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EINLEITUNG

Egal welches System wir in der Natur betrachten, ultimativ sind alle Teil eines Gros-
seren, oder um es anders auszudriicken: Es gibt weder im klassischen noch im quan-
tenmechanischen Fall ein komplett von seiner Umgebung isoliertes System. Dynami-
sche Gleichungen wie die Newtonschen Bewegungsgleichungen im klassischen oder die
Schrodingergleichung im quantenmechanischen Fall mdgen zwar prinzipiell die gesam-
te Natur beschreiben, doch in der Praxis ist es selbst numerisch nur fiir relativ einfache
Probleme mdéglich diese Gleichungen auch wirklich zu 16sen. Insbesondere ist im Allge-
meinen die genaue physikalische Umgebung, hdufig auch als das Bad bezeichnet, des
betrachteten Systems noch nicht einmal bekannt. Da diese jedoch nicht unbedingt von
Interesse ist, ist es vorteilhaft approximative Methoden zu verwenden und die Dynamik
des Systems zu modifizieren, wodurch thermodynamisch beobachtbare Verhaltenswei-
sen reproduziert werden konnen. Es gibt eine Vielzahl solcher Ndherungen. Eine Klasse
von Niherungen ist durch die sogenannte quantenmechanische Markoff’sche Master-
gleichung gegeben. Wird eine Mastergleichung von Grund auf aus einem geschlosse-
nen Modell hergeleitet, so bezeichnet man dies auch als ’globale’ Mastergleichung. Je
nach Art der betrachteten Systeme ist es jedoch mdoglich, dass eine solche Herleitung
nicht zwangsldaufig moglich ist, oder zumindest sehr aufwendig sein kann. In solchen
Fillen gibt es heuristische Herangehensweisen oder man kann versuchen, mittels St6-
rungsrechnung eine approximative Mastergleichung herzuleiten. Das Problem dieser
Gleichungen ist jedoch, dass deren Giiltigkeit meistens nicht betrachtet wird, hochs-
tens a posteriori gerechtfertigt. Diese Arbeit wird sich unter anderem mit eben dieser
Giiltigkeit beschéftigen. Zuerst betrachten wir den Fall der sogenannten ’lokalen’ Mas-
tergleichung, bei dem die System-Bad-Wechselwirkung heuristisch in die dynamische
Gleichung des Systems eingepflegt wird. Mittlerweile wird diese Art auch dazu benutzt,
Phaseniibergangsverhalten von Quantensystemen zu beschreiben. Wir werden diese lo-
kale Mastergleichung mit der Globalen vergleichen und untersuchen, wie sehr diese in
der Lage sind, das kritische Verhalten eines Modells zweier gekoppelter harmonischer
Oszillatoren wiederzugeben. Unter anderem werden wir fiir den thermischen Fall die
Gibbsverteilung nutzen, um diese mit einem exakten Ergebnis vergleichen zu kénnen.
Im Nichtgleichgewicht werden wir die Quanten-Langevingleichung als Vergleichsgro3e
nutzen. Wir werden zeigen, dass der lokale Ansatz generell Schwierigkeiten hat das sta-
tiondre Verhalten quantitativ fehlerfrei zu reproduzieren. Je nach genauer Wechselwir-
kung kann es sogar sein, dass der lokale Ansatz v6llig versagt und kein kritisches Verhal-
ten aufzeigt. Danach betrachten wir einen Stérungsrechnungsansatz in der Herleitung
der Mastergleichung. Wir betrachten, ob die erste oder zweite Ordnung besser in der La-
ge ist das Verhalten der globalen Mastergleichung zu reproduzieren. Wir zeigen, dass ho-
here Ordnungen zwar durchaus verschiedene stationidre Aspekte niedrigerer Ordnungen
zu korrigieren vermogen, dies fiir die betrachteten niedrigen Ordnungen, jedoch nicht
fiir alle Systemeigenschaften gilt. Wir zeigen insbesondere, dass die Stérungsrechnung
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auch zu Mastergleichungen fiihren kann, die selbst fiir Parameter infinitesimal nahe des
Entwicklungspunktes unphysikalisch werden. Die Storungs-Mastergleichungen miissen
daher mit Vorsicht benutzt werden. Nach dieser Betrachtung verschiedener approxima-
tiver Methoden beziiglich der Herleitung einer Mastergleichung betrachten wir dynami-
sche Eigenschaften von allgemeinen (physikalischen) Mastergleichungen. Das Verhal-
ten eines Systems, auf das eine kleine Stérung wirkt, wird von den Systemeigenschaften
bestimmt, mittels der linearen Antworttheorie. Wir bestimmen die lineare Antwortfunk-
tion des Systems, leiten verschiedene Aquivalenzklassen her und betrachten fiir diese
verschiedene mathematische/ physikalische Eigenschaften. Ein Vorteil dieser verschie-
denen Klassen ist, dass diese je nach Kontext vorteilhaft benutzt werden kénnen. Zum
Beispiel ist eine Klasse besser dazu geeignet Symmetrieeigenschaften fiir ein System,
das "detailed balanceérfiillt, zu bestimmen und eine andere Klasse ist signifikant einfa-
cher explizit zu berechnen. Wir betrachten verschiedene Beispiele um die Unterschie-
de in den physikalischen Eigenschaften hervorzuheben, die ein System mit oder ohne
"detailed balance"besitzt, und das Versagen der linearen Antwort nahe eines kritischen
Punktes. Zuletzt betrachten wir ausfiihrlich Fluktuations-Dissipations Theoreme, die die
lineare Antwortfunktion mit Korrelationsfunktionen verbindet, und leiten diese fiir die
verschiedenen Klassen her.



ABSTRACT

No system in nature is completely isolated from its surroundings, regardless if classi-
cal or quantum. While equations like the Newton equations in the classical case or
Schrodinger equations in the quantum case describe the dynamics of in principle all
systems, one is usually only able to calculate the dynamics of small ones. The effects
that these surroundings, or baths create generally have to be approximated. One such
approximate treatment is given by the quantum Markovian master equation. Deriving
a master equation from first principles is usually termed as a 'global’ master equation.
Depending on the system considered, such derivations are not necessarily easy to ac-
complish or even possible. In such cases, alternative approaches, or even perturbation
theory may be attempted to derive a master equation. However, one has to be careful in
using such approaches as their validity is generally not considered, but rather justified a
posteriori. In this work we investigate the validity of such approximative master equa-
tions. We will first consider the case of local’ master equations, in which system-bath in-
teractions are heuristically added to the dynamics. This kind of master equation is lately
being used to describe phase transition behavior of quantum systems. We will investi-
gate and compare these local master equations with the global one in their ability to re-
produce the steady-state behavior of a model of two coupled harmonic oscillators, which
expresses a critical behavior at a specific coupling strength. We will compare them with
the Gibbs state properties in the equilibrium and the solution of the quantum Langevin
equation in the nonequilibrium context. We show that the local approach is generally
not able to reproduce the steady-state behavior quantitatively and depending on small
changes in the system Hamiltonian, it can also be the case that it fails to even reproduce
qualitative effects like the critical behavior itself. Then we consider a perturbative ap-
proach for deriving the master equation and investigate how well the first and second
order perturbations are able to reproduce the steady-state properties of the global ap-
proach. We show that while higher orders improve the description of some aspects, this
is not necessarily the case for all. In fact, low orders can create unphysical states even for
infinitesimally small deviations about the expansion point. Thus low orders have to be
used with caution. After these investigations of approximative approaches, we then con-
sider some dynamical properties of quantum master equations. We treat the dynamical
properties of such equations and consider how a system reacts to a small perturbation,
by employing linear response theory. We derive different classes of the response func-
tions and consider what properties they possess. The advantage of the different classes
is that while one might be better to e.g. investigate mathematical properties like sym-
metries under quantum detailed balance, while others are easier to calculate. These will
further be used to consider different examples emphasizing the differences between de-
tailed balance fulfilling and breaking steady-states or the breakdown of linear response
approaching a critical point. Lastly we will investigate fluctuation-dissipation theorems
for these response classes, connecting response and fluctuations.






INTRODUCTION

All models are approximations. Essentially, all models are wrong, but some are useful.
However, the approximate nature of the model must always be borne in mind.

George E. P. Box

1.1. THE DESCRIPTION OF OPEN QUANTUM SYSTEMS

HE development of standard quantum mechanics in the 20th century enabled physi-
T cists to calculate physical problems in various new fields, in particular the consistent
description of microscopic systems. In this regime one can find that the structure of na-
ture is fundamentally quantized, described by e.g. the emergence of Planck’s elementary
quantum of action 7 [1]. With this theory, it was first possible to calculate consistently
e.g. the experimentally observed quantizated energy levels of atoms [2], or the quanti-
zation of light as described by the photoelectric effect [3] and solve mathematical prob-
lems like the quantized harmonic oscillator [1, 4, 5]. While it was and still is successful in
describing these and many more problems, the standard quantum mechanics assumes
a fundamentally closed or isolated system, whose dynamical properties are fully gov-
erned by the Schrodinger or von Neumann equation [4, 6], which are fundamentally
time-reversal symmetric. These properties are consistent with the fact that the standard
quantum mechanics is the generalization of classical, isolated dynamics described by
Newtonian or Hamilton mechanics.

However, a (quantum) system can never truly be completely isolated from all of its
surroundings. In classical cases there are effects like friction or the description of various
chemical reactions [7, 8]. For quantum systems one can observe effects like the decay of
an excited atom to its ground state [6, 9], the often experimentally observed thermal-
ization of a system to a Gibbs thermal state [6], or decoherence effects of a state, which
cannot be described by standard quantum mechanics. Further, one is often interested
in describing equilibrium or nonequilibrium dynamics of a smaller system of interest
that is coupled to a single larger system or even multiple ones. If these larger systems
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are sufficiently high-dimensional, then the dynamics may not be possible to be solved,
even numerically. For special cases, such problems may be solved by interpreting the
larger systems as infinitely large baths that are unchanged by the interaction with the
small system. Then one can evaluate the effects of these baths in a thermodynamically
consistent way.

For being able to dynamically describe such problems, one can either attempt to
find a completely new description, or extend, possibly heuristically or approximatively,
the closed description by adding additional terms into the dynamical equations [5, 10].
The usual approach in (quantum) mechanics is starting from a closed system model that
contains both the system of interest and the additional larger ones. The dynamical equa-
tions of these will then be approximated, resulting in effective dynamics. There exists a
wide variety of these effective dynamics. Classically, such effective dynamics are de-
scribed by the concepts of Langevin equations [8, 11, 12], master equations [8, 11] or the
Boltzmann equation [11]. For quantum dynamics these effective dynamics are given by
e.g. Feynman-Vernon influence functionals [6, 13, 14], stochastic differential equations
[6, 8], Redfield equations [6, 8], quantum Langevin equations [15, 16], quantum mas-
ter equations [6, 14], or numerical quantum simulation techniques like the hierarchical
equations of motion [17] or Monte Carlo simulations [6, 18]. Their differing level of ap-
plied approximations is often accompanied with a highly different level of complexity
for being able to apply their methods.

One widely used approach is given by quantum Markovian master equations. Quan-
tum Markovian master equations have been instrumental in the study of open quantum
systems since their introduction by Wolfgang Pauli in 1928 [19]. They offer powerful, yet
approximate, means to describe the time evolution of the reduced density operator of
quantum systems coupled to external environments [6, 15, 20-23]. They allow the anal-
ysis of the dynamics of both diagonal density matrix elements (populations), involved
in thermalization processes, and of nondiagonal density matrix elements (coherences),
associated with dephasing phenomena. As a consequence, they have found widespread
application in many different areas, ranging from quantum optics [24] and condensed
matter physics [14] to nonequilibrium statistical mechanics [25] and quantum informa-
tion theory [26].

More recently, these quantum Markovian master equations started to being used to
describe nonequilibrium phenomena of systems that are weakly coupled to multiple
baths [10, 27-32]. Further, they were used to describe the behavior of more complex
systems that show quantum critical behavior or that posses phase transition character-
istics like the description of the open Dicke model [33-35]. Due to their large number of
successful applications, there are also many attempts to find general (thermodynamic)
properties of these [6, 20, 23, 36]. One such is the field of linear response. Linear re-
sponse theory describes the dynamical behavior of a system which is subject to a small
perturbation and its interesting feature is that the response function of the systems can
be obtained from its unperturbed dynamical properties [25, 37, 38], independent of the
exact nature of the perturbation. For the nonequilibrium quantum case, some forms
of response functions were derived by various authors [39-42]. Linear response is fur-
ther very fruitful, as one is able to find fluctuation-dissipation theorems. Fluctuation-
dissipation theorems connect these linear response functions with fluctuation proper-
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ties of the system [38, 39, 41, 42] laying bare thermodynamic properties of them.

The more popular these quantum master equations became, the more they were be-
ing used less rigorously. Ideally one derives these master equations properly from first
principles [6], which is also usually called the 'global’ master equation approach [10, 43].
However, often these derivations are difficult or even maybe impossible to do for general
systems and instead heuristic approaches are used. One such is given by the so called
'local’ master equations [10], where one simply adds an open dynamics part from a less
complicated system, for which the master equation can be derived, to the dynamical
equation of a more complex system, without necessarily any derivation. While obtain-
ing such approximative approaches is significantly easier, it was recently was shown that
these may cause unphysical behavior [10, 43]. One such example is the emergence of un-
physical heat currents [10]. Interestingly, there are also works about a model for which
assumptions made in the derivation of the global master equation are wrong and in this
case the local approach may even sometimes result in dynamics that are able to more
accurately describe the correct system properties [43].

The aim of this thesis is to investigate the validity of such heuristic, or approximative,
approaches to quantum Markovian master equations applied to quantum critical phe-
nomena, for both equilibrium and nonequilibrium models. These models are further
used to consider the physicality of these approaches. For quantum Markovian master
equations that correctly describe the system’s dynamics, general physical properties are
then considered by extending linear response theory to these general nonequilibrium
situations and fluctuation dissipation theorems are being derived.

1.2. OUTLINE OF THE THESIS

Chapter 2 will focus on the differences between local and global master equations con-
cerning steady-state quantum critical behavior of two coupled harmonic oscillators, in-
dividually coupled to different baths with potentially unequal temperatures. These ap-
proaches are compared with each other using Gibbs states in the equilibrium case and
quantum Langevin equations for nonequilibrium situations as benchmarks. Both local
properties in the form oflocal occupation numbers and nonlocal ones like quantum mu-
tual information or negativity will be investigated. The differences between these forms
for finite and vanishing temperature will be further explored. It will be shown that while
the local approaches is able in same cases to at least qualitatively reproduce the global
behavior, it generally fails to properly describe the steady-state behavior of the consid-
ered critical system.

Chapter 3 will then consider the derivation of the quantum master equation per-
turbatively. in this perturbative context, the local approach may be regarded as a 0-th
order perturbation and the next order, the first order is being investigated in its possi-
bly improved ability of describing the coupled harmonic oscillator model’s steady-state
behavior for equilibrium and nonequilibrium situations. Also there the local property
of the occupation number and nonlocal ones like quantum mutual information will be
compared. Further, thermodynamic properties like heat currents and the uncertainty
principle will be compared. It will be shown that while the higher order perturbation
does improve the steady-state properties of the description in some aspects, it does not
do so across the board, even for infinitesimally small perturbations. It further also pos-
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sibly creates unphysical states. Lastly, the second order perturbation will be treated and
shown that this order improves the results of the small coupling regime significantly

Chapter 4 will then consider general (dynamical) properties of quantum Markovian
master equations by treating linear response theory and deriving open quantum gener-
alizations of classical response function classes found in [37]. For these response func-
tion classes symmetries are then investigated, when they fulfill quantum detailed bal-
ance. These classes will then further used to calculate examples using the coupled oscil-
lator model where nonequilibrium properties are investigated as well as the breakdown
of linear response approaching a critical point, emphasizing the differences different
equilibrium and nonequilibrium regimes.

The last chapter 5 will build upon these response function classes and extend the
closed dynamics’ Callen Welton formulation of a fluctuation-dissipation theorem to the
open quantum context. For being able to do so, first the closed dynamics’ fluctuation-
dissipation theorem will be rederived and the mathematical differences between open
and closed quantum dynamics emphasized.



GLOBAL AND LOCAL MARKOVIAN
MASTER EQUATIONS FOR CRITICAL
PHENOMENA

2.1. INTRODUCTION

N the past decade, quantum Markovian master equations have become a popular

tool to investigate nonequilibrium phase transitions that occur between (detailed-
balance breaking) steady-states [35, 45-62]. Special attention has been given to two
broad classes of out-of-equilibrium phase transitions: (i) those induced by external driv-
ing fields in systems interacting with a single bath (driven-dissipative processes) [45-51]
and (ii) those generated by the coupling of a system to several baths (boundary-driven
processes) [35, 52-62]. Remarkably, nontrivial exact analytic steady-state solutions of
so called local quantum master equations of the Lindblad type have been obtained for
various many-body spin-chain models [35, 52, 55-58, 60, 62].

However, the form of these quantum master equations employed in these studies is
often postulated. Their validity is thus not completely clear a priori. This is especially
true for boundary-driven processes where the system of interest is coupled to several
reservoirs. In this case, it has recently been shown that local master equations, that are
commonly used to examine nonequilibrium phase transitions [35, 52-62], may violate
the second law of thermodynamics [10] and give rise to nonphysical results, even in the
limit of small bath couplings, such as incorrect steady-state distributions or nonzero cur-
rents for vanishing bath interactions [43, 63-72]. These inconsistencies are related to the
fact that local quantum master equations, whose total dissipator is simply the sum of
the local system-bath dissipators derived by neglecting the intra-system coupling, in-
correctly neglect subsystems-bath correlations induced by the coupling to the full sys-
tem Hamiltonian, in contrast to the proper derivation of a quantum master equations,

Parts of this chapter have been published in [44]
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termed global master equations [10, 43, 63-72]. Interestingly, the local approach has
been shown to provide a better description of quantum heat engines than the global ap-
proach in some parameter regimes [67]. The validity of Lindblad master equations has,
for example, been discussed in the context of quantum transport [73, 74], quantum re-
laxation [27, 75], and entanglement generation [76]. But the considered models cannot
be used to investigate nonequilibrium phase transition behavior, as they do not possess
them.

In this chapter, we examine the accuracy of a quantum-master-equation description
of dissipative critical phenomena by analyzing an exemplary system consisting of two in-
teracting harmonic oscillators, each weakly coupled to a thermal reservoir. This system
naturally appears in many areas, most notably in cavity optomechanics [77]. Superra-
diant phase-transition models, such as the Dicke model [78] and the Tavis-Cummings
model [79], can also be mapped onto such a system after a Holstein-Primakoff transfor-
mation [80, 81] as we will briefly consider in the next part. We concretely compare lo-
cal and global quantum master equations, with and without rotating-wave approxima-
tion for the oscillator-oscillator interaction. We furthermore compare these equations
in the thermal case to the expectation of the corresponding Gibbs state. We also will
use the results of the quantum Langevin equation [15] as a further control solution in
the nonequilibrium case. While a quantum Langevin equation is also only a Markovian
approximation [15, 16], a coincidence between the Langevin equation and the (global)
master equation may be regarded as an internal consistency check of the Markovian ap-
proximation. We explicitly evaluate the stationary mean occupation number of one of
the quantum oscillators for various equilibrium and nonequilibrium temperature differ-
ences.

We find that the local master equation generally fails to qualitatively reproduce the
results of the Gibbs state for equilibrium situations, and the quantum Langevin descrip-
tion in the nonequilibrium case, especially at high temperatures, while the global ap-
proach exhibits complete agreement for equilibrium situations and a close behavior in
nonequilibrium cases. We show that this feature is directly related to the inability of the
local description to correctly capture intersystem correlations, which we quantify with
the help of the quantum mutual information and negativity [26].

2.2. THE MODEL AND ITS DYNAMICAL DESCRIPTION

As mentioned above, one field of application of quantum master equations is in the
treatment of phase transitions. For these systems it is often the case that a relevant cou-
pling constant has to be sufficiently finite to cause a phase transition. One such exam-
ples is given by the so called Dicke model [80, 82-87]. The Dicke model describes the
interaction between an ensemble of N atoms, which can be approximated as a collec-
tion of identical two-level systems with gap w; that are put in a vacuum cavity, described
by the Hamiltonian

A
Hpicke = 01); +w2ayaz + —— (a} + az) U + J-), 2.1)

V2]
with J; the collective spin-algebra of the pseudo-spin of length j = N/2. The cavity
(light) eigenmode is described by a single mode of frequency w, described by a bosonic
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Hilbert space with ladder operators ay, a; A rotating-wave version is given by neglect-
ing the non quantum-number conserving terms ag J+, azJ—. While the rotating-wave
approximation is usually associated with a weak-coupling condition, A/w; <« 1, it has
recently been shown that counter-rotating terms may be effectively suppressed in mod-
ulated systems, even in the ultrastrong regime [38, 89]. The coupling between the atoms
and the light-mode is realized by shining laser light perpendicular to the mirrors into
the cavity [33, 47, 90]. This laser causes excitations in the atoms and decoherent emis-
sions. Increasing the laser strength, the decoherent emission of the atoms increases
and more light is emitted into the cavity-mode. The cavity light intensity causes then
stimulated absorption and emission in the atomic gas ensemble, creating a coupling be-
tween the atoms and the cavity-mode described by the coupling constant A. Once the
intensity is sufficiently strong, for a critical coupling strength A, this results in a posi-
tive feedback loop, creating a coherent state constituted of the atoms in the cavity and
the mode field. This sudden change in behavior can be considered as a quantum phase
transition [80, 82, 85-87]. Considering purely the Hamiltonian properties of the corre-
sponding Gibbs state for both the Dicke and the rotating-wave version [30, 85, 86], the
critical coupling strength is given by A.pp = \/w1w>/2 for the full Dicke Hamiltonian and
Acr = /w12 for the rotating-wave version at zero temperature. For finite temperatures
T and the rotating-wave case, [82, 85, 86] showed that the critical point increases expo-
nentially with the inverse of the temperature, . = 1/(kT;) = 2w,artanh(w; w»/ A2)/w; for
A> /10R-

Kopylov et al. [34] considered the effects of open quantum mechanics for the phase
transition behavior of the Dicke Hamiltonian. In particular they used the local approach
to model the coupling of the cavity mode to the vacuum field, being described bya T' =0
bath. Using the Holstein Primakoff transformation and mean-field theory, they found
that the critical coupling also depends on the cavity mode-vacuum field coupling v,
A2, = (Y? +4w?)w,/ (16w)). A similar result was obtained by Dimer et al. [33] who found
A2p, = W2(y? + 0})/ (4w:). Their small difference stems from the fact, that Dimer et al.
[33] use the local master equation on the level of the collective spins, while Kopylov et al.
[34] use the local master equation for the fluctuation terms of a two-harmonic oscilla-
tor system. They furthermore considered the fluctuations about the mean-field solution
which express a similar behavior. The fluctuations can be described by a Hamiltonian of
two coupled Harmonic oscillators [33, 34]. The resulting Hamiltonian from (2.1) is then
given by

Hpno = Y wial a; + A(a} az + a1 a}) + k(a1 az + a] a}), 2.2)
14
where x = A for the full Dicke Hamiltonian, which will be termed the position-position
coupling Hamiltonian in the following, as in this case the intra-system coupling is of the
form x1x, = (a1 + a{) (ap + a;) and « = 0 for the rotating-wave Hamiltonian.

This Hamiltonian describes the full Dicke system below the critical points, where the
mean-field vanishes [33]. Therefore we will consider its critical behavior approaching
these critical coupling strengths for the open quantum case of two coupled harmonic
oscillators each locally interacting with a bath, using the local and global quantum mas-
ter equation and consider how various aspects of their steady-state behavior differ from
each other. We will compare these equations with the Gibbs state and the quantum
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Figure 2.1: Coupled harmonic oscillators. Two quantum harmonic oscillators interact with each other with
interaction strength A, either strongly or weakly x = A,0. Each of them is weakly coupled to a heat bath with
respective temperature T, (j = 1,2).

Langevin equation. For being able to do so, let’s consider first the properties of the
Hamiltonian (2.2) and the form of the master equations and Langevin equation.

2.2.1. COUPLED HARMONIC OSCILLATOR PROPERTIES
The toy-model of two coupled harmonic oscillators (2.2), which will be used throughout
this work, is a quadratic (bosonic) Hamiltonian. Quadratic Hamiltonians are generally
possible to be diagonalized by using an appropriate transformation of the operators [91,
92]. Diagonalizing the Hamiltonian (2.2), one receives a transformed Hamiltonian that
has the form of two uncoupled harmonic oscillators H = w d}: d, +w_dld_, where the
coupling is encoded in the diagonal eigenfrequencies w-.

In the case of the rotating-wave interaction [10], or quantum number conserving
interaction x = 0, the diagonalized Hamiltonian of Hpyo (2.2) has the following form of

its eigenfrequencies
ol = (a)l+w2i\/(w1—w2)2/4+/12)/2. 2.3)

The operator transform needed to receive this diagonalized Hamiltonian is given by use
of the rotated operators d_ = apcosf — a;sinf and d; = a; cosf + ay sinf, where the
angle 0 satisfies cos?6 = (w1 — ™)/ (@} — ™) [10]. The 0™ frequency is positive only
for A < A.g and vanishes at the critical point. For coupling strengths A larger than the
critical one A > A.g, the frequency becomes negative and thus the Hamiltonian is no
longer bound from below, thus the Hamiltonian (2.2) becomes unphysical. The positive
eigenfrequency w'" always stays positive.

For the position-position case x = A on the other hand, the eigenfrequencies are
given by [82]

1
H
wf’ﬁp = (a)f +wi+ \/(w% —w3)?+ 1612w1w2) /2] ) (2.4)

The diagonalization of the position-position Hamiltonian (2.2) is more involved as it
couples all four ladder operators with each other, (al,ag,a‘{,a;) = S(cl,CZ,cI,c;) [82].
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The 4 x 4 diagonalization matrix S is partitioned into four blocks with the 2 x 2 matrix A
on the diagonal blocks and 2 x 2 matrix B matrix on the off-diagonal blocks:

(@P+w1)cosd  —(WPP+w;)sind (~wBP+w1)cos  (wPP—w)sin®
aAo| 2yeter velior | p 2\4‘”%1 2o 2.5)
T | @P+w)sing (PP +w,)sing T | o +w2)sind  (@PP—w))sind )
2\/wg_pw2 2 wEPwZ 2\/w8_pu)2 2 wgpwz

Similar to the rotating-wave case, the eigenenergy " stays positive for all A, wPP is only
positive for A < A.pp and vanishes at the critical point. However, for larger coupling
A > Acpp the eigenfrequency becomes imaginary wPP € iR. Thus the Hamiltonian (2.2)
becomes always unphysical above the critical point, regardless of the type of coupling.
The vanishing eigenfrequency also causes that, at the critical point, the ground state
becomes infinitely degenerate.

It should be stressed, that this critical behavior of the coupled oscillator Hamiltonian
(2.2) is in contrast to the commonly treated (classical) Hookian interaction (x; — X2)?
[27, 73-76], which does not have such a critical point. This is the case, because the addi-
tional quadratic terms xl? also modifies the local frequencies of the harmonic oscillators,
preventing the intra-system coupling terms to reach the critical point.

With the help of these operator transformations, it is straightforward to calculate any
moment of the thermal Gibbs state. Any observable (A; A;) = Tr{A; Ajp.4} for arbitrary
operators A;, Aj = ai, az, a]{, ag can be directly calculated by evaluating the Gibbs state
using the diagonal form of (2.2), for which any expectation value can be directly calcu-
lated.

