
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Graph Generation with Preserved
Properties

Valentin Marianov

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Kurt Rothermel

Supervisor: Michael Schramm, M.Sc.

Commenced: November 20, 2020

Completed: May 20, 2021

Abstract

The increasing size of real-world networks and the lack of publicly available datasets due to
security and user privacy concerns has increased the demand for graph generators. Developing
graph generators could facilitate researchers in analysing network’s properties and underlying
structure. More accurately, a request towards designing synthetic generator applicable to arbitrary
graphs, which also scales up to massive datasets, is made. Such model could eventually be further
extended to produce graphs of multiple size aiming to predict how those will conceivably evolve in
the future. Having acquired synthetic networks we could then measure multiple metrics in order to
understand a graph’s structure and properties. However, current graph generators are only capable
of matching a fraction of real-world graph properties, are not suitable for different types of networks,
do not scale up for large datasets or a mixture of the preceding.

The main goal of this thesis is to take a deeper look in how well state-of-the-art graph generators
preserve real-world graphs and their properties. Answers to the following questions are to be
investigated: How well can a generation model capture a certain property? Is the model reliable in
generating real-world networks from different domains? Can any similarities be found between the
properties of synthetically generated and real-world graphs? Can a generator potentially produce
graphs with adaptable properties, e.g. multiple times larger graph? Detailed analyses of existing
graph generators and approach to try to combine or extend them to be able to generate graphs with
similar to real-world networks properties are the head focus of this work.

After investigating several generation models we focused our attention on Darwini. Because to the
best of our knowledge, it is only the second approach making an effort to concomitantly match the
explicitly provided degree and clustering properties. In addition, no work aiming at questioning
the model’s ability has been found motivating us to thoroughly analyse the algorithm. Besides
assessments we contributed to this topic by extending the algorithm with two methods aiming to
predict how the structure of a certain network would look like in the future. Darwini along with
our proposed extensions have been implemented in the Graph Analysis Measurement Environment
(GAME) framework to analyse and compare the properties of arbitrary graphs. As we have shown
in Chapter 6, Darwini lacks the ability of reproducing graphs with notable degree difference of
neighbour elements in the distribution series and missing vital links connecting multiple components
with one another. However, distributing vertices across several groups could address the issue and
particularly improve the overall results.

3

Contents

Abstract 5

1 Introduction 13

2 Background and Related Work 17
2.1 Background . 17
2.2 Related Work . 18

3 Metrics and Generation Models 23
3.1 Metrics . 23
3.2 Generation Models . 26

4 GAME Framework 31
4.1 Libraries, Frameworks and Plug-Ins . 31
4.2 Custom Data Structure . 32
4.3 Jobs and Queue Management . 32
4.4 Importer and Exporter . 33
4.5 Metrics . 33
4.6 Generation Models . 33

5 Darwini and Growth Model Extensions 35
5.1 Algorithm . 35
5.2 Growth Prediction Model Extensions to Darwini 41
5.3 Implementation . 44

6 Evaluation 49
6.1 Public Available Data . 49
6.2 Results . 51

7 Conclusion and Outlook 65

Bibliography 67

5

List of Figures

5.1 Darwini model consisting of three distinct stages. Newly inserted edges are coloured
in green. 36

5.2 The above depicted graphs summary how a pair of nodes is chosen to increase
their target degrees using Random Increase of Degree (left) and Linear Preferential
Attachment (right). 42

6.1 Comparing Darwini and both growth prediction models under different graph
metrics on the Facebook athletes pages network. Every model struggles to
accurately reproduce distributions. 53

6.2 Comparing Darwini and both growth prediction models under different graph
metrics on the Twitch network of German streamers. 55

6.3 Comparing Darwin and both prediction models under different graph metrics on
CA-AstroPh network. Only LPA manages to create more high degree vertices than
the original graph. 55

6.4 Comparing Darwini and both growth prediction models under different graph metrics
on CA-HepTh network. All models approximate the original graph PageRank
distribution curve. 57

6.5 Comparing Darwini and both growth prediction models under different graph metrics
on Enron email network. Darwini nearly reproduces the PageRank distribution
curve of Enron. 57

6.6 Comparing Darwini and both growth prediction models under different graph
metrics on AS-733 from 2 February, 2000. Random Increase of Degree (RID) is
able to replicate most clustering coefficient values. 58

6.7 Comparing Darwini and RID models under different graph metrics on AS-Skitter.
Major part of the high degree vertices can not be reproduced leading to inaccurate
graph structure. 59

6.8 Comparing Darwini and both growth prediction models under different graph
metrics on DBLP. Darwini captures low and medium region of degrees while Linear
Preferential Attachment (LPA) also reproduces the high once. 60

6.9 Comparing Darwini and RID models under different graph metrics on California
road network. Darwini manages to match the degree distribution curve quite
accurately. 61

6.10 Comparing Darwini and RID models under different graph metrics on Youtube
network. The non-hierarchical structure of Darwini makes it impossible to match
the clustering properties. 62

6.11 Comparing Darwini and both growth prediction models under different graph
metrics on Wikipedia network. 63

7

6.12 Comparing Darwini and both growth prediction models under different graph
metrics on LiveJournal network. 63

8

List of Tables

4.1 List of all currently supported metrics by the GAME framework. The ’x’ sign
inside the ’Library’ column denotes that the metric was implemented from base.
Remaining metric implementations were derived from the JGraphT library. The
algorithms were further manually adjusted and extended to achieve overall better
execution times. 34

6.1 Graph datasets used in the evaluation of Darwini and the growth prediction models.
Several important graph characteristics including the density and the unique number
of connected components are depicted in the table above. 52

9

Acronyms

AS Autonomous Systems. 50

BTER Block-Two-Level-Erdós-Renyi. 18

CGA Community Guided Attachment. 19

CL Chung Lu. 18

CSR Compressed Sparse Row. 32

DBC Database Connectivity. 31

ER Erdós-Renyi Model. 27

FF Forest Fire. 19

FRD Fast Reciprocal Degree. 18

GAME Graph Analysis Measurement Environment. 3

LPA Linear Preferential Attachment. 7

MVC Model-View-Controller. 31

R-MAT Recursive Matrix. 18

RID Random Increase of Degree. 7

SKG Stochastic Kronecker Graphs. 19

11

1 Introduction

By studying the evolution of real-world networks, we can identify various properties of a graph such
as important nodes known as hubs, numerous communities and many others. Numerous studies
show that real-world networks like online social graphs exhibit continues growth and shrinking
average diameter. For example, in 2011 the Facebook graph [UKBM11] consisted of about 721
million active users and well over 68 billion friendships (edges) between the previous, while as of the
end of 2014 the social service network had grown up to having 1.39B active users and composed of
more than 400B links between the last [CEK+15]. According to the Facebook third quarter reports
of 2017, the amount of active users has increased with approximately 16.66%, since the preceding
results, reaching 2.07B by the end of September 2017. So, one could ask himself the following
question: Do online social networks get more dense as the graph grows overtime? Well, as of 2011
every Facebook user was connected to around 95 other people. Three years later, measurements
show that on average every user had established roughly 287 friendships.The conclusion that social
graphs do densify during their evolvement is pretty obvious, as stated in [LKF05].

To be able to come to such conclusions we would need huge public datasets. Even when such large
collection of data exist, there are a couple of factors that influence their usage. First, researchers
must respect user privacy and security, thus most of the large datasets are not publicly available. On
other hand, if we assume that such enormous data is shared with the public, the effort, the time and
the resources that need to be invested makes the work of researchers even more challenging and
unpleasant. Countless hours and many efforts have been put in the development and research of
graph generators for power law distribution graphs. However, the majority of them are incapable of
producing synthetic graphs with similar properties [ELW+16]. Vital role for the lack of accuracy to
a great extend holding for nearly all generative models are some conclusions made specifically for
online networks. For example, it was believed that the average degree of a given network would
remain persistent over an observed period of time, while in reality a monotone function could
display the slowly increasing diameter of the network during its evolution. The most well known
inference is probably that the degree distribution of real-world graphs always matches a power
law function, which was already rejected by numerous studies [ELW+16], [KPPS14], [UKBM11],
[KNT10]. Those inaccurate conclusions made by previous studies are derived from the research
and evolution of static graphs or in some case of small set of snapshots of networks.

Before [LKF05], no one had ever observed the structure and growth evolution of real-world
networks, which rejected the statements about the constant average diameter and the increasing
average distance between pairs of vertices. The study of [LKF05] also discovered that Stanley
Milgram’s experiment six degree of separation holds for a variety of networks. The authors of
[LKF05] have also proven that the amount of edges is growing super-linearly in the number of
vertices. In order to address the above mentioned issues, synthetic graph generators were designed
to reproduce huge networks based on published graph metrics retrieved from source graphs. Given a
publicly available degree distribution, synthetic graph generators can reproduce graphs with similar
distribution while simultaneously trying to capture multiple supplementary characteristics. Using

13

1 Introduction

that type of generators we can also try to predict how the structure of the network will look like over
some time as it evolves and further measure a variety of metrics. Important metrics that describe
the structure of the graphs include degree distribution, number of connected components, clustering
coefficient distribution, diameter, degree correlation, eigenvalues and others. Additionally, the
model must ensure efficient memory usage and close to linear time complexity thus producing
networks at scale, since system bottlenecks normally occur only by working with a broad range of
data. The synthetic generation approach does not only omit processing the connections between
millions or billions of pairs of vertices, but moreover ensures that user sensitive data is by no means
publicly shared.

State-of-the-art generation models match several properties of real-world graphs but at the same
time are unable to replicate at least one of the of three crucial aspects, as stated in [ELW+16].
Famous social networks such as Facebook and Instagram limit the amount of possible friends up
to 5000 for the Facebook social network or the amount of people one can follow up to 7500 for
the latter one. YouTube is another famous example of a big real-world dataset, where each user
is limited to subscribing to a maximum of 2000 channels. In contrast one of the most popular
generation models Kronecker [LKF05] produces power law based synthetic graphs, thereby it does
not have the ability to meet the actual degree distribution of graphs, having such limitations like the
previously mentioned once. Another issue worth mentioning is that some existing approaches could
not be used from organizations due to several factors. One being that some generators are unable to
scale therefore making them impracticable for industry use. Further important argument is that
some models require manual tuning of parameters, which in case of fault configuration could lead
to inaccurate graph structure and in general inaccurate metric results [ELW+16]. The performance
of graph processing systems such as 𝐺𝑟𝑎𝑝ℎ𝑋 , 𝐺𝑖𝑟𝑎𝑝ℎ and 𝑃𝑟𝑒𝑔𝑒𝑙 [KLEC16], [XGFS13], [LT16],
[MAB+10], [IHN+16] can be heavily influenced by incorrect local clustering properties. The
partitioning of a graph across individual machines inside the cluster is then processed not as
effectively as one would like it to be. The generation of such large datasets is also needed in order
to test the capabilities of graphs algorithms and to measure the performance of graph processing
frameworks and for producing detailed benchmarks [KLEC16], where the strong and weak sides of
each processing system can be displayed.

The idea of generating bigger graphs than the source one is to find a model that can predict how
real-world graphs would naturally grow over time, is also observed by this thesis. Such growth
predicting model can help identify problems, which may occur in the future. For example, by
generating a multiple of a router network one can potentially spot future data flow bottlenecks
where a set of routers send information to a common router. The last having the role of a bridge to
connect two end points from both side, e.g. users. While this type of structure would not cause any
issues if the data traffic is low, in scenario where we assume that many users from the left side of
the bridge router want to send message to users located on the opposite side of the bridge and the
other way around, then one of the following scenarios can occur: Each or most of the users will
probably receive and/or send its messages with delay due to huge amount of computation that the
bridge router has to deal with in order to find the end-target for each received message. Or in the
worst case scenario, the router will shut down due to huge data traffic and thus no longer will users
across sides be able to communicate with each other.

In this thesis we focus our attention to different state-of-the-art graph generators. The goal is to
understand how well they are capable of reproducing single properties of real large data. In the next
chapter, we will briefly introduce what a graph is and other related to this work graph theory based

14

terms. Then we summarize previous works in the domain of (synthetic) graph generators. Next, in
the third chapter we introduce what a metric is and how is it related to graph generation models
followed by a detailed presentation of every model observed in Section 2.2. Before providing details
about our custom implementation of the Darwini algorithm together with our extensions part of the
synthetic graph generator to produce multiple graphs, we will introduce the GAME framework.
GAME standing short for Graph Analytic Measurement Environment, as the name suggests is a
graph processing framework. Written in the Java programming language it is used to generate,
import, export and analyse existing graphs by measuring diverse metrics and was developed at
the University of Stuttgart, Germany. Additional information about the framework can be found
in Chapter 4, where we point out the set of libraries used, what graph types the framework can
generate and others features. The fifth chapter will be composed of a comprehensive description of
our custom implementation of the Darwini algorithm [ELW+16]. Within this chapter we include
explanation about the data structures used, our approach to speed-up the execution by parallelizing
all possible parts but at the same time ensuring accurate results. And lastly, we take a deeper look
at the growth prediction models we developed to produce networks of multiple size implemented
as extension to the already discussed synthetic graph generator. Next, in Chapter 6, we provide
a thorough evaluation of the results provided after generating divergent types of, but not only
limited to those, online social graphs. The Darwini approach [ELW+16] will be tested in detail
also on online social networks but not only restricted to that category of real-world graphs. The
aim of testing being understanding the full capabilities of this quite interesting approach, which on
paper should be able to capture local clustering coefficient at fine granularity, unlike other existing
state-of-the-art models. Questions that need to be answered include: How well can a generation
model reproduce the structure of a graph and thus preserve its properties. Is a given generator
capable of producing accurate results only for real-world networks? Is it adaptable of generating
graphs without fixed property? And finally, in Chapter 7, conclusion of our thesis and explicit hints
about future work in the direction of improving Darwini and our proposed extension models are
provided.

15

2 Background and Related Work

The demand for reliable and scalable graph generators is demanded by the speed of which real-world
networks continuously expand their domains. The computation power of regular machines is also
unable to keep pace with the evolution of networks like Facebook. Therefore, many researchers
have made every endeavour to design a generation algorithm accurately and efficiently matching
the underlying structures of original graphs and also preserving one or more key characteristics.
However, to the time of writing no graph generator is apt to contemporaneously match real graph
properties in a quick fashion. Before going through a variety of generation models and discussing
their potential usage based on previous studies, we would like to introduce basic graph theory terms
used in the rest of this thesis. People without any experience in graph theory are encouraged to read
the incoming section, while experienced readers can feel free to skip the forthcoming section.

2.1 Background

A graph is a tuple 𝐺 = (𝑉, 𝐸) composed by two distinct sets: a set 𝑉 containing 𝑛 nodes, and a set
𝐸 containing 𝑚 edges. An edge 𝑒𝑖, 𝑗 or (𝑣𝑖 , 𝑣 𝑗) is a connection between two vertices 𝑣𝑖, 𝑣 𝑗 with
𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 . Edges can be either undirected, like in the networks of Internet routers and citation
networks or directed found in road infrastructure networks, online social networks like Instagram
and Epinions. In directed graphs, reciprocal edge means that a directed edge exists in both directions
between nodes 𝑣𝑖 and 𝑣 𝑗 . Additionally, edges could also have weights. The logic behind the weight
can differ dependent on the domain of use. In social networks, bigger weight values typically
describe stronger relationship between two people. However, in road infrastructure graphs bigger
weights would describe longer distance from point A to point B. In case of a traffic jam, a hybrid
metric could also be represented by an edge weight indicating the time needed to travel though a
single street or boulevard. Graphs can also be either dense or sparse. A dense graph contains 𝑛
nodes and nearly or exactly 𝑛2 edges, i.e. the number of edges is close to the maximum number of
permitted links. Sparse graph on the other side usually contains less than 𝑛 edges, i.e. nodes have
few links and possible several disconnected components and/or isolated vertices exist. An isolated
vertex 𝑣𝑖 is a vertex not incident to a single edge or with other words having 0-degree.

Most real-world networks are distinguished from random graphs by having many communities. A
community is subgraph of 𝐺, where most of the nodes are connected with one another. Therefore,
such communities also tend to be very dense. According to [KNT10], social networks can be
divided into three groups: singletons, also known as isolated vertices, middle region consisting of
small isolated communities and the giant component within which each vertex can find a path to
the remainder of vertices in the component. The giant component can further be divided into two
layers: the core, consisted of all active and strongly connected users and an outer-layer of numerous
stars. After structural investigations of a variety of social networks, the authors of [KNT10] also
conclude that the majority of the isolated groups are stars. A star is composed of a central node

17

2 Background and Related Work

connected to all remaining vertices in a community, whereas the remaining nodes have either none
or very few additional edges. Another typical feature of many real-world networks, particularly for
online social platforms, is the occurrence of small amount of high degree vertices (e.g. famous
people followed by the majority of members in the network), while huge amount of the remaining
vertices link to only several nodes. Possible reasons for this in social networks include: lack of
interest after joining the network, only a small portion of users friends can be found on the social
platform or users only participate in some groups which may be connected with personal hobbies
and interests or related to the user’s education and/or work domain.

The high amount of low degree vertices and occasional occurrence of high degree nodes has been
observed in broad diversity of domains leading to heavily-tailed degree distributions [DKPS13],
[KPPS14]. The presence of such degree distribution curves is considered as a critical feature for
distinguishing real-world networks from arbitrary sparse networks. This, however is not the only
feature of real-world networks. Shrinking diameter, high average local clustering coefficients and
hierarchical community structure, i.e communities within communities, along with many others
commonly emphasize the existence of a real-world network. To measure each of the previously
mentioned graph characteristics, we would need to use a variety of metrics, which are presented
in the upcoming chapter. But before that, in the section below, we will summarize previous
contributions in the domain of graph generation.

2.2 Related Work

History of generation models dates back to the late 50’s and to the early 60’s of the last century with
the introduction of Erdös-Renyi [ER+60] and Gilbert [Gil59] models. Their usage in the real-world
is limited because they return a single graph from a set of graphs with pre-defined order and size
with equal probability. Due to random link creation, those models are also ill-suitable for preserving
any properties of real-world graphs. However they serve as a good null model for other generators
like [KPPS14].

