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Kurzfassung

Quantencomputer sind derzeit noch stark durch ihre hohe Fehlerraten und ihre niedrigen Anzahl an
Qubits beschränkt. Dies verursacht Fehler bei der Ausführung von Quantenalgorithmen, weswegen
man nach aktuellem Stand nicht erwarten kann, dass ein beliebiger Schaltkreis fehlerfrei ausgeführt
wird. Die Größe eines Schaltkreises beeinflusst die Genauigkeit des Ergebnisses bedeutsam,
wobei größere Schaltkreise wesentlich anfälliger für Fehler sind. Die Größe eines Schaltkreises
ist definiert durch F3, wobei F die Breite und 3 die Tiefe angibt. Es existieren Metriken, die es
erlauben die Leistungsfähigkeit von Quantencomputern zu bewerten und Vorhersagen zu treffen,
ob ein bestimmter Schaltkreis ausführbar ist oder nicht. Für diese Arbeit wurden randomisierte
Schaltkreise auf gatter-basierten Quantencomputern ausgeführt und die Ergebnisse mit denen des
Quantensimulators verglichen. Um zu bewerten, ob ein Benchmark erfolgreich war oder nicht,
wurden vier Metriken in Betracht gezogen. Von diesen Metriken erweist sich die Histogram
Intersection Metrik als die beste Methode um die Qualität des Ergebnisses zu bewerten. Mit
Hilfe dieser Metrik ist es nun möglich, die Quantencomputer mit randomisierten Schaltkreisen
von unterschiedlicher Größe zu benchmarken und die Ergebnisse zu evaluieren, um eine maximal
mögliche Schaltkreisgröße zu bestimmen. Für IBMs Quantencomputer imbq_athens ergibt sich bei
Schaltkreisen mit geringer Breite von 1 bis 3 eine Größe von F3 ≤ 20, innerhalb der noch akzeptable
Ergebnisse erwartet werden können. Schaltkreise, die 4 oder 5 Qubits nutzen, erlauben sogar
Schaltkreise mit einer Größe F3 ≤ 40. Mit dem bereitgestellten Framework können Benchmarks
ausgeführt werden, mit denen die Metrik F3 < : 1

neff
ermittelt werden kann. Diese Metrik soll bei

der automatisierten Auswahl eines passenden Quantencomputers für einen gegebenen Schaltkreis
genutzt werden.
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Abstract

Quantum computers in this day and age are characterized by high error rates and their limited
amount of qubits. This introduces errors to the execution of quantum circuits. Consequently,
quantum computers currently cannot be expected to run arbitrary circuits successfully. In this
context, the size of a circuit heavily influences the outcome of the execution, as large circuits
are prone to errors. The size of a circuit is defined by F3 where F is its width and 3 its depth.
Metrics can be used to judge the computational power of quantum computers and allow predictions
on whether a circuit is expected to run successfully or not. In this thesis, gate-based quantum
computers were benchmarked by executing randomized circuits and comparing the results to the
quantum simulator’s result. Four different metrics were considered to evaluate whether the quantum
computer’s result is too erroneous to consider the benchmark successful or not. After comparing
the metrics and discussing possibilities as to how they can be used to evaluate benchmarks, it
was decided that the histogram intersection is the most appropriate to use. Using this metric, it is
possible to benchmark quantum computers with randomized circuits of different sizes, evaluate the
results and use that data to find upper limits on the circuit size. The data in this thesis suggests
that, for IBM’s quantum computer imbq_athens, circuits of size F3 ≤ 20 are expected to return
acceptable results while circuits of width equal to 4 or 5 deliver acceptable results for even larger
circuits (up to F3 = 40). The framework provided in this thesis is the foundation to determine
the metric F3 < : 1

neff
which will be used in the automated selection of an appropriate quantum

computer for a given quantum circuit.
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1 Introduction

While the error rates of today’s quantum computers are still high and introduce errors to the
computation, the strongly limited number of qubits also limits the maximum size of a circuit [Pre18].
Because of these limitations, not every quantum circuit is guaranteed to run successfully on a
quantum computer. This raises interest in metrics that predict the severity of the error in the result
before executing a given quantum circuit on a specific quantum computer [SBLW20]. Metrics
like the Total Quantum Factor [SZR16] or Quantum Volume [MBB+18] use the size of the circuit,
defined by its width and depth, and the error rate of the quantum computer, consisting of different
hardware properties, to give an estimate on the maximum circuit size a quantum computer can
successfully handle [SZR16] [MBB+18]. Another metric, the so-called rule of of thumb, is used to
predict whether a circuit of width F and depth 3 can be executed on a quantum computer with error
rate neff [LB20] [Pre18]:

F3 � 1
neff

However, this is a very rough estimate and it is desirable to sharpen it for a more precise prediction
[SBLW20]. The rule of thumb suggests that there is a point 1

neff
− _ that marks the switch from

successful to failed execution, where _ is so far unknown [SBLW20]. This means that the interval
[0, 1

neff
− _] indicates the range of accepted values. It is possible to replace 1

neff
− _ by : 1

neff
which

allows to state a more precise metric [SBLW20]:

F3 < :
1
neff

Having a precise prediction is particularly important for automating the selection of a quantum
computer for a specific quantum circuit which is proposed in [SBB+20]. Otherwise the confidence
in the prediction is low and errors might be introduced again. Computing the maximum size of a
circuit is the first step to sharpen the metric as mentioned above. To compute that limit, quantum
computers need to be benchmarked and the data needs to be evaluated to determine the values of : ,
neff and _ [SBLW20].

In this thesis, randomized circuits of different sizes are used to benchmark quantum computers
from IBM, specifically ibmq_athens 1, and determine the maximum possible size of a circuit that
a quantum computer can successfully execute. For this purpose, it is necessary to use metrics
that allow to evaluate the quantum computer’s result. The correct result was obtained with IBM’s
quantum simulator ibmq_qasm_simulator 2 and the histograms of the results of the quantum
computer and simulator were compared. Different metrics were used with the intersection metric
being the most meaningful.

1https://quantum-computing.ibm.com/services?system=ibmq_athens&systems=all
2https://quantum-computing.ibm.com/lab/docs/iql/manage/simulator/#ibmq-qasm-simulator
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1 Introduction

The following steps were taken in this thesis: First, a framework had to be implemented that allows
to easily execute randomized quantum circuits on quantum computers and compare their output to
the correct results. Using this framework, benchmarks were run and the data saved in a database.
Finally, the data from the database was analysed and evaluated.

The thesis is structured as follows: In the beginning, general background on quantum computers and
necessary fundamentals are covered in Chapter 2. Related work on benchmarking quantum computers
is covered in Chapter 3. The research design is explained in Chapter 4. The implementation of the
benchmarks is described in Chapter 5 and Chapter 6. The data is analysed in Chapter 7. The last
chapter summarizes the work and gives an outlook.
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2 Background

This chapter covers the fundamentals of this thesis. We start with a general overview on quantum
computing that is necessary to be able to follow the approach that was taken. With that knowledge it
is possible to take a closer look at the so-called Noisy Intermediate-Scale Quantum (NISQ) devices
which are the most common type of quantum devices at this time. Finally, information on IBM’s
quantum devices and the toolkit that was used and extended is provided.

2.1 General

Classical computers store information in bits [Ker19]. Each bit can either be in state 1 or 0 and by
concatenating the state of several bits with each other and by manipulating their states, it is possible
to perform calculations and create complex applications, e.g. to edit images [Ker19]. The concept
of a bit can be realized in different ways on actual hardware. Looking at processors and their cache,
very small electric charges are used to realize the two states 0 and 1 [Ker19] [MN19].