2.2.2. GLOBAL AND LOCAL MASTER EQUATIONS

One of the most well studied cases of a Lindblad master equation is the evolution of a
single harmonic oscillator subject to interactions with its surroundings [6, 15, 93, 94].
The bath is modeled to be comprised of a large number of uncoupled oscillators. Its
master equation is of the form (neglecting lamb shift terms)

p=—ilH,pl+D(p) =—ilH,pl +YN(B,w)(a pa-{aa',p}/2)
+Y(N(B,w) +1)(apa’ —{a'a,p}/2),

with the friction coefficient of the system-bath interaction y and the Bose-Einstein dis-
tribution N(B,w) = 1/(ef® — 1). The master equation (2.6) describes the open dynamics
of the single oscillator well, however, the considered general setup in Fig. 2.1 is com-
prised of two oscillators that each are exclusively coupled to a different bath, usually
necessitating a rederivation of the master equation.

Nevertheless, the local approach utilizes the dissipator of (2.6) by heuristically adding
this dissipator for each bath interaction with an oscillator. Thus, the local master equa-
tion can be written in the form

p=-ilH,pl+2y(p) + 25 (p) 2.7)

(2.6)

with the dissipator for each one of the baths given as in (2.6)

2 (p) =7i(w)N(Bi,wi)(a pa; —{aial, p}/2) +yi () (N(Bi,w:) + 1)(aipal —{a) a;, p}/2).
2.8)
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Considering Eq. (2.7) and (2.8), it is interesting to note that the local dissipators try to
thermalize the mode i at ;w;.
The global approach on the other hand is properly derived from first principles using
a number of approximations, which will be sketched in the following and the dissipators
given. Starting from first principles [6, 27], the complete system consists of the Hamilto-
nian
H=Hs+ Hg1+ Hpy + Hj1 + Hpo, (2.9)

where the Hp; = Y wikb:.rkbik is the Hamiltonian for the i-bath of an ensemble of har-

monic oscillators with operators by, bjk. The interaction between a bath and its cor-
responding coupled subsystem is given by Hy; = Y i €ix(a; b:fk + a:.r b;i). The dynamics
for the density operator p of the full system + baths is given by the von Neumann equa-
tion. We assume that the two baths are completely uncoupled (B;Bjx) = 0 for all B; =

Dir, b:.Lk, i # j and both of them are thermal baths <bjk(t)bik/(s)> =N(Bi,w;)0xp6(t—5).

Using the interaction picture form of the density operator pl (1) = Ug (Hp(HUH(1) , with
Uy(t) = exp(—i(Hs + Hp) + Hp2)t), the interaction picture version of the von Neumann
equation is given by d,p’ (1) = —i ¥ ;[H} 5, p!()]. This operator differential equation
can be formally integrated. Reinserting the formal solution into the interaction picture
dynamics and tracing over all bath degrees of freedom, one receives

OE —ZfotTrB {[Hf:0, [ Hj5.0' 9]} ds (2.10)
ij

where Trp is the trace over all bath degrees of freedom. Due to the fact, that the two
baths are completely uncorrelated, the system-bath coupling terms in (2.10) of the form
Hyj Hye will result in expectation values of the form (B]I. k(t) B; k(s)) =0, which vanish and
thus the double commutators in (2.10) completely decouple into two double commu-
tators that only contain interaction-terms of one of the baths. Therefore, the following
derivation will be done using only one of the baths, whose derivation can be analogously
applied to the second one. In the following, for the sake of notational simplicity, the bath
density operator for the first bath pp; will be replaced by pp and the interaction Hamil-
tonian Hj; by Hj. The system and baths are also assumed to be initially completely
uncoupled.

To simplify the differential equation (2.10), three approximations are done. The first
one is the so called Born approximation, which assumes that the system and bath are
only weakly coupled. Due to this weak coupling, it is assumed that the density matrix can
be approximately described by a product state p(t) = ps(#) ® pp. This can be understood
as follows: the weak coupling causes only very small correlations being created between
the system and the bath. Ignoring these small correlations will result only in negligible
errors. The second is the Markovian approximation, replacing pg(s) = pg(t). Further
time coarse-graining is done by removing the short time behavior by substituting s with
t — s and taking the upper time integral limit to infinity. This procedure results in the
Redfield equation [6] in the interaction picture

ps() = —fo Trg {[HI (1), [H] (t - 9), p5(t) ® pp]]} ds. 2.11)
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Equation (2.11) does no longer depend on the past of pg, but it still a integro-differential
equation. To remove this integral, the interaction Hamiltonian has to be explicitly in-
serted. The interaction Hamiltonian can be written in the general quadratic form H; =
Y, A¢By, where A = (al,air) and B = (X £Zb£,2k erby). The interaction picture bath
operators are given straightforwardly by b;l = elwk! b; and bé = e~ ®k'p, due to the bath
being comprised of an ensemble of uncoupled harmonic oscillators, i[Hg, bx] = —iw b.
The interaction picture time evolution of the system-operators is more complex to treat,
since the system Hamiltonian (2.2) contains the additional intra-system coupling. Us-
ing the diagonalization transformations considered in chapter 2.2.1, any linear operator
can be written as a linear combination of the operators in the basis where the Hamil-
tonian (2.2) is diagonal, (ay, az, aI, a;) =M(d,,d_, d]:, d?). Thus, the system-operators
can be written as a linear combination of the four diagonal operators, with the set S =
fwy,—0y, 0, —w_}

aj(n=Y LI(Q,0), 2.12)
QeS

where L (Q, 1) = ¢/?'L; (Q), Q = 2w, and the L, (Q) corresponds to the matrix elements
of a;, L, (Q) of air, L; of ap and L4 of ag . The master equation then takes the form

p§(z)=-n{ A Y [L{(Ql,t)Bl(t),[Lﬁ(ﬂz,t—s)Bz(t—s),pé(t)®pB]]}
91'2€S
(2.13)

—Tr{ Y [L3Q2, 1By (0), [LE(Q1, £ = ) Ba (2 - 9), p5 (D) ® p5]] }
0 91'265

Terms of the form L!L! B/ B! will vanish because the baths are thermal (B! B) = 0. The
time-evolution is thus given by eight individual components stemming from the two
double-commutators in (2.13). As an example, we will consider one of these terms and
consider how they have to be treated. The other terms then can be computed analo-
gously. Considering only the first term in (2.13), one receives

P (0=Y | LiQ1, 0L (Q, t—)p(t)B{(1)B) (1 s))ds
QlygES 0 (2 14)

(o0} . .
=y Li(Q1) L2 (Q)e" M p (1) Y e |2 Nie' Ve 23,
Q]YZES 0 k

Taking a continuous limit of the number of bath modes, the bath contribution can then
be rewritten as

) . 00 oo .
f Y lex 2 Npel it s = f f EMPNBLVI M 2dsdy (2.15)
(i o Jo

with J(v) the bath’s density of state. The time-integral over the exponential function
results in two contributions; a principal value part which causes a modification of the
Hamiltonian part of the dynamics and the delta distribution part that causes the dissi-
pative behavior [6]. Throughout this work, we assume that the principal value part can
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be neglected. The bath contribution then becomes (for Q, < 0)
o0 oo .
f f leMPTMIN(Br,v)e'" ¥ dsdv =T (~Q2)N(B1, ~Q2) (2.16)
o Jo

or vanishes if Q, > 0. Here ['(Q) = |e(w)|?J (w) is a friction coefficient which is in general
dependent on the frequency Q of the corresponding mode. Inserting Eq. (2.16) into
(2.14) one receives

PO ==Y Li(Q)La(Q)e' DI (-Qp) N(B1, - Q). 2.17)
91,2€S

Now a third approximation has to be done. Assuming that one is interested only in long-
time behavior, one can note that many contributions in (2.17) contain oscillatory factors
exp(i(Qy + Q) 1). In the case that the frequencies do not cancel each other, the oscil-
lations will be averaged out over long times. Thus, ignoring short time behavior, one
can drop all contributions that have non vanishing exponentials, in the case (2.17) this
means that only the Q, = —Q; < 0 contributions survive. Such an approximation is gen-
erally termed the secular approximation. Reiterating this procedure for the seven other
contributions in (2.14) as well as for the second bath, one can derive the global master
equation for the coupled harmonic oscillator problem. The resulting master equation
will have the general form in the Schrédinger picture and for the operator basis a;, a;.r,

4
1
ps(t) =—ilHs,psl+ ) T(Ca,Cp)|CqapsC _E{Cﬁcmps} : (2.18)
a,f=1

for system-bath coefficients I'(Cy, Cg) and the vector of operators C= (aq, az, air, ag).
The global dissipators for the weak coupling case x = 0 are then given as [10],

I'(ay, air)=YTC4+YI—S4+(Y3-+Y2—)CZSZ

Tla},a) =y{'c* +77's' + (3 +7;) 6%

Dlaz a}) =v7¢* +73 s+ 0f +77)e?s”

F(Cl;,az) :Y;,04+Y2_,54+(YT,+Y1_,)0282 (2.19)
T(ay,a}) =yi*s—yiSc+yses’ —y; s

3

'Ss—yi'SPc+yies® —y;' s,

F(a’{, az) =yy
with ¢ = cosf, s =sin6, y; =yi(ws), y; =77 e Piv= and F(ai’, a) = F(a;, a), ['(ay, a;) =
I'(ay, a{). All other terms vanish. The factors yl?’ correspond to the system-bath cou-
plings and have to be chosen sufficiently small, such that the weak coupling approxima-
tion holds, y;/w; <« 1, but otherwise are in principle free parameter unless the bath is ex-
actly known. In this chapter we assume that the baths are one-dimensional, thus y;—“ =Y.
Also other bath choices are possible, e.g. a three-dimensional bath [10] yl.i = y,-wi, as will
be also treated in the next chapter 3.

For the position-position coupling case, the global Lindblad dissipators are more

o e . PN ij ij ij
complex. For each individual contribution one has I'(C;, C;) = 1"1,13 + l“L31 + F2124 + 1“2’42,
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with

IV =@ NBL SIS W W) +71@ )N (B1,0-) S5 S, W W] (2.20)
11O DINBLw) +USESSW W] +71(@ ) NG, 0-) + USESiWiw?

for the quantum oscillator 1 coupled to bath 1 at inverse temperature §; and with W =
S~ where S is the transformation matrix of the Hamiltonian (see chapter 2.2.1). Here
the indexes i, j run over 1-4, corresponding to the elements of (al,az,ai, ag). The in-
dexes k, I correspond to the initially chosen local coupling terms (1 — a;, 3 — a{) in the
derivation of the master equation (2.11) before the diagonalization is applied, which can
be ordered either as a; a;.r or a} a;. Thus, there are 32 different terms corresponding to
the 16 unique operator orderings C;C; in the dissipators. Expressions for second bath at
inverse temperature 3, are analogous with k, ! now combinations of 2,4. As in the local
case, the friction coefficients have to be sufficiently small y;/w. < 1.

The friction coefficients y; have to be small as the master equation is derived under
the weak coupling assumption.

2.2.3. LANGEVIN EQUATION
Quantum master equations describe the time-evolution of the density operator for an
open system and can therefore be considered as a Schrédinger picture description of
open dynamics. On the other hand, quantum Langevin equations determine the dy-
namics of the system operators and therefore may be identified as the Heisenberg pic-
ture of the open dynamics [6, 15]. A detailed treatment of various aspects of quantum
Langevin equations can be found in the books by Gardiner [15] and Vogel, Gunnar [16].
The general form of a quantum Langevin equation in the bosonic mode description is,
for the operators a;

ai()=ilH,a;(D]l—yia; + ai,in(?) (2.21)

and analogously for a:.r. Similarly as for the master equation, this equation contains
two main contributions. On the one hand, the Hamiltonian part by the commutator
and on the other the open part. —vy;a; is the damping term. The input term a; ;,(f)
counteracts the damping term and is needed to conserve commutation relations, since
dt[aj(t), a;(1)] = —2y; # 0 would not vanish. These input terms furthermore enable the
system to reach a (physical) steady-state. In general, both the damping term and the
input noise are determined by the structure and state the bath is in. For a flat bath spec-
trum, which corresponds to quantum white noise [15], the input mean occupation num-
ber can be given in Fourier space as

(ﬁi,in(v)fl;m(vl)) =2y;(1+N(B;,V)5(v -, (2.22)
where a; ;,(v) = [exp(ivt)a;(Hdt, Zz;l.n(v) = (c"z,-,,-n(v))Jr are the Fourier transformed op-
erators.

Compared to classical Langevin equations, this equation is operator valued. Thus its
treatment is generally more complex. For quadratic Hamiltonians Hjys, however, it is
possible to solve for the first and second moments via Fourier transform, with which the
operator differential equations 2.21 are transformed into operator identities. These can
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be solved by finding a closed set MA = A;,,, where A, A;, are vectors consisting of the
respectively needed system/input operators.

For the Hamiltonians of interest (2.2) with two locally coupled baths, the steady-state
solution can be obtained by matrix inversion in Fourier space [47], M W AW) + Ziin W) =
0, with the system vector Aw) = (@ (v), (71{(—1/), ar(v), El;(—v)) and the input noise vec-

tor Ain(v) = (v/2y161,in (M) /27141 ;. (=V), \/2y28,in(V), \/2Zy2@ ; (~V)). The matrix M is
given by

—iv+iw 0 ix il
0 —iv—iw; —iA —iK _
M) = ir —iveio, 0 |77 (223)
—iA —ix 0 —iv—iw,

with ¥ = diag(y1,y1,Y2,72). Inverting M~! = m, the second moment (aIm) in the alge-
braic space is given by

(e 9) o0 A ,
(ala) =f f (ala; (v)ye' ! 12mdvdyv’
—00 J—00

(/) f P UmnENGLY) + Imip PN, —v) + 1)

+y2(1m13l2 N (B2, v) + 1m1al* (N (B2, —v) + 1))dv

and similar expressions for all the other second moments.

It should be noted, that Langevin equations are on a similar footing as master equa-
tions. In fact, Markovianity is generally also used to derive the quantum Langevin equa-
tion [16]. While they are similar in their approximations, they are still different approx-
imative approaches, thus their results do not necessarily have to coincide. In the case
that they do coincide, one might take this as an argument that the considered system
is correctly described by such a Markovian description. If they differ, however, this is a
possible argument that the description of the considered system may have 'fundamen-
tal’ non-Markovian effects that should be taken into account for a consistent open dy-
namics’ Heisenberg and Schrodinger picture.

2.3. THE COMPARISON OF GLOBAL AND LOCAL MASTER EQUA-

TIONS

The two Hamiltonian forms of Eq. (2.2), given by k¥ =0, 1, result in four different master
equations, which will be compared in the following. Their steady-state behavior will be
calculated by making use of the characteristic function and symplectic spaces (details
can be seen in the appendix 7.1). We start by first considering the equilibrium case for
them.

2.3.1. EQUILIBRIUM APPROACH TO THE CRITICAL POINT

The first quantity of interest is a local one; the mean occupation number of the first oscil-
lator (aI ay)ss in dependence of the reduced interaction strength between the two oscil-
lators A/A.. A, corresponds to the respective critical point of the model, A, = A¢g, Acpp.
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Figure 2.2: Steady-state mean occupation number (uIm)ss of the first oscillator as a function of the dimen-
sionless inter-oscillator interaction strength, A/Ac, for the equilibrium (high-temperature) case AT = 0. For
the position-position interaction [see Eq. (2.2)], the results of the global quantum master equation (blue dots)
perfectly agree with those of the quantum Langevin equation (green line) as well as those of the Gibbs state
Peq = exp(—BH)/ Z (yellow line), while those of the local quantum master equation deviate more and more as
the critical point is approached. For the rotating-wave interaction (inset), the global approach still perfectly
matches the predictions of the quantum Langevin equation, while the local scheme does not display any crit-
ical behavior. Parameters are y; =y2 =1.5- 1074, w; =5,wpy=2and T} = T» = 98.

Figure 2.2 considers the equilibrium case AT = T» — T1 = 0 for high and low tempera-
tures and Fig. 2.3 shows the T; = 0 equilibrium case. For finite temperatures, Fig. 2.2 it
is observable there, that there is a perfect agreement between the global quantum mas-
ter equation (blue dots), the quantum Langevin equation (green line) and the equilib-
rium (Gibbs) state peq = exp(-BHppo)/ Z (yellow line) for all values of A/ A, for both the
position-position and the rotating-wave (inset) interactions, and for both high as well as
low absolute temperatures (left and right figure in 2.2). By contrast, the local quantum
master equation (orange squares) deviates from these results in particular as the criti-
cal point is approached; noticeably, it does not exhibit any critical behavior at all for the
(intra-system) rotating-wave interaction (inset), regardless of low or high temperatures.
From the nature of the Hamiltonian, such a behavioral difference is expected for the lo-
cal master equation. For the position-position coupling case, the unitary dynamics part
of the local master equation (2.7) contains the non-quantum number conserving terms
(aran + a’{a;). These enable the local dynamics to still create nontrivial behavior in the
form of the divergence at the critical point. But since the dissipator (2.7) is in this case
blind to the intra-system interaction, it is not able to completely replicate the correct
behavior. In the rotating-wave case, however, this leads to the complete breakdown of
the local approach. In this case, the whole dynamics is quantum number conserving,
which renders the Hamiltonian part unable to force the local approach to experience
the critical behavior.

Next, let us consider what kind of effect the case T; = 0 creates. Compared to small
temperatures, this case is purely quantum even when the critical point is approached
A — A¢. Thus, if critical behavior occurs, then one might call it full quantum critical
behavior. In Fig. 2.3, the local occupation number of the position-position coupling
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Figure 2.3: Behavior of the equations for T; = 0 of the position-position coupling. In the rotating-wave case
x =0, all are identical to 0 and thus not plotted. The global approach (blue dots) follows the (yellow dashed)
analytic solution (Gibbs state at T; = 0). Now the local (orange squares) and the quantum Langevin equation
(green line) coincide, but do not reproduce the Gibbs state behavior. Parameter same as in Fig. 2.2.

case is plotted for the vanishing temperature case T; = 0. It can be seen there, that at
T; = 0 the global master equation still completely follows the Gibbs distribution (yellow
dashed). However, now the Langevin equation and the local approach coincide. But
these do not coincide with the Gibbs distribution. This remarkable finding might be
caused by two facts.

First, T = 0 is fundamentally quantum and it is quite questionable how valid the as-
sumption of Markovianity is in this case. In fact, for the harmonic oscillator it was shown
[95] that damped dynamics can be connected to weak coupling theory of the damped
harmonic oscillator only in the case that iy < kT. On the other hand, the global ap-
proach results in quantum Markovian semigroups of a special kind. The dissipators in
(2.19),(2.20) have, in the diagonal basis df_j) of the Hamiltonians (2.2), the form of Davies
generators [28], which have in the case T = T the Gibbs state as their faithful (steady-)
state. The extensive approximations in the global master equation thus force the steady-
state to be a Gibbs state even in the T = 0 case. Since such a property is not shared by the
local as well as for the Langevin approach, these differ and surprisingly seem to coincide.

While the position-position coupling case shows such interesting behavior, the weak-
coupling version x = 0 is quite trivial. Since the Hamiltonian is completely quantum-
number conserving, the ground state is still |00, the direct product of the ground state
of the individual harmonic oscillators, regardless of coupling. Thus there does not exist
a critical behavior for the weak coupling Hamiltonian. In fact, the steady-state of all the
dynamical equations is exactly this ground-state for all coupling values A/ A..

For a deeper understanding of the physical reason of the success or failure of the
quantum-master-equation description of dissipative critical phenomena, we will first
concentrate on the quantum mutual information between the two harmonic oscillators,
I(p) = S(p1) + S(p2) — S(p), where S(p;) = —tr{p;Inp;} is the von Neumann entropy and
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Figure 2.4: Steady-state quantum mutual information I(pss) of the two-oscillator system as a function of the
dimensionless inter-oscillator interaction strength, A/Ac, for the equilibrium (high-temperature) case AT =0
(left) and the T; = 0 case (right). (left): The mutual information displays an analogous dependence of the inter-
action strength as the steady-state mean occupation number (a{al) ss shown in Fig. 2.2. (right): For vanishing
temperature, the Langevin equation coincides with the local approach completely, while the global approach
coincides with the expected mutual information of the Gibbs ensemble, in accordance with the mean occupa-
tion number behavior in Fig. 2.3. Same parameters as in Fig. 2.2.

pi = tr;p are the reduced density operators of the respective harmonic oscillators and p
is the density operator of the whole system [26] (see appendix 7.2 for details). The quan-
tum mutual information is a measure of the total (classical and quantum) correlations
between two subsystems and has been used broadly to characterise critical transitions
[96-100].

Figure 2.4 shows the mutual information for the position-position coupling case at
finite (left) and vanishing temperature (right). The inset contains the finite temperature
rotating-wave interaction. The left figure in 2.4 shows that the stationary quantum mu-
tual information I(pss) displays a very similar dependence on the interaction strength
AlA. as the average occupation number (aIm)ss represented in Fig. 2.2, both for the
position-position and rotating-wave inter-oscillator interactions. The insufficiencies of
especially the local quantum-master equation approach, may thus be caused by its in-
ability to correctly reproduce the intersystem correlations, in particular close to the crit-
ical point. This feature can be confirmed mathematically by looking at the way the re-
spective Lindblad quantum master equations are obtained [10]: the dissipators in the lo-
cal master equation are indeed derived in the local eigenbasis of each separate harmonic
oscillator, while those of the global master equation follow from a diagonalization of the
interacting two-oscillator system (the unitary evolution given by the von Neumann term
in Eq. 2.20 describes coupled dynamics in both cases). Therefore, the global scheme
better accounts for intra-system correlations than the local one.

The right figure in 2.4 shows the same behavior as in the steady-state occupation
number case in Fig. 2.3 for temperature T; = 0. Only the global master equation (blue
dots) is able to reproduce the mutual information of the Gibbs ensemble ground state
(yellow dashed) correctly. Both the Langevin equation (green line) and local master
equation (orange squares) are incorrect, but also agree with each other. In particular,
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Figure 2.5: Steady-state negativity N of the two-oscillator system as a function of the dimensionless inter-
oscillator interaction strength, A/, for the equilibrium (low-temperature) case AT = 0 (inset) and the T =0
case on the right. On the left, the quantum mutual information is shown in a log plot at vanishing temperature.
The low temperature case shows for the negativity, on the right (inset), mostly an agreement between the
approaches, with small deviations for the local approach (orange squares). The T; = 0 case shows that both
the local and Langevin approach (green line) show a relatively weak entanglement creation approaching the
critical point. The global approach (blue dots) and the Gibbs state (yellow line) shows a strong increase in
negativity approaching the critical point. Compared with the log plot of the mutual information, this means
that the global approach does not produce more correlations per se than the local one, but more coherences
are being created. Same parameters as in Fig. 2.2.

both are not able to create sufficiently strong correlations. The quantum mutual infor-
mation is dependent on the complete state of the dynamics’ steady-state and thus the
global approach does not just coincide with the Gibbs state for local observables, but
completely coincide for equilibrium situations. The result at 7 = 0 further suggests, that
the Langevin equation can potentially be described by the local master equation at T = 0.

The quantum mutual information considers general correlations between the sub-
systems, unable to distinguish whether these are classical or quantum. Coherences for
two Gaussian systems can be described by the negativity [101]. The negativity is de-
fined by the trace norm of the partial transpose of a state p, ||p74||; of a two-partite
Hilbert space # = /0, ® A5, with the trace norm of an operator being defined as ||p||; =
Tr{(pp")'/?}, for a Hermitian operator p. The partial transpose of the A-subspace can
be defined by (iA,jBIpTA lka,€p) = (ka, jBlplia,¢B). While for density operators it is
the case that ||p|l; = 1, where p only has positive eigenvalues, the partial transpose
pT4, Tr{p"4} = 1 contains also negative eigenvalues if p contains entanglement between
the two subsystems and thus ||pr‘ [l1 # Tr{pr‘}. Negativity is then defined as

llp4() -1
—
While it is not an entanglement measure, the negativity is an entanglement monotone,
i.e. if there exists entanglement, then the negativity becomes finite and qualitatively an
increase in negativity means an increase in entanglement [101] (see appendix 7.2 for
further details on how the negativity can calculated for Gaussian systems).
Entanglement exists in low temperature quantum situations. Therefore, only for low
or vanishing temperatures a finite negativity is expected. Figure 2.5 considers the low

N = (2.24)
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Figure 2.6: Ratio of the steady-state mean occupation numbers (a‘{al)ss/ (aIm)LangeVin of the quantum mas-
ter equation and the quantum Langevin equation as a function of 1/ for various nonequilibrium tempera-
ture differences AT, for position-position interaction (left) and weak rotating-wave interaction (right). (left):
In the high-temperature regime a) (8;w; < 1), The local (squares) approach generally shows larger differences
to the Langevin solution than the global one (circles). Approaching the critical point, the local approach al-
ways similarly fails,while the differences for the global one depends on the sign of the temperature difference.
For low temperatures b) the color coding is the same as for a) with the smaller temperature difference given
by ATy and the larger with AT» the low temperature behavior is similar for the global approach, while the lo-
cal one shows a strong erroneous behavior for intermediate coupling strengths. (right) for the rotating-wave
Hamiltonian, both high and low temperaturs c),d) show complete coincidence of the global approach and the
Langevin equation. The local approach completely fails approaching the critical point since it has no diver-
gence behavior. Same parameters as in Fig. 2.2.

temperature (inset) and the vanishing temperature case T; = 0 in the left figure. At low
temperatures, the negativities of the global approach, the Gibbs state and the Langevin
equation also coincide and the local approach slightly differs. In total, the negativity be-
haves linearly approaching the critical point. The T; = 0 case on the other hand shows
that the negativity of the global and the Gibbs state one rapidly increase approaching the
critical point, whereas the local and the Langevin approach are not able to create such
strong entanglement. Interestingly, considering the log plot on the left side in 2.5, one
can see that the quantum mutual information between the approaches does not differ
too strongly. This means that, the total amount of correlations being created is rather
similar. But for the global approach, a larger part of these correlations are comprised
of quantum correlations, in particular coherence. Therefore, the local approach creates
more classical correlations. This might be caused due to the lack of the nonlocal dissi-
pators of the form I'(a,, ay) etc.

2.3.2. NONEQUILIBRIUM APPROACH TO THE CRITICAL POINT

A nonequilibrium situation can be created by introducing two different temperatures
for the baths T # T». This will cause a heat current through the system that will drive
it into a nonequilibrium steady-state. In the following it will be considered what effects
this nonequilibrium situation causes, using the master equation description. For this
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Figure 2.7: Example mean occupation number (aJ{ ay)ss (left) and quantum mutual information (right) in de-
pendence of A/A. for the largest temperature differences AT = +74 for the position-position coupling case,
explaning the differences between sign changes in the temperature difference . The mean occupation num-
ber (left) shows that if the second bath is cooler AT = —74, then the Langevin equation (green line) shows
an initial cooling of the local occupation number as energy flows to the cooler bath. This is only compen-
sated approaching the critical point. The global approach (blue dots) also resembles this behavior, but weaker.
The local approach (orange squares) does not show this behavior. For a colder first bath AT = 74, the three
approaches are relatively close to each other. Quantum mutual information on the other hand (right figure)
shows an interesting inversion of this behavior. While for a cooler second bath AT = —74, all approaches have
a rather similar mutual information in the considered 1/A. interval, the colder first bath AT = 74 now shows
a strong difference between the local approach and the global/Langevin approaches. These differences are
caused by the nonresonant oscillators wj # w». Same parameters as in Fig. 2.2.

nonequilibrium situation, the Gibbs state can no longer be used as an exact benchmark.
But, disregarding the vanishing temperature case T; = 0, the quantum Langevin equa-
tion showed complete coincidence with the global approach and the Gibbs state in the
thermal case. Therefore, in order to gain deeper insight on the nonequilibrium proper-
ties, the ratio of the steady-state mean occupation numbers of the master equations and
the corresponding quantum Langevin equation expressions, (aJ{ aydss/ (a;r @1)Langevin, are
examined. This ratio is plotted against the strength of the nonequilibrium AT. The tem-
perature differences are accomplished for AT <0: T, = T+AT,and AT >0: T; = T—AT,
with the high temperature case T = 98 and low temperature case T =1.96.

