
Efficient simulation

of challenging PDE problems

on CPU and GPU clusters

Von der Fakultät für Mathematik und Physik der Universität

Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Malte Schirwon

aus Köln

Hauptberichter: Prof. Dr. Dominik Göddeke

Mitberichter: Prof. Dr. Holger Steeb

Prof. Dr. Stefan Turek

Tag der mündlichen Prüfung: 28.04.2021

Institut für Angewandte Analysis und Numerische Simulation

der Universität Stuttgart

2021

ii

iii

Acknowledgments

I would like to express my sincere gratitude to my advisor Professor Dominik Göddeke for

his support, guidance and patience during my time at the University of Stuttgart. He has

accompanied and influenced my scientific career since since my Bachelor’s studies and is

largely responsible for my exploring the exciting field of high performance computing and

hardware oriented numerics. I also want to express my gratitude for the many interesting

and instructive collaborations that resulted from his connections.

More acknowledgments go to my dear colleagues who come from the other disciplines

of applications considered in this work.

The first cooperation partner I would like to thank is Marius Brehler, with whom I had

my first scientific cooperation, which was completed with several papers and conference

visits. Chapter 3 of this thesis could not have been written without him. Furthermore,

I would like to thank Nadine Kijanski, David Krach, Maria Osorno and Rakulan Sivane-

sapillai from the field of continuum mechanics, with whom our SPH toolkit for image-

based flow simulations on the pore scale of porous media was developed. In this context,

I would like to thank Prof. Holger Steeb, the advisor of the people mentioned above,

and who led this project together with Prof. Dominik Göddeke. In the course of this

collaboration, many results beyond the ones described in chapter 4 have been obtained.

I have to thank Dimitri Komatisch for another insight into a subject area that was

almost unknown to me before. Since he sadly passed away and the thoughts hurt, it is

difficult for me to choose the right words. I am very appreciative to him for much conver-

sation, discussion and ideas on the subject of seismic waveform modeling and inversion.

In particular, I would like to thank him for allowing me to spend three months with him

on site in Marseille during our collaboration. In the context of this collaboration I also got

to know Vadim Monteiller, with whom my work in the field of seismic waveform modeling

and inversion was further intensified. Vadim was available for any questions and could

always help me with his expertise. I am glad that this collaboration will continue beyond

this work.

Also, I would like to thank Professors Holger Steeb and Stefan Turek for their willing-

ness to be the co-examiners of this thesis.

Besides these people who are directly related to this work, there are of course others

I have to thank. I would like to thank my colleagues from IANS and especially the

iv

colleagues from my group from CMCS for the pleasant working atmosphere and the

helpful discussions on any numerical topics. In particular, I would like to mention Mirco

Altenbernd, Alexander Grimm, Felix Huber, Aaron Krämer, Julia Kühnert and Anna

Rörich. During my time in Stuttgart I shared an office with Mirco and not only because

of that he was always my first contact person for any numerical or mathematical questions.

Felix already supported me as a student worker from 2016 onwards, so that I was able

to draw on his expertise at an early stage. Therefore, I would like to thank him for his

contributions that were made in the context of this research and that are partly included

in chapter 4 of this thesis.

I would like to conclude my words of acknowledgement with thanking all those whom

I cannot mention by name here, as there would be too many. Many thanks to my friends

and family who have supported me during this time.

During my time as doctoral student, I have been partly funded by the German Re-

search Foundation (DFG) as part of the Cluster of Excellence in Simulation Technology

(EXC 310) at the University of Stuttgart, and it is gratefully acknowledged.

v

Contents

1 Introduction 1

1.1 General motivation . 1

1.2 Different types of hardware . 5

1.3 Requirements for numerical software . 7

1.4 Software packages used in this thesis . 14

1.5 Thesis contribution . 15

1.6 Thesis outline . 16

2 GPU Computing 19

2.1 Specifics of a graphics processing unit (GPU) 19

2.2 Challenges of GPU computing . 21

2.2.1 CUDA concepts . 21

2.2.2 Warp divergence . 22

2.2.3 Race conditions . 23

2.2.4 Latency Hiding . 24

2.2.5 Different types of memory . 24

2.2.6 Streams . 30

2.3 Multi-GPU computing . 31

3 Nonlinear signal propagation in multimode fibers 33

3.1 Motivation . 33

3.2 Modeling of nonlinear signal propagation in multimode fibers 35

3.3 Numerical approximation . 36

3.3.1 The fourth-order Runge-Kutta in the interaction picture method . . 36

3.4 Numerical simulation . 41

3.4.1 CPU implementation . 41

3.4.2 CPU/GPU hybrid implementation 42

3.4.3 GPU implementation . 43

3.4.4 Multi-GPU implementation . 46

3.5 Numerical results . 52

3.5.1 Performance comparison between CPU and GPU 52

vi

3.5.2 Comparison of multi-GPU approaches 53

3.6 Conclusions . 56

4 Particle-based simulation of flow in porous media 57

4.1 Motivation . 57

4.2 Mathematical model . 59

4.3 Numerical Approximation with SPH . 60

4.3.1 Smoothed particle hydrodynamics 61

4.3.2 Discretization . 65

4.3.3 Boundary conditions . 69

4.3.4 Time integration . 70

4.3.5 Artificial viscosity . 71

4.3.6 Schematic SPH single phase flow algorithm 72

4.4 Implementation aspects and challenges . 73

4.4.1 SPH implementation in HOOMD-blue 73

4.4.2 Challenges of the implementation 76

4.4.3 Improvements for the GPU Implementation 78

4.5 Numerical results . 84

4.5.1 Benchmark definition . 84

4.5.2 Hardware details . 85

4.5.3 Selection of the fastest NNS algorithm 86

4.5.4 Evaluation of the improvements . 86

4.5.5 Strong scalability . 88

4.5.6 Weak scalability . 93

4.6 Conclusions . 96

5 Seismic waveform modeling and inversion 97

5.1 Motivation . 98

5.2 Mathematical model . 100

5.2.1 Wave equation . 100

5.2.2 Zener model . 101

5.2.3 Forward model . 112

5.2.4 Relation between Zener model and physical parameters 118

5.3 Waveform modeling . 121

5.3.1 Modification of the standard approach 121

5.3.2 Minimization problem to obtain relaxation parameters 122

5.3.3 Quality comparison and improvement of the Q factor approximation 124

5.3.4 Modified forward model . 126

5.3.5 Boundary conditions . 127

5.4 Waveform inversion . 129

5.4.1 Regularization . 129

vii

5.4.2 Inversion parameters . 131

5.4.3 Adjoint state method . 131

5.4.4 Adjoint model . 133

5.4.5 Derivative of the misfit function . 136

5.5 Algorithmic realization . 138

5.5.1 Optimization method . 139

5.5.2 Forward/adjoint simulation . 142

5.5.3 Full waveform inversion algorithm 149

5.5.4 Computation of Zener model parameters 152

5.6 Numerical results . 153

5.6.1 Simple test case . 153

5.6.2 Impact of the viscosity . 155

5.6.3 Comparison of different regularizations 156

5.6.4 p-variation reduced gradient inversion 160

5.6.5 Multiscale inversion for viscoelastic modeling 164

5.6.6 Inversion of the Marmousi model 169

5.6.7 Strong and weak scaling . 176

5.7 Conclusions . 178

6 Summary 179

Bibliography 181

A Appendix I

A.1 Seismic waveform modeling and inversion I

A.1.1 Determination of the stress relaxation function I

A.1.2 System of second order PDEs to system of first order PDEs III

A.1.3 Relaxation and modulus function for the modified forward model . VI

A.1.4 Derivative of the misfit function . VIII

A.1.5 Quality comparison and improvement of the Q factor approximation XIV

A.1.6 TV and total generalized p-variation regularization using the split-

Bregman method . XXXIII

A.1.7 Selection of a regularization weight for different regularization meth-

ods . XXXIX

A.1.8 Marmousi2 viscoelastic model . LI

viii

Zusammenfassung

Der wichtigste Beitrag dieser Dissertation ist zu zeigen, wie effiziente Parallelisierung-

stechniken für numerische Simulationen von partiellen Differentialgleichungen (PDEs) en-

twickelt werden können und worauf zu achten ist, um eine möglichst gute Performance zu

erhalten. Dazu reichen die Zielplattformen von leistungsstarken Workstations über kleine

Cluster bis hin zu Supercomputern, wobei wir im speziellen Plattformen betrachten, die

mittels Grafikkarten beschleunigt sind. Wir betonen, dass die effiziente numerische Sim-

ulation von PDE-Problemen auf neuartige Weise Aspekte aus der numerischen Analyse,

den numerischen Methoden (Algorithmen, Datenstrukturen und andere Bereiche, die eher

der Informatik zuzuordnen sind) und Hardware-Details umfasst und kombiniert.

Unzählige Modelle in Naturwissenschaft, Technik und Ökonomie basieren auf Syste-

men von PDEs. Die Wahl der Modellierungsverfahren, die Implementierung numerischer

Lösertechniken sowie die gewählte Zielplattform beschränken die Genauigkeit und Dauer

der Simulation. Eine Erhöhung der Genauigkeit und/oder Reduktion der Dauer der Sim-

ulation ist in der Regel nicht ohne effiziente Software möglich. Anhand drei Anwen-

dungsszenarien, die zum Teil auf unstrukturierten Daten und Strukturen basieren, passen

wir bereits existierende Methodiken und Algorithmen auf die Zielplattformen an oder

verändern die Implementierungsweise, um so eine optimale Effizienz zu erreichen.

Beim ersten Anwendungsfall handelt es sich um die Wellenausbreitung in Lichtwellen-

leitern. Wir stellen eine MPI-parallele Implementierung vor, die insbesondere für kleine

Cluster geeignet ist. Der zweite Anwendungsfall ist der Fluss in porösen Medien. Anhand

dieser beiden Anwendungungen entwickeln wir Implementierungstechniken, welche deren

Effizienz steigern. Ebenso stellen wir angepasste Version eines Nachbarschaftsalgorithmus

vor, der für aktuelle Grafikkarten eine weitere Effizienzsteigerung erzielt.

Diese gesteigerte Effizienz und damit verringert Laufzeit erlaubt es, aufwendigere Sim-

ulationen zu betrachten. Eine solche Anwendung ist die dritte Anwendung, welche die

Ausbreitung von seismischen Wellen und die Invertierung dergleichen darstellt. Die ef-

fizienten Implementierungstechniken, erlauben den Übergang von elastichen zu viskoe-

lastischen Materialien bei die Invertierung von seismischen Wellen. Wir stellen ein In-

vertierungsschema vor, das es ermöglicht, auch die Dämpfungsparameter des viskoelastis-

chen Materials zu invertieren. Weiter werden verschiedene Regularisierungsmethoden ver-

glichen und ein modifiziertes, effizienteres Löserverfahren für solche Probleme vorgestellt.

ix

Abstract

The main contribution of this dissertation is to show how efficient parallelization tech-

niques for numerical simulations of partial differential equations (PDEs) can be developed

and which aspects have to be considered in order to obtain the best possible performance.

For this purpose, the target platforms range from high-performance workstations to small

clusters and up to supercomputers. In particular, we focus on platforms accelerated by

graphics cards. We emphasize that the efficient numerical simulation of PDE problems

comprises and combines, in novel ways, aspects from numerical analysis, numerical meth-

ods (algorithmics, data structures and other areas more related to computer science) and

hardware details.

Many models in science, engineering and economics are based on systems of PDEs. The

choice of modeling techniques, the implementation of numerical solution techniques, as

well as the chosen target platform limit the accuracy and the duration of the simulation.

Increasing the accuracy and/or reducing the duration of the simulation is usually not

possible without efficient software. Based on three application scenarios, we adapt already

existing methodologies and algorithms to the target platforms or change the way they are

implemented in order to achieve optimal efficiency. As a guiding scheme, we consider the

challenging case of unstructured data and schemes.

The first application is the wave propagation in optical fibers. We present an MPI-

parallel implementation that is particularly suitable for small clusters. The second ap-

plication scenario is the flow in porous media. Based on both applications, we develop

implementation techniques that increase their efficiency. Furthermore, we present an

adapted version of a neighborhood algorithm that further increases the efficiency for cur-

rent graphics cards.

The increased efficiency and reduced runtime allows to perform more complex sim-

ulations. One of theses applications is considered to be the third application, which is

seismic wave propagation and waveform inversion. The feasibility of developing efficient

implementations for computationally powerful target platforms permits us to consider the

inversion of seismic waves in viscoelastic materials. In particular, we present an inversion

scheme that also allows us to determine the damping parameters of the viscoelastic ma-

terial. In addition, regularization methods and a modified solver method are presented,

which can be used for a more efficient solution of such problems.

x

1

1

Introduction

1.1 General motivation

Since physical experiments are often too expensive or not feasible, they are replaced by nu-

merical simulations. Partial differential equations (PDEs) can be used to describe a wide

variety of phenomena like heat conduction, diffusion, sound electrostatics, electrodynam-

ics, fluid dynamics, elasticity, gravitation, geodynamics, wave propagation and quantum

mechanics. All these different physical phenomena can be expressed in a similar way in

the form of (systems) PDEs, for which no closed-form solution exists.

In this way, numerical simulations are used, for example, to test new technologies.

In the field of communications technology, new techniques are needed to cope with the

increasing demand of data transfer. New techniques are also needed to increase the

bandwidth in optical fibers. In order to test whether these techniques are applicable

in practice or whether, for example, different signals interfere with each other and are

therefore useless, numerical simulations can be used. Such a numerical simulation saves

time and money, especially if the techniques turn out to be useless.

Another field where numerical simulations can replace laboratory experiments is in the

analysis of properties of rocks. Such properties are needed, for example, to test whether

a rock is suitable for a geothermal energy extraction process. Although a sample of this

rock is still needed for the numerical simulation, which is digitized by means of a CT scan,

the generated digital model can now be used for any number of simulations.

Numerical simulations can also be used to find such possible rock regions. Such imag-

ing techniques are also used to find oil reservoirs in industry, or to evaluate computer

tomographies in medicine. These methods are not used to save money on laboratory

tests, but rather because these simulations obviously cannot be replaced by laboratory or

other tests.

These three examples will reappear in chapters 3, 4 and 5 as we use these simulations

to illustrate the development of efficient implementations, optimizations of numerical

schemes, and the development of novel numerical methods.

There are two main aspects why designing and implementing efficient simulation soft-

2 1. INTRODUCTION

ware for PDE problems is an ongoing and highly important research area.

The first aspect is that advancing science requires the development of next generation

computational models to satisfy the accuracy and fidelity needs of targeted problems [51].

The potential impact of these models on computational science is twofold. To begin with,

scientists will be able to account for more aspects of the physical phenomena being mod-

eled. In addition, increases in the resolution of the system variables, such as the number

of spatial zones, time steps, or particles, will improve simulation accuracy. Both of these

impacts will place higher demands on computational hardware and software [51].

To meet these needs, vast amounts of computing power are often needed, reaching

and pushing the limits of the fastest supercomputers. During the pursuit of this thesis,

the peak performance of the fastest system increased from 54.9 PFLOP/s (Peta floating

point operations per second) [152] to 537.2 PFLOP/s [153]. This means that the peak

performance must roughly double again to reach the exascale threshold of 1018 FLOP/s.

The increase in peak performance from TFLOP/s (i.e. 1012 FLOP/s) to PFLOP/s (i.e.

1015 FLOP/s) took 12 years from 1997 [149] to 2009 [150]. More recently the peak

performance doubled with the release of the current fastest supercomputer Fugaku [151,

153]. Therefore it is expected that the exascale threshold could be reached in the next 1

to 2 years. Driven mostly by power constraints, exascale-class machines will see a massive

increase in the number of computing units, whether homogeneous cores or heterogeneous

mixtures of multipurpose CPUs and specialized processing units such as GPUs. Figure 1.1

shows that the number of NVIDIA GPU accelerators has increased significantly in recent

years. For instance, more than 50% of the top 20 fastest supercomputers contain GPUs.

 0

 20

 40

 60

 80

 100

 120

 140

'10 '11 '12 '13 '14 '15 '16 '17 '18 '19 '20

#
S

y
s
te

m
s

NVIDIA

Figure 1.1: Number of systems accelerated by NVIDIA GPUs in the TOP500 list [153].

Furthermore, memory and bandwidth will not increase as quickly as core count, and

data transfer latencies will be exposed further [106, 141, 155]. The anticipated exascale

architectures will present significant challenges for scalable software development (see e.g.,

1.1. GENERAL MOTIVATION 3

[71, 137]).

Nevertheless, efficient programming alone is not sufficient. At least as important is the

scaling of the underling algorithms. Ideal strong scaling means that the compute time

is halved if the amount of compute power is doubled, while the problem size remains

constant. Ideal weak scaling means constant compute time when resources and problem

size are simultaneously doubled. A more detailed definition of the scaling concept can be

found in section 1.3. Therefore, the role of applied mathematics in the exascale effort is

highly important and must be sufficiently investigated: In the past, numerical algorithms

and libraries have contributed as much to increases in computational simulation capa-

bility as improvements in hardware. The expected developments in computer systems

will place an even greater focus on numerical algorithms as a means of increasing the

computational capability. Significant new model development, algorithm redesign, and

science application code reimplementation will be required in order to effectively exploit

the power of exascale architectures [51, 71, 137]. This thesis contributes to all of these

aspects, with a focus on numerical algorithms.

The second is an economic and ecological aspect. It is first and foremost an economic

aspect to obtain the simulation results as fast as possible, but without losing accuracy. Or

it is necessary to get the results in real time or even faster than real time, e.g., collision

protection in autonomous driving, or earthquake prediction respectively. Additionally

there is also an ecological interest to use the hardware as efficiently as possible in order

not to consume more power and therefore produce more carbon dioxide or excess heat

than necessary. It also makes sense to use hardware that is energy efficient. Not only

should it have a positive side effect to use less energy through energy efficient hardware,

but it could also be a (small) step towards less CO2 production. Therefore we develop

software which runs on GPU accelerators. GPUs excel at energy efficiency, making them

more and more likely candidates for future exascale systems. This becomes particular

clear when comparing the TOP500 with the GREEN500 lists (November 2020)[64, 153],

which provides a ranking of the most energy-efficient supercomputers in the world. GPUs

are also often used as a target platform in the field of artificial intelligence and deep

learning, since they are well suited for training neural networks with thousands to millions

of input samples. As artificial intelligence and deep learning have gained and continue

to gain importance in many areas of science in recent years, it is expected that the

number of GPUs in small clusters, but also in large supercomputers, will increase. Also,

it is worth noting that GPU computing does not only target big machines, even high-

performance workstations contain one or more GPUs. Substantial speedups have been

demonstrated for problems that fit into the memory of a single workstation, somewhat

avoiding the need to move towards MPI-parallel implementations for strong scaling to keep

runtime acceptable for increasing problem sizes and/or model complexities. On average,

the theoretical peak performance of GPUs continues to level at roughly 2–5x above that

of CPUs in terms of flop rates, and 3–7x for memory bandwidth. These numbers hold for

4 1. INTRODUCTION

the ‘fair’ socket-vs-socket comparison, and can translate to speedups in the same range

for many applications [117, 141]. So we take both the ecological and the economic aspects

into account.

The main focus of this thesis is to present different aspects, challenges, and solu-

tions for implementing efficient software, to numerically solve challenging, representative

PDE problems. In particular, we focus on GPU systems. Target platforms range from

workstation-type systems equipped with (multiple) GPUs, small to medium-size GPU

clusters both on-site and in the cloud, and GPU-accelerated supercomputers. In order

to write efficient software, it is necessary to know the requirements of the software, the

underlying target platform and its architecture, and to devise a scalable numerical algo-

rithm.

1.2. DIFFERENT TYPES OF HARDWARE 5

1.2 Different types of hardware

We briefly sketch the main conceptual aspects and differences between the mentioned

target platforms based on CPUs and GPUs, and also highlight several recent trends that

could be interesting in future work.

Probably best known is the Central Processing Unit (CPU), which is the heart of a

computer. The CPU executes basic arithmetic, logic, control, and input/output opera-

tions specified by instructions in the program. A multi-core CPU comprises two or more

separate processing units called cores, each of which reads and executes program instruc-

tions as if the computer had multiple CPUs. In simple terms, a multi-core processor can

be thought of several CPUs sitting on the same chip and sharing RAM (Random-Access

Memory) and on-die memory.

The graphics processing unit (GPU) was first introduced 1999 to offload simple graph-

ics operations from the CPU to a new, additional, dedicated processor [118]. As graphics

expanded into 2D and, later, 3D rendering, GPUs became more powerful. Highly par-

allel on-chip operations are highly advantageous when processing an image composed of

millions of pixels, so current-generation GPUs include thousands of ‘cores’ or processing

units designed for efficient execution of mathematical functions. The Tesla V100, one of

NVIDIA’s latest devices introduced in 2017, contains 5,120 CUDA cores for single-cycle

multiply-accumulate operations and 640 tensor cores for single-cycle matrix multiplica-

tion. GPUs have spread far beyond their initial application, because many algorithms

in other fields lend themselves to parallel execution. Many of the world’s fastest super-

computers, for example number 2 and 3 of the TOP500 (November 2020) [153], include

thousands of both GPUs and CPUs. More differences between CPU and GPU are de-

scribed in chapter 2.1.

Field-programmable Gate Arrays (FPGA) consist of internal hardware blocks with

user-programmable connections to customize operations for a specific application [9]. In

simple terms, they can be considered as a series of programmable blocks interconnected

by programmable links. In contrast to the other processors mentioned, the connections

between the blocks can be reprogrammed, changing the internal operation of the hard-

ware. That means that its programmable structure can be configured to implement any

combination of digital functions. Also, algorithms can be implemented in a massively

parallel manner, which means that a huge amount of data processing is possible. This

flexibility makes the FPGA the processor of choice for applications where standards are

evolving, such as digital television, consumer electronics, cyber security systems and wire-

less communications.

The application-specific integrated circuit (ASIC) is at the other end of the spectrum.

It is a processor designed specifically for its intended application [9], containing only

the blocks that are necessary for optimal operation, including CPU, GPU, memory, etc.

The development of such processors is expensive, time consuming and resource intensive,

6 1. INTRODUCTION

but they offer extremely high performance with low power consumption. The Tensor

Processing Unit (TPU), for example, is an accelerator developed by Google specifically

for machine learning in neural networks [154].

ARM (advanced RISC machine) is a family of reduced instruction set computing

(RISC) architectures for computer processors. This type of processor is characterized by

its energy efficiency, among other things, and is found especially in mobile devices such as

cell phones or tablet PCs. Special ASIC components can be integrated on ARM proces-

sors, e.g. components that perform crypto-mining or vector units to perform operations

on vectors. Therefore, they can also be found in supercomputers. Special ARM CPUs

based on the SIMD principle (see chapter 2.1) are the basis of the number one of the

TOP500.

More and more often, these types of processors are merging, so that FPGA elements

also exist on GPUs, for instance. One example is the Tesla T4 GPU from NVIDIA, which

is specifically designed for AI applications and contains embedded FPGA elements for AI

inference applications [45].

In this thesis we limit ourselves to the consideration of CPUs and GPUs. As already

described in section 1.1, these are often present in supercomputers and have a future-

oriented concept.

1.3. REQUIREMENTS FOR NUMERICAL SOFTWARE 7

1.3 Requirements for numerical software

The requirements of numerical software vary depending on the application. Usually a

certain accuracy is given which must be achieved, or the simulation must be calculated

in a given time. Also the target platform on which the software is supposed to run or,

e.g., the smallest possible memory requirement can be a prerequisite. However, efficient

software should, in addition to meeting the requirements, make the best possible use of

the hardware so that the runtime is as short as possible.

We distinguish between two main requirements for efficient software. Firstly, the target

platform on which the software is to run and, secondly, the requirements for the accuracy

of the simulation.

Target platform To write efficient software it is necessary to know on which architec-

ture the software should run and how this architecture is designed internally. For example,

software for single core processors almost always needs to use use different numerical al-

gorithms than those for multicore processors. The memory intensity of the program and

the memory size of the platform should also be discussed. It can be useful to store results

temporarily instead of recalculating them at a later time. This saves calculation opera-

tions, but requires additional memory. Since memory is often the one limiting resource,

this is often not possible but the other way round is more useful. Likewise, software

for multi-core processors quickly generates overhead that is not necessary for single core

processors. Furthermore, parallel programming requires special programming interfaces,

which also differ depending on the target platform. To write programs for multi-core

processors, OpenMP [127] or OpenACC [126] can be used. Both parallelize programs at

the level of loops that are executed in different threads. This approach requires that all

participating process threads can access to shared memory (so-called uniform memory

access (UMA) and non-uniform memory access (NUMA) systems), as it is the case with

multicore processors. For systems with distributed memory, other approaches such as the

Message Passing Interface (MPI) [108] must be used. Systems with distributed memory

are, e.g., supercomputers or clusters, where several computing nodes (comparable to sep-

arate computers) are connected to each other via network connections (e.g., Infiniband).

Outsourcing calculations to a GPU can also be done with current versions of OpenMP

[127] and OpenACC[126]. However, to specify an implementation more closely to the

architecture of the GPU, programming interfaces such as OpenCL [81] or CUDA [120]

can be used.

An alternative to MPI are task-based runtime systems. Here different calculations

have to be expressed as tasks and the dependencies of the different tasks have to be

described by a graph. This graph is then used to determine which tasks can be executed

in parallel [48]. For instance, it can be used for the parallel solving of sparse linear system

of equations [91].

Another alternative for parallel systems is the programming model partitioned global

8 1. INTRODUCTION

address space (PGAS). Here each processor is assigned one address space of a global

memory address space as local memory. Nevertheless each processor can access every

memory range, where the local memory can be accessed way faster than the memory of

other processors [8]. Existing implementations almost exclusively map the PGAS model

to MPI-3 features.

Objectives of parallel numerics The goal of parallel programming is that the imple-

mentation scales strongly and weakly. Strong scaling means that the number of processors

increases, whereas the problem size remains the same. If the number of processors is dou-

bled, the runtime of the program should be halved in the best case, which is called ideal

scaling.

Weak scaling means that the problem size is scaled by the same factor as the number of

processors. If the number of processors is doubled and the problem size also increased

by a factor of two, the runtime should ideally remain identical. Besides these two scal-

abilities of the implementation there is also the numerical scalability. It measures the

scalability if the problem size is changed but the number of computing resources remains

the same. Ideal numerical scalability is given, if the problem size is doubled and the run-

time increases only by a factor of two, while the number of computing resources remains

constant. It measures the impact when the problem size is changed independently of the

number of resources. However, this is not the case with many algorithms. If Gaussian

elimination is used to solve a sparse linear system of equations, it is far from ideal numeri-

cal scalability, because it requires O(n3) operations (where n is the number of unknowns).

If instead an iterative method, like the Gauss-Seidel method, can be used, it is possible

to improve the numerical scalability significantly. The Gauss-Seidel method requires only

O(n) operations per iteration (in case of a sparse linear system of equations), so that the

cost grows linearly (assuming that the number of iterations is independent of the problem

size).

But this assumption is usually not fulfilled. We still consider the solution of a sparse

linear system of equations. Most Krylov subspace methods behave like O(n) operations

per iteration. However, the number of operations depends on the problem size and behaves

like O(n). Thus, there is a quadratic growth of the effort and therefore the numerical

scalability is not optimal. An alternative would be a multigrid method, where the number

of iterations is independent of the problem size [136]. Here, the effort scales ideally with

O(n).

The numerical scalability is indirectly hidden in the strong scalability as well, because

the problem size per computational resource changes, if the number of computational

resources changes, while the problem size remains unchanged.

A further goal is to achieve the peak performance of the hardware. Peak perfor-

mance describes the theoretical maximum performance to be achieved and is measured

in FLOP/s (floating point operations per second) for the compute power, in GB/s for

1.3. REQUIREMENTS FOR NUMERICAL SOFTWARE 9

communication and in nano- and microseconds for communication and memory latency.

However, in practice it is difficult to reach the theoretical maximum as described in sec-

tion 1.3.

In this thesis we focus on the development of efficient software for small clusters up

to supercomputers. For this we use OpenMP, MPI and CUDA. We will also analyze our

software for weak and/or strong scalability.

Simulation accuracy Numerical software simulates physical phenomena or other pro-

cesses that take place in the real world and are therefore able to serve as predictions of

real processes. Their results must therefore show the same behavior as if the process

itself had happened in the real world. In other words the numerical solution should have

an acceptable difference to the exact solution or to experimental evidence. On the other

hand, the problem must be solved in finite time. Basically a program needs more runtime

the higher the accuracy of the simulation is, if the numerical methods remain the same.

In the scope of this thesis, the error of a numerical simulation (simulation error) consists

of the model error and the numerical error [72].

The model error comprises the following errors:

• Idealization/model error: Each process to be simulated needs to be transferred into

a mathematical model first. In this mathematical model description, simplifications

are usually made, so that e.g. negligible phenomena are not simulated, or non-

linear processes are linearized. The differences to the real model resulting from

these simplifications are called idealization or model errors.

• Data/experimental error: Each model requires input parameters, such as material

parameters or an input signal. These input parameters are determined for exam-

ple by experimental tests or by empirical investigations. However, since these are

also subject to errors, no exact input parameters can be obtained. Likewise the

input parameters are only available in a certain accuracy, because they have to be

converted into finite arithmetic for the computer.

The numerical error is influenced by the following aspects:

• Truncation/discretization error: The mathematical models are solved with numeri-

cal methods. For this purpose infinite processes are usually replaced by finite ones.

For example, the determination of a derivative is replaced by difference quotients.

The deviation of these finite processes to the exact ones is called truncation or

discretization error.

• Termination error: Infinite algorithms must be terminated after many iterations.

While sin(x) can be represented exactly as an infinite sum sin(x) =
∑∞

0
x2n+1

(2n+1)!
, but

this sum must be terminated after a certain number of operations. The difference

between the value after this iteration and the exact solution is called termination

error.

10 1. INTRODUCTION

• Rounding error: On the computer system, all calculations must be carried out on a

finite-precision floating point arithmetic. Therefore, arithmetic operations may not

give the exact result. The difference is known as the rounding error.

In this thesis the numerical errors only play an indirect role. However, in chapter 3,

the numerical error is reduced by choosing the RK4IP method in comparison to the

Split-Step Fourier method, or rather the reduction of the error with the corresponding

spatial discretization [33]. Furthermore, in chapter 5 the idealization error is minimized

by taking further physical properties into account, and in section 5.3.3 by introducing a

penalty term.

Implementation/method selection There are several methods to reduce the run-

time. A simple possibility is to simplify the model description, e.g., by neglecting physical

phenomena that do not have a significant effect on the scientific outcome. However, this

leads directly to an increase of the idealization error. The discretization can also be coars-

ened, e.g., by reducing the number of degrees of freedom or by using numerical methods

of low order. As a consequence, this leads directly to an increase of the discretization

error. However, these two possibilities only reduce the number of operations the method

needs. In this work we are interested in increasing the FLOP/s by using parallelism.

The target should always be to reduce the runtime as far as possible without increas-

ing the numerical error. Nevertheless, numerical methods should be used and developed

that require as few operations as possible and scale well. The most important point here

is the scalability. For example, to solve a linear system of equations Ax = b, the classical

Gaussian elimination, which requires O(n3) operations, should not be used. In many

cases it is possible to use iterative solvers, which scale much better and need only O(n)

operations per iteration. For a solver whose number of iterations is independent of the

problem size, this results in O(n) operations. In general, algorithms should be used which

have a good numerical scalability as described above. If the hardware is used optimally,

a further increase in terms of FLOP/s can only be achieved by using more (or faster)

hardware. Therefore, the corresponding numerical methods must be parallelizable, which

is not necessarily trivial. The following simple example is not trivial and can be easily

parallelized.

Example: The goal is to compute a = n1 + n2 + . . . + nN , the sum of N data items.

Therefore, we need N − 1 operations and a serial CPU implementation needs O(N) clock

cycles for a linear straight forward approach. This problem is not trivial to parallelize

for different reasons. The operations depend on each other since the second addition

needs the output of the first one and so on. Furthermore, all operations need to write

to the same address a, that means that we have a race condition. One way to paral-

lelize this sum is the following: Instead of adding one date after the other, different pairs

are always added in parallel. To illustrate this, let us look at the following example

a = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 (see figure 1.2). Since ‘+’ is both commutative and

1.3. REQUIREMENTS FOR NUMERICAL SOFTWARE 11

+ + + +

+

+

+

1 2 3 4 5 6 7 8

3 7 11 15

10 26

36

Figure 1.2: Parallelization idea of the reduction sum.

associative (at this point we neglect the floating point arithmetic), we can rewrite the sum

to a = ((1 + 2) + (3 + 4)) + ((5 + 6) + (7 + 8)). Now, we can do (1 + 2), (3 + 4), (5 + 6) and

(7 + 8) parallel and we save the solution in auxiliary variables. Then, we can do the next

adds parallel. After that, we only need one last addition and have the solution. With this

parallel approach we need 3 instead of 7 clock cycles, or O(log2(N)) instead of O(N) in

general, using N/2 parallel compute units.

Another way to reduce the runtime without changing the modeling and the numerical

method is to adapt the implementation to the hardware used, which is the core of this

thesis.

As another example, we consider a matrix-matrix multiplication, which is much faster

on a GPU by splitting it to many small matrix multiplications. In this case we can use

the fast access to the on-chip so called shared memory and additionally the reuse of data

leads to an acceleration.

Example: We discuss the matrix multiplication of two matrices A,B ∈ RN×N and the

solution matrix C ∈ RN×N . For a simpler illustration we consider here an example of the

size N = 4 with

A ·B =

5 2 6 1

0 6 2 0

3 8 1 4

1 8 5 6

·

7 5 8 0

1 8 2 6

9 4 3 8

5 3 7 9

=

96 68 69 69

24 56 18 52

58 95 71 92

90 107 81 142

= C

To compute one entry for the full matrix, we compute ‘row times column’ and it costs

N − 1 additions and N multiplications.

c11 =
(

5 2 6 1
)
·

7

1

9

5

= 5 · 7 + 2 · 1 + 6 · 9 + 1 · 5 = 35 + 2 + 54 + 5 = 96

12 1. INTRODUCTION

This is easy to parallelize, because every entry of the solution matrix C can be computed

in parallel. However, we cannot influence which matrix entries will be read at the same

time to reduce reading times. One way to overcome this issue is to split the matrices into

submatrices:

A =

(
A11 A12

A21 A22

)
=

(
5 2

0 6

) (
6 1

2 0

)

(
3 8

1 8

) (
1 4

5 6

)

B =

(
B11 B12

B21 B22

)
=

(
7 5

1 8

) (
8 0

2 6

)

(
9 4

5 3

) (
3 8

7 9

)

C =

(
C11 C12

C21 C22

)

Computing the upper left matrix C11 requires the matrices A11, A12, B11 and B21 and

can be written as

C11 = A11B11 + A12B21 =

(
5 2

0 6

)(
7 5

1 8

)
+

(
6 1

2 0

)(
9 4

5 3

)

=

(
5 · 7 + 2 · 1 5 · 5 + 2 · 8
0 · 7 + 6 · 1 0 · 5 + 6 · 8

)
+

(
6 · 9 + 1 · 5 6 · 4 + 1 · 3
2 · 9 + 0 · 5 2 · 4 + 0 · 3

)

=

(
35 + 2 25 + 16

0 + 6 48 + 0

)
+

(
54 + 5 24 + 3

18 + 0 8 + 0

)
=

(
37 41

6 48

)
+

(
59 27

18 8

)
=

(
96 68

24 56

)

If we divide the matrices into submatrices Aij, Bij, Cij ∈ RN/M×N/M , it costs M(N/M) +

M = N + M additions and M(N/M) = N multiplications. So, this approach requires

M additions more than the standard ‘row times column’ approach. In practice, the size

of submatrices N/M is chosen instead of the number of submatrices in one direction M .

A typical choice on GPUs for N/M is 32. For a matrix with size N = 214 this would

result in 512 × 512 submatrices of size 32 × 32. This would mean, that 512 additional

additions per entry have to be done, and thus a total of 228 ·512 additional additions have

to be done. Nevertheless, this approach can ensure that all entries of C11 will compute

in parallel , so that the data of A11, A12, B11 and B21 can be reused. In practice, all

calculations are first completed with A11 and B11 and then all calculations with A12 and

B21, to achieve the best data reuse, leading to a much faster approach than the standard

one, especially on GPUs.

1.3. REQUIREMENTS FOR NUMERICAL SOFTWARE 13

Efficiency restrictions It is not always possible to reach the the peak performance of

the hardware. Peak performance describes the theoretical maximum performance to be

achieved and is measured in FLOP/s. It is desirable to come close to this performance,

because otherwise there are still unused resources available that could be exploited.

We consider the supercomputer Piz Daint Cray XC50, which has a peak performance

of 27.1 PFLOP/s and consists of 5704 computing nodes, each containing an Intel Xeon

E5-2690v3 and an NVIDIA Tesla P100 [153]. The peak performance results from the

sum of the peak performance of all P100 GPUs. This means that a software must be

executable on the GPU and able to use the parallelism of the GPUs as best as possible to

achieve this peak performance. If we calculate the peak performance of the CPUs in this

system, we get a peak performance of 2.8 PFLOP/s that is almost 10 times lower [49].

However, there are also restrictions for software that was written exactly for the target

architecture. High performance applications depend on high utilization of bandwidth and

computing resources. They are usually limited by either memory or computing speed [77].

Memory-bound applications reach the limits of system bandwidth, while compute-bound

applications exhaust the computing capacity of the processor. A common approach in

computer architecture and processor design to alleviate the memory-bound problem is to

employ even larger hierarchies of fast, on-chip cache memories. Hierarchical caches are

standard components of modern processors that are used to increase memory bandwidth

and reduce average latency, especially when successive memory accesses are spatially local.

This problem also exists when using GPUs if data needs to be copied to and from the

GPU.

14 1. INTRODUCTION

1.4 Software packages used in this thesis

This work is about method development for challenging PDE problems driven by three

different applications. For each of these use cases we use and extend different software

to solve these problems. For the simulation of nonlinear signal propagation in multimode

fibers we use a custom implementation, which was co-developed by Marius Brehler at

the Institute for High Frequency Technology at TU Dortmund University. This software

is written in C++ and is parallelized with the help of OpenMP, CUDA and MPI. The

CUDA and MPI improvements presented in chapter 3 are also included in the software.

For the particle-based simulation of flow in porous media presented in chapter 4 we

use our in-house software called hoosph. It is based on the software package hoomd-blue

[13] and was extended with functions to use the SPH method [140] by the group of Prof.

Steeb at the Institute of Mechanics at the University of Stuttgart.

A customized implementation was also used for the seismic waveform modeling and

inversion simulations described in chapter 5. This software is called SOUNDVIEW

and is mainly maintained by Vadim Monteiller at the ‘Laboratoire de Mécanique et

d’Accoustique’ in Marseille. This is a finite difference solver implemented in C++ and

uses MPI and CUDA for parallelization.

1.5. THESIS CONTRIBUTION 15

1.5 Thesis contribution

The first, more general, main contribution of this work is the development of efficient

PDE simulation software for smaller clusters and large supercomputers. For this purpose,

we derive exemplary improvement techniques on the basis of three different applications,

which can be transferred and adapted to other similarly ‘unstructured’ PDE problems.

The second, more specific, main contribution of this work is the extension from elastic to

viscoelastic materials for the inversion of seismic wave propagation, as well as an improved

solver method which yields better results, especially for disturbed data. In the following,

we list the different contributions in more detail and refer to the respective chapters in

which they are described:

• In chapters 3 and 4 implementation techniques are presented which lead to a large

performance benefit. These techniques are discussed in the sections 3.4.3 and 4.4.3.

These implementation techniques can also be applied or adapted to other PDE

problems. In particular, many of the more general techniques have been applied in

chapter 5.

• In chapters 4 and 5 modified/improved algorithms, data structures and numerical

schemes are presented. In section 4.4.3 a modified neighbor search algorithm is pre-

sented and thereby in particular an SPH implementation based on a pairs neighbor

list instead of a Verlet list. This leads to a significant performance gain on modern

GPU hardware. In section 5.3.3 a (constant) Q factor approximation, which is based

on an idea of Fichtner and van Driel [54], is modified so that a higher accuracy is

achieved. Furthermore, in section 5.6.4 a modified inversion method is presented,

which can provide a lower model misfit especially for problems with disturbed data.

• In chapter 5, the inversion of seismic wave propagation is extended for viscoelastic

materials. The influence of viscosity can have a large impact on the inversion [52, 90],

so the accuracy of the inversion increases when viscosity is included. The approach

presented directly inverts the Q factors and thus can be applied to non-constant Q

factors as well.

• In the pursuit of this thesis, the implementations have been incorporated into var-

ious software packages, and are partly available open-source or are planned to be

made accessible. Parts of the GPU and MPI implementations of the software used

in chapter 3 were applied in the context of this thesis. Within chapter 4 the GPU

implementations for the SPH module for HOOMD-blue were done, as well as con-

tributions to the MPI and parallel I/O implementation. In addition, a further

neighborhood search algorithm and a pairs list were implemented. The GPU imple-

mentation, as well as the implementation of all functions for the viscoelastic wave

modeling and inversion, have been done in the process of chapter 5 and added to

the software SOUNDVIEW.

16 1. INTRODUCTION

1.6 Thesis outline

This thesis is written in such a way that all chapters are self-contained, i.e., each chapter

provides its own motivation and summary. Nevertheless, the chapters all build upon each

other, so that early chapters offer insights into later ones, and later chapters refer to

aspects already described in earlier chapters. In the following we give an overview of the

individual chapters and refer to the respective introductory sections for a more detailed

structure.

In chapter 2 we give an insight into GPU programming, starting with the basic struc-

ture of GPUs and the difference to CPUs. Then, in section 2.2 we present the challenges

that an efficient GPU implementation must overcome. We also show simple examples

of how an implementation can be improved and what needs to be taken into account to

achieve efficient programming. The chapter is completed with section 2.3, which gives an

insight into multi-GPU programming and shows which possibilities exist to implement it.

The challenges of efficient GPU implementations are then examined in more detail

in chapters 3 and 4 using two application examples. General and specific techniques for

these applications are shown in detail. In chapter 3 the simulation of nonlinear signal

propagation in multimode fibers is considered. First, section 3.1 motivates the topic

and describes why an efficient realization on multi-GPU systems is desirable. Then,

in section 3.2 the modeling method of choice is presented, followed by the numerical

approximation in section 3.3 in which the used algorithm is also presented. In section 3.4

we discuss the different implementations on the CPU and the GPU, explain the challenges

and present an efficient GPU implementation. Afterwards, in section 3.4.4, we discuss

different approaches to multi-GPU implementation, as well as present the implementation

techniques. Next, section 3.5 compares the different approaches. The chapter is concluded

in section 3.6 with a summary of the improvements our changes have achieved and the

GPU challenges we have addressed.

The second application is the particle-based simulation of flow in porous media which

is the subject of chapter 4. Section 4.1 motivates why an efficient realization is necessary

and in which scenarios such a simulation is used. Next, we give the mathematical model in

section 4.2, followed by the numerical approximation using the SPH method in section 4.3.

Here we go into detail about the discretization and end with a feasible algorithm. In

the next section 4.4, we describe the challenges of the GPU implementation, as well as

the implementation in HOOMD-blue, and present three different possible improvements

that can be applied incrementally. These improvements as well as the scalability of our

implementation are validated in section 4.5. We conclude the chapter in section 4.6 with

a summary of what improvements our changes have achieved and the GPU challenges we

have addressed.

In chapter 5 we consider the modeling of seismic wave propagation as well as the

inversion. Due to the improvement possibilities presented in the previous chapters, we

1.6. THESIS OUTLINE 17

can now increase the accuracy of the numerical modeling in this chapter, i.e. we include

more physical parameters, and thus make the problem more complex. However, such

complex problems can usually only be solved if the implementation is efficient, otherwise

the problem cannot be solved in a reasonable amount of time. Section 5.1 highlights why

an efficient realization is necessary and in which scenarios such a simulation is used. Then

in section 5.2 we introduce the mathematical model, where we derive the viscoelastic

wave equation using a rheological model. The resulting forward model is presented in

section 5.3, but introduces some drawbacks that we eliminate in the following, based on

an idea of Fichtner and van Driel [54]. Furthermore, in this modification we add a kind of

penalty term to further improve the method. In section 5.4 we then present the inversion,

using the adjoint state method for computing the derivatives, which is also presented in

this chapter. Afterwards, section 5.5 presents an algorithmic implementation, and finally

a possible FWI algorithm is presented. The improvements produced by the changes shown

are investigated in section 5.6. First, a simple example is used to investigate whether a

viscoelastic inversion is necessary and whether it yields a significant difference compared

to a pure elastic inversion. Then, different regularization methods are compared, both

for noisy and unnoisy data. Since even the best regularization method yields much worse

results with respect to the model misfit than for unperturbed data, we present another

idea based on the best regularization method that yields better model misfits. We then

apply this idea to the unperturbed data as well, resulting in faster convergence. Next,

we investigate the impact of the multiscale approach on viscoelastic modeling. These

findings are then applied to the Marmousi example, a common example in geophysics that

resembles a real structure. Finally, we consider the scalability of the implementation. The

chapter is concluded in section 5.7 with a summary of which improvements our changes

have achieved.

In the last chapter, 6, we summarize all findings of this work and give an outlook on

further open questions.

18 1. INTRODUCTION

19

2

GPU Computing

This chapter describes the basic structure of a GPU and compares it with that of a CPU.

Afterwards the challenges for implementing software for the GPU are described. The ter-

minology of the CUDA programming language is introduced and used. It also describes

techniques for improving a GPU implementation and the existing memory hierarchy. Ba-

sic knowledge is assumed or only covered very briefly in this chapter. This chapter is based

on a tutorial that the author has co-presented in 2017 [67] and was updated and extended

for this work. For a more detailed study of programming in CUDA, see [67, 165].

2.1 Specifics of a graphics processing unit (GPU)

Initially, GPUs were developed to create images for computer graphics and video game

consoles. This means, a GPU is designed for fast simultaneous rendering of high-resolution

images and video. Rendering these images involves many operations (for each pixel), but

always the same operations with different data are performed for each pixels. It therefore

has many parallel processing units that can perform these calculations simultaneously.

The difference to a CPU is simply stated, that everything that makes a single in-

struction fast is eliminated or greatly reduced, which concerns especially the caches and

hard-wired control logic. In contrast, the number of ALUs is increased (see figure 2.1).

Due to the simple control logic all ALUs can only perform the same calculations. This is

known as single instruction multiple data (SIMD).

In order to further increase the degree of parallelism, this simplified compute unit

is cloned several times. This simplified comparison between CPU and GPU is shown

in figure 2.1. A CPU can thus process a sequential instruction much faster. The clock

frequency of the Intel Xeon Platinum processor 8256 with 3.8 GHz is more than twice

as fast as the clock rate of a NVIDIA V100, one of the latest professional GPUs, with

a clock frequency of 1.53 GHz. However, the GPU’s fine granularity allows many more

operations to be performed simultaneously.

On the contrary, a multi-core CPU can run different programs on all of its cores (known

as multiple instruction, multiple data), whereas on a GPU it is always necessary to use

SIMD to take advantage of the fine granularity and to obtain acceleration. However,

20 2. GPU COMPUTING

not all GPU cores have to process the same instruction, only a so-called warp. This is

explained in section 2.2.

A CPU can never be completely replaced by a graphics processor: A GPU complements

the CPU architecture by allowing repetitive calculations within an application to run in

parallel while the main program continues to run on the CPU. The CPU can be considered

as the task manager of the entire system, coordinating a wide range of general purpose

computing tasks, while the GPU performs a narrower range of more specialized (usually

mathematical) tasks. By harnessing the power of parallelism, a GPU can do more work

in the same amount of time compared to a CPU, what we call high throughput. CPUs

have large and wide instruction sets that manage every input and output of a computer,

which a GPU cannot do.

Since GPUs can perform parallel operations on multiple data sets, they are often

used for non-graphical tasks such as machine learning and scientific computing. With

thousands of processor cores running simultaneously, GPUs enable massive parallelism,

with each core focused on performing efficient computations.

ALU ALU

ALU ALU

Control

Cache

DRAM DRAM

CPU GPU
Figure 2.1: Schematic difference between CPU and GPU (inspired by NVIDIA CUDA Programming
Guide [120]).

2.2. CHALLENGES OF GPU COMPUTING 21

2.2 Challenges of GPU computing

Calculations on the GPU must be done according to the SIMD principle, i.e., the same op-

erations must be performed with different data. These operations can then be performed

in parallel. A simple example is the addition of two vectors v = (v1, . . . , vN) and w =

(w1, . . . , wN) of the dimension N ∈ N. The vector addition v+w = (v1 +w1, . . . , vN +wN)

consists of N additions (single instruction) that operate on different data (multiple data).

Basically, it is necessary that the work to be offloaded to a GPU is complex and

large enough. On the one hand the degree of parallelism must be high, because only

in this case the GPU has a throughput advantage over the CPU. Furthermore, enough

operations must be done with this data. Obviously, offloading calculations to the GPU

is only worthwhile if copying the data to and from the GPU and doing the calculations

takes less time than doing the calculations on the CPU. If we assume a bandwidth of

16 GB/s for the transfer and neglect latencies, 2 · 109 double precision (64 Bit) floating

point values per second (2 Giga float/s) can be copied from the CPU to the GPU and

simultaneously in the other direction. This means that we need two times 0.5 seconds

to copy 109 double precision values from the CPU to the GPU and back to the CPU. A

V100 has a peak performance of 7 TFLOP/s for double precision. Therefore at least 7000

operations are necessary with each transferred date, so that the calculation on the GPU

takes longer than copying back and forth.

It is important to note that if possible the copying of data should always be asyn-

chronous, meaning that the copying of data can be done in parallel to do computations

with different data. At the top of figure 2.2 a typical offloading to the GPU is depicted

without asynchronous copying. First, all data needed for the calculation on the GPU must

be copied to it. Then the calculations can begin. The data can not be copied back until

the calculations are completed. At the bottom of figure 2.2 the advantage of asynchronous

copying is shown. All the data are divided into smaller data packets on which indepen-

dent calculations can pass. Now these individual packages are copied asynchronously. As

soon as the first package is completely copied, the calculations for these data can start

already. The copying of the data of the next packages now takes place in parallel to the

calculations of previous packages. The same can be applied for copying back.

Obviously, the overall goal is to hide as many data transfers as possible, i.e., to let

them take place in parallel to calculations.

To understand further challenges in GPU programming it is necessary to explain the

concept of threads, blocks and grids.

2.2.1 CUDA concepts

In order to explain GPU implementations more easily we want to define some basic

concepts. A thread is a simplified view of how a compute unit in modern processors

executes a sequential program. It consists of the program’s code, the specific point in the

22 2. GPU COMPUTING

H2D Enginge

Compute Engine

D2H Engine

H2D Enginge

Compute Engine

D2H Engine

Compute time

Figure 2.2: Asynchronous copying. Overlapping of data copying and computation.

code that is currently executing, and the values of its variables and data structures. The

execution of a thread is sequential for a user. We consider again the addition of the two

vectors v = (v1, . . . , vN) and w = (w1, . . . , wN) of the dimension N ∈ N. In this case we

have N threads, where thread i would perform the addition vi + wi. Due to the SIMD

approach on current NVIDIA GPUs, the threads are executed in groups of 32 threads,

which is called warp (on current AMD GPUs the threads are executed in groups of 64

threads, which is called wavefront). Therefore, threads within a warp must follow the

same execution trajectory. All threads must execute the same instruction at the same

time. This can lead to warp divergences as described in the next section.

Several threads are grouped together to form a block and can be considered as a virtual

core. A block gets scheduled to a core and stays until completion.

All these blocks are further combined into a grid to execute a kernel. Whereas a kernel

is nothing else than a scalar code executed by many threads in parallel.

2.2.2 Warp divergence

The most common code construct that can cause warp divergence is branching for con-

ditionals in an if-else statement. If some threads in a single warp evaluate to ‘true’ and

others to ‘false’, then the ‘true’ and ‘false’ threads will branch to different instructions

(see figure 2.3). Some threads want proceed to the ‘if‘ instruction, others to the ‘else’. In

this case, a warp must go through both cases. All threads do the same operations, both

those in the ‘true branch’ and those in ‘false’ branch. Though the threads which have

evaluated the ‘if’ condition positively reject the result of the ‘false’ branch and vice versa.

In order to use the full power of a GPU and get as close as possible to its peak

performance, it should always be tried to generate as little warp divergence as possible.

Warp divergences that contain only a few instructions in the respective branches are less

critical than those that contain many instructions, because the more instructions a warp

divergence contains the longer other threads are idle.

2.2. CHALLENGES OF GPU COMPUTING 23

T F

X

Xif (conditional)

else

T T T T

X

X

X

X

X

X

X

X

X

F F

X

X

X

X

X

X

X

X

ALUs

T

X

X

Figure 2.3: Simplified warp divergence for only eight threads.

2.2.3 Race conditions

Another challenge is when different threads want to write to the same address, or increase

the value on the same address. Fortunately, race conditions are easy to avoid in CUDA.

An atomic operation is capable of reading, modifying, and writing a value back to memory

without the interference of any other threads, which guarantees that a race condition will

not occur. Atomic operations in CUDA generally work for both shared memory and global

memory. Atomic operations in shared memory are generally used to prevent race condi-

tions between different threads within the same thread block. In global memory atomic

operations are used to prevent race conditions between two different threads regardless of

which thread block they are in.

The worst scenario would be if all 32 threads in a warp would write to the same

address. In this case all threads would try to get write access to the address at the same

time, but only one thread would be able to write, and the remaining 31 threads would be

idle. In the next cycle, the remaining 31 threads would try to write to the address again,

and only one thread would be able to write its value to the address again. So again 31

threads would be idle. One thread because it has already finished its operation and waits

until the remaining threads of the warp have finished their operations, and the remaining

30 threads because they are waiting to write to the address. So it would take 32 times

longer than writing to separate, linearly allocated memory locations.

However, there are special cases that can be avoided by using Warp-Level Collectives.

Supposed we want to count the number of fluid and solid particles. To do this, each thread

loads a particle, checks if it is a fluid or solid particle and increments the corresponding

counter by one. This would lead to a warp divergence and also to all threads in a warp

writing to the same address. This can be avoided with warp-level collectives. For this

purpose it is checked how many threads are active in the warp, which are exactly the

threads that want to write to the same address. Then a selected thread increases the

address with an atomic operation by the value of the active threads. In this way, atomic

operations are needed only in one instead of many of the active threads [3].

24 2. GPU COMPUTING

2.2.4 Latency Hiding

Overall, to load data from the memory is much more time-consuming than an arithmetic

operation. Therefore it is important to hide these latencies by operations with already

loaded data, which is called latency hiding. One possibility to hide latencies that was

already introduced is asynchronous copying. It hides the latency that occurs when copying

data from CPU memory to GPU memory. In addition, a GPU contains memory of

different speeds and certain properties. As with CPU memory, a consecutive memory

access is more efficient, since several necessary data are made available by using cache

lines with one loading process. These types of memories are described in the following

section. The correct use and utilization of these memory types allows to hide many

latencies.

Another way to hide latencies is the right choice of number of blocks and threads per

block. In general, a higher number of blocks is better, because this way more blocks are

available for swap as soon as latencies occur. The number of blocks is of course limited by

the resources like register file, L1 cache, shared memory, etc. If one resource is exhausted,

it is not possible to schedule more blocks. Therefore, a good way to get a good indication

of the correct size of the blocks is the NVIDIA CUDA Occupancy Calculator [121]. For

more details and strategies we refer to [67, 165].

2.2.5 Different types of memory

In addition to hiding latencies, it is also recommended to reduce them. This can be

achieved by using special types of memory such as shared memory, but especially by

using the respective memory types in the best possible way. To achieve this, we will

introduce different types of memory in the following and explain how they should be used

to achieve the lowest possible latencies.

Global memory The access to the global memory is the slowest of all memories. How-

ever, it is accessed using cache lines, so that if the global memory is accessed linearly, many

cache misses can be avoided, thus reducing latency. Memory accesses that are cached in

both L1 and L2 are serviced with 128-byte memory transactions whereas memory accesses

that are cached in L2 only are serviced with 32-byte memory transactions.

The following example shows two different accesses to the global memory and compares

them:

Example: Assume we have N particles, each with the properties density, pressure and

energy. There are two different ways to store these values. Either the values are stored in

an array of size 3N , where first density, pressure and energy of particle 1, then density,

pressure and energy of particle 2 and so on are stored (this is called array of structures

(AoS)). Or all densities are stored first, then all pressures and finally all energies, or to

store three arrays d, p and e with N entries each (this is called structure of arrays (SoA)).

2.2. CHALLENGES OF GPU COMPUTING 25

Densities, pressures and energies would then be stored like shown in figure 2.4

Let us next look at the operation x[i]=d[i]+y[i] where x and y are two arbitrary arrays.

d[0] d[1] d[N-1] p[0] p[1] p[N-1] e[0] e[1] e[N-1]

d[0] p[0] e[0] d[1] p[1] e[1] d[N-1] p[N-1] e[N-1]

structure of arrays

array of structures

Figure 2.4: Array of structures and structures of array data layout.

The first task is to load d[i]. In the case of AoS thread 0 reads d[0]. The cache line would

automatically loads p[0] and e[0] as well, even if they are not needed. In the case of SoA,

by contrast, the situation would be as follows. Thread 0 wants d[0], thread 1 wants d[1],

thread 2 wants d[2] and so on. Since a cache line automatically loads these values at the

same time, there are much fewer cache misses than with AoS.

Since the access to the global memory usually can not be avoided completely and the

correct memory access is therefore a very important point. We consider another example

in which besides the correct memory access also the reduction of warp divergence is

illustrated.

Example: We consider the marix vector multiplication for sparse matrices [41]. Since

many of the entries in sparse matrices are zero, there is no need to store them explicitly.

There are many compressed storage formats for sparse matrices. One of them is the

Compressed Storage by Rows (CSR) format, which stores non-zero entries of the sparse

matrices in row order. Two arrays are used for indexing non-zero entries. The elements

in the row ptr array point to the first non-zero entry in each row. There are a number of

rows+1 elements in this array, with the last element retained to indicate the boundary of

the last row. The other array stores the column indices of the non-zero elements in row

order. Figure 2.5 shows an example of CSR. A possible GPU implementation would use

one thread calculating one entry of the result vector, so a thread would do the calculation

‘row times column’. The pseudo code is described in algorithm 2.1.

0 2 5 7 7

2 3 4

3 7 2 4 3 5 8

row ptr

values

col idx 3 0 2

9

1 1 2

0 3 0 7 0
2 0 4 3 0
0 0 5 0 8
0 0 0 0 0
0 7 6 0 0

7 6

Figure 2.5: Example CSR Format.

26 2. GPU COMPUTING

Algorithm 2.1 (Matrix-vector multiplication (CSR-Format)).

1: Input: x, row ptr, col idx, values

2: Output: y

3: row = unique thread id

4: row start = row ptr[row]

5: row end = row ptr[row+1];

6: dot = 0

7: for elem=row start, . . . , row end do

8: dot=dot + values[elem] · x[col idx[elem]]

9: end for

10: y[row] = dot

However, this approach has two disadvantages. First of all, adjacent threads execute

different numbers of iterations in its for-loop. Furthermore, adjacent threads access non-

adjacent memory locations.

One matrix format that solves these disadvantages is the jagged diagonal storage

(JDS) format [114]. To store a matrix in JDS format, the matrix rows are rearranged in

descending order according to the number of non-zeros in each row. Then, all nonzeros

of the matrix are shifted to the left. Columns of this new compressed matrix are called

jagged diagonals. Nonzero values of the compressed matrix are stored in an array in

column order. Corresponding column indices of each nonzero value in the original matrix

are written to another array. Another array is used to point the beginning indices of each

jagged diagonal. In addition, the row permutation is stored in an array, with elements

of the array corresponding to the rows in the compressed matrix pointing to the row

number in the original matrix. It is also useful to store the number of non-zero entries for

each row. Figure 2.6 shows an example of JDS and algorithm 2.2 the pseudo code for a

possible GPU implementation. In the figure perm, jd ptr and col idx each represent

permutation, jagged diagonal pointers and column index arrays. nnz row contains the

number of nonzero entries for each row.

The JDS format has advantages especially when the number of nonzero entries per row

varies significantly. Sorting according to the number of nonzero entries means that the

loop of adjacent threads must pass through approximately the same number of iterations.

This leads to the lowest possible warp divergence. Additionally, adjacent threads access

adjacent memory locations.

This difference can be seen when comparing line 7 in algorithm 2.1 with line 6 in

algorithm 2.2. The loop in algorithm 2.1 runs over all non-zero entries of a row. However,

since neighboring rows have a different number of non-zero entries, warp divergences al-

ways occur if not all rows processed by a warp have the same number of non-zero entries.

This is different with algorithm 2.2, where rows are sorted by the number of non-zero

entries, which minimizes warp divergence. The second major advantage of algorithm 2.2

becomes clear when comparing row 8 of algorithm 2.2 with row 8 of algorithm 2.1. Algo-

2.2. CHALLENGES OF GPU COMPUTING 27

rithm 2.2 provides continuous memory access for threads in a warp, whereas algorithm 2.1

does not.

1 0 2 4 3
2 4 3

3 7
5 8

7 6

3 2 2 2

0 1 2 1 2 3 4 2 3

2 3 5 7 4 7 8 6 3

nnz row

perm

col idx

values

0 4 8 9jd ptr

0

9

0 3 0 7 0
2 0 4 3 0
0 0 5 0 8
0 0 0 0 0
0 7 6 0 0

Figure 2.6: Example JSD Format.

Algorithm 2.2 (Matrix-vector multiplication (JDS-Format)).

1: Input: x, perm, nnz row, jd ptr, col idx, values

2: Output: y

3: t id = unique thread id

4: num row entries = nnz row[t id]

5: dot = 0

6: for elem=0, . . . , num row entries do

7: offset = jd ptr[elem]

8: dot=dot + values[t id + offset] · x[col idx[t id + offset]]

9: end for

10: row = perm[t id]

11: y[row] = dot

Constant memory The constant memory space resides physically in device memory.

The constant memory space is cached and will speed up data fetch. It is only a small

memory (64kB for the most GPUs) that is read only. Using constant memory instead of

global memory may reduce the memory bandwidth and latency. Constant memory is also

most effective when all threads access the same value at the same time.

Shared memory and bank conflicts Shared memory is on-chip, and therefore it

has much higher bandwidth and much lower latency than local or global memory. To

achieve high bandwidth, shared memory is divided into equally-sized memory modules,

called banks, which can be accessed simultaneously. Each read or write request of the

memory consisting of n addresses falling into n distinct memory banks can therefore be

serviced simultaneously, resulting in a total bandwidth that is n times higher than the

bandwidth of a single module. However, if two addresses of a memory request fall in

the same memory bank, there is a bank conflict and the access has to be serialized. The

hardware splits a memory request with bank conflicts into as many separate conflict-free

requests as necessary, decreasing throughput by a factor equal to the number of separate

28 2. GPU COMPUTING

memory requests. If the number of separate memory requests is n, the initial memory

request is said to cause n-way bank conflicts. Therefore, for maximum performance, it is

important to understand how memory addresses are mapped to memory banks in order

to plan memory requirements so that bank conflicts are minimized.

It depends on the GPU architecture how the shared memory is divided. In the fol-

lowing we consider GPUs with compute capability 7.x (Volta architecture). GPUs with

a different compute capability may have a different partitioning, but the principle is the

same.

B0 B1 B2 B3 B31

0 4 8 12 16 124 128

128 132 136 140 144 252 256

256 260 264 268 232 380 384

Figure 2.7: Shared memory is divided into equally-sized memory modules, called banks.

