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Abstract

System-Level Test (SLT) gains traction not only in the industry but as of recently also in academia.
It is used to detect manufacturing defects not caught by previous test steps. The idea behind SLT
is to embed the Design Under Test (DUT) in an environment and running software on it that
corresponds to its end-user application. But even though it is increasingly used in manufacturing
since a decade there are still many open challenges to solve. For example, there is no coverage
metric for SLT. Also, tests are not automatically generated but manually composed using existing
operating systems and programs. This master thesis introduces the foundation for the AutoGen
project, that will tackle the aforementioned challenges in the future. This foundation contains a
platform for experiments and a workflow to generate Systems-on-Chip (SoCs). A case study is
conducted to show an example on how on-chip sensors can be used in SLT applications to replace
missing detailed technology-information. For the case study a “power devil” application has been
developed that aims to keep the temperature of the Field Programmable Gate Array (FPGA) it runs
on in a target range. The study shows an example on how software and parameters influence the
extra-functional behavior of hardware.
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Kurzfassung

System-Level Test (SLT) nimmt nicht nur in der Industrie Fahrt auf sondern seit kurzem auch
in der akademischen Welt. Es wird verwendet als Ergänzung zu existierenden Testschritten,
um weitere Defekte zu erkennen, die bisher nicht gefunden worden sind. Die Idee bei SLT ist,
dass der zu testende Chip in einer Umgebung eingesetzt und Software ausgeführt wird, die einer
möglichen Endanwendung entspricht. Auch wenn es eine immer größere Bedeutung erlangt,
existieren noch Herausforderungen, die gelöst werden müssen. Zum Beispiel hat SLT keine Metrik,
um die Fehlerabdeckung zu bestimmen. Weiterhin werden Tests von Hand zusammen gestellt
aus existierenden Betriebssystemen und Programmen und nicht automatisiert erzeugt. Diese
Masterarbeit stellt die Grundlagen für das AutoGen Projekt vor. In diesen Grundlagen enthalten
sind eine Plattform für weitere Experimente und ein Arbeitsfluss, um Systems-on-Chip (SoCs)
zu erzeugen. Eine Fallstudie wird durchgeführt, um ein Beispiel vorzustellen, wie Sensoren, die
sich im Chip befinden genutzt werden können, fehlende detaillierte Technologieinformationen zu
ersetzen. Für diese Fallstudie wurde eine “power devil” Applikation entwickelt, die versucht die
Temperatur des Field Programmable Gate Arrays (FPGAs) in einem Zielbereich zu halten. Die
Studie zeigt ein Beispiel dafür, wie Software und Parameter das nicht-funktionale Verhalten von
Hardware beeinflussen kann.
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1 Introduction

System-Level Test (SLT) is gaining relevance in the industry over the last decade [BRR+20]. It
is used by manufacturers to detect defective Integrated Circuits (ICs) which were not caught by
previous test steps. It also finds increasing use in post-silicon validation and characterization. The
idea behind SLT is to run functional tests in an environment which both approximate the end-user
application of the IC. It is able to detect faults which cannot be detected by conventional testing.

But SLT also has its challenges. One of these is that there is no coverage metric that can be used.
Such a coverage metric is necessary to quantify and improve test quality. SLT is unable to use
metrics from conventional testing, as will be explained later in this thesis. And there is no sufficient
replacement yet.

SLT is currently performed using existing operating systems and software. Chen [Che18] mentions
that SLT pattern development is an interesting topic to examine further. It seems that there is
currently no method available that is able to generate shorter, more targeted SLT programs. And a
long run-time is another challenge.

The goal of this thesis is to demonstrate some aspects of a “greybox” approach for SLT. Currently,
SLT uses a black box model of the Design Under Test (DUT), because either no details are provided
for it or its complexity is too high and as such it is decided to ignore them. As such, on-board sensors,
that nowadays come on many Systems-on-Chip (SoCs), can be used to provide some information to
an SLT test program. This approach will be expanded upon in the PhD project “P5: Automated
Generation of System-Level Test Programs for Characterization of Parametric Device Properties”
(short: “AutoGen”). AutoGen intends to provide a method to generate SLT test programs, that also
consider extra-functional properties such as temperature or power, and to find a coverage metric.

To demonstrate these aspects a case study is conducted, where the temperature sensor of a Field
Programmable Gate Array (FPGA) is used to control the temperature while a power devil program
runs on a SoC that is loaded onto it. Along developing the platform for the case study a workflow
for generating SoCs and running programs on these will be established as well. The choices for the
components and composition of these are all made in relation to AutoGen. As such, the results of
this thesis are used as basic work for AutoGen.

We will show in this thesis, that we are able to use the temperature sensor to control the temperature.
We will also answer the question of how short the measurement period, i. e., the time between
measurements, can be without loosing control. The effects of algorithm choice, the hardware
itself and the length of the measurement period, as a tunable parameter, on temperature are shown
and discussed. Additionally, an effect, called “software-based thermal runaway” in this thesis, is
discussed and possible causes are elaborated.

The rest of this thesis is structured as follows: Chapter 2 introduces the reader to the necessary
basics of hardware testing. It discusses testing in general and presents functional and structural test.
Chapter 3 introduces the reader to the manufacturing test flow of an SoC, how SLT fits into this
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1 Introduction

and why it is necessary. It lists the advantages and challenges of SLT and current solutions for the
latter. It also compares SLT to structural and functional testing. Chapter 4 presents some related
work on SLT and on power devil programs. Chapter 5 lists the requirements on the workflow and
the platform and shows how these were fulfilled. It lists the components and elaborates the reason
for their usage in this thesis. It also introduces the structure of the case study. Chapter 6 shows
the results from the case study and briefly discusses them. Finally Chapter 7 concludes this thesis,
discusses the effects of “software-based thermal runaway” on SLT and test program generation and
gives an outlook on AutoGen.
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2 Basics of Hardware Testing

This chapter introduces the reader to the necessary basics of hardware testing. It assumes that
the reader has basic knowledge about digital components but missing knowledge can for example
be looked up in [Mic03]. Otherwise, this chapter is mainly based on the books by Bushnell and
Agrawal [BA04] and Wang et al. [WWW06] and as such these can be consulted for more in-depth
information about the presented topics.

This chapter starts with presenting the reason for testing and important terminology used throughout
this thesis in Section 2.1. It introduces the concept of fault models and coverage metrics. Section 2.2
gives an short overview of functional testing. Section 2.3 introduces structural testing and discusses
its advantages and disadvantages compared to functional testing. Finally, the concept of Design for
Test (DfT) is explained in Section 2.4 and two popular instances of it, scan and Built-In Self Test
(BIST), are introduced.

2.1 Testing in General

Due to Moore’s Law [Moo06], which to this day carries an important role in the Application
Specific Integrated Circuit (ASIC) industry, current day ICs grew in complexity and shrank in
feature size. Because of the small feature size IC become more susceptible to process variations
in the manufacturing process. This makes testing an integral part of the manufacturing process
to catch defects caused by aforementioned variations as early as possible. Wang et al. [WWW06]
mention the “rule of ten”, which states that the cost of detecting a faulty IC increases tenfold for
each stage in the manufacturing process.

To measure the quality of the testing process a metric called Defective Parts Per Million (DPPM),
also known as reject rate, is used. DPPM indicates the defective parts that have been sent to
customers and have been returned. The goal of testing is to reduce DPPM as much as possible as
this in turn reduces the cost for the manufacturer. Returned defective ICs are analyzed to find the
cause and the manufacturing process is improved according to the findings.