In the high-temperature regime (f;w; <« 1), the left Fig. 2.6a shows that, for the
position-position interaction, the local approach becomes worse as the system moves
further away from equilibrium and that even the global approach now departs from the
solutions of the quantum Langevin equation for large AT. A similar behavior is seen in
Fig. 2.6b when the two temperatures are low (B;w; > 1). Similar results are displayed
for the rotating-wave interaction in Figs. 2.6cd on the right side : remarkably, the global
quantum master equation here always perfectly matches the quantum Langevin equa-
tion, for all A and all AT, while the local quantum master equation always fails to de-
scribe critical behavior. That the behavior for high and low temperatures is similar, is
somewhat expected approaching the critical point. Since one of the eigenenergies of the
system (2.4) vanishes at the critical point, any finite temperature will lead to a diverg-
ing occupation number, since lim,_.,. N(f;,w_) — oo. However, for smaller coupling
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strengths it is visible that the general behavior differs for the local approach. Lower tem-
peratures cause the difference between Langevin and local master equation to be max-
imal at lower coupling strengths, for both interaction cases in Fig. 2.6. Further, one can
see that the sign of the temperature difference AT causes qualitative differences between
the global and the Langevin approach. The magnitude of their difference is in part due to
the different frequencies of the two harmonic oscillators w; which has a nonlinear effect
because N(f;,w;) is highly nonlinear.

An example explaining this qualitatively different behavior for the temperature dif-
ferences of the local observable (a’{ ay) is also shown in Fig. 2.7, by considering the high
temperature cases AT = +74 for the position-position coupling and the mean occupa-
tion number (left) as well as the quantum mutual information (right). The case that the
second bath is cooler AT = —74 shows that the Langevin equation can reproduce a be-
havior that one would expect in this nonequilibrium situation. If the subsystems are
uncoupled A = 0, then the respective oscillators are thermalized at the corresponding
bath temperature T;. But if the coupling is switched on, then the local mean occupa-
tion number (left inset in Fig. 2.7) should decrease as energy is drained from the cooler
second oscillator, in dependence of the coupling strength. Only for sufficiently strong
coupling strengths, approaching the critical point 1., this cooling effect is offset by the
vanishing of the eigenfrequency w_. To a lesser extend this is also accomplished by the
global master equation. The local approach, however, is not able to reproduce this be-
havior at all. Comparing the mutual information in this case (right figure in Fig. 2.7), one
sees that, interestingly, the mutual information of all three approaches is rather similar,
until the critical point is approached. On the other hand, for the case that the first bath is
colder AT = 74, one has arather similar behavior for all three mean occupation numbers
(left Fig. in 2.7). There is no counteracting effect like in the AT = —74 case and therefore
even the local approach seems to be able to follow the behavior of the global/Langevin
equation relatively well until the critical point is being approached. However, the mutual
information now has more distinct characteristics for this case (right inset). The local ap-
proach has now a larger difficulty reproducing the correlations in the system, while the
global and Langevin approaches are quite similar. Of course, this behavior holds true
for both local occupation numbers. But since the oscillator frequencies w; # w» are off-
resonant, these different signs will be asymmetric about temperature.

2.3.3. SYSTEM-BATH COUPLING DEPENDENCE OF THE CRITICAL POINT

Let us finally consider what effect it has if the system-bath coupling is modified, using
the master equation approaches. The Lindblad master equations are derived under the
assumption of weak system-bath coupling. Therefore, the validity of these equations
can become rather questionable for too large values y;. Recalling that, nevertheless,
these equations are used to describe critical behavior (see chapter 2.2) for both master
and Langevin equations, it is valid to ask how the critical point behaves in dependence
of the coupling strength y =y, = y». Alog-plot is given in Fig. 2.8 for the critical point of
the Langevin equation and the two master equations. The global master equation (blue
circles) has a fixed critical point irrespective of the system-bath coupling y;. This is ex-
pected as by construction the global master equation will reproduce the Gibbs state of
any temperature (7; = 98 in this case), which of course does not depend on the details
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Figure 2.8: Dependence of the value of the normalized critical point A,/ A¢ on the coupling strengthy) =y2 =y
in a log plot for an equilibrium 77 = 98 = T». The global master equation (blue circles) always reproduces the
system Gibbs state and thus its critical point does not change A, = const. The Langevin equation (brown
triangles) deviates for larger values quite strongly. Interestingly, the local approach (orange squares) seems
to be able to, while not quantitatively, qualitatively reproduce the behavior of the Langevin equation. Same
parameters as in Fig. 2.2.

of any system-bath coupling. However, both the Langevin (brown triangles) and the lo-
cal master equation (orange squares) do depend on the coupling y. Thus, qualitatively,
the local master equation seems to be able to describe the large y case better. Quantita-
tively, however, it is not able to follow the Langevin equation behavior. It is important to
note, that above the critical point A¢, the dynamics for the coupled harmonic oscillators
become unstable, as the eigenvalue w_ becomes imaginary (2.4) and thus it is question-
able whether the description of the coupled harmonic oscillator model is still valid in
this regime.

2.4. DISCUSSION

To conclude, we have examined the behavior of the global master equation, the Langevin
equation and the local master equation for finite intra-system coupling. In particular we
considered the critical behavior of these for equilibrium and nonequilibrium situations
of a coupled harmonic oscillator model with position-position coupling and its rotating-
wave form. This model is simple enough to allow the derivation of the (global) quantum
master equation and therefore enable one to compare the local and global approach
in various aspects. In particular one is able to explicitly calculate correlation measures
and negativity. Yet, this model is also sufficiently complex to express quantum critical
phenomena.

In the equilibrium situation, it was shown that the global master equation and the
Langevin equation completely reproduce the Gibbs distribution behavior for any finite
temperature and both couplings. The local master equation on the other hand is only
able to reproduce this behavior 2.2 qualitatively in the position-position coupling case,
but is not able to do so even qualitatively in the rotating-wave case. This is also the case
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for the creation of correlations in these systems 2.4, 2.5. Interestingly, the case of vanish-
ing temperatures T; = 0 is trivial in the rotating-wave case, as all steady-states are given
by the direct product of the ground state of the two oscillators. In the position-position
coupling case, on the other hand, it was shown that the local approach and the Langevin
equation now coincide 2.3, but only the global approach is able to reproduce the Gibbs
distribution. Considering the negativity 2.5 it was further shown, that this holds true
also for nonlocal properties in the form of coherences. Thus, in the equilibrium setting
the global approach seems to be better in describing the correct steady-state behavior
for any temperature, while the Langevin equation has difficulties at T = 0. The local
approach only qualitatively can reproduce the critical behavior in the position-position
case, but completely fails in the rotating-wave case. The difficulty at vanishing tempera-
tures for the Langevin equation might be considered as a sign of non-Markovian effects,
rendering the Langevin equation erroneous.

In the nonequilibrium situation, the same problems occur for the local approach,
in particular it cannot reproduce the critical behavior there either. It is interesting, that
the global master equation and the Langevin equation coincide for finite temperatures
for any nonequilibrium situations in the rotating-wave case, but in the position-position
case this no longer holds true. It was further shown that the sign of the temperature dif-
ference results in nontrivial differences between the global master equation and Langevin
equation 2.6,2.7, which is potentially caused by the asymmetry of the oscillator frequen-
cies w; of the system. It thus was shown that, depending on the chosen parameter
regimes, in particular the local approach either is able to only qualitatively describe the
critical behavior or not at all.

Finally, let us briefly discuss the results for the harmonic oscillators w.r.t. to the initial
cause of discussing critical behavior, the phase transition behavior of the Dicke model
discussed in 2.2. At vanishing temperature, only the position-position coupling is able
to reproduce the critical behavior. The rotating-wave coupling case does not express
any critical behavior for any of the models. Further, finite temperatures should cause
the critical point to exponentially increase with f in the equilibrium situation. The fluc-
tuations described by the harmonic oscillators, however, will always behave critically
at the same critical point A, irrespective of temperature. The shift of the critical point
in dependence of the system-bath coupling can be reproduced using the local master
equation or the Langevin equation for the position-position coupling. But the dynam-
ics becomes unstable in the regime above the critical point A, as the eigenfrequency
w- becomes imaginary. These insufficiencies might suggest, that the description of the
Dicke model fluctuation using coupled harmonic oscillators might not be ideal. If one
is experimentally interested only in steady-state behavior and e.g. a limited number of
observables, then one can take either of the considered approaches and take y; as a free
parameter which can be fitted to the problem. Only in cases where the behavior is also
qualitatively incorrect, like the local master equation in general, or all equations at van-
ishing temperature T = 0 for the rotating-wave interaction model.







PERTURBATIVE TREATMENT OF
QUANTUM MASTER EQUATIONS

3.1. INTRODUCTION

In the prior chapter 2 it was shown that the global approach to quantum master equa-
tions is generally able to describe quantum steady-state behavior more accurately than
the local approach. However, even though the global master equation itself is a highly
approximative theory [6] of open quantum dynamics that is generally too difficult to be
described in its entirety, explicitly deriving the global master equation is usually rather
an involved endeavor. One major difficulty in deriving such a global master equation
lies in the fact that the complete eigenstates and eigenenergies have to be determined
[6]. For most Hamiltonians that are quadratic in either ladder operators a;, a} or canon-
ical operators p;,q;, there are diagonalization techniques [91, 92], which enable one
to derive a global master equation analytically from first principles. However, finding
the eigensystem of a general Hamiltonian is a nontrivial task. Without the eigensys-
tem, though, the global master equation cannot be derived. Owing to this difficulty, one
might be inclined to use the local approach as discussed in the prior chapter 2.

In general, if one is not able to find a proper solution of a problem, a common prac-
tice is to use perturbation theory to receive an approximative equation that can be used
without the need of using the unknown complete eigensystem. The more orders are
used, the more accurate one might be able to reproduce the global master equation’s re-
sults. In fact, there are paper’s discussing such perturbation theories for Lindblad master
equations [66, 102-104]. Especially [102] showed that the correction up to first order can
fix unphysical heat currents that the local approach may cause [28]. In this peturbative
context, the local approach can also be considered as a zeroth order perturbation.

In this chapter, we will consider how well the steady-state results from the first or-
der perturbative approach are able to correct errors caused by the local approach and
how well it can approximate the global one. First we will consider various aspects in the
equilibrium regime. Among these, the local occupation number of the first oscillator, the
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quantum mutual information and further physical aspects of heat currents and the un-
certainty principle. This comparison will then be reiterated for the nonequilibrium case
with a stronger focus on heat currents and entropy production. Then the dependence
of these approaches on the structure of the bath is considered, by comparing a flat bath
spectrum with a three-dimensional one [10]. Lastly, the second order perturbation is
treated and its steady-state behavior compared with the other approaches.

These equations will be compared using the example of chapter 2 considered exam-
ple of the coupled harmonic oscillator (2.2). In particular the position-position coupling
will be treated (x = A) in the main part. The rotating-wave case (x = 0) can be found
in the appendix 7.4. These differences will be considered for the example of the cou-
pled harmonic oscillator model (2.2) considered in the prior chapter 2 for primarily the
position-position coupling (x = 1), while the for rotating-wave (x = 0) case can be found
in the appendix 7.3.

We find that while higher order perturbative terms do improve the approximation
in some aspects, the obtained master equations do not necessarily reproduce the global
master equation better for all properties, even for vanishing intra-system coupling A = 0.
It is even possible that such higher order result in unphysical density matrices.

3.2. PERTURBATION THEORY AND THERMODYNAMIC DESCRIP-
TION

Before comparing the first order perturbative master equation with the local and global
approaches, first we will consider how perturbation theory can be applied in the deriva-
tion of the Lindblad master equation [102]. We then use these results to receive the
first order perturbative master equation for the coupled harmonic oscillator model (2.2).
Then we consider how various thermodynamic functions can be defined for quantum
master equations.

3.2.1. PERTURBATION THEORY FOR QUANTUM MASTER EQUATIONS

The work by Shishkov et al. [102] derives an approximate master equation by expanding
the interaction picture system operators about the intra-system coupling strength A =0,
where the system Hamiltonian can be written in the general form Hs = Hy + AH;. They
further apply their result to spin systems. We here extend this treatment to harmonic
oscillators. We will restrict ourselves to the case that the Hamiltonian Hy only contains
non-degenerate eigenvalues, i.e. w; # w2 in the case of the coupled harmonic oscillators
(2.2).

The interaction picture dynamics of a system operator for the system + bath dynam-
ics coincides with the Heisenberg picture dynamics of the system-operator if the system
would be considered solely. For a general operator A, A= (aq, aI, ay, ag) of the coupled
harmonic oscillator model with the Hamiltonian Hg = Hy + A Hj, (2.2), the dynamics are
given by

AL(0) = i[Hs, AL(D] = iUL(0)[Hs, An)Us(8) = iU (£) [Ho + AHy, Ap)Us (1)

(3.1
= (-D)"iw"™ AL (1) + iAMHL (), AL ()],
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with A, (1) = U] (1) A, Us (). It was used here, that [Hy, An] = (~1)"w"™ A, where o™ is
either w; for n = 1,2 or w» if n = 3,4. The goal of the perturbation theory is, that these
operators can be written as a sum of time-independent operators that are multiplied by
an oscillatory term A,ﬂ(t) =Y B, e'! for some frequencies w, as is needed in deriving
the master equation (see chapter 2.3). The operators can be formally expanded in orders
of A, A{l(t) = Zmﬂt'”A,Ifm)(t) with the initial condition A,I1 (0) = A,. The zeroth order
differential equation for the operator thus is given by

Afl(l))(t) — (_l)niw(n)Ail(O)’ Aé(O) 0)= A4, (3.2)

which can be solved by AL (£) = A, exp ((-1)"iw"™ t). Thus, the zeroth order fulfills the
form necessary to be able to derive a master equation starting from Eq. (2.10). Doing
so, one would reproduce the local approach (2.7). Therefore, the local approach can be
regarded as the zeroth order perturbation.

For the first order, also the interaction part H II (#) has to be approximated. Since the
Hamiltonian term A H II (1) is already linear, H II (#) has to be expanded up to zeroth order

H II (O=Xmkem, kAf,(,O) (t)Ai(O) (1), where the coefficient matrix is given by

€myk = 5 (33)

>R O O
>R = OO
O O >R
S O>R =

The resulting differential equation for the first order correction then follows as

. . . i((— (m) 17k oy 4 (— (n)
Aé(l)(t) — (—l)nlw(n)AgU(t) +i Z Em,k[AmAk,An]el(( DM@ +(-1) 0™ +( 1)nwn)t’ (3.4)
m,k

with the initial condition Aﬂ(l) (0) = 0. This operator valued differential equation may be
solved by

Al(l)(t) = Z gm,k[AmAk;An] (ei((—l)mw(m)+(—1)kw(k))t _ 1) e(—l)"iw(")t. (35)
" e CDE0® + (—1mem
The exact form of these first order perturbation operators ALY is given in 7.3. Using (3.5),
one can thus write the interaction operators up to first order in the following general
form

Al = (An + ZAmAm) exp ((-1)"iw™¢)

m (3.6)

+ o(exp ((—1)miw(’") t+ (D% i0® t+ ()" ie™ t))

where the A, are determined by (3.5). It is important to note that terms that oscillate at
frequency (=1)"w"™ +(~1)*w® + (~1)"w""” can be simplified by the fact that [A,,, At, A,]
is only nonvanishing if A, is equal to AJ,rn or AZ, which results in the fact that two of
the three frequencies will cancel one another and therefore the additional term will re-
sult in dissipators, up to first order, that oscillate with a frequency w; + w,. Because
the considered perturbation theory is valid only for nonresonant situations w; # ws,
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these oscillatory dissipators will vanish under the secular approximation (see discus-
sion below Eq. (2.17)). Since the first order correction in (3.6) oscillate with the same
frequency as the zeroth order, the dissipators can be obtained by replacing the zeroth
order operators in the local master equation (2.7) by the operators up to first order given
in (3.6). Following the notation of the global approach (2.19),(2.20), the system-bath
coefficients, caused by the interaction with the two baths then have the general form
L(An, Am) =T1(An, Am) +T2(Ap, Ap), with

I'1(a1,a}) = y1 (@) (N(B1,01) + 1), Ti(a],a) = y1 (@) N(B1,01)
ah 1(w1) Y1(w1)x

I'(a1,a, (N(ﬁ1,w1)+1) Ii(ay, az) = —(N(ﬁl»wl)"‘l)
(1)1 - w1 + w2
T Yl(wl)/l _ 11wk
Fl(“Zyal)— 0 -0 (N(ﬁlrwl)+1) Fl(az,a )= W+ 02 (N(ﬁlywl)"'l) (3.7)
Iy(al,ap) = 71(“”) NV Z N1, w1), T (al, af) = MN(ﬁl,wl)
w1 — w2 w1+ w2
rytah a) = 2% Nig ), Tyaz, an = Yl(wl)KN(ﬁl»wl)
w1 — w2 w1+ w2

The second bath has the same kind of contributions and can be obtained by interchang-
ing all subscripts (1 < 2) in Eq. (3.7). Thus, one finds that the first order perturbative
master equation does not contain local squeezing dissipators of the form I'(a;, a;) =0 et
cetera, for the position-position coupling case, compared to the global master equation
dissipators (2.20). This is because the used perturbation theory is done only up to first
order, while the local squeezing is a higher order effect, as (2.2) itself does not contain
local squeezing terms. It is further interesting to see that the first order perturbative dis-
sipators (3.7) have thermal contributions N(8;,w;) that are evaluated at the unperturbed
frequencies w;, and thus are unmodified by the coupling up to first order. While there
are no local squeezing dissipators I'(a;, a;) etc, in the position-position coupling case
(A =x), there exist nonlocal squeezing dissipators of the form I'(a;, a;) #0, i # j etc.

3.2.2. THERMODYNAMIC FUNCTIONS FOR QUANTUM MASTER EQUATIONS
Heat currents for quantum master equations, in the case of stationary Hamiltonians, can
be defined [6, 28, 69] by considering the energy flux

d
a (Hs) = Tr{Hsp (1)} = ~iTr{Hs[Hs, p]} + Tr{Hs (21(p) + 22(p) )} (3.8)

= (D1 (Hs) +D2(Hs)) = J1 +J2,

where 2; (Hs) stand for the adjoint dissipators of the respective bath i. These adjoint dis-
sipators can create a formal Heisenberg picture for the considered operators using the
master equation (more details will be provided in the discussion for (4.2)). The heat cur-
rents are then defined as J; = (@i (Hs)). For the example of a single harmonic oscillator
(2.6) with frequency o, it can be easily shown that for a thermal initial state with tem-
perature 31, and bath temperature 3,, the heat current has the form J = yo[(N (B2, w) +
1N(B1,w) - (N(B1,w)+1)N(B2, w)]. If the bath has a higher temperature than the system
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B2 < B1, then N(f2,w) > N(f;,w) and thus J > 0. Therefore, a positive heat current may
be interpreted as energy (heat) flowing into the system.

For the stationary state of the dissipative dynamics p = 0, it can be seen using (3.8),
that these heat currents have to compensate each other Jj; +J2 = 0. If these heat currents
do not vanish individually, then the stationary state is in a nonequilibrium steady-state.
Thus, Eq. (3.8) in this steady-state case can be considered as a steady-state version of the
first law of thermodynamics.

A steady-state version of the second law can be given by considering the model of a
system coupled to two thermal baths [28]. In the steady-state, it is physically expected
that heat will flow from the hotter bath T}, to the colder one T,. If a positive heat current
corresponds to heat flowing into the system, then from (3.8) it follows that

I, Je
T, T.
This defines a steady-state entropy production o.

In the equilibrium case, thermodynamic consistency demands individually vanish-

ing heat currents j; = 0 and vanishing entropy production o = 0.

=:-0=<0. (3.9)

3.3. INVESTIGATION OF THE PERTURBATIVE APPROACH

We will now consider how well the first order perturbative approach reproduces the re-
sults of the global master equation, compared to the local one. First we will treat the
equilibrium case, which is then followed by the nonequilibrium one. Next, the bath
structure dependence will be investigated. Lastly the second order perturbation will be
briefly treated by expanding the global approach. We will focus on the position-position
coupling (x = 1) in the main part of this chapter. The rotating-wave Hamiltonian (x = 0)
investigation can be found in the appendix 7.4.

3.3.1. EQUILIBRIUM CASE

First, let us consider how the first order perturbative approach can describe the equi-
librium situation. For the position-position coupling Hamiltonian (2.2), with x = A, the
global approach was able to completely reproduce the Gibbs state behavior (see discus-
sion in chapter 2). In Fig. 3.1, the global approach (blue circles), Gibbs state (green line),
local master equation (orange squares) and the first order perturbative master equation
(brown triangles) are plotted for the local occupation number (cflr ay) on the left and the
quantum mutual information I on the right (see definition in chapter 7.1). The main fig-
ures are evaluated at the, compared to the system frequencies, high temperature T; = 98,
while the insets are for the vanishing temperature case T; = 0. The mean occupation
number of the first order perturbative approach in Fig. 3.1 shows a similar difficulty to
reproduce the global approach as the local one, with the differences that the first order
perturbative approach results in a weaker mean occupation number as opposed to the
local approach that is too large. This also holds true for the T; = 0 case. Remarkably, even
though the local occupation number of the first order perturbative approach is not able
to reproduce the global behavior, the quantum mutual information (right Fig. in 3.1) is
quite well reproduced for finite temperature and the considered parameter regime 1/A¢.
Even the T; = 0 case is still quite well replicated for smaller A/ Ac.




30 3. PERTURBATIVE TREATMENT OF QUANTUM MASTER EQUATIONS

T = 0.14 -
24l 26 10" Equilibrium, ;=0 Tz0 ° o5 Equilibrium, T, =0 I T,20
o - uf
20 . g 012 ,
2315 o| = . # «
“ 2 g o010 Mo p
300l 4 o7 a o ».g 0.05) _::“n
A 4 of £0.08 o s
Ly OlonaB¥8sssuanansast” o ° o S 0.00) ...~""e g
(\‘1521 01 02 03 04 05 . o *é 0.06L2%%5 07 o7 03 07 o5 A
A
o - © IS P “
B o 3 0.04 o8
20 o o c )
o 8 o @ © g Gﬁ
g o.0® A Al a 0.02 8
19lliix:AAAAAAAAAAAA ..-.
0.00f,_a-a®
0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
NAc MAc

Figure 3.1: Comparison of the global, local and first order perturbative master equation for the local occupa-

tion number (a]{al) (left) and the mutual information (right) of the position-position Hamiltonian (2.2) in de-
pendence of the intra-system coupling strength A/, for the cases of finite (equilibrium) temperature 7; = 98
and vanishing temperature T; = 0 (insets). The global ME solution (blue circles) is shown with the reference
Gibbs solution (green line). (left): The first order perturbative approach (brown triangles) has a similar diffi-
culty reproducing the global result as the local approach (orange squares). This holds true for both finite and
for vanishing temperature (inset). (right): Interestingly, the mutual information can be reproduced quite well
by the first order perturbative approach in the considered 1/A. regime. Only for vanishing temperatures it has
difficulties for higher A/A.. Parameters are y; =y =1.5- 1074, w1 =502 =2.

A possible reason for this finding may be seen by considering the dissipators of the
first order perturbation (3.7). Compared to the local dissipators (2.7), there are many
additional nonlocal dissipators in the first order perturbative case. In particular also
nonlocal squeezing terms I'(a;, ay), etc. Thus, the first order perturbative approach is
able to better reproduce the nonlocal system-correlations. However, compared to the
global approach (2.20), still lacks both local dissipators of the form I'(a;, a;) as well as any
A dependence of the dissipators F(a:.r, a;), which are of higher order in the perturbation.

Let us now dive deeper into the question whether or not the different approaches are
physical in the equilibrium context. Figure 3.2 considers on the left how the heat current
of the first bath J; = (QI(HSD looks like using the different dissipators (How the heat
currents are calculated can be found in the appendix 7.2). Since we consider the equi-
librium case, it should be physically expected that the individual heat currents vanish
Ji = 0. However, as can be seen in Fig. 3.2, only the global approach behaves as ex-
pected for finite and vanishing temperature. Both the local and first order perturbative
approaches result in unphysical heat currents, regardless of temperature. The two ap-
proaches once again express a sort of inverse behavior about the correct global solution.
This means, that the dissipators (2.7),(3.7) are not necessarily trustworthy in their ability
to determine thermodynamic properties.

Another interesting question is, whether or not the approximative approaches can
even create physical density operators. The uncertainty principle for covariance ma-
trices can be stated [101, 105, 106], using the symplectic matrix y. A covariance ma-
trix o fulfills the uncertainty principle, if the matrix o — i/2Yy is positive semi-definite
[101, 105, 106],

o—il27=0, (3.10)
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Figure 3.2: Comparison of the global, local and first order perturbative master equation heat current from
the first bath J; (left) and the check whether the uncertainty principle is fulfilled (right) in dependence of
the intra-system coupling A/ A of the position-position Hamiltonian (2.2), for the cases of finite (equilibrium)
temperature T; = 98 and vanishing temperature T; = 0 (insets). The global approach (blue circles) reproduces
the expected behavior of no net heat current from the baths (left) as the equilibrium case is considered here.
However, both the heat currents for the first order perturbative (brown triangles) and local approach (orange
squares) are unphysical. The same behavior can be seen for the T; = 0 case (inset). The uncertainty relation
(right) is plotted for all three cases in the form of the lowest eigenvalue of the symplectic matrix o — iy. As
long as all values are semi-positive, the corresponding covariance matrix o will fulfill the uncertainty relation.
For the finite temperature 7; = 98 all three approaches therefore fulfill the uncertainty relation. For lower
temperature, and in particular T; = 0 (inset), the first order perturbative approach fails to fulfill the uncertainty
relation, while the other two approaches always have physical covariance matrices. Parameters are the same
as in Fig. 3.1.

i.e. all of its eigenvalues have to be = 0. The lowest eigenvalue of this matrix (3.10) is
plotted on the right in Fig. 3.2. For finite temperature 7; = 98, all three equations resultin
physical covariance matrices. In the inset, however, for Ty and in fact also for general low
temperatures, it is the case that the first order perturbative approach creates covariance
matrices, and thus states, that do not fulfill the uncertainty relation.

It is interesting to note, that the local approach fulfills the uncertainty relation (3.10)
for any temperature. The first order perturbation on the other hand might result in
highly unphysical states, that only partly reproduce the global approach better in equi-
librium situations. A possible reason for this lies in the fact that to linear order only the
nonlocal dissipators of the form y(ay, az) etc are modified by the intra-system coupling
A. While these enable the first order perturbative approach to reproduce the correlation
properties of the density operator in the form of the quantum mutual information in Fig.
3.1, the incorrect local description lead to an inconsistent covariance matrix.

3.3.2. NONEQUILIBRIUM CASE
Next we consider how the nonequilibrium cases are approximated by the first order per-
turbative approach. Since the above consideration showed that especially at low temper-
atures the local/ first order perturbative approaches have the most difficulties following
the global approach, we limit the nonequilibrium discussion to the high-temperature
case. We set the temperature of bath 1 fixed at T; = 98.

The thermodynamic properties of a bosonic oscillator mode is described by the Bose-
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Figure 3.3: Comparison of the global, local and first order perturbative master equation for the local occu-

pation number (a{ap (left) and the mutual information (right) in dependence of the intra-system coupling
Al A¢ of the position-position Hamiltonian (2.2), for the cases of nonequilibrium temperatures 77 = 98 in the
anomalous regime 7> = 78 as well as in the normal regime 7> = 20 (insets). The anomalous regime is close
to equilibrium and thus its behavior is similar to the equilibrium case in Fig. 3.1. The normal regime shows
(insets) that the mean occupation number is better described by the local approach. Even the quantum mu-
tual information (right), while overall worse than the equilibrium case, is now better described by the local
approach. Parameters are the same as in Fig. 3.1.