The shared memory has 32 banks that are organized such that successive 4 byte words

map to successive banks (see figure 2.7). Each bank has a bandwidth of 4 bytes per clock

cycle. A shared memory request for a warp does not generate a bank conflict between

two threads that access any address within the same 4 byte word (even though the two

addresses fall in the same bank). A bank conflict occurs when at least two threads of

a warp access (at least) two different 8 byte words of the same bank. Various scenarios

are shown in figure 2.8. The two scenarios on the left are each conflict-free, since each

thread accesses memory in different banks. The third scenario describes a two-way bank

conflict, since, e.g., threads T0 and T4 access different 4 byte words in bank B0. The

fourth scenario is conflict free again, because different threads only access the same 4 byte

words in one bank. If a one byte word like char is used, threads 0, 1, 2 and 3 will store

all their values in the first bank of shared memory, resulting in a bank conflict known as

a 4-way bank conflict. Since 8 byte words extend over two banks and require two cycles

to load anyway, they are accessed in two phases. That means that in the first phase the

first 16 threads in a warp access to the shared memory, and in the second phase the other

2.2. CHALLENGES OF GPU COMPUTING 29

T0

T1

T2

T3

T4

T5

T6

T7

B0

B1

B2

B3

B4

B5

B6

B7

B0

B1

B2

B3

B4

B5

B6

B7

B0

B1

B2

B3

B4

B5

B6

B7

B0

B1

B2

B3

B4

B5

B6

B7

T0

T1

T2

T3

T4

T5

T6

T7

T0

T1

T2

T3

T4

T5

T6

T7

T0

T1

T2

T3

T4

T5

T6

T7

Figure 2.8: Simplified visualization of (no) bank conflicts for only 8 Threads and Banks:
left and second from left: no bank conflicts, second from right: two way bank conflict,
right: no bank conflicts.

16 threads. As a result, a bank conflict does not occur when a warp writes continuously

to a shared double array[32] array.

Example: To transpose a matrix the shared memory should be used. For the sake of

simplicity, we use a 32 × 32 matrix. For this purpose, a float array of the size 32 × 32

is allocated in the shared memory, e.g. float array[32][32]. Thus the first column of

the array falls into bank 1, the second column into bank 2 and so on. This is illustrated

in figure 2.9 on the left. Since the transposition requires both row and column access,

we consider both. Since all entries of a row fall into different banks, there is no conflict

here. However, all entries of a column fall into exactly one bank each, so there is a 32-way

conflict.

0 1 2 31

0
0

0

0 1
1
1

1

31
31
31

31

0 1 2 31

0
0

0

0 1
1
1

1

31
31
31

31Bank 31

Bank 1
Bank 0

2

2

2

2

Bank 2
Bank 3
Bank 4

Bank 30

Threads:

mat[32][33]mat[32][32]

2
2
2

2

Figure 2.9: Use of shared memory for matrix transformation. left: bank conflicts for
column access, right: no bank conflicts.

However, this can be easily solved by allocating a 32 × 33 array instead of a 32 × 32

array, i.e. float array[32][33]. The last column of the array remains unused. However,

this trick causes all entries of each row, as well as all entries of each column, to fall into

different banks (see figure 2.9 on the right), so no bank conflict occurs.

30 2. GPU COMPUTING

The respective challenges for the applications considered in the thesis can be found in

section 3.4 and 4.4.2.

2.2.6 Streams

To make better use of all cores of a GPU, it is helpful to have several different applications

(or kernels) running simultaneously on the GPU. This also means that different CUDA

kernels can run simultaneously. This can be achieved by using streams. Kernels that

are launched in different streams can be run in parallel. Suppose there are seven kernels

that can actually all be run independently of each other. If no streams are used, the

default stream is automatically used, and the kernels are executed one after the other

(see figure 2.10 at the top). If a separate stream is used for each kernel, the kernels can be

run in parallel. While this may cause the individual kernels to take longer to complete,

the higher degree of parallelism is better at hiding latency, reducing the total time (see

figure 2.10 at the bottom). If the default stream is used again after running kernels in

different streams, this creates a barrier because the default stream is always run alone

and no streams are run in parallel.

Stream 0

Compute time

Stream 4

Stream 5

Stream 6

Stream 7

Stream 8

Stream 9

Figure 2.10: Concept of CUDA Streams. Top: use of default stream only, bottom: one
stream for each work package.

2.3. MULTI-GPU COMPUTING 31

2.3 Multi-GPU computing

To further increase the degree of parallelism, several GPUs can be used for a calculation.

This additionally avoids the need to repeatedly copy data back and forth between CPU

and GPU for applications that exceed the GPU memory. We limit ourselves to modern

hardware and software. The implementation of communication can be more complicated

with older versions. As with CPUs there are also two different scenarios [110]: If the

GPUs are in the same nodes, the GPUs know each other and can therefore communicate

directly with each other. In this case Unified Virtual Addressing is available [120], i.e.,

there is one address space for the entire CPU and GPU memory. Copying the data is

very easy in this case, because we do not have to specify in which memory the destination

or source is located. Peer-to-peer (P2P) communication is also possible in this case, i.e.,

data can be copied between GPUs without having to use the host memory. Bytes are

transferred along the shortest PCIe path. In both cases, however, it is necessary that

the GPUs are connected to the same CPU. QPI and PCIe protocols are not compatible

with P2P communication. In addition to the connection via PCIe, the GPUs can also

be connected via NVLINK. This technology was developed by NVIDIA to provide higher

bandwidth for communication between GPUs. A single NVIDIA A100 GPU supports

up to twelve third-generation NVLINK connections for a total bandwidth of 600 GB/s.

This is 10 times the bandwidth of fourth-generation PCIe [120, 122]. The first version

of NVLINK was introduced with the Pascal architecture and offers a total bandwidth of

160 GB/s, while the second variant of NVLINK, introduced with the Volta architecture,

offers a total bandwidth of 300 GB/s [123].

If the GPUs are in different compute nodes, the communication must be done via MPI.

Another possibility is the communication via NVIDIA Collective Communications Library

(NCCL). More details about the communication between GPUs on different boards as well

as the communication via MPI and NCCL is described in section 3.4.4.

In summary, as long as the GPUs are connected to the same CPU, or are sitting on

the same board, multi-GPU programming can be implemented using CUDA without any

additional tools. However, if the GPUs are located in different nodes that are connected

e.g. via Infiniband, further tools such as MPI are necessary. Since this work is specialized

on implementations for small clusters and large supercomputers, we restrict ourselves to

implementations with MPI-like communications. However, this is not a limitation, since

this implementation of course works for multiple GPUs sitting on one board.

32 2. GPU COMPUTING

33

3

Nonlinear signal propagation

in multimode fibers

In this chapter the simulation of nonlinear signal propagation in multimode fibers is con-

sidered as an application. The GPU implementation is challenging because the underlying

algorithm requires both row and column access to the data of a matrix. In addition, the

data to be transferred between different GPUs becomes very large, so communication be-

tween GPUs is also demanding. In section 3.1 we first describe in which application areas

this simulation is needed and why it makes sense to rely on GPU computing. Then, in

section 3.2, we explain the physical model description. The numerical methods used are

explained in section 3.3. There we first identify the challenges for an efficient implementa-

tion, followed by a description of a CPU and (multi-)GPU implementation. For communi-

cation in multi-GPU implementations different approaches are presented in section 3.4.4.

Finally, the presented implementations are analyzed and compared in section 3.5. The

target platforms for this application are small clusters with powerful GPUs.

The results in this chapter have been partially published in [33, 34, 35], where the author

of this thesis focused on improving the (GPU) implementation.

3.1 Motivation

Today, fiber optic cables are used to transmit electrical information over long distances.

In the future, the amount of data to be transmitted will continue to increase as both the

number of people using this technology due to the speed advantages, and the average

amount of data per person will increase. The simulation of signal propagation in optical

fibers plays an important role in the research and development of optical transmission

systems. The interaction of nonlinear and linear effects that occur during propagation

in an optical fiber can lead to signal degradation. Therefore, simulations can be helpful

to evaluate the influence of nonlinear effects. In general, nonlinear signal propagation

in single-mode fibers can be described by the Nonlinear Schrödinger equation (NLSE),

which can only be solved analytically for a few cases [5]. Thus, numerical schemes are

needed to simulate nonlinear signal propagation in single mode fibers. The most common

34 3. NONLINEAR SIGNAL PROPAGATION IN MULTIMODE FIBERS

approach to simulate nonlinear signal propagation is the solution of NLSE with a Split-

Step-Fourier-Method (SSFM). However, single-mode fibers are close to reaching their

capacity limits, whereas the traffic demand is still growing. Therefore, new approaches

need to be investigated. A promising approach to solving this challenge is to use the still

untapped spatial dimension. Space-division multiplexing (SDM) has attracted a lot of

attention in the last years, both in industry and academia. One way to realize an SDM

system is the use of multimode fibers (MMF), where all modes capable of propagation are

used as channels for individual signals, referred to as mode-division multiplexing [133].

To investigate the effects of SDM it is necessary to simulate wave propagation in

optical fibers. However, simulating the propagation of light in an optical fiber is quite a

challenge, as fused silica is a nonlinear medium [5]. The nonlinear signal propagation can

be described by coupled partial differential equations for which a closed-form solution only

exists in very few special cases. Hence, numerical methods are required to approximate

solutions. The investigation of the influence of nonlinear effects in data transmission, is

a challenge even for a single propagation mode, because long signal sequences have to

be simulated. Therefore, GPU-accelerators are an interesting architecture to speed up

simulations [6, 70, 129]. The numerical effort rises sharply when optical fibers with a core

diameter ≥ 50 µm are the target of interest: In those fibers several tens/dozens or even

more than 100 spatial modes can be used as spatial channels. However, the restricted

amount of memory limits the approach to accelerate the simulation of the nonlinear signal

propagation [157].

As a result, publications considering numerically the nonlinear signal propagation in

MMFs are currently mostly limited to just a few modes if only a single GPU is used.

Therefore, in this chapter we introduce the possibility to distribute the simulation of a

single transmission scenario to multiple nodes equipped with GPU accelerators or to single

nodes with multiple GPUs.

Instead of utilizing split-step Fourier methods as pursued by, e.g., [144], we use the

fourth-order Runge-Kutta in the Interaction Picture (RK4IP) method. This method has

the potential to reduce the numerical error while simultaneously allowing an increased

step size and is thus favorable to reduce the computation time of the simulation [33].

3.2. MODELINGOF NONLINEAR SIGNAL PROPAGATION INMULTIMODE FIBERS35

3.2 Modeling of nonlinear signal propagation in mul-

timode fibers

Since this chapter focuses on the improvement of the implementation and the model

and methodology should not be changed, we refer to [15, 28, 100] for the derivation of

the physical equations and start directly with the resulting PDE. The nonlinear signal

propagation in multimode fibers can be described by the nonlinear Schrödinger [131] or

the Manakov equation [107, 116] for multimode fibers:

∂Aa(z, t)

∂z
=

L̂︷ ︸︸ ︷(
−α

2
+ i

NT∑

n=0

(
in

n!
βn,a

∂n

∂tn

))
Aa(z, t)

+ iγ

κaa|Aa(z, t)|2 +

NG∑

b=0
b6=a

κab|Ab(z, t)|2

Aa(z, t)

︸ ︷︷ ︸
N̂(Aa(z,t))

(3.1)

Here, A(z, t) denotes the field envelopes of the mode groups a and b, NG is the number of

groups, α is the attenuation coefficient, the Taylor coefficients of the propagation constants

are given by βn and NT is the number of Taylor coefficients. Within the nonlinear part N̂ ,

the parameter γ is associated with the nonlinear refractive index change which is due to

the Kerr-effect. The intramodal nonlinear coupling coefficient is specified as κaa, whereas

the intermodal interaction is weighted with κab. In the context of this thesis we restrict

ourselves to constant coupling coefficients κ. For a more detailed description see, e.g.,

[15]. Equation (3.1) is to be solved for all z in a given interval [0, L] where L denotes

the length of the fiber and for all ‘local time’ t ∈ R. The ‘local time’ t is the retarded

time traveling at the envelope group velocity. It is considered together with the boundary

condition A(0, t) = a0(t) for all t ∈ R, where a0 is a ‘smooth’ complex valued function [5].

36 3. NONLINEAR SIGNAL PROPAGATION IN MULTIMODE FIBERS

3.3 Numerical approximation

Since the analytical solution can only be calculated for a few special cases, numerical

methods are required for the evaluation of equation (3.1). To approximate the solution

of equation (3.1), pseudo-spectral methods like the split-step Fourier method (SSFM) [5]

or the fourth-order Runge-Kutta in the Interaction Picture (RK4IP) method [76] can be

used. In this thesis, we only discuss the RK4IP method. We have performed a comparison

of the two methods in [33].

3.3.1 The fourth-order Runge-Kutta in the interaction picture

method

To apply pseudospectral methods to solve equation (3.1), the problem is typically sepa-

rated into a linear and a nonlinear part

∂A

∂z
= L̂A+ N̂(A) (3.2)

where the linear operator L̂ covers the attenuation and the dispersive terms of equa-

tion (3.1), and the nonlinear operator N̂ governs the nonlinear contributions. For better

readability we simply write A for the field envelopes, but keep in mind that this is actually

a function A(z, t) depending on the location variable z and the time variable t. These

parts are typically solved independently of each other. In the case of the SSFM, the linear

part is solved in the frequency domain, whereas the nonlinear operator is solved in the

time domain. Thus, interaction between the linear and nonlinear part in equation (3.2) is

partially neglected. This leads to a splitting error, given by the Baker-Hausdorf formula

[164], limiting the numerical accuracy. However, our experiments [33] indicate that the

splitting error not dominates significantly, so that the RK4IP method can achieve better

accuracy than the SSFM.

Applying the RK4IP method, equation (3.1) is transformed into the ‘Interaction Pic-

ture’ to decouple the linear and nonlinear operator. The field envelopes are represented

by

AI = exp
(
−(z − z′)L̂

)
A (3.3)

where z′ is the separation distance between the interaction and normal pictures. The

3.3. NUMERICAL APPROXIMATION 37

differentiated form of equation (3.3)

∂AI
∂z

= exp
(
−(z − z′)L̂

) ∂A

∂z︸︷︷︸
=L̂A+N̂(A)

− exp
(
−(z − z′)L̂

)
L̂A

= exp
(
−(z − z′)L̂

)(
L̂A+ N̂(A)

)
− exp

(
−(z − z′)L̂

)
L̂A

= exp
(
−(z − z′)L̂

)
N̂(A)

= exp
(
−(z − z′)L̂

)
N̂

exp

(
(z − z′)L̂

)
exp

(
−(z − z′)L̂

)

︸ ︷︷ ︸
=1

A

= exp
(
−(z − z′)L̂

)
N̂
(

exp
(

(z − z′)L̂
)
AI

)
:= F (z, AI), (3.4)

where F (z, u) is the nonlinear operator in the interaction picture. Here we get the first

line if we derive equation (3.3) using the chain and the product rule. From line one to

line two we use equation (3.2). We combine all terms of the second line and get the third

line. To transfer the field envelopes into the interaction picture, we perform a identity

multiplication in the fourth line. Afterwards, we use the definition of AI and get the

desired PDE in the interaction picture. This can now be solved using explicit schemes

like the fourth-order Runge-Kutta method.

In order to solve the PDE, the domain must be discretized. The integration interval

[0, L] is first divided into K subintervals. The spatial grid points are denoted zk, k ∈
{0, . . . , K} where 0 = z0 < z1 < . . . < zK−1 < zK = L. For convenience we assume a

constant grid spacing h = L/K. Furthermore, AI,n = AI(zn, t) and An = A(zn, t) are

used for better readability. The trick now is to set z′k = zk + h
2
, which leads to several

eliminations. Now we solve equation (3.4) using the Runge-Kutta method with:

k1 =hF (zn, AI,n)

k2 =hF

(
zn +

h

2
, AI,n +

k1

2

)

k3 =hF

(
zn +

h

2
, AI,n +

k2

2

)

k4 =hF (zn + h,AI,n + k3)

AI,n+1 =AI,n +

(
k1

6
+
k2

3
+
k3

3
+
k4

6

)

38 3. NONLINEAR SIGNAL PROPAGATION IN MULTIMODE FIBERS

Substituting equation (3.4) yields

k1 =hF (zn, AI,n) = h exp

(
h

2
L̂

)
N̂

(
exp

(
−h

2
L̂

)
AI.n

)

k2 =hF

(
zn +

h

2
, AI,n +

k1

2

)
= h exp

(
−(0)L̂

)
N̂

(
exp

(
(0)L̂

)
(AI,n +

k1

2
)

)

=hN̂

(
AI,n +

k1

2

)

k3 =hF

(
zn +

h

2
, AI,n +

k2

2

)
= h exp

(
−(0)L̂

)
N̂

(
exp

(
(0)L̂

)
(AI,n +

k2

2
)

)

=hN̂

(
AI,n +

k2

2

)

k4 =hF (zn + h,AI,n + k3) = h exp

(
−h

2
L̂

)
N̂

(
exp

(
h

2
L̂

)
(AI,n + k3)

)
.

However, we are looking for a solution of equation (3.2). With equation (3.3) we lead

the Runge-Kutta method back to A. To make the calculations more efficient, we use

equation (3.3) in the computation of k1 and set k′4 = exp(h
2
L̂)k4. All in all we get the

following set of equations:

AI,n = exp

(
h

2
L̂

)
· A(zn, t) (3.5a)

k1 =h exp

(
h

2
L̂

)
N̂ (An) (3.5b)

k2 =hN̂

(
AI,n +

k1

2

)
(3.5c)

k3 =hN̂

(
AI,n +

k2

2

)
(3.5d)

k′4 =hN̂

(
exp

(
h

2
L̂

)
(AI,n + k3)

)
(3.5e)

A(zn+1, t) = exp

(
h

2
L̂

)
·
(
AI,n +

k1

6
+
k2

3
+
k3

3

)
+
k′4
6

(3.5f)

The equations result in exactly one iteration of the RK4IP algorithm. Before we present

it we discuss the execution of the linear operator L̂ and the nonlinear operator N̂(An).

The linear operator L̂ in equation (3.1) can be applied straightforward after transforming

it into the frequency domain [5]:

−α
2

+ i

NT∑

n=0

(
in

n!
βn,a

∂n

∂tn

) d − α

2
+ i

NT∑

n=0

(
in

n!
βn,a (−iω)n

)
(3.6)

Here, the attenuation is included in the real part, whereas the dispersive terms are covered

by the imaginary part. The symbol ‘ d ’ describes the Fourier transformation from

time to frequency domain. Therefore, the equations (3.5a)–(3.5f) require eight Fourier

transformations (FFTs), two in each equation (3.5a), (3.5b), (3.5e), and (3.5f). Without

3.3. NUMERICAL APPROXIMATION 39

using the trick of setting z′ = z + h
2
, this approach would require 16 FFTs per step

because multiple exp((z − z′)L̂) terms would not become identity. In contrast to the

linear operator, the nonlinear operator can be calculated in the time domain without

problems. Here, everything except the two matrix-matrix multiplications κ|A(z, t)|2, are

element-wise operations.

The method is globally fourth-order accurate [12]. The precision can be further in-

creased by implementing a local error method [19, 69, 168], and further be combined with

an adaptive step size control [19, 69]. As a result we get algorithm 3.1, where the linear

operator is described in algorithm 3.2 and the nonlinear operator in algorithm 3.3.

Algorithm 3.1 (RK4IP-algorithm).

1: Input: A, kappa, h

2: Output: A

3: lin op = calc lin op() . eq. (3.6)

4: for z = 0; z < L; z = z + h do

5: k1 = nonlinear operator(A, kappa) . Nonlinear operator in eq. (3.5b)

6: for mode=0; mode < number of modes; mode++ do

7: A(mode) = FFT(A(mode))

8: A(mode) = lin op exe(A(mode), lin op, h) . eq. (3.5a)

9: A(mode) = IFFT(A(mode))

10: end for

11: for mode=0; mode < number of modes; mode++ do

12: k1(mode) = FFT(k1(mode))

13: k1 = lin op exe(k1(mode), lin op, h) . eq. (3.5b)

14: k1(mode) = IFFT(k1(mode))

15: end for

16: k2 = h · nonlinear operator(A + 0.5 · k1, kappa) . eq. (3.5c)

17: k3 = h · nonlinear operator(A + 0.5 · k2, kappa) . eq. (3.5d)

18: for mode=0; mode < number of modes; mode++ do

19: k4(mode) = FFT(A(mode) + k3(mode))

20: k4(mode) = lin op exe(k4(mode), lin op, h) . eq. (3.5e)

21: k4(mode) = IFFT(k4(mode))

22: end for

23: k4 = h · nonlinear operator(k4,kappa) . eq. (3.5e)

24: for mode=0; mode < number of modes; mode++ do

25: sum tmp = calc weighted sum(A, k1, k2, k3)

26: sum tmp(mode) = FFT(sum tmp(mode))

27: sum tmp(mode) = lin op exe(sum tmp(mode), lin op, h)

28: sum tmp(mode) = IFFT(sum tmp(mode))

29: end forA = sum tmp + (1/6) · k4 . eq. (3.5f)

30: end for

40 3. NONLINEAR SIGNAL PROPAGATION IN MULTIMODE FIBERS

Algorithm 3.2 (lin op exe).

1: Input: A, lin op, h

2: Output: L

3: for k = 0; k < length(A); k + + do

4: L(k) = cexp(lin op(k) · 0.5 · h)

5: L(k) = cmul(A(k),L(k))

6: end for

Algorithm 3.3 (nonlinear operator).

1: Input: A, kappa

2: Output: N

3: for k = 0; k < num row(A); k+ + do

4: for l = 0; l < num col(A); l + +

do

5: sqr abs(k,l) = cabs(A(k,l))

6: sqr abs(k,l) *= sqr abs(k,l)

7: end for

8: end for

9: tmp = cmatMul(kappa,sqr abs)

10: for k = 0; k < num row(A); k+ + do

11: for l = 0; l < num col(A); l + +

do

12: A(k,l) = cmul(tmp(k,l), A(k,l))

13: end for

14: end for

3.4. NUMERICAL SIMULATION 41

3.4 Numerical simulation

For the numerical simulation of the nonlinear signal propagation in optical fibers the

signals can be stored as sampled data. These data can be represented by a matrix,

where either rows or columns are aligned linear in the memory (see figure 3.1). For the

investigation of an SDM transmission it is typical to consider much more samples per mode

than number of modes, so the matrix is typically in the size of 30× 220. Since all samples

of a single mode corresponding to a single row, are required for the Fourier transform

(FFT), it is advantageous to align the rows rather than the columns linearly in memory.

In the following we call this matrix data matrix. The data matrix has the dimension

2 ·M ×N , where M is the number of modes. The number of polarization planes is taken

into account by the factor 2, and N is the number of samples. FFTs are required before

and after every computation of the linear operator L̂, cf. equation (3.5) and algorithm 3.1.

It is important to note that the nonlinear interaction between the modes at a given point

in time is represented by a matrix-matrix multiplication in the time domain, where both

matrices are dense. More precisely, the nonlinear interaction is given by an interaction

matrix, containing the nonlinear coupling coefficients κ, multiplied by the element-wise

square of the absolute value of the data matrix, followed by an element-wise multiplication

with the data matrix (see equation (3.1) and algorithm 3.3). The interaction matrix is

a square matrix of the dimension 2 ·M × 2 ·M , with the nonlinear coupling coefficients

κaa on the main diagonal, and where the nonlinear coupling coefficients κab are the non-

diagonal elements. Remember that the coupling coefficients are constant and therefore the

interaction matrix is constant. Therefore, additional column-wise access to the memory

is required (see figure 3.1).

All other operations of the algorithm are elementary additions, multiplications and

evaluations of trigonometric functions. For each sample, these operations are independent

of the other samples. Generally all operations, except the matrix multiplication, are

straightforward to parallelize. The linear operator L̂ in equation (3.1) can be applied

straightforward after transforming it into the frequency domain. Here, the attenuation is

included in the real part, whereas the dispersive terms are covered by the imaginary part.

Precomputing and storing the operator for all modes is possible and requires the same

amount of memory as for the signals. This is represented in line 3 in algorithm 3.1.

3.4.1 CPU implementation

The CPU implementation uses FFTW [57] for the fast Fourier transforms, and is paral-

lelized with OpenMP [127]. The CPU implementation using OpenMP is chosen because

it is an easy to parallelize approach which is adequate for a fair node to node compar-

ison. Furthermore, this comparison shows that the GPU implementation offers strong

advantages so that the step from one to multiple nodes is only implemented for the GPU

implementation. As described in the previous section, all operations except matrix-matrix

42 3. NONLINEAR SIGNAL PROPAGATION IN MULTIMODE FIBERS

N

2M

Nonlinear Effects Linear Effects

Figure 3.1: Representation of the data matrix, where M is the number of modes and N
is the number of samples. The nonlinear effects occur during the matrix-matrix multipli-
cation with the interaction matrix from left.

multiplication can be easily parallelized. Therefore, all computations, except the matrix

multiplication, are parallelized with static for-loops, oblivious to the number of cores. The

matrix multiplication for the nonlinear interaction is implemented as a sequential loop

over all spatial and polarization channels, i.e., the 2 ·M rows of the square interaction

matrix. The inner loop, which represents the inner products between the row of the in-

teraction matrix and each column of the element-wise squared data matrix, is parallelized

over the columns. This loop also contains the element-wise multiplication with the data

matrix. These loops therefore replace lines 9-13 in algorithm 3.3. That is, all entries

of one row of the output matrix are calculated in parallel. Recall that the element-wise

squared data matrix (cf. lines 5 and 6 in algorithm 3.3) is aligned linear by rows just like

the data matrix, whereas column access is required for the matrix multiplication, which

increases cache misses. For the same reason, it is not possible to vectorize the matrix

multiplication. This means that either the best data structure for the FFT or the matrix

multiplication must be chosen. In [70] and [131], it is shown that the FFT is the bot-

tleneck for a small number of channels. We follow these findings and optimize the data

structure for the FFT, i.e., we decide to align the data matrix row-wise in memory.

3.4.2 CPU/GPU hybrid implementation

Since the algorithm requires eight Fourier transforms, which are a very complex tasks,

outsourcing only these tasks to the GPU might be a good idea. Furthermore, this

CPU/GPU hybrid variant serves as a comparison between the full CPU and the full GPU

variant. Therefore, we replace the FFTW library by the cuFFTW library. The latter

provides an FFTW-compatible interface to the ’NVIDIA CUDA Fast Fourier Transform

library’ (cuFFT) [125] library and can be used as a drop-in replacement for the FFTW

library. With this implementation, all FFTs are performed on the GPU, since cuFFT is

a library to compute fast Fourier transforms on the GPU. However, the data is automat-

ically copied between the host and the device memory (and vice versa) before and after

each fast Fourier transform, as all other operations are executed by the CPU. This might

introduce a performance drawback as discussed in section 3.5.

3.4. NUMERICAL SIMULATION 43

3.4.3 GPU implementation

We recall that all operations except for matrix multiplication are easy to parallelize.

Therefore, the GPU implementation for the linear operations is straightforward [67], using

one thread for each sample. All memory accesses are contiguous, and thus optimal for the

parallel memory architecture of the device. We employ cuFFT [125] for the fast Fourier

transforms.

As with the CPU/GPU hybrid implementation, it is necessary to copy all data from

host to device memory and vice versa before and after computations on the GPU. As the

PCIe bus compared to the bandwidth for on board DRAM access is slow, these additional

data transfers can easily diminish all speedup obtained from computing on the device.

This problem can be mitigated by using asynchronous copies, that overlap copy and

computation for independent data. In CUDA, this is accomplished by so-called streams,

defined as a sequence of operations that execute on the device in the order in which they

are issued by the host code (see section 2.2.6). It is important to note that operations in

different streams can be nested and thus executed simultaneously.

In our case we choose one stream for each channel. When the portion of the data

corresponding to the first channel has been copied to the GPU, all ‘linear’ computations

for the first channel can start. During the calculations for the first channel the copying

for the next channel is performed, resulting in overlapping of computation and data

movement. The same principle can be applied to the following channels, so that all

data movements, except for the first channel, can be hidden by computations. The same

procedure is possible after the last iteration, because the data must be available again on

the host for postprocessing. Once all computations for one channel are completed, the

copy of the data for this channel to the host can start, while the computations for the

other channels are still running.

Assigning one stream for each channel enables better latency hiding in the linear

computation phase: This phase is strongly limited by memory bandwidth. During two

consecutive computations for the same sample, the second computation only has to wait

until the first sample is completed for the related channel instead of all channels. Because

of this, it is possible to overlap the linear phase of one channel with the FFTs of the others.

In summary, we obtain a perfectly asynchronous algorithm, which is only synchronous in

the matrix-matrix multiplications, i.e., in the nonlinear coupling.

In this matrix-matrix multiplication, each element of the output matrix is an inner

product of a row of the interaction matrix and a column of the data matrix. A naive

approach is that each thread is responsible for calculating one element of the output

matrix. However, this results in 2M (which is the number of channels) memory accesses

to the elements from a row of the interaction matrix and 2M accesses to the entries from

a column of the data matrix. Altogether, there are (2 × (2M)2 × N) read accesses, and

data reuse is only implicit through the cache hierarchy on the device. This can also be

seen in figure 3.2, where this approach is illustrated. A better strategy is to use so-called

44 3. NONLINEAR SIGNAL PROPAGATION IN MULTIMODE FIBERS

2M

N2M

Figure 3.2: Block approach for a matrix-matrix multiplication.

CUDA shared memory, a small but fast scratchpad memory for each multiprocessor,

similar to a programmable cache (see section 2.2.5). This means that the entire matrices

are divided into equal subsets, so that a tiled pattern arises: All threads responsible for

a tile of the output matrix collaboratively load subsets of the input matrices into shared

memory. Then, they individually use these elements in their inner product calculation.

One possible choice for these subsets would be, e.g., 32 × 32 matrix blocks. By loading

each global memory value into shared memory so that it can be used multiple times, we

reduce the number of accesses to the global memory. This can also be seen in figure 3.3,

where this approach is illustrated. First the two grey blocks are loaded and the matrix-

matrix multiplication is executed for them. Then the next block in the row or column

is loaded and the matrix-matrix multiplication is performed for them. The results are

summed to the output matrix.

2M

N2M

Figure 3.3: Naive approach for a matrix-matrix multiplication.

In our case, the interaction matrix is constant and does not change in the complete

algorithm. It also fits into so-called constant memory, which is another specialized memory

region optimized for read-only access. We thus benefit in two ways, since only the data

matrix needs to be stored in shared memory, reducing shared memory pressure, because

more tiles of the data matrix can be stored in shared memory simultaneously.

As a further optimization, we exploit that the data matrix has a large number of

columns (equal to the number of samples), but only a small number of rows (equal to the

number of channels). Hence, a whole column is only part of a small number of matrix

tiles. This is of advantage, because it is necessary to synchronize the threads before

and after loading each tile into shared memory. This becomes clear when considering

3.4. NUMERICAL SIMULATION 45

figure 3.3 again. The two gray blocks are loaded into shared memory first. However,

before the matrix-matrix multiplication can be performed for these blocks, it must be

ensured that all threads of these blocks have loaded the data. At this point we remember

again that only for a warp can be guaranteed to execute the instructions simultaneously.

We finally note that loading the tiles of the data matrix into the shared memory, and

the read operations from the shared memory, are possible without any bank conflicts (c.f.

section 2.2.5). The same applies to the interaction matrix.

Additionally, all CUDA kernels are optimized by using standard techniques as de-

scribed in [82].

Precomputing vs. less memory requirement The problem size for real application

setups quickly becomes so large that it reaches the capacity of the GPU memory. How big

such problems become is described in the next section as an example. Before we show how

to solve the problem on multiple GPUs in parallel, which is essential for problems of such

practically relevant sizes, we will now describe why it is possible to avoid precomputations

without losing performance. In other words, we discuss how to reduce the amount of

required global GPU memory. The linear operator L̂ in equation (3.1) can be applied

straightforward after transforming it into the frequency domain [5]:

−α
2

+ i

NT∑

n=0

(
in

n!
βn,a

∂n

∂tn

) d − α

2
+ i

NT∑

n=0

(
in

n!
βn,a (−iω)n

)

Here, the attenuation is included in the real part, whereas the dispersive terms are covered

by the imaginary part. Precomputing and storing the operator for all modes requires the

same amount of memory as for the signals. However, the cuFFT library computes an

unnormalized Fourier transform. In other words, applying the forward and the backward

transform leads to the multiplication of the signals by the number of samples Ns. Hence,

the result needs to be normalized with 1/Ns. Since the attenuation coefficient α is often

assumed to be frequency independent for the considered frequency range [5], α can be

taken into account by simply extending the normalization by exp(−α/2·h), where h is the

step size of the linear sub-step (as described in section 3.3.1). Thereby, the precomputation

of the real part can then be skipped, also causing fewer memory accesses. Going further,

we do not precompute the linear operator at all. Only the sampled frequency vector

containing ω and the factorials n! are precomputed. In consequence additional calculations

need to be performed on the GPU. Anyway, applying the imaginary part ={L̂} is limited

by the memory bandwidth and the additional computations are scheduled while waiting

for memory access. In this case the hiding of latencies is used to avoid precomputations

(line 3 in algorithm 3.1) and to save memory space. This means that the precomputations

vanish in algorithm 3.1, and instead are performed in the loop of algorithm 3.2. As

the latencies are exploited with computations, the workload of the GPU automatically

increases and the performance comes closer to peak performance.

46 3. NONLINEAR SIGNAL PROPAGATION IN MULTIMODE FIBERS

Also for this approach the constant memory can be used to store the beta values as

well as the fatcorials and thus reduce latencies.

3.4.4 Multi-GPU implementation

As already mentioned, the signals can be represented by a matrix of sampled data with

the dimension 2M × N , where M is the number of modes, the number of polarization

planes is taken into account by the factor 2, and N is the number of samples. For the

investigation of Kerr-based nonlinear effects for practically-relevant simulations, however,

these data quickly become very large, e.g., each symbol needs to be represented by an

appropriate number of samples to simulate a sufficiently large frequency spectrum. E.g.

256 samples per symbol, denoted as Nsps, were used in [32] to simulate a spectral range of

8.192 THz. In the referenced simulation, M = 15 spatial modes and Ns = 214 symbols per

spatial and per polarization mode were considered. With N = Ns ·Nsps, this results in a

complex valued dense matrix of size 30× 222, which requires 1920 MiB of storage. When

further increasing the number of spatial modes M , the matrix containing the sampled

signal might still fit into the GPU-memory, but not all intermediate results do any longer.

We therefore propose to split the 2M polarization and spatial modes to K processes. Since

N � 2M , this approach has several advantages over splitting N contiguous samples of a

unique spatial or polarization mode to different processes, as discussed in the next section.

Based on this splitting we also present a multi-GPU algorithm.

Splitting the numerical problem In principle there are two approaches how to par-

allelize the problem. Roughly speaking, the data matrix can be split either horizontally or

vertically. The second approach requires a parallelization of the Fourier transformation.

In [144, 169] the split-step Fourier method is parallelized by using distributed fast Fourier

transform implementations. However, this requires a lot of communication between the

involved compute nodes. We choose the other approach where instead of letting several

processes take part in the calculation of a spatial or polarization mode, only whole modes

are distributed to the different processes. Here, each process is associated with one GPU,

but the process itself can still involve multiple threads. Thus, the N samples of a single

signal are only required and processed by one unique process. As proposed, the channels

are equally distributed to K processes. With this, each process computes 2M/K channels

as illustrated in figure 3.4.

The matrix representing the sampled signal is stored row-major and the rows are

aligned linearly in the memory. Therefore, the memory alignment is optimized for the fast

Fourier transforms (FFT), as discussed in section 3.4. The computation of the linear step

L̂ can be executed fully parallel by each process independently. Only for the calculation of

the nonlinear step N̂ information from the other processes is required, namely the squared

absolute values of the envelopes A of all modes that are not locally available.

The SSFM requires the computation of |A|2 once at the position z for the first iteration

3.4. NUMERICAL SIMULATION 47

(2M)/K

(2M)/K

K×

Figure 3.4: Signal matrix split to multiple processes.

and at the position z + h for every following iteration. Using the SSFM-RK4, the values

|A|2 are required to calculate k1, k2, k3, and k4, which is the same for the RK4IP method

(c.f. equation (3.5b)–(3.5e)). The squared absolute values |A|2 can be stored real-valued.

Therefore, in every iteration or rather the calculation of kn, (2M − 2M/K) ·N real valued

numbers have to be provided by the other processes and each process has to share its

(2M/K) ·N computed values. The squared absolute values |A|2 are exchanged via MPI

or via the NVIDIA Collective Communications Library (NCCL). Due to the large signal

matrices, one has to expect quite large messages even if communication is kept minimal

with our splitting approach. For the previous example with matrix size 30× 222, sharing

all squared absolute values would result in a total message size over all processors per

iteration of 960 MiB (before line 9 in algorithm 3.3).

In the following we apply our modifications to the RK4IP method again. Note, how-

ever, that the presented approach can be applied in an identical way to the general SSFM

and the SSFM-RK4.

GPU communication As described above, physically relevant problems are often too

large and exceed the memory of a GPU. However, they do not become arbitrarily large

either, that is why only a few GPUs are needed to solve such problems, not hundreds,

making small clusters the target platform. Nevertheless there should be no restriction that

all GPUs are on the same board, so that MPI communication is necessary (see section 2.3).

Since the messages are very large, we use NCCL in addition to our own communication

with MPI. NCCL provides topology-aware collective communication primitives and is well

suited for handling large messages.

MPI-implementation One option to realize the communication between the involved

GPUs is to use the the Message Passing Interface (MPI) [108]. Using MPI has the

advantage, that the GPUs do not necessarily have to be placed in the same compute

node. Here, one MPI process per GPU is used. With the availability of CUDA-aware

MPI [85] implementations, the programmer does not have to stage the data in the host

memory, as the GPU buffers can be directly passed to MPI.

A naive approach to realize the communication via MPI is the use of collective opera-

48 3. NONLINEAR SIGNAL PROPAGATION IN MULTIMODE FIBERS

tions like MPI Bcast or MPI Allgather. However, these rely on blocking communication

and CUDA-aware implementations that, supporting non-blocking collectives, are still un-

der development [17, 18]. Using non-blocking communication instead has the advantage

to overlap communication and process the data. Overlapping communication and com-

putations are essential to hide communication costs and to obtain good scalability. We

therefore decided to explicitly exchange data via asynchronous, and therefore non-blocking

send and receive operations, namely MPI Isend and MPI Irecv. The program sequence

is described in listing 3.1.

1 void send sqrabs (const i n t rank ,

2 const i n t s i z e , const REAL ∗ sqrabs , . . ,

3 const i n t num elem , MPI Request ∗ send req) {
4

5 f o r (i n t rk =0; rk<rank ; rk++)

6 MPI Isend(&sqrabs [. .] , num elem ,

7 MPI DOUBLE, . . ,MPI COMM WORLD,

8 &send req [rk]) ;

9

10 f o r (i n t rk=rank +1; rk<s i z e ; rk++)

11 MPI Isend(&sqrabs [. .] , num elem ,

12 MPI DOUBLE, . . ,MPI COMM WORLD,

13 &send req [rk −1]) ;

14 }
15

16 void r e c v s q r a b s (const i n t rank ,

17 const i n t s i z e , REAL ∗ sqrabs , . . ,

18 const i n t num elem , MPI Request ∗ r e c v r e q) {
19

20 f o r (i n t rk =0; rk<rank ; rk++)

21 MPI Irecv(&sqrabs [. .] , num elem ,

22 MPI DOUBLE, . . ,MPI COMM WORLD,

23 &r e c v r e q [rk]) ;

24

25 f o r (i n t rk=rank +1; rk<s i z e ; rk++)

26 MPI Irecv(&sqrabs [. .] , num elem ,

27 MPI DOUBLE, . . ,MPI COMM WORLD,

28 &r e c v r e q [rk −1]) ;

29 }
30

31 c a l c s q u a r e a b s (. .) ;

32 r e c v s q r a b s (. .) ;

33 send sqrabs (. .) ;

34 ca l c non l i n ea r own (. .) ;

35

36 a l l d o n e = 0 ;

37 whi l e (a l l d o n e < s i z e −1) {
38 MPI Waitany (s i z e −1, r ecv req , &rk idx , . .) ;

39 c a l c n o n l i n e a r o t h e r s (. . , rk idx , . .) ;

3.4. NUMERICAL SIMULATION 49

40 a l l d o n e ++;

41 }
42

43 a p p l y n o n l i n e a r a l l (. .) ;

Listing 3.1: Basic program flow to compute N̂ incorporating MPI.

This program code replaces the lines 9-14 in algorithm 3.3 The function send sqrabs calls

the MPI Isend function, whereas in line 5-8 the process sends its own data to processes

with lower rank numbers and in line 10-13 to all processes with higher rank numbers. In

lines 16-19 recv sqrabs is defined, which is similar to the send function and calls the

MPI Irecv functions accordingly. After the computation of |A|2 for the (2M)/K modes

persisting on the GPU (line 31 in listing 3.1), we initialize the data exchange operations.

The values are send via MPI Isend in the send sqrabs() function (line 32 in listing 3.1),

and matching receive MPI Irecv commands are posted in the recv sqrabs() function

(line 33 in listing 3.1). As mentioned before, these operations are non-blocking and

therefore both commands return immediately, even if the transfers are not finished. Next,

the CUDA kernel is launched to calculate the contribution to the nonlinear phase rotation

of the modes that are persisting on the GPU (line 34 in listing 3.1), which is non-blocking

again. Afterwards in line 38, a blocking operation MPI Waitany is called, to wait until any

of the MPI Irecv commands has finished and the contribution of the received |A|2 values

to the nonlinear phase rotation is calculated in line 39. If all |A|2 values of the K − 1

other processes are received, and all contributions are taken into account, the nonlinear

phase rotation is finally applied to the modes persisting on the GPU.

This approach scales perfectly if the time needed to receive the next data is shorter

than the time for the simultaneously performed computations. In this case, the GPU does

not have to wait for the next data, since these are received while the GPU is performing

computations. The first work package, i.e. line 34, is always available on the GPU, since

this is the calculation of calc nonlinear own() for which no data needs to be received.

However, the execution of calc nonlinear others() relies on data sent from the other

processes. In practice, the possible overlap strongly depends on the simulation set-up,

i.e., the number of spatial modes M and samples N , and is limited by the number of

involved GPUs K as well as the interconnects between the GPUs.

NCCL-implementation A higher-level approach is to exchange data via the NVIDIA

Collective Communications Library (NCCL). NCCL supports multiple GPUs installed in

a single node or across multiple nodes. The library provides topology-aware collective

communication primitives and features multiple ring formations for high bus utilization.

Within NCCL, the collectives are implemented in a single kernel and are therefore asso-

ciated to a so-called CUDA stream [165]. The NCCL calls return when the operation is

enqueued to the specified stream and the collective operation is executed asynchronously.

In our implementation, ncclAllGather is used to aggregate the data. As depicted in

50 3. NONLINEAR SIGNAL PROPAGATION IN MULTIMODE FIBERS

1 c a l c s q u a r e a b s (. .) ;
2 ncc lAl lGather ((const void∗)& sqrabs [. .] ,
3 (void ∗) sqrabs , num elem ,
4 ncclDouble , comm, stream a) ;
5
6 ca l c non l i n ea r own (. . , stream b) ;
7 cudaStreamSynchronize (stream b) ;
8
9 f o r (i n t rk idx =0; rk idx < s i z e −1; rk idx++)

10 c a l c n o n l i n e a r o t h e r s (. . , rk idx , . . , s tream a) ;
11
12 a p p l y n o n l i n e a r a l l (. . , s tream a) ;

Listing 3.2: Basic programm flow to compute N̂ incorporating NCCL.

listing 3.2, we use different streams for the kernel launch within calc nonlinear own()

and the remaining kernel calls to enable concurrent execution.

To enable the implementation to utilize multiple nodes, we use NCCL together with

MPI. Hence, each GPU is associated with an MPI process as before. A common NCCL

communicator spanning all processes, can be initialized as described in [124, Example 2:

One Device per Process or Thread].

Further GPU acceleration In addition to the implementation details for the single

GPU variant already presented in section 3.4.3, we present further modifications for the

multi-GPU version below.

In the preceding single-node implementation, only a single CUDA kernel captur-

ing the nonlinear effects was launched. As shown before, this is now split up into an

calc nonlinear own() kernel, that is responsible for calculating the nonlinear phase ro-

tation of the locally stored modes, and an calc nonlinear others() kernel, responsible

for the calculation for the nonlinear phase rotation induced by the modes not locally

available. Thus, K − 1 instances of the latter kernel have to be launched. The overall

nonlinear phase rotation is stored in an additional array of size (2M/K) ·N . Both kernels

incorporate so-called shared memory, to alleviate the penalty occurring due to column ac-

cess to the memory as it is described in section 3.4.3 for the single GPU implementation.

In contrast to the single-node implementation, applying the nonlinear phase rotation to

the locally available modes now only requires row access instead of column access to the

memory. Applying the nonlinear phase rotation is performed by an additional kernel, as

already indicated in listings 3.1 and 3.2.

In addition, the interaction matrix no longer fits into the constant memory for a

large number of modes without using a splitting approach. Storing all κ values, requires

a matrix of 2M × 2M elements. Assuming a symmetric matrix, which is the case for

linearly polarized (LP) modes [131], it is sufficient to only store the upper triangular

matrix, reducing the number of elements to (2M · 2M)/2 + M . This is exemplified for

the case of M = 2 and K = 2 in figure 3.5. For a large number of modes, e.g., M = 120,

still 28920 double precision values of 8 B would needed to be stored in the constant

3.4. NUMERICAL SIMULATION 51

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

Figure 3.5: Exemplary interaction matrix for M = 2 and K = 2. The upper triangular
matrix is highlighted in blue; All elements required for the calculations on GPU 2 are
shaded red and green. By considering the symmetry, the light and dark shaded green
elements are identical and only one of the sub-matrices needs to be stored. Furthermore,
the light red shaded element can be neglected.

memory, of which only 64 KiB are available. Therefore, this approach does not lead to a

sufficient saving. However, only 2M/K · 2M · 2 − (2M/K)2 need to be accessed for the

calculations. For GPU 2, these are the red and green shaded elements in figure 3.5. The

remaining elements of the matrix are only required on the other involved GPU. Taking

the symmetry into account again, it is sufficient to save only rows or columns which

apply to the modes considered on the certain GPU. With this in mind, the number of

elements can be reduced to 2M/K ·2M . Furthermore, for the κ coefficients describing the

nonlinear coupling for the modes persisting in the GPU, it would be sufficient again to

only store the upper triangular matrix, as visualized in figure 3.5. However, distributing

the matrix via MPI and the necessary index arithmetic is more complicated for this case,

and only (2M/K · 2M/K)/2−M/K additional elements can be saved.

52 3. NONLINEAR SIGNAL PROPAGATION IN MULTIMODE FIBERS

3.5 Numerical results

3.5.1 Performance comparison between CPU and GPU

The benchmarks in this subsection are performed on a workstation with one Intel R©Xeon R©
CPU E5-2620v3 providing 6 physical and, with Hyper-Threading enabled, 12 logical cores.

Intel R©Turbo Boost is disabled and the CPU frequency is set to 2.4 GHz. The system

provides 32 GB DDR4-ECC-RAM and 12 GB GDDR5-ECC-SDRAM and it also contains

GPU is a NVIDIA Tesla K40c, that is used for the GPU benchmarks.

In our test case, each spatial mode carries two channels through polarization-division

multiplexing. Each signal in a given channel consists of 215 symbols, where each symbol

is represented by Nsps = 32 samples. Depending on the number of spatial channels, the

resulting signal matrix has the dimension [2, 6, 12, 20, 30]× 220. For the benchmark, 1000

steps are simulated. All calculations are executed with double precision.

Number of Wall time T in s
TCPU/TGPU TCPU/THYB

Spatial Modes CPU CPU+GPU GPU

1 452.5 253.8 18.5 24.5 1.8

3 939.8 829.3 53.8 17.5 1.1

6 2140.5 2070.8 107.6 19.9 1.0

10 6687.3 6559.5 179.6 37.2 1.0

15 14027.6 13689.1 274.8 51.0 1.0

Table 3.1: Runtime and Speedup using 12 cores (chip vs. chip, no MPI).

Table 3.1 lists runtimes and the speedup we obtained. Comparing the runtimes of

the OpenMP CPU implementation with the CPU/GPU hybrid implementation, in which

only the FFTs are executed on the GPU (denoted as CPU+GPU and the acceleration

compared to the CPU implementation as TCPU/THYB), it can be found that the implemen-

tation can profit from GPU-accelerated FFTs, mainly for a single mode. However, the

performance benefit decreases with an increasing number of modes. As previously men-

tioned, the signal matrix is copied before and after each FFT in this approach, clearly

leading to a performance degradation for larger matrices since more data need to be

copied. Executing the whole RK4IP algorithm on the GPU eliminates this copy over-

head. The speedup for the single-mode simulation is around ∼ 25, and slightly decreases

for the next two cases, with 3 and 6 modes. With the single-mode simulation, it is not

possible to fully utilize the CPU. This becomes clear when we compare the runtime for

1 and 3 spatial modes. The number of polarization and spatial channels, corresponding

to the number of unknowns, increases by a factor of three, but the runtime only grows

by a factor of two. For more modes, the speedups increase. To explain this, we note first

that the CPU scales poorly and unevenly with the number of modes. We consider the

runtimes of separate routines for the simulation of 15 spatial modes. The percentage run-

3.5. NUMERICAL RESULTS 53

times of the calculations requiring column access and of calculations requiring row access

are given in table 3.2. To recap, column-wise access is only required for the calculation

of the nonlinear interaction, whereat the squares of the absolute values are precomputed

and therefore only require row-wise memory access. Furthermore, the runtime consumed

by the FFT are explicitly given in table 3.2. The largest fraction of runtime ∼ 68.8 %

Device
Percentage Wall time

FFT Column Access Row Access

CPU 12.3% 68.8% 18.9%

GPU 52.3% 12.5% 35.2%

Table 3.2: Percentage runtime for 15 spatial modes.

is consumed by applying the nonlinear interaction. Note that the data matrix is aligned

by rows, which leads to cache misses and prevents vectorization by the compiler. Ad-

ditionally, it is shown in [44] that the scalability of the FFTW is suboptimal as well.

Unfortunately, it is only possible to optimize the data structure either for the FFT or for

the matrix multiplication as described above. We expect that for an even larger number

of modes, optimizing for the latter will be more beneficial.

In contrast, the GPU implementation exhibits very good scalability, i.e., the runtime

increases with almost the same factor as the number of unknowns. For further analysis, we

examine the runtime consumed by the FFT for the simulation of 15 spatial modes, using

the NVIDIA CUDA Profiler. While ∼ 12.3 % of the runtime are consumed by the FFTW

on the CPU, cuFFT is actually responsible for ∼ 52.3 % of the runtime. Therefore, the

measured speedup is not caused by using the cuFFT library. Instead, it can be argued

that the speedup is mainly caused by the other computations, which are parallelizable on

the GPU in a more efficient way. The biggest improvement is the result of the nonlinear

interaction, which accounts for only a percentage of ∼ 12.5 % in contrast to ∼ 68.8 %

runtime on the CPU. This shows, that it is possible to optimize the matrix multiplication

and in particular the FFT on the GPU as well.

All in all the GPU is the much better architecture for this application, because it

is possible to optimize each routine of the algorithm. In contrast, programming for the

CPU, requires the decision to either optimize for the nonlinear interaction or for the FFT.

3.5.2 Comparison of multi-GPU approaches

To achieve the maximum performance, peer-to-peer access between the GPUs is essential.

The benchmark is therefore performed on an AWS EC2-instance of type p2.8xlarge. This

instance incorporates 4 Tesla K80 accelerators. Each K80 provides a pair of GK210

GPUs, resulting in 8 available GPUs. On this instance type the GPUs are connected via

a common PCIe fabric.

The configuration used for the benchmark is given in table 3.3. Incorporating 8 GPUs

54 3. NONLINEAR SIGNAL PROPAGATION IN MULTIMODE FIBERS

M Ns Nsps K M/K

15

214 128

1

15

30 2

60 4

90 6

120 8

Table 3.3: Configuration used for the benchmark.

allows to evaluate the nonlinear interaction between 120 spatial modes. This is of interest

as it is the number of the potentially usable spatial modes in a fiber with 62.5 µm core

diameter [139].

The number of involved processes, or rather GPUs, is scaled up from 1 to 8, to in-

vestigate the scaling of the proposed implementations. The number of spatial modes M

persisting per GPU is kept constant. In consequence, the total signal matrix occupies up

to 7680 MiB, of which 960 MiB are stored per GPU. For every calculation of N̂ , each GPU

needs to share 480 MiB. For the benchmark, 150 steps have been simulated and all calcu-

lations are executed with double precision. Recall, that N̂ is calculated 4 times per step.

This is the same for an SSFM-RK4 implementation, whereas the number to calculate N̂

depends on the number of iterations in an SSFM-Agrawal implementation. The initial

distribution and the final collection of the sampled signal matrix, as well as the transfer

of further necessary parameters and data, is excluded from the benchmark. Results are

shown in figure 3.6. Here, the execution times TK are normalized to the execution time

1 2 4 6 8
1

2

3

4

5

6

7

8

Number of GPUs K

T
K
/
T
K

=
1
,S
in
g
le

G
P
U

Im
p
l.

MPI

MPI - only comm.

NCCL

NCCL - only comm.

1 2 4 6 8
1

2

3

4

5

6

7

8

Number of GPUs K

T
K
/
T
K

=
1
,S
in
g
le

G
P
U

Im
p
l.

MPI

MPI - only comm.

NCCL

NCCL - only comm.

Figure 3.6: Scaling of the implementation.

of our previous single-node, single-GPU implementation [33, 34].

With only a single GPU used, K = 1, the relative runtime is > 1. Due to splitting the

calculation of N̂ into several kernels, the runtime increases by approximately 8.5 %. For

K ≤ 4, the MPI- and NCCL-implementation scale nearly equally. With even more GPUs

involved, the execution time of the MPI-implementation rises sharply. Incorporating all 8

GPUs, the MPI-implementation requires 6.76 times the execution time of the single-GPU

3.5. NUMERICAL RESULTS 55

implementation, whereas the NCCL-implementation scales with a factor of 4.26. To evalu-

ate the reason, the benchmarks are rerun without the additional calculations performed in

the calc nonlinear others(). Therefore, only the amount of communication grows with

an increasing K. Here, the MPI-implementation shows nearly identical results, whereas

the relative runtime of NCCL-implementation drops. For the MPI-implementation, this

clarifies that the increase of execution time is caused by communication, and not by the

additional calculations.

In conclusion, communication and calculations can be perfectly overlapped using MPI,

additionally confirmed by profiling the application. However, the implementation shows

an improvable communication pattern for K > 4. With the NCCL-implementation on

the contrary, communication and calculations are not fully overlapping. Anyway, the

topology-aware communication patterns show clear benefits for the simulation with more

than 4 GPUs involved. For K = 2, highlighted in figure 3.6, the MPI-implementation

is slightly outperforming the NCCL-implementation (factor 1.38 vs. 1.51). With only

two GPUs taking part in the simulation, the NCCL’s topology-awareness cannot improve

communication. In this case overlapping of communication and calculations is much more

important.

From a view point of weak scaling, an improved performance is desirable, especially

for a large number of involved GPUs. However, regarding the required all-to-all commu-

nication the performance metrics are not surprising. Nevertheless, the application enables

the simulation of the nonlinear signal propagating of a huge number of spatial modes and

a large frequency range, which was not possible so far. Improved performance of the MPI

implementation can be expected when decoupling the CPU-GPU control flow. With the

future availability of MPI-GDS [159], the asynchronous send operations can be triggered

directly after the squared absolute values are computed, leading to even better hiding of

the communication. In addition, also the optimization of collective operations is under

investigation [17, 18]. Therefore, future library implementations offer the potential to

further improve the performance of the proposed implementation.

56 3. NONLINEAR SIGNAL PROPAGATION IN MULTIMODE FIBERS

3.6 Conclusions

In this chapter we have considered the simulation of nonlinear signal propagation in

multimode fibers and presented a GPU implementation for the RK4IP algorithm. For

this implementation we used the following advanced GPU programming techniques to

achieve an efficient implementation.

• By asynchronously copying the data for each mode, the computations can start as

soon as the data for the first mode is transferred. This reduces the waiting time

before and after the simulation and decreases the walltime.

• By using one stream per mode we achieve a better possibility to hide latencies.

Calculations in different streams can be done independently from each other, so

they are optimal for hiding latencies.

• For the nonlinear operator we use a so called tiled pattern approach. With this and

the use of the fast shared memory, we reduce the effort for this operator.

• We can also store the interaction matrix into the fast constant memory. This reduces

the access time for the interaction matrix.

We could show that the algorithm scales poorly on the CPU, while the runtime scales

almost linearly with the number of spatial modes when executed on a GPU. A maxi-

mum acceleration of 51.0 was achieved for 15 spatial modes, indicating that the GPU

significantly outperforms the CPU implementation. So if a GPU is used for acceleration,

one can benefit from the advantages of the RK4IP method without having a significant

disadvantage due to the number of modes propagating.

Since the problem size quickly becomes too large for a GPU, we have continued to

present a multi-GPU approach. Beside the use of NCCL, we also presented an own MPI

approach to illustrate how to hide as much communication with computations as possible.

While MPI shows performance benefits for a few used GPUs, the implementation

clearly profits from NCCL topology-awareness if more than 4 GPUs are involved in the

simulation.

The future availability of MPI-GDS [159], could improve the asynchronous communi-

cation in our RK4IP implementation in chapter 3. In addition, also the optimization of

collective operations which are under investigation [17, 18] could improve MPI communi-

cations in the RK4IP and SPH implementation.

57

4

Particle-based simulation of

flow in porous media

In this chapter the pore-scale resolved flow in porous media is considered with the help

of a particle based simulation. The GPU implementation is a challenge because the cho-

sen smoothed particle hydrodynamics (SPH) method leads to unstructured data structures

and data accesses and is also a very computationally demanding method. Section 4.1 de-

scribes in which application areas this simulation is needed. After the mathematical model

is described in the following section 4.2 the numerical method is described in section 4.3.

The following sections 4.3.2-4.3.5 address further details of the numerical solution of the

problem, such as time integration and boundary conditions. The implementation is based

on the general particle simulation toolbox HOOMD-blue, which was extended by the SPH

method. How our SPH extension is embedded in HOOMD-blue and which infrastructure

can already be used from HOOMD-blue is explained in section 4.4.1. The challenges espe-

cially for the GPU implementation as well as different ways to improve the implementation

are discussed in sections 4.4.2 and 4.4.3. Finally, these improvements are compared in

section 4.5 and the scaling for the CPU and GPU implementation is examined.

The following results have been partially submitted to [128].

4.1 Motivation

Convective flows in porous media have taken the central position in many fundamental

heat transfer analyzes and have gained considerable attention in recent decades. This

is due to their wide range of applications in high-performance insulation of buildings,

chemical-catalytic reactors, grain storage and geophysical problems such as frost heave.

Porous media are also of interest in connection with the underground dispersion of pollu-

tants, solar energy collectors and geothermal energy systems.

In recent years, the calculation of effective physical properties of porous media based

on tomographic data and pore scale-resolved simulations is often complementing and

even replacing physical experiments. Thereby, boundary value problems are formulated

directly on the scale of representative unit cells which are obtained from image-based

58 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

characterization techniques like X-Ray Computed Tomography (XRCT). However, the

use of CT scans of microstructures of porous materials such as rocks or soils leads to

problems when using grid-based methods such as the finite element method because the

complex pore morphologies render meshing and remeshing processes impractically. On

the other hand, the use of matrix-free finite differences also leads to problems, since it

leads to a serious limitation in the simulation of complex flow processes, e.g., in case

of multiphase flow with a significant number of internal interfaces between wetting and

non-wetting fluid phases or when investigating larger Reynolds numbers flow. Regarding

the mentioned problems, the mesh-free smoothed particle hydrodynamics method is an

interesting alternative simulation method. SPH is a Lagrangian particle method, first

formulated by Monaghan and Gingold [59] and Lucy [98] for applications in astrophysics.

Later it was successfully applied to a wide variety of problems in other fields of physics and

mechanics, such as fluid dynamics and solid mechanics. Due to its Lagrange formulation,

SPH offers several advantages for the numerical simulation of fluid flows with different

Reynolds numbers. Furthermore, the meshless nature of SPH makes the construction

of the considered boundary value problems as well as the discretization of CT-generated

microstructures comparatively easy compared to mesh-based methods.

However, the main limitation of SPH lies in its high demand for computational re-

sources. Furthermore, using high-resolution CT imaging of real porous materials leads to

very large domains. Therefore, in [128] is shown, how a SPH approach is implemented the

highly optimized and parallelized tool HOOMD-blue [14, 61], where the author’s primary

contribution was the GPU implementation and the improvement of the MPI implemen-

tation.

In this thesis we limit ourselves to single phase flow applications and begin with describing

the mathematical model in the following.

4.2. MATHEMATICAL MODEL 59

4.2 Mathematical model

The flow of a material such as a gas, single phase liquid or solid is called single phase

flow if it is made of exactly one material and not a combination of different materials.

Since this chapter focuses on the challenge and improvement of the implementation of the

particle-based method and the model and methodology should not be changed, we refer

to [16, 21] for the derivation of the physical equations and start directly with the resulting

PDE. The single phase flow is described by the conservation of mass and momentum, so

the following equations must be solved

ρ̇ = −ρ∇ · v, (4.1)

ρ v̇ = ρ

(
∂v

∂t
+∇v · v

)
= −∇ p+∇ · (µ∇v) + ρb. (4.2)

Equation (4.1) is in fact the mass continuity equation and equation (4.2) is known as the

Navier-Stokes equation or momentum continuity equation. Here, ρ(x, t) is the density

field, v are the velocities, p(x, t) is the pressure field, b are body force densities and µ is

the dynamic viscosity of the fluid.

60 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

4.3 Numerical Approximation with SPH

The method chosen here for the numerical discretization is SPH, which is a remarkably

versatile and simple approach for numerical fluid dynamics. SPH is a Lagrange method,

i.e., the coordinates are moving with the fluid. It can provide a large dynamic range

in spatial resolution and density, as well as an automatically adaptive resolution, which

are unmatched in Eulerian methods. At the same time, SPH has excellent conservation

properties, not only for energy and momentum, but also for angular momentum. The

latter is not automatically guaranteed in Eulerian schemes, even though it is usually

fulfilled at an acceptable level for well-resolved flows. When coupled to self-gravity, SPH

conserves the total energy exactly, which is again not manifestly true in most mesh-

based approaches to hydrodynamics. Thanks to its completely mesh-free nature, SPH

can easily deal with complicated geometric settings and large regions of space that are

completely devoid of particles. This is especially important for our application of CT

scans. Implementations of SPH in a numerical code tend to be comparatively simple and

transparent. At the same time, the scheme is characterized by remarkable robustness. For

example, negative densities or temperatures, sometimes a problem in mesh-based codes,

can not occur in SPH by construction [95].

In a nutshell, the SPH method works as follows: The fluid and the solid phases are

represented by an ensemble of particles, each of which carries mass, momentum and

other properties (such as pressure, internal energy, etc.), see figure 4.1. The temporal

evolution is determined by the equation of motion plus additional equations to modify the

hydrodynamic properties of the particles. Hydrodynamic observation values are obtained

by a local averaging process.

In the following section the principals of the SPH method are discussed and require-

ments for good kernel functions are described.

Figure 4.1: Fluid (red) and solid (blue) are represented by particles.

