
Institute of Information Security

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

A Prototype Implementation of the
OpenID Financial-grade API

Aly Mohamed Abdalkarim Salheen Mohamed

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Ralf Küsters

Supervisor: Pedram Hosseyni, M.Sc.

Commenced: October 13, 2020

Completed: May 04, 2021

Abstract

With the rise of the financial technology (FinTech) industry and the introduction of the Payment
Services Directive 2 (PSD 2) [33], banks are moving towards digitization. With this comes the
ability for third-party companies and service providers to provide bank account holders their services
independently of the banks themselves. For example, one such provider might utilize machine
learning to gauge the credit score of a bank account holder based on their transaction history. To
provide their services, these third-party providers need to access the bank account holder’s data.
Methods such as screen scraping were used to provide this access. However, its insecurity and
weaknesses in such a high-stake high-risk environment necessitated a secure alternative. With that
in mind, the OpenID Financial-grade API (FAPI) specification describes a hardened version of the
OAuth 2.0 Authorization Framework and the OpenID Connect Core 1.0 (OIDC) Authentication
Layer. It makes use of several new extensions such as Pushed Authorization Requests (PARs) and
Rich Authorization Requests (RARs) as well as JSON Web Signature (JWS) to offer non-repudiation,
which is critical should, e.g., a client attempts to refute they ever initiated a payment request. While
the first version of the FAPI, namely FAPI 1.0, has been finalized in early 2021, its successor, FAPI
2.0, is still in its infancy. Despite this, the FAPI 2.0 is designed to provide the same strong security
guarantees while mitigating attacks on the first version that were discovered [17, 26]. As the
specification is still being drafted, it has garnered relatively little public attention. Even so, end-users
and developers alike, especially in the FinTech industry, should benefit from a demonstration of this
new specification, specifically as a software implementation. This thesis covers the development
of a prototype for the FAPI 2.0 with which end-users can simulate the Baseline and Advanced
profile flows. Developers can gain insight into the specifics of an example implementation of the
profiles.

3

Kurzfassung

Mit demAufstieg der Finanztechnologiebranche (FinTech) und der Einführung der Payment Services
Directive 2 (PSD 2) [33] bewegen sich die Banken in Richtung Digitalisierung. Damit einher geht die
Möglichkeit für Drittunternehmen und Dienstleister, Bankkontoinhabern ihre Dienste unabhängig
von den Banken selbst anzubieten. Ein solcher Anbieter könnte zum Beispiel maschinelles Lernen
nutzen, um die Kreditwürdigkeit eines Kontoinhabers auf Basis seiner Transaktionshistorie zu
ermitteln. Um ihre Dienste anbieten zu können, müssen diese Drittanbieter auf die Daten des
Kontoinhabers zugreifen, wofürMethodenwie Screen Scraping verwendet wurden. Die Unsicherheit
und Schwächen dieses Verfahrens in einer Umgebung mit hohem Risiko erforderten jedoch eine
sicherere Alternative. Vor diesem Hintergrund beschreibt die OpenID Financial-grade API (FAPI)
Spezifikation eine gehärtete Version des OAuth 2.0 Authorization Frameworks und der OpenID
Connect Core 1.0 (OIDC) Authentication Layer. Sie nutzt mehrere neue Erweiterungen wie Pushed
Authorization Requests (PARs) und Rich Authorization Requests (RARs). Um Non-Repudiation zu
bieten, können JSON Web Signatures (JWS), was notwendig ist, wenn z. B. ein Client versucht,
zu widerlegen, dass er jemals eine Zahlungsanfrage initiiert hat. Während die erste Version der
FAPI, nämlich FAPI 1.0, Anfang 2021 fertiggestellt wurde, steckt ihr Nachfolger, FAPI 2.0, noch
in den Kinderschuhen. Trotzdem soll die FAPI 2.0 die gleichen starken Sicherheitsgarantien
bieten und gleichzeitig Angriffe auf die erste Version abwehren, die entdeckt wurden [18, 26]. Da
sich die Spezifikation noch in der Entwurfsphase befindet, hat sie bisher relativ wenig öffentliche
Aufmerksamkeit erregt. Dennoch sollten sowohl Endbenutzer als auch Entwickler, insbesondere in
der FinTech-Branche, von einer Demonstration dieser neuen Spezifikation profitieren, insbesondere
in Form einer Softwareimplementierung. Diese Arbeit umfasst die Entwicklung eines Prototyps
für die FAPI 2.0, mit dem Endbenutzer die Baseline- und Advanced-Profile-Flows simulieren
können. Entwickler können einen Einblick in die Spezifika einer Beispielimplementierung der
Profile erhalten.

5

Contents

1 Introduction 15

2 Foundations & Related Work 19
2.1 Foundations . 19
2.2 Related Work . 31

3 Analysis of Existing Prototype 33
3.1 Existing Prototypes . 33
3.2 Rooms for Improvement . 34
3.3 Happy Path . 36

4 Implementation 39
4.1 Setting up the Development Environment . 39
4.2 Baseline Profile . 44
4.3 Advanced Profile . 47

5 Conclusion 49

Bibliography 51

7

List of Figures

2.1 Authorization Code Grant. 21
2.2 OpenID Connect Core 1.0: Authorization Code Flow. 23
2.3 FAPI 2.0 Baseline Profile. 25
2.4 Pushed Authorization Requests. 29

3.1 The main end-user interface of oauth-proto. 36

9

List of Listings

2.1 Example of RAR [9, Section 2]. 30
4.1 Enums defined in the prototype. 43
4.2 Bug in code from proto6749. 43
4.3 Authorization Details Template. 45

11

List of Abbreviations

AC authorization code. 19, 20, 24, 26–28, 37, 46

AI Artificial Intelligence. 15

API Application Programming Interface. 15, 16, 22, 24, 30, 49

AS authorization server. 19, 20, 22, 24, 26–31, 33, 36, 37, 41, 44–46

AT access token. 19, 20, 22, 24, 26–28, 37, 44, 46

CA Certificate Authority. 34

DOM Document Object Model. 15

FAPI Financial-grade API. 3, 16, 19, 20, 22, 24, 27, 31, 33–35, 39, 46, 49

FinTech Financial Technology. 3, 15

HTTP Hypertext Transfer Protocol. 20, 26, 34, 36, 47

IDE Integrated Development Environment. 35

IdP Identity Provider. 22, 26, 28, 31, 46

JAR JWT Secured Authorization Request. 27, 30, 31, 47

JARM JWT Secured Authorization Response Mode for OAuth 2.0. 27, 31, 47

JWE JSON Web Encryption. 31

JWS JSON Web Signature. 3, 27, 31, 47

JWT JSON Web Token. 26, 27, 31

MTLS Mutual Transport Layer Security. 24, 26, 28, 34, 44–46

OIDC OpenID Connect Core 1.0. 3, 16, 19, 22, 24, 31, 33, 34, 37, 44, 49

ORM object–relational mapping. 33

PAR Pushed Authorization Request. 3, 24, 26, 28–30, 33, 42, 44–46

PKCE Proof Key for Code Exchange. 26, 27, 37, 46

PSD 2 Payment Services Directive 2. 3, 15

RAR Rich Authorization Request. 3, 11, 24, 26, 30, 33, 44

RO resource owner. 19, 20, 22, 24, 26–30, 47

RP Relying Party. 22, 31

13

List of Listings

RS resource server. 19, 20, 26, 28, 46

RT refresh token. 19, 26, 46

SSO Single Sign On. 16, 19

TLS Transport Layer Security. 13, 24, 26, 28, 34, 36, 44–46

UA user agent. 19, 20, 24, 26–29, 34, 36, 41, 44

URI Uniform Resource Identifier. 19, 26, 27, 29, 46

URL Uniform Resource Locator. 36

UUID Universally Unique ID. 35

YAML YAML Ain’t Markup Language. 35, 37, 49

14

1 Introduction

With the advent of the Internet, individuals and institutions alike saw an opportunity to exploit this
new technology in ways considered unfeasible before. For example, e-commerce has disrupted the
traditional brick-and-mortar businesses by providing goods in a much more convenient manner.

The financial industry is no exception; the rise of the FinTech industry is possible thanks to the
digitization of financial services. Examples of FinTech innovation includes the use of artificial
intelligence (AI) in order to better assess the credit score of a customer based on their transaction
history, as well as cryptocurrencies such as Bitcoin [4] and Ethereum [25], the latter having
smart-contract capabilities allowing the automatic execution of certain tasks upon an event such
as a transaction confirming the purchase of goods. One consequence of this shift is that most
prominent banks now provide online and mobile banking services; using these banks’ applications,
whether Web-based or available as native applications on a smartphone, consumers can now access
their data, perform transactions on-demand, and perform other actions that would have otherwise
necessitated a visit to a brick-and-mortar branch belonging to that bank or an ATM.

However, a problem has become clear: Traditional banks have complete control over the consumer’s
data; there has been little incentive for these banks to provide an interface accessible to third parties
so that they can offer the services powered by the new technologies mentioned above. One way
around this was the use of “screen scraping”; briefly explained, the consumer would give their
online banking login credentials to the third-party application, which would then use them to log
into the consumer’s account and “scrap” the displayed information through the Document Object
Model (DOM), such as the consumer’s account’s balance, and transaction history.

One fatal problem of this approach is that now the third-party provider has full access to the account,
and, short of changing the password entirely, there exists no simple mechanism in place for the user
to revoke access from the third-party provider. Furthermore, even under the assumption that this
provider is honest and will not abuse the credentials, if the provider improperly stores them in a
database (presumably to continue providing their services without having to ask for login details
each time), then an attack on the database could leak not just this one consumer’s info, but every
consumer who used the provider’s services.

To combat this issue and allow third parties to enter the financial industry and thus boost FinTech
as a whole, several initiatives have been undertaken to establish a legal framework within which
customers can consent to third-party providers accessing their data at their respective banks in a
secure and controlled manner. One prominent example of such an initiative is the PSD 2 [33] of the
European Union came into effect in 2018. Under this directive, banks have to provide an application
programming interface (API) through which third-party services can retrieve or modify customer
data or even perform actions on behalf of the user. The user determines the scope of the data the
third party is allowed to access.