Possible defects include broken interconnects, oxide breakdowns or shorts. These defects cause a
mismatch in the output of an IC compared to what is expected and this faulty output is called error.
But defects cannot be modeled directly. As such, fault models are introduced as an abstraction.
An instance of a fault model is called a fault. Several fault models exist, e. g., stuck-at, bridging
faults, crosstalk, flip-flop transparency faults and many more. The stuck-at-0/1 fault models state
that a wire in the IC is permanently driven by a constant logic 0 respectively a constant logic 1.
Bridging faults represent undesired connections between two wires. There exist several types, e. g.,
4-way, AND-dominated, and more. Crosstalk faults occur when the distance between two wires is
small enough such that activity on one wire can induce current on the other. Flip-flop transparency
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2 Basics of Hardware Testing

faults cause affected flip-flops to degrade to combinatorial buffers thus loosing the ability to act as a
memory [UKW17]. Bushnell and Agrawal [BA04] provide a more exhaustive list of fault models
with more details.

Test patterns are used to test ICs. They are applied as inputs and the outputs of the DUT, i. e., the
tested IC, are observed to look for differences compared to the expected output. If there are any, the
DUT is classified as faulty otherwise as passing. Test patterns are nowadays generated with the help
of Automatic Test Pattern Generation (ATPG). ATPG takes the DUT as a gate-level netlist and a
list of all possible faults of a certain fault model that can occur in the DUT. It then generates test
patterns using algorithms, such as for example boolean satisfiability (SAT), with the goal to have as
many faults as possible be detected by those.

To measure the quality of the test patterns fault coverage is used. Fault coverage 5 2 is defined as
follows:

5 2 =
#detected faults

#total faults

The higher the fault coverage the better the test patterns. But a fault coverage of 100% cannot
always be achieved, for example due to redundancies in the DUT or because there is no sensitizable
path, i. e., the effect of the fault cannot be propagated to an output. Also, sequential circuits are
harder to test because gates and wires deep within the design become increasingly harder to control
and observe.

Fault coverage is determined by executing fault simulation or fault emulation. Fault simulation is a
logic simulation of the DUT where faults are injected into it. Then all test patterns are applied and
the outputs are observed to see, if it differs from the fault-free circuit. If that is the case, the fault
counts as detected. In the simplest implementation, all faults are sequentially simulated with all test
patterns. But, there exist many algorithms and techniques to increase the speed of fault simulation.
Still, with increasing size of the DUT fault simulation takes up a lot of time.

2.2 Functional Testing

Functional testing looks at the function of the DUT and checks for a set of functional inputs if the
corresponding output is correct, e. g., it checks if an adder returns 6 when applying 2 and 4 as
inputs. It targets faults that are not caught by structural testing, e. g., defects that depend on certain
orders of instructions. The quality of the functional test patterns, or test programs, can be measured
using fault coverage. A representative of functional testing is Software-Based Self Test (SBST).
In SBST, test programs are generated on the assembly level to target structural faults using the
microprocessor’s Instruction Set Architecture (ISA). They are embedded into the DUT. The test
program and the test patterns or test pattern seeds are loaded into the cache of the microprocessor
and then the test program is executed. Generally, functional tests are kept as short as possible to
reduce testing and fault simulation time. Functional tests are often generated by modeling the
functionality of a microprocessor as a graph but for SBST an ATPG tool is available [RCS+16].

The reason that IC testing shifted away from functional testing is that it requires a high number of
test patterns where generally many of them do not contribute much to the total fault coverage. Also,
these patterns are difficult to optimize.
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2.3 Structural Testing and Design for Test

2.3 Structural Testing and Design for Test

In structural testing the DUT is abstracted as a gate-level netlist. Test patterns are generated
by “looking” at the netlist and finding input patterns to trigger the fault and propagate its effect
to an output. Structural testing is the most used kind of IC testing nowadays. Many ATPG
tools were developed for structural testing, from the D-algorithm [Rot66] to PODEM [GR81] to
SAT-based algorithms [Lar92], which are still further developed today with one example being
PHAETON [SBP16].

Structural testing is able to deploy test compaction strategies. For example, test patterns that contain
dont-cares, i. e., signals whose value can be freely chosen, can be combined to a single pattern as
long as there are no conflicting assignments. Also, generally test patterns can be applied in any
order but there are fault models where the order is important, such as for example for delay faults
such as slow-to-rise or slow-to-fall where a rising respectively falling transition has to be triggered
to detect the such faults.

Since structural testing does not consider the functionality of the DUT there exists the possibility of
overtesting. Overtesting occurs when a fault is detected in a structural context that cannot ever occur
in a functional context. This implies that ICs which are perfectly usable in the field are marked as
bad and thrown away.

2.4 Design-for-Test

While combinatorial ATPG is able to reliably generate test patterns with as high as possible fault
coverage in a reasonable time the same cannot be said about sequential ATPG. The problem with
sequential circuits is that some faults may need a lot of clock cycles to be triggered or to be
observable. To model multiple clock cycles the DUT is unrolled, i. e., the flip-flops are removed
and their input lines are handled as outputs of the circuit and their output lines as input to the circuit.
This approach makes sequential ATPG unfeasible already for a small number of clock cycles as the
size of the resulting netlist rapidly starts to grow too much to be able to be processed in a reasonable
fashion.

This is why DfT is applied. An example for DfT is scan design. In scan designs, all or most of the
flip-flops are replaced by scan cells. These scan cells are able to function as normal flip-flops in
operating mode but can form a so-called scan chain in test mode. This allows to use combinatorial
ATPG since the state of the DUT is fully controllable.

A typical test with a scan design runs as follows: First, the DUT is put into test mode. Then a test
pattern is shifted into the scan chain. The inputs are applied and the DUT is set to operation mode.
A single clock cycle is applied and afterwards the DUT is again set to test mode, the results of
applying the test pattern are shifted out and at the same time a new pattern is shifted in. This is
repeated until all patterns were applied and results shifted out.

Another instance of DfT is BIST. In BIST, special circuitry is embedded into the IC to run tests
either from memory or pseudo-randomly generated. It can either run concurrently or while the
DUT is “offline”. An example for offline BIST is on-board diagnostic software. Also, SBST is
another implementation of BIST.
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3 System-Level Test: What is it and why do we
need it?

This chapter introduces SLT in the context of IC testing. Section 3.1 presents the current day
test flow for a SoC. It shows how SLT fits into the flow and why it is becoming more and more
important. Its advantages and challenges are listed in Section 3.2 and how the latter are currently
solved. Finally, in Section 3.3 SLT is compared to structural and functional test.

3.1 Definition and Position of System-Level Test

Before the 90’s, functional test and system-level test were commonplace. But due to Moore’s
law [Moo06] and the general increase in complexity, it became more and more time consuming and
expensive and an alternative was necessary. Thus, structural testing and DfT techniques became
popular. But the effectiveness of structural testing recently starts to plateau and there is evidence
that functional tests in form of SLT become necessary to augment them [Che18]. As such, around a
decade ago manufacturers started to incorporate SLT into their test flow. In 2012 Biswas and Cory
[BC12] published a paper about SLT in Graphical Processing Units (GPUs) and in 2014 Tipparthi
and Kumar [TK14] published a paper about using SLT for SoCs.

According to Polian et al. [PAB+20], three definitions for SLT are predominant in the context of
ICs. As in the aforementioned paper itself, the following definition is used in this thesis: SLT is
used in outgoing quality control of the manufacturer to prevent the delivery of defective ICs, i. e.,
reduce DPPM, and improve its own quality control. Another definition is similar to this one but
shifts the burden of SLT to the customer of the manufacturer for incoming quality control. The
main difference between the first and second definition is the knowledge about the IC versus the
knowledge about the application environment. In the first definition the former is greater while in
the second this is true for the latter. The third definition is testing the complete system focusing on
interactions between its components.

In SLT, the IC is embedded into an environment which corresponds to its end-user application
one e. g., a motherboard with Dual Inline Memory Module (DIMM) and Peripheral Component
Interconnect (PCI) slots where further devices such as Double Data Rate Random Access Memories
(DDR RAMs) are connected. Then functional tests, such as booting an operating system and
executing programs typical for its end-user application, are performed and if the IC does not cause
a crash or fails in another way it is counted as passing SLT.