Einstein distribution N(B;,w;), which is determined by the product 8;w;. For non reso-
nant oscillators w; # wy, there exist two interesting nonequilibrium regimes. If ; <
one normally expects 1w < B2w», i.e. a higher temperature results in a higher oc-
cupation N; in the following this regime will be called the normal regime. However,
for a steeper oscillator w; > w, which is coupled to the hotter bath, there exists also
a regime where f1w; — w2 > 0, i.e. even though the oscillator 1 is coupled to the
hotter bath, the occupation number N(f;,w;) is still smaller than the corresponding
N(B2,w2) > N(B1,w,;) for the second bath; this regime will be called anomalous regime
in the following. These two regimes seem relatively subtle, but they have interesting im-
plications on the validity of the master equation approaches.

In Fig. 3.3 the local occupation number (a”{al) (left) and mutual information (right)
are plotted for the temperature case 7> = 78 in the anomalous regime and 7> = 20 (inset)
in the normal regime. In the normal regime T = 20, it is visible that for both the local oc-
cupation number and the mutual information the local approach is closer to the global
one than the first order perturbative approach. In the anomalous regime, however, the
first order perturbative approach is better able to reproduce the mutual information,
while the local occupation number is similar as in the equilibrium case Fig. 3.1. The
anomalous regime is also rather close to equilibrium 7, = Tj, thus such a behavior is
somewhat expected since this is the same behavior as in the equilibrium case in Fig. 3.1.
Itis interesting that stronger nonequilibrium situations (in the normal regime) are better
described by the local approach than the first order perturbative one.

The anomalous regime is also the one, that Levy and Kosloff [10] used to show that
the local approach can violate the second law of thermodynamics for the rotating-wave
Hamiltonian (2.2) (x = 0). Further, Shishkov et al [102] showed that the first order pertur-
bative master equation may correct the unphysical heat current. Thus, it is very inter-
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Figure 3.4: Comparison of the global, local and first order perturbative master equation heat current from
the first bath J; (left) and entropy production o in the steady-state (right) in dependence of the intra-system
coupling A/ A, of the position-position Hamiltonian (2.2), for the cases of nonequilibrium temperatures 77 =
98 in the normal regime T» = 20 as well as in the anomalous regime 7> = 78 (insets). The heat current from
the first bath J; (left) is positive for the local approach and negative for the first order perturbative one in the
normal regime. In the anomalous regime (inset), now the heat current of the first order perturbative approach
is positive, while for the local one negative. The entropy production ¢ on the right resembles this behavior
accordingly. Parameters are the same as in Fig. 3.1.

esting to consider how the thermodynamic properties of the master equation approx-
imations for the nonequilibrium case behave and whether the first order perturbation
corrects in general such thermodynamic properties as the heat currents.

In Fig. 3.4 the heat current J; (left) and the entropy production o (right), defined
in (3.9), are shown for the normal and the anomalous regime (inset). First considering
the heat currents (left), one can see that while the global one is always positive, in the
normal regime only the local approach is also positive. The first order perturbative ap-
proach is actually negative and thus unphysical. However, in the anomalous regime, this
is switched; the first order perturbative approach is positive, while the local one is neg-
ative. From these sign differences of the heat currents, it also follows that, depending
on the regime, either the local or first order perturbative approach will have a physical
(positive) entropy production o in the steady-state. This means that the first order per-
turbative approach, which is a higher order perturbation as the local approach, can fix
an unphysical heat current in certain situations. This is, however, not necessarily true
in general even for infinitesimally small A. Rather, it has an apparent inverse behavior
compared to the local approach.

3.3.3. STEADY-STATE BEHAVIOR IN DEPENDENCE OF THE BATH STRUCTURE
We will briefly consider how the first order perturbative approach reacts to a different
bath-structure, altering the system-bath couplings. For three-dimensional baths, the
density of states is proportional to J(w) o« w®, where w is the corresponding system
eigenfrequency in the Markov approximation. This results in system-bath couplings
of the form [10] y;(w) = y,-w?’. For the local (2.7) and first order perturbative dissipa-
tors (3.7) these w are just given by the respective harmonic oscillator frequencies v; (w;).
The global approach (2.20), on the other hand has y; — y;(w.) for the respective eigen-
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Figure 3.5: Comparison of the global, local and first order perturbative master equation local occupation
number (a{ul) (left) and the quantum mutual information (right) in the steady-state of the position-position
Hamiltonian (2.2) in dependence of the intra-system coupling A/, for the equilibrium case T; = 98 as well
as a nonequilibrium case Ty = 98, T» = 20 (inset) for three-dimensional baths y;(w) = y;w®. The first order
perturbative approach (brown triangles) shows signs of divergence at a consistent point in the equilibrium
case for both the local occupation number (left) and the quantum mutual information (right), while the local
(orange squares) and global approach (blue circles) do not. In the nonequilibrium case (insets) the first order
perturbative approach behaves even more suspect, as the quantum mutual information becomes unphysical
at an earlier point, compared to the mean occupation number. Parameters are the same as in Fig. 3.1, with
y; =1.5-107*. w3, where w is either w = w; for the i-th bath for the local or first order perturbative case and
= w4 for the global case (2.20).

frequencies w.. These modifications introduce unequally strong couplings to the two
baths, y1(w1) # y2(w2).

Figure 3.5 shows the local occupation number (left) and quantum mutual informa-
tion (right) for this 3D-baths case, for an equilibrium and nonequilibrium constellation
(insets). First considering the equilibrium case, it can be seen in Fig. 3.5, that the first
order perturbative approach shows a diverging behavior approaching a certain value
AlAc = 0.56 for both the local occupation number and mutual information, whereas
this is not the case for the global or local approaches. Further, in the nonequilibrium
case (insets) this is even worse; the first order perturbative approach shows an unphysi-
cal (negative) divergence at A/A¢ = 0.54, while the quantum mutual information shows
an earlier divergence at A/A¢ = 0.3. One possible reason for this behavior might be the
following; As mentioned above, the three dimensional baths introduce an asymmetry
between the bath couplings. Because of that, one no longer can treat the bath as one
bath that is coupled to the system. This higher complexity apparently cannot be cor-
rectly captured by the first order perturbative approach.

3.3.4. SECOND ORDER PERTURBATION OF THE GLOBAL MASTER EQUATION

The prior findings lead to the conclusion that the perturbation theory of the quantum
master equation cannot be interpreted as just the first order approximation of a func-
tion, that describes it correctly at the point of expansion A = 0 and in close vicinity, while
becoming more inaccurate for larger A. Rather, different aspects of the global master
equations’ steady-state behavior can be partly described by different orders. It is some-
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Figure 3.6: Comparison of the global, local, first order perturbative and second order perturbative master equa-

tion for the local occupation number (alL ap) (left) and the mutual information (right) in dependence of the

intra-system coupling A/A. of the position-position Hamiltonian (2.2), for the cases of finite (equilibrium)
temperature T; = 98 and vanishing temperature T; = 0 (insets). (left): Compared to the local (orange squares)
or the first order perturbative one (brown triangles), the second order perturbative approach (green inverted
triangles) is able to describe the global one (blue circles) better w.r.t. the local occupation number for both
finite temperatures and vanishing ones (inset). (right): The mutual information is similar. However, for larger
couplings A/ A, the first order perturbative approach is still better in describing the mutual information, irre-
spective of temperature. Parameters are y; =y2 = 1.5+ 1074, w1 =5w) =2.

what expected that the first order perturbative approach is not able to reproduce the
global master equations’ behavior, as (3.7) lacks the squeezing dissipators of the global
case (2.20). In this subsection we want to consider further how well the perturbation the-
ory can reproduce the global master equation by considering the perturbation theory up
to second order. While in principle it is possible to derive this second order in the same
way as for the first order (see chapter 3.2.1), we here are solely interested in how well
higher order terms are able to reproduce the global dynamics. Thus, as the complete
solution is known, the global master equation in our case, the second order perturba-
tion can be directly obtained by starting with the global dissipators (2.20) and expanding
each of them up to second order

dC(An Am) | A2 d°T(Ap Ap)

I'(Ap, Am) =T(Ap A ot A .
(An, Am) (An m)lA o+t da 10 2 dAz 10

(3.11)
While the complex form of the global master equation dissipators (2.20) results in sec-
ond order perturbative dissipators that are too large to be printed here, applying this
expansion, one will find that the dissipators for the second order perturbation, com-
pared to the first order (3.7), will all be modified. In particular, now there also are also
local squeezing terms I'(a;, a;) # 0 etc. Let us consider how these changes influence the
accuracy of the steady-state result. In Fig. 3.6, the local mean occupation number of
the first oscillator (left) and the quantum mutual information (right) are plotted, for the
equilibrium cases of finite temperature 7; = 98 and vanishing temperature T; = 0 (inset).
It is interesting to see, that the second order perturbation (inverted green triangles) now
can describe the global behavior (blue circles) better than the local approach (orange
squares) or first order perturbative approach (brown triangles), both for finite and van-
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Figure 3.7: Comparison of the global, local, first order perturbative and second-order perturbative master
equation heat current from the first bath Jj; (left) and the check whether the uncertainty principle is fulfilled
(right) in dependence of A/ A of the position-position Hamiltonian (2.2). The top graphs consider the equilib-
rium situation T; = 98. The second order perturbation (inverse green triangles) is now able to correctly have a
vanishing heat current Jj; as the global approach (blue circles). The uncertainty relation behavior of the second
order perturbation is also similar to the global one for small A/A. In the T; = 0 case (inset), the second order
perturbation becomes for larger A/A. unphysical like the first order perturbative approach (brown triangles),
while the global and the local one (orange squares) stay physical. The lower graphs consider the nonequilib-
rium situation 77 = 98 in the anomalous regime T» = 78 and the normal regime 7> = 20 (insets). Interestingly,
the second order perturbation manages to reproduce the global approach’s heat current in both regimes. The
uncertainty still is only similar for smaller A/A.. Parameters are the same as in Fig. 3.6.

ishing temperature (left inset). Further, the mutual information is also improved signifi-
cantly at lower coupling values, but still becomes worse than the first order perturbative
approach for larger A/A..

Let us now consider the physical properties in the form of heat currents (left) and the
check of the uncertainty principle (right), which are plotted in Fig. 3.7, for the equilib-
rium cases (upper graphs) at T; = 98 and the vanishing temperature case for the uncer-
tainty principle (inset), as well as the nonequilibrium case (lower graphs) in the normal
and anomalous regime (insets). First concerning the equilibrium case, the second order
perturbation is now able to suppress any unphysical heat currents, which the first order
perturbative or local approaches produced. The created steady-states for the second or-
der perturbation are further also able to follow the uncertainty of the global approach
for small coupling values and finite temperatures. While it is able to now stay physi-
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cal for small 1 in the vanishing temperature case, it still becomes unphysical for larger
A. Interestingly, for nonequilibrium situations (lower graphs in Fig. 3.7), the second or-
der perturbation can now reproduce the heat currents in both regimes correctly. For
small coupling strengths it is also able to reproduce the same uncertainty behavior as
the global approach. Only for larger coupling strengths it deviates.

Thus, the higher the order, the more properties of the global master equation can
possibly be reproduced as well. While one might expect this the higher the order be-
comes, it is still interesting that the perturbation theory does not necessarily monotoni-
cally improve all the steady-state properties for small expansion orders about A.

3.4. DISCUSSION

To conclude this chapter, it was mainly considered how the first order perturbation of
the master equation approach reproduces the global approach compared to the local
one. The result is mixed. While there are some parts, like quantum mutual information
in the finite temperature equilibrium case that is being quite well reproduced by the first
order perturbative approach (3.1), local observables like the mean occupation number
(a{ ay) behave differently than the local approach, but are not necessarily better in repro-
ducing the global results. Further, thermodynamic properties like heat currents defined
by the dissipators result in unphysical finite currents in the equilibrium case (3.2) for
both the local and first order perturbative approach. Further, especially the T; = 0 case
is less accurately treated by the first order perturbative approach, as its steady-state fails
to fulfill the uncertainty relation. For nonequilibrium situations AT # 0, the first order
perturbative equation can even become worse in reproducing the global behavior for
large nonequilibriums 3.3. Interestingly, heat currents qualitatively seem to be behaving
in an anti correlated way compared to the local approach 3.4. In regions where the local
approach results in unphysical heat currents, the first order perturbative approach re-
produces physical ones and vice versa. Therefore, the first order perturbative approach
can be better or worse in reproducing the global behavior, but if the local approach fails,
one can try the first order perturbative approach which may be able to describe the sys-
tem better. This is, however, not necessarily the case.

Lastly, also the second order of the perturbation theory was considered, by expand-
ing the global solution up to second order about A = 0. It was shown that this order
now does improve all aspects of the description, e.g. the heat current is now also phys-
ical. For low A the behavior of the perturbation theory up to second order resembles
the global approach. Thus, in the case of a perturbative approach of quantum master
equations that has to produce a completely physical steady-state covariance matrix, one
might have to use higher orders even for infinitesimal A.






QUANTUM RESPONSE THEORY FOR
NONEQUILIBRIUM STEADY-STATES

4.1. INTRODUCTION

HE prior chapters considered how well perturbative approaches to open quantum
T master equations can reproduce physical (steady-state) properties of systems. In
the following chapters we will consider more general (dynamical) properties of quantum
Markovian semigroups. In particular, we will consider in this chapter linear response
theory. Response theory is a cornerstone of statistical physics. For equilibrium systems,
the fluctuation-dissipation theorem connects the response to a weak external perturba-
tion to the unperturbed correlation function between spontaneous fluctuations [108—
110]. It offers a powerful tool to analyze general transport properties in numerous areas,
from hydrodynamics to many-body and condensed-matter physics [25, 38, 111-113].
The fluctuation-dissipation relation has been derived for classical and closed quantum
systems [25, 38, 111-113]. It is known to break down for nonequilibrium systems when
detailed balance is not obeyed [114].

Over the past years, the fluctuation-dissipation theorem has been successfully gener-
alized to classical systems in nonequilibrium steady-states, thus allowing the extension
of response theory to this important class of nonthermal systems. Different theoreti-
cal formulations have been put forward [115-120], based on the Fokker-Planck equation
[115], the overdamped Langevin dynamics [116-118], the Hatano-Sasa fluctuation theo-
rem [119], or the dynamical activity [120]. Some of these modified fluctuation-response
relations have been verified experimentally using colloidal particles in a toroidal optical
trap [121-124].

Recently, Seifert and Speck have introduced a classification of steady-state fluctuation-
dissipation theorems in the framework of stochastic thermodynamics, thus rationalizing

Parts of this chapter have been published in [107].
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previous methods that lead to apparently different results [37] (see also Ref. [125]). Us-
ing a classical master equation approach, they have identified three main equivalence
classes: the first variant contains a correlation function that involves no time deriva-
tives (only functions of the steady-state distribution), the second variant is the unique
form expressed in terms of time derivatives (of the stochastic entropy), whereas the last
variant is the only one not requiring the explicit knowledge of the steady-state distribu-
tion. Infinitely many alternatives may be constructed via normalized linear combina-
tions of the latter. All these variants yield the same response and are thus equivalent.
However, the existence of different types of fluctuation-dissipation relations offers sig-
nificant theoretical and experimental advantages. Theoretically, one kind of fluctuation-
response theorem is usually easier to compute than the others, depending on the con-
crete application. At the same time, the choice of the form crucially affects the accuracy
of the experimental determination of the nonequilibrium response function, as shown
in Ref. [123]. Few attempts to extend steady-state fluctuation-dissipation theorems to
open quantum systems have been presented [39-42]. However, a complete and unified
picture is currently missing.

We will start by defining various different fundamental properties of quantum Marko-
vian semigroups, how quantum detailed balance [115] may be defined for such open
quantum systems and discuss briefly response theory for closed, thermal dynamics, as
derived by Kubo [38, 110]. We will then develop a general framework for the steady-state
linear response of open quantum systems, extending this Kubo theory, which is limited
to isolated equilibrium systems with unitary dynamics [25, 38, 110-113]. We specifically
derive the three equivalence classes for generalized steady-state quantum fluctuation-
dissipation relations, analogously to the classical findings [37], using quantum Marko-
vian semigroups and introduce a nonequilibrium extension of the Kubo transformation
[25, 38, 110-113]. We discuss the role of the noncommutativity of quantum operators
and emphasize differences to the equilibrium Kubo response theory, in particular the vi-
olation of detailed balance. We further treat how quantum detailed balance in the open
context influences the general properties of these response functions. We then compare
these classes with results from various authors in the quantum and classical context and
show their equality.

To illustrate our unifying formalism, we consider two different examples of coupled
harmonic oscillators. First we treat the rotating-wave Hamiltonian (2.2) (x = 0) where
the interaction of the two oscillators with their respective baths is described by the lo-
cal master equation (2.7). This has the advantage, that the response can be calculated
analytically. We use this model to stress the difference between classical and quantum
responses, as well as between equilibrium and steady-state responses of Hamiltonian
perturbation. Remarkably, we show that the equilibrium response function vanishes for
perturbations that commute with the unperturbed Hamiltonian, whereas the steady-
state response does not. This underlines the profound disparity between equilibrium
and nonequilibrium quantum response theories. Lastly, we consider a second model
which is given by the position-position coupling Hamiltonian (2.2) (x = 1), whose open
dynamic will be described by the global master equation (2.20). We show for this model
how the linear response breaks down approaching a critical point and consider which
differences there are for equilibrium and nonequilibrium regimes.
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4.2. MATHEMATICAL CHARACTERIZATION OF QUANTUM MAS-

TER EQUATIONS

In the following we want to consider more closely general physical properties of quan-
tum Markovian systems. For being able to do so, it is advantageous to consider their un-
derlying mathematical structure more closely. In particular it is interesting to consider
which subtle differences in mathematical properties emerge, compared to the closed
quantum dynamical case.

4.2.1. MARKOVIAN SYSTEMS AS MAPS OF POSITIVE SEMIGROUPS AND THE

QUANTUM REGRESSION THEOREM

Given the full Hilbert space ./ = #s® #p as a direct product of the two Hilbert spaces of
the system .#’s and the bath #5. The set of all bounded linear operators A acting on ele-
ments of a Hilbert space and their domains D(A) create a Banach space &(#) [20, 126]
with the Hilbert-Schmidt norm ||All, = max; A;, where A; are the eigenvalues of the
operator A. A special class of operators are density operators [6, 20] p € I (), which
represent the possibly mixed states that a system can be found in. These constitute an-
other Banach space 9 (/) with the trace norm ||p||; = Tr|{p} = 1 [20]. For the com-
plete system + bath, the time-evolution of a density operator p(f) and a time indepen-
dent Hamilton operator H is given by the von Neumann equation p(¢) = —i[H, p(#)] =
Zc(p(1) = Lcp(t), where the superoperator Z¢ is the generator of the closed dynam-
ics and Zcp(t) without brackes is defined in the following as the superoperator acting on
all operators to the right. This generator defines a dynamical map V(¢) : 9 (A) — T (S)
that evolves the density operator in time p(t) = V(£)p(0) = e“¢p(0) = U(t)pU" (¢), using
the unitary time evolution operators U(f) = e ‘'’ | The one-parameter family of maps
{V(1)|t € R} defines a positive group which is defined for positive and negative ¢ due to
the time-reversal symmetry of the unitary evolution [20].

If one traces out the degrees of freedom of the bath Hilbert space /5 and consid-
ers only the dynamics of the system Hilbert space .#s, then the dynamics become in
general nonunitary (see e.g. the derivation of the master equations from first princi-
ples in chapter 2.2.2). For special systems, the time evolution can still be defined via
a dynamical map ps(t) = Trip(t)}p = Vs(t)ps(?) = eftps(t) with a generator £ # Zc.
The one-parameter family of the these maps {Vs(#)|f € R.} defines a positive semigroup
which is defined only for positive times and fundamentally nonunitary. This is caused
by the loss of information, due to not accounting for the dynamics of the bath degrees
of freedom. In this work we only consider the special case of quantum Markovian semi-
groups (QMS) [6, 20, 22, 23, 126]. For notational simplicity and since we are interested
only in the system dynamics, in the following we will write the system density operator
without subscript ps = p. The most general form of the generator of these semigroups,
for finite dimensional Hilbert spaces of dimension dim (#s) = M, are given by the Gorini
Kossakowski Sudarshan Lindblad (GKSL) form [22, 23]

M2-1 1
L(p)=~ilH,pl+ Y ae|LepLy = S{LjLe,p}| = ~ilH,p1+2(p)  (4.1)
k,0=0

for a set of operators {L;} and a positive semidefinite matrix {ay ¢}t ¢ = 0, defining the




42 4. QUANTUM RESPONSE THEORY FOR NONEQUILIBRIUM STEADY-STATES

open dynamics’ dissipator 2. It is assumed in the following that there always exists a
faithful density operator = € 9 (#s), that is, the operator 7 fulfills £(7) =0, i.e. wisa
steady-state of the dynamics. Further we assume that this operator 7 is uniquely defined.
Using the trace operation for single time expectation values (A) = Tr{Ap} one can define
an adjoint map with generator Tr{A.%(p)} = Tr{Z(A)p}, which often is also a QMS [126]
and its form is given by

M?-1

_ 1 _

ZL(A)=ilH, Al + Z ai,r L‘;ALk—E{L;Lk,A} =i[H,Al+%2(A), 4.2)
k,¢=0

with the adjoint dissipator 2. The time-evolution of the operator is then given by A(t) =
e! A. For one-time averages one thus can formally write (A) (£) = Tr{A(f) p} = Tr{Ap()}.
If either (4.1) or (4.2) can be solved, then any one-time average can be calculated.

It should be stressed, however, that the adjoint dynamics are derived solely for one-
time averages. In general the adjoint dynamics defined by the generator (4.2) does not
have to hold for multi-time averages. Nevertheless, essential for response theory is the
calculation of correlation functions ( A(#) B(¢')), which are two-time averages. In the case
of unitary groups of the closed dynamics, these are always well defined as the dynamics
are complete and the time evolution of the individual operators also contain the full
dynamics of the complete system. However, for open dynamics this is not the case.

In general one has to rederive the time-evolution of these correlation functions from
the unitary model to capture any additional effects that can be caused by the system-
bath coupling [6, 15, 127].

However, a useful theorem, called the quantum regression theorem, allows one to
use the adjoint dynamics also for correlation functions, for systems that are weakly cou-
pled to their baths [6, 127]. In particular, the quantum regression theorem states that the
time-evolution of the two-time correlation function is given by the dynamical properties
of the one-time averages,

d _
S AU+ T)B) = <$(A(t+r))B(t)>. 4.3)
dr

This is of course not always the case, in fact, Talkner [128] showed an example where
the assumption of the regression theorem for a thermal system resulted violations of
the KMS condition. For the rest of this thesis we consider solely system for which the
quantum regression theorem holds.

4.2.2. 0-DUAL MAPS AND QUANTUM DETAILED BALANCE

For unitary dynamics, a steady-state 7 = e PH| 7 of temperature S is given by the Gibbs
state. For such states, quantum detailed balance can be defined as

(A(DB(tY) = paps (BOAL)), (4.4)

where the 4 p is the parity of the operator A, B under time reversal [129]. Even if the
quantum Markovian semigroup’s faithful state x is also given by a Gibbs state, this does
not necessarily mean that detailed balance (4.4) is fulfilled in the open case[130, 131].
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One way to define detailed balance in the open quantum context, is by considering

the following dual generator, called the 0-dual generator §0 [131], which can be defined,
w.r.t. the faithful density operator 7 of £, on the Banach space of operators of the system
9B(H5). The defining equation for the generators is

Tr{p@(A)B} =Tr{ALBp)p ' p} =: Tr{pA@O(B)}, 4.5)

orin short Z° A= £ (Ap)p~!. Mathematically, the 0-dual is a special (physical) case of
the more general s-dual which is defined for the scalar product (A, B)s = Tr{p! S Afp*B}
[131-133]. Physically, this 0-dual comes about, because the open dynamics is character-
ized by a semigroup, instead of a unitary group. For closed dynamics one has

(A(HB) =Tr{U" (1) AU (1) Bp} = TH{AU () BUT (0 U () pU T (1)} = (AB(-1)) (4.6)

for steady-states [H, p] = 0. For semigroups this identity with '—¢’ is not possible and
thus the more general 0-dual is needed. For the semigroup’s dynamical maps one can
write

Tr{pegt(A)B} = Tr{pAe?)t(B)}. 4.7)

The 0-dual also acts on elements of the %8(#5). However, it is not necessarily a QMS

itself [131]. Detailed balance can then be defined if the 0-dual maps generated by §0
are QMS, the faithful state # commutes with the Hamiltonian and the 0-dual generator
has the property§0 - % =2i[H,").

If the QMS fulfills this detailed balance condition, then a useful property emerges. In

this case, all generators PLL ,§0 commute with the modular group [131]
o,(A) =a"tAn~ (4.8)

of the faithful state z for all # € R. This group can be further continued to imaginary
parameters [Im(t)| < 1/2 [131, 133].

4.2.3. KUBO RESPONSE THEORY

Here we shortly note the results of quantum response theory for closed dynamics and
equilibrium systems as derived by Kubo [38, 112]. A thermal system is perturbed by a
Hamiltonian £(f) H;. The dynamics of the expectation value of an observable A can be
written in linear response as (A)(f) = (A)g + fot E(S)R am, (t—s) ds, where (-)g denotes the
unperturbed (equilibrium) expectation value and 2 4 g, is the linear response function.
Kubo derived two different forms for this response function [38]. One form is given as a
commutator of the perturbation Hamiltonian and the observable of interest (7 = £ — )

R an; (1) = i{[A(T), H])o. (4.9)

Upon using quantum detailed balance (4.4), Eq. (4.9) expresses a symmetry w.r.t. time-
reversal, Zam, (1) = papm, i{(Hi(7), Al)o = papta, Zm,4(T), where ug4 g, are the parities
of the operators (more details about time-reversal will be provided in chapter 5 and in
the appendix 7.8) and 2 g, 4(7) is the response for the observable H; and perturbation
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A. For an alternative form of the response function, Kubo [38] introduced the nowadays
called Kubo transform

_ B
pH; = f dre Mo F Mo 4.10)
0
The response function can then be written as
d _
R am; (T) :ﬁﬁ <A(T)HI>- (4.11)

This transform has the advantage that (4.11) is almost identical to the classical results
[25], where the dynamical variable Hj is replaced by the corresponding observable sub-
ject to the Kubo transform in the quantum case. Equation (4.11) further shows the same
time-reversal symmetry as (4.9) since

Rpm, (1) = <A(T)E> = papn, <E(T)TA> = HARH, <WTA> (4.12)

=pAlH, <HI(T)Z> = UAMH R A(T),

where Hj (1) = H; (1) is the case since the Kubo transform (4.10) clearly commutes with
the time-evolution unitaries.

4.3. THE EQUIVALENCE CLASSES OF OPEN QUANTUM RESPONSE

THEORY

In the following we derive the general equivalence classes for steady-state quantum re-
sponse functions of open quantum systems as generalizations of the classical ones in
[371.