15

1 Introduction

While these represent steps towards a more digitalized financial sector, it is not without its caveats.
For one, financial accounts and related information is at a much higher risk of compromise by
attackers due to the high-stakes nature of it; should an attacker, for instance, manage to retrieve
the bank credentials of a user due to a security vulnerability in the API, it could lead to financial
ruin for the customer and irreparable damage to the reputation of the bank as well as possibly the
third-party service.

In light of this, it has become apparent that an open standard for interfaces between different parties
which provided some security guarantees was essential. These interfaces have to take a specific
attacker model in mind, which assumes what actions an attacker attacking the system can perform
and what information they can retrieve. To that end, the FAPI has been in development by the
OpenID Foundation. Built on top of the already existing OIDC1, itself built on top of the OAuth 2.0
standard, the FAPI provides a specification of protocols with security and privacy in mind. As the
name implies, the primary target for this specification is APIs in the financial sector. However, any
high-stakes scenario where attack-incurred losses are considered unacceptable can benefit from this
specification.

The FAPI specification consists of two versions, FAPI 1.0 and 2.0. FAPI 2.0 is still in the Internet-
Draft stage, but it presents new technologies and improvements over the first version. With that in
mind, a hands-on demonstration of these specifications, specifically the Baseline and Advanced
profiles would be beneficial to anyone wishing to understand how the new specifications work. A
previous prototype for simulating OAuth 2.0 and OpenID Connect 1.0 was developed by Erdemann
[12]. This work builds upon and extends this prototype with the FAPI 2.0 flows.

While the primary audience of previous prototypes were end-users who are not concerned with the
concrete implementation of the prototype, this work attempts to cover the needs of both end-users as
well as developers; we uncover several rooms for improvement while building upon previous work,
without which development and work on the prototype became unnecessarily difficult. For example,
linters along with providing type annotations for variables in Python have allowed us to discover
bugs in even the first iteration of the prototype before any run of the software was necessary. We
thus implement several fixes to the prototype and propose guidelines on how to fix and mitigate
such issues in the future, thereby reducing the effort needed to get accustomed to the codebase and
extending its functionality.

This thesis attempts to solve this by providing a prototype implementation of FAPI 2.0 Baseline and
Advanced profiles. The prototype simplifies several aspects which may not precisely mirror real
use-cases. The goal is that end-users can gain a better understanding of how the FAPI 2.0 works by
simulating the flows themselves. With appropriate documentation, developers should be able to
understand the codebase with low difficulty and, if one desires, extend the prototype to support
other protocols not covered by this work.

The thesis is structured as follows:

Chapter 2 — Foundations & Related Work Wecover the basics ofOAuth 2.0 andOIDCnecessary
for the FAPI as well as extensions utilized in FAPI and the rationale behind their usage. In
addition, we discuss other work which deal with variants of Single Sign On (SSO).

1Note that OIDC consists of several documents, each addressing a specific aspect of the overall OpenID Connect Protocol
Suite [32]. We concern ourselves with the ‘OpenID Connect Core 1.0 incorporating errata set 1’ document [21].

16

Chpater 3 — Analysis of Existing Prototype We go over the existing prototype, including func-
tionality relevant to the FAPI which has either been partially or fully implemented, and
demonstrate an example flow of the program for reference.

Chapter 4 — Implementation We cover the specifics of our implementation, including how each
requirement is fulfilled and which simplifications were factored in. In addition, requirements
which were not implemented are mentioned with clarification as to why.

Chapter 5 — Conclusion We provide a summary of the work, including the takeaway from the
project.

17

2 Foundations & Related Work

Section 2.1 discusses the theory behind the popular SSO schemes OAuth 2.0 and OpenID Connect
as well as the FAPI 2.0. Section 2.2 covers similar work that has been carried out and whose results
complement those presented in this thesis.

2.1 Foundations

Section 2.1.1 gives a brief introduction to the OAuth 2.0 Authorization Framework, including the
Authorization Code Grant, which is necessary for the FAPI 2.0. Section 2.1.2 covers the OpenID
Connect Core 1.0 authentication layer which sits on top of OAuth 2.0 to provide authentication.
Section 2.1.3 outlines the Baseline as well as Advanced Profiles, including their attacker models.
Both of these profiles make use of various security extensions to provide certain security guarantees.
These extension are finally discussed in Section 2.1.4.

2.1.1 OAuth 2.0

The OAuth 2.0 framework [23] defines an open standard for access delegation. A resource owner
(RO) grants a third-party (referred to as the client) access to a resource owned by the RO. This
access grant is represented by an access token (AT) issued by an authorization server (AS). Using
this AT, the client gains access to the resource stored at a resource server (RS).

ATs have a limit on the length of their validity. As such, refresh tokens (RTs) are used to request
a new AT from the AS. There is a security reason why OAuth 2.0 issues a different token with
which the client can obtain a new authorization code (AC). The AT is exchanged between the client
and RS, while the RT is exchanged only with the AS. Having a long-living AT that is leaked to an
attacker essentially grants them access to the RO’s protected resources until the AT is revoked, while
a short-lived AT is only useful for the narrow time window in which it’s valid, thereby reducing the
time window within which the attacker can gain access. For more information, see [38].

A simple example of access delegation would be a user (the RO) of an online photo editor (the
client) granting it access to the user’s photo (the resource) stored in their personal Google Drive
online storage (with Google Drive acting as the RS and Google the AS). How the user grants this
access to the online photos storage and the sequence of requests and responses necessary to achieve
this is defined by so-called flows, also called grants.

19

2 Foundations & Related Work

For the delegation to work, the client has to have registered itself at the AS, after which it obtains
a client ID (also denoted as client_id) which uniquely identifies all instances of the client and
optionally a client secret (also denoted as client_secret). In addition, it registers one or more
redirection Uniform Resource Identifiers (URIs), which are necessary for redirecting the user agent
(UA) to the correct URI when utilizing specific flows Section 2.1.1.

Furthermore, we differentiate between clients that can securely store their credentials and those
that cannot. the former are classified as confidential clients while the latter are considered public
clients [3, 41].

Public clients They cannot securely store long-term secrets, in particular their client_secret.
Examples include a JavaScript application running in a browser on an end user’s device; the
user can read out the secret from the JavaScript source code, and binary executables can
be decompiled to reveal the client_secret. As a result, public clients cannot authenticate
themselves to ASs and are thus not issued a client secret.

Confidential clients They can keep secrets securely stored such that no other party can access
them. Examples include clients running on dedicated Web servers where one can assume that
no malicious application is running. Since they can keep secrets, they are usually required to
authenticate themselves to the AS before obtaining the AT. Authentication can be performed
either by sending a client secret or by proving the possession of such a secret.

OAuth 2.0 defines several flows. Each flow defines a sequence of steps to be performed so that
the AS issues the AT, and is designed for specific use-cases, such as whether the client should act
on its or the user’s behalf. They include the Authorization Code Grant, Implicit Grant, Resource
Owner Password Credentials Grant, and Client Credentials Grant. Since the FAPI 2.0 covered
by this thesis only permits the use of the Authorization Code Grant due to security considerations
(discussed in a later chapter), we will only consider the Authorization Code Grant in this thesis.

Authorization code Grant

The authorization code (AC) grant is one of the flows specified in the OAuth 2.0 standard, and lays
the foundation for the FAPI (see Section 2.1.3). In this flow, the AS issues an AC. This authorization
code represents the grant the RO has issued to the client. This AC is passed on from the AS to the
client via a redirect in the RO’s UA. The client exchanges this AC for the AT necessary to access
the resource at the RS.

On a high level, the grant works as follows: The RO initiates the flow at the client1. The client
then sends an Hypertext Transfer Protocol (HTTP) redirect to the AS, where the RO authenticates
themselves to the AS, usually by providing login credentials such as a username and password.
Once the AS authenticates the RO, the AS redirects the RO back to the client with the AC. The client
extracts the value of the authorization code from the HTTP redirect and uses it to request an AT.
Upon receiving the AT, the client sends an HTTP request to the RS in order to access the data.

1In reality, the precise method with which the flow is started is out of the scope of the OAuth 2.0 specification. Therefore,
it is up to the individual implementations how they should initiate the flow. Usually, an HTTP request is sufficient for
that purpose.

20

2.1 Foundations

User Agent (UA) Client Authorization Server
(AS)

GET /start
server

Redirect to /server/authorize
client_id, scope, state

GET /server/authorize
client_id, scope, state

Resource Server
(RS)

Response

POST /server/authorize
username, password

Redirect to /client/rp
code, state

GET /client/rp
code, state

POST /server/token

client_id, client_secret, code

Response

access_token, refresh_token

GET /server/resource
access_token

Response
resource

Response

User Agent (UA) Client Authorization Server
(AS)

Resource Server
(RS)

Figure 2.1: Authorization Code Grant.

21

2 Foundations & Related Work

Since the AT is an opaque string, the RS has to be able to check the various properties of the AT,
for example, whether it is still valid as well as the identity of the AS that issued it. In OAuth 2.0,
ATs are bearer tokens, whose specification outlines how they should be used and which checks to
perform for security [22]. For Token Introspection, [35] provides guidelines on how RSs can query
an AS about a given AT, for example, what resources the client can access, and whether the AT is
still valid.

2.1.2 OpenID Connect Core 1.0

While OAuth 2.0 is designed for access delegation, it does not contain any mechanisms for
authentication; the idea being that a user authenticates themselves to a Relying Party (RP)2using
the authorization step performed at the AS. Upon successful login at the AS, the AS then allows the
client to whom the RO granted consent to obtain scoped claims, i.e., selected assertions about the
user associated with the issued AT, such as name and date of birth.

Usage of the OAuth 2.0 AT directly for authentication purposes can lead to severe attacks since
anyone in possession of the AT can then use it to impersonate the victim [42, 44]. A simple analogy
to highlight the flaw of implying authentication through authorization would be a person A proving
to person B they live in a house at a given address by giving them a key to the house; person A may
have proven that they have access to the house by delegating access to person B and therefore live
in the house, but now person B has unfettered access to the house as well, and could prove to a third
person C that they (person B) live in that house (which may well call into question whether person
A lives in that house, but the flaw remains the same) or even give the key to a malicious person E
intending on robbing the house.