Generally, an IC goes through the following test steps:

Wafer Sort (WS) Test in wafer before dicing and packaging.

Package test or Final Test (FT) Test after packaging but before shipping to the customer.
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3 System-Level Test: What is it and why do we need it?

Burn-In Long running test under high thermal and electrical stress to catch cases of infant mortality
(early failures).

SLT Functional test of the IC in an environment approximating its end-user application.

Figure 5.1 shows the above test (or quality assurance) flow (without Burn-In). If Burn-In is
performed Almeida et al. [ABC+19] show that it can be combined with SLT.

3.2 Advantages and Challenges of System-Level Test

In the following, the advantages and challenges of SLT are listed and how the latter are tackled
currently.

3.2.1 Advantages

Beside hard (physical) defects, which are in most cases detectable under any circumstance, there
are so-called marginal defects which manifest themselves only under certain conditions such as
executing certain sequences of instructions, temperatures, voltages or operating frequencies. As
lithography becomes more challenging by each generation, the number of faults due to process
variations is increasing. Such defects happen often within boundaries of logical gates and standard
cells at the level of smallest geometries where lithography becomes the most challenging. And
these small process variations cause marginal defects [RAH+14]. Marginal defects can occur at
random locations [Che16]. SLT is able to catch these marginal defects which cannot be covered by
structural tests. Ryan et al. [RAH+14] point to the emerging number of marginal defects which
underlines the necessity of SLT further.

Timing failures in low voltage operation are also hard to detect using structural test despite using
more and more advanced fault models. This type of failure makes SLT especially important for
battery powered SoCs which employ aggressive Dynamic Voltage and Frequency Scaling (DVFS).

Figure 3.1: Testing flow for a generic chip (from [PAB+20])
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3.2 Advantages and Challenges of System-Level Test

With lower supply voltage, a gate’s nominal delay increases, but Singh [Sin19] also shows that
random gate delays caused by process variations are exacerbated by lower voltage, too, even more
so than nominal delays. From this results an increase of DPPM [BRR+20].

Additionally, test mode behavior of ICs diverges more and more from real-world behavior [Che18].
Singh [Sin19] describes an example for this: Scan based structural testing only tries to “mimic”
two cycles of functional operation which causes different circuit electrical conditions compared to
continuous operation.

Power-aware ICs, for example SoCs used in smartphones, can put themselves into different power
states in production. These power states are generally untestable by structural tests because a scan
design relies on all scan chains being active but certain power states may disable some of them
making testing impossible.

Customer returns are generally analyzed for test escapes. From this data, new test cases can be
derived or existing ones modified. The SLT software test suite can be easily adapted to catch
these test escapes, when requirements change or when a part has been determined redundant. This
can be done by replacing programs or operating systems with different ones or leaving them out
entirely. It allows to do these steps faster than Wafer Sort or Final Test since no expensive test
recharacterization is necessary.

There are some additional cases which SLT can address compared to structural testing, such as
complex clock and power domain interactions [ASH17], functional interactions during operating
system boot or exercising the Central Processing Units (CPUs) with extreme work loads and
more [BRR+20]. Finally, there are cases where SLT is able to detect faults which ATPG tools consider
as “untestable” or which cannot be tested due to time and tester memory constraints [PAB+20].

3.2.2 Challenges and possible Solutions

SLT incurs high costs due to the following reasons [Che18]:

• test equipment acquisition and maintenance

• space for equipment and inventory

• human labor intensive effort for failure analysis and diagnosis

SLT is usually applied in addition to other testing steps rather than replacing them. That means it
adds additional time and cost.

Additionally, SLT cannot be run on regular test equipment since periphery such as memories,
peripherals and interfaces may be necessary for the intended workload [PAB+20]. The industry is
currently working on SLT-oriented testers that can be reused across different products as much as
possible.

An important aspect in testing is the coverage metric since it helps determining and improving test
quality. Every testing step except for SLT uses fault coverage as a metric which will be further
explained in Section 3.3. But fault coverage cannot be used in SLT as fault simulation cannot be
applied to SLT workloads. Additional analysis and data mining is necessary to identify redundant
tests or tests with low contribution to overall test quality. The currently used metric is the DPPM
due to SLT.
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3 System-Level Test: What is it and why do we need it?

Another disadvantage is the long run-time. SLT runs may take up to tens of minutes for complex
SoCs which incurs higher cost. This can be mitigated by using more and/or specialized SLT
equipment which is cheaper than Automatic Test Equipment (ATE) and even IC-level parallelism
may be exploited to reduce testing time as Tipparthi and Kumar [TK14] demonstrated. But especially
this long run-time makes fault simulation infeasible.

Another option to reduce testing time and effort would be to use data mining on previous test
results to identify possible candidates which had noticeable timing deviations in previous testing
steps [Sin19]. Adaptive SLT can not only decide about running or not running the tests for a
specific chip but also the amount of tests [LTGW18]. This approach can be combined with machine
learning using data from parametric and structural test [LPY+18] or even from other mature
boards [LLCG19]. This increases throughput since not every IC has to go through SLT and less
SLT testers are necessary [Che16].

Determining the root cause for a failure is more difficult in SLT since the effect of a failure may only
be observable many cycles after the failure has occurred. Conventional testing has many efficient
diagnosis methods available whereas SLT is lacking them currently. Methods from post-silicon
validation, such as Quick Error Detection [LHL+14], can be used to mitigate this problem [Che18;
PAB+20].

3.3 Structural Test vs Functional Test vs SLT

When comparing SLT to structural testing as described in Section 2.3, it is evident that both are
fundamentally different. But it is also evident, that structural testing enjoyed a lot of research going
into it. For example, scan designs are developed further which is evident with Reconfigurable
Scan Networks (RSNs). In short, RSNs are networks of scan chains that can be connected almost
arbitrarily to allow fast access to specific components on an SoC. This became necessary as scan
chains became longer and longer with the increasing complexity of current-day SoCs. SLT does not
have the advantage of decades of research going into it. Instead, it is still at the very beginning and
research just recently start to put increasing effort into it. Recall, that currently there is no coverage
metric despite DPPM nor any method to automatically generate test programs.

In the case of functional testing, the difference is harder to see. It appears that literature sees SLT as
a form of functional test while Polian et al. [PAB+20] believe that there is a subtle difference. They
argue that the approach of SLT is different enough to “traditional” functional test. For example,
functional test vectors can be generated using evolutionary algorithms and they generally target a
single component whereas SLT looks at the system as a whole. Functional testing takes significantly
less time than SLT which allows to assess the quality of the functional test vectors by using fault
simulation. SLT is able to detect different faults than functional tests, for example, functional testing
may be able to uncover faults caused by a high temperature gradient between components when run
thousands of times since temperature gradients need time to form themselves. An open question
is, if and how much of SLT can be shifted to faster functional tests. To answer this question the
cause for SLT-unique faults needs more investigation. Another argument for a difference between
functional testing and SLT is that SLT can be described as running non-deterministic tests while the
former together with structural testing is deterministic [TK14].
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3.3 Structural Test vs Functional Test vs SLT

We side with the view of Polian et al. [PAB+20] because with the above arguments SLT appears to
be distinct enough to not be classified as a kind of functional test. Additionally, another argument
speaking for differentiating SLT from functional testing is the fact, that in SLT extra-functional
parameters also play a role. There is power-aware test [TBD+15], where efforts are undertaken
to avoid excessive power consumption during test to avoid effects such as accelerated aging. The
general goal is to reduce power consumption during manufacturing and in-field tests and those tests
are designed accordingly. But they are just considering these parameters and not actively controlling
or observing them, as will be demonstrated in this thesis. With respect to marginal defects and
the current understanding of SLT-unique faults, the ability to monitor and control extra-functional
parameters becomes more important to be able to detect them. But future research on SLT-unique
faults may invalidate that importance.
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4 Related Work

This chapter lists some related work to this thesis. First, papers relevant to SLT in general are listed.
They are extensively referenced in Chapter 3. These papers have been found by looking at the
references of [PAB+20], which was provided by the examiner. Additionally, papers referencing
and referenced by [Che18] were looked up. Finally, searches on Google Scholar 1 were performed
with the keywords “System-level Test SoC” and the references of those findings were looked at,
too. Then, papers representing applications for power devil programs are presented. These were
chosen as related work, since this thesis will apply them, too. And it would be interesting to see, in
which context power devil programs are generally used. These papers were found as a reference
to [PAB+20] and by searching on Google Scholar for “power virus generation”.

