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Vorwort

»Du meine Güte«, staunte Smeik. »Was ist das denn?«
[. . . ]

»Nichts.«
»Wie: nichts?«

»Es ist nichts von Bedeutung«
[. . . ]

»Raus mit der Sprache, Doktor – was ist das?«
»Das ist, äh, eine Doktorarbeit.«

»Eine Doktorarbeit?« lachte Smeik. »Jetzt bin ich aber erleichtert. Ich dachte schon,
es sei eine schreckliche Krankheit.«

»Das ist eine Doktorarbeit gewissermaßen auch.«1

Zum schlussendlich erfolgreichen Abschluss meiner Promotion haben viele Menschen
einen wertvollen Beitrag geleistet. Mein besonderer Dank gilt Cristina Tarín für
die angenehme Betreuung meiner Arbeit, ihre Wertschätzung und das mir entge-
gengebrachte Vertrauen. Ohne Ihre Kompromissbereitschaft und Ihr offenes Ohr bei
Schwierigkeiten gäbe es diese Doktorarbeit nicht. Auch Oliver Sawodny danke ich
für die Ermöglichung von Teilzeit, die Wertschätzung meines Beitrags zum SFB und
seinen Einsatz für ein Gemeinschaftsgefühl am Institut. Paul Kotyczka danke ich
für die Übernahme des Mitberichts, die gründliche Lektüre meiner Arbeit und das
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Abstract

Responsible for a major amount of global waste production, greenhouse gas emission,
energy and resource consumption, the construction sector is far from being considered
a green industry. To reduce its future environmental impact, it is of utmost importance
to save materials and energy on construction of new structures. Adaptive structures
constitute a novel technological remedy that enables crossing the limits of classical
lightweight construction. With the ability of an adaptive structure to change its shape
or structural properties in reaction to external loads, it can utilize the load-carrying
capacity of its elements in a near-optimal way. This requires, however, active and
reliable control of the state of the structure – in this context its deformation and
vibrations – which is considered a challenging task.

This thesis is concerned with two associated problem complexes. On the one hand,
suitable dynamic modeling of adaptive structures and on the other hand, approaches for
state estimation as a prerequisite for control. For system description, the theory of port-
Hamiltonian systems is employed. Due to its modularity, the energy-based approach
is especially suitable for complex systems of heterogeneous nature. The systems also
exhibit convenient properties that can be exploited for both state estimation and
control. Regarding the state estimation problem, a decentralized approach with local
observers is proposed.

Port-Hamiltonian modeling of adaptive structures begins with the introduction of
models for structural components. This includes the classical beam elements as
well as a disk and plate element for two-dimensional continua. The coupling of
hydraulic actuators with the mechanical structure is also discussed. For the spatial
discretization of the infinite-dimensional systems, the structure-preserving partitioned
finite element method (PFEM) is employed and compared to classical FEM. In order
to automatically assemble complex system from individual elements, a port-based
approach is introduced that works with algebraic constraints.

Decentralization of the observers for state estimation is conducted on the level of
the dynamic models. If a system model of the overall structure is available, local
models can be derived from it by means of transformations. Otherwise, decentralized
structures can also be composed of individual modules, without the need to know the
global system model in advance. In both cases, Luenberger observers can be designed
for local state estimation in a way that the observers themselves constitute a port-
Hamiltonian system. The presented methods are assessed and compared to each other
with the help of simulation models of adaptive structure and using an experimental
platform that represents a scaled version of an adaptive high-rise building.

Aim of this thesis was to demonstrate and harness the potential of energy-based
methods for the application to adaptive structures. With the presented methods and
approaches, an appropriate basis was successfully developed, which can be consequently
built on.
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Kurzfassung

Das Bauwesen ist verantwortlich für einen erheblichen Anteil am weltweiten Massen-
müllaufkommen, CO2-Ausstoß, Energie- und Ressourcenverbrauch. Um dem entge-
genzusteuern, ist es von entscheidender Bedeutung, beim Bau neuer Strukturen mit
weniger Material und Energie auszukommen. Adaptive Strukturen stellen einen neuen
technologischen Lösungsansatz dar, welcher es ermöglicht die Grenzen des klassischen
Leichtbaus zu überschreiten. Indem ein adaptives Tragwerk seine Form oder struk-
turellen Eigenschaften an wechselnde äußere Lasten anpasst, kann die Tragfähigkeit der
Strukturelemente nahezu optimal ausgenutzt werden. Dafür ist jedoch eine aktive und
zuverlässige Regelung des Gebäudezustands – hier Verformungen und Schwingungen
des Tragwerks – notwendig, was eine besondere Herausforderung darstellt.

In der vorliegenden Arbeit werden zwei zugehörige Problematiken thematisiert. Zum
einen geeignete dynamische Modellierung adaptiver Tragwerke und zum anderen, die
für die Regelung erforderliche Schätzung des Systemzustands. Zur Systembeschreibung
wird die Port-Hamilton-Modellierung eingesetzt. Der energiebasierte Ansatz eignet
sich durch seine Modularität besonders für komplexe Systeme heterogener Natur und
weist günstige Eigenschaften für den Regler- und Beobachterentwurf auf. Bezüglich
der Zustandsschätzung wird ein dezentraler Ansatz mit lokalen Beobachtern verfolgt.

Zunächst werden verteilparametrische Port-Hamilton-Modelle für Tragwerkskomponen-
ten adaptiver Strukturen vorgestellt. Dazu gehören Balkenmodelle und ein Scheiben-
und Plattenmodell für zweidimensionale Kontinua. Weiterhin wird auf hydraulis-
che Aktorik und deren Kopplung mit der mechanischen Struktur eingegangen. Zur
Ortsdiskretisierung der unendlichdimensionalen Systeme wird die strukturerhaltende
partitionierten Finite-Elemente-Methode (PFEM) angewandt und ein Vergleich mit
klassischer FEM angestellt. Um automatisch komplexe Systeme aus Einzelelementen
zusammenzusetzen, wird ein Port-basierter Ansatz vorgestellt.

Die Dezentralisierung der Zustandsschätzung erfolgt auf Basis der dynamischen Mod-
elle. Ist ein Systemmodell der Gesamtstruktur vorhanden, können lokale Modelle
mittels Transformation von diesem abgeleitet werden. Andererseits können dezentrale
Strukturen auch aus Einzelmodulen aufgebaut werden, ohne dass ein Gesamtsystem
bekannt ist. In beiden Fällen können lokale Luenberger-Beobachter so entworfen
werden, dass diese ebenfalls Port-Hamilton-Systeme darstellen. Die Methoden werden
sowohl mit Simulationsmodellen, als auch anhand einer Experimentalplattform, welche
eine skalierte Version eines adaptiven Hochhaustragwerks darstellt, überprüft und
miteinander verglichen.

Ziel dieser Arbeit war es, das Potential energiebasierter Methoden für die Anwendung
auf adaptive Strukturen aufzuzeigen und nutzbar zu machen. Mit den vorgestellten
Ansätzen und Methoden wurde erfolgreich eine entsprechende Basis geschaffen, auf
die konsequent weiter aufgebaut werden kann.
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1 Introduction

1.1 General context and motivation

Scarcity of resources and pollution of the environment are pressing issues related to both
technological development and the growth in global human population. Construction
industry is responsible for a major amount of energy and resource consumption and
contributes heavily to waste production and greenhouse gas emission [5, 35, 89, 127].
At the same time, development and implementation of new technologies to address
these problematic aspects have been comparatively limited in this sector [12]. An
increasing tendency for the occurrence of catastrophic incidents, such as heat waves,
flooding or hurricanes, further aggravates the situation and calls for timely reactions.
Both in terms of technology, as in terms of radically new conceptions of how urban
development is to take place in the future.

A key in reducing the environmental impact of the built environment is to lower its
embodied energy, i. e. the energy required for the production of construction materials
and during the construction process [22]. As energy and resource demand for building
operation decrease, this will become increasingly relevant. Developing lightweight
construction is a logical consequence of this observation. The limits of classical
lightweight construction are dictated by the required stability of the building in face
of extreme loads. This is especially problematic for high-rise structures.

Introducing adaptive structures that can react to a changing environment and to
loads of varying characteristics is an effective means to push these limits, enabling
ultra-lightweight construction [119]. With the ability to actively manipulate structural
properties (e. g. stiffness, length or damping), an adaptive structure can utilize the
load-bearing capability of its elements in a near-optimal way. This new type of
ultra-lightweight construction therefore does not rely on specialized materials or shape
and topology optimization, but on the adaptivity itself. While this requires more
operational energy, the technology comes with a big potential to reduce both embodied
and whole-life energy. The taller or more slender a building or the wider the span of
structure, the more monetary cost can be saved when building the adaptive version
instead of the passive one [115]. Similar projections are made with respect to the
negative environmental impact.

As it is the case for most promising technologies, the conception, design and imple-
mentation of adaptive structures brings forth many challenges. Among the most
relevant ones is efficient and, above all, reliable structural control. Especially the
active manipulation of the load distribution requires knowledge of the state of the
structure, i. e. its deformation and velocity, in real-time. A considerable amount of
integrated and external sensors are needed for the accurate state estimation of an
adaptive structure. For large-scale structures, these are distributed over considerable
physical distances. The requirements for control go beyond those of e. g. structural
health-monitoring [45] for damage detection and lifespan extension. Rather than
extracting statistical features from measurement data collected over relatively long
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1.1 General context and motivation

periods of time, the use of real-time data for model-based reconstruction of the system
state is the matter of interest.

The more complex and the larger a structure, the more expedient it becomes to
break it down into modules of smaller size. Instead of processing sensor data and
computing the control input on a central unit, these operations can then be handled
in a decentralized manner. One major advantage of a decentralized approach is its
modularity. Complex functions can be realized by combining simple units, analogous
to the cells in a human body forming tissues and entire organs. This makes it easier to
introduce redundancies, reuse, exchange and recycle modules, opening up possibilities
for truly flexible designs. Accessing only physically close sensors and actuators reduces
the amount of data that needs to be transferred and thereby potentially also complexity
and cost. Modules may also be interconnected for networked operation.

Design, conceptualization, construction and operation of adaptive structures require a
much closer collaboration between architects and engineers than usual and involve a
higher number of engineering disciplines. Model-based state estimation and control of
these structures requires dynamic simulation models with components from different
domains (think of e. g. smart materials, hydraulic or piezoelectric actuators). However,
each discipline or domain developed its own specific terminology and set of tools,
which makes interdisciplinary modeling a demanding task.