Figure 2.2 shows howOpenIDConnect Core 1.0 (OIDC) retrofits the regular OAuth 2.0Authorization
Code flow, with the additions by OIDC shown in blue. OIDC acts as an authentication layer on top of
OAuth 2.0; it retrofits existing grants defined in the OAuth 2.0 specification with cryptographically
secured ID tokens along with a dedicated endpoint for obtaining user information. In particular,
OIDC achieves this through the introduction of an id token which contains a set of claims. A claim
is an assertion made or “claimed” by the Identity Provider (IdP)2, for example, the unique ID of the
user at the IdP and the client as the subject of the id token. It serves as a one-time proof of the
user’s identity to the client.

In addition, a new endpoint called the UserInfo endpoint is introduced. The client can also obtain
information about the client by submitting their AT. If validation checks come through, they receive
information about the RO as allowed by the user.

2While the terminology used varies depending on whether one is considering OAuth 2.0 or OIDC, the entities involved
in the flows are largely the same. For example, the RP in OIDC is usually also the client in OAuth 2.0.

22

2.1 Foundations

User Agent (UA) Client Authorization Server
(AS)

GET /start
server

Redirect to /server/authorize
client_id, scope="openid", state

GET /server/authorize
client_id, scope="openid", state

Resource Server
(RS)

Response

POST /server/authorize
username, password

Redirect to /client/rp
code, state

GET /client/rp
code, state

POST /server/token

client_id, client_secret, code

Response

access_token, refresh_token,
id_token

GET /server/resource
access_token

Response
resource

Response

User Agent (UA) Client Authorization Server
(AS)

Resource Server
(RS)

POST /server/userinfo
access_token

Response
email, first_name, family_name

Figure 2.2: OpenID Connect Core 1.0: Authorization Code Flow.

23

2 Foundations & Related Work

2.1.3 Financial-grade API

The Financial-grade API (FAPI) is yet another layer, sitting on top of OIDC (recall that OIDC itself
sits on top of OAuth 2.0 and provides the option of authentication in addition to authorization, not
serve as a complete replacement). The audience of FAPI are financial accounts and, more broadly,
any high-stakes high-risks scenarios, for example, government APIs.

The FAPI assumes a stronger attacker model than either standard OAuth 2.0 or OIDC. As such, both
these profiles impose more stringent requirements. For details on the attacker model, see [30].

Baseline Profile

The Baseline profile is intended to be used in scenarios where authorized clients can only read a
RO’s data. Clients utilizing this profile should not be able to, e.g., perform transactions on the user’s
behalf or other state-changing operations since the Baseline profile does not offer non-repudiation.
For read-write scenarios, API developers should use the Advanced profile (see Section 2.1.3).

Below is a brief overview of the most important requirements imposed by the Baseline profile.
Since it is still in the draft stage, the profile specification is subject to changes. For reference, this
work deals with the profile at the git3 commit 977d75a [31].

Authorization code grant only The Baseline profile makes exclusive use of the authorization
code mode ([23, Section 4.1]), and rejects any authorization requests made using the Implicit
or Resource Owner Password Credentials grants [23, Sections 4.2, 4.3]. The reason for
rejecting the Implicit Grant is due to multiple weaknesses inherent to the fact that the AS
passes the AT to the RO’s user agent as a fragment [16, PDF Slide 23]. As for the Resource
Owner Password Credentials Grant, it allows clients to see the username and password of the
RO used as login credentials, which poses a serious security risk if the client ever becomes
dynamically corrupted or taken over by an attacker [16, PDF Slide 43].

Pushed Authorization Requests Only The Baseline Profile mandates the use of PARs for all
authorization requests (see Section 2.1.4 for details on the specification), a different method
by which the Authorization Request parameters such as response_type and client_id are
sent from the client to the AS directly. In addition, any parameters sent outside the PAR
request must be rejected except for the client_id and request_uri parameters.

Support Rich Authorization Requests There may be situations where the original scope parame-
ter introduced by OIDC is not expressive enough. For example, a client wishing to perform a
one-time transaction of 100 Euros is unable to express it using the regular openid parameter
value. The AS is likewise unable to inform the RO of the specific transaction value. To solve
this, RARs allows clients to request finer permissions and the AS can more accurately inform
the user of the authorization request in question.

3https://git-scm.com/

24

https://git-scm.com/

2.1 Foundations

User Agent (UA) Client Authorization Server
(AS)

GET /start
server

Resource Server
(RS)

Response

POST /server/authorize
username, password

Redirect to /server/authorize
client_id, request_uri

POST /server/token
code, state, code_verifier

GET /server/resource
access_token

Response
resource

Response

User Agent (UA) Client Authorization Server
(AS)

Resource Server
(RS)

POST /server/par

response_type, client_id,
redirect_uri, state,
code_challenge,

code_challenge_method,
scope, authorization_details

GET /server/authorize
client_id, request_uri

request_uri, expires_in, iss

Response

Redirect to redirect_uri
code, state, iss

GET redirect_uri
code, state, iss

Response
access_token, id_token

Figure 2.3: FAPI 2.0 Baseline Profile. 25

2 Foundations & Related Work

Sender-constraining access tokens (ATs) In order to prevent the usage of leaked ATs by unau-
thorized clients, ASs must constrain the issued access tokens to the clients the RO granted
access to their resources. This can be done either using Mutual Transport Layer Security
(MTLS), where the AT is bound to the certificate the client uses to authenticate itself to the
AS.

Client Authentication In order for clients to verify their identity to the AS, they must use a method
to authenticate themselves. One approach is using MTLS or, if the client has registered a
public key, use the corresponding private key to sign a JSON Web Token (JWT) [21, Section
9]. Since MTLS can be used for both client authentication and token binding (see previous
point), we implement only MTLS.

Proof Key for Code Exchange To bind the AC the proper client and prevent its use by mali-
cious applications, Proof Key for Code Exchange (PKCE) must be used. In addition, the
code_challenge must be the hashed variant of its corresponding code_verifier using the
SHA-256 hash algorithm.

Sender-constraining Refresh Tokens In addition to sender-constraining ACs and ATs, RTs shall
be sender-constrained as well.

redirect_uri in PAR As a result of using MTLS for client authentication and PAR for sending
the complete Authorization Request in the back channel, there is no need for the client to
pre-register redirect URIs at the AS.

iss Paramter in Authorization Responses In order to thwart IdP Mix-up Attacks [19, Sec-
tion 3.2], the iss parameter corresponding to the value of issuer as defined in [7, Section 3.3]
can be added to authorization responses in order to indicate the client which AS issued the
AC.

Verifying ATs ASs have to provide RSs with some mechanism to check ATs in order to verify
their validity, scope (including details from RAR if provided), integrity, sender-constraining,
expiration, and revocation status. One method to achieve this is by providing an Introspection
Endpoint [35].

Avoid Using HTTP 307 Response When using 307 as the status code for an HTTP response,
Web browsers will not only perform a request to the given URL in the Location header
with the given POST parameters, but will also reuse the POST parameters in the original
request [2], which for an Authorization Response corresponds to the RO’s credentials at the
AS. A malicious client can thus obtain the login credentials of the RO if the AS uses the 307
Temporary Redirect status code.

No Open Redirectors Anopen redirector is an endpoint included as a parameter in anAuthorization
Response to the UA to which they are redirected without any validation [23, Section 10.15].
Since open redirectors allow a class of attacks, namely phishing and (in the event that
wildcards are allowed in the authority component of the redirect URI) passing the AC to an
endpoint under the attacker’s control.

26

2.1 Foundations

Advanced Profile

While the Baseline profile offers strong security guarantees, it fails in providing non-repudiation; an
arbitrary client can claim that an Authorization Request sent under their name to an AS was forged
by a malicious party, or an arbitrary AS can dispute the authenticity of an AC issued by them. The
Advanced profile addresses this by mandating, in addition to the requirements listed by the Baseline
profile, application-level signatures, thereby allowing any third party to verify whether, for example,
a payment request was indeed authorized by the client or not.

As with the Baseline profile, the Advanced profile is in the draft stage and thus subject to changes
after the publication of this thesis. For reference, this thesis deals with the profile at the git commit
94d45dd [29].

Non-repudiation In order to provide non-repudiation, the Advanced profile mandates that clients
and ASs sign Request Objects and Authorization Responses, respectively. To achieve this,
JWT Secured Authorization Request (JAR) [36] and JWT Secured Authorization Response
Mode for OAuth 2.0 (JARM) [11] specify how Request Objects4 shall be signed and how a
signed Authorization Response should be constructed by the AS, respectively.

For signing Request Objects, clients and ASs must use JWS [6]. While JAR and JARM outline how
Request Objects and Authorization Responses can be signed then encrypted, the Advanced profile
only outlines signing. Therefore, our prototype only signs the Request Objects and Authorization
Responses.

2.1.4 Extensions

The following sections briefly go into the various extensions which are used in by FAPI.

Proof Key for Code Exchange

A problem for clients running as native applications on the RO’s device is that different applications
can register the same custom URI as the honest client native application. When the Authorization
Code Grant is in use, the Authorization Response can leak to these other applications who registered
that custom URI. Thus, the AC is leaked to the malicious client.

To solve this, Proof Key for Code Exchange (PKCE) can be used, which introduces three new
parameters, the Code Challenge, its Code Verifier, and the Code Challenge Method. The Code
Challenge, which is either the same as its corresponding Code Verifier or the hash of the Verifier
using SHA-256 (this is determined by the Code Challenge Method Parameter), is sent with the
Authorization Request from the UA to the AS, and the AS binds the request to this Challenge. When
the client attempts to exchange the AC for the AT, it sends the Code Challenge’s corresponding
Code Verifier, and the AS checks whether the Verifier (or its hash, again depending on the Challenge
Method) matches the Challenge sent before. If it is a match, the AS sends back the AT.

4A Request Object in the context of JAR is “JWT [. . .] whose JWT Claims Set holds the JSON encoded OAuth 2.0
authorization request parameters.” [36, Section 2.1]

27

2 Foundations & Related Work

Fett et al. [18, Section IV] demonstrated an attack on the supposed security offered by PKCE
against leaked ACs called the PKCE Chosen Challenge Attack. The mitigation involved signing the
Authorization Request, through which a signed Request Object (see Section 2.1.4). A caveat of this
fix, however, is that the public client, by definition, cannot securely store long-term secrets, which
would include the private key necessary for signing the Authorization Request in order to guarantee
to the AS that the PKCE challenge indeed originated from the honest client.