Chung Lu [ACL01] is another null-based model. It also generates random graphs but unlike
Erdös-Renyi and Gilbert methods can capture heavily-tailed degree distributions common for
the majority of realistic networks. Outside of providing more precise degree distribution and
inexpensive cost per edge creation, Chung Lu (CL) does not build upon Erdös-Renyi and Gilbert.
Used as an extension from Fast Reciprocal Degree (FRD) [DKPS13] or as part of more sophisticated
models like Block-Two-Level-Erdós-Renyi (BTER) [KPPS14].

The World Wide Web, peer-to-peer networks and the Internet topology follow surprising law degree
distributions and exhibit ’bow-tie’ and ’jellyfish’ structures with also rather small diameter, as stated
in [CZF04]. Therefore, a recursive graph model Recursive Matrix (R-MAT) was developed to
quickly generate realistic graphs, preserving power-law behaviours and deviations from them. R-
MAT is suitable for modelling bipartite and weighted graphs unlike most state-of-the-art generators.
Vertices are distributed in two groups and can only connect with nodes from the opposite group.
Described as a procedural method, R-MAT can generate any type of graph while satisfying criteria
of real networks like community structure (in addition to the degree distribution). Barabási-Albert
model and its modifications, other approaches including geometric layout of nodes in their model
and the BRITE model composed of components taken from the previous mentioned models, fail to
meet at least one characteristic captured by R-MAT. However, generating such graphs can only be

18

2.2 Related Work

possible by correctly setting all four probability fields. Probability fields 𝑎 and 𝑑 represent separate
groups of nodes, i.e. communities or even nested communities. Ratios of 75:25 for 𝑎 : 𝑏 and
𝑎 : 𝑐 are also approximated for the majority of real-world networks [CZF04]. Although generating
weighted, directed and even bipartite graphs, R-MAT generally does not suit reproduction of realistic
networks because it only targets in maintaining the degree distribution of the original graph by
implicitly forming nested communities through assignment of high field probabilities for 𝑎 and/or
𝑑.

Since the seminal work of Barabási, Albert and Faloutsos, the degree distribution of graphs is
considered as a key feature in distinguishing between random and realistic networks [DKPS13].
Heavily-tailed degree distributions, as we also mentioned, can be found in wide variety of domains.
The authors of the Fast Reciprocal Degree algorithm (FRD) further conclude that most web,
communication and interaction networks are directed and exhibit high reciprocity. Because many
generation algorithms do not support directed graph generation, a common approach is to make
the last undirected. Studies have additionally concluded that the fast spread of news or viruses
occurs in graphs exhibiting high reciprocity. Reciprocity is also usually significantly higher in social
networks than in information graphs and even have a vital role in interactions during gameplay
of massive online games. All of the above summarised observations lead to the development
of the Fast Reciprocal Degree model. Serving as an extension to the CL method, FRD almost
perfectly matches the in-, out- and reciprocal degree of original graphs. It can be applied to both
directed and undirected graphs while preserving the high reciprocity in real-world graphs unlike
other state-of-the-art generation models like Stochastic Kronecker Graphs (SKG), Forest-Fire (FF)
[DKPS13]. FRD can also produce directed graphs, while matching the in- and outdegree quite good.
However, a directed comparison of FRD against other generation models is not appropriate since
the previous is not a realistic graph generator, i.e. it does not take into consideration other metrics
apart from degree distribution. It also requires manual parameter tuning of 𝛽 for 1-degree nodes as
being an extension of the Chung Lu model. Therefore, even by matching the degree distribution of
real-world graphs at fine granularity and producing networks with millions of nodes and edges in
couple of minutes, FRD can only be used as a base model for the development of further generation
models.

Rejecting the long believed assumptions that the average degree remains constant and a slow
increase in the diameter can be observed in real-world graphs as they grow can be seen in [LKF05].
Achieved by studying the evolution of various datasets in huge time span, however rose the following
two questions: What underlying (natural) process causes a graph to sweepingly densify with having
a fixed exponent 𝛼? The value of 𝛼 can be used to estimate the size of larger graph at time 𝑡 ′ by
computing the proportionality of the size and order at time 𝑡. This leads to the following question:
Why do we see ceaseless shrink in the effective diameter as network’s domains further extend?
To answer this questions, the authors in [LKF05] came up with the design of the Community
Guided Attachment (CGA) and Forest-Fire (FF) models. Forest Fire (FF) in general preserves
more properties than Community Guided Attachment (CGA), while the later also requires manual
tuning of parameter producing divergent in- and outdegree distributions dependent on the value
set. Therefore, we can straightforward conclude that CGA approach is not sufficient enough and
continue with the deliberation of the more complex graph generator. Forest Fire to a great extent is
based on CGA by producing a version of the Densification Power Law [LKF05]. On top of that
heavily-tailed indegree distributions can be reproduced based on the well known rich get richer
process. The composition of communities with the help of a component sharing flavour of the
𝑐𝑜𝑝𝑦𝑖𝑛𝑔 model while addressing the issue of CGA with the constant value decrease of the diameter

19

2 Background and Related Work

are part of FF. There are however, a couple of aspects that need to be pointed out. First, FF links
a fresh joining node to the graph using a forward and backward burning parameters 𝑝 𝑓 and 𝑝𝑏.
The last two of course stick up with the necessary tuning. There is also no concrete explanation
provided in [LKF05], on why the generation of graph with FF would lead to a similar synthetic
graph with shrinking effective diameter. Densification can be one of the reasons since new nodes
tend to created many links in the ambassador’s neighbourhood and fewer beyond its scope. However,
this would not be enough to make such general conclusion. Apart from that, Forest Fire also creates
a negligible amount of reciprocal edges, which represent quite large percentage in some real-world
networks.

Next, we would like to take a look at generation model taking into consideration not only the degree
but also the local clustering coefficients of vertices. Block-Two-Level Erdös-Renyi (BTER) model was
developed to scale up to large graphs like online social networks, collaborations, telecommunications
and computer-to-computer networks while trying to maintain several properties. By taking as input
the degree and clustering coefficient distributions all parameters are being computed directly using
the previous two (except the blow-up factor 𝛽). Independent edge creation in arbitrary order and
the absence of iterative optimization to fit BTER belong to the list with positive features about the
algorithm. On top of that its also only the second technique mentioned here making the effort of
forming communities based on provided distributions, hence leading to more accurate results than
SKG and CL models. The way communities are formed, however leads to inaccurate results in
the clustering coefficient distribution. Since, each affinity block (i.e. community) holds vertices
sharing common target degree, BTER implicitly presumes that this set of nodes also should match
the same clustering coefficient, which should not be necessary true for the majority of them. Thus
by trying to directly match the desired degree of each vertex in phase 2, clustering coefficients could
not be fixed in the later phase. As it has been concluded in both [KPPS14] and [ELW+16], BTER
uses a blow-up factor in order to generate enough degree-1 vertices. Beside that, BTER comes
short in reproducing high degree vertices, unlike Darwini addressing the raised issues by forming
communities joined by vertices with identical expected number of closed wedges. By establishing
groups with approximated amount of triangles for each vertex, Darwini indirectly tries to match
both the degree and clustering coefficient for each node. After second phase, the values of the last
are corrected while connecting smaller communities with one another and thus forming the final
version of the output graph. Darwini produces notably better results than other state-of-the-art
models such as BTER, FF, Random Walk and DK2. Remarkable is the deviation observed in
clustering coefficient distribution results between BTER and Darwini, whereas the latter comes a
lot more closer to the distribution curve of the original graph. Drawback for both models is that
they currently observe only simple unweighted and undirected graphs. They also assign each vertex
to a single group and ignore complex hierarchical structures, which can be found in models like
CGA and R-MAT. Based on the above summary we have chosen to deeply test the capabilities of
Darwini because there are yet no detailed researches in this direction. Even though, it brings some
limitations with itself, Darwini could possibly be extended to eliminate those issues.

This thesis was inspired by [KPPS14], the synthetic graph generator Darwini [ELW+16] and its
capabilities of capturing several properties of real world graphs while trying to form an identical to
the original graph structure. As we show in our evaluation, Darwini is not capable of reproducing
those properties mainly affected by the way it picks only one group for each vertex, contradicting
with structures of online social networks where users are usually members of multiple communities.
As a consequence not only does the model struggle to generate graphs with hierarchical structure but
also could lead to some isolated communities and singletons due unmatched score for high degree

20

2.2 Related Work

vertices. This is a crucial aspect resulting in diverging from the original graph structure impacting
to some extent the remaining metric results. Darwini manages to reproduce degree distribution
only when no significant difference in the value of two subsequent elements in the series is present.
The way it distributes vertices along with the design decisions taken in maintaining the degree
correlation by firstly matching the expected number of triangles each node should participate at,
restrict the amount of options we have to connect high degree vertices. Even though that after
certain amount of iterations in the third stage we can search across the entire graph spectrum
for possible candidates, each of the remaining vertices with non-matching target degrees tend to
already posses links between each other or at least the majority of them. As a evidence to our
argumentation, we have removed the probability formula in the second half of phase 3, which tries
to maintain the degree correlation. However, little to none improvements have been observed. The
output graphs still exhibited absence of high degree nodes found in original datasets. During the
implementation of Darwini, we introduced two extensions to the algorithm trying to predict how
different types of networks would grow over time. In Chapter 6 we depict that our approaches can
in general follow the abrupt changes in the original curve. Both models however, do not adjust by
any way the clustering coefficient of each vertex, whose degree is increased. Random Increase of
Degree (RID) is more suitable for graphs, where we do not expect major changes in the size or
density of communities while Linear Preferential Attachment (LPA) is more appropriate for online
social networks, where people with raising popularity accumulate numerous links from fans and
followers.

21

3 Metrics and Generation Models

During the last few decades a lot of time, resources and energy have been oriented to the development
of graph generators capable of reproducing real-world graphs. The design of such universal model
is not a trivial job due to a couple of reasons. First and foremost, it should be able to capture
important features of real-world networks such as heavily-skewed degree distribution, short distance
between an arbitrary pair of nodes and many others. This approach should also be applicable to
directed and undirected, weighted and unweighted graphs, eventually with multiple links between
vertices and self-edges. Synthetic graph generators have to rely on the least as possible amount
of data provided by the original graph because most real-world datasets are not publicly available
due to privacy and security concerns. Also some generation models require manual parameter
tuning making them extremely sophisticated for use. Wrong estimation of a parameter could lead to
the generation of a graph having a structure significantly diverging from the one of the original
graph. And lastly, even if the algorithm generates accurate graphs while preserving one or more key
features of real-world networks, it should be designed and implemented in such a fashion that makes
it scale up to large graphs with trillions of edges and thus applied in different industry domains.
But before we outline several generation models we would like to present a set of metrics and their
relation to graphs and generation models.

3.1 Metrics

What is a metric? How are metrics related to graph generation? Metrics are basically computed
characteristics of graphs such as degree distribution. They are vital in understanding the structure
of graphs and are sometimes even used as input from generation models such as BTER [KPPS14]
and Darwini [ELW+16]. Measuring metrics can also give us a hint about the type of a graph -
random sparse graph versus real-world dense network. For example, real-world graphs exhibit low
effective diameter as per [LKF05]. They can also be used to detect abnormality and thus manage the
network by taking the required measures. In many real-world network settings, normal behaviour
is described by small dense subgraphs and some additional properties regarding network growth.
So, theoretically by detecting activities producing abnormal structures, one can label them as a
potential risk of e.g. fraud, viruses, fishing, spam or even Distributed Denial of Services (DDoS). If
we are incapable of detecting such vulnerabilities quickly, even a DDoS attack temporary shutting
down the services for couple of hours of huge companies like Amazon or Facebook would lead to
hundreds of millions of loses for the latter. Metrics also come in handy for testing the correctness
and performance of algorithms and furthermore for benchmarking graph processing systems. In
the subsections below we will begin with the basic once such as order, size and will steadily turn
our attention to more complex metrics like betweenness centrality and k-Core. Each of the below
depicted metrics is supported by the GAME framework. Also most metrics will be used in Chapter 6
in order to investigate how capable Darwini is in preserving graph properties.

23

3 Metrics and Generation Models

The order of a graph is simply the number of nodes 𝑛 ∈ 𝑉 . The cardinality of 𝑉 can be arbitrary
positive integer which however, restricts the size of the graph. The size of a graph implies the
number of connection between the nodes. The maximum amount of edges a graph can contain must
not exceed 𝑛2. As by the order, the size of a graph is either explicitly provided or it can be derived
from the degree distribution during generation or import.

Density of a graph measures the relation between edges and vertices. A graph with number of edges
close to the maximum number of permitted edges is considered to be dense, while on the other side
a graph with very few connections is called a sparse graph. The density can be computed with the
following formula:

𝐷 =
(2)𝐸

𝑉 (𝑉 − 1)
for directed and undirected graphs. The factor of two is only for undirected graphs because an
edge between (𝑣𝑖 , 𝑣 𝑗) is construed as a bidirectional connection, i.e. (𝑣𝑖 , 𝑣 𝑗) ≠ (𝑣 𝑗 , 𝑣𝑖), in directed
graphs.

Degree distribution of a graph is normally depicted in a plot, where on the x-axis we can find the
distinct degrees in a graph 𝐺 and on the y-axis the number of nodes sharing a common degree 𝑑.
If we observe only undirected graphs, then the outdegree and indegree distributions are identical
to the degree distribution because each edge is considered as bidirectional. In case of directed
networks, the indegree distribution corresponds to a sequence of pair of numbers (𝑘, 𝑑𝑖𝑛), where k
vertices share the same indegree 𝑑𝑖𝑛. Outdegree can be retrieved the same way by observing only
the outgoing edges in a graph.

The largest degree in a graph 𝐺 is presented by the vertex 𝑣𝑖 with highest number of edges, to
which 𝑣𝑖 is incident. In case of an directed graph the largest indegree and largest outdegree are
computed from taking the maximum of ingoing and outgoing edges for each vertex, respectively.

The average degree is computed by dividing the size by the order from the original graph with the
result being multiplied by two and can be expressed by the following equation:

𝐷𝑒𝑔𝑟𝑒𝑒𝑎𝑣𝑔 =
2𝐸
𝑉

The number of edges is multiplied by two because every edge having a start and end point increases
the total degree of a network by two. Applying the same method for undirected graphs we can
compute the average indegree and the average outdegree. However, if in case of an directed graph
the multiplication by two is omitted since each edge is directed and thus enlarges the total outdegree
and indegree by one.

Closeness centrality [New18] measures the closeness of a vertex 𝑣𝑖 , defined as the reciprocal of the
farness, that is

𝐶 (𝑣𝑖) =
1∑

𝑗 ,𝑣𝑗≠𝑣𝑖
𝑑 (𝑣𝑖 , 𝑣 𝑗)

with 𝑑 (𝑣𝑖 , 𝑣 𝑗) being the shortest path distance from 𝑣𝑖 to 𝑣 𝑗 between an arbitrary pair of vertices.
The closeness score of all vertices are equal to zero when the input graph is disconnected. A
disconnected graph is a graph, where no path exists between certain vertices. So, in the absence
of a path between nodes 𝑣𝑖 and 𝑣 𝑗 the shortest path 𝑑 (𝑣𝑖 , 𝑣 𝑗) is equal to infinity "∞". In case of a

24

3.1 Metrics

weakly connected graph, the closeness centrality of a subset of vertices will be zero. A graph is
considered to be weakly connected when there is at least one pair of vertices (𝑣𝑖 , 𝑣 𝑗) with, e.g. a
path from 𝑣𝑖 to 𝑣 𝑗 but no path in the opposite direction.

Harmonic centrality [New18] was designed to improve the closeness distribution for disconnected
graphs, where closeness centrality comes short and thus unpractical for use. The harmonic centrality
of a vertex 𝑣𝑖 is defined as

𝐻 (𝑣𝑖) =
1∑

𝑗 ,𝑣𝑗≠𝑣𝑖
𝑑 (𝑣𝑖 , 𝑣 𝑗)

where 𝑑 (𝑣𝑖 , 𝑣 𝑗) corresponds once again to the geodesic path (shortest path) distance between two
nodes. However, in this case if 𝑑 (𝑣𝑖 , 𝑣 𝑗) = ∞, then we set the distance 𝑑 (𝑣𝑖 , 𝑣 𝑗) = 0, i.e. no weight
is being added for missing paths. This way, one can measure the closeness of any node inside the
domain of the connected component it participates in. To make the results more convenient each
𝐻 (𝑣𝑖), scores can be normalized. So, a non-zero value rather than indicating a connection of a
vertex to every other vertex in the network, denotes that a given index has some connectivity.

Betweenness centrality [New18] is the third and last discussed all-pairs shortest path based metric.
Unlike the previous two centrality measures, betweenness centrality shows importance in terms of
how much in-between certain vertex is. Betweenness centrality can be expressed using the following
formula

𝐵(𝑣𝑖) =
∑︁
𝑣𝑗 ,𝑣𝑘

𝑁 𝑖
𝑣𝑗 ,𝑣𝑘

𝑔𝑣𝑗 ,𝑣𝑘

with 𝑁 𝑖
𝑣𝑗 ,𝑣𝑘

indicating the amount of shortest paths that go from 𝑣 𝑗 to 𝑣𝑘 through 𝑣𝑖 and 𝑔𝑣𝑗 ,𝑣𝑘
being the number of distinct geodesic paths going through arbitrary sequence of vertices.

The (hop) radius and (hop) diameter of any graph are determined by the below provided formulas

min
𝑣𝑖 ∈𝑉

(𝑑 (𝑣𝑖 , 𝑣 𝑗)) 𝑎𝑛𝑑 max
𝑣𝑖 ∈𝑉

(𝑑 (𝑣𝑖 , 𝑣 𝑗))

as 𝑚𝑖𝑛(𝑑 (𝑣𝑖 , 𝑣 𝑗)) corresponds to the eccentricity of vertex 𝑣𝑖 , i.e. computing the shortest geodesic
path for each vertex and choosing the shortest among those. As opposed to radius, the diameter is
computed by retrieving the eccentricity of each vertex 𝑣𝑖 ∈ 𝑉 and choosing the longest path among
the set of shortest paths. If we observe an unweighted graph, then we measure the hop radius and
hop diameter, i.e. the number of hops (number of edges) from vertex 𝑣𝑖 to vertex 𝑣 𝑗 . In case of an
empty graph, the diameter and radius are zero and equal to ∞ for disconnected graphs.

