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Abstract

More and more data is made available nowadays. This has the consequence that automatic
or semi-automatic methods must be used to process these large data sets. One example of
such a method is the classification. The nearest neighbor classifier, for example, assigns
a class to a data point x based on its neighborhood. The naive approach to calculate
nearest neighbors compares the data point x to all other data points in the data set.
However, calculating the nearest neighbors for each data point using the naive approach
has a quadratic complexity. This becomes more infeasible, the larger the data set grows.
Therefore, approximate algorithms become more attractive. Such an algorithm is the
Locality-Sensitive Hashing (LSH) algorithm, which uses hash tables together with locality-
sensitive hash functions to reduce the data points that must be examined to calculate the
nearest neighbors.

In the course of this work sycl_lsh library has been developed. This library implements
the LSH algorithm with two different locality-sensitive hash functions, random projections,
and entropy-based hash functions. The implementation uses C++17 together with SYCL,
which is an abstraction layer for OpenCL that allows targeting different hardware with a
single source code. To support large data sets, the implementation utilizes multiple GPUs
using MPI to enable the usage of both shared and distributed memory systems.

The results include specific tests for all important runtime parameters showing their
influence on the runtime, recall, and error ratio. Knowing the behavior of the LSH
algorithm concerning the different parameters is essential to be able to tune the algorithm
to achieve the desired results while meeting the runtime requirements. These tests have
been conducted for both hash function types, which are further compared to each other.
Besides, the obtained results show that the used approach can easily scale on multiple
GPUs using both locality-sensitive hash function types, achieving a parallel speedup of up
to 7.0 when utilizing eight GPUs. Furthermore, it is shown that the sycl_lsh library can
be used with three different SYCL implementations, ComputeCpp, hipSYCL, and oneAPI, to
target different hardware architectures without any significant performance differences.
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Kurzfassung

In der heutigen Zeit stehen immer mehr Daten zur Verfügung. Daher müssen immer
häufiger automatische oder semi-automatische Verfahren verwendet werden, um eine
derartige Menge an Daten verarbeiten zu können. Ein Beispiel für ein solches Verfahren
ist die Klassifizierung. Der Nächste-Nachbarn-Klassifikator zum Beispiel weist einem
Datenpunkt x eine Klasse basierend auf den Klassen seiner Nachbarn zu. Der naive Ansatz,
um die nächsten Nachbarn eines Punktes zu berechnen, vergleicht den Datenpunkt x mit
allen anderen Datenpunkten. Bei der Berechnung der nächsten Nachbarn jeden Punktes
mit Hilfe des naiven Ansatzes liegt eine quadratische Komplexität vor, was für große
Datenmengen zu ineffizient ist. Um dies zu vermeiden, können approximative Verfahren
verwendet werden. Ein solches Verfahren ist das Locality-Sensitive Hashing (LSH). Dieses
Verfahren verwendet Hash-Tabellen zusammen mit lokalitätserhaltenden Hash-Funktionen,
um die Anzahl an Datenpunkten, die bei der Suche der nächsten Nachbarn betrachtet
werden müssen, zu reduzieren.

Im Zuge dieser Masterarbeit wurde die sycl_lsh Bibliothek entwickelt. Diese Bibliothek
implementiert den LSH Algorithmus mittels zweier verschiedener lokalitätserhaltender
Hash-Funktionen, den random projections und den entropy-based Hash-Funktionen. Dabei
verwendet die Implementierung C++17 zusammen mit SYCL, einer Abstraktionsschicht für
OpenCL, die es erlaubt, mit nur einem Quellcode unterschiedliche Hardware ansprechen zu
können. Um große Datenmengen verarbeiten zu können, unterstützt die Implementierung
außerdem mehrere Grafikkarten in einem potentiell verteilten System unter Verwendung
von MPI.

Die Resultate umfassen, unter anderem, Tests für alle wichtigen Laufzeitparameter, um
deren Auswirkungen auf die Laufzeit, Genauigkeit und Fehlerrate aufzuzeigen. Dieses Wis-
sen um die Charakteristiken des LSH Algorithmus in Bezug auf die unterschiedlichen
Parameter ist von großer Wichtigkeit, um die gewollten Resultate zu erreichen und
gleichzeitig die Laufzeitanforderung aufrecht zu erhalten. Diese Tests wurden für
beide Arten der lokalitätserhaltenden Hash-Funktionen durchgeführt, und deren Ergeb-
nisse miteinander verglichen. Außerdem zeigten weitere Tests, dass der verwendete
Parallelisierungsansatz auch unter Verwendung von mehreren Grafikkarten noch gut
skaliert, unabhängig von dem verwendeten Typ der Hash-Funktionen. Dabei kon-
nte eine Speedup von bis zu 7.0 unter Verwendung von acht GPUs erreicht werden.
Des weiteren zeigen die Resultate, dass verschiedene SYCL Implementierungen verwendet
werden können, um Code für unterschiedliche Hardware-Architekturen zu erstellen, ohne
dabei signifikante Performance-Unterschiede hinnehmen zu müssen.
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1 Introduction

More and more data is made available nowadays, e.g., due to the sheer amount of smart
devices, social media websites, or space telescopes. This massive amount of data has the
consequence that automatic or semi-automatic methods must be used to process these big
data sets. The problem of classification is one example for such a semi-automatic algorithm.
Given a new data point, it should get assigned one of the possibly many predefined classes,
based on already annotated data points.

One simple classifier can be the k-nearest neighbors (k-NN) algorithm already described
by Cover and Hart [CH67] in 1967. Given a data point x, the k-NN classifier calculates
the k points that are the nearest to x, with respect to a given distance or similarity metric.
The resulting class can be determined by using a majority voting on the calculated k-NN
points. Example applications for the k-NN classifier are text classification ([Tan06; TMD14;
YYS09]) or gene selection ([LWDP01]). In the light of the current events surrounding
COVID-19, attempts have been made by Shaban et al. [SRSA20] to use k-NN classifiers as a
new patient detection algorithm. Da Silva et al. [SRMS20] compared different approaches,
including a k-NN classifier, to forecast COVID-19 cases in Brazil or America.

The straightforward way to determine the k-NN of a data point is to calculate the distances
to all other data points. With the growing size of data sets, this approach is becoming
increasingly inefficient. Therefore, other algorithms must be used to process big data sets,
such as approximate algorithms. Those approaches can improve the performance but will
not necessarily return the exact nearest neighbors. One algorithm falling into this category
is Locality-Sensitive Hashing (LSH) proposed by Indyk and Motwani [IM98] in 1998. The
LSH algorithm inserts all data points into hash tables using locality-sensitive hash functions.
To calculate the k-NN of a data point x, only those data points in the same hash bucket as x

must be investigated, reducing the points to examine and therefore resulting in a possibly
better performance.

In addition to using more efficient algorithms, taking advantage of the available hardware
is essential, too. Therefore, the LSH algorithm used in this work has been implemented
using GPUs to benefit from their highly parallel compute capabilities. Since more and more
supercomputers are equipped with multiple GPUs per compute node, it is also important
to utilize many GPUs in a distributed system. Looking at the TOP500 list from November
20201, the second place Summit2 has six NVIDIA Volta V100 GPUs equipped per node,

1https://www.top500.org/lists/top500/2020/11/
2https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
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1 Introduction

resulting in 27 648 GPUs in total. The third place Sierra3 has four NVIDIA Volta V100
GPUs equipped per node, totaling 17 280 GPUs. Seven supercomputers in the top10 are
equipped with GPUs (Summit, Sierra, Selene, JUWELS Booster Module, HPC5, Frontera,
and Dammam-7). In order to access the GPUs in such distributed systems, the Message
Passing Interface (MPI) is used.

An additional difficulty is that the supercomputers are equipped with many different
hardware configurations. For example, the upcoming supercomputers Frontier4 and El
Capitan5 will consist of AMD Central Processing Units (CPUs) and GPUs. The supercomputer
Perlmutter6 will contain AMD CPUs and NVIDIA GPUs, whereas Intel announced the
supercomputer Aurora7, which will include Intel CPUs and GPUs. The TOP500’s eighth
place supercomputer HPC58 contains Intel CPUs and NVIDIA GPUs. Therefore, it would be
great to write a single program, which could run on every supercomputer independently of
its hardware configuration. This work uses SYCL ([Ron20]) as an abstraction layer for the
underlying hardware.

This work implements the sycl_lsh library utilizing the LSH algorithm to speed up the k-
NN calculation. The implementation is based on my bachelor thesis “Ein hoch-performanter
(approximierter) k-Nächste-Nachbarn Algorithmus für GPUs” ([Bre18]). It implements two
different locality-sensitive hash functions for the Euclidean space, random projections and
entropy-based hash functions. It uses SYCL to target different hardware, specifically GPUs
from different vendors. Additionally, multiple GPUs are supported using MPI to enable the
usage of both shared and distributed memory systems.

The next chapter, Chapter 2: “Related Work”, covers other approaches for determining the
k-NN. It also discusses methods for the distributed calculation of the k-NN and alternatives
to SYCL for programming on different hardware architectures. The following Chapter 3:
“Theory” deals with the theoretical basics, including the k-nearest neighbors’ problem and
the LSH algorithm together with the required locality-sensitive hash functions. Chapter 4:
“SYCL” discusses the fundamental ideas of SYCL, followed by a small example and concluded
by a comparison of currently existing SYCL implementations. Actual implementation
details for the sycl_lsh library can be found in Chapter 5: “Implementation”. Chapter 6:
“Results” covers the obtained results in detail, including a comparison of different SYCL
implementations, parameter tests for both hash function types, and scaling tests using up
to eight GPUs. Finally, Chapter 7: “Conclusion” summarizes this work, while Chapter 8:
“Future Work” provides an outlook for possible improvements and extensions.

3https://hpc.llnl.gov/hardware/platforms/sierra
4https://www.olcf.ornl.gov/frontier/
5https://www.amd.com/de/press-releases/2020-03-04-next-generation-amd-epyc-cpus-and-radeon-

instinct-gpus-enable-el-capitan
6https://www.nersc.gov/systems/perlmutter/
7https://www.intel.com/content/www/us/en/high-performance-computing/supercomputing/exascale-

computing.html
8https://www.eni.com/en-IT/operations/green-data-center-hpc5.html
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2 Related Work

This chapter’s primary objective is to give an overview of the related work for this master
thesis. At first, other nearest neighbor algorithms are mentioned, e.g., other LSH variants
or tree-based approaches. Next, algorithms for the distributed k-NN search are discussed.
Afterward, alternatives for SYCL to develop applications supporting different hardware
configurations are outlined.

2.1 k-Nearest Neighbors Algorithms

This section describes different approaches for calculating the k-NN, including, among
other schemes, variations of the LSH algorithm or tree-based approaches.

2.1.1 Locality-Sensitive Hashing

A variation of LSH, called multi-probe LSH, has been proposed by Lv et al. [LJW+07]. The
main idea is that not only the data points in the respective hash bucket are examined as
potential k-NN candidates, but also data points in near hash buckets of the same hash table
that are also likely to contain nearest neighbor points. This reduces the number of needed
hash tables drastically while maintaining similar accuracies.

A similar approach is used in the a posterior multi-probe LSH proposed by Joly and Buisson
[JB08]. Instead of only using probabilities as it is used in the standard multi-probe LSH
algorithm, a posterior multi-probe LSH also takes prior about the queries and the searched
data point into account. This results in a more accurate selection of other hash buckets
likely to contain k-NN data points.

Panigrahy [Pan06] proposed the entropy-based LSH algorithm. Instead of indexing multiple
hash buckets with the same query point x as in the multi-probe approach, it uses slight
permutations of the query point x to index multiple hash buckets. This also reduces the
number of needed hash tables.

Pan and Manocha [PM12] have proposed the combination of trees together with LSH as
bi-level LSH. It divides the data set into subsets using RP-Tress and then creates LSH hash
tables for each subset separately. This reduces the number of data points per hash table
and therefore increases the performance.
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2 Related Work

Bawa, Condie, and Ganesan [BCG05] proposed, and later Andoni, Razenshteyn, and
Nosatzki [ARN17] analyzed the LSH forest algorithm. The idea is to build a prefix tree
based on labels created using locality-sensitive hash functions. Multiple such LSH trees
form the proposed LSH forest.

Another type of hash function to form a forest has been proposed by Tao et al. [TYSK10].
Instead of prefix trees, the proposed algorithm uses locality-sensitive B-trees (LSB-tree)
constructed using z-curves. The k-NN search is based on the length of the longest common
prefix.

Terasawa and Tanaka [TT] proposed the Spherical LSH (SLSH) algorithm, where the data
points lie on the surface of a (d − 1) unit sphere embedded in an Rd space. Therefore,
another type of hash function has been created: the random rotated regular polytopes.

2.1.2 Tree-Based Approaches

Other approaches for calculating the k-NN besides LSH are tree-based methods.

In lower dimensions, normal kd-trees can be used to speed up the k-NN calculation ([Ben75;
BL; FBF77; RS19]). To be able to use kd-trees in higher dimensions, they must be extended
to randomized kd-trees ([EKNT12; EN13; ML09; SH08]).

There also exist other tree structures to speed up the k-NN calculations. Those include, for
example, RP-Trees proposed by Dasgupta and Freund [DF08], hierarchical k-means trees
proposed by Fukunaga and Narendra [FN75], priority search k-means trees proposed by
Muja and Lowe [ML14], metric trees or spill trees proposed by Liu et al. [LMYG05], cover
trees proposed by Beygelzimer, Kakade, and Langford [BKL06], or BBD trees proposed by
Arya et al. [AMN+98].

However, Weber, Schek, and Blott [WSB98] have shown that all clustering or partitioning
methods will degenerate to a linear search in high enough dimensions.

2.1.3 Other Approaches

Besides LSH or tree-based algorithms, other approaches can be used to calculate the k-NN,
too. These approaches include, among other algorithms, k-NN graphs ([EMK+20; HASZ11;
LZ09; PC05]) or product quantization ([GHKS13; HLY19; JDS11; KA14]).
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2.2 Distributed k-Nearest Neighbors Algorithms

2.2 Distributed k-Nearest Neighbors Algorithms

Work in different directions has already been done to calculate k-NN in distributed sys-
tems.

Neeb and Kurrus [NK16] examined the differences between serial and distributed algo-
rithms such as direct approaches or hybrid spill trees using map-reduce.

Haghani, Michel, and Aberer [HMA09] developed an algorithm to minimize the network
access in peer-to-peer networks using LSH. In contrast, Haghani, Michel, Aberer, et al.
[HMA+08] tried to minimize the network traffic and improve the load balance.

Bahmani, Goel, and Shinde [BGS12] have proposed layered LSH, a distributed implemen-
tation of entropy LSH. It distributes the data points based on an LSH scheme and uses a
map-reduce approach to calculate the k-NN. Zhang, Li, and Jestes [ZLJ12] developed a
novel algorithm to efficiently calculate k-NN joins for large data sets using the map-reduce
framework Hadoop.

The Spark-LSH scheme proposed by Zhang et al. [ZLXZ16] combines a shuffle-efficient
indexing scheme with a location-aware querying scheme to improve performance by using
the Apache Spark framework.

Developed by Sundaram et al. [STS+13], the Parallel LSH (PLSH) algorithm can utilize
multiple nodes and cores to support high-throughput streaming of new data. It uses
novel ideas like a cache-conscious hash table layout, a two-level merge algorithm for hash
table construction, efficient duplicate elimination while querying, an insert-optimized hash
table structure, an efficient data expiration algorithm for data streaming, and an accurate
performance estimation model.

Patwary et al. [PSS+16] developed a parallel, highly optimized kd-tree algorithm utilizing
Xeon Phis to support massive data sets (e.g., 189 billion points in 3 dimensions).

2.3 SYCL Alternatives

Besides SYCL, other abstraction layers exist to support different hardware without the need
to use vendor-specific languages or constructs.

The most prominent representative for cross-platform development is OpenCL which is
developed by Khronos OpenCL Working Group [Khr20]. It is a standard for general-purpose
parallel programming across CPUs, GPUs, and other processors.

A more similar alternative for SYCL is Kokkos. Developed by Edwards, Trott, and Sunder-
land [ETS14], Kokkos is a model in C++ for writing performance portable applications. It is
an abstraction layer for parallel execution and data management. Supported backends are
CUDA, High Performance ParallelX (HPX), OpenMP, and pthreads. Additionally, support
for AMD’s HIP backend is planned.
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RAJA, developed by the Lawrence Livermore National Laboratory (LLNL) ([BHSV19]), is
a C++ library to write single-source applications that can target different hardware (e.g.,
CPUs, GPUs, or Xeon Phi) using multiple programming model backends such as OpenMP,
CUDA, Intel’s Thread Building Blocks (TBB), or AMD’s Heterogeneous Compute Compiler
(HCC).

Furthermore, efforts have been made to incorporate the ability to target different hardware
(e.g., GPUs) by using C++ standard executor extensions ([HGK+18; HGK+20; HK19]).

This master thesis focuses on a standard LSH implementation suitable for High-Performance
Computing (HPC) in contrast to the already proposed map-reduce approaches. In con-
trast to the kd-tree based implementation targeting Xeon Phi accelerators, the developed
sycl_lsh library targets distributed multi-GPU systems using Message Passing Interface
(MPI). However, a preliminary, simplified multi-probe LSH has already been implemented
but has not been tested or merged into the final sylc_lsh library. Additionally, the library
uses SYCL to support a wide range of hardware.
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In this chapter, all theoretical fundamentals will be discussed. At first, the problem of
the nearest neighbors will be explained. After that, the LSH algorithm and the related
locality-sensitive hash functions will be described.

3.1 The Nearest Neighbors Problem

(a) Calculate the k-nearest neighbors (with
k = 3) for the highlighted data point.
For that, the distances to all other points
must be determined. Afterward, the
three points with the smallest distances
will be returned as k-nearest neighbors.

3 u

(b) Calculate the r-nearest neighbors (i.e., in
this example, all points within the radius
r = 3 u). For that, the distance to all
other points must be determined. After-
ward, all data points within a distance
of 3 u to the highlighted point will be
returned as r-nearest neighbors.

Figure 3.1: Example of both nearest neighbor types in the two-dimensional Euclidean
space: (a) the k-nearest neighbors and the (b) r-nearest neighbors (fixed-
radius nearest neighbors).