Mutual Transport Layer Security

In order to ensure that only the intended client can use an issued AT, the AS can bind the AT to the
client’s own X.509 [45] certificate. With this, only the client in possession of the certificate’s private
key can use the certificate at the RS, since otherwise the client authentication at the TLS level would
fail. This ensures that the AT is sender-constrained. Furthermore, the client’s certificate can be
used to authenticate the client to the AS, allowing the AS to unambiguously verify the identity of
the client. Both of these methods are specified using Mutual Transport Layer Security [5].

iss Parameter

Fett et al. [19, Section 3.2] describes a form of attack called the IdP Mix-Up Attack. Briefly
described, a malicious IdP acting as a Man-in-the-Middle between the honest UA of the RO and
the honest client confuses the client about the true IdP at which the RO wishes to authenticate
themselves. This occurs by hijacking the connecting at the beginning of the OAuth 2.0 flow and
changing the true IdP to which the RO would authenticate themselves at. Another variant of the
attack does not require a Network Attacker capable of acting as a Man-in-the-Middle, but does
assume that the RO wishes to log in under the attacker’s own IdP [28].

The result of this attack is that the malicious IdP gains the AC issued to the honest client with which
an access token can be redeemed at the honest IdP.

The core problem of this vulnerability is that the client learns nothing about the origin of the
Authorization Response. Therefore, an effective fix is that honest IdPs attach their identity as a new
parameter in the Authorization Response, aptly named iss [39]. Its value must be the same as the
value of the issuer parameter as defined in [7, Section 2].

An important note: The original oauth-proto included an incorrect implementation of this re-
quirement, presumably because the draft was first published in early January of 2021, well after
development oauth-proto has finalizeds. Therefore, any checks in the original prototype of the iss
parameter are likely to throw errors. This further emphasizes the importance of avoiding duplicates
in the codebase and instead centralize logic which will be reused, since such bugs can only be
fixed by scouring the codebase for occurrences of the duplicate block of code responsible for the
checks, fixing the bugs, and re-testing the already existing prototype to check for regressions. This
re-testing, however, is made even more unfeasible by the lack of automated test suites.

28

2.1 Foundations

Pushed Authorization Requests

As is typical for OAuth 2.0, Authorization Request parameters, including client_id and scope, are
sent as query parameters from the UA to the AS via a redirection initiated by the client (See [23,
Section 4.1.1]). This poses challenges regarding security, however, as no cryptographic integrity or
authenticity is offered since no confidential data is transferred between the RO and client before
authentication. Also, these parameters are passed in the clear at the UA, which becomes a problem
if network data is stored in logs and they leak, which in Open Banking scenarios is unacceptable.

User Agent (UA) Authorization Server
(AS)Client

GET /start

POST /as/par

response_type=code
&client_id=e2cAvQMeS
&state=u40vak3nv9
&redirect_uri=https://client.example.org/callback

201 Created

{
 "request_uri": "urn:example:bsufAeds",
 "expires_in": 90
}

Redirect to

as.example.com/authorize?
client_id=e2cAvQMeS

&request_uri=urn:example:bsufAeds

GET /authorize?client_id=e2cAvQMeS&request_uri=urn:example:bsufAeds

User Agent (UA) Authorization Server
(AS)Client

Figure 2.4: Pushed Authorization Requests.

Pushed Authorization Requests (PARs) [37] solve this by mandating the client to push these request
parameters directly to the AS. The flow of an Authorization Request is shown in Figure 2.4.

The AS then stores this request in some form and generates a request_uri, a URI identifying the
Authorization Request in question, and sends it back to the client as a response. Instead of the client
redirecting the RO by their UA to the AS with the query parameters, they are redirected with just
the client_id and request_uri to the AS.

This approach to transmitting Authorization Request properties provides several benefits:

29

2 Foundations & Related Work

Listing 2.1 Example of RAR [9, Section 2].
{

"type": "payment_initiation",

"locations": [

"https://example.com/payments"

],

"instructedAmount": {

"currency": "EUR",

"amount": "123.50"

},

"creditorName": "Merchant123",

"creditorAccount": {

"iban": "DE02100100109307118603"

},

"remittanceInformationUnstructured": "Ref Number Merchant"

}

Client Authentication from the Get Go Before any further interaction between the RO and the AS
can take place concerning an Authorization Request, the AS can first check the authenticity
of the client. Thus, attempts by attackers to spoof honest clients can be thwarted early in the
process before the RO even has a chance to delegate access to their resources to said attacker.

Confidentiality and Integrity of Request Data Since the request data are transmitted using TLS
directly between the client and AS without having to first pass through the front channel, the
confidentiality and integrity of the data at this stage is protected.

Since the specification for PARs is still in the Internet-Draft stage, changes can occur at any time.
For reference, this thesis deals with draft-ietf-oauth-par-05.

Rich Authorization Requests

While the scope parameter is sufficient for static use-cases, such as requesting access to the cloud
storage of the RO, it fails in situations where the exact parameters are dynamic. This is especially
the case with banking and transactions, as transactions details can vary widely from transaction to
transaction, such as the amount to be transferred, the recipient of this payment, the currency, and
more.

To solve this, Rich Authorization Requests (RARs) [9] allow clients to define fine grained information
regarding their Authorization Request. Listing 2.1 shows an example of a RAR for initiating a
payment.

The type parameter is the only mandatory key in a RAR. All others are optional but recommended
since this makes RAR usable across several APIs.

Since the specification for RARs is still in the Internet-Draft stage, changes can occur at any time.
For reference, this thesis deals with draft-ietf-oauth-rar-03.

30

2.2 Related Work

JWT Secured Authorization Request

While PARs are concerned with packaging the Authorization Request data into a single payload to
be transmitted at once, it fails at offering non-repudiation. For example, a RO can claim that an
initiated payment transaction was a forgery.

JWT Secured Authorization Requests mitigate this issue by allowing the clients to cryptographically
sign the Request Object. A Request Object is a JSONWeb Token [8] which holds the Authorization
Request parameters as JWT Claims [8, Section 4]. The Request Object can be optionally signed
using JSON Web Signature [6] and optionally encrypted using JSON Web Encryption [24].

JAR mandates that Request Objects be signed. Encryption is optional. With that being said, the
Advanced profile is the only profile of FAPI 2.0 that mandates the use of JAR, not the Baseline
profile. The Advanced profile furthermore makes no mention of encrypting the Request Object,
only signing the Request Object. Thus we will only consider JWS and not JWE in this work.

JWT Secured Authorization Response Mode for OAuth 2.0

While JAR ensures that the integrity of Authorization Request parameters is cryptographically
protected by mandating clients to sign the Request Objects, the same cannot be said for Authorization
Responses. JWT Secured Authorization Response Mode for OAuth 2.0 is the equivalent of JAR,
but for ASs. It provides integrity protection of the Authorization Responses by mandating that the
AS sign the Authorization Response. Furthermore, non-repudiation can be offered if asymmetric
signatures are employed, such as using the AS’s public key to verify an Authorization Response
signed by the AS using the AS’s private key.

Symmetric signatures only offer integrity protection but not non-repudiation, because third parties
cannot verify the message’s authenticity. Since more than one party has the symmetric key, any one
of those parties (the client and the AS in this case) could have signed the Authorization Response.
In addition, it would require that the third party have the symmetric key, which as per Section 10.1
of [21] is the client_secret, which should understandably be kept secret.

2.2 Related Work

While research thus far has been primarily focussed on the formal analysis of the underlying
OAuth 2.0 Authorization Framework [19] or empirical analysis of deployments of OAuth 2.0 in the
wild [46], the practical demonstrations of these attacks and, more generally speaking, the OAuth
2.0 and OIDC flows themselves, has only been addressed by Erdemann [12] and Mainka [27].
Furthermore, given that FAPI 2.0 is still in its infancy it may be some time before more IdPs and RPs
adopt it, whether in the form of migration from existing vanilla OAuth 2.0 or OIDC implementations,
or as an upgrade from the more mature FAPI 1.0, which has indeed undergone rigorous formal
analysis using an extensive model of the Web [20] based on the Dolev-Yao model of cryptographic
protocols [10]. Mainka presents an implementation of an OpenID Attacker, a malicious IdP. The
aim is to demonstrate several attacks within the context of OIDC. However, as noted in [12, Chapter
5], OpenID Attacker does not implement concrete attacks whose effects can be directly observed
and interpreted by the user. Furthermore, it focused primarily on the OIDC specification.

31

3 Analysis of Existing Prototype

The goal of this thesis is to serve as a demonstration of the FAPI 2.0 (referred to as just FAPI for
brevity) Baseline and Advanced Profiles as well as provide an easy-to-understand codebase with
options for extensibility and guidelines on doing so.

To that end, we begin by examining the existing prototype and understanding the codebase. This
allows us to understand how we can extend it to fulfill the functional requirements for FAPI. With
this knowledge, we implement the functionality needed for the FAPI Baseline and Advanced profile
flows. This is covered in Section 3.1.

During this examination, we realize multiple rooms for improvement for the codebase, and we
propose and implement several of them and demonstrate the benefits introduced by these changes.
These improvements are outlined in Section 3.2.

The software implementation developed throughout this work, which we will refer to from here on
out as fapi-proto, builds upon a prototype produced by Erdemann [12], itself based on a previous
prototype by Fett [15] (the former will be referred to as oauth-proto and the latter as proto6749 for
brevity).

3.1 Existing Prototypes

proto6749 concerned itself with raw software implementations of OAuth 2.0, primarily the
implementation of an AS, as well as the basics of PAR, specifically an endpoint for it, and RAR.
oauth-proto extends functionality by implementing OIDC (Authorization Code Grant only), clients
within the project, a logger for the executed flows, and a Web interface.

3.1.1 Web Server

The prototype is implemented as a Django1 project, a Web framework based on Python. Django is
based on the Model-Template-View architectural pattern [13] where the server is responsible for
both the front-end and the back-end. The model represents the data stored in Django’s database of
choice, the view represents the subset of data presented to the user, and the template represents the
presentation of the view to the user, i.e., how the data is displayed to the user.