Energy-based approaches for modeling and control were developed with heterogeneous
and complex systems in mind. Dynamic processes in physical systems are governed
by the exchange, conversion and dissipation of energy – regardless of their domain.
Recognizing this fact allows for a unified and domain-independent description in which
energy acts as the lingua franca. In port-based modeling, individual elements of a
system are interconnected at power ports, through which they can exchange energy in
terms of power flows. The theory of port-Hamiltonian systems combines these ideas
with powerful concepts from other engineering disciplines. A port-Hamiltonian system
is passive by definition, i. e. its energy can only be increased via external supply of
power and is otherwise conserved or dissipated. This property can be exploited for
control.

Thus, coming back to adaptive structures, port-Hamiltonian systems offer ways to deal
with the outlined problems resulting from interdisciplinary and complexity. Within
the energy-based formulation, different physical domains (e. g. electrical, mechanical
or thermodynamic) can be handled in the same way. Conservation of favorable system
properties, such as passivity, on interconnection makes for a modular approach that is
suitable for robust decentralized state estimation and control.

3



1 Introduction

1.2 The CRC 1244

This thesis is a product of work in the collaborative research center 1244 (CRC 1244)
“adaptive skins and structures for the built environment of tomorrow”, financed by the
German research foundation (Deutsche Forschungsgemeinschaft, DFG)1. Since the
CRC 1244 is occasionally referenced in the following, it shall be briefly introduced here.
The project is an interdisciplinary collaboration of fourteen different institutes located
at the University of Stuttgart. Further collaboration partners are the Fraunhofer
Institute for Building Physics (IBP) and two architecture professorships in the cities
of Hamburg and Bremen. A network of ties to numerous researchers worldwide fosters
the international proliferation of the developments in the CRC.

The CRC 1244 constitutes four principal areas of research that are further divided
into numerous sub-projects:

A) Design and planning methodology

B) System technology and design

C) Integrative components

D) Economic and ecological aspects

It is also endeavored to excite public interest and a discussion of the ideas beyond
a scientific context. For this purpose, a high-rise demonstrator is being constructed
on campus of the University of Stuttgart with the intention to present the results
of the project to a broader audience. The demonstrator is introduced in detail in
Chapter 8. This thesis is mainly situated in area “B”, but also contributes to “A”
and “C”. Modeling and control of adaptive skins is not considered, as this would go
beyond the scope of this work. However, transfer of the methods to adaptive skins is
considered both possible and expedient.

1.3 Aim and focus of this thesis

Aim of this thesis is to pave a way for energy-based methods – in particular port-
Hamiltonian systems theory – in the emerging field of adaptive structures. The two
main topics covered in the following are the modeling of these complex and heteroge-
neous structures on the one hand and methods for decentralized state estimation on
the other. This provides a solid basis for active structural control with the powerful
framework of port-Hamiltonian systems at ones disposal.

While many of the aspects and approaches covered in this thesis are certainly original,
an equally important goal was to show which existing methods are suitable for the

1Project homepage: https://www.sfb1244.uni-stuttgart.de/en/
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1.4 State of the art

purpose at hand. Rather than focusing entirely on the development of new methods,
available methods are assessed and expanded in the specific context of adaptive
structures.

Based on the experience of working in an interdisciplinary project, it is refrained
from attempting to generalize the approaches as much as possible and from using
mathematical language specific to certain disciplines. Instead, the mathematical
content is presented in a preferably easily understandable and accessible way. Well-
established methods from other disciplines such as the finite element method (FEM)
are referenced when appropriate and compared to port-Hamiltonian approaches.
References to more specific works that demand a certain background are, however,
also frequently provided for those striving to delve deeper. The author hopes that
this encourages and eases an exchange between collaborating scientists and engineers
from different disciplines.

1.4 State of the art

As different topics are covered in this thesis, the review of the state of the art is
divided into several sections. Firstly, past and recent developments in the fields of
active structural control and adaptive structures are presented in Section 1.4.1. This
is complemented by an overview of decentralized state estimation in this context in
Section 1.4.2. In Section 1.4.3, the origins of port-Hamiltonian systems theory and its
development and emerging application areas up to the time this thesis was written
are summarized. Finally, a brief conclusion is drawn, highlighting where potential for
further development is seen.

1.4.1 Active and adaptive structural control

The concept of control of civil structures was first introduced by Yao in the 1970s [141]
as an alternative safety measure. Since then the main research in this area has been
devoted to finding solutions for the protection against extreme load situations such as
earthquakes and storms. Technologies and devices for vibration control are commonly
divided into four categories – passive, active, semi-active and hybrid – according to
the degree to which they can be actively manipulated. Passive systems such as seismic
isolation systems or energy dissipation devices are already well accepted in practice
as means to mitigate structural oscillations [121]. Figure 1.1 shows parts of a base
isolation system and a prominent example of a tuned mass damper (TMD). The latter
is installed in the Taipei 101 building in Taiwan and has a mass of 600 t.

The inability of passive devices to adapt to different loading conditions or structural
changes led to the investigation of active devices such as electromagnetic or hydraulic
actuators, which directly exert forces to counteract critical loads. Systems that have

5



1 Introduction

(a) Base isolation system of an electric con-
verter station in New Zealand [33]

(b) Tuned mass damper installed in the
Taipei 101 tower [32]

Figure 1.1: Examples of passive devices for structural control

been under research to date include the active versions of base isolation and TMDs,
active tendon systems, distributed actuators and active coupled building systems [47,
106]. Practical implementation and acceptance of active structural control approaches
has been hampered by their high power demand and increased system complexity [47,
121].

Semi-active devices combine the advantages of active control with a low energy demand
whereas hybrid systems are combinations of active or semi-active control systems
with passive dampers. Both active and semi-active systems have made it past the
experimental stage with many actual realizations – most of them in Japan [121]. The
Kajima Technical Research Institute was the first full-scale building equipped with a
hydraulic semi-active damping system [77]. Ikeda [63] comments on the effectiveness
of active and semi-active systems installed in Japan and highlights their importance.
An overview over recent developments in Europe is given by Basu et al. [14].

A relatively new area of application for active and adaptive structural control systems
is lightweight construction with the goal to save resources and reduce emissions [119,
120] as described in Section 1.1. Passive dampers or active tuned mass dampers
(ATMDs) can principally be used for this purpose, but their effectiveness is limited,
because they add additional weight to the structure. Instead, the development of
novel active control concepts as well as the manipulation of static structural properties
(e. g. stiffness) is required for this use case. The latter constitutes a less developed
field of research [70].

An early example is a study of Noak et al. [96], where the stiffness of a steel beam
is actively controlled by a hydraulic actuator. Control of the flexural stiffness of
multi-layer beams is studied by Gandhi and Kang [48]. The stiffness of polymer layers
changes with temperature. The same effect is achieved with electroactive polymers in
[58]. Bleicher et al. [16] use pneumatic muscles to control the vibration of a lightweight
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footbridge. Another lightweight bridge structure was developed by Senatore et al.
[116]. It spans a length of 6 m and its stiffness can be actively manipulated using
electro-mechanical actuators. Neuhaeuser et al. [94] introduced a full-scale prototype
of an adaptive shell structure where the bearing reaction can be controlled with
hydraulic actuators. The CRC 1244 endeavors the construction of the first full-scale
adaptive high-rise structure equipped with hydraulic actuators and adaptive facade
elements on campus of the University of Stuttgart [138].

1.4.2 Decentralized observers for civil structures

As the complexity or the physical size of systems increases, at a certain point it
becomes infeasible to estimate their state using a central processing unit. Think of
power networks, automation of large process plants or ecosystems. Individual units
operate on different time scales and can, for the most part, perform specific subtasks
independently. On that account, decentralized methods for state estimation and
control have been developed since the late 60s [107]. This led to the emergence of a
large variety of methods and possible areas of application. A detailed presentation of
all the contributions to date cannot be given here, which is why the focus is narrowed
down to decentralized state estimation of large-scale civil structures. Nevertheless, a
brief overview of some of the most important developments is given in the following
with the intention of relating this specific field to the bigger picture.

One major line of developments stems from classical and robust control theory where
decentralized control rather than state estimation is the main concern. Decentralized
observers appear as the dual problem or as integral part of the control design in
observer-based controllers. Bakule summarized important contributions in this field in
a survey paper [7]. Distinct strategies were developed for systems that admit disjoint
decompositions (i. e. subsystems do not share state variables) as opposed to systems
with stronger physical coupling. Concerning the latter case, Ikeda et al. [62] pioneered
decentralized control by overlapping decomposition. An in-depth treatise of both
approaches is given in a textbook by Šiljak [117]. The increase of computer processing
power enabled the emergence of optimal control techniques such as H2- or H∞-control
[123] with many applications in decentralized control [7]. Networked estimation and
control arose as a parallel development where subsystem interconnections are explicitly
taken into account, considering non-idealities such as delays and communication faults
[8, 59]. This gave rise to the notions of distributed estimation and control, event-based
or event-driven strategies and multi-agent systems.

At this point, the approaches intermingle with another line of developments – decen-
tralized data fusion – that is explicitly concerned with the state estimation problem.
Prominent applications are the tracking of moving objects or the navigation problem
in robotics using information from a multitude of (physically distributed) sensors.
Introductory material is e. g. available by Durrant-Whyte and Henderson [39] and
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Bar-Shalom and Li [11]. An extensive review of the field is given by Khalegi et al.
[68]. Notable examples are the development of distributed and decentralized versions
of the Kalman filter, as proposed e. g. by Mutambara [92], consensus filtering [99] and
covariance intersection techniques [67] to name only a few. Many of these approaches
are tailored to systems of low dimensionality [69], which renders them less suitable for
the state estimation of large-scale civil structures with strong physical coupling.

Applications of decentralized data fusion methods in civil engineering are mostly
confined to the problem of structural health monitoring using wireless sensor networks
[15, 64, 82, 93, 95, 118]. Fewer research is committed to decentralized state estimation
for active and adaptive structural control. This is attributed to the relative novelty
of the field and the lack of actual practical implementations of such structures – as
previously stated in Section 1.4.1.

Most available methods were developed for a variety of benchmark problems [98, 122]
designed by the American society of civil engineers (ASCE) and the structural engineers
association of California (SAC). Lei et al. [79] propose decentralized observers for a 20-
story benchmark building by using disjoint substructure models and modified Kalman
filters for the estimation of interconnection forces. Bakule et al. apply decentralized
linear quadratic Gaussian (LQG) control to the same structure using disjoint system
decomposition [9], overlapping decomposition [6] and a networked approach with
switched observer-based controller systems [10]. The use of Luenberger observers for
decentralized state estimation is studied by Amini et al. in [2]. A different benchmark
structure is introduced by Loh et al. in [81]. They study decentralized wireless sensing
and LQG control of a three-story structure equipped with magnetorheological (MR)
dampers. Ghasemi et al. [50] propose to use collocated sensor-actuator pairs for
decentralized structural control, which does not require any observer. Their test setup
consists of a cantilever beam with piezoelectric actuators and strain gauge sensors.