In many cases, the search for the nearest neighbors of a data point is part of another
algorithm. One example is the algorithm for data classification, which was already proposed
in 1967 by Cover and Hart [CH67]. In the proposed algorithm, a data point must be
assigned one of M different classes. To classify the data point x, the algorithm calculates
the nearest neighbor of x and determines the class c of this nearest neighbor. Afterward,
the class c is assigned to the data point x. The algorithm can be extended using not only
the nearest neighbor to determine the class c but the k-nearest neighbors. The resulting
class c will then be determined by using a majority voting mechanism.
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To determine, what the “nearest” neighbors of a point are, a distance or similarity metric
is used. Example metrics include the Manhattan distance, Euclidean distance, Hamming
distance, cosine similarity, or Jaccard index. For example, the metric used in Figure 3.1 is
the Euclidean distance, which is also the only distance metric considered in the remaining
of this master thesis.

The nearest neighbors problem can be interpreted in two different ways, both displayed
in Figure 3.1. Figure 3.1a shows the k-nearest neighbors. For any data point, precisely k

neighbors will be calculated. In contrast to this, with the r-nearest neighbors (also called
fixed-radius nearest neighbors) depicted in Figure 3.1b, all points within the given radius r

are returned. The major advantage of the k-nearest neighbors variant is that the number of
nearest neighbors to calculate is known in advance. In contrast, the resulting number of
nearest neighbors in the r-nearest neighbors variant cannot be determined ahead of time.
Therefore, in the following, only the k-nearest neighbors variant will be used.

The exact k-nearest neighbors can be calculated as shown in Algorithm 3.1.

Algorithm 3.1 Naive algorithm to calculate the k-nearest neighbors of a single data point.
1: Given: A set of data points D.
2: function KNEARESTNEIGHBORS(k ∈ N+, x ∈ D)
3: for all data points y ∈ D \ {x} do
4: Calculate the distance between x and y.
5: end for
6: Determine the k data points yi, for which the distances to x are the smallest.
7: return The calculated k-nearest neighbors.
8: end function

The function described in Algorithm 3.1 calculates the distances to all other points to
determine the k-nearest neighbors for the given point x. To calculate the k-NN for all data
points, this function must be called for each data point, resulting in an overall runtime
complexity of O(n2) given the number of data points is n. This runtime complexity prevents
big data sets from being used even on modern hardware. For example, let the distance
between two data points be calculable in 1 ns. Determining the nearest neighbors for all
points, given a data set of size one billion, would take approximately 31.7 years.

Therefore, another approach must be used to process data sets with millions or billions
of data points. One possibility is to use approximation algorithms to calculate the k-NN.
This type of algorithm does not return the exact k-NN, but neighbors, which should be
sufficiently close enough to the correct ones. However, for many algorithms using the
approximate nearest neighbors can be sufficient. For example, the classification algorithm
mentioned earlier in this section can be used with approximate nearest neighbors. Since
data points that are sufficiently close to the correct nearest neighbors have the same class
with high probability, they can be used for classification.
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3.2 Locality-Sensitive Hashing

The following section covers the approximation algorithm Locality-Sensitive Hashing (LSH)
proposed by Indyk and Motwani [IM98].

The basic idea of LSH is to sort all data points of a data set into hash tables according to
special locality-sensitive hash functions. Using these hash functions, points that are close or
similar to each other should have the same hash value with a high probability. In contrast,
points that are far away from each other or dissimilar should have the same hash value
only with low probability. To calculate the k-nearest neighbors of a data point, not all other
data points must be examined, but only those inserted into the same hash buckets. This
can reduce the number of necessary distance calculations drastically, resulting in better
performance.

At first, locality-sensitive hash functions, in general, will be discussed, followed by two con-
crete examples in Section 3.2.1: “Random Projections Hash Functions” and Section 3.2.1:
“Entropy-Based Hash Functions”. Afterward, in Section 3.2.2, the LSH algorithm will be
examined closer.

3.2.1 Locality-Sensitive Hash Functions

There are many different types of hash functions: universal hash functions for minimizing
the probability of hash collisions, hash functions for calculating checksums, or cryptographic
hash functions. This section covers another type of hash functions: the locality-sensitive
hash functions. The main idea behind this kind of hash functions is that points which are
closer to each other are assigned the same hash value with a high probability, whereas points
that are far from each other will get the same hash value with only a small probability.

At first, the formal definition of a locality-sensitive hash function will be given, followed by
two hash function types for the Euclidean distance metric, namely random projections and
entropy-based hash functions.

Locality-Sensitive Hash Family

Normal hash functions try to minimize the number of collisions, i.e., for two points x

and y, the probability of having the same hash value h(x) = h(y) is small. On the other
hand, locality-sensitive hash functions want to maximize the probability of hash collisions
if the two points x and y are similar to each other with respect to the chosen distance or
similarity metric. However, for points that are far from each other, and thus not similar, the
probability for hash collision should be small. Indyk and Motwani [IM98] defined such a
family of hash functions as described in Definition 3.2.1.
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Definition 3.2.1 (locality-sensitive hash family)
Given a data set D and a metric dist a hash family H is said to be (r1, r2, p1, p2)-sensitive,
where r1 and r2 denote distances and p1 and p2 probabilities, if the following holds for any
x, y ∈ D:

• if dist(x, y) ≤ r1, then P (h(x) = h(y)) ≥ p1

• if dist(x, y) ≥ r2, then P (h(x) = h(y)) ≤ p2

for r1 < r2 and p1 > p2.

The relationships between r1, r2 and p1, p2 can be explained by the simple fact that if
r1 > r2 or p1 < p2 would hold, two points would get the same hash value with a high
probability even though they are not similar. That would contradict the intention of locality-
sensitive hash functions to generate collisions with a high probability only if two points are
similar.

Random Projections Hash Functions

One type of locality-sensitive hash functions proposed by Datar et al. [DIIM04] uses p-stable
or α-stable distributions defined by Mainardi [Mai07] and Nolan [Nol18].

Definition 3.2.2 (stable distribution)
A random variable X is said to have a stable distribution if for any n ≥ 2 holds

X1 + X2 + · · · + Xn
d= cn · X + dn

where X1, X2, . . . , Xn are independent copies of X, cn > 0, and dn ∈ R. The operator d=
denotes the equality in distribution, i.e., both sides of the equation have the same distribution.

A distribution is stable if a linear combination of two or more independent random variables
from the distribution preserves its shape, up to scale and shift factor. Examples for p-stable
distributions are the 1-stable Cauchy distribution, the 2-stable normal distribution, and the
1
2 -stable Lévy distribution.

Datar et al. [DIIM04] proposed the random projections using p-stable distributions as a
locality-sensitive hash function.

Definition 3.2.3 (random projections)
Given a data point x ∈ Rd, a vector a ∈ Rd with entries drawn from a p-stable distribution, a
scalar w ∈ R+ and a second scalar b drawn from a uniform distribution of the range [0, w],
the hash value h(x) is calculated as:

h(x) =
⌊

a · x + b

w

⌋
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3.2 Locality-Sensitive Hashing

In case of the Euclidean distance, also called L2 norm, the entries of the vector a must be
drawn from a 2-stable distribution, i.e., the normal distribution.

Generating such hash functions is comparatively efficient since it only involves drawing
d + 1 random values from different distributions. Calculating the hash value h(x) is also
relatively efficient because it only requires one dot product along with one addition and an
integer division.

0 1 2 3 4

w

x h(x) =
⌊
a · x + b

w

⌋
0 1 2 3 4

w

x h(x) =
⌊
a · x + b

w

⌋

Figure 3.2: Example of the random projection hash functions. The data points are projected
onto a number line, which is divided into segments of size w. The resulting
hash value corresponds to the projected segment.

Figure 3.2 shows the graphical interpretation of the random projections as defined in
Definition 3.2.3. Multiplying the data point x with the vector a maps the high-dimensional
data point to an one-dimensional value on the number line. Afterward, the displacement
value b is applied. The resulting value is divided by the segment size w using an integer
division. The hash value of x is the result of this integer division. In Figure 3.2, the data
point x is mapped to 2.65 using the dot product with the vector a. Next, the mapped value
is shifted by b to the right resulting in 2.9. The final hash value h(x) of x is the integer part
of 2.9 and hence 2.

As shown in Figure 3.3a, the resulting distribution of the hash values resembles the normal
distribution. The parameter w influences the shape of the resulting normal distribution. A
small w means that the segments are smaller and, therefore, fewer data points have the
same hash value resulting in a flatter normal distribution curve. In contrast, a bigger w

means that the segments are wider. This results in more data points with the same hash
value and a steeper curve in Figure 3.3a.
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(a) Distribution of the hash values using the ran-
dom projections. The hash value distribution
resembles the normal distribution. Reducing
the parameter w results in smaller segments
and, therefore, on average fewer points per
hash bucket.
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(b) Distribution of hash values using the entropy-
based hash functions. The hash values are
uniformly distributed. Reducing the parame-
ter r results in fewer used hash values and,
therefore, more points per hash bucket.

Figure 3.3: Example of the distributions of the hash values using random projections and
entropy-based hash functions.

Entropy-Based Hash Functions

Another type of locality-sensitive hash function for the Euclidean distance has been proposed
by Wang et al. [WGLG12] providing a more uniform distribution of the hash values.

Definition 3.2.4 (entropy-based hash functions)
Given a data point x ∈ Rd and a vector a ∈ Rd the initial mapping is calculated by using:

h′(x) = a · x

These initially mapped values will be sorted and then split into r ∈ N+ groups of the same size.
Afterward, the resulting r − 1 cut-off-points are recorded as q1, . . . , qr−1. The final hash value
of the data point x will be calculated as:

h(x) =



0, if h′(x) ≤ q1

1, if q1 < h′(x) ≤ q2
...

r − 2, if qr−2 < h′(x) ≤ qr−1

r − 1, if h′(x) > qr−1

Generating entropy-based hash functions is more expensive compared to the random
projections. At first, d values must be drawn from a random distribution to get the vector a.
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h′(x) = a · x
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0, h′(x) ≤ q1

1, q1 < h′(x) ≤ q2

2, h′(x) > q2

Figure 3.4: Example of the entropy-based hash functions with r = 3. The data points are
projected onto a number line divided into segments of different sizes according
to the cut-off points qi. The resulting hash value corresponds to the projected
segment.

Afterward, the initial mapping for all data points must be calculated, followed by sorting
these values. The sorted values are used to retrieve the cut-off points needed to calculate
the final hash value h(x). This results in a time complexity of O(n + n · log(n)). Calculating
the hash value h(x), however, is relatively efficient. It requires a single dot product and a
lookup involving the cut-off points to calculate the final hash value.

Figure 3.4 shows the graphical interpretation of the entropy-based hash functions as defined
in Definition 3.2.4. Multiplying the data point x with the vector a results in the initial
mapping from the high-dimensional data point to a one-dimensional value on the number
line. In the next step, these mapped values must be sorted. Afterward, the r − 1 cut-off
points are calculated by splitting the sorted values into r distinct groups of the same size.
For example, Figure 3.4 contains six data points with an r value of three. Therefore, the
six data points must be divided into three groups, each containing two data points. The
resulting cut-off points are the values on the border between those groups, displayed in
Figure 3.4 as q1 and q2. The hash value of x is the group in which h′(x) mapped x according
to the cut-off points. In Figure 3.4, the mapped value of the data point x corresponds to
the second cut-off point q2. Therefore, since q1 < h′(x) ≤ q2 holds, the hash value h(x) of
x is one.

As shown in Figure 3.3b, the resulting distribution of the hash values resembles a uniform
distribution. All hash buckets have the same number of data points assigned. How many
data points are assigned to a hash bucket is determined by the parameter r. A small r

means that only a few hash values are used, resulting in more data points per hash bucket.
In contrast, a bigger r means that more hash values are used. This results in fewer data
points per hash bucket.

The uniform distribution of the data points over the hash buckets means that the same
number of data points must be considered when calculating the k-NN. This results in a
better load balance compared to the random projections, which is beneficial when using
GPUs.
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Hash Signature

The previous Section 3.2.1 and Section 3.2.1 described hash functions that form a locality-
sensitive hash family H as defined in Definition 3.2.1. However, to use those hash functions
to index LSH hash tables, they must be further refined. To achieve that, a second family
of hash functions H′ is created by concatenating m hash functions of a hash family H
([DIIM04]).

Definition 3.2.5 (hash signature)
Given a locality-sensitive hash family H and m hash functions hi ∈ H, the hash signature g of
the data point x ∈ D is calculated using concatenation:

g(x) := h1(x) ◦ h2(x) ◦ . . . ◦ hm(x)

The resulting hash functions gj form a new locality-sensitive hash family H′.

The hash functions hi can be concatenated to the hash signature g using two different
approaches, as described by Leskovec, Rajaraman, and Ullman [LRU14].

Using the and-concatenation, for two data points x, y ∈ D the two hash signatures g(x) =
g(y) are equal, if ∀1 ≤ i ≤ m : hi(x) = hi(y) holds. Since the hash functions hi are
drawn uniformly at random from the hash family H, the and-concatenated hash signature
g is (r1, r2, pm

1 , pm
2 )-sensitive. For two data points x, y ∈ D, applying an or-concatenation,

the two hash signatures g(x) = g(y) are equal, if ∃1 ≤ i ≤ m : hi(x) = hi(y) holds.
Since the hash functions hi are drawn uniformly at random from the hash family H, the
or-concatenated hash signature g is (r1, r2, 1 − (1 − p1)m, 1 − (1 − p2)m)-sensitive.

These concatenations can be further combined. For example, given a hash family H using
an and-concatenation with m1 = 4, a new hash family H1 can be constructed. Afterward,
using an or-concatenation with m2 = 3, a third hash family H2 can be generated. This
hash family H2 would be an (r1, r2, 1 − (1 − p4

1)3, 1 − (1 − p4
2)3)-sensitive hash family using

m1 · m2 = 12 hash functions from H to generate one hash signature function g.

3.2.2 Locality-Sensitive Hashing Algorithm

Algorithms, which use partitioning schemes to support a more efficient lookup, like LSH
or tree-based approaches, can be separated into two steps. As a first step, the partitioning
structures, e.g., hash tables or trees, will be constructed. In a second step, those partitioning
structures are used to speed up the respective calculations.

In the following, both steps, creating the hash tables and, afterward, the k-NN calculation
will be examined for the LSH algorithm as explained by Indyk and Motwani [IM98].
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Figure 3.5: Example of the creation of a single LSH hash table together with the calculation
of the k-NN of a data point. All data points are inserted into hash buckets
according to their hash value. Afterward, the k-NN are calculated by only
examining the data points inside the same hash bucket.

Algorithm 3.2 The algorithm to create the LSH hash tables.
1: Given: A set of data points D, the number of hash tables l and the number of hash

functions per hash table m.
2: Create a pool of locality-sensitive hash functions H.
3: Generate l different hash signature functions gi ∈ H′ each by concatenating m hash

functions hj ∈ H.
4: for all data points x ∈ D do
5: for all hash tables i ∈ [1, l] do
6: Calculate the hash value of x using the hash function gi ∈ H′.
7: Add x to the hash bucket gi(x) in hash table i.
8: end for
9: end for

Creation of the Hash Tables

The algorithm used to create the LSH hash tables can be seen in Algorithm 3.2.

At first, a hash pool consisting of locality-sensitive hash functions is created. Afterward, the
hash signature functions g are generated by concatenating hash functions from the hash
pool. These hash signature functions are used to assign each data point to its corresponding
hash bucket in each hash table. The data point x is added to the hash bucket gi(x) of the
hash table i. Since the hash values calculated using the gi hash signature functions can be
rather large, standard hashing methods must be used to map the hash values to a smaller
number of hash buckets.
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Figure 3.5 shows an example of the creation of a single LSH hash table. Data point one
has the hash value one and therefore gets assigned to the hash bucket one along with two
other data points. It can also happen that only one data point is assigned to a hash bucket,
like data point two in Figure 3.5, or that a hash bucket is empty, like hash bucket zero.

Calculation of the k-Nearest Neighbors

Algorithm 3.3 The algorithm to calculate the k-nearest neighbors of a single data point
using the LSH algorithm.

1: Given: A set of data points D, a locality-sensitive hash family H′ containing hash
signature functions and the previously created set of LSH hash tables L.

2: function KNEARESTNEIGHBORS(k ∈ N+, x ∈ D)
3: for all hash tables l ∈ L do
4: Calculate the hash value of x using the hash signature function gl ∈ H′.
5: for all data points y in the hash bucket gl(x) of hash table l do
6: Calculate the distance between x and y.
7: end for
8: Update the k-NN, if data points with a smaller distance to x have been found.
9: end for

10: return The calculated k-nearest neighbors.
11: end function

After all hash tables have been created successfully, the actual k-NN search can be performed,
as shown in Algorithm 3.3. For a given query point x, each hash table must be examined.
At first, the hash value for the query point x for hash table l must be calculated using the gl

hash signature function. To calculate the k-NN of x, only those data points inside the hash
bucket gl(x) must be inspected. Data points in other hash buckets of the same hash table
are not considered during the k-NN search, reducing the number of data points to examine.
To calculate the k-NN inside a hash bucket, the naive algorithm described in Algorithm 3.1
can be used.

Figure 3.5 can once again be used as an example. The goal is to calculate the 1-NN of
data point one. At first, the hash signature of point one must be calculated, which is one
in the presented example. Therefore, to calculate the 1-NN, all other data points in the
hash bucket one must be considered, resulting in two comparisons. The point of those two,
which is closer to point one, will be returned as the 1-NN. Since only two data points have
been considered in the 1-NN search, the number of comparisons has been reduced by three
compared to the naive k-NN algorithm. However, the returned point is not the actual 1-NN
of the data point one since the correct nearest neighbor has been assigned to hash bucket
two. The reason for this to happen is that Locality-Sensitive Hashing is an approximation
algorithm. The locality-sensitive hash functions try to maximize the probability of hash
collisions if two data points are similar, but achieving 100 % is quite difficult.

As another example, the 1-NN of the data point two in Figure 3.5 can be calculated. To
do that, all other data points in the hash bucket three must be considered. Since no other
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point is contained in the hash bucket three, no 1-NN can be found for the data point two
using the LSH algorithm with the example hash table in Figure 3.5.

Both problems can be solved if the LSH parameters are selected carefully. Increasing the
number of hash tables rises the number of hash signatures to calculate for each data point,
increasing the probability that two similar points match in at least one hash signature.
Reducing the number of hash functions per hash signature g increases the probability of
two points to match in the hash signature since they must conform in fewer hash functions
to get the same hash signature value.