In graph theory, a component is considered to be connected when a subset of vertices 𝑉𝑘 ⊆ 𝑉 can
reach each other by paths and no other vertices can be added to this set. For example, an isolated
node is itself a component as well as a strongly connected graph. Using a breadth-first search based
iterator, the algorithm begins from a given node and explores all neighbours at the current depth
before iteratively continuing with the nodes at the next depth.

Transitivity of a graph is based on the number of triangles (closed triplets) in the graph, i.e. for
vertices 𝑣𝑖 , 𝑣 𝑗 , 𝑣𝑘 the edges (𝑣𝑖 , 𝑣 𝑗), (𝑣 𝑗 , 𝑣𝑘) and (𝑣𝑘 , 𝑣𝑖) exist, measured against the total number
of connected triplets of nodes (closed or open wedges) and corresponds to the below equation:

𝑇 =
3 ∗ #𝑐𝑙𝑜𝑠𝑒𝑑𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠

#𝑜𝑝𝑒𝑛𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠 + #𝑐𝑙𝑜𝑠𝑒𝑑𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠

25

3 Metrics and Generation Models

which is also referred to as the global clustering coefficient 𝐶 (𝐺) since it can reveal the actual
existence of tightly connected communities.

Clustering Coefficient, more commonly known as the local clustering coefficient 𝐶𝐶 (𝑣𝑖) measures
the number of closed triplets a given node participates in against the maximum amount of possible
triangles that could exist for a given node using

𝐶𝐶 (𝑣𝑖) =
‖𝑒 𝑗𝑘 : 𝑣 𝑗 , 𝑣𝑘 ∈ 𝑁𝑖 , 𝑒 𝑗 ,𝑘 ∈ 𝐸 ‖

𝑘 (𝑘 − 1)

with 𝑁𝑖 denoting the neighbourhood of vertex 𝑣𝑖 and 𝑘 (𝑘 − 1) denoting the maximum size within
the neighbourhood matching the biggest amount of possible closed triplets that 𝑣𝑖 could form if
being connected to every node in 𝐺. For undirected graphs, each 𝐶𝐶 (𝑣𝑖) should be multiplied by
two due to the absence of direction of edges.

PageRank (PR) [New18] is a famous algorithm for ranking webpages inside Google search engine
by measuring the importance of website pages through iterative count of the number and quality of
links. By using the following equation:

𝑃𝑅(𝑣) =
∑︁

𝑣𝑗 ∈𝐵𝑣

𝑃𝑅(𝑣 𝑗)
𝐿 (𝑣 𝑗)

where the page rank for website 𝑣𝑖 is predetermined by the PageRank (PR) value of each page
𝑣 𝑗 ∈ 𝐵𝑣 linking to page 𝑣, divided by the cardinality of the set of outgoing links of page 𝑣 𝑗 . In
terms of weighted graphs, a special version for handling weighted edges is used.

Finally, we turn our attention to the k-Core metric [New18]. A k-core consist of a maximal subset
of vertices such that every single node is adjacent to at least k other vertices within the k-core’s
domain. It takes the set of degrees for a given graph and begins by removing the edges of nodes
with degree less than k. In the following iterations the algorithm further checks for vertices with
degree less than k. Since after we have removed a subset of vertices with degree less than k, there
could be some more vertices with degree fewer than k because we have reduced the degree of the
last by removing nodes that were connected to them in the previous iteration. Similarly the iterative
approach continues until all remaining vertices have degree greater than or equal to k.

3.2 Generation Models

Graph generators give us the opportunity to create various real-world and non-real-world graphs
using different set of input metrics. While some of the generation models like the Erdös-Renyi
[ER+60] and Gilbert [Gil59] generate random graphs, others like Small-World [WS98] and Darwini
[ELW+16] produce graphs matching important properties of real-world networks. The last is even
capable of producing industry sized graphs without requiring the explicit structure of the original
network. In the upcoming pages we will present a series of generation models. Those include
two random graph generators Erdös-Renyi and Gilbert, R-MAT [CZF04], Small-World, Chung Lu
model, Fast Reciprocal Degree, Darwini and others, which are discussed in length below. Direct
comparison between the observed generators is provided at the end of Chapter 2 delineating the
strong sides and drawbacks of each model.

26

3.2 Generation Models

3.2.1 Erdös-Renyi Model

Erdós-Renyi Model (ER) [ER+60], also known as 𝐺 (𝑛, 𝑚), is a random graph generator taking as
input two natural numbers, corresponding to the amount of nodes 𝑛 and edges 𝑚 that the target
graph should consist of, where 𝑚 should not exceed 𝑛(𝑛 − 1). The algorithm returns any of the
possible graphs with order 𝑛 and size 𝑚 with equal probability. During each iteration two vertices
𝑣𝑖 and 𝑣 𝑗 are picked at random. In case an edge (𝑣𝑖 , 𝑣 𝑗) already exist, the algorithm simply picks a
new pair. This is done until there are no more remaining edges to be added resulting in a runtime
of 𝑂 (𝐸 + 𝑚𝑎𝑥(𝑉, 𝐸)). Although ER random graphs are not considered as realistic models for
reproducing real-world data, they are still very useful baseline for the development of generation
models.

3.2.2 Gilbert Model

Gilbert [Gil59] or 𝐺 (𝑛, 𝑝) model is another popular random generation method. The inputs to the
model are a natural number indicating the number of nodes 𝑛 and a real number 𝑝, known as the
density parameter, with 0 ≤ 𝑝 ≤ 1, defining the probability of an edge between an arbitrary pair
of vertices 𝑣𝑖 and 𝑣 𝑗 . Therefore, the density parameter 𝑝 is associated with the expectation value
for the density of the target graph. The time complexity of the algorithm yields O(n + m) using
[BB05], where 𝑚 is the expected number of edges to be created.

3.2.3 R-MAT Model

R-MAT [CZF04], i.e. recursive Matrix, is a Kronecker-style [LCK+10] generation model capable
of creating graphs with a power-law degree distribution. This approach takes as input the order,
size and four additional parameters , 𝑎, 𝑏, 𝑐, 𝑑 with cumulative value 𝑎 + 𝑏 + 𝑐 + 𝑑 = 1, known as
probability parameter of selecting a field. It is worth mentioning that the structure of the output
graph can dramatically change depending on the values assigned to the field probability parameters.
Upon generation the adjacency matrix is split into four square fields of equal size and each field
gets assigned a probability. Once a field is selected randomly, the adjacency matrix gets zoomed in
and split once again into four distinct fields having the same probabilities. The above mentioned
process is recursively repeated until we reach a single field, which corresponds to the addition of
an edge between vertices 𝑣𝑖 and 𝑣 𝑗 . The whole procedure is then being repeated for all remaining
edges. In terms of execution time the complexity of R-MAT is in 𝑂 (𝐸 + 𝑚𝑎𝑥(𝑉, 𝐸)).

3.2.4 Small-World Model

Small-World [WS98] is a random graph generator that builds upon Erdös-Renyi graphs [ER+60] by
producing graphs capturing average-short path and the high local clustering of small real-world
graphs. The set of inputs include the number of vertices, an even mean degree value and a parameter
p strictly laying in 0 ≤ 𝑝 ≤ 1. It starts with a fixed graph exhibiting high clustering and large path
length. The output graph is formed by randomly rewiring fraction of the edges serving as shortcuts
between vertices. The main disadvantage of the algorithm is impossibility of producing directed
and dense networks.

27

3 Metrics and Generation Models

3.2.5 Chung Lu Model

The Chung Lu (CL) [ACL01] model is a random graph generator used as a base in various other
generators including in [KPPS14], [DKPS13]. It takes as an input a fixed degree sequence and
creates edges between pair of vertices with probability 𝑝 equal to their join degrees 𝑑𝑖 , 𝑑 𝑗 divided
by the total sum of degrees in 𝐺, rather than the constant value of ER graphs. The probability
of an edge 𝑒𝑖, 𝑗 can be described using the following formula: 𝑝(𝑒𝑖, 𝑗) =

𝑑𝑖∗𝑑 𝑗∑
𝑘∈𝑉 𝑑𝑘

. The Chung Lu
configuration model produces graphs more closer to realistic networks because it can capture the
heavily-tailed degree distribution nature of most real-world networks. The algorithm can also scale
up to larger graphs since it required only O(m) execution time for adding all 𝑚 links to 𝐺.

3.2.6 Fast Reciprocal Degree Model

Fast Reciprocal Degree (FRD) [DKPS13] is a generation algorithm able to match the in-, out-
and reciprocal degree of arbitrary graph types. It is considered as a special variant of preferential
attachment [AB02] by allowing edges between existing nodes to be created and thus introducing
reciprocity. FRD starts with reciprocal distribution and selects 𝑘 vertices that will form edges in
both directions using a special algorithm for vertex selection. In the next step, it does exactly the
same in order to match the indegree and outdegree distributions. Because Fast Reciprocal Degree
algorithm is based on the Chung Lu model [ACL01] it manages to reproduce huge graphs very
quickly results in total execution time of 𝑂 (𝑚). However, its main disadvantage is the inapplicability
to real-world network by trying to match only the degree distribution.

3.2.7 Community Guided Attachment Model

Community Guided Attachment (CGA) model was proposed as a solution to the surprisingly
decreasing diameter of real-world networks in [LKF05]. CGA begins by constructing a tree with
the leaves corresponding to the nodes of the original graph. The constructed tree has a depth of ℎ
and as we climb up the hierarchy the more unlikely it becomes that two nodes will form a link or
even be part of the same community. Following this observation, the probability of generating an
edge dramatically decreases as we further head to the top of the hierarchy to find the first common
ancestor for both vertices part of distinct groups. Dynamic CGA builds on top of the original
algorithm by enabling the addition of 𝑏 new children to each current leaf at snap shot 𝑡. CGA argues
that densification of real-world graphs can be explained through the decomposition of nodes into
nested set of communities. However, this approach does not capture all observations from [LKF05],
so a more sophisticated model known as Forest Fire was introduced by the same authors, addressing
the missing observations.

3.2.8 Forest Fire Model

Forest Fire (FF) [LKF05] model was designed to exhibit both densification and decrease of the
effective diameter as a graph continuously grows. It is based on having new nodes attached to the
network by ’burning’ through existing edges. The aim of FF, in addition to the properties already
preserved by CGA, is to produce networks with heavy-tailed outdegree. The algorithm processes

28

3.2 Generation Models

nodes joining the network over time. Each node has its own ’center of gravity’ in a specific region
of the graph. As a node 𝑣𝑖 joins the network, it creates a connection to a randomly chosen vertex
𝑣 𝑗 . Next, we generate a random number 𝑘 and link 𝑣𝑖 k-times with neighbours of 𝑣 𝑗 by choosing
outgoing edges of 𝑣 𝑗 with higher probability compared to incoming links to 𝑣 𝑗 . Vertex 𝑣𝑖 then
continues the process recursively with the neighbours of 𝑣 𝑗 but with significantly reduced edge
probability. Potentially, several newly introduced nodes will form multiple links and therefore serve
as bridges between smaller communities across the network. This would lead to decrease in the
diameter and a heavily-tailed outdegree distribution. The termination of the algorithm is secured by
prohibiting visits of nodes multiple times.

3.2.9 Block-Two-Level Erdös-Renyi Model

Block-Two-Level Erdös-Renyi (BTER) model [KPPS14] is a state-of-the-art approach for capturing
both degree and clustering coefficient distributions. BTER is developed to generate graphs with
community structure. By accurately reproducing the local clustering coefficient of vertices, BTER
is capable of matching real-world networks exhibiting community structure. The algorithm consists
of three consecutive stages: In the first stage, BTER assigns target degree and clustering coefficient
to each node, which should be matched in the final version of the graph. Following nodes get
distributed across affinity blocks. Affinity blocks contain nodes sharing the same degree while
the participants of each group should not exceed pre-defined upper bound denoted by 𝑑𝑒𝑔(𝑣𝑖) + 1.
After assigning each vertex to an appropriate block, the algorithm proceeds with internal edge
creation using a fixed probability for each possible edge, matching the ER model. Finally, the
third phase takes care for linking the newly formed communities using the CL method and thus
building the output graph. BTER can be used to generate large scale graphs due to its efficient
edge insertion process - 𝑂 (𝑙𝑜𝑔(𝑑𝑚𝑎𝑥) work per edge. However, a more promising model based on
BTER presented in [ELW+16] is discussed below.

3.2.10 Darwini Model

Darwini [ELW+16] is a synthetic graph generator used to reproduce huge real-world networks
while preserving some of their properties. It takes as an input the degree distribution and clustering
coefficient distribution, from which the order and size of the graph can be derived. The Darwini
approach is separated in three phases. Phase 1 processes the degree and clustering coefficient
distributions. Then in stage 2, vertices are being grouped inside the so called "buckets", where
vertices belonging to the same bucket should participate at the same amount of closed triplets.
Following, Darwini has to merge the set of incomplete buckets in order to be able to closely
approximate the number of closed wedges for each vertex in the newly merged bucket. In the final
part of phase two, Darwini creates edges within the domain of a bucket while monitoring that no
node exceeds its target degree. Otherwise, the clustering coefficient would be infeasible to correct in
the final stage. And lastly, phase three manages the interconnection of vertices and thus establishing
the connected target graph. The process of generating edges in both second and third phase is based
on the same approach of finding pair of vertices, who do not match their target degree yet. More
details about the custom implementation of Darwini and our growth prediction models as extension
to the algorithm inside the GAME framework can be found in Chapter 5.

29

4 GAME Framework

Graph Analyses Measurement Environment (GAME) framework is a graph processing system
developed at the University of Stuttgart, Germany. The application provides numerous ways to either
import or export a graph. Those include the well known edge list and vertex list, but it also supports
custom made formats, giving the user the opportunity to dynamically add custom parameters. A
couple of graph generators are already implemented while guaranteeing fast execution and memory
efficient usage. Those include random generators, R-MAT, Small-World. The most recent addition
being our implementation of the synthetic graph generator Darwini including both extensions over
which we deliberate in Section 5.2. Additional regular graph generators like the Star and Circle
graph are expected to be embedded in the application in the incoming months. Computed metrics,
outlined later in this chapter, can be exported as raw data facilitating the evaluation and visualization
process found in Chapter 6. GAME can further be executed on remote machine benefiting of more
computational power than regular desktop computers. In the following sub-sections we will set our
focus on how exactly are graphs represented and which algorithms are parallelized. We will also
point out the custom implemented queue and job management system. But before all that we would
like to mention the used libraries and frameworks, which helped making this graph processing
system more convenient for usage.

4.1 Libraries, Frameworks and Plug-Ins

Employment of external libraries and plug-ins for the development of large frameworks such as
a graph processing system can be described as mandatory in order to produce an overall well
build software. Plug-ins like Maven [MVM10] facilitate developers of building uniform build
systems or introduce a new feature to an already existing system. A library on the other side is a
set of classes with already provided functions ready to be attached to existing program using a
well defined interface. OpenJFX [CVW19] is an open source client application platform where
JavaFX was developed. Using the latter enables developers to design their program using the
popular Model-View-Controller (MVC) software design pattern. OpenJFX provides drag and drop
layout tool for designing rich JavaFX application UI called Scene Builder [VCG+18b] separately
stored from logic and thus eliminating boiler code. JGraphT [MKNS20] is a library composed of
numerous data structures and efficient algorithms used for graph processing and metric computations.
A logging framework such as Apache Log4j 2 [Gup03] is also mandatory in large systems in
order to log arbitrary type of exceptions or events that occur during program execution. Database
Connectivity (DBC) Driver [Joh14] supporting major operation systems for SQLite was also
required by GAME so that graphs and computed metrics can be stored for future comparisons and
analyses. A light-weight and convenient to use library like XChart [WPHV15] is used to create
diagrams of different type and display raw data. ControlsFX library [VCG+18a] offers a wide
variety of UI controls addressing the lack of validation support in JavaFX. To make the user-program

31

4 GAME Framework

interaction more easy, users receive hints about invalid input. The library OpenCSV [New18]
facilitates parsing of comma separated values occurring for example during import of a graph
represented by an arbitrary list format. When developing large programs key aspect is to make sure
that every new feature integrated in a project works as expected. Therefore, a testing framework as
JUnit 5 [Gar17] is required to test processes like generation, importation, exportation of graphs,
metric calculations and others. Its features cover different test styles and provide flexibility during
testing. The set of above mentioned libraries, framework and plug-ins perfectly fit into this project
providing modern and convenient design for the user while facilitating developers mainly focusing
on the backend logic, in this case the variety of generation and metric algorithms.

4.2 Custom Data Structure

GAME uses a data structure called Compressed Sparse Row (CSR) [BFF+09] because it is more
memory efficient than the standard adjacency matrix. CSR consists of a RowPtr and ColInd, where
the first contains the amount of connections for a given node while the later stores information about
links to other nodes. The major disadvantage of this data structure is the fact that edge insertions are
very costly when they are not inserted in ascending manner, i.e. edge (1,3) is added before the edge
(1,7) to CSR. If that is not the case, it takes long time to shift the positions of each ColInd element
and also no further edges can be inserted during this process. To address the above mentioned
issues, a dynamic CSR was designed by splitting the RowPtr and ColInd into smaller lists. After all
edges have been added merging threads take care for the accurate assembling of the partial RowPtr
and ColInd lists thus forming the original CSR object.

