
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Distributed Neural Networks for
Continuous Simulations on Mobile

Devices

Thomas Hubatscheck

Course of Study: Informatik / Computer Science

Examiner: Prof. Dr. rer. nat. Kurt Rothermel

Supervisor: M.Sc. Johannes Kässinger

Commenced: November 5, 2020

Completed: May 5, 2021

Abstract

Due to an increasing complexity of numerical simulations, calculating the results usually takes
place on a server with access to large computational resources. To allow for a real-time visualization
to users in an AR setting, these simulations shall run on the mobile device itself. Therefore, a way
to enable the execution on a resource-constrained device is necessary. The goal is to compute the
results of the simulation with a surrogate model in the form of a NN. The model has to comply to
latency and quality requirements for an accurate visualization of results.

This thesis proposes the use of a distributed network architecture. Hence, the interaction of a NN
on the local device with a NN on a nearby server was simulated. LSTM layers and their ability in a
continuous setting was studied to choose the type of network to replace the simulation. The mobile
device was able to request accurate updates from the server during execution. Two operators were
derived by analyzing the behavior of received updates in crucial input areas for the mobile device.
A decision operator determined the frequency of update requests. The merging operator handled
the combination of outputs with respect to a predicted quality and the current delay of received
updates. For the latter, the local results are decoupled from the execution and serve as a way to
adjust the received update. Different approaches to continue delayed updates with the corresponding
local changes to fit the current local step are proposed and evaluated. For this, different artificial
connection delay and offloading settings are considered.

Using LSTM NNs increased the accuracy and showed a more stable execution compared to NNs
without these layers. The proposed methods to merge results decreased the overall MAE from 5%
of the local NN down to 2% with the help of updates every 10 steps, if a delay of 10 steps was
assumed. This is an improvement of 60% compared to the local execution without updates. The
quality-sensitive merging operator was also able to prevent a decrease in quality for bad connection
settings by switching to a local-only execution when detecting that the quality of updates decreased.
The average time elapsed to produce a single output on the mobile device with the ability to request
updates decreased by 63.5% compared to the average inference time of the LSTM NN.

3

Contents

1 Introduction 15

2 Background 17
2.1 Simulations on Mobile Devices . 17
2.2 Machine Learning . 17
2.3 Neural Networks . 18
2.4 Hardware and Software . 20
2.5 Evaluation Method . 21

3 Related Work 23
3.1 Distributed Network Architecture . 23
3.2 Offloading . 24
3.3 LSTM-Networks for Motion and Simulations 25
3.4 Improving Results of Neural Networks . 25

4 Problem Statement 27

5 Comparison of LSTM and Dense Networks 29
5.1 Experiment Setup . 29
5.2 Results . 30

6 Distributed Neural Networks with Offloading and Merging 33
6.1 Merging Operator . 34
6.2 Decision Operator . 40
6.3 Evaluation . 44

7 Conclusion and Outlook 51

Bibliography 53

A Kurzfassung 57

5

List of Figures

2.1 Architecture of a Neural Network [Dil21] . 18
2.2 Structure inside a LSTM-Cell [Ola15] . 19

5.1 LSTM and Dense Networks Comparison . 30
5.2 MAE Comparison of Networks with Five Layers 31

6.1 Offloading and Merging Workflow . 34
6.2 Evaluation of Inputs on the Local Network . 38
6.3 Characteristic of Continued Updates . 39
6.4 Characteristic of Continued Updates . 43
6.5 Results of Mean Merging . 45
6.6 Results of Decoupled Execution . 47
6.7 Results of Quality-Sensitive Merging . 48

7

List of Listings

6.1 Weight Computation for Small, Medium and Large Angles 40
6.2 Function to Determine the Offloading Decision 42

9

List of Algorithms

6.1 Merging algorithm . 35

11

Acronyms

AIT average inference time. 21

AR augmented reality. 15

CNN Convolutional Neural Network. 20

DNN Dense Neural Network. 16

LSTM long short-term memory. 15

MAE mean absolute error. 21

ML machine learing. 15

NN Neural Network. 15

RNN Recurrent Neural Network. 20

13

1 Introduction

Augmented and virtual reality applications visualizing the results of a simulation, such as the muscle
activation of a human arm, require complex numerical simulations as a basis to compute accurate
results. Mobility and flexibility of these applications are decisive aspects for a good user experience.
Especially in augmented reality (AR) the user should not be bound to one place for the simple
reason that the AR applications are built to extend the reality, wherever they are needed. Therefore,
the deployment of these complex simulations to mobile devices is inevitable. Mobile devices such
as smartphones or mixed-reality devices are resource-constrained on multiple variables. These
portable devices come with inherent constraints affecting performance and execution of heavy
computational operations. Constraints include the lack of computing resources and storage space,
which are necessary to stem large simulations as well as running on a finite energy source. This
requires operations on the device itself to be efficient.

A way to compute these simulations more efficiently is with the use of a Neural Network (NN). It
works as a surrogate model to handle a specific task. In this case the simulation underlying this
thesis calculates the muscle activation of a human arm based on input parameters such as the elbow
angle, angle velocity and angle acceleration of an arm movement as well as an optional weight added
to the hand. The muscle activation of an observed arm is later visualized for a user who is wearing
a mixed-reality device such as the Microsoft HoloLens. The user experience depends on accurate,
low-delay outputs for a real-time presentation. Thus, the NN used to replace the simulation should
be able to meet quality and latency requirements to ensure these goals. In contrast to the numerical
simulation which outputs highly accurate results the accuracy of NN depends on many factors.
They implement a special case of machine learing (ML). Hence, the NN has to learn the behavior
of the data with the help of training inputs. A trained NN can outperform other techniques and is
therefore used across various applications, such as speech recognition or image interpretation, as a
powerful tool to stem large computations. Many types of NNs exist, each able to handle specific
tasks better than another type. Thus, the network can be defined particularly for a single task to
achieve an accurate result. Since the simulation, considered in this thesis, utilizes continuous data,
the NN to replace the simulation shall use a special NN implementation, namely long short-term
memory (LSTM), to interpret sequential inputs. These LSTM layers are widely used for speech
recognition and text interpretation. In newer cases, applications with similar goals, such as muscle
activation during a gait cycle [Dao18], also use LSTM NNs to compute accurate outputs.

To investigate the ability of these networks in muscle activation computation, differently shaped
and sized NNs are tested on accuracy and latency. Both of these properties are crucial for a
real-time application to visualize the outputs in an AR environment. Results of this experiment
show that LSTM NNs are suitable for execution on devices with access to sufficient computational
resources and can produce accurate results. Due to the nature of their architecture, running them on
a resource-constrained mobile device is not possible without negatively affecting latency of the
outputs. Based on that, two NNs with different size and shape are deduced to function as surrogate

15

1 Introduction

models for the simulation. To account for a resource-constrained environment, a less accurate, but
faster Dense Neural Network (DNN) for the use on a mobile device is chosen. On the server, a more
accurate, but bulkier LSTM NN can be used due to more available computational resources.

For further improvement of the computation results on the mobile device, both of these NNs form a
distributed network architecture. The mobile device shall be able to request accurate outputs from
the remote network. These updates can be computed with larger resources but still have to fulfill
latency demands for the real-time execution. This idea is also used in other works, and overall
lowered the execution time by a factor of 131 with energy saving on the mobile device [DHS+18]
and improved results in [CVV+16]. In [DHS+18], communication is handled by a wireless network
and not explicitly measured, but still has effects on the overall runtime. Both of these works neglect
local results for steps where offloading occurs. Here, a method is proposed to merge local outputs
with accurate updates from the remote server. Before being able to combine the outputs, received
updates, that may be already outdated due to network latency, have to be adjusted to fit to the current
step in the local execution. To adjust delayed updates, the proposed merging operator considers the
local results on the mobile device to approximate the change of the remote NN between requesting
and receiving the update. Methods to combine the continued update with the corresponding local
output range from simple averaging to a more sophisticated approach which takes age and delay of
updates into account. For the latter, the behavior of continued updates in three different input areas
is analyzed. Depending on the observed change in accuracy over multiple steps after receiving an
update, different weights can be assigned to the local and remote outputs before merging. These
observations do not only matter for combining the two outputs, but also help decide when to request
updates. Additionally, a single update shall be continued and considered for merging with the
following local results for as long as its quality is predicted to be above the local outputs’ accuracy.
Therefore, by continuing the update for steps even after it is received by the mobile device, it is
possible to make the request of updates less frequent and save communication costs.

Because of the inaccurate outputs of the local NN and the constant change of inputs, a decrease
in accuracy of continued updates is inevitable. This means that at a certain step after receiving
an update the continued values can get worse than the local results. Based on this behavior, the
decision operator can modify the frequency to request updates. With this, accurate updates can be
received well before the drop-off point to ensure a precise execution. The thesis covers approaches
to derive suitable offloading and merging methods for the given simulation. With these thoughts
in mind, the distributed network architecture is evaluated on different parameter settings affecting
request of update frequency and the delay of receiving updates. In total, three merging methods are
proposed and their ability to improve the local execution is measured with respect to the overall
accuracy.

The structure of this thesis is as follows: In the second chapter the most important background
information will be introduced, followed by an overview of related work in chapter three. The fourth
chapter contains the problem statement which leads to the comparison of LSTM and dense networks
in chapter five, followed by the derivation and evaluation of the merging and decision operator for a
distributed network architecture in chapter six. The thesis is finally concluded in chapter 7 which
also presents an outlook and suggests future continuation of the developed methods.

16

2 Background

This chapter covers basic knowledge about the challenges of running numeric simulations on
resource-constrained devices and the process of applying ML to train algorithms to solve specific
tasks. A special type of class, which utilizes ML, is the so called NN. The basic structure and
workflow of these networks is described and is also a short introduction to LSTM NNs. Finally,
the specific Hardware and Software to implement the experiments is described, followed by the
evaluation method to measure the accuracy and inference time of different approaches.

2.1 Simulations on Mobile Devices

Numerical simulations can be of complex nature depending on input parameters and desired
accuracy of the result. Usually, servers handle large simulations because they have access to
larger resources than mobile devices. In this thesis the simulation should be able to run on a
resource-constrained device. Having mobile devices as a part of a system usually comes with several
problems and challenges to overcome. Mobile devices have less usable resources for computations
than their stationary counterparts like servers or PCs. Also, they are running on some finite energy
source, further limiting their runtime and thus require efficient computing [Sat96]. An alternative
way to handle simulations is to replace them with NNs. These NNs are capable of computing
accurate outputs, while requiring less resources. This can be further exploited by deploying a
computationally light NN on the mobile device with results in lower quality. An idea to improve
these results is to send frequent updates to the device. These updates should be of better quality
and therefore require the computation on the remote infrastructure to be accurate but also quick to
ensure a timely transmission. Since the server does not have access to the inputs during execution,
the mobile device on its own has to request these updates by transmitting the current input data to
the server. The NN on the server then computes the corresponding output and sends the update to
the mobile device. Therefore, mobile devices have to be able to connect to other devices which can
be located very distant from the end user, hence presuppose a reliable connection. Due to a possible
change in quality and availability of connection depending on the location and overall traffic, this
cannot always be granted. Thus, the mobile device should be able to work on its own for a period of
time before computations get worse [AGH18].

2.2 Machine Learning

Machine learning is about the process of training a machine to perform a specific task. The process
first acquires sufficient training data to ensure an accurate training phase. The algorithm to train
the underlying machine observes outputs by the machine and compares them to the desired output,
defined by the training data. Learning means that the parameters inside the machine change in a

17

2 Background

Figure 2.1: Architecture of a Neural Network [Dil21]

way that produces a more accurate result the next time it sees similar data. Stopping the learning
procedure at the correct moment is key in preventing the machine to over-fit to the training data.
Overfitting can worsen the behavior of the machine, if it is exposed to new data not part of the
training procedure. Thus, the machine should not memorize the outputs for inputs from the training
data but rather learn characteristics and correlations between input and output for a generalized
algorithm. Generalization is a better approach to handle extreme cases in the computation than a
hard-coded algorithm. Also, machine learning bypasses the need to cover each exception, which
we would have to in a hand-written algorithm. The machine is chosen from a wide spectrum of
machine classes and depends on the task it has to fulfill [Sim18].