The complexity of the Locality-Sensitive Hashing (LSH) algorithm has been described by
Indyk and Motwani [IM98]. Suppose an (r1, r2, p1, p2)-sensitive hash family with a distance
or similarity metric dist exists. In that case, there also exists an algorithm with space

complexity O(dn + n1+p) and time complexity O(np) with p =
ln 1

p1
ln 1

p2
for calculating the

nearest neighbors assuming the hash tables already exist as shown by Indyk and Motwani
[IM98]. Since p1 > p2 holds (see Definition 3.2.1), the time complexity is sub-linear in
the number of data points for searching the k-NN for a single data point. To calculate the
k-NN for each data point, the algorithm above must be repeated n times, resulting in a
sub-quadratic runtime compared to the quadratic runtime of the naive algorithm described
in Algorithm 3.1.
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SYCL (pronounced “sickle”) is a cross-platform abstraction layer for OpenCL. The Khronos
Group develops its specification with the current version being 1.2.1 ([Ron20]), while SYCL
2020 Provisional is currently work in process. The main idea of SYCL is the combination of
OpenCL’s concepts, portability, and efficiency with the ease of use of modern C++.

SYCL uses Single-Source Multiple Compiler-Passes (SMCP) to compile a single source file
with multiple compilers. This allows SYCL to compile host code using the host compiler,
while the device compiler will compile only the kernel code.

Since SYCL is based on OpenCL, it inherits its notations (such as work-groups, work-items,
private memory, or local memory) from OpenCL.

The main advantages of SYCL are simplicity, reuse, and efficiency. SYCL kernels are written
using pure C++ and do not need complicated separation of host and device source code.
This allows for easier development of SYCL applications compared to pure OpenCL. Since
SYCL device code is written using pure C++, host code constructs can be reused. However, a
few C++ features cannot be used inside the SYCL kernel code. These features include virtual
functions, function pointers, exceptions, Runtime Type Information (RTTI), or compiler-
specific features. Specifically, this means that widely used C++ features like inheritance
(without virtual functions) or templates can be used inside SYCL kernel code. Because
the SYCL host and device code are tied together more closely, it is easier for the compiler
to generate more specialized device code based on decisions made in the host code, e.g.,
better function inlining.

As stated previously, SYCL is based on OpenCL. However, SYCL extends the underlying
OpenCL model in two ways. Firstly, it introduces a new syntax for hierarchical parallelism.
Furthermore, it separates the data access from the data storage using C++ well known
Resource Acquisition Is Instantiation (RAII) idiom. This also removes the need for explicit
data movement by the user.

Hereafter, an example of a SYCL code for a simple vector addition will be examined,
followed by comparing current SYCL implementations.
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Listing 4.1 Example code for a simple parallel vector addition using SYCL.
1 # include <array>
2 # include <iostream>
3 # include <numeric>
4

5 # include <CL/sycl.hpp>
6 namespace sycl = cl::sycl;
7

8 class kernel_name;
9

10 int main() {
11 constexpr std::size_t size = 10;
12 std::array<float, size> a;
13 std::iota(a.begin(), a.end(), 1.0);
14 std::array<float, size> b;
15 std::iota(b.begin(), b.end(), 1.0);
16 std::array<float, size> c;
17

18 {
19 sycl::queue queue(sycl::default_selector{});
20

21 sycl::buffer<float, 1> buffer_a(a.data(), a.size());
22 sycl::buffer<float, 1> buffer_b(b.data(), b.size());
23 sycl::buffer<float, 1> buffer_c(c.data(), c.size());
24

25 queue.submit([&](sycl::handler& cgh) {
26 auto acc_a = buffer_a.get_access<sycl::access::mode::read>(cgh);
27 auto acc_b = buffer_b.get_access<sycl::access::mode::read>(cgh);
28 auto acc_c = buffer_c.get_access<sycl::access::mode::discard_write>(cgh);
29

30 const auto exec_range = sycl::range<>(size);
31 cgh.parallel_for<kernel_name>(exec_range, [=](sycl::item<> item) {
32 const auto idx = item.get_linear_id();
33

34 acc_c[idx] = acc_a[idx] + acc_b[idx];
35 });
36 });
37 }
38

39 for (const float val : c) {
40 std::cout << val << ' ';
41 }
42

43 return 0;
44 }
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4.1 Example: Vector Addition

The code in Listing 4.1 shows an example of a simple vector addition using SYCL to
perform the calculation in parallel using CPUs, GPUs, or Field Programmable Gate Arrays
(FPGAs).

All of SYCL’s functionality can be included using the <CL/sycl.hpp> header (line 5). Since
all functions reside in the cl::sycl namespace, it can be more convenient to create a short
namespace alias as in line 6.

In line 19, a sycl::queue is used to schedule kernels on a SYCL device. The target device
can be selected using a sycl::device_selector. Predefined sycl::device_selectors
are: sycl::default_selector (selecting a device based on an implementation-defined
heuristic), sycl::gpu_selector, sycl::accelerator_selector, sycl::cpu_selector
or sycl::host_selector (must always return a valid sycl::device). Furthermore, it is
possible to derive from the sycl::device_selector class to select a device based on a
custom heuristic, e.g., whether a device supports a specific OpenCL extension.

Optionally, a sycl::async_handler function can be provided to the sycl::queue construc-
tor. On a call to sycl::queue::wait_and_throw, in the case of asynchronous exceptions,
the registered exception handler will be called.

Next, the data must be made visible to the SYCL runtime. To achieve that, the own-
ership of the data needs to be transferred to SYCL. This can be done by the means of
the sycl::buffer class in lines 21-23. Since the data ownership is transferred to the
sycl::buffer, it is undefined to access the data through the original arrays (lines 12-16)
after the transfer. After the destruction of a sycl::buffer at the end of its scope at line
37, the ownership will be transferred back to the original array.

The next step is the creation of a command group using the sycl::queue::submit call in
line 25. This command group object is used to represent the required operations to process
data on a device.

In lines 26-28 for each sycl::buffer a sycl::accessor is created, because those ac-
cessors are the only way to access the data inside a SYCL kernel. A sycl::accessor
has two important properties, a sycl::access::mode, and a sycl::access::target.
The sycl::access::mode must be provided to a call to sycl::buffer::get_access.
Possible values are sycl::access::mode::read (only), sycl::access::mode::write
(only) and sycl::access::read_write, sycl::access::mode::discard_write and
sycl::access::mode::read_write (discard current values in buffer), and
sycl::access::mode::atomic.

The sycl::access::target specifies what the accessor provides access to. The default
accessor target is the global memory (sycl::access::target::global_buffer). An-
other important value is sycl::access::target::local for accessing work-group local
memory.
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The call to the previously mentioned sycl::buffer::get_access function can include
an optional sycl::handler parameter. This allows the SYCL runtime to automatically
detect and resolve dependencies between accessors within a command group. For ex-
ample, let there be a second kernel in the current example code accessing the buffer_c
in sycl::access::mode::read. Since this read operation depends on the write oper-
ation in the first kernel, the second kernel is only called after the first kernel finished
execution. On the other hand, if the second kernel only accesses the buffer_a in
sycl::access::mode::read and does not access buffer_c at all, both kernel executions
can overlap since there is no data dependency between the accessors.

The actual kernel gets enqueued to the command group in line 31 using the
sycl::handler::parallel_for construct. This allows the kernel to be executed in paral-
lel on the device specified during the sycl::queue construction. Another option would
be the sycl::handler::single_task function, which results in only one invocation of
the provided kernel. The first parameter to the sycl::handler::parallel_for handler is
the number of work-items. The example in line 31 uses the sycl::range version, which
allows the SYCL runtime to determine the used work-groups size automatically. Instead
of sycl::range, the sycl::ndrange class can also be used as the first parameter. In
this mode of execution, the kernel executes in work-groups of the specified size. This is
useful since work-items within a work-group can share data in local memory and can be
synchronized.

The second parameter is the actual kernel function. This can be a lambda function or a
named function object. If the kernel function is not a named function object whose type is
globally visible, a kernel name must be explicitly provided. If a lambda function represents
the kernel, the lambda must capture by value.

In general, all user-defined types can be used in a SYCL kernel, as long as they satisfy
the C++11 standard layout requirements. This means C++ constructs like templates are
explicitly allowed in SYCL kernels. Pointers or references to host data cannot be used
directly but can be passed to a kernel through the sycl::accessor class or an explicit copy
of the underlying data.

In line 34, the actual vector addition takes place. Accessing the data for the cal-
culation is only possible through the previously created sycl::accessor. To index
the sycl::accessor based on the current work-item, the sycl::item class provides
a sycl::item::get_linear_id function. In the case of a kernel invocation using the
sycl::ndrange version, the kernel parameter must also be a sylc::nd_item. The
sycl::nd_item class provides the sycl::nd_item::get_global_linear_id function to
get the per work-item unique id or the sycl::nd_item::get_local_linear_id function
to get the work-item id inside the parent work-group.
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ComputeCpp hipSYCL oneAPI triSYCL sycl-gtx

Intel CPUs OpenCL1 OpenMP OpenCL
OpenMP
or TBB

all
hardware
supporting
OpenCL 1.24

AMD CPUs - OpenMP -
OpenMP
or TBB

Intel GPUs OpenCL - OpenCL -

AMD GPUs - HIP/ROCm - -

NVIDIA GPUs
OpenCL
+ PTX2 CUDA

CUDA
+ PTX3 -

ARM Mali GPUs OpenCL - - -

Intel FGPAs - - OpenCL -

Xilinx FGPAs - - -
OpenCL
+ SPIR

1 SSE4.1 required
2 experimental
3 contribution from Codeplay to Intel’s DPC++ (experimental)
4 discontinued

Table 4.1: Overview of SYCL implementations and their supported hardware. As the table
shows, no SYCL implementation currently supports all types of hardware since
sycl-gtx is discontinued.

4.2 Implementations

Currently, a variety of different SYCL implementations for the specification 1.2.1 exist, each
focusing on other types of supported hardware and different backends.

ComputeCpp1 is a SYCL implementation developed by Codeplay. It supports Intel CPUs and
GPUs as well as ARM Mali GPUs using OpenCL as a backend. Additionally, ComputeCpp
has experimental PTX support to be able to also work with NVIDIA GPUs. Upon request2, it
has been confirmed that ComputeCpp currently does not support AMD GPUs because of a
lack of OpenCL SPIR support from the side of the recent AMD drivers.

Alpay and Heuveline [AH20] are developing hipSYCL3 at the University of Heidelberg as
another SYCL implementation. Supported platforms are CPUs via OpenMP, NVIDIA GPUs
directly using CUDA, and AMD GPUs using HIP/ROCm. It currently is the only implemen-
tation not relying on OpenCL as a backend as proposed in the SYCL 1.2.1 specification.
Therefore, it is the only implementation able to easily target AMD hardware.

1https://developer.codeplay.com/products/computecpp/ce/home/
2https://support.codeplay.com/t/questions-about-supported-sycl-targets/388/2
3https://github.com/illuhad/hipSYCL
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OneAPI4 is another SYCL implementation developed by Intel. It facilitates the custom
compiler DPC++ to target Intel hardware, i.e., Intel CPUs, GPUs, and FPGAs. However,
NVIDIA GPUs are also supported using a contribution from Codeplay to DPC++, as confirmed
upon request5.

Mainly developed by Xilinx, triSYCL6 states that it should not be used in production code
since it is more like a testing ground for new features for upcoming SYCL specifications.
Upon request, a triSYCL developer confirmed that it supports CPUs using OpenMP or Intel’s
TBB and Xilinx FPGAs.

Sycl-gtx7 developed by Zuzek [Zuz16] as a Masters project uses OpenCL 1.2 as a backend.

An overview of the supported hardware for each SYCL implementation can be found in
Table 4.1. As shown, currently no SYCL implementation can target all major hardware
platforms.

In the result Chapter 6 only ComputeCpp, hipSYCL, and oneAPI will be compared.

4https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
5https://community.intel.com/t5/Intel-oneAPI-Base-Toolkit/Intel-oneAPI-supported-targets/m-

p/1217938#M646
6https://github.com/triSYCL/triSYCL
7https://github.com/ProGTX/sycl-gtx
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5 Implementation

This chapter covers the implementation details of the sycl_lsh library created for this
master thesis. The sycl_lsh library is implemented using the C++17 standard.

The different memory layout types, Array of Structures (AoS) and Structure of Arrays (SoA),
are explained first since using the wrong layout type can degenerate the performance.
Therefore, the sycl_lsh library allows changing the memory layout using a simple non-type
template parameter.

Next, an overview of the sycl_lsh library is given, including explanations of the most
important classes shown in Figure 5.2.

To support multiple GPUs, on possibly multiple compute nodes, the MPI framework is used.
The SYCL specification 1.2.1 supports addressing multiple GPUs in a single host process.
However, hipSYCL only supports a single GPU per process. Therefore, the sycl_lsh library
spawns one MPI process per GPU, even on a single, shared memory node. The resulting
implementation is shown in Section 5.3: “Multi-GPU Support”.

5.1 Memory Layout Types

Most data sets can be interpreted as a two-dimensional matrix, where the rows represent
the data points and the columns the dimensions. However, since it is often more efficient,
i.e., cache friendlier, to store large data sets linearly in memory, the question arises how to
transform the two-dimensional data matrix to a one-dimensional memory layout.

The sycl_lsh library supports the two different memory layout types, Array of Structures
(AoS) and Structure of Arrays (SoA). Figure 5.1 shows the differences between these two
memory layout types. The AoS layout saves the data point-wise, i.e., all dimensions of the
first point, followed by all dimensions of the second point, and so on. In contrast, the SoA
layout saves the data dimension-wise, i.e., the first dimension of all points, followed by the
second dimension.

Another difference shown in Figure 5.1 is the required indexing scheme for the data access.
Given the requested point i and dimension j to retrieve the correct value for the AoS
layout, the first i points must be skipped. Since AoS stores the data point-wise, skipping the
first i points can be done using i · DIMS, where DIMS is the total number of dimensions
per data point. To get the same value in the SoA layout, j dimensions of each data point
must be skipped. That can be achieved by using j · SIZE, since the SoA format stores all
data points dimension-wise.
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Array of Structures (AoS):

P1,1 P1,2

1. point

P2,1 P2,2

2. point

P3,1 P3,2

3. point

// points saved in AoS layout
std::vector<float> points(SIZE * DIMS);

float get_aos(size_t i, size_t j) {
return points[i * DIMS + j];

}

Structure of Arrays (SoA):

P1,1 P2,1 P3,1

1. dimension

P1,2 P2,2 P3,2

2. dimension

// points saved in SoA layout
std::vector<float> points(SIZE * DIMS);

float get_soa(size_t i, size_t j) {
return points[j * SIZE + i];

}

Figure 5.1: Differences between the two memory layout types Array of Structures (AoS)
and Structure of Arrays (SoA). The AoS layout saves the data point-wise,
whereas the SoA format saves the data dimension-wise. This difference can
also be seen in the different index calculations.

The sycl_lsh library enables these layout types using the enum class
sycl_lsh::memory_layout with the possible values sycl_lsh::memory_layout::aos
and sycl_lsh::memory_layout::soa. These values can be passed to the factory functions
of the sycl_lsh::data, hash functions, and sycl_lsh::hash_tables classes as non-type
template parameter.

As already stated in Figure 5.1, the indexing scheme depends on the used memory lay-
out type. Since in the sycl_lsh library the layout type can be easily changed using a
non-type template parameter, a way to index the data structures independently of the
used memory layout must be provided. This is managed by using the templated functor
sycl_lsh::get_linear_id together with partial template specialization. An example
skeleton for the implementation of the sycl_lsh::get_linear_id functor can be seen in
Listing 5.1. The idea is to specialize the sycl_lsh::get_linear_id functor in lines 6 and
7 based on the type for which the index should be calculated. The actual index calculation
takes place in the overloaded function call operator (line 11). Inside this function, the
index can be calculated based on the provided sycl_lsh::memory_layout type.

This functor can be used to index, for example, the a sycl_lsh::data class object given
a sycl_lsh::memory_layout as shown in Listing 5.2. Here, the parameter attrs is of
type sycl_lsh::data_attributes, which encapsulates information about the used data
set, such as the total data set size or number of dimensions. For more information, see
Section 5.2.2.
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Listing 5.1 Templated functor to calculate the one-dimensional index, given a multi-
dimensional one, for a class type based on the given sycl_lsh::memory_layout.

1 namespace sycl_lsh {
2 enum class memory_layout { aos, soa };
3

4 // specialize the templated functor based on the class type for which the index
5 // given the memory layout type should be calculated
6 template <memory_layout layout, ...>
7 struct get_linear_id<...> {
8

9 // overload the function-call operator to calculate the one-dimensional index
10 [[nodiscard]]
11 auto operator()(...) const noexcept {
12 if constexpr (layout == memory_layout::aos) {
13 // memory layout type is Array of Structures
14 return ...;
15 } else {
16 // memory layout type is Structure of Arrays
17 return ...;
18 }
19 }
20

21 };
22 }

Listing 5.2 Usage example of the sycl_lsh::get_linear_id functor for a
sycl_lsh::data class object. Only the used sycl_lsh::data type must be specified.

1 namespace sycl_lsh {
2 // data class type
3 template <sycl_lsh::memory_layout, typename Options>
4 class data;
5 }
6

7 // example usage
8 using options_type = sycl_lsh::options<...>;
9 using data_type = sycl_lsh::data<sycl_lsh::memory_layout::soa, options_type>;

10 const sycl_lsh::get_linear_id<data_type> get_linear_id_soa;
11 const auto idx = get_linear_id_soa(point, dim, attrs);
12 // use idx to access elements of buffers contained in the data class
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sycl_lsh::options

sycl_lsh::data hash_functions

sycl_lsh::hash_tables

sycl_lsh::knn

command line arguments

k-nearest neighbors

Figure 5.2: Simplified code architecture of the sycl_lsh library.