4.3 Jobs and Queue Management

As we previously mentioned, users can import, export, generate graph or compute metrics. Each
of these requests corresponds to a specific job. For example, if user wants to create a new graph
using arbitrary generation model, a new GenerationJob instance is being created and handed to
the CalculationManager, which adds it to the queue. When a job is attached to the end of the
queue, a manually implemented JobRunner is notified for its presence. This job gets either directly
executed in the absence of other jobs waiting in the queue or when the currently executing job
does not utilize all available cores and both share the same 𝐶𝑆𝑅 object. Otherwise, the job is
put into waiting state until all remaining jobs at forward positions are executed. Because the Job
class is actually a subclass of Thread, the Main JavaFX Thread (updating user interface) and jobs
can run in parallel without interfering with one another. Once a job terminates, its corresponding
JobResultHandler displays the results in the UI or informs the user about one or more exceptions
caught during execution. It also removes the associated to the given job entries from the queue and
thread structures. However, the user has not only the opportunity to add multiple jobs to the queue
but also can abort them at any given time. On the other side this feature has a trade off. Although
the user could cancel an accidentally started job during any time, this type of responsiveness comes
with overall performance drawbacks. The special usage of a heart beat system demands each job to
send a total number of progress steps called at the equal time intervals. During each heart beat can
be determined if a cancel request for the job is available.

32

4.4 Importer and Exporter

4.4 Importer and Exporter

The importer and exporter were not only implemented to be efficient but also exhibit flexibility
by allowing the user to choose between edge list, vertex list and a custom format adaptable to a
arbitrary input or output format. Directed and weighted graph are also supported. However, there is
a difference in the underlying structure of the importer and exporter. The importer is designed as
a parser, which corresponds to Deterministic Finite Automate (DFA) having different states and
transitions from one state to another represented by dividers and loops. It reads the input line by line
ensuring better overall performance and for each processed token, the appropriate state is entered,
while the read value is stored correctly in the corresponding data structure. The termination of the
importer is guaranteed either by parsing through the input or by reaching a state, which yields a
sequence of tokens not matching the selected input format. The exporter on the other side simply
iterates through the selected syntax and writes the values of the states it has entered to an output file.
It does not have the ability to recognise when a loop has stopped, therefore the special character &
has to be appended right after the end of a loop.

4.5 Metrics

Without metrics we would not be able to analyse the underlying structure of graphs. Computing just
a few metrics like degree and clustering coefficient distributions should provide us with information
about the communities formed in the different regions of the graph and how dense they are. While
some of the metrics like e.g. density and number of connected components can be computed fast,
there are some more sophisticated characteristics of networks that could not be computed for larger
graphs because of their high computational cost. At the time of writing a total of 24 different
metrics were integrated inside the graph processing system GAME. All metrics falling under the
centrality category are executed by a single thread. The reason for this is that they are based on
the Dijkstra algorithm, where during each iteration an edge gets removed. So, in order to execute
them using multiple threads, each of them should become its own copy of the graph. For graphs
requiring several gigabytes of memory space it is basically impossible to fit all copies, the program
code and all remaining relevant data in the main memory of a single computation unit. The only
possibility would be to execute the centrality metrics on different machines at the same time but
unfortunately GAME currently does not support execution inside a multi machine cluster. Summary
of all available metrics can be found in Table 4.1 while detailed description about each metric can
be found in Section 3.1. A cross in the second column of Table 4.1 means that the given metric
entry was manually implemented from scratch. Otherwise, the implementation from JGraphT
library [MKNS20] was adjusted to fit inside the graph processing system. Some of the metrics
from JGraphT have been parallelized in order to reduce their execution time and thus make them
applicable for large graphs.

4.6 Generation Models

Graph generators give us the opportunity to create various real-world and non-real-world graphs
using different set of input metrics. While some of the generation models like the Erdös-Renyi
[ER+60] and Gilbert [Gil59] models generate random graphs, others like Small-World [WS98] and

33

4 GAME Framework

Metric Library Parallelized Given or Calculated Automatically
Directed x No Metric is given before Import/Generation
Weighted x No Metric is given before Import/Generation

Order x No Calculated During Import/Generation
Size x No Calculated During Import/Generation

Density x No Calculated During Import/Generation
Degree x Yes -

Average Degree x No -
Largest Degree x Yes -

Outdegree x Yes -
Average Outdegree x No -
Largest Outdegree x Yes -

Indegree x Yes -
Average Indegree x No -
Largest Indegree x Yes -

Closeness Centrality JGraphT No -
Harmonic Centrality JGraphT No -

Betweenness Centrality JGraphT No -
(Hop) Radius JGraphT Yes -

(Hop) Diameter JGraphT Yes -
Connected Components JGraphT No -

Transitivity JGraphT Yes -
Clustering Coefficient x Yes -

PageRank JGraphT Yes -
k-Core x No -

Table 4.1: List of all currently supported metrics by the GAME framework. The ’x’ sign inside
the ’Library’ column denotes that the metric was implemented from base. Remaining
metric implementations were derived from the JGraphT library. The algorithms were
further manually adjusted and extended to achieve overall better execution times.

Darwini [ELW+16] produce graphs matching not only the size but also other important properties
of real-world graphs such as social networks.The graph processing system at the time of writing
include two random graph generators Erdös-Renyi and Gilbert. Power-law based model R-MAT
[CZF04], and the Small-World generator capable of building small real-world graphs can also be
found in GAME. During this thesis we implemented Darwini along with two growth prediction
models in GAME aiming to investigate how well can the model preserve diverse graph properties.
Both growth extension models were designed and added to the graph processing system focusing
at developing an approach capable of predicting the evaluation process of real-world networks.
Detailed discussion of the latter and Darwini can be found in the coming chapter. Each above
mentioned graph generation model supports parallelisation to speed-up execution time.

34

5 Darwini and Growth Model Extensions

Darwini is a synthetic graph generator capable of reproducing several core characteristics of real
graphs. Like existing state-of-the-art algorithms it can reproduce accurately the degree distribution.
In addition, Darwini also captures clustering coefficient at fine granularity [ELW+16]. Generation
of large real-world graphs can be achieved by parallelizing the model and distributing the work
across several machines inside a cluster, therefore making this approach suitable for industry use. In
the following sections, we will firstly take a detailed look into the algorithm and its divergence and
improvement over the Block Two-Level Erdös-Rényi (BTER) model [KPPS14], on which Darwini
is based. In the next section we turn our attention to the growth model approaches that we developed
in order to understand the inherent growth process of real-world networks implemented in the first
stage of Darwini. Finally, we discuss the parallel implementation of Darwini inside the GAME
framework and missing features cause by several limitations and possible future improvements.

5.1 Algorithm

Unlike growth models such as preferential attachment, whose aim is to predict the natural growth
process of networks, Darwini generates synthetic graphs by making use of the computed degree and
clustering coefficient distributions of the original graph. It is challenging to connect two vertices
while simultaneously striving to match a given degree distribution due to scale of graphs with
billions of vertices and the number of possible connections between those. However, Darwini is
capable of matching the degree and clustering coefficient distribution of the source graph by using a
mixture of edge generation processes [ELW+16] that iteratively add new edges. At the same time
this process is done by grouping vertices inside (small) communities and connecting them with
one another. Then vertices of different communities are being interconnected and thus form the
synthetic graph.

The algorithm is composed of three sequentially executed stages/phases. Inside the first stage,
Darwini assigns target degree and target clustering coefficient score to each vertex that should be
matched at the end. Before that, in case we include our extension, if an arbitrary growth model
was selected by the user, a graph consisting of twice the amount of vertices will be generated. The
number of edges for the larger graph will be proportional to the increased quantity of nodes. In the
next phase, Darwini distributes vertices into small communities also known as 𝑏𝑢𝑐𝑘𝑒𝑡𝑠 [ELW+16]
or affinity blocks [KPPS14] and creates links between nodes inside the community’s domain while
approximating target degree and clustering coefficient scores. Lastly, in the third stage, Darwini
forms the graph’s final version by picking nodes randomly at uniform from different communities.
The way, in which communities are formed during the second stage is essential for matching the
target degree and local clustering coefficient properties.

35

5 Darwini and Growth Model Extensions

Figure 5.1: Darwini model consisting of three distinct stages. Newly inserted edges are coloured in green.

5.1.1 Assignment of Target Degree and Clustering Coefficient

The first stage, depicted in the above placed Figure 5.1, of the algorithm can also be described
as the processing step. During this stage every vertex gets assigned a target degree and a target
clustering coefficient provided from the original graph. While iterating through the input degree
and clustering coefficient distribution, if not provided, we compute the order and size of the graph.
Suppose that the generated synthetic graph 𝐺 = (𝑉, 𝐸) contains 𝑛 = |𝑉 | nodes and 𝑚 = |𝐸 | edges,
with 𝑣𝑖 ∈ 𝑉, 0 ≤ 𝑣𝑖 ≤ 𝑛 − 1 representing the set of vertices. Then, each vertex 𝑣𝑖 will be assigned
a target degree 𝑑𝑖 and target clustering coefficient 𝑐𝑖. The original algorithm takes as input the
degree distribution, denoted by 𝐹𝑑𝑒𝑔, and the local clustering distribution 𝐹𝑐𝑐 (𝑑) per degree 𝑑.
However apart of 𝐹𝑑𝑒𝑔, our implementation inside the GAME framework takes as input just the
target clustering coefficient 𝐹𝑐𝑐. The reason for this divergence is provoked by the inefficient
memory usage. Despite of changing the way how the clustering coefficient distribution is stored, we
are still able to retrieved the correct score for each vertex. Therefore, the algorithm should still be
capable of matching the local clustering property at fine granularity. More details about this issue
can be found at the end of this section. After processing the input data, the algorithm continues
with execution of stage two, where vertices are grouped in 𝑏𝑢𝑐𝑘𝑒𝑡𝑠 artificially trying to match the
structure of the original graph.

5.1.2 Intraconnection of Vertices

The number of possible combinations in which vertices can be connected, especially for large scale
graphs, makes it extremely difficult to match the degree and local clustering coefficient of vertices.
For example, the BTER [KPPS14] model solves this issue by presuming that vertices having the
same degree should also have the same clustering coefficient. This way given the target degree and
target clustering coefficient for vertices inside a group, random edges can be placed between two
nodes. By the addition of random edges the algorithm should simultaneously match both the degree
and clustering coefficient properties. The conjecture in [KPPS14], however resulted in inaccurate
clustering coefficient results, as stated in [ELW+16]. Therefore, another solution to this problem is
required.

36

5.1 Algorithm

This is the place where Darwini [ELW+16] builds up over the BTER [KPPS14] model and thus
delivers more accurate results. Darwini’s first job is to match the expected number of triangles, to
which a given vertex should belong to, rather than directly striving to meet the desired degree and
clustering coefficient scores. At this point one would probably ask himself: How can we acquire
the expected number of triangles when only the target degree and target clustering coefficient being
at disposal? To answer this question, we would need to take a deeper look at the definition of local
clustering coefficient:

𝑐𝑖 =
2𝑁Δ,𝑖

𝑑𝑖 (𝑑𝑖 − 1)
with 𝑁Δ,𝑖 being the number of triangles at which vertex 𝑣𝑖 should participate. So, by transforming
the formula we can actually retrieve the number of triangles 𝑁Δ,𝑖, for each vertex 𝑣𝑖 by using the
following equation:

𝑁Δ,𝑖 =
𝑐𝑖 (𝑑𝑖 (𝑑𝑖 − 1))

2
Since we already know the value of the target degree 𝑑𝑖 and the target clustering coefficient 𝑐𝑖 for
each vertex 𝑣𝑖 ∈ 𝑉 , we are able to estimate the exact number of triangles for each vertex using only
the values 𝑑𝑖 and 𝑐𝑖 .

Now we face the following challenge: How should we group vertices in order to meet the 𝑁Δ score
for each node? To do this we must ensure that the there are enough vertices within the group with
that a given node can link and thus form closed triplets. If we accept that vertex 𝑣𝑖 can be found in
𝑁Δ,𝑖 triangles there are two possible scenarios. Vertex 𝑣𝑖 has already reached its target degree and
clustering coefficient, respectively. If it has fewer edges than expected, then 𝑣𝑖 has to be connected
with other vertices in such a way that does not harm the 𝑁Δ,𝑖 score.

Accomplishing these targets is realized by the usage of groups, also known as buckets [ELW+16] or
affinity blocks [KPPS14]. Vertices sharing the same bucket have matching 𝑁Δ,𝑖 scores. As being
illustrated in the second stage of Figure 5.1 there are a total of three affinity blocks. These were
distributed is such a way using the above formula expressing the expected number of triangles per
vertex. After all vertices are grouped, edges are continuously added within the affinity block’s
domain with fixed probability 𝑃𝑒, which will be discussed in length later. Hence, inserting edges
inside groups can be achieved using the Erdös-Renyi [ER+60] model. Both 𝑃𝑒 and 𝑁Δ are related
to previously mentioned targets. We know that the probability of a triple of nodes creating a closed
wedge equals 𝑃Δ = 𝑃3

𝑒. So, every single vertex can be part of up to 𝑁Δ =
(𝑛−1) (𝑛−2)

2 closed triplets.
Consequently the anticipated sum of triangles per vertex can be expressed using the following
equation:

�̂�Δ = 𝑃Δ ∗ 𝑁Δ = 𝑃3
𝑒

(𝑛 − 1) (𝑛 − 2)
2

Using the above standing definition for the desired amount of closed triplets for a vertex we can
build a bucket with the desired number of closed triangles�̂�Δ by finding suitable values for the
probability 𝑃𝑒 and the size of the affinity block ‖𝐵‖ denoted by the number of nodes in it.

Although there are several combinations of 𝑃𝑒 and 𝑛 that can be applied to match the expected
number of triangles, their values are actually dependent on the constraints of the bucket’s size. We
must first ensure that each bucket contains enough vertices in order to form the expected number of
triangles for every vertex. The lower bound can be expressed with the following equation:

𝑛 ≥
√︁
𝑐𝑖𝑑𝑖 (𝑑𝑖 − 1) = 𝑛𝐵,𝑚𝑖𝑛,∀𝑖 ∈ 𝐵

37

5 Darwini and Growth Model Extensions

since 𝑃𝑒 < 1 and the previous two formulas hold. In the next step, we must make sure that none of
the vertices exceeds it target degree. By doing this we can later correct the clustering coefficient
because after the end of stage 2, every vertex has a higher clustering coefficient compared to the
target one. Exception are all vertices who already match their target degree after the second phase,
i.e. by already participating in the desired number of connections the vertex also has matched the
target clustering coefficient. So, to avert the opportunity of vertices surpassing their target degree,
the cardinality of each group should be limited up to:

𝑛 ≤ 𝑚𝑖𝑛𝑖∈𝐵 (𝑑𝑖) + 1 = 𝑛𝐵,𝑚𝑎𝑥

with 𝑚𝑖𝑛𝑖∈𝐵 (𝑑𝑖) being the vertex with the lowest target degree inside the bucket 𝐵 and 𝑛𝐵,𝑚𝑎𝑥

denoting the upper bound of nodes in affinity block 𝐵. Now that a vertex 𝑣𝑖 ∈ 𝐵 can not establish
more than 𝑑𝑖 connections in phase 2 since multiple edges and self-loops are not permitted, we
can conclude for the set of vertices 𝑉𝑖 = {𝑣𝑖 ∈ 𝐵𝑘 | 𝑑𝑒𝑔(𝑣𝑖) = 𝑚𝑖𝑛𝑖∈𝐵𝑘

(𝑑𝑖)}, that they already
match their target degree and should be participating in the desired number of closed triplets. In the
third stage none of the these vertices should be selected for interconnection, otherwise they will
have higher actual degree and lower clustering coefficient.

Lastly, we should compute the probability 𝑃𝑒 for a given affinity block 𝐵 by setting 𝑛 within the
pre-defined bounds. As stated in [ELW+16], Darwini tends to pick the lower bound 𝑛𝐵,𝑚𝑖𝑛 for each
group resulting in:

𝑃𝑒 =
3

√︄
2�̂�Δ,𝐵

(𝑛𝐵,𝑚𝑖𝑛 − 1) (𝑛𝐵,𝑚𝑖𝑛 − 2)

Taking advantage of the above defined values, Darwini is capable of grouping and connecting
vertices inside buckets in three successive parts. First, we begin with the distribution of vertices
in buckets based on their 𝑁Δ score. Next, because there would not be enough vertices for some
subset of buckets, which we refer to as incomplete buckets, two or more incomplete buckets would
be merged into a single complete one. This has to be done so that each node can participate in
approximately the desired number of triangles. At the end, once Darwini is provided with a set of
complete buckets, the edge insertion process between vertices within a common domain starts. A
detailed view about each step can be found in the upcoming subsections.

Vertex Distribution in Buckets

Darwini starts the execution of phase 2 by taking the target degree and clustering coefficient
distributions. After initializing an empty set of buckets 𝑆, Darwini computes the expected number
of closed triplets 𝑁Δ,𝑖 for each vertex 𝑣𝑖 and selects a bucket based on the computed 𝑁Δ,𝑖 value.
Figure 5.1 delineates the process in the first step of stage two, where each group has a specified
𝑁Δ,𝑖 value. To select a bucket, the following two conditions have to be fulfilled: First, a bucket
with 𝑁Δ,𝐵 value should be available in 𝑆 and the amount of members in it should not be more than
𝑚𝑖𝑛 𝑗∈𝐵 (𝑑 𝑗). If an incomplete group with 𝑁Δ,𝐵 score is found, Darwini adds vertex 𝑣𝑖 into the
last and label it as full, i.e. complete block, where no more nodes can be filled, if the amount of
vertices within it has reached 𝑛𝐵,𝑚𝑎𝑥 . It is worth mentioning that each time a vertex has been added

38

5.1 Algorithm

to a given group, a check is made ensuring that the 𝑛𝐵,𝑚𝑎𝑥 value gets updated if a vertex with
lower degree than the previously known minimum degree has joined. This ensures not more than
target degree 𝑑𝑖 edges within this community. Otherwise, when either all groups in 𝑆 having 𝑁Δ,𝐵

value are already marked as full or no such group existed to this moment, a new group is created.
However, before going ahead with the insertion of edges, Darwini has to check and consequently
merge incomplete groups.