In [Che18], the author points at the importance of SLT in the manufacturer’s testing flow. He
describes SLT and lists why there is a need for it. He also mentions some of the challenges coming
with SLT. Polian et al. [PAB+20] go into more detail on SLT and SLT-unique faults and analyze the
challenges more thoroughly than [Che18]. They also differentiate SLT from conventional testing as
introduced in Chapter 2.

The next few papers are handling case studies and practical applications of SLT. Biswas and Cory
[BC12] conducted an industrial study for SLT for GPUs and talk about their experience with it. To
the best of our knowledge, this is the first industrial study on SLT. Tipparthi and Kumar [TK14]
give a first approach to speed up SLT by using concurrency and the fact that some tests can be
executed in parallel. Almeida et al. [ABC+19] introduce a method to combine Burn-In testing with
SLT. Bernardi et al. [BRR+20] conducted a study, too, where SLT is applied to an automotive SoC.
They talk about the implementation and how SLT-unique faults were isolated.

An interesting approach to SLT which may use the results from this thesis is adaptive SLT. Singh
[Sin19] and Chen [Che16] present an approach for adaptive SLT where results from parametric and
structural testing are used to determine if the DUT should go through SLT or not. Letchumanan
et al. [LTGW18] extend this approach to only run a select subset of all tests.

It seems that power virus program generation in general is more intended for power or performance
estimation, maximizing CPU temperature or stability testing. Najeeb et al. [NKH+07] present
a framework to generate power devil programs based on the behavioral model of hardware, i. e.,
Hardware Description Language (HDL) descriptions. The intended application of this framework
is early power estimation of CMOS circuits. The framework developed by Ganesan et al. [GJB+10]
incorporates genetic algorithms to generate power devil programs. They compare their framework
with existing commercial software on the market and use three different ISAs. Ganesan and John
[GJ11] introduce a framework that is adapted to multi-core applications but the intended application

1scholar.google.de
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is the same. Huang and Mishra [HM17] extend the usage of power virus programs to reliability
analysis of Intellectual Propertys (IPs), i. e., that in no case these IPs is vulnerable to inputs that
cause a violation of its extra-functional properties.

Searching for “power virus testing”, “power devil testing”, “power virus generation testing” or
“power virus functional test” on Google Scholar did not produce any useful results. As such it
seems that, to the best of our knowledge, this thesis is the first to apply power devil programs for
testing.
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5 Case Study: Self-aware SLT using
software-based adaptive Temperature Control

The goal of this thesis is to show that we can leverage on-die sensors to keep the temperature in a
given target range. This is achieved by running a power devil program on a soft core and regularly
measuring the temperature. This demonstrates an instance of a “greybox” model and how SLT
can profit from the information collected from on-board sensors. We also compare three different
algorithms used as power devil to show how software influences the behavior of hardware with
respect to certain characteristics, which in our case is temperature. Another goal was to find out
at which rate we can read the temperature without causing the regulation to fail. Regulation here
means that the power devil program is controlled in a way to keep the temperature in a certain range.
The regulation is seen as failing when either the target range is missed or the power devil program
runs forever or never from a certain point on.

This chapter introduces the platform for the case study. First, the requirements posed at the platform
and the workflow are presented in Section 5.1. Then, in Section 5.2 each component is introduced.
First, the basics of each component is introduced. Then, features and properties of each are listed
and finally it is discussed why they were chosen. And finally, in Section 5.3 the workflow for
generating SoCs and running the case study programs on them is introduced and the platform itself.
It is explained how the workflow is implemented, how it contributes to this thesis and later to
AutoGen and some future improvements are listed. Then the structure of the hardware side of the
platform is displayed and its contribution is laid out as well. Finally, an example run through the
software side is given from the bootloader to the case study program itself.

5.1 Requirements on Platform and Workflow

In this section the requirements on the platform of the case study are laid out. Additionally,
requirements for a workflow that established itself throughout the thesis are presented, too. The
requirements are posed not only in relation to this thesis but also to the project AutoGen introduced
in Chapter 1.

Fundamentally, the cores used in this thesis must be able to run on an FPGA and must be able to
generate enough heat under load to allow for any regulation. The FPGA must provide an on-die
temperature sensor. Also, some sort of communication interface besides the programming interface
is required since we need to get the temperature measurements as results. The core itself must
be easily customizable such that we are able to create many different cores to examine. It must
use a relevant ISA so that the results are applicable in the real world. Optimally, it is royalty-free.
It is desirable to be able to create a workflow that can be as much as possible automated using
Continuous Integration/Continuous Deployment (CI/CD) since AutoGen will most likely generate
many cores to create the extra-functional model of hardware for SLT program generation. The core
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must also be able to connect external periphery in a simple manner using commonly used interfaces
such as Advanced eXtensible Interface (AXI) since other sensors may be connected and interactions
with the outside world must be possible.

On the software side it was decided to use an operating system since bare-metal development would
have taken too much time. Thus, the chosen operating system must be small, fast to boot and set up
and it optimally has an existing port for the chosen ISA. Also, it should not have high requirements
to the platform itself. The power devil algorithms should be simple but make intensive use of
arithmetic computations to achieve high activity on the core and thus heating up the FPGA.

5.2 Components of the Platform

In this section all non-generic components used in the platform and workflow are listed. Features
and properties of these components are introduced and it is discussed why they were chosen.

5.2.1 RISC-V

As the ISA for the cores we chose RISC-V. It is a promising, open standard and royalty-free ISA
which has great flexibility due to its modularity. RISC-V is a young ISA compared to x86 and ARM
but is gaining traction with SiFive1 as one of its biggest contributors at the time of writing. The first
specification was released in 2011 by Waterman et al. [WLPA11]. It originates from the University
of California - Berkeley Architecture Research (UCB-BAR), which also founded SiFive. RISC-V
has some similarities to the MIPS ISA (and SPARC). It is a little endian architecture.

A fully extended RISC-V core (ignoring experimental extensions) with a 64-bit architecture consists
of these extensions:

I basic Integer, Logic and Jump instructions, required

M Integer multiplication and division, optional

A Atomic instructions, optional

F Single-precision IEEE floating point instructions, optional

D Double-precision IEEE floating point instructions, optional

C Compressed instructions, optional

Instructions in RISC-V are generally 32-bit wide but using the C-extension they can be compressed
to 16-bit for common operations, e. g., operations that involve the stack pointer or the zero register.
The above specification can be shortened to RV64IMAFDC (or shorter RV64GC, where G is used
as an abbreviation for IMAFD).

1https://www.sifive.com/
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There is also a 32-bit ISA specification, which is called RV32GC analogously, and for the future a
128-bit ISA is intended but not specified yet. Many extensions are being worked on, for example the
V extension: a vectoring extension comparable to the SSE or MMX extensions on x86 processors.
Furthermore, the ISA can be extended by user defined instructions, e. g., for coprocessors.

As the name implies, RISC-V is a Reduced Instruction Set Computer (RISC). It has 32 registers
with either 32, 64 or 128 bit (in the future) width, where register “zero” is hardwired to all zeroes.
But the number of available registers can be reduced to 16 using the so-called E extension, intended
to replace the I extension for small embedded 32-bit processors. It is, at the time of writing, still in
draft status [WA19].