2.3 Neural Networks

A way of implementing machine learning is by the use of NNs. They consist of layers, which
on their own contain nodes. Nodes of consecutive layers are connected by weights and represent
single values during execution. The first layer of a NN is the input layer and marks the starting
point for propagating the values through the nodes until it reaches the final layer. The input layer
has the size of the amount of input values, while the last layer contains as many nodes as the
specified task requires to represent its output. A simple NN structure can be seen in Figure 2.1.
There, the input layer consists of four nodes. Each of these nodes is connected to every node of the
following layer, labeled as hidden layer. These nodes are then all connected by one weight to the
single output node forming the output layer. For example, in a classification task depending on two
classes, the last layer would consist of two nodes. At inference, the values in each node change by
forward-propagating with the help of outgoing weights. In the simplest way, the following node

18

2.3 Neural Networks

Figure 2.2: Structure inside a LSTM-Cell [Ola15]

multiplies the value of the previous node by the weight and is able to add a bias to the result. The
exact weight is determined prior to execution and is part of the training procedure. The training of
these parameters inside a NN is done by processing data through the network. Data consists of
inputs and the corresponding true outputs. The difference of the results are compared to the ground
truth and a so-called loss is computed by the training algorithm. This loss is back-propagated
through the network to adjust the weights inside the NN. If done correctly, new computations better
represent the desired output. Overfitting to the training data can happen by continuing to train the
NN, even if the quality is not improving any more [Nie19]. This can cause the accuracy of the NN
to decrease, when feeding in new data that is not part of the training process.

NNs of different types perform better or worse depending on the task they have to fulfill. Common
layers include fully connected, dense layers in which case a node of layer x is connected by weights to
all nodes of layer x+1. Dense layers usually perform operations based on linear activation functions.
A convolutional layer implements the use of filters, which originate from image processing tasks and
can enable the NN to assign a certain class to an input image [KSH17]. In a recurrent layer, nodes
not only have connections to nodes in the subsequent layer but are also connected to themselves.
This adds a memory to the NN and can be utilized in tasks which work with continuous data, such
as sentence interpretation or speech recognition. A special kind of recurrent layer is the LSTM
layer. It is a more complex implementation of the standard recurrent type and enables the network
to remember more than one time step. Thus, it can detect and recognize long-term dependencies.
This layer has two paths inside a single LSTM cell which can be seen in Figure 2.2. The top path
represents the cell state and represents the memory. The bottom path handles new input values and
applies operations to decide what information to add to or remove from the memory. The second
path also computes the output of the current step by considering cell state, the memory, old output
and the processed new input to this node. Paths inside the cell by default utilize sigmoid and tanh
functions to process new data, while gates are part of merging data from the two paths [RPNU19].
Standard NNs usually have one time step as input variable. When using LSTM layers, the amount

19

2 Background

of dimensions in the input layer increases by one. This additional dimension can be used to have
multiple time steps as input variable to the LSTM layer. With this it is possible to for example
consider the previous three input values for a single output of the NN. This additional parameter
setting depends on the nature of the underlying data and has to be carefully configured to fit the
task.

The combination of multiple layers then forms the whole NN, resulting in various characteristics. If
it only consists of the most basic dense layers it is called a DNN. A network utilizing convolutional
layers is called Convolutional Neural Network (CNN) and operates in image or video processing
tasks by applying filters to extract information from different parts of the input. Usage of recurrent
layers forms a Recurrent Neural Network (RNN), which is applied when dealing with continuous
data. A special form of RNN is the LSTM-NN. It consists of LSTM layers with the ability to detect
dependencies across multiple time steps. The different types of layers can be arranged in arbitrary
order with each formation leading to new properties of the NN. It is up to the user to define a
desirable NN that is suitable for the task it has to perform.

2.4 Hardware and Software

TensorFlow and Keras are the main components for the development and implementation of the
proposed methods. TensorFlow is a Google Brain project that originated in the year 2011. A first
working framework was called DistBelief and allowed for a distributed training and inference system.
Due to the success of this framework in various tasks, such as image or video classification, speech
recognition, sequence prediction or reinforcement learning, they started developing TensorFlow. It
implements its computations as data flow graphs, allowing for a more flexible execution compared
to their first framework. These graphs consist of nodes which are connected to each other and
implement the use of operations, such as add, matrix multiply or Sigmoid. The latter operation is
widely used in NN environments. Tensors are multi-dimensional arrays which are passed along the
edges and contain the outputs of a specific node. A Kernel is the implementation of an operation,
able to be executed on the CPU or GPU. The programming interface communicates with the system
by using a Session. This can be used to add nodes and edges to the graph. Also, this Session
implements a method to start the computations inside the graph [AAB+16].

On top of this architecture, Tensorflow includes the Keras API. This enables the user to build NNs
more easily due to the available layer architecture. In Keras, it is possible to design and train NNs.
A Keras model consists of combinable modules, such as neural layers, activation functions for
these layers or optimizers. There are two types of models available to use. The sequential model is
suitable for stacking layers where each layer has exactly one input tensor and one output tensor. The
second type is the functional API. It can handle models with multiple inputs, shared layers or even a
directed acyclic graph of layers. Keras also implements the training and inference of models with
the built-in functions fit, evaluate and predict. Trained models, ready for execution, can be saved
and loaded with Keras. With that, the model can be deployed on different devices without the need
to retrain the network [Ten21].

Following are the concrete specifications of the involved hardware and software to implement and
evaluate the experiments. To allow for an accurate comparison of the used NNs the evaluation
takes place on a single device. The machine underlying all development and measurement is a
Personal Computer with an Intel Core i7-4790 quad-core CPU with a base frequency of 3.6GH and

20

2.5 Evaluation Method

16GB DDR3 RAM. The operating system of the Personal Computer is Windows 10 Home Version
20H2 and PyCharm 2020.3.3 is the IDE to implement the code of this thesis. For the programming
of the methods and experiments, Python 3.8 of the Miniconda installation is used. Miniconda
also functions as the package manager for the python environment, with which TensorFlow 2.3.0
and other miscellaneous libraries, such as Numpy 1.19.2 and Matplotlib 3.3.4, can be installed to
evaluate the experiments.

2.5 Evaluation Method

For the comparison of LSTM-NN to Dense-NN, two different metrics are considered. The first one
is the mean absolute error (MAE), which measures the difference between the output of the NN and
the output considered to be true according to the validation data. The equation to compute it is

(2.1) MAE =
1
𝑛

𝑛−1∑︁
𝑖=0
|𝑌𝑖 − 𝑌𝑖 |

with parameters 𝑛, the total number of outputs, 𝑌𝑖, the predicted output for input 𝑖 and 𝑌𝑖, the true
output for input 𝑖. The MAE in the evaluation of different merging techniques represents the average
error across the whole validation data which consists of 10 000 input tuples. To better understand the
meaning of the resulting MAE values it is necessary to clarify what the value range of the outputs
in the validation data is. Each of the five different muscle activation computed by the NN the values
are between zero and one. A low MAE means that the NN can accurately predict outputs for a given
input. Secondly, the evaluation method measures the average inference time (AIT) of the NNs by
computing the time elapsed for the NN to predict the whole data set, then dividing by the amount of
samples in the data set. This returns an approximate value for how fast the NN can compute a single
output. These two values indicate the overall performance by having a trade-off between accurate
results, measured by the MAE, and fast computation of the outputs, measured by the AIT. In the
perfect case, the NN has low error outputs, which it can compute quickly. The second experiment is
studying the distributed network architecture and the improvements in accuracy, made possible by
receiving accurate results which are then merged with local results. Therefore, it only uses the MAE
as a metric. Also, since no actual communication is part of this experiment the distributed setup
utilizes a static test setting. This means that the evaluation of different merging techniques takes
place after the NNs have already computed all outputs for the data set. The data is then sequentially
handled within the evaluation method to simulate a real execution of the two involved networks.
Different offloading and merging settings and methods, mentioned in detail in Sections 6.1 and 6.2,
are measured and compared to learn more about the ability to improve the accuracy of the local
execution.

21

3 Related Work

The following sections cover related work in the field of distributed network architecture, offloading
methods, utilization of LSTM networks to compute simulations and techniques to improve the
accuracy of NNs. Various relevant articles are presented and put into context with respect to this
thesis, showing similarities and differences in the approach to solve existing problems.

3.1 Distributed Network Architecture

There have been many attempts to distribute computation across multiple devices. These approaches
also consider the mobile device to not be able to do heavy computations reliably. Thus, the
calculations are offloaded to the cloud or edge cloud. Dibak et. al. [DHS+18] use the HoloLens as
a resource constrained device for running an interactive mobile simulation. In a basic approach, a
framework for distribution to a remote server based on the reduced basis method is proposed to
improve latency and energy consumption. The heavy computational part is calculating the reduced
basis. This is done once prior to execution for known input variables. If the input variables change
during execution, the mobile device can request updates to the reduced basis. In all approaches, the
received reduced basis is stored on the mobile device to easily access it while execution, and thus
allows the simulation to meet quality requirements. They managed to achieve a 131 times faster
execution and consumed 73 times less energy compared to offloading everything to the server.

In other approaches, not only a cloud server is used to offload computations, but also edge cloud
devices are used to help distribute. These edge cloud devices are usually closely located to the
mobile device and can thus benefit from a smaller latency considering communication, while still
having considerable more available resources. This property is used for image classification by
Teerapittayanon et al. [TMK17]. If the mobile device realizes that it can not reach a certain accuracy,
the mobile device forwards the output to the next higher level. Results of this work show that it is
able to meet requirements with higher fault tolerance, but having 20 times less communication,
compared to standard offloading methods.

In [MCN+17], Mao et al. even go one step further and utilize multiple mobile devices to partition
the Deep Neural Network. With this, they reduced computation cost and memory usage for a
single device. They were able to accelerate computation by 2.2-4.3 times when going from two to
four worker nodes and also achieved a reduced data delivery time. On the lowest level, the NN
can be configured to support detecting inaccuracy in its computation and decide that offloading is
beneficial. Multiple exit points are implemented in-between layers of the NN, which can be used to
offload the computation to the server [SZMZ20]. This resulted in a latency reduction in the overall
interpretation of a point cloud.

23

3 Related Work

The work that is most similar to this bachelor thesis is the so called ’Big-Little approach’ by Coninck
et al. [CVV+16]. It proposes the usage of a big and a small network for a classification process.
While the small network is trained on some output classes on the device, the big network can be
used to determine the rest of the classes with high accuracy on the server. The goal is to decide,
based on the output of the small network, whether it should offload to the big network and then
use the big network to classify images that are part of a high-priority class. They tested this on a
Raspberry Pi and an Intel Edison and found out that using this principle of prioritizing yields good
results on the classification task on the little network. While this thesis also uses a small, worse
network and a big, better network for the task at hand, it is still different in not having an output that
can be prioritized. Another thing to mention is that the results of the big network are considered to
be true and the computations on the small network are discarded. This is also the case for all the
works mentioned above. Merging of results from the cloud server is not a considered factor when
using distributed architecture as it is good enough already for the goal of reducing computation on
the device and improving latency and no use case for time series data is mentioned in the related
works. In general, it is a rare case of a distributed setting to work with numerical simulations. Thus,
this thesis is trying to combine the benefits of distributed setting by not only offloading computation,
but also utilizing the results with higher accuracy.