Merge of Incomplete Buckets

As mentioned earlier once the process of grouping vertices into buckets finishes, it is possible
that there is a set of buckets with insufficient amount of vertices to produce the required number
of triangles. The solution to this problem is provided by merging the incomplete buckets into
larger ones. To do this, Darwini first discovers all groups, which do not have the minimum
necessary number of nodes 𝑛𝐵,𝑚𝑖𝑛 in them and stores those in a set of incomplete blocks 𝑆𝑢 . Before
merging buckets, Darwini sorts the set of incomplete buckets 𝑆𝑢 in ascending 𝑁Δ order. Then a
bucket 𝐵 ∈ 𝑆𝑢 is being subsequently merged with other buckets from 𝑆𝑢 until it becomes full, i.e.
𝐵.𝑠𝑖𝑧𝑒 > 𝑚𝑖𝑛 𝑗∈𝐵 (𝑑 𝑗). After being labeled as full, the bucket joins once again the set of complete
groups. As you have probably already perceived, that merging leads to placement of vertices with
distinct 𝑁Δ,𝑖 to be part of the same group and there is no single value for 𝑃𝑒 that could estimate
precisely 𝑁Δ,𝑖 for every vertex. Hence, this would lead to inaccurate end values of the clustering
coefficient. Although this approach would not result in the necessary clustering coefficient for
every participant in the group, it would provide better outcome than by leaving the affinity blocks
incomplete, as stated in [ELW+16]. Because the incomplete buckets get merged with others blocks
having close 𝑁Δ score, the necessary amount of triangles per vertex is estimated with less divergence
from the actual value than by randomly combining buckets. Having finished the distribution of
vertices and merging of buckets, Darwini has prepared everything essential to start the edge creation
process.

Edge Creation Within Buckets

Having a complete set of buckets, Darwini begins with the additions of edges using the Erdös-Renyi
[ER+60] model in expectation of producing the desired number of triangles per vertex. Darwini
does this by proceeding each bucket and adding edges with a pre-defined fixed probability 𝑃𝑒

discussed premature. In this case we do not permit the occurrence of self-loops or multiple edges.
The second step of stage 2 in Figure 5.1 sketches the procedure with each group/bucket being
observed at this point of execution as a single graph.

After finishing execution of this stage, each vertex should already be participating in the target
number of triangles. But as mentioned earlier it should not meet its target degree and clustering
coefficient yet. For the majority of vertices, except some whose degree matches the minimum
degree of the bucket 𝑚𝑖𝑛𝑖∈𝐵 (𝑑 (𝑖)), their current degree should be lower than the target one and
they should currently posses higher clustering coefficient than the target value. Both scores will be
corrected by interconnecting vertices. More over the exact measures taken to emend the values of
each vertex can be found in the forthcoming section.

39

5 Darwini and Growth Model Extensions

5.1.3 Interconnection of Vertices

In the last stage of the algorithm, Darwini tempts to add the excess degree 𝑑𝑒𝑥𝑐𝑒𝑠𝑠,𝑖 = 𝑑𝑖 − 𝑑𝑐𝑢𝑟 ,𝑖 for
each vertex. Simultaneously, it needs to preserve the number of triangles per vertex by linking a pair
of nodes across buckets. Therefore, the contribution of closed triplets from random interconnection
is highly unlikely. Through iterative addition of edges, Darwini eventually meets the target degree
and clustering coefficient. It starts by iterating over the set of vertices. For each vertex 𝑣𝑖 ∈ 𝑉 it first
has to check, whether or not the target degree is already reached. In case the 𝑑𝑒𝑥𝑐𝑒𝑠𝑠,𝑖 ≥ 1, vertex
𝑣 𝑗 is being selected randomly at uniform. Since the degree of each vertex has to be monitored, 𝑣𝑖
can be connected with 𝑣 𝑗 only when 𝑑𝑒𝑥𝑐𝑒𝑠𝑠, 𝑗 ≥ 1 holds and 𝑖 ≠ 𝑗 .

This approach allows us to connect vertices fast without having to search through the entire vertex
set. From one side it reduces the execution time by removing huge overhead and thus making
the algorithm applicable for generating real-world industry graphs such as online social networks
[ELW+16]. On the other side however, since the selection of a candidate 𝑣 𝑗 for 𝑣𝑖 happens uniformly
leads to the following problem: Typical for the composition of social networks is that the better
part of users tend to have few links, whereas minor part are adjacent to huge amount of people.
Consequently, low degree vertices will reach their target degree relatively faster than high degree
nodes. This will result in inaccurate results at the end of the degree distribution curve since the
algorithm was designed to terminate either when all remaining edges were created or by reaching a
maximum number of iterations [ELW+16]. Similarly, one can find the same problem in the BTER
model [KPPS14], which has also been verified by the authors of the Darwini.

Clearly the random selection is not enough to produce the desired results. Therefore, a supplementary
process for finding endpoint for high degree vertices without being necessary to search through the
complete graph is needed. The authors of Darwini have designed a process addressing this issue
and it works the following way: In case at least two more nodes have not found enough candidates
yet, Darwini randomly shuffles them into groups of equal size, starting with size of 2 and increasing
exponentially in every next iteration. The increasing size of the groups with shuffled vertices
indicates expansion of the search domain and thus making it less likely that a new connection will
form new triangle. The increasing size of the groups with shuffled vertices indicates expansion of
the search domain and thus making it less likely that a new connection will form new triangle. Each
pair of vertices inside those groups is a possible candidate for the establishment of connection.

Unlike the probability of connecting vertices within buckets in phase 2, which remained constant
during the entire internal edge creation process, here the probability is dynamically adjusted for
each pair of nodes. Darwini was designed to maintain degree correlation, i.e. a correlation between
the degree of vertex and all its neighbours can be detected in social networks [UKBM11]. So, in
this phase Darwini not only preserves the local clustering coefficient but also the degree correlation
by assigning a higher edge probability for pair of nodes with closer degree than a pair having large
divergence in their degrees. As it can be observed from the results in [ELW+16], this approach also
produces good join-degree distribution. So, after Darwini has created edges across communities,
the generation process comes to an end returning synthetic graph matching the original one, as
illustarted in Figure 5.1, where green edges have been inserted in the third and final stage of
Darwini.

40

5.2 Growth Prediction Model Extensions to Darwini

5.2 Growth Prediction Model Extensions to Darwini

While evaluating how well Darwini preserves graph properties of disparate graph types, we asked
ourselves: Is it possible to create a growth model that can predict the future structure of a graph and
still maintain several attributes, like e.g. the degree distribution? Is this model applicable to all
kinds off graphs? So, to answer these questions we came up with the Random Increase of Degree
(RID) growth prediction model. We found empirically however, that RID is not appropriate for
real-world social networks, where the largest degree of the graph grows over time and the diameter
shrinks [LKF05]. This motivated us to design a Linear Preferential Attachment growth model
suitable for graphs with high amount of low degree nodes and few vertices having high degree
corresponding to what we observe in online social networks.

Each of the models is integrated inside the first stage of our Darwini implementation inside the
GAME framework. We start with the set of vertices 𝑉 and the set of edges 𝐸 of the original graph.
For simplicity we want to predict the structure of a source graph with twice as much vertices (2𝑛),
although overall increase of 𝑐𝑛, 0 < 𝑐 < ∞ is theoretically possible. Consequently the following
question emerged: How can we determine the number of edges that the multiple graph should
possess? After experimenting we came up with the idea that the number of nodes 𝑛 is proportional
to the number of edges 𝑚. If we assume that a graph 𝐺 has 𝑛 nodes and 𝑚 edges at a snapshot 𝐺 (𝑡),
with 𝑛 ≤ 𝑒, then we can say that 𝑒(𝑡) ∝ 𝑛(𝑡)𝛼, i.e. a relation between the number of nodes and the
amount edges exists at any given time. So, the multiple graph 𝐺 at snapshot 𝐺 (𝑡 ′) will have in our
case 𝑛(𝑡 ′) = 2𝑛 nodes and 𝑒(𝑡 ′) ∝ 𝑛(𝑡 ′)𝛼 = (2𝑛)𝛼 edges.

Nevertheless we needed an evidence that would confirm our hypothesis about the association
between the quantity of vertices and edges. If we take a look back at the Facebook graph example
from the Chapter 1 it is obvious that the value of 𝛼 increases over time, contradicting our expectation.
After researching several papers over the evolution and structure of online graphs [UKBM11],
[LKF05], [KNT10], we found in [LKF05], that a relation between the order and size of a graph
exist. This paper provides proves for different types of real-world networks, including autonomous
systems, citation, patent citation graphs and affiliation graphs. More importantly their study was
made not only over large datasets but also for each network by computing the constant 𝛼 at equally
distanced time intervals they came to the conclusion that it remains constant over the observed time
periods. The relation between the number of nodes and edges for each graph was tested over a large
time span, i.e. acquiring more convincing results than one would receive from single snapshots, i.e.
static networks.

In the forthcoming subsections will be present our growth prediction models in detail and will point
out their domain of usage. We will begin with the Random Increase of Degree and then we will
turn our attention to the more complex Linear Preferential Attachment model.

Random Increase of Degree Growth Model

Random Increase of Degree (RID) takes as input the number of nodes and edges of the target graph
as well as the degree and clustering coefficient distribution. Then for each vertex of the original
graph we copy its target degree and local clustering coefficient score and create a new vertex with
the same target scores. Next, we need to add all remaining edges since the graph should have (2𝑛)𝛼

41

5 Darwini and Growth Model Extensions

Figure 5.2: The above depicted graphs summary how a pair of nodes is chosen to increase their target degrees
using Random Increase of Degree (left) and Linear Preferential Attachment (right).

edges and after having two times more vertices, with the second half having the same cumulative
total degree as the first one, resulting in 2𝑒 = 2(𝑛𝛼). Thus the remaining edges that need to be
inserted are equal to: 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠 = (2𝑛)𝛼 − 2(𝑛𝛼).

In the next step, we need to add the remaining edges before generating the graph. This is done by
simply picking two nodes 𝑣𝑖 and 𝑣 𝑗 randomly at uniform. If 𝑣𝑖 ≠ 𝑣 𝑗 holds, as we do not want any
self-edges, then we increase the degree of both vertices by one, which corresponds to the addition
of an edge having two endpoints. The process is delineated on the left in Figure 5.2. After picking
the green node, RID selects uniformly at random any vertex from the set and following increases
the degree of both nodes. However, we can not guarantee that an edge between this pair of nodes
will be present in the output graph. Because it is highly unexpected that the same node will be
picked twice 1

(2𝑛)2 in the same iteration, we deduce the running time of the prediction model to be
in 𝑂 (𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠).

The main advantage of this model is that by randomly increasing the degrees of vertices we preserve
the degree distribution curve, i.e. we are able to produce graphs preserving the structure of the
original graph but with enlarged number of small communities. A real life example of the usage of
this model can be found in online video games, where players join the same lobby (community) and
play against each other. In most cases a number of pre-defined users has to join the lobby, e.g. in
Counter-Strike 10 people divided in two teams have to join a lobby in order to play a competitive
match, before the game starts. Both the servers and the users can be described as vertices where a
user joins the graph when he/she has found a free lobby. While it is hard to say the exact number of
players and lobbies a single server can hold, we can say that it is not more than some empirically
defined number 𝑘 providing the best game experience for every player. So, going back to our model
if the game becomes rapidly popular the demand of additional servers will be inevitable, i.e. a
larger network would need to be designed. By using RID we could extend the network matching the
amount of servers required to be able to host most or in best case, if the company has the budget,
all players that have downloaded the game. The same holds for other real-world domains such

42

5.2 Growth Prediction Model Extensions to Darwini

as online meetings between employees of the same or individual companies, online lectures for
students at school or at the university and many other domains due to the fast spreading variants of
COVID-19.

Although this model is not applicable for each type of graph, it still could have its role in the above
mentioned areas. How well RID can preserve properties of the original graph can be found in
Chapter 6.

Linear Preferential Attachment (Rich Get Richer) Growth Model

Our next approach, rich get richer growth model, is based on the linear preferential attachment
[AB02]. Therefore we will refer to it as Linear Preferential Attachment (LPA). The inputs again
include the target order and size and both degree and clustering coefficient distributions. Following
we copy the value of each vertex of the source graph and create a new vertex with the same clustering
coefficient and target degree of 0. We set the target degree to be 0 since the rich get richer approach
is based on the preferential attachment model, where a vertex joins the network at any time and
connects to 𝑙 vertices, 𝑙 ≤ 𝑣 = {𝑣𝑖 ∈ 𝑉}. Again, we need to insert (2𝑛)𝛼 − 𝑚 remaining edges.

Because the rich get richer method begins with 𝑚0 vertices corresponding to the original graph,
we increase the degree of each to be added vertex and a randomly selected one from the graph
and thus ensuring that all new vertices will be part of the output graph. This is done because the
accumulative degree of the source graph is already high compared to the single degree of vertices.
We found through experimenting that if we do not set the current degree to one for all joining the
graph vertices, then a huge amount, usually between 30-60%, of nodes remain disconnected.

In the subsequent step, the second half of nodes is processed by connecting them to other vertices
already participating in the graph with variable probability. The probability that a vertex 𝑣𝑖 will be
connected to 𝑣 𝑗 is

𝑃(𝑣 𝑗) =
𝑑 𝑗∑

𝑣𝑘 ∈𝑉 𝑑𝑘

with 𝑑 𝑗 being the degree of vertex 𝑣 𝑗 and
∑

𝑣𝑘 ∈𝑉 𝑑𝑘 being the sum made over the degree of all
pre-existing nodes. So, it is possible that any of the newly added nodes is connected to two or more
other nodes in the graph at time G(t). However, vertices are more likely to establish connections
with high degree vertices than with low degree nodes, a feature known either as rich get richer or
preferential attachment [AB02]. By using LPA in Figure 5.2 on the right-hand side we can see
that the middle vertex holds the highest probability of being picked. The probability of each node
being selected is computed using the above located formula. Since in Figure 5.2 the node located in
the middle of the graph has five connections, it possesses the highest probability of being picked.
Each remaining node gets assigned a lower probability due to the fewer amount of links they have
compared to previous. Even though, the green vertex could potentially select any vertex or in the
most unlikely scenario each node in the graph, i.e. the green vertex can increase its target degree
multiple times by picking two or more nodes in the same iteration. Exactly the same way as in
the previous model, each time an edge is inserted the number of 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠 is adjusted, i.e.
decremented by one. The above mentioned iterative process continues until the target size of the
output graph has been reached.

43

5 Darwini and Growth Model Extensions

By using the rich get richer model we can generate a larger graph with similar to a power-law
degree distribution. And unlike in the previous approach, the structure of the graph changes due to
the fact that the high degree nodes of the output graph connect more communities than the high
degree nodes of the original graph. Such type of graphs can be found in online social networks
like Facebook, Instagram and entertainment platforms like YouTube and TikTok. When a user
joins a social network it is expected that he/she ’follows’ a high degree user represented by film
actors, music stars, sport players, political figures and others. This corresponds to the preferential
attachment mechanism, where the more popular a given person is, the more popular to become
is anticipated. Apart from the links with several popular people that a users would normally
have, they will also establish connections with their friends part of the network. Another way of
forming communities in online social networks is by joining a group of specific topic, where all
members have a common interest. The main issue is that online networks and platforms make
certain restrictions. Facebook for instance, limits the number of participants in group chats up
to 250 and audio calls up to 50, respectively. Instagram restricts the maximum number of users
inside a message group only to 32. Therefore, to address this issues one would need to extend the
networks by attaching additional servers in regions where such demand can be observed. So, when
generating larger synthetic graphs based on rich get richer growth model, we can identify possible
future expansion of smaller communities that its significant growth is based on an arbitrary event or
trend.

From the above summary of our growth prediction model, it would be logical that the diameter of the
graph shrinks as online networks get larger and more dense. The number of connected components
should also decrease by having several larger communities and also more nodes (people) connected
to high degree vertices (popular personalities). The evidence or repudiation of those assumptions
are provided in detail in Chapter 6.

5.3 Implementation

In this section we will go through our Darwini implementation inside the GAME framework. Since
there is a huge difference between the Apache Giraph based on the vertex-centric programming
model [TBC+13], where e.g. each vertex inherits from a predefined class and is composed of
vertex values type, edge value type, ID type and a message type, thus allowing execution of graph
algorithms across different machines inside a cluster. Vertices inside GAME are represented as
integers and do not hold any additional information. The upcoming subsections summary how we
adjusted the original algorithm to fit inside the GAME processing system, including the growth
prediction models described earlier.

5.3.1 Input Processing and Growth Prediction Models

Darwini starts by invoking the first stage, where input data is being processed. It takes the degree
and clustering coefficient distributions, size and order if available and an extra value indicating
whether or not a larger graph should be generated using either growth model. Independent of the
chosen approach, Darwini has to assign for each vertex a unique ID. For the standard approach
it assigns ID in the range (0, n-1) while for RID and LPA unique identifier in [0;2n], along with
target degree and target clustering coefficient. The values of the last three are stored in separate

44

5.3 Implementation

lists providing us with instant access, since we know that vertex with ID 𝑖 can be found at index
𝑖. We use 𝐿𝑖𝑠𝑡 data structure to store the relevant data because they provide instant insertion and
access. Although data structures like 𝐻𝑎𝑠ℎ𝑆𝑒𝑡 and 𝐿𝑖𝑛𝑘𝑒𝑑𝐻𝑎𝑠ℎ𝑆𝑒𝑡 come up supplemental with
an instant removal of entries, omitting index shift to the left of subsequent elements, those required
much more space. After running simple benchmark tests, where we measured the average memory
consumption per entry for diverse data structures, we came up with the conclusion that for our
needs simply array based data structure would be sufficient. The reason for that being is that other
data structures require 2,33 or even up to 2,67 more memory to store the same amount of data, i.e.
the desired degrees, clustering coefficient and node IDs.