Quantum computers use so-called quantum bits, or simply qubits [RP11]. In contrast to classical
computers, the state is not a simple number but a vector. The two-dimensional vector space is called
state space [NC10]. To understand what it means that a state is represented by a two-dimensional
vector, take a look at the computational basis of the state space [MN19]:

|0〉 =
[
1
0

]
and |1〉 =

[
0
1

]
The ket notation is typical for quantum states. That being said, these two vectors behave like the
0 and 1 bits in classical computing. The state space for quantum computing is complex and it is
possible to create superpositions of the basis states |0〉 and |1〉. A superposition is simply a linear
combination [MN19]:

U |0〉 + V |1〉 = U
[
1
0

]
+ V

[
0
1

]
=

[
U

V

]
The amplitude of a state is the coefficient of a state in a superposition [RP11]. Looking at the
equation above, the amplitude for |0〉 is U. With this, it is possible to define the normalization
constraint of a quantum state as not every vector is accepted as a state vector. It is necessary that
the sum of the squared amplitudes equals 1 [MN19]. Keeping in mind that the amplitudes could be
complex numbers this constraint is denoted by the following equation: |U |2 + |V |2 = 1 [NC10]. It is
not possible to simply measure a qubit to read the amplitudes [MN19]. Instead, when you measure
a qubit in state U |0〉 + V |1〉, you expect to get 0 with probability |U |2 and 1 with probability |V |2.
Note that these are classical bits again [RP11]. Measuring a qubit also puts it back into one of the
two computational basis states |0〉 or |1〉 depending on the classical bit the measurement returns
and information about U and V are lost [RP11].
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2 Background

Figure 2.1: Quantum Circuit with NOT Gate

To manipulate the state of qubits, quantum logic gates are used [RP11]. Quantum gates can be
represented by matrices, e.g. the - gate which is the analogue of the classical NOT gate [MN19]:

- =

[
0 1
1 0

]
Quantum computers that use gates for their operations, are called gate-based [NC10] quantum
computers. A gate can be represented graphically, usually as a box with a letter that specifies the
type of gate, e.g. X [RP11]. Several quantum gates as a sequence form a quantum circuit [NC10],
similar to circuits in classical computing [NC10]. For each qubit, a horizontal line, the quantum
wire is shown on which the gate operations on this specific qubit over time are indicated [MN19].
Figure 2.1 shows a quantum circuit with only one qubit and the NOT gate.

At this point it is interesting to note that it is still very difficult to control the qubits [NC10]. This
means that a quantum circuit consisting of only one quantum wire, which seems to be an easy
circuit, is actually difficult to realize. It would require a steady control over the qubit for the whole
time but the state is very fragile and a small interference can already change the state [MN19].

So far, the focus was on single-qubit operations but multi-qubit systems are built analogously
[MN19]. For example, a two-qubit system has four computational basis states: |00〉, |01〉, |10〉 and
|11〉 [NC10]. Just like in the single-qubit case, it is possible to put the two qubits in superposition
and the squared coefficients have to add up to 1 again [RP11]. With that in mind, it is possible to
take a general look at quantum computing: First, the qubits are initialized in a computational basis
state. Afterwards, the circuit is ran by executing the given sequence of gates. By measuring the
qubits like mentioned before, it is possible to obtain the result [MN19].

Since quantum computers deliver erroneous results and it is not possible to measure the exact
amplitudes of a qubit, it is necessary to execute circuits many times which provides a probability
distribution of the different results [MNW+17]. For IBM, the number of executions is called shots
and each execution might return a different or the same result. By executing a circuit a specific
amount of times, it is possible to calculate probabilities for each result. As for IBM, the counts for
all bit strings that represent the state of the quantum computer’s qubits after the execution are the
actual result of the execution [MNW+17]. The results can be represented as histograms, where each
bit string in the result has a bar representing its count. Figure 2.2 shows the results of the execution
of Shor’s factorization algorithm [Bea03] for a fixed input of 15 1 visualized as histograms. The
circuit was executed 1024 times on both backends and depending on how often each bit string
was returned, its bar is smaller or larger in the histogram. While Figure 2.2a shows the result of
IBM’s quantum simulator ibmq_qasm_simulator, Figure 2.2b is the visualization for the result

1Implementation: https://github.com/UST-QuAntiL/nisq-analyzer-content/blob/master/example-implementations/

Shor/shor-fix-15-qiskit.py

18

https://github.com/UST-QuAntiL/nisq-analyzer-content/blob/master/example-implementations/Shor/shor-fix-15-qiskit.py
https://github.com/UST-QuAntiL/nisq-analyzer-content/blob/master/example-implementations/Shor/shor-fix-15-qiskit.py


2.1 General

(a) Histogram of Execution on ibmq_qasm_simulator (b) Histogram of Execution on ibmq_athens

Figure 2.2: Histograms for Shor Algorithm with Input 15

of the quantum computer ibmq_athens. Having the two histograms, it is possible to compare the
results. We can assume that the simulator’s result is correct [IBM21] while the quantum computer
is, as already stated, prone to errors. Looking at the two histograms, one obvious difference is that
the quantum computer returned 000 more often than 100, while it was the other way around for the
simulator. Furthermore, the quantum computer returns additional bit strings like 111 that do not
occur at all in the simulator’s result. The transpiled circuit on the quantum computer has a width
equal to 5 and depth equal to 7 but it is optimized for the purpose to determine the factorization of
15 and because of that it is expected to return a result close to the correct one. In this case, the
results are very similar. Bit strings that should not be returned, appeared only in a small fraction of
the executions, while 000 and 100 still make the majority of the result. This is also the motivation
for benchmarking quantum computers as proposed in this thesis. It is an approach to test the
performance of current quantum computers not by theoretical models but by executing circuits
which will also take real world interferences and limitations into account.

Having provided the basics of quantum computing one might ask oneself whether there is any
advantage in using quantum computers over classical computers, whether there is a real life scenario
where they are superior to classical computers. Simulating quantum systems, e.g. molecules, is
a difficult task for classical computers as the number of amplitudes that need to be stored rise
exponentially [MN19]. For a quantum computer however, the amount of extra qubits needed is a
small number hence they are much better suited for the simulation of quantum systems. The use
of that in applications might not be immediately obvious but it can be of significant meaning in
chemistry for pharmaceutical purposes or simulations in quantum physics [MN19].
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2 Background

2.2 Noisy Intermediate-Scale Quantum Devices

Most of today’s quantum computers are so-called Noisy Intermediate-Scale Quantum (NISQ) devices
[Pre18] [LB20]. Noisy means that the operations on and the states of the qubits are erroneous. The
decay of a qubit’s state is known as decoherence [RP11]. At this point in time, it is not possible to
ensure that the manipulation of qubits by the gates are flawless, hence there might be differences
from the ideal scenario that influence the final result as well. This is known as gate infidelity [RP11]
[NC10]. Intermediate-Scale indicates that the number of qubits is still very limited [LB20].

These two factors play an important role to determine whether a circuit can be successfully executed
on a quantum computer [LB20]. Noise is likely to increase with the depth of a circuit. The depth of
a circuit is given by the number of gates executed sequentially [NC10]. Since the circuit would take
longer to execute, the decay of the qubit’s state has more time to have an effect on the result. The
operations on the qubit introduce further errors and the more operations are executed, the larger is
their effect [NC10]. Furthermore, the width of the circuit is limited by the number of qubits, as the
width indicates the number of required qubits [LB20].