Volume I of the RISC-V specification [WA19] defines cores as components with their own instruction
fetching unit. Cores can have multiple so-called Hardware Threads (Harts) but by definition at least
contain one. A core with multiple Harts can be compared to Intel processors with hyper-threading,
i. e., a single physical core with multiple logical cores. Harts get their instructions from the
instruction fetcher of the core they belong to.

RISC-V fulfills all requirements on the ISA: it is relevant, used in the industry and royalty-free. On
top of that it is modular, which allows us to test varying designs of SoCs. And finally, the next
component further justifies the choice of RISC-V.

5.2.2 Chipyard

Chipyard is a framework to generate RISC-V based SoCs in an agile environment. It is developed by
the UCB-BAR and is written in Scala. The idea is to provide a system to generate SoCs depending
on one’s needs and incorporate it into a CI/CD pipeline. Chipyard does not only generate a Verilog
netlist of the generated core but also compiles simulators for it. These simulators can be used to
check if the software intended to run on it behaves as expected and also allow for easy debugging.

The Verilog netlist can then be plugged into either an ASIC flow or an FPGA flow. For ASICs,
Chipyard offers a tool called Hammer to automate the flow. It supports steps from synthesis over
place and route to power simulation including Layout-vs-Schematic verification and simulations
between each step. For more details see the paper by Wang et al. [WIS+18]. The FPGA flow has no
such tool nor support by Hammer at the time of writing.

Chipyard provides three different RISC-V core designs: Rocket [AAB+16], Berkeley-Out-Of-Order
(BOOM) [ZKGA20] and Ariane [ZB19]. Ariane has been renamed to CVA6 but for this thesis we
will stay with Ariane since that change has not been reflected in Chipyard yet. The core designs are
compared in Section 5.2.4.

Cores are generated based on a configuration. These configurations consist of several configuration
fragments. Chipyard itself provides many fragments but the user is able to add more. The user is
also able to integrate custom periphery, e. g., a SHA3 accelerator.

Listing 5.1 shows an example for a core configuration. The SoC consists of a single Rocket Core
with branch prediction units, a Floating Point Unit (FPU) and support for user mode. It has no ports
for external interrupts. An L2 cache is connected. It can be configured for optimal performance but
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class RocketConfig

extends Config(

new chipyard.iobinders.WithTieOffInterrupts ++

new chipyard.iobinders.WithBlackBoxSimMem ++

new chipyard.iobinders.WithTiedOffDebug ++

new iobinders.WithDontTouchPorts ++

new WithSimAXIMMIO ++

new WithBootROMFile(s"software/bootrom/bootrom.bin") ++

new chipyard.iobinders.WithTraceIO ++

new chipyard.config.WithL2TLBs(1024) ++

new freechips.rocketchip.subsystem.WithExtMemSize((1 << 30)) ++

new freechips.rocketchip.subsystem.WithNoSlavePort ++

new freechips.rocketchip.subsystem.WithInclusiveCache() ++

new freechips.rocketchip.subsystem.WithNExtTopInterrupts(0) ++

new freechips.rocketchip.subsystem.WithNBigCores(1) ++

new freechips.rocketchip.subsystem.WithCoherentBusTopology ++

new freechips.rocketchip.system.BaseConfig

)

Listing 5.1: Example Core

in this case it is left at its default parameters (16 kiB, 8-way associative) The external memory has a
size of 1 GB. It is connected to the Rocket core via AXI. The example SoC does not use the Slave
interface. Chipyard SoCs can provide three AXI buses:

• The memory bus—a Master AXI interface connected to a memory controller

• The Memory-Mapped I/O (MMIO) periphery bus—a Master AXI interface connected to any
periphery

• The Slave bus—a Slave AXI interface to connect, e. g., a Direct Memory Access (DMA)
controller

This SoC has a L2 Translation Lookaside Buffer (TLB) with 1024 entries. Chipyard offers a
so-called TraceIO interface to monitor each core and Hart while the system is running. This is
especially useful when using an FPGA since an integrated logic analyzer can be used to watch the
cores. The SoC uses a custom BootROM. All statements above the BootROM in Listing 5.1 are
intended for the test harness. They tell the test harness how to handle all interface ports of the core.
The test harness provides the necessary environment for building the simulator as it connects or
ties-off every bus and pin and provides simulated memory.

Chipyard allows to mix and match different cores. For example, one could design a SoC with a
small Rocket core as controlling core and one or two BOOM cores for high performance tasks.
There are additional interfaces available. At the time of writing there are options to equip a GPIO,
SPI, I2C, Ethernet and an Universal Asynchronous Receiver Transmitter (UART) interface. For
more details see the paper by Amid et al. [ABG+20].

As demonstrated with the small example core, Chipyard allows us to easily generate multiple
different cores. And it can be by design used in a CI/CD pipeline. Having this flexibility also
underlines the choice of RISC-V since, at the time of writing, it is to the best of our knowledge
unknown if there exists a comparable framework for other ISAs.
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5.2.3 Operating System and Power Virus Algorithms

FreeRTOS2 is an open source real-time operating system which is administered by Amazon.
FreeRTOS requires a low amount of RAM3 and can easily run on an RV32I RISC-V core. It
requires a CPU that can handle interrupts and a timer for the scheduler. No Memory Management
Unit (MMU) is necessary. FreeRTOS is intended to be used on a single core. There are no
mechanisms that allow Simultaneous Multi-Threading (SMT). It was chosen over running on
bare-metal since it provides all necessary basics (memory management, task switching) without
having high requirements. Additionally, a RISC-V port for FreeRTOS already exists, though, it had
to be adapted to RV64GC and code handling the FPU had to be added as well as the original port
was written for an RV32I core.

The chosen power devil algorithms are:

• Mandelbrot (floating point)

• Mandelbrot (fixed point)

• SHA-256

The Mandelbrot set [Man80] is defined by the set of complex numbers 2 where the following
function is bounded when iterating from I = 0:

52 (I) = I2 + 2

The Mandelbrot algorithm used in this thesis calculates a 3940x2160 pixel image with maximum
320 iterations per pixel from −2 − 18 to 1 + 18. It is an algorithm that is used to assign color values
to pixel to produce an image for visualization purposes. To display a Mandelbrot set, the algorithm
iterates the above function until it reaches a certain value, generally 4 = |I |2 is chosen. If the
maximum number of iterations is reached before this bound, the algorithm assumes that for the
value 2 the above iterations diverge and moves on to the next one.

The fixed point Mandelbrot avoids floating point calculations at all costs and uses a fixed point
library for this purpose. There are only two operations which involve floating points: the conversion
of the input argument to fixed point and vice versa.

SHA-256 is a part of the SHA-2 family of cryptographic hash functions developed by the United
States National Security Agency (NSA) and standardized by the National Institute of Standards and
Technology (NIST) [NIS02]. The 256 in the name indicates the length of the digest, i. e., the output
of the hash function, which is in this case 256 bits long. The SHA-2 family mainly uses bit shifts
and rotations, logical operations (and, xor) and add operations.

The algorithm for the power devil can be chosen at compile time. There is no benefit to running
multiple power devil algorithms at once due to the task switching overhead. The tick frequency in
FreeRTOS, i. e., how often the scheduler runs, is equal to the frequency at which the temperature is

2https://www.freertos.org/
3https://www.freertos.org/FAQMem.html shows an example how much RAM is used and also provides an idea of

context switching time, though that depends strongly on the platform and the quality of the port.
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Name Language Supported
ISAs

Pipeline design Pipeline Stages Author

Rocket Chisel RV32GC and
RV64GC

in-order 5 UCB-BAR

BOOM Chisel RV32GC and
RV64GC

out-of-order 7 (10) UCB-BAR

Ariane SystemVerilog RV64GC in-order 6 ETH Zürich

Table 5.1: Comparison of available RISC-V cores

read. This reduces scheduling overhead and maximizes idle time since there will be no unnecessary
scheduler runs to check if another task is available. The power devil algorithm runs as a task in
FreeRTOS in an infinite loop.