Having created 𝑛 vertices and assigned to each of them a target degree and clustering coefficient, the
algorithm consequently distributes each of the them inside affinity blocks matching their expected
number of triangles. In the next step incomplete buckets are being iteratively merged and stored
inside the set of complete groups preparing all the data required to begin the execution of intra
connection. Implementation details closely connected to this part can be found below.

5.3.2 Vertex Distribution in Groups and Merge of Incomplete Buckets

After assigning a unique ID, target degree and local clustering coefficient for all nodes using the
standard approach or any growth prediction model, Darwini distributes vertices inside buckets and
if necessary merges incomplete ones. Currently the assignment of vertices to groups and merging
of incomplete buckets is executed by a single thread. The lack of parallelization is due to the fact
that this thesis targets to investigate how accurately Darwini is capable of reproducing properties of
networks, especially real-world graphs. Based on the target degree and clustering coefficient each
vertex gets assigned to a bucket. Each bucket is stored as a pair of the bucket’s ID and the subset
of vertices belonging to it. For each bucket we also store the minimum degree and the expected
number of triangles inside two additional lists. Therefore, the ID of a bucket does not correspond
to the ID of the first vertex assigned to it. This enables us to easily retrieve the necessary number
of closed triplets when computing the edge probability for a given bucket. Or, during search of
a non-full bucket to instantly access the minimum degree for a certain group, which defines the
upper bound of elements that can be placed inside the bucket. Further, we distinguish between full
and incomplete buckets by using the following approach: During initialization we place the bucket
inside a list with incomplete buckets. Its minimum degree and the required number of triangles are
also stored in such sets. Once a bucket can not add further vertices, therefore being ’labeled’ as
full, the bucket and all of reference values are removed from the incomplete set and attached to the
complete one. The whole process is done to simultaneously decrease the amount of time required
for finding an apposite block for each vertex and for merging incomplete buckets into a larger one.
Because, in worst case scenario, when adding vertices to groups, we need to search through the
incomplete set of buckets whereas during merging we iteratively retrieve incomplete affinity blocks
and combine them into a new one until the newly formed group consisting of multiple incomplete
buckets reaches certain size. Using the above depicted method, we have significantly reduced the
runtime of phase 1 from hours for graphs with few million of vertices to just a couple of seconds.
Now that we have acquired a set of full buckets, the algorithm can proceed with the edge insertion
within communities.

45

5 Darwini and Growth Model Extensions

5.3.3 Connecting Vertices within Buckets

The second half of stage two covers the random edge creation between nodes within a bucket’s
domain. To speed-up the intraconnection process, we retrieve the number of available processors.
Next, we assign to each processor approximately equal amount of unique buckets. Those should
be processed by creating the pre-computed amount of edges inside each block. During execution,
we must guarantee that the degrees of vertices are accurately updated by prohibiting a concurrent
update of a node’s degree from two or more threads or vertices sharing the same sublist , limited to
50 nodes per row pointer (𝑟𝑜𝑤𝑃𝑡𝑟). Also, we must ensure that by adding an edge from 𝑣𝑖 to 𝑣 𝑗 the
degrees of both endpoints are updated properly. This is achieved by calling an addEdge method
which monitors which sublist of the custom Compressed Sparse Row data structure each process
wants to access. If we assume that two threads try to obtain a node from the same sublist, then
either of the two would gain the lock hence sending the other process in waiting/sleep state. After
the thread, occupying the sublist index, has either inserted a new edge or confirmed the existence
of an edge in the graph, it releases the sublist index. This way it gives the opportunity to other
waiting processes to procure entry to the same sublist. Although this reduces the CPU utilization,
in the absence of this synchronized block, the algorithm will return inaccurate results. However, we
have found empirically that due to the assignment of a vertex to a single group it is unlikely that
two or more threads will want to gain access to the same sublist. Therefore, during tests the CPU
utilization in the second stage did fall under 81-83% for negligible periods of time. Exactly this
high usage of cores leads automatically to fast build of (small) communities.

So, after establishing distinct communities, Darwini has to introduce connections outside each
neighbourhood to form the final connected graph. Information about how exactly pair of vertices
from independent groups are chosen to be connected with one another is depicted in the approaching
subsection.

5.3.4 Connection of Vertices outside Buckets

Unlike in stage 2, here each thread searches for every vertex 𝑣𝑖 , having fewer than expected edges, a
candidate 𝑣 𝑗 by choosing at random from the range (0, 𝑛 − 1), i.e. Darwini now allows to choose
nodes from the entire graph. If a candidate not matching its target degree has been found and
𝑣𝑖 ≠ 𝑣 𝑗 , (𝑣𝑖 , 𝑣 𝑗) ∉ 𝐸 holds, then we add the edge using the addEdge method described before. If
we take a look at the for-loop on line 7 - Algorithm 4 in [ELW+16] we could ask ourselves: What
will happen if we assign a subset of nodes to each thread? Should this result in faster execution
time? While assigning a smaller subset would definitely speed-up the algorithm since each thread
has to execute this part multiple times on the other side this would lead to inaccurate results. After
adjusting Darwini this way we figured out that in general the algorithm produces poor results
regarding the overall structure and characteristics of the original network. The consequences from
this change derive from the fact that now each high degree node is being processed by a single core
and eventually increments its degree. And because Darwini was designed to terminate either by
reaching the target size or by reaching a maximum number of iterations [ELW+16], the high degree
vertices could not be generated. Even though high target degree vertices are shuffled inside groups,
it is still not sufficient for meeting their target degree. Having clarified that the work done in the
first for-loop in the third stage can not be ’split’ we now turn our attention to the second part of the
interconnection process.

46

5.3 Implementation

The second half of Algorithm 4 in [ELW+16] is also responsible for finding connections for high
degree vertices. The implementation consists of a method filtering all non-matching target degree
vertices and randomly assigning them to buckets of fixed size. Inside those groups every pair
of vertices is a possible candidate. Recall that the size of each group grows exponentially thus
increasing the search space and the amount of possible new edges. Our decision was to let each
thread execute the shuffle method and form its own buckets. Of course this results in trade-off
between memory efficiency and execution time. If we assign the same set of buckets to each
thread, then the algorithm would consume significantly less space. Otherwise, supplementary
(#𝑐𝑜𝑟𝑒𝑠 − 1) ∗ (8𝐵 ∗∑𝑏∈𝐵 𝑏.𝑏𝑢𝑐𝑘𝑒𝑡𝑆𝑖𝑧𝑒) would be required. On the other side, distinct buckets
for each thread would outcome in more connection possibilities for high degree nodes. Further, the
CPU utilization would be higher because no barrier before and after the shuffle method would be
necessary. We have found empirically that threads do not reach the shuffle method at the same time
due to the 𝑎𝑑𝑑𝐸𝑑𝑔𝑒 method sending threads in waiting state when trying to gain access to occupied
sublist index. So, we decided to allow each processor to randomly distribute non-matching degree
vertices into groups since the amount of buckets decreases with every next iteration, i.e. less likely
that memory fragments would advent. Also, one can see a decrease in the number of vertices that
need to be randomly spread since low degree nodes quickly match their target degree. Specifically
for social networks those represent huge part of the participating members.

We have seen that Darwini can be parallelized on a single machine or executed in a cluster from
multiple machines [ELW+16].The algorithm also produces dense communities found in real-world
networks by approximating the expected number of closed triplets for each vertex. Then it connects
two or more communities by forming a larger one while simultaneously fixing the target degree
and local clustering coefficient of individual vertices. Vital property exhibit from Darwini is the
degree-correlation common for online social networks and the capability of reproducing high degree
nodes, which e.g. are absent in the BTER model [KPPS14]. Although Darwini combines several
positive feature, there are couple of drawbacks that will be discussed in Chapter 7, which contradict
the assumptions made in this chapter.

47

6 Evaluation

In this section, we evaluate the characteristics of Darwini. We do this by testing the original
algorithm and our proposed growth prediction models against several metrics, and conclude to what
extent each of them is able to preserve the properties of real-world datasets. Direct comparison
of the original method against our growth prediction approaches is also provided. Datasets from
individual domains were used in this study to measure the generation accuracy of Darwini for social
networks and further important domains like autonomous systems, road networks, email networks,
entertainment platforms with ground-truth communities and citation networks. Before we focus on
the results, we would like to first provide information about every utilized dataset.

6.1 Public Available Data

In this section, we briefly introduce each network used to test the capabilities of the synthetic graph
generator Darwini and our approaches in maintaining real-world graph properties. Each publicly
available dataset we used in our evaluation belongs to the set of small data in case both the order
and size of the original network do not exceed 1 million. In contrast, if either set 𝑉 or 𝐸 exceeds the
1 million upper bound, we simply categorise the given graph as large data. For every graph 𝐺 we
should also note that 𝑚 >> 𝑛, i.e. the cardinality of 𝐸 is relatively higher than the cardinality of 𝑉 ,
so edges tend to grow super-linearly compared to the order of the graph. We also provide statistics
from SNAP [LK14] for each data set while covering possible tasks (if available), that each data can
be used for including link prediction, community detection and binary classification.

6.1.1 Small Data

GEMSEC [RDSS19] is the first dataset we chose to test Darwini on since it contains networks for
different verified Facebook pages. Grouped into categories such as athletes, artists, TV-shows,
politician, pages are represented by nodes and connection between two pages corresponds to mutual
like among them. The smallest network is composed of only 3,982 vertices and 17,262 links while
the largest one has 50,515 nodes and well over 819,306 edges.

Next, we picked two citation datasets from the e-print arXiv. High Energy Physics-Theory and
Astro Physics [LKF07] are scientific networks covering collaborations between authors of papers
submitted to the High Energy Physics - Theory and Astro Physcis categories. Both collections of
papers are derived from a 10 year period from 1993 to 2003. The set of vertices constitutes to
authors and links are present for co-authoring at least one paper. Distinctive marks are the high
average clustering coefficient 47% and 63% and low effective diameters 7,4 and 5, respectively.

49

6 Evaluation

We move forward to an email communication network Enron [LLDM09] formed by user exchange
of electronic messages within a dataset of nearly half million emails. User connections denote that
at least one message was sent from address 𝑖 to address 𝑗 or vice versa. The communication of
non-Enron email users is also taken into account. High average clustering coefficient 49,7%, over
90% of the nodes and edges are found within the largest strong connected component and thus
evincing low effective diameter - 4,8.

Further, we observe Twitch from MUSAE [RAS19], an American video service that focuses on
video game live streaming. More precisely, we observe MUSAE dataset: user-user networks of
gamers who broadcast in a specific language. Total of six European countries, among those being
Germany, England and Russia are found within the dataset where links represent mutual friendship.
MUSAE is suitable for community detection, prediction of language in which certain user streams
know as binary node prediction. Details about each network are depicted in Table 6.1.

AS-733 [LK14] is a set of subgraphs constituting of routers compromising the Internet organized
in groups forming Autonomous Systems (AS). AS exchange traffic flow with neighbours in a
communication network of who-talks-to-whom constructed using the Border Gateway Protocol
(BGP) logs. AS-733 dataset holds over 700 daily graph instances. We have randomly picked two
out of three graphs (largest AS being the last one) to test Darwini and our extension models on.

Despite the fact that the above outlined datasets cover variety of domains, they either only represent
a small portion of the whole network or their size is significantly smaller compared to larger datasets
such as the social network of Facebook. Besides that domains like road infrastructure networks
have not been considered yet. The size of many real-world networks is magnitudes larger than
couple of thousand vertices and edges. Therefore, in the coming subsection we outline several large
datasets used in our evaluation.

6.1.2 Large Data

Created in the early 90’s DBLP [YL15] is a computer science bibliography containing broad
range of computer science papers. Representing a co-authorship network where two authors are
connected only if they have worked on the same paper. Ground-truth communities are formed by
researchers publishing their work to a given conference or a journal. Key feature of this network is
the correspondence of the strongly connected component to the entire graph. Consequently, DBPL
exhibits high average clustering coefficient 63% and relatively low effective diameter - 8 can be
noticed.

YouTube is arguably one of the most popular video-sharing web sites on the internet, where users
can watch numerous videos from arbitrary domains. In addition to that, YouTube also has a social
network with users forming friendships with others or participating in different groups. It is a
strongly connected network, having average clustering coefficient of around 81% and with the
largest strongly connected component equal to 𝐺. Hence a low effective diameter of 6,5 hops on
average can be perceived.

The road infrastructure network of California [LLDM09] represented by either intersections, of
two or more roads, or road endpoints and roads connecting the previous. Almost every road
and intersection can be found within the largest strongly connected component. California’s road

50

6.2 Results

network is the first dataset exhibiting extremely long diameter 849 and one of the lowest average
clustering coefficients 4,64%. This is somehow expected since roads more often intersect themself
inside cities and rarely form triangles.

Next, we present the Autonomous systems by Skitter [LKF07], an internet topology graph collected
from traceroutes, where routers are connected to sinks resulting in numerous links. Apart from a
negligible amount of nodes, a path from one router to any other can be found. Average clustering
coefficient of 25% and four time smaller effective diameter compared to the longest geodesic path
hints that the graph contains dense and sparse communities.

LiveJournal is an online-blogging community allowing users to form friendships and join groups
which are considered to be ground-truth communities. The network consists of millions of users
and multiple times more connections. Every user in LiveJournal is part of the largest strongly
connected component. Interesting fact about the social blogging network can be illustrated in the
low clustering coefficient - only 28%.

And lastly we study the structure of the web graph Wikipedia of top categories. The final version
was constructed by taking the largest connected component of Wikipedia and restricting to pages in
the top set of categories and taking the largest strongly connected component of the restricted graph.
This resulted in an average clustering coefficient of 27,5% with measured diameter 9 and effective
diameter of just 3,8 hops on average.

After delineating previously measured characteristics of each dataset we will use in our evaluation,
we move further to the next section where we test Darwini and our growth prediction models against
several key characteristics including higher metrics such as PageRank and k-Core.

6.2 Results

In this section we delineate the outcome for a variety of metrics measured on real-world networks.
Instead of summarising the set of data we collected for each metric, we will begin the discussion for
each dataset with the degree distribution and further try to stepwise give a possible explanation of
possible aspects of Darwini that could have overall affected the results for each remaining metric
in certain direction. A subset of the measured metrics can also be found in Table 6.1 for each
observed network. Besides the expound of results we would like to point out that only one visual
representation per dataset in the form of a diagram is given. This way we attempt to facilitate the
reader while going through the large set of results while also aiming at presenting them as compact
as possible. We will use the abbreviations RID and LPA as a reference to generating multiple graph
with Darwini and either Random Increase of Degree or Linear Preferential Attachment. In addition
to that we have omitted many entries for each curve in order to make the results as clear as possible.
We will further provide information for distributions where we have cut off entries above certain
value for both x-axis and y-axis. This is normally the case when either very few values can be found
within huge span and when only entries for the original graph are present.

We start with degree distribution outcome and mainly focus ourselves on it and clustering
coefficient distribution because they are often used to distinguish between arbitrary random graphs
and real-world networks. First, we will résumé the data acquired from testing all Facebook pages.
In Figure 6.1 one could visualize part of the results for the Facebook pages consisting of athletes.
As observing the degree distribution curve, we would like to point out that the original graph has

51

6 Evaluation

Dataset Graph Name Order Size Density Largest
Degree

Average
Degree

Connected
Components

GEMSEC Athletes 13.8K 86.8K 0,09% 468 12,52 2340
GEMSEC Artists 50.5K 819K 0,064% 1469 32,43 5752
GEMSEC Company 14.1K 52.3K 0,052% 215 7,43 3177
GEMSEC Government 7K 89.4K 0,36% 697 25,35 793
GEMSEC New Sites 27.9K 206K 0,053% 678 14,77 4248
GEMSEC Politician 5.9K 41.7K 0,239% 323 14,12 1016
GEMSEC Public Figures 11.5K 67.1K 0,1% 326 11,6 2357
GEMSEC TV Shows 3.8K 17.2K 0,23% 126 8,87 831

arXiv CA-HepTh 9.8K 26K 0,05% 65 5,26 816
arXiv CA-AstroPh 18.7K 198K 0,011% 504 21,1 562
SNAP DBLP 317K 1M 0,002% 343 6,62 12706
SNAP Email-Enron 36.6K 183K 0,027% 1383 10,22 1092
Musae DE 9.5K 153K 0,34% 4259 32,24 1188
Musae ENGB 7.1K 35.3K 0,01% 720 9,91 1495
Musae FR 6.5K 112K 0,05% 2040 34,4 666
Musae ES 4.6K 59.3K 0,055% 1022 25,55 611
Musae PT 1.9K 31,3K 0,17% 767 32,74 176
Musae RS 4.3K 37.3K 0,04% 1229 17,01 730
AS-733 as19971108 3K 5.5K 0,121% 592 3,67 331
AS-733 as19971215 3.1K 6K 0,121% 634 3,83 343
AS-733 as20000102 6.4K 13.8K 0,066% 1460 4,92 575
SNAP roadNet-California 1.9M 2.7M 0,0001% 12 2,81 70366
SNAP com-youtube 1.1M 2.9M 0,0004% 28754 5,16 23866
SNAP com-livejournal 4M 34.6M 0,0004% 14815 17,34 1560
SNAP as-skitter 1.7M 11.1M 0,771% 35455 13,08 756
SNAP wiki-topcats 1.8M 28.5M 0,0018% 238607 31,83 1

Table 6.1: Graph datasets used in the evaluation of Darwini and the growth prediction models.
Several important graph characteristics including the density and the unique number of
connected components are depicted in the table above.

vertices with degree over 300. But because neither Darwini nor our growth extension models were
able to generate those high degree vertices, we restrict the upper bound of the x-axis to 300 for better
legibility. Although all generation models are able to match the degree distribution curve quite
accurately (excluding omitted region), the lack of high degree nodes influences the overall structure
and the remaining metric measurements. While 468 being the largest degree of the original graph,
Darwini, RID and LPA we incapable of generating nodes with degree higher than 269, which is a
substantial difference. Similarly, in each of the remaining networks within the dataset tested, we
could also see absence of high degree nodes. One exception being the artists network, where LPA
and RID managed to match the high end of the original curve. In all cases LPA comes closest
followed by RID and Darwini to reproducing high degree vertices of the original graph. However,

52

6.2 Results

Figure 6.1: Comparing Darwini and both growth prediction models under different graph metrics on the
Facebook athletes pages network. Every model struggles to accurately reproduce distributions.

this is somehow expected since LPA and RID have twice as more vertices and at least two times
more edges. And further considering the fact that LPA connects new joining vertices to already well
linked nodes with higher probability. Clearly noticeable in Figure 6.1 (b) is the inaptitude of every
model to reproduce the clustering coefficients in the [0,2;0,99] region. This is congruous across the
whole dataset. A possible explanation can be seen in missing high degree nodes for Darwini, RID
and LPA. The way nodes have been distributed across buckets, i.e. the formation of communities,
can also influence the local clustering coefficient. Despite the fact that consistently each Facebook
network has greater amount of connected components than its corresponding synthetic graphs,
Darwini in general can not cope with closing triangles even in dense communities. Darwini also
exhibits relatively shorter diameter and radius then the original network, which also hints about
wrong approximation of the underlying structure. RID and LPA unsurprisingly evince decrease in
the longest and geodesic paths proven to be a common process in real-world networks [LKF05].
The dip in the PageRank distribution observed in [ELW+16], can also be perceived in Figure 6.1
(c) with vertex to single group mapping considered as the factor causing this inaccuracy. The
structure of Darwini along with the missing high degrees lead to false estimation of the curve.
By its natural way of linking, LPA tries to correct the results of Darwini but reproduces overall
negligible amount of PageRank scores. In terms of k-Core, Darwini produces in most cases more
distinct cores with degree k. By RID and LPA major part of the k-cores are in the [5;20] region for
k and only remarkably fewer outside the specified region.