In [Pre18], Preskill elaborates on the impact of NISQ devices on quantum computing in general.
While NISQ will not immediately be able to prove the quantum speedup, Preskill sees those devices
as an important milestone. Since it is now possible to experiment and work with real quantum
computers, it is likely that better and more quantum algorithms will be developed. With more time
spent on the process of controlling the state of qubits, methods to reduce the noise in the execution
can be developed. Similarly, the accuracy of a quantum gate’s operations is likely to be improved
and have a positive effect on the maximum circuit size [Pre18]. Hence, it will be interesting to see
the developments of NISQ devices in the coming years. If the number of qubits can be increased and
the noise decreased, NISQ devices can be a very important factor in quantum computing [Pre18].
In fact, researchers at Google managed to show quantum speedup in 2019 and published an article 2.
A task that would take a classical computer thousands of years was solved within a few minutes.

At this point in time, many different vendors are starting to provide quantum computers independently.
The vendors grant access to their backends in the cloud most of the time [SBB+20]. Each vendor
develops its own Software Development Kit (SDK) that is used to implement circuits and run
them on a quantum computer [SBB+20]. Different quantum computers have a different amount
of qubits and are also distinguished by their implemented gates, known as the gate set [LB20].
These differences implicate that not every SDK from any vendor is compatible with every quantum
computer [SBB+20]. [SBB+20] notes that while there are SDKs available that can transpile circuits
for quantum computers of different vendors, there is still a significant amount of effort necessary to
use those.

2https://www.nature.com/articles/s41586-019-1666-5

20

https://www.nature.com/articles/s41586-019-1666-5


2.3 IBM Quantum

2.3 IBM Quantum

For this thesis, gate-based quantum computers from IBM were used. IBM is a provider for quantum
computers since 2016 [MNW+17]. They provide cloud access to their quantum computers to the
public via IBM Quantum 3 and have their own SDK, called Qiskit 4 [IBM21] [AAA+19]. IBM
Quantum grants access to a variety of quantum devices, both quantum simulators and quantum
computers. The quantum computers vary in the number of qubits, their topology, which is the
arrangement of the qubits, as well as processor type and error rates [IBM21]. Qiskit allows users
to implement quantum circuits with Python, and run them on real backends, either a quantum
simulator or a quantum computer [AAA+19]. To execute a circuit on a backend, a job is created
and placed in a queue. As soon as the jobs ahead are done, the job is executed on the quantum
device and the result will be returned to the user. The circuits need to be transpiled for a specific
backend. Since the topology is different depending on the chosen backend, circuits have to be
individually mapped on the hardware of each backend [AAA+19]. This individual mapping ensures
that the circuit is running as fast and with as little flaws as possible. The translation is known as
transpilation [SBB+20]. IBM uses OpenQASM 5 as assembly language [CBSG17].

In this thesis, the focus was on IBM’s quantum computer imbq_athens 6. An important reason
for that was simply the availability, as the queues were rather empty compared to other quantum
computers. It is a 5 qubit quantum computer with a quantum volume of 32 and one of IBM’s Falcon
processors [IBM21].

As mentioned before, IBM’s quantum simulator ibmq_qasm_simulator 7 can be used to obtain the
correct result of a circuit. The simulator can also model noise to create erroneous results like real
quantum computers. The maximum amount qubits that can be simulated is 32 for this specific
simulator and it has a timeout mechanic is implemented that limits the maximum amount of time a
job can take to run [IBM21]. This means that the simulator cannot simulate arbitrarily sized circuits
but is limited by the maximum amount of qubits and the maximum execution time.

2.4 Qiskit-Service

The qiskit-service 8 is a toolkit that uses Qiskit and provides an API to transpile and execute
quantum circuits on IBM quantum services. The transpilation request of this service takes a Qiskit
or OpenQASM implementation provided either directly as data or as an URL and returns the
transpiled OpenQASM string as well as the width and depth of the circuit. To run the execution
request, the implementation can be provided again as Qiskit code (which would run the tranpilation
request first) or directly as an OpenQASM string. The execution request naturally returns the results
of the execution, i.e. the counts for the resulting qubit states.

3https://quantum-computing.ibm.com/
4https://qiskit.org
5https://github.com/Qiskit/openqasm
6https://quantum-computing.ibm.com/services?system=ibmq_athens&systems=all
7https://quantum-computing.ibm.com/lab/docs/iql/manage/simulator/#ibmq-qasm-simulator
8https://github.com/UST-QuAntiL/qiskit-service
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2 Background

Figure 2.3: Workflow of the qiskit-service

Figure 2.3 shows the current workflow of the qiskit-service. The actor has access to the toolkit via
its API which allows to get access to the aforementioned transpilation and execution functionalities.
Another API endpoint allows users to retrieve the calibration matrix of a specific quantum computer.
While the transpilation request is handled directly within the API, both the execution and calibration
matrix request create entries in the database. For these two requests, a job that can be sent to
the IBMQ backend needs to be created and put into the queue for that backend. Once this job is
executed, the result is returned to the qiskit-service and the actor can retrieve it by following the
link provided in the response to the request.
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3 Related Work

There is a lot of work dealing with benchmarking quantum computers. Main focus of those
benchmarks is to determine the computing power of quantum computers. In this chapter, an
overview on other work on benchmarking quantum computers is provided and similarities and
differences are presented.

3.1 Benchmarking

[SBLW20] takes a look at three metrics that can be used to judge the capabilities of a quantum
computer. Two of those metrics, the Total Quantum Factor (TQF) and the Quantum Volume (QV),
focus on the performance of a quantum computer itself.

Increasing the circuit size is likely to cause more errors in the result. The TQF defines an upper
bound for the circuit size to prevent very erroneous results [SZR16]:

)&� B
)1
C6
· =@

The average decoherence time of the qubits is given by )1, while C6 is the maximum time the
available gates need to operate and =@ indicates the number of qubit [SBLW20].

The QV is defined by the following formula [MBB+18]:

+& = max
=′≤=

min(=′, 1
=′neff(=′)

)
2

In this equation, =′ indicates the circuit’s width and = is the number of qubits of the quantum
computer. neff is the effective error rate of the quantum computer and represents average error rate
of a two-qubit gate [SBLW20].

The QV is also subject of [CBS+19]. By executing randomized, squared circuits on quantum
computers, the performance of current quantum computers is being evaluated. Effectively, the QV,
like the TQF, gives an estimate on the maximum circuit size a quantum computer can execute. Note
that the QV assumes that the circuits are of equal width and depth. It does however, take hardware
parameters [CBS+19] like the effective error rate and design parameters [CBS+19] like the gate set
into account which allows a more precise prediction. It can be used for any quantum service that
can execute quantum circuits as it is independent from the architecture [CBS+19] [SBLW20].

Main focus of [SBLW20] is a different metric, though. It is a metric that allows to predict whether
an arbitrary given circuit can be successfully run on a quantum computer or not. [Pre18] and [LB20]
discuss this metric as a rule of thumb [SBLW20]:

F3 � 1
neff
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3 Related Work

F and 3 define the size of the circuit as width and depth. Like for the QV, neff is the effective error
rate of the quantum computer. This error rate is influenced by various factors [SBLW20]. Salm et
al. suggest sharpening this metric by benchmarking quantum computers. The goal is to specify a
refined quantum metric by extracting properties of the quantum computer at the time of execution
and executing different kinds of circuit, e.g. randomized [SBLW20]:

F3 < :
1
neff

This is where this thesis comes into play, providing a framework to execute randomized circuits to
perform benchmarks.