These algorithms were chosen because most of them are integer based and simple to implement.
The single instance of the floating point Mandelbrot is included to see how the temperature behaves
when using the FPU instead.

5.2.4 Rocket vs BOOM vs Ariane

Here we compare all three RISC-V core designs that are available in Chipyard. Table 5.1 gives an
overview.

The three available designs are: Rocket, BOOM and Ariane. Rocket and BOOM are both written in
Chisel and developed by the UCB-BAR. Chisel [BVR+12] is an HDL based on Scala. Ariane (or
CVA6) is developed by the ETH Zürich and is written in SystemVerilog. Rocket can be seen as the
reference implementation of a RISC-V core in the context of Chipyard or the UCB-BAR. Many
modules from Rocket are intended to be re-used as was done for BOOM. BOOM’s goal is to be
used as a design for studying out-of-order architectures. ETH Zürich strives to reduce the critical
path length with their Ariane core.

Rocket and Ariane are both designs with an in-order pipeline while BOOM’s is out-of-order.
All three designs support the RV64GC ISA but only Rocket and BOOM also have support to
generate RV32GC cores. All three designs contain a branch prediction unit and a MMU. They
are able to run Linux. Each design contains an L1I and L1D cache each which can be configured.
Generally, all three designs share most configuration options in Chipyard, such as cache size and
associativity, FPU pipeline length or branch table size and many more. Rocket has the least number
of pipeline stages with 5 stages, while Ariane is implemented with 6 stages. Also, as can be seen
in Table 5.1, BOOM has actually ten stages, but several of them are collapsed to one, which is
why it is implemented with seven. It has the following pipeline stages: Fetch, Decode, Register
Rename, Dispatch, Issue, Register Read, Execute, Memory, Writeback and Commit. In the current
implementation Decode/Rename, Rename/Dispatch and Issue/RegisterRead are combined and
Commit is not counted as a pipeline stage by the developers as it occurs asynchronously. In contrast
to Rocket and Ariane, BOOM cores contain multiple Harts per core, called execution units. These
execution units can execute instructions in parallel but are only fed by a single instruction decoder,
as mentioned in Section 5.2.1.
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It is important for this thesis that the chosen design generates a high enough amount of heat when
under load to allow for any meaningful regulation. Also, the fact that FreeRTOS is only implemented
for single-core systems poses an additional constraint to the choice of the design. As such, BOOM
has been chosen, because it is able to generate enough heat for meaningful regulation, as will be
seen in Chapter 6, without any changes to FreeRTOS.

A single Rocket core was unable to generate a high temperature difference. The biggest measured
increase was around 2 °C. This small increase does not allow for any meaningful regulation. Thus it
was decided not to test Ariane, since its design isn’t as fundamentally different compared to BOOM
and even more limiting—the authors discourage the use of multiple Ariane cores. Also, due to
the fact that Ariane is written in SystemVerilog, a generated Ariane core contains one additional
file—the core itself—which has been found out after the workflow was finished. The workflow
would have to be adapted to respect that additional file while exchanging Rocket with BOOM and
vice versa is possible without any changes.

As mentioned above, FreeRTOS is not designed for multi-core systems and it would have taken too
long to adapt it to such. Asynchronous Multi-Threading (AMT) could be realized but BOOM’s
execution units make it easier to leverage the increased area and activity for heat generation without
making any changes to FreeRTOS. In AMT, every core runs its own instance of FreeRTOS. In
contrast, in SMT all cores run a single instance of FreeRTOS and every core knows about every
other core. AMT comes with its own set of problems in implementation. The available memory
space would have to be partitioned for each core. The bootloader will be run by all cores and as
such they have to be orchestrated, to not interfere with UART booting. Additionally, FreeRTOS
would have to be compiled and changed in such a way that it is position independent, i. e., it does
not care where in memory it is loaded. Furthermore, the access to the UART interface and the
Xilinx® Analog-to-Digital Converter (XADC) would have to be coordinated, since they cannot be
duplicated. As such, exploiting the super-scalar nature of BOOM is the best solution for this thesis.
The availability of multiple Harts in turn influenced the decision on the power devil algorithms
since a higher heat generation is possible when all available Arithmetic Logic Units (ALUs) can be
used as much as possible at the same time, due to BOOM’s super-scalar pipeline.

Given the requirements in Section 5.1 and the constraints from the choice of operating system and
core design, the currently selected components for the case study seem to be the best solution.

5.3 Building the Platform and Workflow

In this section the previously listed components are now connected to build the platform for the case
study and the workflow. It first starts with the workflow. It is explained how a sample configuration
together with some code for a power devil program create the results for the case study. Then the
hardware side of the platform is presented and finally the software execution is illustrated.

5.3.1 Workflow

Here we introduce the workflow from the SoC configuration up to receiving the results. Figure 5.1
shows a flow chart of it.
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The three inputs to this workflow are a Chipyard configuration, the source code for the BootROM
and the source code for the case study program. Since Chipyard is intended to be used in an agile
environment we decided to use it in Jenkins4. The Jenkins instance is part of a Kubernetes5 Cluster
and uses Pods for each execution of a pipeline.

First the Compiler Pipeline is run, since Chipyard depends on the compiled BootROM, and
afterwards the Chipyard pipeline runs. Chipyard is very resource intensive, especially on RAM—it
needs around 10 GB of RAM for generating a BOOM core.

When Chipyard has finished generating the core, the netlist is transferred to a server where Vivado is
available. There, tcl scripts orchestrate the synthesis steps. In the end Jenkins collects the bitstream
and the binary of the case study program.

The next steps are not automated yet. The bitstream is loaded onto the FPGA and afterwards the
binary is streamed onto it via UART. The program runs then and prints the temperature over UART,
which is collected by a Python script. It also prints if the power devil task is running or suspended.
The Python script then stores the measurements into a csv file.

The benefit of this workflow is that it is mostly automated now, as indicated by the asterisk at certain
steps in Figure 5.1, and will be fully automated in the future. Especially, since synthesis takes a long
time, it is of advantage to automate every step to save time and also to parallelize the generation of
multiple configurations with ease. For a full automation at least one additional pipeline is necessary
that will run after the other two are done. That third pipeline will then execute scripts to first load
the bitstream onto the FPGA, then another script to load the program and finally the Python script
to collect the measurements. The biggest challenge here is that only a single FPGA is available, so
multiple cores must be applied in sequential order and put in a queue and each run should uniquely
identify which design with which program was used. Besides fully automating it, there are other
steps that should be tackled in the future, for example, load balancing the synthesis over multiple
servers. Currently, a single machine is responsible. Additionally, when the BootROM is stable, it
can be integrated into the Chipyard pipeline without the need to always recompile it. This makes
the Chipyard and the Compiler pipelines more independent of each other. Finally, more resources
must be provided to the Jenkins instance since the resource intensity of Chipyard caused some
problems.

5.3.2 Platform: Hardware

The cores were synthesized for a Xilinx® Virtex®-7 FPGA VC7076 evaluation board equipped
with a XC7VX485T. The XC7VX485T provides 485,760 Logic Cells. The cores were connected to
the RAM on the board, its UART interface and also to the XADC. The evaluation board contains
1GB of DDR3 RAM. The fan on the evaluation board was disconnected since it was unclear how
it behaves when the FPGA chip heated up. It also reduced the maximum achievable temperature
gradient of all designs enough to make regulation impossible. The target frequency is 50 MHz.

4https://www.jenkins.io/
5https://kubernetes.io/
6https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html
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Figure 5.2: Block diagram of hardware design

Higher frequencies were very hard to achieve, especially when including the L2 cache. Thus, it has
been removed from all tested cores. Figure 5.2 shows a simplified block diagram of the hardware
design loaded onto the FPGA.