Next, we will be looking at the MUSAE dataset [RAS19], covering networks of Twitch streamers
from different European countries. Digital representation in the form of a diagram is provided
for the network of German streamers, appearing to also be the biggest one in the dataset. Details
about the single networks can be found in Table 6.1. In Figure 6.2 comparisons of Darwini, RID
and LPA under degree, clustering coefficient and PageRank distributions are depicted. The x-axis
of the degree and PageRank diagrams were restricted to values up to 800 and 0,01 to provide
better clearness. As in the previous dataset, in Figure 6.2 (a) we can see that none generation
approach is able to generate high degree vertices, which for the original graph reach degree 4259,

53

6 Evaluation

i.e. approximately from 6 to 8 times larger than the largest degrees produced by Darwini, RID
and LPA. Surprisingly, the synthetic graphs are far way better connected compared to the original
despite the lack of high degree nodes. Consequently resulting in times fewer amount of connected
components for all networks in MUSAE, excluding the United Kingdom graph. Therefore, we
would assume that Darwini is not suitable for low dense real-world networks leading to build up of
an inaccurate structure. However, our assumption is in contradiction with the measured diameter
and radius of the individual graphs and the clustering coefficient distribution results, which are
partially not consistent. For example, the diameter and radius measured from Darwini for the
German network match those of the original graph while it is not the case for the rest. On the other
side as expected, RID and LPA exhibit lower radius and diameter compared to both Darwini and
original graph across the dataset. Turning our attention to Figure 6.2 (b) one can spot better results
compared to those in Figure 6.1 (b) although more high degree vertices are missing in the German
graph of streamers than in the Facebook pages of athletes network. Almost indistinguishable are
the remaining local clustering coefficient results, apart from those of the United Kingdom where
one can find few missing values in [0,3;0,4] region. Excluding the cut off region [0,0125;0,025]
where we have a few PageRank entries for the original graph, each generation model follows more
accurately the original compared to the Facebook dataset. Several unmatched values in the middle
of the curve can also be found in the rest of the dataset. Consistent with the measurements for the
previous dataset is the dip at the beginning of the curve, which seems to be a general issue for all
types of graphs generated using Darwini. If it was capable of reproducing the degree distribution
more precisely, then we would have probably retrieved even better results for MUSAE. Even then
we presume that Darwini would not match ideally the PageRank distribution due to the fact that the
algorithm tends to be designed in generating graphs with dense but non-hierarchical communities.
And at the end we would also like to briefly describe the results for k-Core. Because Darwini
attempts to create highly dense communities, the k-Core distribution of the original graph contrasts
from those of Darwini, RID and LPA. Covering the whole dataset we can conclude that Darwini,
RID and LPA posses cores with a value of k over two times than the largest core that can be found
in the k-Core distribution of the original graph. One more thing worth pointing out is the fact that
the sum of all cores in the region from 𝑘 to 2 ∗ 𝑘 for Darwini, RID and LPA is almost identical to
the amount of cores with value 𝑘 for any Twitch network.

Moving on we represent in Figure 6.3 and Figure 6.4 outcomes for CA-AstroPh and CA-HepTh
collaboration networks. Turning our attention to the distribution curves we can notice that in case
of CA-AstroPh, Darwini and RID have missed on replicating several high degree entries unlike
LPA where one can not see a couple of entries spread across the [500;597] region, taken out for
better clarity. For Ca-HepTh, every model matches the original curve precisely and in addition to
that LPA again had generated some higher degree nodes. Of course, RID and LPA do not necessary
overlap the degree distribution results of the original graph which makes sense since they both have
twice as much vertices. Here we say that they match the original curve in the way that the amount
of nodes drastically decreases in the [0;10] region. At this point we would also like to provide
a possible explanation to why the degree distribution for CA-HepTh is so well matched. If we
take a deeper look at Figure 6.4 (a) we see that there are almost no holes in the degree distribution
sequence. A hole in a sequence of positive numbers 𝑠𝑒𝑞(𝑘, 𝑛) = 𝑘, 𝑘 + 1,, 𝑛 − 1, 𝑛 with 𝑘 < 𝑛

occurs when in 𝑠𝑒𝑞(𝑘, 𝑛) after any number 𝑙 with 𝑘 ≤ 𝑙 < 𝑛 the following element does not equal
𝑙 + 1. Up to this point one would probably ask himself: What do these holes in the original degree
distribution sequence have to do with the results provided from Darwini? Because Darwini tries to
maintain the degree correlation of graphs, it uses a probability formula discussed in subsection

54

6.2 Results

Figure 6.2: Comparing Darwini and both growth prediction models under different graph metrics on the
Twitch network of German streamers.

Figure 6.3: Comparing Darwin and both prediction models under different graph metrics on CA-AstroPh
network. Only LPA manages to create more high degree vertices than the original graph.

55

6 Evaluation

5.1.3, making it highly unlikely that a pair of vertices with significant difference in their degrees
will ever be connected. So, if the original degree distribution contains high degree vertices with
large holes present in between, then the algorithm would be unable to find enough candidates to
link them to. Recall that majority of vertices in real-world networks posses low degree and their
corresponding target degree is either already matched in the second phase or in worst case in the
early iterations of phase 3. In addition to that, multiple links and self-loops are permitted. However,
this may not be the only reason leading to faulty results. After removing the probability formula
in the second half of stage three, we witnessed smaller improvements although most high degree
vertices were still missing. So along the previously mentioned holes in the degree distribution,
possible aspects for this behaviour could be the way vertices are grouped together in the second
stage, density of the communities and the hierarchical structure of the original graph. As we will
later see, although the holes in the degree distribution may not be the only aspect for wrongly
estimated degree distribution, their absence leads to significantly finer results. The local clustering
coefficient results retrieved for both networks serve as a perfect example that Darwini’s inability to
preserve graph characteristics could possible be mixture of several of the above suggested factors.
Although all models were able to generate accurate degree distributions for CA-HepTh, none of
the models is capable of reproducing the local clustering properties of the original graph, as it
can be clearly seen in Figure 6.3 (b) and unsurprisingly in Figure 6.4 (b) for CA-AstroPh. Even
though, Darwini maintains the degree distribution, the way that it groups vertices perhaps could
have heavily influenced the local clustering properties of the output graphs. Ignoring the beginning
of the PageRank curve, where we could see the usual dip, results are much better compared to those
of GEMSEC and in some extent similar to those in Figure 6.2 for both collaboration networks. Due
to the double amount of vertices possessed by the synthetic graphs generated with RID and LPA,
couple of entries extending their corresponding curves can be observed in Figure 6.3. This leaves
us yet again without a feasible explanation about the factor(s) influencing the overall structure and
as a consequence the measured properties of the final graph. Finally, we would like to note that
both collaboration networks gain distinction as the k-Core distributions measured for each model
are unique. However, the original graph contains cores with value for 𝑘 up to a magnitude larger.
The fact that Darwini, RID and LPA have generated networks with more connected components,
thus a less connected graph, and the bad estimation of the clustering coefficient could be considered
as solid arguments leading to such inaccurate k-Core results.

In Figure 6.5 we depict the measured distributions for the Enron email network. Like in the
other cases, Darwini lacks the ability of reproducing the high degree vertices, where its node with
largest degree 526 is more than two times lower than the one of the original graph - 1383. RID
and LPA produce vertices with higher degree than Darwini but none in the omitted on the x-axis
in Figure 6.5 (a) [850;1400] region. As a consequence, none generation model produces graph
with the desired connectivity and in combination with the possible wrong distribution of nodes
resulting in poor estimation of the clustering coefficient curve. As it can be discerned in Figure 6.5
(b), Darwini is the only model making attempts to match somehow the original results. Possible
explanation can be the random increase of degree for an arbitrary pair of vertices for RID and that
new joining vertices are mainly linked to existing high degree nodes for LPA following a totally
different distribution across buckets due to the increased target degree of some subset of nodes. In
addition, we should point out that the second half of vertices in RID and LPA have been assigned a
target clustering coefficient of node from the first half. Each vertex’s target score remains unaffected
even in case a higher target degree gets assigned to it. Observing Figure 6.5 (c), provides the biggest
surprise in terms of how well Darwini captures the PageRank distribution. However, we would

56

6.2 Results

Figure 6.4: Comparing Darwini and both growth prediction models under different graph metrics on
CA-HepTh network. All models approximate the original graph PageRank distribution curve.

Figure 6.5: Comparing Darwini and both growth prediction models under different graph metrics on Enron
email network. Darwini nearly reproduces the PageRank distribution curve of Enron.

presume that this is no coincidence derived not from the very few entries available in the series
rather due to the relatively low span from the lowest to the highest PageRank value, which can also
be observed in other networks. Regarding the k-Core results, we can conclude that only Darwini
manages to partially match the k-Core of the original graph but produces several larger k-Cores not
present in the last. RID and LPA provide very distinctive results but unlike Darwini form only few
larger cores.

Following we turn our attention to the AS-733 dataset. More precisely we cover three daily
instances from different years and hence expecting with higher probability noticeable changes due
to the longer time span. In Figure 6.6 one can depict measurements about the largest instance

57

6 Evaluation

Figure 6.6: Comparing Darwini and both growth prediction models under different graph metrics on AS-733
from 2 February, 2000. RID is able to replicate most clustering coefficient values.

across AS-733. Even after restricting the x-axis of the degree distribution diagram, one can still
pretty clearly spot the missing high degree vertices in each synthetic graph, which also holds for the
remaining measured daily instances. From this point, we can straightforward conclude the rest of
the data collected. Since there are many missing key edges that would further interconnect several
communities, on the one side output graphs exhibit longer diameter and on the other side they
can be described as sparser compared to original daily instances. Because the size and order are
remarkably fewer than majority of real-world networks, each missing link influences heavily the
structure. When taking into consideration the above discussion, one could possibly think that no
model comes close in estimating the clustering coefficient curve. However, as it can be seen in
Figure 6.6 (b), each model matches the original curve far better than expected, even when the so
called bridge vertices are absent in each generated graph. There is a simple explanation behind this
rather interesting and unexpected result. As elucidated in subsection 5.1.2, Darwini tries to first
match the expected number of triangles each vertex should belong to while indirectly striving to
simultaneously reach the target degree and clustering coefficient. In the final phase, the algorithm
will in worst case produce an insignificant amount of triangles when picking random candidates, as
stated in [ELW+16]. Therefore, the final clustering distribution found in Figure 6.6 (b) was mostly
formed in second stage, which suggests that Darwini has done a good job the way it has distributed
vertices across groups. The erroneous PageRank and k-Core distribution ensued by missing key
connections, i.e. vertices serving as bridges, and are congruous across each covered network.

As next, we will take a look at the results for another network part of the autonomous system
domain by the name Skitter. First and foremost, no results can be spot in Figure 6.7 for LPA
because the algorithm did not terminate in reasonable time. Exactly the same can be said for the
PageRank and k-Core distributions, radius and diameter. An upper bound of 50K for the y-axis was
also set and thus omitting few entries in the [50K,400K] region matched by Darwini. Although
small amount of data was collected for this network, it would still be sufficient to confirm to some
degree our assumptions formed on previous datasets. We start yet again with the degree distribution

58

6.2 Results

Figure 6.7: Comparing Darwini and RID models under different graph metrics on AS-Skitter. Major part of
the high degree vertices can not be reproduced leading to inaccurate graph structure.

in Figure 6.7 (a) where Darwini and RID estimate the curve up to some point - 3280 and 4895,
respectively. From then on however, both models miss on reproducing considerable amount of nodes
with degree up to 35455, not shown in the diagram in order to improve the legibility. With that
said, Darwini in general has over 800K edges less than the original graph and as a consequence the
number of connected components increases over 100 times from 756 to over 80K for the previous.
Same conclusion can be made for the synthetic graph of RID, where a further increase, raising
well over 110K, in the amount of connected components can be observed. Overall, both output
graphs do not even come close to the original structure of AS-Skitter due to the numerous holes
found in the degree distribution sequence, previously raised during explication in the discernible
differences in the degree distribution of collaboration networks CA-AstroPh and CA-HepTh. And
as a consequence the local clustering properties, illustrated in Figure 6.7 (b), of the original graph
can not be reproduced by any means, where only minor part of the AS-Skitter curve is replicated by
both approaches.

Further measured network, is the DBLP graph found in the evaluation section of [ELW+16]. We
were not able to collect data about the PageRank and k-Core distributions but provide data about the
synthetic graph generated by LPA. Darwini follows closely the original degree distribution until the
gap between two neighbouring entries in the series becomes considerable, while RID and LPA are
able to reproduce the missing entries in the Darwini curve mainly due to the double amount of nodes
available and relatively low highest degree in DBLP - 343. At this point we would like to point out
that it seems that very few entries in Figure 6.8 (a) were unmatched. Actually this is a result of
filtering the major part of the entries for each model, moreover setting an upper bound for the y-axis.
Otherwise, one would not be able to perceive much if we plot every single entry for larger datasets
like DBLP. These results further confirm our presumption that Darwini is actually not applicable to
graphs with huge holes in their degree distribution rather than being suitable only for dense online

59

6 Evaluation

Figure 6.8: Comparing Darwini and both growth prediction models under different graph metrics on DBLP.
Darwini captures low and medium region of degrees while LPA also reproduces the high once.

social networks. If we ignore the very few missing high degree entries in the degree distribution, we
can conclude that the algorithm produces synthetic graphs with diverging from DBLP’s structure
expressed in 12706 against over 23K, 40K and 39K connected components for Darwini, RID and
LPA. And in addition to that, unlike in the AS-Skitter network, there are almost no missing edges
that need to be inserted. The worst estimation of the local clustering coefficient can be noticed
in Figure 6.8 (b), where only a small fraction of all entries have been matched. Another great
example of good estimation from Darwini and RID in the absence of holes in the series of degrees
present in a graph is the road network of California. From the visualized results in Figure 6.9 we
can conjecture that even a perfect estimation of the degree distribution does not correlate with a
good match of the clustering properties. As already discussed and also pointed out in [ELW+16],
Darwini does not observe hierarchical structure and creates communities by assigning a vertex to
only one group. Interesting contrast in the amount of connected components between Darwini and
RID can be derived from the results - 323K against only 65K which corresponds to the assumption
of densification as the graph evolves and grows.

We end up the discussion of our results with the Wikipedia top categories, YouTube and
LiveJournal networks. As foreseeable, each network is unable to reproduce the set of high degree
vertices. For the YouTube graph, we have restricted the x-axis in Figure 6.10 (a) to 1700 instead of
29 thousand for better readability and cut off values of the y-axis above 10 thousand, where we
had few entries matched by Darwini. Likewise, the diagram in Figure 6.11 (a) omits values for
the x-axis and y-axis above 5500 and 5000, while for LiveJournal no entries on the x-axis other
than those of the original graph can be observed in the [4000;15000] region and y-axis restricted to
5000 for overall better clarity. Up to this point after analysing various small and large datasets from
distinct domains, we can conclude Darwini’s lack of ability in duplicating the degree properties of
original graphs in the presence of holes in the degree distribution series. Impacted from this, the
output graph holds numerous small connected components, which by no means can be consistent

60

6.2 Results

Figure 6.9: Comparing Darwini and RID models under different graph metrics on California road network.
Darwini manages to match the degree distribution curve quite accurately.

with the orginal graph’s shape. In case of the Wikipedia network, it consists of a single strongly
connected component while the outputs of Darwin and RID contain more than 56 and 98 thousand
unique components, respectively. The same trend is exhibited by the remaining networks. Inside
the right diagram of each previously denoted figure, one can perceive that Darwini puts out together
more accurate clustering coefficient curve than RID. The main reason for this outcome is the fact
that RID copies each vertex’s target degree and clustering coefficient and then increases the target
degree by randomly picking a pair of nodes. However, during the course of this process we do
not change the clustering coefficient of any vertex. Notwithstanding the fact vertex’s clustering
property, whose degree gets increased, should be dynamically adjusted in the first stage. However,
it is not an easy task to predict in any way the amount of triangles the corresponding vertex will
belong to because we are not aware of the future structure of the final network.