5.2 Code Architecture

This section explains the key classes of sycl_lsh library implemented for this master
thesis. The simplified code architecture can be seen in Figure 5.2. The sycl_lsh::options
class controls the used algorithm’s behavior utilizing, for example, provided command
line arguments. It encapsulates options like the used floating-point type or the number
of hash tables or hash functions used in the LSH algorithm. The sycl_lsh::data class
represents the used data set. It reads the data from a file provided through command line
arguments. In addition, it uses the sycl_lsh::options class to determine the used data
types. In subsection 5.2.3 the implementation of the used locality-sensitive hash functions,
sycl_lsh::random_projections and sycl_lsh::entropy_based hash functions, are dis-
cussed. Again, the sycl_lsh::options class determines the used data types and the used
hash function type through template parameters. The sycl_lsh::hash_tables class rep-
resents the actual LSH hash tables. It receives a previously created sycl_lsh::data object,
and constructs the hash functions based on the provided sycl_lsh::options. Afterward,
the sycl_lsh::hash_tables object can be used to calculate the k-NN of all data points.
The computed k-NN are returned using a sycl_lsh::knn object. This object can be used
to calculate the achieved recall and error ratio. Additionally, the calculated k-NN and
their distances can be saved to files provided through command line arguments. Other
components of the sycl_lsh library are mainly helper functions or RAII wrapper classes
around MPI objects.

The following sections introduce each of the sycl_lsh components, their respective pur-
pose, and their note-worthy attributes in detail.
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Listing 5.3 Example for the creation of a sycl_lsh::options object with explicitly speci-
fied compile-time parameters.

1 using options_type = sycl_lsh::options<
2 float, // real_type
3 std::uint32_t, // index_type
4 std::uint32_t, // hash_value_type
5 10, // blocking_size
6 sycl_lsh::hash_functions_type::random_projections>; // used_hash_functions_type
7

8 const options_type opt;

5.2.1 The sycl_lsh::options Class

The sycl_lsh::options class is the central point that controls the behavior of the used
LSH algorithm. It is divided into compile-time and runtime options.

Compile-time options, which must be specified as template parameters during the creation
of a sycl_lsh::options object, are:

real_type
The used floating point type for the data and hash functions. The type must fulfill the
C++11 type trait std::is_floating_point.

index_type
The used integral type for indexing and index calculations. The type must fulfill the
C++11 type trait std::is_integral.

hash_value_type
The used unsigned integer type for the calculation of the hash values. The type must
fulfill the C++11 type trait std::is_unsigned since, before C++20, for a negative
x the behavior of x << y is undefined and the value of x >> y is implementation
defined.

blocking_size
The blocking size of type index_type used in the SYCL kernel for calculating the
k-NN. The value must be greater than zero.

used_hash_functions_type
The type of the used hash functions. The value must be either
sycl_lsh::hash_functions_type::random_projections or
sycl_lsh::hash_functions_type::entropy_based.

For example, creating a sycl_lsh::options object could look like in Listing 5.3. In this
example the used data values are interpreted as float, the type for index and hash value
calculations is std::uint32_t, the blocking size is ten, and the used locality-sensitive hash
functions are random projections.
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The other type of options are the runtime options. If the command line argument
--options_file path-to-file is present, the sycl_lsh library tries to read the options
given by the provided file. After that, the options are overwritten by the present command
line arguments. All options that are not initialized using the file or command line will be
initialized to their default value. If further adjustments must be made, the options can
easily be changed using a simple member assignment later on. The runtime options are:

hash_pool_size
The number of hash functions in the hash pool. They are used to construct the hash
signature functions, as described in Section 3.2.2. To generate a single hash signature
function num_hash_functions many hash functions will be drawn uniformly at
random from the hash pool. The value must be greater than zero, and the default is
32.

num_hash_functions
The number of hash functions per hash signature used to index the LSH hash tables.
This means that num_hash_functions * num_hash_tables hash functions, will be
drawn from the hash pool. More hash functions mean that it is more likely that fewer
data points have the same hash signature. This results in a lower recall, but possibly
better performance since fewer points must be considered per hash bucket. The value
must be greater than zero, and the default is twelve.

num_hash_tables
The number of LSH hash tables. More hash tables mean that more data points are
considered since more hash buckets will be examined. This results in a higher recall
but possibly worse performance. The value must be greater than zero, and the default
is eight.

hash_table_size
The size of each hash table. The value determines the maximum possible hash value
for a hash table using hash_value % hash_table_size. A smaller hash table size
means that more data points have the same hash value due to the modulus operator’s
nature. This results in a higher recall but possibly worse performance. The value must
be greater than zero and should be a prime number. The default value is 105 613.

w The segment size for the random projection hash functions: h(x) =
⌊

a·x+b
w

⌋
. This

value is only used if the used_hash_functions_type is
sycl_lsh::hash_functions_type::random_projections. Small values of w mean
that each segment is wider. Since the hash value of a single hash function is deter-
mined by the projected segment, it is more likely that more data points have the same
hash value resulting in a better recall but possibly worse performance. The value
must be greater than zero, and the default value is 1.0.

num_cut_off_points
The number of cut-off points for the entropy-based hash functions. This value is only
used if the used_hash_functions_type is
sycl_lsh::hash_functions_type::entropy_based. A higher number of cut-off
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points mean more segments, resulting in fewer data points per segment. This results
in a lower recall but possibly better performance. The value must be greater than
zero, and the default value is six.

The current options can be saved to the file specified by the command line argument
--options_save_file path-to-file using the sycl_lsh::options::save function.

5.2.2 The sycl_lsh::data Class

The sycl_lsh::data class represents the used data set.

It reads the provided data file (via command line arguments; see Appendix B for more
information) and parses it using the specified file parser utilizing MPI IO. The default file
parser, the sycl_lsh::mpi::binary_parser, expects the file in binary form, whereby the
first line contains the total number of data points, the second line the number of dimensions,
and the following lines the actual data points. Thereby, both sizes must be saved using a type
compatible with the sycl_lsh::options::index_type and the data points compatible
with the sycl_lsh::options::real_type. The sycl_lsh::mpi::arff_parser expects
the file saved in the Attribute-Relation File Format (ARFF)1. Since the ARFF format is
a textual format and MPI IO expects the files to be stored in binary form, this parse is
currently not implemented. More file parser can be implemented by inheriting from the
sycl_lsh::mpi::file_parser base class.

The file parser expects the data to be given in AoS format. However, if the requested memory
layout type is sycl_lsh::memory_layout::soa, the data will be converted accordingly.
Since this only requires a single pass over all data points, resulting in a complexity of O(n)
where n is the size of the data set, it is insignificant for the total runtime.

The sycl_lsh::data class holds an instance of the sycl_lsh::data_attributes class,
which represents the attributes of the data set. A sycl_lsh::data_attributes
object holds three members. The sycl_lsh::data_attributes::total_size cor-
responds to the total number of data points in the data set. In contrast, the
sycl_lsh::data_attributes::rank_size represents the number of data points per MPI
process. If the total data set size is not divisible by the number of MPI processes, the last
MPI rank gets the necessary dummy points such that all ranks are responsible for the same
number of data points. Additionally, the sycl_lsh::data_attributes::dims corresponds
to the number of dimensions of the data set.

Internally the sycl_lsh::data class holds two one-dimensional arrays, each of size
sycl_lsh::data_attributes::rank_size * sycl_lsh::data_attributes::dims. The
arrays are one-dimensional since a std::vector<std::vector<T>> is not guaranteed
to be laid out consecutively in memory, which would result in additional unneces-
sary indirections. One array represents the data residing on the device and is of type
sycl_lsh::buffer. The other array resides in the host buffer. This array is used to overlap

1https://waikato.github.io/weka-wiki/formats_and_processing/arff_stable/
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MPI communications and device calculations. Therefore, in total, a sycl_lsh::data object
uses sycl_lsh::data_attributes::rank_size * sycl_lsh::data_attributes::dims
* sizeof(sycl_lsh::options::real_type) bytes both on the device and the host
buffer.

The sycl_lsh::data class specializes the sycl_lsh::get_linear_id functor and, there-
fore, can easily be used with different memory layout types.

5.2.3 Locality-Sensitive Hash Functions

The sycl_lsh library currently implements two types of hash functions,
sycl_lsh::random_projections and sycl_lsh::entropy_based. The hash function
type can be set using the non-type template parameter
sycl_lsh::options::used_hash_functions_type in the sycl_lsh::options class.

Both hash function classes specialize the sycl_lsh::get_linear_id functor to be able to
use the different memory layout types.

In the following, the distributed generation of each hash function type is described, followed
by explaining how the hash signature for a single LSH hash table is calculated.

The sycl_lsh::random_projections Hash Functions Class

Generating the random projection hash functions is simple compared to the entropy-based
hash functions. Recall the random projection hash functions defined in Definition 3.2.3:

h(x) =
⌊

a · x + b

w

⌋
x, a ∈ Rd, w ∈ R+, b ∈ [0, w]. (5.1)

At first, the hash pool must be created by generating
sycl_lsh::options::hash_pool_size many hash functions on the host side. The vec-
tor x, a data point for which the hash value should be calculated, and the scalar w, a
hyperparameter provided, for example, on the command line, are given. Therefore, to
generate a random projection hash function, only the vector a and the scalar b must be
determined. To create the vector a, sycl_lsh::data_attributes::dims many random
values are drawn from a std::normal_distribution<sycl_lsh::options::real_type>.
Additionally, the scalar b is drawn from a std::uniform_real_distribution<real_type>
restricted to values in the range [0, sycl_lsh::options::w].

In a second step, sycl_lsh::options::num_hash_tables *
sycl_lsh::options::num_hash_functions hash functions are selected uniformly at ran-
dom from the previously generated pool, to form the hash signatures used for filling the
LSH hash tables.

All hash functions are calculated on the MPI master rank, i.e., the hash function pool only
exists on the MPI master rank. After selecting the actual hash functions, those functions are
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broadcasted to all other MPI ranks. Thereafter, each MPI rank copies the hash functions to
its respective device using a sycl_lsh::buffer.

In total, a sycl_lsh::random_projections object uses
sycl_lsh::options::num_hash_tables * sycl_lsh::options::num_hash_functions
* (sycl_lsh::data_attributes::dims + 1) *
sizeof(sycl_lsh::options::real_type) bytes on the device buffer.

The sycl_lsh::entropy_based Hash Functions Class

Calculating the entropy-based hash functions is more expensive compared to the random
projection hash functions. Recalling the entropy-based hash functions defined in Definition
3.2.1, their generation can be split into two steps, creating the initial mapping values and
calculating the cut-off points. The initial mapping is calculated using:

h′(x) = x · a x, a ∈ Rd. (5.2)

The vector x, the data point for which the hash value should be calculated, is given.
Therefore, only the vector a must be determined to calculate the initial mapping values.
To create the vector a, sycl_lsh::data_attributes::dims many random values are
drawn from a std::normal_distribution<sycl_lsh::options::real_type>. Since the
sycl_lsh::options::hash_pool_size many mapping functions are only generated on
the MPI master rank, they are broadcasted to all other MPI ranks. On every MPI rank, these
hash functions h′(x) are used to calculate the initial mappings on the device using a SYCL
kernel.

The cut-off points for the final hash function

h(x) =



0, if h′(x) ≤ q1

1, if q1 < h′(x) ≤ q2
...

r − 2, if qr−2 < h′(x) ≤ qr−1

r − 1, if h′(x) > qr−1

(5.3)

must be calculated in the second step. First, the initial mapped values must be sorted across
all MPI ranks. Since this is currently done by using a modified distributed bubble-sort
algorithm, implementing a more efficient distributed sorting algorithm can improve the
hash pool generation’s performance.

The cut-off points are determined by first calculating the indices of the cut-off
points, which are ((sycl_lsh::data_attributes::rank_size * MPI_WORLD_SIZE) /
sycl_lsh::options::num_cut_off_points) * (i + 1) with
i = 1, ..., sycl_lsh::options::num_cut_off_points. Afterward, the indices are
used to determine the cut-off point values on the respective MPI rank. Each MPI rank
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Listing 5.4 Hash combine function in the case of std::uint32_t as
sycl_lsh::options::hash_value_type. This function is used to combine a single
hash value with hash signature.

1 namespace sycl_lsh::detail {
2 inline
3 std::uint32_t hash_combine(const std::uint32_t seed, const std::uint32_t val) noexcept
4 {
5 return seed ^ (val + static_cast<std::uint32_t>(0x9e3779b9U)
6 + (seed << static_cast<std::uint32_t>(6))
7 + (seed >> static_cast<std::uint32_t>(2)));
8 }
9 }

collects the cut-off point values at the indices, for which it is responsible. The resulting
values are combined and broadcasted to each MPI rank. For example, given 25 mapped
values per MPI rank, four MPI ranks, and three cut-off points, the indices are 33 and 66.
Therefore, only the MPI ranks two and three can report the cut-off point values. However,
these values are then combined and broadcasted such that all four MPI ranks have both
cut-off point values.

As the last step, sycl_lsh::options::num_hash_tables *
sycl_lsh::options::num_hash_functions hash functions are selected uniformly at ran-
dom on the MPI master rank from the previously generated pool and are broadcasted to all
other MPI ranks. After that, each MPI rank copies the hash function to its respective device
using a sycl_lsh::buffer.

In total, a sycl_lsh::entropy_based object uses sycl_lsh::options::num_hash_tables
* sycl_lsh::options::num_hash_functions * (sycl_lsh::data_attributes::dims
+ sycl_lsh::options::num_cut_off_points - 1) *
sizeof(sycl_lsh::options::real_type) bytes on the device buffer.

Hash Signature Calculation

To calculate the hash signature depending on the hash function type, a similar approach
to the sycl_lsh::get_linear_id functor is used. In this case, the templated functor is
named sycl_lsh::lsh_hash and uses the operator() overload to perform the actual
hash signature calculation. This templated struct is specialized for both hash function types,
sycl_lsh::random_projections and sycl_lsh::entropy_based.

To calculate the hash value of a data point for a single LSH hash table,
sycl_lsh::options::num_hash_functions hash functions must be evaluated based
on the hash function type. These hash functions must be combined to form the re-
sulting hash signature used to index the hash table. It is inefficient to calculate all
hash values and then combine them to the hash signature in one step. Therefore, the

50



5.2 Code Architecture

hash signature is calculated on the fly and gets updated after each hash value calcu-
lation. This combination of a hash value with the hash signature is shown in List-
ing 5.4. The code shows the sycl_lsh::detail::hash_combine function in case of a
sycl_lsh::options::hash_value_type of type std::uint32_t. Other overloads exist
for std::uint16_t and std::uint64_t with different magic numbers. These functions are
based on the hash combination method proposed by Josuttis [Jos18]. The magic number
0x9e3779b9 is derived from the golden ratio as described by Jenkins [Jen96] and depends
on the number of bits in the used sycl_lsh::options::hash_value_type.

Φ = 1 +
√

5
2 (5.4)

trunc(232

Φ ) = 2654435769 (5.5)

265443576910 = 0x9e3779b916 (5.6)

The final hash value is derived from the hash signature using the modulo operator to reduce
the number of hash buckets to sycl_lsh::options::hash_table_size.

5.2.4 The sycl_lsh::hash_tables Class

This section describes the creation of a sycl_lsh::hash_tables object. Two important
aspects must be considered to ensure reasonably good performance.

Normally, perfect hash functions try to achieve as few hash collisions as possible. A hash
collision occurs if two different data points have the same hash value. Too many collisions
can result in a degeneration of performance since dealing with them can be rather expensive.
In LSH, however, if two data points are close to each other, they will have the same hash
value with a high probability. Therefore in LSH, many hash collisions can occur, and the
hash tables’ implementation must take that into account.

Another problem can be race conditions. Because the hash tables are filled in parallel,
multiple threads may try to write to the same memory location. To prevent race conditions,
such memory accesses must be synchronized in one way or another. If there are no efficient
ways to synchronize memory accesses, performance will degenerate with an increasing
number of collisions.

To guarantee that the previously stated problems have no negative impact on the perfor-
mance of the creation of a sycl_lsh::hash_tables object on the specified device, the
hash tables are created in three steps. These steps can also be seen in Figure 5.3 and are
further described in the next subsections.

The resulting sycl_lsh::hash_tables object consist of two sycl::buffer. The
hash_tables_buffer represents all hash tables. Each hash table contains each data
point exactly once. Since it is too expensive to store the data points directly, only
their ids are stored. All hash tables are laid out consecutive in memory, whereby
all ids are sorted by their respective hash value. This means that all data points
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hash_values_count:

0 2 0 2 1

2 data points with hash value 1

temporary offsets:

0 0 0 2 2 4

tmp_offsets[i] = tmp_offsets[i-1]
+ hash_values_count[i-2]

offsets:

0 0 2 2 4 5

offsets[i] = tmp_offsets[i]
+ hash_values_count[i-1]

for (int i = 0; i < 2; ++i)
hash_tables:

P1,1 P3,1 P2,3 P5,3 P4,4

hash bucket 1 hash bucket 3 hash bucket 4

Figure 5.3: The steps for creating the necessary data structures for the
sycl_lsh::hash_tables class. All three steps are performed on the
current device using different SYCL kernels. The points Pi should be inserted
into their respective hash buckets. To do that, the occurrence of each hash
value must be determined. After that, a temporary offsets array is created
using the hash_values_count array. This temporary array is then used to
insert the data points into their respective hash buckets and simultaneously
updated to the final offsets array. In the resulting hash_tables Pi,j denotes
that the i-th data point has been inserted into the j-th hash bucket.

with corresponding hash value zero are stored first, followed by all with hash value
one, and so on. This guarantees efficient access for each data point id inside a
hash bucket. The hash_tables_buffer uses (sycl_lsh::options::num_hash_tables
* sycl_lsh::data_attributes::rank_size + sycl_lsh::options::blocking_size)
* sizeof(sycl_lsh::options::index_type) bytes on the device. The additional
sycl_lsh::options::blocking_size bytes are needed to enable blocking in the SYCL
kernel to calculate the k-NN.

The offsets_buffer is used to create the hash tables and to index a specific hash
bucket of a hash table efficiently. It consumes sycl_lsh::options::num_hash_tables *
(sycl_lsh::options::hash_table_size + 1) *
sizeof(sycl_lsh::options::index_type) bytes on the device buffer.

