
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Extending Modeling Concepts of
OpenClams to Support Performance

Analysis with Layered Queuing

Simon Matejetz

Course of Study: Softwaretechnik

Examiner: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Supervisor: M.Sc. ETH Inf.-Ing. Otto Bibartiu

Commenced: December 8, 2020

Completed: June 22, 2021

Abstract

For the last couple of years, cloud computing has become a more and more prevalent topic in software
engineering. The ability to deploy software on a readily provided infrastructure naturally brings
many opportunities, especially for smaller businesses. Additionally, many different cloud providers
offer so-called backing services. Software developers can use these services as readily available
components in their applications instead of implementing their own solutions for recurring use-cases
like computation or data storage. The availability of readily available application environments
and backing services led to new architectural styles, like microservice and cloud-native. Instead of
deploying a monolithic application in a single self-hosted environment, an application can use the
advantages of cloud computing much more efficiently if its logical parts are split up into independent
components. While splitting up an application into smaller components entails several advantages
through the domain of cloud computing, like the possibility to scale each component’s environment
up or down individually, these new architectural styles inevitably add a new layer of complexity
to the system. In a monolithic application, the most critical aspect of its architecture regards the
complex internal processes.
In contrast, in a component-based application, each component is kept as simple and small as
possible. Therefore, the main complexity stems from the interaction between these independent
components instead of their internal behavior. For this reason, software architecture faces new
challenges when it comes to the cloud domain when modeling these interactions between cloud
components. Because of this, a means to model the components of a cloud application and their
interactions after successful initialization is needed. OpenClams is a cloud modeling framework
developed at the University of Stuttgart that enables a cloud architect to model a component-based
cloud application based on probabilistic user behavior.
Further, OpenClams assists the cloud architect in deciding between different cloud offerings by
comparing their cost and availability via so-called evaluation services. An application’s architecture,
described with Clams, can further be analyzed and optimized for its availability and the predicted
costs of the modeled application as a whole. This work further extends the modeling concepts of
OpenClams, enabling a cloud architect to attach performance information in the form of annotations
to cloud components and their interactions. An additional evaluation service was developed as a
part of this thesis which uses these provided pieces of performance information to transform the
Clams model into a Layered Queuing Network model to evaluate the approximate utilization of
individual components and detect components representing possible bottlenecks in the systems
architecture by using standardized tooling for analyzing Layered Queuing Networks.

3

Kurzfassung

In den letzten Jahren hat sich Cloud Computing zu einem immer wichtigeren Thema im Bereich
der Softwareentwicklung entwickelt. Die Möglichkeit, Software auf einer bereitgestellten Infras-
truktur auszubringen, bringt viele Möglichkeiten mit sich, insbesondere für kleinere Unternehmen.
Zusätzlich bieten verschiedene Cloud-Anbieter sogenannte Backing-Services an. Softwareen-
twickler können diese Dienste als fertige Komponenten in ihren Anwendungen nutzen, anstatt
eigene Lösungen für wiederkehrende Anwendungsfälle wie Computing oder Datenspeicherung zu
implementieren. Diese Verfügbarkeit von fertigen Anwendungsumgebungen und Backing Services
führte zu neuen Architekturstilen, wie Microservice und Cloud-Native. Anstatt eine monolithische
Anwendung in einer einzigen selbst bereitgestellten Umgebung zu betreiben, kann eine Anwendung
die Vorteile des Cloud Computing viel effizienter nutzen, wenn ihre logischen Bestandteile in unab-
hängige Komponenten aufgeteilt werden. Auch wenn die Aufteilung einer Anwendung in kleinere
Komponenten durch die Domäne des Cloud Computings mehrere Vorteile mit sich bringt, wie z. B.
die Möglichkeit, jede Komponente individuell zu skalieren, fügen diese neuen Architekturstile dem
System unweigerlich eine neue Ebene der Komplexität hinzu. Bei einer monolithischen Anwendung
betrifft der wichtigste Aspekt ihrer Architektur die komplexen internen Prozesse. Im Gegensatz
dazu wird bei einer komponentenbasierten Anwendung jede Komponente so simpel und klein wie
möglich gehalten. Die Hauptkomplexität ergibt sich daher nicht mehr aus dem internen Veralten
ihrer Komponenten sondern aus der Interaktion zwischen diesen unabhängigen Bestandteilen. Aus
diesem Grund steht die Softwarearchitektur in der Cloud-Domäne vor neuen Herausforderungen,
wenn es um die Modellierung dieser Interaktionen zwischen Cloud-Komponenten geht. Daher
benötigen wir ein Mittel, um die Komponenten einer Cloud-Anwendung und ihre Interaktionen
nach erfolgreicher Initialisierung zu modellieren. OpenClams ist ein an der Universität Stuttgart
entwickeltes Cloud-Modeling-Framework, das es einem Cloud-Architekten ermöglicht, eine kom-
ponentenbasierte Cloud-Anwendung auf der Basis von probabilistischem Benutzerverhalten zu
modellieren.
Weiterhin unterstützt OpenClams den Cloud-Architekten bei der Entscheidung zwischen verschiede-
nen Cloud-Angeboten, indem es deren Kosten und Verfügbarkeiten über sogenannte Evaluation
Services vergleicht. Die mit Clams beschriebene Architektur einer Anwendung kann darüber hinaus
hinsichtlich ihrer Verfügbarkeit und der prognostizierten Kosten der modellierten Anwendung als
Ganzes analysiert und optimiert werden. Diese Arbeit erweitert die Modellierungskonzepte von
OpenClams weiter und ermöglicht es einem Cloud-Architekten, Cloud-Komponenten und deren
Interaktionen mit Performance-Informationen in Form von Annotationen zu versehen. Im Rahmen
dieser Arbeit wurde ein zusätzlicher Evaluation Service entwickelt, der diese bereitgestellten
Performance-Informationen nutzt, um das Clams-Modell in ein Layered-Queuing-Network-Modell
zu transformieren, um anschließlich die ungefähre Auslastung der einzelnen Komponenten her-
auszufinden und Komponenten zu erkennen, die mögliche Engpässe in der Systemarchitektur
darstellen, indem standardisierte Werkzeuge zur Analyse von Layered-Queuing-Networks verwen-
det werden.

5

Contents

1 Introduction 19
1.1 Problem Statement . 20
1.2 Approach . 20
1.3 Thesis Structure . 20

2 Related Work 23

3 System Model 25
3.1 Cloud Application . 25
3.2 Components . 26
3.3 Communication . 26

4 Fundamentals 29
4.1 Cloud Computing . 29
4.2 Clams . 29
4.3 Layered Queuing Network . 33

5 Concept & Implementation 37
5.1 Concept . 37
5.2 Implementation . 45
5.3 Solving the Layered Queuing Network model 49

6 Case Study 55
6.1 Model . 55
6.2 Execution . 57

7 Conclusion and Outlook 63

Bibliography 65

7

List of Figures

4.1 Visual representation of an Sequence Diagram (SQD) in the OpenClams web
interface depicting the interaction between instances of cloud components for the
“Login”-State . 31

4.2 Visual representation of a User Profile in the OpenClams web interface depicting
the interaction of a user with a simplified webshop application 32

4.3 Cloud Application Modeling Solution (Clams) component tree for the Stateful
Component pattern and its refinement options 34

4.4 Layered Queuing Network (LQN) with processors, tasks and entries 35

5.1 LQN workload layer representing the User Profile (UP) from Figure 4.2 created by
following the transition rules from Table 5.1 . 40

5.2 LQN service layer representing the SQD from Figure 4.1 created by following the
transition rules from Table 5.3 . 43

5.3 Registration SQD using the same User DB instance as the Login SQD from Figure 4.1 46
5.4 Resulting LQN service layer when transforming a Clams model using the same

User DB instance in multiple SQDs . 46
5.5 The avgConcurrency meta attribute added to the User Database (DB) instance . . 47
5.6 Message meta attributes of a synchronous request between two instances 47
5.7 Additional “Predict Performance” option in the dropdown menu for selecting

evaluation services . 47
5.8 Dialog asking for the workload attributes for an invocation of the performance

evaluation service . 48

6.1 UP modeling the user interaction with in a webshop application 56
6.2 LQN model transformed from Clams model with shortened depiction of the service

layer containing only the service tasks for the User Service and User DB instances 57

9

List of Tables

5.1 Transformation of Clams UP components to LQN components and their visual
representation . 39

5.2 Workload attributes to be provided additionally to the Clams model 42
5.3 Transformation of SQD components to LQN components 43
5.4 Performance annotations of instances and messages in a Clams SQD 44

11

List of Listings

5.1 Annotated Clams model serialized as Javascript Object Notation (JSON) 52
5.2 LQN processors and tasks as represented in the Layered Queuing Network Solver

(LQNS) input format . 53
5.3 LQN entries as represented in the LQNS input format 54
5.4 LQN activities as represented in the LQNS input format 54
5.5 Mean delay per rendezvous as noted in the LQNS result format 54
5.6 Utilization per task and entry as represented in the LQNS result format 54
6.1 Result of performance analysis with mean delay of 1000 milliseconds 58
6.2 Result of performance analysis with average arrival rate of 500 milliseconds . . . 59
6.3 Result of performance analysis with average arrival rate of 250 milliseconds . . . 59
6.4 Result of performance analysis with average arrival rate of 100 milliseconds . . . 59
6.5 Result of performance analysis with average arrival rate of 50 milliseconds 59
6.6 Result of performance analysis with average arrival rate of 30 milliseconds 60
6.7 Result of performance analysis with average arrival rate of 30 milliseconds and

User DBs “maxConcurrency” annotation increased to 100 60
6.8 Result of performance analysis with average mean arrival rate of 5 milliseconds

and all stateful components “maxConcurrency” annotation at 100 61
6.9 Result of performance analysis with average arrival rate of 3 milliseconds and all

stateful components “maxConcurrency” annotation at 100 61

13

List of Algorithms

5.1 Removing backlinks and redistributing branch weights starting from the dot state 41
5.2 Creating and connecting tasks, entries for multiple SQDs 45