4.3. NUMERICAL APPROXIMATION WITH SPH 61

4.3.1 Smoothed particle hydrodynamics

In SPH, the discretization of the governing partial differential equations gives rise to a

set of interacting collocation points (particles) xi with mass mi. At each integration

point, scalar field functions f(x) are locally interpolated using convolution with the Dirac

function δ

f(x) =

∫

Ω

f(x′) δ(x− x′) dx′, (4.3)

which can be approximated by a kernel function W with a compact support κh (figure

4.2).

f(x) ≈
∫

Ω

f(x′)W (x− x′, h) dv = fh(x). (4.4)

In the context of numerical computations the kernel function W is required to have

compact support with h representing a characteristic finite width of the compact support.

Following common practice, we refer to W as smoothing kernel and h is referred to as

smoothing length. The integral representation fh is considered to be a reproducing kernel

approximation of f if W meets the Dirac delta condition

lim
h→0

W (x, h) = δ(x),

by virtue of

lim
h→0

fh(x) = f(x).

Figure 4.2: Compact support for the kernel function W .

The quadrature rule is used to discretize this integral in SPH methods as a nodal

integration equivalent to a middle Riemann sum. In case of equation (4.4) this leads to

fi =

Nneigh∑

j=1

fjW (xi − xj, h)Vj, (4.5)

where Vj is the volume of a particle centered at position xj. The volume Vj can be

interpreted as the discrete equivalent of the volume element dv. Using the density ρj =

62 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

ρ(xj), the volume of particle j can be computed as Vj = mj/ρj, where mj describes the

lumped mass of particle j. This representation is called discrete SPH form. Thereby the

kernel representation converts into a spatial discretization and continuous field functions

f(x) transform into particle properties fk = fh(xk). Continuous differential operators are

discretized analogously and transform into short-range interaction forces [112, 140].

Kernel functions To ensure that the SPH method is consistent for all application of

the method to certain equations, the kernel functions must meet certain requirements. In

the following, various properties that a kernel function should fulfill are defined. After-

wards it is shown why these properties are useful and necessary.

• A kernel function must be normalized:

∫

Ω

W (x− x′, h)dx′ = 1 (4.6)

• A kernel function should have compact support. In general, the compact support is

defined by the smoothing length h and a scaling factor κ that determines the spread

of the specified smoothing function. So the compact support means

W (x− x′, h)) = 0 for ‖x− x′‖2 > κh (4.7)

• A kernel function should be non-negative:

W (x− x′, h)) ≥ 0 in the compact support area of ‖x− x′‖2 ≤ κh (4.8)

• A kernel function should be monotonically decreasing:

W (x, h) > W (x′, h) for all x, x′ with ‖x‖2 > ‖x′‖2 (4.9)

• A kernel function should satisfy the Dirac delta function condition as h→ 0:

lim
h→0

W (x, h) = δ(x) (4.10)

• A kernel function should be an even (symmetric) function:

W (x, h) = W (−x, h) (4.11)

• A kernel function should be sufficiently smooth.

In order to quantify the order of completeness of the reproducing kernel approximation,

that is the ability of fh to exactly reproduce a given polynomial f of degree m for finite

4.3. NUMERICAL APPROXIMATION WITH SPH 63

width h, we introduce the Taylor expansion of f(x′) about point x given as

Φ(x′) =Φ(x) +
∂Φ

∂x
· (x′ − x) +

1

2
(x′ − x)>

∂2Φ

∂x2
(x′ − x) +O(h3), (4.12)

noting that O(h3) = O(‖x′ − x‖3
2), where ‖ · ‖2 denotes the Euclidean norm and f(x′) is

assumed smooth over the finite interval (x′,x). Substituting the expression in equation

(4.12) into equation (4.4) leads to

Φh(x
′) =Φ(x)

∫

Ω

W (x− x′, h)dx′ +
∂Φ

∂x
·
∫

Ω

(x′ − x)W (x− x′, h)dx′

+
1

2

∂2Φ

∂x2
:

∫

Ω

(x′ − x)(x′ − x)>W (x− x′, h)dx′ +O(h3).

(4.13)

It is evident from equation (4.13) that for fh to be complete to zeroth order, W has to

satisfy the zeroth order completeness condition, hereafter referred to as normalization

condition (4.6). The second term on the right hand side of equation (4.13) implies that

first order completeness requires the first-order moment condition, hereafter referred to

as symmetry condition,

∫

Ω

xW (x, h)dx′ = 0

to be satisfied. This is also fulfilled due to characteristic (4.11).

Other kernel properties must be physically justified. Characteristic (4.8) ensures the

robustness of the method. This characteristic guarantees that, e.g., no negative pressures

can occur. The influence of the particles is given by the field functions but not by the

kernel weighting. Furthermore characteristic (4.9) causes that less distant particles have

a higher influence than particles with a higher distance. Finally, characteristic (4.10)

ensures method consistency and characteristic (4.7) must be satisfied for the method to

be finite.

Example: There are many commonly used kernel functions. A family of kernel func-

tions often used for SPH applications are the so-called Wendland kernels. As an example,

we consider here the Wendland C4 kernel in one dimension, which is defined as

W (r) =
3

4

(
1− r

2

)5 (
2r2 + 2.5r + 1

)
for 0 ≤ r ≤ 2

= 0 for r > 2

where r = |x − xi| for fixed xi. The kernel function as a function of x − xi is shown in

figure 4.3 and its derivative in figure 4.4.

64 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 4.3: Wendland C4 kernel function.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 4.4: First derivative of Wendland
C4 kernel function.

Approximation of derivatives We need to approximate spatial differential operators

that are inherent in balance equations on the basis of the reproducing kernel approxi-

mation. We evaluate the approximation of the gradient of a scalar field f by means of

applying equation (4.4) to∇f , which leads to

∇f(x) =

∫

Ω

∂f(x′)

∂x′
W (x− x′, h)dx′.

Using integration by parts this can be rewritten to

∇f(x) =

∫

Ω

∂

∂x′
[f(x′)W (x− x′, h)] dx′ −

∫

Ω

f(x′)
∂W (x− x′, h)

∂x′
dx′.

Application of Gauss theorem to the first term gives

∇f(x) =

∫

Γ

[f(x′)W (x− x′, h)] n(x′)da−
∫

Ω

f(x′)
∂W (x− x′, h)

∂x′
dx′.

where n denotes the unit normal vector to the boundary of the computation domain

Γ = ∂Ω. Since the kernel W has a compact support, the integral along the boundary in

the last equation evaluates to zero if the focal point x lies at some distance ‖xB − x‖ >
κh, ∀xB ∈ Γ from the boundary Γ. If the bulk volume of Ω is sufficiently large, the latter

condition applies to the majority of focal points. Neglecting the boundary integral and

taking the kernel radial symmetry into account, which implies the antisymmetry

∂W (x− x′, h)

∂x′
= −∂W (x− x′, h)

∂x

yields the approximate expression for the gradient of a scalar field

∇f(x) =

∫

Ω

f(x′)
∂W (x− x′, h)

∂x
dx′ =

∫

Ω

f(x′)∇W (x− x′, h)dx′,

where the spatial gradient operator is now observed to act on the continuously differen-

tiable kernel function. We use equation (4.5) to transfer this into the discrete SPH form

4.3. NUMERICAL APPROXIMATION WITH SPH 65

and obtain

∇fi =

Nneigh∑

j=1

fj
mj

ρj
∇W (xi − xj, h).

We introduce the shorthand notations

Wij = W (xi − xj, h) and rij = ‖xi − xj‖2.

Due to radial symmetry, the spatial gradient of the kernel may be evaluated as

∇W (xi − xj, h) =
∂Wij

∂rij

xi − xj
rij

, where
∂Wij

∂rij
:=

∂W (r, h)

∂r

∣∣∣∣
r=rij

.

With this notation we write the gradient as

∇fi =

Nneigh∑

j=1

fj
mj

ρj

∂Wij

∂rij

xi − xj
rij

. (4.14)

In the same way we get the SPH discretization for the divergence operator as

∇ · fi =

Nneigh∑

j=1

fj
mj

ρj
· ∂Wij

∂rij

xi − xj
rij

. (4.15)

4.3.2 Discretization

In the following we want to derive an SPH discretization for the single phase flow simu-

lation , based on the report by Monaghan [113]. Note that there is not always only one

SPH discretization for a given problem. To derive a discretization for our given problem,

we repeat the equations to be solved

ρ̇ = −ρ∇ · v, (4.1 revisited)

ρ v̇ = ρ

(
∂v

∂t
+∇v · v

)
= −∇ p+∇ · (µ∇v) + ρb. (4.2 revisited)

First we want to derive a discretization for the mass conservation equation (4.1), respec-

tively we want to derive a calculation for the density. For this we show two possibilities.

Instead of applying the SPH method to equation (4.1), equation (4.5) is usually sim-

ply used to calculate the current pressures. This approach is called summation kernel

interpolation, and the density results in

ρi =

Nneigh∑

j=1

mjWij. (4.16)

66 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

Another approach would be to discretize equation (4.1) using equation (4.15). In

this approach, the derivative is found by an exact derivation of an approximate function.

However, this form of the derivative does not vanish if the field function f(x) is constant.

A simple way to ensure that it does vanish if f(x) is constant is to write

∂f

∂x
=

1

Φ
f
∂Φ

∂x
+
∂f

∂x
− 1

Φ
f
∂Φ

∂x

=
1

Φ

(
f
∂Φ

∂x
+ Φ

∂f

∂x
− f ∂Φ

∂x

)

=
1

Φ

(
∂(Φf)

∂x
− f ∂Φ

∂x

)

where Φ is any differentiable function. The SPH form is

∂fi
∂x

=
1

Φi

Nneigh∑

j=1

mj
Φj

ρj
(fj − fi)

∂Wij

∂xi
,

which vanishes if f is constant. In this expression, different choices of Φ lead to different

consistent SPH discretizations of the derivative that can be found in the literature. We

chose Φ = ρ , insert ∇ · v and obtain

ρ̇i =

Nneigh∑

j=1

mj(vi − vj) ·
xij
rij

∂Wij

∂rij
, . (4.17)

After we have derived two discretization possibilities for the pressure, we want to

discretize (4.2). We start with the first term from equation (4.2) and derive an SPH

formulation for

ρv̇ = −∇ p. (4.18)

As described above, the direct exploitation of equation (4.14) does not guarantee that

the derivative of constant functions will vanish. Therefore we use the following trick

∇φ = ∇
(
ρ
φ

ρ

)
= ρ∇

(
φ

ρ

)
+
φ

ρ
∇ρ. (4.19)

We divide equation (4.18) by ρ, substitute the gradient by equation (4.19) and apply

the SPH formulation to both terms. For the first term this results in

∇
(
pi
ρi

)
=

Nneigh∑

j=1

mj

pj
ρj

ρj
∇Wij =

Nneigh∑

j=1

mj
pj
ρ2
j

∇Wij

4.3. NUMERICAL APPROXIMATION WITH SPH 67

and the second term yields

p

ρ2
∇ρi =

pi
ρ2
i

(

Nneigh∑

j=1

mj∇Wij).

All in all, we get

v̇i =−
Nneigh∑

j=1

mj
pj
ρ2
j

∇Wij −
pi
ρ2
i

(

Nneigh∑

j=1

mj∇Wij) = −
Nneigh∑

j=1

mj

(
pj
ρ2
j

+
pi
ρ2
i

)
∇Wij

=−
Nneigh∑

j=1

mj

(
pj
ρ2
j

+
pi
ρ2
i

)
xij
rij

∂Wij

∂rij
. (4.20)

The second term of the momentum continuity equation (4.2) describes the viscous

interaction forces between particles and reads as

ρv̇ = ∇ · (µ∇v). (4.21)

Here, second derivatives occur. Therefore we need an SPH discretization for second

derivatives. To get a discretization for this we follow the paper by Brookshaw [36] and

start with the Taylor series to develop a discretization for the Laplace operator:

T (x′) = T (x) +∇T (x) · (x′ − x) +
1

2

∂2T (x)

∂xs∂xk
(x′ − x)(x′ − x) +O(x′ − x)3

We write the mixed and second derivatives on the left and everything else on the right

side and get:

∂2T (x)

∂xs∂xk
(x′ − x)(x′ − x) = −2 (T (x)− T (x′) +∇T (x) · (x′ − x)) +O(x′ − x)3 (4.22)

Next we neglect terms of third and higher orders, we multiply this with

(x′ − x)∇W (x′ − x, h)

‖x′ − x‖2
2

,

integrate over x′ and note that

∫

Ω

(x′ − x)
(x′ − x)∇W (x′ − x, h)

‖x′ − x‖2
dx′ =0,

∫

Ω

(x′ − x)s(x
′ − x)k

(x′ − x)∇(x′ − x, h)

‖x′ − x‖2
dx′ =δsk,

where (·)s and (·)k represent the s-th entry, or k-th entry respectively. Note that we

choose this kernel to be spherically symmetric and normalized to unity. This results in

only the second derivatives remaining on the left side in equation (4.22), i.e., the Laplace

68 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

operator, and on the right side the gradients of T vanish:

4T (x) = −2

∫
T (x)− T (x′)

‖x′ − x‖2
(x′ − x)∇W (x′ − x, h)dx′

We then end up with a discrete SPH approximation of the Laplace operator in the form

4T (xi) = −2

Nneigh∑

j=1

mj

ρj

T (xi)− T (xj)

‖x′ − x‖2
(xj − xi)∇W (xj − xi, h). (4.23)

Now that we have a discretization for the Laplace operator, we now consider how this can

be applied to the thermal conduction problem, where the conductivity may also show a

spatial variation. Using the identity

∇ · (µ∇v) =
1

2
[4(µv)− v4µ+ µ4v] (4.24)

we can use our result from equation (4.23) to write down a discretized form of equation

(4.21) divided by ρ. The three terms in equation (4.24) can be discretized as

1

2
4(µv) = −

Nneigh∑

j=1

mj

ρj

µjvj − µivi
‖x′ − x‖2

(xj − xi)∇W (xj − xi, h),

1

2
v4µ = −vi

Nneigh∑

j=1

mj

ρj

µj − µi
‖x′ − x‖2

(xj − xi)∇W (xj − xi, h),

1

2
µ4v = −µi

Nneigh∑

j=1

mj

ρj

vj − vi
‖x′ − x‖2

(xj − xi)∇W (xj − xi, h).

The summation of these three terms results in

v̇ =
1

ρ
∇ · (µ∇v) =

Nneigh∑

j=1

mj(µi + µj)(vi − vj)

ρi ρj

(
1

rij

∂Wij

∂rij

)
. (4.25)

The SPH discretization of the momentum balance equation results in the motion

equation for fluid particle i, where the total force on each particle is described as the sum

of body forces FB
i = mib, pressure interaction forces FP

ij and viscous interaction forces

FV
ij between particles i and j:

mi v̇i =

Nneigh∑

j=1

FP
ij +

Nneigh∑

j=1

FV
ij +

Nneigh∑

j=1

FB
j (4.26)

4.3. NUMERICAL APPROXIMATION WITH SPH 69

Inserting the equation (4.25) and (4.20) finally yields

v̇i = −
Nneigh∑

j=1

mj

(
pi
ρi2

+
pj
ρj2

)
xij
rij

∂Wij

∂rij

+

Nneigh∑

j=1

mj(µi + µj)(vi − vj)

ρi ρj

(
1

rij

∂Wij

∂rij

)
+ b.

(4.27)

The implemented SPH module follows a weakly compressible scheme, where the pressure

is calculated from an equation of state [21],

p(ρ) =
ρ0 c

2

γ

[(
ρ

ρ0

)γ
− 1

]
, (4.28)

where c is the speed of sound, ρ0 = ρ(x, t0) is the reference density and γ a constant

defined according to the problem. γ = 7 is a common value for quasi-incompressible

fluids [21].

Alternative discretizations As already mentioned, there are different SPH discretiza-

tions. Another SPH discretization, which is especially good for high Reynolds numbers

[2], is the following. Thereby, the pressure interaction forces are discretized by

−1

ρ
∇p = − 1

mi

Nneigh∑

j=1

(
V 2
i + V 2

j

)(ρjpi + ρipj
ρi + ρj

)
xij
rij

∂Wij

∂rij
,

and viscous interaction forces are given by

1

ρ
∇ · (µ∇v) =

1

mi

Nneigh∑

j=1

(
V 2
i + V 2

j

) 2µiµj
µi + µj

(
vij
rij

∂Wij

∂rij

)
.

All in all the momentum balance equation is discretized by

v̇i = − 1

mi

Nneigh∑

j=1

(
V 2
i + V 2

j

)(ρjpi + ρipj
ρi + ρj

)
xij
rij

∂Wij

∂rij

+
1

mi

Nneigh∑

j=1

(
V 2
i + V 2

j

) 2µiµj
µi + µj

(
vij
rij

∂Wij

∂rij

)
+ b.

(4.29)

This SPH discretization is also included in our implementation.

4.3.3 Boundary conditions

For the complete description of the problem we also need the definition of boundary

conditions. Boundary conditions occur everywhere where fluid particles are in contact

with solid particles. The solid phase is considered to be rigid and therefore fluid-solid

70 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

interfaces satisfy no-penetration and no-slip boundary conditions. Therefore, we use an

implementation, which was introduced by [1] whereby the solid domain (wall) is populated

with dummy particles. For performance reasons we delete dummy particles that are

located outside the kernel support domain of fluid particles.

κh

Figure 4.5: Dummy particles (in blue) representing a solid boundary.

The velocity of a dummy particle i is extrapolated from the fluid domain such that

vi = 2 vBC −
∑Nneigh

j=1 vjWij
∑Nneigh

j=1 Wij

, (4.30)

where vBC is the wall boundary condition velocity. The pressure of the dummy particle is

calculated from the momentum balance, aiming for a no-penetration boundary condition:

pi =

Nneigh∑

j=1

pjWij + (b− a) ·
Nneigh∑

j=1

NneighρjrijWij

/

Nneigh∑

j=1

Wij

 , (4.31)

where a is the acceleration of the boundary particle and rij is the vector between the

particles i and j (figure 4.2).

Finally, dummy particle densities are updated by solving equation (4.28) for ρ.

Besides the no-slip and no-penetration boundary conditions, it is also possible to con-

tinue domains periodically. This means nothing else than that the left edge is adjacent

to the right edge (or upper and lower, front and back) and fluid or ghost particles are set

accordingly.

4.3.4 Time integration

Finally, some time step method is needed. Updating particles to the next time step is done

with the velocity Verlet time integration method [142], a variation of the Verlet algorithm

presented in [160]. We use this method because it is a common choice for particle methods

and, compared to methods such as predictor-corrector schemes, has good stability with

less computational effort. It is also memory-friendly, since it is not necessary to store

previous time steps. In the half-step (t+ 1
2
∆t) the velocity is updated as

v(t+ 1
2

∆t) = v(t) + 1
2
v̇(t) ∆t , (4.32)

4.3. NUMERICAL APPROXIMATION WITH SPH 71

where where v̇(t) has already been calculated by equation (4.27). In the full step t+ ∆t

the position x(t) and velocity v(t) are updated as

x(t+ ∆t) = x(t) + v(t+ 1
2

∆t) ∆t , (4.33)

v(t+ ∆t) = v(t+ 1
2

∆t) + 1
2
v̇(t+ ∆t) ∆t . (4.34)

4.3.5 Artificial viscosity

Since the SPH method does not guarantee that nonphysical oscillations occur during the

simulation, we add a stabilization method. For this purpose we use the stabilization

method presented in [112] and implement an artificial viscosity approach. Here, a dissipa-

tive term, the so-called artificial viscosity Πij, is included in the impulse balance equation

for damping non-physical oscillations. The definition of artificial viscosity presented in

[112] is the most commonly used,

Πij =

− αΠ cij φij + βΠ φ
2

ρij
, vij · xij < 0,

0, vij · xij ≥ 0,

(4.35)

with hij = 1
2
(hi + hj), cij = 1

2
(ci + cj), ρij = 1

2
(ρi + ρj),

φij =
hijvij · xij
|xij|2 + ε2

,

and αΠ and βΠ are constants. Monaghan [112] recommends the constant values αΠ ≈ 1

and βΠ ≈ 2. However the values need to be fitted according to the application. In the

presented low Re applications the values απ = 0.2 and βπ = 0 were used. The variable

ε = 0.1h is introduced to avoid divergence when |xij| → 0. Thus the part of the pairwise

pressure interaction forces Fp
ij in equation (4.27) can be updated to

Fp
ij = −

Nneigh∑

j=1

mj

(
pi
ρi2

+
pj
ρj2

+ Πij

)
xij
rij

∂Wij

∂rij
, (4.36)

or with the other discretization in equation (4.29) to

Fp
ij = − 1

mi

Nneigh∑

j=1

(
V 2
i + V 2

j

)(ρjpi + ρipj
ρi + ρj

+ Πij

)
xij
rij

∂Wij

∂rij
. (4.37)

72 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

4.3.6 Schematic SPH single phase flow algorithm

After all required discretizations have been described in the previous sections, they have

to be assembled into an algorithm (see algorithm 4.1). Here we present a possible parallel

algorithm, i.e., we also show where values must be exchanged between different processes.

In order to simulate the discrete SPH model, all neighborhood relations must be calculated

first, so the first step of each iteration is to call a nearest neighbor search (NNS) algorithm

using the compact support of all operators. The density is required for all particles be-

fore other averaged values can be calculated at each time step. Either equation (4.16) or

(4.17) can be used. Then the pressures are calculated. Since these can be calculated inde-

pendently of properties of other particles (see equation (4.28)) this can be done without

prior communication. Afterwards the pressures and densities have to be communicated

so that they are updated everywhere. Then the boundary conditions are taken into ac-

count, i.e. the equations (4.30) and (4.31) are calculated. Alternatively, the calculation

of the pressures for the solid particles can be done in compute pressure(). Finally, the

pressure interaction forces (see equation (4.25)), the viscous interaction forces together

with the stabilization by artificial viscosity (see equation (4.36)) and the body forces are

computed. Finally, the next time step for the positions and velocities is calculated with

the velocity Verlet time integration (see section 4.3.4).

Algorithm 4.1 (SPH fluid solver).

1: for t = 0; t < T ; t = t+ h do

2: NNS() . see sec. 4.4 or 4.4.3

3: communicate neigh list()

4: compute density() . eq. (4.16) or (4.17)

5: compute pressure() . eq. (4.28)

6: communicate densiy prssure()

7: compute boundary conditions() . eq. (4.30) and eq. (4.31)

8: compute forces() . eq. (4.36) or eq. (4.37)

9: update time step() . eq. (4.32)–(4.34)

10: end for

4.4. IMPLEMENTATION ASPECTS AND CHALLENGES 73

4.4 Implementation aspects and challenges

For our implementation we use the particle simulation toolbox HOOMD-blue [61] as

basis and extend it for the SPH method. How our extension is embedded in HOOMD-

blue and where we made changes is described in the next section. The author of this

thesis has done the implementation and improvement of the GPU aspects as well as novel

neighborhood search data structures and algorithms. Afterwards, the general challenges

of an SPH implementation for the GPU are described and possible improvements for such

an implementation are discussed.

4.4.1 SPH implementation in HOOMD-blue

BVP set up

Particle initialization

Find neighbors

Write ouput

t > Tmax

Compute kernel

Compute density rate

Compute pressure

Compute acceleration

Time integration

yes

no

Figure 4.6: SPH workflow. Gray background indicates our own implementation within
HOOMD-blue.

HOOMD-blue is designed modularly, for easier modifications and expansions. The

boundary value problem (BVP) setup and particle initialization (figure 4.6) are imple-

mented as Python scripts, and the remaining code is C++. Our modifications and main

modifications of HOOMD-blue are marked in gray in figure 4.6. Our main changes include

the compute and update classes and the particle data structure. These are implemented

in C++ and CUDA and we explain them in more detail in the following:

1. Particle Data: HOOMD-Blue defines a Particle Data structure intended for Molec-

ular Dynamics applications. We have adapted this for SPH applications. Table 4.1

shows the implemented fields. HOOMD initializes every field of particle data, even

if is not used. For memory optimization, only essential fields for single phase flow

were active in this study (indicated in table 4.1 with *).

74 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

Field Type Entries
pos* Scalar4 [x1, x2, x3, type]
vel* Scalar4 [v1, v2, v3,mass]
dpe* Scalar3 [ρ, p, e]
kappah* Scalar κh
aux1 Scalar3
aux2 Scalar3
aux3 Scalar3
aux4 Scalar3
accel* Scalar3 [a1, a2, a3]
dpedt* Scalar3 [dρ/dt, dp/dt, de/dt]
image* int3
body* unsigned int Body id
tag* unsigned int Global tag

Table 4.1: Implemented fields in the Particle Data structure. Essential fields for a single
phase flow simulation are marked with *.

2. Compute: This module reads the Particle Data fields, computes the neighbor list and

calculates density rates (continuity approach) and acceleration. Additionally, the

pressure is computed with the defined equation of state. The nearest neighbor search

is used directly from the HOOMD-blue package. Furthermore, we have implemented

another NNS algorithm for the GPU, which is introduced in section 4.4.3.

compute

CellList ForceCompute NeighborList

SPHBaseClass

QINSSPForceCompute

Figure 4.7: Excerpt of the Compute class. Gray boxes mark our own implementa-
tions. The module QINSSP presents the implementation of the equations for a quasi
incompressible Navier-Stokes single phase flow.

3. Update: This class updates Particle Data fields according to the time integration.

We implemented the Velocity Verlet integration method as described in section 4.3.4.

updater

Integrator LoadBalancer

SPHIntegratorTwoStep

QINSSPPreForceUpdater

Figure 4.8: Excerpt from updater class. Gray boxes indicates own implementation.

4.4. IMPLEMENTATION ASPECTS AND CHALLENGES 75

Neighbor list and search in HOOMD-blue The first step in each iteration of an

SPH algorithm is the nearest neighbor search (compare algorithm 4.1). Here, all particles

that lie within a certain radius around a particle must be found as neighbors. In prac-

tice, only a limited maximum number of neighbors is used for the following calculations.

HOOMD-blue offers three different NNS algorithms, two based on binned linked-cell list

and one based on a linear bounded volume hierarchical (LBVH) tree structure. All three

algorithms specify the neighborhood relationships in a so-called Verlet list. This consists

of three arrays n neigh, head list and nlist. The number of neighbors per particle is

given in the array n neigh. The neighbors of every particle are listed in the nlist array,

first all neighbors of particle 0, then of particle 1 and so on. The position at which the

neighboring particles start in the nlist array for each particle is listed in the head list

array. An example is shown in figure 4.10. This list is based on the same structure as

the CSR matrix (which we know from section 2.2). Here, each matrix row corresponds

to one particle, and has a 1 for each neighbor particle in the corresponding column. The

col array from the CSR format corresponds to the nlist array from the Verlet list, and

the row array to the head list. This method is generally well suited for methods such as

the SPH method, because it makes it easy to implement loops over all neighbors. Based

on the maximum movement of the particles, these algorithms can check whether it is

necessary to recreate the list or whether it is still correct. For this purpose, the NNS

algorithms search in a radius larger than the corresponding radius of the SPH method.

This is useful because the neighborhood search is very complex. The three algorithms in

HOOMD-blue are called cell (or cell list), stencil (or stencil cell list) and tree (or LBVH

tree) algorithm. The first two are based on a cell list sorting where all particles are seg-

mented into cells. In the following neighbor search, only all particles in neighboring cells

have to be considered. The tree algorithm is based on binary tree structures that partition

the system based on objects rather than space. This means that the memory required

scales with the number of particles in the system rather than the system volume, which

can be particularly advantageous for large, sparse systems. For detailed information on

the cell list algorithm and its implementation in HOOMD-blue, we referred to [56, 60,

78]. More detailed information on the stencil cell list can be found in a paper by Howard

et. al [74] and on the LBVH tree algorithm in [75]. We explore which of these algorithms

is the best choice for our use cases in section 4.5.3.

Parallelization and communication in HOOMD-blue HOOMD-blue implements

a spatial domain decomposition for the parallelization with MPI. The ghost particles must

be communicated between processors, and particles must be migrated between processors

when they move across subdomains (figure 4.9 and line 5 in algorithm 4.1). The involved

communication is prone to becoming the bottleneck of a simulation. Thus, the domain

is decomposed minimizing the inter-domain interfaces. Moreover, each communication is

restricted only to the required fields.

HOOMD offers the possibility to transfer the data via P2P (see section 2.3), or if this

76 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

possibility is not available, to copy the data first to the CPU memory and then to execute

the communication.

Figure 4.9: MPI spatial domain decomposition. κh denotes the compact support of the
kernel function.

4.4.2 Challenges of the implementation

In this section we discuss the challenges of using the standard approach with neighbors

in a Verlet list. In section 4.4.3, we alternatively show another approach to work around

some of the GPU implementation issues presented here. SPH implementations essentially

consist of loops over all particles and for each particle additional nested loops over all

neighboring particles. Therefore, the parallelization of each particle loop is quite generic

on CPUs, as long as the average number of neighbors is similar for each MPI process. Due

to the fine-grained parallelism of GPUs, efficiency is harder to accomplish. Our approach

is to run a GPU kernel for each particle loop on the CPU according to the Verlet list.

Fluid and solid particles are treated subsequently by separate, sequentially issued kernels,

and one GPU thread is used for each particle, which is a standard ad-hoc choice for this

Verlet list approach. In general, all GPUs in the domain decomposition should have more

or less the same amount of solid and fluid particles to achieve the best efficiency. This is

in contrast to several practically relevant scenarios, where large differences between the

number of fluid and solid particles are locally possible (see section 4.5). HOOMD-blue

implements a heuristic load balancing where in a certain period of steps, the boundaries of

the processor domains are adjusted to distribute the particle load close to evenly between

them. We choose the default configuration, which has a period of 1000 steps, allows x-,

y- and z-direction adjustments and tolerates an imbalance of 1.02. Furthermore, the type

(i.e., fluid or solid) of the neighbor is not always the same. For instance, if particle i and

j are in the same warp and both have five neighbors, but the first neighbor of i is a solid

particle and the first neighbor of j is a fluid particle, warp divergence occur. This could

lead to warp divergence (see section 2.2.2), because there are several computations that

have only to be done for fluid neighbors. Even if all processes have a similar number of

particles, this does not automatically mean that the number of fluid and solid particles is

similar. Another situation where warp divergence occurs is when a neighbor particle is not

in the support of the kernel function. We recall that the NNS algorithms search in a larger

4.4. IMPLEMENTATION ASPECTS AND CHALLENGES 77

radius to avoid rebuilding the neighbor list at each time step. A good compromise must

be found between a buffer for the NNS algorithm, so that it does not have to be executed

in every time step, and the resulting warp divergence in the SPH method because several

particles are not in the cut-off radius.

Table 4.2 shows these warp divergences for the main GPU kernel functions, with the

rows describing different code lines where the warps diverge (for the PSA-HIGH bench-

mark scenario described in section 4.5). The percentage of warp divergence is measured

using the NVIDIA Visual Profiler, where we consider the first call of each kernel in the

time loop. The columns correspond to the three main GPU kernel functions of the SPH

method and the four rows correspond to different lines in these functions where warp

divergence occurs. Here ‘N/A’ indicates that no further warp divergence occurs, i.e. that

the force kernel only has one warp divergence. We see that warp divergence occurs com-

paratively often, but this cannot be avoided at least not by using the Verlet list. Another

possibility is to use a pairs list as we use in section 4.4.3.

Kernel force dens.+pre. noslip
eq. (4.37) eqs. (4.16)+(4.28) eqs. (4.30)+(4.31)

Divergent Execution in %

72.5 24.0 38.7
N/A 11.9 27.3
N/A 11.9 21.8
N/A 11.9 10.5
N/A 2.3 N/A

Table 4.2: Warp divergence, single GPU K40c.

Despite being meshless, the SPH method can be compared to numerical linear algebra

operations as described by the analogy to the CSR matrix above, and thus exhibits the

same challenges as unstructured matrix codes [86]. For many computations data from

all neighbors are necessary, e.g., in the momentum equation (4.2). The nearest neighbor

search is a particularly expensive algorithm, which scales with O(kN), with k being

proportional to the average number of neighbors and N being the number of particles

[74]. Furthermore, each particle generally has a different number of neighbors, which

means that the loop over all neighbors has different numbers of iterations. Hence, if the

particles of two threads in a CUDA warp have a different number of neighbors, the thread

with fewer neighbors is idle for several iterations (the mismatch between the number of

neighbors) of this loop, due to the SIMT execution. We already mentioned above that

this is not that critical if all threads per warp have about the same number of neighbors.

However, an iteration of this loop usually consists of many instructions, so warp divergence

here is quite expensive (see section 2.2.2).

Additionally to this imbalance in the work, the memory accesses are very unstructured.

In order to achieve optimal memory access patterns, it is necessary to store not only all

particles but also all their neighbors close to each other in memory to achieve optimal

data reuse through a single cache line on CPUs and GPUs. Of course, this is generally

78 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

impossible to achieve, and cache misses sometimes have larger and sometimes smaller

adverse effects. For GPUs, the problem is more pronounced because the CUDA warp size

(SIMT) far exceeds the SIMD width on CPUs. In terms of latency hiding, it is obviously

not possible to use the full capacity of the device if there are fewer particles than CUDA

cores.

4.4.3 Improvements for the GPU Implementation

In order to achieve further accelerations, or higher GPU against CPU accelerations, we im-

prove the (GPU-) implementation. We first present two modifications that do not change

the neighborhood structure and are therefore relatively easy to implement, which we refer

to as Modification 1 and Modification 2. After that we introduce another modification

that involves major structural changes to the code because it uses a different neighbor list.

The modifications are independent of each other and can each be implemented and used

without the others. However, we define the modifications here as successive modifications,

so that later modifications include the previous ones or their concepts.

Modification 1 Since density, pressure and energy are the essential properties of a

particle, it is common to store them as triples. This results in a so-called Array of

Structures which is less suitable for GPU implementations than a Structure of Arrays

(see section 2.2.5). The first modification is therefore the use of a Structure of Arrays as

it is more efficient to use three arrays instead of one, because one cache line loads more

needed data, and less cache lines need to load.

Modification 2 Since there is always a small latency when the CPU launches a GPU

kernel, another common strategy for improving the GPU code is to merge as many CUDA

kernels as possible. This can result in less overhead on kernel startup, better data reuse,

and fewer cache misses. In our implementation, it is possible to combine all kernels that

are between the communication phases, which means that the calculation of pressures and

densities can be done in the same kernel. Besides eliminating the launch overhead, this

leads to the fact that ρi, which is otherwise recalculated in the density calculation, can be

reused in the pressure calculation, thus eliminating latency since this value is still in the

cache and need not be stored to DRAM and loaded again, as in an implementation with

multiple individual kernels. Similarly, the calculation of the boundary conditions and the

force calculation can be merged. Here the pressure and velocity values calculated in the

boundary condition calculation can be reused.

Modification 2 is conceptually independent, but implemented as an incremental mod-

ification, so it contains the first modification.

4.4. IMPLEMENTATION ASPECTS AND CHALLENGES 79

Alternative nearest neighbor search approach

One challenge we described in section 4.4.2 is that the loops over neighbor particles cause

warp divergence. To overcome this issue, we implemented another NNS algorithm that

uses a pair neighbor list instead of a Verlet neighbor list.

The warp divergence, caused by a loop over all neighbors (see section 4.4.2), can be

eliminated by letting a thread represent a pair of neighbors instead of a particle. However,

the neighborhood relationships would have to be in a pairs list instead of a Verlet list

(see figure 4.10). Thus, we need a function that, according to the NNS, rewrites the

P3 P0

P1 P2

P4

2 2 3 0 1

0 2 4 7 7

P1 P2 P0 P2 P0 P1 P4 P2

P1, P0 P2, P1 P4, P2 P2, P0

n neigh

head list

nlist

pairs list

Verlet list

pairs

particle interactions

Figure 4.10: Example for a Verlet neighbor list and a pairs neighbor list. The array
n neigh contains the number of neighbors per particle, the neighbors of every particle are
listed in the nlist array and the position at which the neighboring particles start in the
nlist array for each particle is listed in the head list array.

neighborhood relationships into a pairs list, or an algorithm that writes the neighborhood

relationships directly into a pairs list. Since the former leads to an overhead, it is better

to implement a new NNS. Furthermore, atomic operations are no longer inefficient on

current GPU hardware as they are on older hardware, so NNS algorithms as described in

[73] are often faster on current hardware [73]. For this reason, we implement a new NNS

algorithm based on the idea of [73] that writes the neighborhood relationships directly to

a pairs list. The goal is not only to achieve an acceleration of the NNS algorithm, but

also an acceleration of the entire force computations by using the pair structure.

Basic idea of the nearest neighbor search The basic idea is to divide the particles

into cells, whereby the complexity of the neighbor search can be reduced to O(kN), where

k is proportional to the average number of neighbors and N is the number of particles.

This approach is described, e.g., in [7]. The basic segmentation into cells is identical to the

two cell list based HOOMD-blue NNS algorithms. This also means that the HOOMD-blue

and our NNS algorithm have the same numerical scalability.

The first step of our nearest neighbor search is to create axis-aligned cells of the size

cell size x, cell size y and cell size z so that the whole domain is covered. The

80 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

cells are numbered continuously from top back left to bottom front right, or x-minor

to z-major (see figure 4.11). Furthermore, the particles are sorted into the cells and

. . .

. . .

. . .

. . .

..
.

..
.

..
.

..
.

..
.

..
.

. .
.

. .
.

..
.

..
.

i i+1 i+2

j j+1 j+2

17

18

19

20

21
22

71

72

73

74

75
76

77

78

79

Figure 4.11: The domain is covered by cells numbered from the top back left to bottom
right front. The particles are renumbered so that the particles lie linearly in the cells.

renumbered so that the particles in cell 0 have the numbers 0 to #particles in cell 0−1,

in cell 1 the numbers #particles in cell 0 to #particles in cell 0 +#particles in cell 1−1

(see figure 4.11). Afterwards, the nearest neighbor search is carried out using a local brute

force algorithm, which is explained in the next paragraph.

The overall process is the following:

1. Create cells

2. Fill particles into cells / renumber particles by cells, x minor, z major

3. ’Local brute force’ search over neighboring cells

Local nearest neighbor search Each warp loads a block of 32 particles from the

sorted particles and stores them in shared memory. Then an iteration is performed over

all neighboring cells (with potential interaction pairs). That means each warp loads

particles from a neighboring cell and compares them with the particles in shared memory.

Afterwards a warp loads another 32 particles from a neighboring cell until all particles

from neighboring cells are compared with the particles in shared memory. This means

that a local brute force NNS is performed for the particles loaded in shared memory. Since

all neighbor pairs must and may only exist once, we only search for neighbors that are

located in cell numbers that have a smaller cell number than the particles in the shared

memory. That means, especially if the pair (p, q) is in the pairs array, the pair (q, p) is

not in it. We recall that the cell list algorithms implemented in HOOMD-blue need to

search all neighboring cells.

4.4. IMPLEMENTATION ASPECTS AND CHALLENGES 81

0 1 2

3 4 5

Figure 4.12: Local ‘brute force search’. Black particles are loaded into shared memory,
brown are compared in the first iteration, purple in the second and orange in the third
iteration.

This is illustrated in figure 4.12. The black particles are those loaded into shared

memory by a warp. In the first iteration, the 32 threads of this warp load the brown

particles and check if they are adjacent to the black particles. In the second iteration the

purple particles are compared and finally the orange particles.

We use the fact that particles, that are located in cells that are adjacent along the

x-axis, are linearly stored in the memory (x-minor). Furthermore, because of this sorting

we know that all particles loaded into the cache are in cells ’between’ the first and last

loaded particle. For the 32 loaded particles this means that for the cell number ci of

particles i (ci = c idx(xi, yi, zi)) it holds:

c idx(x0, y0, z0) ≤ c idx(xi, yi, zi) ≤ c idx(x31, y31, z31) for i = 0, ..., 31

The set of cells that have potentially neighbor particles for the particles in the cache, is

the union of all sets of cells with potential neighbors for each particle in the cache. For

this we look at figure 4.12 again. The black particles are the 32 particles loaded into the

cache. Due to the existing continuous renumbering of the particles by cell, we know that

all 32 particles are in cells between the first and last particle (here between cell 4 and 5).

Since we are only looking for particle pairs of the type (i, j) with i < j, only particles in

cells 0, 1, 2 and 3 and the 32 particles loaded particles are considered as neighbors.

Disadvantages of this approach When creating the neighbor list, all threads must

know at which position in the pairs array the particle pairs should be written. For this

purpose, the maximum number of pairs a warp can find is calculated in advance and a

buffer with this size is allocated. However, in order to write the particles continuously

into the pairs array all threads within a warp must know which of the other threads in

the same warp have found a neighbor pair. We discuss the situation which is illustrated

in figure 4.13, where thread 1, 7 and 9 find a neighbor pair and all other threads find

none. Each of these threads has to know, at which position it has to write the found pair,

82 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

t0 t1 t2 t7 t8 t9 t10 t31t6
0 1 0 0 1 0 1 0 0

warp 0 warp 1

p1 p2 p3 p4 p10

3 7

buffer buffer

p1 p2 p3 p4 p10

warp 2

p11 p15

p11 p15

5
aggregatedAtomic aggregatedAtomic aggregatedAtomic

buffer

aggregatedAtomic aggregatedAtomicaggregatedAtomic

pairs list

local list

threads
found pair

Figure 4.13: Creating pairs list using aggregated atomics.

which can be computed by an atomic add. After that, thread 1 writes its pair to the first

position, thread 7 its to the second and thread 9 its to the third position. Additionally

the number of pairs found by a warp must be counted to fill the pairs array continuously

without any ‘gaps’ caused by the buffer. To get this information per warp an atomic

add could be used. As described in section 2.2.3 this can lead to a performance decrease.

But in this case the operation can also be done by aggregated atomic add without losing

much performance (see section 2.2.3 and [3, 93]). Such a warp aggregated operation that

increases a value by one is shown in listing 4.1. All threads that have found a neighbor

pair call the aggregatedAtomic function. In line 2 a mask is created, which indicates

which threads in this warp have executed the function. Then in the next line an active

thread is selected, which then executes an atomic operation to increase the input value by

the number of active threads. In line 8 an individual result is calculated for each active

thread, so if thread 1, 7 and 9 execute the aggregatedAtomic function and the input

value is 0, thread 1 gets the value 1 back, thread 7 gets the value 2 and thread 9 gets

the value 3. In the best case this reduces the costs of 32 competing atomicAdds to one

non-competing atomicAdd.

1 d e v i c e i n t aggregatedAtomic (i n t ∗ptr) {
2 i n t mask = match any sync (act ivemask () , (unsigned long long) ptr) ;

3 i n t l e a d e r = f f s (mask) − 1 ; // s e l e c t a l e ade r who does the r e a l atomic

4 i n t r e s ;

5 i f (l a n e i d () == l e a d e r)

6 r e s = atomicAdd (ptr , popc (mask)) ; // l e ade r does the update

7 r e s = s h f l s y n c (mask , res , l e a d e r) ; // ge t l e ade r ’ s o l d va lue

8 r e s += popc (mask & ((1 << l a n e i d ()) − 1)) ; // input va lue increased by 1

9 return r e s ;

10 }

Listing 4.1: Aggregated atomic to increase a value by 1. Functions starting with ‘ ’ are

CUDA intrinsics, see [120].

4.4. IMPLEMENTATION ASPECTS AND CHALLENGES 83

Further modifications due to the pairs list Because of the new pair structure,

the loop over all particles and the loop over all neighboring particles no longer make

sense. Instead, all neighbor pairs are iterated over, or from the point of view of the

GPU implementation, one thread represents one particle pair. Through this structure it

is possible to eliminate even more warp divergence. Sorting all pairs so that all fluid-

fluid-particle pairs are listed first, then all fluid-solid pairs, and then all solid-solid pairs

can eliminate any divergence that occurs when a specific calculation occurs only for a

particular pair combination. Thus, warp divergence only occurs if a pair is not within the

cutoff radius of the SPH method.

However, there is another problem with this approach since each thread stands for a

pair of particles, many operations must be protected by atomic operations. However, this

should not usually result in much performance loss, especially since the first particle of a

pair in a warp is different (before sorting by interaction type). Furthermore, the fact that

there are many more neighbor pairs than particles means that the CUDA grid is made

up of many more threads, offering more ways to hide latency.

84 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

4.5 Numerical results

In this chapter we evaluate the new SPH module and the improvements presented. For

this purpose we first evaluate which improvements show an efficient implementation on

which platform. Then we evaluate the most efficient implementation with respect to weak

and strong scalability on both CPU-based and GPU-based HPC clusters. In the end we

also evaluate the acceleration potential by using GPUs instead of CPUs.

4.5.1 Benchmark definition

We employ the following four benchmark scenarios, see also figure 4.14:

1. Lid-Driven Cavity (LDC)

2. High-Porosity Packed-Spheres Array (PSA-HIGH)

3. Low-Porosity Packed-Spheres Array (PSA-LOW)

4. Variable Cross-Section Channel (VC)

These benchmark scenarios are common representative choices in fluid dynamics and

flow through porous media, and constitute, from best to worst, the anticipated strong

scaling behavior of the spatial domain decomposition as explained below. Due to the

high particle numbers in the LDC benchmark, the radius of the NNS algorithm is set

equal to the cut-off radius of the SPH method. However, this leads to the fact that

the NNS has to be performed in every time step. For the other simulations we set the

radius of the NNS method 5% larger than the cut-off radius. To compare the NNS

method based on the Verlet list and the one based on the pairs list we use the LDC

and the PSA-HIGH benchmark. Weak scalability is exemplarily assessed for the PSA-

HIGH and PSA-LOW problems, as these scenarios are most representative for the Digital

Rock Physics applications we are ultimately interested in. Table 4.3 lists the number of

particles for each benchmark problem when assessing strong scalability, and at the same

time the baseline for our weak scalability experiments. The number of solid particles is

measured after eliminating the solid particles that have no neighbor fluid particles within

their compact support κh, i.e., after eliminating solid particles that never influence fluid

particles.

fluid particles solid particles total

a) LDC 10.000.000 120.360 10.120.360
b) PSA-HIGH 4.970.912 527.992 5.498.904
c) PSA-LOW 1.071.392 3.061.830 4.133.222
d) VC 2.056.248 389.604 2.442.252

Table 4.3: Number of particles in the benchmark scenarios.

4.5. NUMERICAL RESULTS 85

(a) Lid-Driven Cavity (b) Packed-Spheres (high porosity)

(c) Packed-Spheres (low porosity) (d) Variable Cross-Section Channel

Figure 4.14: Illustration of the four benchmark scenarios.

HOOMD-blue, similar to many particle codes, measures performance in time steps per

second (TPS), with a higher value indicating a better performance. For each benchmark

scenario, we report the TPS metric for 100 time steps, and perform file I/O only at the

very beginning (to load the geometry etc.) and the end (to save the simulation result).

4.5.2 Hardware details

All CPU experiments are conducted on BinAC, a Tier-3 machine operated by the Uni-

versity of Tübingen as part of the BW-HPC strategy. This cluster consists of 300 nodes.

A dual-socket node contains two Intel Haswell E5-2680v4 processors (base frequency

2.4 GHz, 12 cores), leading to a total number of 24 cores per node since we do not use

hyperthreading due to diminishing returns. Each node includes 128 GB DDR4 RAM. In

addition, this cluster has another 60 nodes with the same setup as the other nodes and

also contain two NVIDIA Tesla K80, that we use for the GPU experiments. The K80 de-

sign comprises two identical Kepler GPUs per accelerator board, each with its dedicated

GDDR memory, for a total of two times two GPUs per node. In summary, the BinAC

cluster constitutes the state of the art in GPU clusters as of 2015. Since the Kepler

architecture has been superseded by the Pascal and Volta architectures, we also use the

86 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

Cray CS-Storm at HRLS. A dual-socket node of this Cray CS-Storm contains two Intel

XeonGold 6240 processors (base frequency 2.6 GHz, 18 cores) and eight NVIDIA Tesla

V100, connected via NVLINK2, which provides a total bandwidth of 300 GB/s. Each

node includes 768 GB DDR4 RAM. Unfortunately we can not generate CPU scalings for

more modern hardware due to lacking access to more modern CPU hardware in sufficient

numbers.

4.5.3 Selection of the fastest NNS algorithm

In order to use the best available NNS algorithm for our applications, we test all three

NNS algorithms previously available in HOOMD-blue on both the CPU and the GPU.

We do this by running 100 time steps with one BinAC node or one K80 GPU each for

the LDC and the PSA-HIGH benchmarks. We choose these two benchmarks because the

LDC benchmark is actually very thin in one dimension and thus represents a special case,

and the PSA-HIGH benchmark can be seen as a deputy for the other benchmarks, which

do not differ in the arrangement and structure of the particles since for the neighborhood

search the property of fluid or solid particles is irrelevant. The results are shown in table

4.4, and point out that the tree algorithm almost always yields the best results. Except

for the LDC benchmark on the GPU, the cell algorithms is the better choice. In the

following numerical simulations we use the most suitable NNS algorithms, i.e. for the

LDC benchmark on the GPU the cell algorithm and otherwise always the tree algorithm.

CPU K80
LDC PSA-HIGH LDC PSA-HIGH

cell 0.23 0.13 0.39 0.18
stencil 0.23 0.14 0.38 0.19
tree 0.24 0.14 0.35 0.21

Table 4.4: Obtained TPS with the different NNS algorithms for the LDC and PSA-HIGH
benchmark.

4.5.4 Evaluation of the improvements

In these experiments we want to investigate whether the modifications described in section

4.4.3 lead to a performance increase. Since the modifications have no direct impact on

communication, we limit ourselves to using only a single GPU.

Therefore, we use both an NVIDIA K80 (one of the two GPUs) from the BinAC cluster

as reference for older architecture and an NVIDIA V100 from CS-Storm as reference for

current hardware.

Here we test our modifications for the LDC and the PSA-HIGH benchmarks because

the first one covers the best possible case and the second one is representative for our use

cases of CT-scans. Thereby we execute 100 time steps each. Since the LDC benchmark is

4.5. NUMERICAL RESULTS 87

too large for the memory of one GPU, we reduce it by a factor of 4 so that it has 2.500.000

fluid particles.

We recall that due to the large particle numbers in the LDC test, the NNS radius

corresponds to the cut-off radius of the SPH method. Therefore, in this benchmark the

NNS algorithm is executed relatively more often than in the other benchmarks. Table 4.5

lists the results for the LDC benchmark and table 4.6 lists the results for the PSA-HIGH

benchmark.

Baseline Mod. 1 Mod. 2 Pairs

K80
TPS 0.34 0.36 0.40 0.34
Accel. 1.06 1.18 1.00

V100
TPS 3.27 3.68 4.00 4.83
Accel. 1.13 1.22 1.48

Table 4.5: TPS and Accelerations for the different improvements for the LDC benchmark.

Baseline Mod. 1 Mod. 2 Pairs

K80
TPS 0.16 0.17 0.21 0.17
Accel. 1.06 1.18 1.06

V100
TPS 1.14 1.22 1.40 3.05
Accel. 1.07 1.23 2.68

Table 4.6: TPS and Accelerations for the different improvements for the PSA-HIGH
benchmark.

Both benchmarks show that modification 1 produces an acceleration of 6% on the

K80 for both benchmarks and modification 2 for LDC an acceleration of 18% and for the

PSA-HIGH of 13%.

The benchmarks also show that the new approach with the new NNS and the pairs list

do not gain in performance in older architectures such as the NVIDIA K80, as Modification

2 achieves the highest accelerations.

If we use the V100 instead, modification 1 and 2 already lead to higher accelerations

than on the K80. In addition, the new approach with the pairs list is the clear winner

on this architecture with the TPS value for the PSA-HIGH benchmark even being more

than twice as high as with modification 2.

To identify where the advantages of this method are rooted in, we look at the individual

runtimes of the NNS, force, density and pressure and boundary computations for one

time step. It should be noted that the first time step consists of a preparation step

and a time step. This corresponds to two iterations of algorithm 4.1 where the NNS

algorithm is executed in both iterations. The corresponding runtimes are shown in table

4.7. In the LDC benchmark the accelerations stem from the NNS and the pressure/density

calculation, where the NNS times also include all pre-calculations for the neighbor search.

The force calculation on the other hand becomes a bit more expensive. This is due

to the fact that this benchmark consists mainly of fluid particles, so there is less warp

88 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

LDC PSA-HIGH
NNS force den./pre. bound. NNS force den./pre. bound.

Mod. 2 357 173 187 2 548 461 574 38
Pairs 180 187 84 2 244 368 247 30

Table 4.7: Walltimes in ms for one iteration on a Tesla V100.

divergence due to different particle interactions. Another reason is that the domain is very

homogeneous, so that all particles have the same number of neighbors. Also, the fact that

only fluid particles occur in the interior of the domain, and thus no further re-sorting by

particle pairs occurs, ensures, that the slow atomic operations occur more frequently in

this benchmark.

With the PSA-HIGH benchmark the runtime reductions are even higher. It is men-

tioned again that in this case the NNS is not performed in every time step, so that in

table 4.6 we see only one factor which corresponds to the runtime reduction in the force

computation.

As in section 4.4.2, we considered again the warp divergence of the three main SPH com-

ponents force computation, pressure and density computation and the noslip boundary

condition computation, while using the presented algorithm this time, which creates a

pairs list. The incidence of warp divergence is measured using NVIDIA Visual Profiler,

where we consider the first call in the time loop at a time. The resulting numbers are

shown in table 4.8, where each row describes one warp divergence in the corresponding

kernel. Warp divergences occur in up to 70-80 % of the kernels, which is still high and

partly even higher than with the Verlet list approach (cf. table 4.2), but there are fewer

warp divergences per kernel. Only the force calculation has two warp divergences now in-

stead of one. Furthermore, the warp divergences in this case are all atomic operations (or

even warp aggregated atomics) which are no longer as slow on current architectures. In

particular, the warp divergence caused by different numbers of neighbors, which contains

a lot of instructions and is therefore very expensive, could be eliminated.

Kernel force dens.+pre. noslip
eq. (4.37) eqs. (4.16)+(4.28) eqs. (4.30)+(4.31)

Divergent Execution in %
75.7 75.8 84.6
52.6 39.7 54.3

Table 4.8: Warp divergence using the modified NNS algorithm, single GPU K40c.

4.5.5 Strong scalability

We recall that HOOMD-blue, similar to many particle codes, measures performance in

TPS, where a higher value indicates better performance. Furthermore, we adopt this

metric, and additionally derive the parallel efficiency En (normalized to the granularity

of nodes n rather than cores/processes/GPUs) and the GPU acceleration factor S as

4.5. NUMERICAL RESULTS 89

follows:

En =
TPSn/TPS1

#Compute units
S =

TPSGPU

TPSCPU

Here #Compute units describes a CPU node for the CPU runs, and usually a GPU for

the GPU runs. However, we always set #Compute units to the smallest possible number

of GPUs, so if the benchmark is too big for the memory of one GPU, we start with

two. These normalizations are slightly nonstandard, but we consider them much more

meaningful on the application level than the classical textbook definitions of efficiency

and speedup.

For each benchmark scenario, we report the TPS metric for 100 time steps, and perform

file I/O only at the very beginning (to load the geometry etc.) and the end (to save the

simulation result). In each case, we only use the most efficient variant for the respective

platform, i.e., Modification 2 with the HOOMD-blue NNS algorithm is used on the BinAC

cluster, and we use the new variant with the pairs list on CS-Storm. We use up to 48

GPUs of type K80 for this purpose, because for more GPUs the number of particles is

too small to saturate the GPUs with enough work. This corresponds to exactly 12 nodes

in the BinAc cluster. We always mean 24 K80 cards when we talk about 48 K80 GPUs,

because one K80 card contains two GPUs. Both GPUs in a K80 have 12 GB of memory.

A V100 GPU, as included in the CS-Storm cluster, has 32 GB of memory, so 18 V100

GPUs provide the same amount of memory as 48 K80 GPUs. To use only whole nodes,

we use up to 16 V100 GPUs for this scaling investigation. Figures 4.15–4.18 depict the

results of these strong scaling tests, whereas figure (a) always shows the CPU and the

K80 scaling and figure (b) compares the K80 and the V100 simulations. Precise numbers

can be found in the in tables 4.9–4.12.

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40 45 50

T
P

S

Number of CPU-Nodes / GPUs

CPU simulations
K80 simulations

Ideal scaling (CPU)
Ideal scaling (K80)

(a)

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16

T
P

S

Number of GPUs

K80 simulations
V100 simulations

Ideal scaling (K80)
Ideal scaling (V100)

(b)

Figure 4.15: Strong scalability – LDC benchmark. (a) TPS for simulations on CPU and
K80, (b) TPS for simulations on K80 and V100.

For the LDC test, we observe almost perfect strong scalability for the CPU and GPU

implementation. This is expected, because almost all particles represent the fluid phase,

and their distribution is very homogeneous with respect to the spatial domain decompo-

sition. The experiments for even larger node counts emphasize this, as efficiency degrades

90 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

very slowly (see table 4.9). Thus the parallel efficiency E for 12 CPU nodes is 98 %, that

for 416 K80 GPUs 98 % and that for 16 V100 GPUs 98 %. Only beyond 24 CPU nodes

and 48 K80 GPUs does the parallel efficiency decrease to 89 % and 93 % respectively. Here

it is important to note that the pairs list based neighbor search is used for the simulation

on the V100. Although a V100 with 5,120 CUDA cores has more than twice as much as a

GPU in a K80 card (with 2496 cores), there are many more neighbor pairs than particles,

so the pairs list approach, where a thread can be associated with a neighbor pair, can

hide latencies better.

#CPU nodes / CPU nodes GPU K80 GPU V100
#GPUs TPS E TPS E Accel. TPS E Accel.
1 0.059 N/A N/A
2 0.119 1.01 0.216 1.82 3.07 25.80
4 0.233 0.99 0.428 0.99 1.84 6.12 1.00 26.27
8 0.469 0.99 0.867 1.00 1.85 12.01 0.98 25.61
12 0.693 0.98
16 1.692 0.98 24.01 0.98
24 1.254 0.89
32 3.333 0.96
48 2.517 0.89 4.830 0.93 1.92

Table 4.9: Strong scalability – LDC benchmark.

The PSA-HIGH scenario scales only slightly worse, maintaining 90 % and 88 % parallel

efficiency for 12 CPU nodes and 16 K80 GPUs respectively, see table 4.10 for the exact

numbers. If the number of GPUs is increased and 48 K80 GPUs are used, the parallel

efficiency is still 79 %. The parallel efficiency for 48 CPU nodes is with 86 % even better.

This small degradation compared to the previous test case is expected, because the overall

number of particles is cut in half compared to the previous benchmark, (see table 4.3), and

also the discussion of the next experiment. In addition, the ratio of fluid to solid particles

is slightly less favorable. Also the numbers for the runs on the V100 are comparable to

the K80 ones. As in the LDC test we can see that the parallel efficiency decreases slower

than for the simulations on the K80.

#CPU nodes / CPU nodes GPU K80 GPU V100
#GPUs TPS E TPS E Accel. TPS E Accel.
1 0.136 0.214 1.57 3.04 22.35
2 0.255 0.94 0.387 0.90 1.51 6.01 0.99 23.57
4 0.496 0.91 0.738 0.86 1.49 11.94 0.98 24.07
8 0.981 0.90 1.501 0.88 1.53 23.93 0.98 24.39
12 1.468 0.90
16 3.018 0.88 47.38 0.97
24 2.878 0.88
32 5.057 0.74
48 5.612 0.86 8.166 0.79

Table 4.10: Strong scalability – PSA-HIGH benchmark.

4.5. NUMERICAL RESULTS 91

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30 35 40 45 50

T
P

S

Number of CPU-Nodes / GPUs

CPU simulations
K80 simulations

Ideal scaling (CPU)
Ideal scaling (K80)

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10 12 14 16

T
P

S

Number of GPUs

K80 simulations
V100 simulations

Ideal scaling (K80)
Ideal scaling (V100)

(b)

Figure 4.16: Strong scalability – PSA-HIGH benchmark. (a) TPS for simulations on CPU
and K80, (b) TPS for simulations on K80 and V100.

As expected, the PSA-LOW scenario scales slightly worse (especially on the CPU), as

there are much more solid than fluid particles: We simulate fluid flow in a domain that

is specified by spatially stationary solid particles. Hence, the neighbor list update of the

fluid particles requires mostly local communication (the fluid particles move more or less

at the same speed), whereas the neighbor list update for fluid-solid interaction increases

the amount of non-local communications, simply because fluid particles retain their ‘fluid’

neighbors but vary their ‘solid’ neighbors. For low node counts, we observe acceptable

efficiencies of 90 % on 12 BinAC nodes (288 cores). If we increase to 48 CPU nodes the

parallel efficiency decreases to 48 %. When using few GPUs, the latencies can still be

hidden very well, and the parallel efficiency is good for 8 K80 GPUs with E = 0.96 and

nearly perfect for up to 8 V100 GPUs with E = 0.98. But if we increase the number to

48 GPUs (K80), the parallel efficiency decreases to 73 %. The noticeable loss of parallel

efficiency for more than 32 GPUs (8 GPU nodes) is explained by the number of fluid

particles per GPU: As soon as the number of particles drops below the maximum number

of simultaneous CUDA threads per GPU, latency hiding becomes impossible in general.

Also for the pairs list approach on the V100, the behavior is similar to that on the K80.

#CPU nodes / CPU nodes GPU K80 GPU V100
#GPUs TPS E TPS E Accel. TPS E Accel.
1 0.349 0.338 0.97 6.84 19.60
2 0.647 0.93 0.672 0.99 1.03 13.57 0.99 20.97
4 1.128 0.81 1.295 0.96 1.15 26.99 0.99 23.93
8 2.033 0.73 2.596 0.96 1.28 53.87 0.98 26.50
12 2.891 0.69
16 4.931 0.91 100.01 0.91
24 5.061 0.60
32 9.117 0.84
48 8.081 0.48 11.767 0.73 1.46

Table 4.11: Strong scalability – PSA-LOW benchmark.

92 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20 25 30 35 40 45 50

T
P

S

Number of CPU-Nodes / GPUs

CPU simulations
K80 simulations

Ideal scaling (CPU)
Ideal scaling (K80)

(a)

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14 16

T
P

S

Number of GPUs

K80 simulations
V100 simulations

Ideal scaling (K80)
Ideal scaling (V100)

(b)

Figure 4.17: Strong scalability – PSA-LOW benchmark. (a) TPS for simulations on CPU
and K80, (b) TPS for simulations on K80 and V100.

Finally, the VC benchmark (figure 4.18) scales only moderately well on CPUs, with

58 % parallel efficiency for 12 CPU nodes and 52 % for 48 CPU nodes, or 54 % parallel

efficiency for 16 K80 GPUs and 49 % parallel efficiency for 48 K80 GPU, and 61 % parallel

efficiency for 16 V100 GPUs. Even though the solid-to-fluid ratio is more favorable than

in the previous case, the domain decomposition leads to strongly varying neighbor counts,

and thus scaling detriments because of the irregularity of the problem: Technically, one

GPU is associated with one MPI rank, while one BinAC node (12+12 cores) executes 24

MPI ranks, which leads to more and smaller MPI messages, since the domain of each rank

has more neighbors, but the interfaces to the neighbors become smaller. Load balancing

(see section 4.4.1) yields a small improvement as we have shown in [128].

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40 45 50

T
P

S

Number of CPU-Nodes / GPUs

CPU simulations
K80 simulations

Ideal scaling (CPU)
Ideal scaling (K80)

(a)

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14 16

T
P

S

Number of GPUs

K80 simulations
GV100 simulations
Ideal scaling (K80)

Ideal scaling (V100)

(b)

Figure 4.18: Strong scalability – VC benchmark. (a) TPS for simulations on CPU and
K80, (b) TPS for simulations on K80 and V100.