Another challenge is that a lot of works focus on the training process when talking about a distributed
NN. There are various works on how to use distributed training. One of them is [DCM+12] by
Dean et al. and proposes a framework called DistBelief, which utilizes a cluster of machines to train
DNNs and found multiple effective strategies. Typical bottlenecks are communication overhead,
parallelization of matrix operations and training data distribution [KP16]. The training phase of
NN should not be neglected but is not further considered. The focus of this thesis is to determine a
way of utilizing the results received from the remote NN to improve the overall performance of the
distributed architecture.

3.2 Offloading

There are several approaches on how to offload efficiently and how to figure out the best decision
when and what to offload. This ranges from using an inequality that relates computation offloading
system parameters to arithmetic intensity of a computation to determine which computations benefit
from offloading [MM16] over using Deep Reinforcement Learning [HBZ18] and Feed Forward
Networks [YCB+20]. Another approach is to predict the energy saved on the mobile device by
offloading a certain task or to offload tasks which require the least data rate [WHY+17]. Dibak et al.
[DDR15] take advantage of the ability to offload to a server and managed to minimize the usage
of the mobile device. They improved the energy consumption, while still fulfilling deadlines to
receive an accurate result in time. This work particularly is in direct contrast to the goals of this
bachelor thesis. The main aim is to minimize the server communication, while also maintaining an
accurate computation of the simulation on the mobile device by using the remote NN to request
frequent high-quality updates.

24

3.3 LSTM-Networks for Motion and Simulations

3.3 LSTM-Networks for Motion and Simulations

LSTM-Networks are widely used for applications with continuous data. In most cases, they function
as a model to handle speech recognition and text interpretation. Also, modeling turbulent flow
LSTM-NNs can be used because they can interpret temporal dynamics of turbulence [MG18].
Cecchini et al. [CLS+14] trained a NN with data from solving the inverse problem of evaluating a
kinematic model while cycling and the force distribution along the limb to gather information about
the applied muscle forces. NNs are used to compute angles and forces based on the movements of
knee, hip and ankle. The resulting NN is not a LSTM-Network, but still achieves an accuracy above
99%. In another case an actual LSTM-Network is used to predict skeletal muscle forces from joint
kinematics data during a gait cycle where the input data is evaluated separately for three muscles
[Dao18]. A relative root-mean-square error of less than 10% is achieved by this method. This is
in direct correlation to this thesis because a LSTM NN functions as a mean of predicting muscle
forces based on similar input variables. The difference is that for this thesis the LSTM based NN
runs on the remote server because a resource-constrained mobile device is not able to run these
computationally heavy networks. Therefore, this thesis uses a DNN planned for future deployment
on the mobile device, while a more powerful LSTM NN for execution on the remote server is used
to compute accurate updates.

Other works focus on classifying and predicting movement sequences with the use of LSTM-Layers.
Bao et al. [BZX+19] use a CNN-LSTM-Framework for wrist kinematics estimation based on
surface electromyography to solve sequence regression. This approach outperformed other machine
learning methods that do not utilize LSTM properties. Carrara et al. [CESZ19] also focus on
predicting movement and annotate actions like walking or doing a cartwheel to sequences of frames.
The whole body is analyzed and input into several LSTM NNs, each having distinct properties and
architecture. Improvements in quality and inference time have been achieved with this method.
This shows another possible benefit of LSTM NNs that is not part of this thesis. The tasks in these
works is different to computing outputs of the underlying simulation to this thesis. For prediction
tasks, outputs are of the same nature as inputs and LSTM NNs can more easily model dependencies
across multiple steps. Contrary to that, the simulation at hand uses observations of a human arm
and maps these to the muscle activation in the current position.

3.4 Improving Results of Neural Networks

Improving and combining different results to increase the overall performance is the main goal
of this thesis. When working with Neural Networks, there are multiple approaches available on
how to combine results of different networks. Hansen and Salamon [HS90] propose the use of
a majority voting scheme, where the result that most networks agree on is considered to be an
accurate output. A higher accuracy than using only one of the given networks has been achieved by
this work. Another method is using a simple average over five different networks. This resulted
in a better generalization and a higher fault tolerance [LS89]. There are also more advanced
techniques available like the theory of evidence, with which statistical information about the relative
classification accuracy of several networks is gathered. Based on that, different weights are applied
when merging the results of these networks [Rog]. Similar to that, Perrone and Cooper [PC95]
proposed a method called Generalized Ensemble Method, which is a weighted combination of

25

3 Related Work

multiple results to minimize the mean square error of these networks. They found out that it yields
better results than averaging outputs or only taking the best individual result. This thesis implements
similar approaches and tries to better understand the nature of combining results from individual
NNs with different prediction strength. The proposed merging operator contains simple methods
like averaging, but also more sophisticated methods that account for delay and quality of outputs.
Received updates additionally shall be continued with the help of the local behavior and thus allow
for a consideration across multiple steps.

26

4 Problem Statement

The problem underlying this thesis is to enable the execution of a surrogate model of an interactive
and complex numerical simulation on a resource-constrained mobile device. The outputs, produced
by the simulation, are then visualized in real-time for a user in an AR environment. Therefore, the
results have to be computed efficiently and accurately. A short computation time ensures a high
rate of results, while outputs also have to be accurate for a correct presentation to the user. Both
properties are necessary for a smooth and exact visualization of results.

Currently, mobile devices do not have the required computational resources to properly execute
these numerical simulations, without impacting the accuracy of results. Hence, a different way of
computing the outputs of the simulation has to be considered. A more efficient approach is the
use of NNs, functioning as surrogate models to replace the simulation on a mobile device. This
is combined with a server-assisted execution of two NNs to form a distributed neural network
architecture. Here, a less complex, resource-efficient NN is proposed for the use on the mobile
device to form the local model, while a more complex NN with access to more resources is thought
to be deployed on a server to form the remote model. Results, computed on the server, are expected
to be of higher quality, and therefore shall be used to improve the accuracy of the local model. With
this working properly, the mobile device will be able to produce precise results for the visualization,
while also bypassing the need to have complex simulations running on its own resources.

To achieve this goal, the thesis tackles the following problems of having an accurate distributed
execution. First, different implementations of NNs, particularly the use of LSTM layers compared
to the use of only dense layers, are analyzed with respect to quality and latency. This is investigated
by changing the number of layers and number of nodes for both types of NNs and then measuring
the accuracy and inference time of resulting models. Secondly, designing a method to combine
local and remote results is key for an improved performance. A substantial problem of using remote
updates is, that due to the inherent communication cost, these updates arrive with a delay on the
local device. Since the computation of the local model continues while waiting for the update, the
quality of the requested update decreases with an increasing delay. This is because of continuously
changing input values. Therefore, upon receiving the update, it has to be adjusted to fit to the
current step in the execution before merging.

A method considering local output changes is proposed for continuing the remote update. The
merging operator handles both the adjusting and the final combination of the local and remote
outputs. Merging happens, in the simplest way, by taking the mean of local and remote output, or,
for a more complex method, by assigning weights to each output with respect to the behavior of
continued updates in different input areas. A single update is not discarded after the use in the
step upon arrival, but rather continued for the following steps to continuously benefit from the
high quality and decrease the need for communication between local and remote architecture. The
counterpart to the merging technique is the decision operator. It is responsible for the frequency of
requesting updates. This, like the merging operator, runs on the mobile device simultaneously. The

27

4 Problem Statement

proposed offloading strategy uses fixed update frequencies across the available data for evaluation,
but also introduces a way of dynamically determining a required minimum request frequency to
ensure an improved execution.

28

5 Comparison of LSTM and Dense Networks

This experiment sheds light on the capabilities of LSTM-Networks in the use case of continuous
simulations. The goal is to train and evaluate NNs with different amount of layers and nodes present
in each layer. The thought is to compare the NNs based on AIT and MAE by looking at NNs with
similar architecture. The following subsections show the implementation and results of the creation
and evaluation of 500 distinct NNs.

5.1 Experiment Setup

Training and evaluating NNs takes a lot of time. To cover all possible unique NNs is mere impossible
to do because of all the different parameters that can be changed during the creation of a NN. Some
of these parameters, including amount of layers, amount of nodes, layer types and corresponding
activation function, are covered in Section 2.3. Since there is no formula to create the perfect NN
for a specific task, this comes down to applying knowledge about the task and finally trial and error.
In this experiment, NNs with three to seven layers are considered to produce accurate results. The
structure of these networks follows a specific pattern. Early layers contain fewer nodes than middle
layers, which on their own contain more nodes than layers close to the output. This is no claim that
it is the best structure but rather what has worked in previous tests and is now examined, given data
from a continuous simulation.

The next part describes the method to generate different network architectures. A simple loop
creates the aforementioned NN structures and saves them in arrays for further processing. For
instance, a NN with five layers has 𝑖, d1.5 · 𝑖e, 2 · 𝑖, 𝑖, 5 nodes respectively for each layer and uses
𝑖 ∈ {1, ..., 50} to produce the fifty different NN shapes. Notice how the last layer is a fixed number
because the output in the data set consists of five values. Thus, each NN has to have an output
layer with five nodes. The NNs consist of l layers, with l ranging from three to seven. This method
outputs an array that contains 50 unique structures for NNs for l layers. The array functions as the
input into a method to create NNs consisting of l dense layers or l-1 LSTM layers, combined with
one dense layer. Dense NNs are build by defining a TensorFlow sequential model and adding layers
according to the input array. All but the last layer use a rectified linear activation function. The final
layer, which is computing the output, utilizes a linear activation.

LSTM NNs follow a similar scheme. Again, a TensorFlow sequential model is defined and l-1
LSTM layers are added before adding a dense layer as the output layer. The LSTM layers use the
hyperbolic tangent activation function, with the dense layer using a linear activation. For all layers
prior to the last LSTM layer the option to return sequences has to be set to True so the next LSTM
layer receives a correct input shape. The resulting models are compiled with the TensorFlow Adam
optimizer and the mean squared error is defined as the loss function. The training process of each
model uses a maximum of 50 epochs to avoid overfitting. Another measure taken to lessen the

29

5 Comparison of LSTM and Dense Networks

Figure 5.1: LSTM and Dense Networks Comparison

chance of overfitting to the training data is to define a callback inside the TensorFlow fit function,
which stops the training early, if a user defined criteria eventuates. In this case, the training process
stops, if the MAE of the training data has not changed by 1 · 10−4 over the course of the last two
epochs. The early stopping callback prevents the NN to stay in a local minimum of the loss function
for longer than necessary. Although it is possible to use multiple time steps as input of a LSTM NN,
the networks trained in this experiment do not use this feature. This is due to the fact that in earlier
tests, networks that used multiple time steps could not achieve a significant increase in accuracy,
while the AIT increased. The behavior of NNs with a different amount of input steps is not further
investigated in this thesis. Thus, in this thesis, both dense and LSTM NNs utilize one input frame to
compute results. The final function takes an array containing the trained models from the previous
step and computes the AIT and the MAE of each model as described by the evaluation method in
Section 2.5.

5.2 Results

Evaluation of multiple different network structures provide an overview on the abilities of LSTM
NNs and dense NNs in computing outputs for a continuous simulation. For each type, fifty networks
with three to seven layers, 500 in total, are trained as described in the previous section and then
evaluated on the validation data. Figure 5.1 shows the results of the evaluation. The subplots (a)
to (e) display the different outcomes of utilizing three to seven layers respectively. Each subplot
consists of fifty dense networks (red) and fifty LSTM networks (blue) for one layer count. The
horizontal axis represents the MAE across the validation data. The vertical axis shows the AIT in
10−5 seconds.