15

Acronyms

ACID Atomicity, Consistency, Isolation, Durability. 20

AWS Amazon Web Services. 33

BNF Backus-Naur form. 49

CBSE Component-Based Software Engineering. 19

Clams Cloud Application Modeling Solution. 9, 19

ClamsML Clams Modeling Language. 29

CML Cloud Modeling Language. 20

CPSM Cloud-Provider Specific Model. 30

CPU Central processing unit. 34

CSP Cloud Service Provider. 26

DB Database. 9, 20

DBaaS Database as a Service. 26

GUI Graphical User Interface. 46

HTTP Hypertext Transfer Protocol. 48

IaaS Infrastructure as a Service. 19

IoT Internet of things. 57

IPVS Institute for Parallel and Distributed Systems. 19

IT Information Technology. 19

JSON Javascript Object Notation. 13, 45

LQN Layered Queuing Network. 9, 20

LQNS Layered Queuing Network Solver. 13, 36

LTS Labeled Transition System. 23

MDA Model-Driven Architecture. 30

MSC Message Sequence Charts. 23

NIST National Institute of Standards and Technology. 29

npm Node Package Manager. 48

17

Acronyms

OS Operating System. 29

PaaS Platform as a Service. 19

QoS Quality of Service. 19

RPC Remote Procedure Call. 26

S2P Scenario to Performance. 23

SaaS Software as a Service. 19

SAME Systems Architecture and Model Extraction. 23

SOA Service-Oriented Architecture. 19

SPE Software Performance Engineering. 20

SQD Sequence Diagram. 9, 23

UCM Use Case Map. 23

UML Unified Modeling Language. 21

UP User Profile. 9, 23

VM Virtual Machine. 29

18

1 Introduction

In the recent years, cloud computing has become a more and more vital subject in computer science
and software engineering [Ley09]. Cloud computing offers readily available infrastructure in
a pay-per-use manner. Only paying for the resources needed at any given time means a great
advantage for software providers. They don’t need to buy and maintain physical servers of fixed
processing power anymore and instead leverage cloud resources. These cloud resources come in the
form of different service offerings, namely Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). Component-Based Software Engineering (CBSE) has
already been a subject of computer science in the last century. [BW98] describes the potential
advantages that a component-based software architecture promises, like the reusability of said
components. The CBSE approach was taken further by the domain of Service-Oriented Architecture
(SOA), which not only describes the modeling of reusable software components but stand-alone
services following an always-on semantic [Ars04]. The emerging field of cloud computing with
its new provisioning models led to the rise of new architectural styles following the CBSE and
SOA principles. One of these new architecture styles is microservice architecture. It is especially
well-suited for the provisioning in the cloud as its minimalistic, component-based structure allows
to take the greatest advantages of cloud computing, especially regarding the PaaS and SaaS service
models. For example, provisioning an application that consists of multiple independent services
instead of a single monolith allows to individually scale each service as needed for a given workload
[NMMA16]. Microservices that only interact via their interfaces also provide more flexibility. Each
service can be modified independently without influencing others as long as its endpoints do not
change, which provides great flexibility—for example, reimplementing any service in a different
programming language, also giving independence to the developing teams. For these reasons, many
big players in Information Technology (IT), like Amazon and Netflix, are following the microservice
architecture in the development of their applications [NMMA16].
To assist cloud architects in designing such a microservice-based cloud application that follows the
best practices of cloud computing, Cloud Application Modeling Solution (Clams), a tool-supported
cloud modeling language, has been developed at the Institute for Parallel and Distributed Systems
(IPVS) faculty1 of the University of Stuttgart. Using Clams, the architect of a cloud application can
leverage the structural cloud computing patterns proposed in [FLR+14] to abstractly model cloud
components and their interactions that are necessary to implement previously defined use cases.
The abstract components can later be refined into concrete cloud offerings. For the refinement
step, Clams contains so-called evaluation services that evaluate a Clams model for various Quality
of Service (QoS), like cost and availability, on a component and application level to enable
well-informed decision making when designing a cloud application.

1https://www.ipvs.uni-stuttgart.de/

19

1 Introduction

1.1 Problem Statement

As described, designing an application following the microservice architecture has several advantages
from a performance perspective, especially if the application uses cloud infrastructure. It is best
practice to split an application’s microservices into two groups - stateful and stateless. This
differentiation is made because there is a difference in scaling microservices of the two groups.
Because an arbitrary number of instances of a stateless microservice can run in parallel, it is easy to
scale them up or down by adding more or taking away service instances according to workload.
The same does not apply to stateful microservices, especially if they follow the Atomicity,
Consistency, Isolation, Durability (ACID) properties. Because state kept in a stateful microservice
needs to be consistent and highly available it can not tolerate partitioning following the CAP theorem.
Therefore, a stateful microservice following the ACID properties can only run on a single instance.
Additionally to only being vertically scalable, most stateful resources, like Databases (DBs), enforce
boundaries on the number of concurrent connections to guarantee the ACID properties.
This means that even if the majority of microservices in an application is stateless and therefore
scalable almost indefinitely in a cloud environment, a single stateful microservice reaching its
performance limits because of the rising number of requests received by the growing number
of stateless microservices can propagate the resulting delay up the call chain. Once this delay
becomes large enough, it results in a perceived slow down or breaking of the application by the
user and thus ruins the user experience. Detecting such a performance bottleneck as early as
possible in the lifespan of an application, ideally at design time, is the stated goal of Software
Performance Engineering (SPE) and of great importance as the costs to fix the bottleneck grow over
an applications lifetime [WFP07].

1.2 Approach

Clams provides evaluation services to analyze the cost and availability of cloud applications modeled
with its Cloud Modeling Language (CML). This work extends the Clams ecosystem by further
extending its modeling concepts to allow the cloud architect to provide performance annotations
to interactions between components to enable a performance analysis of the model following
the SPE principles. More precisely, an additional evaluation service for the Clams reference
implementation OpenClams has been developed that assists the cloud architect in detecting threats
of possible bottlenecks in a Clams model that arise from stateful microservice components with
limited scalability. For this, the Clams model is transformed into an Layered Queuing Network
(LQN) performance model.
The LQN is an extended queuing model that has been proposed for analyzing the utilization and
throughput of software systems composed of elements that interact in multiple layers. Standardized
tooling to solve LQNs has been proposed by Franks et al., [FMW+05] that will be used to analyze
the generated LQN for its performance attributes.

20

1.3 Thesis Structure

1.3 Thesis Structure

This thesis is structured as follows:

Chapter 2 - Related Work features scientific work that also concern LQNs in a way that is
interesting for the following parts of the thesis, e.g. proposals for the transformation of
various Unified Modeling Language (UML) models into LQN models

Chapter 3 - System Model describes the features an application needs to possess in order to be
used with Clams and more specifically the means developed in this work

Chapter 4 - Fundamentals gives an insight into the subjects this work is based on, more specifically
cloud computing, Clams and LQN.

Chapter 5 - Concept & Implementation presents the concept and implementation of the main
contribution of this thesis in the form of enabling performance analysis for Clams models

Chapter 6 - Case Study contains a case study that has been carried out using the Clams model of
a web shop cloud application including performance annotations to analyze its components
for bottlenecks and their utilization

Chapter 7 - Conclusion and Outlook concludes the results of this thesis and gives an outlook
into possible future work and research that arises from this thesis

21

2 Related Work

This work extends Clams analytical capabilities by transforming extended Clams models into LQN
performance models. The Sequence Diagram (SQD) and User Profile (UP) diagrams of the Clams
model are based on the Message Sequence Charts (MSC) and Labeled Transition System (LTS)
diagrams proposed by Uchitel et al. [UKM03], [UKM04] that share similar elements and structures
with UMLs SQD and activity diagram.
Proposals for the transformation of various UML models into LQN models have been brought
forward in the last couple of years. In the following, the concepts of these and other approaches that
this work was inspired by are described.

In 2001, Israr [Isr01] proposed a lightweight model building technique, called Systems Architecture
and Model Extraction (SAME), in order to turn communication traces of distributed systems
components, in the form of timestamped send and receive logs, into communication trees and
finally into an LQN model to analyze the traced systems performance. The works’ main focus is
on detecting communication types and the generation of communication trees from the available
system traces. This is not interesting when it comes to Clams models, as not only independent traces
at each distributed component but full information about which components interact with each other
is given in the Clams SQDs. However, the algorithm to build the LQN model from communication
between components, that has been proposed by Israr, inspired the solution developed in this thesis
and will be explained more thoroughly in Chapter 5.

Petriu and Woodside [PW05] came forward with the Scenario to Performance (S2P) algorithm to
transform Use Case Maps (UCMs) into LQN models. UCMs are structurally very similar to Clams
UPs as they also model user behavior regarding a system with the main difference being that the UP
does not support OR forks/joins or AND forks/joins and instead works with transition probabilities.
Regardless, the representation of the user flow as an activity graph in the LQN models entries as
proposed by Petriu and Woodside has also been adapted to model the complex state-based user
workload for the LQN model in the solution presented in this thesis.

For the Palladio Component Model, Koziolek and Reussner [KR08] have proposed a similar
approach, turning the annotated control flow and interactions of Palladio Components into an LQN
model. The main difference to our approach is that, instead of software components of arbitrary
size, in this thesis the application to be analyzed is expected to consist of microservices - each
running in independent cloud environments. This work also does not focus on creating reusable
results for each component but instead on identifying bottlenecks that arise from single components
in the analyzed application as a whole.

23

3 System Model

This chapter presents the conditions an application needs to fulfill in order to be analyzed using the
approach presented in this thesis. The proposed solution extends the Clams ecosystem; therefore,
only applications that can be described via Clams are considered. Further, an application is expected
to fulfill certain structural and behavioral requirements defined in the following sections to enable
performance analysis and bottleneck detection.

3.1 Cloud Application

The system is expected to be a microservice-based application that has been optimized for cloud
usage, called a cloud application. The system model of this thesis follows the IDEAL properties,
proposed in [FLR+14], as described in the following.

IDEAL

The IDEAL properties as proposed by Fehling et al., [FLR+14] contain five features that a cloud
application should possess in order to make optimal use of cloud infrastructure. The following
listing explains the role of each of the IDEAL properties in the system model.

Isolated State: All state, e.g. application and session state, must be kept in a dedicated, minimal
number of components to keep all the other components stateless. An example of such a
stateful component is a service with only the responsibility to keep user information in a
relational database.

Distribution: The application is expected to consist of multiple components, ideally following a
micro-service architecture with each of the components having exactly one well-defined and
fine-grained responsibility [NMMA16].

Elasticity: Computation resources can be added and removed during the runtime as needed to, e.g.,
adapt to the user workload. This property effectively enables almost unbounded horizontal
scaling of stateless components as it is possible to add new instances at any time when needed.

Automated Management: The management of a deployed application is automated, e.g., adding
more instances as the workload increases. The automated management aspect is not of
interest for this work, as application deployment and management are not considered, and is
only mentioned at this point for reasons of completeness.

Loose Coupling: Dependencies among application components are minimal as they interact
in a message-oriented manner over their interfaces via asynchronous and synchronous
communication.

25

3 System Model

3.2 Components

The application components are expected to be dedicated microservices running in environments
independently from other services and kept as simple and small as possible, ideally only having
a single responsibility in the system. As mentioned in the previous section, handling state is a
crucial factor when designing a cloud application. This work assumes that dedicated components
contain all kind of state existing in the application and that, ideally, at least one such stateful
component exists. That is the case because the main focus of this work is to detect bottlenecks and
performance-critical components in modeled system architectures. If all components of a system
architecture were to be stateless, practical unlimited horizontal scaling could be achieved due to the
elastic nature of the cloud.
Although it is possible to conduct a performance analysis on a fully stateless application using the
solution proposed in this thesis, it would limit the result to only finding the average number of active
instances/requests on any given workload for each component. Due to the unlimited horizontal
scalability, the presence and thus detection of a bottleneck would not be possible.
Further, the maximum number of concurrent connections supported by each stateful component
needs to be known or reasonably estimated. For instance, if the stateful component is an instance of
a Database as a Service (DBaaS) offering, the connection limits for a service plan can typically be
found in the documentation of the Cloud Service Provider (CSP)[Goo][Mic].

3.3 Communication

The following section specifies the information that must be known about the communication
between components in an applications model to analyze its performance as proposed in this work.
When referring to communication between cloud components in this work, exchanging messages
in a point-to-point manner is meant. Systems that include broadcast communication, like pubsub,
can not be modeled with Clams and are therefore not considered in this thesis. Further technical
details of such a point-to-point communication do not need to be defined. Because of this, the
communication between two components can be implemented with the means of any technology,
like Remote Procedure Call (RPC) or messaging in a synchronous or asynchronous manner.
Assuming there are two components called component A and component B, a synchronous call
from component A to component B implies that component A is blocked until the reply from
component B is received. In this context, blocking means that the specific task of component A,
that sent out the request, can not process further requests from any source until it receives a reply
from component B. Component A might still be able to process additional requests as making a
synchronous call blocks only one of its worker threads and cloud components are usually heavily
parallelized. Therefore, the complete blocking of a component only happens when all available
worker threads are blocked at the same time. This is what is considered a bottleneck in this work
and can only appear with stateful components because they are not horizontally scalable.
In contrast, an asynchronous message does not block the requesting component A and instead acts
as a simple call to component B. The worker thread of component A sending out the request stays
free and ready to send out or receive further requests immediately after.
The source and target components need to be specified in the application model for each commu-
nication between two components. Additionally, the average service time that a request imposes

26

3.3 Communication

on the target component must be specified in the architecture. It also needs to be explicitly stated
if communication is of synchronous or asynchronous nature and in which order the interactions
appear.