Also the accelerations GPU vs. CPU can be taken from the tables 4.9–4.12. Both

accelerations are accelerations compared to the CPU runs. The highest accelerations are

obtained for the two cases which consist mainly of fluid particles and are only bounded

by solid particles and interior domain consists only of fluid particles. This is because

computations of fluid fluid interactions are easier to parallelize (without causing warp

4.5. NUMERICAL RESULTS 93

#CPU nodes / CPU nodes GPU K80 GPU V100
#GPUs TPS E TPS E Accel. TPS E Accel.
1 0.209 0.529 2.53 7.18 34.35
2 0.393 0.94 0.947 0.90 2.41 13.98 0.97 35.57
4 0.567 0.68 1.264 0.60 2.23 20.12 0.70 35.49
8 0.990 0.59 2.284 0.54 2.31 38.87 0.68 39.26
12 1.452 0.58
16 4.535 0.54 70.21 0.61
24 2.668 0.53
32 8.636 0.51
48 5.170 0.52 12.325 0.49 2.38

Table 4.12: Strong scalability – VC benchmark.

divergences) than computations of fluid solid interactions. For the VC benchmark the

accelerations are between 2.23 and 2.51 for the K80. For the LDC benchmark, the K80

achieves accelerations around 1.8. The V100 achieves accelerations between 19.60 and

39.26 which seems high, but is a bit unfair because of comparing against a CPU archi-

tecture that is one generation older. Furthermore, the V100 yields between ∼13 (LDC

benchmark) and ∼24 (PSA-LOW) times faster results than the K80. Slightly lower are

the accelerations for the PSA-HIGH benchmark, which are between 1.49 and 1.57 for

the K80. However, due to the better parallel efficiency of the GPU implementation, the

acceleration for more CPU nodes or GPUs increases. The same behavior can be seen in

the PSA-LOW benchmark, where in this case a GPU is slower than a CPU node. For the

K80 the accelerations are only between 0.97 and 1.46.

4.5.6 Weak scalability

Figure 4.19: Domain setup for weak scaling study.

Next we investigate weak scalability. Figure 4.19 shows the setup for the weak scaling

analysis. The domain is periodically replicated in the e3-direction, in such a way that

after the domain decomposition, each node contains the same amount of fluid and solid

particles (which are later denoted with the index f and s, respectively). Additionally, the

solid particles that have no interaction with the fluid particles (|xs−xf| > κh) are removed

94 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

from the domain. Periodic boundary conditions are set in e3-direction, i.e., vin = vout.

This ‘application weak scaling’ may lead to slight variations of overall particle counts, as

the number of particles associated with periodic boundary conditions remains more or

less constant, while the overall number of particles increases proportionally. The results

of the weak scaling test series of the two Packed-Spheres benchmarks with high and low

porosity distribution are shown in figures 4.20 and 4.21 depict.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 2 4 6 8 10 12

Number of CPU-Nodes / GPUs

 32

 32.2

 32.4

 32.6

 32.8

 33

 33.2

T
P

S

CPU simulations

K80 simulations

V100 simulations

Ideal scaling (CPU)

Ideal scaling (K80)

Ideal scaling (V100)

Figure 4.20: Weak scalability –
PSA-LOW scenario.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 2 4 6 8 10 12

Number of CPU-Nodes / GPUs

 14

 14.2

 14.4

 14.6

 14.8

 15

 15.2

 15.4

T
P

S

CPU simulations

K80 simulations

V100 simulations

Ideal scaling (CPU)

Ideal scaling (K80)

Ideal scaling (V100)

Figure 4.21: Weak scalability –
PSA-HIGH scenario.

For the K80 GPU implementation we clearly observe perfect weak scaling when factor-

ing out the specific details of the BinAC architecture: If we use two GPUs, we stay in the

same card (with distinct physical memory), extending to four GPUs still does not involve

communication over the network since two K80 GPUs are in one node. Going beyond four

GPUs involve Infiniband communication and yields almost perfect weak scaling behavior.

Since we start with a GPU and a CPU node we can better compare the CPU and GPU

implementation, since a CPU node uses only a single shared memory, as does a GPU.

This means that both one CPU node and one GPU only need internal communication

and memory has to be transferred when moving to 2 CPU nodes or 2 GPUs.

A similar reasoning holds for the CPU runs, at least in the high porosity scenario which

comprises much more uniformly-behaving fluid particles than solid particles. The loss of

scaling on CPUs compared to GPUs for the PSA-LOW benchmark (cf. figures 4.21

and 4.20) is mostly determined by the different initial spatial domain decompositions:

One GPU is associated with one MPI rank, while 12+12 BinAC execute one MPI rank

each. Despite all shared memory optimizations of the underlying OpenMPI library, the

communication pattern of the CPU-only implementation is substantially different than

on GPUs with OpenMPI, and the observed scaling weakness takes place on CPUs much

earlier than on GPUs. This is also the reason why in the PSA-LOW scenario the TPS

value increases when going from one to two nodes, which is also reproducible on another

system [128]. If we look at the TPS values for the weak scaling of the V100 GPUs in figure

4.20 and 4.21, the graph of weak scaling looks worse in this case. However, if we consider

the percentage loss when increasing the number of GPUs, it is almost the same as when

increasing the number of K80 GPUs. Just like before with the scaling for the K80 GPUs,

4.5. NUMERICAL RESULTS 95

#CPU nodes / CPU nodes GPU K80 GPU V100
#GPUs TPS TPS Accel. TPS Accel.
1 0.609 0.900 1.48 15.23 25.01
2 0.579 0.898 1.55 14.98 25.87
4 0.596 0.881 1.48 14.92 25.03
8 0.595 0.866 1.46 14.73 24.76
12 0.595 0.858 1.44 14.11 23.14

Table 4.13: Weak scalability – PSA-HIGH benchmark.

the decrease can be explained by the architecture. In the step from one to two GPUs

the NVLINK connection is applied. If we increase the number of cards to four and eight

there is only little loss of speed, all GPUs are connected via NVLINK, but each GPU has

to communicate with more than one other GPU. A further speed reduction occurs when

switching from 8 to 12 GPUs. Here the communication between two nodes is additionally

required, which is realized via an Infiniband connection.

The exact numbers can be found in tables 4.13 and 4.14.

#CPU nodes / CPU nodes GPU K80 GPU V100
#GPUs TPS TPS Accel. TPS Accel.
1 1.255 1.532 1.22 33.19 26.44
2 1.361 1.505 1.11 32.64 23.98
4 1.357 1.418 1.04 32.57 24.00
8 1.191 1.434 1.20 32.42 27.22
12 1.091 1.434 1.31 32.08 29.40

Table 4.14: Weak scalability – PSA-LOW benchmark.

96 4. PARTICLE-BASED SIMULATION OF FLOW IN POROUS MEDIA

4.6 Conclusions

In this chapter we have considered the particle-based simulation of flow in porous media

and presented implementation aspects for the SPH method. This implementation is chal-

lenging for the GPU because the SPH method is a mesh-free method and therefore leads

to an unstructured data structure and data access.

However, this method is also computationally intensive so parallel computing is essential

and GPU computing is helpful. After we described the challenges in section 4.4.2, we

have presented possible improvements in the following section 4.4.3.

Therefore we used following advanced GPU programming techniques:

• We have transformed the Array of Structures approach into a Structures of Arrays.

This is better suited for the architecture and memory access of a GPU. This leads

to less cache misses resulting in less latencies and idle times.

• By smartly fusing different kernel functions it is possible to avoid latencies that

occur when launching the kernel functions. A positive side effect is often that data

can be reused, which leads to less cache misses. Nevertheless you have to take care

not to add additional synchronization barriers.

• Especially on older GPUs atomic operations are very complex, which is why many

state of the art NNS algorithms do not use them. But on current architectures they

are often not that slow anymore. Warp-aggregated atomics also offer the possibil-

ity to hide the disadvantages of atomic operations. We also use warp-aggregated

atomics in this variant in the SPH kernels, because we use a pairs list instead of

the Verlet list. This transition from an atomic avoidance strategy to an approach

where less operations have to be performed but more atomic operations occur, leads

to considerable improvements on current hardware accelerations.

These improvements have been evaluated in section 4.5.4 and we have seen that the

basic improvements on the old K80 architecture have led to accelerations, but even better

accelerations on current hardware. The approach presented in section 4.4.3 of modifying

the NNS algorithm and using a pairs list instead of the Verlet list does not lead to

improvements on older architectures like the K80. On new architectures, however, we

have seen a significant acceleration.

Furthermore, we have shown in sections 4.5.5 and 4.5.6 that our implementation scales

well on the CPU and GPU in both the strong and weak sense.

97

5

Seismic waveform modeling

and inversion

In this chapter, we consider the modeling of wave propagation in anelastic materials and

the waveform inversion. We start in section 5.2 to derive the mathematical model of wave

propagation in anelastic materials. Since the standard modeling approach is not suitable

for the inversion of all physical parameters, we then modify this approach in section 5.3.1.

Here we also modify the optimization problem which determines the relaxation parameters

for the underlying rheological model for a given Q factor. Based on these modifications we

analyze in section 5.3.3 the accuracy of the resulting Q factor approximation and compare

it with the standard approach. In section 5.4 we introduce the waveform inversion, define

the minimization problem and introduce possible regularization procedures. The gradient

of the minimization problem, which is needed to solve the minimization problem, is cal-

culated using the adjoint state method, which is described in section 5.4.3. This method

requires the solution of the adjoint problem, which is derived in section 5.4.4. Afterwards,

we show how to compute the resulting gradient in section 5.4.5. The previously derived

models and methodologies are used in section 5.5 to describe an implementation realiza-

tion. Our presented methods and modifications are studied numerically in section 5.6.

On the one hand, we investigate the influence of attenuation for the adjoint simulation

to verify whether attenuation is necessary in the adjoint simulation. Furthermore, we

compare different regularization methods, since our inverse problems are ill-posed and the

addition of attenuation might have an influence on regularization. In addition, we present

a modified inversion method that can provide faster and better inversion results. Since the

modeling of wave propagation and inversion has become more complex due to the extension

of the method with the possibility of inverting the Q factors, we need efficient implementa-

tions and powerful hardware in addition to efficient solver methods. Moreover, our main

application is in the area of geophysics where the problems encountered in practice are

very large (e.g., high number of sources and receivers, moderately large areas, and inver-

sion problems are costly anyway), so the use of parallel computers is essential and the

use of GPUs helpful. Therefore, our algorithm supports CPU and GPU implementations

and is suitable for small clusters and supercomputers. We investigate our implementation

98 5. SEISMIC WAVEFORM MODELING AND INVERSION

concerning strong and weak scalability in section 5.6.

Since we use the finite differences method to discretize the model equations, which is a very

structured method and thus a method that can be parallelized well, this chapter does not

focus on the implementation details and possible improvements, but on the mathematical

improvement of the model and the reduction of the modeling error.

5.1 Motivation

Seismic waveform inversion is an imaging technology that is used in geophysics but also

has other applications. For instance, it is used in the oil industry to find hidden oil

reservoirs or in medicine to obtain an image of the human brain without using X-ray

tomography [65]. The basic idea of this method is to minimize the mismatch between

synthetic and objective data. For example, the objective data may result from a physical

experiment, or in the simulation context, from a solved forward problem with the desired

medium. These objective data are also called seismograms. However, this information

does not allow direct conclusions to be made regarding the geophysical properties of the

Earth’s structure. To obtain an image of the Earth or other objects an inversion is

necessary. The synthetic data are the data generated by modeling the forward problem

using the reconstructed medium given by the method, which is iteratively improved.

This minimization problem is usually very non-linear and represents an ill-posed inverse

problem. The searched medium is described, e.g., by pressure and shear velocities or

Lamé parameters in the case of geological media, or other properties that describes a

material.

The material to be reconstructed can be different, such as acoustic or elastic material.

However, real material of the Earth is anelastic. In this thesis, we therefore consider

viscoelastic media which approximates the behavior of real Earth material. The viscous

attenuation can have a strong influence on the propagation of seismic waves but is rarely

taken into account in the full waveform inversion (FWI). Full waveform inversion is a

popular inversion technique in geophysics. It is essentially based on the adjoint theory

developed, among others, by Lailly [92], Tarantola and Valette [147] and Crase et al. [47].

Furthermore, such an approach is also necessary to reconstruct the damping parameters

[52]. To solve the minimization problem of the inversion, commonly iterative techniques

are used, like Gauß-Newton or non-linear conjugate gradient methods, to update the initial

model by perturbing it gradually through these cost function gradients. Quasi-Newton

methods like the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and its optimized

l-BFGS version [119, 145] are used in the time domain to invert envelope measurements

or time arrivals [29, 31, 87, 103, 146, 156] or full waveforms [22, 115, 162] at the global

or regional scales.

Due to the ill-posedness of inverse problems, regularization procedures are helpful to

5.1. MOTIVATION 99

make the procedures more robust against, e.g., disturbed input data [4, 58]. The quality of

regularization procedures depends on the structure of the model and the equations of the

forward model. Therefore we want to investigate the influence of established regularization

methods for acoustic and elastic problems on the viscoelastic problems.

In practice, such applications become very large and inverse problems are additionally

computationally challenging. Furthermore, the computational effort is further increased

by the use of viscoelastic equations in both forward and adjoint modeling. An efficient

implementation is, therefore, necessary to obtain the simulation results in the shortest

possible time despite the increased computational effort. In addition, GPUs are suitable

for further accelerating the simulations due to the possible choice of structured discretiza-

tion methods.

100 5. SEISMIC WAVEFORM MODELING AND INVERSION

5.2 Mathematical model

In this section, we derive a mathematical model for wave propagation in anelastic media.

For this purpose, we start with the general wave equation for any relaxation function.

Then, we derive a relaxation function that describes the behavior in anelastic material.

Therefore, we derive a corresponding rheological model.

5.2.1 Wave equation

The conservation of linear momentum implies

ρ∂ttu = ∇ · σ + f, (5.1)

where u = (ux uy)
> is the displacement vector, ρ is the mass density and f = (fx fy)

>

are the body forces. A general relation between the components of the stress tensor σ

and the components of the strain tensor ε is given by

σij(x, t) = Ψijkl(x, t) ∗ ε̇kl(x, t). (5.2)

The components of the strain tensor are defined as

ε =

(
εxx εxy

εyx εyy

)
=

(
∂xux

1
2
(∂xuy + ∂yux)

1
2
(∂xuy + ∂yux) ∂yuy

)

and the the components of the stress tensor are named as

σ =

(
σxx σxy

σxy σyy

)
.

The most general isotropic fourth-order tensor (in 2D) is

Ψijkl(x, t) =
1

2
[Ψ1(x, t)−Ψ2(x, t)] δijδkl +

1

2
[Ψ2(x, t)] (δikδjl + δilδjk), (5.3)

where Ψ1(x, t) and Ψ2(x, t) are relaxation functions and δij is the Kronecker delta. Ψ1(x, t)

describes dilatational deformations and Ψ2(x, t) describes shear deformations.

By selecting the relaxation functions, the propagation properties and/or material prop-

erties are described. Therefore we need a relaxation function that describes the properties

of anelastic material.

5.2. MATHEMATICAL MODEL 101

5.2.2 Zener model

Our objective is to describe wave propagation in real Earth material. Therefore we derive

a rheological model, that represents the properties of anelastic material. Rheology is the

branch of physics that studies the way in which materials deform or flow, in response to

applied forces or stresses. The material properties that govern the specific way in which

these deformation or flow behaviors occur are called rheological properties and the model

that describes this behavior is called the rheological model. We use the so-called Zener

model which we derive in the following, based on [40, 111].

Anelastic materials Elastic media can be described very simply, but they have no

loss of internal energy, whereas real materials do not behave in this way. Materials

that behave differently from the elastic media are called anelastic. The deviation from

the elastic behavior of materials is anelasticity. The simplest rheological model of an

anelastic material is a linear viscoelastic body that combines two extreme behaviors,

linear elasticity, and linear viscosity. A material is linearly viscoelastic if the stress tensor

is linearly related to the strain tensor, and the strain response to a linear combination of

applied stresses is the same linear combination of strain responses to individually applied

stresses.

In the following, we present a rheological model for a linear elastic and a linear viscous

material and finally combine them.

Linear elastic body The linear elastic body, also known as Hooke body, represents

the behavior of a perfectly elastic (lossless) solid material. In other words, stress is

proportional to strain:

σ(t) = M · ε(t) (5.4)

Here σ(t) is the stress as a function of time t, ε(t) the strain, and M the time-independent

elastic modulus. An application of a load yields an instantaneous deformation. A removal

of the load yields instantaneous and total recovery. The Hooke body does not have a

memory, that means stress at a given time only depends on the deformation at the same

time. The Hooke body consists of only a single elastic spring and is shown in figure 5.1.

The strain-time diagram for constant stress applied at time t0 and removed at time t1 is

shown in figure 5.2, right, the stress-strain diagrams in figure 5.2, center and left. To

M
σ, ε

Figure 5.1: Hooke body.

be able to analyze the model in both the time and frequency domains, we also want to

102 5. SEISMIC WAVEFORM MODELING AND INVERSION

ε

σ

t

σ

εM

t0 t1t

ε

σ/M

t0 t1

Figure 5.2: left: Stress-strain diagram, right: Stress-time diagram for a constant stress.

describe the model in the frequency domain. Therefore, to transform equation (5.4) into

the frequency domain we use the Fourier transformation and get

σ(ω) = M · ε(ω). (5.5)

Linear viscous body Linear viscous body, also known as Stokes body, represents the

other extreme behavior in the variety of linear rheological bodies, the behavior of the

viscous fluid. That means stress is proportional to strain rate:

σ(t) = η · ε̇(t) (5.6)

Here η is the time-independent viscosity. An application of a load yields non-instantaneous

linearly increasing deformation. Removal of the load does not yield the removal of de-

formation, so there is no recovery. In contrast to the Hookes body, the Stokes body has

extreme memory. The Stokes body consists of a dashpot and is shown in figure 5.3. The

strain-time diagram for constant stress applied at time t0 and removed at time t1 is shown

in figure 5.4 (right), the stress strain-rate diagrams in figure 5.4 (center and left). Again

η
σ, ε

Figure 5.3: Stokes body.

ε̇

σ

t

σ

ηε̇

t0 t1t

ε

σ
η
(t1 − t0)

t0 t1

Figure 5.4: left: Stress-strain-rate diagram, right: Strain-time diagram for a constant
stress.

we want to describe the model also in the frequency domain. To transform equation (5.6)

into the frequency domain, we use the Fourier transformation and obtain

σ(ω) = iωη · ε(ω). (5.7)

5.2. MATHEMATICAL MODEL 103

Stress-strain relation in viscoelastic medium Many real materials combine the

behaviors of both, elastic solids and viscous fluids. As a consequence, these materials

remember their past, or in other words, the stress-strain relation also depends on time. We

can approximate such behavior using viscoelastic models of a medium. Before we present

a rheological model as a combination of Hooke and Stokes bodies, we first determine the

relation of stress and strain for a viscoelastic medium, as well as the stress function and

modulus function. For a linear isotropic viscoelastic material, the stress-strain relation is

given by the Boltzmann superposition and causality principle. In a simple scalar notation,

it is given by

σ(t) =

∫ t

−∞
Ψ(t− τ)ε̇(τ)dτ (5.8)

(the convolution of Ψ with ε̇), where σ(t) is stress, ε̇(t) time derivative of strain, and Ψ(t)

stress relaxation function. According to equation (5.8), the stress at a given time t is

determined by the entire history of the strain until time t. The upper integration limit

ensures the causality. We use the symbol ‘∗’ for the convolution so that equation (5.8)

then can be written as

σ(t) = Ψ(t) ∗ ε̇(t). (5.9)

Due to properties of convolutions we can transfer the derivative to the relaxation function:

σ(t) = Ψ̇(t) ∗ ε(t) (5.10)

Since Ψ(t) is the stress response to a unit step function in strain, its time derivative is

the stress response to the Dirac δ-function in strain

M(t) = Ψ̇(t). (5.11)

We use the identity in equation (5.11) and rewrite equation (5.10) as

σ(t) = M(t) ∗ ε(t). (5.12)

Now we can compare equation (5.12) with equation (5.4). We see that the stress-strain

relation for the elastic body is a simple linear relation with a constant elastic modulus and

the stress-strain relation for the viscoelastic body has a convolutory form as a consequence

of the time-dependent modulus M(t). We transform equation (5.12) into the frequency

domain by an application of the Fourier transform F and obtain

σ(ω) = M(ω) · ε(ω), (5.13)

104 5. SEISMIC WAVEFORM MODELING AND INVERSION

where

M(ω) = F{M(t)} = F{Ψ̇(t)} (5.14)

is the complex, frequency-dependent viscoelastic modulus. Again we compare equa-

tion (5.13) with the stress-strain relation for the linear elastic body, i.e., equation (5.5) and

see that they are the same except from the point that the modulus function is frequency

dependent in the viscoelastic body. An application of the inverse Fourier transformation

to equation (5.14) results in

Ψ̇(t) = F−1{M(ω)} (5.15)

and, due to properties of the Fourier transformation,

Ψ(t) = F−1

{
M(ω)

iω

}
. (5.16)

Equation (5.13) indicates that the incorporation of the linear viscoelasticity and conse-

quently attenuation into the frequency-domain computations is much easier than those in

the time-domain computations – real frequency-independent moduli are simply replaced

by complex, frequency-dependent quantities. If we use equation (5.10) we can rewrite the

time derivative of the stress as

σ̇ = Ψ̇(t) ∗ ε̇ (5.17)

or, if we use equation (5.11) as

σ̇ = M(t) ∗ ε̇. (5.18)

In practice, it is often useful to know the relaxation function and the modulus function

at time zero and after infinite time or at infinite frequency, for example to determine the

relaxed and unrelaxed moduli. Therefore, we consider equation (5.14):

M(ω) = F
{

Ψ̇(t)
}

=

∫ ∞

−∞
Ψ̇(t) exp(−iωt)dt (5.19)

It can be shown [40] that this can be rewritten to

M(ω) = Ψ(∞) + iω

∫ ∞

0

[Ψ(t)−Ψ(∞)] exp(−iωt)dt

and with this formulation it follows that

M(ω = 0) = Ψ(t =∞). (5.20)

5.2. MATHEMATICAL MODEL 105

Furthermore, we know that iωF{φ(t)} = φ(t = 0) for ω →∞ which leads to

M(ω =∞) = Ψ(t = 0). (5.21)

Using the relations (5.20) and (5.21), we can define the following characteristics: An in-

stantaneous elastic response of the viscoelastic material is given by the so-called unrelaxed

modulus MU

MU = lim
t→0

Ψ(t),

a long-term equilibrium response is given by the relaxed modulus MR

MR = lim
t→∞

Ψ(t).

In the frequency domain, the relaxed and unrelaxed moduli are given by

MU = lim
ω→∞

M(ω) and MR = lim
ω→0

M(ω). (5.22)

Furthermore, we need a quantifier that describes the attenuation property of the vis-

coelastic material. One such quantifier is the so-called Q factor. Given the viscoelastic

modulus, the quality factor Q(ω) is

Q(ω) = <M(ω)/=M(ω). (5.23)

where < describes the real part and = the imaginary part.

It can be shown that 1/Q(ω) is a measure of internal friction in a linear viscoelastic

body. It is obvious that numerical integration of the stress-strain relation (5.8) is practi-

cally intractable due to the large computer time and memory requirements. This led many

modelers to incorporate only oversimplified Q(ω) laws in the time-domain computations.

Rules for linear rheological models After having described the stress-strain corre-

lation in the viscoelastic medium, we can combine the Hooke body, which describes the

linear elastic behavior, and the Stokes body, which describes the linear viscous body, to a

rheological model that describes the viscoelastic behavior. Models that quite well approx-

imate rheological properties and behavior of the real Earth’s material can be constructed

by connecting the simplest rheological elements, Hooke and Stokes elements, in parallel or

series. The properties of the models can be analyzed in the time and frequency domains.

There are relatively simple rules in both domains that allow obtaining mathematical rep-

resentations of the models as we have seen above. With the help of these rules, we derive

a model for viscoelastic material in the following section.

106 5. SEISMIC WAVEFORM MODELING AND INVERSION

MR

δM η

σ, ε

Figure 5.5: H-p-M Zener body.

M1

M2

η

σ, ε

Figure 5.6: H-s-KV Zener body.

Zener body / standard linear body There are two really simple rheological mod-

els for viscoelastic behavior. The first is the Maxwell body, which consists of a series

connection of the Hookes model and the Stokes model. Another simple possibility is the

Kelvin-Voigt model, where the Hookes model and the Stokes model are connected in par-

allel. More general than Maxwell and Kelvin-Voigt bodies are the nevertheless relatively

simple viscoelastic Zener bodies (also known as standard linear solid body). This model

is more realistic for the representation of material media, such as rocks, polymers, and

metals. There are two equivalent models that describe Zener models: The first one is the

H-p-M model (Hooke body connected in parallel with Maxwell body) and and the second

is the H-s-KV model (Hooke body connected in series with Kelvin-Voigt body), which are

shown in figure 5.5 and 5.6. We discuss the H-p-M model, since it is easier to see the

meaning of the elastic moduli in this one. At the time of the application of the unit-step

strain the instantaneous, i.e., unrelaxed, stress will be given by the sum of moduli of the

two elastic springs, MU = MR + δM . At the same time deformation of the dashpot will

start to grow from zero. The growth of the viscous deformation will gradually release

stress of the spring connected in series with the dashpot (i.e., spring in Maxwell body).

In the limit, the relaxed stress, MR, will be only in the spring connected in parallel with

Maxwell body. We can easily derive the basic characteristics of this rheological model.

First, we need the physical relationships for serial and parallel circuits with two ele-

ments with the properties ε1, σ1 and ε2, σ2. For parallel connected components σ and ε

for the full model are given by

σ =σ1 + σ2, (5.24)

ε =ε1 = ε2. (5.25)

Furthermore, for serial connected components σ and ε for the full model can be determined

by

σ =σ1 = σ2, (5.26)

ε =ε1 + ε2. (5.27)

5.2. MATHEMATICAL MODEL 107

We proceed one by one to calculate the total strain and stress and calculate single strain

and stress for the upper (σtop and εtop) and lower part (σdown and εdown) of the parallel

circuit. With the equations 5.24 and 5.25 we get all in all

σ =σtop + σdown, (5.28)

ε =εtop = εdown. (5.29)

The upper part consists of a series connection of the elastic spring δM (Hookes body) and

the dashpot η (Stokes body). We denote the stress and strain for the spring with σHB

and εHB, and for the dashpot with σSB and εSB. With the equations (5.26) and (5.27)

we get

σtop = σHB = σSB, (5.30)

εtop = εHB + εSB, (5.31)

and further using equations (5.5) and (5.7) we obtain that

σHB = δMεHB, (5.32)

σSB = iωηεSB. (5.33)

Now we use equation (5.30) and rewrite equations (5.32) and (5.34) as

εHB =
σtop(ω)

δM
, (5.34)

εSB =
σtop(ω)

iωη
. (5.35)

Inserting equations (5.34) and (5.35) into (5.31) yields

εtop(ω) =
σtop(ω)

δM
+
σtop(ω)

iωη
(5.36)

and

σtop(ω) =
iωηδM

δM + iωη
εtop(ω). (5.37)

Since the lower part only consists of one Hooke body, equation (5.5) leads to

σdown(ω) = MRεtop(ω). (5.38)

All in all, we insert equations (5.37) and (5.38) into equation (5.28) and use the identity

108 5. SEISMIC WAVEFORM MODELING AND INVERSION

in equation (5.29) and get

σ(ω) =MRε(ω) +
iωηδM

δM + iωη
ε(ω). (5.39)

We extend the fraction with 1
δM

and bring it down to a common denominator and receive

σ(ω) =
MR(1 + iω η

δM
) + iωη

1 + iω η
δM

. (5.40)

Then we use the identity MR

δM
= MU

δM
− 1 and get

σ(ω) =MR

1 + iω η
δM

MU

MR

1 + iω η
δM

ε(ω). (5.41)

We can see the stress and strain relaxation times from equation (5.41) and define τσ and

τε as

τσ =
η

δM
and τε =

η

δM

MU

MR

. (5.42)

Using these definitions, we obtain the same stress strain relation as we have expected (see

equation (5.13)) namely

σ(ω) = M(ω)ε(ω) with M(ω) = MR
1 + iωτε
1 + iωτσ

. (5.43)

By taking limits of M(ω), we verify our interpretation of the meaning of the elastic moduli:

lim
ω→∞

M(ω) =MR
τε
τσ

= MU = MR + δM

lim
ω→0

M(ω) =MR

Using equations (5.42) yields the simple relation between the unrelaxed and relaxed mod-

uli:

MU = MR
τε
τσ

Finally, we can determine the stress relaxation function using equations (5.16) and (5.43):

Ψ(t) = F−1

{
M(ω)

iω

}
= F−1

{
MR

[−i
ω

+
iτε

i− τσω
− iτσ
i− τσω

]}
(5.44)

It is now easy to find (details can be found in the appendix A.1.1) that

Ψ(t) = MR

[
1−

(
1− τε

τσ

)
exp(−t/τσ)

]
H(t),

5.2. MATHEMATICAL MODEL 109

where H(t) is the Heavyside step function. More details on how to get to the decompo-

sition in equation (5.44) and the execution of the Fourier transform are described in the

appendix (see section A.1.1). Thus we have derived a rheological model and a relaxation

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

fmin f0 fmax

1
/
Q

log(f)

opt. for bandwith
opt. for f0

Figure 5.7: Inverse Q factor for the Zener model. Green line: relaxation parameters com-
puted for f0; purple line: relaxation parameters computed for frequency range [fmin, fmax].

function for viscoelastic media. We could use and insert this relaxation function into

equation (5.3), and this would give us the forward problem. However, this model can

only be used for a single frequency or a very small frequency band for which the relax-

ation parameters τε and τσ have been determined. In this thesis, we consider Q factors

which are constant in a given frequency band. Figure 5.7 shows the dissipation factor

(the inverse Q factor). Here the green curve corresponds to the inverse Q factor if the

model is determined for the frequency f0 only and the purple curve for the frequency

band of [fmin, fmax]. We can see that with this model the dissipation factor can only

be defined on a very small frequency band. On a wider frequency band, the deviation

from the desired Q factor would be very large (the desired Q factor in this example is

15), because the approximation of the dissipation before and after the peak increases or

decreases exponentially.

Generalized Zener-body As described at the end of the last section, the Zener model

approach can only have a very small bandwidth. Some processes, such as grain boundary

relaxation, have a dissipation factor that is much wider than a single relaxation curve.

This can be achieved by connecting several Zener models in parallel as shown in figure

5.8. From the two equivalent models of the Zener body (see figure 5.5 and 5.6) we choose

the one in which a single Zener body is of the H-p-M type (Hooke element in parallel

with Maxwell body). In this model, we can immediately see the meaning (MR,l, δMl) of

the elastic moduli of both Hooke elements in each Zener body. For the generalized Zener

110 5. SEISMIC WAVEFORM MODELING AND INVERSION

ZB 1

ZB 2

ZB n

σ, ε

Figure 5.8: Generalized Zener body.

body, we easily obtain the modulus function

M(ω) =

NSLS∑

l=1

MR,l
1 + iτε,lω

1 + iτσ,lω
,

where NSLS is the number of parallel Zener bodies, with relaxation times

τε,l =
ηl
δMl

MU,l

MR,l

, τσ,l =
ηl
δMl

and
τε,l
τσ,l

=
MU,l

MR,l

.

Furthermore, we know the relation between relaxed and unrelaxed moduli, that is

MU,l = MR,l + δMl.

Using equations (5.20) and (5.21) leads to the unrelaxed and relaxed moduli

MR ≡ lim
ω→0

M(ω) =

NSLS∑

l=1

MR,l,

MU ≡ lim
ω→∞

M(ω) =

NSLS∑

l=1

MR,l
τε,l
τσ,l

= MR

NSLS∑

l=1

δMl.

Furthermore, we use relation (5.16) and get the relaxation function

Ψ(t) =

{
NSLS∑

l=1

MR,l

[
1−

(
1− τε,l

τσ,l

)
exp(−t/τσ,l)

]}
H(t). (5.45)

We use the assumption by Carcicone [40]

MR,l =
1

NSLS

MR, (5.46)

5.2. MATHEMATICAL MODEL 111

that leads to a simplification but is not too restrictive. Using this simplification yields:

M(ω) =
MR

NSLS

NSLS∑

l=1

1 + iωτε,l
1 + iωτσ,l

(5.47)

Ψ(t) =MR

[
1− 1

NSLS

NSLS∑

l=1

(
1− τε,l

τσ,l

)
exp(−t/τσ,l)

]
H(t) (5.48)

Finally, we can determine the unrelaxed and relaxed moduli. At zero frequency ω = 0,

we get the relaxed modulus as

M(0) =
MR

NSLS

NSLS∑

l=1

1 + 0 · iτε,l
1 + 0 · iτσ,l

= MR (5.49)

and at infinite frequency, ω =∞, we get the unrelaxed modules as

M(∞) = lim
ω̄→∞

MR

NSLS

NSLS∑

l=1

1 + iω̄τε,l
1 + iω̄τσ,l

=
MR

NSLS

NSLS∑

l=1

τε,l
τε,l

= MU . (5.50)

Let us consider, as at the end of the last section, the Q factor approximation, which

is to assume the constant value 15 in a frequency band [fmin, fmax]. With the use of only

one Zener model, this value could only be achieved for one frequency (see figure 5.7). The

standard generalized Zener approach allows describing viscoelastic materials that have

a Q factor over a broader frequency band. Figure 5.9 shows the inverse Q factor for a

generalized Zener model with three parallel Zener models. The individual contributions of

the three Zener models are also shown there. With this approach, an almost constant Q

factor can be simulated on a frequency band [fmin, fmax]. The more parallel Zener models

are used, the more constant is the Q factor in the desired frequency range.

Hence, we have everything we need to describe the wave propagation in viscoelastic ma-

terial. Before we do this in the next section, we want to describe a disadvantage of this

approach.

Disadvantage of this approach The generalized Zener model is well suited to describe

homogeneous media, i.e., media that has the same attenuation properties everywhere.

Materials that are not homogeneous would have to be described with different generalized

Zener models (at least with the constant Q factor approach). Another problem is that the

Q factors, which are used to determine the relaxation parameters, do not appear in the

forward equations, as we will see in the next chapter. Therefore a full waveform inversion

where the Q factors are inversion parameters is not possible.

112 5. SEISMIC WAVEFORM MODELING AND INVERSION

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

fmin f0 fmax

1
/
Q

log(f)

l=1
l=2
l=3
full

Figure 5.9: Inverse Q factor for the generalized Zener model with NSLS = 3. Yellow line:
resulting inverse Q factor; purple, green and blue: inverse Q factors for the three parallel
Zener models.

5.2.3 Forward model

After we have derived a rheological model for viscoelastic material, we can use the re-

laxation function (5.48) in our mathematical model. In the following we put everything

together, use partial integration to simplify equations and summarize everything to get

the final equations. We start by applying equation (5.3) to equation (5.2) and get

σij(x, t) =

∫ t

−∞

{
1

2
[Ψ1(x, t− t′)−Ψ2(x, t− t′)] δij∂tεkk(t′) + Ψ2(x, t− t′)∂tεij(t′)dt′

}
.

Then we use equation (5.48) for the relaxation functions Ψ1 and Ψ2. Here, we mark the

parameters belonging to the dilatational deformation relaxation function with a prefixed

1 in the subscript, so that MR, τε,l, τσ,l is denoted by M1R, τ1ε,l, τ1σ,l. The parameters

for the relaxation function for the shear deformations are marked with 2. This leads to:

σij(x, t) =

∫ t

−∞

{
1

2
M1R

(
1− 1

NSLS

NSLS∑

l=1

(
1− τ1ε,l

τ1σ,l

)
exp(−(t− t′)/τ1σ,l)

)
δij∂tεkk(t

′)

−1

2
M2R

(
1− 1

NSLS

NSLS∑

l=1

(
1− τ2ε,l

τ2σ,l

)
exp(−(t− t′)/τ2σ,l)

)
δij∂tεkk(t

′)

+M2R

[
1− 1

NSLS

NSLS∑

l=1

(
1− τ2ε,l

τ2σ,l

)
exp(−(t− t′)/τ2σ,l)

]
∂tεij(t

′)

}
dt′.

5.2. MATHEMATICAL MODEL 113

The next step is to split the integrals into one part without exponantial functions and

one integral with the exponantial functions

σij(x, t) =

∫ t

−∞

1

2
M1Rδij∂tεkk(t

′)dt′ −
∫ t

−∞

1

2

M1R

NSLS

NSLS∑

l=1

(
1− τ1ε,l

τ1σ,l

)
exp(−t− t

′

τ2σ,l

)δij∂tεkk(t
′)dt′

−
∫ t

−∞

1

2
M2Rδij∂tεkk(t

′)dt′ +

∫ t

−∞

1

2

M2R

NSLS

NSLS∑

l=1

(
1− τ2ε,l

τ2σ,l

)
exp(−t− t

′

τ2σ,l

)δij∂tεkk(t
′)dt′

+

∫ t

−∞
M2R∂tεij(t

′)dt′ −
∫ t

−∞

M2R

NSLS

NSLS∑

l=1

(
1− τ2ε,l

τ2σ,l

)
exp(−t− t

′

τ2σ,l

)∂tεij(t
′)dt′

We now apply partial integration to the terms with exponential functions and obtain

σij(x, t) =

∫ t

−∞

1

2
M1Rδij∂tεkk(t

′)dt′

︸ ︷︷ ︸
= 1

2
M1Rδijεkk(t)

−
[

1

2

M1R

NSLS

NSLS∑

l=1

(
1− τ1ε,l

τ1σ,l

)
exp(−t− t

′

τ2σ,l

)δijεkk(t
′)

]t

−∞︸ ︷︷ ︸
1
2

M1R
NSLS

∑NSLS
l=1 (1−τ1ε,l/τ1σ,l)δijεkk(t)

+

∫ t

−∞

1

2

M1R

NSLS

NSLS∑

l=1

1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)
exp(−t− t

′

τ2σ,l

)δijεkk(t
′)dt′

−
∫ t

−∞

1

2
M2Rδij∂tεkk(t)dt

′

︸ ︷︷ ︸
= 1

2
M2Rδijεkk(t)

+

[
1

2

M2R

NSLS

NSLS∑

l=1

(
1− τ2ε,l

τ2σ,l

)
exp(−t− t

′

τ2σ,l

)δijεkk(t
′)

]t

−∞︸ ︷︷ ︸
1
2

M2R
NSLS

∑NSLS
l=1 (1−τ2ε,l/τ2σ,l)δijεkk(t)

−
∫ t

−∞

1

2

M2R

NSLS

NSLS∑

l=1

1

τ2σ,l

(
1− τ2ε,l

τ2σ,l

)
exp(−t− t

′

τ2σ,l

)δijεkk(t
′)dt′

+

∫ t

−∞
M2R∂tεij(t

′)dt′

︸ ︷︷ ︸
=M2Rεij(t)

−
[
M2R

NSLS

NSLS∑

l=1

(
1− τ2ε,l

τ2σ,l

)
exp(−t− t

′

τ2σ,l

)εij(t
′)

]t

−∞︸ ︷︷ ︸
1
2

M2R
NSLS

∑NSLS
l=1 (1−τ2ε,l/τ2σ,l)εij(t)

+

∫ t

−∞

M2R

NSLS

NSLS∑

l=1

1

τ2σ,l

(
1− τ2ε,l

τ2σ,l

)
exp(−(t− t′)/τ2σ,l)εij(t

′)dt′

114 5. SEISMIC WAVEFORM MODELING AND INVERSION

Calculating all terms where it is possible and using the identityMU = MR(1− 1
NSLS

∑NSLS

l=1 (1−
τε
τσ

)) yields

σij(x, t) =
1

2
M1Uδijεkk(t)

+

∫ t

−∞

1

2

M1R

NSLS

NSLS∑

l=1

1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)
exp(−(t− t′)/τ1σ,l)δijεkk(t

′)dt′

− 1

2
M2Uδijεkk(t)

−
∫ t

−∞

1

2

M2R

NSLS

NSLS∑

l=1

1

τ2σ,l

(
1− τ2ε,l

τ2σ,l

)
exp(−(t− t′)/τ2σ,l)δijεkk(t

′)dt′

+M2Uεij(t)

+

∫ t

−∞

M2R

NSLS

NSLS∑

l=1

1

τ2σ,l

(
1− τ2ε,l

τ2σ,l

)
exp(−(t− t′)/τ2σ,l)εij(t

′)dt′

To achieve easier readability we set εdij = εij − 1
2
δijεkk(t) and define the so-called memory

variables

e1,l = Φ1l ∗ εkk
eij,l = Φ2l ∗ εdij

Φν,l(t) =
MνR

NSLS

1

τνσ,l

(
1− τνε,l

τνσ,l

)
exp(−t/τνσ,l) (ν = 1, 2)

which allows to write the stress tensor as

σij =
1

2
δij

(
M1Uεkk +

NSLS∑

l=1

e1,l

)
+

(
M2Uε

d
ij +

NSLS∑

l=1

eij,l

)
.

At this point, we have everything together and only have to insert the moduli and can

combine terms. The modulus for the dilatational deformations is M1 = 2λ + 2µ and

for the shear deformation is M2 = 2µ, where λ and µ are the Lamé parameters. To

achieve better readability, we skip the subscript U to describe unrelaxed parameters, we

only use the subscript R to indicate relaxed parameters. That means λ = λU describes

an unrelaxed parameter, and λR describes the relaxed equivalent. This results in the

5.2. MATHEMATICAL MODEL 115

following components of the stress tensor:

σxx =
1

2

(
(2λ+ 2µ)εkk +

NSLS∑

l=1

e1,l

)
+

(
2µεdxx +

NSLS∑

l=1

exx,l

)

σyy =
1

2

(
(2λ+ 2µ)εkk +

NSLS∑

l=1

e1,l

)
+

(
2µεdyy +

NSLS∑

l=1

eyy,l

)

σxy =

(
2µεdxy +

NSLS∑

l=1

exy,l

)

Calculating and summarizing the bracket terms and using the definition of εdij results in:

σxx = λεkk + µεkk +
1

2

NSLS∑

l=1

e1,l + 2µ(εxx −
1

2
δxxεkk) +

NSLS∑

l=1

exx,l

σyy = λεkk + µεkk +
1

2

NSLS∑

l=1

e1,l + 2µ(εyy −
1

2
δyyεkk) +

NSLS∑

l=1

eyy,l

σxy = 2µ(εxy −
1

2
δxyεkk) +

NSLS∑

l=1

exy,l

Summarizing again finally leads to

σxx = (λ+ 2µ)εxx + λεyy +
1

2

NSLS∑

l=1

e1,l +

NSLS∑

l=1

exx,l (5.51)

σyy = λεxx + (λ+ 2µ)εyy +
1

2

NSLS∑

l=1

e1,l +

NSLS∑

l=1

eyy,l (5.52)

σxy = 2µεxy +

NSLS∑

l=1

exy,l (5.53)

But before we write down the PDE system, we need a differential equation for the memory

variables. Furthermore, we can also combine two of the memory variables. Therefore, we

use equation (5.50), i.e., MνR = NSLS
MνU∑NSLS

l=1

τνε,l
τνσ,l

, and apply M1 = 2λ+2µ and M2 = 2µ to

the memory variables, and see that we only need one memory variable for exx,l and eyy,l

116 5. SEISMIC WAVEFORM MODELING AND INVERSION

instead of two, because exx,l = −eyy,l. The memory variables can be computed by:

e1,l = Φ1l ∗ εkk

=

∫ t

−∞

M1R

NSLS

1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)
exp(−(t− t′)/τ1σ,l)(∂xux + ∂yuy)

=

∫ t

−∞

2λ+ 2µ∑NSLS

l=1
τ1ε,l
τ1σ,l

1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)
exp(−(t− t′)/τ1σ,l)(∂xux + ∂yuy)

exx,l = Φ2l ∗ εdxx

=

∫ t

−∞

M2R

NSLS

1

τ2σ,l

(
1− τ2ε,l

τ2σ,l

)
exp(−(t− t′)/τ2σ,l)(εxx −

1

2
δxxεkk)

=

∫ t

−∞

2µ∑NSLS

l=1
τ2ε,l
τ2σ,l

1

τ2σ,l

(
1− τ2ε,l

τ2σ,l

)
exp(−(t− t′)/τ2σ,l)(

1

2
(∂xux − ∂yuy))

eyy,l = Φ2l ∗ εdyy

=

∫ t

−∞

M2R

NSLS

1

τ2σ,l

(
1− τ2ε,l

τ2σ,l

)
exp(−(t− t′)/τ2σ,l)(εyy −

1

2
δyyεkk)

=

∫ t

−∞

2µ∑NSLS

l=1
τ2ε,l
τ2σ,l

1

τ2σ,l

(
1− τ2ε,l

τ2σ,l

)
exp(−(t− t′)/τ2σ,l)(−

1

2
(∂xux − ∂yuy))

= −exxl

exy,l = Φ2l ∗ εdxy

=

∫ t

−∞

M2R

NSLS

1

τ2σ,l

(
1− τ2ε,l

τ2σ,l

)
exp(−(t− t′)/τ2σ,l)εxy

=

∫ t

−∞

2µ∑NSLS

l=1
τ2ε,l
τ2σ,l

1

τ2σ,l

(
1− τ2ε,l

τ2σ,l

)
exp(−(t− t′)/τ2σ,l)

1

2
(∂yux + ∂xuy))

5.2. MATHEMATICAL MODEL 117

Since the moduli are independent of the memory variables, we put them in front of the

integrals and define

R1,l :=
1

2

∑NSLS

l=1
τ1ε,l
τ1σ,l

λ+ µ
e1,l ⇔ 2

λ+ µ∑NSLS

l=1
τ1ε,l
τ1σ,l

R1,l = e1,l

Rxx,l :=2

∑NSLS

l=1
τ2ε,l
τ2σ,l

2µ
exx,l ⇔ µ∑NSLS

l=1
τ2ε,l
τ2σ,l

Rxx,l = exx,l

Rxy,l :=2

∑NSLS

l=1
τ2ε,l
τ2σ,l

2µ
exy,l ⇔ µ∑NSLS

l=1
τ2ε,l
τ2σ,l

Rxy,l = exy,l

Now as the last step we need an update scheme for the memory variables, or in other

words, we need PDEs for the memory variables. We derive a PDE exemplary for R1,l:

R1,l =
1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)(
exp(− ·

τ1σ,l

) ∗ tr(ε)(·)
)

∂tR1,l =
1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)
∂t

(
exp(− ·

τ1σ,l

) ∗ tr(ε)(·)
)

=
1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)(
exp(− ·

τ1σ,l

) ∗ ∂ttr(ε)(·)
)

=
1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)
[exp(−(t− t′)/τ1σ,l)tr(ε)]

t

−∞

− 1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)∫ t

−∞

1

τ1σ,l

exp(−(t− t′)/τ1σ,l)tr(ε)dt
′

=
1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)
[exp(0)tr(ε)− 0]

− 1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)∫ t

−∞

1

τ1σ,l

exp(−(t− t′)/τ1σ,l)tr(ε)dt
′

︸ ︷︷ ︸
= 1
τ1σ,l

(
exp(− ·

τ1σ,l
)∗tr(ε)(·)

)

=−R1,l/τ1σ,l + tr(ε)
1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)

From the first to the second line, we differentiate the equation with respect to t. In the

third line, we used the rule for convolutions that ∂t(f ∗ g) = (∂tf) ∗ g = f ∗ ∂tg. Then

we use integration by parts resulting in line four. Inserting the integration bounds and

substituting R1,l results in the last line.

Thus we now have everything together to describe the wave propagation in viscoelastic

material. Using equation (5.1) and equations (5.51)–(5.53), this results in the following

118 5. SEISMIC WAVEFORM MODELING AND INVERSION

second-order PDE system:

ρ∂ttui = ui∂jσij + fi

σxx = (λ+ 2µ)∂xux + λ∂yuy +
λ+ µ∑NSLS

l=1
τ1ε,l
τ1σ,l

NSLS∑

l=1

R1,l +
µ∑NSLS

l=1
τ2ε,l
τ2σ,l

NSLS∑

l=1

Rxx,l

σyy = λ∂xux + (λ+ 2µ)∂yuy +
λ+ µ∑NSLS

l=1
τ1ε,l
τ1σ,l

NSLS∑

l=1

R1,l −
µ∑NSLS

l=1
τ2ε,l
τ2σ,l

NSLS∑

l=1

Rxx,l

σxy = µ(∂xuy + ∂yux) +
µ∑NSLS

l=1
τ2ε,l
τ2σ,l

NSLS∑

l=1

Rxy,l

We can rewrite this easily to a system of first order equations (see section A.1.2 in the

appendix for more details) and get:

ρ∂tvx =∂xσxx + ∂yσxy + fx (5.54)

ρ∂tvy =∂xσxy + ∂yσyy + fy (5.55)

∂tσxx =(λ+ 2µ)∂xvx + λ∂yvy +
λ+ µ∑NSLS

l=1
τ1ε,l
τ1σ,l

NSLS∑

l=1

R1,l +
µ∑NSLS

l=1
τ2ε,l
τ2σ,l

NSLS∑

l=1

Rxx,l (5.56)

∂tσyy =λ∂xvx + (λ+ 2µ)∂yvy +
λ+ µ∑NSLS

l=1
τ1ε,l
τ1σ,l

NSLS∑

l=1

R1,l −
µ∑NSLS

l=1
τ2ε,l
τ2σ,l

NSLS∑

l=1

Rxx,l (5.57)

∂tσxy =µ(∂xvy + ∂yvy) +
µ∑NSLS

l=1
τ2ε,l
τ2σ,l

NSLS∑

l=1

Rxy,l (5.58)

∂tR1,l =−R1,l/τ1σ,l +
1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)
(∂xvx + ∂yvy) (5.59)

∂tRxx,l =−Rxx,l/τ2σ,l +
1

τ2σ,l

(
1− τ2ε,l

τ2σ,l

)
(∂xvx − ∂yvy) (5.60)

∂tRxy,l =−Rxy,l/τ2σ,l +
1

τ2σ,l

(
1− τ2ε,l

τ2σ,l

)
(∂xvy + ∂yvx) (5.61)

Note that the auxiliary variables (e.g., R1,l) are not the same as for the second-order PDE,

but for simplicity’s sake, we name them the same. We recall that equations (5.59)–(5.61)

are each NSLS equations.

5.2.4 Relation between Zener model and physical parameters

As we have seen before, viscoelastic numerical models, based on a concept of dissipa-

tion mechanisms, take into account memory variables, and some dissipation parameters,

namely stress and strain relaxation times. In geophysical practice, the quality factor Q

is widely used for describing an attenuation property of viscoelastic media. That means

that we need a relation between the dissipation parameters and the quality factor, which

5.2. MATHEMATICAL MODEL 119

we can use to compute the dissipation parameters.

We recall the definition of Q (cf. equation (5.23))

Q(ω) =
<(M(ω))

=(M(ω))
.

The real and the imaginary part of the moduli function are

<(M(ω)) =
MR

NSLS

(
NSLS∑

l=1

1 + ω2τσ,lτε,l
1 + ω2τσ,l2

)
,

respectively

=(M(ω)) =
MR

NSLS

(
NSLS∑

l=1

ω(τε,l − τσ,l)
1 + ω2τσ,l2

)
.

We insert both into equation (5.23) and get

Q(ω) =

(
NSLS∑

l=1

1 + ω2τσ,lτε,l
1 + ω2τσ,l2

)
·
(
NSLS∑

l=1

ω(τε,l − τσ,l)
1 + ω2τσ,l2

)−1

(5.62)

Next, we transform equation (5.62) into a minimization problem to determine the dissi-

pation parameters.

Minimization problem to obtain relaxation parameters To obtain the stress and

strain relaxation times for a given Q factor, we need to solve an additional minimization

problem (see e.g., [26]). Therefore, we define

θl :=
1

τσ,l
and dl :=

1

NSLS

(
τε,l
τσ,l
− 1

)
(5.63)

and the back substitution is

τε,l =
1 +NSLSdl

θl
and τσ,l =

1

θl
. (5.64)

Using this variables the reciprocal Q factor can be written by

Q−1 =

∑NSLS

l=1
dlωθl
θ2l +ω2(

1 +
∑NSLS

l=1
dlω2

θ2l +ω2

) .

120 5. SEISMIC WAVEFORM MODELING AND INVERSION

The first step to get an optimization problem is to resolve the fraction and the bracket:

Q−1

(
1 +

NSLS∑

l=1

dlω
2

θ2
l + ω2

)
=

NSLS∑

l=1

dlωθl
θ2
l + ω2

Q−1 =

NSLS∑

l=1

dlωθl −Q−1ω2dl
ω2 + ω2

l

.

Now we subtract the Q factor we are looking for, called Qref, integrate over the desired

frequency band and obtain our minimization problem:

χ =

∫
(Q−1(x, ω)−Q−1

ref (x))2dω

=

∫ (NSLS∑

l=1

dlωθl −Q−1
refω

2dl
θ2
l + ω2

−Q−1
ref (x)

)2

dω

=

∫ (NSLS∑

l=1

Qref(x)dlωθl − ω2dl
θ2
l + ω2

− 1

)2

dω

Remember that we consider constant Q factors over frequency, so Qref is independent of

frequency. To obtain the final minimization problem, we discretize the integral and obtain

J ({dl, θl};NSLS, K) =
K∑

k=1

(
NSLS∑

l=1

ωkQref(ωk)(θl − ωkQ−1
ref (ωk))

θ2
l + ω2

k

dl − 1

)2

(5.65)

where ωk are the discretized frequencies, K is the total number them.

Disadvantage of this approach The approach described in the last section has two

disadvantages. The first results from the fact that stress and strain relaxation times are

domain dependent. Therefore, in the worst case, the solution of a minimization problem

is necessary for each discrete domain point. The second disadvantage is that the quality

factors do not appear directly in the equations. Then it is not possible to use Q as an

optimization parameter for waveform inversion (see section 5.4), since it is not possible to

determine the partial derivatives for Q1 or Q2. There are different approaches to overcome

these disadvantages [52, 53, 54, 158], we follow the one by van Driel and Fichtner [54].

5.3. WAVEFORM MODELING 121

5.3 Waveform modeling

The standard approach for the forward modeling of wave propagation in viscoelastic

material has already been described in the previous section 5.2.3. However, this approach

has two disadvantages which we have described at the end of the last section. In this

section, we present an approach that eliminates these disadvantages and which is the

basis of the simulations in this thesis.

5.3.1 Modification of the standard approach

On the one hand, it should be ensured that the Q factors appear directly in the forward

model, and not only indirectly via a minimization problem to be solved beforehand. And

secondly, it should be ensured that the resulting relaxation parameters are valid not only

for a specific Q factor, but for a range. The second point is of course a contradiction to

the Zener model since the Zener model is valid for a special constant Q factor. This means

that the relaxation parameters τε and τσ or θ and d depend on Q or were determined for

a specific Q. This becomes particularly clear when we look at the definition (5.42) of τε

and τσ. Both depend on δM = MU −MR, which is just a quantity described by the Q

factor. However, we see below that for τσ the dependency is very small if the frequency

band for which the Q factor is applied remains the same, so τσ can be neglected in this

case. For this, we will investigate the influence of d and θ on the moduli function and the

Q factor. First, we consider the unrelaxed moduli and apply the substitutions (5.63) to

the definition (5.22) so that the unrelaxed modulus is given as

MU = lim
ω→∞

MR

(
1 +

NSLS∑

l=1

iωdl
θ2
l + iω

)
= MR

(
1 +

NSLS∑

l=1

dl

)
.

This shows that dl must depend on the Q factor in any case. Next we consider the real

and imaginary parts of the modulus function M(ω)

<M(ω) = MR

(
1 +

NSLS∑

l=1

dlω
2

θ2
l + ω2

)

=M(ω) = MR

(
NSLS∑

l=1

dlθlω

θ2
l + ω2

)

and the Q factor, which are shown in figures 5.10a, 5.10b, 5.11 for NSLS = 3.

We can see that dl only appears as a ‘scaling’ parameter. With this parameter, we can

control how large the Q factor is. The parameter θ on the other hand shifts the functions

in the frequency range. This is easiest to see for the imaginary part. In logarithmic

122 5. SEISMIC WAVEFORM MODELING AND INVERSION

1

1.05

1.1

1.15

1.2

1.25

1.3

fmin f0 fmax

1
/Q

log(f)

l=1
l=1+2

l=1+2+3

(a) Real part

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

fmin f0 fmax

1
/Q

log(f)

l=1
l=2
l=3
full

(b) Imaginary part

Figure 5.10: Real and imaginary part of modulus function for the generalized Zener model
and the contribution of the three Zener bodies.

scaling, the real part can be displayed as a logistic function:

<M(ω) = MR

(
1 +

dω2

θ2 + ω2

)
= MR +

dMR

1 + θ2

ω2

Substituting θ̄ := log10(θ) and ω̄ = log10(ω) yield

= MR +
dMR

1 + 10θ̄10−ω̄2
= MR +

dMR

1 + 10−(ω̄2−θ̄)
,

which is exactly the definition of the logistic function, with function maximum value

dMR and center θ̄. Since we assume that the frequency band on which the Q factor

affects is known and constant, and only the Q factor is unknown, we can consider θ to be

independent of Q.

The plan is now to divide dl into a part that is independent of Q and a part that

depends on Q, so that Q appears directly in the equations of the forward model.

5.3.2 Minimization problem to obtain relaxation parameters

In the last section, we have seen that with the frequency range remaining the same, the

Q factor in the Zener model can be scaled by the relaxation parameter dl. Therefore we

decompose dl multiplicatively to

dl := Q−1Dl (5.66)

with a Q independent parameter Dl.

5.3. WAVEFORM MODELING 123

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

fmin f0 fmax

1
/Q

log(f)

l=1
l=2
l=3
full

Figure 5.11: Inverse Q factor the generalized Zener model and the contribution of the
three Zener bodies.

If we replace dl with this decomposition, the minimization problem (5.65) becomes:

J̄ (Dl, θl) =
K∑

k=1

(
NSLS∑

l=1

ωkQref(ωk)(θl − ωkQ−1
ref (ωk))

θ2
l + ω2

k

dl − 1

)2

=
K∑

k=1

(
NSLS∑

l=1

ωkQref(ωk)(θl − ωkQ−1
ref (ωk))

θ2
l + ω2

k

Q−1
refDl − 1

)2

=
K∑

k=1

(
NSLS∑

l=1

Dl
θlωk

ω2
k + θ2

l

−Q−1
refDl

ω2
k

ω2
k + θ2

l

− 1

)2

However, since the parameters Dl and θl are now independent of Q, this minimization

problem can be extended so that it not only looks for the optimal parameters Dl and θl

for Qref. It is looking for the optimal relaxation parameters Dl and θl which describes the

underlying generalized Zener model for all Q ∈ [Qmin, Qmax]. For this purpose, we divide

the Q factor range into N equidistant values Qmin = Q1, Q2, . . . , QN = Qmax and get the

resulting minimization problem

J (Dl, θl) =
N∑

n=1

K∑

k=1

(
NSLS∑

l=1

Dl
θlωk

ω2
k + θ2

l

−Q−1
n Dl

ω2

ω2
k + θ2

l

− 1

)2

. (5.67)

This minimization problem can be further simplified. The second term can be neglected

for large Q factors or a very large Q range. This results in a simple minimization problem

Jsimp.(Dl, θl) =
N∑

n=1

K∑

k=1

(
NSLS∑

l=1

Dl
θlωk

ω2
k + θ2

l

− 1

)2

. (5.68)

124 5. SEISMIC WAVEFORM MODELING AND INVERSION

5.3.3 Quality comparison and improvement of the Q factor ap-

proximation

Before we implement the modified Zener model into the forward model, we first test the

quality of the model to see if it is suitable for simulating wave propagation in viscoelastic

media. For this purpose we consider a frequency band [20, 350] and want to simulate a

rheological model for all Q factors Q ∈ [15, 100], use generalized Zener bodies with NSLS =

3 and set the number of discrete frequencies K = 12. Therefore, we use the SolvOpt [89]

optimization algorithm (cf. section 5.5.4) to determine the relaxation parameters for

the modified Zener model both for the complete objective function (5.67) and for the

simplified objective function (5.68). First, we compare the approximation quality for the

Q factor Qmin = 15 with the approximation provided by the generalized Zener model. The

approximations are shown in figure 5.12a, where the purple line is the approximation for

the generalized Zener model, the blue line is the modified Zener model when using the full

objective function, the yellow line is the modified Zener model when using the simplified

objective function, and the black dashed line represents the desired constant Q factor.

Both Q factor approximations of the modified Zener model do not match any frequency in

0.054

0.056

0.058

0.06

0.062

0.064

0.066

0.068

0.07

0.072

0 50 100 150 200 250 300 350

1
/Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

(a) Qmin

0.0096

0.0097

0.0098

0.0099

0.01

0.0101

0.0102

0.0103

0 50 100 150 200 250 300 350

1
/Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

(b) Qmax

Figure 5.12: Inverse Q factor for generalized Zener model and modified Zener model.
The purple line is the approximation for the generalized Zener model, the blue line is
the modified Zener model when using the full objective function, the yellow line is the
modified Zener model when using the simplified objective function, and the black dashed
line represents the desired constant Q factor. The blue and yellow dashed lines are
the approximations using the piecewise linear correction for the full and the simplified
objective function.

the frequency band with the Q factor to be approximated, but the approximation is better

for the full objective function. A similar picture emerges if we compare the approximation

for the Q factor Qmax = 100 with the approximation provided by the generalized Zener

model. However, in this case, the modified Zener model with the complete objective

function also approximates well and oscillates around the Q factor to be approximated

and approximates it exactly at four frequencies.

Especially due to the observation for Qmin that the approximations for the modified

5.3. WAVEFORM MODELING 125

Zener model do not exactly approximate the desired Q factor at any point, we want to

improve the model.

We recall that Q−1Dl is a kind of scaling parameter for the dissipation of the Zener

model. Therefore there must be a parameter Qopt = Qref + shift that yields the best

approximation for the desired Qref. Thus, we search for all Q ∈ {Qmin = Q1, Q2, . . . , QN =

Qmax} for the optimal Qopt, so that

Q−1
ref

!≈ 1

Qopt

(
NSLS∑

l=1

Dlωθl
θ2
l + ω2

)(
1 +

1

Qopt

NSLS∑

l=1

Dlω
2

θ2
l + ω2

)−1

has the smallest maximum error. For our example, this is shown in figure 5.13. Here

the green line is the shift for the modified model determined with the simplified objective

function and the purple curve is the shift for the modified model with the full objective

function. For the simplified objective function the shift is relatively constant over the

whole Q range (around −1.9). For the full objective function, the shift ranges from −1.6

to 0.6 and can be divided into two affine linear parts.

−2

−1.5

−1

−0.5

0

0.5

1

10 20 30 40 50 60 70 80 90 100

sh
if

t

Quality factor

normal
simplified

Figure 5.13: Shift to achieve the best Q factor approximation for the full (normal) and
simplified objective function.

This numerical study shows that it is a good and efficient idea to replace Qref by a

piecewise linear function m ·Qref + b:

Q−1
ref

!≈ 1

m ·Qref + b

(
NSLS∑

l=1

Dlωθl
θ2
l + ω2

)(
1 +

1

m ·Qref + b

NSLS∑

l=1

Dlω
2

θ2
l + ω2

)−1

This piecewise linear correction leads to much smaller errors, especially for small Q factors.

Figure 5.14a shows the square error and figure 5.14b shows the maximum error. For small

Q factors, the model resulting from the full objective function remains better. However,

if we look again at the inverse Q factors Qmax (figure 5.12b dashed lines) we can see that

the modified model resulting from the simplified objective function, after improvement

with the shift, approximates the Q factor better than the model resulting from the full

126 5. SEISMIC WAVEFORM MODELING AND INVERSION

0

0.05

0.1

0.15

0.2

0.25

0.3

10 20 30 40 50 60 70 80 90 100

` 2
er
ro
r

Quality factor

Q-approach
corr. Q-appr.
simpl. Q-appr
c. s. Q-appr.