The next sections will describe how the hash tables are filled in parallel, followed by an
explanation on how the k-nearest neighbors are calculated.
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Creating the Hash Tables

The steps performed to create the LSH hash tables can be seen in Figure 5.3. The data
points should be laid out consecutively in memory, sorted by hash buckets. Therefore,
to insert a data point in hash bucket i, the number of data points in all hash buckets
j < i must be known. In the first step seen in Figure 5.3, the number of data points
per hash bucket per hash table is calculated. The corresponding hash values are cal-
culated in parallel on the device using a SYCL kernel for each data point. These par-
allel updates of the hash value counts can result in race conditions if no synchroniza-
tion takes place. Synchronizing a sycl::buffer access using atomic operations, such
as fetch_add(1), is done using a sycl::accessor with sycl::access::mode::atomic
as access mode. Afterward, if accessing the hash_values_count buffer at position
one results in value two, two data points will be sorted into the hash bucket one.
This hash_values_count buffer consumes sycl_lsh::options::num_hash_tables *
sycl_lsh::options::hash_table_size * sizeof(index_type) bytes on the device.
Since this buffer is only needed during the first two steps of the hash table creation,
the memory will be freed afterward.

In the second step, the hash_value_count buffer is used to calculate the temporary
offsets_buffer. This buffer is later used to fill the hash_tables_buffer and, in this
step, gets transformed into the final offsets_buffer. The temporary offsets_buffer
is filled using a modified prefix-sum algorithm on the device using a SYCL kernel. As
shown in Figure 5.3, the i-th value in the temporary offsets_buffer is calculated using
offsets_buffer[i] = offsets_buffer[i - 1] + hash_values_count[i - 2]. This
modified algorithm shifts the values by two to the right side. The first shift is needed to
correctly index the first hash bucket elements, which start at index zero. The second shift
is needed for the third step of the hash table creation to determine a data point’s actual
position inside its respective hash bucket.

In the third step, the hash_tables_buffer is filled, and the temporary offsets_buffer
is updated to the final offsets_buffer. For each data point, the hash values are calcu-
lated in parallel on the device using a SYCL kernel. The id of the current data point is
inserted at the position acc_offsets_buffer[hash_value + 1].fetch_add(1) into the
hash_tables_buffer. Again, an atomic operation is used to prevent race conditions if
two data points are inserted into the same hash bucket simultaneously. In the same step,
the temporary offsets_buffer is updated to support efficient per hash bucket access.
Figure 5.3 may clarify this. For example, the value of the final offsets_buffer at position
two can be calculated by hash_values_count[1] + offsets_buffer[2].

To access all elements in the i-th hash bucket of the j-th hash table using the final offsets
buffer, the code snippet in Listing 5.5 can be used. The start of the hash bucket is directly
determined by indexing the offsets buffer with the calculated hash signature i. The end
of the inspected hash bucket corresponds the the value at the next position in the offsets
buffer. An example is shown in Figure 5.3. Iterating over all elements in the hash bucket
one of the first hash table can be done by using the displayed for-loop. This for-loop indeed
iterates over the necessary two data points in the hash bucket one.
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Listing 5.5 Example code to access all elements of the i-th hash bucket of the j-th hash
table using the offsets buffer.

1 const options_type opt = ...;
2 using index_type = typename options_type::index_type;
3

4 const index_type bucket_begin = acc_offsets[j * (opt.hash_table_size + 1) + i];
5 const index_type bucket_end = acc_offsets[j * (opt.hash_table_size + 1) + i + 1];
6 for (index_type elem = bucket_begin; elem < bucket_end; ++elem) {
7 // perform calculations on the points in the hash bucket
8 }

Calculating the k-Nearest Neighbors

After all hash tables have been created, the k-NN can be calculated, which is the same on
all MPI ranks.

At first, the current k-NN and their respective distances are moved from the host side to the
device memory using two sycl::buffer.

The k-NN search is performed in parallel for all data points on the SYCL device. Every data
point is treated independently from all other points. For each data point, all hash tables
are iterated. Firstly, the hash signature of the current data point x in the current hash table
is calculated. All data points in the hash bucket corresponding to the hash signature are
considered for the k-NN search. Therefore, the distances between these data points and x

are calculated. Currently, only the Euclidean distance metric is implemented, whereby the
square root is omitted, since it would not change the resulting nearest neighbor order but
is computational expensive.

Afterward, the current k-NN are updated. It is necessary to ensure that a data point only
occurs once as nearest neighbor, and the current point x is not marked as a nearest point
to itself. Without special guarantees, a data point could occur multiple times as a nearest
neighbor if it assigned to the same hash bucket as x in multiple hash tables.

To update the k-NN, both buffers, the nearest neighbor ids and distances, must be changed.
Since both buffers are sorted by decreasing distance, only the first element of the distance
buffer must be examined to determine if the new data point is a better nearest neighbor. If
this is the case, the first entries of both buffers are updated. Afterward, a single bubble-sort
pass over the distance buffer is performed while simultaneously updating the nearest
neighbor id buffer, too. This bubble-sort pass ensures that the updated nearest neighbor
is moved to the correct place and the next largest distance is at the first position of the
buffers, guaranteeing that the buffers’ invariant still holds.

After the destruction of the sycl::buffer at the end of their lifetimes, the calculated k-NN
are automatically transferred back to the host memory.

Without special care, both k-NN buffers reside in the global memory. In the update
step, possibly multiple accesses to both buffers are made. However, accessing global
memory is expensive. Therefore, both buffers are loaded into local memory to speed
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Listing 5.6 Comparison between the loops for accessing all data points in a specific hash
bucket with and without blocking. When using blocking, the outer loop increments each
iteration by sycl_lsh::options::blocking_size, while the inner loop increments by
one up to the blocking size.

1 // Normal iteration over all elements of a hash bucket
2 for (index_type elem = bucket_begin; elem < bucket_end; ++elem) {
3 ...
4 }
5

6 // Iterate over all elements with blocking
7 constexpr auto blocking_size = sycl_lsh::options::blocking_size;
8 for (index_type elem = bucket_begin; elem < bucket_end; elem += blocking_size) {
9 ...

10 for (index_type i = 0; i < blocking_size; ++i) {
11 ...
12 }
13 ...
14 }

up that accesses. The local memory is a memory area specific to a single work-
group. It can be thought of as a user-controlled cache and can be accessed more
efficiently than the global memory. SYCL enables accessing the local memory using
a special access target, sycl::accessor<type, 1, sycl::access::mode::read_write,
sycl::access::target::local> acc(sycl::range<>(local_memory_size), cgh).
Since the local_memory_size must be specified per work-group, they must be cre-
ated manually using a sycl::nd_range as execution range. This sycl::nd_range
consists of a global_size and local_size. The local_size represents the num-
ber of threads per work-group and is determined as the largest power of two
smaller than the maximum work-group size that does not exceed the available lo-
cal memory size on the device. The global_size is the smallest multiple of the
local_size that is greater or equal than the sycl_lsh::data_attributes::rank_size.
For calculating the k-NN, the local_memory_size equals local_size * k. Since
both buffers must be loaded into local memory, the occupied local memory
per work-group is local_size * k * (sizeof(sycl_lsh::options::index_type) +
sizeof(sycl_lsh::options::real_type)). The data must be loaded manually from
the global memory into the local memory at the beginning of the kernel. At the end of the
kernel, the data must be loaded back from local memory to global memory.

Another optimization is the utilization of blocking. For this purpose, the compile-
time non-type template parameter sycl_lsh::options::blocking_size for the
sycl_lsh::options class has been introduced. Using blocking, the distance calcula-
tion and nearest neighbors updates are not performed one by one, but in batches of
sycl_lsh::options::blocking_size by using a private, constant sized array inside the
SYCL kernel.

An example of a for-loop using blocking is displayed in Listing 5.6. The loop counter of the
outer loop in line 8 is incremented by sycl_lsh::options::blocking_size instead one
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as for the non-blocking for-loop in line 2. The inner loop’s counter is then incremented by
one in line 10 up to the blocking size.

Since the number of data points per hash bucket is not necessarily dividable by the blocking
size, some type of padding must be applied. However, this padding is not needed for
each hash bucket since reading beyond one hash bucket accesses the next hash bucket’s
first element. Only reading past the last hash bucket of the last hash table would result
in an out-of-bounce memory access. Therefore, it is sufficient to add the padding of size
sycl_lsh::options::blocking_size once at the end of the hash_tables_buffer.

5.2.5 The sycl_lsh::knn Class

The sycl_lsh::knn class represents the result of the k-nearest neighbors search. It
consists of two buffers residing in the host memory. One buffer holds the k-NN point
ids using a std::vector<index_type>. The other buffer represents the k-NN dis-
tances using a std::vector<real_type>. In total, a sycl_lsh::knn object uses k *
sycl_lsh::data_attributes::rank_size *
(sizeof(sycl_lsh::options::index_type) +
sizeof(sycl_lsh::options::real_type)) bytes on the host memory.

The calculated k-NN and the corresponding distances can be saved using the
sycl_lsh::knn::save_knns, respectively sycl_lsh::knn::save_distances functions.

The computed k-NN can be evaluated using two functions. The sycl_lsh::knn::recall
function calculates the recall using the ratio

true positives
relevant elements

. (5.7)

Verbalized, it calculates the amount of the exact k-NN that were correctly found.
The function uses the correct nearest neighbors provided in the file given by the
--evaluate_knn_file path-to-file command line argument. This evaluation metric
is a hard metric. The calculated k-NN could be near or close to the correct neighbors but
not identical, resulting in a low recall. However, sufficiently close neighbors could still be
enough for an approximate algorithm. Therefore, a second evaluation metric has been
implemented.

The sycl_lsh::knn::error_ratio function calculates the relative distance error between
the correct k-NN distances and the calculated k-NN distances using

1
N

·
N∑

i=1
( 1
k

·
k∑

j=1

distLSHj

distcorrectj

). (5.8)

This metric is more suited for an approximate algorithm since it takes into account that
small differences in the resulting distances can still be good enough for approximate
algorithms. The function uses the correct nearest neighbor distances provided in the file
given by the --evaluate_knn_dist_file path-to-file command line argument. If for
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any given data point no k k-NN could be found, this data point is excluded from the error
ratio calculation. Instead, the function returns two additional values besides the error ratio,
one being the number of data points for which less than k nearest neighbors were found,
and the other being the total number of nearest neighbors that could not be found.

5.3 Multi-GPU Support

Because of the large size of current data sets, a single GPU device can easily run out of
memory. Therefore, it is essential to use multiple devices to fulfill the growing demand
of necessary memory. In addition, even if the data sets do not grow in size, more devices
allow for faster executions since more compute power and memory bandwidth is avail-
able. Because of that, the sycl_lsh library can utilize multiple devices to speed up the
computation, or to allow the usage of larger data sets.

Everything discussed in the last chapter applies to a single MPI process if not stated
differently. Therefore, only two things remain to be clarified, namely how to select only a
single device per MPI rank, and the communication scheme between the MPI ranks.

5.3.1 Selecting a SYCL Device

At some point, the SYCL runtime must select the devices used for execution. The SYCL
standard natively supports handling multiple devices per host thread using multiple
sycl::queues. However, hipSYCL currently does not support multiple devices due to
its runtime limitations2. Therefore, the sycl_lsh library needs another way to support
multiple devices.

Per GPU device, a single MPI process is spawned. The environment variable
CUDA_VISIBLE_DEVICES for NVIDIA GPUs, respectively HIP_VISIBLE_DEVICES for AMD
GPUs, is used to determine the device based on the provided CMake configuration variable
SYCL_LSH_TARGET (see Appendix A for more information). Setting CUDA_VISIBLE_DEVICES,
for example, to 0 means that only the CUDA device with device id zero is visible for the
remainder of the application. This is used together with the MPI rank to enable only a
single device per MPI process. At first, the MPI_COMM_WORLD communicator, containing all
spawned processes, is split using MPI_COMM_TYPE_SHARED. The resulting node communi-
cators contain only the MPI ranks located on the respective shared memory node. The
environment variable CUDA_VISIBLE_DEVICES is then set according to the MPI rank in the
node communicators.

SYCL itself selects the device using the sycl::device_selector class’s select_device
member function. This function, in turn, calls the
sycl::device::operator()(sycl::device) for each available SYCL device and returns

2https://github.com/illuhad/hipSYCL/issues/272#issuecomment-654243168
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the device with the highest score. A device with a negative score will never be used. Be-
cause of the environment variable CUDA_VISIBLE_DEVICES, only a single GPU device will be
listed. Therefore, it is sufficient inside the sycl::device::operator()(sycl::device)
member function to check whether the given sycl::device is a GPU device from the
provided vendor. In all other cases, a negative score will be returned.

Currently, only a single Intel GPU device can be select since no environmental variable like
CUDA_VISIBLE_DEVICES exists for Intel GPUs. A similar mechanism could be implemented
using the DPCT namespace3. However, due to encountered problems4 regarding the
DPCT namespace on Intel’s devcloud currently no such implementation exists for the
sycl_lsh::library.

5.3.2 MPI Communication Scheme

As already mentioned in the last section, the sycl_lsh library implements the multi-GPU
support in a way that each MPI rank uses a single distinct GPU. To calculate the k-NN, the
MPI ranks must communicate with each other.

Each MPI rank reads its part of the data from the provided file using MPI IO and stores it in a
sycl_lsh::data object. In the same step, the data gets loaded onto the device. Afterward,
the hash functions are created. For more information about possible MPI communication
while creating the hash functions, see Section 5.2.3. The hash tables are created on each
MPI rank separately using only its part of the data read from the data file.

Therefore, before the k-NN calculation starts, the situation is as follows: the read data
resides once on the device and once in the host memory. Additionally, the hash functions
and hash tables are located on the device, whereas the current k-NN are still located in the
host memory.

The k-NN calculation is split into as many rounds as MPI ranks exist. In the first round,
the preliminary k-NN are calculated using the data already residing on the GPU. Simulta-
neously each MPI rank sends its data to the next MPI rank and receives new data from
the previously MPI rank using MPI_Sendrecv_replace. This simultaneously sending is
executed in another std::thread. Therefore, the MPI environment must be initialized with
the MPI_Init_thread function with a level of thread support of MPI_THREAD_SERIALIZED
or MPI_THREAD_MULTIPLE. This overlapping of computation and communication reduces
the total runtime compared to purely sequential execution. After the preliminary k-NN
have been calculated, they are also sent to the next MPI rank, and other preliminary k-NN
are received from the previous one.

In the second round, the received data and k-NN are loaded onto the GPU, and the prelimi-
nary k-NN are updated. This ring-like send and receive pattern is repeat MPI_COMM_WORLD

3https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-
user-guide/top/dpct-namespace-usage-guide.html

4https://community.intel.com/t5/Intel-DevCloud/Multi-GPU-run/m-p/1226560
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data read from the data file

calculated hash functions
and hash tablesdevice

memory

k-NN (including distances)
received from another MPI rank

data received from
another MPI rank

host
memory

Figure 5.4: The held and communicated data per MPI rank. To calculate the final k-
NN multiple communication and calculation rounds are performed. Once
loaded onto the GPU, the data read from the data file, and the calculated hash
functions and hash tables stay in the GPU memory. In each round, a MPI rank
receives the next portion of the full data set from the previous MPI rank, loads
it onto the GPU, and simultaneously sends it to the next MPI rank using a
ring-like communication pattern. The same happens for the already calculated
k-NN, however, they are sent to the next rank only after the calculations on
the GPU for the current round have been finished.

size times. Afterward, the k-NN calculation is finished, and the recall or error ratio can be
calculated.

An example of a single round, except the first round, is shown in Figure 5.4. The data read
from the data file, and the calculated hash functions and hash tables reside on the device
during the whole k-NN calculation. The data and preliminary k-NN for the current round
are received in the host memory and then loaded onto the device. While the k-NN can only
be sent to the next MPI rank after the current round is finished, the data is sent directly to
the next MPI rank after being copied to the device.
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This chapter presents and explains the results obtained by the implementation discussed in
the last chapter.

At first, the utilized hardware and data sets are described.

The next section describes the runtime characteristics of the sycl_lsh library on a single
GPU. For this purpose, the three SYCL implementations, ComputeCpp, hipSYCL, and oneAPI,
are compared to each other also utilizing different hardware showing the portability of
the sycl_lsh library across SYCL implementations and hardware. Afterward, the effects
of the various runtime parameters described in Section 5.2.1 are presented. As metrics
for the achieved accuracy of the calculated k-NN, the recall and error ratio as described
in Section 5.2.5 are used. Since these parameters heavily influence the resulting runtime,
recall, and error ratio, it is important to know how to tune these parameter to achieve the
required recall or error ratio while maintaining acceptable performance. While the first part
of the section investigates the random projections as locality-sensitive hash functions, the
second part focuses on the entropy-based hash functions. The same tests were conducted
for both hash function types comparing their results.

In the last section, the scaling behavior for both hash function types and ComputeCpp and
hipSYCL as SYCL implementations on multiple GPUs is investigated. Furthermore, the
achieved speedup is shown to prove the scalability of the sycl_lsh library implementa-
tion.

The compile time parameters mentioned in Section 5.2.1 were the same for
all conducted tests. The sycl_lsh::options::real_type is set to float, the
sycl_lsh::options::index_type and sycl_lsh::options::hash_value_type are set
to std::uint32_t and the sycl_lsh::options::blocking_size is set to ten.

6.1 Setup

The following subsections describe the used hardware, data sets, compiler settings, as well
as the used library versions.
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argon-gtx Intel’s devcloud (1) Intel’s devcloud (2)

number of nodes 1 1 1

processors
Intel Xeon
Gold 5120

Intel Xeon E-2176G Intel i9-10920X

number of sockets 2 1 1

processor frequency 2.2 GHz 3.7 GHz 3.5 GHz

total number of cores 28 (56 threads) 6 (12 threads) 12 (24 threads)

main memory 754 GB 64 GB 32 GB

accelerators
8x NVIDIA

GeForce 1080 Ti
Intel UHD Graphics

P630 Gen9
Intel Iris Xe MAX

Table 6.1: The hardware used to generate the different results.

6.1.1 Hardware

The sycl_lsh library has been tested on different clusters, the argon-gtx cluster located
at the University of Stuttgart and the devcloud1 powered by Intel. A detailed list of the
used hardware is shown in Table 6.1.

6.1.2 Data Sets

Two data sets were used. The synthetic friedman data set proposed by Friedman [Fri91] in
1991 to illustrate Multivariate Adaptive Regression Splines (MARS). This data set variant
consists of 500 000 points in 10 dimensions. Another real-world data set is based on a
reduced HIGGS data set provided by Baldi, Sadowski, and Whiteson [BSW14] containing
1 000 000 data points in 27 dimensions. It is used for a classification problem that tries to
distinguish a signal processes that produce Higgs bosons from other background processes
that do not produce Higgs bosons.