27

4 Fundamentals

4.1 Cloud Computing

The National Institute of Standards and Technology (NIST) defines cloud computing as a computing
model that enables ubiquitous, convenient, and on-demand network access to a shared pool of
configurable computing resources. Such computing resources can range from networks, servers,
and storage to provided applications and services. These resources can be rapidly provisioned and
released with only a little management effort [MG+11]. The NIST further defines three different
service models, namely IaaS, PaaS, and SaaS, with the amount of infrastructure that is getting
outsourced increasing with each service model as IaaS describes only the usage of a third parties
hardware infrastructure, for example, in the form of a Virtual Machine (VM) without any preinstalled
software that goes beyond an Operating System (OS). In the PaaS model, the whole environment
that an application requires, like compilers, interpreters, and runtimes, is readily provided so that
the application only needs to be deployed on the PaaS cloud offering to be functional. The third
and last type of service model, SaaS, describes the usage of a software application that is already
up and running and entirely managed by the CSP. Such a provided service reaches from complete
end-user software to so-called backing services that can be consumed by other applications, e.g., a
ready-to-use database, called a DBaaS, or a messaging service [MG+11].

4.2 Clams

In agile software development, most commonly, one of the first artifacts created are user stories.
A user story is a description of how a user will be interacting with the resulting software system.
Clams, therefore, bases on the idea of modeling cloud applications depending on so-called UPs that
are introduced more precisely in the following Section 4.2.2. A UP represents each action a user can
take in the modeled system as a state, which links to an SQD that models the interaction between
system components necessary to enable the action taken by the user. To assist cloud architects in
deriving a cloud application architecture from user stories, Clams provides the Clams Modeling
Language (ClamsML), a modeling language containing UPs, SQDs, and their components. Also,
web-based tooling for the visual representation of a Clams model and the mutation and inspection of
the model exists as an open-source project named OpenClams1. Clams has similarities with other
component-based CMLs like Blueprint [NLT+11] and CAML [BBK+16],[BTN+14], that leverage
UML diagrams to model cloud applications orchestration and deployment, but additionally provides
the possibility of refining the components via a component tree as is described in Section 4.2.2.
To avoid forcing the cloud architect to decide on specific service offerings at an early stage in the

1https://github.com/openclams

29

4 Fundamentals

design time of an application, Clams leverages the structural cloud computing patterns presented in
[FLR+14] as abstract modeling components. Using these cloud pattern components in a model
enables modeling cloud applications on a conceptual level even before the cloud architect decides
on particular cloud offerings for the application’s components. Therefore, using Clams, it is
possible to model cloud applications in a cloud offering-agnostic way and then refine the modeled
components - fluidly transforming the model. This fluid transformation is a new approach to
refining a cloud architecture model. Other proposals, like the MODAClouds project brought forward
by Di Nitto et al. [DMPS17], follow a Model-Driven Architecture (MDA) approach for creating
cloud architectures. They also enable the design of cloud offering-agnostic models and their later
refinement into Cloud-Provider Specific Model (CPSM), but do so in a stage-based manner by
transforming entire application models instead of individual components as is done in the Clams
approach. Leveraging cloud patterns and specific cloud offerings, cloud offering-agnostic, as well
as cloud offering-specific components, can be present in a Clams model at the same time.
Clams further assists the cloud architect in decision making when refining a cloud offering-agnostic
component into a specific cloud offering by providing insight into offerings that are compatible
children of the current component in the component tree, comparing them via Clams plugin-based
evaluation services. The component tree is described more in-depth in Section 4.2.2, and currently,
multiple such evaluation services exist to compute and compare the possible refinement options,
e.g., for various QoS like availability or cost.
This work further extends the scope of evaluation services by additionally providing the means to
analyze the predicted performance of a cloud application model under various conditions to detect
design flaws that might lead to performance problems and bottlenecks that will be expensive to
correct once the application is readily developed or - in the worst case - already in production.
Clams supports the modeling of multi-cloud applications by allowing the architect to use cloud
components from different CSPs in the same application model. As CSPs can implement cloud
patterns in different ways, each CSP has their own component tree with Clams.

4.2.1 Sequence Diagram

Clams SQDs follow the notation of the MSC diagram brought forward by Uchitel et al. [UKM03],
[UKM04] and describe the interaction between cloud components occurring when a user interacts
with the cloud application. Figure 4.1 shows a visual representation of an exemplary SQD - the
example models a Login functionality with three interacting components. The most left component
is the Service Bus, which transports the user request into the system. The Login Service receives
the request, executes some arbitrary business logic, and sends a further request to the User DB, e.g.,
querying the user’s credentials. The User DB replies with the Query-Result to the Login Service
that subsequently updates the user’s login status in the User DB and finally replies to the Service
Bus that hands the result back to the user.
Clams does not need for the architect to provide information about messages exchanged between
two components besides specifying a source component, a target component, and optionally a label.
However, it is possible to add custom attributes to a message, which will become relevant later
when extending the model.

30

4.2 Clams

Figure 4.1: Visual representation of an SQD in the OpenClams web interface depicting the
interaction between instances of cloud components for the “Login”-State

4.2.2 User Profile

The Clams UP is based on the LTS proposed by Uchitel et al. [UKM03], [UKM04] and resembles
probabilistic user interaction with the cloud application. It represents a weighted graph in which the
nodes are the states a user can be in at any given time, and the edges are the possible transitions
between states that occur with a given probability called arrows. A UP is an absorbing Markov
Chain in which a user enters the system via the starting state, called Dot, and leaves the system
via end states - sinks that have no outgoing arrows. Figure 4.2 depicts and exemplary UP. In this
model of a simplistic webshop, a user always starts a session by logging into the application. After
logging in, there are two possible ways in which a user can continue using the application. With a
probability of 90%, the user adds an item to his basket, and with a 10% chance, the user directly
checks out previously added items. After a user added an item to his basket in the Add to basket
state, there are two states for the user to transition. With a probability of 80%, the user will check
out his basket, thereby leaving the system. However, with a 20% chance, a user will add another
item to the basket, reentering the same state. This looping interaction is represented by an arrow
that has the same source and target, here the Add to basket state. Naturally, the modeled behavior is
simplified, lacking the possibilities for a user to register before logging in or to browse items before
adding them to the basket.

31

4 Fundamentals

Figure 4.2: Visual representation of a User Profile in the OpenClams web interface depicting the
interaction of a user with a simplified webshop application

State

States of a UP act as a reference to an SQD. While an SQD describes how to carry out the interaction
between cloud components of an application that are necessary to realize a certain user interaction,
a state specifies when the system must execute the interactions of an SQD. A state has a label, which
displays the name of the linked SQD. For states that are neither the starting state nor an absorbing
state, at least one incoming arrow and at least one outgoing arrow must be present. Further, the sum
of probability on all outgoing arrows of a state must accumulate to exactly one, which means that
a user leaves the state with a probability of 100%. In contrast, an absorbing state can only have
incoming arrows but can not have outgoing ones.
A special state is the starting state which is represented by a dot in the UP. It is the only state that
can not have incoming arrows and does not reference an SQD.

Arrow

In a UP graph, the edges are called arrows and represent a connection between two states. One
of the two states represents the source called 𝑠, and one the target 𝑡. An edge also has a weight 𝑥
with 0 < 𝑥 ≤ 1. The weight of an arrow poses as the transaction probability from 𝑠 to 𝑡 in percent,
meaning that if a user is in state 𝑠, they will be in state 𝑡 after the next interaction with a probability
of 𝑥.

32

4.3 Layered Queuing Network

Component Tree

In an SQD, the components can have different levels of abstraction. The most abstract form of a
component represents a cloud pattern as presented in [FLR+14]. The root of a component tree
is always a cloud pattern, while the children that are not leaves can be either an abstracted cloud
offering, called an Abstract Component, or a further refined cloud pattern. At last, the leaves of
a component tree are specific cloud offerings, called services, that can be used in a final cloud
application.
An instance of such a component tree is depicted in Figure 4.3. This reduced example shows the
possibilities of refinement of a Stateful Component Pattern into a final service via its children. In
Clams, it is possible to traverse the component tree in any direction to refine or abstract any given
component in the model. For the component tree form Figure 4.3, abstract components and services
of the Azure Cloud 2 were used. It only serves an exemplary case, and in practice, offerings from
other CSPs, like Google Cloud3 or Amazon Web Services (AWS)4 could be used. In theory, it is
also possible to use cloud offerings from different CSPs in the same Clams model.

Instances

Instances represent an identifiable, specific resource based on a component from the Clams
component tree, and different instances can use the same component. For example, different
instances of the Azure Database for PostgreSQL/Basic/Gen5 4v Core Service from Figure 4.3 can
be used to model a User DB, Order DB, Product DB, and more in the same Clams model. Further,
it is possible to reference the same instance in different SQDs. An example for this would be to
reference the Product DB in an SQD modeling the Browse items state and in an SQD modeling
the Buy items state as both need to access the same Product DB. These instances use the same
component from the component tree and represent the same instance of this component. This
means that requests to that component in both SQDs model a request to the same resource, although
it does not necessarily mean that the requests use the same endpoint because one cloud component
can offer multiple endpoints.
For example, in the SQD that models the Browse items user action, a request to the Product DB
instance might represent a query to check if the product is currently available, while in the Buy
items SQD, the request to the same instance could be a mutation reducing the stock of a previously
reserved item.

4.3 Layered Queuing Network

The LQN model has been proposed by Woodside et al. [RS95], [WR96], [Woo89] and describes
a canonical form for layered extended queuing networks. As a result of a request from a higher
level, servers at one level make requests to servers at lower levels, resulting in the layered structure.
LQNs main use case is in SPE to analyze the performance of software system models.

2https://azure.microsoft.com/
3https://cloud.google.com/
4https://aws.amazon.com/

33

4 Fundamentals

Key-Value Storage

Blob Storage

Relational Database

Database

Stateful Component

...

...

Azure Database for Maria DB Azure Database for MySQL Azure Database for PostgreSQL

Basic General Purpose Memory Optimized

... ...

Gen 5, 2v CoreGen 5, 4v Core

...

... ...

Pattern

Abstract Component

Service

Figure 4.3: Clams component tree for the Stateful Component pattern and its refinement options

4.3.1 Structure

An LQN consists out of three main components; processors, tasks, and entries. These elements
make up the various layers communicating with each other in different manners. When the LQN
model was proposed, it did not have the cloud computing domain in mind. Due to this, it is necessary
to model hardware resources like the Central processing unit (CPU) of servers that the components
in the LQN are running on. This information about the components hardware is typically not
available when it comes to cloud applications as software engineers no longer have control over the
bare metal on which the application’s components will be deployed.
For this reason, assumptions about the hardware layer has to be made in order to represent cloud
components that will be discussed in the following section. More precisely, the following section
will describe the structural elements of an LQN relevant for the later parts of this work. The elements
are depicted in Figure 4.4, where the processors are depicted as ovals, the tasks as parallelograms,
and the entries as smaller parallelograms contained within the tasks. Finally, in the example, the
simplified structure of an LQN that represents a simple webshop, where a user can buy and view
items, is shown.