(a) `2 error

0

0.002

0.004

0.006

0.008

0.01

0.012

10 20 30 40 50 60 70 80 90 100

m
a
x
er
ro
r

Quality factor

Q-approach
corr. Q-appr.

simpl. Q-appr.
c. s. Q-appr.

(b) maximum error

Figure 5.14: `2 and maximum error for the standard objective function (purple) and the
simplified objective function (green). The dashed lines are the errors using the piecewise
correction.

objective function after correction.

The same behavior can be observed on larger Q intervals ([15, 500], [15, 900], [800, 900]

and [500, 1000]) and more parallel Zener models (NSLS = 10), as shown in the figures in

the appendix A.1.5. For larger frequency ranges there are more than two linear regions.

Therefore, a division of the frequency range and different dissipation parameters for the

different ranges can lead to a better approximation of the Q factor.

5.3.4 Modified forward model

After we have eliminated the two disadvantages of the standard approach and improved

our modified model, we can now give the final forward equations. For the sake of clarity,

we will only write Q1 and Q2, but we always mean the improvement with the piecewise

linear offset presented in the previous section. Therefore, we approximate Q with two

affine parts.

We obtain the relaxation functions for the modified Zener model by inserting the

substitutions (5.66) and (5.63) into the equation (5.48) and get

Ψ(t) =MR

(
1 +Q−1

NSLS∑

l=1

Dl exp(−tθl)
)
H(t). (5.69)

If we use the same substitutions in the modulus function (5.47) we get

M(ω) =MR

(
1 +Q−1

NSLS∑

l=1

iωDl(θl − iω)

θ2
l + ω2

)
. (5.70)

5.3. WAVEFORM MODELING 127

Furthermore, the unrelaxed moduli are still needed, which result with definition (5.22) as

follows

MU = lim
ω̄→∞

MR

(
1 +Q−1

NSLS∑

l=1

iω̄θlDl − iω̄2Dl

θ2
l + ω̄2

)
= MR

(
1 +Q−1

NSLS∑

l=1

Dl

)
. (5.71)

The detailed translations can be found in the appendix A.1.3.

For this new approach we get the forward equations in the same way as we have

derived equations (5.54)–(5.61). Thus equations (5.2), (5.3) and (5.69) result in the

following system of equations:

ρ∂tvx =∂xσxx + ∂yσxy + fx (5.72)

ρ∂tvy =∂xσxy + ∂yσyy + fy (5.73)

∂tσxx =(λ+ 2µ)∂xvx + λ∂yvy +
µ+ λ

Q1 +
∑L

l=1 D1,l

NSLS∑

l=1

R1,l

+
µ

Q2 +
∑L

l=1D2,l

NSLS∑

l=1

Rxx,l

(5.74)

∂tσyy =λ∂xvx + (λ+ 2µ)∂yvy +
µ+ λ

Q1 +
∑L

l=1 D1,l

NSLS∑

l=1

R1,l

− µ

Q2 +
∑L

l=1D2,l

NSLS∑

l=1

Rxx,l

(5.75)

∂tσxy =µ(∂xvy + ∂yvx) +
µ

Q2 +
∑L

l=1 D2,l

NSLS∑

l=1

Rxy,l (5.76)

∂tR1,l =−R1,lθ1,l − θ1,lD1,l(∂xvx + ∂yvy) (5.77)

∂tRxx,l =−Rxx,lθ2,l − θ2,lD2,l(∂xvx − ∂yvy) (5.78)

∂tRxy,l =−Rxy,lθ2,l − θ2,lD2,l(∂xvy + ∂yvx) (5.79)

We recall that equations (5.77)–(5.79) are each NSLS equations. Besides, we have

omitted the piecewise linear improvement of the Q factor as described in section 5.3.3 to

simplify readability.

5.3.5 Boundary conditions

When simulating wave propagation in real media as we are looking at in this thesis, the

domain is only a section from a certain area, so there are no boundary conditions. How-

ever, the propagating waves decay only slowly, so that simply truncating the domain with

hard-wall (Dirichlet or Neumann) or periodic boundary conditions leads to unacceptable

artifacts of boundary reflections.

Therefore it is necessary to define reflection-free conditions at these boundaries to

mimic an unlimited medium. For this purpose, we use a so-called perfectly matched layer

128 5. SEISMIC WAVEFORM MODELING AND INVERSION

PML

outgoing wave

refl
ect

ed
wa

ve

Figure 5.15: Wave absorption mechanism in a perfectly matched layer.

(PML) condition or more precisely the convolutional PML (CPML) condition, which is

better unified in a discretized form. Roughly speaking, the area is limited by a layer

in which the waves are damped and at the boundary of this layer the damped wave is

reflected (see figure 5.15). Since these boundary conditions have no direct effect on our

modifications, we refer to [23] for details.

5.4. WAVEFORM INVERSION 129

5.4 Waveform inversion

Full waveform inversion means that the observed seismograms (possibly filtered) are con-

sidered as the basic observables that we want to fit. We thus searches for the model that

minimizes the mean squared difference between observed and synthetic seismograms. In

other words, the goal is to find a structural model that can explain a larger portion of

seismological records, and not simply the phase of a few seismic arrivals.

We want to minimize the classical waveform misfit function:

χ (m) =
N∑

s=1

M∑

r=1

∫ T

0

1

2
‖u(xr, xs,m; t)− u0(xr, xs; t)‖2

2 dt (5.80)

This functional quantifies the L2 difference between the observed waveforms u0(xr, xs; t)

at receivers xr, r = 1, ...,M produced by sources at xs, s = 1, ..., N , and the corresponding

synthetic seismograms u(xr, xs,m; t) computed in model m.

Following [99], we minimize the misfit function (5.80) subject to the constraint that

the synthetic displacement fields satisfies the seismic wave equations (5.72)-(5.79). Math-

ematically, this implies the PDE-constrained minimization of the function

χPDE (m) =
N∑

s=1

M∑

r=1

∫ T

0

1

2
‖u(xr, xs,m; t)− u0(xr, xs; t)‖2

2 dt

−
4+3NSLS∑

i=0

∫ T

0

∫

Ω

λi (eq.(5.72 + i)) ,

(5.81)

where the Lagrange multipliers λi remain to be determined. The equations (5.79+1)

–(5.79+3(NSLS− 1)) denote the corresponding equations to equation (5.77)–(5.79) to up-

date the memory variables added for NSLS > 1. Finding an optimum of this minimization

problem efficiently requires the gradient of equation (5.81), but computing the gradient

is generally very expensive. However, it is possible to obtain this gradient without com-

puting the Jacobian matrix explicitly. The approach to determine the gradient without

computing the Fréchet derivatives was introduced in nonlinear optimization by [42], and

later applied to seismic exploration problems [20]. The idea is to resort to the adjoint

state, which corresponds to the wave field emitted and back-propagated from the receivers

[130].

5.4.1 Regularization

Inverse problems are usually ill-posed, so a regularization term is often added to provide

a more stable convergence, especially concerning noisy input data. Furthermore, the

complete waveform inversion of a viscoelastic wave equation is much more complex than

the purely elastic equation, which is more complex than for example an acoustic wave

equation. Therefore, one key question is, which is the best regularization to achieve

130 5. SEISMIC WAVEFORM MODELING AND INVERSION

better results and at least convergence to the true model.

A general regularization was introduced by Tikhonov [79, 148]. The starting point is that

the data received at the receivers is disturbed. That means we search for an u(m) for

which u0 = u(m)− e for some random noise e. For a Gaussian distributed random noise,

the estimation problem usually appears as determination of the minimizer of a suitably

defined objective function

χ(m)reg = χ(m) + λRR(m), (5.82)

where χ(m) is given by equation (5.80), λR is a regularization weight andR is a regularizer

or regularization function, which maps from the space of all model parameters into the

real numbers and somehow prevents data overfitting.

Common regularization functions are given by:

R0(m) = ‖m‖2
2

R1(m) = ‖∇m‖2
2

R2(m) = ‖∆m‖2
2

A good regularization usually describes properties that are expected of the solution, or

that are known to be expected of the solution. For example, R3 describes a certain

smoothness of the model m, or R2 is suitable for preventing oscillations and prefers plane

surfaces and smooth variations.

Geophysical models usually have both sharp interfaces and smooth variations, and it

is difficult to consider both types accurately. A possible regularization term that preserves

both but still filters out oscillations and noise is a total variation denoising term

RTV(m) = ‖m‖TV,

with the discrete TV norm in 2D is defined as

‖m‖TV =
Nx∑

i=0

Ny∑

j=0

√
|(∇xm)i,j|2 + |(∇ym)i,j|2,

where Nx and Ny are the number of discrete points in x- and y-direction, respectively

and (·)i.j denotes the evaluation at point (i, j). Further advancement of TV regulariza-

tion is the so-called total generalized p-variation regularization, which Gao and Huang

introduced for acoustic and elastic waveform inversion [58] and which yields better results

than standard TV regularization. This regularization results from the solution of another

5.4. WAVEFORM INVERSION 131

minimization problem and is described by

RTp(m) = Tp(m) (5.83)

Tp(m) = min
w
{α0‖∇m− w‖pp + α1‖ε(w)‖pp} (0 < p < 1) (5.84)

where w = (wxwy) is an auxiliary variable and ε(·) is the symmetric gradient

ε(w) =

[
∇xwx

1
2
(∇xwy +∇ywx)

1
2
(∇xwy +∇ywx) ∇ywy

]

The advantage of the p -variation is that it penalizes both the first-order gradient and

high-order gradients of a model. Thus it can effectively avoid the so-called staircase effect

compared with the first-order total variation [58].

5.4.2 Inversion parameters

Several parameters describe a property of isotropic linear elastic materials and two ar-

bitrary parameters of these fully describe the material. Certainly, it is possible to use

a different set of moduli in the forward simulation than for determining the gradients.

Our equations are based for example on the parameters ρ, µ and λ. Another common

parameter set is to use the pressure and shear velocities (vp and vs) instead of the Lamé

parameters (µ and λ).

5.4.3 Adjoint state method

A classic technique to solve a non-linear minimization problem is to successively determine

the minimum of a series of linearized problems. This formulation requires the Fréchet

derivatives (the Jacobian matrix), which can be expensive to compute. If the minimization

is viewed as a non-linear optimization problem, only the gradient of the error functional

is needed. This gradient can be effectively computed without the Fréchet derivatives by

using the adjoint state method. In the following, we derive the adjoint state method for

the minimization problem (5.80). For the sake of clarity, we do not include the sums for

the sources and recipients in the objective function.

The Fréchet derivative of the misfit χ(m) is the infinitesimal change of χ(m) as we

pass from Earth model m(x) to m(x) + δm(x):

dχ

dm
δm := lim

ε→0

1

ε
[χ(m+ εδm)− χ(m)]

The classical misfit functional in full waveform inversion is (see equation (5.80))

χ =
1

2

∫
‖u(xr,m; t)− u0(xr; t)‖2

2 dt.

132 5. SEISMIC WAVEFORM MODELING AND INVERSION

Using the Dirac delta function this can be rewritten as an integral over both time and

space as

χ =
1

2

∫ ∫
‖u(x,m; t)− u0(x; t)‖2

2 δ(x− xr)dtdx.

For a better readability we write in the following only the function names u and u0 and

omit their arguments. The Fréchet derivative of the misfit functional is then given by

dχ

dm
δm =

∫ ∫
δu · (u− u0)δ(x− xr)︸ ︷︷ ︸

=f∗

dtdx,

with δu = du
dm
δm. Besides the Misfit function, there are also constraints, which are given

as a system of PDEs. We denote this system as L = f , where L in our case describes the

viscoelastic wave equation. Computing the Fréchet derivative of L in the direction δm

yields

dL(u,m)

du
δu+

dL(u,m)

dm
δm =0. (5.85)

We can simplify the first term when L is linear in u to

dL(u,m)

du
δu =− lim

ε→0

1

ε
[L(u)− L(u+ εδu)]

= lim
ε→0

1

ε
[L(u+ εδu)− L(u)]

= lim
ε→0

1

ε
[L(u) + εL(δu)− L(u)] = L(δu).

Thus equation (5.85) reads

L(δu) +
dL(u,m)

dm
δm =0.

Multiplying this with an arbitrary differentiable test function u∗, and integrating over

time and space leads to

∫ ∫
u∗ ·

[
L(δu) +

dL(u,m)

dm
δm

]
dtdx =0. (5.86)

Adding equation (5.86) to the Fréchet derivative of the misfit

dχ

dm
δm =

∫ ∫
δu · f ∗ dtdx

results in

dχ

dm
δm =

∫ ∫
δu · f ∗ + u∗ · L(δu) + u∗ · dL(u,m)

dm
δm dtdx (5.87)

5.4. WAVEFORM INVERSION 133

We eliminate δu from equation (5.87) with the help of adjoint of L that fulfills:

∫ ∫
u∗ · L(δu)dtdy =

∫ ∫
δu · L∗(u∗) dtdx

Finding the adjoints is the actual challenge, but if we manage to do so, we can transform

equation (5.87) to:

dχ

dm
δm =

∫ ∫
δu · [f ∗ + L∗(u∗)] + u∗ · dL(u,m)

dm
δm dtdx

We can eliminate δu when the adjoint field u∗ satisfies the adjoint equation

L∗(u∗) =− f ∗.

All in all, computing the Fréchet derivative of the misfit χ then becomes quite easy and

can be written as

dχ

dm
δm =

∫ ∫
u∗ · dL(u,m)

dm
δm dtdx. (5.88)

That means, before we can calculate the derivative of the misfit function, we first have to

derive the adjoint model in the next section.

5.4.4 Adjoint model

In order to derive the adjoint model, we have to represent the forward model in matrix

notation.

Forward model with matrix operations To derive the adjoint problem we need a

mapping L describing the viscoelastic wave equation. For this purpose we write equa-

tions (5.72)–(5.79) in matrix notation. Therefore, we define the model parameters as a vec-

torm = (λ µ ρ Q1 Q2)>, the simulation parameter vector is u = (σxx σyy σxy vx vy R1,l Rxx,l

Rxy,l)
> and the source term vector is s = (0 0 0 fx fy 0 0 0)>. Thus the forward problem

can be written as L(u,m) = s or L(u,m) = 0 with

L(u,m) := (−∂tI + A ·D +B)u,

L(u,m) :=
(
−A−1∂tI +D + A−1B

)
u+ A−1s.

In the following, we consider the formulation L(u,m) = 0 since the location-dependent

model parameters do not appear in front of terms with spatial derivatives. This simplifies

the partial integration when deriving the adjoint problem. Here the matrices A, B and

134 5. SEISMIC WAVEFORM MODELING AND INVERSION

D are given by

A =

(λ+ 2µ) λ 0 0 0 0 0 0

λ (λ+ 2µ) 0 0 0 0 0 0

0 0 µ 0 0 0 0 0

0 0 0 1
ρ

0 0 0 0

0 0 0 0 1
ρ

0 0 0

0 0 0 0 0 −D1,lθ1,l 0 0

0 0 0 0 0 0 −D2,lθ2,l 0

0 0 0 0 0 0 0 −D2,lθ2,l

,

D =

0 0 0 ∂x 0 0 0 0

0 0 0 0 ∂y 0 0 0

0 0 0 ∂y ∂x 0 0 0

∂x 0 ∂y 0 0 0 0 0

0 ∂y ∂x 0 0 0 0 0

0 0 0 ∂x ∂y 0 0 0

0 0 0 ∂x −∂y 0 0 0

0 0 0 ∂y ∂x 0 0 0

and

B =

0 0 0 0 0 (λ+µ)

Q1+
∑NSLS
l=1 D1,l

µ

Q2+
∑NSLS
l=1 D2,l

0

0 0 0 0 0 (λ+µ)

Q1+
∑NSLS
l=1 D1,l

− µ

Q2+
∑NSLS
l=1 D2,l

0

0 0 0 0 0 0 0 µ

Q2+
∑NSLS
l=1 D2,l

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 −θ1,l 0 0

0 0 0 0 0 0 −θ2,l 0

0 0 0 0 0 0 0 −θ2,l

.

Derivation of adjoint model Using the matrix notation we can now determine the

adjoint problem. For this we use the relation between forward and adjoint problem

∫ ∫
u∗ · L(δu) dtdx =

∫ ∫
δu · L∗(u∗) dtdx

For better readability we write both sides as bilinear forms which reads

〈u∗,L(δu)〉 = 〈δu,L∗(u∗)〉 .

5.4. WAVEFORM INVERSION 135

Inserting L(δu) into the left side yields

〈u∗,L(δu)〉 =
〈
u∗, (−A−1∂tI +D + A−1B)δu

〉
.

We split the bilinear form into three parts and consider each term individually:

=
〈
u∗,−A−1∂tIδu

〉
︸ ︷︷ ︸

=I

+ 〈u∗, Dδu〉︸ ︷︷ ︸
=II

+
〈
u∗, A−1Bδu

〉
︸ ︷︷ ︸

=III

I =
〈
u∗,−A−1∂tIδu

〉 P.I.︷︸︸︷
= −

〈
(−A−1)>∂tIu

∗, δu
〉

II = 〈u∗, Dδu〉
P.I.︷︸︸︷
= −

〈
D>u∗, δu

〉

III =
〈
u∗, A−1Bδu

〉
=
〈
B>(A−1)>u∗, δu

〉

In each term the property < M ·, · >=< ·,M> · > for M ∈ Rn×n of the bilinear form

was used. We had also performed a partial integration in I and II.

Next, we combine all three terms and since A is symmetric, this leads to

〈u∗,L(δu)〉 =
〈
−(−A−1∂tI +D> − (A−1B)>)u∗, δu

〉
.

Due to the symmetry of this bilinear form, we can identify the adjoint problem, that is

L∗(u∗) = −(−A−1∂tI +D> − (A−1B)>)u∗. (5.89)

For better comparability of the adjoint problem with the forward problem, we rewrite the

matrix notation into a system of equations. Therefore, we first calculate (A−1B)
>

and

get

(
A−1B

)>
=

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1
2

1

Q1+
∑NSLS
l=1 D1,l

1
2

1

Q1+
∑NSLS
l=1 D1,l

0 0 0 1
D1,l

0 0

1
2

1

Q2+
∑NSLS
l=1 D2,l

−1
2

1

Q2+
∑NSLS
l=1 D2,l

0 0 0 0 1
D2,l

0

0 0 1

Q2+
∑NSLS
l=1 D2,l

0 0 0 0 1
D2,l

All in all, the adjoint problem A · L∗(u∗) = 0 is given by the following equations:

136 5. SEISMIC WAVEFORM MODELING AND INVERSION

∂tv
∗
x =

1

ρ
(∂xσ

∗
xx + ∂yσ

∗
xy +

NSLS∑

l=1

(∂xR
∗
1,l + ∂xR

∗
xx,l + ∂yR

∗
xy,l)) (5.90)

∂tv
∗
y =

1

ρ
(∂xσ

∗
xy + ∂yσ

∗
yy +

NSLS∑

l=1

(∂yR
∗
1,l − ∂yR∗xx,l + ∂xR

∗
xy,l)) (5.91)

∂tσ
∗
xx =(λ+ 2µ)∂xv

∗
x + λ∂yv

∗
y (5.92)

∂tσ
∗
yy =λ∂xv

∗
x + (λ+ 2µ)∂yv

∗
y (5.93)

∂tσ
∗
xy =µ(∂xv

∗
y + ∂yv

∗
x) (5.94)

∂tR
∗
1,l =

1

2

D1,lθ1,l

Q1 +
∑
D1,l

(
σ∗xx + σ∗yy

)
+ θ1,lR

∗
1,l (5.95)

∂tR
∗
xx,l =

1

2

D2,lθ2,l

Q2 +
∑
D2,l

(
σ∗xx − σ∗yy

)
+ θ2,lR

∗
xx,l (5.96)

∂tR
∗
xy,l =

D2,lθ2l,

Q2 +
∑
D2,l

σ∗xy + θ2,lR
∗
xy,l (5.97)

In contrast to the pure elastic wave equation, where the adjoint problem is the same as the

forward problem, the adjoint viscoelastic wave equation differs especially in the equations

for the velocity update.

5.4.5 Derivative of the misfit function

After we have derived the adjoint problem, we can now use equation (5.88) to determine

the derivative of the misfit function.

First we calculate the derivative for the linear operator of the forward problem

L(u,m) =− A−1∂tu+Du+ A−1Bu+ A−1s,

which is

dL(u,m)

dm
=− ∂mA−1∂tu+ ∂m

(
A−1B

)
u+ ∂mA

−1s

=− ∂mA−1∂tu+ ∂mA
−1Bu+ A−1∂mBu+ ∂mA

−1s

=∂mA
−1 (−∂tu+Bu+ s)︸ ︷︷ ︸

=−ADu

+A−1∂mBu

=− ∂mA−1(AD)u+ A−1∂mBu

Next, we can insert this derivative into equation (5.88) and obtain

dχ

dm
δm =

∫ ∫
u∗ ·

(
−∂mA−1(AD) + A−1∂mB

)
u dxdt. (5.98)

Now we are able to calculate the derivatives. We omit here the detailed calculation of

the derivatives, which are performed in section A.1.4 in the appendix. The following

5.4. WAVEFORM INVERSION 137

derivations result:

u∗ · dL(u,m)

dρ
= u∗ · (−∂ρA−1(AD) + A−1∂ρB)u

= −v∗x∂tṽx − v∗y∂tṽy.

u∗ · dL(u,m)

dλ
= u∗ · (−∂λA−1(AD) + A−1∂λB)u

=
1

4(λ+ µ)2

{
(σ∗xx + σ∗yy)(∂tσ̃xx + ∂tσ̃yy)

}

+ (σ∗xx + σ∗yy)
1

2(λ+ µ)

1

Q1 +
∑NSLS

l=1 D1,l

NSLS∑

l=1

R1,l

u∗ · dL(u,m)

dµ
=u∗ · (−∂µA−1(AD) + A−1∂µB)u

=σ∗xx

(
λ2 + 2λµ+ 2µ2

4µ2(λ+ µ)2
∂tσ̃xx −

λ(λ+ 2µ)

4µ2(λ+ µ)2
∂tσ̃yy

)

− σ∗yy
(
λ(λ+ 2µ)

4µ2(λ+ µ)2
∂tσ̃xx −

λ2 + 2λµ+ 2µ2

4µ2(λ+ µ)2
∂tσ̃yy

)
+ σ∗xy

(
1

µ2
∂tσ̃xy

)

+ (σ∗xx + σ∗yy)
1

2(λ+ µ)

1

Q1 +
∑NSLS

l=1 D1,l

NSLS∑

l=1

R1,l

+ (σ∗xx − σ∗yy)
1

2(µ)

1

Q2 +
∑NSLS

l=1 D2,l

NSLS∑

l=1

Rxx,l

+ (σ∗xy)
1

µ

1

Q1 +
∑NSLS

l=1 D2,l

NSLS∑

l=1

Rxy,l

u∗ · dL(u,m)

dQ1

=u∗ · (−∂Q1A
−1(AD) + A−1∂Q1B)u

=− 1

2

1
(
Q1 +

∑NSLS

l=1 D1,l

)2

(
σ∗xx

NSLS∑

l=1

R1,l + σ∗yy

NSLS∑

l=1

R1,l

)

u∗ · dL(u,m)

dQ2

=u∗ · (−∂Q2A
−1(AD) + A−1∂Q2B)u

=
1

2

1
(
Q2 +

∑NSLS

l=1 D2,l

)2

(
σ∗yy

NSLS∑

l=1

Rxx,l − σ∗xx
NSLS∑

l=1

Rxx,l − 2σ∗xy

NSLS∑

l=1

Rxy,l

)

All in all, with the forward, adjoint equations and the partial derivatives of the misfit

function, we now have everything we need to apply an optimization algorithm to the

minimization problem (5.80). The implementation that is used in this thesis is presented

in the following section.

138 5. SEISMIC WAVEFORM MODELING AND INVERSION

5.5 Algorithmic realization

In this section, we present a possible realization of a full waveform inversion algorithm.

We start with a simple version, where we restrict ourselves to only one source. Then, we

discuss the components of this algorithm and improve this approach, e.g., with respect

to parallelism and convergence, so that we finally arrive at the algorithm used in this

thesis. The realizations presented here are part of the FWI simulation software SOUND-

VIEW, with which our numerical tests in section 5.6 were accomplished and in which the

contributions in this section were implemented.

The input data of each FWI algorithm are taken from a previous forward run, for

example from a physical experiment. Thus, the input data of the algorithm are the

source terms of the sources from the forward simulation as well as the signals collected

at the receivers. In addition, an initial model is required, which the algorithm iteratively

approximates to the target model.

Afterwards, an optimization algorithm is used to solve the minimization problem (5.80).

As described in the previous section, we determine the derivative of the misfit function

without directly calculating the Fréchet derivative. Instead, we use the adjoint state

method. For this method, we need the solution of the forward and adjoint simulation.

Within an iteration of the optimization algorithm, first, a forward simulation and then

an adjoint simulation must be performed. Using these two solutions, the derivative of the

misfit function can be determined and the optimization algorithm can calculate the next

approximation of the model.

Algorithm 5.1 (simple FWI algorithm).

1: Input: initial model m0, source signals s, receiver signals r

2: Output: model m

3: i = 1

4: while |mi −mi−1| < TOL do

5: forward simulation . section 5.3.4

6: adjoint simulation . section 5.4.4

7: calculate derivative of misfit function . section 5.4.5

8: update of optimization method(mi+1, mi)

9: i = i+ 1

10: end while

The basic/simplified algorithm is shown in algorithm 5.1. In the following sections,

we discuss the optimization procedure and the implementation of the forward and adjoint

simulation.

5.5. ALGORITHMIC REALIZATION 139

5.5.1 Optimization method

To obtain a solution of the quadratic minimization problem (5.80), we use an iterative

method described by Broyden, Fletcher, Goldfarb, and Shanno [38, 55, 62, 138] and

named after as BFGS method. Considering the viscoelastic PDE instead of the elastic one

increases the number of inverting parameters, but the modifications from the sections 5.3

and 5.4 do not affect the l-BFGS approach.

Limited-memory BFGS

The line search method is a basic method to solve an optimization problem iteratively.

Here a search direction pk and a step size sk is determined, with which the next iteration

is calculated as

mk+1 = mk + skpk.

Using iterative methods, it is possible to compute an estimate of the inverse Hessian

based only on the knowledge of the gradient at the previous iterations, the quality of

the approximation improving with the number of previous iterations used. The method

generates a series of models that gradually converge towards a minimum of the misfit

function (which may be local), and a series of matrices that converge towards the inverse

Hessian.

A typical choice is that pk is determined as the negative gradient

pk = −∇χ ,

The BFGS formula to compute Hk, the approximate inverse Hessian at iteration k, is

given by [119]:

H−1
k ' H−1

k−1 −
H−1
k−1 · sk−1 ⊗ sk−1 ·H−1

k−1

sk−1 ·Hk−1 · sk−1

+
yk−1 ⊗ yk−1

yk−1 · sk−1

, (5.99)

where ⊗ is the tensor product, sk = mk − mk−1 is the difference between the current

model and the model at the previous iteration, and yk = ∇χk − ∇χk−1 is the gradient

change. Using equation (5.99) we can iteratively calculate an estimate of the inverse

Hessian H−1 based on the knowledge of the approximation of the inverse Hessian at

the previous iteration, the difference s between the current model and its value at the

previous iteration, and the difference y between the current gradient and the gradient

at the previous iteration. Compared to the gradient method, convergence of BFGS is

much faster for the same numerical cost [119]. Compared to the classical Gauss-Newton

method, BFGS is also easier to implement because it does not require to compute and

store the inverse Hessian. The reader is referred to [119] for a more detailed presentation

of the BFGS algorithm.

140 5. SEISMIC WAVEFORM MODELING AND INVERSION

To compute the search direction at iteration k

pk = −H−1
k · ∇χ , (5.100)

we only needs to perform a matrix-vector multiplication. However, in the case of large

problems it is currently impossible to compute and store even the approximate inverse

Hessian matrix. Since in equation (5.100) we do not need to explicitly store it but only be

able to compute its effect on a vector (the gradient), a modified method called the l-BFGS

algorithm (for ‘limited-memory BFGS’) has been developed [38, 55, 62, 138] in order

to compute the matrix-vector product in equation (5.100) without having to store the

inverse Hessian. The principle of l-BFGS is to use equation (5.99) iteratively to compute

the product of the inverse Hessian, using the gradient from the initial inverse Hessian and

the history of models and gradients accumulated in the iterations of the algorithm. In

this case, we only need to store a set of models and gradients, which represents only a

fraction of the storage space required to store the complete inverse Hessian. The number

of previous models and gradients that are kept in memory is a parameter chosen by the

user, e.g., we use l = 20 in our simulations in section 5.6.

Calculation of the step length Once the descent direction pk at iteration k has been

obtained, it is necessary to determine the step length, or in other words to decide how far

to move along that direction. This problem can be formulated as finding the step s that

minimizes

φ(s) = χ(mk + spk) .

In practice, determining that optimal step precisely may require to test a large number

of step lengths, which can thus be very expensive. However, we should keep in mind that

χ(m) rather than φ(s) is the quantity that we need to minimize. It is thus sufficient to

find an approximate step at minimal cost that honors certain conditions in order to make

the optimization method converge. In practice, the step length variations between two

iterations must be sufficiently large so that the algorithm requires a moderate number

of iterations to converge, and sufficiently small to avoid the divergence of the algorithm.

A good compromise is to use the so-called Wolfe conditions to select the step length

[166, 167]. These rules test if the current step provides a sufficient decrease of both the

cost function and the gradient. Introducing parameters 0 < c1 < c2 < 1, and φ′(s) the

derivative of φ with respect to s, the step length is kept if

φ(s) ≤ φ(0) + c1sφ
′(0) and |φ′(s)| ≤ c2|φ′(0)| .

If these two conditions are not satisfied, a new step is tested. If

φ(s) > φ(0) + c1sφ
′(0)

5.5. ALGORITHMIC REALIZATION 141

the step is too large, and we then tests a smaller step length. On the other hand, if

φ(s) ≤ φ(0) + c1sφ
′(0) and |φ′(s)| > c2|φ′(0)| ,

the step is too short, and we then test a longer step. When it is no longer possible to find a

step that satisfies these relations, convergence is reached and we then stop the algorithm.

However, this can also mean that a local minimum and not the global minimum has been

reached (cf. section 5.5.3). Tuning parameters c1 and c2 makes the selection rules more

or less restrictive in terms of accepting the step length. For example, if c1 is chosen close

to 0, it is easier to honor the first inequality. In our implementation, we select c1 = 0.1

and c2 = 0.9, the standard values recommended by [119].

Alternating L2-TV optimization

The gradient of the misfit function is calculated using the adjoint state method (see

section 5.4.5). If an additional regularization procedure is used, the gradient can be

calculated additively. However, if we use a total variation type regularization like

χTV(m) = min
m

{
N∑

s=1

M∑

r=1

∫ T

0

1

2
‖u(xr, xs,m; t)− u0(xr, xs; t)‖2

2 dt+ λRTV
‖m‖TV

}
,

an alternating approach gives better results [63]. For better readability, we omit the sums

for the sources and recipients in the following. To achieve an alternating method we

introduce an auxiliary variable v and use the equivalent minimization problem

χTV,alt(m, v) = min
m,v

{∫ T

0

1

2
‖u(m; t)− u0(t)‖2

2 dt+ λTV,1‖m− v‖2
2 + λTV,2‖v‖TV

}
,

where λTV,1 and λTV,2 are regularization parameters. To solve this minimization problem

we use an alternating minimization algorithm, this leads to two independent minimization

problems

m(k) = min
m

χTV,alt1(m) = min
m

{∫ T

0

1

2
‖u(m; t)− u0(t)‖2

2 dt+ λTV,1‖m− v(k−1)‖2
2

}

and

v(k) = min
v
χTV,alt2(u) = min

v

{
λTV,1‖m(k) − v‖2

2 + λTV,2‖v‖TV

}

A further improvement of this alternating method is the use of so-called alternating di-

rection method multipliers (ADMM) [30], which result in the following minimization

142 5. SEISMIC WAVEFORM MODELING AND INVERSION

problems

m(k) = min
m

{∫ T

0

1

2
‖u(m; t)− u0(t)‖2

2 dt+ λTV,1‖m− v(k−1) + q(k−1)‖2
2

}

v(k) = min
u

{
λTV,1‖m(k) − v + q(k−1)‖2

2 + λTV,2‖v‖TV

}

q(k) = q(k−1) +m(k) − v(k)

To solve the first minimization problem we use the l-BFGS method and for the second

minimization problem, we use the split-Bregman method. We will skip details about

the split-Bregman method here and refer to a work by Goldstein and Osher [63]. The

p-variation regularization can be implemented in the same way. A detailed description

of such an realization and algorithmic implementation is described in the appendix in

section A.1.6.

5.5.2 Forward/adjoint simulation

Staggered grid To discretize the forward and adjoint simulation we use a so-called

staggered grid finite difference approach. In this approach, not all parameters are given

in the same degrees of freedom but are shifted by half a step size. The staggered grid

definition used in this thesis is shown in figure 5.16. It is important to note that the

parameters which are calculated live in the same degree of freedom and are interpolated

in this way. The main benefit of the staggered grid over collocated grids is that, unlike

the collocated grid, the staggered grid does not results in the decoupling of the pressure

and velocity, leading to the checkerboard problem. To decouple the equations in time, we

use an alternating approach. This means that the velocity update is done in time step

n+ 1/2 and the stress update in full time step n+ 1.

A balanced direct discretization is achieved if a higher domain discretization is chosen

as time discretization. Blanch et al. [27] have shown that order four in space and order

two in time is a good choice.

In the following, we discretize the equations exemplarily with the Crank-Nicolson

method in time and a central second order coefficient in domain (to achieve better read-

ability than it would be the case using the fourth order discretization).

Spatial discretization Any finite difference approach can be used for the spatial dis-

cretization. For example, we use a central second order difference quotient. Further, we

use superscripts i, j to mark the respective grid points. Figure 5.16 shows that identical

indices of different components and parameters are not necessarily in the same position.

So it is necessary to make sure that the parameters are interpolated so that all calculated

parameters describe the same grid position.

We further mark the discrete evaluated derivative at point i, j with a small h in the

subscript so that ∂x,hv
i,j
x describes the numerical approximation of the derivative evaluated

5.5. ALGORITHMIC REALIZATION 143

vi,jx

vi,jyσi,j
xy , R

i,j
xy

vi+1,j+1
x

σi,j+1
xy , Ri,j+1

xy

σi+1,j
xy , Ri+1,j

xy

vi+1,j
x

vi,j+1
y

vi+1,j
y

vi,j+1
x σi,j+1

xx , σi,j+1
yy

Ri,j+1
1 , Ri,j+1

xx

σi+1,j+1
xx , σi+1,j+1

yy

Ri+1,j+1
1 , Ri+1,j+1

xx

σi+1,j
xx , σi+1,j

yy

Ri+1,j
1 , Ri+1,j

xx

σi,j
xx, σ

i,j
yy

Ri,j
1 , R

i,j
xx

Figure 5.16: Staggered grid for the viscoelastic wave equation. The stress and memory
variables are defined in the points marked by squares and the velocities are defined in the
points marked by circles.

at point i, j. Since the partial derivative ∂xvx only occurs in the two equations for the

determination of σxx and σyy, the derivative is also only needed in this point, so that

∂x,hv
i,j
x is only needed at the position from σxx. Thus the derivative at this point is given

by the central difference quotient evaluated in vi+1,j
x and vi,jx as shown in figure 5.17 on

the left, and the derivative is given by

∂x,hv
i,j
x =(vi+1,j

x − vi,jx)/h.

We also see in figure 5.17 that this is really a central difference quotient, because the

partial derivative ∂x,hv
i,j
x is calculated at a point that lies exactly between vi+1,j

x and vi,jx .

In the same way, the remaining partial derivatives of the velocity are:

∂y,hv
i,j
x =(vi,j+1

x − vi,jx)/h

∂x,hv
i,j
y =(vi,jy − vi−1,j

y)/h

∂y,hv
i,j
y =(vi,jy − vi,j−1

y)/h

All partial derivatives are only needed in exactly one point of the staggered grid, these

places are shown on the right side of figure 5.17 (here the superscript i, j was skipped,

since it is the same everywhere).

Analogous to the partial derivatives of the velocity components, the derivatives of the

144 5. SEISMIC WAVEFORM MODELING AND INVERSION

vi,j−1
y

vi+1,j
x

vi,jy

vi,jx ∂x,hvx

∂y,hvy

∂x,hσxx

∂x,hvy

∂x,hvx
∂y,hvy∂y,hσxy

∂y,hσyy
∂x,hσxy

∂y,hvx

Figure 5.17: left: central difference quotient in a staggered grid; right: positions of partial
derivatives in a staggered grid, whereas the positions are the same as in figure 5.16.

stress vector components can be determined, and are as follows:

∂x,hσ
i,j
xx =(σi,jxx − σi−1,j

xx)/h

∂y,hσ
i,j
yy =(σi,j+1

yy − σi,jyy)/h

∂x,hσ
i,j
xy =(σi,jxy − σi,j−1

xy)/h

∂y,hσ
i,j
xy =(σi+1,j

xy − σi,jxy)/h

Compare again the figures 5.17 and 5.16 to see that these are central difference quotients

of order 2.

Time discretization of the forward simulation After the spatial discretization has

been done, we now perform time discretization. Since the time discretization has to be

done for each discrete point in space, we do not use the location indices i, j in the following

because all parameters are evaluated in the same point and we use the superscript n for

the n−th time step instead.

We start with the equations of the forward simulation, insert the spatial discretizations

in equations (5.72)–(5.79) and discretize them with the Crank-Nicolson method [46]. We

recall that the velocity update is done in time step n + 1/2 and the stress update in full

time step n+ 1. Applying the Crank-Nicolson method to equation (5.72), we obtain

ρ
v
n+1/2
x − vn−1/2

x

∆t
= ∂x,hσ

n
xx + ∂y,hσ

n
xy.

5.5. ALGORITHMIC REALIZATION 145

Elementary restructuring results in the update rule

vn+1/2
x = vn−1/2

x +
∆t

ρ
(∂x,hσ

n
xx + ∂y,hσ

n
xy). (5.101)

Similarly, this results for equation (5.73) in

vn+1/2
y = vn−1/2

y +
∆t

ρ
(∂x,hσ

n
xy + ∂y,hσ

n
yy). (5.102)

Since σ and the memory variables are defined in the same time step, using the Crank-

Nicolson procedure for equation (5.74) is a bit more complex, and we get

σn+1
xx − σnxx

∆t
=(λ+ 2µ)∂x,hv

n+1/2
x + λ∂y,hv

n+1/2
y

+
1

2

(
λ+ µ

Q1 +
∑NSLS

l=1 D1,l

NSLS∑

l=1

Rn+1
1,l +

µ

Q2 +
∑NSLS

l=1 D2,l

NSLS∑

l=1

Rn+1
xx,l

+
λ+ µ

Q1 +
∑NSLS

l=1 D1, l

NSLS∑

l=1

Rn
1,l +

µ

Q2 +
∑NSLS

l=1 D2,l

NSLS∑

l=1

Rn
xx,l

)
.

Elementary restructuring and summarizing yields the update rule

σn+1
xx =σnxx + ∆t

(
(λ+ 2µ)∂x,hv

n+1/2
x + λ∂y,hv

n+1/2
y

)

+
∆t

2

λ+ µ

Q1 +
∑NSLS

l=1 D1,l

(
NSLS∑

l=1

(Rn+1
1,l +Rn

1,l)

)

+
∆t

2

µ

Q2 +
∑NSLS

l=1 D2,l

(
NSLS∑

l=1

(Rn+1
xx,l +Rn

xx,l)

)
.

(5.103)

In a similar way we obtain the update regulations for σyy und σxy:

σn+1
yy =σnyy + ∆t

(
λ∂x,hv

n+1/2
x + (λ+ 2µ)∂y,hv

n+1/2
y

)

+
∆t

2

λ+ µ

Q1 +
∑NSLS

l=1 D1,l

(
NSLS∑

l=1

(Rn+1
1,l +Rn

1,l)

)

− ∆t

2

µ

Q2 +
∑NSLS

l=1 D2,l

(
NSLS∑

l=1

(Rn+1
xx,l +Rn

xx,l)

)
(5.104)

σn+1
xy =σnxy + ∆tµ

(
∂x,hv

n+1/2
y + ∂y,hv

n+1/2
x

)

+
∆t

2

µ

Q2 +
∑NSLS

l=1 D2,l

(
NSLS∑

l=1

(Rn+1
xy,l +Rn

xy,l)

)
(5.105)

146 5. SEISMIC WAVEFORM MODELING AND INVERSION

Finally the update rules for the memory variables are missing. The Crank-Nicolson

procedure exemplary for equation (5.77) results in

Rn+1
1,l −Rn

1,l

∆t
=

1

2

(
−Rn+1

1,l θ1,l −Rn
1,lθ1,l

)
− θ1,lD1,l

(
∂x,hv

n+1/2
x + ∂y,hv

n+1/2
y

)
.

Elementary restructuring and summarizing yields the update rules

Rn+1
1,l =

1

1 + 0.5∆tθ1,l

(
Rn

1,l −
∆t

2
θ1,lR

n
1,l −∆tθ1,lD1,l(∂x,hv

n+1/2
x + ∂y,hv

n+1/2
y)

)
. (5.106)

Similarly, the update rules for the other memory variables are:

Rn+1
xx,l =

1

1 + 0.5∆tθ2,l

(
Rn
xx,l −

∆t

2
θ2,lR

n
xx,l −∆tθ2,lD2,l(∂x,hv

n+1/2
x − ∂y,hvn+1/2

y)

)
(5.107)

Rn+1
xy,l =

1

1 + 0.5∆tθ2,l

(
Rn
xy,l −

∆t

2
θ2,lR

n
xy,l −∆tθ2,lD2,l(∂x,hv

n+1/2
y + ∂y,hv

n+1/2
x)

)
(5.108)

Thus we have completely discretized the forward problem.

Time discretization of the adjoint simulation For the discretization of the adjoint

simulation, the same discrete derivatives are used as for the forward simulation. We need

additionally the partial derivatives of the memory variables in the adjoint problem. For

better readability and since all variables in this section are the adjoint variables, we do

not mark these quantities with a ‘∗’. Since the memory variables are located in the same

points as the corresponding stress components and occur in the same equations, they are

calculated analogously, e.g., ∂x,hRxx,l is calculated analogously to ∂x,hσxx (see figure 5.16

and 5.17).

We insert an arbitrary spatial discretization into the equations (5.90)–(5.97), discretize

them with the Crank-Nicolson method and receive the following update rules in the same

5.5. ALGORITHMIC REALIZATION 147

way as for the forward simulation:

vn+1/2
x = vn−1/2

x +
∆t

ρ
(∂x,hσ

n
xx + ∂y,hσ

n
xy +

NSLS∑

l=1

(∂x,hR
n
1,l + ∂x,hR

n
xx,l + ∂y,hR

n
xy,l)) (5.109)

vn+1/2
y = vn−1/2

y +
∆t

ρ
(∂x,hσ

n
xy + ∂y,hσ

n
yy +

NSLS∑

l=1

(∂y,hR
n
1,l − ∂y,hRn

xx,l + ∂x,hR
n
xy,l)) (5.110)

σn+1
xx =σnxx + ∆t

(
(λ+ 2µ)∂x,hv

n+1/2
x + λ∂y,hv

n+1/2
y

)
(5.111)

σn+1
yy =σnyy + ∆t

(
λ∂x,hv

n+1/2
x + (λ+ 2µ)∂y,hv

n+1/2
y

)
(5.112)

σn+1
xy =σnxy + ∆tµ

(
∂x,hv

n+1/2
y + ∂y,hv

n+1/2
x

)
(5.113)

Rn+1
1,l =

1

1− 0.5∆tθ1,l

(
Rn

1,l +
∆t

2
θ1,lR

n
1,l

+0.25∆t
θ1,lD1,l

Q1 +
∑NSLS

l=1 D1,l

(σn+1
xx + σn+1

yy + σnxx + σnyy)

) (5.114)

Rn+1
xx,l =

1

1− 0.5∆tθ2,l

(
Rn
xx,l +

∆t

2
θ2,lR

n
xx,l

+0.25∆t
θ2,lD2,l

Q2 +
∑NSLS

l=1 D2,l

(σn+1
xx − σn+1

yy + σnxx − σnyy)
) (5.115)

Rn+1
xy,l =

1

1− 0.5∆tθ2,l

(
Rn
xy,l +

∆t

2
θ2,lR

n
xy,l + 0.5∆t

θ2,lD2,l

Q2 +
∑NSLS

l=1 D2,l

(σn+1
xx + σnxy)

)

(5.116)

CPML boundary condition As we described in section 5.3.5 are all the boundaries

of the grid artificial and outgoing waves should be absorbed there in order to simulate a

semi-infinite medium (see figure 5.15). We use the unsplit CPML technique of [83], also

analyzed by [88], which consists of modifying each spatial derivative along the direction

perpendicular to the absorbing layer. We describe it exemplarily for the x component,

and the spatial derivative is replaced by

∂x̃ =
1

κx
∂x + ψx, (5.117)

where ψx is a memory variable whose time evolution is governed at each time step by an

additional equation:

ψnx = bxψ
n−1
x + ax (∂x)

n− 1
2 . (5.118)

This implies that significantly more equations need to be solved in the PML regions,

in particular near the corners of the grid, because contributions coming from the PML

layers located along x and y are summed there and one memory variable and thus a time

evolution equation is needed for each, however this is acceptable because the PML regions

are small compared to the rest of the model.

148 5. SEISMIC WAVEFORM MODELING AND INVERSION

The coefficients ax and bx in the PML, which do not vary with time, are given by:

bx = e−(dx/κx+αx)∆t (5.119)

and

ax =
dx

κx(dx + κxαx)
(bx − 1), (5.120)

where κx ≥ 1, dx ≥ 0 and αx ≥ 0 are three real damping coefficients. We refer the reader

to [83] for more details.

Gradient of the objective function The gradient of the objective function results

as integral over time in which both the solution of the forward problem and the adjoint

problem occurs. The adjoint problem runs backward in time, which means that when the

Fréchet derivatives are calculated, the i-th time step of the adjoint problem is combined

with the (N − i)-th time step of the forward problem. However, this would mean that the

entire forward modeling would have to be stored. Since real-world problems are so large

that this is practically impossible, there are several ways to store the corresponding time

steps of the forward and adjoint problems at the same time without storing the entire

forward run. These are shown in figure 5.18, where (a) is the described standard variant

0 N-1

0 N-1

0 N-1

0 N-1

0 N-1

0 N-1

0 N-1

0 N-1

0 N-1

storage

storage

storage

storage

storage

storage

i N-i

i N-i

i N-i

forward simulation

forward simulation

forward simulation forward simulation

forward simulation

forward solution
adjoint simulation

adjoint simulation

adjoint simulation

compute
derivative

compute
derivative

compute
derivative

first step: second step:

(a)

(b)

(c)

Figure 5.18: Three different strategies to store the solution of the forward simulation
(inspired by Komamtitsch et al. [84]).

where the entire forward simulation is stored and then loaded from memory during the

adjoint simulation to calculate the derivative. A very memory efficient variant is variant

(b) where only the last time step of the forward simulation is stored. Afterwards, another

forward simulation is run parallel to the adjoint simulation but this time backward in

time. However, this variant cannot be applied (without strong filtering and the resulting

significant loss of accuracy (e.g., Ammariet et al. [11]) in the anelastic case or in the

5.5. ALGORITHMIC REALIZATION 149

presence of any kind of energy loss, because the temporal energy decay is unstable from

a numerical point of view (e.g., Liu and Tromp [96, 97]). The reason for this is that

in adjoint simulation the fields are amplified to restore the original energy, but this also

amplifies the (numerical) noise and thus the methods become unstable. Thus, this variant

is not applicable in our case. Therefore we use the third variant (c) which is stable even

when energy is dissipated. In this approach, in the first stage we store a small number

of equally spaced checkpoint/restart ‘files’ of the forward modeling, typically every few

hundred or thousand time steps and in the second stage we still run two simulations

simultaneously, an adjoint run and a forward run, but instead of running the forward run

backward in time from the stored last time step, we run it in blocks in reverse order, but

in forward direction within each block. In any case, we start from the previous restart

file and store only this part of the run in memory. Since the run is performed forward in

time and not backward, this process is always stable, even in the presence of damping.

5.5.3 Full waveform inversion algorithm

Previously we have only considered one source due to simplification. In practice, this is of

course not feasible to achieve sufficiently good quality, therefore up to several 100 sources

are quite common. Since each source represents an independent simulation, we call this

an event, i.e., in practice, the different sources are executed with a time offset. This gives

us another loop in our FWI algorithm and the result is algorithm 5.2.

Algorithm 5.2 (simplified FWI algorithm).

1: Input: initial model m0, source signals s, receiver signals r

2: Output: model m

3: i = 1

4: while |mi −mi−1| < TOL do

5: for (j = 0; j <#events; j + +) do

6: forward simulation for event j . eqs. (5.101)–(5.108)

7: adjoint simulation for event j . eqs. (5.109)–(5.116)

8: calculate derivative of misfit function for event j . see section 5.4.5

9: add derivative for event j to full derivative

10: end for

11: update of optimization method(mi+1, mi)

12: i = i+ 1

13: end while

Parallelization A very trivial parallelization is the parallel execution of different events.

Because they represent independent simulations, parallelization is possible without further

modifications. But the degree of parallelism is automatically limited. Another possibility

is to parallelize the single simulations of the single events, i.e., to parallelize the forward

150 5. SEISMIC WAVEFORM MODELING AND INVERSION

and adjoint simulation. For this purpose, we choose a domain decomposition approach in

which the domain is divided into overlapping subdomains. The overlapping ensures con-

vergence and consistency [50]. Figure 5.19 shows the overlapping domain decomposition

schematically.

vi,ix
σi,j
xx

σi,j
x,y

vi,jy

vi,j+1
x

σi,j+1
x,y

vi,jy

vi+1,j+1
x

σi,j+1
xx σi+1,j+1

xx

process B

process A

Figure 5.19: Overlapping domain decomposition for two processes. On the right the
degrees of freedom for the black cell are shown. All grey degrees of freedom, which
actually belong to process B, represent so-called halo degrees of freedom for this cell.

On the left side, the division into two subdomains for process A and process B is

shown. On the right side of figure 5.19 we look at a cell of process A that is adjacent

to process B. In black are all parameters, which are degrees of freedom of this cell. For

the update calculation of these degrees of freedom, information is needed that does not

actually belong to process A, these are called halo degrees of freedom. They also exist

on process A, but are not updated there, this happens on process B. After each time

step, the current values of these halo degrees of freedom are transferred from process

B to process A. If a higher discretization method is used than the central difference

quotient, the number of halo degrees of freedom increases. For more details on domain

decomposition procedures, we refer to [50].

GPU acceleration GPUs are very well suited as a target platform because we use the

finite difference method and the Crank-Nicolson method for discretization, and these are

very structured methods. An efficient implementation of such stencil based methods is

already well researched and we refer to chapter 2 for general information or the literature

[43, 109, 135] for further information.

Multiscale seismic waveform inversion Being a local inversion method, FWI carries

the danger of ending up in one of the possibly numerous local minima of the objective

function. It is possible that the final model explains the observed data well, even if it is

not the correct model. In other words, the data misfit is small, but the model misfit is

high. A better initial model may be required to alleviate this problem. Different strategies

of inversion, like the multilevel inversion, can help to avoid stepping in local minima and

5.5. ALGORITHMIC REALIZATION 151

thus are needed for a successful inversion. Using the so-called multilevel approach, we do

(a)

(b)

(c)

Figure 5.20: Misfit function for different frequency bands (from high frequencies at the
top, to low frequencies at the bottom) (inspired by Bunks et al. [39]).

not invert all data at the same time, but separate the inversion into levels, where the data

is limited/filtered to a certain frequency band. This can help to reduce the non-linearity

of inversion and prevent being trapped in local minima. We start from low frequencies and

increase the frequencies during inversion [39]. More precisely, inversions are performed on

the different frequency levels one after the other. First, an inversion is performed on the

lowest level. Then, the resulting model is used as the initial model for the inversion at

the next level, and so on. Especially for more complex problems, this strategy is essential

to reach the global misfit minimum. The main justification is, that the form of the misfit

function is strongly influenced by the frequency range of the data. Figure 5.20 illustrates

this, where the misfit function is plotted for different scale lengths that increase from

(a) to (c). As the scale length increases and thus the frequency decreases, the misfit

function becomes smoother and the number of local minima decreases. Therefore, to

reach the global minimum, a model for low frequencies can be much further away from

the real model, while a much closer model is required for high frequencies. In particular,

this means that details such as thin regions do not appear in the resulting model, when

inverting on the low frequencies scale.

We thus add another loop over the different frequency bands to be inverted and obtain

our final FWI algorithm, which is shown in algorithm 5.3.

152 5. SEISMIC WAVEFORM MODELING AND INVERSION

Algorithm 5.3 (FWI algorithm).

1: Input: initial model m0, source signals s, receiver signals r

2: Output: model m

3: for frq= 0;frq<#frequencies;frq++) do

4: i = 1

5: while |mi −mi−1| < TOL do

6: for (j = 0; j <#events; j + +) do

7: forward simulation for event j . eqs. (5.101)–(5.108)

8: adjoint simulation for event j . eqs. (5.109)–(5.116)

9: calculate derivative of misfit function for event j . see section 5.4.5

10: add derivative for event j to full derivative

11: end for

12: update of optimization method(mi+1, mi)

13: i = i+ 1

14: end while

15: end for

5.5.4 Computation of Zener model parameters

In order to determine the relaxation parameters d1,l, θ1,l and d2,l, θ2,l for l = 1, . . . , NSLS

for the generalized Zener Model, the minimization problem (5.67) must be solved. In

principle, any quadratic optimization problem solver can be used. We use the SolvOpt

algorithm, which was developed by Franz Kappel and Alexei V. Kuntsevic [89], since this

algorithm yields good results for this application as shown in [26].

5.6. NUMERICAL RESULTS 153

5.6 Numerical results

In this section, we evaluate the impact of viscosity on the inversion process and whether

it is necessary to take viscosity into account in the inversion process. Furthermore, we

compare different regularization methods and present a methodology that yields better

inversion results and converges faster. For this purpose, we first use a simple model

problem and then apply our findings to the established Marmousi example. Finally, we

evaluate the scalability of our implementation.

5.6.1 Simple test case

The challenging aspect of geophysical models is that the domains usually consist of subdo-

mains with constant material properties. There is often no smooth transition between two

layers, but areas with different physical parameters are directly adjacent to each other.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Figure 5.21: Simple example with two different regions (blue and yellow). The white
points describe the positions of the sources, the red points describe the locations of the
receivers.

A simple model consisting of two different areas is the bubble example shown in fig-

ure 5.21. It is a square of size 100m × 100m, with a circular region with other physical

properties in the center. That region has a radius of 10m. We consider here two different

versions, one with a higher attenuation and one with a lower attenuation. The corre-

sponding values for the densities ρ, the velocities of the p- and s-waves, and the Q factors

for the two different versions are given in table 5.1. This or similar simple examples are

often used in geophysics to validate regularization techniques or other methods [4, 24, 66].

154 5. SEISMIC WAVEFORM MODELING AND INVERSION

Test case Region ρ in kg/m3 vp in m/s vs in m/s Q1 Q2

high attenuation
inner 1100 1600 1000 100 85
outer 1000 1500 900 65 55

low attenuation
inner 1100 1600 1000 220 185
outer 1000 1500 900 100 85

Table 5.1: Physical properties of the inner and outer region (yellow and blue in figure 5.21)
for a low and high attenuation example.

We use 8 sources distributed equidistantly radially around the bubble region (with

a distance of 20m from the center of the region). The sources are shown as white dots

in figure 5.21. Here, the sources are shot sources, i.e., pressure is given over time. The

number of receivers is 128 and they record velocity values. They are also distributed

equidistantly radially with a distance of 25m from the center of the area. The receivers

are shown as red dots in figure 5.21. As a source time function we use the shifted Ricker

wavelet [134], which is defined as follows

s(t) = A

(
1− 1

2
ω2

0t
2

)
exp

(
−1

4
ω2

0 + t2
)
− t0

where t is the time, t0 is the time shift, A is the amplitude and ω0 is the most energetic

frequency (in radians per second). We choose a dominant frequency of f0=100, with ω0 =

2πf0, a time shift t0 = 0.025 and an amplitude A = 107. For the modified Zener model,

we use NSLS = 3 parallel Zener models, where we consider the objective function (5.67)

in the frequency domain of [exp(log(f0)− log(12) · 0.5), 12 · exp(log(f0)− log(12) · 0.5)] ≈
[28.87, 346.41] with K = 12 discrete frequencies. For the high attenuation case, we set the

Q range of both Q factors to [55, 100]. For the low attenuation case we set Q1 ∈ [90, 230]

and Q2 ∈ [75, 200].

As initial model we always use a homogeneous region with the physical properties of

the outer region and we generate objective data by running a forward simulation with the

true model.

We use l-BFGS to solve the optimization problem, where we set l = 20 (so the gradient

is calculated based on the last 20 gradients) and continue solving until no better solution

can be found (cf. conditions from section 5.5.1 on page 140). In cases where the split-

Bregman solver is used, the iteration count for this solver is set to 10.

Here, except in section 5.6.5, we always invert in the entire frequency space, in other

words, we do not use a multiscale approach.

5.6. NUMERICAL RESULTS 155

5.6.2 Impact of the viscosity

The effort for the viscoelastic inversion is much higher than for the pure elastic inversion.

This is especially due to the fact that 3 × NSLS partial equations have to be solved

additionally. Furthermore, the memory overhead is higher, as well as the implementation

overhead, since the forward simulation does not correspond to the adjoint simulation as it

is in the elastic case. Therefore, we want to use the bubble example to investigate whether

the more expensive viscoelastic inversion is really necessary and how big the difference in

accuracy is.

For this purpose, we consider both, the example with the higher attenuation and

the one with the lower attenuation. As objective data we always use the data resulting

from the forward simulation of the viscoelastic equation with the true model. For the

inversion we use different approaches: The first approach is to simply omit the viscosity

completely and use the pure elastic equations in both, the forward and adjoint simulation.

The second approach is using the viscoelastic equations for the forward simulation and the

purely elastic PDEs in the adjoint simulation. The third approach is to use the viscoelastic

equations in the forward simulation as well as in the adjoint simulation, whereby we again

distinguish whether we optimize all model parameters m = (ρ, vp, vs, Q1, Q2) or only

ρ, vp and vs.

The resulting data misfits of the objective function for all variants and both test cases

are shown in table 5.2, where we have normalized the results by the result of the second

variant. Using the elastic equations for both the forward and the adjoint simulation, the

data misfit is 52 times larger for the high attenuation and 19 times larger for the case with

less attenuation. If we also use the viscoelastic equations in the adjoint simulation and

invert all parameters, the data misfit decreases by a factor of 47 for the high attenuation

and by a factor of 5 for the lower attenuation. However, using the viscoelastic PDEs in

both simulations but inverting only the model parameters ρ, vp and vs leads to only a small

reduction of the data misfit. Overall, the differences are larger for the high attenuation

both elastic viscoelastic inv. viscoelastic inv.
elastic adjoint for ρ, vp, vs for all parameters

high attenuation 52.727 1.000 0.950 0.021
low attenuation 19.169 1.000 0.998 0.197

Table 5.2: Data misfit for the low and high attenuation example using elastic or viscoelas-
tic equations for forward and adjoint modeling in the inversion algorithm.

case than for the low attenuation case. This corresponds exactly to the expectation that

the influence of viscosity is larger for high attenuation.

The same behavior can be seen when considering the model misfit, which is shown in

table 5.3. Here, the model misfit even increases at the step from elastic to viscoelastic

adjoint simulation, if only ρ, vp and vs are optimized. The reason for this can be explained

by figure 5.22, which shows the profiles of the resulting model parameters along x = 50m.

156 5. SEISMIC WAVEFORM MODELING AND INVERSION

If we consider figure 5.22c we see that the velocity in the inner region is faster than

the velocity in the true model. This is because the Q factor in this region is smaller

than in the true model, which makes the attenuation larger. The higher velocities try to

counteract this effect. This effect is slightly higher in the case where both the forward

and the adjoint simulation are realized with the viscoelastic equations, since the effect

occurs in both simulations.

both elastic viscoelastic inv. viscoelastic inv.
elastic adjoint for ρ, vp, vs for all parameters

high attenuation 13.294 1.000 1.057 0.397
low attenuation 1.874 1.000 1.005 0.555

Table 5.3: Model misfit for the low and high attenuation example using elastic or vis-
coelastic equations for forward and adjoint modeling in the inversion algorithm.

Findings and implications for the following sections For simulations with low

attenuation and good initial model of the Q factors, the use of elastic adjoint simulation

is sufficient, since the error is small and does not affect the inversion significantly.

If high attenuation occurs in a simulation, the viscoelastic PDE must also be used in

the adjoint simulation, otherwise the error is too large and the inversion of the p- and

s-wave velocities is also faulty. In addition, all model parameters should be inverted in

any case, otherwise the use of the viscoelastic adjoint simulation does not provide any

advantage over the elastic simulation.

Therefore, for the investigations in the following sections, we always use the viscoelastic

wave equation in the forward and adjoint simulation and invert all model parameters.

5.6.3 Comparison of different regularizations

In this section we compare the different regularization methods from section 5.4.1. For this

purpose, we consider, based on the findings from the last section, the inversion of all model

parameters of the viscoelastic wave equation. The aim of a regularization is to improve

the robustness of the ill-posed inverse method against perturbed initial data. Similarly,

regularization can lead to faster convergence. Here we consider the higher attenuation

example and consider both unperturbed and white noise perturbed input data.

To determine a good regularization weight for the different procedures (see section 5.4.1),

we test the following weights λR0 , λR1 , λR2 ∈ {10−20, 7.5·10−21, 5·10−21, 2.5·10−21, 10−21,

. . . , 10−30} for the Tikhonov regularization methods. The regularization weights are of

the order 1E-20– 1E-30 here, because the misfit of the unregularized optimization prob-

lem (5.80) is small, of the order 1E-10– 1E-12, and the `2 norm of the model parameter

(or the norm of the gradient, Laplacian of the model parameter) can become very large.

The resulting data and model misfits for the unperturbed initial data can be found in ta-

bles A.1–A.2 and for the perturbed ones in tables A.6–A.7 in section A.1.7 in the appendix.

5.6. NUMERICAL RESULTS 157

0 20 40 60 80 100
900

950

1000

1050

1100

1150

x in m

ρ
in
k
g
/m

3

(a) Density ρ

true model

full viscoelastic inversion

only ρ, vp and vs viscoelastic inversion

elastic adjoint

both elastic

0 20 40 60 80 100
1200

1300

1400

1500

1600

1700

1800

x in m

v p
in
m
/s

(b) p-wave velocity vp

0 20 40 60 80 100
800

850

900

950

1000

1050

x in m

v s
in
m
/s

(c) s-wave velocity vs

0 20 40 60 80 100
50

60

70

80

90

100

110

x in m

Q

(d) Quality factor Q1 (e) Quality factor Q2

Figure 5.22: Profiles of the simple example along x = 50m for different inversion strategies.
We omit the ‘on only ρ, vp and vs gradient’, ‘elastic adjoint’ and ‘both elastic’ variants
in figures 5.22d and 5.22d, since they are not part of the inverse and due to this constant
65 and 55 as the initial model.