1.4.3 Port-Hamiltonian systems

Port-Hamiltonian systems were first introduced by Maschke and van der Schaft in
the early 90s [87] as a generalization of classical Hamiltonian systems. By drawing on
ideas from port-based modeling as proposed by Paynter in the late 50s [101], several
powerful concepts from electrical network modeling, geometric mechanics and system
and control theory were interwoven into the approach. Recognizing energy and power
as the natural means of exchange between systems from different physical domains,
port-Hamiltonian systems are well suited for the modeling of multi-physics systems.
Energy also plays an important role in nonlinear control, where it can be exploited to
find robust and physically interpretable control laws [109]. The Hamiltonian, i. e. the
energy of a port-Hamiltonian system, can be used to find suitable candidates for a
Lyapunov function. Port-Hamiltonian systems theory provides tools for the shaping of
both energy-storage and dissipation and also the incorporation of controller as virtual
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system components [100]. It has been extended to the thermodynamical domain [40]
and also to account for systems with memory [66].

Since its introduction, the port-Hamiltonian approach has been used for modeling a
wide variety of systems. First application examples were LC-circuits [88] and switching
power converters [42]. Systems from other domains, such as robotic manipulators [114],
hydraulic actuators [73] or the continuous stirred-tank reactor [103], soon followed.
Power-networks [46] and multi-carrier energy systems [125] as well as audio circuits
[43] or even the vocal fold [41] are some of the more recent examples. This illustrates
the increasing popularity of port-Hamiltonian theory for dealing with complex systems
and that it constitutes a powerful tool for engineers working in a multi-disciplinary
field.

The contributions listed so far are all examples of lumped parameter systems. Treating
distributed parameter systems within the port-Hamiltonian framework requires an
extension of the theory, which is why they can be considered a separate, but closely
connected field of research. Since the majority of systems presented in this thesis are
governed by infinite-dimensional equations, an overview of the developments regarding
distributed parameter port-Hamiltonian systems is provided in the subsequent.

Distributed Parameter Port-Hamiltonian Systems

Van der Schaft and Maschke presented first extensions of their approach to distributed
parameter systems in the early 2000s [108]. The field of infinite-dimensional systems
has been growing ever since. For an introductory treatment see e. g. [109] or [37].
Zwart and Jacob give a detailed treatise of linear distributed parameter systems
on one-dimensional spatial manifolds [142]. Boundary control methods were soon
introduced for infinite-dimensional port-Hamiltonian (see e. g. [78]) and have received
much attention lately.

Macchelli et al. presented boundary control of the Timoshenko beam [83] and the
modeling of piezoelectric materials [85] as distributed parameter port-Hamiltonian
systems. Control by energy shaping and interconnection was studied in [57] where
boundary control is applied to the shallow water equations. Recently, an increase
in more complex application examples can be observed. Wu et al. [140] presented
the control of a nanotweezer. Falaize et al. [44] contributed with the nonlinear
modeling of a Rhodes piano. A port-Hamiltonian model of plasma dynamics in
fusion reactors (Tokamaks) was developed by Vu et al. [129] and later extended to
plasma profile control [130]. Vincent et al. [128] studied the dual problem of plasma
profile estimation. The problem of describing liquid sloshing in moving containers,
which is relevant for aircraft control, was addressed by Cardoso-Ribeiro et al. [128].
Altmann et al. [1] introduced port-Hamiltonian models for the reactive flow in turbines.
Recently, an open-source library for modeling heat transfer in open cell foams using a
port-Hamiltonian approach was developed by Scheuermann et al. [110].
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The list of examples could be further continued. In a recent survey, Rashad et al. [104]
give a detailed overview of the developments in the field of distributed parameter port-
Hamiltonian systems over the past twenty years. They conclude that the framework
is very promising for future applications.

1.4.4 Summary

While currently still mostly in an experimental state, active control systems for
ultra-lightweight construction constitute important tools for a future generation of
buildings. From the list of examples given in Section 1.4.1, it becomes clear that
adaptive structures are heterogeneous systems employing actuators from different
physical domains. Thus, energy-based modeling of such systems is an adequate means
to handle their complexity.

The range of different approaches for decentralized state estimation of large-scale civil
structures is relatively limited to date. Local models are mostly derived by partitioning
a global FE model into disjoint or overlapping substructures. Observers are either of
Kalman or Luenberger type. With a shift of focus from control systems for preventing
damage caused by storms or earthquakes to adaptive structures comes a need for
advanced methods.

Port-Hamiltonian systems theory provides an elegant way for a modular and energy-
based formulation of the dynamics of complex and heterogeneous systems. This
includes nonlinear systems as well as distributed parameter systems from most engi-
neering domains. At the same time, powerful concepts for robust and passivity-based
control are available in the port-Hamiltonian framework that have received a lot of
attention lately. Investing the extra effort that comes with the energy-based formu-
lation is rewarded with a high sustainability potential and access to state-of-the-art
methods.

1.5 Contributions

The contributions of this thesis are as follows:

• Distributed and lumped parameter port-Hamiltonian models for components of
adaptive structures

• Structure preserving discretization with a port-based coupling procedure for
system assembly and comparison to the finite element method

• Bottom-up and top-down approaches for the decentralized state estimation of
large-scale structures
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• Application-oriented approach with practical implementation and provisioning
of supporting software tools1

1.6 Outline

Since it is assumed that the majority of readers is not familiar with port-based physical
modeling and port-Hamiltonian systems, Chapter 2 covers the basic concepts. It starts
with bond graph methodology and then proceeds to port-Hamiltonian systems, ending
with a brief introduction to distributed parameter port-Hamiltonian systems.

Energy-based modeling of the mechanical structure of an adaptive structure is done
in Chapter 3 by expressing the dynamical equations of various basic elements in
port-Hamiltonian form. For the structures considered in this thesis, deformations
are sufficiently small to assume linear elastic behavior. Elements required for truss
structures and frames (e. g. beams and rods) as well as elements for planar structures
(a disk and a plate element) are included.

Chapter 4 deals with the spatial discretization of the systems covered in Chapter 3.
After a review on available structure preserving discretization methods, application of
the one considered most suitable (the partitioned finite element method) is explained
in detail. A comparison to established FEM methodology shows that the approaches
are closely related. Numerical studies of the approximation error are carried out for
each system and the chapter is concluded with a brief comment on time discretization.

The next part, Chapter 5, is concerned with the assembly of complex systems from
simple elements or subsystems in an object-oriented way. Coupling constraints are
generated in an automated way leading to a system of differential algebraic equations.
For linear systems, an explicit representation can be easily obtained by elimination of
constraints. It is also shown that the result can be transformed to the formulation
of a port-Hamiltonian system from the mass and stiffness matrices computed via
conventional FEM.

Due to their ability to exert large forces, hydraulic actuators are among the most
important active elements of adaptive structures. In Chapter 6, port-Hamiltonian
models for hydraulic cylinders are introduced and the response of an adaptive frame
structure to actuation is simulated.

Two different ways to design decentralized observers for large-scale structures are
introduced in Chapter 7. In the top-down approach, local dynamic models are obtained
from a global system representation. The bottom-up variant focuses on modularity,
assuming that a global system model is not known in advance. Coupling thus happens
only at the interfaces with the help of algebraic constraints.

1An open source Matlab framework that was developed in the course of this thesis and comprises
many of the methods introduced in it is available online at https://github.com/awarsewa/ph_fem
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All experimental and numerical studies conducted to assess the performance of the
models and approaches introduced in this thesis are presented in Chapter 8. A variety
of experimental platforms and prototypes were developed in the CRC 1244, which
serve as the application examples. Decentralized observers are tested on a dedicated
laboratory scale test bench (a high-rise mockup) and on a simulation model of the
high-rise demonstrator building being constructed on campus of the University of
Stuttgart.

A short summary of this work with concluding remarks and suggestions for future
developments is given in Chapter 9.
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In the following, a brief introduction to energy-based modeling is given. The basic
principles are introduced and illustrated with the help of the bond graph formalism
in Section 2.1. Generalized components of physical systems are introduced in Sec-
tion 2.2. This makes it easier to introduce port-Hamiltonian systems in Section 2.3
and distributed parameter port-Hamiltonian systems in Section 2.4. Even though they
constitute powerful tools, bond graphs are not further used in the remainder of this
thesis, since this would go beyond its scope. Studying how bond graph models of
adaptive structures can prove beneficial is considered a topic for further work.

2.1 Introduction to port-based physical modeling

In any dynamical physical system, energy is stored, transformed or dissipated –
regardless of its physical domain. Coupling between systems takes place via an
exchange of energy or a power flow. Domain-independent ways of modeling physical
systems are based on these simple but profound observations.

In the bond graph formalism introduced by Paynter, the concept of a power port
is used. Every element in the graph is represented by such a power port and its
interaction with others is symbolized via power bonds [17]. For each physical domain,
a pair of power-conjugate variables is introduced whose product equals power. These
variables are labeled efforts e and flows f such that for each element

P = ef. (2.1)

In the following, the active sign convention is adopted such that P denotes the power
flow out of the element. Breedveld [19] proposed a decomposition of the ‘conventional’
physical domains (i. e. mechanical, electrical, hydraulic) into two separate domains,
which gave rise to the notion of generalized bond graphs (GBGs). This formalism is
adopted here1. Effort and flow variables for each domain are given in Tab. 2.1 along
with commonly used symbols. Note that the state variables x are conveniently chosen
as the energy variables (i. e. the flow variables integrated with respect to time). This
way, they describe the energy accumulated in the system.

Power bonds are represented as edges between elements (nodes) in GBGs as depicted
in Fig. 2.1a. In directed bond graphs, a half-arrow is added on one side of the edge
stroke. It indicates the positive reference direction of the energy flow and is, by
convention, located on the side of the flow variable [17]. A sample bond graph with
elements A and B and their interconnections is shown in Fig. 2.1b.

When deriving a mathematical model from a bond graph, one needs to set up the
constitutive equations of all the elements, which leads to a set of implicit equations.

1See e. g. [17] for a detailed discussion on how generalized bond graphs differ from their ‘traditional’
counterparts.