When looking at the lower layer numbers, concretely plots (a) and (b) of Figure 5.1, no advantage of
using LSTM can be seen, as the majority of networks achieve a MAE of 0.020. DNNs have an AIT
of 15-25 `s, while the mean value for LSTM networks is between 30-40 `s. Some networks even

30

5.2 Results

0 200 400 600 800 1000
Input Tuple (Sorted by Angle)

0.00

0.01

0.02

0.03

0.04

0.05
m

ae
LSTM vs DENSE (5 layers)

DENSE
LSTM

Figure 5.2: MAE Comparison of Networks with Five Layers

drift off to higher numbers. That shows that for a low amount of layers we can expect an increase
in inference time with a factor of two. This trend also continues when using five to seven layers.
While dense networks carry on having an AIT of 20 `s, their LSTM counterpart has an increase in
inference time from 50 `s on average when using five layers (subplot (c) in 5.1) to 90-100 `s in the
case of networks with seven layers (subplot (e) in 5.1). That shows a five times higher inference
time than dense networks with the same network architecture. On the plus side, the MAE drops
below 0.010, with many networks reaching values of 0.007. DNNs reach values of 0.0125, which is
minimally worse than the performance of LSTM networks. In the case of seven layers, we can see
that many dense networks do not achieve a MAE below 0.10. Contrary to that, the MAE of only
four LSTM networks rise above that threshold.

To get a better understanding how well the different types of networks perform when using the
same layer and node structure, the following showcases the difference in performance of a single
LSTM and dense network with five layers. Each NN contains layers with 20, 30, 40, 20, 5 nodes
respectively, starting from the first hidden layer and ending at the output layer. Figure 5.2 displays
the variation of results by taking a look at the MAE for single inputs to both NNs. The horizontal
axis represents each fourth input tuple of the validation data which is sorted by the input angle. The
vertical axis shows the MAE of each step. Red dots and blue triangles correspond to values of the
dense and LSTM network, respectively. In the first half of the validation data, both networks have
MAE values close to zero. For the DNN, the majority of values are below 0.01, while the MAE
values for the LSTM NN are below 0.004. Additionally, the DNN has more outliers compared to
the LSTM network. This behavior is acceptable for both NNs as the overall range of output values
for the validation data is between zero and one. In the second half of inputs, the differences of
both types become explicit. The MAE values of the dense network spike into regions of 0.02-0.04,
while most values of the LSTM network stay below 0.02. Both NNs perform worse for higher input

31

5 Comparison of LSTM and Dense Networks

angles but the LSTM outperforms the dense counterpart in the considered areas. This behavior is
also represented in the total MAE of the NNs. The DNN used for this comparison has a MAE of
0.0178 while the LSTM network achieves a value of 0.0084 and thus produces more stable and
accurate outputs.

32

6 Distributed Neural Networks with Offloading
and Merging

Based on the results of the previous experiment, two networks are selected to be used in the
distributed network setting. The goal of this chapter is to learn about the ability of frequent,
high-quality updates in improving low-quality outputs by merBging the two separate results on the
mobile device. For this, the methods described in section 6.1 and 6.2 are evaluated on different
parameters. Before evaluating, two NNs are determined to replace the simulation. One for the
execution on a mobile device and one to function as the NN to handle update requests. Following
the constraints of mobile devices as outlined in section 2.1, this test considers a NN that is quick at
producing outputs for the simulation. The downside of having a fast inference time comes with the
challenge of achieving accurate outputs.

Therefore, a DNN shall be used as the component on the resource-constrained device. This NN
consists of a single hidden layer with ten nodes, followed directly by the output layer with five
nodes and forms the local model. The network has an AIT of 12.5 `s and achieves an average MAE
of 0.0511 on the validation data. A LSTM NN is trained to function as the remote counterpart.
Since it is responsible for producing accurate results, the NN uses a more complex architecture. It
consists of seven layers in total, six of them being LSTM layers with nodes distributed across these
layers, in a way that follows the same principle as used in the Chapter 5. Here, this network uses 40
nodes in the first hidden layer and has the maximum amount of nodes in the third layer. This layer
consists of 100 nodes before declining to five nodes in the seventh layer, forming the output. The
network has an AIT of 100 `s, and therefore is 8 times slower than the counterpart planned for the
mobile device. The overall MAE is at 0.0107 which is close to five times better than what the dense
network can achieve on the validation data.

One thing to mention is that the goal was to define a small and fast NN for the execution on the
mobile device to benefit from remote updates. Although it is possible to define a NN that produces
more accurate results, this would also mean an increased resource usage. Therefore, a simple NN
shall benefit from accurate updates to have an accuracy that is close to the performance of a bigger
NN running on more resources. The overall difference in the amount of trainable parameters of
both NN correlates to the resulting accuracy of the two NNs in this distributed setting. The DNN
only has 105 trainable parameters, while the LSTM NN has 142 000 parameters, adjustable during
training.

Taking a look at the communication between the devices in a distributed setting, an inherent delay
exists between requesting and receiving updates. A delay of zero steps would mean that if the
mobile device requests an update, it would be instantly available to use. Generally, this is the best
case scenario but in reality unachievable due to communication overhead and inference time of the
remote NN. Here, the NN functioning as the part on the constrained device is eight times faster
which equals to a delay of minimum eight steps. This holds if we want to compute as many outputs

33

6 Distributed Neural Networks with Offloading and Merging

time step
𝑡 𝑡 + 𝑑 𝑡 + 𝑓 𝑡 + 𝑓 + 𝑑 𝑡 + 2 𝑓

re
qu

es
t(

t)

re
ce

iv
e

(t)

re
qu

es
t(

t+
f)

re
ce

iv
e

(t+
f)

re
qu

es
t(

t+
2f

)

lifespan of update t

request frequency f

delay d

Figure 6.1: Offloading and Merging Workflow

as possible per second, but still neglects the communication cost. If we require lower frame rates,
the delay can be lowered by slowing down the computation on the mobile device, because fewer
steps per second have to be computed. In this experiment, we take a look at the case of achieving
a high frame rate. Thus, it considers the situation that inputs are handled immediately after one
another.

In this chapter, the setup and technique for merging is described and different methods to combine
outputs are derived by analyzing the behavior of outputs for three input angle areas. After that, a
quick take on the decision operator discusses the effects of connection availability on the requesting
of updates. The final sections present the results of evaluating the distributed architecture with a
delayed arrival of updates and the derived merging methods.

6.1 Merging Operator

In the future, the merging operator shall run on the mobile device and then listens for incoming
updates. It is responsible for combining local with remote results in a way that improves the
accuracy of the local outputs for multiple steps after arriving at the mobile device. This is done
by not only adjusting the update to fit to the current step, but also continuing it with the help of
local changes. This section is about the general workflow of the merge process and its different
components. Also, three different merging methods are derived and described for the use in the
evaluation later in this chapter. To start things off, consider the application running in local-only
mode with no updates currently available on the device. In Figure 6.1, the workflow of requesting
updates is shown for a setting that assumes that we are currently at time step 𝑡 of the computation
and have an update frequency of 𝑓 . At this time step 𝑡, the decision is made that we want to request
an update from the remote NN. The mobile device sends a request, and we temporarily save the
local result of time step 𝑡, in the following called 𝑙𝑡 . We then receive the update for step 𝑡, called 𝑢𝑡 ,

34

6.1 Merging Operator

with a delay 𝑑 at time step 𝑡 + 𝑑. This update corresponds to step 𝑡 and therefore has to be adjusted
to be applicable in the current step.

(6.1) change𝑥 = 𝑙𝑡+𝑥 − 𝑙𝑡

The idea is to use the change of the local network over the past 𝑑 steps which is computed with
Equation 6.1 by substituting 𝑥 with 𝑑. The next step is to continue the update from step 𝑡 by using
the change we just calculated.

(6.2) continued𝑡+𝑥 = 𝑢𝑡 + change𝑥 .

The continued update gets computed by adding the change to the update as shown in Equation 6.2.
Now, both the continued update and the local result of step 𝑡 + 𝑑 can be merged.

(6.3) merged𝑡+𝑥 = 𝛼 · continued𝑡+𝑥 + (1 − 𝛼) · 𝑙𝑡+𝑥

The merging formula is shown in Equation 6.3. It uses the parameter 𝛼 as a mean of determining to
which extent the continued update should contribute to the merged result. The parameter 𝛼 can
take values between zero and one. Setting 𝛼 to zero means that only the local result is considered,
while a value of one corresponds to taking only the continued update as the final output. More
on determining the value of alpha is presented later in this section. For now, we get back to the
merging workflow as shown in Figure 6.1. Step 𝑡 + 𝑑 marks the point in lifespan of the remote
update 𝑢𝑡 , where it is possible to consider it for merging with the local output. This is the interval
in which the update is part of the merging operation. In the case of a fixed request frequency 𝑓

and a fixed delay 𝑑, this interval is exactly 𝑓 steps long and reaches from receiving one update to
receiving the next update. For the next 𝑓 steps, the merging operator calculates the local change
for each of the following time steps back to step 𝑡. This means that the next merged result in the
sequence can be achieved by replacing the index 𝑥 with 𝑑 + 1 in Equations 6.1 to 6.3. As already
mentioned, this continues for 𝑓 steps until step 𝑡 + 𝑓 + 𝑑 − 1 is reached. Before that, at step 𝑡 + 𝑓 ,
the decision operator requests a new update which will be received at step 𝑡 + 𝑓 + 𝑑. At this point it
will start replacing the current update 𝑢𝑡 and begins the active phase in its own lifespan. The cycle
then continues for the following 𝑓 steps until the next update arrives at the local device.

Algorithm 6.1 Merging algorithm
Input: local result at request: 𝑙𝑡 , current local result: 𝑙𝑡+𝑥 , remote update: 𝑢𝑡
Output: merged output: merged𝑡+𝑥

procedure Merging(𝑙𝑡 , 𝑙𝑡+𝑥 , 𝑢𝑡)
localChange← 𝑙𝑡+𝑥 − 𝑙𝑡 // local difference between request step and current step
continuedUpdate← 𝑢𝑡 + localChange // adjusted remote update to fit for the current step
𝛼← ComputeAlpha()
mergedOutput← 𝛼 · continuedUpdate + (1 − 𝛼) · 𝑙𝑡+𝑥 // merging with parameter 𝛼
return mergedOutput

end procedure

function ComputeAlpha()
return 𝛼 // 𝛼 is calculated based on the merging method

end function

35

6 Distributed Neural Networks with Offloading and Merging

The general procedure is the same for all following merging methods and can be seen in Algorithm
6.1. It shows the procedure for of merging local and remote output for one step, and utilizes the
aforementioned equations. These procedures are called for each step in the computation. The
additional calculations per step consist of a fixed number of operations to compute the local change,
here this is five subtractions due to the network having five output values, see Equation 6.1. To get
the continued update, calculated in Equation 6.2, the local change is added to the remote update
resulting in a constant five additions per step. Calculating the weight parameter 𝛼 is left out for the
runtime analysis as it depends on the merging method and can range from a simple table lookup
to a more complex calculation, depending on other parameters, such as delay or total age of the
continued update. The additional runtime of adjusting the update was evaluated and showed an
average time consumption of 10 `s. Compared to the AIT of 12.5 `s by the local model this means
that we close to double the cost for each step by adjusting the received update. After computing
the continued update, both outputs are merged together to form the final output. This consists of
ten multiplications, one subtraction and five additions. Merging the outputs was also evaluated on
additional runtime for each step. Results showed that it took 14 `s on average. In total, we have six
subtractions, ten additions and ten multiplications for one step. This stays constant for the whole
data because the output size does not change. With the resulting extra runtime per step, the average
processing time increases from 12.5 `s to approximately 36.5 `s.