1https://www.djangoproject.com/

33

https://www.djangoproject.com/

3 Analysis of Existing Prototype

3.1.2 Database

The choice of database to store the models used by Django is PostgreSQL2. Django uses an
object–relational mapping (ORM) to map native Python objects to data records in PostgreSQL.

A built-in feature of Django is the ability to run a development server, which auto-restarts upon
detecting a change to one of its files, greatly simplifying development3.

3.1.3 Reverse Proxy

To more accurately simulate the behavior of OAuth 2.0, OIDC, and the FAPI, a reverse proxy is
employed to serve as a middleman between the UA and the Django Web server. nginx was chosen
since proto6749 as the reverse proxy of choice, and this has remained the same for oauth-proto.
The connection between the UA and nginx is secured using TLS, whereas the one between Django
and nginx is in plain HTTP.

3.1.4 X.509 Certificates

To generate the public certificate needed by nginx such that the UA recognizes the connection as
secure, mkcert [43] is used to generate a development Certificate Authority (CA). This is achieved
by first installing the mkcert CA in the system trust store and then issuing an X.509 certificate
signed by the mkcert CA together with its corresponding private key.

In addition to TLS certificate for the reverse proxy, mkcert is also used to generate certificates for
the client, which will be important later when using MTLS for client authentication in the FAPI.

3.2 Rooms for Improvement

During our examination of the codebase, we discover several rooms for improvement. They aim at
improving aspects such as understandability, readability, maintainability, and better code quality.

Data Types for Various Constructs Python and JavaScript belong to the class of dynamically
typed languages. A fundamental property of both these languages is that they do not require
providing data types for constructs such as variables and return value types for functions
before runtime. As such, it can become difficult to correctly infer, for example, what properties
a variable has.

While this poses less of an issue for smaller codebases, oauth-proto is not what could be
considered a small codebase. For instance, the main.js file representing the JavaScript logic
for the main end-user Web interface to the prototype constitutes of over 700 lines of code.

2https://www.postgresql.org/
3Note that this feature does not consider file additions and changes to static files such as JavaScript files and images.

34

https://www.postgresql.org/

3.2 Rooms for Improvement

Furthermore, by providing data types for variables and information regarding function
signatures, the codebase becomes less prone to runtime errors due to operations involving
incompatible types or non-existing properties that are not caught because of lack of data
types before runtime. We demonstrate that after inferring data types for various variables, we
were able to avoid potential bugs.

Adding Meaningful Constants and Enum Types Our analysis has further revealed the use of
Universally Unique IDs (UUIDs) throughout the code. These were hard-coded and came with
no documentation as to what entities they are supposed to represent, which leads to having
to make assumptions and guesses about the nature of these objects. Furthermore, several
constructs could be better represented by more clear enum types, such as the chosen flow. We
fix this by declaring prototype-wide constants that accurately describe the objects at hand.

Deploying Linters Linters are static code analysis tools used to identify suspicious code constructs
that may lead to runtime errors, such as potential dangling references or the possibility of
accessing a pointer that points to nothing. We demonstrate how, together with explicitly
providing data types to variables, the usage of a linter, specifically a type checker, potential
runtime errors were avoided.

Removing Duplicate Code The use of duplicate code poses several issues. First, it makes the
code harder to understand by external developers; instead of having one function representing
the desired logic, the same logic is written in several places throughout the codebase. Second,
this makes it harder to fix bugs where duplicate code is involved since developers have to
scour the codebase looking for these duplicate blocks of code in order to fix them. We fix
this by extracting often used blocks of code and providing clear documentation on their usage
and signatures.

Break up Large Functions Several methods and functions spanning hundreds of lines of code
were discovered throughout the analysis. Of note is the main function of the YAML Ain’t
Markup Language (YAML) logger. While one can argue that such functions could be left
untouched throughout development, this becomes problematic when bugs caused by such
functions are discovered. We break up much of the existing codebase and maintain this
standard on our own implementations of the FAPI.

Implementing Code Best Practice A quick inspection using the Integrated Development Envi-
ronment (IDE) PyCharm4 revealed several warnings related to smelly code. We improve
upon this by migrating the entire codebase to TypeScript5 and splitting the file into more
manageable modules. In addition, we utilize JavaScript’s “strict mode” [40] which paves the
way for cleaner, more understandable JavaScript code.

4https://www.jetbrains.com/pycharm/
5https://www.typescriptlang.org/

35

https://www.jetbrains.com/pycharm/
https://www.typescriptlang.org/

3 Analysis of Existing Prototype

Figure 3.1: The main end-user interface of oauth-proto.

3.3 Happy Path

In order to familiarize the reader with the usage of oauth-proto, we briefly describe the happy path
of the prototype as present in oauth-proto, i.e., the default usage of the prototype assuming no errors
or exceptions occur.

3.3.1 Setting up

To set up the prototype, the required PostgreSQL database server must be installed on the local
machine and a user set up using which Django will gain access to the database to store information
regarding its models, such as ASs, clients, and sessions.

Next, a Python virtual environment6 is set up along with the project’s dependencies.

Parallel to this, the nginx server is set up as a reverse proxy to handle TLS from UAs to the server,
since the test server runs only using HTTP.

3.3.2 Running the program

Once this is complete, the user can access the primary end-user interface shown in Figure 3.1 at the
Uniform Resource Locator (URL) https://localhost/start, where the tab “Menu” is displayed by
default. From this interface, the user selects the following properties for the flow to be simulated:

Flow The desired flow to run. For example, vanilla OAuth 2.0 Authorization Code.

6A Python virtual environment is “a self-contained directory tree that contains a Python installation for a particular
version of Python, plus several additional packages.” [1]

36

3.3 Happy Path

Attack The attack, if any, to execute on the chosen flow.

Client The client which the user wishes to authorize access to their resources

Server The AS of choice.

Fix The fix to use. For example, a fix for the IdP Mix-up attack by adding the iss parameter in the
Authorization Response.

Scope The scope to be selected.

Proxy The Network Attacker. Users can choose whether to activate them or not and, if activated,
which modification to the messages the user may simulate.

PKCE Whether the client should activate and make use of PKCE.

More Settings Opens a link to the Django admin panel where the user can modify various
properties of the stored models and users, including adding new ones or removing existing
models.

Once the user has chosen the properties of the flow, the user clicks “start” and follows the prompts
shown. In the case of OAuth 2.0, for example, the user is redirected to the AS’s Authorization
Endpoint to login and verify their identity. In addition, they are shown the data to which the client is
delegated access. This depends on whether OAuth 2.0 is used in conjunction with OIDC or not.

Once the user confirms the authorization, they are redirected to the client with the AC which the
client redeems for the AT. The resource obtained in the prototype is a representation of the session
in question, including, but not limited to, the AS, the client, the Code Challenge and Code Challenge
Method (if PKCE were activated).

The flow of messages is logged and recorded in a separate tab under the name of “Message Flow”.
Users can refresh the view to display any new messages as well as download a copy of the YAML
for download, either in detail or with abbreviations for the parameters. The message flows are stored
in YAML format and is encoded in AnnexLang [14], a markup language for describing protocol
flows and exporting them to semantically equivalent LaTeX code.

37

4 Implementation

Here, we describe on a high level the modifications we made to the prototype. Section 4.1
outlines the steps taken before work on the FAPI profiles have taken place to address the points
mentioned previously in Section 3.2. We also describe a few more improvements and their impact
on development and deployment. Section 4.2 describes the changes and additions made in order to
fulfill the requirements as laid out before in Section 2.1.3. Section 4.3 analogously does the same
for the Advanced profile.

4.1 Setting up the Development Environment

The first step in the implementation was setting up the development environment in such a form that
it offers the following:

Enforcing Common Standards As discussed in our analysis, the lack of use of either linters or
style checkers has led to poor code quality and difficulty in understanding the codebase. To
solve this, we enforce various linters and style checkers across the entire codebase.

Containerization of the Prototype While the original approach of manually setting up the running
environment, including the PostgreSQL server and nginx, it faces issues when attempting
to reproduce it on another machine. The adage “it works on my machine” is especially
problematic given that we cannot make assumptions about the running environments of other
end-users and developers alike. We utilize Docker1 to provide an easily reproducible software
system that can also be used for development.

Using Data Types In order to help developers better understand the properties and type of the
various variables as well as functions and their signatures, we explicitly provide data types
for both the front-end and back-end.

4.1.1 Style Checkers

To aid in development and enforce certain style guides so that the readability of the code is
satisfactory, we utilize the following tools:

1https://www.docker.com/

39

https://www.docker.com/

4 Implementation

black2 A style guide checker and formatter for Python adhering to the standard style guide laid
out in [34]. Its advantage over other formatters such as autopep83 or yapf4 is its popularity
(over 20k stars on GitHub), which means that it is more likely that Python users inspecting
our prototype would be familiar with the style imposed by black. Furthermore, its lack of
configurability means that most Python projects using black are bound to look the same
regardless of the project at hand.

Prettier5 This is the equivalent of black, but applied to languages such as JavaScript and TypeScript.
Like black, its relative popularity and opinionated nature paves the way for similar-looking
code across different projects.

4.1.2 Linters

Linters are central to a software project where susceptible and smelly code can be detrimental to the
extensibility, maintainability, and ability to comprehend the codebase. We utilize the following
tools to assist in detecting bad code constructs and thus solve them:

flake8 A wrapper around three separate Python modules, flake86 analyzes the Python codebase
and checks for suspicious code constructs. For example, it warns of misuse of variable
declarations which could lead to null pointer exceptions under certain conditions

pyright A type checker for Python written by Microsoft, pyright7 checks for type incompatibilities,
such as attempting to return a Boolean and store its result in a variable previously declared as
a string.

ESLint8 A popular linter for JavaScript and TypeScript, ESLint checks codebases for suspicious or
problematic patterns. It is characterized by the multitude of configuration options available.
For our prototype, we decided on applying the Standard9 style. A special package for
TypeScript called ts-standard is included to ensure Standard works for the TypeScript
codebase (see Section 4.1.6).

Other tools worth mentioning but are of lesser importance than the ones outlined above include, but
are not limited to, isort10, pydocstyle11, and autoflake12. For a full list, refer to the accompanying
readme file.