34

4.3 Layered Queuing Network

Figure 4.4: LQN with processors, tasks and entries

Processors and Tasks

Processors represent hardware resources in the form of available CPU that is used by logical
resources called tasks. They have a queue that requests will enter if they can not be processed
on arrival. Tasks are the worker threads of a processor and consume service time when ac-
cepting a request. Tasks of a processor have a multiplicity that defines how many threads can
run concurrently on the processor at any given time. As the cloud offers almost indefinite
hardware resources, processors and tasks will be viewed as a unit, as the number of maximum
concurrently running tasks is used as an upper bound of the scalability for cloud resources in
this work instead of the available processor capacity. When talking about a task in an LQN
model, it is therefore always implied that a processor of infinite capacity is attached, meaning
that hardware processing power is always available if a task gets activated. Therefore, a request
only needs to wait in the queue for its execution is if the task receiving the request is modeled
only to allow the concurrent execution of a limited number of instances, all of which are already busy.

Entries

Entries represent the services offered by the task they belong to. An entry can serve a request by
directly responding to it or making subsequent requests to other entries. Serving a request takes
service time on the processor, in which an entry blocks the task it belongs to. Requests between
entries can be either synchronous, asynchronous, or forwarding. For this work, only synchronous
and asynchronous requests are considered.

Activities

Activities make up the internal behavior of an entry. Per default, an entry implicitly contains a
single activity that takes some service time and then sends a reply to the caller. However, activities
can also be used to explicitly model more complex behavior of an entry, like calling other entries.

35

4 Fundamentals

Precedence

Precedences can be used to connect two or more activities. They make it possible to model the
more complex behavior of an entry by creating an activity graph that consists of various operations
such as a simple sequence, joins, forks, and a loop.

4.3.2 Layered Queuing Network Solver

The Layered Queuing Network Solver (LQNS) is a tool developed at the University of Carleton
[FMW+05] that enables the analytical solving of LQN models described in a standardized input
format. As a result, it provides various performance parameters for the LQN model and its
components. The parameters that are for this work are described in the following.

Utilization

The utilization of each processor, task, entry, and activity is given as the number of average active
resources. For example, if only a single task is available and active for half of the total execution
time, its utilization is 0.5, meaning that it is active for 50% of the time. The utilization of a resource
can also be greater than one if there is more than one available resource. For example, if the
multiplicity of a task is ten and, on average, only two of the tasks are active, then the resulting
utilization of that task, calculated by the LQNS, will be 2.

Mean Delay

In the result provided by the LQNS, the mean delay of a request made between two entries or from
an activity to an entry describes how much time it had to wait in the queue of the requested resources
on average. Thus, the mean delay is a good way of measuring the severeness of a bottleneck. The
greater the mean delay, the worse the bottleneck.

36

5 Concept & Implementation

This chapter describes the concepts of extending the Clams modeling concepts by introducing
performance annotations and subsequently transforming it into an LQN model for conducting a
performance analysis using standardized tooling. The chapter also presents the implementation as a
Node.js evaluation service that takes in a performance-annotated Clams model with some additional
configuration and outputs the results of the performance analysis, including the utilization of a
Clams models instances and potential bottlenecks and their severeness.

5.1 Concept

Several proposals have been made for transforming various UML models into an LQN model to
enable conducting performance analysis on it [Isr01][PW05][PS02][GP05]. These works provide
algorithms and solutions for the transformation of a single diagram type into an LQN model. In the
case of Clams models, they consist out of two different diagram types in the form of UPs, modeling
how a user interacts with the system, and SQDs, modeling which services of the system need to
communicate for any given user interaction. The following part of this section describes how the
different parts of a Clams model can be extended and used to generate the workload and service
layer of the LQN performance model, which can later be analytically solved to predict the impact
on each service of the application and to detect possible bottlenecks.

5.1.1 Workload layer

In Clams, the user interaction with the application is modeled via state transitions and their
probabilities in UPs. In the LQN model, the workload is modeled via a so-called reference task,
which does not accept requests and instead only makes requests to the lower layer, thereby creating
a workload on the system. Usually these reference tasks consist of a single entry that simply calls
the first entry of the system layer. This can not represent a stateful user behavior as modeled in a
Clams UP, where a user in a certain state is only able to transition to a limited number of other
states. Therefore, it has been proposed to add another layer in form of a task to model more complex
user behavior. This additional task is called workload task and uses an LQN activity graph to make
sequential or parallel calls to the service layer.
In Figure 5.1, the UP from Figure 4.2 has been transformed into an LQN workload layer consisting
of a reference task and a workload task, as will be described in the following sections. Furthermore,
the service layer in Figure 5.1 is shortened only to contain the initial tasks of each SQD, as it is
described in-depth in Section 5.1.2.

37

5 Concept & Implementation

Transforming UP to LQN elements

The LQN components used to represent each UP component can be found in Table 5.1. As a
separate task and processor are used as a container for the user interaction that creates the workload
on the service layer, a workload processor, task, and entry are used as a container for the further UP
flow. This UP flow always starts with a Dot, carrying no more information than marking the start of
a UP. A Dot is represented in the LQN as an initial reference task along with a dummy processor
and an entry that represents users entering the system at a given rate and will be described in detail
in Section 5.1.1 when discussing the parts that are required for LQN models but not present in a
UP diagram. The nodes of a UP are called states and will be represented in the workload entry as
LQN activities. As each state in a UP represents a link to an SQD, an initial call from the activity
to the first SQD entry is also part of the representation of a state in the LQN model. An arrow
connecting two states in the Clams model is a simple sequential connection between the activity
representing each state. If a state has multiple outgoing arrows, then the activity in the LQN needs
to be followed by an OR-fork as the probabilistic semantic of Clams means that only one of the
following states can be entered time with the given probability of each arrow. Thus, the arrow’s
probability is represented as the weight of each outgoing call of the OR-fork. If a state has multiple
incoming arrows, this will be represented by an OR-join preceding the activity in the LQN model.
Suppose a state with multiple outgoing arrows is connected to a state with multiple incoming arrows.
In that case, a Dummy activity has to be added to the connection between the two, as is depicted in
Figure 5.1 for the connection between the Login state and Checkout state from Figure 4.2. That is
the case because, in an LQN model, it is not possible to directly connect two precedences like the
OR-fork of the Login state with the OR-join of the Checkout state. The Dummy action has no other
purpose beyond proxying the connection to enable a transition of the UP semantic into the LQN
model.

UP component Representation LQN
component(s) Representation

Dot

Reference task,
Reference entry,
Workload task,
Workload entry,
Request

ReferenceTask
ReferenceEntry

WorkloadTask
WorkloadEntry

Single Arrow Sequence

State

Activity without
service time,
Sync request to ini-
tial SQD task

[0]
Activity SQDTask

38

5.1 Concept

Multiple outgoing
arrows OR-fork

Activity

0.5

0.5 OR

Activity

Activity

Multiple incoming
arrows OR-join

Activity

OR

Multiple outgoing
followed by mul-
tiple incoming ar-
rows

OR-fork,
Dummy activity,
OR-join,

Activity

0.5 OR

Activity

OR

Dummy

0.5
...

Recursive loop -

Table 5.1: Transformation of Clams UP components to LQN components and their visual represen-
tation

39

5 Concept & Implementation

WorkloadEntry

Login

0.9

0.1 OR

WorkloadTask

Add to
basket

Checkout

OR

Dummy

ReferenceTask
ReferenceEntry

LoginSQDTask
LoginSQDEntry

AtbSQDTask
AtbSQDEntry

CheckoutTask
CheckoutEntry

Figure 5.1: LQN workload layer representing the UP from Figure 4.2 created by following the
transition rules from Table 5.1

Recursive loops

A structure that can not be represented in an LQN model but may be present in a Clams UP is
recursive loops. Recursive loops occur because of the possibility of adding backlinks to a UP -
arrows pointing to already visited states. The LQN model only supports closed loops with a fixed
number of iterations via the loop precedence. Previous works have proposed to use this precedence
with an additional loop-task to model looping behavior[KR08][PW05]. This approach is not feasible
for the Clams UP, as it would lead creating a loop-tasks chain of infinite length due to the UPs
recursive nature. To still support the analysis of Clams models that contain such loops, a different
approach to handle this problem has been taken in this work. By eliminating arrows that point to
already known states and redistributing the weight of the removed edge to each of the remaining
outgoing arrows so that the state keeps the sum of probabilities of its outgoing arrows at 1, this
allows the removal of recursive calls while keeping the resulting LQN model valid.
The approach naturally leads to somewhat different results because of the change in the UPs structure.
It is thus discouraged to use backlinks in UPs if it is to be used for performance analysis. The cloud
architect using the evaluation service developed in this work needs to be made aware of the possible
flawed results if a UP containing recursive loops is given as an input.
The result of removing a recursive loop is depicted in Figure 5.1. Following Algorithm 5.1, the
backlink from the Add to basket state with a probability of 0.2 has been removed. As this leaves the
state with only one outgoing arrow left, it results in a weight of 1 for the arrow from the Add to
basket state to the Checkout state.

40

5.1 Concept

Algorithm 5.1 Removing backlinks and redistributing branch weights starting from the dot state
Input: Starting state “dot”

1: 𝑟𝑒𝑚𝑜𝑣𝑒𝐵𝑎𝑐𝑘𝑙𝑖𝑛𝑘𝑠(𝑑𝑜𝑡, [𝑑𝑜𝑡])
2:
3: procedure removeBacklinks(state, previousStates)
4: for outgoingEdge of state.outgoingEdges do
5: if outgoingEdge.target in previousStates then
6: 𝑟𝑒𝑚𝑜𝑣𝑒(𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝐸𝑑𝑔𝑒)
7: else
8: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑆𝑡𝑎𝑡𝑒𝑠.𝑎𝑑𝑑 (𝑠𝑡𝑎𝑡𝑒)
9: 𝑟𝑒𝑚𝑜𝑣𝑒𝐵𝑎𝑐𝑘𝑙𝑖𝑛𝑘𝑠(𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝐸𝑑𝑔𝑒.𝑡𝑎𝑟𝑔𝑒𝑡, 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒𝑠)

10: end if
11: end for
12: 𝑟𝑒𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑊𝑒𝑖𝑔ℎ𝑡 (𝑠𝑡𝑎𝑡𝑒)
13: end procedure
14:
15: procedure redistributeWeight(state)
16: 𝑒𝑑𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑆𝑢𝑚 ← 𝑠𝑢𝑚(𝑠𝑡𝑎𝑡𝑒.𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠.𝑤𝑒𝑖𝑔ℎ𝑡)
17: for outgoingEdge of state.outgoingEdges do
18: 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝐸𝑑𝑔𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝐸𝑑𝑔𝑒.𝑤𝑒𝑖𝑔ℎ𝑡 ÷ 𝑒𝑑𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡𝑆𝑢𝑚

19: end for
20: end procedure

Workload attributes

The previous sections described how the states and arrows of a UP can or can not be transformed
into the workload layer of an LQN model, more precisely, a reference task and a workload task.
The LQN model contains further details regarding the workload layer beyond the pure structure of
its activities. These details, listed in Table 5.2, can be provided and tweaked by the cloud architect
as additional input on a per-evaluation basis when using the evaluation service. For example, the
arrival rate in milliseconds specifies the average time between two users entering the system. This
arrival rate can either describe an open or closed workload. An open workload means that a user
arrives after the amount of time specified in the arrival rate and a closed workload means that there
is a specified number of users that reenter the system after the time specified in the arrival rate.
Further, an average user think time can be taken into account. Usually, in an LQN model, think
time can be set as a parameter to the reference task, like the arrival rate, but since the reference
task is only used to signal users entering the system and the interaction of the user with the service
layer is entirely contained in the workload layer, this is not possible. Instead, the think time will
be modeled by adding additional think time activities after each workload activity representing a
UP state in the workload task with its service time matching the provided average think time. The
average network delay can also be taken into account. This number describes the milliseconds that
it takes a user interaction to reach the system.