For a real distributed setting containing NNs on different devices, additional communication costs
emerge when requesting updates from the server and receiving them on the mobile device. Since
the evaluation takes place on a single endpoint in this thesis, thus no external communication is
necessary and not further investigated to account for additional overall cost. Comparing this value
to the runtime of the LSTM NN shows that this approach is three times faster than running the
LSTM NN on the underlying device for evaluation. When evaluating in a real distributed setting, the
execution on the mobile device is expected to have an increasing AIT for the base computation, but
also an increased additional time consumption to merge the outputs. With a changing approach to
calculate the weight parameter 𝛼, the runtime improvement can decrease. This has to be noticed as
the weight value decides how much the update contributes to the merging process. In the following,
we take a look at three different merging methods and their approach to determine the parameter
𝛼.

6.1.1 Mean Merging

The first method implements the combination of local and remote results as mean merging. This is
a naive way of combining the outputs. It takes both the local output and the continued output and
adds them together before dividing by two, hence the name mean merge. The parameter 𝛼 is set to
a constant value of 0.5. This method does not account for any quality of the continued update and
marks the starting point for the next approaches. Hence, this and the following approaches should
consider a parameter that represents the maximal lifespan before the continued update gets worse
than the local output. This behavior is further investigated in Section 6.1.3. There, a way to derive
a possible dynamic setting to determine the lifetime is proposed. For a well-developed merging
operator the goal should be to derive a parameter that represents the maximal lifespan before the
continued update gets worse than a local output. The next approach tries to further exploit the

36

6.1 Merging Operator

increased accuracy of continued updates by assigning a smaller weight to the local output when
merging. This can increase the overall accuracy but still has the same problem as the mean merging
approach by not being able to detect a decreasing quality.

6.1.2 Decoupled Execution

If we think again about the proposed method of a highly accurate NN that provides the local
execution with outputs, we can question why we do not use the update with a higher value of 𝛼.
This second method implements this thought by setting the 𝛼 to a value of 1.0 in Equation 6.3.
This way, the factor of utilizing the local result for the merged output turns zero. The continued
update immediately turns into the final output of the current step. But as for all merge methods, we
still need the local result to compute the local change. The outcome of this approach represents a
decoupled execution. In general, we would expect the remote update to be of higher accuracy than
the local computations. Thus, taking the update with a higher percentage is desired.

The problem lies in continuing the remote output with the help of local changes. By continuing the
update, it is possible for the accuracy to decrease over time. Following that, if we still consider the
value of parameter 𝛼 to be one, the final outputs for the decoupled execution can be worse than the
local outputs, while still being considered for combination. This observation is thoroughly described
in Section 6.1.3. Based on the results there, the decoupled execution would also produce worse
results than the mean merging. In earlier stages, the method of only taking the continued update
yields better results, but after the intersection between local and continued results the averaging
of results would decrease the negative effects. The next merging method tackles this problem
of considering inaccurate values by analyzing the properties of continued updates. It proposes a
possible solution to detect and avoid the situation of considering less accurate continued updates for
the final output.

6.1.3 Quality-Sensitive Merging

The third and most refined approach uses a quality-sensitive merging method with a dynamic value
for 𝛼, according to the current delay and properties of the current inputs to the NN. Figure 6.2
shows the behavior of the local NN for one input weight in the data set. The steps on the horizontal
axis are sorted by the angle of the input. Each blue dot represents the MAE of a single input to
the local NN. We can see that the network performs well on inputs zero to 750 and 1500 to 2400
with a MAE of below 2% and below 5% for the first and final section of the inputs, respectively.
These are areas with inputs having small and large input angles. For the medium angles, the NN
struggles to produce accurate outputs with the MAE fluctuating from below 5% up to 15%. This
way, we can divide the inputs into three differently performing sections depending on the angle of
the current step. In this case, the first 25%, the middle 50% and the final 25% of inputs for one
input weight use different methods to determine the parameter 𝛼. It is necessary to again clarify
that the value range of the outputs in the validation data is from zero to one. Having MAE values of
2 to 5% shows that this is already in the lower bound for possible MAE values.

To derive a formula for 𝛼, we take a look at the accuracy of continued updates, depicted in Figure
6.3. It consists of small sections inside the three partitions, corresponding to small, medium and
large input angles. Each figure shows the steps after the arrival of an update on the horizontal

37

6 Distributed Neural Networks with Offloading and Merging

Figure 6.2: Evaluation of Inputs on the Local Network

axis. The update is therefore received at step zero. The vertical axis represents the MAE of the
different computations. Shown in this figure are the performance of the local NN (blue), remote
NN (green), continued update (red) using the decoupled merge method as previously described
and the merged output (orange). The method for calculating the merged output is derived in the
following by looking at the behavior of the continued update.

When inspecting Figure 6.3a, we can see that the continued output is accurate in the beginning steps
but then drops off over time, intersecting with the local performance at step 125. Taking a look at
the properties of the red line reveals a non-linear decrease in accuracy. Therefore, when merging in
the first 100 steps, the continued update is considered with a weight of one. At 100 steps after the
request, the value of 𝛼 linearly decreases and 𝛼 turns zero at 125 steps after receiving the update.
This means that if no update is received after 125 steps, the merging operator forces the application
to switch to a local-only execution.

For small angles, the function in Listing 6.1 calculates 𝛼 with the previously described properties.
For angles in the lower 25 percentiles, the lifetime is set to 100. This marks the start of a decreasing
weight being applied to the continued update. The orange line in this figure shows the MAE of the
continued update merged with the local result using this exact formula to determine the value of 𝛼
for each step. This lowers the MAE in this snippet from 0.0139 to 0.0120. The main difference can

38

6.1 Merging Operator

(a) Small Angle Area (b) Medium Angle Area

(c) Large Angle Area

Figure 6.3: Characteristic of Continued Updates

be seen in steps greater than 125 where the usage of the continued output is worse than the local
execution. There, the switching to local-only execution of the merge method shows its impact by
disregarding the continued update in these steps.

A similar behavior can be seen in Figure 6.3b. The only difference is that in the medium angle
area the quality of the continued updates decreases faster. For this specific section of inputs, the
intersection between local and continued update occurs at step 75. Based on that, the function
in Listing 6.1 calculates the value of 𝛼 in a way that 50 steps after request, the continued update
linearly decreases its contribution to the merging process and turns zero at 75 steps after request.
This is done by setting the lifetime to 50 steps for this part of the input. The orange line in Figure
6.3b shows the MAE of outputs merged using the proposed function to calculate 𝛼. The MAE of
merged outputs over the 200 steps explored here is 0.070, while only using the continued output
results in a MAE of 0.104. This is due to the decrease in accuracy of the continued output after step
75 where the merge method takes the local outputs and ignores the continued update.

The final 25% of data for each weight uses a different approach to calculate 𝛼. As we can see
in Figure 6.3c, the continued update follows a linear decrease in accuracy before intersecting
with the local results at step 175. For this area, we again use the function in Listing 6.1 as the

39

6 Distributed Neural Networks with Offloading and Merging

Listing 6.1 Weight Computation for Small, Medium and Large Angles

def calculate_alpha(request_step, current_step, angle):

if angle <= 0.25: # small angle

lifetime = 100

if 0.25 < angle <= 0.75: # medium angle

lifetime = 50

else: # large angle

lifetime = 150

if current_step - request_step < lifetime:

alpha = 1.0

else:

alpha = 1 - (1 / 25 * (current_step - request_step - lifetime))

return max(alpha, 0)

formula to calculate 𝛼. This time, for the first 150 steps, only the continued update is considered.
Parameter 𝛼 then decreases linearly over the next 25 steps. This way, we get an 𝛼 of zero for
merging computations 175 or more steps after requesting the update. For the special case of the 200
steps shown in this figure, this method decreased the MAE from 0.0247 down to 0.0171% when
comparing to the local results. It also preserved a similar MAE compared to the continued update
method. This again shows the desired behavior as it utilizes high accuracy outputs in earlier stages
and then switches to local outputs for areas where the continued update would mean a decrease in
accuracy.

These equations can be further refined and by no mean fit these sections perfectly but rather serve
as a starting point and show an early approach to determine the merge parameter 𝛼. They are
approximations to the behavior across multiple input values which can be improved by dividing the
input set into more than three parts. Each part then has an own equation to calculate the value of 𝛼.
The derived equation can be tweaked to better fit the properties of the continued output in a smaller
section of input values. That way, the merging operator can be optimized for better detection of
when the continued output is no longer worth considering for the merged result. This method can be
utilized in cases where either the connection speed is slow or only long request frequencies can be
achieved due to the lack of a stable connection. In those cases, the ability of the merging operator to
decide when to switch to local execution should have an advantage over ordinary methods. The
next section is about the decision operator, which is responsible for deciding when to offload.

6.2 Decision Operator

While the merging operator adjusts the received update to fit to the current step and then combines
local result with the update, the decision operator answers the question of how often an update
is requested by the mobile device. Again, this correlates to the quality of the continued update
compared to the local performance. This is thoroughly characterized in Section 6.1 where we
looked at different areas of input data and how well the continued output performed for 200 steps

40

6.2 Decision Operator

after receiving the update (Figure 6.3). There, we saw that for the small NN, functioning as the
network for later evaluation, three areas with different properties can be defined. Following that, we
decided that for these specific cases a threshold can be set to indicate that the continued update no
longer outperforms the local results. Hence, the offload decision can be dynamically derived in the
same way that the merging parameter for the combination of results can be determined.

Crucial for the offload decision is again the intersection between the accuracy of the local execution
and the continued update. A close investigation on the behavior of continued updates depends on
the way of adjusting remote updates on the local machine. For the derived methods in the previous
section, the performance compared to the local results was taken into account to derive a merging
technique. This way, a method was proposed that exploits accurate updates in early stages after
arrival and discards low-quality continued updates for steps after intersection of both performances.
In Figure 6.3 the behavior for three different angle input areas and the improvements with the
quality-sensitive merging approach is shown. For small angles, an update every 125 steps would
be sufficient to achieve an improvement, that is assuming a delay of 0 steps. In medium and large
angle areas, an update every 75 and 175 steps respectively is necessary to ensure an increase in
quality of the merging technique. Since a delay of 0 steps does not exist in a real application, we
also have to think about the current delay of the updates. A late request to the server can result
in the update not arriving in time to stop the decrease in accuracy of the previous update on the
local machine. This means that the request frequency of updates should also change depending on
the properties of the current input data and the current delay. For areas where the NN struggles to
produce accurate results or where the accuracy fluctuates, a higher update frequency stops the effect
of deteriorating continued updates. When the input values correspond to an area where the NN
is accurate, a received update can be used for a longer time, before getting worse than the local
outputs.

Based on these observations, a function to determine whether an update should be requested is
derived. This function takes angle area and velocity, current connection delay and the steps after
requesting the latest update into account. It can be seen in Listing 6.2. The current angle area is
responsible to decide which base function to choose. Angles are separated in the same way as for
the third merging approach. Therefore, the angle input to the function is between zero and one to
determine in what section of area the local computation currently is. This is decided in the first part
of the offloading function. For example, when looking at small angles in Figure 6.3a the continued
update intersects the local performance at step 125 after arrival of the update. The same way that
we determined for the quality-sensitive merging in Section 6.1.3 we decide that the request of an
update should already happen at step 100. This results in a base function to model the decision of
requesting an update which reaches the value 1.0 at step 100. Depending on the input angle the
maximum active lifetime of an update is specified. For small angles the decision operator sets the
lifetime to 125. With different angle areas come different functions to model the quality decay and
lifetime of updates. In the medium angle area a value of 75 is chosen as the lifetime and the base
function turns 1.0 at 50 steps after requesting the latest update. Based on Figure 6.3c a lifetime of
175 is determined, and the applied function turns 1.0 at step 150. All three cases use a quadratic
function to determine the base value to decide when to request an update.