2https://github.com/psf/black
3https://github.com/hhatto/autopep8
4https://github.com/google/yapf
5https://prettier.io/
6https://github.com/PyCQA/flake8
7https://github.com/microsoft/pyright
8https://eslint.org/
9https://standardjs.com/
10https://github.com/PyCQA/isort
11https://github.com/PyCQA/pydocstyle
12https://github.com/myint/autoflake

40

https://github.com/psf/black
https://github.com/hhatto/autopep8
https://github.com/google/yapf
https://prettier.io/
https://github.com/PyCQA/flake8
https://github.com/microsoft/pyright
https://eslint.org/
https://standardjs.com/
https://github.com/PyCQA/isort
https://github.com/PyCQA/pydocstyle
https://github.com/myint/autoflake

4.1 Setting up the Development Environment

4.1.3 Pre-commit Hooks

To further ensure that checks by these checkers, we use pre-commit git hooks13 which run these
checkers against the codebase before a commit takes place. Assuming these checks are not bypassed
by future developers, this should impose the same format and guidelines on the codebase.

4.1.4 Containerization of the Prototype

With Docker, we create so-called images. These images represent a set of filesystem changes
that are layered on top of one another. From images, containers are created, which represents the
program in execution. A fitting analogy to images would be programs and their containers as the
corresponding processes from those programs.

Since out prototype consists of several components, namely the Django server, nginx reverse proxy,
and PostgreSQL database, we use Docker Compose14 to orchestrate the execution of these three
services. These services are as follows:

web This represents the Django server. It utilizes a bind mount so that any changes to the files on
the local filesystem are immediately reflected in the Docker container. Since we utilize the
Django development server which uses a file watcher to notify of any changes to its files, the
server can auto-reload upon saving changes to the server’s files. This saves a great deal of
effort and time and leads to faster development since the Docker container doesn’t have to be
rebuilt each time a change is made.

db This represents the PostgreSQL database. the username and password used by Django to access
it are defined in the docker-compose.yaml and can be changed if desired. In this case, one
must ensure that the changes are reflected in Django’s settings.

nginx This represents the nginx reverse proxy. All requests made to https://localhost, including
the /start path for the Web interface and the /client and /server paths are first routed over
this server, even from clients (which are Django views themselves) to ASs.

For networking, the network driver is set to “host”. This means that Docker does not isolate the
network stack of the containers from the rest of the system. Note, however, that this feature is only
available on Linux systems. Windows and macOS are not supported.15. We have attempted to
utilize the “bridge” network mode which would have worked on all platforms. However, the UA
being in one network stack and isolated from the remainder of the prototype have lead to issues
regarding how requests are transmitted from and to ASs and clients.

13https://pre-commit.com/
14https://docs.docker.com/compose/
15https://docs.docker.com/network/host/

41

https://pre-commit.com/
https://docs.docker.com/compose/
https://docs.docker.com/network/host/

4 Implementation

4.1.5 Python Virtual Environment Management

To ensure that Python builds are deterministic and thus avoid any errors that could arise due to
breaking changes from updates, we utilize Poetry16. Poetry is packaging and dependency manager
for Python that allows the automatic creation of a Python virtual environment isolated from the
system-wide Python installation.

Information regarding packages and their corresponding versions are stored in the pyproject.toml
file located in the <project root>/app/ directory. Development dependencies are separated from
deployment dependencies. Development dependencies are not installed when building the Docker
image to ensure the image size is as small as possible.

4.1.6 Front-end Codebase Overhaul

The JavaScript front-end codebase has been improved. Functionality is now split across coherent
ECMAScript modules, each written for a well-defined task. In addition, strict mode is used which
assists in avoiding error-prone constructs, such as undeclared variables polluting the global scope.

To support compile-time type checking, we migrate the entire codebase to TypeScript, a strict
syntactical superset of JavaScript. Each variable is given an explicit data type to help detect and
resolve potential type incompatibility issues before runtime.

4.1.7 Reorganization of Codebase

To improve the manageability and provide developers with a better overview of the codebase,
several refactoring changes have been undertaken. First, blocks of code related to a single function,
e.g., constructing the payload for PAR, are extracted into their own functions, together with
documentation. This lends the way for code that is easier to read and navigate through.

4.1.8 Usage of Enum Types

Enum data types are used for variables whose set of possible values is finite and which can be
represented by an expressive name. For example, flows are now specified by enums such as
Flow.FAPI_BASELINE. This helps keep the code self-describing and easier to understand, which also
makes it easier to debug, especially with external developers who are unfamiliar with the codebase.
Listing 4.1 shows the enums defined in our prototype.

4.1.9 Explicit Data Types for Python Constructs

We provide data types for various constructs in Python, including class and instance attributes, and
function parameters and their return values.

16https://python-poetry.org/

42

https://python-poetry.org/

4.1 Setting up the Development Environment

Listing 4.1 Enums defined in the prototype.
class Flow(IntEnum):

OAUTH_CLIENT_CREDENTIALS = 0

OAUTH_RESOURCE_OWNER_PASSWORD_CREDENTIALS = 1

OAUTH_IMPLICIT = 2

OAUTH_AUTHORIZATION_CODE = 3

OIDC_Authorization_Code = 4

FAPI_ONE_CIBA = 5

FAPI_TWO_BASELINE = 6

FAPI_TWO_ADVANCED = 7

class Fix(IntEnum):

NONE = 0

IDP_MIXUP_ATTACK = 1

CUCKOO_TOKEN_ATTACK = 2

class ResponseType(Enum):

NONE = "none"

AUTHORIZATION_CODE = "code"

ACCESS_TOKEN = "token"

ID_TOKEN = "id_token"

ID_TOKEN_ACCESS_TOKEN = "id_token token"

AUTHORIZATION_CODE_ID_TOKEN = "code id_token"

AUTHORIZATION_CODE_ACCESS_TOKEN = "code token"

AUTHORIZATION_CODE_ID_TOKEN_ACCESS_TOKEN = "code id_token token"

class Scope(Enum):

OPENID = "openid"

Listing 4.2 Bug in code from proto6749.
def expires_in(self):

return ((now() - self.created) - self.MAX_LIFETIME).seconds

def expired(self):

return self.expires_in < 0

This has assisted us in resolving a bug in the codebase. Listing 4.2 shows an example of a function in
the Session model named expired attempting to call a function expires_in. Upon closer inspection,
it is apparent that the actual behavior would not match the expected behavior; the function itself
would be returned, not the time remaining before the session is considered expired.

Using a type checker such as pyright, it throws a warning since the operation seems to be involving
incompatible types, namely an integer, and a function. The bug can be therefore before it has a
chance of leading to problems, whether during development or deployment.

43

4 Implementation

4.2 Baseline Profile

As covered in Section 2.1.3, the Baseline profile mandates the adherence to several restrictions
aimed at providing several security guarantees. We discuss below how each requirement is to be
fulfilled by the fapi-proto:

Authorization Code Grant

This requirement is straightforward; when choosing the flow as shown in Figure 3.1, the user
chooses the Baseline profile. Since only the Authorization Code Grant of OAuth 2.0 is permitted,
the prototype always executes this flow.

Pushed Authorization Requests only

This was one of the more challenging requirements to be implemented. The lack of libraries for
implementing PAR meant that the entire logic had to be written form scratch, and care was required
if our implementation of PAR is to conform to its specification [37].

Nonetheless, this is achieved by adding another if-else branch to the client. In addition to the flows
already implemented in oauth-proto, the client checks if the selected flow corresponds to the flow.
Helper methods construct the necessary data payloads and sends them to the server in order to
process the Authorization Request. Once that is done, the client redirects the UA to the AS with the
request_uri and the client’s client_id.

Support Rich Authorization Requests

The issue with RAR is that it is highly dependent on the concrete use case of it. Furthermore,
analysis of the codebase has revealed that consent templates, which represent HTML templates
for various scopes of data, e.g., displaying claims when OIDC is in use, include one template for
authorization details Listing 4.3. It seems to be the case that the template involves the use of bank
accounts.

As such, we implement a basic BankAccount Django model with which this information can be
represented. In addition, we add a corresponding Pydantic17 model to enable run-time validation
and parsing of the data.

17https://pydantic-docs.helpmanual.io/

44

https://pydantic-docs.helpmanual.io/

4.2 Baseline Profile

Listing 4.3 Authorization Details Template.
{

"match": {

"authorization_details": {

"type": "account_information",

}

},

"template": """

You are providing '{{ client.name }}' access to the following account information:

Type of requested data: {{ authorization_detail.type }}

Requested Actions:

{% for authorization_request_action in authorization_detail.actions %}

{{ authorization_request_action }}

{% endfor %}

Requested resource servers:

{% for authorization_request_location in authorization_detail.locations %}

{{ authorization_request_location }}

{% endfor %}

Datatypes of requested data:

{% for authorization_request_datatype in authorization_detail.datatypes %}

{{ authorization_request_datatype }}

{% endfor %}

""",

},

Sender-constraining access tokens (ATs)

In order to constrain ATs to the intended clients, we use MTLS. This is achieved by generating an
X.509 certificate along with its private key. To that end, we make use of the tool mkcert18, which
allows the generation of X.509 certificates for development purposes.

One thing to note is that the Certificate Authority (CA) is installed by mkcert in the system trust
store using a special command. This allows Web browsers to trust the certificate presented by the
client to the AS.

18https://github.com/FiloSottile/mkcert

45

https://github.com/FiloSottile/mkcert

4 Implementation

Client Authentication

This is also achieved using MTLS. The original implementation of the prototype, proto6749,
pre-registers the X.509 certificate and binds it to the client Django model. When the AS receives an
Authorization Request either at the PAR Endpoint, Token Endpoint, or Introspection Endpoint and
the client chooses to authenticate itself using MTLS, the AS looks in the PostgreSQL database and
checks whether the transmitted X.509 public certificate matches the pre-registered one.

To validate the client’s possession of the private key corresponding to the X.509 certificate’s public
key, TLS is utilized [5, Section 2.2]. If Proof-of-Possession is demonstrated, the authentication is
considered successful.

Proof Key for Code Exchange

While MTLS binds the AT to the client, PKCE binds the AC. This thwarts attacks where the attacker
steals the AC, since an AT is only issued upon sending the correct Code Verifier.