41

5 Concept & Implementation

Workload
attribute name Value type LQN representation Required Default

Arrival rate milliseconds Reference task attribute Yes -

Workload type OPEN/
CLOSED Reference task attribute No OPEN

User amount integer Reference task multiplicity

For
CLOSED
workload
type

-

Avg. think time milliseconds Delay activity following
state activity No 0

Avg. network delay milliseconds Service time of SQD start
task No 1

Table 5.2: Workload attributes to be provided additionally to the Clams model

5.1.2 Service layer

The interaction between instances of components in Clams is modeled via SQDs. An SQD describes
these interactions via messages exchanged between instances in a point-to-point manner. This
message exchange can either be of synchronous or asynchronous nature. A synchronous message
signals that the requesting instance is blocked until a response to the sent request is received. In
contrast, an asynchronous message is a simple invocation of another instance without the requesting
instance awaiting any produced result, meaning that it is freed right after the asynchronous request
is sent. All of these SQD parts can be represented in an LQN model, as depicted in Table 5.3.
The LQN notation allows for an entry to stand alone - without containing any activities - if the
entry is simple. A simple entry is an entry that takes service time and responds right after. Only
for entries that employ more complex behavior, activities must be used to model the entry’s steps.
Because, in an SQD, an instance can make any number of requests when invoked, which a simple
entry can not represent, the activity notation is always chosen over the simple stand-alone entry
notation. In Figure 5.2, this can be seen in the LoginServiceTask, where the two subsequent requests
to the UserDBTask are modeled as two sequential Request1 and Request2 activities. Also, in the
UserDBTask, where a stand-alone entry could have been used to model the simple direct responding
behavior, an activity is used to send the response.

Performance attributes

Performance and service times have not been a part of Clams SQD models so far but are necessary
for the service layer of LQN models. In order to introduce the performance aspect and to enable the
performance analysis of a Clams model, this work adds some extensions in the form of annotations to
Clams modeling capabilities when it comes to SQDs. SQD instances and messages are extensible via
so-called meta attributes that can hold any key-value information. The additional information in the
form of meta attributes that SQD components need to be annotated with to enable a transformation
into the LQN service layer and thus performance analysis is listed in Table 5.4. For a message, the
average service time it imposes on the called instance needs to be provided. This provided integer

42

5.1 Concept

SQD component Representation LQN component Representation

Instance Service task,
Service entry

ServiceTask ServiceEntry

Async request Async request from
activity to entry

ServiceTask1 ServiceEntry

Activity

ServiceTask2 ServiceEntry

Sync request Sync request from
activity to entry

ServiceTask1 ServiceEntry

Activity

ServiceTask2 ServiceEntry

Sync response End of call chain
ServiceTask1 ServiceEntry

Activity

Table 5.3: Transformation of SQD components to LQN components

LoginServiceTask LoginServiceEntry

Request1 Request2

UserDBTask UserDBEntry1

Response1

UserDBEntry2

Response2

WorkloadTask WorkloadEntry

Activity

Figure 5.2: LQN service layer representing the SQD from Figure 4.1 created by following the
transition rules from Table 5.3

43

5 Concept & Implementation

Meta attribute name Value type Clams component required default
Avg. service time milliseconds Message Not for replies -

Message type SYNC/ASYNC Message Yes -
Message type sync REQUEST/REPLY Message If msgType is SYNC -
Max. concurrency integer Instance No ∞

Table 5.4: Performance annotations of instances and messages in a Clams SQD

will be the service time of the entry that represents the called instance in the resulting LQN. Further,
it needs to be specified if a message is part of an asynchronous or synchronous interaction and, if
the exchange is synchronous, both messages need to be labeled as the request or the reply of said
synchronous exchange.
For instances in an SQD, the only information that needs to be provided as an annotation in its meta
attributes is the maximum concurrency. This information is optional, as the default concurrency
for instances is infinite concurrency due to the previously stated theoretical unlimited horizontal
scalability of stateless components. This means that the attribute only needs to be set for instances
that represent stateful components.

Transforming multiple SQDs

Unlike the UP, there typically is more than one SQD contained in a Clams model. More precisely, as
each state in a UP references an SQD, there is an SQD contained for each state. All of the different
sub-models of the Clams model need to be transformed into a single LQN model. In Section 5.1.1,
Figure 5.1, and Figure 5.2 it has been shown how the UP, represented as the workload layer in the
resulting LQN, is connected to its referenced SQDs, represented as the service layer in the resulting
LQN. In the following it will subsequently be discussed how multiple SQDs can be transformed
into a single service layer.
It has been stated that multiple SQDs can share any amount of identical instances. Two SQDs
containing the same instance describes that the same resource is part of two different interactions
in a Clams model. For example, the Registration SQD from Figure 5.3 and the Login SQD from
Figure 4.1 contain the same User DB instance. This is the case because when a user logs into the
system, the Login Service makes a request to the User DB to validate the provided credentials. The
same database needs to be mutated if a user registers, as the DB needs to be mutated to hold the
information for the newly created user account. It can be seen that even though the instance making
the request is different in each SQD, the data source in the form of the User DB is the same resource.
A resource is represented as a task in an LQN model, which means that each instance - pointing
to the same resource - is also modeled as a single task in the resulting LQN model following the
transformation algorithm described in Algorithm 5.2. Like the multiple requests made to the same
instance in Figure 4.2 that are represented as multiple entries in the same task in Figure 5.2, the
requests to the same instance from different SQDs are represented as multiple entries in the same
task.
Figure 5.4 depicts the task in the resulting LQN model representing the User DB instance, assuming
both the Login and Registration SQD to be contained in the same UP. In this example, it is assumed
that the requests from the Login SQD take 30 and 50 milliseconds of service time on the User DB,

44

5.2 Implementation

Algorithm 5.2 Creating and connecting tasks, entries for multiple SQDs
Input: List of SQDs “sqds”

1: 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑎𝑠𝑘𝑠← []
2: for sqd of sqds do
3: 𝑠𝑡𝑎𝑟𝑡𝑇𝑎𝑠𝑘 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑎𝑠𝑘𝐴𝑛𝑑𝐸𝑛𝑡𝑟𝑦𝐴𝑠𝑆𝑄𝐷𝑆𝑡𝑎𝑟𝑡 (𝑠𝑞𝑑)
4: 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑇𝑜𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑠𝑡𝑎𝑟𝑘𝑇𝑎𝑠𝑘)
5: 𝑒𝑛𝑡𝑟𝑖𝑒𝑠← []
6: 𝑒𝑛𝑡𝑟𝑖𝑒𝑠.𝑎𝑑𝑑 (𝑠𝑡𝑎𝑟𝑡𝑇𝑎𝑠𝑘.𝑔𝑒𝑡𝐸𝑛𝑡𝑟𝑦())
7: for message of sqd.messages do // messages are ordered sequentially
8: 𝑠𝑜𝑢𝑟𝑐𝑒𝑇𝑎𝑠𝑘 ← 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑎𝑠𝑘𝑠.𝑔𝑒𝑡𝑂𝑟𝐶𝑟𝑒𝑎𝑡𝑒𝐹𝑜𝑟𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑒𝑠𝑠𝑎𝑔𝑒.𝑠𝑜𝑢𝑟𝑐𝑒)
9: 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑎𝑠𝑘 ← 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑇𝑎𝑠𝑘𝑠.𝑔𝑒𝑡𝑂𝑟𝐶𝑟𝑒𝑎𝑡𝑒𝐹𝑜𝑟𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑒𝑠𝑠𝑎𝑔𝑒.𝑡𝑎𝑟𝑔𝑒𝑡)

10: 𝑠𝑜𝑢𝑟𝑐𝑒𝐸𝑛𝑡𝑟𝑦 ← 𝑒𝑛𝑡𝑟𝑖𝑒𝑠.𝑔𝑒𝑡𝑁𝑜𝑡𝐵𝑙𝑜𝑐𝑘𝑒𝑑𝑂𝑟𝐶𝑟𝑒𝑎𝑡𝑒𝐹𝑜𝑟𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑒𝑠𝑠𝑎𝑔𝑒.𝑠𝑜𝑢𝑟𝑐𝑒)
11: 𝑡𝑎𝑟𝑔𝑒𝑡𝐸𝑛𝑡𝑟𝑦 ← 𝑒𝑛𝑡𝑟𝑖𝑒𝑠.𝑐𝑟𝑒𝑎𝑡𝑒𝐹𝑜𝑟𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑒𝑠𝑠𝑎𝑔𝑒.𝑡𝑎𝑟𝑔𝑒𝑡)
12: if message.msgType == SYNC then
13: if message.msgTypeSync == REQUEST then
14: 𝑠𝑜𝑢𝑟𝑐𝑒𝐸𝑛𝑡𝑟𝑦.𝑎𝑝𝑝𝑒𝑛𝑑𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆𝑦𝑛𝑐𝐶𝑎𝑙𝑙𝑇𝑜(𝑡𝑎𝑟𝑔𝑒𝑡𝐸𝑛𝑡𝑟𝑦)
15: 𝑠𝑜𝑢𝑟𝑐𝑒𝐸𝑛𝑡𝑟𝑦.𝑏𝑙𝑜𝑐𝑘𝑒𝑑 ← 𝑡𝑟𝑢𝑒

16: else if message.msgTypeSync == RESPONSE then
17: 𝑡𝑎𝑟𝑔𝑒𝑡𝐸𝑛𝑡𝑟𝑦.𝑏𝑙𝑜𝑐𝑘𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒 // entry can make further requests
18: end if
19: else if message.msgType == ASYNC then
20: 𝑠𝑜𝑢𝑟𝑐𝑒𝐸𝑛𝑡𝑟𝑦.𝑎𝑝𝑝𝑒𝑛𝑑𝐴𝑦𝑛𝑐𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝐶𝑎𝑙𝑙𝑇𝑜(𝑡𝑎𝑟𝑔𝑒𝑡𝐸𝑛𝑡𝑟𝑦)
21: end if
22: 𝑠𝑜𝑢𝑟𝑐𝑒𝑇𝑎𝑠𝑘.𝑠𝑎𝑣𝑒(𝑠𝑜𝑢𝑟𝑐𝑒𝐸𝑛𝑡𝑟𝑦)
23: 𝑡𝑎𝑟𝑔𝑒𝑡𝑇𝑎𝑠𝑘.𝑠𝑎𝑣𝑒(𝑡𝑎𝑟𝑔𝑒𝑡𝐸𝑛𝑡𝑟𝑦)
24: end for
25: end for

and the request from the Registration SQD takes 100 milliseconds. It can be seen that all entries
representing the different requests are contained within the same task, and therefore the service
time is imposed on the same resource.

5.2 Implementation

The concepts proposed in Section 5.1 have been implemented as an evaluation service extending
the Clams ecosystem. More precisely, the OpenClams web application has been extended, and
a Node.js service in the Typescript programming language has been developed. The evaluation
service takes a Clams model in the Javascript Object Notation (JSON) format, containing the
performance annotations from Table 5.4 and the additional workload parameters from Table 5.2 as
an input. The evaluation service then transforms the input into a Typescript object representing
the LQN model to finally generate the input file for the standardized tooling that is the LQNS
in order to solve the performance model. The following sections will describe these parts of the
implementation.