The XADC7 is able to measure on-die temperature, different voltages of the FPGA and externally
supplied voltages. It supports multiple sampling modes, e. g., sequentially sample multiple channels
or sample them all at once, but for this thesis the single channel sampling mode was chosen. The
XADC is able to return an average over multiple samples. We chose to use an average over 128
samples to smoothen the temperature curve. The automatic gain and offset correction has been
enabled. It has support for multiple alarms, e. g., over-temperature, under-temperature, over-volt,
etc., which can individually be configured on runtime, but they are not used in this thesis.

5.3.3 Platform: Execution and Control Loop

In the following a single run of the program (FreeRTOS with power devil algorithm) is illustrated
with every step from loading it onto the FPGA to the control loop and the role of each FreeRTOS
task.

The program is transferred onto the FPGA over UART with a speed of 115200 baud. The custom
BootROM is used as a UART bootloader. Loading the program like this allows more flexibility in
testing different power devil algorithms. A downside is the slow transmission speed. That is the
reason why the chosen operating system must be small. Also, the FPGA has to be reset every time
before loading a new program. There was also some confusion about how to load the program into
RAM.

The bootloader itself does little setup and disables all interrupts. It then receives the program from
the UART interface and collects each received byte in a register. Writing 8 bytes at a time is more
efficient than writing every single byte alone and avoids alignment issues. When 8 bytes were
collected it checks if they are equal to the end signature of the binary. If not, the data is transferred
to memory, otherwise it will start the power devil task. As it turned out, the instructions have to be

7https://www.xilinx.com/support/documentation/user_guides/ug480_7Series_XADC.pdf
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Figure 5.3: Flow chart of control task

transferred in big endian and every instruction is swapped with the next, likethis . The bootloader
does not know the size of the power devil binary in advance. Thus, a signature at the end of the
binary is used to let the bootloader know when transmission is done.

Besides the power devil task, another task, called the control task, exists that reads the temperature
periodically and either suspends the power devil or resumes it depending on the current temperature.
As mentioned before, the control task allows the power devil task to run until the upper bound target
temperature has been reached. It then suspends the power devil task until the measured temperature
falls below the lower bound. Afterwards it will resume the power devil task and it goes on like this
in a loop. It prints over UART the measured temperature and if the power devil task is suspended
or running. Figure 5.3 shows the state-machine for the control task. *)C0A64C is the upper bound
target temperature and !)C0A64C the lower bound target temperature respectively. )2DA is the last
measured temperature. suspended and running indicate the state of the power devil task.

When no task is active, i. e., the power devil task is suspended and the control task waits for the
next measurement, then an idle task is run which suspends the processor by issuing an wfi (wait for
interrupt) command which basically halts the CPU. This is an easy but effective way to minimize
activity and thus cool down the FPGA.

There exists the possibility to use interrupts which fire when the temperature becomes too high
leveraging the XADC’s alarms. But for ease of implementation it was decided against using them.
The advantage of the interrupt driven design would be a faster reaction when reaching the target
temperature since there is no fixed measurement period. For this thesis though, that does not play a
role.
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adaptive Temperature Control

This chapter illustrates the results from the case study introduced in Chapter 5.

For the case study a core based on a BOOM configuration was generated, called LargeBoom. Large
in this case refers to the number of Harts in the core. Details are shown in Table 6.1. The Chipyard
configuration can be found in the Appendix (see Listing A.1). Note that the maximum temperature
has been determined by letting the fixed point Mandelbrot algorithm run on the FPGA for about 20
hours. Ambient temperature was about 22 °C throughout every run. The target temperature band
was between 65.5 °C and 66.5 °C.

Before every run the FPGA was allowed to cool down by resetting and clearing the current
programming for 10 minutes, which means there was absolutely no activity on it. It then was
programmed and the program for the case study was loaded onto the FPGA and run for 20 minutes.

Each Hart in LargeBoom contains 2 issues (operation units): an ALU and a divisor, an ALU and
the FPU and finally an ALU and a multiplier. Issues cannot run in parallel.

LargeBoom takes up 85.67% and the full design takes up 94.3% of all available LUTs in the FPGA.
As such, it is as big as possible and thus better suited to generate heat than the smaller design
variants Small (1 Hart) and Medium (2 Harts), but is still able to fit into the FPGA compared to the
bigger variants Mega (4 Harts) and Giga (5 Harts).

In the following, the results of running each algorithm on the core are presented and analyzed. The
following graphs in Figures 6.1 to 6.3 each start from reaching 62 °C. Also, for each run 6 minutes
are shown. This choice was made to show a part of the unconstrained temperature increase while
also showing enough details about the regulated temperature. Each graph contains the raw data
(green), raw data after applying a moving average with window a size of ten (red) and the lower and
upper target temperatures (orange and blue respectively).

Looking at the graphs in Figures 6.1 to 6.3 the power devil task and the control task are working
indeed as intended and the temperature is kept between 66.5 °C and 65.5 °C.

LUTs (percent of max. available) Harts ALUs Max. Temperature

260084 (85.67%) 3 3 74.5 °C

Table 6.1: Details about LargeBoom
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Figure 6.1: Temperature curve for Mandelbrot with floating point arithmetic

Figure 6.2: Temperature curve for Mandelbrot with fixed point arithmetic
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Figure 6.3: Temperature curve for SHA256

When comparing the graphs with each other, it can be seen that the Mandelbrot algorithm using
floating point is the slowest to reach the upper bound temperature for the first time and also does
not have as low of a suspend-resume cycle time than the other two algorithms. This can be easily
explained by the fact that there is only one FPU compared to the multiple ALUs in the core and thus
only one Hart is really used.

As for the reason why SHA-256 is increasing the temperature faster than fixed point Mandelbrot, it
probably is due to the fact that there are several occurrences of FPU commands in the latter which
weren’t eliminated while the former is completely free of them. Important to mention here is also
that context switching takes longer when the state of the FPU is dirty, i. e., it has been used in
the previous task. RISC-V offers the ability to check if the FPU’s state has to be preserved when
context switching or not and thus reduce time spent in context switching. The FPU itself also has
32 registers which all have to be saved in the general case.

Another reason for SHA256 running the FPGA hotter is that the fixed point library for Mandelbrot
is issuing many function calls. Additionally, SHA256 uses only ALU operations while Mandelbrot
(fixed) also uses the multiplier which can only run on a single Hart.

It can be observed in most graphs that the rate of suspending and resuming the power devil task is
decreasing over time. This can be best seen in Figure 6.2. Especially over a longer period it seems
that the average temperature of the FPGA is increasing. This can exacerbate itself so much that
it is no longer possible for the power devil to run again. The cause for this is probably that the
temperature reading and task switching takes time which is taken away from the idle period. And
both actions cause activity on the core which generates heat. As such, over time, the FPGA is not
cooling down enough and it starts to reach an average temperature which is higher than the lower
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Figure 6.4: Temperature curve for floating point Mandelbrot over longer period of time

bound. This temperature is reached earlier the shorter the reading period. It turned out that for
every period lower than 10 ms this prevents nominal regulation and instead causes the temperature
to rise constantly but slower than under full load with the power devil running. This effect does
occur for 10 ms but is not pronounced enough to prevent regulation.

For this thesis we will call this effect “software-based thermal runaway” (short: “thermal runaway”)
since the temperature seems to get out of control of the regulation loop with software being the cause.
This instance of thermal runaway is comparable to the hardware-based one described by Vassighi
and Sachdev [VS06] but not as fatal, as it only prevents regulation. And the primary cause for the
hardware-based runaway effect is different, i. e., a physical defect causes higher power consumption
which increases the temperature which causes even more power consumption and so on, but the
symptoms are similar. In both cases more heat is generated than is removed and the consequence is
an uncontrollably rising temperature. The effect is demonstrated in Figure 6.4 and can be observed
after around 16 minutes.