The current delay of updates also plays an important role in requesting an update. This factor
is calculated in the second part of the function in Listing 6.2. Big delays require updates to be
requested in time to prevent the unintended behavior of considering continued updates, although
they are not beneficial to the merging anymore. In contrary, small delays do not require immediate

41

6 Distributed Neural Networks with Offloading and Merging

Listing 6.2 Function to Determine the Offloading Decision

def determine_request(angle, angle_velocity, steps_to_last_request, delay, cooldown):

early stopping due to existing cooldown

if cooldown:

break

determine base value to request an update

if angle <= 0.25: # small angle

max_lifetime = 125

value_last_request = (1/10000) * pow(steps_to_last_request, 2)

if 0.25 < angle <= 0.75: # medium angle

max_lifetime = 75

value_last_request = (1/2500) * pow(steps_to_last_request, 2)

else: # large angle

max_lifetime = 175

value_last_request = (1/22500) * pow(steps_to_last_request, 2)

determine additional value based on the current delay

value_delay = delay / max_lifetime

determine additional value based on the angle velocity

value_velocity = 1 + abs(angle_velocity)

decide whether to request an update

if (value_last_request + value_delay) * value_velocity >= 1.0:

request_update()

requests and can be used to lessen the communication need. With additional knowledge about the
lifetime of an update in the current angle area a way to model the need for requests can be defined.
The method proposed here divides the current delay by the maximal lifetime. This way, for long
delays an earlier step to request updates can be achieved, while short delays do not significantly
affect the offloading decision. The resulting value gets added to the base value. In a more advanced
setting, the delay changes depending on the available connection quality and availability. This
means that the decision operator can try to predict the current delay based on the delay for previous
updates.

As a fourth factor, the angle velocity is considered. Due to the quick change in input values when
having a high angle velocity, updates have to be more frequent to account for possible rapid changes
in the continued update and therefore its accuracy. When having a low velocity, new updates are not
immediately requested since continuing remote updates yields better results due to the more stable
nature of local changes. Because angle values in the input data are normalized to be between −1
and 1, the absolute value of the velocity is considered. This also means that both directions of the
movement are treated equally. Here, the angle velocity functions as a factor. For low velocities, the
factor is close to 1.0 while for high velocities it can reach values close to 2.0 and therefore doubles
the value used to decide a possible request.

42

6.2 Decision Operator

(a) Low Delay and Low Velocity (b) Low Delay and High Velocity

(c) Medium Delay and Low Velocity (d) Medium Delay and High Velocity

Figure 6.4: Characteristic of Continued Updates

The last part decides whether the decision operator should request an update or not. This final
decision is made by treating the resulting value as a probability and if it is equal or greater than 1.0
an update is requested. Since the final value can be greater than 1.0, an update request could be
triggered for each step in the execution. This would result in an abundance of updates and could
overload the communication channel to the server with further negative effects. To counteract this
problem a request cooldown of multiple steps should be added to the decision operator. This would
relieve pressure on the total communication and lessen the effects of additional costs coupled with
handling received updates.

An example calculation for a fixed delay and velocity setting is given in Figure ??. Each plot
contains the base value for deciding whether to request an update in orange. The green constant line
shows the threshold at which the request gets triggered. In blue, we can see the combined method
considering base, delay and velocity values as described previously. Figures 6.4a and 6.4b show
the values for a delay of 10 steps and a velocity of 0.2 and 0.8, respectively. For this setting, the
figures show that a higher velocity steepens the curve and forces the decision operator to request
updates faster than for a low velocity. For a low delay the request step gets shifted to the left by 15
to 25 steps in these cases. The Figures 6.4c and ?? represent the change of values for a medium
delay setting of 60 steps. Here, the delay value plays a bigger role as it increases the values for

43

6 Distributed Neural Networks with Offloading and Merging

the base functions by 60
125 . For the setting with a low velocity, we can again see that this does only

slightly affect the steepness of the curve. In contrast, the high velocity setting shows the situation
in which an update would be requested at step 30 already. This is 70 steps earlier than the base
function suggests without considering delay and velocity.

Since the primary focus of this thesis is the merging operator, the exact performance of this dynamic
decision operator is not used for evaluation. It serves as a starting point to derive a dynamic request
frequency dependent on different factors during the execution including delay, input values and
step of the last update. In an advanced approach to evaluate a distributed network architecture
the method derived here can be used as a starting point to allow for a dynamic Here, the request
frequency, used for the evaluation, follows a static scheme. For an update rate of 𝑘 , an update is
requested every 𝑘 steps, regardless of the current input properties. This way, the focus can be put on
the performance of previously derived merging methods. The exact values are used for the static
approach to model the offloading decision are described in the following section on evaluating the
three proposed merging methods.

6.3 Evaluation

This section covers the evaluation of the previously derived merging and offloading settings. It
considers different connection quality parameters and computes the MAE across the whole validation
data as described in Section 2.5. For the update frequency, static values of 10, 20, 40, 80, 125, 250
and 500 are chosen to cover possible offload rates by the decision operator. The test environment
uses a single frequency for the whole validation data and is not dynamically calculated, see Section
6.2 for more details on the decision process. A delay of ten steps is used across all update rates to
show the results of a near-perfect communication. Accounting for a fast and medium transmission
quality is a delay of 30 and 60 steps, respectively. An arrival of the update 100 steps after request
investigates the possible improvements, if the connection quality is slow. This setting is also used
to determine if late updates can still improve the performance of the local NN. These delays are
arbitrary values and can differ in real life application. In this case, they are solely used to represent
different connection qualities for the proposed update rates.

6.3.1 Mean Merging

The first merging method to be tested on different parameter settings for delay and update rate is
mean merging, described in Section 6.1.1. This is a naive way of combining a continued update
with the local result as it is using the same weight for both outputs without any assumptions about
the quality of the both. Figure ?? shows the increase in accuracy for the averaged output between
local and remote computation. Each subplot shows a different delay setting, precisely 10, 30, 60
and 100 steps, which are used for different connection qualities. The bars represent the MAE with
respect to each unique update rate. The MAE is calculated for the whole validation data and shows
the average error across the 10000 steps of validation. For comparison, the performance of the local
network is represented by the gray bar and shows a MAE of 0.051.

Evaluating different connection qualities on the mentioned delay settings resulted in the following
behavior. First, we have to mention that although the average MAE is shown to be below the local
value in most cases, for combinations of update rate and delay settings that add to a value higher

44

6.3 Evaluation

(a) Near Perfect Connection (b) Fast Connection

(c) Medium Connection (d) Slow Connection

Figure 6.5: Results of Mean Merging

than the intersection step in Figure 6.3 result in an unwanted behavior. This is due to the decreasing
accuracy of the continued update if it gets considered for 75, 125 or 175 steps depending on the
input area. The characteristic seen there showed that for the first steps after receiving an update,
the accuracy of continued updates is far better than the local outputs. Contrary to that, in later
stages, the accuracy of continued outputs decreases below local outputs. Thus, it can happen that
the overall MAE is still better, although for some steps a negative behavior can be noted. Therefore,
even before the bars represent a higher MAE to the local execution an undesired behavior occurs
for the aforementioned settings, where a single update not only contains parts with an improved
accuracy, but also results in parts with a worse accuracy than the local outputs. For the mean
merging, a near-perfect connection results in the biggest improvement over the local computation,
shown in Figure ??. This decreased the MAE to 0.031 when receiving an update every 10 and 20
steps. This is 0.02 less than only using local results and is an improvement of 39%. The effects of
receiving accurate outputs decrease when updates arrive every 80 steps or more. A fast connection
still achieves a MAE of 0.033 at the highest update frequency. Only sparsely receiving updates does
not substantially improve the overall accuracy, which can be seen for an update rate of 500 steps.
For a medium connection, the best improvement shows a MAE of 0.036. Here, the phenomena
of the fast connection solidifies, and less frequent updates decrease the improvements. In case of

45

6 Distributed Neural Networks with Offloading and Merging

an update rate of 500, the merged results are averagely worse than the local execution. While this
behavior first shows at an update rate of 500, even for smaller values it is possible for multiple
steps to use less accurate continued updates as previously mentioned. A slow connection improved
the MAE in the best case to a value of 0.041 which is still an improvement of 20% over the local
execution. Sparse updates increase the MAE as already seen across other connection qualities.

The general trend is that more frequent updates can still outperform the local network, even if
the update arrives with a high delay. A decreasing connection quality with longer delays reduces
the positive effects of frequent updates. For sparse updates, the accuracy cannot be improved
significantly. This is due to the continued update being adjusted with the local changes over many
steps, therefore slowly decreasing its accuracy. Following that, the continued update can get worse
than the local execution, while still being considered for the merging of the outputs. The next
section covers the decoupled execution which assigns a bigger weight to the continued update, but
still does not account for a decreasing accuracy the longer an update is used.

6.3.2 Decoupled Execution

The decoupled execution implements the usage of continued updates, whenever they are available
as shown in Section 6.1.2. This means that the local outputs are disregarded completely for the
merged results and only serve to compute the local change to adjust the remote update. Results
of the decoupled execution are shown in Figure ??. The seven bars of the same color represent
the overall MAE of different rates to request updates, ranging from 10 to 500 steps. The local
execution without any updates is shown as the light gray bar on the right-hand side. Figure ??
displays the measurements for a delay of 10 steps. Having frequent requests yields the best result for
this technique. It lowers the MAE to 0.020 and is an improvement of 61% over the local execution.
With more sparse updates, the error increases. For an update rate of 500 steps, the error increases
to 0.056. This is an overall higher value than the local network without offloading. This again
shows the problem of only using continued updates as seen in Figure 6.3. For higher values of the
update rate the continued update with decreasing quality gets considered for more steps. Hence,
a cutoff point would be needed to stop the low-quality output from being used as the final result.
Depending on the area, even for an update rate of 125 it is possible to have this unwanted behavior
when closely looking at one update request cycle. Although the bar shows an overall improved
MAE it might be necessary to change the update rate to not only improve the overall accuracy, but
also decrease the probability of considering low-quality continued outputs. A fast and medium
connection quality with delays of 30 and 60 steps show a similar behavior for an increasing update
rate. Requesting updates every ten to 125 steps with a fast connection increased the MAE by 0.005,
with the best performance showing a value of 0.025, compared to the near-perfect connection. A
medium connection still improved the overall error to 0.034, although the arrival of a requested
update is delayed by 60 steps. With more sparse updates, the MAE using this technique again gets
worse than for a local-only execution. For a delay of 100 steps, the MAE increases to values higher
than the local MAE starting at an update rate of 125. Therefore, in this case, frequent updates are
necessary to achieve improvements.

When looking at better connection properties, we might think that requesting an update every
250 steps is sufficient to improve the accuracy of the local NN. This is true for the underlying
validation data if considering the overall performance, but does not consider the decreasing quality
of continued updates over many steps, which is covered in Section 6.1.3. There, we saw that the

46

6.3 Evaluation

(a) Near Perfect Connection (b) Fast Connection

(c) Medium Connection (d) Slow Connection

Figure 6.6: Results of Decoupled Execution

longer an update is continued, the less accurate it gets and eventually gets worse than the local
outputs. Depending on the area, this intersection occurs well before 250 steps. Thus, the continued
outputs are more accurate for one part of the lifespan of the update and less accurate for the later
steps of its usage, compared to the local results. This lowers the MAE also for sparse requests,
but is not the desired behavior in a real-time execution. Therefore, a cutoff point is added to the
technique, after which the merging operator switches to a local-only computation. This progression
is implemented and forms the quality-sensitive merging, evaluated in the next section.

6.3.3 Quality-Sensitive Merging

This merging method implements a first approach to minimize the probability of considering
low-quality continued updates for merging. Weights of the adjusted update are based on a quality
measurement considering the delay and predicted accuracy of received updates. According to
three different input angle areas, varying techniques to calculate the weight are proposed to fit the
behavior for each specific area. An in-depth description of quality-sensitive merging can be found
in Section 6.1.3.