14



2.1 Introduction to port-based physical modeling

Table 2.1: Physical domains and their variables [37]

physical domain flow f ∈ F effort e ∈ E state variable
x = − ∫

f dt

electric current i voltage u charge q
magnetic voltage u current i magnetic flux

linkage λ
potential transla-
tion

velocity v force F displacement x

kinetic transla-
tion

force F velocity v momentum p

potential rotation angular velocity
ω

torque M angular displace-
ment θ

kinetic rotation torque M angular velocity
ω

angular momen-
tum L

elastic hydraulic volume flow V̇ pressure p volume V

kinetic hydraulic pressure p volume flow V̇ flow tube momen-
tum Γ

thermal temperature T entropy flow Ṡ entropy S
chemical molar flow ṅ chemical poten-

tial μ
number of moles
n

e

f

(a) Directed power bond

A B

(b) Interconnection of two systems in a sample bond graph

Figure 2.1: Power bonds in GBGs. The arrow indicates the positive reference direction
of the energy flow
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e

f

e

f

Figure 2.2: The causal stroke indicates at which end the effort acts as input as indicated
by the signal arrows below

At this point it is not clear, which variables will be the inputs to an equation and
which the outputs. Also, there is no unique solution to this problem. In the bond
graph framework, making a choice is called an assignment of computational causality.
This has many important implications, as detailed e. g. in [17]. Decisions on the
computational causality can be made graphically – before setting up a model – by
adding a so-called causal stroke at one end of a bond. At the port marked this way,
the effort variable acts as an input to the constitutive equations of the element [37].
This is illustrated in Fig. 2.2. Note that the assignment of computational causality
(i. e. the computational structure) is independent of the reference direction of the
energy flows. Once the computational causality has been assigned at all bonds, a
causally completed or simply causal bond graph results [17]. There are several rules for
assigning computational causality, depending on the type of elements connected by a
bond.

For the models presented in the remaining chapters, no bond graph representation
is given. They are directly formulated as port-Hamiltonian systems. Systematic
derivation of port-Hamiltonian system models from bond graphs is e. g. explained in
[36]. Readers that are not familiar with the methodology are encouraged to study the
referenced literature on bond graphs since the line of thought is intimately connected
to port-Hamiltonian systems.

2.2 Basic components of physical systems

Basic elements of physical systems in the GBG formalism can be grouped into five
different categories according to their physical behavior [37]:

• Energy storage

• Supply and demand

• Irreversible transformation
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• Reversible transformation

• Energy distribution

The most important properties and the constitutive equations of elements in these
categories are briefly summarized in the following. More advanced topics, such as
multiports, entropy producing or modulated elements and signal ports, are not covered
in this thesis.

Storage

Storage of energy is not power continuous (i. e. the net power flow into the node does
not equal zero) and must be reversible. Commonly, a differentiation is made between
storage elements of capacitor type (labeled ‘C’) and inertia type (labeled ‘I’) that are
dual to each other. In the GBG framework, due to the decomposition of ‘conventional’
domains, I type storage is not used since it can also be represented with the help of C
type storage. The constitutional equation of C type storage relates the energy variable
to the effort variable as follows

x(t) = Φ(e(t)) and in the linear case x(t) = Ce(t). (2.2)

Reversibility dictates that the function Φ : R → R must have a unique single-valued
inverse Φ−1. For a linear capacitor, the constant coefficient C would be its capacitance
and for a mechanical spring its stiffness. From Tab. 2.1 follows the relation between
flow and energy variable

ẋ(t) = −f(t). (2.3)

Since the product of effort and flow equals power (cf. (2.1)), the energy stored in the
element is obtained as

E(t) = −
∫ t

0
e(τ)f(τ) dτ = −

∫ x

0
Φ−1(x̃) dx̃, (2.4)

assuming that no energy is stored at time t = 0. Although energy stores can be
assigned both computational causalities, there is a preferred choice. If the effort of a
C storage is the output of the constitutional equation (2.2), it can be calculated by
integrating the flow variable with respect to time

e(t) = Φ−1(x(t)) = Φ−1
(

−
∫ t

0
f(τ) dτ

)
. (2.5)

Otherwise, differentiation with respect to time is required to compute the flow variable

f(t) = − d
dt

Φ(e(t)) = −dΦ
de

ė(t). (2.6)
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Equation (2.5) is thus referred to as integral causality and (2.6) as derivative causality
[17]. Integral causality is preferred, since the time derivative of a discontinuous
input to (2.6) would result in jumps of infinite height at the output. Also, if all
storage elements have integral causality assigned, it is often possible to derive explicit
differential equations for a given system. In case of mixed computational causality,
a system of differential algebraic equations (DAEs) results in general, which is more
difficult to handle from a computational point of view.

Supply and demand

Energy sources and sinks can be considered idealized storage elements with a capacity
that is large with respect to the dynamics of the system. As such, they are not
part of the system itself but boundary conditions that describe its interaction with
the environment. Examples of sources and sinks include the gravitational force, the
temperature of the environment or earth (ground) potential in electrical network
modeling. Two types of sources are distinguished, depending on whether they impose
a condition on the flow variable or the effort variable at a given node. Sources of
effort are designated by the symbol ‘Se’ and ‘Sf’ is used for the dual type. Note that
a source can also act as a sink and vice verse. Computational causality is decided on
by the type of the source (since it determines which variable is the output).

Irreversible transformation

Energy cannot actually be lost according to the first law of thermodynamics. However,
if the temperature of a system can be assumed homogeneous and constant over the
time horizon of interest, conversion of other forms of energy into heat can be regarded
as a dissipation of free energy. This defines free energy as the total system energy
minus thermal energy – such that it can be lost. A dissipative element or a generalized
resistor is obtained by establishing a static relation between effort and flow variable

e(t) = −ΦR(f(t)) (2.7)

or alternatively
f(t) = −ΦG(e(t)), (2.8)

where the former is referred to as impedance form and the latter as admittance form.
Both ΦR and ΦG must have a unique, single-valued inverse [17]. In the linear case,
one obtains

e(t) = −Rf(t), R ≥ 0, (2.9)
which e. g. produces Ohm’s law u = −Ri for a linear resistor in the electrical domain.
The minus sign is a consequence of adopting the active sign convention. Dissipative
elements must satisfy the additional constraint

e(t)f(t) ≤ 0, t > 0, (2.10)
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TF

:m
e1

f1

e2

f2

(a) Transformer with modulus m

GY

:r
e1

f1

e2

f2

(b) Gyrator with gyrator ratio r

Figure 2.3: Power conserving two-ports performing energy conversion

where the positive reference direction of the energy flow is away from the element.
Otherwise, the elements would be able to generate power instead of dissipating it.
There are no general rules for assigning the computational causality of resistors.

Reversible transformation

Reversible transformation of energy in GBGs is performed by transformers and
gyrators. Both are power-continuous two-port (in general n-port) elements for which
the power conservation reads

e1f1 = e2f2. (2.11)
A transformer is represented by the symbol ‘TF’, as shown in Fig. 2.3a and has the
following additional constitutive equation

e1(t) = m · e2(t), (2.12)

where the modulus m is a positive real constant. If the efforts e1 and e2 are the
voltages across the element terminals, it describes an ideal electrical transformer –
hence the name. For a mechanical gear pair, with the efforts being velocities, m is the
gear ratio. The relationship between the flow variables results directly from the power
conservation property (2.11)

f2(t) = m · f1(t). (2.13)

In contrast to a transformer, a gyrator establishes a relation between the effort
variable of one terminal and the flow variable of the other. This results in the following
constitutive relations [17]

e1(t) = r · f2(t), (2.14a)
e2(t) = r · f1(t), (2.14b)

in which the power conservation property is included. As depicted in Fig. 2.3b, the
symbol ‘GY’ is used for gyrators with the gyrator ratio r ∈ R, r > 0. Gyrators play
an important role as interfaces between energy domains. For example, the conversion
of electric into magnetic energy in an electrical coil can be represented by a gyrator.

Because transformers and gyrators have more than one port, there are rules for
assigning their computational causality. Since one effort of a transformer acts as the
input, the other must be the output. Gyrators enforce that both efforts are either
inputs or outputs.
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(a) Zero junction or flow junction

1
e1

f1

e2

f2

en fn

(b) One junction or effort junction

Figure 2.4: Power-conserving junctions in the GBG framework

Distribution

One of the most important concepts in the GBG framework is the generalization of
the interconnection structure. Transformers, gyrators and ideal constraints are part of
what is called the generalized junction structure. What is missing, are power conserving
energy distribution nodes with more than two ports. These are called 0-junctions and
1-junctions and may be viewed as domain-independent versions of Kirchhoff’s current
and voltage law. See Figs. 2.4a and b for their graphical representation.

The 0-junction is also referred to as common effort junction because all the efforts at
the node are set to be identical while all flows have to sum up to zero [17]

e1 = e2 = · · · = en, (2.15a)
f1 − f2 − · · · − fn = 0. (2.15b)

Given the efforts are voltages, the second equation is Kirchhoff’s current law. In
the mechanical domain, with the flows being forces, d’Alembert’s principle results.
When the role of efforts and flows is interchanged, the constitutive equations for the
1-junction are obtained

f1 = f2 = · · · = fn, (2.16a)
e1 − e2 − · · · − en = 0. (2.16b)

As previously mentioned, a 1-junction in the electrical domain yields Kirchhoffs’s
voltage law. If one effort of a 1-junction is defined as the output of the element, all
others must be inputs. Consequently, the reverse is true in terms of computational
causality for the 0-junction.

Example – DC motor

Let us study a simple example of a multi-domain system containing elements from
each of the five physical categories introduced in this section. In Fig. 2.5, the circuit
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Figure 2.5: Circuit diagram of a DC motor driving a mechanical load [17]

diagram of a DC motor connected to a mechanical load is depicted. One possible
bond graph representation of this system is given in Fig. 2.6. The example is also
included in different text books, such as [17] and [109].