The actual idle time in milliseconds can be estimated by using the following formula:

C83;4 = ? − 2CBF8C2ℎ − CA403

? is the period of the control task in milliseconds and the scheduler. In this case it equals to 10 ms.
But the scheduler also runs when the control task suspends itself and then activates the idle task,
which then allows the FPGA to cool down. Due to how scheduling in FreeRTOS works, the control
task runs every ? ms after it was last suspended. Thus, CA403 , i. e., the time it takes for the task to
run, is missing from the possibly available idle time. In this time period ? two context switches are
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happening: from any other task to the control task and from the control task to the idle task. A
rough estimate, based on the number of instructions for task switching and temperature reading,
results at about 1 ms spent not idling.

Another cause for this effect may be the distance of the target temperature to the idle temperature. It
might have been too low with around 6 °C above idle temperature. And since the core is not only
idling in the period where the power devil task is suspended the actual operating temperature must
be higher than the idle temperature. As can be seen in Table 6.1, the maximum temperature that the
core reached is about 8 °C higher than the target temperature. But due to time constraints it was
not possible to verify the assumption that the aforementioned idle to target temperature gap is the
cause.
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7 Conclusion

We have shown the feasibility of the “greybox” approach intended for the AutoGen project by
conducting a case study. This case study uses an on-chip temperature sensor of an FPGA to regulate
the temperature, i. e., keep it inside a target range. And the results of the case study show that
we are able to regulate the temperature. We have also shown how software choice can influence
temperature. We have also found out how parameters such as the measurement period influence the
temperature and the control loop itself. Finally, we also developed a basis for the AutoGen project
with the platform and workflow introduced in Chapter 5.

The smallest possible measurement period has been found and some observations were made
surrounding it. The optimal period in this case study was found to be 10 ms. Any shorter, and an
effect, called “software-based thermal runaway” in this thesis, occurs which makes temperature
regulation impossible. Software-based thermal runaway describes the effect, that the “non-power
virus” period in the regulation still causes enough activity, such that the average temperature on
the IC rises above the lower bound temperature. As a consequence it prevents the power devil
program to ever be run again. In the case study, a temperature band was chosen to show more
clearly that and how the regulation is working, but such bounds may be used in SLT, albeit with
a greater distance between the upper and the lower bound. Also note, that in the case study the
SoC is doing nothing while idling as it simply waits for the timer interrupt to occur. In real world
applications this time may be used for other tests that generate a small load on the processor itself.
For example, this can be used to cause a big temperature gradient to occur, which also is a possible
trigger for marginal defects. But even if the upper and lower bound target temperature were to be
the same, software-based thermal runaway can become a problem.

Let’s consider two scenarios: The first one has a lower bound that is 1 °C lower than the upper
bound. In the second scenario, both bounds are equal. In the first scenario, if thermal runaway
occurs, the average temperature of the IC can either rise to in between both bounds and stay there or
it can rise beyond the upper bound. The first case prevents the IC to hit the upper bound temperature
which may be a limit to trigger certain marginal defects. And it also prevents the occurrence of
temperature gradients. The second case is similar to the second scenario. A possible SLT program
could try to hold the upper bound temperature for a fixed period of time before letting the IC cool
down. In the second scenario, there will inevitably be a point in time where regulation starts and
stops the power devil program in a very small number of measurement periods (low single-digits).
And it can happen at the latest at this point, that thermal runaway will cause the temperature of the
IC to go beyond the target temperature.

As discussed in Chapter 6 the difference between idle temperature and the lower bound target
temperature may play a role. Since context switching and measuring is not actually letting the
SoC idle but cause a bit of activity the average temperature of the IC will inevitably rise. This
may play a big role when combining SLT with Burn-In [ABC+19], since in Burn-In all ICs are
exposed to a very high ambient temperature with the goal to let them reach high die temperatures,
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for example 110 °C, for an extended period of time. That in turn raises the idle temperature. And if
idle temperature and target temperature are not sufficiently apart from each other then the activity
caused in the idling or “non-power devil” phase may increase the IC’s temperature over time enough
for thermal runaway to occur. And what can happen then is that hardware-based thermal runaway
as described by Vassighi and Sachdev [VS06] occurs. Many modern SoCs have an emergency
shutdown mechanism on reaching a certain temperature. Now, if thermal runaway in the SLT
context occurs and the upper bound is near the shutdown limit, then that might cause the SoC to
be marked bad while it isn’t. And such cases are very hard to diagnose, because it is not clear
if this SoC has been marked bad due to bad test design or due to an actual defect which causes
hardware-based thermal runaway.

In the end, further investigations into software-based thermal runaway have to be made. Software-
based thermal runaway may become a major problem when generating software as is intended by
the AutoGen project. As such, it has to be researched on how to detect its occurrence and how to
avoid it in software generation.

An important part of the basis is the workflow. But, as mentioned in Section 5.3.1, further work on
it is still necessary. It has to be fully automated and the BootROM should be incorporated into the
Chipyard pipeline to reduce the dependency between it and the Compiler pipeline. Improvements
such as distributing synthesis tasks between multiple servers are desirable.

Additionally, for AutoGen, more sensors shall be incorporated such as current sensors, voltage
sensors, delay sensors and more. An interesting goal would be to include the IEEE 1687 (aka RSN)
infrastructure developed for the BASTION project [JLL+17] or similar. The most interesting feature
of that project for future work is the incorporation of aging monitors. It has to be tested if and how
they can be used or, more generally, RSNs connected to components and sensors can be leveraged
for SLT.

The thesis itself concentrated on a single core design, namely a single core BOOM. In the future,
work is necessary to either modify FreeRTOS for multi-core use or find another operating system,
that can easily replace FreeRTOS and additionally provide multi-core support. It then would be
interesting to compare the single core BOOM with a multi-core Rocket to see how they behave.
Especially with workloads, that make extensive use of the FPU, a significant difference is to
be expected, because a multi-core Rocket also contains multiple FPUs. Also, designs that use
coprocessors will be examined in the future.

Another interesting field to investigate are power devil program generators. Techniques mentioned
in Chapter 4 could be leveraged to generate SLT programs, especially when looking at the work
of Najeeb et al. [NKH+07] and Ganesan et al. [GJB+10]. It would be interesting to run such
generated programs on the BOOM core used in this thesis to see, how it will behave, especially
in comparison with the algorithms used here. More investigation into current state program
generation techniques is necessary and research on if and how we can leverage these to generate
SLT programs.
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A Listings

class SynthLargeBoomCachelessConfig

extends Config(

new chipyard.iobinders.WithTieOffInterrupts ++ // tie off top-level interrupts

new chipyard.iobinders.WithBlackBoxSimMem ++ // drive the master AXI4 memory with a

blackbox DRAMSim model

new chipyard.iobinders.WithTiedOffDebug ++ // tie off debug (since we are using

SimSerial for testing)

new iobinders.WithDontTouchPorts ++

new WithSimAXIMMIO ++ // Add the AXI Master MMIO port

new WithBootROMFile( s"software/bootrom/bootrom.bin" ) ++

new chipyard.config.WithL2TLBs(1024) ++ // use L2 TLBs

new WithTraceIO ++ // Include Tracing IO to see what each hart is doing

new WithoutTLMonitors ++ // Remove TileLink monitors, they should not be synthesized

new WithPBUSFreq(BigInt(50000000)) ++ // Set the frequency of the periphery bus (

normally 100MHz)

new freechips.rocketchip.subsystem.WithFastMulDiv ++ // Enfore usage of a fast (

unrolled) multiply divide unit

new freechips.rocketchip.subsystem.WithExtMemSize((1 << 30)) ++ // 1GB external Memory

new freechips.rocketchip.subsystem.WithNoSlavePort ++ // no top-level MMIO slave port

(overrides default set in rocketchip)

new freechips.rocketchip.subsystem.WithNExtTopInterrupts(0) ++ // no external

interrupts

new boom.common.WithLargeBooms ++ // Large boom config

new boom.common.WithNBoomCores(1) ++

new freechips.rocketchip.subsystem.WithCoherentBusTopology ++ // hierarchical buses

including mbus+l2

new freechips.rocketchip.system.BaseConfig

)

Listing A.1: LargeBoom
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