losses.  

2. Dynamic vulnerability and climate resilience assessments have to be 

developed. Similar to flood forecasting without hydrological models, based on 

machine learning algorithms, vulnerability and resilience can be predicted.  
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3. High resolution models predict the impact of climate change with high 

certainty. Far less certainty and models exist regarding the socio-economic 

side of future vulnerability and climate resilience. Therefore, future research is 

needed to predict socio-economic vulnerability in congruence with physical 

models.   

4. Social aspects (like social networks and the feeling of belonging) are often 

neglected in resilience assessments due to difficulties in measuring them. 

Hence, more research is needed to integrate the social dimension into 

monitoring programmes. 

5. The scalability of indicators to be aligned with scales of the natural problem 

space needs further exploration, e.g. the construction of resilience indices on 

the scale of river basins, climate regions, wildlife parks etc.  

6. While using the wider data set of OSM proved a successful strategy for 

learning about resilience, more data sources may be included, such as twitter, 

phone records, satellite imagery; they might provide additional inputs on 

aspects not yet captured, or improve the prediction capability. Any new results 

then need to be translated and integrated into policy frameworks and 

adaptation strategies in order to bring about change. 

7. Vulnerability and climate resilience frameworks have to be linked to 

adaptation measures.  This is important for two reasons. First, it helps 

practitioners to deduce adaptation measures from the assessment of climate 

resilience or vulnerability. Knowing what is not right is the first step but 

without knowing how to improve or solve it, this knowledge is meaningless. 

Therefore, scale- specific adaptation measures have to be linked to the 

assessment. Second, when linked, the success or failure of adaptation measures 

can be evaluated with the monitored indicators.  
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