The shunt motor essentially converts the current ia through its armature into a
mechanical torque Mk. It also performs the reverse action – transforming the rotational
velocity ω of the shaft into a voltage ua. In the bond graph, this is represented by a
gyrator

Mk = k · ia, ua = −k · ω, (2.17)

with torque constant k. Note that the gyrator connects the electrical domain (blue) to
the mechanical domain (red) or rather converts energy between the two. The system
contains two energy storage elements – the ideal inductance La of the armature coil
and the rotor inertia Jm. In a ‘conventional’ bond graph, both would be represented
by I type storage elements. Since those are not available in the GBG formalism, they
are simply replaced by C storage elements connected to a gyrator with ratio r = 1
(a. k. a. symplectic gyrator). Taking the magnetic flux Φ and the angular momentum
L as state variables, the constitutive equations of the stores can be stated as

Φ = La · ia, L = Jm · ω. (2.18)

Energy dissipation is included by means of the electrical resistance Ra of the armature
windings and mechanical friction of the rotor with friction coefficient b such that

uR = −Ra · ia, Mb = −b · ω. (2.19)

Two 1-junctions – one in each domain – connect the elements to each other. On the
electrical side, the junction produces Kirchhoff’s voltage law and on the mechanical
side, d’Alembert’s principle

us + uR + uL + ua = 0, currents are equal, (2.20a)
Mload + Mb + Mk + Mm = 0, rotational velocities are equal. (2.20b)
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Figure 2.6: Causally complete bond graph corresponding to the DC motor in Fig. 2.5.
The electrical domain is highlighted in blue and the mechanical one in red.
Inter-domain coupling takes place via a gyrator

The voltage source us and the mechanical load Mload are considered inputs to the
system. Hence, they are represented by sources in the bond graph. After assigning
integral causality to the storage elements, the computational causality of the rest of
the graph is determined by the rules stated above. In the next section, a dynamical
model of this system in port-Hamiltonian form will be derived.

2.3 Port-Hamiltonian systems

Now that the basic terminology and concepts of energy-based modeling have been
clarified, port-Hamiltonian systems can be introduced in more brevity. Port-Hamilto-
nian systems are dynamical physical systems associated with a geometric structure.
As such, they can be obtained from bond graphs in a natural way, with the dynamics
being defined by the storage and resistive elements and the geometric structure arising
from the generalized junction structure.

Dirac structure

A fundamental concept of port-Hamiltonian system theory is the mathematical for-
mulation of the interconnection structure as a Dirac structure [109]. Let F be the
finite-dimensional linear space of flows with the elements f ∈ F . Then its dual is the
space of efforts denoted E := F∗ with the elements e ∈ E . The combined space F × E
is called the space of port variables. This enables the definition of a Dirac structure
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storage dissipationD
eS

fS

eR

fR

eP fP

Figure 2.7: Port-Hamiltonian system as interconnection of energy storage and energy
dissipation with external ports via a Dirac structure D [109]

on the space of port variables as a subspace D ⊂ F × F∗ with properties [37]

〈e|f〉 = 0, for all (e, f) ∈ D, (2.21a)
dim D = dim F . (2.21b)

The first equation is immediately recognized as the power conservation property, since
〈e|f〉 = eTf = P , such that the total power entering or leaving a Dirac structure is
zero. It can be proven that the maximal dimension of any subspace of F × E satisfying
(2.21a) is dim F (see e. g. [37] and [109]). An alternative definition of a Dirac structure,
that can also be generalized to infinite-dimensional systems, is given with respect to
the symmetric bilinear form 	 ·, · 
 on E × F defined as [109]

	 (f1, e1), (f2, e2) 
:= 〈e1|f2〉 + 〈e2|f1〉. (2.22)

A Dirac structure D ⊂ E × F is then equally defined by

D = D⊥, (2.23)

where ⊥ denotes the orthogonal companion with respect to the bilinear form (2.22),
such that the latter is zero restricted to this subspace.

All the power-conserving elements introduced in the previous section define a Dirac
structure. It follows, that the composition of Dirac structures is again a Dirac structure.
In Fig. 2.7, the composite Dirac structure D interconnects all energy storing elements
of a system with the energy dissipating ones. Exchange of energy with the environment
is enabled by external ports.

Storage port

The energy variables x of a system’s energy storage are elements of the finite-di-
mensional state-space X . Total energy contained in the system is expressed by its
Hamiltonian function H : X → R. Flows and efforts of the storage port of the Dirac
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2 Energy-based modeling

structure are denoted fS and eS . They are connected to the energy storing elements
by setting

fS = −ẋ, eS = ∂H

∂x
(x). (2.24)

For any current state x, the flow vector ẋ lies on the tangent space TxX , while the
effort vector ∂H

∂x
(x) is element of the dual space T ∗

x X , the cotangent space of X [109].
The energy balance of the storage port can now be stated as

Ḣ =
〈

∂H

∂x
(x)

∣∣∣ ẋ
〉

= −eT
S fS , (2.25)

where the minus sign indicates that eT
S fS is the power flowing from the energy storing

elements into the Dirac structure [109].

Resistive port

Energy dissipation is ascribed to the resistive port of a system with the port variables
eR ∈ ER and fR ∈ FR. The resistive elements must satisfy a static relation R ⊂
ER × FR of the form

R (fR, eR) = 0, (2.26)

with all (fR, eR) ∈ R conforming to

〈fR|eR〉 ≤ 0. (2.27)

See Eqs. (2.9) and (2.10) for the case of a single linear resistive element.

External port

Energy exchange with entities considered external to a system takes place at the Dirac
structure’s external port, which has the port variables eP ∈ EP and fP ∈ FP . It is
often further distinguished between controller action ports, an interaction port for
energy exchange with the physical environment and ports corresponding to sources
[37]. Including the external port, the total power balance can be written as

eT
S fS + eT

RfR + eT
P fP = 0. (2.28)

Taking (2.25) and (2.27) into account, the energy flow becomes

Ḣ = eT
RfR + eT

P fP ≤ eT
P fP , (2.29)

which expresses the fact that the increase of system energy is always less than or equal
to the externally supplied power.
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2.3 Port-Hamiltonian systems

Dynamics and common representations

Given the above, the dynamics of a port-Hamiltonian system on the state space X
with Hamiltonian H : X → R are implicitly defined by{

ẋ,
∂H

∂x
(x), fR, eR, fP , eP

}
∈ D, (fR, eR) ∈ R, t > 0, (2.30)

with the Dirac structure

D ⊂ TxX × T ∗
x X × FR × ER × FP × EP . (2.31)

This coordinate-free definition of a port-Hamiltonian system is ineligible for e. g.
simulation. However, different coordinate representations exist for different purposes.
Perhaps the most convenient representation for control engineering purposes is the
input-state-output form stated as [109]

ẋ = [J(x) − R(x)] ∂H

∂x
(x) + G(x)u, (2.32a)

y = GT(x)∂H

∂x
(x), (2.32b)

where J(x) = −JT(x) is a skew-symmetric map from T ∗
x X to TxX and R(x) =

RT(x) ≥ 0 is a symmetric, positive semi-definite matrix that specifies the resistive
structure. The inputs and outputs (u, y) belong to the external port of the Dirac
structure and uTy equals the externally supplied power. Note that the input matrix
G(x) is the transpose of the output matrix GT(x), which expresses the fact that
inputs and outputs are collocated. In case of a linear system, the Hamiltonian is
quadratic and

H(x) = 1
2

xTQx, (2.33)

for some symmetric, positive definite matrix Q. Then, the effort variables of the
energy storage are obtained as eS = ∂H

∂x
(x) = Qx.

In many cases, the equations (2.30) will constrain the set of admissible states x. In
fact, most power-conserving elements introduced in Section 2.2 impose constraints
on a system. It can then be represented by a mixed set of differential and algebraic
equations (DAEs)

ẋ = [J(x) − R(x)] ∂H

∂x
(x) + G(x)u + B(x)λ (2.34a)

y = GT(x)∂H

∂x
(x), (2.34b)

0 = BT(x)∂H

∂x
(x), (2.34c)

where λ are the Lagrange multipliers and B(x)λ the constraint forces. In case the
algebraic constraints are of index one, their elimination – if desired – is straightforward
[109] and a system of the form (2.32) results.
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2 Energy-based modeling

Example

Let us now revisit the example of the DC motor in Fig. 2.5 from the previous section
and formulate its dynamics as a port-Hamiltonian system in input-state-output form.
Usually, the storage port is considered first. Since the Hamiltonian is defined as the
total energy of the system, it is obtained from (2.18) using (2.4) as

H = 1
2

Φ2

La
+ 1

2
L2

Jm
. (2.35)

Next, efforts and flows are defined as

f := −ẋ =
[

−Φ̇
−L̇

]
=

[
uL

Mm

]
, e := ∂H

∂x
=

[
Φ/La

L/Jm

]
=

[
ia

ω

]
. (2.36)

The resistive port of the system is specified by (2.19) and its interconnection structure
by (2.17) together with (2.20). Inputs and outputs are the efforts and flows of the
sources

uT =
[
us Mload

]
, yT =

[
ia ω

]
. (2.37)

This completes the definition of the system’s Dirac structure and its ports. The motor
dynamics in input-state-output port-Hamiltonian form can now be stated as[

Φ̇
L̇

]
=

[
−Ra −k

k −b

][
ia

ω

]
+

[
1 0
0 1

][
us

Mload

]
, (2.38a)

y =
[

1 0
0 1

][
ia

ω

]
. (2.38b)

It is easily verified that Eqs. (2.38a) are the interconnection laws (2.20) in which
uR, uL, ua and Mb, Mk, Mm have been substituted for using Eqs. (2.17)-(2.19). The
energy flow into and out of the system is given by

Ḣ = Φ̇ia + L̇ω = uTy − (Rai2
a + bω2) ≤ uTy. (2.39)

Even though the example is a simple one, it demonstrates that a port-Hamiltonian
system can be systematically constructed from a bond graph following straightforward
steps. This makes the two frameworks perfectly compatible. However, it is not always
feasible, nor is it necessary, to start from a bond graph representation.

2.4 Distributed parameter port-Hamiltonian systems

Formal definitions of distributed parameter port-Hamiltonian systems make use of the
language of differential forms, since it enables a coordinate-free formulation. Despite
this being a powerful approach, differential geometry is avoided here to increase the
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accessibility of the presented material. Therefore, this section starts with a simple
example – the vibrating string – to introduce the basics. Descriptions of infinite-
dimensional port-Hamiltonian systems are then generalized as much as necessary as
the example proceeds.