Linear response theory is defined as a small perturbation about a stationary state.
The unperturbed system is described by an arbitrary QMS with unperturbed generator
% of the form (4.1), assumed to possess a faithful state 7. It is assumed that the system
is subject to N individual small perturbations, whose form may be also given by (4.1) in
general. The total time-dependent generator thus is given by £ = %+ 3, €, () £} with
time-dependent parameters £,(t). For linear response theory, such a form can always be
obtained by expanding a general time-dependent generator about €, = 0 up to first order
L=Ly+Yen(L] + O(&2). The complete dynamics of the system’s density operator
p(?) is then given by d;p(t) = ZLp(t) [25]. For arbitrary fixed €,(f) = €,, we assume that
there always exists a faithful steady-state of the form 7, =g+, € nﬂ'f, such that

N N
Lre=% (no + Z gnn?) + Z enLlimo + O(Ei) =0+ O(Efl)
n=1 n=1

(4.13)

N
=) e, Lon + e, LMo+ O(€2).
n=1

From (4.13) one can find that the steady-state density operator contributions 7' have the
property £y} = —2£/'mq up to first order in the &,. If the system is initially stationary
with the unperturbed steady-state 7y, the general form of the time dependent density
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operator may be written as p(t) = g + p1 (£). Up to first order in €,(t), the dynamics are
then described by

N
p() =Y en( L 70+ Lopi (1), (4.14)

n=1

whose formal solution is given by p; (f) = fot dsy ,en(s) e‘%(t_”Zl”ﬂo, where e20(=9) ig
the map of the unperturbed system (see properties in 4.2.1). The response of the system
to these small perturbations may then be calculated for any observable A up to linear
order by

N t
Mo =o+ Y [ dsentort{ae?=9 2iim,)
n=1 0
o (4.15)
=(A+ ) | dsen()R"(t-5s).

n=1J0

Here (A). (t) = Tr{Ap(?)} denotes the perturbed expectation value of Aand (A)q = Tr{Amo}
the corresponding unperturbed expectation value. The response function for each indi-
vidual perturbation is then given by %" (1) = Tr{Ae*0" £['mo} with 7 = 1 — s.

For equilibrium states 7, one perturbation and closed dynamics, Eq. (4.15) leads to
the usual Kubo response theory for closed quantum systems, as discussed in 4.2.3 for
which %y- = —(i/h)[Hy,"] [25, 112]. For general (nonequilibrium) steady-states 7y and
open dynamics, it provides the basis for our quantum extension of the three equivalence
classes identified in Ref. [37].

4.3.1. CLASS ONE
The first form %7 (r) of the quantum response function is expressed as a correlation
function with a (nonHermitian) operator Bf' = (£'7o)/ 7. It follows from Eq. (4.15) by

using the adjoint time evolution of the unperturbed dynamics A(7) = eZ0T A = AeT,
where £ acting to the left can be interpreted as £ acting to the right. Assuming that the
quantum regression theorem holds (see discussion in 4.2.1), the response function then
reads

RNT) = (A(W)By) = (A(W) (L]'70) I70) . (4.16)

Expression (4.16) is a quantum generalization of the linear response function derived in
Ref. [115], and is often referred to as Agarwal-form for this reason [37, 125]. For the case
of Hamiltonian perturbation £|" = —i[H}', -], this form readily shows that for a thermal
stationary distribution, 7 = exp(— B Hp)/ Zy, with Z; the partition function for the unper-
turbed system, the quantum response vanishes when the perturbation commutes with
the unperturbed Hamiltonian, [H I”, Hy] = 0. This is not necessarily the case for a quan-
tum nonequilibrium steady-state, as we will discuss in detail for an example in chapter
4.6. For a general perturbation £}" it is the case that the response vanishes if 7y is also an
invariant state of £/". This variant of the fluctuation-response theorem is distinguished
by the fact that it contains only state variables and no time derivatives. Its drawback is
that the operator B; involves the stationary distribution 7y, which is not always explicitly
known in concrete situations.
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4.3.2. CLASS TWO

In the classical regime, the second variant is written in terms of the time derivative of the
e-derivative of the stochastic entropy of the system, 0,S¢|o = —0¢Inm¢|g = —m /70, along
single trajectories [37, 115]. We obtain the second form %;’ (1) of the quantum response
functions by using the identity derived from (4.13), £|'mo = —%pn}!, which is valid up to
linear order in €,,. Further, since % is the generator of the unperturbed open dynamics,
we have e200=9 £y = d,e? =9 p = d, e p = —d;e?0=9 p. The response function in
Eq. (4.15) may therefore be rewritten as

Ry (1) = -Tr{A() %o} = —d: (AW} I 70). (4.17)

In the limit of closed quantum systems at equilibrium and Hamiltonian perturbation,
Eq. (4.17) reduces to the Kubo quantum response function (4.11), since

B
m/mg=PH; = fo dNe Moy Mo (4.18)

is given by the Kubo transform of Hj [110] as noted in (4.10). The advantage of the Kubo
transformation (4.10) is that it allows to formulate classical and quantum equilibrium
response functions in the same form by simply replacing an operator by its correspond-
ing transform. Such a procedure can be carried over to steady-state response functions
for open systems.

In order to bring Eq. (4.17) in a form similar to the classical case, we first introduce
a generalized Kubo transformation 0, Inn,|y of 0, Inm.|p. Using an operator identity (for
the identity and its derivation see appendix 7.7), the partial derivative can be rewritten
as

1 _
Op, Telo/ o = Y 719 = f né(@en lnng)long’ldﬂt =0, Inmg|o. (4.19)
0

The latter reduces to the usual Kubo transform (4.10) even for open dynamics, if e.g.
e = e PHEnent]) ) 7 olds true. It may thus be regarded as a steady-state extension
of the Kubo inner product [134] for thermal states, also called the Bogoliubov or Kubo-
Mori inner product [135]. We accordingly find,

23 (1) = ~d: (A3, In7cly ) = de (A3, Selo ) (4.20)

where we have introduced the quantum analog of the stochastic entropy S, = —Inmn,.
Noting furthermore, that two-time correlation functions for open quantum systems are
defined as (A(£)B(s)) = Tr{Ae?"=9 BeZ05p(0)} [6, 24] (a more thorough discussion of
open quantum correlation functions will be provided in chapter 5.3.1), we obtain, with
p(0) = g and dge%05my =0,

(1) = —ds (A, Selo ) = — (ADdde, S (3)lo) - (4.21)
Formula (4.21) is a quantum extension of the response function of Refs. [37, 115]. It

can be formally written in Liouville space as a correlation function with the observable
an (8) = —d;s0¢, Se(9lo-
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Let us consider some properties that can be deduced from the second form. Due
to the noncommutativity of quantum mechanics, it is in general the case that for non-
commuting operators 0. In (mo +€m1)|o # 7m1/mo, implying that 0.,S, # 9¢,Se. Conse-
quently, the quantum response function (4.21) cannot be written in terms of the stochas-
tic entropy, —(A(#)ds0:S:(s)lp), as in the classical limit, unless [, 1] = 0. If this is
the case, however, we will show that the response will vanish for Hamiltonian pertur-
bation and thermal response, thus there is no response in these cases. We show this
by considering only one perturbation €, = € (the same holds true for multiple pertur-
bations if all 7}' commute with 7). For commuting density operators, we indeed have
0¢In(mg + €m1)o = 71 /7y, since then my, w1 possess the same eigenbasis, transforming
the operator logarithm into a simple c-number equation in the common eigenbasis, for
which the differentiation can be accomplished accordingly. Moreover, for a thermal state
and Hamiltonian perturbation 7, x e #(Ho+¢H1) the operator 71 can be given explicitly
via the Kubo transform, 7; o« Hjmg (see Eq. (7.12) in Ref. [25]). As a result, the condition
[mo,m1] = 0 implies that [Hy, Hy] = 0 since the Kubo transform ﬁI:II = foﬁ dre Mo HIeAHO
consists only of exponentials that are proportional to Hy and the operator H;. Therefore,
1o = 0 follows for Hamiltonian perturbation. The first class (4.16) then dictates that
the response function has to vanish.

Interestingly, for nonequilibrium situations or general (dissipative) perturbations,
ie. Z1p = —ilH,pl+2(p), there may exist cases where [y, 7] = 0, but there is still
aresponse and thus the quantum system reacts similarly to classical systems. This is the
case, if [mg, 1] = 0, but Lymy # 0, Lomy # 0. One example for such a case is given by
solely modifying the temperature of the bath of the single oscillator model (2.6).

In the unitary limit, the formal identity in Liouville space for the correlation function

<A(t) ds0g, Sg(s)|0> becomes one at the operator level in Hilbert space. In that case, the

unitary time-evolution operators eZ°* A = U'(¢,0) AU(t,0) = A(#) can be used to obtain
the Heisenberg representation of the generalized stochastic entropy, since for general
operators A.B it is then the case that {U'(z,s) AU(t, s) BU(5,0)p(0) U (5,0)} = (A(£) B(s)).
The latter equality gives the observable —d;0;, S¢(s)lop @ meaning in Hilbert space.

To conclude the discussion of this form, let us note that the variant (4.21) is the only
one where the response function is given as a correlation function with a time deriva-
tive of a state variable, namely the formal time derivative of the generalized Kubo trans-
formed €, -derivative of the stochastic entropy, d¢, S¢lo. Let us additionally mention that
there is an alternative way of writing the quantum response function (4.21) without us-
ing any correlation function. We indeed have,

Ry oy (T) = —dr0¢, Tr{AT) Yo = —dr O, (A(T))o, (4.22)

where (A(1)), = Tr{A(t) 7.} # (A)¢ (1) is the perturbed expectation value of the observ-
able A(t) = eZ%" A evolved via the unperturbed dynamics. This form offers an intuitive
interpretation of dynamic response theory: at any fixed time, 0, (A(7))¢=0 can be seen
as the static susceptibility, that is, the static response of the system to the external per-
turbation [25]. The dynamic response function (4.22) then follows as the time derivative
of the time-dependent susceptibility. This form often enables a simple evaluation of the
response function (see section 4.6).
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4.3.3. CLASS THREE

Classically, the third form is the unique one that does not explicitly involve the station-
ary distribution [37, 120]. This type of fluctuation-response relation is therefore of ad-
vantage when the steady-state distribution is not specifically known. Such a variant may
be derived from Eq. (4.16) by realizing that the generator 56’1” in (4.16) can act on A(t) by

using the adjoint generator §;l Then we obtain
L@ =Tr{n 2, A} = (2] A(r)> . (4.23)
More explicitly, for the case of Hamiltonian perturbation £1-=(i/h)[Hj,] one receives
RE (1) = %Tr{no [H}, A} = %([H",A(T)]). (4.24)

In contrast to Eqgs. (4.16),(4.21),(4.22), the response function (4.23) is given as an expec-
tation value of operators that do not explicitly depend on either 7, 7, or 7, (see also
Ref. [42] for an alternative approach using the eigenoperator decomposition of (4.24)).
However, for generators in their general form (4.2), the response function (4.24) is not
just given by a commutator. The bath effect also has to be taken into account in the form
of the dissipator 2, in (4.23). While for Hamiltonian perturbation, the open quantum
system response Eq. (4.24) resembles the Kubo quantum response form (4.9), they only
coincide in the limit of unitary quantum systems at equilibrium. Interestingly, expres-
sion (4.24) indicates that for purely Hamiltonian perturbations, the quantum response
function vanishes when the time evolved observable A(r) commutes with the pertur-
bation Hamiltonian H;. Further, for purely Hamiltonian perturbation, the quantum re-
sponse function can be identified with the expectation value of the imaginary part of the
correlation function (A(7) Hy) = (A(t)H; + H{ A(7)) /12 + i {[A(7), H]]/i) /2 for a nonequi-
librium steady-state, as in the unitary limit [110]. General (Non-Hamiltonian) perturba-
tions, however, destroy this strong analogy.

4.4, SYMMETRIES FOR QUANTUM DETAILED BALANCE QMS

In this section we consider what symmetries there are for master equations fulfilling
quantum detailed balance as discussed in 4.2.2. Let’s first consider the third form for
purely Hamiltonian perturbation (4.24). For generic equilibrium correlation functions
of two observables of detailed balance QMS one has (AB(t)) = papp (BA(#)) [129]. The
Hamiltonian response therefore has the symmetry

%5,(1) = = (H]" (@), H}') = pygp gy 7 (CH] (0, HY') = pygp g R, (4.25)

where 2 () = i/h[H[ (t), H]"] corresponds to a Hamiltonian perturbation H;" for the
observable H}'. Thus, up to the time-reversal parities, this response function class has
a symmetric time-reversal symmetry between the operators H}' and H;" in the case of
detailed balance QMS. Since this symmetry is the same for the closed dynamic’s Kubo
form (see (4.12)), it can be seen that the quantum detailed balance QMS resembles the
closed behavior.
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Next let us consider the second form (4.21) for completely general perturbations.
For a set of observables A, = 0¢,, In7m.|y corresponding to the respective perturbations
£m (1) 2" and quantum detailed balance QMS unperturbed dynamics described by the
generator %, the response function for a perturbation denoted by the letter n can be

written in the second form as £, (7) = <Am(r)6£n 1n7r8|0>. Using the 0-dual (4.7), for

which one has <exp (@0 t) (A)B> = <Aexp (Eg t) B>, one can rewrite this response func-
tion - Y
‘%Z’l(‘[) =d; <ezOT(Am)6en 1n7T6|0> =d; <Amezora£n lnn£|0>
- (4.26)
—0 §OT I
:dr<Ame$°Tas,, 1n7[£|0> =dr<e 0 (aenln”e|O)Am>y

where it was used that for quantum detailed balance QMS the generators §8,§0 com-
mute with the modular group o ; (defined in (4.8)) and therefore

0 1_ 1_ ——
Do A= f Popt Ap~HdA = f Zooip(AdA = ZyA. (4.27)
0 0

It was further used that for the generalized Kubo transform (4.19) one can find (AB) =
(BA). Furthermore, applying time-reversal (more details about time-reversal will be pro-

. . . —0 —0R —
vided in 5 and 7.8) on (4.26), one can use the fact, that the time-reversal of £;, £, =%
is just given by the initial adjoint dynamic [131-133]. This is the case, because for quan-

tum detailed balance QMS, the 0-dual is given by the general identity §3 —§0 =2i[H,],
which has the same form [133] as the time-reversal of the £ and applying time-reversal
two consecutive times onto a superoperator will result in the initial dynamics. Therefore,
up to the time-reversal parities (since AL’R = @AL@ = ua A, for Hermitian operators), the
response functions 2 (t), £ (1) are equal,

—0 - -
R,(1) = <e$07(65n lnﬂelo)Am> =pa,Ha,, <Am(1)6e,, lnne\o> = A, Ha, B (T). (4.28)

We deduce that if the unperturbed dynamics fulfill quantum detailed balance, there is
also a symmetric time-reversal symmetry for response functions connected to observ-
ables A, =0,, Inn,|o, as in the closed case (4.11) and open systems for Hamiltonian per-
turbation (4.25). However, the symmetry in (4.28) is valid for the more general operators
Ap = 0¢,Inm|o and for both Hamiltonian as well as dissipative perturbations. Inter-
estingly, this symmetry still holds, even if the perturbation £; does not fulfill quantum
detailed balance, only % has to, as only the time-reversal symmetry of the unperturbed
generators are relevant.

It is important to note, that in (4.27) it was used that the unperturbed QMS gener-
ators commute with o;; for 0 = A < 1 which was explicitly shown to be the case only
for 0= A =<1/21in [131-133]. While we do not intend to generally, akin to a treatment in
[131, 133], prove that this may be the case also for the larger interval, let us use an in-
tuitive argument showing that this is in principle possible. In [131-133] it is shown that
for detailed balance QMS the faithful state commutes with the Hamiltonian [y, Hy] = 0.
This is the case for e.g. a Gibbs state my ox exp(—BHp). Assuming purely Hamiltonian
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perturbation, one has on the one hand from the third form the response function sym-
metry (4.25), Bap, (1) = papa, Zm;4(1). On the other hand, from the second class sym-
metry (4.28) one can further find the following symmetry. For a Hamiltonian pertur-
bation Hj, let us assume the corresponding perturbed steady-state is given by ngl =
exp(—pB(Hy + €1Hj))/ Z¢, and for a perturbation A by 71?2 = exp(—B(Hp + €24A))/ Z¢, and
thus the general steady-state has the form 7, = exp(—B(Hy + €1 Hj + €2 A)/ Z,. This as-
sumption is generally used for closed linear response theory [25, 38]. One therefore has
0¢;Inm¢|g = B; + c-number, B; » = Hj, A, where the c-number term stems from the par-
tition function Z, and vanishes in the response function as (A(t)) is constant. It then
follows that 92;_ (r) = d.(A(r)H}). But this is nothing else than the open dynamics’ ver-
sion of the Kubo response (4.11) and since this response has the same operators as the
third form for pure Hamiltonian perturbation (4.25), the symmetry has to hold too. Thus
one can deduce in this case

R3(T) = papp, 25 (1) = d (A(T)Hy) = papr, do (Hp(7) A). (4.29)

But Eq. (4.29) is exactly the symmetry in (4.28), the generators therefore have to com-
mute with the modular group also in the interval 0 < A < 1. Further, since this property
is independent of the perturbation chosen, it is dependent only on the dynamical prop-
erties of the unperturbed system, it has to hold also for any kind of perturbation. While
the above considerations are no definite 'proof’, they are still reasonable arguments in-
dicating that it is in general possible.

To conclude, let us stress that the above time-reversal symmetries exist only for de-
tailed balance QMS, for general steady-states correlation functions these symmetries do
not necessarily hold, even for Hamiltonian perturbation, as we show explicitly for an
example below in 4.7.

4.5. COMPARISON WITH OTHER APPROACHES

In this part, the derived equivalence classes will be compared with results from vari-
ous authors and their derived forms will then be put into the corresponding classes.
Such quantum steady-state response functions have been obtained in e.g. Refs. [39, 40]
using different methods. All of their forms are directly connected to the second class
(4.17). Chetrite and Mallick have derived a steady-state fluctuation-dissipation rela-
tion from a quantum Jarzynski-Hatano-Sasa fluctuation theorem for the accompany-
ing density operator 7; for a frozen time ¢ [39]. This accompanying density operator
satisfies for the time dependent generator £ = %y + () %1, Z;:n; = 0 for each time ¢,
but depends explicitly on time, d;m; # 0. It is therefore different from the true density
operator p;. Considering a modified superoperator (using the notation of this paper)
L' =L +dnlnw, =: L + W, they have derived a quantum Jarzynski-Hatano-Sasa rela-
tion of the form,

t
Tr{ﬂtA}=<e_xf)( f Wudu)A(t)> , (4.30)
0 0

where exp is the time ordered exponential. Taking the functional derivative of Eq. (4.30)
yields,

d
Rchetite(1) = —— (A(Om 7y, 4.31)
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which is equivalent to Eq. (4.17).

On the other hand, Mehboudi, Sanpera and Parrondo have derived a steady-state
response function for open quantum systems described by Markovian completely pos-
itive and trace preserving maps (. (p) in terms of the symmetric logarithmic derivative
(SLD)[40]. Assuming that each of these maps have an invariant state { n, = 7., they
have considered these maps and their invariant states up to linear order, {; = {o + £{1
and 7, = mg + em;. For discrete time steps, the time evolution is given by p(#) = (¢ ©
Ce(t—1) © - o) mo. Expanding this evolution equation up to linear order in € and taking
the continuous limit, they arrived at

PRMehboudi (1) = —d; (A(D) Ao + Mo A(D)) 12, (4.32)

where the symmetric logarithmic derivative is defined via 20¢’p|o— = (Agpe + Pee).
This response function can now be rewritten as,

Rehboudi (D) = —d; Tr {(A(D) Ag + Ao A(£)) 7} 12
= —d,Tr{(mo Ao + AoTo) A(1)} /2 (4.33)
=—d;Tr{0emg|c=0A(1)}.

Since 7, = mp + €1 and Oemele=o = 71, we finally have,

RMehboudi (1) = iTr {A(O)m} = i <A(t)ﬂ1ﬂal ), (4.34)
dat dat
which is also directly connected to Eq. (4.17) of the main text.

Response functions are intimately related to the Fisher information [136]. Two quan-
tum generalizations of the Fisher information are commonly considered: the Kubo-
Mori-Bogoliubov inner product (KMB) and the symmetric logarithmic derivative (SLD)
[137, 138]. Their main difference lies in the order of the noncommuting quantum ob-
servables. The SLD is most suited from the viewpoint of quantum estimation theory as
it corresponds to the Cramer-Rao bound, while the KMB appears as the most natural
quantum analogue of the Fisher information from the viewpoint of statistical physics; it
is indeed closely related to the canonical correlation of equilibrium linear response the-
ory [134]. Equation (4.32) can thus been regarded as a steady-state extension of the SLD
approach, while Eq. (4.20) of the main text may be viewed as a steady-state and open
dynamics generalization of the KMB approach.

Besides these quantum equivalences, the classes can also be compared with nonequi-
librium results in the classical context. For example, the second form (4.20) can be con-
sidered as a quantum generalization of a classical NESS response derived by Prost et al.
(Eq. (5) in [119]). Their form is given by

Rym (1) = d7 (0¢,, P(1)0¢, D) (4.35)

for the generalized potential 7, := e®. This is clearly the classical limit of (4.20) for A =
0¢, In(m,).
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4.6. APPLICATIONS OF LINEAR RESPONSE THEORY

Our results are applicable to general open quantum systems. As an illustration, we now
consider once again different aspects of the coupled harmonic oscillator toy model from
chapter 2. We will first consider the difference between steady-state and equilibrium
response, for an open system subject to Hamiltonian perturbation. Afterwards we will
consider the breakdown of linear response approaching a critical point and once more
investigate the differences between the equilibrium and nonequilibrium case.

Despite the formal similarity between thermal 7y o e”#¥ and general nonequilirium
steady-states 7, the two cases are fundamentally different: while equilibrium response
for closed dynamics satisfies detailed balance [129], open (steady-state) response in gen-
eral does not.

4.6.1. RESPONSE FOR THE WEAKLY COUPLED HARMONIC OSCILLATORS
The system consists of two weakly coupled harmonic oscillators, each interacting with
its own reservoir at a different temperature (see Fig. 2.1 for illustration). By properly tun-
ing the parameters of the system, this model allows one to compare different response
regimes: unitary/dissipative, equilibrium/steady-state and classical/quantum. In par-
ticular, a nonequilibrium steady-state is established when the two bath temperatures
are different. The (unperturbed) Hamiltonian of the system [49, 80, 139] is given by (2.2)
forx =0,

Hy = hwlalral +h(wy + 6)a§a2 +hA(a; a; + a]{ag), (4.36)

with respective frequencies w; and w, = w; + 6 (with detuning ). For being able to an-
alyticaly treat the problem, the system-bath interaction is assumed to be such, that the
dynamics are correctly described by the local master equation (see 2 for details about lo-
cal master equations). For specially tuned system-bath couplings it is possible to create
local dynamics, as was shown by e.g. [70].

The (unperturbed) quantum Markovian semigroup generator reads [140],

2
Lo =—(i/W)[Ho, 1+ Y_ 2, (4.37)
j=1

with the two nonunitary dissipators 2; given by the local approach dissipators (2.8)

1
— il il il
Pilpl =y(N(Bj,wj)+1) ajpa; - 3 (ajajp+pajaj)

(4.38)

1
i T T
+yN(Bj wj)|a;pa;+ 3 (ajajp+pajaj)

’

for symmetrical system-bath couplings y; = y. For concreteness, we apply a single type
of Hamiltonian perturbation. In particular a step perturbation of the form e(#)H; =
he(t)(alaz + aIaz), with e(f) = €O(?) is being considered, i.e. the coupling between the
harmonic oscillators is being modified and calculate the response of the (dimensionless)
energy of the first oscillator, A = 1 iw; aJ{ a;. We note that the unperturbed system is in a
thermal state for A = 0 and in a nonequilibrium steady-state for A # 0. The two quantum
oscillators are moreover closed with unitary dynamics in the absence of damping, y = 0.
Finally, the classical regime is achieved in the high-temperature limit § ;7w ; < 1.



4.6. APPLICATIONS OF LINEAR RESPONSE THEORY 53
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Energy difference (A)g(t)-<(A)

Figure 4.1: Quantum response of the (dimensionless) energy of the first oscillator, (A)¢ (f) — (A), with A =

Brhwy airul, to a step perturbation, £(f) = €0(t), of the coupling between the two harmonic oscillators, for
the rotating-wave Hamiltonian (2.2) (x = 0). The steady-state response (A # 0) (blue solid), Eq. (4.39), asymp-
totically approaches the perturbed value (green dotted). By contrast, the equilibrium response (1 = 0) (black
dotted-dashed) vanishes and the unitary response (y = 0) (red dashed), Eq. (4.41), keeps oscillating and fails
to reach the perturbed value of the observable A. Parameters are w1 =2.4,6 =10.1, y=0.7, A =5, ¢ = 0.11,
B1 =0.092 and o = 0.0008.

We determine the quantum response function using the forms (4.22) and (4.24). To
this end, we first evaluate the steady-state density operator of the system and then cal-
culate the time dependence of the observable A. The steady-state properties of the un-
perturbed system is solved using once again the symplectic space for calculating the co-
variance matrix o (see appendix 7.1 for details). The time evolution of A is obtained via
matrix exponentiation of a closed set of operator differential equations (see appendix 7.5
for details about solving the adjoint dynamics). We find then the response functions (see
calculation details in 7.6)

R3(t) =ifr1hAw, <[a1a;'+ a{az,alal(r)]>

YT y(52 +4A% coszT) + (y? + 6%) zsin zT
B 22(y2 + 22) 2AAN B hw) T

=—p1hw1d;0; <aTa(T)>| 0" R2,a1t(T),

£=

(4.39)

where AN = N(B2,w;) — N(B1,w1) and z = V% +4A2. The two different forms % 41(1)
and 23 (1) thusyield the same result, as expected. However, this is not obvious from their
definitions (4.22) and (4.24), since % 4¢(7) displays an explicit e-dependence, while
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Figure 4.2: Steady-state response of the (dimensionless) energy of the first oscillator, (A) (£) — (A), with A =
Brhw aJlr ay, to a step perturbation, £(t) = €0(¢), of the coupling between the two harmonic oscillators. The
quantum response (1 /w1 > 1) (blue solid), Eq. (4.39), asymptotically approaches the perturbed value (green
dotted). By contrast, the classical response (1w < 1) (purple dashed), Eq. (4.42) although proportional to
the quantum response fails to reach the perturbed value of the observable A. Parameters are w1 = 2.4, =10.1,
y=0.7,A=2.3,£=0.11, B =0.164 and B = 0.416.

R3(1) does not.

For this response function three different response regimes may be distinguished
which can be observed in the Figs. 4.1 and 4.2, that represent the linear response differ-
ence (A), (t) — (A) for various system parameters.

(i) In the thermal limit A — 0, the unperturbed quantum oscillator is in an equi-
librium state and the quantum response function (4.39) vanishes (black dotted-dashed
line). By contrast, the steady-state response is different from zero (blue solid line) and
approaches the perturbed stationary value at large times (green dotted line). This exam-
ple emphasizes the fundamental difference between equilibrium and steady-state quan-
tum response theories.

Further, it can be shown that the steady-state response, where the baths are at dif-
fering temperatures T; # T», may be different from zero in cases where the equilibrium
response, where T} = T, vanishes. For zero detuning, § = 0, the perturbation commutes
with the unperturbed Hamiltonian, [Hy, Hj] = fiwy [aJlr a + d;dg + AHjp, dIdg +a az] =0,
implying that the response vanishes for a thermal state. However, in that limit the re-
sponse function (4.39) reads,

2Acos(2A7) +ysin(2A71)
(2 +4A%) (B1hw)t

Rs—o(1) =€ ""ANYy (4.40)

which is in general nonzero. The 8, = B, response thus vanishes for A # 0, while the
steady-state response is finite. In the free oscillator limit, A — 0, Eq. (4.40) vanishes al-
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ways.
(i) In the unitary limit y = 0, when the interaction with the two heat reservoirs is
switched off, the quantum response function (4.39) reduces to,

52
Runitary(T) = 2AAN 1w, = sinzt. (4.41)
z

We observe (Fig. 4.1) that the perturbed observable (red dashed line) exhibits in this situ-
ation oscillations with the same oscillation period as in the nonunitary case (y # 0) (blue
solid line). However, it never reaches its perturbed value (green dotted line) due to the
absence of external damping.