6.1.3 Compiler and Libraries

The used compilers and toolkits or libraries vary based on the cluster. On the
argon-gtx cluster GNU GCC 9.2.0, OpenMPI 4.0.1, CUDA 10.2, ComputeCpp 2.1.0,
hipSYCL master branch, CMake 3.18.4, and {fmt} 7.1.0 were used. On Intel’s
devcloud, GNU GCC 9.3.0, Intel MPI 2021.1-beta10, oneAPI DPC++ Compiler Pro
2021.1, CMake 3.18.2, and {fmt} 7.1.0 were used.

1https://software.intel.com/content/www/us/en/develop/tools/devcloud.html
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No additional performance tuning compiler flags are enabled, besides the flags auto-
matically set when using Release as CMAKE_BUILD_TYPE. One exception is the specific
compiler flag -no-serial-memop which is only set if the used SYCL implementation is
ComputeCpp.

The compiler flags -Wall, -Wextra, and -Wpedantic are enabled to faster detect potential
issues or bad habits.

6.2 Performance Evaluation on a single GPU

The following sections discuss the performance characteristics on a single GPU.

At first, the overall runtime behavior for the SYCL implementations based on the achieved
recall and error ratio using the random projection hash functions, is considered. All three
SYCL implementations, ComputeCpp, hipSYCL, and oneAPI, were used together with
the friedman data set, whereas only ComputeCpp and hipSYCL were used for tests on
the larger HIGGS data set. Because the resulting runtimes, recalls, and error ratios are
heavily affected by the used parameters, the next subsections will give an overview of
each parameter’s influence. To test a single parameter’s influence, all other parameters
are set to a default value, while the currently investigated parameter’s value varies in
a defined range. The knowledge obtained by these tests can be used to efficiently tune
the algorithms behavior the achieve the desired recall or error ratio while maintaining
acceptable performance.

After that, the same tests are repeated for the entropy-based hash functions. Besides, the
results for both hash function types are compared to each other.

6.2.1 Evaluating the Random Projection Hash Functions

This section focuses on the random projection hash functions defined in Definition 3.2.3. A
description of the implementation in the sycl_lsh library can be found in Section 5.2.3.

Figure 6.1 shows the runtime characteristics of the LSH algorithm for the three SYCL
implementations, ComputeCpp, hipSYCL, and oneAPI, depending on the resulting recall
and error ratio using the friedman data set. The runtimes include the generation of the
hash functions, the construction of the hash tables and the calculation of the k-NN. Each
dot represents the average of five samples using a specific set of parameter values. Intel’s
oneAPI implementation has been tested using two different GPUs, an Intel UHD Graphics
P630 Gen9 GPU and an Intel Iris Xe MAX GPU. The SYCL implementations ComputeCpp
and hipSYCL have been tested on a NVIDIA GEFORCE GTX 1080 Ti.

Figure 6.1a shows the runtime based on the achieved recall. For recalls lower than 20 %,
the runtimes of all three implementations do not increase significantly. Afterward, while
the recall improves, the runtime increases exponentially. As can be seen, it is possible to
achieve nearly 100 % recall for all implementations but the runtime worsens significantly.
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Figure 6.1: The runtime for the creation of the hash functions and hash tables, and the
k-NN search, using the three SYCL implementations ComputeCpp, hipSYCL,
and oneAPI, depending on the recall and error ratio using the friedman data
set as well as random projections. Each point represents the average of five
samples. The runtimes for ComputeCpp and hipSYCL were collected on a
NVIDIA GEFORCE GTX 1080 Ti, the oneAPI runtimes were gathered on an
Intel UHD Graphics P630 Gen9 and Intel Iris Xe MAX GPU.

Using an Intel UHD Graphics P360 Gen9 GPU, reaching a recall of 98.1 % results in a
runtime of 12.7 min. In contrast, by using an Intel Iris Xe MAX GPU instead, a recall of
97.9 % can be reached in 5.7 min. Therefore, the new Intel GPU reduces the runtime by a
factor of two while achieving a comparable recall. ComputeCpp using a NVIDIA GEFORCE
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GTX 1080 Ti needs 2.8 min for a recall of 96.2 %, while hipSYCL takes 2.8 min for a recall
of 99.0 %.

Using a logarithmic runtime scale in Figure 6.1b allows for a better insight of the actual
runtime behavior. All SYCL implementations are subject to the same overall behavior.
The shift of all implementations on the y-axis and, therefore, the different total runtimes
can be explained by the fact that the tests were performed on different hardware with
varying performance capabilities. While the Intel UHD Graphics P360 Gen9 GPU has the
worst overall runtime, the Intel Iris Xe MAX GPU performs slightly better. Even better
performance has the NVIDIA GEFORCE GTX 1080 Ti using the hipSYCL or ComputeCpp
implementation.

Figure 6.1c displays the runtimes based on the achieved error ratio. Reaching an error
ratio close to 1.0 corresponds to achieving a recall of nearly 100 %. Therefore, just like the
recall considerations, reaching an error ratio close to 1.0 results in a drastically increasing
runtime. However, as shown in Figure 6.1d, if the target error ratio should roughly be
1.3, the runtime can already be reduced drastically. After that, worsening the error ratio
does not result in a significantly lower runtime. All four implementations’ overall runtime
characteristics are similar, while the different hardware configurations can explain the
differences between the total runtimes.

All in all, it can be said that the runtime characteristics do not depend on the used SYCL
implementation for this example code.

Figure 6.2 displays the same situation as Figure 6.1, however, instead of the friedman data
set, the HIGGS data set has been used to show the differences for a larger data set compared
to the friedman data set. Furthermore, the only investigated SYCL implementations
are ComputeCpp and hipSYCL. As shown in Figure 6.2a, both SYCL implementations
behave the same. After a recall of 20 %, the runtimes start to increase drastically for both
implementations. Reaching a recall of 89.6 % using the ComputeCpp implementation takes
18.6 min. Achieving a similar recall of 90.5 % for the hipSYCL implementation results in a
runtime of 21.0 min.

A similar behavior can also be seen in Figure 6.2b. For recalls lower than 20 %, the runtimes
of both implementations decrease by a few seconds. After that, the runtimes increase
again.

Figure 6.2c displays a similar picture for the error ratio. As with the friedman data set, the
runtime drastically decreases even for relatively small error ratios. However, for an error
ratio close to 1.0, the runtimes increase significantly. The logarithmically scaled Figure 6.2d
shows that both versions behave similarly for small and large error ratios. As for the
friedman data set, after an error ratio of roughly 1.25, the runtime does not significantly
increase anymore.

Comparing the friedman data set with the HIGGS data set shows that the overall runtime
characteristics do not change. Only the total runtimes increase using the larger HIGGS
data set. Comparing the achieved recalls between the two data sets shows that, although
the same parameter combinations were used, a recall of nearly 100 % was reached for the
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Figure 6.2: The runtime for the creation of the hash functions and hash tables and the
k-NN search, using ComputeCpp and hipSYCL depending on the recall and
error ratio using the HIGGS data set as well as random projections. Each point
represents the average of five samples. All runtimes were collected on a NVIDIA
GEFORCE GTX 1080 Ti.

friedman data set, whereas using the HIGGS data set, only a recall of around 90 % could be
achieved.

In the following, the influence of the various sycl_lsh::options runtime parameters on
the resulting runtime of the LSH algorithm, recall, and error ratio is investigated. The
runtimes include the generation of the hash functions, the creation of the hash tables and
the calculation of the k-NN. For this purpose, all parameters are set to a default value
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hash_pool_size 300

num_hash_functions 20

num_hash_tables 40

hash_table_size 105 613

w 1.5

k 5

Table 6.2: Default parameter applied during the LSH parameter tests using random projec-
tions and the friedman data set.

according to Table 6.2, resulting in an overall runtime of 3.8 s and a k-NN search runtime
of 3.4 s, a recall of 70.5 %, and an error ratio of 1.03.

Only the ComputeCpp SYCL implementation and the friedman data set were used to obtain
the following results. All parameter combinations were repeated five times. The blue dots
represent these test runs, whereas the orange dots represent the resulting average times.

Influence of the sycl_lsh::options::hash_pool_size Parameter using Random
Projections

Figure 6.3 shows the sycl_lsh library implementation’s behavior with a varying size of
the used hash pool. All parameters besides the hash pool size have been set according to
Table 6.2. The hash pool size has been varied between ten and 500 in steps of ten.

As shown in Figure 6.3a, the runtime drastically increases up to 74.6 s for a small number
of hash functions in the hash pool. Increasing the hash pool size reduces the runtime from
74.6 s down to 3.5 s when using 500 hash functions in the hash pool. Figure 6.3b shows that
the runtime continuously decreases with a growing hash pool size, although the runtime
gain becomes smaller with larger hash pools. Therefore, increasing the variation of hash
functions used for calculating the hash signatures improves the resulting runtime.

A different behavior compared to the runtime improvements can be seen for the recall in
Figure 6.3c and the error ratio in Figure 6.3d. For small hash pool sizes, the recall only
reaches 62.5 % on average. Few different hash functions in the hash pool result in a higher
probability of different hash signatures consisting of the same hash functions. If the hash
signatures used for different hash tables are identical, the inspected hash buckets result
in the same data points investigated for the k-NN search. Therefore, the recall is not as
high as if the hash signatures would vary more. Increasing the hash pool size improves
the recall until 100 hash functions are reached. After that, increasing the hash pool size
does not improve the recall any further, although the runtime still improved after 100 hash
functions. At this point, the hash signatures are on average different enough that the data
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Figure 6.3: The LSH algorithm’s behavior depending on the hash pool size utilizing random
projections. The presented values are obtained on a single NVIDIA GEFORCE
GTX 1080 Ti using ComputeCpp as SYCL implementation and the friedman
data set. The orange dots are the averages over all blue dots using the same
hash pool size.

points inside specific hash buckets are not identical between multiple hash tables. Also
worth mentioning is that the recall given a hash pool size varies rather heavily. Given a
hash pool size of 20, the recall varies by 12.8 % between 59.5 % and 72.3 %. Variations in
the recall are expected since the hash signatures depend on the used hash functions drawn
from random distributions. However, such significant variations were surprising.

Similar behavior can be recognized for the error ratio. Increasing the hash pool size
improves the error ratio until 100 hash functions in the hash pool are reached. Afterward,
the error ratio improvements stagnate. However, even for a small hash pool size, an average
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error ratio of 1.05 can be achieved which is good considering the average error ratio using
500 hash functions is still only 1.032.

Although, the number of hash function in the hash pool grew, the runtime to generate the
hash pool has not increased. Drawing a few hundred to thousand random numbers from a
random distribution does not incur a significant runtime overhead.

Influence of the sycl_lsh::options::num_hash_functions Parameter using
Random Projections

The behavior of the sycl_lsh library implementation depending on the number of hash
functions per hash table is shown in Figure 6.4. The number of hash functions has
been varied between one and 100 while all other parameters have been set according to
Table 6.2

Figure 6.4a displays the runtime based on the number of used hash functions. A small
number of hash functions means that fewer hash functions are used to compute a hash
signature. Therefore, it is more likely that two data points have the same hash signature
value since they must correspond in fewer hash values. If more data points have the
same hash signature, more possible nearest neighbors must be considered during the k-NN
search, and, therefore, the runtime increases. For example, using only one hash function
per hash signature results in a runtime of more than 21 min. Increasing the number of
hash functions to calculate a hash signature reduces the probability of two points being
assigned to the same hash bucket. Thus, fewer data points are considered during the
k-NN search reducing the runtime to 2 s when using 100 hash functions per hash signature.
This fact can better be seen in Figure 6.4b. The runtime decreases while increasing
the number of hash functions until 35 hash functions. After that, the runtime starts to
increase again. That can be explained by the fact that a single hash value calculation needs
sycl_lsh::data_attributes::dims many multiplications to calculate the dot product.
To determine the hash signature, sycl_lsh::options::num_hash_functions many dot
products must be calculated. At first, the increasing cost of the hash signature calculation
is dominated by the decreasing number of data points considered for the k-NN search.
However, at some point, the reduction of data points per hash bucket is no longer enough
to outweigh the increasing hash signature calculation’s cost, and, therefore, the runtime
increases.

As already mentioned, increasing the number of hash functions reduces the probability of
two data points having the same hash signature. Therefore, fewer data points are assigned
to the same hash buckets resulting in fewer data points considered during the k-NN search.
This can directly be seen in Figure 6.4c. While it is possible to reach a recall of 100 % using
only one hash function, the recall drops to 0.6 % when using 100 hash functions.

The same holds for the error ratio in Figure 6.4d. Reducing the number of hash functions
improves the error ratio from 2.25 using 100 hash functions to 1.0, using only one hash
function for calculating a hash signature.

69



6 Results

0 20 40 60 80 100
number of hash functions

0

250

500

750

1000

1250

ru
nt

im
e

(i
n

s)

(a) The runtime depending on the number of
hash functions per hash table.

1 5 10 50 100
number of hash functions

1

10

100

1000

ru
nt

im
e

(i
n

s)

(b) The runtime depending on the number of
hash functions per hash table using a loga-
rithmic plot.

0 20 40 60 80 100
number of hash functions

0

20

40

60

80

100

re
ca

ll
(i

n
%

)

(c) The recall depending on the number of hash
functions per hash table.

0 20 40 60 80 100
number of hash functions

1.00

1.25

1.50

1.75

2.00

2.25

er
ro

r
ra

ti
o

(d) The error ratio depending on the number of
hash functions per hash table.

Figure 6.4: The LSH algorithm’s behavior depending on the number of hash functions per
hash table utilizing random projections. The presented values are obtained
on a single NVIDIA GEFORCE GTX 1080 Ti using ComputeCpp as SYCL imple-
mentation and the friedman data set. The orange dots are the averages over
all blue dots using the same number of hash functions.

Influence of the sycl_lsh::options::num_hash_tables Parameter using Random
Projections

This subsection focuses on the effects of the number of hash tables on the resulting runtime,
recall, and error ratio. The behavior of the sycl_lsh library implementation for a varying
number of hash tables between one and 100 is displayed in Figure 6.5. All other parameters
were set according to Table 6.2.
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Figure 6.5: The LSH algorithm’s behavior depending on the number of hash tables utilizing
random projections. The presented values are obtained on a single NVIDIA
GEFORCE GTX 1080 Ti using ComputeCpp as SYCL implementation and the
friedman data set. The orange dots are the averages over all blue dots using
the same number of hash tables.

Figure 6.5a shows the runtime based on the number of hash tables. Increasing the number
of hash tables also increases the runtime for the k-NN search. Using one hash table results
in a runtime of 280 ms, while using 100 hash tables increases the average runtime to 8.3 s.
In addition, doubling the number of hash tables, e.g., from 40 to 80, also roughly doubles
the runtime from 3.7 s to 7.0 s. Although the runtime increases linearly with a growing
number of hash tables, the total runtimes do not get as worse as with a small number of
hash functions. This behavior can be explained by the fact that increasing the number of
hash tables results in more data points considered for the k-NN search since more hash
buckets must be examined. Doubling the number of hash tables means that, to calculate
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the k-NN, twice as many hash buckets must be considered. Therefore, on average, twice as
many data points must be examined for calculating the k-NN of a data point resulting in a
linear increase of the runtime. Figure 6.5b confirms the linear behavior. Another interesting
observation is the variance of the test samples. With a growing number of hash tables, the
runtime variance also increases. For example, the samples gathered using one hash table
have a runtime variance of 2.5 × 10−6, while the variance increases to 0.6 when using 100
hash tables.

The explanation of the runtime behavior can also explain the recall behavior shown in
Figure 6.5c. If more hash tables are considered in the k-NN search, more data points
are examined. Therefore, it is more likely that one of the correct nearest neighbors gets
assigned the same hash bucket in at least one hash table, resulting in a higher recall.
However, although the runtime only increases linearly, the recall behaves asymptotically.
Changing from one hash table to 50 hash tables increases the recall by 67.7 % from 7.1 % to
74.8 %. However, increasing the number of hash tables again to 100 improves the recall only
by 7.3 % up to 82.1 %. Therefore, based on other parameters’ choices, not all correct nearest
neighbors of a data point x may be assigned to at least one hash bucket also containing x,
even if the number of hash tables increases.

The same can be seen in Figure 6.5d. Increasing the number of hash tables reduces the
error ratio. Although the maximum achieved recall is only 82.1 %, the lowest error ratio is
rather good, being approximately 1.03.

Influence of the sycl_lsh::options::hash_table_size Parameter using Random
Projections

Figure 6.6 shows the influence of the hash table size on the behavior of the sycl_lsh
implementation. All parameters have been set according to Table 6.2 besides the hash table
size, which has been set to different values between 1223 and 1 002 893.

Figure 6.6a shows the runtime based on the hash table size. Increasing the hash table size
results in a reduced runtime. However, only small hash table sizes result in a significant
higher runtime compared to larger hash table sizes. Additionally, the runtime increase
by more than 10 s for a hash table size of 1223 is not much compared to the influence of
other parameters, such as the number of hash functions previously discussed. Figure 6.6b
shows that the runtime asymptotically decreases with an increasing hash table size. The
hash table size reduces the potentially large hash signature values to moderate hash values
needed to index the hash buckets. This is done by calculating i % hash_table_size with
i being the hash signature of the inspected data point. Therefore, in the hash bucket x
all data points with x = i % hash_table_size are inserted, resulting in more data points
per hash bucket if the hash table size is small.

Although more data points reside in the same hash bucket when using small hash table
sizes, Figure 6.6c shows that the hash table size does not significantly influence the resulting
recall. The average recall varies between 70 % and 73 %, independently of the hash table
size. The recall does not change since the additional data points assigned to a hash bucket
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Figure 6.6: The LSH algorithm’s behavior depending on the hash table size utilizing ran-
dom projections. The presented values are obtained on a single NVIDIA
GEFORCE GTX 1080 Ti using ComputeCpp as SYCL implementation and the
friedman data set. The orange dots are the averages over all blue dots using
the same hash table size.

have considerably different hash signatures. Therefore, those data points were not similar
to each other and will not improve the recall. The same holds for the error ratio in
Figure 6.6d.
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Figure 6.7: The LSH algorithm’s behavior depending on the parameter w, controlling
the segment size, utilizing random projections. The presented values are
obtained on a single NVIDIA GEFORCE GTX 1080 Ti using ComputeCpp as
SYCL implementation and the friedman data set. The orange dots are the
averages over all blue dots using the same segment size w.