158 5. SEISMIC WAVEFORM MODELING AND INVERSION

As recommended in the literature [58, 94] we set the regularization weight for the total

variation and the generalized p-variation regularization as

λTV,1 = κTV
‖∇χ‖2

2

‖m− v + q‖2
2

, (5.121)

λTp,1 = κTp
‖∇χ‖2

2

‖m− v + q‖2
2

, (5.122)

where v and q are auxiliary and ADMM variables, since we use an alternating approach

to solve the optimization problem (see section 5.5.1 on page 141).κTV. κTp are scalar

regularization weights to adjust the effect of the regularization depending on the prob-

lem. We point out that this choice of the regularization weight depends on the model

parameter and thus must also be taken into account when determining the gradient of the

objective function. Analogous to [58, 94], we consider the regularization parameter in the

determination of the gradient as a constant factor. To determine a good regularization

weight for the total variation and the generalized p-variation regularization, we test the

following weights κTV, κTp ∈ {10−1, 7.5 · 10−2, 5 · 10−2, 2.5 · 10−2, 10−2, . . . , 10−10}.
The implementation of the TV and p-variation regularization using the split-Bregman

method requires the setting of additional parameters (see section A.1.6 in the appendix).

For TV regularization, we choose λTV,2 = 0.7 and α = 2λTV,2 as parameters in the split-

Bregman method, as suggested in the literature [94] . For the p-variation regularization,

we choose similar to [58] µ = 0.5, p = 0.5, α0 = 2, α1 = 1, η=ζ · µ, and η1 = α1/α0 · η0 ,

where we can use ζ to regularize strongness and set ζ = 2 by default. This means that

the larger ζ is chosen, the stronger the weighting of the p norm.

Unperturbed objective data We first consider the simulation for unperturbed data

and compare the data and model misfit of the last iteration prior to convergence detec-

tion. Since the solver terminates prematurely when no improved solution is obtained

with respect to the criteria in section 5.5.1, different numbers of iterations are performed

depending on the regularization method. In the left half of table 5.4 the best results

regarding data and model misfit are listed for the different regularization methods and

for using no regularization, where the results were normalized with the initial misfit.

Here ‘N/A’ indicates that no improvement was achieved compared to the non-regularized

solution. In this case, we obtain a small improvement in the data misfit only for R1.

However, if we look at the 100th iteration when solving with the different regularization

methods, all regularization methods provide advantages with respect to data and model

misfit. The TV regularization performs best here, which can achieve the best results for

both the data and the model misfit, as shown in the right-hand side of table 5.4. For the

unperturbed data, regularization can thus lead to faster convergence but not to better

results. This should not be surprising, however, since regularization implements another

5.6. NUMERICAL RESULTS 159

constraint that the exact solution does not necessarily have to satisfy (everywhere). It

should be noted that regularization can lead to better results in a fixed time budget,

however, this is not examined further here.

Last iteration
data misfit model misfit

λR misfit λR misfit
no 1.39E-5 4.64E-2
R0 N/A N/A N/A N/A
R1 5.0E-25 1.31E-5 N/A N/A
R2 N/A N/A N/A N/A
RTp N/A N/A N/A N/A
RTV N/A N/A N/A N/A

Iteration 100
data misfit model misfit

λR misfit λR misfit
1.74E-3 1.24E-1

2.5E-22 7.65E-4 1.0E-26 8.88E-2
5.0E-21 9.54E-4 2.5E-25 9.10E-2
5.0E-23 6.78E-4 7.5E-28 9.23E-2
2.5E-03 6.91E-4 1.0E-04 8.84E-2
2.5E-03 6.02E-4 7.5E-08 8.63E-2

Table 5.4: Best model and data misfit for the simple example achieved by different regular-
ization methods for unperturbed data. ‘N/A’ indicates that no improvement was achieved
compared to the non-regularized solution. R∗ denotes the regularization method and λR
the corresponding regularization weight.

Perturbed objective data Since regularization methods should ensure robustness of

the method against perturbed initial data, we consider perturbed initial data in the fol-

lowing. For this purpose, we add a normally distributed Gaussian noise with a variance

of 10−12 to the initial data obtained by performing the forward simulation for the true

model. This results in a signal to noise ratio (SNR) SNRDB between -0.22 and 28.12 dB.

The SNR is defined as follows:

SNR =

(
RMS(s)

RMS(s)

)2

SNRDB = 10 log10(SNR)

Here RMS is the root mean square amplitude:

RMS =

√√√√ 1

N sampl.

Nsampl.∑

i=1

s2
i

Here s describes the signal or the received data at one receiver, si the i-th sample value

of the signal or in our case the i-th entry of the objective data and Nsampl. the number of

samples, in our case the number of received data at one receiver.

In this case, all regularization methods can lead to improvements, as we can see in

table 5.5, where the best possible results with regard to data and model misfit are listed

for the different regularization methods as well as the corresponding regularization weight.

The data misfit differs barely when using the different regularization methods and is with

0.3282 slightly better than without regularization with 0.3287. The best model misfit

160 5. SEISMIC WAVEFORM MODELING AND INVERSION

is achieved by the p-variation regularization method with 0.1129 compared to 0.1166

without regularization. However, if we compare the results of the unperturbed data with

the results of the perturbed data, we see that the data and model misfit can be reduced

less when using perturbed data than using unperturbed data. The data misfit becomes

larger for disturbed input data, since the noise is also transmitted through the simulation

and thus arrives at the receivers. That the model misfit increases has to do in particularly

with the ill-posedness of the inverse problem.

Last iteration
data misfit model misfit

λR misfit λR misfit
no 0.3287 0.1166
R0 5.0E-23 0.3282 7.5E-24 0.1134
R1 1.0E-21 0.3282 2.5E-26 0.1130
R2 1.0E-25 0.3282 1.0E-24 0.1132
RTp 1.0E-10 0.3282 2.5E-06 0.1129
RTV 5.0E-10 0.3282 2.5E-03 0.1138

Iteration 100
data misfit model misfit

λR misfit λR misfit
0.3287 0.1166

2.5E-28 0.3284 1.0E-23 0.1126
5.0E-22 0.3284 1.0E-26 0.1126
7.5E-27 0.3284 1.0E-25 0.1126
1.0E-08 0.3284 1.0E-10 0.1126
5.0E-04 0.3284 1.0E-05 0.1133

Table 5.5: Best model and data misfit for the simple example achieved by different regu-
larization methods for perturbed data. R∗ denotes the regularization method and λR the
corresponding regularization weight.

Findings and implications for the following sections In the simulation of undis-

turbed objective data, no regularization is necessary. However, the use of regularization

can accelerate convergence. In case of noisy objective data, all presented regularization

methods lead to improvements. The p-variation regularization method provides the best

results.

The achieved model misfit for inverting noisy data is much higher than for unperturbed

data. Therefore we present in the following a method, with which the model misfit can

be better minimized also for disturbed data.

5.6.4 p-variation reduced gradient inversion

In the last subsection we have seen that the presented regularization methods lead to

an improvement of the inversion for disturbed data, but the model can be reconstructed

worse than for unperturbed data. The best results were obtained with the p-variation

method, so that we further modify this method by using the principle of this method

even stronger. For p-variation regularization we use, so far, an alternating method as

outlined in section 5.5.1 on page 141. Roughly speaking, first an update is made, which

ignores the total p-variation regularization, and then the new model is improved with

respect to the total generalized p-variation.

The idea is to directly improve the gradient of the objective function (5.80) with

respect to the p-norm and to use the improved gradient to perform the update in the l-

5.6. NUMERICAL RESULTS 161

BFGS algorithm, so that the second step can be omitted. More precisely, we first compute

the gradient of the objective function

g =∇χ(m)

as described in section 5.4.5. Next, we search a modified gradient gTp , which has the

smallest Tp distance to g, i.e.,

gTp = min
ḡ

{
1

2
‖g − ḡ‖2

2 + λp-vrgTp(ḡ)

}
,

where λp-vrg controls how strong the reduction of the p-variation is. Then, we use gTp

instead of g in the l-BFGS algorithm. We call this modification p-variation reduced

gradient inversion. For solving we use the split-Bregman algorithm (cf. section A.1.6)

and use the same parameters as for the p-variation regularization.

Since this change of the gradient may smooth out information that does not represent

oscillations but enhances narrow regions, we use this strategy only as a presolver. We

recall that the p-variation reduced gradient method reduces strong variations, since this

is a characteristic of oscillations. However, this also applies to thin regions that are

surrounded by regions that have parameters that deviate strongly from their own physical

parameters, but the neighboring regions have similar physical properties. This means that

after solving with the p-variation reduced gradient inversion method, a further solving with

the standard, possibly regularized with an arbitrary method, inversion is performed. We

additionally use the p-variation regularization in the main solver to further consider the

reduced p-variation norm of the model.

In the following we investigate the influence of the p-variation reduced gradient inver-

sion for the simulation with perturbed and unperturbed objective data.

Perturbed objective data We apply the modified p-variation reduced gradient in-

version method to the bubble example with noisy objective data, and set ζ = 1.15 and

κTp = 1E-7. The results and the best results from the previous section are shown in ta-

ble 5.6. In terms of the resulting data misfit, this method does not achieve any significant

improvement, but the model misfit is reduced by 24 % compared to no regularization and

by 21 % compared to TV regularization. Furthermore, the error reduction for both the

model and data misfit is faster when p-variation reduced gradient inversion is used, as

shown in figure 5.23.

If we consider the profiles of the results along x = 50m, which are shown in figure 5.24,

we see that the results for the p-variation reduced gradient inversion show less noise/oscil-

lations outside the inner region. Furthermore, the Q factors Q1 and Q2 are better inverted

overall.

162 5. SEISMIC WAVEFORM MODELING AND INVERSION

Last iteration
data misfit model misfit

λR misfit λR misfit
no 0.3287 0.1166
RTp 1.0E-10 0.3282 2.5E-06 0.1129
RTV 5.0E-10 0.3282 2.5E-03 0.1138
p-vrg 1E-7 0.3283 1E-7 0.0887

Iteration 100
data misfit model misfit

λR misfit λR misfit
0.3287 0.1166

1.0E-08 0.3284 1.0E-10 0.1126
5.0E-04 0.3284 1.0E-05 0.1133
1E-7 0.3283 1E-7 0.0884

Table 5.6: Best model and data misfit for the simple example achieved by the new p-
variation reduced gradient inversion compared to the best regularization methods from
table 5.5. R∗ denotes the regularization method and λR the corresponding regularization
weight. The third line ‘p-vrg’ are the results of the p-variation reduced gradient inversion.

0.1

0.2

0.3

0.4

0.6

1

0 20 40 60 80 100 120

‖m
∗
−
m
‖2 2

Iteration

no regularization
p-var. gradient

TV regularization

(a) model misfit

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

‖u
−
u
0
‖2 2

Iteration

no reguralization
p-var. gradient

TV regularization

(b) data misfit

Figure 5.23: Convergence of the data and model misfit for the simple example using
perturbed objective data.

Unperturbed objective data Next, we apply the new p-variation reduced gradient

inversion method to the bubble example with unperturbed objective data, and set ζ = 1.05

and κTp = 1E-9. We recall that none of the previously considered regularization methods

provided better results in terms of model and data misfit than using no regularization.

The results of the p-variation reduced gradient inversion and the best results from the

previous section, see table 5.4, are shown in table 5.7. The p-variation reduced gradient

Last iteration
data misfit model misfit

λR misfit λR misfit
no 1.39E-5 4.64E-2
R1 5.0E-25 1.31E-5 N/A N/A
RTV N/A N/A N/A N/A
p-vrg 1.E-10 1.07E-5 1.E-10 4.02E-2

Iteration 100
data misfit model misfit

λR misfit λR misfit
1.74E-3 1.24E-1

5.0E-21 9.54E-4 2.5E-25 9.10E-2
2.5E-03 6.02E-4 7.5E-08 8.63E-2
1.E-10 5.73E-4 1.E-10 7.92E-2

Table 5.7: Best model and data misfit for the simple example achieved by the new p-
variation reduced gradient inversion compared to the best regularization methods from
table 5.4. R∗ denotes the regularization method and λR the corresponding regularization
weight. The fourth line ‘p-vrg’ are the results of the p-variation reduced gradient inversion.

5.6. NUMERICAL RESULTS 163

0 20 40 60 80 100
960

980

1000

1020

1040

1060

1080

1100

x in m

ρ
in
k
g
/m

3

(a) Density ρ

true model

no regularization

p-var. regularization

p-var. reduced gradient

0 20 40 60 80 100
1480

1500

1520

1540

1560

1580

1600

1620

x in m

v p
in
m
/s

(b) p-wave velocity vp

0 20 40 60 80 100
880

900

920

940

960

980

1000

1020

x in m

v s
in
m
/s

(c) s-wave velocity vs

0 20 40 60 80 100
60

70

80

90

100

x in m

Q

(d) Quality factor Q1

0 20 40 60 80 100
40

50

60

70

80

90

x in m

Q

(e) Quality factor Q2

Figure 5.24: Profiles of the simple example along x = 50m using different regularization
methods and perturbed objective data. The blue line represents the true model, the
black line represents using no regularization, the green line represents using p-variation
regularization and the red line represents using p-variation reduced gradient inversion.

164 5. SEISMIC WAVEFORM MODELING AND INVERSION

inversion can reduce both the data misfit by 23 % compared to no regularization, and

also reduce the model misfit by 13 %. Furthermore, the error reduction is faster for both

misfits, as shown in figure 5.25.

0.04

0.1

0.2

0.3

0.4

1

0 100 200 300 400 500 600 700 800

‖m
∗
−
m
‖2 2

Iteration

no regularization
p-var. reduced gradient

(a) model misfit

10−5

10−4

10−3

10−2

10−1

100

0 100 200 300 400 500 600 700 800

‖u
−
u
0
‖2 2

Iteration

no regularization
p-var. reduced gradient

(b) data misfit

Figure 5.25: Convergence of the data and model misfit for the simple example using
unperturbed objective data.

Considering the profiles along x = 50m of the solutions, we see that p-variation reduced

gradient inversion in particularly reduces the oscillations in the outer region, which can

be seen in figures 5.26a and 5.26d. In addition, the density ρ is better approximated in

the inner region (compare figure 5.26d).

Findings and implications for the following sections The p-variation reduced

gradient inversion leads to faster convergence of the data and model misfit compared to

the other regularization methods presented. Likewise, the method achieves lower data

and model misfit than the other regularization methods. Reducing the p-variation norm

by integrating it directly into the inversion method, as in the p-variation reduced gradient

inversion, yields better data and model misfits than realizing it only by using the p-

variation regularization. In contrast to the other regularization methods, the p-variation

reduced gradient inversion also achieves better results for unperturbed data than without

regularization.

5.6.5 Multiscale inversion for viscoelastic modeling

As described in subsection 5.5.3, multiscale approaches are usually necessary to invert

complex models without getting stuck in local minima. In addition, information is lost

in the transition to a low frequency model, so regularization can be helpful. Therefore,

we want to investigate the influence of regularization and p-variation reduced gradient

inversion on this approach in more detail. Based on the results in the previous sections, we

compare no regularization, p-variation regularization, and the p-variation reduced gradient

inversion with each other. For this we use viscoelastic PDE for the bubble example

5.6. NUMERICAL RESULTS 165

0 20 40 60 80 100
980

1000

1020

1040

1060

1080

1100

x in m

ρ
in
k
g
/m

3

(a) Density ρ

true model

p-var. reduced gradient

no regularization

0 20 40 60 80 100
1480

1500

1520

1540

1560

1580

1600

1620

x in m

v p
in
m
/s

(b) p-wave velocity vp

0 20 40 60 80 100
880

900

920

940

960

980

1000

1020

x in m

v s
in
m
/s

(c) s-wave velocity vs

0 20 40 60 80 100
50

60

70

80

90

100

110

x in m

Q

(d) Quality factor Q1

0 20 40 60 80 100
50

55

60

65

70

75

80

85

x in m

Q

(e) Quality factor Q2

Figure 5.26: Profiles of the simple example along x = 50m using different regularization
methods and unperturbed objective data. The blue line represents the true model, the
black line represents using no regularization and the red line represents using p-variation
reduced gradient inversion.

166 5. SEISMIC WAVEFORM MODELING AND INVERSION

with high attenuation and use four frequency levels [0.01, 70], [0.01, 100], [0.01, 150] and

[0.01, 200].

For the low frequencies, the p-variation regularization yields the worst model misfit,

but the lowest data misfit (cf. figures 5.27a and 5.27b). However, as described in sec-

tion 5.5.3, the solution may have a worse model misfit even at the coarse level, since

details cannot be inverted there. On the second frequency level, the p-variation reduced

gradient inversion yields both better data and model misfit compared to the others, as

shown by the misfit plots in figure 5.27. Overall, we obtain a 40 % smaller model misfit

using p-variation reduced gradient inversion than using the standard inversion without

any regularization and a 30 % smaller model misfit than using the standard inversion

regularized by the p-variation regularization. Furthermore, figure 5.27 shows that the

reduction of both the data misfit and the model misfit is faster for the p-variation reduced

gradient inversion method.

0.1

1

0 100 200 300 400 500 600 700 800

‖m
∗
−
m
‖2 2

Iteration

no regularization, freq. level 1
p-var. reduced gradient, freq. level 1

p-var. regularization, freq. level 1
freq. level 2
freq. level 3
freq. level 4

(a) model misfit

10−24

10−21

10−21

10−21

10−18

0 100 200 300 400 500 600 700 800

‖u
−
u
0
‖2 2

Iteration

no regularization, freq. level 1
p-var. reduced gradient, freq. level 1

p-var. regularization, freq. level 1
freq. level 2
freq. level 3
freq. level 4

(b) data misfit

Figure 5.27: Convergence of the data and model misfit for the simple example using the
multiscale approach.

However, if we look at the profiles of the results for low frequency level (cf. figure 5.28

left column) we see that the Q factors cannot be approximated well. In particular, we

obtain a Q factor that is too small in the inner region. We recall that the Q factor

approximation is determined for an initially defined frequency band. By restricting to

the low frequencies, not all of the frequency band on which Q is defined appears in the

simulation. Thus, since not all frequencies are used in the inversion, the ratio between

the unrelaxed modulus MU and the relaxed MR (cf. equation 5.71) changes for identical

Q factor and different frequency levels. Therefore, a lower Q factor is assumed for lower

frequencies, so that the same relation between MU and MR is obtained as for the total

frequency band.

Overall, the p-variation reduced gradient inversion provides a better inversion of the

Q factors and less oscillations in the outer region, analogous to the inversion in the whole

frequency range.

5.6. NUMERICAL RESULTS 167

Findings and implications for the following sections Using the multiscale ap-

proach, the inversion of the Q factors is significantly improved by the p-variation reduced

gradient inversion. Furthermore, the p-variation reduced gradient inversion can smooth

oscillations better than the considered regularization methods. Nevertheless, inversion of

the Q factors is not possible accurately for low frequency bands.

168 5. SEISMIC WAVEFORM MODELING AND INVERSION

0 20 40 60 80 100
980

1000

1020

1040

1060

1080

1100

x in m

ρ
in
k
g
/m

3

0 20 40 60 80 100
960

980

1000

1020

1040

1060

1080

1100

x in m

ρ
in
k
g
/m

3

0 20 40 60 80 100
1480

1500

1520

1540

1560

1580

1600

1620

x in m

v p
in
m
/s

0 20 40 60 80 100
1480

1500

1520

1540

1560

1580

1600

1620

x in m

v p
in
m
/s

0 20 40 60 80 100
850

900

950

1000

1050

x in m

v s
in
m
/s

0 20 40 60 80 100
880

900

920

940

960

980

1000

1020

x in m

v s
in
m
/s

0 20 40 60 80 100
30

40

50

60

70

80

90

100

x in m

Q

0 20 40 60 80 100
40

50

60

70

80

90

100

110

x in m

Q

0 20 40 60 80 100
40

50

60

70

80

90

x in m

Q

0 20 40 60 80 100
40

50

60

70

80

90

x in m

Q

Figure 5.28: Profiles of the simple example along x = 50m for multiscale inversion using no
regularization (black), p-variation regularization (green) and p-variation reduced gradient
inversion (red). The blue line indicates the true model. From top to bottom each row
corresponds to ρ, vp, vs, Q1 and Q2. Left column are the results for the lowest frequency
level, right column for the highest level.

5.6. NUMERICAL RESULTS 169

5.6.6 Inversion of the Marmousi model

In this section we apply the p-variation reduced gradient inversion to the Marmousi exam-

ple, which is established in geophysics. It is one of the standard benchmark problems and

is used for example in [4, 80, 90, 102] and many other papers as an application benchmark.

The original Marmousi model was built to resemble an overall continental drift geological

setting. The geometry of the Marmousi model is based on a profile through the North

Quenguela in the Cuanza basin [37, 161]. It was originally designed for the acoustic wave

equation only. Therefore, we use here the so-called Marmousi2 model extended for the

elastic wave equation, which was developed by Martin [102]. We extend this model and

add the Q factors Q1 and Q2, based on [68]. A detailed description of how we generate

the Q factors is given in the appendix in section A.1.8. This results in the model shown in

figure 5.29, where the black points represent the 32 sources and the red points represent

the 370 receivers. As with the bubble example before, the sources are shot sources that

specify a pressure wave as the source time function, and the receivers are velocity meters.

We use Ricker wavelets as source time functions with a dominant frequency of f0=4, a

time shift of t0 = 1.3 and an amplitude of A = 1010. A detailed description of the setup

is given in the appendix in section A.1.8. For the modified Zener model, we use NSLS = 3

0 2 4 6 8

0

1

2

3

500

1000

1500

2000

2500

(a) Density ρ

0 2 4 6 8

0

1

2

3

1000

2000

3000

4000

(b) p-wave velocity vp

0 2 4 6 8

0

1

2

3

500

1000

1500

2000

2500

(c) s-wave velocity vs

0 2 4 6 8

0

1

2

3
0

200

400

600

(d) Quality factor Q1

0 2 4 6 8

0

1

2

3
0

100

200

300

400

(e) Quality factor Q2

Figure 5.29: Marmousi2 reference/true model. The black points describe the positions of
the sources, the red points describe the locations of the receivers. This setup is also used
to create the objective data.

170 5. SEISMIC WAVEFORM MODELING AND INVERSION

parallel Zener models, where we consider the objective function (5.67) in the frequency

domain of [exp(log(f0)− log(12) · 0.5), 12 · exp(log(f0)− log(12) · 0.5)] ≈ [28.87, 346.41]

with K = 12 discrete frequencies. We set the Q ranges as follows Q1 ∈ [15, 650] and

Q2 ∈ [15, 400].

Based on the results from the previous sections, we compare the standard inversion

using no regularization with the p-variation reduced gradient inversion, where we also

use the p-variation regularization. A basic regularization using the methods from the

previous section provides only small or no improvement for this example compared to

no regularization, so they are omitted here for the sake of clarity. We again consider

perturbed and unperturbed objective data.

We use a multiscale approach with the following 5 frequency levels: [0.01, 3], [0.01, 5],

[0.01, 7], [0.01, 9] and [0.01, 10].

In addition, we set the number of iterations per level to 25, since we saw in the previous

section that the error reduction is faster in the first 25–50 iterations (cf. figures 5.25 and

5.23). For a fair comparison, we set the number of iterations in both the p-variation

reduced gradient inversion and the posterior standard inversion to 13.

Unperturbed objective data First, we consider the inversion of the viscoelastic PDE

for the Marmousi model using unperturbed objective data. We compare the standard

inversion without regularization with the p-variation reduced gradient inversion. Here we

choose ζ = 1.05 and κTp = 5E-7. The data misfit reduces slightly faster when using the

p-variation reduced gradient inversion and the resulting data misfit is slightly lower (cf.

figure 5.30a). The model misfit also reduces faster at each level, as shown in table 5.8, al-

though the difference is very small at levels 2–4. Overall, the p-variation reduced gradient

1 2 3 4 5 total
no regularization 6.1E+9 1.4E+10 8.8E+9 1.4E+9 5.4E+9 3.57E+10
p-var. reduced
gradient

6.2E+9 1.4E+10 8.8E+9 1.4E+9 5.5E+9 3.59E+10

Table 5.8: Model misfit reduction on each frequency level for the Marmousi model with
perturbed data. The initial mode misfit is 1.06e+14. These large values result from the
domain size and because the physical properties of the density and the velocities are in
the order of 1E+3.

inversion yields a model misfit that is of order 2E+8 smaller. For instance, if we look at

the profile line at x = 4.5km (cf. figure 5.31), the modified inversion is better especially

where regions with strongly different physical values interact. Furthermore, the modified

method achieves a better inversion of the Q factors, although the inversion only works

well for small Q factors. In general, both methods have difficulties in inverting deeper

regions well, whereas the p-variation reduced gradient inversion achieves slightly better

results.

The s-wave velocity is inverted best. Here it can be seen again that the p-variation

5.6. NUMERICAL RESULTS 171

reduced gradient inversion gives better results in deeper regions and that regions adjacent

to regions with strongly differing physical properties are inverted better.

The initial model as well as the resulting model using the modified inversion is shown

in figure 5.32.

8 · 10−8

4 · 10−6

2 · 10−6

10−6

0 20 40 60 80 100

‖u
−
u
0
‖2 2

Iteration

no regularization
p-var. reduced gradient

(a) model misfit

8 · 10−8

4 · 10−6

2 · 10−6

10−6

0 20 40 60 80 100

‖u
−
u
0
‖2 2

Iteration

no regularization
p-var. reduced gradient

(b) data misfit

Figure 5.30: Reduction of the data misfit for the Marmousi example using unperturbed
data (left) and perturbed data (right). The jumps are between the different frequency
levels of the multiscale approach. The reduction is lower at higher frequency levels because
the coarse structures are already well inverted and only details and finer regions are
enhanced.

172 5. SEISMIC WAVEFORM MODELING AND INVERSION

0 750 1500 2250 3000 3750
1800

2000

2200

2400

2600

2800

x in m

ρ
in
k
g
/m

3

(a) Density ρ

true model

initial model

no regularization

p-var. reduced gradient

0 750 1500 2250 3000 3750
1500

2000

2500

3000

3500

4000

4500

5000

x in m

v p
in
m
/s

(b) p-wave velocity vp

0 750 1500 2250 3000 3750
0

500

1000

1500

2000

2500

3000

x in m

v s
in
m
/s

(c) s-wave velocity vs

0 750 1500 2250 3000 3750
0

100

200

300

400

500

600

700

x in m

Q

(d) Quality factor Q1

0 750 1500 2250 3000 3750
50

100

150

200

250

300

350

400

x in m

Q

(e) Quality factor Q2

Figure 5.31: Profiles of the Marmousi model along x = 4500m, using unperturbed objec-
tive data.

5.6. NUMERICAL RESULTS 173

0

500

1000

1500

2000

2500

0

1000

2000

3000

4000

0

500

1000

1500

2000

2500

100

200

300

400

500

600

50

100

150

200

250

300

350

400

Figure 5.32: Inital (left) and resulting (right) model for the Marmousi example using the
p-variation reduced gradient inversion.

174 5. SEISMIC WAVEFORM MODELING AND INVERSION

Perturbed objective data For the simple bubble example, the improvement of the

p-variation reduced gradient inversion had a larger influence on perturbed data than on

unperturbed data. Whether this is also the case for the Marmousi example is examined

in the following.

For this purpose, we add a normally distributed Gaussian noise with a variance of

10−12 to the initial data obtained by performing the forward simulation for the true

model. This results in a signal to noise ratio SNRDB between 34.5 and 52.5 dB. Similar

to the inversion with unperturbed data, we choose ζ = 1.05 and κTp = 5E-7. Likewise,

when using undisturbed data, using the p-variation reduced gradient inversion reduces the

data misfit slightly faster and the resulting data misfit is slightly smaller (cf. figure 5.30b).

The model misfit also reduces faster at each level, as shown in table 5.9, although the

difference is very small at level 3. Comparing the data misfit reduction for the unperturbed

1 2 3 4 5 total
no regularization 5.8E+9 1.3E+10 8.7E+9 1.4E+9 5.3E+9 34.2E+10
p-var. reduced
gradient

6.0E+9 1.4E+10 8.7E+9 1.5E+9 5.4E+9 35.6E+10

Table 5.9: Model misfit reduction on each frequency level for the Marmousi model with
perturbed data. The initial mode misfit is 1.06e+14. These large values result from the
domain size and because the physical properties of the density and the velocities are in
the order of 1E+3.

data (cf. figure 5.30a) with that for the perturbed data (cf. figure 5.30b), we see that

the p-variation reduced gradient inversion gives more improvements for perturbed data,

analogous to the simple bubble example. Likewise, the influence on model misfit is larger

when using perturbed data (cf. tables 5.8 and 5.9).

Considering for instance the profile line at x = 4.5km (cf. figure 5.33) shows the

same differences as when using undisturbed data. The modified inversion method is

especially better when regions with strongly different physical values meet each other.

In addition, the modified method achieves a better inversion of the Q factors, although

again inverting only works well for small Q factors. Overall, the inversion of the Q factors

achieves slightly worse results than for unperturbed data. In general, both methods have

even greater difficulty in inverting deeper regions well than for unperturbed data, where

the p-variation reduced gradient inversion yields slightly better results.

Findings The properties of the p-variation reduced gradient inversion resulting from

the inversion of the bubble example were confirmed using the Marmousi example. The

modified inversion method leads to improved model and data misfits compared to the

standard method. In particular, for noisy data, the modified inversion achieves lower

data and model misfits and accelerates the reduction of data and model misfits. The

modified method achieves the strongest improvements in inverting deep regions, invert-

ing Q factors, and inverting regions that are adjacent to regions with strongly different

5.6. NUMERICAL RESULTS 175

physical parameters. The improvements are especially noticeable with noisy data.

0 750 1500 2550 3000 3750
1800

2000

2200

2400

2600

2800

x in m

ρ
in
k
g
/m

3

(a) Density ρ

true model

initial model

no regularization

p-var. reduced gradient

0 750 1500 2250 3000 3750
1500

2000

2500

3000

3500

4000

4500

5000

x in m

v p
in
m
/s

(b) p-wave velocity vp

0 750 1500 2250 3000 3750
0

500

1000

1500

2000

2500

3000

x in m

v s
in
m
/s

(c) s-wave velocity vs

0 750 1500 2250 3000 3750
0

100

200

300

400

500

600

700

x in m

Q

(d) Quality factor Q1

0 750 1500 2250 3000 3750
50

100

150

200

250

300

350

400

x in m

Q

(e) Quality factor Q2

Figure 5.33: Profiles of the Marmousi model along x = 4500m, using perturbed objective
data.

176 5. SEISMIC WAVEFORM MODELING AND INVERSION

5.6.7 Strong and weak scaling

To evaluate the scalability of our FWI algorithm, we consider the bubble example with

high attenuation (see figure 5.21 and table 5.1).

Hardware The scaling tests are performed on the BinAC cluster, a Tier-3 machine op-

erated by the University of Tübingen as part of the BW-HPC strategy. This cluster has

62 GPU nodes, each contains two Intel Broadwell E5-2630v4 processors (base frequency

of 2.2 GHz), 128 GB DDR4 RAM, and two NVIDIA Tesla K80. The K80 design comprises

two identical Kepler GPUs per accelerator board, each with its dedicated GDDR memory,

for a total of two times two GPUs per node. Ut presents the state of the arts as of 2016.

We expect similar or even better scaling on new hardware. The use of finite differences

leads to a very structured method, so that warp divergence is not an issue in the imple-

mentation (cf. section 2.2.2). Rather, an NVLINK between the GPUs would improve

scalability, but in no case decrease it (see section 2.3). Therefore, we omit the use of more

recent hardware in this section.

Weak scaling There are two different parallelization options as described in section 5.5.3.

On the one hand the parallelization across the separate events and on the other hand by

using domain decomposition. In order to be able to evaluate both types of parallelization,

we consider them independently of each other.

Since the individual events are independent of each other, this parallelization is triv-

ial. Communication only occurs when calculating the gradient of the objective function.

Thus, depending on the number of GPUs, we also increase the number of events to be

calculated, so for one GPU only one event is calculated, for two GPUs two events and so

on. The weak scalability is almost ideal for this case (see table 5.10 and figure 5.34).

To address the weak scalability for the domain decomposition, we compute only one

event and scale up the domain accordingly. We start with the standard 100m × 100m

area for one GPU, scale it up to an area of size 100m × 200m for 2 GPUs, to an area

of size 200m × 200m for 4 GPUs, and so on. Weak scalability is slightly worse for this

decomposition than for the parallelization of events, as the values from table 5.10 and

figure 5.34b show.

#GPUs domain decomposition event decomposition
1 1.00 1.00
2 0.94 0.98
4 0.92 0.98
8 0.92 0.98
16 0.91 0.96

Table 5.10: Normalized runtimes of the weak scaling test.

5.6. NUMERICAL RESULTS 177

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

T
k
/T

1

Number of GPUs

Domain decompostion
Events parallelization

Ideal scaling

(a) Strong scaling

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 2 4 6 8 10 12 14 16

T
k
/T

1

Number of GPUs

Domain decomposition

Events parallelization

(b) Weak scaling

Figure 5.34: Strong (left) and weak scaling (right) of the FWI algorithm 5.3.

Strong scaling As in the case of weak scalability, we also consider both types of paral-

lelization independently of each other in the case of strong scalability. For the paralleliza-

tion of the events we use the bubble example with the high attenuation with 16 events.

Since the events represent independent forward and adjoint simulations and communica-

tion only occurs when calculating the gradient of the misfit function, we obtain an almost

ideal strong scalability and the parallel efficiency is between 1 and 0.98 (cf. table 5.11

and figure 5.34).

We compute only one event to investigate the strong scalability for the domain decom-

position and increase the area by a factor of 4 to have enough computational effort to per-

form the domain decomposition with 16 processes, i.e, we use an area of size 400m×400m.

As shown in figure 5.34a, the scalability in this case is slightly worse than when the events

are parallelized, but still good with a parallel efficiency between 0.86 and 0.98.

domain decomposition event decomposition
#GPUs runtime E runtime E
1 1.00 1.00
2 1.96 0.98 1.97 0.99
4 3.77 0.94 3.93 0.98
8 7.25 0.91 8.01 1.00
16 13.68 0.86 15.66 0.98

Table 5.11: Normalized runtimes and parallel efficiency E of the strong scaling test.

Findings Event decomposition provides better strong and weak scalability and is prefer-

able to area decomposition. However, the parallelization degree of the event decomposi-

tion is limited by the number of events. Domain decomposition also provides good strong

and weak scalability, so it should be used in addition to event parallelization to increase

the degree of parallelization. This means that the event decomposition should be used

first, and if further parallelism is necessary or desired, the domain decomposition should

be used in addition.

178 5. SEISMIC WAVEFORM MODELING AND INVERSION

5.7 Conclusions

In this chapter, we have considered the seismic waveform modeling and inversion and

derived an approach to invert the viscoelastic equation that allows inverting the Q factors

as well. This derivation is based on an idea of Fichtner and van Driel [54] which directly

inverts the Q factors and not the relaxation parameters. Furthermore, we added a piece-

wise linear penalty term in this approach to increase the accuracy of the Q approximation.

Considering the viscoelastic equation increases the complexity of the simulation, so effi-

cient inversion methods and implementations are necessary. Therefore, we have presented

and compared different regularization methods. In addition, based on these results, we

have presented a modified inversion method that reduces the p-variation in the gradient

of the misfit function. Using a simple example, we have shown that the modified inverting

method leads to faster error reductions in model and data misfits. Similarly, the resulting

data and model misfits are lower when using this method. Afterwards, these findings

were verified using the Marmousi example. In addition, it was shown that the inversion of

the Q factors works better with the modified inversion method for the Marmousi model.

Also, deeper regions, which are generally difficult to invert, can be inverted better with

the p-variation reduced gradient inversion.

Through the implementation techniques presented in the previous chapters, we were

also able to present a parallel GPU implementation that has shown good strong and weak

scalability.

Regularization methods usually depend not only on the PDE to be inverted but also

on the domain. Besides the Marmousi example, the so called saltdome example [10,

25] is another very common example on which the influence of the p-variation reduced

gradient inversion can be studied. The presence of salt bodies is challenging for inverting

because strong velocity contrasts between the salt and the surrounding sediments, the

complex structure of the salt bodies, and rugose interfaces usually complicate seismic

wave propagation and cause significant problems [132]. In addition, such regions usually

consist of larger areas that are not as detailed as the Marmousi example. Furthermore,

the combination of the p-variation reduced gradient inversion with different regularization

methods can further improve the inversion. Similarly, the p-variation reduced gradient

inversion approach can be adapted to other regularization methods, e.g., reduced ‖∆ · ‖2

norm. This would allow any combination of stronger realization of the regularization

properties in the inversion method and additionally in the regularization method. In this

work, we have only considered the combination of p-variation reduction in the inversion

method and in the regularization.

Furthermore, better inversion of the Q factors at lower frequency levels using the

multiscale approach would be desirable to further improve convergence.

179

6

Summary

In this thesis, the implementation of efficient simulations for challenging PDE problems

was discussed. On the basis of three different applications, implementations for different

platforms were realized, ranging from high performance workstations to small clusters

and up to super computers.

In the first part of this thesis different implementation techniques were developed to

increase the efficiency of numerical PDE simulation software. In particular, the focus was

on improvements of the GPU implementation. In chapter 3 and 4 many of the challenges

described in chapter 2 were addressed and overcome. The implementation techniques

presented can be applied to many other (unstructured) PDE simulations. Among others,

in chapter 4 a modified implementation of the SPH method based on a pairs neighbor list

was presented. Included is a modified NNS algorithm, which returns the neighborhood

relations in a pairs list. This modification leads to a significant increase in efficiency on

current hardware. Furthermore, different communication strategies were described and

compared in chapter 3.

In the second part of this thesis the accuracy of the waveform modeling and inver-

sion was improved. The elastic wave equation was transformed into a viscoelastic wave

equation, where the inversion of the Q factors is feasible. However, this approach re-

sults in a system of PDEs that obtains significantly more equations than in the elastic

case, and thus the simulation requires more memory and computational effort. To solve

such simulations in acceptable time requires powerful numerical methods and efficient

implementations. The efficient implementation techniques were already addressed in the

chapters 3 and 4, so in chapter 5 the focus was on the improvements of the accuracy of

the methods.

An improvement of the Q factor approximation was described, which was achieved

by a piecewise linear penalty term. Another contribution is the development of a mod-

ified inverting method based on a p-variation reduced gradient. This method leads to

lower misfits and faster convergence for two studied examples, compared to other known

regularization methods.

There are, of course, still several open questions and various topics for further research.

The future availability of MPI-GDS [159], could improve the asynchronous communi-

180 6. SUMMARY

cation in our RK4IP implementation in chapter 3. In addition, also the optimization of

collective operations which are under investigation [17, 18] could improve MPI communi-

cations in the RK4IP and SPH implementation.

Furthermore, in chapter 5 we considered only two exemplary examples. However,

regularization methods usually depend not only on the PDE to be inverted but also on

the domain. Besides the Marmousi example, the so called saltdome example [10, 25] is

another very common example on which the influence of the p-variation reduced gradi-

ent inversion can be studied. Furthermore, the combination of the p-variation reduced

gradient inversion with different regularization methods can further improve the inver-

sion. Additionally, a better inversion of the Q factors at lower frequency levels using the

multiscale approach would be helpful to further improve the convergence.

BIBLIOGRAPHY 181

Bibliography

[1] S. Adami, X. Y. Hu, and N. A. Adams. A generalized wall boundary condi-

tion for smoothed particle hydrodynamics. Journal of Computational Physics,

231(21):7057–7075, 2012.

[2] S. Adami, X. Y. Hu, and N. A. Adams. A transport-velocity formulation for

smoothed particle hydrodynamics. Journal of Computational Physics, 241:292 –

307, 2013. doi: 10.1016/j.jcp.2013.01.043.

[3] A. Adinets. Optimized filtering with warp-aggregated atomics, 2014. url: https:

//developer.nvidia.com/blog/cuda-pro-tip-optimized-filtering-warp-

aggregated-atomics/.

[4] H. S. Aghamiry, A. Gholami, and S. Operto. Full waveform inversion by proximal

Newton method using adaptive regularization. Geophysical Journal International,

224(1):169–180, 2020. doi: 10.1093/gji/ggaa434.

[5] G. P. Agrawal. Nonlinear Fiber Optics. Academic Press, 5th edition, 2012.

[6] J. M. Alcaraz-Pelegrina and P. Rodŕıguez-Garćıa. Simulations of pulse propaga-

tion in optical fibers using graphics processor units. Computer Physics Communi-

cations, 182(7):1414–1420, 2011. doi: 10.1016/j.cpc.2011.03.007.

[7] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford Science

Publications. Clarendon Press, 1987.

[8] G. Almasi. PGAS (Partitioned Global Address Space) Languages. In Encyclope-

dia of Parallel Computing. D. Padua, editor. Springer US, Boston, MA, 2011,

pages 1539–1545. doi: 10.1007/978-0-387-09766-4_210.

[9] A. Amara, F. Amiel, and T. Ea. FPGA vs. ASIC for low power applications.

Microelectronics Journal, 37(8):669 –677, 2006. doi: 10.1016/j.mejo.2005.11.

003.

[10] F. Aminzadeh, B. Jean, and T. Kunz. 3-D Salt and Overthrust Models. Society of

Exploration Geophysicists, 1997. isbn: 978-1-560-80077-4.

[11] H. Ammari, E. Bretin, J. Garnier, and A. Wahab. Time-reversal algorithms in

viscoelastic media. European Journal of Applied Mathematics, 24(4):565–600, 2013.

doi: 10.1017/S0956792513000107.

https://doi.org/10.1016/j.jcp.2013.01.043
https://developer.nvidia.com/blog/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/
https://developer.nvidia.com/blog/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/
https://developer.nvidia.com/blog/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/
https://doi.org/10.1093/gji/ggaa434
https://doi.org/10.1016/j.cpc.2011.03.007
https://doi.org/10.1007/978-0-387-09766-4_210
https://doi.org/10.1016/j.mejo.2005.11.003
https://doi.org/10.1016/j.mejo.2005.11.003
https://doi.org/10.1017/S0956792513000107

182 BIBLIOGRAPHY

[12] E. Hairer an G. Wanner and S. P. Nørsett. Solving Ordinary Differential Equations

I. Springer Berlin Heidelberg, 1993. doi: 10.1007/978-3-540-78862-1.

[13] J. A. Anderson, J. Glaser, and S. C. Glotzer. HOOMD-blue: a python package for

high-performance molecular dynamics and hard particle Monte Carlo simulations.

Computational Materials Science, 173:109363, 2020. doi: 10.1016/j.commatsci.

2019.109363.

[14] J. A. Anderson, D. Lorenz, and A. Travesset. General purpose molecular dynamics

simulations fully implemented on graphics processing units. Journal of Computa-

tional Physics, 227(10):5342–5359, 2008.

[15] C. Antonelli, M. Shtaif, and A. Mecozzi. Modeling of Nonlinear Propagation in

Space-Division Multiplexed Fiber-Optic Transmission. Journal of Lightwave Tech-

nology, 34(1):36–54, 2016.

[16] R. Aris. Vectors, Tensors and the Basic Equations of Fluid Mechanics. Dover Books

on Mathematics. Dover Publications, 1990.

[17] A. A. Awan, C.-H. Chu, H. Subramoni, and D. K. Panda. Optimized Broadcast for

Deep Learning Workloads on Dense-GPU InfiniBand Clusters. In Proceedings of

the 25th European MPI Users’ Group Meeting, pages 1–9, Barcelona, Spain, 2018.

doi: 10.1145/3236367.3236381.

[18] A. A. Awan, K. Hamidouche, A. Venkatesh, and D. K. Panda. Efficient Large

Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning. In

Proceedings of the 23rd European MPI Users’ Group Meeting, pages 15–22, Edin-

burgh, Scotland, 2016. doi: 10.1145/2966884.2966912.

[19] S. Balac and F. Mahé. Embedded Runge-Kutta scheme for step-size control in

the interaction picture method. Computer Physics Communications, 184(4):1211–

1219, 2013.

[20] A. Bamberger, Guy Chavent, and P. Lailly. About the stability of the inverse

problem in 1-d wave equations application to the interpretation of seismic profiles.

Applied Mathematics and Optimization, 5:1–47, 1979. doi: 10.1007/BF01442542.

[21] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge Mathematical

Library. Cambridge University Press, 2000. doi: 10.1017/CBO9780511800955.

[22] S. Beller, V. Monteiller, L. Combe, S. Operto, and G. Nolet. On the sensitivity of

teleseismic full-waveform inversion to earth parametrization, initial model and ac-

quisition design. Geophysical Journal International, 212(2):1344–1368, 2017. doi:

10.1093/gji/ggx480.

[23] J.-P. Berenger. A perfectly matched layer for the absorption of electromagnetic

waves. Journal of Computational Physics, 114(2):185 –200, 1994. doi: 10.1006/

jcph.1994.1159.

https://doi.org/10.1007/978-3-540-78862-1
https://doi.org/10.1016/j.commatsci.2019.109363
https://doi.org/10.1016/j.commatsci.2019.109363
https://doi.org/10.1145/3236367.3236381
https://doi.org/10.1145/2966884.2966912
https://doi.org/10.1007/BF01442542
https://doi.org/10.1017/CBO9780511800955
https://doi.org/10.1093/gji/ggx480
https://doi.org/10.1006/jcph.1994.1159
https://doi.org/10.1006/jcph.1994.1159

BIBLIOGRAPHY 183

[24] S. Bernard, V. Monteiller, D. Komatitsch, and P. Lasaygues. Ultrasonic com-

puted tomography based on full-waveform inversion for bone quantitative imaging.

Physics in medicine and biology, 62 17:7011–7035, 2017.

[25] F. J. Billette and S. Brandsberg-Dahl. The 2004 BP velocity benchmark. In 67th

EAGE Conference & Exhibition. European Association of Geoscientists & Engi-

neers, 2005. doi: 10.3997/2214-4609-pdb.1.b035.

[26] É. Blanc, D. Komatitsch, E. Chaljub, B. Lombard, and Z. Xie. Highly accurate

stability-preserving optimization of the Zener viscoelastic model, with application

to wave propagation in the presence of strong attenuation. Geophysical Journal

International, 205(1):427–439, 2016. doi: 10.1093/gji/ggw024.

[27] J. O. Blanch, J. O. A. Robertsson, and W. W. Symes. Viscoelastic finite-difference

modeling. Technical report, Department of Computational and Applied Mathe-

matics, Rice University, 1993.

[28] T. Bodurov. Derivation of the nonlinear Schrödinger equation from first principles.

In Annales de la Fondation Louis de Broglie, volume 30 of number 3-4, pages 343–

352. Fondation Louis de Broglie, 2005.

[29] D. Borisov, R. Modrak, F. Gao, and J. Tromp. 3d elastic full-waveform inversion of

surface waves in the presence of irregular topography using an envelope-based misfit

function. GEOPHYSICS, 83(1):R1–R11, 2018. doi: 10.1190/geo2017-0081.1.

[30] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization

and statistical learning via the alternating direction method of multipliers. Founda-

tions and Trends in Machine Learning, 3:1–122, 2011. doi: 10.1561/2200000016.

[31] E. Bozdağ, J. Trampert, and J. Tromp. Misfit functions for full waveform inversion

based on instantaneous phase and envelope measurements. Geophysical Journal

International, 185(2):845–870, 2011. doi: 10.1111/j.1365-246x.2011.04970.x.

[32] M. Brehler and P. M. Krummrich. Impact of WDM Channel Count on Nonlinear

Effects in MDM Transmission Systems. In Optical Fiber Communication Confer-

ence (OFC), Los Angeles, CA, USA, 2017. doi: 10.1364/OFC.2017.Th2A.63.

paper Th2A.63.

[33] M. Brehler, M. Schirwon, D. Göddeke, and P. M. Krummrich. A GPU-Accelerated

Fourth-Order Runge-Kutta in the Interaction Picture Method for the Simulation

of Nonlinear Signal Propagation in Multimode Fibers. Journal of Lightwave Tech-

nology, 35(17):3622–3628, 2017. doi: 10.1109/JLT.2017.2715358.

[34] M. Brehler, M. Schirwon, D. Göddeke, and P. M. Krummrich. Modeling the Kerr-

Nonlinearity in Mode-Division Multiplexing Fiber Transmission Systems on GPUs.

In Advanced Photonics Congress, Nonlinear Photonics (NP), Zurich, Switzerland,

2018. doi: 10.1364/BGPPM.2018.JTu5A.27. paper JTu5A.27.

https://doi.org/10.3997/2214-4609-pdb.1.b035
https://doi.org/10.1093/gji/ggw024
https://doi.org/10.1190/geo2017-0081.1
https://doi.org/10.1561/2200000016
https://doi.org/10.1111/j.1365-246x.2011.04970.x
https://doi.org/10.1364/OFC.2017.Th2A.63
https://doi.org/10.1109/JLT.2017.2715358
https://doi.org/10.1364/BGPPM.2018.JTu5A.27

184 BIBLIOGRAPHY

[35] M. Brehler, M. Schirwon, P. M. Krummrich, and D. Göddeke. Simulation of non-

linear signal propagation in multimode fibers on multi-GPU systems. Communi-

cations in Nonlinear Science and Numerical Simulation, 84:105150, 2020.

[36] L. Brookshaw. A method of calculating radiative heat diffusion in particle simu-

lations. Publications of the Astronomical Society of Australia, 6(2):207–210, 1985.

doi: 10.1017/S1323358000018117.

[37] A. Brougois, M. Bourget, P. Lailly, M. Poulet, P. Ricarte, and R. Versteeg. Mar-

mousi, model and data. In 1990. doi: 10.3997/2214-4609.201411190.

[38] C. G. BROYDEN. The Convergence of a Class of Double-rank Minimization Algo-

rithms 1. General Considerations. IMA Journal of Applied Mathematics, 6(1):76–

90, 1970. doi: 10.1093/imamat/6.1.76.

[39] C. Bunks, F. M. Saleck, S. Zaleski, and G. Chavent. Multiscale seismic waveform

inversion. GEOPHYSICS, 60(5):1457–1473, 1995. doi: 10.1190/1.1443880.

[40] J. M. Carcione. Wave Fields in Real Media: Wave Propagation in Anisotropic,

Anelastic, Porous and Electromagnetic Media. Elsevier Science, 2007.

[41] A. Cevahir, A. Nukada, and S. Matsuoka. Fast conjugate gradients with multiple

GPUs. In pages 893–903, 2009. doi: 10.1007/978-3-642-01970-8_90.

[42] G. Chavent. Identification of function parameters in partial differential equations.

In R. E. Goodson and M. Polis, editors, Identification of parameter distributed

systems, pages 31–48. American Society of Mechanical Engineers, 1974.

[43] M. Christen, O. Schenk, and Y. Cui. Patus for convenient high-performance sten-

cils: evaluation in earthquake simulations. In pages 1–10, 2012. doi: 10.1109/SC.

2012.95.

[44] B. Cloutier, B.K. Muite, and P. Rigge. Performance of FORTRAN and C GPU Ex-

tensions for a Benchmark Suite of Fourier Pseudospectral Algorithms. In Symp. on

Application Accelerators in High Performance Computing (SAAHPC), pages 145–

148, Lemont, IL, USA, 2012.

[45] NVIDIA Corporation. NVIDIA T4 70W low profile PCIe GPU accelerator, 2020.

url: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/

tesla-t4/t4-tensor-core-product-brief.pdf.

[46] J. Crank and P. Nicolson. A practical method for numerical evaluation of so-

lutions of partial differential equations of the heat-conduction type. Mathemat-

ical Proceedings of the Cambridge Philosophical Society, 43(1):50–67, 1947. doi:

10.1017/S0305004100023197.

[47] E. Crase, A. Pica, M. Noble, J. McDonald, and A. Tarantola. Robust elastic non-

linear waveform inversion: application to real data. GEOPHYSICS, 55(5):527–538,

1990. doi: 10.1190/1.1442864.

https://doi.org/10.1017/S1323358000018117
https://doi.org/10.3997/2214-4609.201411190
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1190/1.1443880
https://doi.org/10.1007/978-3-642-01970-8_90
https://doi.org/10.1109/SC.2012.95
https://doi.org/10.1109/SC.2012.95
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-product-brief.pdf
https://doi.org/10.1017/S0305004100023197
https://doi.org/10.1190/1.1442864

BIBLIOGRAPHY 185

[48] A. Danalis, H. Jagode, G. Bosilca, and J. Dongarra. Parsec in practice: optimizing

a legacy chemistry application through distributed task-based execution. In 2015

IEEE International Conference on Cluster Computing, pages 304–313, 2015. doi:

10.1109/CLUSTER.2015.50.

[49] R. Dolbeau. Theoretical peak flops per instruction set: a tutorial. The Journal of

Supercomputing, 74, November 2017. doi: 10.1007/s11227-017-2177-5.

[50] V. Dolean, P. Jolivet, and F. Nataf. An Introduction to Domain Decomposition

Methods. Society for Industrial and Applied Mathematics, 2015. doi: 10.1137/1.

9781611974065.

[51] J. Dongarra, J. Hittinger, J. Bell, L. Chacón, R. Falgout, M. Heroux, P. Howland,

E. Ng, C. Webster, S. Wild, and K. Pau. Applied Mathematics Research for Exas-

cale Computing. Technical report, U.S. Department of Energy, Office of Science,

Advanced Scientific Computing Research Program, 2014.

[52] G. Fabien-Ouellet, E. Gloaguen, and B. Giroux. Time domain viscoelastic full

waveform inversion. Geophysical Journal International, 209:1718–1734, 2017. doi:

10.1093/gji/ggx110.

[53] A. Fichtner. Full Seismic Waveform Modelling and Inversion. 2011. doi: 10.1007/

978-3-642-15807-0.

[54] A. Fichtner and M. van Driel. Models and Fréchet kernels for frequency-(in)de-

pendent Q. Geophysical Journal International, 198(3):1878–1889, 2014. doi: 10.

1093/gji/ggu228.

[55] R. Fletcher. A new approach to variable metric algorithms. The Computer Journal,

13(3):317–322, 1970. doi: 10.1093/comjnl/13.3.317.

[56] D. Frenkel and B. Smit. Understanding Molecular Simulation. Elsevier, 2002. doi:

10.1016/b978-0-12-267351-1.x5000-7.

[57] M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3. Pro-

ceedings of IEEE, 93(2):216–231, 2005. Special issue on “Program Generation,

Optimization, and Platform Adaptation”.

[58] K. Gao and L. Huang. Acoustic- and elastic-waveform inversion with total general-

ized p-variation regularization. Geophysical Journal International, 218(2):933–957,

2019. doi: 10.1093/gji/ggz203.

[59] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics - Theory

and application to non-spherical stars. Monthly Notices of the Royal Astronomical

Society, 181:375–389, 1977. doi: 10.1093/mnras/181.3.375.

[60] J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga, J. A. Millan, D. C.

Morse, and S. C. Glotzer. Strong scaling of general-purpose molecular dynamics

simulations on GPUs. Computer Physics Communications, 192:97 –107, 2015. doi:

10.1016/j.cpc.2015.02.028.

https://doi.org/10.1109/CLUSTER.2015.50
https://doi.org/10.1007/s11227-017-2177-5
https://doi.org/10.1137/1.9781611974065
https://doi.org/10.1137/1.9781611974065
https://doi.org/10.1093/gji/ggx110
https://doi.org/10.1007/978-3-642-15807-0
https://doi.org/10.1007/978-3-642-15807-0
https://doi.org/10.1093/gji/ggu228
https://doi.org/10.1093/gji/ggu228
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1016/b978-0-12-267351-1.x5000-7
https://doi.org/10.1093/gji/ggz203
https://doi.org/10.1093/mnras/181.3.375
https://doi.org/10.1016/j.cpc.2015.02.028

186 BIBLIOGRAPHY

[61] J. Glaser, T. D. Nguyen, J. A. Anderson, F. Spiga P. Liu, J. A. Millan, D. C.

Morse, and S. C. Glotzer. Strong scaling of general-purpose molecular dynamics

simulations on GPUs. Computer Physics Communications, 192:97–107, 2015.

[62] D. Goldfarb. A family of variable-metric methods derived by variational means.

Mathematics of Computation, 24(109):23–23, 1970. doi: 10.1090/s0025-5718-

1970-0258249-6.

[63] T. Goldstein and S. Osher. The split Bregman method for l1-regularized problems.

SIAM Journal on Imaging Sciences, 2(2):323–343, 2009. doi: 10.1137/080725891.

[64] Green500 — TOP500 Supercomputer Sites. url: https://www.top500.org/

lists/green500/2020/11/.

[65] L. Guasch, O. C. Agudo, M.-X. Tang, P. Nachev, and M. Warner. Full-waveform

inversion imaging of the human brain. npj Digital Medicine, 3(1), 2020. doi: 10.

1038/s41746-020-0240-8.

[66] C. Gélis, J. Virieux, and G. Grandjean. Two-dimensional elastic full waveform

inversion using Born and Rytov formulations in the frequency domain. Geophysical

Journal International, 168(2):605–633, 2007. doi: 10.1111/j.1365-246X.2006.

03135.x.

[67] D. Göddeke and M. Schirwon. GPU programming with CUDA. SPPEXA Doctoral

Retreat 2016, 2016.

[68] E. L. Hamilton. COMPRESSIONAL-WAVE ATTENUATION IN MARINE SED-

IMENTS. GEOPHYSICS, 37(4):620–646, 1972. doi: 10.1190/1.1440287.

[69] A. M. Heidt. Efficient Adaptive Step Size Method for the Simulation of Supercon-

tinuum Generation in Optical Fibers. Journal of Lightwave Technology, 27(18):3984–

3991, 2009.

[70] S. Hellerbrand and N. Hanik. Fast Implementation of the Split-Step Fourier Method

Using a Graphics Processing Unit. In Optical Fiber Communication Conference

(OFC), San Diego, CA, USA, 2010. doi: 10.1364/OFC.2010.OTuD7.

[71] M. A. Heroux. Software challenges for extreme scale computing: going from petas-

cale to exascale systems. International Journal of High Performance Computing

Applications, 23(4):437–439, 2009. doi: 10.1177/1094342009347711.

[72] N. J. Higham. Accuracy and Stability of Numerical Algorithms - Second Edition.

SIAM, Philadelphia, 2002.

[73] R. Hoetzlein. Fast fixed-radius nearest neighbors: interactive million–particle flu-

ids. GPU Technology Conference, 2014. url: https://on-demand.gputechconf.c

om/gtc/2014/presentations/S4117-fast-fixed-radius-nearest-neighbor-

gpu.pdf.

https://doi.org/10.1090/s0025-5718-1970-0258249-6
https://doi.org/10.1090/s0025-5718-1970-0258249-6
https://doi.org/10.1137/080725891
https://www.top500.org/lists/green500/2020/11/
https://www.top500.org/lists/green500/2020/11/
https://doi.org/10.1038/s41746-020-0240-8
https://doi.org/10.1038/s41746-020-0240-8
https://doi.org/10.1111/j.1365-246X.2006.03135.x
https://doi.org/10.1111/j.1365-246X.2006.03135.x
https://doi.org/10.1190/1.1440287
https://doi.org/10.1364/OFC.2010.OTuD7
https://doi.org/10.1177/1094342009347711
https://on-demand.gputechconf.com/gtc/2014/presentations/S4117-fast-fixed-radius-nearest-neighbor-gpu.pdf
https://on-demand.gputechconf.com/gtc/2014/presentations/S4117-fast-fixed-radius-nearest-neighbor-gpu.pdf
https://on-demand.gputechconf.com/gtc/2014/presentations/S4117-fast-fixed-radius-nearest-neighbor-gpu.pdf

BIBLIOGRAPHY 187

[74] M. P. Howard, J. A. Anderson, A. Nikoubashman, S. C. Glotzer, and A. Z. Pana-

giotopoulos. Efficient neighbor list calculation for molecular simulation of col-

loidal systems using graphics processing units. Computer Physics Communications,

203(Supplement C):45 –52, 2016. doi: 10.1016/j.cpc.2016.02.003.

[75] M. P. Howard, A. Statt, F. Madutsa, T. M. Truskett, and A. Z. Panagiotopoulos.

Quantized bounding volume hierarchies for neighbor search in molecular simula-

tions on graphics processing units. Computational Materials Science, 164:139 –146,

2019. doi: 10.1016/j.commatsci.2019.04.004.

[76] J. Hult. A Fourth-Order Runge-Kutta in the Interaction Picture Method for Sim-

ulating Supercontinuum Generation in Optical Fibers. Journal of Lightwave Tech-

nology, 25(12):3770–3775, 2007.

[77] A. Hutcheson and V. Natoli. Memory Bound vs . Compute Bound : A Quantitative

Study of Cache and Memory Bandwidth in High Performance Applications, 2011.

[78] P. J. in ’t Veld, S. J. Plimpton, and G. S. Grest. Accurate and efficient methods

for modeling colloidal mixtures in an explicit solvent using molecular dynamics.

Computer Physics Communications, 179(5):320 –329, 2008. doi: 10.1016/j.cpc.

2008.03.005.

[79] V. Isakov. Inverse Problems for Partial Differential Equations, volume 127. 2017.

doi: 10.1007/978-3-319-51658-5.

[80] I. Ivanov, M. Belishev, and V. Semenov. The reconstruction of sound speed in the

marmousi model by the boundary control method, 2016.

[81] Khronos OpenCL Working Group. The OpenCL C 3.0 specification, 2019. url:

https://www.khronos.org/registry/OpenCL/specs/3.0- unified/pdf/

OpenCL_C.pdf.

[82] D. B. Kirk and W. W. Hwu. Programming Massively Parallel Processors: A Hands-

on Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edi-

tion, 2010.

[83] D. Komatitsch and R. Martin. An unsplit convolutional Perfectly Matched Layer

improved at grazing incidence for the seismic wave equation. Society of Exploration

Geophysicists, 72(5):SM155–SM167, 2007. doi: 10.1190/1.2757586.

[84] D. Komatitsch, Z. Xie, E. Bozdağ, E Sales de Andrade, D. Peter, Q. Liu, and J.

Tromp. Anelastic sensitivity kernels with parsimonious storage for adjoint tomog-

raphy and full waveform inversion. Geophysical Journal International, 206(3):1467–

1478, 2016. doi: 10.1093/gji/ggw224.

[85] J. Kraus. An Introduction to CUDA-Aware MPI, 2013. url: https://devblogs.

nvidia.com/parallelforall/introduction-cuda-aware-mpi/.

https://doi.org/10.1016/j.cpc.2016.02.003
https://doi.org/10.1016/j.commatsci.2019.04.004
https://doi.org/10.1016/j.cpc.2008.03.005
https://doi.org/10.1016/j.cpc.2008.03.005
https://doi.org/10.1007/978-3-319-51658-5
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_C.pdf
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_C.pdf
https://doi.org/10.1190/1.2757586
https://doi.org/10.1093/gji/ggw224
https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/
https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/

188 BIBLIOGRAPHY

[86] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. Bishop. A unified sparse ma-

trix data format for efficient general sparse matrix-vector multiplication on modern

processors with wide SIMD units. SIAM Journal on Scientific Computing, 36, 2013.

doi: 10.1137/130930352.

[87] L. Krischer, A. Fichtner, C. Boehm, and H. Igel. Automated large-scale full seismic

waveform inversion for north america and the north atlantic. Journal of Geophysical

Research: Solid Earth, 123(7):5902–5928, 2018. doi: 10.1029/2017jb015289.

[88] J. Kristek, P. Moczo, and M. Galis. A brief summary of some PML formulations

and discretizations for the velocity-stress equation of seismic motion. Studia Geo-

physica et Geodaetica, 53(4):459–474, 2009. doi: 10.1007/s11200-009-0034-6.

[89] A. Kuntsevich and F. Kappel. Solvopt: the solver for local nonlinear optimization

problems. University of Graz, 1997. doi: 10.13140/RG.2.2.10451.43044.

[90] A. Kurzmann, A. Przebindowska, D. Köhn, and T. Bohlen. Acoustic full waveform

tomography in the presence of attenuation: a sensitivity analysis. Geophysical Jour-

nal International, 195(2):985–1000, 2013. doi: 10.1093/gji/ggt305.

[91] X. Lacoste, M. Faverge, G. Bosilca, P. Ramet, and S. Thibault. Taking advantage

of hybrid systems for sparse direct solvers via task-based runtimes. In 2014 IEEE

International Parallel Distributed Processing Symposium Workshops, pages 29–38,

2014. doi: 10.1109/IPDPSW.2014.9.