45

5 Concept & Implementation

Figure 5.3: Registration SQD using the same User DB instance as the Login SQD from Figure 4.1

LoginServiceTask

UserDBTask UserDBEntry1

Response

UserDBEntry2

Response

RegistrationServiceTask

UserDBEntry3

Response
[30] [50] [100]

Figure 5.4: Resulting LQN service layer when transforming a Clams model using the same User
DB instance in multiple SQDs

5.2.1 OpenClams

OpenClams is an open-source reference implementation for the Clams model and provides tooling
for creating and manipulating these models. One of these provided tools is a Graphical User
Interface (GUI) in the form of a web application, allowing the cloud architect to manage their Clams
models in a user-friendly way. In this work, the GUI has been extended in multiple ways. New meta
attributes have been introduced for the message and instance components of the SQD graph that
can be added and removed in the GUI as is depicted in Figure 5.5 for the User DB instance and in
Figure 5.6 for a message. Further, a new entry in the dropdown menu for selecting an evaluation
service has been added, as can be seen in Figure 5.7. Selecting this option from the menu then
opens the dialog depicted in Figure 5.8 which allows the cloud architect to provide the workload
attributes from Table 5.2 and subsequently start the performance evaluation.

46

5.2 Implementation

Figure 5.5: The avgConcurrency meta attribute added to the User DB instance

Figure 5.6: Message meta attributes of a synchronous request between two instances

Figure 5.7: Additional “Predict Performance” option in the dropdown menu for selecting evaluation
services

47

5 Concept & Implementation

Figure 5.8: Dialog asking for the workload attributes for an invocation of the performance evaluation
service

Starting the performance evaluation sends a Hypertext Transfer Protocol (HTTP) POST-request
to the address that the evaluation service is running at. The requests body contains the Clams
model and the workload attributes. The Clams model provided to an evaluation server by the cloud
architect is expected to be in the OpenClams JSON format. An abbreviated example of a clams
model persisted in this JSON format is displayed in Listing 5.1. The example JSON depicts the
serialized graph from Figure 4.1 and Figure 4.2, with only the first entries of each JSON array being
displayed.

OpenClams provides tooling to deserialize data provided in the presented JSON format into a
Typescript object. The tooling is in the form of a Node Package Manager (npm) module called
ClamsML1 and is part of the OpenClams environment. The ClamsML module provides the
functionality to query and mutate a deserialized Clams model.

5.2.2 Clams object to LQN object transformation

Because the ClamsML npm package is available only for the Node.js/Typescript environment, the
program developed as part of this thesis was also developed using the Typescript programming
language on the Javascript/Typescript runtime Node.js.
In order to represent the LQN model as an object in Typescript, classes for every structural element
of an LQN have been created. Additionally, for each step in the transformation, a class that
instantiates and connects objects of the structural classes by providing the necessary information
from the Clams model or the workload attributes has been developed.
After deserializing the JSON that has been provided as an input into the Typescript object rep-
resentation of the Clams model, it is possible to access all parts of the model via the ClamsML
package. In the first step, all recursive loops are removed from the UP following the algorithm from

1https://github.com/openclams/clams-ml

48

5.3 Solving the Layered Queuing Network model

Algorithm 5.1. Subsequently, an empty LQN object is created. A reference task and a workload
task containing the given workload attributes are added to the LQN object in the next step. Then,
the program iterates through all SQDs in the Clams model, as described in Algorithm 5.2, and
builds the service layer with all its tasks, entries, and activities using the “avgTimeMs” performance
annotation as an activities service time. At last, the start task of each SQD is connected to its
associated activity in the workload task to finalize the LQN object.

5.3 Solving the Layered Queuing Network model

As a design decision, it was decided to model the LQN object without considering the solver that
will later be used to solve the LQN model contained in its object representation. This has the
advantage that in order to use another LQN solver only the program used to transform the LQN
object representation into the input format used for the specific solver needs to be adjusted or newly
developed. Most importantly, this means that the transformation from the Clams model into the
LQN model does not need to be changed when using another LQN solver as it would be the case if
a direct transformation of the Clams model into the LQN solvers input format would be carried out
instead. In summary, it can be said that the architecture is based on the loose coupling paradigm
leading to no correlation between the Clams model and the input format of the used LQN solver.
For this thesis, the LQN solver proposed and developed by Franks et al. [FMW+05], called LQNS,
was used to solve the LQN model. The following sections describe how the transformation of the
LQN object representation into the LQNS input format is conducted and finally how the results
provided by the LQNS are parsed and returned to the OpenClams user.

5.3.1 Transformation of the LQN object into the LQNS input format

The input format for the LQNS is described in its user manual [FMW+05]. It is a plain text format
describing an LQN via different abbreviations in a non-human-readable syntax. The user manual
also contains a syntax definition in the form of transitional rules in Backus-Naur form (BNF) that are
typically used to describe formal languages. The resulting document consists of different sections
on the top layer, one for each type of LQN element. In the following the generation and structure of
each section will be described.

Processors & Tasks

As in this work processors and tasks of an LQN model are only considered as a unit all the
information about both is contained in the tasks of the LQN object. For creating processors and
tasks in the LQNS input file, the algorithm loops through all tasks and transforms them to the
reference task, the workload task, the tasks with infinite multiplicity, and the tasks with limited
multiplicity. Additionally, to each task definition, a processor definition is added.
In Listing 5.2, the representation of processors and tasks in the LQNS input format is shown. In line
1, the beginning of the processor definition segment is signaled by a P, followed by the total number
of processors that are defined in the following lines. In line 2, it can be seen that the p signals a

49

5 Concept & Implementation

processor definition. The i signals that the processor has infinite multiplicity.
In line 6, the task definition segment is started with a T, followed by the total number of tasks. In
lines 7 to 10, a task for an open arrival reference task, closed reference task, finite multiplicity task,
and infinite multiplicity task is defined. Each line starts with a t that signals the definition of a task
followed by the task name, which is “reference_task” for the reference task, “workload_task” for
the workload task, and the instance name followed by “_task” for any task representing an SQD
instance. Following the task name there are two qualifiers r and n that signal if the defined task is a
reference or a non-reference task. The $entryList variable represents a whitespace-separated list of
entry names contained in the task. The following -1 signals the end of a list, similar to the end of
the processor and task definition segments. The $processorName holds the name of the processor
for the task - the task’s instance name followed by _processor.
Line 7 and 8 both define a reference task. The first one is an open arrival reference task as signaled
by the multiplicity of 1 and a defined $arrivalRate. An open arrival reference task represents a
single user entering the system every $arrivalRate milliseconds. In contrast, line 8 defines the
reference task for a closed workload, as the multiplicity m is set to the number of users and z
represents the $avgReentryTime rather than the arrival rate. A closed workload means that the
reference task makes synchronous requests to the workload task and is blocked for the duration
of all workload activities. Then after leaving the system, the user enters the system again after
$avgReentryTime in a Poisson distribution. The workload task is represented as a non-reference
task with infinite multiplicity.

Entries

For creating entries, the algorithm first creates one entry for the reference task and the workload
task. Secondly, a call from the reference entry to the workload entry is created. Whether this call
is of asynchronous or synchronous nature depends if the LQN models workload is set to be open
arrival or closed. The entry of the reference task is the only entry that directly calls another entry,
as all entries of other tasks contain activities that further specify their behavior. This can be seen in
Listing 5.3, which represents the definition of the entries in the LQNS input format. Line 1 and 5
contain the typical segment wrapper led by an E. Line 2 to 4 depict the definition of the reference
tasks entry. The line starting with an s specifies the entry with a service time, set to the smallest
possible number accepted by the LQNS, as the reference entry should not have a service time but
the LQNS tool does not allow a service time of 0 for entries that have no explicit activities. The 3rd
and fourth lines show the definition of a synchronous and asynchronous call from the entry that’s
name is contained in the $entryName variable to the entry with the name $targetEntryName and a
weight representing the number of calls, that is always 1 for this work.
Finally, line 5 represents the entry definition for the workload task and all instance tasks, as the A
specifies an entry to contain activities that further define its behavior. Such an entry contains an
$entryName, by which it can be referenced from other entries or activities, and the name of the root
activity of its activity graph.

50

5.3 Solving the Layered Queuing Network model

Activities

The final part of the LQNS input format is the activity definition segment in which the activities,
their service time, and their interaction between each other and other entries is defined. The syntax
for defining activities is different from other parts of the LQNS input format in that the top line of
the segments wrapper does not contain the number of LQN components defined in the segment
but rather an A followed by the $taskName of the task the subsequently defined activities belong
to as can be seen in Listing 5.4. Listing 5.4 further shows how the activity definition segment is
separated by a colon. The part before the separator describes the activities with their service times
and calls to entries. The notation is similar to the entry notation from Listing 5.3, with an s defining
the service time, y a synchronous call, and z an asynchronous call. In contrast to the entry definition,
it is possible not to specify a service time for activities that make requests to entries.
The second part after the colon-separator describes the activity graph structure. In line 6, the
notation of a simple sequence between two activities is shown. The OR-fork and OR-join operators
can be seen in lines 7 and 8. It is crucial for every line but the last one following the colon-separator
to end with a semicolon or else the input format will not be valid.

5.3.2 Result parsing

After invoking the LQNS tool with the generated input file, a result file is produced that will be read
and parsed by the evaluation service to extract the results and provide them to the Clams user. As
described in Section 5.1, the interest of this work is in detecting bottlenecks and their severeness.
This is why regarding the LQNS results, the main focus is on the “Mean delay for a rendezvous
request” and the “Task Utilization” of each service task belonging to a Clams instance.
For the “Mean delay for a rendezvous request” segment, besides the mean delay, the targeted entry
is of interest, as this entry belongs to a task representing a bottleneck in the LQN model and thus an
instance in the Clams model. The “Utilization” of other instances is also interesting for a cloud
architect to know how the workload puts strain on each instance in the system.
The resulting file consists out of many segments describing the analyzed LQN model and its
parameters. In Listing 5.5, the segment representing the mean delay can be seen. Its start is
represented by a W followed by the $numberOfRendezvous. The result is parsed from there
extracting the $taskName, $entryOrActivityName, $targetEntryName and $meanDelay. Further, the
mean utilization per task is calculated as a sum of the utilization of all of the tasks entries that is
reported as depicted in Listing 5.6.
The results are then aggregated, sorted, first by mean delay and second by utilization, for each
instance and reported back to the OpenClams user.

51

5 Concept & Implementation

Listing 5.1 Annotated Clams model serialized as JSON (contd.)
1 {

2 "model": {

3 "graphs": [

4 {

5 "id": "Graph_0",

6 "name": "Shopping",

7 "type": "UserProfile",

8 "nodes": [

9 {

10 "type": "Dot",

11 "id": "Dot0",

12 },

13 {

14 "id": "State1",

15 "type": "State",

16 "sequenceDiagramId": "Graph_1",

17 }

18],

19 "edges": [

20 {

21 "type": "Arrow",

22 "from": "Dot0",

23 "to": "State1",

24 "p": 1,

25 },

26]

27 },

28 {

29 "id": "Graph_1",

30 "lastId": 5,

31 "name": "Login",

32 "type": "SequenceDiagram",

33 "nodes": [

34 {

35 "type": "Instance",

36 "id": "Instance0",

37 "component": "Service Bus"

38 },

39 {

40 "type": "Instance",

41 "id": "Instance2",

42 "component": "Login Service"

43 }

44],

52

5.3 Solving the Layered Queuing Network model

Listing 5.1 Annotated Clams model serialized as JSON
1 "edges": [

2 {

3 "type": "Message",

4 "from": "Instance0",

5 "to": "Instance2",

6 "position": 6,

7 "edgeType": {

8 "name": "TCP Connection",

9 "attributes": [

10 {

11 "name": "avgTimeMs",

12 "value": 100,

13 },

14 {

15 "name": "msgType",

16 "value": "SYNC",

17 },

18 {

19 "name": "msgTypeSync",

20 "value": "REQUEST",

21 }

22]

23 }

24 },

25]

26 }

27 }

28 }

Listing 5.2 LQN processors and tasks as represented in the LQNS input format
1 P $numberOfProcessors

2 p $processorName i

3 ...