47

6 Distributed Neural Networks with Offloading and Merging

(a) Near Perfect Connection (b) Fast Connection

(c) Medium Connection (d) Slow Connection

Figure 6.7: Results of Quality-Sensitive Merging

Figure ?? shows the evaluation of the same delay and update rate settings as used for the mean
merging and decoupled execution. The subplots again represent four connection qualities, near-
perfect, fast, medium and slow, and show the overall MAE of different update rates applied as
bars. The gray, most right bar stands for the MAE of the local execution without updates across
the whole validation data. When looking at a near-perfect connection, we can see that updates
every ten and 20 steps yields the best result with MAEs close to 0.020. This is a decrease in
error of 60% compared to the local-only execution. In Section ??, we saw that considering only
the continued update, the best setting achieved an improvement of 61%. Therefore, this method
performs similarly on frequent updates and a low delay. For an increasing amount of steps between
updates sent to the device, accuracy drops off to 0.038 for an update rate of 125 steps. This trend
continues until we can only see an overall improvement of 2% for requesting updates every 500
steps. The overall MAE, considering all update rates, shows worse results than the decoupled
execution. This is because we have changed the greedy nature of the previous method to switch
to a local execution to lower the possibility of considering less accurate continued updates for
merging. Hence, for the quality-sensitive merging, the exploitation of accurate continued updates in
earlier stages decreases. But in contrast, it results in the benefit of being able to switch to consider
local outputs when expecting a decreased quality for continued outputs. As seen in Figure 6.3, the

48

6.3 Evaluation

accuracy of continued updates decreases after 75 to 175 steps after requesting an update, depending
on the current input angle area. Therefore, for update rates higher than 125 a switch to the local
execution is applied in the majority of update cycles.

The fast connection behaves the same as the near-perfect setting, but with values of the MAE shifted
upwards. For new updates every ten steps, this method achieves a MAE of 0.025, which is an overall
improvement of 51% over the local execution. Sparse updates on the other hand again decrease the
benefits and make the MAE of this merging technique approach the same level as the local network.
This happens because the applied method, which, depending on the input angle, switches to a
local-only execution for 75 to 175 steps or more after requesting the update. When comparing the
results of the good connection qualities to the mean merging on the same settings, a lower overall
MAE for frequent update rates can be seen. This means that the method of having a weight above
50% for the continued update is beneficial, if receiving many updates. Also, for sparse offloading
requests, a slower drop-off in accuracy is the outcome of using this method with a lowered weight, if
the current step is already many steps after arrival. When looking at medium offloading decisions,
mainly update rates of 80 to 125 steps, mean merging outperforms quality-sensitive merging. For
these values, it achieves a lower overall MAE, hinting towards a too late cutoff for considering the
continued output in the merging process.

When looking at Figures ?? and ??, we can see the improvements for a medium and slow connection
setting with delays of 60 and 100 steps. In earlier sections, we saw that for the two previous merging
methods, longer delays, combined with fewer updates caused the MAE to get worse than the local
execution. Since there is a cutoff specified for the quality-sensitive merging, after which we do not
consider the update for merging, this behavior does not appear here. While this is good on the one
hand, we can also see that for frequent updates with high delays, the application does not benefit as
much as it did for better connections. This is because the implemented switch to a local execution
stops an update with high delay to be used for many steps shortly after arriving at the local device.
Here, the overall MAE of the medium connection is lowered to 0.036 in the best case. For a slow
connection the most frequent update rate showed an improvement of 7% over the local execution, to
a MAE of 0.048. As we can see in the figure covering the slow connection, no significant benefit
has been achieved for any update rate. On the plus side, no update rate caused the overall MAE to
rise above the local-only performance.

For the fast and near-perfect connection settings, equal overall MAE values as for the decoupled
execution are achieved. Again, when looking at the performance over the course of the lifespan of a
single update, the decoupled execution at some point utilized an output that is worse than local
values. Due to the high accuracy in early steps after receiving an update, the negative steps can
be overruled by the many good steps in the beginning, when looking at the overall MAE of the
decoupled approach. The quality-sensitive merging in contrast tried to minimize the possibility
of this behavior by defining a cutoff point. This way, for more sparse updates, the performance
across a single update is increased and implements a more conservative approach to utilize the
high-quality updates. For this, the characteristics shown in Figure 6.3 are applied to consider the
predicted quality of continued outputs during a single update lifespan.

49

7 Conclusion and Outlook

In this thesis, we tackled the problem of running numerical simulations on a resource-constrained
mobile device. Outputs of this simulation are supposed to be of high quality and efficiently
calculated for the use in visualization in an AR setting. NNs work as a surrogate model to compute
accurate outputs more efficiently. Especially LSTM networks, a type of NN, used for continuous
data, showed a decrease in error of over 40% compared to standard DNNs. This comes at the
cost of an AIT five times higher than a similar NN without LSTM layers. Based on this result,
the networks for the use in the distributed architecture were determined. They functioned as the
local and main calculation of outputs on the mobile device, and for the server, used to compute
high quality updates. A sophisticated method for merging local and remote results was derived by
investigating the behavior of continued updates, remote outputs adjusted to fit the current step of the
computation, across different areas of input parameters. With the help of these characteristics, the
method also implements a switch to local-only execution for cases, where no further updates should
be considered. This stops old, and possibly inaccurate, updates to be considered in the merging
process. For the decision operator, a similar way was proposed to dynamically determine whether
the mobile device shall request an update for the current step. The proposed deduction considered
input properties such as angle and angle velocity, delay and age of the current update. Evaluation of
the presented merging methods on static offloading decisions showed that, with updates every ten
steps, the overall MAE can be decreased from 0.0511 to 0.020 for a simulated delay of ten steps
between requesting and receiving an update. The effects of the methods decrease with higher delay
and less frequent updates. Overall, this means that the proposed methods of integrating remote
outputs in the local execution can increase the accuracy of results for the underlying data, if updates
can be frequently requested. For longer distances between requests or a worsening connection
speed, the benefits of merging local and remote results decrease, up to the point of not positively
effecting the local execution at all. A first method was proposed to combine outputs depending on
delay and the change in quality of updates over time. The quality-sensitive merging with updates
every ten steps saved 63.5% of time elapsed per step compared to the LSTM NN, and improved
the overall MAE by 60% compared to the local NN without updates. The combined method with
updates planned for the execution on the local device averagely took 36.5`s, while the LSTM NN
had an AIT of 100`s per step. The consequence is an overall two times higher MAE compared to
the MAE of 0.0107 by the LSTM NN. Due to the already low overall MAE of the LSTM NN the
deterioration to a value of 0.020 still represents the lower error bound. Therefore, the MAE of the
combined approach is closer to the LSTM NN than it is to the DNN without the option to request
updates.

Other simulations likely use different data to compute outputs. Therefore, the concrete functions,
derived for the use in the merging operator, do not necessarily apply to other simulations. Depending
on different NNs, used as local and remote NNs, the characteristics may differ from the behavior
shown in this thesis. Due to this change, different functions are inevitable to calculate the weights for
the local and remote outputs before merging. Also, the number of input areas, which use the same

51

7 Conclusion and Outlook

underlying weight function, can be increased to refine the merging functions specifically for a small
input area. Not only does this change the way merging works, but also the decision operator can,
based on a similar investigation, dynamically decide, if an update is beneficial to the local execution.
While the proposed final parameters inside the merging and decision operator do not work for all
simulations, the procedure of deriving a possible solution can be applied on other underlying data.
Further investigation, considering the use of LSTM networks for continuous simulations, is possible
to optimize NN models on the mobile device and the server. As already mentioned, future research
can improve merging and offloading operators by studying the behavior for smaller input areas.
Moreover, realizing a generalized approach to determine parameters for weight assignment and
request frequency for various continuous simulations can automate the currently manual procedure.
Future research can continue this work by implementing the mentioned improvements or by using
a real distributed setting, involving a suitable mobile device and server. With that, the impact of
communication costs and delays in a real setting can be investigated.

Under consideration of the results by this thesis, in the future, mobile devices are able to efficiently
compute simulations for many applications, which require accurate and real-time outputs. With the
help of an optimized server communication, the combined decision and merging methods might be
able to simulate the execution of the complex remote network on the mobile device, solely with
the help of updates by a more accurate NN. This way, high-quality outputs are possible across all
inputs, even though the local execution utilizes a less complex NN. Following that, the visualization
to a person in an AR setting on a mobile device can fulfill quality criteria to allow for an interactive
user experience.

52

Bibliography

[AAB+16] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng. “TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed Systems”. In: (Mar. 14, 2016).
arXiv: 1603.04467 [cs.DC] (cit. on p. 20).

[AGH18] K. Akherfi, M. Gerndt, H. Harroud. “Mobile cloud computing for computation
offloading: Issues and challenges”. In: Applied Computing and Informatics 14.1 (Jan.
2018), pp. 1–16. doi: 10.1016/j.aci.2016.11.002 (cit. on p. 17).

[BZX+19] T. Bao, S. A. R. Zaidi, S. Xie, P. Yang, Z. Zhang. “A CNN-LSTM Hybrid Framework
for Wrist Kinematics Estimation Using Surface Electromyography”. In: (Nov. 28,
2019). doi: 10.1109/TIM.2020.3036654. arXiv: 1912.00799 [eess.SP] (cit. on p. 25).

[CESZ19] F. Carrara, P. Elias, J. Sedmidubsky, P. Zezula. “LSTM-based real-time action
detection and prediction in human motion streams”. In: Multimedia Tools and
Applications 78.19 (June 2019), pp. 27309–27331. doi: 10.1007/s11042-019-07827-3
(cit. on p. 25).

[CLS+14] G. Cecchini, G. Lozito, M. Schmid, S. Conforto, F. Fulginei, D. Bibbo. “Neural
Networks for Muscle Forces Prediction in Cycling”. In: Algorithms 7.4 (Nov. 2014),
pp. 621–634. doi: 10.3390/a7040621 (cit. on p. 25).

[CVV+16] E. D. Coninck, T. Verbelen, B. Vankeirsbilck, S. Bohez, P. Simoens, P. Demeester,
B. Dhoedt. “Distributed Neural Networks for Internet of Things: The Big-Little Ap-
proach”. In: Internet of Things. IoT Infrastructures. Springer International Publishing,
2016, pp. 484–492. doi: 10.1007/978-3-319-47075-7_52 (cit. on pp. 16, 24).

[Dao18] T. T. Dao. “From deep learning to transfer learning for the prediction of skeletal
muscle forces”. In: Medical & Biological Engineering & Computing 57.5 (Dec. 2018),
pp. 1049–1058. doi: 10.1007/s11517-018-1940-y (cit. on pp. 15, 25).

[DCM+12] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao,
M. Ranzato, A. Senior, P. Tucker, K. Yang, A. Y. Ng. “Large Scale Distributed Deep
Networks”. In: NIPS. 2012 (cit. on p. 24).

[DDR15] C. Dibak, F. Durr, K. Rothermel. “Numerical Analysis of Complex Physical Systems
on Networked Mobile Devices”. In: 2015 IEEE 12th International Conference on
Mobile Ad Hoc and Sensor Systems. IEEE, Oct. 2015. doi: 10.1109/mass.2015.12
(cit. on p. 24).

53

https://arxiv.org/abs/1603.04467
https://doi.org/10.1016/j.aci.2016.11.002
https://doi.org/10.1109/TIM.2020.3036654
https://arxiv.org/abs/1912.00799
https://doi.org/10.1007/s11042-019-07827-3
https://doi.org/10.3390/a7040621
https://doi.org/10.1007/978-3-319-47075-7_52
https://doi.org/10.1007/s11517-018-1940-y
https://doi.org/10.1109/mass.2015.12

Bibliography

[DHS+18] C. Dibak, B. Haasdonk, A. Schmidt, F. Dürr, K. Rothermel. “Enabling Interactive
Mobile Simulations Through Distributed Reduced Models”. In: (Feb. 14, 2018). doi:
10.1016/j.pmcj.2018.02.002. arXiv: 1802.05206 [cs.DC] (cit. on pp. 16, 23).