[BY20] provides a framework for so-called volumetric benchmarks. These are benchmarks that
generalize IBM’s quantum volume benchmarks as they do not only include circuits of same width
and depth. Beyond these square circuits, rectangular circuits are accepted which is often a closer
representation of real world applications. The authors suggest using randomized, periodic and
application circuits to benchmark quantum computers. The different classes have different properties
that have to be kept in mind, e.g. periodic circuits can amplify coherent errors over time [BY20].
There are also success criteria for a benchmark being discussed. Expecting a perfect result is not
realistic at this point in time and there should be tolerance for some error. If the outcome is definite,
success could be defined by “the probability of the correct outcome of circuit C is greater than
a specific threshold (e.g. 2/3) with high (e.g. 95%) statistical confidence” [BY20]. A success
criterion for all circuits, not just definite, would be checking whether the distribution of the results
of a benchmark is within the optimal distribution for the executed circuit [BY20]. However, their
work is focused on providing the framework to create and evaluate benchmarks. No benchmark
was actually run but they introduced an approach to evaluate data from executions by model data
[BY20]. While randomized benchmarks are used in this thesis as well, we need real data to be able
to determine the maximum circuit size for a quantum computer.

Benchmarking quantum computers is also discussed in [MNW+17]. It should be noted that this
work was published when public access to quantum computers was relatively new. Consequently,
researchers were just starting to validate quantum computers independently from the providers
of quantum computers. They are also executing a variety of circuits on quantum computers and
compared the output from the quantum computer with the expected output deduced from quantum
theory [MNW+17]. They conclude that quantum computers at that time did not perform as well as
one might expect from a computer [MNW+17]. Tracking down the exact reasons for the errors was
not possible but it is likely that the calibration of the machine was a deciding factor. This means
that results potentially would have been less erroneous if the circuits were executed on a freshly
calibrated machine [MNW+17]. However, the accuracy of quantum computers has improved over
the years and they can deliver good results for circuits up to a certain size [LB20] [Pre18].

We are now taking a look again at the amount of different SDKs that was introduced in Chapter 2.
The main problem is that the great variety of vendors that each independently develop their own
hardware and software causes difficulties in the access of quantum computers as it varies greatly
between vendors. In [SBB+20], an approach to automate the selection of a specific quantum
computer to run a quantum algorithm, called the NISQ Analyzer, is provided. The steps that need
to be taken and expected challenges are part of [SBB+20]. An important part here are metrics
that can estimate whether a circuit can be executed successfully or not. This is where the rule of
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thumb metric and its refined version are important, as they can provide an estimate on exactly that
[SBB+20] [SBLW20]. The selection of a specific quantum computer is not trivial and this thesis is
an important step to make it possible.

Similarly to that, a retargetable compiler for NISQ devices has been developed [SDC+20]. There
is a user interface to create circuits and execute them on quantum computers. It is retargetable,
which means that the t|ket〉 compiler is able to prepare the input not just for quantum computers of
one specific vendor, but different vendors without having to manually re-implement the circuits.
They have also performed benchmarks to show that the compiler does improve the circuits to run
more efficiently and it is not having a bad impact on the performance [SDC+20]. In this thesis,
benchmarks are not used to compare two different compiler options but to judge the quality of the
result of a quantum computer.

3.2 Problem Statement

We have seen that a lot of work on benchmarking quantum computers is available. In this thesis we
want to find a way to determine the maximum size of a circuit a specific quantum computer can
execute successfully. There are several difficulties to implement this. First, because randomized
circuits are used, it is necessary to retrieve the correct result by executing the given circuit on a
quantum simulator. The correct result is necessary to assess the quality of the quantum computer’s
result. This difficulty is easy to overcome as IBM also offers several simulator backends [IBM21].
Apart from that, it is also difficult to decide whether a given result is close enough to the correct one
or not. It requires further consideration at what point a result deviates too much from the correct
result to mark it as successful which turned out to be a major difficulty in this thesis. The idea is to
create a framework to execute benchmarks easily. After running many benchmarks with circuits
of different sizes, the data needs to be analysed. Four metrics, which are introduced in the next
chapter, are used to quantify the quality of the results. By manually comparing the values of these
metrics for many benchmarks, a success criterion was deduced which was then used to make an
approach to determine the maximum circuit size for a specific quantum computer.
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We will now take a closer look at the approach that was taken to design the framework and the
metrics that were used to quantify the quality of the quantum computer’s result. The idea is to
present a method that allows to determine the maximum circuit size a specific quantum computer
can execute successfully. This boundary value will be useful in determining the value 1

neff
in the

refined rule of thumb metric.

4.1 General

In the last section, the rule of thumb metric was introduced [SBLW20]:

F3 � 1
neff

It is a very rough estimate on whether a circuit of width F and depth 3 can be executed on a quantum
computer with error rate neff. In fact, this equation implies that there is a point 1

neff
− _ in the interval

[1, 1
neff
] that marks the switch from a successful to a failed execution of a circuit. It is possible to

represent this by extracting a factor : which results in the following refined metric [SBLW20]:

F3 < :
1
neff

As mentioned before, this equation brings width and depth of a circuit in correlation with the error
rate. To confirm that this metric holds, we want to benchmark quantum computers with circuits of
different sizes. While the error rate of a quantum computer is difficult to quantify precisely because
it is dependent on many different factors, the benchmarks are an important step to determine the
boundary value of F3 [SBLW20].

First, a framework that allows simple benchmarking of quantum computers is created. This
framework is implemented in the qiskit-service mentioned in Section 2.3. Since the communication
with the IBM backend is already implemented, the focus can be laid on the benchmark itself. To
benchmark a quantum computer, we need to create circuits that can be executed. We are using
randomized circuits in this thesis which are created using a built-in function of Qiskit 1. However,
their results are not trivially clear as they are simple randomized sequences of gates of given width
and depth. To obtain the correct result which we need to judge the quality of the execution on a
quantum computer, IBM’s quantum simulator ibmq_qasm_simulator is used. Since the simulator
is not prone to errors caused by decoherence and gate infidelity, it delivers the correct result.
While there is an extra amount of effort necessary to retrieve the correct result, the advantage

1https://qiskit.org/documentation/stubs/qiskit.circuit.random.random_circuit.html
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4 Methodology

of randomized circuits is that they are easy to create in large numbers. The number of available
implementations of different algorithms is still rather small, hence the approach with randomized
circuits was considered the most useful one for this study. With that, large amounts of data can be
obtained and analysed.

Having implemented this framework, it is possible to create data by executing various benchmarks.
This is done by an API request which allows you to state the target computer, limits for the size of
the circuit, the number of circuits you want to create, and the number of shots. Further detail on the
implementation will follow in the next chapters.

4.2 Metrics

A statistical analysis of the data is necessary to make an evaluation of the data and quantify the
deviation from the quantum simulator’s result to the quantum computer’s result. Four different
metrics were used to judge the similarity of their results. It is possible to interpret the counts as a
histogram and use similarity measures to compare the two histograms ℎB8< and ℎA40; . Ideally, the
metric will quantify the size of the quantum computer’s error. An idea is to lay the two histograms
on one another and judge the similarity by that. This is where the four metrics come in with
different approaches. While the j2 distance and the correlation are comparing the general shape the
histograms, the percentage error and the histogram intersection are comparing the bars for each
count to quantify the error. Both approaches were considered useful to define a success criterion
for the benchmarks. A success criterion is needed to be able to judge the quality of the result and
classify a benchmark as successful or failed.