The dynamics of the isotropic vibrating string are described by the one-dimensional
wave equation defined on the compact spatial domain Z =

[
a b

]
with coordinate

z ∈ Z

μ
∂2

∂t2 u = τ
∂2

∂z2 u. (2.40)

Here, u(z, t) is the vertical displacement of the string in its plane of oscillation, μ the
mass per unit length and τ the tension. Just as in the finite-dimensional case, the
Hamiltonian H is the total energy of the system. For the vibrating string it is given
as the integral over the Hamiltonian density H (energy per volume element)

H =
∫

Z

H = 1
2

∫ b

a

μ
(

∂u

∂t

)2
+ τ

(
∂u

∂z

)2
dz, (2.41)

where H is the sum of the kinetic and the potential energy density. After defining the
vector of energy variables as

xT =
[
xp xq

]
=

[
μ ∂u

∂t
∂u
∂z

]
, (2.42)

the Hamiltonian can be written in terms of x. Flows and efforts are then defined as

f = −∂x

∂t
, e = δH

δx
, (2.43)

where the definition of the flows follows that of the lumped parameter case (2.24).
The efforts, however, are now obtained by taking the variational derivative δH

δx
of the

Hamiltonian functional H with respect to x. Let δx(z), z = (z1, . . . , zd) ∈ Z be a
smooth, real-valued function with δx(z)|∂Z = 0, where ∂Z denotes the boundary of
the domain Z ∈ R

d. Then, the variational derivative satisfies for all δx(z) and all
ε ∈ R [37]

H(x + εδx) = H(x) + ε

∫
Z

δH

δx
δx dV + O(ε2). (2.44)

Often, the energy density H depends only on the function x and not on its derivatives.
In this case, the variational derivative simplifies to

δH

δx
= dH

dx
, (2.45)

the derivation of the integrand. For the example of the vibrating string, this implies

eT =
[
ep eq

]
=

[
∂H
∂p

∂H
∂q

]
=

[
∂u
∂t

τ ∂u
∂z

]
, (2.46)
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with ep the distributed vertical velocity and eq the vertical component of the string
tension. With the definition of the power conjugate variables e and f , the dynamics
of the vibrating string can be written as a Hamiltonian system of two conservation
laws

ẋ =
[

ẋp

ẋq

]
=

[
0 ∂z

∂z 0

][
ep

eq

]
= Je. (2.47)

Contrary to the finite-dimensional formulation, J is a skew-symmetric differential
operator instead of a matrix as in (2.32). For a generalization to the class of systems
considered in this thesis, the following definition of a constant matrix differential
operator according to Macchelli et al. in [86] is employed.

Denote by U and V a pair of smooth functions from Ω ∈ R
d to R

nu and R
nv respectively.

A constant matrix differential operator of order N is a map L from U to V, with
u = (u1, . . . , unu ) ∈ U and v = (v1, . . . , vnv ) ∈ V, such that

v = Lu ⇐⇒ v :=
N∑

|α|=0

P αDαu, (2.48)

where α := (α1, . . . , αd) is a multi-index of order |α| :=
∑d

i=0 αi, P α are a set of
constant nv × nu matrices and Dα := ∂α1

z1 . . . ∂
αd
zd a differential operator of order |α|

resulting from a combination of spatial derivatives. The formal adjoint of the operator
(2.48) is the map L∗ from V to U that satisfies

u = L∗v ⇐⇒ u :=
N∑

|α|=0

(−1)|α|P T
αDαv. (2.49)

Let J denote a constant matrix differential operator. Then, J is skew-symmetric if
and only if J = −J∗, which corresponds to the condition [20]

P α = (−1)|α|+1P T
α , ∀α. (2.50)

Note that the operator J in (2.47) belongs to this class of skew-symmetric differential
operators with N = 1.

In the formulation (2.47), the vibrating string is not yet a port-Hamiltonian system,
because it lacks ports for energy exchange. In order to extend the Hamiltonian
formulation, let us analyze the energy flow

Ḣ(x) =
∫ b

a

(
δH

δx

)T
ẋ dz =

∫ b

a

eTJe dz

=
∫ b

a

ep∂zeq + eq∂zep dz =
∫ b

a

ep∂zeq − ∂zeqep dz + [epeq]ba (2.51)

= ep(b)eq(b) − ep(a)eq(a).
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Integration by parts was applied, which – due to the formal skew-symmetry of the
operator J – makes internal flows of energy cancel themselves out. It follows that an
increase or decrease of system energy is solely determined by the energy flow over the
boundary ∂Z. This motivates the definition of boundary port variables as[

f∂

e∂

]
=

[
δH
δxp

δH
δxq

] ∣∣∣∣∣
∂Z

=
[
ep(a) ep(b) eq(a) eq(b)

]T
. (2.52)

Given this definition of the port variables, the linear subset D ⊂ E × F defined by

D =
{

(e, f , e∂ , f∂) ∈ E × F | f = −Je,

[
f∂

e∂

]
= e(a, b)

}
(2.53)

is a Stokes-Dirac structure with respect to the bilinear form (2.22) when the pairing
〈·|·〉 is given by

〈f |e〉 =
∫ b

a

eTf dz + [epeq]ba . (2.54)

For the proof, refer to Chapter 4.1 of [37]. The Stokes-Dirac strcuture can be viewed
as a generalization of the Dirac structure to the infinite-dimensional case, which relies
heavily on Stokes’ theorem (hence its name). This becomes more evident when higher
order spatial manifolds are considered. Note that the two conservation laws (2.47)
together with the co-energy variables (2.46) and the port variables (2.52) define a
port-Hamiltonian system with respect to the Stokes-Dirac structure (2.53). In the
sequel of this section, the definition of the Stokes-Dirac structure and distributed
parameter port-Hamiltonian systems will be extended to a bigger class of systems.

Consider a skew-symmetric matrix differential operator J and its formal adjoint J∗

defined by (2.48) and (2.49) respectively together with (2.50). Then, for all functions
u ∈ U and v ∈ V, the following can be stated [86]∫

Ω

[
vTJu + uTJv

]
dV =

∫
∂Ω

BJ (u, v) · dA, (2.55)

where BJ is a symmetric constant differential operator induced on ∂Ω by J .

Now, denote again by F the space of flows. Assume that it is the space of smooth
functions mapping from the compact set Ω ∈ R

d to R
q and that E ≡ F . Let

f = (f1, . . . , fq) ∈ F and e = (e1, . . . , eq) ∈ E and denote by w := BZ(e) the
boundary terms. The operator BZ restricts the efforts e and their spatial derivatives
up to the proper order to the boundary ∂Ω. Then, it is possible to write [86]∫

∂Ω
BJ (e1, e2) · dA =

∫
∂Ω

BJ (w1, w2) · dA, (2.56)
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with wi = BZ(ei), i = 1, 2. This allows the introduction of the following set of
boundary variables

W := {w | w = BZ(e), ∀e ∈ E} . (2.57)

Then it can be shown that the following subset of F × E × W
D := {(f , e, w) ∈ F × E × W | f = −Je, w = BΩ(e)} (2.58)

is a Stokes-Dirac structure with respect to the pairing

	 (f1, e1, w1), (f2, e2, w2) 
:=
∫

Ω

[
eT

1 f2 + eT
2 f1

]
dV +

∫
∂Ω

BJ (w1, w2) · dA.

(2.59)
This definition can be extended to account for external ports and dissipation (see [86])
in the Stokes-Dirac structure.

For a more general definition of a distributed parameter port-Hamiltonian system,
denote by X the space of smooth real valued functions on [0, +∞) × U representing
the space of energy configuration. Then, the total energy is provided by the functional
H : X : R defined by

H(x) =
∫

Ω
H(z, x) dV. (2.60)

With the flows and efforts given as

f = −ẋ, e = δH

δx
, (2.61)

an infinite-dimensional port-Hamiltonian system with respect to a constant Stokes-
Dirac structure specified by (2.58) is given by

ẋ = J
δH

δx
, (2.62a)

w = BΩ

(
δH

δx

)
. (2.62b)

The general definitions presented in this section will become clearer (and probably
more useful) after studying a few examples. The reader is referred to Chapter 3, where
the port-Hamiltonian formulation is presented for a range of infinite-dimensional
mechanical systems. A thorough treatise of distributed parameter port-Hamiltonian
systems of one spatial dimension is given by Zwart and Jacob in [142].
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In this chapter, port-Hamiltonian models for a variety of linear elastic systems are
introduced. Beforehand, the necessary background on the mechanics of elastic bodies
is briefly summarized. Stress-strain relationships, the principle of virtual work as
well as the derivation of the equations of motion are covered. Readers with a solid
background in mechanics can skip Section 3.1. One-dimensional elements, such as
beams and rods are introduced in Section 3.2. In Section 3.3, port-Hamiltonian models
of a disk element and the Mindlin-Reissner plate are provided for modeling plane
load-bearing structures.

3.1 Fundamentals of the mechanics of elastic bodies

Intention of this section is to provide a quick introduction to, or a recapitulation of,
the mechanics of elastic bodies. The basic definitions and principles required for the
understanding of the material in the remainder of this chapter will be presented briefly.
First, stress strain relations are recalled for linear elastic and isotropic materials. Then,
the principle of virtual work and the Euler-Lagrange equations of motions are given.
More detailed derivations can be found in Appendix A.

3.1.1 Stress-strain relationships

For a linear isotropic material, the stress-strain relations are obtained from Hooke’s
law as [53]

εx = 1
E

[σx − ν(σy + σz)] , γxy = 1
G

τxy,

εy = 1
E

[σy − ν(σz + σx)] , γyz = 1
G

τyz, (3.1)

εz = 1
E

[σz − ν(σx + σy)] , γzx = 1
G

τzx,

where εx, εy and εz are the axial strain components and γxy, γyz and γzx the shear
strain components, with σx, σy and σz the corresponding stress terms and τxy, τyz and
τzx the shear stress components. Here, ν denotes Poisson’s ratio, E denotes Young’s
modulus and the shear modulus G can be expressed as

G = 2(1 + ν)
E

. (3.2)

The material law (3.1) describes three-dimensional or volumetric strain. In the
remainder of this chapter, only beams and plates are studied, such that the stress-
strain relationship can be further simplified.
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Figure 3.1: 1D and plane stress-strain and kinematic relations with the stress compo-
nents σx, σy and the shear stress τxy. The displacements du and dv are
depicted for infinitesimal elements

For plane stress, it is assumed that σz = τyz = τxz = 0. Eliminating these terms in
(3.1) and solving for the stress components, the material law can be expressed as

[
σx

σy

τxy

]
= E

1 − ν2

[1 ν 0
ν 1 0
0 0 1−ν

2

][
εx

εy

γxy

]
= Dcε, (3.3)

where Dc is referred to as the compliance matrix. Note that σz is commonly neglected,
since it is fully determined by εx and εy. Figure 3.1 can be consulted for an illustration
of the deformations of an element under the state of plane stress. Denote by u(x, y, t)
the displacement of a point located at (x, y) on a planar element along the local x-axis
and by v(x, y, t) the displacement of the same point along the local y-axis. Then, the
components of the strain vector ε for plane stress are given as

εT =
[
εx εy γxy

]
=

[
∂u
∂x

∂v
∂y

∂u
∂y

+ ∂v
∂x

]
. (3.4)