4 -1

5

6 T $numberOfTasks

7 t $taskName r $entryList -1 $processorName m 1 z $arrivalRate

8 t $taskName r $entryList -1 $processorName m $noOfUsers z $avgReentryTime

9 t $taskName n $entryList -1 $processorName m $multiplicity

10 t $taskName n $entryList -1 $processorName i

11 ...

12 -1

53

5 Concept & Implementation

Listing 5.3 LQN entries as represented in the LQNS input format
1 E $numberOfEntries

2 s $entryName $serviceTime -1

3 y $entryName $targetEntryName $weight -1

4 z $entryName $targetEntryName $weight -1

5 A $entryName $initialActivityName

6 -1

Listing 5.4 LQN activities as represented in the LQNS input format
1 A $taskName

2 s $activityName $serviceTime

3 y $activityName $entryName $weight

4 z $activityName $entryName $weight

5 :

6 $activityName -> $targetActivityName;

7 $activityName -> ($prob1)$targetActivityName1 + .. + ($probN)$targetActivityNameN;

8 $($prob1)$activityName1 + .. + ($probN)$activityNameN -> $targetActivityName;

9 $activityName[$entryName]

10 -1

Listing 5.5 Mean delay per rendezvous as noted in the LQNS result format
1 W $numberOfRendezvous

2 $taskName: $entryOrActivityName $targetEntryName $meanDelay

-1

3 ...

4 -1

5 ...

6 -1

Listing 5.6 Utilization per task and entry as represented in the LQNS result format
1 P $processorName 1

2 $taskName $numberOfEntries 0 $multiplicity

3 $entryName $entryUtilization 0 -1

4 -1

5 -1

54

6 Case Study

In this chapter a case study is carried out to validate the concept and implementation proposed in
this thesis. First, a performance-annotated clams model of a webshop containing a component
representing an obvious bottleneck is presented. Second, the Clams model is transformed into an
LQN model via the OpenClams evaluation service developed as a part of this work. In the next step,
the input for the LQNS is generated. Using the LQNS tool, the bottleneck is detected in its result.
Subsequently the Clams models and workload parameters are changed to validate if the evaluation
service provides the expected results.

6.1 Model

For conducting the case study the Clams model of the webshop cloud application from Section 4.2
has been extended as is explained in the following sections.

6.1.1 Clams model

The Clams model used in this case study consists of a single UP that models the user behavior
regarding a webshop application. The UP is visualized in Figure 6.1 and shows the states a user
can be in after either registering or logging in. Each state is a reference to an SQD defining the
communication between system components that is triggered by a user entering the state.
It is assumed that in each SQD, a Service Bus transports the user request into the system. The
receiving service instance takes 20 milliseconds to process the request until it can make requests.
The further instances and their interactions in each SQD are described in the following:

Register The User Service instance sends two following synchronous requests to the User DB to
check for credential availability and add the user’s credentials. The first request’s average
service time - representing a read operation - on the User DB is assumed to be 50 milliseconds,
while the second request - representing a write operation - is expected to take 80 milliseconds
of service time.

Login User Service again sends two synchronous requests to the User DB instance to verify the
user credentials and set the user state to be logged in. The query is estimated to have an
average service time of 50 milliseconds while the update’s average service time is set to 60
milliseconds.

Browse The Article Service instance queries multiple articles from the Article DB to return to the
user. The batch request has an average service time of 200ms.

55

6 Case Study

Figure 6.1: UP modeling the user interaction with in a webshop application

Add to basket After processing the user request, the Shopping Service queries the article’s stock
amount from the Article DB and writes to the Order DB, which contains the user baskets.
Querying a single field is estimated to have a service time of 20 milliseconds while the write
operation, again, has a service time of 80 milliseconds.

Checkout First, the Shopping Serice updates the order status in the Order DB then it updates the
article stock in the Article DB. Both updates have an estimated average service time of 60
milliseconds.

Logout The User Service changes the login state in the User DB, which has an average service
time of 60 milliseconds

All Service instances represent stateless components, while the DB instances represent stateful
components. The “maxConcurrency” performance annotation for each stateless component is set to
100 except for the User DB. The User DBs “maxConcurrency” annotation is set to 10 to represent
an obvious bottleneck that is to be detected when analyzing the LQN model later.

6.1.2 LQN model

In the first step, the input Clams model is transformed into an LQN object. The object has been
analyzed using a Javascript debugger. An abbreviated version of the analyzed model is depicted in
Figure 6.2. The generated workload layer, consisting out of the reference task and the workload
task, can be seen. Further, the activity graph of the workload task representing the UP from the
Clams model is shown. For the service layer, only the task of the Register and Login workload
activities - the User Service task and the User DB - are displayed. The calls made from the Browse,
Atb, Checkout, and Login workload activities are omitted for clarity. The activities in the service
layer that are labeled with a number represent a service time activity, while the Request activities
make calls to the lower layer.

56

6.2 Execution

Reference Task

Workload Task

UserService
Task

Reference Entry

Workload Entry

dot

0.950.05 +

dummy2 Register

Login

+

0.990.01 +

dummy3 Browse

Logout

0.950.05 +

dummy2 Atb

+
Checkout

RegisterEntry

Request1

Request2

LoginEntry

UserDB
Task

ServiceTime
Entry1

[50]

ServiceTime
Entry2

[80]

ServiceTime
Entry3

[50]

ServiceTime
Entry4

[60]

[20]

Request3

Request4

[20]

Figure 6.2: LQN model transformed from Clams model with shortened depiction of the service
layer containing only the service tasks for the User Service and User DB instances

6.2 Execution

The model that has been presented in the previous section will be transformed into the LQNS input
format and subsequently analyzed by the LQNS tool. First, a very low workload is chosen that is
expected not to create delay for any instance in the system. Second, the workload is incrementally
increased until the User DB instance poses as a bottleneck. Third, the “maxConcurrency”
performance annotation of the User DB instance is incremented, and the updated model is analyzed
again for the same workload attributes.

6.2.1 Workload attributes

The workload attributes are specified independently from the Clams model and will be defined in
the following. An open workload type is chosen for the model as it is better suited for the webshop
use case that serves unknown users. An example of a good use case for a closed workload would
be a model of an Internet of things (IoT) platform with a given number of devices that reenter the
system after a given time. The user think time and the network delay attributes are not used for this
model. The arrival rate will be varied in every iteration to analyze how the model behaves under
different workloads.

57

6 Case Study

Listing 6.1 Result of performance analysis with mean delay of 1000 milliseconds
1 [

2 { utilization: 0.0198, componentName: 'Article Service', maxDelay: 0 },

3 { utilization: 0.03762, componentName: 'Shopping Service', maxDelay: 0},

4 { utilization: 0.059, componentName: 'User Service', maxDelay: 0 },

5 { utilization: 0.13167, componentName: 'Order DB', maxDelay: 0 },

6 { utilization: 0.27324, componentName: 'Article DB', maxDelay: 0 },

7 { utilization: 0.2935, componentName: 'User DB', maxDelay: 0 }

8]

6.2.2 Result analysis

The result of the program developed in this work is a list that consists of an entry for every task
belonging to an instance in the provided Clams model. Each entry contains of the instances name,
its maximum delay and its mean utilization.

Low workload

For this analysis, an arrival rate of 1000 milliseconds is chosen. This means that, on average, a
user enters the system every second. Looking at the Clams model from Section 6.1.1 the sum of
all service times of every request is below that. This should guarantee that the previous user has
already left the system before the next user enters it, thus creating no delay for any of the instances.
The analysis result is shown in Listing 6.1 and confirms that no delay occurs at any instance. Further,
the utilization for each instance is less than 1, meaning that they were idle most of the time, as was
expected.

Increasing workload

This analysis has been conducted with an increasing workload. The arrival rate has been decreased
to be 500, 250, 100, 50, and 30 milliseconds.
As can be seen in Listing 6.2, Listing 6.3, and Listing 6.4, despite a linear rise in every instances
utilization, no delay occurs. Only for an arrival rate of 50 milliseconds a slight delay occurs for
the User DB component. Although, as shown in Listing 6.5, the delay is under a millisecond, this
signals that the component starts to reach its maximum capacity. Finally, for the analysis with
an arrival rate of 35, a delay of up to 281 milliseconds is calculated for the requests to the User
DB component. As the average utilization of the User DB component approaches its maximum
concurrency of 10, this makes sense as each further request can not be immediately processed and
thus heavily adds to the delay.

58

6.2 Execution

Listing 6.2 Result of performance analysis with average arrival rate of 500 milliseconds
1 [

2 { utilization: 0.0396, componentName: 'Article Service', maxDelay: 0 },

3 { utilization: 0.07524, componentName: 'Shopping Service', maxDelay: 0 },

4 { utilization: 0.118, componentName: 'User Service', maxDelay: 0 },

5 { utilization: 0.26334, componentName: 'Order DB', maxDelay: 0 },

6 { utilization: 0.54648, componentName: 'Article DB', maxDelay: 0 },

7 { utilization: 0.587, componentName: 'User DB', maxDelay: 0 }

8]

Listing 6.3 Result of performance analysis with average arrival rate of 250 milliseconds
1 [

2 { utilization: 0.0792, componentName: 'Article Service', maxDelay: 0 },

3 { utilization: 0.15048, componentName: 'Shopping Service', maxDelay: 0 },

4 { utilization: 0.236, componentName: 'User Service', maxDelay: 0 },

5 { utilization: 0.52668, componentName: 'Order DB', maxDelay: 0 },

6 { utilization: 1.09296, componentName: 'Article DB', maxDelay: 0 },

7 { utilization: 1.174, componentName: 'User DB', maxDelay: 0 }

8]

Listing 6.4 Result of performance analysis with average arrival rate of 100 milliseconds
1 [

2 { utilization: 0.198, componentName: 'Article Service', maxDelay: 0 },

3 { utilization: 0.3762, componentName: 'Shopping Service', maxDelay: 0 },

4 { utilization: 0.59, componentName: 'User Service', maxDelay: 0 },

5 { utilization: 1.3167, componentName: 'Order DB', maxDelay: 0 },

6 { utilization: 2.7324, componentName: 'Article DB', maxDelay: 0 },

7 { utilization: 2.935, componentName: 'User DB', maxDelay: 0 }

8]

Listing 6.5 Result of performance analysis with average arrival rate of 50 milliseconds
1 [

2 { utilization: 0.396, componentName: 'Article Service', maxDelay: 0 },

3 { utilization: 0.7524, componentName: 'Shopping Service', maxDelay: 0 },

4 { utilization: 1.18, componentName: 'User Service', maxDelay: 0 },

5 { utilization: 2.6334, componentName: 'Order DB', maxDelay: 0 },

6 { utilization: 5.4648, componentName: 'Article DB', maxDelay: 0 },

7 { utilization: 5.87, componentName: 'User DB', maxDelay: 0.796025 }

8]

59

6 Case Study

Listing 6.6 Result of performance analysis with average arrival rate of 30 milliseconds
1 [