4.2.1 j2 Distance

The j2 distance [PW10] is defined as:

j2(ℎB8<, ℎA40;) =
1
2

∑
8

(ℎB8<(8) − ℎA40; (8))2
ℎB8<(8) + ℎA40; (8)

In this equation, ℎB8< is representing the histogram for the simulator and ℎB8<(8) is the simulator’s
count for bit string 8. In the same way, ℎA40; (8) represents the quantum computer’s count for 8.
For the j2 distance, errors in large bars have a small effect while errors in already small bars will
increase the value significantly [PW10].

4.2.2 Correlation

The correlation [SSS17] is calculated as follows:

2>AA (ℎB8<, ℎA40;) =
∑

8 (ℎB8<(8) − ℎ′B8<) · (ℎA40; (8) − ℎ′A40;)√∑
8 (ℎB8<(8) − ℎ′B8<)2 ·

∑
8 (ℎA40; (8) − ℎ′A40;)2
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Like for the j2 distance, ℎB8<(8) and ℎA40; (8) represent the counts of bit string 8 for quantum
simulator and quantum computer. ℎ′

B8<
and ℎ′

A40;
are the sum of all bars for each backend. In this

case, they are simply the number of shots indicated in the request. The value of the correlation is
normalized between -1 and 1. If the value is close to 1, the histograms are similar whereas values
smaller than 0.5 would indicate very strong differences.

4.2.3 Percentage Error

A simple metric that can judge the deviation of the counts from the quantum computer to the correct
results from the simulator is the percentage error [Hel20]. The percentage error ?4 of a bit string G
that represents a state of a quantum computer is:

?4(G) = |ℎB8<(G) − ℎA40; (G) |
ℎB8<(G)

Here, ℎB8<(G) and ℎA40; (G) indicate the number of times G was returned when running the circuit
on the quantum simulator, or quantum computer respectively. The percentage error indicates the
size of the error a quantum computer made on a specific count in relation to the the correct count.
E.g., an error of ten counts has a big impact when the correct count is four. If the correct count is
1000, however, being ten off is a good value. Calculating the percentage error for all correct counts
allows to make a judgement on the errors a quantum computer makes during the execution.

4.2.4 Histogram Intersection

The fourth metric that is used to compare the two histograms puts the counts from quantum simulator
and quantum computer in relation. It is called histogram intersection [SB91] and it compares the
two histograms and checks which bars are in both histograms:

8B(ℎB8<, ℎA40;) =
∑

8 min(ℎB8<(8), ℎA40; (8))∑
8 ℎB8<(8)

Again, ℎB8<(8) and ℎA40; (8) indicate the count for bit string 8 on the corresponding backend. The
denominator is again the same as the number of shots. The histogram intersection can take values
from 0 to 1, 0 meaning no similarity and 1 meaning the two histograms are the same.

4.3 Success criterion

With the aforementioned metrics, it is possible to evaluate the quality of a quantum computer’s
result. However, an arbitrary value does not provide much information without context. It is a
difficult step to go from the metric’s value to a statement on whether the benchmark should be
considered successful or not as it requires to set a boundary on the acceptable error. Saying that only
results that are exactly the same as the correct result are successful, is not feasible at this time and
would result in every benchmark being considered failed. On the other hand, it would not be useful
to accept results that are very erroneous. Evaluating the metrics and deciding on a boundary value
is part of Chapter 7. Two exemplary benchmarks are used there to show strengths and weaknesses
of the metrics and explain how different degrees of errors affect the values.

29



4 Methodology

Assuming that this provides a valid approach to classify the benchmark as successful or failed, the
foundation to determining the maximum circuit size F3 is given. The idea is to execute a number
of circuits of a specific size, defined by its width and depth. By having a significant sample size for
that size, it would be possible to determine whether a quantum computer is capable of executing
circuits of the given size successfully or not. This would however require to set a boundary on how
many of the benchmarks of size F3 need to be successful to consider this specific size feasible on
the quantum computer. In this thesis, that boundary was chosen at 2

3 , which was oriented at the
heavy output probability [AC16]. As it is not possible to control the size of the transpiled circuit,
it is easier to group circuits of similar sizes together, e.g. circuits of F = 2 and 3 ≤ 5. Starting
from that, storing the information about the benchmarks’ success rates in a table will allow us to
see when the circuit size is too large for the quantum computer because the results become too
erroneous. A group of circuits is considered successful if at least two out of three benchmarks are
successful. As mentioned before, we can deduce a maximum circuit size for the chosen quantum
computer with that information and use that value to calculate the value 1

neff
.
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We are now taking a closer look at the way the framework was implemented into the qiskit-service.
The qiskit-service provides an API that allows the transpilation of Qiskit code to an OpenQASM
string which then can be executed on a quantum computer. The algorithm is provided through the
Qiskit code, its input parameters, and the desired quantum computer have to be stated in the request.
The general workflow of the qiskit-service has been explained in Chapter 2 already. The user sends
a request to the API and if necessary a job that will be sent to the IBMQ backend is created with a
database entry to store the results once the execution is done. The framework was extended by three
new API endpoints that are necessary to run and analyse benchmarks as shown in Figure 5.1. The
general workflow has not been changed but instead, the existing functionality is used to execute
the benchmarks. We will now take a closer look at the new API endpoints and the general design
choices to extend the toolkit.

The first of the new endpoint is POST /qiskit-service/api/v1.0/randomize which is used to create
and run randomized circuits for benchmarks. As Figure 5.1 shows, the workflow is similar to the
execution request which means that after the user sends a request, a database entry is created and

Figure 5.1: Workflow of the updated qiskit-service
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Figure 5.2: Model for Benchmark Entries in the Database

the job is sent to the IBMQ backend. The request body allows the user to adjust the benchmarks,
e.g. by different circuit sizes or number of shots. The exact request body will be explained in the
next chapter. After the request was sent, randomized circuits of the given size are created using a
built-in function of Qiskit. As the correct result is obtained by executing the circuit on the quantum
simulator, we need to prepare a job for both the simulator and the chosen backend. Both jobs are
saved into a new table in the database. The data model is shown in Figure 5.2. A benchmark entry
has an ID field which is an automatically created string and the primary key. Each circuit is tied
to a benchmark ID. As already explained, we need to execute each of the randomized circuits on
the quantum simulator as well. Since it is not exposed to errors like decoherence or gate infidelity,
it can provide optimal results. The benchmark ID allows us to link the result of the simulator
and quantum computer when we want to analyse the data and make sure we do not compare the
wrong results. The backend field holds the IBM quantum device that was used and the result is the
response from the chosen device. For easier access, the counts of the result are saved separately
as well as the number of shots. To be able to judge the impact of the circuit size on the success
rate, it is necessary to save the circuit size defined by its depth and width as well. The original size
is given by the API request, while the transpiled size might differ greatly as the circuit’s shape is
changed during transpilation. Finally, a boolean is used to indicate whether the job is completed or
not. Note that if a job fails to run successfully on IBM’s backend, it is still considered completed.