(iii) Finally, in the classical limit, §;Aw; <« 1, the Bose distribution reduces to the
Boltzmann distribution and the response function (4.39) simplifies to,

Brw1 — Bawz y (6% +4A% cos z1) + (Y% + 6%) zsin zT
Baw> Z22(y> +2%)

R lassical (T) = 21 e 1t (4.42)

The classical response function (4.42) is proportional to the quantum response function
(4.39). However, it predicts the wrong perturbed value of the observable A (purple dot-
ted line in Fig. 4.2), stressing the difference between classical and quantum response
theories.

4.6.2. DETAILED BALANCE AND NONEQUILIBRIUM BEHAVIOR

We further show that the steady-state response function of the two-oscillator model does
not satisfy the detailed balance condition (AB(¢)) = (BA(?)) for two time-reversal sym-
metric operators (see chapter 4.2.2 for details about detailed balance). Figure 4.3 exhibits
the response function and its time reversed form,

R3(1) =if1hw <[dIa2 +ara},alay (T)]>,
(4.43)
8 (1) = if1hw; <[a‘[a1, (alay + al“;)("«')]>»
where it is used that the operators A » = a{ @+ a;, a{al both have positive parity un-
der time-reversal 4, = 1. We observe that detailed balance is violated, %3(7) # %g(‘r),
especially at short times, where an offset between the two curves is visible.

It is interesting to note, that in the case of A = 0 the response (4.39) vanishes. This is
actually the case for any Hamiltonian perturbation when one is interested in the time
dependence of the oscillator energy observables, as can be seen from the third form
(4.24) and one (4.16) directly. For A = 0 the unperturbed QMS fulfills the quantum de-
tailed balance since this corresponds to the free evolution of the two oscillators with
their corresponding baths. From the time-reversal symmetry of the response (4.25) in
the case of Hamiltonian perturbation, it then follows that, for any Hamiltonian pertur-
bation Hj, the response for the observable A is the same as the response for the observ-
able H; under the Hamiltonian perturbation A, modulo a sign, RA(T) = i([A(T), Hf]) =
—papma i{(H[(T), A]) = —,uA,uHI?Ji’f’ (1). But for A = 0 the unperturbed steady-state is a
direct product of thermal states of the two oscillators with their respective bath temper-
ature. Therefore, using the first form (4.16) the Hamiltonian perturbation with respect
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Figure 4.3: Violation of detailed balance in the two-oscillator model. a) The steady-state response %3(7), in
Eq. (4.43), (green dashed) is not equal to 23 (t) in Eq. (4.43) (blue solid), especially at short times, as required
by the detailed balance condition. b) check of detailed balance for the unitary case y = 0. The detailed balance
breaking in a) stems from the dissipative part of the dynamics.

to H; < A will commute with the unperturbed density operator £y < [a:.r a;,mol =0.

Thus %fl (7) = 0 has to vanish and therefore any Hamiltonian perturbation will have no
effect on the unperturbed occupation number A.

4.7. BREAKDOWN OF LINEAR RESPONSE APPROACHING A CRIT-

ICAL POINT

To conclude this chapter, we will consider the limits of linear response theory. We will
consider how the magnitude of a perturbation, in which the linear response is still ac-
curate, behaves under different regimes of equilibrium and nonequilibrium situations.
Further, we will consider if there is a difference between these regimes approaching a
critical point. For this case, the position-position coupling Hamiltonian (2.2) for k = A is
being considered. The dynamics will be described by the global master equation (2.20)
and the perturbation will be once more created by the intra-system coupling 1. Com-
pared to the prior example using a local master equation (4.38), however, varying A in the
global case will also result in a modification of the dissipator 2. Linear response will thus
contain not just a Hamiltonian part, but also a dissipative one. The linear response per-
turbation will be calculated by expanding the dissipator about some fixed Aperr = A + €.
The perturbation generator then has the form

%1 (p) =—i[H,pl +

2(p) . (4.44)
dApert P ﬂpert:ﬂ

The adjoint dynamics of this problem can no longer be analytically calculated, but have
to be computed numerically. In appendix 7.5, the method of calculating the adjoint
dynamics numerically is shown. The perturbation itself will be chosen as an instan-
taneous shift (¢) = ©(f)e. The goal is to see the breakdown of the linear response.
This will be accomplished by comparing the linear response at large (infinite) times
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Figure 4.4: Comparison of the maximal linear perturbation strength (—€)/A. that creates an error less than derr
in dependence of the system coupling A/A.. The equilibrium case of finite temperature T; = 98 (blue circles)
possesses a larger valid linear regime compared to the equilibrium, vanishing temperature case T; = 0 (orange
squares) and small A/A.. The nonequilibrium case of T7 = 20, T» = 98 (brown triangles) interpolates between
the two equilibrium cases as the decrease in 77 dominates the linear regime size. The nonequilibrium case
T1 =98, T» = 20 (inverted green triangles) on the other hand possesses a larger interval than the equilibrium
case. Approaching the critical point, all regimes behave very similarly and all linear response regimes become
infinitesimally small. Parameters are w1 =5, wp =2, y; = 1.5-1072.

(aIm) (1) = (aIal)o +f0t £(8)2(t - s)ds, where ()¢ stands for the unperturbed system. On
the other hand, solely changing the coupling strength Ape, the infinite time behavior
is exactly known by calculating the steady-state behavior of the system at A + €, denoted
(cflr ap)e, using the global master equation’s steady-states. Therefore, we will compare the
linear response behavior with the correct result and interpret it as the failure of the linear
response, if the relative error between the correct solution is larger than 6 = 0.01, i.e.
larger than an 1% error,

Kaja)e —(ajar)(co)]

T Oerr- (4.45)

(a;ar)e
In Fig. 4.4 the breakdown of the linear response is shown for four different cases, the
equilibrium finite temperature T; = 98 (blue circles), the equilibrium vanishing temper-
ature T; = 0 (orange squares), the nonequilibrium 7; =20, T, = 98 (brown triangles) and
the nonequilibrium T} =98, T» = 20 case (green inverted triangles). To be precise, the
maximally allowed perturbation (—¢)/ A is plotted against the approach to the critical
point A/A.. Interestingly, the finite temperature linear response (blue circles) is gen-
erally valid in a larger perturbation interval than the vanishing temperature case. The
nonequilibrium cases (triangles) possess either larger or smaller linear regimes than the
equilibrium case, depending on the sign difference. The case where T = 20 (brown tri-
angles) possesses a smaller interval, closer to the T; = 0 equilibrium case. This is ex-
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pected, as the temperature of the first bath is lower and therefore interpolates between
the two equilibrium regimes. Interestingly, the T» = 20 case shows actually a larger linear
interval (green inverted triangles) as the corresponding equilibrium case. Thus, while
nonequilibrium cases can cause a shrinking in the size of the linear interval in which
the linear treatment is valid, it can also increase it for small A/A.. After all, all that was
checked was (4.45) and considering the nonequilibrium behavior of (aIm) as plotted in
3.3 in chapter 3, the global approach for this strong nonequilibrium (left inset) hardly
changes at smaller A compared to close to equilibrium (left) as the energy flow to the
colder mode first compensates the decrease of w_. Since (a’{al) hardly changes, also a
larger perturbation can be applied before the linear regime becomes invalid, measured
by (4.45). Approaching the critical point A/A, = 1, however, one can observe that all the
different approaches behave very similarly. All have a breakdown of the linear regime
approaching the critical point with only small differences. This is also understandable
since approaching the critical point results in a vanishing eigenfrequency w_ = 0 and
therefore all finite temperatures will turn into a high-temperature (or quasi classical)
limit.

4.8. DISCUSSION
We have generalized Kubo’s quantum response theory to nonequilibrium open quantum
systems described by quantum Markovian semigroups. We have, in particular, intro-
duced a steady-state extension of the Kubo transformation, which plays a central role in
the study of equilibrium isolated quantum systems. We have concretely derived quan-
tum extensions of the equivalence classes for classical response functions introduced in
Ref. [37]. We have for each of them analyzed the role of noncommuting operators and
identified conditions under which the quantum response vanishes when some operators
commute. We also considered the different properties these forms have depending on
what kind of perturbations are applied, either Hamiltonian or dissipative. Then we con-
sidered what properties can be discerned from these classes in the case of QMS that fulfill
quantum detailed balance. In particular we showed a symmetric time reversal symme-
try for the second (4.22) and third (4.23) forms, in the case of quantum detailed balance.
Next we have shown that the classes can be connected to various forms derived by other
authors and the connection to classical response theory was further investigated. We
have lastly illustrated our results with an analytically solvable model of two weakly cou-
pled open quantum harmonic oscillators described by a local master equation and com-
pared various response regimes including unitary/dissipative, equilibrium/steady-state,
and classical/quantum limits. We have shown, in addition, that the equilibrium quan-
tum response can vanish in instances where the steady-state quantum response does
not. In the end we considered the breakdown of linear response approaching a critical
point and showed that this is the case regardless whether one treats equilibrium and
nonequilibrium regimes.

Our findings not only provide a unified picture of nonequilibrium quantum response
theory, they also offer different, but equivalent, approaches to evaluate steady-state re-
sponse functions, depending on the specific problem considered.



FLUCTUATION-DISSIPATION
THEOREMS FOR QUANTUM
MARKOVIAN SYSTEMS

5.1. INTRODUCTION

HE gist of linear response theory, as discussed in chapter 4, is that the properties of

the (linear) response function is defined solely by the structure of the (unperturbed)
system itself, independent of the exact time-dependence of the perturbation. This can
be understood physically considering the following physical example. A Brownian par-
ticle [38] which is subject to random collisions from the surrounding gas will experience
random, fluctuating, or nondirected forces. These do, however, generate also dissipa-
tive, or directed effects like friction. If the system is then subject to a small perturbation,
as described by the linear response theory; it is not able to distinguish the origin of this
perturbation. Therefore, its response has to be the determined by the free (unperturbed)
dynamics of the system. Finding connections between these dissipative, or systematic,
terms with fluctuating or random functions is what is generally termed a Fluctuation-
dissipation theorem (FDT).

One such FDT [15, 25] is the connection between a function connected to the strength
of the fluctuations D of a Langevin equation and its dissipative properties, caused by
the interaction of a system with a thermal bath, D = ykT, which is generally termed an
Einstein relation [8]. Further, an Einstein relation for diffusion [25, 38, 110], that con-
nects the diffusion constant with the mobility of e.g. electrons in a conductor is given by
Dy/ug = kT/e[141], where Dy is the diffusion coefficient, yo the mobility of the electrons
and e the electric charge. One in particular interesting case of a fluctuation-dissipation
theorem is the connection of response functions with specific correlation functions. In
fact, the latter is a widely researched topic in both the classical [119, 142] and quantum
[38-40, 110] context for both equilibrium [38, 110, 142] and nonequilibrium situations

59
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[39, 40, 119].

Classically, the thermal fluctuation-dissipation theorem, for response functions ()
and correlation functions Célx (2), of a Brownian particle subject to a force can be found
in Fourier space [142]. For this chapter, the notation of Fourier transforms will be given
by f(w) = [, f(t)dt. The FDT for a classical, thermal, system is then given by [142]

2kT
Cq () = T%"(w), 6.1

i.e. the Fourier transform of the position-position correlation function is connected
to the imaginary part of the Fourier transformed response function, also called sus-
ceptibility Z(w) = Z'(w) + i®" (w) caused by the force. For the quantum case Kubo
[25, 38, 110, 143] showed that for the Gibbs state and unitary dynamics, a similar FDT
can be found. It was derived there that the imaginary part of the response function in
Fourier space for general observables A, B (with positive time-reversal parity, which will
be discussed in the following), here denoted as £ 45 (w), is equal to the Fourier transform
of a corresponding correlation function multiplied by a more complex term,

Cs8 () = hcoth(Bhw/2) R 3 () = 2k (N(ﬁ,w) + %) Np@), (5.2)

with the Bose-Einstein distribution N(B,w) = 1/(e"#® —1). In the classical limit (7 — 0)
and A, B = x this coincides with the classical form (5.1). It is interesting to note, that
similar to the Callen Welton formula [109] for the radiative energy density, the quantum
description contains a term corresponding to the zero point contribution N(f,w) +1/2,
showing that the quantum FDT (5.2) contains explicit quantum contributions.

Besides this zero point addition, the quantum setting contains further subtleties that
have to be kept in mind. In quantum mechanics, operators do not commute, thus there
is an ambiguity of how (two-time) correlation functions can be defined. Further, the FDT
(5.2) is valid only for thermal steady-states 7.4 = exp(—fH)/ Z. While many steady-states
of different dynamics may be given in the form of (thermal) Gibbs states 7.4, this is not
necessarily the case in general. Therefore, it is of interest whether it is possible to find
such fluctuation-dissipation theorems for the cases of general nonequilibrium steady-
states and in which way they differ from the thermal case [38]. Furthermore, (5.2) also
only holds for closed (unitary) dynamics. For these, a thermal state is always their steady-
state [H, 7To4] = 0. But since many physical problems have to be treated as fundamentally
open, it is of further interest to consider how fluctuation-dissipation theorems look like
for these more general cases.

The aim of this chapter is to find the general fluctuation-dissipation theorems for
open quantum systems, using the general of quantum Markovian semigroups. In par-
ticular, the FDT’s for the different response function classes in chapter 4 will be derived.
Their structure will then be compared with classical nonequilibrium FDT’sl [119, 129],
as well as open quantum attempts derived by various authors [40-42].

For being able to do so, some properties of open quantum mechanics and correlation
functions have to be considered more closely. In particular we will start with rederiving
the FDT (5.2) by Kubo [38]. We consider what properties the dynamics, response and
correlation functions fulfill needed for deriving the FDT. This is then compared with the
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properties the quantum Markovian semigroups possess and thus how the FDT’s in the
open context can be derived.

5.2. CLOSED QUANTUM DYNAMICS AND THE KUuBO FDT

Fluctuation-dissipation theorems describe how (two-time) correlation functions are con-
nected to response functions. Before deriving the Kubo FDT, it thus may be advanta-
geous to first discuss how correlation functions are defined, what their properties are
and how classical or quantum settings influence their structure.

5.2.1. CORRELATION FUNCTIONS IN THE QUANTUM CONTEXT
Classically, the formal definition of a correlation function [25] is given in the form

cAB (t,t) = (A()B(t)), (5.3)

class

for arbitrary dynamical variables A, B. The expectation value (-) is connected to some
kind of averaging. There are various definitions for how to define the averaging proce-
dure of two variables [25]. One physically intuitive approach is defining the average by
measuring the variables A, B at their respective times, and averaging their product over
the number of measurements C4Z (1, 1) = limy_.co 1/NX}_, Ax(£)Bi(t"). A more ther-
modynamic definition, for ergodic systems, is given by an ensemble average about a dis-
tribution function. For an example of a Fokker-Planck equation, this ensemble average
may be defined as Ccf}fss(t, t) = [AX,B(X,t')p(X)dX, where X are the phase space
variables of the system and p(X) is the probability distribution function. In the case of
steady-states p(X) = pst(X), these correlation functions fulfill the so called stationarity
property (A(£)B(t")) = (A(t— t")B) [25].

In the quantum setting, these definitions cannot be straightforwardly generalized.
First, operators will in general not commute, thus (5.3) is not necessarily uniquely de-
fined. Second, in the classical picture, the meaning of these correlation functions can
be understood physically as the subsequent measurement of the corresponding vari-
ables A, B. This is not necessarily possible in the quantum case. The expectation value
(A(t)B(t") itself does not possess a direct physical meaning as in the classical case, i.e.
it is not a direct measurement of B at time ¢, followed by a measurement of A at time
t. Tt is only possible to connect these correlation functions mathematically to e.g. the
measurements of the system response considered in chapter 4 or an intricate summa-
tion of multi-measurement setups (see e.g. p 35 in [15]). But the correlation functions
themselves are not measurable, due to the simple fact, that for two Hermitian opera-
tors A, B, the correlation functions are complex (A(t)B(#'))* = (B(t") A(2)) # (A(£) B(t)).
While they can be only measured indirectly [15], these correlation functions do contain
important mathematical properties of the system’s dynamics.

The direct quantum generalization of the classical formula, for closed dynamics, is
then given by [25, 38, 110]

CiB(t,t) = (A(OB(t)) = Tr{A() B(t)p}, (5.4)

where A(t), B(t') are Heisenberg operators fulfilling d,; A(¢) = i[H, A]. Asmentioned above,
this function is in general complex. A real version can be obtained by decomposing the
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complex function into a real and imaginary part f = Re(f) + iIm(f). For two Hermitian
operators A, B, the real or symmetric correlation function can be defined as

a8, vy = (Aw), By = CPB(t, ) + CE (1, 1. (5.5)

Let us now consider some properties of these correlation functions. Upon using
time-reversal [144], there exists a physical interpretation of the symmetric form (5.5).
The symmetric correlation function can be cast into a sum of a correlation function of
type (5.4) and its time reversed version (see appendix 7.8 for details on time-reversal of
closed quantum dynamics). Thus, the symmetric correlation function (5.5) can be writ-
ten as

ciB i, t) =(AMBWY) + (ARBR()yr= (C/E @, )+ CiE (1, 1)), (5.6)

where A% = ©A'O corresponds to the time-reversal of an operator, with the antiunitary
time-reversal operator © = ©~ ! =0' [144] and (-) g is the expectation value w.r.t. the time
reversed density operator p®. Therefore, the dynamical properties of the symmetric cor-
relation functions are connected to the properties of time-reversal. For thermal states
p = ¢4 and unitary dynamics, one can further derive additional interesting properties
for these correlation functions. First, the correlation functions (5.4), (5.5) have the sta-
tionarity property C:t2 (¢, 1) = C£¥ (11,0, i = L, C. This can be shown directly, using the
fact that the equilibrium state commutes with the time evolution operator [U (), Teq] =0
and thus

(ADB(Y) =Tr{UN (D AU DU () BU(t ) eq} = TH{U (YU (D AU (DU () By}

5.7
=(A(t—-t)B). 6.7

Further, the time-reversal operation can be interpreted as the evolution in negative time
for an observable with well defined time-reversal parity 4, AR =eutnatume =
Ut (-n®AOU(-1) = taA(—1t), where for the time evolution operator it is the case that
OU(1)O = Oexp(—iH)O = exp(iHt) = U(-1). Lastly one can find that ngq = Teq, i€
the equilibrium state is invariant under time-reversal. Using these properties, one can
derive a form of detailed balance in the quantum context [115] for closed dynamics. This
states that for two Hermitian operators A, B one has

(A(1)B) = (OBADO™Y) = uapp(BA(-1) = papip(B(H) A). (5.8)

From (5.8) it then follows, that the symmetric correlation function between A and B is
equal to the correlation function between B and A up to the time-reversal parity, which
upon using the stationarity property results in Cg‘g (t—1,0) = paus Cgé‘(t —t,0). Fur-
ther, one can use the group property and observe the properties of the negative time
correlation function for the detailed balance case

5.8
CaE(~1,0= CB4(1,0) 2 pappCiE (1,0). (5.9

Thus, depending on the time-reversal parities p 4, g, one can deduce from (5.9) that the
symmetric correlation function is either a symmetric or antisymmetric function.

The imaginary part of a complex function can be considered in general independent
of the real part. However, the imaginary part of the correlation function (5.4) is actually
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not independent of (5.5). In fact, there are two kinds of connections that were estab-
lished for these parts. First, there are the so called Kramers and Kronig dispersion rela-
tions which establish a general connection for a quadratic integrable function in Fourier
space using complex calculus [143],

Clw) =f O (5.10)

—co U—W

Second there are the fluctuation-dissipation theorems, connecting the correlation func-
tion (5.4) to the response function of the closed, thermal response theory [38]. The latter
we will consider more closely next.

5.2.2. THE FLUCTUATION-DISSIPATION THEOREM FOR CLOSED, THERMAL

DYNAMICS

For the symmetric correlation function (5.5), the fluctuation-dissipation theorem (5.2)
was derived by various authors [25, 38, 110, 143]. Response theory for closed dynamics
can be obtained from the classes discussed in 4, by considering Hamiltonian perturba-
tion of the form % (1) = —i[B, ] and taking the limit of vanishing system-bath coupling
vi = 0. Utilizing the third class (4.24) in this closed dynamics limit, the response function
for any observable A can then be written as a difference of two correlation function of
the form (5.4),

ZeB (1) = -i (CiE (1,00~ C1E* (1,0)). (5.11)

It is interesting to note, that the response function is exactly given by the imaginary part
of the correlation function (5.4). Therefore, searching for a FDT between the symmetric
correlation function (5.6) and the response function (5.11) is just given by a FDT between
the real and imaginary part of the correlation function (5.4). It is also noteworthy, that
the response (5.11) and correlation function (5.5) are well defined for all £ € R. In partic-
ular, these possess a symmetry about 7 = 0 for stationary states. The response function
for —7 is given by

ReE(-1) = i (CPE (-1,00 - CJE* (-1,0) = =i (CE 0, 1) - C{B*(0,7))

=i(CPA T, 00— CPA* (1,0)) = - R (1) = —papsREE (1) 512
and therefore the response functions have a time-inversion symmetry that is negative
(positive), when the the symmetric correlation function (5.9) has a positive (negative)
symmetry. With being defined for all ¢ € R, it is possible to find a FDT in Fourier space
using the so called Kubo-Martin-Schwinger (KMS) boundary condition [143, 145-148].
The KMS boundary condition states that

fm (BV(D)A) f(ndt = foo (V() AB) f(r+ip)dr, (5.13)

—00

for a continuous function f(#) on C, a general one-parameter group {V(#)|t € R} (see
also discussion in chapter 4.2.1 about group properties) and the group’s steady-state be-
ing the Gibbs state p = 7.4. In the closed (unitary) case, the group is given by V()A =
UT (1) AU (1), which is continuous on t € R. The idea behind the KMS boundary condition
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is the observation that one can define an imaginary time evolution for thermal unitary
evolution in the following way

(BA(D)) = (poq A(D)peqB) = (A(t— i) B). (5.14)

This KMS identity utilizes the fact that for thermal states 7., = e PH/Z one can iden-
tify the products of density operators A, 7.4A(D7,; = e PHUT (1) AU(1)eP? = UT (1 -
iB)AU(t — i), with an imaginary evolution since the time evolution operator U(?) =
e~ H% in the closed dynamics case is also fully defined by the Hamiltonian H.

The KMS boundary condition now states that the Fourier transform of the correlation

function can be transformed in the following way

(o] . o .
CfCB*(w):f C{‘f*(r,@)el‘”dr:f (BA(1))e'“Tdr
—00

—00

= e PociB(w).
This allows one to identify the response function with the one-sided correlation function
CiE(x,0),
REB () = —i(1 - e PO)CAB (w). (5.16)

Further, the symmetric correlation function can be also identified, using (5.15), with

CiB(w) = (1 + eP*)CAB (w). Therefore, the FDT between the linear response and the

symmetric correlation function can be given by
1-e P

RIB(w) = —i—
¢ @ 1+ePo

C4B (@) = —itanh(Bw/2)CLE (). (5.17)

Next, let us consider the real and imaginary parts Za? (@) = Z28' () - iZ 25" (w) of
the susceptibility
%8B () = (B LB () + 2B ()*)12 = —itanh(Bw/2) (C5E (w) — CLE (~w)) 12

(5.18)
BLB () = 1(BAE () — Z2B ()*) 12 = tanh(Bw/2) (C4E (0) + CLE (~w)) /2.

On using quantum detailed balance (5.8) and stationarity, one can simplify these terms
into the full FDT for closed quantum dynamics
ZeP (w) = —itanh(fw/2) (CLE (W) - CE4 () /2
=—i(1 - papp) tanh(Bw/2)C4E (w)/2
%8P () = tanh(Bw/2) (CLE (0) + CE (@) 12
= (1 + papp) tanh(Bw/2)CEE (w) /2.

(5.19)

This reproduces the FDT derived by Kubo [38] and one can obtain (5.2), if 7 = 1 is set
and if both observables have the same parity p4 = pp. Then it is also the case that the
real part of the susceptibility vanishes %éB’ (w) = 0. For differing parities us # up, the
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imaginary part of the susceptibility vanishes %éB "(w) = 0 and the FDT exists in this case
only for the real part of the susceptibility.

It has to be noted, that for closed dynamics, the correlation functions (A(¢)B) are in
general nonvanishing for large times as no dissipative effects can cause a suppression
of the correlations. However, a thermodynamic limit is assumed, allowing the system to
have vanishing correlations for large times. Lastly, let us mention the Kramers-Kronig
relation for the response function as derived in e.g. [143], which has the form

1 00 @ABII(wl)
REE () = —P f ———do’
T Jo W-w

1 00 %AB/(w/)
Z () = _;Pj;oo —a():’—a) o'

(5.20)

)

with the principal value integral P [ dr, connecting the imaginary and real part with each
other. Comparing the symmetries in (5.19) with (5.20), one can find that for operators
with well defined parities pi4, g, (5.20) cannot hold, since either the real or imaginary
part vanishes. Only for operators AR # 4 A (5.20) connects two finite functions.

5.3. QUANTUM MARKOVIAN SYSTEMS AND THEIR FDT’S
Considering the derivation of the closed dynamic’s FDT (5.19), one observes that a mul-
titude of properties of the closed quantum dynamics have to be used, e.g. the group
property defining the correlation functions (5.4) for all times ¢ € R or the system Hamil-
tonian defining the complete unperturbed dynamics and the perturbation being also
defined solely by a unitary operator. Also symmetry properties were of the essence, like
the time-reversal symmetry.

But these used properties do not necessarily hold in the open quantum context. For
one, a KMS condition of the form (5.13) cannot be found in the open context. The dy-
namics of an open system is not completely determined by the system’s Hamiltonian and
thus even a thermal steady-state density operator 7., only accounts for the 0-eigenvalue
eigenoperator of the generator £m.; = 0. But there are further dynamical properties
caused by the bath structure and system-bath interaction [42]. The dynamical maps of
an open system also only consistute to a semigroup [42, 132] and thus negative times
have to be treated very cautiously. Due to these potential complications, it is of the
essence to first consider more closely what property changes one has in the case of open
quantum mechanics and how it is still possible to treat FDT’s in the open quantum con-
text of quantum Markovian semigroups in a mathematically consistent way. We start
by once more considering first the essential building blocks, the correlation functions.
For these it is assumed that the quantum regression theorem [25] holds (see (4.2.1) for
details about quantum regression).

5.3.1. CORRELATION FUNCTIONS IN OPEN SETTINGS

Going from the classical interpretation of a correlation function (5.3) to the closed quan-
tum dynamic’s version (5.4) a number of ambiguities were introduced, as is usually the
case for generalizations. Open quantum mechanics may also be treated mathematically
as a generalization of closed dynamics, creating yet again new ambiguities. One such
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ambiguity is caused by the fact, that the dynamical map of the open quantum system
no longer constitutes to a unitary group, but a semigroup (a more detailed discussion
of semigroups is given in chapter 4.2.1 or in [20]). In particular, the map e’ cannot be
written as a product of unitary operators. Therefore, one cannot reduce the time evo-

lution of two operators e (AB) # eZ!(A)e!(B), where the generator .Z is the adjoint
super operator as defined in (4.2).

This has significant implications on the possible structures of the correlation func-
tions, creating multiple possible definitions for them. For one, in the closed stationary
case this reduction ability was used to derive the stationarity property Tr{A(¢) B(t")w} =
Tr{A(t — ¢)Bn(t')} = Tr{A(t — t') Bz}. But these two forms are not equal in the open case.
This can be seen by writing the time evolution explicitly

Tr{egt(A)egtl (B)ﬂ} # Tr{eg(t’tl)(A)Bez f(n)} - Tr{eg”*f')(A)Bn}, (5.21)

even for thermal steady-states 7 = 7.4. Following e.g. [6], the plausible choice of a cor-
relation function in the open case is the one that at least formally respects the property
of stationarity (A(t) B(t")) = (A(t— t') B). The left function in (5.21) cannot be interpreted
w.r.t. stationarity. Both adjoint evolutions of A, B start at #,# = 0 and even if ¢ = ¢’ one
can observe a dynamic behavior for different . A consistent definition that takes sta-
tionarity into account is then given by

CAB (1, ') = (A(DB(1)) = Tr{Aez(t_t’) (Bef” (p))} - Tr{eg(t_t’) (A)BeZ" (p)}, (5.22)

where for the last equation the quantum regression theorem is used (see 4.2.1). This can
be interpreted [6] as first the density matrix p is being evolved from 0 to time ¢'. Then
the operator B is multiplied to the left and this new operator Be? 4 (p) is evolved from
¢’ to t and finally the operator A is being multiplied. For a stationary state the first time
evolution acts trivially on the stationary state eZn = 7 and the last term in (5.22) can
be simplified where the dynamical behavior is solely defined by the adjoint dynamics of
the operator A, C;5(t,1") = (A(t — ') B) = (A(t) B(t")). Defining the correlation function
in that way (5.22), one can reproduce formally the stationarity property. Further, this is
exactly the form of correlation functions that occur in the response functions of the open
dynamics linear response theory (see chapter 4), justifying this choice.