Influence of the sycl_lsh::options::w Parameter using Random Projections

Figure 6.7 shows the behavior of the sycl_lsh library implementation with a varying
segment size w. All parameters besides the w parameter have been set according to
Table 6.2, while the parameter w has been varied between 0.1 and 4.0 in steps of 0.1.

As described in Definition 3.2.3, the parameter w is directly used in the random projections
hash functions. It denotes the size of the segments in which the number line is divided to
calculate the hash value. A larger w results in wider segments and, therefore, more data
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points with the same hash value. The resulting runtime behavior can be seen in Figure 6.7a.
Increasing the segment size w increases the runtime drastically. Using a segment size of
0.1 results in a runtime of 780 ms. Increasing the segment size to 1.0 worsens the runtime
only a bit, resulting in 1 s. However, picking a higher value of w, e.g., 4.0, results in a
significantly worse runtime of 3.6 min.

The runtime behavior can better be seen in Figure 6.7b. Until a segment size of 1.0, the
runtime does not increase significantly. This means that until w = 1.0 expanding the
segment size does not result in significantly more data points per hash bucket. After that,
however, increasing the segment size increases the number of data points per hash bucket
drastically, resulting in a significantly worse runtime.

Figure 6.7c shows the recall depending on the segment size w. Since more data points get
the same hash value for wider segments and, therefore, more data points are assigned
to a single hash bucket, it is more likely that more of the correct k-NN are found in a
hash bucket. This results in an improvement of the recall with increasing segment size. A
segment size of 0.1 results in a recall of 0.07 %. Increasing w up to 0.3 does not increase
the recall significantly. As already discussed, while looking at Figure 6.7b, increasing
the segment size to 1.0 does not significantly increase the runtime. However, the recall
improves to up to 43 %. This means that the few data points assigned to the same hash
bucket when widening the segments are part of the correct k-NN to a high percentage.
Using 4.0 as segment size means that many data points are assigned to the same hash
bucket, and, therefore, it becomes more likely that the correct k-NN are considered during
the nearest neighbors search, resulting in a recall of 99.5 %.

Figure 6.7d shows similar behavior for the error ratio. However, although a segment size
of w = 1.0 resulted in a recall of only 43 %, the error ratio already dropped to a relatively
good value of approximately 1.1.

Influence of the k Parameter using Random Projections

The behavior of the sycl_lsh library implementation depending on number of k-NN to
search is shown in Figure 6.8. All parameters have been set according to Table 6.2. However,
the parameterk has been varied between one and 50.

Figure 6.8a shows the runtime depending on the number of k-NN to search for. Increasing
the parameter k increases the k-NN search’s runtime because the nearest neighbors are
updated in the k-NN search kernel using a single bubble-sort pass. Therefore, increasing
the parameter k increases the cost for a single nearest neighbor update, resulting in a worse
runtime. Comparing the runtimes for k = 1 and k = 50 shows that they increase by 7.7 s.
The same behavior can be seen in Figure 6.8b. However, a relatively large variance can be
seen between samples for a specific value of k.

As shown in Figure 6.8c, the recall decreases with increasing k. The parameters were
determined in a way that the recall for k = 5 is approximately 70 %. If k is less than five,
fewer nearest neighbors must be found to achieve the same recall. Therefore, it is likely
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Figure 6.8: The LSH algorithm’s behavior depending on the parameter k, representing
the number of nearest neighbor to search, utilizing random projections. The
presented values are obtained on a single NVIDIA GEFORCE GTX 1080 Ti using
ComputeCpp as SYCL implementation and the friedman data set. The orange
dots are the averages over all blue dots using the same value for the parameter
k.

that the recall is higher than for k = 5. In contrast, if k is greater than five, the recall
worsens. To increase the recall for values of k greater than five, the already discussed
parameters must be adjusted accordingly.

A similar behavior can be seen in Figure 6.8d. Increasing the parameter k worsens the
resulting error ratio. However, even with k = 50, the error ratio is still considerably good
with a value of 1.068.
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6.2.2 Evaluating the Entropy-Based Hash Functions

This section focuses on the entropy-based hash functions as another type of locality-sensitive
hash functions. Again, at first, an overview over the runtime characteristics of all three
investigated SYCL implementations is given. Afterward, the parameter tests for the random
projections are repeated for the entropy-based hash functions.
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tions depending on the recall using a logarith-
mic plot without the runtime for the creation
of the hash functions.

Figure 6.9 displays the same runtime characteristic tests as Figure 6.1, however, instead
of the random projections the entropy-based hash functions are used. Again, all three
SYCL implementations were compared regarding to the runtime depending on the achieved
recall and error ratio. Each parameter combination was repeated five times for the oneAPI
implementation and three times for the ComputeCpp and hipSYCL implementation. At first
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tions depending on the error ratio using a
logarithmic plot without the runtime for the
creation of the hash functions.

Figure 6.9: The runtimes using the three SYCL implementations ComputeCpp, hipSYCL,
and oneAPI, depending on the recall and error ratio using the friedman data
set as well as entropy-based hash functions. Each point represents the average
of five samples. The runtimes for ComputeCpp and hipSYCL were collected on
a NVIDIA GEFORCE GTX 1080 Ti, the oneAPI runtimes were gathered on an
Intel UHD Graphics P360 Gen9 and Intel Iris Xe MAX GPU.

the results using the friedman data sets are discussed followed by the results for the HIGGS
data set.

Figure 6.9a and Figure 6.9b show the runtime for the friedman data set depending on
the achieved recall. In general, all three implementations behave the same: improving
the recall results in longer runtimes. However, this time, both oneAPI tests have the same

78



6.2 Performance Evaluation on a single GPU

runtime, although they were conducted on different hardware. A reason could be that the
overall runtimes are relatively low for most of the test runs, and therefore the different
hardware does not have such a significant influence on the runtime. However, the NVIDIA
GEFORCE GTX 1080 Ti is more powerful than the Intel GPUs, and hence the runtimes
are better, whereby the overall runtime characteristic is the same. The only outlier is
the ComputeCpp implementation, which has a static overhead compared to the other
implementations.

Nevertheless, as Figure 6.9c and Figure 6.9d, where the runtimes for the creation
of the hash functions have been omitted, show, the ComputeCpp implementation’s
overhead is caused by the creation of the entropy-based hash functions. The Com-
puteCpp version behaves like the hipSYCL version without the runtime overhead for
the creation of the hash functions, although slightly more overhead for small recalls
can be seen. Inspections have shown, that the overhead for the creation of the
hash functions comes from the call to sycl::queue queue(device_selector{comm},
sycl::async_handler(&sycl_exception_handler)); in the constructor of the
sycl_lsh::entropy_based class. However, further investigations must be conducted
to find the actual reason behind this behavior.

Comparing both hash function types shows that the runtime increases more uniformly for
the entropy-based hash functions. In contrast, the runtime for the random projections
increases slower for smaller recalls and faster for higher recalls. Another difference are
the overall smaller runtimes for the entropy-based hash functions in the case of high recall
values.

Figure 6.9e and Figure 6.9f show the same behavior but for the error ratio. Even for
small error ratios, the runtime already decreases. After an error ratio of approximately
1.4, worsening the error ratio does not improve the runtime anymore. Here again, the
ComputeCpp implementation has a static overhead compared to the other implementations
for the same reason as stated above. Figure 6.9g and Figure 6.9h show that both oneAPI
tests on different hardware again have the same runtimes. The ComputeCpp runtimes are
slightly worse than the hipSYCL runtimes, although both tests were performed on the same
hardware.

Comparing the runtimes to the ones of the random projections shows that the runtime is
better using the entropy-based hash functions for small error ratios. However, for increasing
error ratios, the runtimes of ComputeCpp and hipSYCL are roughly the same for both hash
function types.

Figure 6.10 displays the same situation as Figure 6.9, however, instead of the friedman
data set, the HIGGS data set was used. Furthermore, only ComputeCpp and hipSYCL were
used as SYCL implementation. Figure 6.10c shows that both SYCL implementations behave
the same, but the ComputeCpp implementation again has a static overhead. After a recall
of 20 %, the runtimes start to increase for both implementations. Compared to the random
projections hash functions, the entropy-based hash functions only achieved a maximum
recall of 80 %, resulting in a runtime of approximately 2.5 min for the ComputeCpp im-
plementation. To achieve a similar recall using the random projections, a runtime of
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tions depending on the recall using a logarith-
mic plot without the runtime for the creation
of the hash functions.

approximately 5 min is needed. Using other parameters could further increase the recall
up to the same as for the random projections. Another difference is that most of the
investigated parameter combinations yield a recall below 30 %, whereas the recall values
using the random projections were more evenly distributed.

Plotting only the runtimes for the construction of the hash tables and the k-NN search as in
Figure 6.10c and Figure 6.10d shows that both implementations behave the same.

A difference between both hash function types can be seen in Figure 6.10d. Whereas the
runtime decreases until a recall of 20 % using random projections, utilizing entropy-based
hash functions the runtime only decreases until 10 %.
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Figure 6.10: The runtime using the ComputeCpp and hipSYCL SYCL implementations
depending on the recall and error ratio using the HIGGS data set as well
as entropy-based hash functions. Each point represents the average of five
samples. The runtimes were collected on a NVIDIA GEFORCE GTX 1080 Ti.

Figure 6.10g and Figure 6.10h draw a similar picture compared to the random projections.
The runtime already drops down to under 20 s for small error ratios. Increasing the error
ratio above 1.4 does not further decrease nor increase the runtime.

In the following, as for the random projections, the effects of the various parameters on
the results are investigated. All tests were performed as in Section 6.2.2 but instead of the
random projections the entropy-based hash functions were used. This has the consequence
that other default parameters were used as shown in Table 6.3. These parameters result in
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hash_pool_size 50

num_hash_functions 6

num_hash_tables 8

hash_table_size 105 613

num_cut_off_points 4

k 5

Table 6.3: Default parameter applied during the LSH parameter tests using entropy-based
hash functions.

an overall runtime of 13.8 s and a k-NN search runtime of 3.3 s, a recall of 72.8 % and an
error ratio of 1.03.

Again, only the ComputeCpp implementation combined with the friedman data set was
used. The orange dots are the averages over five runs represented by the blue dots.

Influence of the sycl_lsh::options::hash_pool_size Parameter using
Entropy-Based Hash Functions

The same tests as in Section 6.2.1 regarding the hash pool size were conducted with the
only exception being the used hash function type now corresponds to the entropy-based
hash functions.

Figure 6.11a and Figure 6.11b show that the overall runtime behavior using entropy-based
hash functions instead of random projections is entirely different. In the case of the random
projections, the overall runtime decreased with a growing hash pool size. However, after a
hash pool size of 30, the entropy-based hash functions runtime drastically increases.

In contrast, the recall and error ratio characteristics depending on the hash pool size are
the same for both random projections and entropy-based hash functions, as shown in
Figure 6.11c and Figure 6.11d.

The creation of the hash function causes the difference in the overall runtime behavior.
Figure 6.11e and Figure 6.11f show the runtime for the construction of the hash tables
and the k-NN search. If only the sum of those two runtimes are considered, the runtime
behavior is the same as for the random projections: increasing the hash pool size reduces
the runtime. However, one difference is that using a small hash pool size increases the
runtime only up to 13.9 s compared to the 74 s using random projections.

While random projection hash functions can be generated efficiently, creating entropy-based
hash functions is considerably more inefficient, as stated in Section 5.2.3. This is shown
in Figure 6.11g and Figure 6.11h. The runtime cost of creating the entropy-based hash
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(d) The error ratio depending on the hash pool
size.

functions grows linearly with the hash pool size. Generating a hash pool with ten hash
functions takes 6.3 s, while creating a hash pool with 500 hash functions already takes
55.6 s. This is even amplified by the static overhead for the ComputeCpp implementation
observed at the beginning of Section 6.2.2. For each hash function in the hash pool, the
initial mapping values must be calculated for all data points, followed by sorting all these
mapped values to determine the cut-off points. These calculations are not trivial, and,
therefore, an increase in the runtime with more hash functions in the hash pool can be
observed.

Figure 6.11e and Figure 6.11g also explain why the runtime in Figure 6.11a decreases until
a hash pool size of 30. Increasing the hash pool from ten to 20 reduces the runtime for
the construction of the hash tables and the k-NN search by 7.9 s, while the runtime for the
creation of the hash functions only increases by 1.0 s. Therefor, the total runtime decreases
by 6.9 s as shown in Figure 6.11a.
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Figure 6.11: The LSH algorithm’s behavior depending on the hash pool size utilizing
entropy-based hash functions. The presented values are obtained on a single
NVIDIA GEFORCE GTX 1080 Ti using ComputeCpp as SYCL implementation
and the friedman data set. The orange dots are the averages over all blue
dots using the same hash pool size.

Influence of the sycl_lsh::options::num_hash_functions Parameter using
Entropy-based Hash Functions

The same tests as in Section 6.2.1 regarding the number of hash functions per hash table
were conducted. Again, the only difference is the usage of the entropy-based hash functions
to generate the hash signatures.
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Figure 6.12: The LSH algorithm’s behavior depending on the number of hash functions
per hash table utilizing entropy-based hash functions. The presented values
are obtained on a single NVIDIA GEFORCE GTX 1080 Ti using ComputeCpp
as SYCL implementation and the friedman data set. The orange dots are the
averages over all blue dots using the same number of hash functions per hash
table.

The overall runtime, recall, and error ratio characteristics depending on the number of hash
functions are the same between entropy-based hash functions and random projections, as
shown in Figure 6.12. However, looking closer, a few differences can be seen.

The entropy-based hash function runtime is significantly better, 2.7 min vs. 21 min, for
fewer hash functions. However, for more hash functions used to calculate a hash signature,
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the runtime does not drop as low as for the random projections because of the runtime
costs for generating the entropy-based hash functions and ComputeCpp’s static overhead.

Figure 6.12b also shows that the runtime slightly increases again if the number of hash
functions becomes large enough. When using the random projection hash functions, this
happened after using 35 hash functions. However, using the entropy-based hash functions,
the runtime increase already happens for 20 hash functions.

Also, the recall behaves slightly different in Figure 6.12c. When using the entropy-based
hash functions, the recall worsens earlier than when using the random projections. Both
hash function types start with a recall of 100 % using only one hash function. However, the
entropy-based hash function’s recall is nearly zero using 40 hash functions. In contrast,
using the random projections hash functions, more than 80 hash functions are needed for
the recall to drop to nearly zero percent.

The differences in the error ratio behaviors seen in Figure 6.12d are similar to the recalls’
differences.

Influence of the sycl_lsh::options::num_hash_tables Parameter using
Entropy-Based Hash Functions

Next, the influence of the number of hash tables using entropy-based hash functions will
be examined. For this purpose, the same tests as in Section 6.2.1 regarding the number of
hash tables were conducted.

Figure 6.13a shows the runtime depending on the number of hash tables. At first glance, it
behaves similarly to the random projections, with the difference being higher runtimes in
total. While 100 hash tables took 8.3 s in case of random projections, the entropy-based
hash functions needed nearly 1 min. However, looking at Figure 6.13b shows that the
runtime behaves slightly different. At first, the runtime increases more slowly, but the
runtime starts to increase faster when using more hash tables. Figure 6.13f shows the same
situation. However, this time, only the runtimes for the hash table creation and the k-NN
search are plotted. The runtime for creating the hash functions is omitted. In this case,
the runtimes behave similarly again except for the total runtimes. Therefore, the different
logarithmic runtime characteristics were caused by the overhead of the entropy-based hash
function generation.

The behavior of the recall and error ratio using the entropy-based hash functions is similar
to the random projections. Two small differences compared to the random projections are
shown in Figure 6.13c. The recall improves faster, and asymptotically reaches nearly 100 %.
To achieve a recall of more than 80 %, roughly 20 hash tables are needed. In contrast, in
the case of the random projection hash functions, more than 80 hash tables were needed to
reach a recall of 80 %.

The same holds for the error ratio in Figure 6.13d. The error ratio decreases faster in the
case of the entropy-based hash functions compared to the random projections and reaches
a value close to 1.0 already when using 17 hash tables.
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Influence of the sycl_lsh::options::hash_table_size Parameter using
Entropy-Based Hash Functions

The same tests as in Section 6.2.1 regarding the hash table size were conducted with the
only exception being the used hash function type now corresponds to the entropy-based
hash functions.

Increasing the hash table size using random projections improved the overall runtime, as
discussed in Section 6.2.1. However, increasing the hash table size using entropy-based
hash functions does not significantly change the runtime, as shown in Figure 6.14a and
Figure 6.14b. The runtime varies between 15.9 s and 13.6 s without any specific behavior.

The difference between both hash functions is that in the case of random projections, the
hash value size can vary greatly based on the randomly created hash functions and the
data points. In contrast, the hash values using entropy-based hash functions are always in
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Figure 6.13: The LSH algorithm’s behavior depending on the number of hash tables utiliz-
ing entropy-based hash functions. The presented values are obtained on a
single NVIDIA GEFORCE GTX 1080 Ti using ComputeCpp as SYCL implemen-
tation and the friedman data set. The orange dots are the averages over all
blue dots using the same number of hash tables.

the range between 0 and sycl_lsh::options::num_cut_off_points - 1. Therefore, it
is more unlikely that different hash signature values are mapped to the same hash bucket,
even for small hash table sizes.

In comparison, the recall and error ratio behave similarly for both hash function types.
The hash table size does not influence the recall in Figure 6.14c and the error ratio in
Figure 6.14d.

Influence of the sycl_lsh::options::num_cut_off_points Parameter using
Entropy-Based Hash Functions

Figure 6.15 shows the sycl_lsh library implementation’s behavior with a varying number
of cut-off points. All parameters besides the number of cut-off points have been set
according to Table 6.3. The number of cut-off points has been set to different values
between one and 50 in steps of one and between 100 and 500 in steps of 50.

Figure 6.6a shows the runtime based on the number of cut-off points. Using only one
cut-off point results in by far the most extended runtime of nearly 10 min. This can be
explained by the fact that when using only one cut-off point all data points have the same
hash value across all hash tables. Therefore, all data points are inserted into the same
hash bucket, which means that the algorithm degenerates to a simple brute force search.
More precisely, the LSH algorithm degenerates to sycl_lsh::options::num_hash_tables
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Figure 6.14: The LSH algorithm’s behavior depending on the hash table size utilizing
entropy-based hash functions. The presented values are obtained on a single
NVIDIA GEFORCE GTX 1080 Ti using ComputeCpp as SYCL implementation
and the friedman data set. The orange dots are the averages over all blue
dots using the same hash table size.

many brute force searches. Adding a second cut-off point, however, already reduces the
runtime down to approximately 1 min.