The API endpoint GET /qiskit-service/api/v1.0/benchmarks/<benchmark_id> allows users to
request the results of a specific benchmark by its ID. It is necessary to state the ID of the benchmark
that the user wants to inspect. It gives an overview on the results of the benchmark by providing
information on the results on quantum simulator and quantum computer. With that, it is possible
to do a manual comparison and rate the quality of the result. As Figure 5.1 shows, the request is
handled directly within the API by querying the database and returning the results. It will also be
shown in more detail in the next chapter.

Finally, a third API endpoint GET /qiskit-service/api/v1.0/analysis is used to run an analysis on
the data using the metrics introduced in Chapter 4. The results of the benchmark, both quantum
simulator and quantum computer, are taken from the database and then examined. There is no
communication needed to IBM’s backend as the results are stored in the database. It is important to
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ensure that the circuits were successfully executed on both backends and the results are correctly
saved in the database. Further information on the response, which provides an overview on the
values of the metrics to evaluate the quality of the result, is given in the next chapter.

A separate component in the qiskit-service, the ibmq_handler, is handling the communication with
the IBM backend and ensures that the results can be saved to the database after the execution is
finished. This component is also used to send the randomized circuits to the IBMQ backend for the
benchmarks used in this thesis. After the job ran on the backend, the ibmq_handler retrieves the
result and counts and makes sure these values are saved in the database.

We have seen the fundamental design choices for extending the qiskit-service. A new API endpoint
was needed to run benchmarks with randomized circuits of different sizes on IBMQ backends. Two
more endpoints are used to either look at one specific benchmark or analyse all available benchmarks
using the four metrics introduced in Chapter 4. With that, it is possible to run benchmarks and
make a first step to determine the maximum circuit size a specific quantum computer can execute
successfully. Having provided a general overview on the design ideas, the next chapter will go into
more detail regarding the implementation.
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6 Implementation

In this chapter, we take a closer look at the implementation of the framework that was introduced
in the preceding chapter. Different technologies were used to create the framework ensuring the
functionality. The framework was developed with Python 1 and runs in a Docker container 2. To
create randomized circuits and send them to the IBM backend, Qiskit 3 is used. Flask 4 is used to
create the application and manage the requests. The previous chapter already introduced the new
API endpoints which will now be explained in greater detail.

Listing 6.1 shows an exemplary body for the POST request which is used to create benchmarks.
First, it is necessary to state the quantum computer that should be used for the benchmarks. It needs
to be given as the same string that IBM uses in IBM Quantum to name their quantum computers.
There are two factors to control the size of the randomized circuit, namely depth and width. The
width of the circuit can be simply set by the number of qubits. The depth of the circuit is handled
by a lower and an upper limit. In the request body, an interval for the depth of the circuit is stated
by specifying a minimum and maximum depth. The framework is implemented so that for each
depth within the interval, the given number of circuits is created. Specifying the number of shots is
optional and the default value is 1024. Finally, the IBM API token is needed to access IBMQ. The
response will include a link to the result of the execution for the quantum simulator and for the
quantum computer separately. Additionally, a link to the benchmark is returned which shows a
brief summary, including both backends, to the user.

Listing 6.1 Request Body for the POST Randomize Request

POST /qiskit-service/api/v1.0/randomize

{

"qpu-name": "ibmq_athens",

"number_of_qubits": 2,

"min_depth_of_field": 1,

"max_depth_of_field": 5,

"number_of_circuits": 1,

"shots": 1024,

"token": ***

}

1https://www.python.org/
2https://www.docker.com/
3https://qiskit.org/
4https://flask.palletsprojects.com/en/2.0.x/
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Listing 6.2 Response Layout of the GET Benchmark Request with benchmark_id=0

GET /qiskit-service/api/v1.0/benchmarks/0

[

{

"backend": "ibmq_qasm_simulator",

"benchmark_id": 0,

"complete": true,

"counts": {

"000": 1024

},

"id": ***,

"original_depth": 3,

"original_width": 3,

"shots": 1024,

"transpiled_depth": 5,

"transpiled_width": 3

},

{

"backend": "ibmq_athens",

"benchmark_id": 0,

"complete": true,

"counts": {

"000": 954,

"001": 50,

"100": 20

},

"id": ***,

"original_depth": 3,

"original_width": 3,

"shots": 1024,

"transpiled_depth": 8,

"transpiled_width": 3

}

]

This summary is another API endpoint that was added as part of this thesis and an exemplary
response is given in Listing 6.2. As mentioned in Chapter 4, the benchmark ID is used to link the
simulator’s and quantum computer’s result, which provides a direct comparison of the results. By
specifying the ID in the request link, an overview on the results of the executions on both backends
is provided. This overview includes the backend that was used. The backend is needed to tell which
result is the correct one and to show which quantum computer was benchmarked. It also shows the
benchmark’s ID, a boolean that indicates whether the circuit’s execution is finished, and the number
of shots for reference. If it is not completed, the response is adjusted to show only that boolean to
be false and the IDs of both jobs. Important features are also the original and transpiled size of the
circuit and the counts. This allows users to judge the error of the quantum computer manually and
put it to relation to the circuit size.
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Listing 6.3 Response Layout of the GET Analysis Request

GET /qiskit-service/api/v1.0/analysis

[

...

{

"Benchmark 2" : {

"Chi Square": 52.567,

"Correlation": 1,

"Counts Real": {

"00": 100,

"01": 924,

},

"Counts Sim": {

"01": 1024

},

"Intersection": 0.9023

"Percentage Error" : {

"01": 0.09765625

},

"Transpiled Depth": 5,

"Transpiled Width": 2

}

}

...

]

Listing 6.3 shows the response for the request to the last API endpoint. It runs an analysis on all
benchmarks that are saved in the database using the metrics that were introduced in Chapter 4, most
importantly the histogram intersection. The response contains a list of all benchmarks that were
analysed and the values of the metrics for each one. Beyond that, the counts of the simulator’s and
the quantum computer’s result as well as the size of the circuit are given again which provides a
broad overview on how the circuit size can affect error rates. To run the analysis, the benchmark
table in the database is queried. Only benchmarks where both backends ran the circuit successfully,
can be used for the analysis. At this point, it should be noted that for the computation of correlation
and intersection, the counts of each backend have to include all results the other backed returned.
Consequently, if there is a result the quantum computer returned which is not in the correct result,
this result has to be added with count zero, to avoid errors in the application. All values that are
needed to calculate the statistical metrics are available in the database. With that information, a
brief analysis on the counts can be realized and returned to the user.

Now that the new API endpoints have been covered in detail, we will take a closer look at the
creation of circuits and implementation of benchmarks. As mentioned before, it is necessary to run
each circuit not only on the quantum computer but also on the quantum simulator, as randomized
circuits are used and their results are not given. Given a specific width and depth, random circuits
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can be created using Qiskit 5. These circuits have to be transpiled for each backend separately
otherwise they cannot be executed. A job needs to be created that can be sent to the IBMQ backend.
It will be put into the queue of the backend and after the execution passed, the result is returned.

The qiskit-service already uses an SQLite database to store the results of the execution request.
This database was extended by another table to save the benchmarks. The model for the benchmark
entries was introduced in Chapter 5. We are using SQLAlchemy 6 to easily manage the database
entries. The workflow is similar to the workflow for the execution request that was introduced
in Chapter 2. After the API request was sent and the jobs for the IBM backends were generated,
database entries for each job are created. The entries are updated once the execution is completed.