Let us consider now what properties the open dynamic’s correlation function (5.22)
possesses. As in the case of closed dynamics, the correlation function (5.22) is a complex
function. A real version can be once again achieved by symmetrization

Cest, ) =CiB )+ CiB (e, 1. (5.23)

Writing the complex conjugation of the correlation function explicitly C; 5 (¢, )" =

(A(HB(t'))Y* = Tr{Bez(t‘ﬂ) (A) 2! (p)} one can observe that the above definition of the
symmetric correlation function (5.23) is not the sum of two correlation function of the
form (5.22). Thus, for being able to reproduce the stationarity property, this symmetry
property of the correlation function is sacrificed in the open context. While the second
function in (5.23) may not be a direct correlation function, using time-reversal enables
one to interpret both terms in (5.23) as correlation functions. Using the time reversed
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.. . SR . .
generator of the adjoint dynamics £ (see appendix 7.8), the complex conjugate of the
correlation function (5.22) can be rewritten as

o ! 7 !
CiBt, 1 =Tr{Be$”‘”(A)n}=Tr{e$ (“”(AR)BRpR}=<AR(r—t’)BR)R, (5.24)

—R
where AR(t) := e? ! AR is given by the time reversed adjoint dynamics. Thus, the sym-
metric correlation function can be interpreted, like in the closed case (5.6), as a sum of
the correlation function (5.22) and its time-reversed version

ciBt, )= (Au-1)B)y+(AR(t-1)BR),. (5.25)

The time-reversal operation (7.24) can further be used, in conjunction with the 0-

dual semigroup §O, to generalize the quantum detailed balance condition as was done
in4.2.2. It should be stressed, however, that in the closed dynamics case this 0-dual semi-
group is just given by (A(—t)B) = (AB(t)), i.e. the 0-dual is necessary because the open
dynamics is only a semigroup and not a unitary group. Thus, the defining negative times
for the correlation functions (5.23) and (5.22) is a nontrivial task. Interestingly, Weidlich
[42] put forward a heuristic argument extending the correlation function (5.25) to neg-
ative times by defining just the negative time behavior as it is in the closed dynamic’s
case, Cg“g(—r,O) = ng(r,()), 7 > 0. This transforms the correlation functions into Cy
functions for all t € R, which coincides with the closed dynamic’s definition in the limit
of vanishing system-bath coupling. This definition is advantageous in the sense, that for
these correlation functions it is possible to use the normal Fourier transform as in the
closed case. However, this definition also does not respect the time-irreversibility of the
open dynamics. It is therefore rather a mathematical trick than a physical property. Due
to this ambiguity, we will not continue the correlation functions to negative times, but
rather use one-sided Fourier transforms as in [41].

5.3.2. FLUCTUATION-DISSIPATION THEOREMS OF QUANTUM MARKOVIAN
SYSTEMS

In this subsection we will reconsider the various response formulas derived in chapter 4

w.r.t. to the possibility of finding a fluctuation-dissipation theorem.

FDT’S FROM THE THIRD CLASS
Starting with the third form (4.24), the response function is given by 23(1) = <§1A(1) >

For the case of purely Hamiltonian perturbation, the response has the form %;‘B (1) =
—i([A(?), B]). Formally, this completely resembles the response function of the closed
case (5.11). However, due to the different properties of the correlation function of the
open dynamics case considered above 5.3.1, it is not possible to apply the KMS bound-
ary condition (5.15). This is also something that is expected, in the open case the dy-
namics are governed by the generator £, whose structure is not completely defined by
the steady-state 7 even in the thermal case. Thus, it should be expected that for any
fluctuation-dissipation theorem the eigensystem of the generator £ has to be accounted
for in the open case. Interestingly, Weidlich [42] used an eigenoperator decompositions
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of the generators £, £ to derive a FDT for this Hamiltonian perturbation. The derived
FDT is of the form [42]

o0

Ci6 (@) = i(Raz (@) ~ Ry () +P f 5 (Ra () + Ryp()dw, (5.26)
—00

where the operators «f, 28 use special eigenoperator projections of the generators (see

[42] for more details) and P denotes the principal value integral. This shows, that for

general open quantum systems, the FDT for the same type of response as for the closed

dynamics’ case (5.18), is significantly more complex in form.

While one could in principle also apply these eigenoperator decompositions to all
the other classes, we will follow a different approach. In particular, we relax the condition
that the correlation function has to be a product of two observables (A(#) B), but allow
that the operator B can be non Hermitian. This is consistent insofar, as the first (4.16)
and second form 4.21 are exactly such correlation functions. The third form (4.24) for
commutative perturbation then can be rewritten as such correlation functions 23(7) =
(A(T)B]) + (BfA(r)), with B} = iHj, where without loss of generality only one pertur-
bation is assumed. However, this is exactly a symmetric correlation function 2% (t) =

Cfg ! (1). The FDT for this case is then given in Fourier space by

R() = Co2 (@) (5.27)

Next, the case of a purely dissipative perturbation in the general form [20] L1(A) =
DA =Y, Fn(BnABZl - {B,ZBL, A}/2) for a set of operators {B,} is being considered. In
this case, the response function can even no longer be written as the combination of two
correlation functions of type (5.22) for observables. However, one is able to find the non
Hermitian operators C; such that

R3(1) = Y Th{ATCp) +(CLA@N) = Y T,CLS" (). (5.28)
n n

These operators have the form C,, = (BLann‘l - BnBI,)/ 2. (5.28) is then also a sum of
symmetric correlation functions, and thus the FDT has the form

R@) =Y TnCLS" (). (5.29)
n

This form is similar in notion to a classical NESS FDT by Agarwal [115] for Fokker-Planck
dynamics. There it was shown that for detailed balance dynamics it is the case that the
response can be written in the form R(w) = ) j(D‘l),- jRij(w), where D is the diffusion
matrix. For the general case of dissipative + Hamiltonian perturbation one can also find a
non Hermitian operator, using the decomposition of the dissipative form, D,, = i H;+Cj,.

FDT’S USING THE FIRST AND SECOND FORMS

Compared to the third form, the first (4.16) and second forms (4.17),(4.20) are asymmet-
ric correlation functions of type (5.4). Furthermore, these are directly a product of the
Hermitian observable A and a non Hermitian operator B.
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For the first form 2, (r) = (A(7)By), the reality of the response function means that
(A(T)By) = (A(T)B))* = (BI A(7)). Thus, the response function can be connected to the
symmetric correlation function in the form

(1) = (A B + (B A@)) 12 = € (012, (5.30)
The FDT then is once more straight forward
R1(0) = CLY (w)12. (5.31)

This form is very similar to the one derived for purely dissipative perturbation (5.29).
The difference is, that By = (£7¢)/mo hides all the system-bath interactions within B;.
The second form (4.21) is given by %2 (1) = —d;(A(1)0:S¢lo) = d; (AB). Using the same
argument of reality of the response function, the response can be written in dependence
of a correlation function,

(1) = d; CLY (1)12. (5.32)

For the FDT, it is important to emphasize that the response and correlation functions
are only defined for ¢ = 0. This results in the fact, that in the partial integration in the
(one-sided) Fourier transform of (5.32) a boundary term remains

* iot o it d AB T d AB
R (w) :f R (T)e dT:f e o (1,0)dT = o @ 0)
0 0 dr dr 0 (533
. . )
—iw fo Cod2(r,0)e™Tdr = C52(0,0) — iwCyp? ().

From this follows the FDT, by noting that because of the reality of the response function
one can deduce 2 () — Z2(-w) = B2 (w) — R2(W)* = —i2R} (w),

R} () = 0CLY (). (5.34)

This form of the frequency FDT is similar in form to a classical NESS FDT by Prost et al.
[119]. In the classical case, they showed that Ryy (w) — Ryq (—w) = iwCpy(w) and thus the
difference of susceptibilities is given by a correlation function.

5.4. DISCUSSION

The differences between classical, closed quantum and open quantum systems were
considered w.r.t. correlation functions as the building blocks of fluctuation-dissipation
theorems. Rederiving the closed quantum FDT by Kubo [38], it was emphasized that
the form (5.2) is a consequence of the properties of the closed, thermal dynamics. In
the open case of quantum Markovian semigroups it was first shown that for these many
properties are not reproduced. It is therefore expected, that FDT’s for such systems will
not be necessarily be as elusive as (5.2). Itis the case, that for open quantum systems, the
dissipative part of the dynamics is determined by the bath properties and system-bath
interaction. Therefore, these have to either be contained within the connection between
the susceptibility R(w) and the symmetric correlation function Cs(w) or hidden in the
operators within these functions. We showed then that for the classes found in chapter
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4, there can be found a FDT for all of them, which are simple in form, by storing the
system-bath interaction in non Hermitian operators. For purely dissipative perturba-
tion the FDT for the third form was shown to be a sum of the friction coefficients (5.29).
While the second form’s FDT has a trivial connection between the susceptibility and a
correlation function (5.31), the second form’s FDT connects the imaginary part of the
susceptibility to a correlation function times w (5.34).



CONCLUSION AND OUTLOOK

We investigated different aspects of quantum Markovian master equations. First differ-
ent perturbative methods were analyzed in their ability to correctly describe the steady-
state properties of a model which is simple enough to be described by global master
equations, yet sufficiently complex model that it still expressed nontrivial behavior. Sec-
ond the dynamical properties were investigated by deriving response function classes
and fluctuation-dissipation theorems.

In chapter 2 global and local master equation were compared in their ability to de-
scribe critical phenomena. In particular, the steady state properties of two coupled har-
monic oscillators each coupled to their respective baths was considered. It was shown
that in the equilibrium case the global approach is able to correctly reproduce the Gibbs
distribution for both considered intra-system coupling models. The local approach, on
the other, hand had difficulties to quantitatively reproduce the expected equilibrium be-
havior. Especially for the rotating-wave intra-system coupling, it was shown that the
local approach completely fails to reproduce even qualitatively the critical behavior. It
was further seen, that nonlocal properties like the quantum mutual information is gen-
erally smaller for the local approach as it cannot create the same amount of correla-
tions. For vanishing temperatures, the local approach is further not able to create suffi-
ciently strong quantum coherences in the position-position coupling case, approaching
the critical point. In the nonequilibrium situation, the approaches were compared with
a quantum Langevin equation solution. The local approach showed a qualitative differ-
ence in the error behavior depending on the sign of the temperature difference. Inter-
estingly, the global approach also differs from the quantum Langevin equation solution
in the position-position case, while they completely agree in the rotating-wave case.

In the context of perturbation theory, the local approach is nothing else than the ze-
roth order perturbation. Chapter 2 can thus be interpreted as an investigation in how
well the zeroth order perturbation is able to describe steady-state behavior of quantum
master equations. In chapter 3 we went further and consider what effects higher order
perturbations create and if these become monotonously better in describing the global
approach. The major focus was put into the first order perturbative correction, which
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was compared with the global and local approaches using the same coupled harmonic
oscillator model, with the focus on the position-position coupling. From the expansion
of ordinary functions, perturbation theory is expected to behave better the higher the or-
der of perturbation becomes, in particular for small perturbations. It was shown there,
that in the equilibrium situation, this improvement could be observed partially, espe-
cially for finite temperatures and nonlocal observables such as the quantum mutual in-
formation. Local observables, as the considered mean occupation number of one of the
oscillators, however, behaves differently than the local approach, but does not necessar-
ily reproduce the global result better. Calculating thermodynamic properties, however,
showed that both the local and first order perturbative approach lead to unphysical heat
currents from the baths in the equilibrium case. And even more pressing, in the vanish-
ing temperature case, the first order perturbative approach led to a steady-state covari-
ance matrix that violated the uncertainty principle. The nonequilibrium regime further
showed, that there exist, for the nonresonant oscillators (w; # w»), two regimes in the
case that the hotter bath is coupled to the oscillator with the higher frequency. One can
be termed the 'normal’ regime where the hotter bath results in a higher local occupation
number for its corresponding oscillator compared to the colder bath and an ’anoma-
lous’ regime where the hotter bath coupled to the higher frequency still creates a lower
occupation number than the colder bath, i.e. N(f;,w1) < N(B2,w2), but f; < B,. In the
normal regime, the local approach can reproduce the global approach’s local and non-
local behavior better than the first order perturbative one. In particular heat currents
and entropy production are physical and qualitiatively behaving like in the global case,
whereas the first order perturbative approach is unphysical. In the anomalous regime,
however, this is reversed, in particular the heat currents and entropy production are now
physical for the first order perturbative approach, while the local one becomes unphys-
ical. Therefore, the result of approximative approaches to circumvent the full derivation
of a quantum master equation is rather mixed. While both the local and the first order
perturbative approach are able to reproduce the global behavior qualitatively, they do so
with differing levels of success, depending on the exact choice of temperature, coupling
strength, small differences in the Hamiltonian and equilibrium or nonequilibrium situ-
ations. Especially the first order perturbative approach, while being of first order com-
pared to the local approach’s zeroth order, is interestingly not necessarily better than
the local approach, even for infinitesimally small intra-system coupling. If the order of
perturbation is further increased, as in the considered case of second order, the pertur-
bative description improves significantly and considered properties were following the
global approach’s behavior more closely and all unphysical properties vanished for small
perturbations.

The last two chapters then treated some general dynamical properties of quantum
Markovian master equations. In chapter 4 quantum response theory of open quantum
systems was treated. In particular, three different classes of response functions were de-
rived akin to a classical treatment [37]. The first class is a response function that does
not contain a time-derivative and is directly dependent on the unperturbed steady-state
density operator. One can further conclude from this form, that for Hamiltonian pertur-
bation and a thermal system, where the perturbation Hamiltonian commutes with the
system Hamiltonian, the response vanishes. The second form derived was shown to be
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identified as a correlation function containing a transformed stochastic entropy, which
is also an open system, nonequilibrium generalization of the canonical correlation re-
sponse form derived by Kubo [38] in the closed thermal case. For this form the quan-
tum detailed balance condition was used to show symmetry properties of the quantum
response. The third form is the one not depending explicitly on any density operator,
neither the unperturbed, nor the perturbed ones. For Hamiltonian perturbations, the
third form is given as a commutator between the perturbation Hamiltonian and the ob-
servable of interest. For general (dissipative) perturbations, the adjoint generator of the
perturbation acts on the observable of interest, creating the correlation function for the
third form. These classes were then compared with classical nonequilibrium forms as
well as other quantum response functions derived by various authors. It was also inves-
tigated that there exists a symmetry for the response function in the case of quantum de-
tailed balance quantum master equations. Finally two examples were considered. First
the rotating-wave Hamiltonian of the two harmonic oscillators subject to a local master
equation was used to consider the different regimes of equilibrium and nonequilibrium
systems, for a Hamiltonian perturbation. The nonequilibrium regime showed detailed
balance breaking in its response function and the equivalence of the different classes
was stressed. The second example treated the breakdown of linear response approach-
ing a critical point by using the position-position Hamiltonian and the global master
equation approach. It was shown that regardless which regime the dynamics are consid-
ered in, all equilibrium and nonequilibrium cases show a similar breakdown close to the
critical point.

Lastly, In chapter 5, the response function classes were used to derive fluctuation-
dissipation theorems for quantum Markovian master equations. This was done by first
recapping the classical form for fluctuation-dissipation theorems and considering the
properties of classical and quantum correlation functions. In the quantum case, the
closed, thermal, form of the fluctuation-dissipation theorem depends fundamentally
on the KMS property and boundary condition. In the open, in general nonequilibrium
steady state case, this does not hold. Further, the dynamics in the open case are not
completely defined by the system Hamiltonian, but are generated by the bath properties
and the system-bath interaction. Therefore, it is expected that the FDT’s for the open
quantum systems do not necessarily reproduce the Kubo FDT. Thus the fluctuation-
dissipation theorems cannot resemble the closed form. The FDT’s from the third form
are for purely dissipative perturbations given by a sum of Fourier transformed correla-
tion functions that are multiplied by the corresponding friction coefficients of the mas-
ter equation. The first class is already a correlation function and thus the FDT is a trivial
identity. Since the second form contains a time derivative, the Fourier transform be-
tween these contains a linear frequency dependence.

To summarize, we showed in the first two chapters that perturbative approaches
to quantum master equations have difficulties reproducing especially thermodynamic
properties, even for the simple example of two coupled harmonic oscillators. Depend-
ing on the chosen parameter, the first order perturbative approaches have to be used
with care and in general lower perturbation orders can be unreliable even at infinites-
imal coupling strengths. This suggests that these approximative approaches are rather
unreliable and better suited as being used as an approximative model whose parameter
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are rather to be fitted, as long as the local or first order perturbative equation reproduces
the already expected behavior qualitatively, instead of using their properties as neces-
sarily the correct behavior of a system. The response classes derived may be helpful dif-
ferent situations. The second form showed interesting capabilities for deriving mathe-
matical properties of such open systems as the shown symmetry properties for quantum
detailed balance quantum Markovian master equations, while the third form is excep-
tionally helpful in direct calculation of weakly driven systems. These classes were also
useful in deriving the different variants of FDT’s and we expect these classes to be use-
ful for future studies of the quantum response of nonequilibrium steady-state systems.
Further, the consideration of the different properties of correlation functions and the
investigation of the differing properties between open and closed dynamics in the light
of FDT’s may further be hopeful to be used as a stepping stone for deriving even more
forms of FDT’s that expose more intricate properties of such systems, akin to the closed
quantum form of the FDT (5.2), that expresses clearly its quantum structure.



APPENDIX

7.1. METHODS FOR SOLVING THE COUPLED OSCILLATORS

A Gaussian system is completely defined by its first and second moments. We explicitly
solve the linear local and global quantum master equations by computing the first and
second moments in symplectic space [6]. The symmetric characteristic function is de-
fined by y (a1, a2) = (D1 (a1) ® D2(a2)), where D;(a;) = exp(aiaj - a;‘ a;) is the displace-
ment operator. The (symmetric) moments are then obtained by differentiation [140],

l

d
i aj)s= d_af(—T’j'f)lX(al’aZ) o (7.1
ar=az=0

where ()¢ is the expectation value of the symmetrized version of the operators ajkaj..

The evolution of the characteristic function is derived from the master equation

d
a){(al,az) =Tr{D;(a1) ® Da(a2)p}, (7.2)

together with the identities,

DaT—(——T+i)D- Diai=|-%__4

Lhet A 2 da; i il 2 da:.‘ i -
a'D —(i+ d)D- aD;=| %L |
Hi= da; i» dili = 2 da;‘ i

witha; = x;+ip;andd/da; = (d/dx;-id/dp;)/2 and using the Gaussian ansatz for the
gharacteristic function y (x1, p1, X2, p2) = exp(il_j?— BTG PB/2) with P = (x1, p1, X2, p2) and
¥ = (J1,21,¥,,z2). The over lined terms ¥, o correspond to the symplectic transformed
first and second moments y,o. Since the Hamiltonian (2.2) is quadratic, the steady-
state values for the first moments always vanish y; = 0 = z; and the system is completely
described by the second moments, simplifying the description. Writing these second
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moments in symplectic space in vector form & = (0 x1x1,0 x1p1, 0 x1x2) O x1p2, 0 p1p1, 0 plx2,
T p1p2, O x2x2, 0 x2p2, 0 p2p2), ONe may denote the steady-state set of equations as G = AG.
The 10 x 10 matrix A can be written row-wise, using the collectives terms for the I'’s,
2L(i, j,k,I,m,n,0,p) = (~1)'T (a1, @) + (-1)IT (a1, a}) + (-1)*T(al, az) + (-1)'T(al, al) +
(-D)""T(a, @) + (-1)"T(az, a)) + (-1)°T(a}, a1) + (~1)PT'(a}, al). We have
A, =(a,a)-T(al,a),-w1,1(1,0,1,0,0,0,1,1),-iT(1,1,1,1,0,0,0,0) — (x + A),
0,0,0,0,0,0)
A, =(1,2T(a1,al) - 2T'(a], a1),iT(1,0,0,1,0,1,1,0) - (x — 1),I(0,0,1,1,1,0,1,0),
-w1,I(1,0,1,0,0,0,1,1),iI(1,1,1,1,0,0,0,0) — (k + A),0,0,0)
A,=((0,0,1,1,1,0,1,0),i(0,0,0,0,1,1,1,1) - (k + 1), T(@1,a) - T'(a}, @) + [(az, a})
-T(a}, a3),~®,,0,-w1,0,1'(1,0,1,0,0,0,1,1),i(1,1,1,1,0,0,0,0) — (x + 1),0)
A, =(-(k-A)+il(0,1,1,0,1,0,0,1),I'(1,0,1,0,0,0,1,1),wp,[(a1,a}) - T(a, &)
+T(ap, ab) -T(a}, a),0,0,-11,0,I'(1,0,1,0,0,0,1,1), —(k + 1) +i(1,1,1,1,0,0,0))
A5 =00,01,0,0,T(a1,a}) ~T(al, @), - (x - 1) +i(1,0,0,1,0,1,1,0),
1(0,0,1,1,1,0,1,0),0,0,0)
A =(0,T(0,0,1,1,1,0,1,0),;,0,i(0,0,0,0,1,1,1,1) - (k + 1), T(a1,a}) - T'(al, a1)
+T(a, ab) -T(a}, a»), ~w,ir(1,0,0,1,0,1,1,0) + (A~ x),T(0,0,1,1,1,0,1,0),0)
A;=(0,i(0,1,1,0,1,0,0,1) + (A - ),0,w;,I'(1,0,1,0,0,0,1,1), w2, T (a1, al) - T'(a}, a1)
+T(az,a})~T(a},a),0,iT(1,0,0,1,0,1,1,0) + (A -%),[(0,0,1,1,1,0,1,0))
A4 =(0,0,1(0,0,1,1,1,0,1,0),0,0,iI(0,0,0,0,1,1,1,1) - (x + 1),0,
[(az, a)) - T(a}, a),-w2,0)
Ay =(0,0,iT(0,1,1,0,1,0,0,1) + (A -%),I'(0,0,1,1,1,0,1,0),0,I(1,0,1,0,0,0,1,1),
iT(0,0,0,0,1,1,1,1) - (k + 1), w2, 2T (az, a}) — 2T'(a}, ap), —wp)
A, =(0,0,0,i(0,1,1,0,1,0,0,1) + (A -),0,0,I(1,0,1,0,0,0,1,1),0, wp,

[(az, a) - T(a}, a)).
(7.4)
The steady-state vector G depends on the dissipators and explicitly reads G =

(T(ar, a1) +T(a,a) +T(a}, a) +T(al,a),2iT (@, @) - 2iT(al,a}), T (a1, @) + T (a1, a))
+F(a1f,a2) +F(a1r,a§) +I'(az, ar) +F(a2,a1r) +F(a;,a1) +F(a£,aI), i(T(ay,ap) —F(al,a;)
+I(al,a) ~T(al,a)) +T(ap, @) + T(az, a)) - T(a}, a1) - T(a)), a}), ~T(a1, a1) + T (a1, a])
+I(a},a) -T(al,a)), i (@, a) + (a1, a}) - T(al,a) - T(al,a}) +T(az, a1) - T(az, al)
+I(a),a) -T(a},aD),~T(a, a2) + (a1, a) + T(al,a) - T(al, a}) ~T(az, a1) + T(az, al)
+I(a}, a1) ~T(a},al), T (az, az) +T(ap, a}) +T(a}, ap) +T(al, a}),2i (T (ap, @p) - T(al, al)),

~T(ap, @) +T(a, a}) +T(a}, az) — T(a}, a}) ).
(7.5)



7.2. MUTUAL INFORMATION, NEGATIVITY AND HEAT CURRENTS FOR GAUSSIAN SYSTEMY7

Solving this system of equations (numerically) leads to the symplectic covariance
matrix. The actual covariance matrix is obtained after symplectic transformation: o ;x; =
Tpipjl2, Opipj = Exm]/z Oxjpi = —0Oxipjl2. The steady-state occupation numbers are

finally calculated via <“1 ar)ss = (O x1x1 + O p1p1 — 1)/2.

7.2. MUTUAL INFORMATION, NEGATIVITY AND HEAT CURRENTS

FOR GAUSSIAN SYSTEMS
The quantum mutual information for a Gaussian system can be calculated from the co-

variance matrix as I(0) = f(a) + f(b) — f(n-(0)) — f(n+(0)) [105], with a = Vdet(a), b=
Vvdetf, f(x) = (x+1/2)In(x+1/2) — (x—1/2)In(x — 1/2), A(0) = deta + detf + 2dety,

nz(o) = \/(A(O’) FVA0)2-4det 0’) /2, for the covariance matrix defined as o;; = (x; xj+
Xjxi)/2, x; = (x1, p1, X2, p2). In this form, the covariance matrix contains the sub-matrices
of interest via o = (@, ), (¥, B)).

The negativity of a Gaussian system can also be calculated from its second moment.
[101]. The solutions (12,3 4 of the characteristic function

{* + (deta +det f—2dety)(? + deto) =0 (7.6)

are explicitly given by

1
(12= i—\/zdety—deta—detﬁ+ \/(deta+detﬁ—2dety)2 —4deto
va (7.7

1
(34= iz\/zdety—deta—detﬂ+ \/(deta+detﬂ—2dety)2 —4deto.

The absolute values of these solutions correspond to the symplectic eigenvalues of the
partially transposed matrix p’4. The negativity thus is given by

= % (;I(il —1). (7.8)

The heat currents are defined as J; = (@i (Hg)) with the adjoint dissipator 5,- of bath
i. The general form of any adjoint dissipator is given by (4.2). Since the system Hamil-
tonian (2.2) is quadratic, applying the dissipators will result in expectation values of the
form

(7" (H) ) =T (A, AP, Hs As = A;1A;, H))), (7.9)

where @A[Aj (B) :==T(A;,Aj)(A;BA; — {AjA;, B}/2) and the commutators of the Hamil-
tonian and the jump operators A; result in quadratic expectation values that can be di-
rectly calculated from the covariance matrix. Summing all contributions for the different
dissipators of the respective baths leads to the heat currents ;.
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7.3. EXPANSION OF THE INTERACTION OPERATORS

The interaction operators of the coupled harmonic oscillators, a{ (1), aIl (1), aé (1), a]ZLI (1),
in the first order of the perturbation about A = 0 have the form

+
a(l)(t) - _ a (e—iw2t _ e_iwl t) _ K//laz (eia)zl’ _ e—iwl t)

1 w1 — Wy w1+ wy

T
V() = - ay (eiwzt B eiwlt) _ x/Aap (e*iwzt _ eiwlt)
w1 — Wy w1+ w2 (7.10)
t .

a® (1) = a (e—iwlt_e—iwgt)_ K/Aay (eiwlt_e—iu)gt)

2 w1 — w2 w1+ w2

il

AW =4 (eiwn_eiwzt) L KlAa (e—iwlt_eiwzt)_

2 w1 — W2 w1+ Wy

Here it can also be seen that the used perturbation theory is restricted to off-resonant
oscillators, as only for w; # w, will the dissipators be well defined.