[Dil21] C. Dilmegani. Dark side of neural networks explained. Jan. 1, 2021. url: https:
//research.aimultiple.com/how-neural-networks-work/ (cit. on p. 18).

[HBZ18] L. Huang, S. Bi, Y.-J. A. Zhang. “Deep Reinforcement Learning for Online Computa-
tion Offloading in Wireless Powered Mobile-Edge Computing Networks”. In: (Aug. 6,
2018). doi: 10.1109/TMC.2019.2928811. arXiv: 1808.01977 [cs.NI] (cit. on p. 24).

[HS90] L. Hansen, P. Salamon. “Neural network ensembles”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 12.10 (1990), pp. 993–1001. doi: 10.1109/34.58871
(cit. on p. 25).

[KP16] J. Keuper, F.-J. Pfreundt. “Distributed Training of Deep Neural Networks: Theoretical
and Practical Limits of Parallel Scalability”. In: (Sept. 22, 2016). arXiv: 1609.06870
[cs.CV] (cit. on p. 24).

[KSH17] A. Krizhevsky, I. Sutskever, G. E. Hinton. “ImageNet classification with deep
convolutional neural networks”. In: Communications of the ACM 60.6 (May 2017),
pp. 84–90. doi: 10.1145/3065386 (cit. on p. 19).

[LS89] W. P. Lincoln, J. Skrzypek. “Synergy of Clustering Multiple Back Propagation Net-
works”. In: Advances in Neural Information Processing Systems 2, [NIPS Conference,
Denver, Colorado, USA, November 27-30, 1989]. Ed. by D. S. Touretzky. Morgan
Kaufmann, 1989, pp. 650–657. url: http://papers.nips.cc/paper/228-synergy-
of-clustering-multiple-back-propagation-networks (cit. on p. 25).

[MCN+17] J. Mao, X. Chen, K. W. Nixon, C. Krieger, Y. Chen. “MoDNN: Local distributed
mobile computing system for Deep Neural Network”. In: Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2017. IEEE, Mar. 2017. doi:
10.23919/date.2017.7927211 (cit. on p. 23).

[MG18] A. T. Mohan, D. V. Gaitonde. “A Deep Learning based Approach to Reduced Order
Modeling for Turbulent Flow Control using LSTM Neural Networks”. In: (Apr. 24,
2018). arXiv: 1804.09269 [physics.comp-ph] (cit. on p. 25).

[MM16] S. Melendez, M. P. McGarry. “Computation Offloading Decisions for Reducing
Completion Time”. In: (Aug. 20, 2016). arXiv: 1608.05839 [cs.DC] (cit. on p. 24).

[Nie19] M. Nielson. Neural Networks and Deep Learning. 2019. url: http://neuralnetwork
sanddeeplearning.com/ (cit. on p. 19).

[Ola15] C. Olah. Understanding LSTM Networks. Aug. 27, 2015. url: https://colah.github.
io/posts/2015-08-Understanding-LSTMs/ (cit. on p. 19).

[PC95] M. P. PERRONE, L. N. COOPER. “When networks disagree: Ensemble methods
for hybrid neural networks”. In: How We Learn How We Remember: Toward an
Understanding of Brain and Neural Systems. WORLD SCIENTIFIC, Sept. 1995,
pp. 342–358. doi: 10.1142/9789812795885_0025 (cit. on p. 25).

[Rog] G. Rogova. “Combining the Results of Several Neural Network Classifiers”. In:
Classic Works of the Dempster-Shafer Theory of Belief Functions. Springer Berlin
Heidelberg, pp. 683–692. doi: 10.1007/978-3-540-44792-4_27 (cit. on p. 25).

54

https://doi.org/10.1016/j.pmcj.2018.02.002
https://arxiv.org/abs/1802.05206
https://research.aimultiple.com/how-neural-networks-work/
https://research.aimultiple.com/how-neural-networks-work/
https://doi.org/10.1109/TMC.2019.2928811
https://arxiv.org/abs/1808.01977
https://doi.org/10.1109/34.58871
https://arxiv.org/abs/1609.06870
https://arxiv.org/abs/1609.06870
https://doi.org/10.1145/3065386
http://papers.nips.cc/paper/228-synergy-of-clustering-multiple-back-propagation-networks
http://papers.nips.cc/paper/228-synergy-of-clustering-multiple-back-propagation-networks
https://doi.org/10.23919/date.2017.7927211
https://arxiv.org/abs/1804.09269
https://arxiv.org/abs/1608.05839
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1142/9789812795885_0025
https://doi.org/10.1007/978-3-540-44792-4_27

Bibliography

[RPNU19] N. M. Rezk, M. Purnaprajna, T. Nordström, Z. Ul-Abdin. “Recurrent Neural Networks:
An Embedded Computing Perspective”. In: (July 23, 2019). doi: 10.1109/ACCESS.
2020.2982416. arXiv: 1908.07062 [cs.NE] (cit. on p. 19).

[Sat96] M. Satyanarayanan. “Fundamental Challenges in Mobile Computing”. In: Proceedings
of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing,
Philadelphia, Pennsylvania, USA, May 23-26, 1996. Ed. by J. E. Burns, Y. Moses.
ACM, 1996, pp. 1–7. doi: 10.1145/248052.248053 (cit. on p. 17).

[Sim18] O. Simeone. “A Very Brief Introduction to Machine Learning With Applications to
Communication Systems”. In: (Aug. 7, 2018). arXiv: 1808.02342 [cs.IT] (cit. on
p. 18).

[SZMZ20] J. Shao, H. Zhang, Y. Mao, J. Zhang. “Branchy-GNN: a Device-Edge Co-Inference
Framework for Efficient Point Cloud Processing”. In: (Oct. 27, 2020). arXiv: 2011.
02422 [cs.DC] (cit. on p. 23).

[Ten21] TensorFlow. Keras Documentation. 2021. url: https://www.tensorflow.org/guide/
keras/overview (cit. on p. 20).

[TMK17] S. Teerapittayanon, B. McDanel, H. T. Kung. “Distributed Deep Neural Networks
over the Cloud, the Edge and End Devices”. In: (Sept. 6, 2017). arXiv: 1709.01921
[cs.CV] (cit. on p. 23).

[WHY+17] K. Wang, P.-Q. Huang, K. Yang, C. Pan, J. Wang. “Unified Offloading Decision
Making and Resource Allocation in ME-RAN”. In: (May 29, 2017). arXiv: 1705.10384
[cs.NI] (cit. on p. 24).

[YCB+20] B. Yang, X. Cao, J. Bassey, X. Li, T. Kroecker, L. Qian. “Computation Offloading
in Multi-Access Edge Computing Networks: A Multi-Task Learning Approach”. In:
(June 29, 2020). arXiv: 2006.16104 [eess.SP] (cit. on p. 24).

All links were last followed on May 2, 2021.

55

https://doi.org/10.1109/ACCESS.2020.2982416
https://doi.org/10.1109/ACCESS.2020.2982416
https://arxiv.org/abs/1908.07062
https://doi.org/10.1145/248052.248053
https://arxiv.org/abs/1808.02342
https://arxiv.org/abs/2011.02422
https://arxiv.org/abs/2011.02422
https://www.tensorflow.org/guide/keras/overview
https://www.tensorflow.org/guide/keras/overview
https://arxiv.org/abs/1709.01921
https://arxiv.org/abs/1709.01921
https://arxiv.org/abs/1705.10384
https://arxiv.org/abs/1705.10384
https://arxiv.org/abs/2006.16104

A Kurzfassung

Aufgrund der zunehmenden Komplexität numerischer Simulationen werden die Ergebnisse nor-
malerweise auf einem Server mit großer Rechenleistung berechnet. Um eine Visualisierung der
Ergebnisse in Echtzeit für Benutzer einer AR Umgebung zu ermöglichen, sollten die Simulationen
direkt auf dem mobilen Gerät ausgeführt werden. Daher wird ein alternativer Weg benötigt, um
die Ausführung auf einem Gerät mit eingeschränkter Rechenleistung zu ermöglichen. Ziel dieser
Arbeit ist es, die Simulation mit neuronalen Netzwerken zu ersetzen. Das resultierende NN muss
Latenz- und Qualitätsanforderungen erfüllen, um die Ergebnisse in der weiteren Verarbeitung
präzise visualisieren zu können.

Für die Auswertung wird das Prinzip einer verteilten Netzwerkarchitektur verwendet. Dort wurde
das Zusammenspiel eines Netzes auf dem lokalen Gerät mit einem Netz auf einem nahe gelegenen
Server simuliert. LSTM-Schichten und deren Fähigkeit im Falle kontinuierlicher Daten wurden
untersucht, um den Netzwerktyp auszuwählen, welcher die Simulation ersetzen soll. Das mobile
Gerät konnte wärend der Ausführung genaue Updates vom Server anfordern. Zwei Operatoren zur
Anfrage und interner Weiterverarbeitung von Updates wurden hergeleitet. Dies geschah, indem
das Verhalten empfangener Updates in verschiedenen Input-Bereichen analysiert wurde. Dabei
wurde auf die vorliegende Veränderung der Qualität der Updates geachtet und Methoden zur
Kombination lokaler und empfangener Updates entwickelt. Mit Hilfe dieser Beobachtung wurde
der Offloading-Operator bestimmt, welcher die Häufigkeit und Zeitpunkte der Updateanfragen
ausgewählt hat. Ein Ansatz zur dynamischen Entscheidung des Offloading-Zeitpunkts wurde
behandelt. Beim zweiten Operator handelt es sich um den Merging-Operator. Dieser hat vom Server
empfangene Updates für die Kombination mit Hilfe der aktuellen lokalen Werten weitergeführt.
Abähngig von Latenz und erwarteter Qualität der Updates wurden gewichte für die Kombination der
localen und angeforderten Ergebnisse bestimmt. Dadurch wurde eine Methode entwickelt, welche
dynamisch die Einberechnung des Updates anpasst.

Die Verwendung von LSTM-Netzwerken hat die Genauigkeit im Vergleich zu Netzwerken ohne
diese Schichten erhöht und zu einer stabileren Ausführung geführt. Für Updates alle 10 Schritte
und einer Verzögerung von 10 Schritten konnten die erarbeiteten Methoden den MAE des lokalen
Netzes von 5% auf 2% senken. Dies ist eine Verbesserung um 60% gegenüber der Ausführung des
lokalen Netzes. Bei schlechter Verbindung und hoher Latenz konnte der am weitesten entwickelte
Merging-Operator einen Qualitätsverlust über viele Schritte hinweg verhindern. Dabei wurde
für Schritte, für welche sich die Qualität der weitergeführten Updates verringert, auf eine lokale
Ausführung gewechselt. Dadurch konnte in allen Eingabebereichen eine Ausführung mit den
bestmöglichen Werten erreicht werden. Obwohl für das Kombinieren beider Ergebnisse weitere
Kosten durch das Weiterführen des Updates entstehen, konnte die Methode die Laufzeit pro Schritt
um 63.5% verringern.

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Background
	2.1 Simulations on Mobile Devices
	2.2 Machine Learning
	2.3 Neural Networks
	2.4 Hardware and Software
	2.5 Evaluation Method

	3 Related Work
	3.1 Distributed Network Architecture
	3.2 Offloading
	3.3 LSTM-Networks for Motion and Simulations
	3.4 Improving Results of Neural Networks

	4 Problem Statement
	5 Comparison of LSTM and Dense Networks
	5.1 Experiment Setup
	5.2 Results

	6 Distributed Neural Networks with Offloading and Merging
	6.1 Merging Operator
	6.2 Decision Operator
	6.3 Evaluation

	7 Conclusion and Outlook
	Bibliography
	A Kurzfassung