We have now covered the foundation of the framework and its design. The framework is used to
create data of a large amount of benchmarks. After acquiring data, the framework can be used to
analyse it and make an evaluation using the metrics from Chapter 4. The evaluation of the data and
conclusions are subject of the next chapter.

5https://qiskit.org/documentation/stubs/qiskit.circuit.random.random_circuit.html
6https://www.sqlalchemy.org/
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7 Evaluation

In this chapter, the data from the benchmarks is analysed to judge the usefulness of the metrics.
Furthermore, the effect of the circuit size on the success rate of benchmarks for a specific quantum
computer is shown. For the benchmarks in this thesis, IBM’s quantum computer ibmq_athens was
used. It is one of IBM’s Falcon processors, has five qubits and a quantum volume of 32 [IBM21].

7.1 Metrics

We are now taking a closer look at the metrics introduced in Chapter 4 and use them to evaluate the
data. Two exemplary benchmarks with different outcomes were used for the evaluation and to judge
the quality of the metrics.

The first benchmark uses a large circuit of depth 52 and width 5. The results of the execution are
visualized in the histograms in Figure 7.1. They show a great discrepancy between the correct
result from the simulator in Figure 7.1a and the erroneous result from the quantum simulator in
Figure 7.1b. Looking at the two histograms, it is easy to see that the quantum computer returned
the correct result for less than half of the executions, hence the benchmark should be considered
failed.

The second benchmark on the other hand, uses a significantly smaller circuit. Its depth is equal to 6
and its width is equal to 5. The histograms in Figure 7.2 show that the error is much smaller in this
case. The histogram illustrates that the difference here is significantly smaller and the benchmark
should be considered successful.

Table 7.1 gives an overview on the values the statistical metrics return. With that it is possible
to evaluate whether the metrics provide an appropriate measure as to whether a benchmark was
executed successfully or not. Looking at the j2 distance, we see that it is not a normalized value.
Hence, it is not usable to generally verify whether a benchmark was successful or not. Depending
on the number of different states in the correct result, the value will vary massively. Because of that,
the j2 distance is not suitable as a metric for our benchmarks.

Since the former metric is not normalized, the correlation between the two histograms was calculated.
The correlation takes a value close to 1 when the two histograms are similar. Similar in this case
means that the two histograms indicate a similar distribution of the results. The correlation for both
histograms is very close to 1, even though benchmark 1 should be considered failed. The problem
here is, that while the results greatly differ, the histogram still looks similar since the bar for 00000
is large while the others are very small. This led to the decision that the correlation is also not
applicable as metric to judge the outcome of a benchmark.
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(a) Histogram of Execution on ibmq_qasm_simulator (b) Histogram of Execution on ibmq_athens

Figure 7.1: Histograms for Benchmark 1

The percentage error however, proves to give a better estimate on the error of the execution. For
benchmark 1, it is slightly above 50% which indicates that there is a big error and the benchmark
should be considered failed. Benchmark 2 on the other hand, has errors that are smaller than
10% which is only a small deviation. However, due to the fact that the percentage error has to
be calculated for each count separately, it does not provide a general view on the result. While it
would be possible to take the biggest calculated percentage error value as reference, the histogram
intersection proved to be the better choice as it returns just one value that directly can be used to
decide on the outcome of the benchmark.

The histogram intersection is normalized between 0 and 1 where 1 indicates that two histograms
are the same, while 0 indicates there are no similarities. For the first benchmark the histogram
intersection is at 0.4717. This means that less than 50% of the two histograms overlap, hence the
result can be considered very erroneous. On the other hand, it is almost 96% for benchmark 2
which is a very good value. Since the histogram intersection indicates how much of the histograms
overlap, it is a good measure to judge whether a benchmark ran successfully or not. It only requires
the user to set a boundary value. Here, an error of 10% is considered acceptable, meaning that a
benchmark is considered successful if the histogram intersection is greater than 0.9. This value was
chosen by manually comparing the results of benchmarks. Picking a value closer to 1 would result
in most benchmarks being considered failed, as the error rates are still very much noticeable. On
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(a) Histogram of Execution on ibmq_qasm_simulator (b) Histogram of Execution on on ibmq_athens

Figure 7.2: Histograms for Benchmark 2

Size Statistical metrics

Benchmark F 3 j2 2>AA ?4 8B

1 5 52 367.6072 0.9613 00000 : 0.5283 0.4717

2 5 6 18.7018 0.9935 00000 : 0.0624 0.9590
00100 : 0.0171

Table 7.1: Two exemplary benchmarks on ibmq_athens with transpiled circuit width F and circuit
depth 3 on the quantum computer analysed with the following statistical metrics: j2

distance j2, correlation 2>AA , percentage error (per count) ?4 and intersection 8B

the other hand, using a smaller value would result in accepting results that show a great deviation
from the correct result. This is why 0.9 is considered a reasonable boundary value to classify a
benchmark as failed or successful.
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7.2 The Effect of Circuit Size on Success Rate

In this section, the data from the benchmarks is used in an attempt to determine a maximum circuit
size for a specific quantum computer, in this case ibmq_athens. The success rates of the benchmarks
have been put in Table 7.2. As the size of the transpiled circuit, especially the depth, cannot be
controlled, circuits of similar sizes were grouped together. By grouping the circuits according
to their depth, e.g. all circuits of 3 ≤ 5, it is easy to get a clear overview on the success rates.
These groups are called classes from here on. One class includes all circuits of a specific width
and of a specific range for the depth, like 3 ≤ 5. As the chosen quantum computer ibmq_athens
has five qubits, the maximum width is also five. Entries are structured x/y which means that from
y benchmarks, x were successful. Entries marked as None indicate that no circuit of the given
size could be created. In Chapter 4 a success criterion was introduced: If at least two out of three
benchmarks of a specific class are successful, that class is considered successful as a whole.

Taking a closer look at the values for circuits of width 1, we can see that smaller circuits up to a
depth of 20 run successfully most of the time. There is a significant spike in the error rate above
that with only 11 out of 18 benchmarks being successful when the circuit size is greater than 20.
However, it should be noted that the amount of circuits is relatively small for that group. Most of
the circuits with width 1 were transpiled to rather small circuits no matter how deep the original
randomized circuit was. The available data suggests that for circuits of depth 1, anything up to a
depth of 20 is expected to run successfully but beyond that, the results would be too erroneous.
While the table shows that 4 out of 6 benchmarks for circuits with a depth greater than 30 were
successful, the sample size is very small. Additionally, the success rate for circuits with 3 > 20 is
already too small. Hence, the class of 3 > 30 is considered failed as well. Taking a look at the rule
of thumb metric, this suggests that F3 should be ≤ 20.

The data for circuits of width 2 is very limited, as most circuits were transpiled to have a depth
smaller than 10. The depth of the randomized circuits could not be increased arbitrarily as that
causes the simulator to fail execution. Without the simulator’s result it is not possible to judge the
quality of the result. Table 7.2 shows that anything up to depth 10 is expected to run successfully.
Beyond that, it is not possible to make a valid prediction. For the rule of thumb metric this supports
F3 ≤ 20 again, however it does not give any information on whether larger circuits could run
successfully.

Moving on to circuits of width 3, we see that circuits with a depth of up to 10 are expected to run
with strong confidence. In the interval from 11 to 15, a confident prediction is not possible as
the sample size is too small and circuits with a greater depth than 15 are expected to deliver very
erroneous results and hence should not be executed. In this case, we predict an acceptable result as
long as F3 ≤ 30.