7.4. INVESTIGATING THE ROTATING-WAVE HAMILTONIAN FOR
THE FIRST ORDER PERTURBATIVE MASTER EQUATION

Here we consider the perturbative approach applied to the rotating-wave (x = 0) Hamil-
tonian (2.2). Comparing the global dissipators (2.19), with the first order perturbative
approach ones (3.7), one can observe that the number of nonvanishing dissipators is the
same. Thus, compared to the position-position coupling, the occurring differences will
be solely due to incorrect dissipator values. In Fig. 7.1 one can observe the local ob-
servable of mean occupation number of the first oscillator (left) and mutual information
(right) for the equilibrium case T; = 98. In the insets, one can see the nonequilibrium
situation, where T = 98, T, = 20. First considering the mean occupation number, one
can observe that the first order perturbative approach (brown triangles) is also not able
to reproduce the global results (green circles), similarly to the local approach. In partic-
ular, the critical behavior discussed in chapter 2 cannot be reproduced by this approach
either for the local occupation number.

As in the position-position coupling case, the quantum mutual information can be
quite well approximated by the first order perturbative approach in the equilibrium case.
Qualitatively, also in the nonequilibrium case it is behaving similarly. also the nonequi-
librium case can be approximated. Remarkably, in the equilibrium case, the mutual in-
formation can reproduce the critical behavior. However, since the mean occupation
number does not increase accordingly, the physicality of the first order perturbative
steady-state may be rather questionable approaching the critical point. This can be seen
by considering the physical properties in the form of the heat current of the first oscilla-
tor J; (left) and uncertainty relation for the steady-state (right) in Fig. 7.2 for the equi-
librium situation 77 = T> = 98 and nonequilibrium case T; = 98, T» = 20 (inset). Once
more, in the equilibrium case, the heat current of the first order perturbative approach
is also unphysical as the local one. The nonequilibrium case in the normal regime (in-
set in Fig. 7.2) shows also that the heat current of the first order perturbative approach
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Figure 7.1: Comparison of the global, local and first order perturbative master equation for the local mean oc-

cupation number (aJlr ay) (left) and the quantum mutual information (right) in dependence of the intra-system
coupling A/A. of the rotating-wave Hamiltonian (2.2), for the cases of (equilibrium) temperature 7; = 98 and
nonequilibrium 77 =98, T> = 20 (inset). The global ME solution (blue circles) is shown with the reference
quantum Langevin solution (green line). (left): The first order perturbative approach (brown triangles) has
a similar difficulty reproducing the global result as the local approach (orange squares). This holds true for
both the equilibrium and nonequilibrium cases (inset). Interestingly, neither equation can reproduce the
critical behavior of the global approach. (right): The mutual information on the other hand can be quite
well reproduced by the first order perturbative approach in the considered A/A. regime. In particular, the
critical behavior seems to be reproduced here using the first order perturbative approach. Parameters are
Y1=7y2=15-10"%, w1 =5,wp = 2.

can be unphysical there. Considering the uncertainty relation, one can observe that re-
gardless whether equilibrium or nonequilibrium, the first order perturbative approach
always becomes unphysical approaching the critical point. This is clear, since the lo-
cal observables like the mean occupation numbers stay approximately constant, but the
mutual information, i.e. the intra-system correlations increase strongly. Therefore, the
perturbation of the rotating-wave Hamiltonian shows similar difficulties of the orders in
describing the full thermodynamic properties of the system.

7.5. ADJOINT DYNAMICS CALCULATION FOR THE HARMONIC OS
CILLATOR MODEL

The goal is to calculate the adjoint dynamics given by the generator (4.2) in the Banach
space of the operators 98(#s). Even after simplifying the resulting equation using com-
mutation relations, one in general receives an operator differential equation which is
typically nontrivial to solve. One can note that the Hamiltonian of the two coupled har-
monic oscillators (2.2) is a quadratic Hamiltonian. Due to that, one is able to find a
closed set of (operator) differential equations that can be used to find a solution for the
adjoint dynamics using matrix exponentiation [6]. For the considered quadratic sys-

tem, this set of operators is given by vT = (Lflr ap (1), af(t), a‘{z(t), a; ax (1), a%(t), agz(t),

aax(t), m a; (1), aI ax(1), air a; (1), 1]), where 11is the identity operator. Using the generator
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Figure 7.2: Comparison of the global, local and first order perturbative master equation heat current from the
first bath J; (left) and the check whether the uncertainty principle is fulfilled (right) in dependence of the intra-
system coupling A/ A, of the rotating-wave Hamiltonian (2.2), for the cases of the (equilibrium) temperature
T; =98 and nonequilibrium 77 =98, T» = 20 (inset). (left): The global approach (blue circles) reproduces the
expected behavior of no net heat current from the baths as the equilibrium case is considered here. However,
both the heat currents for the first order perturbative (brown triangles) and local approach (orange squares)
are unphysical. The nonequilibrium case (inset) shows that, in the considered normal regime, the first order
perturbative approach has unphysical heat currents . Considering the fulfillment of the uncertainty relation
(right), the first order perturbative approach becomes unphysical for any finite temperature approaching the
critical point A/ A = 1, regardless whether it is a equilibrium or nonequilibrium situation. Parameters are the
same as in Fig. 7.1.

(4.2), one receives the following general form of the closed set of differential equations

d -

dtv(t)—Mv(t). (7.11)
If the matrix M has a sufficiently simple eigensystem, this may be analytically solved by
matrix exponentiation U(¢) = eMip(0).

For the position-position coupling Hamiltonian (2.2) (x = 1) and the global master
equation treatment (2.20) cannot be solved analytically, even for the stationary proper-
ties (see 7.1 for details of calculating steady-state covariance matrices). The breakdown
of the linear response considered in chapter 4.7 further necessitates the knowledge of
the dynamical properties of the system by virtue of the adjoint dynamics (4.2). However,
matrix exponentiation in this case does not work, as the general form of the dissipators
and the Hamiltonian result a dynamical matrix M that has a complex dependence on
the system parameters. However, it is still possible to find such a matrix and therefore
one can at least solve the adjoint dynamics numerically. In fact, since one can find this
closed set of differential equations for the operators 7(t), one can solve the differential
equation (7.11) using the ansatz

vi=fi(hala+gi (@ +hi(al* + ji(Dabas + 1;(H a3 + m;(t)al? 12
+ni(Haaz +p,~(t)a1a; + qi(t)alag + ri(t)alra; + si(£). .

This will then transform the set of operator differential equations (7.11) into a set of c-
number differential equations for the 121 functions f;, g; etc, which can be numerically
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calculated with the starting condition f;(0) = 6;1, g;(0) = §;2, etc. Using these solutions
for the observable of interest a{ ai (1), then the response (4.23) can be directly calculated.

7.6. LINEAR RESPONSE FOR THE LOCAL COUPLED-OSCILLATOR
MODEL

Using the methods considered in 7.1 for covariance matrices of the quadratic system
with the help of the symplectic space, one has for the steady-state solution vanishing
first moments, (x12) = (p1,2) =0, and the covariance matrix,

D+ni+3 0 -6C -yC

_ 0 D+ni+3 yC -6C
7= s yC D+np+3 0 ’ (7.13)

-yC -5C 0 D+ny+3
where n; = N(f;,w;) and with the three parameters,
2, 52 2 _

[= Y-+ D= 2A°(ny +np + 1), _ Ang —ny) (7.14)

402 +y2 + 62 Y2+ 62 Y2 +62

The adjoint dynamics in this case can be analytically calculated by matrix exponenti-
ation as treated in (7.5). The matrix M, where diag(y) is a diagonal matrix with elements
v, explicitly reads M + diag(y) =

0 0 0 0 0 0 0 il —il 0 nyy

0 -2iw; 0 0 0 0 —2iA 0 0 0 0

0 0 2imy 0 0 0 0 0 0 2id 0

0 0 0 0 0 0 0 —-il i 0 nyy

0 0 0 0 2wy 0 -2id 0 0 0 0

0 0 0 0 0 2iwy 0 0 0 2i) 0 ’
0 —il 0 0 —il 0 —iw1 0 0 0 0

il 0 0 —il 0 0 0 -iAw 0 0 0
—-il 0 0 il 0 0 0 0 iAw 0 0

0 0 il 0 0 il 0 0 0 iwp 0

(7.15)

with w12 = w1 + w2 and Aw = w; —w,. The time dependence of the number operator,

a‘;al, of the first oscillator then has the following general form

alay () =f(Dala +g(Ha® + h(t)al* + j(Halay + (1) a3 + m(D a)? 716)
+n(Hayax + p(t)ala; + q(t)a{ag + r(t)a{a; +s(1), ‘

for the closed set of operators 7(#). The various functions appearing in Eq. (7.16) are
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given explicitly by the exponentiation and have the following form,

f(=e"" (62 +22%2 +21%cos zt) /2%,
j(t)=-2A%e " (coszt—1) /2%,
p(t)=Ae "' (=8 +izsinzt+dcoszt) /22, 717
q(t)=Ae V' (=5 —izsinzt+ 5 coszt) /22,
r(t) =0, g(1)=0, h(t) =0,
I()=0, m(t)=0, n(t) =0,
together with the term proportional to the identity Twhich defines the large-time behav-
ior of the adjoint dynamics,
! e
Z3 (Y2 +6%2+4A2)
x{z[(y? +2%) (6% ny +24% () + n)) (7.18)
- Z%e"" (ny (y? +62) +24%(m) + np))]

+ 2yA%(ny — ny) (yzcoszt — z°sinzt)} .

s(t) = -t

For A = 0, Eq. (7.16) simplifies to a{al(t) = e‘Y‘aIal +(1-e"Yn, as expected for a
thermal oscillator [6].

7.7. DERIVATION OF THE GENERALIZED KUBO TRANSFORM

To proof the generalized Kubo transform (4.19), let us first consider a general operator
identity. The following operator identity holds true for arbitrary positive operators A.B
[135]

1
A—B:f BMInA-InB)A'dA. (7.19)
0

This can be proven by differentiating the following formula w.r.t. ¢

d d [t
—(1-B'AhH= —f BMInA-InB)A**dA
ar Uy 0 ( ) (7.20)

& —-B'In(B)A" '+ B'In(A)A" " =B'(InA-InB) A},

since d;A? = d,;e'™4 = A’In A. Thus both sides have to fulfill the same first order differ-
ential equation. For ¢ = 0 both sides also vanish and therefore are equal for all ¢. Multi-
plying (7.20) with A! on the right one receives identity (7.19).

Now let’s consider a general density operator 7, that depends continuously on a pa-
rameter €. The partial derivative w.r.t. the parameter ¢ is defined as a limit process,
analogously as for c-number functions. Using (7.19) thus results in

. T — e (7.19
0pTe :=(151mL 19

1 1
im == lim 5 fo atnmes —Inme)n' } dA

e+6

1 (7.21)
=f ﬂg(aglnﬂf;)ﬂéiﬂ dA.
0
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Further, the faithful state for fixed ¢,, has the form 7. = mo+Y., £, 7} and thus 0., 7w, = 7}
Using the identity (7.21), we therefore obtain the following identity, for €, = 0, and the
density operator 7¢, O¢, elo/ o = fol né (0¢, Inmy) Ioﬂa’ld/l =: 0, Inm.|o, which proves the
identity used for the generalized Kubo transform (4.19).

7.8. TIME-REVERSAL FOR CLOSED AND OPEN DYNAMICS

CLOSED CASE

Time-reversal in the closed quantum setting can be defined using the antiunitary time-
reversal operator © = @~! = ©f [144]. This time-reversal operation attempts to take the
classical notion that certain variables change under time-reversal their sign while oth-
ers do not. For example, the time-reversal of the position operator should not change
0x07! = x while the momentum operator should have a sign change ©p©~! = —p; in
general ®A®~! = u4 A, pu = +1 for Hermitian operators. Let us consider the time-reversal
of a (general) Heisenberg operator A(t) with well defined time-reversal parity pa. The
dynamics of the time-reversed operator AR(t) = ©AT (107! can be derived from the in-
variance of the trace operation upon time-reversal

Tr{A(D)p} = ) (n|©)(A(NpO|n)) = ) (n|(OA(1)pO|n))*

(7.22)
=Y (nl©@A®p®)'In) = TrO A (NOp"}.
n

OPEN CASE
Open quantum dynamics are, compared to closed dynamics, fundamentally irreversible,
i.e. not time-reversal invariant. Therefore, in this context, any ‘time-reversal’ operation
cannot be taken literally by replacing ¢ with — as in the closed case. Nevertheless, if the
quantum Markovian dynamics are being derived from first principles of a system + bath,
then time-reversal symmetry has to hold. in fact, this implies that regardless which time
direction one chooses, the system will always experience open dynamics. How these
exactly look like, however is in general not clear. Using the generic form of a quantum
Markovian generator

ZL(p) =—ilH,pl+2(p), (7.23)

with a selfadjoint dissipator 9, a straightforward definition of time-reversal is given by
[39, 115, 133, 149, 150] only changing the unitary part of the dynamics akin to a closed
treatment

£LR(p)=ilH,p) +D(p). (7.24)

This form can be derived from the generator (7.23) by once again using the time-reversal
invariance of the trace operation, denoting the time-reversal operation here as £% = 2,

TrH{AZL ()} = THAZL (p)} = TH{O L (0) O A} = Tr{Z (p) A}, (7.25)

or in operator notation % = P (p). The same holds true for the adjoint superoperator
— —R

£ — &£ . ltis interesting to note, that using the generators %, 2% one can observe fun-
damental differences between the possible stationary states of open quantum Marko-
vian maps compared to unitary maps. Not all stationary states have to be time-reversal
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symmetric. In fact, only steady-states that commute with the Hamiltonian can be time-
reversal symmetric, as it is then the case that £ (ns5) = —i[H, 5] + D(755) = D(755) = 0,
i.e. both the Hamiltonian and dissipative part vanish individually. Only then this 74 is
also invariant under the time-reversed generator (7.24). However, in general it is given
that 7R # 7.
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AUSFUHRLICHE DEUTSCHE
ZUSAMMENFASSUNG

Diese Arbeit behandelte verschiedene Aspekte der quantenmechanischen Markoff’schen
Mastergleichung. Begonnen wurde mit verschiedenen approximativen Ansétzen, deren
physikalische Eigenschaften analysiert wurden, besonders deren Fahigkeit das statio-
nére Verhalten eines beispielhaften Modells zu reproduzieren, das zwar hinreichend sim-
pel ist, damit eine globale Mastergleichung hergeleitet werden kann, jedoch auch hin-
reichend komplex, damit es kritisches Verhalten aufzeigt. Danach wurden dynamische
Eigenschaften allgemeiner Markoff’scher Mastergleichungen betrachtet. Es wurden ver-
schiedene Klassen von Antwortfunktionen hergeleitet, sowie fiir diese Klassen jeweils
ein Fluktuations-Dissipations Theorem.

Kapitel 2 betrachtete die globale und lokale Mastergleichung und verglich deren Fa-
higkeit kritische Phdnomene aufzuldsen. Insbesondere wurden stationédre Eigenschaf-
ten des Modells zweier harmonischer Oszillatoren, die jeweils an ein thermisches Bad
gekoppelt sind, betrachtet. Es wurde gezeigt, dass im Gleichgewichtsfall gleicher Tem-
peraturen der Biader die globale Mastergleichung in der Lage ist, das analytische Verhal-
ten der Gibbsverteilung fiir die betrachteten Oszillatorwechselwirkungen fehlerfrei zu
reproduzieren. Die lokale Mastergleichung war generell jedoch nicht dazu in der Lage
dies fehlerfrei zu tun. Im Falle der 'rotating-wave’-Oszillatorenwechselwirkung versagte
die lokale Mastergleichung sogar komplett und konnte kein kritisches Verhalten zeigen.
Dieses Versagen ist konsistent mit der Beobachtung dass die lokale Beschreibung ge-
nerell nichtlokale Eigenschaften wie Quanten-'mutual information’, oder Negativitit im
Falle verschwindender Temperatur, nicht in gleicher Stirke produzieren kann wie die
globale Mastergleichung. Im Nichtgleichgewichtsfall verschiedener Temperaturen zwi-
schen den Bddern wurden die beiden Gleichungen mit der Quanten-Langevingleichung
verglichen. Wihrend die lokale Gleichung stets stdrkere Unterschiede zeigte deren qua-
litatives Verhalten auch vom Vorzeichen des Temperaturunterschiedes abhéngt, so zeig-
te die globale Mastergleichung nur fiir die 'rotating-wave’-Wechselwirkung eine vollige
Ubereinstimmung, die "position-position’-Wechselwirkung offenbarte Unterschiede.

Widhrend man die lokale Mastergleichung iiblicherweise heuristisch angibt, so kann
diese im Kontext der Stérungsrechnung als nullte Ordnung betrachtet werden. Kapitel
2 ist also nichts anderes als eine Betrachtung der nullten Stérungsordnung. In Kapi-
tel 3 wurden nun weitere Ordnungen bestimmt und analysiert, inwiefern sich die sta-
tiondren Eigenschaften dieser Mastergleichungen verbessern. Primér behandelte die-
ses Kapitel iiber die erste Ordnung, die mit der globalen und lokalen Mastergleichung
verglichen wurde fiir das x — x-Wechselwirkungsmodell. Werden normale Funktionen
um einen Punkt entwickelt, so erwartet man, dass die Beschreibung besser wird mit der
Hohe der Ordnung, insbesondere fiir sehr kleine Variationen. In manchen stationidren
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Aspekten war dies auch der Fall, insbesondere endliche Temperaturen im thermischen
Fall und nichtlokale Observable wie die Quanten-'mutual-information’. Lokale Observa-
blen jedoch, wie der Erwartungswert der Besetzungszahl eines der Oszillatoren, unter-
schieden sich zwar von dem Ergebnis der lokalen Mastergleichung, die erste Ordnung ist
dortjedoch nicht zwangsldufig besser. Interessanterweise zeigte die Betrachtung themo-
dynamischer Eigenschaften, dass sowohl die lokale Mastergleichung als auch die erste
Ordnung unphysikalische endliche Warmestréome aufzeigten im thermischen Fall. Ins-
besondere der Fall verschwindender Temperaturen zeigte auf, dass die erste Ordnung
eine stationdre Dichtematrix erzeugt, die das Unschérfeprinzip verletzt. Im nichtther-
mischen Fall verschiedener Temperaturen der Biader wurde gezeigt, dass fiir Oszillato-
ren mit verschiedenen Frequenzen (w; > w2) zwei Bereiche existieren, wenn das Bad,
das an die hohere Frequenz gekoppelt ist, eine h6here Temperatur besitzt als das ande-
re B < fB2. Zwei Bereiche wurden untersucht. Ein 'normaler’ Bereich in dem die héhe-
re Temperatur auch zu einer hoheren Besetzungszahl des Oszillators fithren wiirde und
ein "anormaler’ Bereich in dem die thermische Besetzung des ersten Oszillators niedri-
ger ist, trotz hoherer Temperatur, da fiir die Bose-Einstein-Verteilung gelten kann, dass
N(B1,w1) < N(B2,w7), trotz B; < B2. Interessanterweise wurde gezeigt, dass im normalen
Bereich die lokale Mastergleichung besser war, sowohl lokales als auch nichtlokales Ver-
halten wiederzugeben, im Vergleich zu der ersten Ordnung. Interessanterweise erzeugte
die lokale Mastergleichung Warmestrome und eine Entropieproduktion, die qualitativ
das korrekte Verhalten aufzeigten, wihrend die erste Ordnung Unphysikalische besaR.
Im anormalen Bereich zeigte sich jedoch, dass die erste Ordnung besser in der Lage war,
qualitativ das richtige Verhalten zu reproduzieren, sowohl die Warmestrome als auch die
Entropieproduktion hatten dort das korrekte Vorzeichen, wahrend der lokale Fall Nega-
tive aufzeigte. Als Gesamtresult dieser Betrachtungen lésst sich sagen, dass die Versuche
die Herleitung einer Mastergleichung mittels Storungsrechnung oder heuristischer Me-
thoden zu umgehen, einen eher mittelwertigen Erfolg erzielen. Auch wenn in manchen
Fillen diese Gleichungen in der Lage sind das Verhalten der Globalen qualitativ wieder-
zugeben, je nach Wahl der Temperaturen, der Intrasystemwechselwirkungsstérke, klei-
ne Verdnderungen in der Struktur des Hamiltonoperators und je nach Gleichgewichts-
oder Nichtgleichgewichtssituationen, kann deren qualitative oder quantitative Korrekt-
heit unvorhersehbar variieren. Insbesondere zeigte sich dies im Vergleich zwischen der
ersten Ordnung und der lokalen Mastergleichung, die die nullte Ordnung wiederspie-
gelt. Selbst fiir nur infinitesimale Variationen der Parameter um den Entwicklungspunkt
zeigte sich, dass die erste Ordnung nicht zwangsldufig besser ist als die nullte Ordnung.
Bei der ebenfalls betrachteten hoheren zweiten Ordnung zeigte sich dann, dass diese
Stérungsordnung nun zu einer starken Verbesserung aller Eigenschaften fiithrte und in
einem moderaten Parameterbereich auch besser war, das Verhalten der Globalen zu re-
produzieren.

Die letzten beiden Kapitel fokussierten sich dann auf einige dynamische Eigenschaf-
ten von allgemeinen quantenmechanischen Mastergleichungen. Kapitel 4 behandelte
die quantenmechanische lineare Antworttheorie. Es wurden drei verschiedene Klassen
fiir die Antwortfunktion hergeleitet, auf Grundlage der Ergebnisse einer klassischen Nicht-
gleichgewichtsbetrachtung [37]. Die erste Klasse beschreibt die Antwortfunktion in ei-
ner Form die keine Zeitableitung enthilt und direkt abhéngig von der ungestorten sta-
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tiondren Dichtematrix des Systems ist. Aus dieser Klasse geht ebenfalls hervor, im Falle
einer Storung der Form eines reinen kommutativen Termes, deren Stérung mit dem Ha-
miltonoperator des Systems kommutiert, dass die Antwort eines thermischen Systems
verschwinden wird. Die zweite Klasse hat die Form einer Korrelationsfunktion, die die
betrachtete Observable enthilt, sowie eine transformierte stochastiche Entropie. Diese
Form ist ebenfalls eine Verallgemeinerung der Kubo kanonischen Form [38], fiir offe-
ne Systeme und Nichtgleichgewichtsfille. Fiir diese Klasse wurde im Falle einer Master-
gleichung, die die 'detailed balance’ erfiillt, gezeigt, dass die Antwortfunktion eine be-
stimmte Symmetrie zwischen verschiedenen Observablen und Stérungen enthilt. Die
dritte Klasse ist die einzige, die nicht explizit von irgendeiner Form von Dichteopera-
tor des Systems abhéngt, weder die Ungestorte noch die Gestorte. Fiir Storungen mit
ausschlief}lich kommutativem Teill, wurde gezeigt, dass die dritte Form als ein Kommu-
tator zwischen der betrachteten Observable und dem Storungshamiltonoperator ausge-
driickt werden kann. Fiir allgemeine Stérungen ist der adjungierte Generator der Sto-
rung notig, der auf die Observable wirkt. Diese Klassen wurden dann verglichen mit ver-
schiedenen klassischen und quantenmechanischen Arbeiten. Es wurde des Weiteren be-
trachtet, welche Symmetrien die Antwortfunktion besitzt, im Falle dass die Masterglei-
chung Quanten-'detailed balance’ erfiillt. Zuletzt wurden verschiedene Beispiele analy-
siert. Fiir das Modell der gekoppelten harmonischen Oszillatoren wurden die verschie-
denen Bereiche von Gleichgewichts- und Nichtgleichgewichtssituationen betrachtet, fiir
eine Stérung in der Form eines reinen Storhamiltonoperators. Im Nichtgleichgewichts-
fall wurde das Versagen der ‘detailed balance’ mittels der Antwortfunktionen aufgezeigt.
Ein anderes Beispiel zeigte das Versagen der linearen Antworttheorie in der Ndhe eines
kritischen Punktes auf. Unabhéngig des betrachteten Bereiches, ob Gleichgewicht oder
Nichtgleichgewicht, versagte die lineare Antwort konsistent am kritischen Punkt.

Im letzten Kapitel 5 wurden fiir diese Klassen der Antwortfunktion die zugehorigen
Fluktuations-Dissipations Theoreme (FDT) fiir Quanten-Markoff’sche Mastergleichun-
gen hergeleitet. Dies wird vorbereitet durch eine Wiederholung der klassischen FDT und
eine Betrachtung der Definition der klassischen und quantenmechanischen Korrela-
tionfunktionen. Im thermischen, geschlossenen Fall wurde das Fluktuations-Dissipations
Theorem wiederholt hergeleitet und die Anzahl der nétigen Eigenschaften fiir diese Her-
leitung betont. Insbesondere die KMS-Eigenschaft und die KMS-Randbedingung ist n6-
tig fiir dessen Herleitung. Fiir offene, im Allgemeinen nichtthermische, stationdre Sys-
teme gelten diese Eigenschaften nicht. AusschlieBlich im Falle geschlossener Systeme,
charakterisiert der Hamiltonoperator des Systems die gesamte Dynamik.

Fiir allgemeine offene Systeme wird die Dynamik auch durch die Badeigenschaften
und System-Bad-Wechselwirkung definiert. Deswegen ist zu erwarten, dass die FDT’s
fiir diese Systeme nicht zwangsldufig die Form einer Kubo-FDT haben werden. Die FDT
fiir die dritte Klasse kann geschrieben werden als Verkniipfung der Antwortfunktion mit
Korrelationsfunktionen im Fourierraum, die multipliziert werden mit Reibungskoeffizi-
enten der Mastergleichung und dadurch den Einfluss der System-Bad Wechselwirkung
aufzeigen. Die erste Klasse hat formal bereits die Form einer Korrelationsfunktion und
daher ist deren FDT trivial. Die Zeitableitung der zweiten Klasse fiihrt zu einer FDT, die
eine lineare Funktion der Fouriervariablen ist, multipliziert mit einer entsprechenden
Korrelationsfunktion.
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Zusammenfassend wurden in den ersten zwei Kapiteln verschiedene approximati-
ve Methoden fiir Quanten-Mastergleichungen betrachtet und gezeigt, dass diese beson-
ders Probleme haben thermodynamische Eigenschaften von Systemen korrekt zu be-
schreiben, selbst fiir das relativ einfache Beispiel zweier gekoppelter harmonischer Os-
zillatoren. Je nach genauer Parameterwahl, zeigte die erste Storungsordnung der Mas-
tergleichung nur bedingt besseres Verhalten, als die nullte Ordnung. Die Nutzung der
Storungsrechnung in der Herleitung der Mastergleichung, muss daher mit Vorsicht be-
nutzt werden, da leicht unphysikalische Gleichungen entstehen kénnen, selbst im Falle
infinitesimaler Storungen. Da diese approximativen Ansétze nicht sehr vertrauenswiir-
dig zu sein scheinen, ist es fragwtiirdig ob Ergebnisse dieser benutzt werden kdnnen, um
allgemeine Aussagen iiber ein System treffen zu konnen. Derartige Gleichungen schei-
nen eher dazu geeignet, als mathematisches Modell mit freier Parameterwahl zu fun-
gieren, die entsprechend an z.B. ein experimentelles System gefittet werden, solange sie
qualitativ bereits erwartbares Verhalten reproduzieren. Die Klassen fiir die Antwortfunk-
tion der linearen Antworttheorie sind potentiell nutzvoll, um weitere mathematische Fi-
genschaften der Mastergleichung erforschen zu kénnen, wie es im Falle der Quanten-
‘detailed-balance’ fiir die Symmetrie der zweiten Klasse der gezeigtu wurde. Die herge-
leiteten FDT’s mogen potentiell ebenfalls, in Zukunft, als Startpunkt niitzlich sein, um
eine FDT fiir allgemeine offene Nichtgleichgewichtssysteme herzuleiten, die noch stér-
ker die Eigenschaften des Systems und die System-Bad Wechselwirkung offenbart.
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