The behavior can better be seen in Figure 6.15b. Increasing the number of cut-off points
reduces the runtime until ten cut-off points. Afterward, adding more cut-off points does
not result in a runtime improvement. The asymptotic boundary of 10 s corresponds to the
overhead of the hash function creation.

Figure 6.15c shows the behavior of the recall with a varying number of cut-off points. A
recall of 100 % can be reached using one cut-off point since this corresponds to a brute
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Figure 6.15: The LSH algorithm’s behavior depending on the number of cut-off points
utilizing entropy-based hash functions. The presented values are obtained
on a single NVIDIA GEFORCE GTX 1080 Ti using ComputeCpp as SYCL
implementation and the friedman data set. The orange dots are the averages
over all blue dots using the same number of cut-off points.

force search. If 20 cut-off points are used, the recall drops to 0.7 % and reaches 0.01 % if
500 are used.

A similar behavior is shown in Figure 6.15d. One cut-off point results in an error ratio of
1.0, whereas 15 cut-off points already result in an error ratio of 2.2.
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6.2 Performance Evaluation on a single GPU
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Figure 6.16: The LSH algorithm’s behavior depending on the parameter k, representing the
number of nearest neighbor to search, utilizing entropy-based hash functions.
The presented values are obtained on a single NVIDIA GEFORCE GTX 1080
Ti using ComputeCpp as SYCL implementation and the friedman data set.
The orange dots are the averages over all blue dots using the same value for
the parameter k.

Influence of the k Parameter using Entropy-Based Hash Functions

Next, the influence of the number of k-NN to search using entropy-based hash functions will
be examined. For this purpose, the same tests as in Section 6.2.1 regarding the parameter
choice k were conducted.

Figure 6.16a and Figure 6.16b display a similar overall runtime behavior as for the random
projections. Using a higher number of k-NN to search for increases the runtime. However,
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the runtime does not increase as much as for the random projection hash functions. The
runtimes using random projections vary between 5.8 s and 13.5 s, whereas the runtimes for
the entropy-based hash functions vary between 13.7 s and 16.9 s.

The recall shown in Figure 6.16c and the error ratio shown in Figure 6.16d behave the
same for the entropy-based hash functions as for the random projections. In both cases
the recall decreases and the error ratio increases with a growing value of k. Not only the
characteristics are the same, but also the resulting recalls and error ratios are identical.

6.2.3 Comparison between Random Projections and Entropy-Based Hash
Functions

The results show that both hash function types can be used to achieve similar results with
comparable runtimes for both data sets. Only the step for creating the entropy-based
hash functions should further be investigated to eliminate the static overhead when using
ComputeCpp as SYCL implementation, and generally improve the construction step.

The entropy-based hash functions have the advantage that to reach the same results fewer
hash tables were needed. The tests using random projections used between 10 and 40 hash
tables. However, the entropy-based hash function tests only used up to 15 hash functions,
resulting in less memory consumption on the GPUs.

The various runtime parameter tests showed that overall, both hash function types behave
the same. The only exception being the sycl_lsh::options::hash_pool_size parameter
caused by the expensive generation of the entropy-based hash functions. It is possible for
both hash function types to sometimes drastically increase the runtime or worsen the recall
and error ratio. However, it is also possible to adjust the LSH algorithm to yield only a
recall of, for example, 60 %. This could be enough for an approximate algorithm and has
the advantage of a significantly lower runtime compared to higher recalls. Furthermore,
even if the recall is relatively low, the error ratio is often considerably good, which again
could be enough in specific scenarios.
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6.3 Scaling Behavior on multiple GPUs

The following section covers the scaling characteristics of the sycl_lsh library implemen-
tation to verify whether the implemented distributed multi-GPU support works as intended.
For both hash function types the runtimes for one up to eight NVIDIA GEFORCE GTX 1080
Ti are collected using ComputeCpp and hipSYCL as SYCL implementations and for the
friedman and HIGGS data sets. The presented runtimes are the sum of the runtimes for the
creation of the hash functions, the construction of the hash tables and nearest neighbor
search. Additionally, the parallel speedups Sp for all above combinations are reported using
the formula

Sp = T1
Tp

(6.1)

where T1 denotes the runtime using only one GPU and Tp represents the runtime when
using p GPUs. Each dot represents the average over ten different runs.

6.3.1 Scaling Behavior using Random Projections

Figure 6.17 shows the runtime in the case of random projections on up to eight GPUs using
the friedman and HIGGS data set.

The parameters used for the scaling tests in the case of the friedman data set are the same
as in Table 6.2. Figure 6.17a shows that the runtime improves with a small number of data
points. However, the runtime using the ComputeCpp implementation increases again when
utilizing more than five GPUs. The runtime in the case of the hipSYCL implementation only
increases when using eight GPUs.

In the logarithmic plot in Figure 6.17b, can be seen that the scaling behaves nearly optimal
for the hipSYCL implementation using up to seven GPUs. However, the ComputeCpp
implementation behaves suboptimal when using more than five GPUs. The runtime then
increases from 1.3 s back to 2.1 s. This is also shown in Figure 6.17e. The parallel speedup
using ComputeCpp and the friedman data set when utilizing eight GPUs is only 1.7
compared to the optimal speedup of 8. When using hipSYCL, the parallel speedup of 4.0 is
better in contrast to the ComputeCpp implementation. However, even a parallel speedup
of 4.0 considerably bad compared to the theoretically achievable speedup of 8.

Both implementations indicate that the friedman data set is too small to fully utilize eight
GPUs.

Figure 6.17c and Figure 6.17d represent the same scaling tests, however, this time, the
HIGGS data set is used instead of the friedman data set. Therefore, other runtime param-
eters are used: 40 hash tables with 20 hash functions per hash table, a segment size w
of 1.5, the default hash table size, and a hash pool size of 300. In addition, five nearest
neighbors were searched. This time, both SYCL implementations show the same behavior.
Increasing the number of used GPUs improves the runtime. As shown in Figure 6.17d, the
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runtime decreases consistently until eight GPUs are used. Using one GPU together with the
ComputeCpp SYCL implementation results in a runtime of 40 s. Increasing the number of
GPUs to eight reduces the runtime to 7.3 s, whereas the optimal runtime would be 5 s.

Compared to the friedman data set, the HIGGS data set is large enough to better utilize
more GPUs. This is also shown in Figure 6.17e. The parallel speedup using the HIGGS data
set is better for all number of GPUs compared to the parallel speedup of the friedman
data set. This time the parallel speedup using hipSYCL with a value of 7.0 is significantly
better compared to the speedup using the friedman data set. Again, the speedup for the
ComputeCpp implementation with a value of 5.5 is worse compared to hipSYCL.
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Figure 6.17: The LSH algorithm’s behavior depending on the number of GPUs utilizing
random projections. The presented values are obtained on up to eight NVIDIA
GEFORCE GTX 1080 Ti using ComputeCpp and hipSYCL as SYCL implemen-
tations, and the friedman and HIGGS data sets. All dots are averages over ten
test samples.

6.3.2 Scaling Behavior using Entropy-Based Hash Functions

Figure 6.18 shows the runtime using the entropy-based hash functions on up to eight GPUs
using the friedman and HIGGS data set.

The parameters used for the scaling test of the friedman data set are the same as in
Table 6.3. Figure 6.18a shows that the runtime does not scale well when using multiple
GPUs. Using the hipSYCL SYCL implementation, the runtime only drops from 6.2 s utilizing
a single GPU to 2.2 s when using eight GPUs. The logarithmic plot in Figure 6.18b, shows
that the runtimes do scale when using up to seven GPUs, although badly. The ComputeCpp
version has an even worse runtime when using eight GPUs (22.6 s) compared to using only
one GPU (14.4 s). In general, ComputeCpp has worse overall runtimes than the hipSYCL
implementation because of the already observed static overhead during the creation of the
hash functions. This static overhead also results in a parallel speedup of only 0.64 indicating
that the runtime increases when using more GPUs. Although the parallel speedup for the
hipSYCL implementation is greater than 1.0, it is worse compared to the speedup using the
random projections and the friedman data set with a value of 2.8.

Plotting only the runtime for the construction of the hash tables and the k-NN search in
Figure 6.18c and Figure 6.18d shows that both SYCL implementations behave roughly the
same and have the same total runtimes. In both cases, using more than six GPUs does not
result in a runtime improvement, it actually increases the runtimes again. Compared to
random projection hash functions, the behavior and runtimes are similar. It is interesting
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to see that when comparing both hash functions, the ComputeCpp version’s runtime starts
to increase earlier compared to hipSYCL and finishes on a higher runtime using eight GPUs.
Disregarding the runtimes for the creation of the hash functions also improves the parallel
speedup. Using up to six GPUs results in a parallel speedup of 5.4, when using ComputeCpp,
and a speedup of 6.3, when using hipSYCL, which is even above the theoretical speedup of
6. Adding more GPUs reduces the parallel speedup.

As for the random projections, these results indicate that the friedman data set is too small
to fully utilize all eight GPUs.

The remaining figures show the same scaling tests using the HIGGS data set instead of the
friedman data set. For this purpose, the runtime parameters were adjusted accordingly:
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eleven hash tables with six hash functions each, four cut-off points, the default hash table
size, a hash pool size of 50, and k = 5.

Again, using the ComputeCpp implementation, an overhead across all tests can be seen in
Figure 6.18e. However, using the HIGGS data set, the runtime does not increase even when
using eight GPUs. Figure 6.18f shows a better scaling behavior using the HIGGS data set
than the friedman data set even if the runtime for the hash function creation is considered.
Figure 6.18i shows that the speedup for both SYCL implementations is better when using
the HIGGS data set compared to the friedman data set even if the construction of the hash
functions is considered. However, for example, the parallel speedup using the ComputeCpp
implementation is still only 2.7.
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Figure 6.18: The LSH algorithm’s behavior depending on the number of GPUs utilizing
entropy-based hash functions. The presented values are obtained on NVIDIA
GEFORCE GTX 1080 Ti using ComputeCpp and hipSYCL as SYCL implemen-
tations, and the friedman and HIGGS data sets. All dots are averages over ten
samples.

Disregarding the runtime required for the creation of the hash functions results in the scaling
behavior in Figure 6.18g and Figure 6.18h. As can be seen, both SYCL implementations
behave the same with comparable runtimes. Increasing the number of GPUs from one
to eight reduces the runtime using the ComputeCpp implementation from 45.1 s down to
6.7 s and using the hipSYCL implementation from 54.7 s down to 8.1 s. Interestingly, both
implementations have no runtime improvement when increasing the number of GPUs from
three to four. Figure 6.18j shows the parallel speedup when disregarding the runtimes for
the creation of the hash functions. The speedup is comparable to the speedup using the
friedman data set, however, even for more than six GPUs the parallel speedup increases
when using the HIGGS data set. When using eight GPUs both SYCL implementations have a
parallel speedup of 6.7.

As for the random projections, the HIGGS data set is large enough to utilize all eight GPUs.

Summarizing, it can be said that the sycl_lsh library implementation does scale well on
multiple GPUs when using a sufficiently large data set.
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7 Conclusion

In the course of this master thesis, a new library called sycl_lsh has been developed and
implemented to solve the problem of the k-nearest neighbors (k-NN) using the Locality-
Sensitive Hashing (LSH) algorithm for the Euclidean distance utilizing the random pro-
jections and entropy-based locality-sensitive hash functions. To enable the usage of large
data sets or to speed up the computation of small ones, the sycl_lsh library supports
multiple GPUs using MPI to enable the usage of both shared and distributed memory
systems. Furthermore, SYCL has been used to support different hardware architectures
using a single source code.

The LSH algorithm can be used to efficiently calculate the k-NN of a data point. However,
the parameters must be selected carefully since the wrong parameter choice can drastically
increase the runtime. Nevertheless, the parameters can also be seen as an advantage of the
LSH algorithm since they can be used to adjust the resulting recall and adopt to the runtime
requirements. For that the knowledge of the influence of the various runtime parameters is
crucial. If a recall of 60 % is sufficient, the parameters can be selected accordingly, resulting
in a reduced runtime compared to, for example, 90 %. Because the hash functions are
created randomly, and the resulting recall and error ratio depend on these hash functions,
the runtime and recall can fluctuate even for the same parameters.

Both locality-sensitive hash function types can be used to achieve similar results. However,
the runtimes of the entropy-based hash functions can be further improved by a more
efficient hash function generation.

The results indicate that the distributed Multi-GPU implementation of the sycl_lsh library
scales well with the number of GPUs used. It was possible to decrease the runtime of the
LSH algorithm the more GPUs were used given a sufficiently large data set. When using
the HIGGS data set, consisting of 1 000 000 data points in 27 dimensions, a parallel speedup
using random projections of 5.5 (ComputeCpp) and 7.0 (hipSYCL) could be achieved
utilizing eight GPUs. Switching to the entropy-based hash functions resulted in a parallel
speedup of 6.7 for both ComputeCpp and hipSYCl.

The usage of SYCL as an abstraction layer enabled the sycl_lsh library to target different
hardware, NVIDIA GEFORCE GTX 1080 Ti, Intel UHD Graphics P630 Gen9, and Intel Iris
Xe MAX GPUs, only by using standard conform C++. Thereby, it has also been shown that
the three different SYCL implementations, ComputeCpp, hipSYCL, and oneAPI, do not have
significant performance differences considering the sycl_lsh library implementation.
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8 Future Work

Currently, the Euclidean distance with the two locality-sensitive hash functions random
projections and entropy-based hash functions is the only available distance metric. Other
distance metrics could be implemented in the next step, such as the Manhattan distance
using random projections proposed by Datar et al. [DIIM04], the Cosine Similarity using
SimHash proposed by Charikar [Cha02], the Jaccard distance using MinHash proposed by
Broder [Bro], or the Hamming distance using BitSampling proposed by Indyk and Motwani
[IM98].

The sycl_lsh library uses the standard LSH algorithm. Other LSH variants have been
proposed as described in Section 2.1.1. One of these approaches is the multi-probe LSH
algorithm proposed by Lv et al. [LJW+07], which tries to reduce the number of needed
hash tables. A preliminary implementation has been developed for the sycl_lsh library.
While the results looked promising, this proof of concept implementation has not been
merged into the sycl_lsh library yet since further refactoring and tests are necessary.

Furthermore, few tests with other hash combine functions have been performed. The
results were that changing the hash combine function drastically influences the expected
performance, recall, and error ratio. Therefore, further investigations should be per-
formed. One possible custom hash function type has already been implemented called
sycl_lsh::hash_functions_type::mixed_hash_functions. It combines the random
projections with the entropy-based hash functions. The random projections are used as
normal hash functions, and an entropy-based hash function combines these hash functions
to the resulting hash signature. However, no further tests have been conducted yet.

A more efficient distributed sort algorithm could be implemented to improve the current
performance of the entropy-based hash function creation.

Additionally, more runtime and scaling tests using different hardware, e.g., AMD GPUs, can
be performed, together with tests using larger data sets on bigger clusters. A large-scale
test run using a bigger data set on the bwUniCluster1 could not be achieved in time because
the long queue times made it impossible to debug a problem with the MPI installation.
However, the presented results demonstrated that the distributed implementation works.

1https://wiki.bwhpc.de/e/Category:BwUniCluster_2.0

101

https://wiki.bwhpc.de/e/Category:BwUniCluster_2.0




A CMake Configuration Options

The following list contains all custom CMake configuration options.

SYCL_LSH_IMPLEMENTATION
Specify the used SYCL implementation. Must be one of: hipSYCL (default),
ComputeCpp or oneAPI.

SYCL_LSH_TARGET
Specify the SYCL target to compile for. Must be one of: CPU, NVIDIA (default), AMD or
INTEL. In case of NVIDIA, AMD or INTEL the device is of type GPU.

SYCL_LSH_TIMER
Specify which timer functionality should be used. Must be one of: NONE (disables
timing altogether), NON_BLOCKING (enables timing, but without barriers after kernel
invocations or MPI communications) or BLOCKING (enables timing with barriers;
default).

SYCL_LSH_BENCHMARK
If defined, enables benchmarking by logging the elapsed times in a machine readable
way (.csv format) to the provided file. The value must be a valid file name.

SYCL_LSH_ENABLE_DEBUG
Enables better debugging support. Defines debugging macros and removes the
seeding from the random number generators to produces more deterministic results.

SYCL_LSH_ENABLE_DOCUMENTATION
Enables the documentation target make doc. Requires doxygen as dependency.

SYCL_LSH_FMT_HEADER_ONLY
Enables the header only mode for the required {fmt} formatting library. Otherwise
tries to link against it.

SYCL_LSH_USE_EXPERIMENTAL_FILESYSTEM
Enables the <experimental/filesystem> header instead of the C++17 <filesystem>
header.
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B Command Line Options

The following list contains all recognized command line options. Note that all options have
the form --option value.

help
Prints the help screen, listing all recognized command line options.

data_file
Path to the file containing the data points. This option is required.

file_parser
The type of the file parser to parse the data file. Must be one of arff_parser or
binary_parser (default).

k The number of nearest neighbors to search for. This option is required.

options_file
Path to the file containing options for the syl_lsh::options class.

options_save_file
Save the currently used options to the specified file.

knn_save_file
Save the calculated k-nearest neighbors to the specified file.

knn_dist_save_file
Save the calculated k-nearest neighbors distances to the specified file.

evaluate_knn_file
Path to the file containing the correct k-nearest neighbors for the current data set.
If this option is present, the recall of the calculated k-nearest neighbors will be
determined.

evaluate_knn_dist_file
Path to the file containing the correct k-nearest neighbors distances for the current
data set. If this option is present, the error ratio of the calculated k-nearest neighbors
will be determined.

hash_pool_size
The number of hash functions in the hash pool.

num_hash_functions
The number of hash functions used for the hash signature for each LSH hash table.
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B Command Line Options

num_hash_tables
The number of used LSH hash tables.

hash_table_size
The size of each LSH hash table.

w The segment size for the random projections hash functions h(x) =
⌊

a·x+b
w

⌋
.

Only used if the used_hash_functions_type is
sycl_lsh::hash_functions_type::random_projections.

num_cut_off_points
The number of cut-off points for the entropy-based hash functions.
Only used if the used_hash_functions_type is
sycl_lsh::hash_functions_type::entropy_based.
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