In the most simple case of a one-dimensional system, which is also depicted in Fig. 3.1,
Hooke’s law reduces to the well known form

σ = Eε. (3.5)

Now that the static relationships between stress and strain have been introduced to
sufficient detail, the next sections deal with the dynamics of elastic bodies.
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Ω0

Ωr(t)

P 0

x
y

z

∂Ω

Figure 3.2: Elastic continuum Ω0 in the reference configuration and its deformed state
Ω at time t. Location of a point with initial position P 0 over time is
described by the vector r(t)

3.1.2 Virtual work and the equations of motion

Consider an elastic continuum defined on the compact set Ω in R
3, such as the one

depicted in Fig. 3.2. In the reference configuration Ω0, the position of a point P
in this continuum is P 0, whereas in the deformed state, its location is given by a
vector r(P, t). Generally, the motion of each point is constrained, which implies that
a reduced set of coordinates can be used to compute its location r. If the number of
variables in this set is minimal with respect to the constraints, they are referred to as
generalized coordinates

qT =
[
q1(x, y, z, t) . . . qn(x, y, z, t)

]
, (3.6)

where n is said smallest possible number of variables. In case each qi describes a
displacement ui from the reference configuration, the term generalized displacements
may be used interchangeably for q. Now, the position r of each point can be uniquely
expressed in terms of q

r = r(q, t). (3.7)
The set of explicit constraints given by (3.7) is scleronomic, in case there is no
explicit dependency on time and rheonomic otherwise. If constraints on the velocity
are obtained by derivation of (3.7) with respect to time, they are called holonomic
constraints. In case additional non-integrable constraints are present, the system is
nonholonmic (i. e. its state depends on the path taken in order to achieve it). In the
following, only systems subject to holonomic constraints are taken into account.

The principle of virtual work for an elastic continuum can be stated as [113]∫
Ω

δrT(k − ρr̈) − δεTσ dV +
∫

∂Ω
δrTp dA = 0, (3.8)

34



3.2 Port-Hamiltonian dynamics of beams

with ρ the mass density, k the force density of the body forces (e. g. gravity) integrated
over the volume V and p the force density of the surface forces integrated over the
boundary surface A. The term δr denotes the virtual displacements, as introduced
in more detail in Appendix A. With the help of (3.7), (3.8) can also be expressed in
terms of the generalized coordinates q.

The equations of motions can be derived from the principle of virtual work. Readers
are again referred to Appendix A to see how this is done. Let U denote the potential
energy of an elastic body and T its kinetic energy. Then, the Euler-Lagrange equations
of motions for this body can be stated as

− d
dt

∂T

∂q̇
+ ∂T

∂q
− ∂U

∂q
= 0, (3.9)

which is already given in generalized coordinates q.

3.2 Port-Hamiltonian dynamics of beams

This section is a modified version of the section on beam dynamics in [135]. The
presentation here is slightly improved and adapted to the style of this thesis.

Models of complex civil engineering structures are usually built by interconnecting
basic element types with different parameters. The number of elements forming a
model is commonly higher than the number of basic types it is composed of. In
this section, the dynamics of beams are formulated as distributed parameter port-
Hamiltonian systems. The resulting systems can be used for the modeling of truss
structures and frames. Beams, as systems of one spatial dimension, cannot be used
for the modeling of plane load-bearing structures. Elements of plane load-bearing
structures are introduced in Section 3.3.

Figure 3.3 depicts a beam of length L defined on the spatial domain X :=
[
0 L

]
with

spatial coordinate x, which is subject to bending, torsional and axial stress. When
subject to bending, the beam experiences a deflection w(x) from the neutral axis
and a rotation of the cross section by the angle ϕ(x). For torsional loads, the cross
section rotates by the angle ω(x) about the neutral axis. Axial strain is determined
by the deflection under axial loads, u(x). Since the load cases are considered linearly
independent, their dynamics can be treated separately. A complete beam model
thus consists of three basic components, which are presented in the following. In
Section 3.2.1, the model for a rod element deforming due to axial loads is presented.
Saint-Venant torsion is modeled in port-Hamiltonian form in Section 3.2.2. For bending,
a port-Hamiltonian model is derived for both the Timoshenko beam in Section 3.2.3
and the Euler-Bernoulli beam equations in Section 3.2.4. The latter are used when the
assumption that the cross section is always perpendicular to the neutral axis holds
(i. e. for thin beams).

35



3 Elastodynamics

0 Lx

dw
dx

ϕx

w
u
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A

A-A

dx

γxy

Figure 3.3: A beam element on the interval X =
[
0 L

]
and its deflections (blue) due

to bending (w, ϕx), shear (γxy), torsional (ω) and axial loads (u) [135]

3.2.1 Rod element

The simplest component of beam dynamics is the rod element, or rather the beam’s
response to axial loads. Its constitutional law is given by (3.5), Hooke’s law for a
one-dimensional deformation. With the axial strain εx = ∂u/∂x and the elastic force
Fx = Aσx, the rod energy can be expressed as

U = 1
2

∫ L

0
EA

(
∂

∂x
u
)2

dx, T = 1
2

∫ L

0
μ
(

∂

∂t
u
)2

dx and H = T + U, (3.10)

where μ is the mass per unit length, A the cross-sectional area and H the system
Hamiltonian. With the generalized coordinate u, the equations of motion are obtained
according to (3.9), as

μ
∂2u

∂t2 = ∂

∂x

(
EA

∂u

∂x

)
. (3.11)

Integration by parts was applied once to U to arrive at the above. Note that (3.11)
corresponds to the vibrating string example in Section 2.4 when τ = EA. The
remaining steps for obtaining a port-Hamiltonian system thus are the same as for the
vibrating string. Let the energy variables and the state vector be defined as

xp := μ
∂u

∂t
, xq := εx and xT =

[
xp xq

]
. (3.12)

Then, the effort variables are obtained by taking the variational derivative of H with
respect to x

ep = δH

δxp
= ∂u

∂t
, eq = δH

δxq
= EA

∂u

∂x
, (3.13)
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3.2 Port-Hamiltonian dynamics of beams

where ep is the strain rate and eq the axial force distributed over the interval X.
By defining the flow variables as f := −ẋ, the rod element can be formulated as
infinite-dimensional Hamiltonian system

− f =
[

ẋp

ẋq

]
=

[
0 ∂x

∂x 0

][
ep

eq

]
. (3.14)

For a definition of the boundary ports, the energy flow needs to be taken into account

Ḣ =
∫ L

0

(
δH

δx

)T
ẋ dx

=
∫ L

0
epṗ + eq q̇ dx

=
∫ L

0
ep(∂xeq) + eq(∂xep) dx

=
∫ L

0
ep(∂xeq) − (∂xeq)ep dx +

[
eqep

]L

0
.

(3.15)

From the second line of (3.15), it follows that the energy flow depends only on the
boundary values of the effort variables. This motivates the definition of boundary
inputs u∂ and outputs y∂ such that the Hamiltonian rate of change can be expressed
as Ḣ = uT

∂ y∂ . A possible choice of the boundary variables is given by

uT
∂ =

[−eq(0) eq(L)
]

, yT
∂ =

[
ep(0) ep(L)

]
. (3.16)

As stated e. g. in [78], other definitions of the boundary variables are also valid. How-
ever, as will be shown later, (3.16) is a convenient choice as it has a normalizing
property in the application of appropriate spatial discretization methods. The def-
inition of u∂ and y∂ completes the formulation of (3.11) as distributed parameter
port-Hamiltonian system with power exchange over the boundary.

3.2.2 Torque bar

Beam deformation due to torsion about the neutral axis is assumed to be warping-free
such that only Saint-Venant torsion needs to be taken into account. Hence, the shear
strain can be expressed as τx = GJtγx, with Jt the torsion constant and γx = ∂ω/∂x.
The system energy of the torque bar is given as

U = 1
2

∫ L

0
GJt

(
∂

∂x
ω
)2

dx, T = 1
2

∫ L

0
Ip

(
∂

∂t
ω
)2

dx, (3.17)
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from which the equation of motion is obtained according to (3.9)

Ip
∂2ω

∂t2 = ∂

∂x

(
GJt

∂ω

∂x

)
, (3.18)

where Ip is the polar moment of inertia. Note that (3.18) and (3.11) are, except for
the choice of parameters, identical equations. Consequently, the port-Hamiltonian
formulation will be identical to (3.14), with the boundary variables defined by (3.16),
when choosing xp := Ip∂ω/∂t and xq := γx as the energy variables. Refer to the
previous section or to [27] for the remaining steps.

3.2.3 Timoshenko beam

When shear deformations are taken into account, the total deflection of an infinitesimal
beam element of length dx is given as

dw = ϕxdx + γxzdx. (3.19)

With the curvature κx = ∂ϕx/∂x and assuming the cross section is constant over the
beam length, the bending moment Mx and the shear force Qx are defined as

Mx = EIκx, and Qx = Asτxz = κAGγxz. (3.20)

Here, I is the second moment of area and As = κA the shear area with the Timoshenko
shear coefficient κ. The latter needs to be determined for each cross section. For
rectangular cross sections, it amounts to κ = 5/6. The potential energy terms of
bending and shear deformation are obtained as

Ub = 1
2

∫ L

0
Mxκx dx = 1

2

∫ L

0
EI

(
∂

∂x
ϕx

)2
dx, (3.21)

Us = 1
2

∫ L

0
Qxγxz dx = 1

2

∫ L

0
κAG

(
∂w

∂x
− ϕx

)2
dx. (3.22)

With a definition of the system Hamiltonian and the kinetic energy

H = T + Ub + Us and T = 1
2

∫ L

0
μ
(

∂

∂t
w
)2

+ ρI
(

∂

∂t
γxz

)2
dx. (3.23)

With the generalized coordinates w and γxz, the Euler-Lagrange equations of motion
(3.9) for the Timoshenko beam are obtained

μ
∂2w

∂t2 = ∂

∂x

[
κAGs

(
∂w

∂x
− ϕx

)]
ρI

∂2ϕx

∂t2 = ∂

∂x

(
EI

∂

∂x
ϕx

)
+ κAG

(
∂w

∂x
− ϕx

)
.