To that end, there exists a Python library that implements much of the logic needed for PKCE.
pkce19 is a Python module that implements rudimentary functionality such as generating PKCE
parameters. The actual verification on the AS’s side is achieved by a hand-written function existing
from oauth-proto.

Sender-constraining Refresh Tokens

The previous logic in oauth-proto used an AT expiry time equal to 9,999,999 seconds, just below
four months. Furthermore, the expiry of the RT was actually not being checked in the first place.
Since it would only make sense to consider RTs when ATs ever expire, let alone within a short time
window (generally a couple of minutes), we believe this feature is not critical to the understanding of
either the FAPI 2.0 Baseline or Advanced profiles. Nonetheless, it should be mentioned to highlight
the necessity of binding RTs to their intended clients.

redirect_uri in PAR

Previously, clients pre-register their redirect URIs at the AS. However, this is made unnecessary
when pairing PARs with MTLS for client authentication. Since the client authenticates themselves
at the PAR Endpoint, the AS can be sure that the client indeed has control of the redirect URIs
contained in the payload of the PAR.

iss parameter in Authorization Responses

In order to thwart IdP Mix-up attacks, the AS informs the client who is to receive the AC of
their (the AS’s) identity. We modify the respective blocks of code responsible for generating the
Authorization Response URI to reflect this change.

19https://pypi.org/project/pkce/

46

https://pypi.org/project/pkce/

4.3 Advanced Profile

Verifying ATs

The prototype is not intended to exactly mirror every possible real-life scenario. One consequence
of this simplification is the fact that the RS is the same as the AS. With this, the Introspection
Endpoint, while defined, is not made extensive use of, and always returns True whenever an AT is
sent for introspection.

Avoid Using HTTP 307 Response

This is achieved by simply not making use of this redirect, and instead using other status codes for
redirection. We use the HTTP 302 Found status code, which does not elicit the Web browser to
resend the POST parameters of the original request, thus avoiding leaking the RO’s login credentials
to the client.

No Open Redirectors

This requirement is simply fulfilled by ensuring that no redirections are dependent on query
parameters.

4.3 Advanced Profile

The Advanced profile mandates the same requirements on the Baseline, with the addition of JAR
and JARM for non-repudiation purposes. Since no Python libraries offer functionality of either
of these specifications (except for signing using JWS, which is provided by the Python library
python-jose20), we opt to use the same flow we wrote for the Baseline profile, using a simple
Boolean flag to determine whether the extensions for the Advanced profile are to be used.

20https://pypi.org/project/python-jose/

47

https://pypi.org/project/python-jose/

5 Conclusion

The output prototype deals with the demonstration of the FAPI 2.0. To achieve this, an existing
prototype focused on OAuth 2.0 and OIDC was extended to support the Baseline and Advanced
profiles. A demonstration using the already available Web interface can be executed. Protocol
runs can be downloaded as YAML files using AnnexLang as markup, which allows for export
into LaTeX. In addition to the end-user’s perspective, software and API developers can inspect the
codebase and make use of the extensive documentation to gain a clearer picture of how FAPI 2.0
works, which should assist them when integrating the FAPI into their own organizations. In addition,
several improvements presented and implemented in the software should serve as a compass for
development and emphasize the need for guidelines on architecture and usage of toolchains which
support the software development process.

49

Bibliography

[1] 12. Virtual Environments and Packages — Python 3.9.4 Documentation. url: https:
//docs.python.org/3/tutorial/venv.html (visited on 05/02/2021) (cit. on p. 36).

[2] 307 Temporary Redirect - HTTP | MDN. url: https://developer.mozilla.org/en-
US/docs/Web/HTTP/Status/307 (visited on 04/26/2021) (cit. on p. 26).

[3] Auth0. Confidential and Public Applications. Auth0 Docs. url: https://auth0.com/docs/
(visited on 04/24/2021) (cit. on p. 20).

[4] “Bitcoin - Open Source P2P Money”. In: (Mar. 2021). url: https://bitcoin.org/en (cit. on
p. 15).

[5] J. Bradley, B. Campbell, T. Lodderstedt, N. Sakimura. OAuth 2.0 Mutual-TLS Client
Authentication and Certificate-Bound Access Tokens. url: https://tools.ietf.org/html/
rfc8705 (visited on 05/03/2021) (cit. on pp. 28, 46).

[6] J. Bradley, N. Sakimura, M. Jones. JSON Web Signature (JWS). url: https://tools.ietf.
org/html/rfc7515 (visited on 04/27/2021) (cit. on pp. 27, 31).

[7] J. Bradley, N. Sakimura, M. Jones. OAuth 2.0 Authorization Server Metadata. url: https:
//tools.ietf.org/html/rfc8414 (visited on 04/26/2021) (cit. on pp. 26, 28).

[8] J. Bradley, N. Sakimura, M. B. Jones. JSON Web Token (JWT). url: https://tools.ietf.
org/html/rfc7519 (visited on 05/02/2021) (cit. on p. 31).

[9] B. Campbell, T. Lodderstedt, J. Richer. OAuth 2.0 Rich Authorization Requests. url:
https://tools.ietf.org/html/draft-ietf-oauth-rar-03 (visited on 05/02/2021) (cit. on
p. 30).

[10] D. Dolev, A. Yao. “On the Security of Public Key Protocols”. In: IEEE Transactions on
Information Theory 29.2 (Mar. 1983), pp. 198–208. issn: 1557-9654. doi: 10.1109/TIT.
1983.1056650 (cit. on p. 31).

[11] Draft-02: Financial-Grade API: JWT Secured Authorization Response Mode for OAuth 2.0
(JARM). url: https://openid.net/specs/openid-financial-api-jarm-ID1.html#terms-
and-definitions (visited on 04/27/2021) (cit. on p. 27).

[12] M. Erdemann. “Eine prototypische Protokollimplementierung des OAuth 2.0 Protokolls mit
Demonstration von Angriffen”. In: (2020). In collab. with U. Stuttgart, U. Stuttgart. doi:
10.18419/OPUS-11358. url: http://elib.uni-stuttgart.de/handle/11682/11375 (visited on
04/25/2021) (cit. on pp. 16, 31, 33).

[13] FAQ: General | Django Documentation | Django. url: https://docs.djangoproject.com/
en/3.2/faq/general/#django-appears-to-be-a-mvc-framework-but-you-call-the-

controller-the-view-and-the-view-the-template-how-come-you-don-t-use-the-

standard-names (visited on 04/28/2021) (cit. on p. 33).

51

https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/307
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/307
https://auth0.com/docs/
https://bitcoin.org/en
https://tools.ietf.org/html/rfc8705
https://tools.ietf.org/html/rfc8705
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc8414
https://tools.ietf.org/html/rfc8414
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/draft-ietf-oauth-rar-03
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://openid.net/specs/openid-financial-api-jarm-ID1.html#terms-and-definitions
https://openid.net/specs/openid-financial-api-jarm-ID1.html#terms-and-definitions
https://doi.org/10.18419/OPUS-11358
http://elib.uni-stuttgart.de/handle/11682/11375
https://docs.djangoproject.com/en/3.2/faq/general/#django-appears-to-be-a-mvc-framework-but-you-call-the-controller-the-view-and-the-view-the-template-how-come-you-don-t-use-the-standard-names
https://docs.djangoproject.com/en/3.2/faq/general/#django-appears-to-be-a-mvc-framework-but-you-call-the-controller-the-view-and-the-view-the-template-how-come-you-don-t-use-the-standard-names
https://docs.djangoproject.com/en/3.2/faq/general/#django-appears-to-be-a-mvc-framework-but-you-call-the-controller-the-view-and-the-view-the-template-how-come-you-don-t-use-the-standard-names
https://docs.djangoproject.com/en/3.2/faq/general/#django-appears-to-be-a-mvc-framework-but-you-call-the-controller-the-view-and-the-view-the-template-how-come-you-don-t-use-the-standard-names

Bibliography

[14] D. Fett. Danielfett/Annexlang. Oct. 30, 2020. url: https://github.com/danielfett/
annexlang (visited on 05/02/2021) (cit. on p. 37).

[15] D. Fett. Danielfett/Proto6749. Jan. 9, 2020. url: https://github.com/danielfett/proto6749
(visited on 04/25/2021) (cit. on p. 33).

[16] D. Fett. How (Not) to Use OAuth - Danielfett.De. url: https://danielfett.de/talks/2019-
09-24-how-not-to-use-oauth/ (visited on 04/28/2021) (cit. on p. 24).

[17] D. Fett, P. Hosseyni, R. Kusters. “An Extensive Formal Security Analysis of the OpenID
Financial-Grade API”. In: 2019 IEEE Symposium on Security and Privacy (SP). 2019
IEEE Symposium on Security and Privacy (SP). San Francisco, CA, USA: IEEE, May
2019, pp. 453–471. isbn: 978-1-5386-6660-9. doi: 10.1109/SP.2019.00067. url: https:
//ieeexplore.ieee.org/document/8835218/ (visited on 09/21/2020) (cit. on p. 3).

[18] D. Fett, P. Hosseyni, R. Küsters. “An Extensive Formal Security Analysis of the OpenID
Financial-Grade API”. In: 2019 IEEE Symposium on Security and Privacy (SP). 2019 IEEE
Symposium on Security and Privacy (SP). May 2019, pp. 453–471. doi: 10.1109/SP.2019.
00067 (cit. on pp. 5, 28).

[19] D. Fett, R. Küsters, G. Schmitz. “A Comprehensive Formal Security Analysis of OAuth 2.0”.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. CCS ’16. New York, NY, USA: Association for Computing Machinery, Oct. 24,
2016, pp. 1204–1215. isbn: 978-1-4503-4139-4. doi: 10.1145/2976749.2978385. url:
https://doi.org/10.1145/2976749.2978385 (visited on 05/03/2021) (cit. on pp. 26, 28, 31).

[20] D. Fett, R. Küsters, G. Schmitz. “An Expressive Model for the Web Infrastructure: Definition
and Application to the Browser ID SSO System”. In: 2014 IEEE Symposium on Security
and Privacy. 2014 IEEE Symposium on Security and Privacy. May 2014, pp. 673–688. doi:
10.1109/SP.2014.49 (cit. on p. 31).