2 { utilization: 0.66, componentName: 'Article Service', maxDelay: 0 },

3 { utilization: 1.254, componentName: 'Shopping Service', maxDelay: 0 },

4 { utilization: 1.96667, componentName: 'User Service', maxDelay: 0 },

5 { utilization: 4.389, componentName: 'Order DB', maxDelay: 0 },

6 { utilization: 9.108, componentName: 'Article DB', maxDelay: 0 },

7 { utilization: 9.78333, componentName: 'User DB', maxDelay: 281.917 }

8]

Listing 6.7 Result of performance analysis with average arrival rate of 30 milliseconds and User
DBs “maxConcurrency” annotation increased to 100

1 [

2 { utilization: 0.66, componentName: 'Article Service', maxDelay: 0 },

3 { utilization: 1.254, componentName: 'Shopping Service', maxDelay: 0 },

4 { utilization: 1.96667, componentName: 'User Service', maxDelay: 0 },

5 { utilization: 4.389, componentName: 'Order DB', maxDelay: 0 },

6 { utilization: 9.108, componentName: 'Article DB', maxDelay: 0 },

7 { utilization: 9.78333, componentName: 'User DB', maxDelay: 0 }

8]

Increasing “maxConcurrency” to remove the bottleneck

To remove the bottleneck, the “maxConcurrency” performance annotation of the bottleneck compo-
nent can be increased. Further analysis with the same model with the User DBs “maxConcurrency”
annotation increased to 100 has been conducted to validate the effect of eliminating the bottleneck.
The result with an arrival rate of 30 milliseconds can be found in Listing 6.7. It can be seen that
no more delay occurs. As the utilization is growing linearly with the number of users entering
the system but the delay grows exponentially as soon as a resource is saturated, this result is
expected. Listing 6.8 further shows that with each stateful component having a “maxConcurrency”
performance annotation of 100, the system can even handle an arrival rate of 4 milliseconds without
any delay before the next bottleneck occurs in the form of the User DB and Article DB at an arrival
rate of 3 milliseconds as can be seen in Listing 6.9.

60

6.2 Execution

Listing 6.8 Result of performance analysis with average mean arrival rate of 5 milliseconds and all
stateful components “maxConcurrency” annotation at 100

1 [

2 { utilization: 4.95, componentName: 'Article Service', maxDelay: 0 },

3 { utilization: 9.405, componentName: 'Shopping Service', maxDelay: 0 },

4 { utilization: 14.75, componentName: 'User Service', maxDelay: 0 },

5 { utilization: 32.9175, componentName: 'Order DB', maxDelay: 0 },

6 { utilization: 68.31, componentName: 'Article DB', maxDelay: 0 },

7 { utilization: 73.375, componentName: 'User DB', maxDelay: 0 }

8]

Listing 6.9 Result of performance analysis with average arrival rate of 3 milliseconds and all stateful
components “maxConcurrency” annotation at 100

1 [

2 { utilization: 6.6, componentName: 'Article Service', maxDelay: 0 },

3 { utilization: 12.54, componentName: 'Shopping Service', maxDelay: 0 },

4 { utilization: 19.6667, componentName: 'User Service', maxDelay: 0 },

5 { utilization: 43.89, componentName: 'Order DB', maxDelay: 0 },

6 { utilization: 91.08, componentName: 'Article DB', maxDelay: 2.87025 },

7 { utilization: 97.8333, componentName: 'User DB', maxDelay: 23.5832 }

8]

61

7 Conclusion and Outlook

In this work, a concept to enable the usage of the state-of-the-art LQN performance model for
conducting a performance analysis on Clams models using variable workload attributes has been
proposed. The thesis combines the domains of SPE and cloud computing by allowing a cloud
architect to annotate their application model with performance annotations to analyze how the
system will behave under a specific workload already in the design phase. Analyzing an Clams
application model using the system that has been developed as a part of this thesis makes it possible
to detect bottlenecks that occur from using components in an architecture model that are not
horizontally scalable and thus might break under an increasing workload. The concepts proposed
in this work have been implemented in the form of an evaluation service as an extension to the
OpenClams environment.
There are drawbacks to the proposed solution that mostly stem from parts of the Clams model not
being transformable to the LQN format. For example, LQN models can not have recursive loops
between activities which would be necessary to fully support all modeling capabilities of Clams.

Outlook

Currently, using the evaluation service is a manual task that has to be started by the OpenClams user
via its GUI. In the future, the performance analysis could be conducted in an automatic manner,
whenever the model changes. For this, the performance annotations need to be defined for all
existing components. The cloud architect would also have to initially provide the workload attributes
because the dialog when starting the evaluation would no longer exist. Future work could also
use the system proposed in this thesis to automatically determine the maximum workload that a
performance-annotated Clams model can handle before bottlenecks occur. This could be especially
useful for calculating the maximum arrival rate before the application will break after each change
to its structure.
Further, alternative components could be recommended that, for example, represent a vertically
scaled version of the currently used stateful component that represents a bottleneck. For this to be
possible, the OpenClams component model would need to be extended in order for components of
the component tree to be able to hold performance information like the maximum possible number
of concurrent connections.

63

Bibliography

[Ars04] A. Arsanjani. “Service-oriented modeling and architecture”. In: IBM developer works
1 (2004), p. 15 (cit. on p. 19).

[BBK+16] A. Bergmayr, U. Breitenbücher, O. Kopp, M. Wimmer, G. Kappel, F. Leymann. “From
Architecture Modeling to Application Provisioning for the Cloud by Combining
UML and TOSCA.” In: CLOSER (2). 2016, pp. 97–108 (cit. on p. 29).

[BTN+14] A. Bergmayr, J. Troya Castilla, P. Neubauer, M. Wimmer, G. Kappel. “UML-based
cloud application modeling with libraries, profiles, and templates”. In: CloudMDE
2014: 2nd International Workshop on Model-Driven Engineering on and for the Cloud
co-located with the 17th International Conference on Model Driven Engineering
Languages and Systems (MoDELS 2014)(2014), p 56-65. CEUR-WS. 2014 (cit. on
p. 29).

[BW98] A. W. Brown, K. C. Wallnau. “The current state of CBSE”. In: IEEE software 15.5
(1998), pp. 37–46 (cit. on p. 19).

[DMPS17] E. Di Nitto, P. Matthews, D. Petcu, A. Solberg. Model-driven development and
operation of multi-cloud applications: the MODAClouds approach. Springer Nature,
2017 (cit. on p. 30).

[FLR+14] C. Fehling, F. Leymann, R. Retter, W. Schupeck, P. Arbitter. Cloud computing
patterns: fundamentals to design, build, and manage cloud applications. Springer,
2014 (cit. on pp. 19, 25, 30, 33).

[FMW+05] G. Franks, P. Maly, M. Woodside, D. C. Petriu, A. Hubbard, M. Mroz. “Layered
queueing network solver and simulator user manual”. In: Dept. of Systems and
Computer Engineering, Carleton University (December 2005) (2005), pp. 15–69
(cit. on pp. 20, 36, 49).

[Goo] Google Cloud. Quotas and limits. url: https://cloud.google.com/sql/docs/mysql/
quotas (cit. on p. 26).

[GP05] G. P. Gu, D. C. Petriu. “From UML to LQN by XML algebra-based model trans-
formations”. In: Proceedings of the 5th international workshop on Software and
performance. 2005, pp. 99–110 (cit. on p. 37).

[Isr01] T. A. Israr. “A lightweight technique for extracting software architecture and perfor-
mance models from traces”. PhD thesis. Carleton University, 2001 (cit. on pp. 23,
37).

[KR08] H. Koziolek, R. Reussner. “A model transformation from the palladio compo-
nent model to layered queueing networks”. In: SPEC International Performance
Evaluation Workshop. Springer. 2008, pp. 58–78 (cit. on pp. 23, 40).

[Ley09] F. Leymann. “Cloud Computing: The Next Revolution in IT”. In: Photogrammetric
Week ‘09. Wichmann Verlag, 2009, pp. 3–12 (cit. on p. 19).

65

https://cloud.google.com/sql/docs/mysql/quotas
https://cloud.google.com/sql/docs/mysql/quotas

[MG+11] P. Mell, T. Grance, et al. “The NIST definition of cloud computing”. In: (2011)
(cit. on p. 29).

[Mic] Microsoft Azure. Limits in Azure Database for PostgreSQL - Single Server. url:
https://docs.microsoft.com/en-us/azure/postgresql/concepts-limits (cit. on
p. 26).

[NLT+11] D. K. Nguyen, F. Lelli, Y. Taher, M. Parkin, M. P. Papazoglou, W.-J. van den Heuvel.
“Blueprint template support for engineering cloud-based services”. In: European
Conference on a Service-Based Internet. Springer. 2011, pp. 26–37 (cit. on p. 29).

[NMMA16] I. Nadareishvili, R. Mitra, M. McLarty, M. Amundsen. Microservice architecture:
aligning principles, practices, and culture. Ö’Reilly Media, Inc.", 2016 (cit. on
pp. 19, 25).

[PS02] D. C. Petriu, H. Shen. “Applying the UML performance profile: Graph grammar-based
derivation of LQN models from UML specifications”. In: International Conference
on Modelling Techniques and Tools for Computer Performance Evaluation. Springer.
2002, pp. 159–177 (cit. on p. 37).

[PW05] D. B. Petriu, M. Woodside. “Software performance models from system scenarios”.
In: Performance Evaluation 61.1 (2005), pp. 65–89 (cit. on pp. 23, 37, 40).

[RS95] J. A. Rolia, K. C. Sevcik. “The method of layers”. In: IEEE transactions on software
engineering 21.8 (1995), pp. 689–700 (cit. on p. 33).

[UKM03] S. Uchitel, J. Kramer, J. Magee. “Synthesis of behavioral models from scenarios”.
In: IEEE Transactions on Software Engineering 29.2 (2003), pp. 99–115 (cit. on
pp. 23, 30, 31).

[UKM04] S. Uchitel, J. Kramer, J. Magee. “Incremental elaboration of scenario-based speci-
fications and behavior models using implied scenarios”. In: ACM Transactions on
Software Engineering and Methodology (TOSEM) 13.1 (2004), pp. 37–85 (cit. on
pp. 23, 30, 31).

[WFP07] M. Woodside, G. Franks, D. C. Petriu. “The future of software performance engi-
neering”. In: Future of Software Engineering (FOSE’07). IEEE. 2007, pp. 171–187
(cit. on p. 20).

[Woo89] C. M. Woodside. “Throughput calculation for basic stochastic rendezvous networks”.
In: Performance Evaluation 9.2 (1989), pp. 143–160 (cit. on p. 33).

[WR96] C. M. Woodside, G. Raghunath. “General Bypass Architectures for High-Performance
Distributed Applications”. In: Data Communications and their Performance.
Springer, 1996, pp. 51–65 (cit. on p. 33).

[XOWM05] J. Xu, A. Oufimtsev, M. Woodside, L. Murphy. “Performance modeling and prediction
of enterprise JavaBeans with layered queuing network templates”. In: Proceedings of
the 2005 Conference on Specification and Verification of Component-based Systems.
2005, 5–es.

All links were last followed on the 22th of June 2021.

https://docs.microsoft.com/en-us/azure/postgresql/concepts-limits

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Problem Statement
	1.2 Approach
	1.3 Thesis Structure

	2 Related Work
	3 System Model
	3.1 Cloud Application
	3.2 Components
	3.3 Communication

	4 Fundamentals
	4.1 Cloud Computing
	4.2 Clams
	4.3 Layered Queuing Network

	5 Concept & Implementation
	5.1 Concept
	5.2 Implementation
	5.3 Solving the Layered Queuing Network model

	6 Case Study
	6.1 Model
	6.2 Execution

	7 Conclusion and Outlook
	Bibliography