At width 4, we can see that the success rate declines very fast. While it is acceptable for circuits of
depth 10 or smaller, anything larger than that is expected to fail badly. The success rate for circuits
of depth 6 to 10 is made from a small sample of 11 and should be treated with caution. However, the
data for these circuits strongly supports F3 ≤ 20 again. Circuits of size 30 to 40 can be expected to
run successfully too, but the confidence should not be as high as for smaller circuits.

Randomized circuits of width 5 result in circuits of great depth during the transpilation. Hence,
there is a relatively small sample of small circuits but it suggests a similar outcome as the data
for circuits of smaller width. Here, circuits that have a smaller depth than 10 are expected to run
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7.3 Discussion

w = 1 w = 2 w = 3 w = 4 w = 5

d ≤ 5 64/64 44/44 48/48 30/34 13/15
5 < d ≤ 10 33/33 121/125 16/17 8/11 6/7
10 < d ≤ 15 28/31 None 3/4 0/3 1/8
15 < d ≤ 20 21/25 None 1/17 1/26 0/20
20 < d ≤ 25 7/12 None 0/17 0/15 0/27
25 < d ≤ 30 None None 0/2 0/6 0/9

d > 30 4/6 None 0/18 0/18 0/15

Table 7.2: Success rates of benchmarks on ibmq_athens by the size of transpiled circuits

successfully again. For circuits using 5 qubits we therefore accept anything with a depth ≤ 5. As
the data set for 5 < 3 ≤ 10 is very small, accepting it comes with a risk. The data shows that the
success rates drops significantly again when the circuit’s depth is greater than 10 which indicates
that the circuit size massively influences the success rate. The data set for width 5 suggests that
F3 ≤ 25 is definitely acceptable and even values up to 50 can deliver good results but those should
be treated with caution.

The data of all sizes suggests that randomized circuits of sizes up to 20 can be executed confidently
while circuits of sizes between 25 and 40 will introduce small errors. Larger circuits should be
avoided as they most likely will return very erroneous results.

7.3 Discussion

This thesis is a step to benchmark quantum computers to compute the maximum circuit size that a
specific quantum computer can successfully handle. However, there are limitations to the provided
framework which will be discussed in this section.

First, this framework uses only randomized circuits. Randomized circuits are easy to create but they
do not necessarily represent real applications and it is not guaranteed that the same assumptions
hold for non-randomized circuits. However, by executing a large amount of randomized circuits,
it is possible to increase the confidence in the results as a wide range of different circuits will be
tested. While existing implementations of algorithms 1 were used and tested in the beginning of
this thesis, the framework does not support running them automatically. A manual analysis of that
data proved to be difficult as it was not saved in a database with necessary information like circuit
size and counts easily accessible. The approach to use randomized circuits proved to be easy and
efficient to implement.

The sample size is another limitation here, which was mentioned before. As it is not possible to
control the size of the transpiled circuit, it is difficult to get a large sample size for one specific
circuit size. Hence, several of the success rates from before need to be treated carefully because
with a small sample size of two or three, it is still very much possible that only exceptions were

1https://github.com/UST-QuAntiL/nisq-analyzer-content/tree/master/example-implementations
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7 Evaluation

observed and the sample is not statistically significant. Despite the limited amount of data, the trend
seems to be confirmed. There is no irregular observation that suggests circuits of size F3 ≤ 20 are
already a problem for imbq_athens, but instead the data from the different benchmarks is piled up
around that value. Nonetheless, filling the gaps in Table 7.2 and having a bigger sample size will
help with confirming that this assumption really holds.

Furthermore, a very sharp cut is made with the intersection metric at a value of 0.9 when it is
used to evaluate the benchmarks. If the histogram intersection is less than 0.9, the execution is
considered failed as it indicates a significant difference between the two histograms. While it does
offer a first step to judge the quality of a result, it is not ideal. The acceptable error is also dependent
on the application. If quantum computers can be used for e.g. security related applications in the
future, precision will be very important and a value of 0.9 is likely not good enough. It would be
interesting to take the exact value of the intersection metric and use the data to not only predict if a
circuit will run successfully or not, but predict the value of the histogram intersection for unknown
circuits. With that, it would be possible to quantify the error of a given circuit by its size. It would
be a more general approach that would not be based on a strict boundary value.

In this thesis, only four different metrics were used to compare the results of quantum simulator and
quantum computer. While there are more metrics available, in this case the histogram intersection
proved to be useful and provided a good measure on the similarity of the two results.
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8 Conclusion and Outlook

In this thesis, a framework to easily benchmark quantum computers with randomized circuits of
certain size is provided. It creates circuits to execute them on IBM’s quantum simulator and on the
chosen quantum computer and offers an analysis of the collected data. Using the intersection metric,
it is possible to compare the histogram of the quantum computer’s result with the histogram of the
quantum simulator’s result. The quantum simulator returns the correct result and if the intersection
metric returns a value greater than 0.9, the benchmark is considered successful. Correlation and
j2 distance do not provide a normalized and easy to use metric and were therefore not deemed
applicable to judge whether a benchmark ran successfully or not. While the correlation often is
close to 1 even for very erroneous results, the j2 distance can be any positive number and therefore
cannot be used to compare the results of different benchmarks. For that, we need a normalized
metric that measures the error of the result. The percentage error is normalized and provides a good
metric to judge the quality for each count separately, but it does not provide a validation whether
the result as a whole is acceptable. Hence, the decision was made to use the intersection metric
that states how much of the ideal histogram of the quantum simulator’s result is covered by the
histogram of the quantum computer’s result.

With the aforementioned framework, the effect of the circuit size on the success rate can be studied.
We learned that for IBM’s quantum computer imbq_athens, circuits of size 20 are expected to run
successfully. This means that a circuit of width 1 can be very deep and still deliver good results,
while a circuit of width 4 or 5 will return very erroneous results once the depth is greater than 10.
However, the circuit size F3 is still larger for those wide circuits as it goes up to 40 or even 50
with acceptable results. It was not feasible to create circuits for specific circuit sizes, as the actual
size of the transpiled circuit cannot be controlled at this point in time but an overall view on the
data suggests this trend. This value can be used to validate the sharpened rule of thumb metric
F3 < : 1

neff
. With that, the framework provides a good foundation to determine the value 1

neff
for a

specific quantum computer.

Outlook

Going beyond what was covered in this thesis, it would be interesting to have a definite iterative way
to increase the size of the transpiled circuit, which would allow a more precise analysis of the data.
If it were possible to control the size of the transpiled circuit, the next step would be creating large
numbers of circuits of each size. This would allow a prediction with much greater confidence than
in this thesis as a sample size of e.g. 100 is statistical more significant. Furthermore, with more
data available, a machine learning approach becomes interesting. The data that is available through
the analysis can be used for learning to predict the error rate for an unknown circuit of given size.
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8 Conclusion and Outlook

As mentioned before, the framework to execute benchmarks that is provided in this thesis, is very
general. So far, the framework works only with randomized circuits. Extending it to include
implementations of known algorithms would allow further analysis on whether the type of the
circuit affects the error of the result as well. Another possible next step is to extend the framework
further to take the quantum computer’s error rate into account. With that, it would be possible to
validate the refined metric F3 < : 1

neff
. Having a precise prediction on whether a quantum circuit is

executable on a specific quantum computer or not will be immensely helpful when automatically
selecting a quantum computer for a specific quantum algorithm. This will be an important step to
improve the accessibility of quantum computers.
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