[21] Final: OpenID Connect Core 1.0 Incorporating Errata Set 1. url: https://openid.net/
specs/openid-connect-core-1_0.html (visited on 04/26/2021) (cit. on pp. 16, 26, 31).

[22] D. Hardt, M. Jones. The OAuth 2.0 Authorization Framework: Bearer Token Usage. url:
https://tools.ietf.org/html/rfc6750 (visited on 04/24/2021) (cit. on p. 22).

[23] D. Hardt <dick.hardt@gmail.com>. The OAuth 2.0 Authorization Framework. url: https:
//tools.ietf.org/html/rfc6749 (visited on 04/26/2021) (cit. on pp. 19, 24, 26, 29).

[24] J. Hildebrand, M. Jones. JSON Web Encryption (JWE). url: https://tools.ietf.org/html/
rfc7516 (visited on 04/27/2021) (cit. on p. 31).

[25] “Home Ethereum.Org”. In: Ethereum (Mar. 2021). url: https://ethereum.org/en (cit. on
p. 15).

[26] S. P. Hosseyni Damabi. “Security Analysis of the OpenID Financial-Grade API”. In: (2018).
In collab. with U. Stuttgart. doi: 10.18419/OPUS-10080. url: http://elib.uni-stuttgart.
de/handle/11682/10097 (visited on 09/18/2020) (cit. on pp. 3, 5).

[27] C.Mainka. “Developing a Security Analysis Tool for OpenID-Based Single Sign-on Systems”.
In: Bachelor thesis, Ruhr-Universität Bochum (2013) (cit. on p. 31).

[28] Mix-Up, Revisited - Danielfett.De. url: https://danielfett.de/2020/05/04/mix-up-
revisited/ (visited on 05/03/2021) (cit. on p. 28).

52

https://github.com/danielfett/annexlang
https://github.com/danielfett/annexlang
https://github.com/danielfett/proto6749
https://danielfett.de/talks/2019-09-24-how-not-to-use-oauth/
https://danielfett.de/talks/2019-09-24-how-not-to-use-oauth/
https://doi.org/10.1109/SP.2019.00067
https://ieeexplore.ieee.org/document/8835218/
https://ieeexplore.ieee.org/document/8835218/
https://doi.org/10.1109/SP.2019.00067
https://doi.org/10.1109/SP.2019.00067
https://doi.org/10.1145/2976749.2978385
https://doi.org/10.1145/2976749.2978385
https://doi.org/10.1109/SP.2014.49
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7516
https://ethereum.org/en
https://doi.org/10.18419/OPUS-10080
http://elib.uni-stuttgart.de/handle/11682/10097
http://elib.uni-stuttgart.de/handle/11682/10097
https://danielfett.de/2020/05/04/mix-up-revisited/
https://danielfett.de/2020/05/04/mix-up-revisited/

Bibliography

[29] Openid / Fapi / FAPI_2_0_Advanced_Profile.Md — Bitbucket. url: https://bitbucket.
org/openid/fapi/src/94d45dd8fe34471d46a59f822974a472332c288d/FAPI_2_0_Advanced_

Profile.md?at=master (visited on 04/27/2021) (cit. on p. 27).

[30] Openid / Fapi / FAPI_2_0_Attacker_Model.Md — Bitbucket. url: https://bitbucket.org/
openid/fapi/src/master/FAPI_2_0_Attacker_Model.md (visited on 05/03/2021) (cit. on
p. 24).

[31] Openid / Fapi / FAPI_2_0_Baseline_Profile.Md — Bitbucket. url: https://bitbucket.
org/openid/fapi/src/977d75a7dea78880d84b675b0a182b29f55a9cef/FAPI_2_0_Baseline_

Profile.md?at=master (visited on 04/26/2021) (cit. on p. 24).

[32] OpenID Connect | OpenID. Aug. 1, 2011. url: https://openid.net/connect/ (visited on
04/26/2021) (cit. on p. 16).

[33] “Payment Services (PSD 2) - Directive (EU) 2015/2366”. In: European Commission -
European Commission (Dec. 2016). url: https://web.archive.org/web/20210328165231/
https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en

(cit. on pp. 3, 5, 15).

[34] PEP 8 – Style Guide for Python Code. Python.org. url: https://www.python.org/dev/peps/
pep-0008/ (visited on 05/03/2021) (cit. on p. 40).

[35] J. Richer <jricher@mitre.org>. OAuth 2.0 Token Introspection. url: https://tools.ietf.
org/html/rfc7662 (visited on 04/26/2021) (cit. on pp. 22, 26).

[36] N. Sakimura, J. Bradley, M. Jones. The OAuth 2.0 Authorization Framework: JWT Secured
Authorization Request (JAR). Internet-draft draft-ietf-oauth-jwsreq-30. Internet Engineering
Task Force / Internet Engineering Task Force. 35 pp. url: https://datatracker.ietf.org/
doc/html/draft-ietf-oauth-jwsreq-30 (cit. on p. 27).

[37] N. Sakimura, F. Skokan, T. Lodderstedt, B. Campbell, D. Tonge. OAuth 2.0 Pushed Autho-
rization Requests. url: https://tools.ietf.org/html/draft-ietf-oauth-par-05 (visited on
05/02/2021) (cit. on pp. 29, 44).

[38] K. Selden. Re: [OAUTH-WG] Refresh Tokens. url: https://mailarchive.ietf.org/arch/
msg/oauth/vSmJ0zjQzZFjeFbRz_qpvjfpAeU/ (visited on 05/03/2021) (cit. on p. 19).

[39] K. zu Selhausen, D. Fett. OAuth 2.0 Authorization Server Issuer Identifier in Authorization
Response. url: https://tools.ietf.org/html/draft-ietf-oauth-iss-auth-resp-00
(visited on 05/03/2021) (cit. on p. 28).

[40] Strict Mode - JavaScript | MDN. url: https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Strict_mode (visited on 05/01/2021) (cit. on p. 35).

[41] Terminology Reference. OAuth 2.0 Simplified. url: https://www.oauth.com/oauth2-
servers/definitions/ (visited on 04/24/2021) (cit. on p. 20).

[42] The Problem with OAuth for Authentication. url: http://www.thread-safe.com/2012/01/
problem-with-oauth-for-authentication.html (visited on 04/24/2021) (cit. on p. 22).

[43] F. Valsorda. FiloSottile/Mkcert. May 3, 2021. url: https://github.com/FiloSottile/mkcert
(visited on 05/04/2021) (cit. on p. 34).

53

https://bitbucket.org/openid/fapi/src/94d45dd8fe34471d46a59f822974a472332c288d/FAPI_2_0_Advanced_Profile.md?at=master
https://bitbucket.org/openid/fapi/src/94d45dd8fe34471d46a59f822974a472332c288d/FAPI_2_0_Advanced_Profile.md?at=master
https://bitbucket.org/openid/fapi/src/94d45dd8fe34471d46a59f822974a472332c288d/FAPI_2_0_Advanced_Profile.md?at=master
https://bitbucket.org/openid/fapi/src/master/FAPI_2_0_Attacker_Model.md
https://bitbucket.org/openid/fapi/src/master/FAPI_2_0_Attacker_Model.md
https://bitbucket.org/openid/fapi/src/977d75a7dea78880d84b675b0a182b29f55a9cef/FAPI_2_0_Baseline_Profile.md?at=master
https://bitbucket.org/openid/fapi/src/977d75a7dea78880d84b675b0a182b29f55a9cef/FAPI_2_0_Baseline_Profile.md?at=master
https://bitbucket.org/openid/fapi/src/977d75a7dea78880d84b675b0a182b29f55a9cef/FAPI_2_0_Baseline_Profile.md?at=master
https://openid.net/connect/
https://web.archive.org/web/20210328165231/https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://web.archive.org/web/20210328165231/https://ec.europa.eu/info/law/payment-services-psd-2-directive-eu-2015-2366_en
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://tools.ietf.org/html/rfc7662
https://tools.ietf.org/html/rfc7662
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwsreq-30
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-jwsreq-30
https://tools.ietf.org/html/draft-ietf-oauth-par-05
https://mailarchive.ietf.org/arch/msg/oauth/vSmJ0zjQzZFjeFbRz_qpvjfpAeU/
https://mailarchive.ietf.org/arch/msg/oauth/vSmJ0zjQzZFjeFbRz_qpvjfpAeU/
https://tools.ietf.org/html/draft-ietf-oauth-iss-auth-resp-00
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://www.oauth.com/oauth2-servers/definitions/
https://www.oauth.com/oauth2-servers/definitions/
http://www.thread-safe.com/2012/01/problem-with-oauth-for-authentication.html
http://www.thread-safe.com/2012/01/problem-with-oauth-for-authentication.html
https://github.com/FiloSottile/mkcert

[44] R.Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, Y. Gurevich. “Explicating SDKs: Uncovering
Assumptions Underlying Secure Authentication and Authorization”. In: 22nd USENIX
Security Symposium (USENIX Security 13). Washington, D.C.: USENIX Association, Aug.
2013, pp. 399–414. isbn: 978-1-931971-03-4. url: https://www.usenix.org/conference/
usenixsecurity13/technical-sessions/presentation/wang_rui (cit. on p. 22).

[45] X.509 Certificates. url: https://docs.oracle.com/javase/8/docs/technotes/guides/
security/cert3.html (visited on 05/03/2021) (cit. on p. 28).

[46] F. Yang, S. Manoharan. “A Security Analysis of the OAuth Protocol”. In: 2013 IEEE
Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM).
2013 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing
(PACRIM). Aug. 2013, pp. 271–276. doi: 10.1109/PACRIM.2013.6625487 (cit. on p. 31).

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/wang_rui
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/wang_rui
https://docs.oracle.com/javase/8/docs/technotes/guides/security/cert3.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/cert3.html
https://doi.org/10.1109/PACRIM.2013.6625487

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Foundations & Related Work
	2.1 Foundations
	2.2 Related Work

	3 Analysis of Existing Prototype
	3.1 Existing Prototypes
	3.2 Rooms for Improvement
	3.3 Happy Path

	4 Implementation
	4.1 Setting up the Development Environment
	4.2 Baseline Profile
	4.3 Advanced Profile

	5 Conclusion
	Bibliography