[92] P. Lailly. The seismic inverse problem as a sequence of before-stack migrations.

In J. B. Bednar, R. Redner, E. Robinson, and A. Weglein, editors, Proceedings of

the Conference on Inverse Scattering, Theory and Application Expanded Abstracts,

pages 206–220. Society of Industrial and Applied Mathematics, Philadelphia, PA,

USA, 1983.

[93] Y. Lin and V. Grover. Using cuda warp-level primitives, 2018. url: https://

developer.nvidia.com/blog/using-cuda-warp-level-primitives/.

[94] Y. Lin and L. Huang. Acoustic- and elastic-waveform inversion using a modified

total-variation regularization scheme. Geophysical Journal International, 200:489–

502, 2014. doi: 10.1093/gji/ggu393.

[95] M. B. Liu and G. R. Liu. Smoothed particle hydrodynamics (SPH): an overview

and recent developments. Archives of computational methods in engineering, 17(1):

25–76, 2010.

[96] Q. Liu and J. Tromp. Finite-frequency kernels based on adjoint methods. The

Seismological Society of America, 96(6):2383–2397, 2006. doi: 10.1785/01200600

41.

[97] Q. Liu and J. Tromp. Finite-frequency sensitivity kernels for global seismic wave

propagation based upon adjoint methods. Geophysical Journal International, 174(1):

265–286, 2008. doi: 10.1111/j.1365-246X.2008.03798.x.

https://doi.org/10.1137/130930352
https://doi.org/10.1029/2017jb015289
https://doi.org/10.1007/s11200-009-0034-6
https://doi.org/10.13140/RG.2.2.10451.43044
https://doi.org/10.1093/gji/ggt305
https://doi.org/10.1109/IPDPSW.2014.9
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://doi.org/10.1093/gji/ggu393
https://doi.org/10.1785/0120060041
https://doi.org/10.1785/0120060041
https://doi.org/10.1111/j.1365-246X.2008.03798.x

BIBLIOGRAPHY 189

[98] L. B. Lucy. A numerical approach to the testing of the fission hypothesis. Astro-

nomical Journal, 82:1013–1024, 1977. doi: 10.1086/112164.

[99] Q. Lui and J. Tromp. Finite-frequency kernels based on adjoint methods. Bulletin

of The Seismological Society of America - BULL SEISMOL SOC AMER, 96:2383–

2397, 2006. doi: 10.1785/0120060041.

[100] D. Marcuse, C. R. Menyuk, and P. K. A. Wai. Application of the Manakov-PMD

equation to studies of signal propagation in optical fibers with randomly varying

birefringence. Journal of Lightwave Technology, 15(9):1735–1746, 1997.

[101] G. S. Martin, R. Wiley, and K. J. Marfurt. Elastic-marmousi-model. online. url:

https://s3.amazonaws.com/open.source.geoscience/open_data/elastic-

marmousi/elastic-marmousi-model.tar.gz.

[102] G. S. Martin, R. Wiley, and K. J. Marfurt. Marmousi2: an elastic upgrade for

marmousi. The Leading Edge, 25(2):156–166, 2006. doi: 10.1190/1.2172306.

[103] Y. Masson, P. Cupillard, Y. Capdeville, and B. Romanowicz. On the numeri-

cal implementation of time-reversal mirrors for tomographic imaging. Geophysical

Journal International, 196(3):1580–1599, 2014. doi: 10.1093/gji/ggt459.

[104] MATLAB. version 9.7.0 (R2019b). The MathWorks Inc., Natick, Massachusetts,

2020.

[105] A. Mayeli. Non-convex optimization via strongly convex majorization-minimiza-

tion. Canadian Mathematical Bulletin, 63:1–10, 2019. doi: 10.4153/S0008439519

000730.

[106] J. McCalpin. Trends in system cost and performance balances and implications

for the future of hpc, 2015. doi: 10.1145/2834899.2834901.

[107] A. Mecozzi, Cr. Antonelli, and M. Shtaif. Coupled Manakov equations in multi-

mode fibers with strongly coupled groups of modes. Optics Express, 20(21):23436–

23441, 2012.

[108] Message Passing Interface Forum. MPI: a message-passing interface standard, 2019.

url: https://www.mpi-forum.org/docs/drafts/mpi-2019-draft-report.

pdf.

[109] P. Micikevicius. 3d finite difference computation on gpus using cuda. In Proceed-

ings of 2nd workshop on general purpose processing on graphics processing units,

pages 79–84, 2009.

[110] P. Micikevicius. Multi-GPU Programming. online, 2011. url: https://www.nvid

ia.com/docs/IO/116711/sc11-multi-gpu.pdf.

[111] P. Moczo, J. Kristek, and P. Franek. Lecture notes on rheological models. url:

http://www.earthphysics.sk/mainpage/stud_mat/Moczo_Kristek_Franek_

Rheological_Models.pdf.

https://doi.org/10.1086/112164
https://doi.org/10.1785/0120060041
https://s3.amazonaws.com/open.source.geoscience/open_data/elastic-marmousi/elastic-marmousi-model.tar.gz
https://s3.amazonaws.com/open.source.geoscience/open_data/elastic-marmousi/elastic-marmousi-model.tar.gz
https://doi.org/10.1190/1.2172306
https://doi.org/10.1093/gji/ggt459
https://doi.org/10.4153/S0008439519000730
https://doi.org/10.4153/S0008439519000730
https://doi.org/10.1145/2834899.2834901
https://www.mpi-forum.org/docs/drafts/mpi-2019-draft-report.pdf
https://www.mpi-forum.org/docs/drafts/mpi-2019-draft-report.pdf
https://www.nvidia.com/docs/IO/116711/sc11-multi-gpu.pdf
https://www.nvidia.com/docs/IO/116711/sc11-multi-gpu.pdf
http://www.earthphysics.sk/mainpage/stud_mat/Moczo_Kristek_Franek_Rheological_Models.pdf
http://www.earthphysics.sk/mainpage/stud_mat/Moczo_Kristek_Franek_Rheological_Models.pdf

190 BIBLIOGRAPHY

[112] J. J. Monaghan. Smoothed particle hydrodynamics. Annual Review of Astronomy

and Astrophysics, 30(1):543–574, 1992. doi: 10.1146/annurev.aa.30.090192.

002551.

[113] J. J. Monaghan. Smoothed particle hydrodynamics. Reports on Progress in Physics,

68(8):1703–1759, 2005. doi: 10.1088/0034-4885/68/8/r01.

[114] E. Montagne and A. Ekambaram. An optimal storage format for sparse matrices.

Information Processing Letters, 90(2):87 –92, 2004. doi: 10.1016/j.ipl.2004.

01.014.

[115] V. Monteiller, S. Chevrot, D. Komatitsch, and Y. Wang. Three-dimensional full

waveform inversion of short-period teleseismic wavefields based upon the sem–dsm

hybrid method. Geophysical Journal International, 202:811–827, 2015.

[116] S. Mumtaz, R.-J. Essiambre, and G. P. Agrawal. Nonlinear Propagation in Multi-

mode and Multicore Fibers: Generalization of the Manakov Equations. Journal of

Lightwave Technology, 31(3):398–406, 2013.

[117] V. Natoli. A decade of accelerated computing augurs well for GPUs, 2019. url:

https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-

computing-augurs-well-for-gpus/.

[118] J. Nickolls and W. J. Dally. The gpu computing era. IEEE Micro, 30(2):56–69,

2010.

[119] J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operations

Research and Financial Engineering. Springer, 2nd edition, 2006.

[120] NVIDIA. CUDA C++ PROGRAMMING GUIDE, 2020. url: https://docs.

nvidia.com/pdf/CUDA_C_Programming_Guide.pdf.

[121] NVIDIA. CUDA occupancy calculator. url: https://docs.nvidia.com/cuda/

cuda-occupancy-calculator/index.html.

[122] NVIDIA. NVIDIA A100 tensor core gpu, 2020. url: https : / / www . nvidia .

com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-

datasheet.pdf.

[123] NVIDIA. NVLINK-FABRIC, 2020. url: https://www.nvidia.com/en-us/data-

center/nvlink/.

[124] NVIDIA Collective Communication Library (NCCL) Documentation. online, 2018.

url: https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/

docs/index.html.

[125] NVIDIA Corp. cuFFT – NVIDIA CUDA fast Fourier transform library, 2016. url:

https://developer.nvidia.com/cufft.

https://doi.org/10.1146/annurev.aa.30.090192.002551
https://doi.org/10.1146/annurev.aa.30.090192.002551
https://doi.org/10.1088/0034-4885/68/8/r01
https://doi.org/10.1016/j.ipl.2004.01.014
https://doi.org/10.1016/j.ipl.2004.01.014
https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus/
https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus/
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet.pdf
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/index.html
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/index.html
https://developer.nvidia.com/cufft

BIBLIOGRAPHY 191

[126] openacc-standard.org. OpenACC programming and best practices guide, 2015.

url: https : / / www . openacc . org / sites / default / files / inline - files /

OpenACC_Programming_Guide_0.pdf.

[127] OpenMP Architecture Review Board. OpenMP application program interface ver-

sion 4.0, 2013. url: https://www.openmp.org/wp-content/uploads/OpenMP4.

0.0.pdf.

[128] M. Osorno, M. Schirwon, N. Kijanski, R. Sivanesapillai, H. Steeb, and D. Göddeke.

A cross-platform, high-performance SPH toolkit for image-based flow simulations

on the pore scale of porous media. Computer Physics Communications, 2020.

[129] S. Pachnicke, A. Chachaj, M. Helf, and P. Krummrich. Fast parallel simulation of

fiber optical communication systems accelerated by a graphics processing unit. In

pages 1–4, 2010. doi: 10.1109/ICTON.2010.5549002.

[130] R. E. Plessix. A review of the adjoint-state method for computing the gradient

of a functional with geophysical applications. Geophysical Journal International,

167(2):495–503, 2006.

[131] F. Poletti and P. Horak. Description of ultrashort pulse propagation in multimode

optical fibers. Journal of the Optical Society of America B, 25(10):1645–1654, 2008.

doi: 10.1364/JOSAB.25.001645.

[132] C. Ravaut, M. Alerini, S. P. Lescoffit, and E. Thomassen. Sub-salt imaging by

full-waveform inversion: a parameter analysis. In 2008.

[133] D. J. Richardson, J. M. Fini, and L. E. Nelson. Space-division multiplexing in

optical fibres. Nature Photonics, 7(5):354–362, 2013.

[134] N. Ricker. The form and laws of propagation of seismic wavelets. Geophysics,

18(1):10–40, 1953. doi: 10.1190/1.1437843.

[135] F. Rubio, M. Hanzich, A. Farrés, J. de la Puente, and J. M. Cela. Finite-difference

staggered grids in gpus for anisotropic elastic wave propagation simulation. Com-

puters & Geosciences, 70:181 –189, 2014. doi: 10.1016/j.cageo.2014.06.003.

[136] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and

Applied Mathematics, 2003. doi: 10.1137/1.9780898718003.

[137] V. Sarkar, W. Harrod, and A. E. Snavely. Software challenges in extreme scale

systems. Journal of Physics: Conference Series. doi: 10.1088/1742-6596/180/

1/012045.

[138] D. F. Shanno. Conditioning of quasi-newton methods for function minimization.

Mathematics of Computation, 24(111):647–647, 1970. doi: 10.1090/s0025-5718-

1970-0274029-x.

[139] P. Sillard. Few-Mode Fibers for Space Division Multiplexing. In Optical Fiber Com-

munication Conference (OFC), Anaheim, CA, USA, 2016. doi: 10.1364/OFC.

2016.Th1J.1. paper Th1J.1.

https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://doi.org/10.1109/ICTON.2010.5549002
https://doi.org/10.1364/JOSAB.25.001645
https://doi.org/10.1190/1.1437843
https://doi.org/10.1016/j.cageo.2014.06.003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1088/1742-6596/180/1/012045
https://doi.org/10.1088/1742-6596/180/1/012045
https://doi.org/10.1090/s0025-5718-1970-0274029-x
https://doi.org/10.1090/s0025-5718-1970-0274029-x
https://doi.org/10.1364/OFC.2016.Th1J.1
https://doi.org/10.1364/OFC.2016.Th1J.1

192 BIBLIOGRAPHY

[140] R. Sivanesapillai. Pore-scale study of non-Darcian fluid flow in porous media using

smoothed-particle hydrodynamics. Doctoral thesis, Ruhr-Universität Bochum, 2016.

[141] Y. Sun, N. B. Agostini, S. Dong, and D. Kaeli. Summarizing CPU and GPU design

trends with product data, 2019. arXiv: 1911.11313 [cs.DC].

[142] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson. A computer

simulation method for the calculation of equilibrium constants for the formation

of physical clusters of molecules: application to small water clusters. The Journal

of Chemical Physics, 76(1):637–649, 1982. doi: /10.1063/1.442716.

[143] T. Alkhalifah. An anisotropic Marmousi model. url: http://sepwww.stanford.

edu/public/docs/sep95/tariq3/paper_html/index.html.

[144] T. R. Taha and X. Xu. Parallel Split-Step Fourier Methods for the Coupled Non-

linear Schrödinger Type Equations. Journal of Supercomputing, 32(1):5–23, 2005.

doi: 10.1007/s11227-005-0183-5.

[145] O. Talagrand and P. Courtier. Variational assimilation of meteorological obser-

vations with the adjoint vorticity equation. I. Theory. Q. J. R. Meteorol. Soc.,

113:1311–1328, 1987.

[146] C. Tape, Q. Liu, and J. Tromp. Finite-frequency tomography using adjoint methods-

methodology and examples using membrane surface waves. Geophysical Journal In-

ternational, 168(3):1105–1129, 2007. doi: 10.1111/j.1365-246x.2006.03191.x.

[147] A. Tarantola and B. Valette. Generalized nonlinear inverse problems solved using

the least squares criterion. Rev. Geophys. Space Phys., 20(2):219–232, 1982.

[148] A. N. Tikhonov and Vasiliy Yakovlevich Arsenin. Solutions of ill-posed problems.

In 1977.

[149] TOP500 List - June 1997 — TOP500 Supercomputer Sites. url: https://www.

top500.org/lists/top500/1997/06/.

[150] TOP500 List - June 2009 — TOP500 Supercomputer Sites. url: https://www.

top500.org/lists/top500/2009/06/.

[151] TOP500 List - June 2019 — TOP500 Supercomputer Sites. url: https://www.

top500.org/lists/top500/2019/06/.

[152] TOP500 List - November 2015 — TOP500 Supercomputer Sites. url: https:

//www.top500.org/lists/top500/2015/11/.

[153] TOP500 List - November 2020 — TOP500 Supercomputer Sites. url: https:

//www.top500.org/lists/top500/2020/11/.

[154] Google Cloud TPU. Cloud tensor processing units (TPUs). url: https://cloud.

google.com/tpu/docs/tpus.

https://arxiv.org/abs/1911.11313
https://doi.org//10.1063/1.442716
http://sepwww.stanford.edu/public/docs/sep95/tariq3/paper_html/index.html
http://sepwww.stanford.edu/public/docs/sep95/tariq3/paper_html/index.html
https://doi.org/10.1007/s11227-005-0183-5
https://doi.org/10.1111/j.1365-246x.2006.03191.x
https://www.top500.org/lists/top500/1997/06/
https://www.top500.org/lists/top500/1997/06/
https://www.top500.org/lists/top500/2009/06/
https://www.top500.org/lists/top500/2009/06/
https://www.top500.org/lists/top500/2019/06/
https://www.top500.org/lists/top500/2019/06/
https://www.top500.org/lists/top500/2015/11/
https://www.top500.org/lists/top500/2015/11/
https://www.top500.org/lists/top500/2020/11/
https://www.top500.org/lists/top500/2020/11/
https://cloud.google.com/tpu/docs/tpus
https://cloud.google.com/tpu/docs/tpus

BIBLIOGRAPHY 193

[155] STREAM Benchmark Author McCalpin Traces System Balance Trends. Tiffany

trader, 2016. url: https://www.hpcwire.com/2016/11/07/mccalpin-traces-

hpc-system-balance-trends/.

[156] J. Tromp, C. Tape, and Q. Liu. Seismic tomography, adjoint methods, time reversal

and banana-doughnut kernels. Geophysical Journal International, 160(1):195–216,

2005. doi: 10.1111/j.1365-246X.2004.02453.x.

[157] A. Uvarov, N. Karelin, I. Koltchanov, A. Richter, H. Louchet, and G. Shkred. GPU-

assisted simulations of SDM systems. In International Conference on Transparent

Optical Networks (ICTON), Girona, Spain, 2017. doi: 10.1109/ICTON.2017.

8025061. paper We.D1.6.

[158] M. van Driel and T. Nissen-Meyer. Optimized viscoelastic wave propagation for

weakly dissipative media. Geophysical Journal International, 199(2):1078–1093,

2014. doi: 10.1093/gji/ggu314.

[159] A. Venkatesh, K. Hamidouche, S. Potluri, D. Rosetti, C.-H. Chu, and D. K. Panda.

MPI-GDS: High Performance MPI Designs with GPUDirect-aSync for CPU-GPU

Control Flow Decoupling. In 46th International Conference on Parallel Processing

(ICPP), pages 151–160, Bristol, UK, 2017. doi: 10.1109/ICPP.2017.24.

[160] L. Verlet. Computer ‘experiments’ on classical fluids. I. thermodynamical proper-

ties of Lennard-Jones molecules. Physical review, 159(1):98, 1967.

[161] R. Versteeg. The Marmousi experience: Velocity model determination on a syn-

thetic complex data set. en. The Leading Edge, 13(9):927–936, 1994. doi: 10.1190/

1.1437051.

[162] Y. Wang, S. Chevrot, V. Monteiller, D. Komatitsch, F. Mouthereau, G. Man-

atschal, M. Sylvander, J. Diaz, M. Ruiz, F. Grimaud, S. Benahmed, H. Pauchet,

and R. Martin. The deep roots of the western pyrenees revealed by full waveform

inversion of teleseismic p waves. Geology, 44(6):475–478, 2016. doi: 10.1130/

g37812.1.

[163] Y. Wang, J. Yang, W. Yin, and Y. Zhang. A new alternating minimization algo-

rithm for total variation image reconstruction. SIAM J. Imaging Sciences, 1:248–

272, 2008. doi: 10.1137/080724265.

[164] G. H. Weiss and A. A. Maradudin. The Baker-Hausdorff Formula and a Problem

in Crystal Physics. Journal of Mathematical Physics, 3(4):771–777, 1962.

[165] N. Wilt. The CUDA Handbook: A Comprehensive Guide to GPU Programming.

Addison-Wesley Professional, 1st edition, 2013.

[166] P. Wolfe. Convergence conditions for ascent methods. SIAM Review, 11(2):226–

235, 1969. doi: 10.1137/1011036.

[167] P. Wolfe. Convergence conditions for ascent methods. II: some corrections. SIAM

Review, 13(2):185–188, 1971. doi: 10.1137/1013035.

https://www.hpcwire.com/2016/11/07/mccalpin-traces-hpc-system-balance-trends/
https://www.hpcwire.com/2016/11/07/mccalpin-traces-hpc-system-balance-trends/
https://doi.org/10.1111/j.1365-246X.2004.02453.x
https://doi.org/10.1109/ICTON.2017.8025061
https://doi.org/10.1109/ICTON.2017.8025061
https://doi.org/10.1093/gji/ggu314
https://doi.org/10.1109/ICPP.2017.24
https://doi.org/10.1190/1.1437051
https://doi.org/10.1190/1.1437051
https://doi.org/10.1130/g37812.1
https://doi.org/10.1130/g37812.1
https://doi.org/10.1137/080724265
https://doi.org/10.1137/1011036
https://doi.org/10.1137/1013035

194 BIBLIOGRAPHY

[168] Z. Zhang, L. Chen, and X. Bao. A fourth-order Runge-Kutta in the interaction

picture method for numerically solving the coupled nonlinear Schrödinger equation.

Optics Express, 18(8):8261–8276, 2010.

[169] S. M. Zoldi, V. Ruban, A. Zenchuk, and S. Burtsev. Parallel Implementation of

the Split-step Fourier Method For Solving Nonlinear Schrödinger Systems. SIAM

News, 32(1):1–5, 1999.

I

A

Appendix

A.1 Seismic waveform modeling and inversion

This section contains more detailed calculations, further tests and descriptions of trans-

formations from chapter 5, which were omitted there to improve the reading flow.

A.1.1 Determination of the stress relaxation function

We derive the stress relaxation function, which is used in on page 109 in section 5.2.2.

We use equation (5.16) to determine the relaxation:

Ψ(t) = F−1

{
M(ω)

iω

}

Next, we insert equation (5.43) and get

Ψ(t) = F−1

{
MR

1 + iωτε
iω(1 + iωτσ)

}

Instead of applying the inverse Fourier transform straight forward, we first rewrite equa-

tion (5.43) so that we can apply the inverse Fourier transform to simpler terms. We

rewrite equation (5.43) as:

M(ω)

iω
=MR

1 + iωτε
iω(1 + iωτσ)

= MR
1 + iωτε
iω − ω2τσ

= MR
ω−1 + iτε
i− ωτσ

=MR

(
1

iω − ω2τσ
+

iτε
i− ωτσ

)

=MR

(
1 + iωτσ − iωτσ
iω − ω2τσ

+
iτε

i− ωτσ

)

=MR

(
1 + iωτσ
iω − ω2τσ

− iτσ
i− ωτσ

+
iτε

i− ωτσ

)

=MR

(
1 + iωτσ

iω(1 + iωτσ)
− iτσ
i− ωτσ

+
iτε

i− ωτσ

)

=MR

(
1

iω
− iτσ
i− ωτσ

+
iτε

i− ωτσ

)

II APPENDIX A. APPENDIX

Next, we can apply the inverse Fourier transformation:

Ψ(t) = F−1

{
Mr

[−i
ω

+
iτε

i− τσω
− iτσ
i− τσω

]}

To compute the inverse Fourier transform, we use the information that the function is a

signal, i.e. the function is equal to zero for t < 0, in the time domain. Additionally, we

use the following (forward) Fourier transformations:

F [a] =

∫ ∞

0

a exp(−iωt)dt =
[
− a

iω
exp(−iωt)

]∞
0

=
a

iω

F [exp(−at)] =

∫ ∞

0

exp(−a t) exp(−iωt)dt =

∫ ∞

0

exp(−(a+ iω)t)dt

=

[
− 1

a+ iω
exp(−(a+ iω)t)

]∞

0

=
1

a+ iω

Where a ∈ R is a constant variable. Inserting the related terms leads to:

F−1

[−i
ω

]
=F−1

[
1

iω

]
= F−1 [F [1]] = 1

F−1

[
iτε

i− τσω

]
=
τε
τσ
F−1

[
1

τ−1
σ + iω

]
=
τε
τσ
F−1

[
F
[
exp(−τ−1

σ t)
]]

=
τε
τσ

exp

(−t
τσ

)

F−1

[
iτσ

i− τσω

]
=F−1

[
1

τ−1
σ + iω

]
= F−1

[
F
[
exp(−τ−1

σ t)
]]

= exp

(−t
τσ

)

All in all, we combine the three inverse Fourier transformations and get the relaxation

function:

Ψ(t) =MR

[
1− τε

τσ
exp(
−t
τσ

) + exp(
−t
τσ

)

]

Ψ(t) =MR

[
1−

(
1− τε

τσ

)
exp(−t/τσ)

]

A.1. SEISMIC WAVEFORM MODELING AND INVERSION III

A.1.2 System of second order PDEs to system of first order

PDEs

On page 118 in section 5.2.3, a system of second-order PDEs is transformed to a system

of first-order PDEs. The detailed transformation is described below. Starting from the

system of second order PDEs, we derive a system of first order PDEs. The PDEs of

second order are:

ρ∂ttui = ui∂jσij + fi (A.1)

σxx = (λU + 2µU)∂xux + λU∂yuy + (λ+ µ)

NSLS∑

l=1

R1,l + µ

NSLS∑

l=1

Rxx,l (A.2)

σyy = λU∂xux + (λU + 2µU)∂yuy + (λ+ µ)

NSLS∑

l=1

R1,l − µ
NSLS∑

l=1

Rxx,l (A.3)

σxy = µU(∂xuy + ∂yux) + µ

NSLS∑

l=1

Rxy,l (A.4)

∂tR1,l =−R1,l/τ1σ,l +
1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)
tr(ε) (A.5)

∂tRxx,l =−Rxx,l/τ2σ,l +
1

τ2σ,l

(
1− τ2ε,l

τ2σ,l

)
(∂xux − ∂yuy) (A.6)

∂tRxy,l =−Rxy,l/τ2σ,l +
1

τ2σ,l

(
1− τ2ε,l

τ2σ,l

)
(∂xuy + ∂yux) (A.7)

We define v = u̇ i.e. vx = u̇x and vy = u̇y , substitute this in eq. A.1 and get:

ρ∂tvx = ∂xσxx + ∂yσyx + fx

ρ∂tvy = ∂xσxy + ∂yσyy + fy

Differentiating equation A.2-A.4 and substituting v = u̇ gives us

∂tσxx = (λU + 2µU)∂xvx + λU∂yvy + (λ+ µ)

NSLS∑

l=1

R̄1,l + µ

NSLS∑

l=1

R̄xx,l

∂tσyy = λU∂xvx + (λU + 2µU)∂yvy + (λ+ µ)

NSLS∑

l=1

R̄1,l − µ
NSLS∑

l=1

R̄xx,l

∂tσxy = µU(∂xvy + ∂yvx) + µ

NSLS∑

l=1

R̄xy,l

IV APPENDIX A. APPENDIX

with

R̄l
1 = ∂tR

l
1 = ∂t

(
1

τ1σ

(
1− τ1ε,l

τ1σ,l

)(
exp(− ·

τ1σ,l

) ∗ tr(ε)(·)
))

=
1

τ1σ

(
1− τ1ε,l

τ1σ,l

)(
exp(− ·

τ1σ,l

) ∗ tr(ε̇)(·)
)

R̄l
xx = ∂tR

l
xx = ∂t

(
1

τ2σ

(
1− τ2ε,l

τ2σ,l

)(
exp(− ·

τ2σ,l

) ∗ tr(∂xux − ∂yuy))(·)
))

=
1

τ2σ

(
1− τ2ε,l

τ2σ,l

)(
exp(− ·

τ2σ,l

) ∗ tr(∂xvx − ∂yvy))(·)
)

R̄l
xy = ∂tR

l
xy = ∂t

(
1

τ2σ

(
1− τ2ε,l

τ2σ,l

)(
exp(− ·

τ2σ,l

) ∗ tr(∂xuy + ∂yux)(·)
))

=
1

τ2σ

(
1− τ2ε,l

τ2σ,l

)(
exp(− ·

τ2σ,l

) ∗ tr(∂xvy + ∂yvx)(·)
)

Here, we first used the rule for convolutions that ∂t(f ∗g) = (∂tf)∗g = f ∗∂tg, followed by

inserting the substitution v = u̇. Similar to the first order PDEs, we obtain the differential

equations for the memory variables by differentiating the corresponding equations, which

leads to the following equations:

R̄l
1 =

1

τ1σ

(
1− τ1ε,l

τ1σ,l

)(
exp(− ·

τ1σ,l

) ∗ tr(ε̇)(·)
)

∂tR̄
l
1 =

1

τ1σ

(
1− τ1ε,l

τ1σ,l

)
∂t

(
exp(− ·

τ1σ,l

) ∗ tr(ε̇)(·)
)

=
1

τ1σ

(
1− τ1ε,l

τ1σ,l

)(
exp(− ·

τ1σ,l

) ∗ ∂ttr(ε̇)(·)
)

=
1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)
[exp(−(t− t′)/τ1σ,l)tr(ε̇)]

t

−∞

− 1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)∫ t

−∞

1

τ1σ,l

exp(−(t− t′)/τ1σ,l)tr(ε̇)dt
′

=
1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)
[exp(0)tr(ε̇)− 0]

− 1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)∫ t

−∞

1

τ1σ,l

exp(−(t− t′)/τ1σ,l)tr(ε̇)dt
′

︸ ︷︷ ︸
= 1
τ1σ,l

(
exp(− ·

τ1σ,l
)∗tr(ε̇)(·)

)

=− R̄l
1/τ1σ,l + tr(ε̇)

1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)

A.1. SEISMIC WAVEFORM MODELING AND INVERSION V

All in all we get the system of first order PDEs

ρ∂tvx =∂xσxx + ∂yσxy + fx

ρ∂tvy =∂xσxy + ∂yσyy + fy

∂tσxx =(λ+ 2µ)∂xvx + λ∂yvy + (µ+ λ)

NSLS∑

l=1

R̄1,l + µ

NSLS∑

l=1

R̄xx,l

∂tσyy =λ∂xvx + (λ+ 2µ)∂yvy + (µ+ λ)

NSLS∑

l=1

R̄1,l − µ
NSLS∑

l=1

R̄xx,l

∂tσxy =µ(∂xvy + ∂yvy) + µ

NSLS∑

l=1

R̄xy,l

∂tR̄1,l =− R̄1,l/τ1σ,l +
1

τ1σ,l

(
1− τ1ε,l

τ1σ,l

)
tr(ε̇)

∂tR̄xx,l =− R̄xx,l/τ2σ,l +
1

τ2σ,l

(
1− τ2ε,l

τ2σ,l

)
(∂xvx − ∂yvy)

∂tR̄xy,l =− R̄xy,l/τ2σ,l +
1

τ2σ,l

(
1− τ2ε,l

τ2σ,l

)
(∂xvy + ∂yvx)

VI APPENDIX A. APPENDIX

A.1.3 Relaxation and modulus function for the modified for-

ward model

The transfer from the standard Zener approach to the approach that allows the Q factors

to be inverted is performed in section 5.3.3 on page 127. We describe the detailed substi-

tution in the following.

We recall the modulus function (5.47) and the relaxation function (5.48) for the standard

approach, which are:

M(ω) =
MR

NSLS

NSLS∑

l=1

1 + iωτε,l
1 + iωτσ,l

Ψ(t) =MR

[
1− 1

NSLS

NSLS∑

l=1

(
1− τε,l

τσ,l

)
exp(−t/τσ,l)

]
H(t)

Next we insert the definitions τε,l = 1+NSLSdl
θl

, τσ,l = 1
θl

, for the modulus function these

result in the following:

M(ω) =
MR

NSLS

NSLS∑

l=1

1 + iωτε,l
1 + iωτσ,l

=
MR

NSLS

NSLS∑

l=1

1 + iω 1+NSLSdl
θl

1 + iω 1
θl

=
MR

NSLS

NSLS∑

l=1

θl + iω

θl + iω

iωNSLSdl
θl + iω

=MR

(
1 +

NSLS∑

l=1

iωdl(θl − iω)

θ2
l + ω2

)

Inserting the definition dl := Q−1Dl yields

=MR

(
1 +

1

Q

NSLS∑

l=1

iωDl(θl − iω)

θ2
l + ω2

)
.

A.1. SEISMIC WAVEFORM MODELING AND INVERSION VII

Similar, we insert the definitions τε,l = 1+NSLSdl
θl

, τσ,l = 1
θl

, for the relaxation function these

result in the following:

Ψ(t) =MR

[
1− 1

NSLS

NSLS∑

l=1

(
1− τε,l

τσ,l

)
exp(−t/τσ,l)

]
H(t)

=MR

[
1− 1

NSLS

NSLS∑

l=1

(
1− 1 +NSLSdl

θl
θl

)
exp(−tθl)

]
H(t)

=MR

[
1− 1

NSLS

NSLS∑

l=1

(1− 1−NSLSdl) exp(−tθl)
]
H(t)

=MR

[
1 +

NSLS∑

l=1

dl exp(−tθl)
]
H(t)

Inserting the definition dl := Q−1Dl yields

=MR

[
1 +

1

Q

NSLS∑

l=1

(Dl) exp(−tθl)
]
H(t).

VIII APPENDIX A. APPENDIX

A.1.4 Derivative of the misfit function

The calculation of the derivative of the misfit function, which was not performed in sec-

tion 5.4.5, is calculated in detail in the following.

After we have derived the adjoint problem, we can now use equation (5.88) to deter-

mine the derivative of the misfit function.

First we calculate the derivative for the linear operator of the forward problem

L(u,m) =− A−1∂tu+Du+ A−1Bu+ A−1s,

which is

dL(u,m)

dm
=− ∂mA−1∂tu+ ∂m

(
A−1B

)
u+ ∂mA

−1s

=− ∂mA−1∂tu+ ∂mA
−1Bu+ A−1∂mBu+ ∂mA

−1s

=∂mA
−1 (−∂tu+Bu+ s)︸ ︷︷ ︸

=−ADu

+A−1∂mBu

=− ∂mA−1(AD)u+ A−1∂mBu

Next, we can insert this derivative into equation (5.88) and obtain

dχ

dm
δm =

∫ ∫
u∗ ·

(
−∂mA−1(AD) + A−1∂mB

)
u dxdt. (A.8)

Now we are able to calculate the derivative. First, we calculate all needed matrices and

the necessary partial derivatives of the matrices. The inverse of matrix A reads

A−1 =

λ+2µ
4µ(λ+µ)

− λ
4µ(λ+µ)

0 0 0 0 0 0

− λ
4µ(λ+µ)

λ+2µ
4µ(λ+µ)

0 0 0 0 0 0

0 0 1
µ

0 0 0 0 0

0 0 0 ρ 0 0 0 0

0 0 0 0 ρ 0 0 0

0 0 0 0 0 − 1
θ1,lD1,l

0 0

0 0 0 0 0 0 − 1
θ2,lD2,l

0

0 0 0 0 0 0 0 − 1
θ2,lD2,l

.

A.1. SEISMIC WAVEFORM MODELING AND INVERSION IX

For the sake of completeness, we also specify the matrix product AD, which is

AD =

0 0 0 (λ+ 2µ)∂x λ∂y 0 0 0

0 0 0 λ∂x (λ+ 2µ)∂y 0 0 0

0 0 0 µ∂y µ∂x 0 0 0
∂x
ρ

0 ∂y
ρ

0 0 0 0 0

0 ∂y
ρ

∂x
ρ

0 0 0 0 0

0 0 0 −D1,lθ1,l∂x −D1,lθ1,l∂y 0 0 0

0 0 0 −D2,lθ2,l∂x D2,lθ2,l∂y 0 0 0

0 0 0 −D2,lθ2,l∂y −D2,lθ2,l∂x 0 0 0

.

To facilitate the readability in the following, we calculate ADu and introduce new names

for the result

(AD)u =

(λ+ 2µ)∂xvx + λ∂yvy

λ∂xvx + (λ+ 2µ)∂yvy

µ∂yvx + µ∂xvy
∂x
ρ
σxx + ∂y

ρ
σxy

∂y
ρ
σyy + ∂x

ρ
σxy

−D1,lθ1,l∂xvx −D1,lθ1,l∂yvy

−D2,lθ2,l∂xvx +D2,lθ2,l∂yvy

−D2,lθ2,l∂yvx −D2,lθ2,l∂xvy

=:

∂tσ̃xx

∂tσ̃yy

∂tσ̃xy

∂tṽx

∂tṽy

∂tR1,l

∂tRxx,l

∂tRxy,l

Next, we calculate all partial derivatives of matrix B. B contains the parameters λ, µ, Q1

and Q2, so we need to determine the partial derivatives with respect to these parameters.

X APPENDIX A. APPENDIX

These result in:

∂λB =

0 0 0 0 0 1

Q1+
∑NSLS
l=1 D1,l

0 0

0 0 0 0 0 1

Q1+
∑NSLS
l=1 D1,l

0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

∂µB =

0 0 0 0 0 1

Q1+
∑NSLS
l=1 D1,l

1

Q2+
∑NSLS
l=1 D2,l

0

0 0 0 0 0 1

Q1+
∑NSLS
l=1 D1,l

− 1

Q2+
∑NSLS
l=1 D2,l

0

0 0 0 0 0 0 0 1

Q2+
∑NSLS
l=1 D2,l

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

∂Q1B =

0 0 0 0 0 −(λ+ µ) 1

(Q1+
∑NSLS
l=1 D1,l)2

0 0

0 0 0 0 0 −(λ+ µ) 1

(Q1+
∑NSLS
l=1 D1,l)2

0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

∂Q2B =

0 0 0 0 0 0 −µ 1

(Q2+
∑NSLS
l=1 D2,l)2

0

0 0 0 0 0 0 µ 1

(Q2+
∑NSLS
l=1 D2,l)2

0

0 0 0 0 0 0 0 −µ 1

(Q2+
∑NSLS
l=1 D2,l)2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Before we can determine the partial derivatives of the misfit function, we need the partial

derivatives of the matrix A−1. This matrix contains the parameters ρ, λ and µ, so we

need to determine the partial derivatives in direction of these parameters. They are given

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XI

by:

∂ρA
−1 =

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

∂λA
−1 =

− 1
4(λ+µ)2

− 1
4(λ+µ)2

0 0 0 0 0 0

− 1
4(λ+µ)2

− 1
4(λ+µ)2

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

∂µA
−1 =

−λ2+2λµ+2µ2

4µ2(λ+µ)2
λ(λ+2µ)

4µ2(λ+µ)2
0 0 0 0 0 0

λ(λ+2µ)
4µ2(λ+µ)2

−λ2+2λµ+2µ2

4µ2(λ+µ)2
0 0 0 0 0 0

0 0 − 1
µ2

0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Finally, we calculate the partial derivatives of the misfit function using equation (A.8).

The partial derivative in ρ direction is simplified because only A is dependent on ρ. This

results in

u∗ · dL(u,m)

dρ
= u∗ · (−∂ρA−1(AD) + A−1∂ρB)u

= u∗ · (−∂ρA−1(AD))u

= −v∗x∂tṽx − v∗y∂tṽy.

Since µ is contained in both A and B, the partial derivatives of both matrices appear,

XII APPENDIX A. APPENDIX

and the partial derivative in µ direction of the misfit function is

u∗ · dL(u,m)

dλ
= u∗ · (−∂λA−1(AD) + A−1∂λB)u

=
1

4(λ+ µ)2

{
(σ∗xx + σ∗yy)(∂tσ̃xx + ∂tσ̃yy)

}

+ (σ∗xx + σ∗yy)
1

2(λ+ µ)

1

Q1 +
∑NSLS

l=1 D1,l

NSLS∑

l=1

R1,l.

Also for λ the partial derivatives for A and B occur, so the partial derivative of the misfit

function is

u∗ · dL(u,m)

dµ
=u∗ · (−∂µA−1(AD) + A−1∂µB)u

=σ∗xx

(
λ2 + 2λµ+ 2µ2

4µ2(λ+ µ)2
∂tσ̃xx −

λ(λ+ 2µ)

4µ2(λ+ µ)2
∂tσ̃yy

)

− σ∗yy
(
λ(λ+ 2µ)

4µ2(λ+ µ)2
∂tσ̃xx −

λ2 + 2λµ+ 2µ2

4µ2(λ+ µ)2
∂tσ̃yy

)
+ σ∗xy

(
1

µ2
∂tσ̃xy

)

+ (σ∗xx + σ∗yy)
1

2(λ+ µ)

1

Q1 +
∑NSLS

l=1 D1,l

NSLS∑

l=1

R1,l

+ (σ∗xx − σ∗yy)
1

2(µ)

1

Q2 +
∑NSLS

l=1 D2,l

NSLS∑

l=1

Rxx,l

+ (σ∗xy)
1

µ

1

Q2 +
∑NSLS

l=1 D2,l

NSLS∑

l=1

Rxy,l.

Since the quality factors are only included in the matrix B, the calculation of the partial

derivative of the misfit function with respect to Q1 and Q2 is simplified, which results for

Q1 in

u∗ · dL(u,m)

dQ1

=u∗ · (−∂Q1A
−1(AD) + A−1∂Q1B)u

=u∗ · (A−1∂Q1B)u

=− 1

2

1
(
Q1 +

∑NSLS

l=1 D1,l

)2

(
σ∗xx

NSLS∑

l=1

R1,l + σ∗yy

NSLS∑

l=1

R1,l

)

and for Q2 the following partial derivative results

u∗ · dL(u,m)

dQ2

=u∗ · (−∂Q2A
−1(AD) + A−1∂Q2B)u

=u∗ · (A−1∂Q2B)u

=
1

2

1
(
Q2 +

∑NSLS

l=1 D2,l

)2

(
σ∗yy

NSLS∑

l=1

Rxx,l − σ∗xx
NSLS∑

l=1

Rxx,l − 2σ∗xy

NSLS∑

l=1

Rxy,l

)

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XIII

All in all, with the forward and adjoint equations and the partial derivatives of the

misfit function, we now have everything we need to apply an optimization algorithm to

the minimization problem (5.80).

XIV APPENDIX A. APPENDIX

A.1.5 Quality comparison and improvement of the Q factor ap-

proximation

In section 5.3.3, the modified Zener model approach is improved in terms of accuracy.

Then, the presented improvement is numerically investigated for different Q intervals and

different number of parallel Zener models NSLS on page 126. In addition to the test found

in section 5.3.3, the test is repeated here for other intervals and another number of Zener

models NSLS. The respective intervals can be found in the following paragraph headings.

The findings of these tests are analogous to those in section 5.3.3.

It can be seen that this piece-wise linear correction leads to much smaller `2 and

maximum errors, especially for small Q factors. For small Q factors, the model resulting

from the full objective function remains better. However, if we look at the inverse Q

factors Qmax we can see that the modified model resulting from the simplified objective

function, after improvement with the shift, approximates the Q factor better than the

model resulting from the full objective function after correction.

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XV

Interval Q ∈ [15, 500]; number of Zener models NSLS = 3

0.054

0.056

0.058

0.06

0.062

0.064

0.066

0.068

0.07

0.072

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

0.00198

0.00198

0.00199

0.00199

0.00200

0.00200

0.00201

0.00201

0.00202

0.00202

0.00203

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

Figure A.1.1: Approximation of Qmin = 15 (left) and Qmax = 500 for the generalized
Zener model and the modified Zener model. ‘standard appr.’ describes the standard
generalized Zener model approach applied to Qmin or Qmax. ‘Q-approach’ names the new
approach described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters.
‘simpl. Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.67) to obtain the
relaxation parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘simpl. Q-appr.’.

XVI APPENDIX A. APPENDIX

0.000010

0.000100

0.001000

0.010000

0.100000

0 50 100 150 200 250 300 350 400 450 500

m
a
x
er
ro
r

Quality factor

Q-approach
corr. Q-appr.

simpl. Q-appr.
c. s. Q-appr.

0.0001

0.001

0.01

0.1

1

0 50 100 150 200 250 300 350 400 450 500

` 2
er
ro
r

Quality factor

Q-approach
corr. Q-appr.
simpl. Q-appr
c. s. Q-appr.

Figure A.1.2: Maximum error (left) and `2 error (right) for the approximation of
Q ∈ [Qmin, Qmax] for the modified Zener model. ‘Q-approach’ names the new approach
described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters. ‘simpl.
Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.68) to obtain the relaxation
parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘simpl. Q-appr.’.

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300 350 400 450 500

sh
if

t

Quality factor

normal
simplified

Figure A.1.3: Optimal shift parameter for the modified Zener approach described in 5.3.1
for the complete objective function (5.67) and the simplified objective function (5.67)

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XVII

Interval Q ∈ [15, 900]; number of Zener models NSLS = 3

0.054

0.056

0.058

0.06

0.062

0.064

0.066

0.068

0.07

0.072

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

0.00110

0.00111

0.00111

0.00112

0.00112

0.00113

0.00113

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

Figure A.1.4: Approximation of Qmin = 15 (left) and Qmax = 900 for the generalized
Zener model and the modified Zener model. ‘standard appr.’ describes the standard
generalized Zener model approach applied to Qmin or Qmax. ‘Q-approach’ names the new
approach described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters.
‘simpl. Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.67) to obtain the
relaxation parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘simpl. Q-appr.’.

XVIII APPENDIX A. APPENDIX

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

0.1000000

0 100 200 300 400 500 600 700 800 900

m
a
x
er
ro
r

Quality factor

Q-approach
corr. Q-appr.

simpl. Q-appr.
c. s. Q-appr.

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

0 100 200 300 400 500 600 700 800 900

` 2
er
ro
r

Quality factor

Q-approach
corr. Q-appr.
simpl. Q-appr
c. s. Q-appr.

Figure A.1.5: Maximum error (left) and `2 error (right) for the approximation of
Q ∈ [Qmin, Qmax] for the modified Zener model. ‘Q-approach’ names the new approach
described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters. ‘simpl.
Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.68) to obtain the relaxation
parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘simpl. Q-appr.’.

−2

−1

0

1

2

3

4

5

0 100 200 300 400 500 600 700 800 900

sh
if

t

Quality factor

normal
simplified

Figure A.1.6: Optimal shift parameter for the modified Zener approach described in 5.3.1
for the complete objective function (5.67) and the simplified objective function (5.67)

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XIX

Interval Q ∈ [800, 900]; number of Zener models NSLS = 3

0.00124

0.00124

0.00124

0.00125

0.00125

0.00125

0.00125

0.00125

0.00126

0.00126

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

0.00110

0.00110

0.00111

0.00111

0.00111

0.00111

0.00111

0.00112

0.00112

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

Figure A.1.7: Approximation of Qmin = 800 (left) and Qmax = 900 for the generalized
Zener model and the modified Zener model. ‘standard appr.’ describes the standard
generalized Zener model approach applied to Qmin or Qmax. ‘Q-approach’ names the new
approach described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters.
‘simpl. Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.67) to obtain the
relaxation parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘simpl. Q-appr.’.

XX APPENDIX A. APPENDIX

0.000005

0.000005

0.000006

0.000006

0.000007

0.000007

0.000008

0.000008

0.000009

800 820 840 860 880 900

m
a
x
er
ro
r

Quality factor

Q-approach
corr. Q-appr.

simpl. Q-appr.
c. s. Q-appr.

0.00010

0.00010

0.00011

0.00011

0.00012

0.00012

0.00013

0.00013

0.00014

0.00014

0.00015

800 820 840 860 880 900

` 2
er
ro
r

Quality factor

Q-approach
corr. Q-appr.
simpl. Q-appr
c. s. Q-appr.

Figure A.1.8: Maximum error (left) and `2 error (right) for the approximation of
Q ∈ [Qmin, Qmax] for the modified Zener model. ‘Q-approach’ names the new approach
described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters. ‘simpl.
Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.68) to obtain the relaxation
parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘simpl. Q-appr.’.

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

800 820 840 860 880 900

sh
if

t

Quality factor

normal
simplified

Figure A.1.9: Optimal shift parameter for the modified Zener approach described in 5.3.1
for the complete objective function (5.67) and the simplified objective function (5.67)

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XXI

Interval Q ∈ [500, 1000]; number of Zener models NSLS = 3

0.00198

0.00198

0.00199

0.00199

0.00200

0.00200

0.00201

0.00201

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

0.00099

0.00099

0.00100

0.00100

0.00100

0.00100

0.00100

0.00101

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

Figure A.1.10: Approximation of Qmin = 500 (left) and Qmax = 1000 for the generalized
Zener model and the modified Zener model. ‘standard appr.’ describes the standard
generalized Zener model approach applied to Qmin or Qmax. ‘Q-approach’ names the new
approach described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters.
‘simpl. Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.67) to obtain the
relaxation parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘simpl. Q-appr.’.

XXII APPENDIX A. APPENDIX

0.000004

0.000006

0.000008

0.000010

0.000012

0.000014

0.000016

0.000018

500 600 700 800 900 1000

m
a
x
er
ro
r

Quality factor

Q-approach
corr. Q-appr.

simpl. Q-appr.
c. s. Q-appr.

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

500 600 700 800 900 1000

` 2
er
ro
r

Quality factor

Q-approach
corr. Q-appr.
simpl. Q-appr
c. s. Q-appr.

Figure A.1.11: Maximum error (left) and `2 error (right) for the approximation of
Q ∈ [Qmin, Qmax] for the modified Zener model. ‘Q-approach’ names the new approach
described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters. ‘simpl.
Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.68) to obtain the relaxation
parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘simpl. Q-appr.’.

−2

−1.5

−1

−0.5

0

0.5

1

500 600 700 800 900 1000

sh
if

t

Quality factor

normal
simplified

Figure A.1.12: Optimal shift parameter for the modified Zener approach described in 5.3.1
for the complete objective function (5.67) and the simplified objective function (5.67)

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XXIII

Interval Q ∈ [15, 100]; number of Zener models NSLS = 3

0.054

0.056

0.058

0.06

0.062

0.064

0.066

0.068

0.07

0.072

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

0.0096

0.0097

0.0098

0.0099

0.01

0.0101

0.0102

0.0103

0.0104

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

Figure A.1.13: Approximation of Qmin = 15 (left) and Qmax = 100 for the generalized
Zener model and the modified Zener model. ‘standard appr.’ describes the standard
generalized Zener model approach applied to Qmin or Qmax. ‘Q-approach’ names the new
approach described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters.
‘simpl. Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.67) to obtain the
relaxation parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘simpl. Q-appr.’.

XXIV APPENDIX A. APPENDIX

0.000010

0.000100

0.001000

0.010000

0.100000

10 20 30 40 50 60 70 80 90 100

m
a
x
er
ro
r

Quality factor

Q-approach
corr. Q-appr.

simpl. Q-appr.
c. s. Q-appr.

0.001

0.01

0.1

1

10 20 30 40 50 60 70 80 90 100

` 2
er
ro
r

Quality factor

Q-approach
corr. Q-appr.
simpl. Q-appr
c. s. Q-appr.

Figure A.1.14: Maximum error (left) and `2 error (right) for the approximation of
Q ∈ [Qmin, Qmax] for the modified Zener model. ‘Q-approach’ names the new approach
described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters. ‘simpl.
Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.68) to obtain the relaxation
parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘simpl. Q-appr.’.

−2.5

−2

−1.5

−1

−0.5

0

0.5

10 20 30 40 50 60 70 80 90 100

sh
if

t

Quality factor

normal
simplified

Figure A.1.15: Optimal shift parameter for the modified Zener approach described in 5.3.1
for the complete objective function (5.67) and the simplified objective function (5.67)

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XXV

Interval Q ∈ [15, 500]; number of Zener models NSLS = 10

0.052

0.054

0.056

0.058

0.06

0.062

0.064

0.066

0.068

0.07

0.072

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

0.00195

0.00196

0.00197

0.00198

0.00199

0.00200

0.00201

0.00202

0.00203

0.00204

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

Figure A.1.16: Approximation of Qmin = 15 (left) and Qmax = 500 for the generalized
Zener model and the modified Zener model. ‘standard appr.’ describes the standard
generalized Zener model approach applied to Qmin or Qmax. ‘Q-approach’ names the new
approach described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters.
‘simpl. Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.67) to obtain the
relaxation parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘simpl. Q-appr.’.

XXVI APPENDIX A. APPENDIX

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

0.1000000

0 50 100 150 200 250 300 350 400 450 500

m
a
x
er
ro
r

Quality factor

Q-approach
corr. Q-appr.

simpl. Q-appr.
c. s. Q-appr.

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

0 50 100 150 200 250 300 350 400 450 500

` 2
er
ro
r

Quality factor

Q-approach
corr. Q-appr.
simpl. Q-appr
c. s. Q-appr.

Figure A.1.17: Maximum error (left) and `2 error (right) for the approximation of
Q ∈ [Qmin, Qmax] for the modified Zener model. ‘Q-approach’ names the new approach
described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters. ‘simpl.
Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.68) to obtain the relaxation
parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘simpl. Q-appr.’.

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

0 50 100 150 200 250 300 350 400 450 500

sh
if

t

Quality factor

normal
simplified

Figure A.1.18: Optimal shift parameter for the modified Zener approach described in 5.3.1
for the complete objective function (5.67) and the simplified objective function (5.67)

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XXVII

Interval Q ∈ [15, 900]; number of Zener models NSLS = 10

0.054

0.056

0.058

0.06

0.062

0.064

0.066

0.068

0.07

0.072

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

0.00109

0.00109

0.00110

0.00110

0.00111

0.00111

0.00112

0.00112

0.00113

0.00113

0.00114

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

Figure A.1.19: Approximation of Qmin = 15 (left) and Qmax = 900 for the generalized
Zener model and the modified Zener model. ‘standard appr.’ describes the standard
generalized Zener model approach applied to Qmin or Qmax. ‘Q-approach’ names the new
approach described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters.
‘simpl. Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.67) to obtain the
relaxation parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘simpl. Q-appr.’.

XXVIII APPENDIX A. APPENDIX

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

0.1000000

0 100 200 300 400 500 600 700 800 900

m
a
x
er
ro
r

Quality factor

Q-approach
corr. Q-appr.

simpl. Q-appr.
c. s. Q-appr.

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

0 100 200 300 400 500 600 700 800 900

el
l 2

er
ro
r

Quality factor

Q-approach
corr. Q-appr.
simpl. Q-appr
c. s. Q-appr.

Figure A.1.20: Maximum error (left) and `2 error (right) for the approximation of
Q ∈ [Qmin, Qmax] for the modified Zener model. ‘Q-approach’ names the new approach
described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters. ‘simpl.
Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.68) to obtain the relaxation
parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘simpl. Q-appr.’.

−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

0 100 200 300 400 500 600 700 800 900

sh
if

t

Quality factor

normal
simplified

Figure A.1.21: Optimal shift parameter for the modified Zener approach described in 5.3.1
for the complete objective function (5.67) and the simplified objective function (5.67)

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XXIX

Interval Q ∈ [800, 900]; number of Zener models NSLS = 10

0.001244

0.001245

0.001246

0.001247

0.001248

0.001249

0.001250

0.001251

0.001252

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

0.001107

0.001108

0.001109

0.001110

0.001111

0.001112

0.001113

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

Figure A.1.22: Approximation of Qmin = 800 (left) and Qmax = 900 for the generalized
Zener model and the modified Zener model. ‘standard appr.’ describes the standard
generalized Zener model approach applied to Qmin or Qmax. ‘Q-approach’ names the new
approach described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters.
‘simpl. Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.67) to obtain the
relaxation parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘simpl. Q-appr.’.

XXX APPENDIX A. APPENDIX

0

5× 10−7

1× 10−6

1.5× 10−6

2× 10−6

2.5× 10−6

3× 10−6

3.5× 10−6

4× 10−6

4.5× 10−6

5× 10−6

5.5× 10−6

800 820 840 860 880 900

m
a
x
er
ro
r

Quality factor

Q-approach
corr. Q-appr.

simpl. Q-appr.
c. s. Q-appr.

0

2× 10−5

4× 10−5

6× 10−5

8× 10−5

0.0001

0.00012

0.00014

800 820 840 860 880 900

` 2
er
ro
r

Quality factor

Q-approach
corr. Q-appr.
simpl. Q-appr
c. s. Q-appr.

Figure A.1.23: Maximum error (left) and `2 error (right) for the approximation of
Q ∈ [Qmin, Qmax] for the modified Zener model. ‘Q-approach’ names the new approach
described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters. ‘simpl.
Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.68) to obtain the relaxation
parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘simpl. Q-appr.’.

−2.5

−2

−1.5

−1

−0.5

0

0.5

800 820 840 860 880 900

sh
if

t

Quality factor

normal
simplified

Figure A.1.24: Optimal shift parameter for the modified Zener approach described in 5.3.1
for the complete objective function (5.67) and the simplified objective function (5.67)

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XXXI

Interval Q ∈ [500, 1000]; number of Zener models NSLS = 10

0.00199

0.00199

0.00199

0.00199

0.00199

0.00200

0.00200

0.00200

0.00200

0.00200

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

0.000996

0.000997

0.000998

0.000998

0.000999

0.000999

0.001000

0.001000

0.001001

0.001001

0.001002

0 50 100 150 200 250 300 350

1
/
Q

f in 1/s

standard appr.
Q-approach

simpl. Q-appr.
corr. Q-appr.
c. s. Q-appr.

Figure A.1.25: Approximation of Qmin = 500 (left) and Qmax = 1000 for the generalized
Zener model and the modified Zener model. ‘standard appr.’ describes the standard
generalized Zener model approach applied to Qmin or Qmax. ‘Q-approach’ names the new
approach described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters.
‘simpl. Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.67) to obtain the
relaxation parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec.
5.3.3) of ‘simpl. Q-appr.’.

XXXII APPENDIX A. APPENDIX

0

2× 10−6

4× 10−6

6× 10−6

8× 10−6

1× 10−5

1.2× 10−5

1.4× 10−5

500 600 700 800 900 1000

m
a
x
er
ro
r

Quality factor

Q-approach
corr. Q-appr.

simpl. Q-appr.
c. s. Q-appr.

0

5× 10−5

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

500 600 700 800 900 1000

` 2
er
ro
r

Quality factor

Q-approach
corr. Q-appr.
simpl. Q-appr
c. s. Q-appr.

Figure A.1.26: Maximum error (left) and `2 error (right) for the approximation of
Q ∈ [Qmin, Qmax] for the modified Zener model. ‘Q-approach’ names the new approach
described in section 5.3.1 using eq. (5.67) to obtain the relaxation parameters. ‘simpl.
Q-appr.’ describes the same as ‘Q-approach’ but using eq. (5.68) to obtain the relaxation
parameters. ‘corr. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘Q-approach’. ‘c. s. Q-appr.’ describes the piece-wise linear correction (see sec. 5.3.3) of
‘simpl. Q-appr.’.

−2.5

−2

−1.5

−1

−0.5

0

0.5

500 600 700 800 900 1000

sh
if

t

Quality factor

normal
simplified

Figure A.1.27: Optimal shift parameter for the modified Zener approach described in 5.3.1
for the complete objective function (5.67) and the simplified objective function (5.67)

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XXXIII

A.1.6 TV and total generalized p-variation regularization using

the split-Bregman method

In section 5.5.1, we describe that the TV and total generalized p-variation is implemented

using an alternating algorithm and the optimization problem with the variations norm is

solved using the split-Bergman algorithm. An algorithmic implementation is described in

the following two sections.

p-variation regularization

Using the total generalized p-variation regularization leads to the following optimization

problem:

m∗ = min
m

{
1

2
‖u(m)− u0‖2

2 + λTpTp(m)

}

We introduce an auxiliary model v and rewrite the above optimization problem into the

following constrained optimization problem

m∗ = min
m

{
1

2
‖u(m)− u0‖2

2 + λTpTp(v)

}
,

s. t. m =v.

Using the alternating direction method of multipliers (ADMM) procedure [30] leads to

following three equations:

m(k+1) = min
m

{
1

2
‖u(m)− u0‖2

2 + λTp,1‖m− v(k) + q(k)‖2
2

}

v(k+1) = min
v

{
λTp,1‖m(k+1) − v + q(k)‖2

2 + λTp,2Tp(v)
}

q(k+1) =q(k+1) +m(k+1) − v(k+1)

The superscript (k) refers to the k-th iteration of the FWI algorithm and q is the ADMM

variable. We define g = m(k+1) + q(k) , set µ :=
λTp,1
2λTp,2

, insert these into

v(k+1) = min
v

{
λTp,1‖m(k+1) − v + q(k)‖2

2 + λTp,2Tp(v)
}

and get the following constrained optimization problem

{v(k+1), w(k+1), h(k+1), s(k+1)} = min
v,w,h,s

{µ
2
‖g − v‖2

2 + α0‖h‖pp + α1‖s‖pp
}

s. t. h =(hx, hy)
> = ∇v − w

s =

(
sxx sxy

sxy syy

)
= ε(w)

XXXIV APPENDIX A. APPENDIX

Using the split-Bregman iteration technique [63], we rewrite the constrained optimization

problem as the following optimization system:

{v(k+1), w(k+1), h(k+1), s(k+1)} = min
v,w,h,s

{
α0‖h‖pp +

η0

2
‖h− h̃(k) − (∇v − w)‖2

2 + α1‖s‖pp

+
η1

2
‖s− s̃(k) − ε(w)‖2

2 +
µ

2
‖g(k+1) − v‖2

2

}

h̃(k+1) =h̃(k) +
[
(∇v(k+1) − w(k+1))− h(k+1)

]

s̃(k+1) =s̃(k) +
[
ε(w(k+1) − s(k+1)

]

h̃ and s̃ are the so-called split-Bregman dual variables. We decompose this optimization

system into the following four subproblems:

v(k+1) = min
v

{µ
2
‖v − g(k+1)‖2

2 +
η0

2
‖h(k) − h̃(k) − (∇v − w(k))‖2

2

}

w(k+1) = min
w

{η0

2
‖h(k) − h̃(k) − (∇v(k+1) − w)‖2

2 +
η1

2
‖s(k) − s̃(k) − ε(w)‖2

2

}

h(k+1) = min
h

{
α0‖h‖pp +

η0

2
‖h− h̃(k) − (∇v(k+1) − w(k+1))‖2

2

}

s(k+1) = min
s

{
αa‖s‖pp +

η1

2
‖s− s̃(k) − ε(w(k+1))‖2

2

}

The first-order optimality condition of the first subproblem

min
v

{µ
2
‖v − g(k+1)‖2

2 +
η0

2
‖h(k) − h̃(k) − (∇v − w(k))‖2

2

}

is:

(µI − η0∇>∇)v(k+1) =µg(k+1) + η0∇>x (h(k)
x + w(k)

x − h̃(k)
x) + η0∇>y (h(k)

y + w(k)
y − h̃(k)

y)

Using a Gauss-Seidel iteration yields

v
(k+1)
i.j =

η0

µ+ 4η0

[
v

(k)
i+1,j + v

(k)
i−1,j + v

(k)
i,j+1 + v

(k)
i,j−1

]

+
η0

µ+ 4η0

[
h

(k)
x|i−1,j − h

(k)
x|i,j + w

(k)
x|i−1,j − w

(k)
x|i,j − (h̃

(k)
x|i−1,j − h̃

(k)
x|i−1,j)

]

+
η0

µ+ 4η0

[
h

(k)
y|i−1,j − h

(k)
y|i,j + w

(k)
y|i−1,j − w

(k)
y|i,j − (h̃

(k)
y|i−1,j − h̃

(k)
y|i−1,j)

]

+
µ

µ+ 4η0

g
(k+1)
i,j .

The first-order optimality condition of the second subproblem

min
w

{η0

2
‖h(k) − h̃(k) − (∇v(k+1) − w)‖2

2 +
η1

2
‖s(k) − s̃(k) − ε(w(k))‖2

2

}

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XXXV

leads to two linear systems:

(
η0I − η1∇>x∇x −

1

2
η1∇>y∇y

)
w(k+1)
x =− η0(h(k)

x − h̃(k)
x −∇xv

(k+1)) + η1∇>x (s(k)
xx − s̃(k)

xx)

+ η1∇>y (s(k)
xy − s̃(k)

xy −
1

2
∇xw

(k)
y)

(
η0I −

1

2
η1∇>x∇x − η1∇>y∇y

)
w(k+1)
y =− η0(h(k)

y − h̃(k)
y −∇yv

(k+1)) + η1∇>y (s(k)
yy − s̃(k)

yy)

+ η1∇>x (s(k)
xy − s̃(k)

xy −
1

2
∇yw

(k)
x)

We define v
(k)
y,x|i,j = w

(k)
y|i+1,j − w

(k)
y|i,j , use a Gauss-Seidel iteration to solve these systems

and obtain:

w
(k+1)
x|i,j =

η1

η0 + 3η1

[
w

(k)
i+1,j + w

(k)
i−1,j +

1

2
(w

(k)
x|i,j+1 + w

(k)
i,j−1)

]

− η0

η0 + 3η1

[
h

(k)
x|i−1,j − h

(k)
x|i,j − (v

(k)
i−1,j − v(k)

i,j)
]

+
η1

η0 + 3η1

[
s

(k)
xx|i−1,j − s

(k)
xx|i,j − (s̃

(k)
xx|i−1,j − s̃

(k)
xx|i,j)

]

+
η1

η0 + 3η1

[
s

(k)
xy|i−1,j − s

(k)
xy|i,j − (s̃

(k)
xy|i−1,j − s̃

(k)
xy|i,j)−

1

2
(v

(k)
x,y|i,j−1 − v

(k)
x,y|i,j)

]

We use the generalized p-shrinkage [105, 163]

Sp
(
ξ,

1

β

)
= max(|ξ| − βp−2|ξ|p−1, 0)sign(ξ)

to solve the third subproblem

min
h

{
α0‖h‖pp +

η0

2
‖h− h̃(k) − (∇v(k+1) − w(k+1))‖2

2

}

and obtain:

h(k+1) =Sp
(

(∇v(k+1) − w(k+1)) + h̃(k),
α0

η0

)

The fourth subproblem

min
s

{
αa‖s‖pp +

η1

2
‖s− s̃(k) − ε(w(k+1))‖2

2

}

XXXVI APPENDIX A. APPENDIX

can be solved in the same way by

s(k+1) = Sp
(
ε(w(k+1)) + s̃(k),

α1

η1

)
.