Following our argumentation in the last paragraph about absent accommodation of vertex’s local
clustering characteristic, one can argue that we should expect a densification process for real-world
networks, as stated and proven for various domains in [LKF05]. While this is a good argument, one
should also ask himself a couple of questions in this direction: How denser will each community
become? How many new communities will arise? Will any old groups merge into a larger one?
Can existing communities potentially disappear after a given period of time? Also, could some
larger and/or dense groups become smaller and even sparse after, e.g. the end of some trend? Which
edges will be removed in the future? Depending on the domain, which and how many potential
movements can drastically affect the structure of the graph? All these questions come to show
that designing a generator preserving multiple graph properties is a complex and challenging task.
Our comprehensive results manifest the main weaknesses of Darwini. The way it picks for each
vertex a single group affects contemporaneously the final graph’s underlying structure by creating
non-nested communities and reducing the amount of possible candidates that high degree vertices
can be linked with. Nevertheless, as we will conclude in the upcoming chapter, the results of
Darwini can be drastically improved by allowing mapping of vertices to multiple groups. Since

61

6 Evaluation

Figure 6.10: Comparing Darwini and RID models under different graph metrics on Youtube network. The
non-hierarchical structure of Darwini makes it impossible to match the clustering properties.

graphs with nested communities will be generated while nodes possessing high degree would have
more candidate options to link to and thus meet their target degree. Our evaluation has further
revealed that calibrating only vertex’s degree during generation of a multiple graph does not lead
to accurate results. Leaving aside the assignment of each node to a single bucket, RID and LPA
would be incapacitate of capturing graph structures due to missing configuration of local clustering
properties. From this moment forth each metric we measure and observe will be implicitly altered
to a certain degree. Nevertheless, work aimed at designing model predicting how local clustering
would change over time, should result in overall considerable metric improvements originating from
strict structure estimation.

Before outlining future work towards improvement of Darwini and our growth prediction models,
we would like to point out a couple of things about the results retrieved for DBLP and Facebook
subgraph in [ELW+16]. If we compare our degree distribution measurements in Figure 6.8 (a)
and with those in [ELW+16] we could see that Darwini matches the original curve perfectly in the
[0,30] x-axis region. However, we have restricted the x-axis to 350 in Figure 6.8 (a), where one
can see that Darwini steadily begins to mismatch entries for nodes with degree 175 or higher. As
a consequence the graph structure and local clustering characteristics of nodes are being heavily
impacted, depicted in Figure 6.8 (b) and in the results section in[ELW+16]. Those results lead to
partially isolated communities due to the absence of bridge vertices thus producing a graph with
isolate and/or sparse communities. And as a consequence, each remaining metric would be effected
from the set of missing key connections as we already saw in the face of clustering coefficient
distribution. This also explains the good degree and local clustering properties estimation found
in [ELW+16] for the Facebook subgraph. Facebook limits the amount of friends each person can
establish up to 5000. Therefore, it is highly unlikely that first, multiple holes are available in the
distribution series. And second, in case of such holes the degree difference between neighbouring

62

6.2 Results

Figure 6.11: Comparing Darwini and both growth prediction models under different graph metrics on
Wikipedia network.

Figure 6.12: Comparing Darwini and both growth prediction models under different graph metrics on
LiveJournal network.

elements in the series would reach a couple of thousand, since largest difference that could possibly
occur in this scenario is 5000. From the depicted diagram in [ELW+16] this is certainly not the
case unlike real-world networks including Wiki, YouTube and LiveJournal.

63

7 Conclusion and Outlook

We have seen that a great variety of generation models exist. Some of them appertain to state-of-
the-art-models such as R-MAT [CZF04] and Forest-Fire [LKF05], while others like Erdös-Renyi
[ER+60] and CL [ACL01] are being used as base for the development of more complex approaches
like BTER [KPPS14]. Nonetheless, up to the time of writing and to the best of our knowledge, every
single model is not precise enough in preserving the following graph characteristics: Matching the
graph structure is arguably the prime goal that has to be set when developing generation model.
The ability of capturing abrupt changes in the degree distribution curve and thus estimating the
proper amount of nodes with certain degree sticks together to some extent with the end structure
of the graph. Both aspects can either directly or indirectly influence local clustering properties.
Aim at reproducing additional metrics like radius and diameter is also desired. The overall process
becomes even more challenging when only small portion of network data can be shared in order to
concern user privacy and protect sensible data.

Graph generation models can not be applied to diverse domains due to several factors. First some
of them like R-MAT are specifically designed to produce networks with hierarchical community
structure and a set of nodes serving as bridge by establishing connection between groups. Such
formations are common for online social networks, where for example drivers of distinct transport
vehicles, e.g. cars and trucks, can be part of a group where one can share about road incidents and
thus inform other drivers travelling through the route about the danger. Not all networks however
exhibit nested groups. Email service networks would highly unlike be composed of such types
because most users send messages to different institutions, friends, colleagues and others. Further,
several methods ignore the fact that graphs can also be directed with multiple edges between a pair
of vertices and simply interpret unidirectional edges as bidirectional, which completely changes
the structure. In the same fashion weight of edges is represented by a hop in order to reduce the
complexity of given generation model. And lastly, big part of the studies focus on small amount
of static datasets typically belonging to the same domain. Therefore, when testing generators on
restricted data, it is generally hard to capture possible weaknesses caused by specific structures and
possible restrictions like e.g. upper bound of connections for a vertex found in social networks like
Facebook.

So, due to no presence of studies in analysing Darwini, we deeply investigated this fascinating
approach using multiple datasets from unassociated domains. From the retrieved results we came to
the conclusion that Darwini lacks the ability of generating graphs matching the original underlying
structure. Reason for this being the assumption that each vertex belongs to a single groups, also
observed in [KPPS14] and [ELW+16]. Missing node distribution across multiple buckets impacts
the way communities are linked with one another due to absence of high degree vertices. The
later occur when significant differences in the degrees of two neighbouring elements in the degree
distribution series, known as holes, are present. In the appearance of those holes, Darwini struggles
to produce vertices incident to huge amount of edges due to a mixture of mapping each vertex to one
group and to some extent affected by its effort of preserving the degree correlation. Even when no

65

7 Conclusion and Outlook

major holes exist in the degree distribution, the algorithm is incapacitated from providing accurate
results for the remaining metrics cause by the falsely estimated graph structure. Regarding our
proposed growth prediction models, we can summarise that they both do not adjust the clustering
coefficients. The motive for leaving them unmodified origins from the unknown structure of the
multiple graph, i.e. how will communities evolve and how many new communities will be formed.
RID is in general more suitable for non-nested community based graphs. Opposite, LPA fits better
for real-world data like online social networks by predicting increase of popularity for a given
person or trend. And lastly, in the succeeding section we will point out several suggestions for both
Darwini and our proposed growth prediction models, which could possibly explicitly and implicitly
lead to notable improvements of the output graph and all measured on it metrics.

Outlook

In this section we résumé couple of aspects that could further improve the results and expand the
domains, where Darwini can be utilized. First, we will start with the fact that Darwini currently
generates only unweighted and undirected, i.e. simple graphs. This makes Darwini inadmissible for
reproducing certain online social networks such as Instagram, where people follow each other. So,
we have to clearly distinguish between a single unidirectional connection and two unidirectional
links in both directions. It is possible to convert such types of graphs to undirected but this would
not lead to accurate results. Up to the time of writing and to the best of our knowledge there is no
well known approach to how Darwini can be adjusted to support weighted edges.

By providing additional metadata denoting the labels for each vertex, one could potentially retrieved
synthetic graph with structure consistent to the original one. Another approach would to approximate
for each vertex the number of communities it should be part of. The last approach requires however
in-depth investigation of numerous networks. Of course either method would introduce additional
complexity since one would have to guarantee non-concurrent update of the degree. But even an
additional adjustment of the probability formula preserving degree correlation may be required in
order to find candidates for high degree vertices. This way by estimating the form and hierarchy
of communities, Darwini would quite possibly implicitly improve in a certain degree the results
for each metric. With regards to our prediction models, method dynamically fixing the clustering
properties of each node with increased degree is required. Otherwise, the output graph would
be composed of a incorrect structure cause by wrongly grouping vertices based on their degree
and clustering coefficient. In addition to that, Linear Preferential Attachment (LPA) is also not
suitable for graphs restricting the maximum amount of connections per vertex. This could be fixed
by defining an additional variable monitoring the current degree of each node and thus not allowing
to exceed certain value. Scalability of LPA can be considered as a bigger challenge since it current
complexity is not suitable for generation of large graphs. Increasing the edge probability after certain
number of iterations perhaps should reduce the execution time. Lastly, as for our implementation
of Darwini within the GAME framework, we would like to point out that currently first stage is
being sequentially executed. Parallelisation can be achieved only by using data structures allowing
concurrent modification, otherwise the introduction of barriers and synchronized execution of
certain blocks provides little to none performance boost.

66

Bibliography

[AB02] R. Albert, A.-L. Barabási. “Statistical mechanics of complex networks”. In: Reviews
of modern physics 74.1 (2002), p. 47 (cit. on pp. 28, 43).

[ACL01] W. Aiello, F. Chung, L. Lu. “A random graph model for power law graphs”. In:
Experimental Mathematics 10.1 (2001), pp. 53–66 (cit. on pp. 18, 28, 65).

[BB05] V. Batagelj, U. Brandes. “Efficient generation of large random networks”. In: Physical
Review E 71.3 (2005), p. 036113 (cit. on p. 27).

[BFF+09] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, C. E. Leiserson. “Parallel sparse
matrix-vector and matrix-transpose-vector multiplication using compressed sparse
blocks”. In: Proceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures. 2009, pp. 233–244 (cit. on p. 32).

[CEK+15] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, S. Muthukrishnan. “One trillion
edges: Graph processing at facebook-scale”. In: Proceedings of the VLDB Endowment
8.12 (2015), pp. 1804–1815 (cit. on p. 13).

[CVW19] S. Chin, J. Vos, J. Weaver. “JavaFX, the Web, and Cloud Infrastructure”. In: The
Definitive Guide to Modern Java Clients with JavaFX. Springer, 2019, pp. 367–409
(cit. on p. 31).

[CZF04] D. Chakrabarti, Y. Zhan, C. Faloutsos. “R-MAT: A recursive model for graph mining”.
In: Proceedings of the 2004 SIAM International Conference on Data Mining. SIAM.
2004, pp. 442–446 (cit. on pp. 18, 19, 26, 27, 34, 65).

[DKPS13] N. Durak, T. G. Kolda, A. Pinar, C. Seshadhri. “A scalable null model for directed
graphs matching all degree distributions: In, out, and reciprocal”. In: 2013 IEEE 2nd
Network Science Workshop (NSW). IEEE. 2013, pp. 23–30 (cit. on pp. 18, 19, 28).

[ELW+16] S. Edunov, D. Logothetis, C. Wang, A. Ching, M. Kabiljo. “Darwini: Generating
realistic large-scale social graphs”. In: arXiv preprint arXiv:1610.00664 (2016)
(cit. on pp. 13–15, 20, 23, 26, 29, 34–40, 46, 47, 53, 58–60, 62, 63, 65).

[ER+60] P. Erdos, A. Rényi, et al. “On the evolution of random graphs”. In: Publ. Math. Inst.
Hung. Acad. Sci 5.1 (1960), pp. 17–60 (cit. on pp. 18, 26, 27, 33, 37, 39, 65).

[Gar17] B. Garcia. Mastering Software Testing with JUnit 5: Comprehensive guide to develop
high quality Java applications. Packt Publishing Ltd, 2017 (cit. on p. 32).

[Gil59] E. N. Gilbert. “Random graphs”. In: The Annals of Mathematical Statistics 30.4
(1959), pp. 1141–1144 (cit. on pp. 18, 26, 27, 33).

[Gup03] S. Gupta. Logging in Java with the JDK 1.4 Logging API and Apache log4j. Springer,
2003 (cit. on p. 31).

67

Bibliography

[IHN+16] A. Iosup, T. Hegeman, W. L. Ngai, S. Heldens, A. Prat-Pérez, T. Manhardto, H. Chafio,
M. Capotă, N. Sundaram, M. Anderson, et al. “LDBC Graphalytics: A benchmark
for large-scale graph analysis on parallel and distributed platforms”. In: Proceedings
of the VLDB Endowment 9.13 (2016), pp. 1317–1328 (cit. on p. 14).

[Joh14] R. A. Johnson. “Java database connectivity using SQLite: A tutorial”. In: International
Journal of Information, Business and Management 6.3 (2014), p. 207 (cit. on p. 31).

[KLEC16] M. Kabiljo, D. Logothetis, S. Edunov, A. Ching. “A comparison of state-of-the-art
graph processing systems”. In: Facebook Blog Post, http://tinyurl. com/giraph-vs-
graphx (2016) (cit. on p. 14).

[KNT10] R. Kumar, J. Novak, A. Tomkins. “Structure and evolution of online social networks”.
In: Link mining: models, algorithms, and applications. Springer, 2010, pp. 337–357
(cit. on pp. 13, 17, 41).

[KPPS14] T. G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri. “A scalable generative graph model
with community structure”. In: SIAM Journal on Scientific Computing 36.5 (2014),
pp. C424–C452 (cit. on pp. 13, 18, 20, 23, 28, 29, 35–37, 40, 47, 65).

[LCK+10] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, Z. Ghahramani. “Kronecker
graphs: an approach to modeling networks.” In: Journal of Machine Learning
Research 11.2 (2010) (cit. on p. 27).

[LK14] J. Leskovec, A. Krevl. SNAP: Stanford network analysis project. 2014 (cit. on pp. 49,
50).

[LKF05] J. Leskovec, J. Kleinberg, C. Faloutsos. “Graphs over time: densification laws,
shrinking diameters and possible explanations”. In: Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data mining. 2005,
pp. 177–187 (cit. on pp. 13, 14, 19, 20, 23, 28, 41, 53, 61, 65).

[LKF07] J. Leskovec, J. Kleinberg, C. Faloutsos. “Graph evolution: Densification and shrinking
diameters”. In: ACM transactions on Knowledge Discovery from Data (TKDD) 1.1
(2007), 2–es (cit. on pp. 49, 51).

[LLDM09] J. Leskovec, K. J. Lang, A. Dasgupta, M. W. Mahoney. “Community structure in
large networks: Natural cluster sizes and the absence of large well-defined clusters”.
In: Internet Mathematics 6.1 (2009), pp. 29–123 (cit. on p. 50).

[LT16] J. Lu, A. Thomo. “An experimental evaluation of giraph and graphchi”. In: 2016
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM). IEEE. 2016, pp. 993–996 (cit. on p. 14).

[MAB+10] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, G. Czajkowski.
“Pregel: a system for large-scale graph processing”. In: Proceedings of the 2010
ACM SIGMOD International Conference on Management of data. 2010, pp. 135–146
(cit. on p. 14).

[MKNS20] D. Michail, J. Kinable, B. Naveh, J. V. Sichi. “JGraphT—A Java Library for Graph
Data Structures and Algorithms”. In: ACM Transactions on Mathematical Software
(TOMS) 46.2 (2020), pp. 1–29 (cit. on pp. 31, 33).

[MVM10] F. P. Miller, A. F. Vandome, J. McBrewster. Apache Maven. Alpha Press, 2010 (cit. on
p. 31).

68

[New18] M. Newman. Networks. Oxford university press, 2018 (cit. on pp. 24–26, 32).
[RAS19] B. Rozemberczki, C. Allen, R. Sarkar. Multi-scale Attributed Node Embedding. 2019.

arXiv: 1909.13021 [cs.LG] (cit. on pp. 50, 53).
[RDSS19] B. Rozemberczki, R. Davies, R. Sarkar, C. Sutton. “GEMSEC: Graph Embedding with

Self Clustering”. In: Proceedings of the 2019 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining 2019. ACM. 2019, pp. 65–72
(cit. on p. 49).

[TBC+13] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, J. McPherson. “From"think like a
vertex"to"think like a graph"”. In: Proceedings of the VLDB Endowment 7.3 (2013),
pp. 193–204 (cit. on p. 44).

[UKBM11] J. Ugander, B. Karrer, L. Backstrom, C. Marlow. “The anatomy of the facebook
social graph”. In: arXiv preprint arXiv:1111.4503 (2011) (cit. on pp. 13, 40, 41).

[VCG+18a] J. Vos, S. Chin, W. Gao, J. Weaver, D. Iverson. “Getting a Jump-Start in JavaFX”. In:
Pro JavaFX 9. Springer, 2018, pp. 1–32 (cit. on p. 31).

[VCG+18b] J. Vos, S. Chin, W. Gao, J. Weaver, D. Iverson. “Using Scene Builder to Create a
User Interface”. In: Pro JavaFX 9. Springer, 2018, pp. 129–191 (cit. on p. 31).

[WPHV15] R. Wang, Y. Perez-Riverol, H. Hermjakob, J. A. Vizcaino. “Open source libraries and
frameworks for biological data visualisation: A guide for developers”. In: Proteomics
15.8 (2015), pp. 1356–1374 (cit. on p. 31).

[WS98] D. J. Watts, S. H. Strogatz. “Collective dynamics of ‘small-world’networks”. In:
nature 393.6684 (1998), pp. 440–442 (cit. on pp. 26, 27, 33).

[XGFS13] R. S. Xin, J. E. Gonzalez, M. J. Franklin, I. Stoica. “Graphx: A resilient distributed
graph system on spark”. In: First international workshop on graph data management
experiences and systems. 2013, pp. 1–6 (cit. on p. 14).

[YL15] J. Yang, J. Leskovec. “Defining and evaluating network communities based on
ground-truth”. In: Knowledge and Information Systems 42.1 (2015), pp. 181–213
(cit. on p. 50).

https://arxiv.org/abs/1909.13021

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

Sofia, den 19.05.2021

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Metrics and Generation Models
	3.1 Metrics
	3.2 Generation Models

	4 GAME Framework
	4.1 Libraries, Frameworks and Plug-Ins
	4.2 Custom Data Structure
	4.3 Jobs and Queue Management
	4.4 Importer and Exporter
	4.5 Metrics
	4.6 Generation Models

	5 Darwini and Growth Model Extensions
	5.1 Algorithm
	5.2 Growth Prediction Model Extensions to Darwini
	5.3 Implementation

	6 Evaluation
	6.1 Public Available Data
	6.2 Results

	7 Conclusion and Outlook
	Bibliography