Lastly, the update of the split-Bregman variables is given by

h̃
(k+1)
x|i,j =h̃

(k)
x|i,j +

(
v

(k+1)
i+1,j − v(k+1)

i,j − w(k+1)
x|i,j − h

(k+1)
x|i,j

)
,

h̃
(k+1)
y|i,j =h̃

(k)
y|i,j +

(
v

(k+1)
i,j+1 − v(k+1)

i,j − w(k+1)
y|i,j − h

(k+1)
y|i,j

)
,

and

s̃
(k+1)
xx|i,j =s̃

(k)
xx|i,j +

(
w

(k+1)
x|i+1,j − w

(k+1)
x|i,j − s

(k+1)
xx|i,j

)
,

s̃
(k+1)
yy|i,j =s̃

(k)
yy|i,j +

(
w

(k+1)
y|i,j+1 − w

(k+1)
y|i,j − s

(k+1)
xy|i,j

)
,

s̃
(k+1)
xy|i,j =s̃

(k)
xy|i,j +

(
0.5 · (w(k+1)

x|i,j+1 − w
(k+1)
x|i,j + w

(k+1)
y|i+1,j − w

(k+1)
y|i,j)− s(k+1)

xx|i,j

)
.

TV regularization

Using the TV regularization leads to the following optimization problem:

m∗ = min
m

{
1

2
‖u(m)− u0‖2

2 + λTV‖m‖TV

}

We introduce an auxiliary model v and rewrite the above optimization problem into the

following constrained optimization problem

m∗ = min
m

{
1

2
‖u(m)− u0‖2

2 + λTV‖v‖TV

}

s. t. m =v

Using the alternating direction method of multipliers (ADMM) procedure [30] leads to

following three equations:

m(k+1) = min
m

{
1

2
‖u(m)− u0‖2

2 + λ‖m− v(k) + q(k)‖2
2

}

v(k+1) = min
v

{
λ‖m(k+1) − v + q(k)‖2

2 + λ‖v‖TV

}

q(k+1) =q(k+1) +m(k+1) − v(k+1)

The superscript (k) refers to the k-th iteration of the FWI algorithm and q is the ADMM

variable. We define g(k+1) = m(k+1) +q(k) and introduce two auxiliary variables wx ≈ ∇xu,

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XXXVII

wy ≈ ∇yu. Substituting these variables in

v(k+1) = min
v

{
λ‖g(k+1) − v‖2

2 + λ‖v‖TV

}

leads to

{v(k+1), w(k+1)
x , w(k+1)

y } = min
v,wx,wy

{
‖g(k+1) − v‖2

2 + λ0‖v‖TV + α‖wx −∇xv‖2
2 + α‖wy −∇yv‖2

2

}

.

Using the split-Bregman iteration technique [63], we rewrite this into

{v(k+1), w(k+1)
x , w(k+1)

y } = min
v,wx,wy

{
‖g(k+1) − v‖2

2 + λ0‖v‖TV

+α‖wx −∇xv − b(k)
x ‖2

2 + α‖wy −∇yv − b(k)
y ‖2

2

}
.

where b
(k+1)
x = b

(k)
x +(∇xv

(l+1)−w(k+1)
x) and b

(k+1)
y = b

(k)
y +(∇yv

(l+1)−w(k+1)
y), with initial

values b
(0)
x = b

(0)
y = 0. Employing an alternating minimization algorithm result in the

following to subproblems:

v(k+1) = min
v

{
‖v − g(k+1)‖2

2 + α‖w(k)
x −∇xv − b(k)

x ‖2
2 + α‖w(k)

y −∇yv − b(k)
y ‖2

2

}

{wx, wy} = min
wx,wy

{
λ‖v(k+1)‖TV + α‖wx −∇xv

(k+1) − b(k)
x ‖2

2 + α‖wy −∇yv
(k+1) − b(k)

y ‖2
2

}

The first-order optimality condition of the first subproblem is

(I − α∆)v(k+1) =g(k+1) + α∇>x (w(k)
x − b(k)

x) + α∇>y (w(k)
y − b(k)

y).

Using the Gauss-Seidel iteration method yields

v
(k+1)
i.j =

α

1 + 4α

[
v

(k)
i+1,j + v

(k)
i−1,j + v

(k)
i,j+1 + v

(k)
i,j−1

+w
(k)
x|i−1,j − w

(k)
x|i,j + w

(k)
y|i,j−1 − w

(k)
y|i,j

−b(k)
x|i−1,j + b

(k)
x|i,j − b

(k)
y|i,j−1 + b

(k)
y|i,j

]

+
1

1 + 4α
g

(k+1)
i,j ,

where (i, j) is the index of a spatial grid point.

XXXVIII APPENDIX A. APPENDIX

The second problem can be solved by using a generalized shrinkage formula [105, 163]:

w(k+1)
x = max

(
q(k+1) − λ

2α
, 0

) ∇xv
(k+1) + b

(k+1)
x

q(k+1)

w(k+1)
y = max

(
q(k+1) − λ

2α
, 0

) ∇yv
(k+1) + b

(k+1)
y

q(k+1)

q(k+1) =

√
|∇xv(k+1) + b

(k+1)
x |2 + |∇yv(k+1) + b

(k+1)
y |2

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XXXIX

A.1.7 Selection of a regularization weight for different regular-

ization methods

To compare the different regularization methods in section 5.6.3, we benchmarked different

regularization weights to find a good regularization weight. The resulting data and model

misfit for the different regularization weights and regularization methods are listed in the

following tables.

Regularization weights for the inversion using unperturbed objective data

XL APPENDIX A. APPENDIX

L
ast

iteration
A

=
7.5

5
2.5

1
λ
R

0
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
A
·10

−
2
0

2.669E
-10

9.650E
+

08
3.389E

-10
5.474E

+
08

3.609E
-11

6.334E
+

07
1.998E

-11
1.394E

+
08

A
·10

−
2
1

9.051E
-12

2.489E
+

07
9.139E

-13
2.027E

+
06

3.966E
-13

1.531E
+

06
1.074E

-13
9.874E

+
05

A
·10

−
2
2

1.963E
-13

9.352E
+

05
7.821E

-14
9.065E

+
05

5.549E
-14

8.017E
+

05
1.945E

-14
7.032E

+
05

A
·10

−
2
3

1.888E
-14

6.975E
+

05
9.892E

-15
6.298E

+
05

7.266E
-15

5.916E
+

05
7.644E

-15
5.919E

+
05

A
·10

−
2
4

3.352E
-15

5.018E
+

05
9.382E

-15
6.144E

+
05

3.512E
-15

4.913E
+

05
3.846E

-15
5.089E

+
05

A
·10

−
2
5

4.168E
-15

5.020E
+

05
3.016E

-15
4.830E

+
05

3.372E
-15

4.795E
+

05
3.354E

-15
4.688E

+
05

A
·10

−
2
6

3.394E
-15

4.814E
+

05
3.356E

-15
4.852E

+
05

3.951E
-15

5.007E
+

05
5.467E

-15
4.988E

+
05

A
·10

−
2
7

3.438E
-15

4.983E
+

05
3.214E

-15
4.822E

+
05

4.388E
-15

4.993E
+

05
3.662E

-15
4.699E

+
05

A
·10

−
2
8

3.510E
-15

4.666E
+

05
3.028E

-15
4.810E

+
05

3.910E
-15

4.818E
+

05
3.998E

-15
4.925E

+
05

A
·10

−
2
9

3.172E
-15

4.849E
+

05
3.297E

-15
4.893E

+
05

3.439E
-15

4.908E
+

05
3.772E

-15
4.707E

+
05

A
·10

−
3
0

2.793E
-15

4.714E
+

05
2.916E

-15
4.734E

+
05

3.032E
-15

4.801E
+

05
2.960E

-15
4.778E

+
05

Iteration
100

A
·10

−
2
0

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

A
·10

−
2
1

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

1.130E
-13

9.886E
+

05
A
·10

−
2
2

N
/A

N
/A

1.324E
-13

9.745E
+

05
1.472E

-13
9.851E

+
05

2.470E
-13

9.156E
+

05
A
·10

−
2
3

2.060E
-13

8.943E
+

05
1.506E

-13
9.028E

+
05

2.046E
-13

8.774E
+

05
2.468E

-13
1.066E

+
06

A
·10

−
2
4

2.050E
-13

1.066E
+

06
1.740E

-13
1.025E

+
06

2.116E
-13

1.091E
+

06
1.714E

-13
8.644E

+
05

A
·10

−
2
5

1.753E
-13

8.772E
+

05
2.910E

-13
1.011E

+
06

1.866E
-13

1.059E
+

06
3.111E

-13
1.106E

+
06

A
·10

−
2
6

2.430E
-13

1.076E
+

06
2.916E

-13
1.117E

+
06

2.456E
-13

1.098E
+

06
1.712E

-13
8.696E

+
05

A
·10

−
2
7

2.864E
-13

1.022E
+

06
2.389E

-13
1.061E

+
06

3.094E
-13

1.204E
+

06
2.804E

-10
1.039E

+
06

A
·10

−
2
8

1.550E
-13

8.987E
+

05
2.318E

-13
1.025E

+
06

2.647E
-13

1.118E
+

06
3.173E

-13
1.186E

+
06

A
·10

−
2
9

2.818E
-13

1.086E
+

06
2.089E

-13
9.289E

+
05

2.806E
-13

1.120E
+

06
3.131E

-13
1.200E

+
06

A
·10

−
3
0

2.203E
-13

9.846E
+

05
2.644E

-13
1.127E

+
06

3.347E
-13

1.214E
+

06
3.347E

-13
1.214E

+
06

T
ab

le
A

.1:
M

o
d
el

an
d

d
ata

m
isfi

t
for

d
iff

eren
t

regu
larization

w
eigh

ts
λ
R

0
after

com
p
letion

of
th

e
in

vertin
g

algorith
m

(u
p
p

er
h
alf)

an
d

after
th

e
100th

iteration
(low

er
h
alf),

u
sin

g
u
n
p

ertu
rb

ed
ob

jective
d
ata.

N
/A

’
d
escrib

es
th

at
th

e
algorith

m
w

as
term

in
ated

b
efore

th
e

100
iteration

.

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XLI

L
as

t
it

er
at

io
n

A
=

7.
5

5
2.

5
1

λ
R

1
d
at

a
m

is
fi
t

m
o
d
el

m
is

fi
t

d
at

a
m

is
fi
t

m
o
d
el

m
is

fi
t

d
at

a
m

is
fi
t

m
o
d
el

m
is

fi
t

d
at

a
m

is
fi
t

m
o
d
el

m
is

fi
t

A
·1

0−
2
0

1.
92

6E
-1

3
1.

00
5E

+
06

1.
84

1E
-1

3
8.

95
9E

+
05

2.
97

5E
-1

4
7.

27
3E

+
05

2.
95

5E
-1

4
7.

23
1E

+
05

A
·1

0−
2
1

1.
70

8E
-1

4
6.

75
6E

+
05

1.
79

0E
-1

4
6.

71
2E

+
05

4.
69

3E
-1

5
5.

35
5E

+
05

4.
87

3E
-1

5
5.

30
3E

+
05

A
·1

0−
2
2

3.
94

9E
-1

5
5.

05
1E

+
05

3.
31

5E
-1

5
4.

92
7E

+
05

4.
54

4E
-1

5
4.

90
4E

+
05

2.
65

3E
-1

5
4.

78
5E

+
05

A
·1

0−
2
3

3.
22

9E
-1

5
4.

83
1E

+
05

3.
61

3E
-1

5
4.

90
3E

+
05

2.
94

9E
-1

5
4.

81
9E

+
05

3.
14

7E
-1

5
4.

80
4E

+
05

A
·1

0−
2
4

3.
49

3E
-1

5
4.

76
9E

+
05

3.
08

7E
-1

5
4.

74
1E

+
05

3.
11

7E
-1

5
4.

76
3E

+
05

3.
30

6E
-1

5
4.

85
0E

+
05

A
·1

0−
2
5

2.
95

5E
-1

5
4.

71
3E

+
05

2.
51

7E
-1

5
4.

55
9E

+
05

2.
81

3E
-1

5
4.

73
5E

+
05

3.
24

7E
-1

5
4.

70
4E

+
05

A
·1

0−
2
6

3.
89

3E
-1

5
5.

09
4E

+
05

3.
62

3E
-1

5
4.

73
0E

+
05

2.
71

0E
-1

5
4.

68
0E

+
05

4.
21

5E
-1

5
4.

88
5E

+
05

A
·1

0−
2
7

2.
66

3E
-1

5
4.

68
2E

+
05

3.
68

9E
-1

5
4.

82
9E

+
05

3.
74

4E
-1

5
4.

88
5E

+
05

4.
17

5E
-1

5
5.

00
0E

+
05

A
·1

0−
2
8

3.
80

3E
-1

5
5.

13
1E

+
05

3.
30

9E
-1

5
4.

75
0E

+
05

2.
86

6E
-1

5
4.

62
2E

+
05

3.
43

9E
-1

5
4.

71
3E

+
05

A
·1

0−
2
9

3.
32

5E
-1

5
4.

94
6E

+
05

3.
02

5E
-1

5
4.

73
7E

+
05

3.
67

0E
-1

5
4.

85
7E

+
05

2.
73

5E
-1

5
4.

59
7E

+
05

A
·1

0−
3
0

2.
66

8E
-1

5
4.

55
1E

+
05

2.
66

8E
-1

5
4.

55
1E

+
05

2.
66

8E
-1

5
4.

55
1E

+
05

2.
66

8E
-1

5
4.

55
1E

+
05

It
er

at
io

n
10

0
A
·1

0−
2
0

N
/A

N
/A

N
/A

N
/A

2.
15

7E
-1

3
9.

52
1E

+
05

2.
16

1E
-1

3
1.

08
4E

+
06

A
·1

0−
2
1

2.
37

6E
-1

3
1.

12
9E

+
06

1.
83

7E
-1

3
9.

97
2E

+
05

3.
54

1E
-1

3
1.

25
3E

+
06

3.
37

9E
-1

3
1.

22
3E

+
06

A
·1

0−
2
2

2.
53

6E
-1

3
1.

06
4E

+
06

2.
22

5E
-1

3
1.

07
1E

+
06

2.
16

5E
-1

3
1.

07
6E

+
06

2.
40

2E
-1

3
1.

12
0E

+
06

A
·1

0−
2
3

3.
32

2E
-1

3
1.

04
4E

+
06

2.
73

2E
-1

3
9.

62
7E

+
05

1.
99

9E
-1

3
9.

34
2E

+
05

3.
18

2E
-1

3
1.

01
4E

+
06

A
·1

0−
2
4

2.
09

0E
-1

3
9.

41
4E

+
05

2.
72

4E
-1

3
1.

08
6E

+
06

2.
33

0E
-1

3
1.

08
9E

+
06

2.
68

2E
-1

3
1.

06
8E

+
06

A
·1

0−
2
5

3.
54

2E
-1

3
1.

23
1E

+
06

2.
12

5E
-1

3
1.

05
9E

+
06

2.
41

4E
-1

3
8.

91
6E

+
05

3.
40

9E
-1

3
1.

16
8E

+
09

A
·1

0−
2
6

2.
33

7E
-1

3
1.

07
5E

+
06

2.
86

5E
-1

3
1.

17
7E

+
06

2.
90

3E
-1

3
1.

17
7E

+
06

2.
06

4E
-1

3
1.

01
3E

+
06

A
·1

0−
2
7

2.
89

9E
-1

3
1.

14
2E

+
06

2.
92

5E
-1

3
1.

10
6E

+
06

2.
24

0E
-1

3
1.

07
7E

+
06

2.
81

2E
-1

3
1.

11
1E

+
06

A
·1

0−
2
8

2.
32

0E
-1

3
1.

08
1E

+
06

2.
78

0E
-1

3
1.

06
4E

+
06

2.
64

5E
-1

3
1.

12
8E

+
06

2.
66

9E
-1

3
9.

80
5E

+
05

A
·1

0−
2
9

3.
34

7E
-1

3
1.

21
4E

+
06

3.
34

7E
-1

3
1.

21
4E

+
06

3.
34

7E
-1

3
1.

21
4E

+
06

3.
34

7E
-1

3
1.

21
4E

+
06

A
·1

0−
3
0

3.
34

7E
-1

3
1.

21
4E

+
06

3.
34

7E
-1

3
1.

21
4E

+
06

3.
34

7E
-1

3
1.

21
4E

+
06

3.
34

7E
-1

3
1.

21
4E

+
06

T
ab

le
A

.2
:

M
o
d
el

an
d

d
at

a
m

is
fi
t

fo
r

d
iff

er
en

t
re

gu
la

ri
za

ti
on

w
ei

gh
ts
λ
R

1
af

te
r

co
m

p
le

ti
on

of
th

e
in

ve
rt

in
g

al
go

ri
th

m
(u

p
p

er
h
al

f)
an

d
af

te
r

th
e

10
0t

h
it

er
at

io
n

(l
ow

er
h
al

f)
,

u
si

n
g

u
n
p

er
tu

rb
ed

ob
je

ct
iv

e
d
at

a.
N

/A
’

d
es

cr
ib

es
th

at
th

e
al

go
ri

th
m

w
as

te
rm

in
at

ed
b

ef
or

e
th

e
10

0
it

er
at

io
n
.

XLII APPENDIX A. APPENDIX

L
ast

iteration
A

=
7.5

5
2.5

1
λ
R

2
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
A
·10

−
2
0

2.888E
-13

1.110E
+

06
1.666E

-13
1.044E

+
06

2.034E
-13

9.328E
+

05
4.475E

-14
8.023E

+
05

A
·10

−
2
1

2.315E
-14

7.156E
+

05
2.560E

-14
7.298E

+
05

1.264E
-14

6.382E
+

05
7.412E

-15
5.794E

+
05

A
·10

−
2
2

7.894E
-15

5.728E
+

05
5.721E

-15
5.462E

+
05

3.226E
-15

4.954E
+

05
3.964E

-15
5.151E

+
05

A
·10

−
2
3

3.193E
-15

4.895E
+

05
2.993E

-15
4.860E

+
05

3.325E
-15

4.696E
+

05
3.920E

-15
4.990E

+
05

A
·10

−
2
4

3.397E
-15

4.989E
+

05
3.487E

-15
4.927E

+
05

3.776E
-15

4.913E
+

05
2.748E

-15
4.693E

+
05

A
·10

−
2
5

4.029E
-15

4.916E
+

05
2.770E

-15
4.730E

+
05

2.818E
-15

4.771E
+

05
2.947E

-15
4.791E

+
05

A
·10

−
2
6

3.692E
-15

5.130E
+

05
3.725E

-15
4.920E

+
05

3.060E
-15

4.702E
+

05
4.365E

-15
4.981E

+
05

A
·10

−
2
7

3.449E
-15

4.632E
+

05
3.389E

-15
4.791E

+
05

2.985E
-15

4.738E
+

05
4.813E

-15
5.425E

+
05

A
·10

−
2
8

3.974E
-15

4.943E
+

05
3.348E

-15
4.835E

+
05

3.600E
-15

4.727E
+

05
3.555E

-15
4.851E

+
05

A
·10

−
2
9

4.017E
-15

4.994E
+

05
4.615E

-15
5.055E

+
05

3.031E
-15

4.671E
+

05
2.899E

-15
4.755E

+
05

A
·10

−
3
0

3.343E
-15

4.686E
+

05
2.865E

-15
4.721E

+
05

2.668E
-15

4.551E
+

05
2.668E

-15
4.551E

+
05

Iteration
100

A
·10

−
2
0

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

3.232E
-13

1.207E
+

06
A
·10

−
2
1

1.654E
-13

9.498E
+

05
3.409E

-13
1.241E

+
06

1.585E
-13

9.843E
+

05
2.582E

-13
1.117E

+
06

A
·10

−
2
2

2.215E
-13

1.112E
+

06
2.436E

-13
1.052E

+
06

2.785E
-13

1.136E
+

06
2.908E

-13
1.170E

+
06

A
·10

−
2
3

2.423E
-13

1.137E
+

06
1.305E

-13
9.487E

+
05

2.706E
-13

1.088E
+

06
3.394E

-13
1.235E

+
06

A
·10

−
2
4

1.735E
-13

9.460E
+

05
2.512E

-13
1.037E

+
06

1.765E
-13

9.863E
+

05
2.175E

-13
9.184E

+
05

A
·10

−
2
5

2.309E
-13

9.646E
+

05
2.699E

-13
1.103E

+
06

2.386E
-13

1.077E
+

06
2.778E

-13
1.164E

+
06

A
·10

−
2
6

1.886E
-13

9.814E
+

05
2.182E

-13
1.053E

+
06

3.038E
-13

1.021E
+

06
2.219E

-13
1.048E

+
06

A
·10

−
2
7

2.989E
-13

1.186E
+

06
3.081E

-13
1.183E

+
06

2.869E
-13

1.189E
+

06
3.044E

-13
1.204E

+
06

A
·10

−
2
8

1.725E
-13

9.046E
+

05
3.070E

-13
1.135E

+
06

2.208E
-13

1.109E
+

06
3.347E

-13
1.214E

+
06

A
·10

−
2
9

3.347E
-13

1.214E
+

06
3.347E

-13
1.214E

+
06

3.347E
-13

1.214E
+

06
3.347E

-13
1.214E

+
06

A
·10

−
3
0

3.347E
-13

1.214E
+

06
3.347E

-13
1.214E

+
06

3.347E
-13

1.214E
+

06
3.347E

-13
1.214E

+
06

T
ab

le
A

.3:
M

o
d
el

an
d

d
ata

m
isfi

t
for

d
iff

eren
t

regu
larization

w
eigh

ts
λ
R

2
after

com
p
letion

of
th

e
in

vertin
g

algorith
m

(u
p
p

er
h
alf)

an
d

after
th

e
100th

iteration
(low

er
h
alf),

u
sin

g
u
n
p

ertu
rb

ed
ob

jective
d
ata.

N
/A

’
d
escrib

es
th

at
th

e
algorith

m
w

as
term

in
ated

b
efore

th
e

100th
iteration

.

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XLIII

L
as

t
it

er
at

io
n

A
=

7.
5

5
2.

5
1

λ
R
T
p

d
at

a
m

is
fi
t

m
o
d
el

m
is

fi
t

d
at

a
m

is
fi
t

m
o
d
el

m
is

fi
t

d
at

a
m

is
fi
t

m
o
d
el

m
is

fi
t

d
at

a
m

is
fi
t

m
o
d
el

m
is

fi
t

A
·1

0−
1

3.
85

0E
-1

1
6.

63
6E

+
06

6.
25

9E
-1

2
2.

83
9E

+
06

1.
48

9E
-1

1
4.

56
3E

+
06

3.
37

2E
-1

3
1.

16
7E

+
06

A
·1

0−
2

4.
07

0E
-1

3
1.

23
2E

+
06

3.
38

9E
-1

3
1.

17
2E

+
06

4.
64

0E
-1

3
1.

26
6E

+
06

2.
93

1E
-1

3
1.

08
4E

+
06

A
·1

0−
3

1.
58

6E
-1

3
9.

85
1E

+
05

1.
10

8E
-1

3
8.

96
5E

+
05

2.
31

5E
-1

4
7.

07
7E

+
05

2.
02

5E
-1

4
6.

99
4E

+
05

A
·1

0−
4

2.
02

2E
-1

4
6.

37
8E

+
05

7.
00

8E
-1

5
5.

73
5E

+
05

7.
76

8E
-1

5
5.

90
3E

+
05

5.
93

8E
-1

5
5.

10
0E

+
05

A
·1

0−
5

5.
17

6E
-1

5
5.

14
8E

+
05

3.
91

9E
-1

5
5.

19
1E

+
05

4.
47

2E
-1

5
4.

92
8E

+
05

2.
95

3E
-1

5
4.

84
2E

+
05

A
·1

0−
6

2.
68

9E
-1

5
4.

62
0E

+
05

3.
08

1E
-1

5
4.

75
8E

+
05

3.
64

5E
-1

5
4.

78
5E

+
05

3.
85

5E
-1

5
5.

06
4E

+
05

A
·1

0−
7

2.
92

3E
-1

5
4.

57
4E

+
05

2.
84

8E
-1

5
4.

58
6E

+
05

3.
79

9E
-1

5
4.

86
6E

+
05

3.
34

3E
-1

5
4.

88
8E

+
05

A
·1

0−
8

3.
22

3E
-1

5
4.

66
2E

+
05

3.
37

9E
-1

5
4.

97
8E

+
05

3.
74

1E
-1

5
4.

86
0E

+
05

3.
31

3E
-1

5
4.

79
7E

+
05

A
·1

0−
9

3.
33

6E
-1

5
4.

77
5E

+
05

3.
79

0E
-1

5
4.

99
1E

+
05

2.
80

0E
-1

5
4.

60
7E

+
05

3.
91

8E
-1

5
4.

97
6E

+
05

A
·1

0−
1
0

2.
91

3E
-1

5
4.

71
7E

+
05

4.
86

0E
-1

5
5.

02
8E

+
05

4.
03

8E
-1

5
4.

93
3E

+
05

3.
14

1E
-1

5
4.

63
8E

+
05

It
er

at
io

n
10

0
A
·1

0−
1

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

A
·1

0−
2

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

A
·1

0−
3

1.
60

0E
-1

3
9.

87
0E

+
05

1.
56

3E
-1

3
9.

90
7E

+
05

1.
32

9E
-1

3
9.

64
6E

+
05

1.
51

0E
-1

3
9.

45
5E

+
05

A
·1

0−
4

1.
91

3E
-1

3
8.

67
7E

+
05

1.
91

5E
-1

3
9.

18
3E

+
05

1.
53

0E
-1

3
9.

19
6E

+
05

2.
01

7E
-1

3
8.

65
8E

+
05

A
·1

0−
5

1.
51

1E
-1

3
9.

84
7E

+
05

2.
30

3E
-1

3
1.

06
2E

+
06

2.
30

6E
-1

3
1.

05
5E

+
06

3.
10

6E
-1

3
1.

07
3E

+
06

A
·1

0−
6

2.
48

3E
-1

3
1.

06
4E

+
06

2.
29

3E
-1

3
1.

04
2E

+
06

2.
63

4E
-1

3
1.

07
1E

+
06

2.
48

0E
-1

3
9.

43
2E

+
05

A
·1

0−
7

2.
48

6E
-1

3
1.

07
0E

+
06

2.
32

4E
-1

3
9.

77
3E

+
05

2.
42

6E
-1

3
1.

06
0E

+
06

1.
46

9E
-1

3
9.

65
2E

+
05

A
·1

0−
8

3.
23

7E
-1

3
1.

18
0E

+
06

3.
29

1E
-1

3
1.

19
3E

+
06

1.
99

6E
-1

3
9.

25
7E

+
05

2.
62

7E
-1

3
1.

13
2E

+
06

A
·1

0−
9

2.
77

6E
-1

3
1.

00
8E

+
06

2.
20

6E
-1

3
1.

03
0E

+
06

1.
77

2E
-1

3
1.

02
4E

+
06

2.
47

4E
-1

3
1.

10
1E

+
06

A
·1

0−
1
0

2.
15

9E
-1

3
1.

03
9E

+
06

1.
97

1E
-1

3
8.

88
5E

+
05

2.
34

5E
-1

3
1.

08
1E

+
06

3.
20

8E
-1

3
1.

08
8E

+
06

T
ab

le
A

.4
:

M
o
d
el

an
d

d
at

a
m

is
fi
t

fo
r

d
iff

er
en

t
re

gu
la

ri
za

ti
on

w
ei

gh
ts
λ
R
T
p

af
te

r
co

m
p
le

ti
on

of
th

e
in

ve
rt

in
g

al
go

ri
th

m
(u

p
p

er
h
al

f)
an

d
af

te
r

th
e

10
0t

h
it

er
at

io
n

(l
ow

er
h
al

f)
,

u
si

n
g

u
n
p

er
tu

rb
ed

ob
je

ct
iv

e
d
at

a.
N

/A
’

d
es

cr
ib

es
th

at
th

e
al

go
ri

th
m

w
as

te
rm

in
at

ed
b

ef
or

e
th

e
10

0t
h

it
er

at
io

n
.

XLIV APPENDIX A. APPENDIX

L
ast

iteration
A

=
7.5

5
2.5

1
λ
R

T
V

d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
A
·10

−
1

3.727E
-11

6.591E
+

06
1.928E

-11
5.223E

+
06

3.058E
-12

2.158E
+

06
4.571E

-13
1.248E

+
06

A
·10

−
2

3.349E
-13

1.179E
+

06
3.555E

-13
1.201E

+
06

3.138E
-13

1.104E
+

06
2.090E

-13
9.767E

+
05

A
·10

−
3

1.478E
-13

8.837E
+

05
5.776E

-14
8.013E

+
05

4.015E
-14

7.783E
+

05
2.253E

-14
6.529E

+
05

A
·10

−
4

1.553E
-14

5.880E
+

05
5.515E

-15
5.208E

+
05

5.925E
-15

5.279E
+

05
3.785E

-15
4.840E

+
05

A
·10

−
5

4.485E
-15

4.857E
+

05
3.192E

-15
4.699E

+
05

4.335E
-15

4.897E
+

05
4.790E

-15
5.063E

+
05

A
·10

−
6

3.208E
-15

4.852E
+

05
3.187E

-15
4.709E

+
05

2.830E
-15

4.733E
+

05
2.720E

-15
4.617E

+
05

A
·10

−
7

4.669E
-15

5.017E
+

05
3.343E

-15
4.970E

+
05

3.072E
-15

4.736E
+

05
2.768E

-15
4.560E

+
05

A
·10

−
8

4.029E
-15

5.102E
+

05
4.829E

-15
5.046E

+
05

3.914E
-15

4.783E
+

05
3.358E

-15
4.935E

+
05

A
·10

−
9

3.133E
-15

4.696E
+

05
2.872E

-15
4.659E

+
05

3.116E
-15

4.699E
+

05
4.024E

-15
4.966E

+
05

A
·10

−
1
0

3.653E
-15

4.878E
+

05
3.823E

-15
4.837E

+
05

5.384E
-15

5.185E
+

05
2.789E

-15
4.663E

+
05

Iteration
100

A
·10

−
1

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

A
·10

−
2

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

A
·10

−
3

1.546E
-13

8.933E
+

05
1.552E

-13
8.933E

+
05

1.159E
-13

9.012E
+

05
1.712E

-13
9.232E

+
05

A
·10

−
4

1.627E
-13

9.764E
+

05
1.966E

-13
1.012E

+
06

1.532E
-13

1.021E
+

06
1.334E

-13
9.640E

+
05

A
·10

−
5

1.535E
-13

9.209E
+

05
2.080E

-13
1.026E

+
06

2.722E
-13

1.102E
+

06
1.834E

-13
9.209E

+
05

A
·10

−
6

2.273E
-13

1.050E
+

06
2.253E

-13
9.189E

+
05

1.977E
-13

9.545E
+

05
2.775E

-13
1.163E

+
06

A
·10

−
7

2.275E
-13

9.794E
+

05
1.464E

-13
8.941E

+
05

3.252E
-13

1.221E
+

06
2.123E

-13
9.441E

+
05

A
·10

−
8

1.708E
-13

8.454E
+

05
2.657E

-13
1.094E

+
06

1.918E
-13

1.048E
+

06
3.439E

-13
1.230E

+
06

A
·10

−
9

1.468E
-13

9.435E
+

05
2.322E

-13
1.112E

+
06

2.796E
-13

1.001E
+

06
2.772E

-13
1.064E

+
06

A
·10

−
1
0

2.978E
-13

1.166E
+

06
1.831E

-13
9.425E

+
05

2.979E
-13

1.190E
+

06
2.667E

-13
9.745E

+
05

T
ab

le
A

.5:
M

o
d
el

an
d

d
ata

m
isfi

t
for

d
iff

eren
t

regu
larization

w
eigh

ts
λ
R

T
V

after
com

p
letion

of
th

e
in

vertin
g

algorith
m

(u
p
p

er
h
alf)

an
d

after
th

e
100th

iteration
(low

er
h
alf),

u
sin

g
u
n
p

ertu
rb

ed
ob

jective
d
ata.

N
/A

’
d
escrib

es
th

at
th

e
algorith

m
w

as
term

in
ated

b
efore

th
e

100th
iteration

.

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XLV

Regularization weights for the inversion using perturbed objective data

XLVI APPENDIX A. APPENDIX

L
ast

iteration
A

=
7.5

5
2.5

1
λ
R

0
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
A
·10

−
2
0

3.974E
-10

2.864E
+

09
1.230E

-10
1.124E

+
07

2.108E
-10

1.090E
+

09
9.765E

-11
2.142E

+
07

A
·10

−
2
1

9.530E
-11

5.889E
+

06
9.725E

-11
8.222E

+
06

9.445E
-11

1.333E
+

06
9.418E

-11
1.380E

+
06

A
·10

−
2
2

9.422E
-11

1.877E
+

06
9.414E

-11
1.143E

+
06

9.422E
-11

1.163E
+

09
9.415E

-11
1.145E

+
06

A
·10

−
2
3

9.413E
-11

1.532E
+

06
9.407E

-11
1.245E

+
06

9.411E
-11

1.118E
+

06
9.410E

-11
1.203E

+
06

A
·10

−
2
4

9.415E
-11

1.112E
+

06
9.409E

-11
1.148E

+
06

9.416E
-11

1.124E
+

06
9.406E

-08
1.278E

+
06

A
·10

−
2
5

9.417E
-11

1.138E
+

06
9.417E

-11
1.147E

+
06

9.417E
-11

1.116E
+

06
9.425E

-11
1.130E

+
06

A
·10

−
2
6

9.416E
-11

1.154E
+

06
9.416E

-11
1.120E

+
06

9.418E
-11

1.161E
+

06
9.409E

-11
1.129E

+
06

A
·10

−
2
7

9.414E
-11

1.123E
+

06
9.406E

-11
1.255E

+
06

9.415E
-11

1.150E
+

06
9.412E

-11
1.183E

+
06

A
·10

−
2
8

9.414E
-11

1.143E
+

06
9.420E

-11
1.109E

+
06

9.408E
-11

1.141E
+

06
9.418E

-11
1.114E

+
06

A
·10

−
2
9

9.410E
-11

1.108E
+

06
9.416E

-11
1.151E

+
06

9.419E
-11

1.145E
+

06
9.410E

-11
1.135E

+
06

A
·10

−
3
0

9.406E
-11

1.335E
+

06
9.410E

-11
1.125E

+
06

9.408E
-11

1.125E
+

06
9.427E

-11
1.116E

+
06

Iteration
100

A
·10

−
2
0

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

A
·10

−
2
1

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

9.424E
-11

1.172E
+

06
A
·10

−
2
2

9.416E
-11

1.168E
+

06
9.423E

-11
1.136E

+
06

9.421E
-11

1.175E
+

06
9.420E

-11
1.167E

+
06

A
·10

−
2
3

9.435E
-11

1.137E
+

06
9.417E

-11
1.161E

+
06

9.416E
-11

1.122E
+

06
9.413E

-11
1.104E

+
06

A
·10

−
2
4

N
/A

N
/A

9.415E
-11

1.117E
+

06
N

/A
N

/A
9.415E

-11
1.132E

+
06

A
·10

−
2
5

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

A
·10

−
2
6

9.416E
-11

1.154E
+

06
9.416E

-11
1.110E

+
06

9.418E
-11

1.161E
+

06
9.418E

-11
1.158E

+
06

A
·10

−
2
7

9.415E
-11

1.129E
+

06
9.417E

-11
1.124E

+
06

9.416E
-11

1.135E
+

06
9.415E

-11
1.130E

+
06

A
·10

−
2
8

9.418E
-11

1.131E
+

06
N

/A
N

/A
9.411E

-11
1.112E

+
06

N
/A

A
·10

−
2
9

9.418E
-11

1.122E
+

06
9.416E

-11
1.151E

+
06

N
/A

N
/A

9.416E
-11

1.133E
+

06
A
·10

−
3
0

9.417E
-11

1.153E
+

06
9.414E

-11
1.120E

+
06

9.416E
-11

1.111E
+

06
N

/A

T
ab

le
A

.6:
M

o
d
el

an
d

d
ata

m
isfi

t
for

d
iff

eren
t

regu
larization

w
eigh

ts
λ
R

0
after

com
p
letion

of
th

e
in

vertin
g

algorith
m

(u
p
p

er
h
alf)

an
d

after
th

e
100th

iteration
(low

er
h
alf),

u
sin

g
p

ertu
rb

ed
ob

jective
d
ata.

N
/A

’
d
escrib

es
th

at
th

e
algorith

m
w

as
term

in
ated

b
efore

th
e

100th
iteration

.

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XLVII

L
as

t
it

er
at

io
n

A
=

7.
5

5
2.

5
1

λ
R

1
d
at

a
m

is
fi
t

m
o
d
el

m
is

fi
t

d
at

a
m

is
fi
t

m
o
d
el

m
is

fi
t

d
at

a
m

is
fi
t

m
o
d
el

m
is

fi
t

d
at

a
m

is
fi
t

m
o
d
el

m
is

fi
t

A
·1

0−
2
0

9.
43

6E
-1

1
1.

23
7E

+
06

9.
42

4E
-1

1
1.

20
7E

+
06

9.
42

3E
-1

1
1.

19
1E

+
06

9.
42

5E
-1

1
1.

11
8E

+
06

A
·1

0−
2
1

9.
42

7E
-1

1
1.

11
1E

+
06

9.
41

7E
-1

1
1.

11
6E

+
06

9.
41

4E
-1

1
1.

12
8E

+
06

9.
40

6E
-1

1
1.

20
5E

+
06

A
·1

0−
2
2

9.
41

4E
-1

1
1.

12
1E

+
06

9.
41

0E
-1

1
1.

19
5E

+
06

9.
42

2E
-1

1
1.

16
5E

+
06

9.
41

2E
-1

1
1.

11
4E

+
06

A
·1

0−
2
3

9.
40

9E
-1

1
1.

17
5E

+
06

9.
40

9E
-1

1
1.

14
3E

+
06

9.
41

7E
-1

1
1.

12
7E

+
06

9.
42

0E
-1

1
1.

17
8E

+
06

A
·1

0−
2
4

9.
40

9E
-1

1
1.

18
8E

+
06

9.
40

9E
-1

1
1.

14
3E

+
06

9.
42

5E
-1

1
1.

13
1E

+
06

9.
41

7E
-1

1
1.

14
8E

+
06

A
·1

0−
2
5

9.
41

2E
-1

1
1.

12
4E

+
06

9.
41

8E
-1

1
1.

11
6E

+
06

9.
41

5E
-1

1
1.

19
7E

+
06

9.
41

9E
-1

1
1.

14
0E

+
06

A
·1

0−
2
6

9.
40

8E
-1

1
1.

13
6E

+
06

9.
41

6E
-1

1
1.

12
5E

+
06

9.
41

3E
-1

1
1.

10
7E

+
06

9.
40

9E
-1

1
1.

14
6E

+
06

A
·1

0−
2
7

9.
40

8E
-1

1
1.

13
7E

+
06

9.
40

9E
-1

1
1.

14
4E

+
06

9.
41

6E
-1

1
1.

16
0E

+
06

9.
41

7E
-1

1
1.

13
4E

+
06

A
·1

0−
2
8

9.
42

5E
-1

1
1.

13
7E

+
09

9.
41

4E
-1

1
1.

13
0E

+
06

9.
42

0E
-1

1
1.

14
2E

+
06

9.
42

0E
-1

1
1.

14
2E

+
06

A
·1

0−
2
9

9.
42

0E
-1

1
1.

14
2E

+
06

9.
42

0E
-1

1
1.

14
2E

+
06

9.
42

0E
-1

1
1.

14
2E

+
06

9.
42

0E
-1

1
1.

14
2E

+
06

A
·1

0−
3
0

9.
42

0E
-1

1
1.

14
2E

+
06

9.
42

0E
-1

1
1.

14
2E

+
06

9.
42

0E
-1

1
1.

14
2E

+
06

9.
42

0E
-1

1
1.

14
2E

+
06

It
er

at
io

n
10

0
A
·1

0−
2
0

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

A
·1

0−
2
1

N
/A

N
/A

N
/A

N
/A

9.
41

6E
-1

1
1.

13
0E

+
06

9.
41

9E
-1

1
1.

10
8E

+
06

A
·1

0−
2
2

9.
41

9E
-1

1
1.

15
4E

+
06

9.
41

2E
-1

1
1.

12
6E

+
06

9.
42

2E
-1

1
1.

13
9E

+
06

9.
41

6E
-1

1
1.

13
5E

+
06

A
·1

0−
2
3

9.
41

4E
-1

1
1.

11
1E

+
06

9.
41

6E
-1

1
1.

14
9E

+
06

9.
42

1E
-1

1
1.

19
1E

+
06

9.
42

2E
-1

1
1.

19
7E

+
06

A
·1

0−
2
4

9.
41

4E
-1

1
1.

12
6E

+
06

9.
41

4E
-1

1
1.

11
7E

+
06

N
/A

N
/A

9.
41

7E
-1

1
1.

14
3E

+
06

A
·1

0−
2
5

9.
42

1E
-1

1
1.

11
5E

+
06

N
/A

N
/A

9.
41

6E
-1

1
1.

13
1E

+
06

N
/A

A
·1

0−
2
6

9.
41

5E
-1

1
1.

11
9E

+
06

9.
42

1E
-1

1
1.

17
2E

+
06

9.
41

9E
-1

1
1.

10
7E

+
06

9.
41

6E
-1

1
1.

10
3E

+
06

A
·1

0−
2
7

9.
42

4E
-1

1
1.

17
3E

+
06

9.
41

8E
-1

1
1.

11
9E

+
06

9.
42

2E
-1

1
1.

11
2E

+
06

N
/A

A
·1

0−
2
8

N
/A

N
/A

9.
41

6E
-1

1
1.

12
1E

+
06

N
/A

N
/A

N
/A

A
·1

0−
2
9

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

A
·1

0−
3
0

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

T
ab

le
A

.7
:

M
o
d
el

an
d

d
at

a
m

is
fi
t

fo
r

d
iff

er
en

t
re

gu
la

ri
za

ti
on

w
ei

gh
ts
λ
R

1
af

te
r

co
m

p
le

ti
on

of
th

e
in

ve
rt

in
g

al
go

ri
th

m
(u

p
p

er
h
al

f)
an

d
af

te
r

th
e

10
0t

h
it

er
at

io
n

(l
ow

er
h
al

f)
,

u
si

n
g

p
er

tu
rb

ed
ob

je
ct

iv
e

d
at

a.
N

/A
’

d
es

cr
ib

es
th

at
th

e
al

go
ri

th
m

w
as

te
rm

in
at

ed
b

ef
or

e
th

e
10

0t
h

it
er

at
io

n
.

XLVIII APPENDIX A. APPENDIX

L
ast

iteration
A

=
7.5

5
2.5

1
λ
R

2
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
A
·10

−
2
0

9.439E
-11

1.265E
+

06
9.448E

-11
1.345E

+
06

9.453E
-11

1.380E
+

06
9.432E

-11
1.185E

+
06

A
·10

−
2
1

9.412E
-11

1.127E
+

06
9.416E

-11
1.110E

+
06

9.427E
-11

1.137E
+

06
9.412E

-11
1.128E

+
06

A
·10

−
2
2

9.414E
-11

1.117E
+

06
9.420E

-11
1.110E

+
06

9.408E
-11

1.172E
+

06
9.417E

-11
1.144E

+
06

A
·10

−
2
3

9.418E
-11

1.118E
+

06
9.415E

-11
1.170E

+
06

9.426E
-11

1.171E
+

06
9.406E

-11
1.170E

+
06

A
·10

−
2
4

9.408E
-11

1.268E
+

06
9.415E

-11
1.120E

+
06

9.410E
-11

1.114E
+

06
9.416E

-11
1.109E

+
06

A
·10

−
2
5

9.408E
-11

1.116E
+

06
9.408E

-11
1.152E

+
06

9.413E
-11

1.125E
+

06
9.407E

-11
1.177E

+
06

A
·10

−
2
6

9.409E
-11

1.243E
+

06
9.411E

-11
1.194E

+
06

9.417E
-11

1.157E
+

06
9.427E

-11
1.110E

+
06

A
·10

−
2
7

9.412E
-11

1.165E
+

06
9.414E

-11
1.136E

+
06

9.408E
-11

1.129E
+

06
9.421E

-11
1.155E

+
06

A
·10

−
2
8

9.411E
-11

1.197E
+

06
9.417E

-11
1.200E

+
06

9.418E
-11

1.125E
+

06
9.420E

-11
1.142E

+
06

A
·10

−
2
9

9.420E
-11

1.142E
+

06
9.420E

-11
1.142E

+
06

9.420E
-11

1.142E
+

06
9.420E

-11
1.142E

+
06

A
·10

−
3
0

9.420E
-11

1.142E
+

06
9.420E

-11
1.142E

+
06

9.420E
-11

1.142E
+

06
9.420E

-11
1.142E

+
06

Iteration
100

A
·10

−
2
0

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

A
·10

−
2
1

N
/A

N
/A

N
/A

N
/A

9.415E
-11

1.112E
+

06
9.416E

-11
1.113E

+
06

A
·10

−
2
2

9.421E
-11

1.106E
+

06
N

/A
N

/A
9.415E

-11
1.117E

+
06

9.417E
-11

1.144E
+

06
A
·10

−
2
3

N
/A

N
/A

9.416E
-11

1.120E
+

06
9.418E

-11
1.126E

+
06

9.425E
-11

1.156E
+

06
A
·10

−
2
4

9.415E
-11

1.113E
+

06
9.417E

-11
1.152E

+
06

9.417E
-11

1.112E
+

06
9.420E

-11
1.146E

+
06

A
·10

−
2
5

9.413E
-11

1.122E
+

06
9.414E

-11
1.143E

+
06

9.416E
-11

1.119E
+

06
9.414E

-11
1.103E

+
06

A
·10

−
2
6

9.417E
-11

1.157E
+

06
9.415E

-11
1.104E

+
06

9.418E
-11

1.139E
+

06
N

/A
A
·10

−
2
7

9.413E
-11

1.128E
+

06
9.416E

-11
1.122E

+
06

9.417E
-11

1.125E
+

06
N

/A
A
·10

−
2
8

N
/A

N
/A

9.417E
-11

1.176E
+

06
9.416E

-11
1.122E

+
06

N
/A

A
·10

−
2
9

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

A
·10

−
3
0

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

T
ab

le
A

.8:
M

o
d
el

an
d

d
ata

m
isfi

t
for

d
iff

eren
t

regu
larization

w
eigh

ts
λ
R

2
after

com
p
letion

of
th

e
in

vertin
g

algorith
m

(u
p
p

er
h
alf)

an
d

after
th

e
100th

iteration
(low

er
h
alf),

u
sin

g
p

ertu
rb

ed
ob

jective
d
ata.

N
/A

’
d
escrib

es
th

at
th

e
algorith

m
w

as
term

in
ated

b
efore

th
e

100th
iteration

.

A.1. SEISMIC WAVEFORM MODELING AND INVERSION XLIX

L
as

t
it

er
at

io
n

A
=

7.
5

5
2.

5
1

λ
R
T
p

d
at

a
m

is
fi
t

m
o
d
el

m
is

fi
t

d
at

a
m

is
fi
t

m
o
d
el

m
is

fi
t

d
at

a
m

is
fi
t

m
o
d
el

m
is

fi
t

d
at

a
m

is
fi
t

m
o
d
el

m
is

fi
t

A
·1

0−
1

1.
27

9E
-1

0
6.

40
6E

+
06

1.
16

8E
-1

0
5.

61
6E

+
06

9.
59

3E
-1

1
1.

90
8E

+
06

9.
43

7E
-1

1
1.

23
7E

+
06

A
·1

0−
2

9.
44

6E
-1

1
1.

28
9E

+
06

9.
44

4E
-1

1
1.

29
4E

+
06

9.
44

7E
-1

1
1.

25
7E

+
06

9.
44

0E
-1

1
1.

15
3E

+
06

A
·1

0−
3

9.
42

8E
-1

1
1.

11
7E

+
06

9.
42

7E
-1

1
1.

12
7E

+
06

9.
41

7E
-1

1
1.

12
2E

+
06

9.
41

8E
-1

1
1.

16
1E

+
06

A
·1

0−
4

9.
42

1E
-1

1
1.

11
8E

+
06

9.
42

0E
-1

1
1.

13
1E

+
06

9.
42

0E
-1

1
1.

11
3E

+
06

9.
42

2E
-1

1
1.

10
6E

+
06

A
·1

0−
5

9.
40

6E
-1

1
1.

21
2E

+
06

9.
41

2E
-1

1
1.

12
5E

+
06

9.
41

5E
-1

1
1.

11
9E

+
06

9.
41

9E
-1

1
1.

14
1E

+
06

A
·1

0−
6

9.
42

0E
-1

1
1.

12
2E

+
06

9.
40

8E
-1

1
1.

15
2E

+
06

9.
41

2E
-1

1
1.

10
6E

+
06

9.
41

2E
-1

1
1.

13
0E

+
06

A
·1

0−
7

9.
41

7E
-1

1
1.

19
8E

+
06

9.
41

6E
-1

1
1.

13
4E

+
06

9.
41

8E
-1

1
1.

14
9E

+
06

9.
41

4E
-1

1
1.

13
8E

+
09

A
·1

0−
8

9.
41

8E
-1

1
1.

13
9E

+
06

9.
42

2E
-1

1
1.

11
3E

+
06

9.
41

4E
-1

1
1.

10
8E

+
06

9.
40

8E
-1

1
1.

12
0E

+
06

A
·1

0−
9

9.
41

9E
-1

1
1.

12
1E

+
06

9.
41

3E
-1

1
1.

10
8E

+
06

9.
41

9E
-1

1
1.

15
1E

+
06

9.
41

2E
-1

1
1.

19
8E

+
06

A
·1

0−
1
0

9.
40

9E
-1

1
1.

11
5E

+
06

9.
41

9E
-1

1
1.

15
4E

+
06

9.
41

1E
-1

1
1.

11
2E

+
06

9.
40

6E
-1

1
1.

18
0E

+
06

It
er

at
io

n
10

0
A
·1

0−
1

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

A
·1

0−
2

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

A
·1

0−
3

9.
42

8E
-1

1
1.

11
7E

+
06

N
/A

N
/A

N
/A

N
/A

9.
42

0E
-1

1
1.

17
4E

+
06

A
·1

0−
4

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

A
·1

0−
5

9.
41

5E
-1

1
1.

12
5E

+
06

9.
41

3E
-1

1
1.

10
9E

+
06

9.
41

5E
-1

1
1.

10
9E

+
06

9.
42

0E
-1

1
1.

13
7E

+
06

A
·1

0−
6

N
/A

N
/A

9.
41

5E
-1

1
1.

10
3E

+
06

9.
42

0E
-1

1
1.

12
0E

+
06

9.
41

4E
-1

1
1.

12
3E

+
06

A
·1

0−
7

9.
41

8E
-1

1
1.

15
3E

+
06

9.
41

6E
-1

1
1.

12
4E

+
06

N
/A

N
/A

9.
41

7E
-1

1
1.

13
3E

+
06

A
·1

0−
8

N
/A

N
/A

9.
42

3E
-1

1
1.

13
1E

+
06

9.
41

5E
-1

1
1.

11
0E

+
06

9.
41

2E
-1

1
1.

11
2E

+
06

A
·1

0−
9

N
/A

N
/A

9.
41

8E
-1

1
1.

12
4E

+
06

N
/A

N
/A

9.
41

4E
-1

1
1.

11
5E

+
06

A
·1

0−
1
0

9.
41

6E
-1

1
1.

13
5E

+
06

9.
42

0E
-1

1
1.

15
1E

+
06

9.
41

7E
-1

1
1.

10
5E

+
06

9.
41

3E
-1

1
1.

10
3E

+
06

T
ab

le
A

.9
:

M
o
d
el

an
d

d
at

a
m

is
fi
t

fo
r

d
iff

er
en

t
re

gu
la

ri
za

ti
on

w
ei

gh
ts
λ
R
T
p

af
te

r
co

m
p
le

ti
on

of
th

e
in

ve
rt

in
g

al
go

ri
th

m
(u

p
p

er
h
al

f)
an

d
af

te
r

th
e

10
0t

h
it

er
at

io
n

(l
ow

er
h
al

f)
,

u
si

n
g

p
er

tu
rb

ed
ob

je
ct

iv
e

d
at

a.
N

/A
’

d
es

cr
ib

es
th

at
th

e
al

go
ri

th
m

w
as

te
rm

in
at

ed
b

ef
or

e
th

e
10

0t
h

it
er

at
io

n
.

L APPENDIX A. APPENDIX

L
ast

iteration
A

=
7.5

5
2.5

1
λ
R

T
V

d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
d
ata

m
isfi

t
m

o
d
el

m
isfi

t
A
·10

−
1

1.255E
-10

6.306E
+

06
9.948E

-11
2.788E

+
06

9.624E
-11

1.958E
+

06
9.434E

-11
1.210E

+
06

A
·10

−
2

1.255E
-10

6.306E
+

06
9.438E

-11
1.253E

+
06

9.440E
-11

1.198E
+

06
9.427E

-11
1.127E

+
06

A
·10

−
3

9.431E
-11

1.183E
+

06
9.415E

-11
1.117E

+
06

9.423E
-11

1.115E
+

06
9.412E

-11
1.148E

+
06

A
·10

−
4

9.442E
-11

1.183E
+

06
9.410E

-11
1.130E

+
06

9.420E
-11

1.149E
+

06
9.421E

-11
1.164E

+
06

A
·10

−
5

9.411E
-11

1.219E
+

06
9.418E

-11
1.131E

+
06

9.409E
-11

1.195E
+

06
9.411E

-11
1.142E

+
06

A
·10

−
6

9.413E
-11

1.161E
+

06
9.418E

-11
1.165E

+
06

9.415E
-11

1.307E
+

06
9.412E

-11
1.126E

+
06

A
·10

−
7

9.417E
-11

1.131E
+

06
9.414E

-11
1.129E

+
06

9.413E
-11

1.151E
+

06
9.421E

-11
1.118E

+
06

A
·10

−
8

9.418E
-11

1.137E
+

06
9.425E

-11
1.129E

+
06

9.426E
-11

1.139E
+

06
9.422E

-11
1.116E

+
06

A
·10

−
9

9.420E
-11

1.448E
+

06
9.423E

-11
1.147E

+
06

9.409E
-11

1.154E
+

06
9.413E

-11
1.147E

+
06

A
·10

−
1
0

9.411E
-11

1.121E
+

06
9.406E

-11
1.292E

+
06

9.407E
-11

1.162E
+

06
9.415E

-11
1.186E

+
06

Iteration
100

A
·10

−
1

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

A
·10

−
2

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

A
·10

−
3

N
/A

N
/A

N
/A

N
/A

N
/A

N
/A

9.414E
-11

1.113E
+

06
A
·10

−
4

9.413E
-11

1.127E
+

06
9.411E

-11
1.111E

+
06

N
/A

N
/A

N
/A

N
/A

A
·10

−
5

9.415E
-11

1.133E
+

06
N

/A
N

/A
9.412E

-11
1.112E

+
06

9.414E
-11

1.110E
+

06
A
·10

−
6

N
/A

N
/A

9.418E
-11

1.165E
+

06
9.419E

-11
1.161E

+
06

9.417E
-11

1.152E
+

06
A
·10

−
7

N
/A

N
/A

9.415E
-11

1.120E
+

06
9.415E

-11
1.119E

+
06

N
/A

N
/A

A
·10

−
8

9.424E
-11

1.170E
+

06
N

/A
N

/A
N

/A
N

/A
9.422E

-11
1.116E

+
06

A
·10

−
9

9.416E
-11

1.141E
+

06
N

/A
N

/A
9.416E

-11
1.113E

+
06

9.414E
-11

1.125E
+

06
A
·10

−
1
0

9.415E
-11

1.125E
+

06
9.418E

-11
1.138E

+
06

9.425E
-11

1.139E
+

06
9.416E

-11
1.131E

+
06

T
ab

le
A

.10:
M

o
d
el

an
d

d
ata

m
isfi

t
for

d
iff

eren
t

regu
larization

w
eigh

ts
λ
R

T
V

after
com

p
letion

of
th

e
in

vertin
g

algorith
m

(u
p
p

er
h
alf)

an
d

after
th

e
100th

iteration
(low

er
h
alf),

u
sin

g
p

ertu
rb

ed
ob

jective
d
ata.

N
/A

’
d
escrib

es
th

at
th

e
algorith

m
w

as
term

in
ated

b
efore

th
e

100th
iteration

.

A.1. SEISMIC WAVEFORM MODELING AND INVERSION LI

A.1.8 Marmousi2 viscoelastic model

In this section, the Marmousi model used in section 5.6.6 is described in more detail.

The basis of the model is the model originally designed for acoustic wave propagation

by Brougois et al. [37, 161] and the variant for elastic material of Martin [102], which

is available online [101]. We consider here only the subdomain of the original Marmousi

model and not the extended domain of the Marmousi2 model.

For the transition from elastic to viscoelastic material we follow the procedure of

Hamilton [68] and get the Q factor by

1

Q
=

a · V
π · f − a2·V 2

4πf

where a is an attenuation coefficient, f is the frequency, and V is the wave velocity. Since

we assume constant Q factors, we set the frequency constant to f = 80. To obtain lower

attenuation in the deeper regions, we choose the attenuation coefficient as a = 1
c1·V+c2

.

We set the constants c1 = 4.1642 and c2 = −6245.4789 to obtain values between 605

and 19 for Q1. To calculate Q2 we set c1 = 2.0419 and c2 = −619.4326 to obtain values

between 390 and 14. This choice gives us a comparable model to the one in [90] and is

based on the following two hypothetical assumptions [68, 90, 143]:

• Attenuation increases with decreasing velocity.

• The velocity increases gradually with depth.

Whereby the second assumption is already included in the Marmousi model. Since the

resolution of the Marmousi model is very high and need not be so high for the considered

frequencies, we reduce the resolution of the model from 1.25m between two grid points

to 15m distance between grid points.

Analogous to the work by Martin [102], we add a vacuum layer of 20 grid points above

the model. We need this layer to place the transmitters and receivers. This layer can have

different physical properties like those of air, water or in our case vacuum. Furthermore,

another 30 grid points are added above this layer, representing the CPML layer. The

values of these two layers can be taken from the table A.11. Similarly, CPML layers

of 20 grid points each are added to the right, left and bottom, taking the values of the

respective edge layer.

ρ in kg/m3 vp in m/s vs in m/s Q1 Q2

vacuum 1000 1500 700 60000 60000
CPML 20 300 10 1000 1000

Table A.11: Physical properties of the vacuum and CPML layer.

In total, this results in an area of size 9840m × 4112m, corresponding to 653 × 270

grid points, with a distance of 15m between the grid points. We set the origin to the

upper left corner of the original Marmousi model.

LII APPENDIX A. APPENDIX

The sources are set 150m above the original Marmousi model (where we add the

vacuum layer). The first source is positioned at (250m,−150m). The remaining 31

sources are positioned at a distance of 287m along the y = −150m line. The receivers are

positioned slightly lower, at y = −100m. The first receiver at position (100m,−100m),

and the remaining 369 receivers, with a distance of 25m along the y = −100m line. The

setup is shown in figure A.1.28.

0 2 4 6 8

0

1

2

3

Figure A.1.28: Positions of the sources and receivers for the Marmousi example. The
black points describe the positions of the sources, the red points describe the locations of
the receivers.

The initial model is created by the convolution of the original Marmousi model and a

Gaussian kernel. Then the resolution of the model is reduced and the CMPL and vacuum

layers are created as described above. We use Matlab [104] to create the initial model

and use the procedure described in listing A.1.

1 sz = 300 ;

2 lx = 100 ;

3 ly = 200 ;

4 H=ze ro s (sz , sz) ;

5 i 0=sz /2 ;

6 j 0=sz /2 ;

7 f o r j =1:1 : sz

8 f o r i =1:1 : sz

9 H(i , j)=exp (−0.5 ∗(((i−i 0)/ lx)ˆ2 + ((j−j 0)/ ly)) ˆ 2) ;

10 end

11 end

12 H=H/sum(H(:)) ;

13 i n i t m o d e l = i m f i l t e r (true model , H, ’ r e p l i c a t e ’) ;

Listing A.1: Generation of the initial model.

	Introduction
	General motivation
	Different types of hardware
	Requirements for numerical software
	Software packages used in this thesis
	Thesis contribution
	Thesis outline

	GPU Computing
	Specifics of a graphics processing unit (GPU)
	Challenges of GPU computing
	CUDA concepts
	Warp divergence
	Race conditions
	Latency Hiding
	Different types of memory
	Streams

	Multi-GPU computing

	Nonlinear signal propagation in multimode fibers
	Motivation
	Modeling of nonlinear signal propagation in multimode fibers
	Numerical approximation
	The fourth-order Runge-Kutta in the interaction picture method

	Numerical simulation
	CPU implementation
	CPU/GPU hybrid implementation
	GPU implementation
	Multi-GPU implementation

	Numerical results
	Performance comparison between CPU and GPU
	Comparison of multi-GPU approaches

	Conclusions

	Particle-based simulation of flow in porous media
	Motivation
	Mathematical model
	Numerical Approximation with SPH
	Smoothed particle hydrodynamics
	Discretization
	Boundary conditions
	Time integration
	Artificial viscosity
	Schematic SPH single phase flow algorithm

	Implementation aspects and challenges
	SPH implementation in HOOMD-blue
	Challenges of the implementation
	Improvements for the GPU Implementation

	Numerical results
	Benchmark definition
	Hardware details
	Selection of the fastest NNS algorithm
	Evaluation of the improvements
	Strong scalability
	Weak scalability

	Conclusions

	Seismic waveform modeling and inversion
	Motivation
	Mathematical model
	Wave equation
	Zener model
	Forward model
	Relation between Zener model and physical parameters

	Waveform modeling
	Modification of the standard approach
	Minimization problem to obtain relaxation parameters
	Quality comparison and improvement of the Q factor approximation
	Modified forward model
	Boundary conditions

	Waveform inversion
	Regularization
	Inversion parameters
	Adjoint state method
	Adjoint model
	Derivative of the misfit function

	Algorithmic realization
	Optimization method
	Forward/adjoint simulation
	Full waveform inversion algorithm
	Computation of Zener model parameters

	Numerical results
	Simple test case
	Impact of the viscosity
	Comparison of different regularizations
	p-variation reduced gradient inversion
	Multiscale inversion for viscoelastic modeling
	Inversion of the Marmousi model
	Strong and weak scaling

	Conclusions

	Summary
	Bibliography
	Appendix
	Seismic waveform modeling and inversion
	Determination of the stress relaxation function
	System of second order PDEs to system of first order PDEs
	Relaxation and modulus function for the modified forward model
	Derivative of the misfit function
	Quality comparison and improvement of the Q factor approximation
	TV and total generalized p-variation regularization using the split-Bregman method
	Selection of a regularization weight for different regularization methods
	Marmousi2 viscoelastic model