(3.24)
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3.2 Port-Hamiltonian dynamics of beams

A port-Hamiltonian formulation of the equations above can be found e. g. in [83]. It is
proceeded accordingly, by defining a set of energy variables

xp1 := ρI
∂ϕx

∂t
, xp2 := μ

∂w

∂t
, xq1 := κx, xq2 := γxz, (3.25)

which are collected in the state vector xT :=
[
xp1 xp2 xq1 xq2

]
. Parallel to the

procedure in Section 3.2.1, the variational derivative of H with respect to x is taken
to obtain the effort variables for the Timoshenko beam

ep1 := ∂ϕx

∂t
, ep2 := ∂w

∂t
, eq1 := Mx, eq2 := Qx. (3.26)

An infinite-dimensional Hamiltonian system is obtained by defining the flow variables
as f := −ẋ and establishing their relation to the effort variables as

− f =

⎡
⎢⎣

ẋp1

ẋp2

ẋq1

ẋq2

⎤
⎥⎦ =

⎡
⎢⎣

0 0 ∂x 1
0 0 0 ∂x

∂x 0 0 0
−1 ∂x 0 0

⎤
⎥⎦
⎡
⎢⎣

ep1

ep2

eq1

eq2

⎤
⎥⎦ . (3.27)

A convenient choice of the boundary variables for the Timoshenko beam is

u∂ =

⎡
⎢⎣

−eq1(0)
eq1(L)

−eq2(0)
eq2(L)

⎤
⎥⎦ , y∂ =

⎡
⎢⎣

ep1(0)
ep1(L)
ep2(0)
ep2(L)

⎤
⎥⎦ . (3.28)

It is easy to verify that the Hamiltonian rate of change can be expressed as Ḣ = uT
∂ y∂

and the port-Hamiltonian system is completely defined by (3.27) and (3.28).

3.2.4 Euler-Bernoulli beam

For thin beams, the Bernoulli assumptions state that the cross section is always
perpendicular to the neutral axis or rather that the shear angle γxz is equal to zero
with κAG = ∞. It follows from (3.19) that ϕx = ∂w/∂x. Accordingly, the shear
energy Us and the kinetic energy term related to the shear angle disappear in (3.23).
The equations of motion of the Euler-Bernoulli beam are thus obtained as

μ
∂2w

∂t2 = − ∂2

∂x2

(
EI

∂2

∂x2 w

)
. (3.29)

A port-Hamiltonian formulation of the Euler-Bernoulli beam is e. g. given by Cardoso-
Ribeiro et al. in [28], where it is used for describing the dynamics of a thin beam
actuated by a piezoelectric patch. A similar formulation is given in the following. The
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state variables, efforts and flows are those of the Timoshenko beam less the terms
related to shear deformation

xT =
[
μ ∂w

∂t
κx

]
, f = −ẋ, eT =

[
∂w
∂t

Mx

]
(3.30)

and (3.29) can be written as a distributed parameter Hamiltonian system

ẋ =
[

0 −∂2
x2

∂2
x2 0

]
e. (3.31)

With the appearance of the second order spatial derivative in (3.31), the definition
of the boundary variables becomes slightly more involved. The Hamiltonian rate of
change of the Euler-Bernoulli beam is given as

Ḣ =
∫ L

0
epẋp + eqẋq dx =

∫ L

0
eq∂2

z2 ep − ep∂2
z2 eq dx

=
∫ L

0
∂zep∂zeq − ∂zeq∂zep dz +

[
eq∂zep − ep∂zeq

]L

0
.

(3.32)

The power flow now additionally depends on the boundary values of the derivatives of
the effort variables. Boundary inputs and outputs can be chosen as

u∂ =

⎡
⎢⎣

∂xeq(0)
−∂xeq(L)

−eq(0)
eq(L)

⎤
⎥⎦ , y∂ =

⎡
⎢⎣

ep(0)
ep(L)

∂xep(0)
∂xep(L)

⎤
⎥⎦ , (3.33)

such that Ḣ = uT
∂ y∂ . Note the reappearance of the shear force Qx = ∂xeq and the

angular velocity ϕ̇x = ∂xep at the boundary.

3.3 Port-Hamiltonian dynamics of plates

The following presentation of the dynamic equations of plate elements will be restricted
to Mindlin-Reissner theory for the bending of thick plates and a disk element for axial
loading. While it is relatively straightforward to give a port-Hamiltonian formulation
of the dynamics of thin plates in bending according to Kirchhoff-Love theory, finite
elements for their physically correct numerical approximation have to be C1-continuous.
Brugnoli et al. show that spatial discretization is possible using conforming finite
elements of Hermite, Bell or Argyris type in [21]. Those come with the disadvantage
of introducing additional degrees of freedom (DOFs) that are not easily mapped to the
standard six DOFs per node. An alternative conforming element that comes without
additional DOFs is the Hsieh-Clough-Tocher (HCT) triangle [31]. Its implementation
is, however, also rather cumbersome.
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Ω

x
zy

v
u

w

ϕx

ϕy

∂w
∂x

∂w
∂y

dy dx

γxz

γyz

Figure 3.4: A plate element on the domain Ω and its deflections (blue) due to bending
(w, ϕx, ϕy) and axial loads (u, v). Shear strain components γxz and γyz

are depicted for an infinitesimal element of size dx × dy

For the problems addressed in this thesis, thick plate bending is assumed sufficiently
accurate. A distributed parameter port-Hamiltonian model of a disk element is given
in Section 3.3.1 followed by a model for the Mindlin-Reissner plate in Section 3.3.2.

3.3.1 Disk

Existing literature on the port-Hamiltonian formulation of plate elements does not
take axial deformations into account. Here, this gap is filled by a systematic derivation
of the port-Hamiltonian dynamic equations of a linear isotropic disk subject to normal
stress in both directions. The constitutive equations of a disk element are those of
plane stress as given by (3.3) and illustrated in Fig. 3.1. A disk of constant thickness
h has the elastic potential energy

U = 1
2

h

∫
Ω

εTσ dΩ = 1
2

h

∫
Ω

εTDcε dΩ, (3.34)
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Ω
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y
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Figure 3.5: Normal (n) and tangential (s) directions on the boundary of a planar
manifold Ω

where Ω is an open connected set on R
2 and Dc is the compliance matrix. With the

generalized coordinates u and v, the system Hamiltonian is obtained as

H = T + U, T = 1
2

h

∫
Ω

ρ
(

∂

∂t
u
)2

+
(

∂

∂t
v
)2

dΩ. (3.35)

As in the previous section for one-dimensional elements, the equations of motion are
obtained from the Lagrange formalism (3.9). The following two partial differential
equations (PDEs) result

ρh
∂2u

∂t2 = Eh

1 − ν2

(
∂2u

∂x2 + 1 − ν

2
∂2u

∂y2 + 1 + ν

2
∂2v

∂x∂y

)
,

ρh
∂2v

∂t2 = Eh

1 − ν2

(
∂2v

∂y2 + 1 − ν

2
∂2v

∂x2 + 1 + ν

2
∂2u

∂x∂y

)
.

(3.36)

The state vector and for the formulation as port-Hamiltonian system is chosen as

xT =
[
ρh ∂u

∂t
ρh ∂v

∂t
εx εy γxy

]
. (3.37)

Power conjugate effort and flow variables are obtained according to the usual procedure
as

e = δH

δx
=

[
∂u
∂t

∂v
∂t

Fx Fy Qxy

]T
, f = −ẋ, (3.38)
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which leads to the formulation of the disk element as infinite-dimensional Hamiltonian
system

ẋ =

⎡
⎢⎢⎢⎣

0 0 ∂x 0 ∂y

0 0 0 ∂y ∂x

∂x 0 0 0 0
0 ∂y 0 0 0
∂y ∂x 0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

ep1

ep2

eq1

eq2

eq3

⎤
⎥⎥⎥⎦ . (3.39)

As in the one-dimensional system in Section 3.2, the operator that relates f and e is
formally skew-symmetric and power-conserving. An analysis of the Hamiltonian rate
of change Ḣ yields a possible choice of the boundary variables

Ḣ =
∫

Ω
ep1 (∂xeq1 + ∂yeq3) + ep2 (∂yeq2 + ∂xeq3) + . . .

+ eq1∂xep1 + eq2∂yep2 + eq3 (∂yep1 + ∂xep2) dΩ

=
∫

Ω

∂

∂x
(u̇Fx + v̇Qxy) + ∂

∂y
(v̇Fy + u̇Qxy) dΩ.

(3.40)

Applying Green’s theorem to (3.40) yields

Ḣ =
∮

∂Ω
q̇nFn + q̇sQns ds, (3.41)

where n denotes the normal and s the tangential direction along the boundary ∂Ω as
illustrated in Fig. 3.5. The port variables are forces and velocities q̇ that result from
linear combinations of the effort variables evaluated on the boundary.

3.3.2 Mindlin-Reissner plate

Bending of thick plates is usually described using Mindlin-Reissner theory [90]. The
Mindlin plate can also be viewed as an extension of the Timoshenko beam to the two-
dimensional domain. Shear deformations as well as bending are taken into account in
two spatial directions. Port-Hamiltonian formulations are e. g. given by Macchelli et al.
in [84] and Brugnoli et al. in [20]. The former authors use a vectorial formulation
while the latter authors derive a model in tensorial form which is independent of the
choice of the coordinate frame. In the following a vectorial formulation of the Mindlin
plate, similar to the one in [20], is derived. Defining the vector of curvatures

κT =
[
κxx κyy κxy

]
=

[
∂ϕx
∂x

∂ϕy

∂y

(
∂ϕy

∂x
+ ∂ϕx

∂y

)]
, (3.42)

the element strain can be expressed as

ε = −zκ, γT
s =

[
γxz γyz

]
=

[(
∂w
∂x

− ϕx

) (
∂w
∂y

− ϕy

)]
. (3.43)
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All strain components are visualized in Fig. 3.4. The stress-strain relationship for the
Mindlin plate is then given as

σ = E

1 − ν2

[1 ν 0
ν 1 0
0 0 1−ν

2

]
ε, τ s = κGγs, (3.44)

with τ s the shear stress and κ the Timoshenko shear coefficient as in (3.20). Sep-
arate terms for the elastic potential energy of bending and shear are obtained by
multiplication of stress and strain

Us = 1
2

h

∫
Ω

γT
s τ s dΩ, Ub = 1

2

∫
Ω

κTDbκ dΩ, with Db = h3

12
Dc, (3.45)

where Dc is the compliance matrix from (3.3). With the three generalized coordinates
w, ϕx and ϕy, the kinetic energy of the plate is

T = 1
2

∫
Ω

ρh
(

∂

∂t
w
)2

+ h3

12

(
∂

∂t
ϕx

)2
+ h3

12

(
∂

∂t
ϕy

)2
dΩ (3.46)

and the equations of motion result from the application of (3.9) as

ρh
∂2w

∂t2 = κGsh

(
∂2w

∂x2 + ∂2w

∂y2 − ∂ϕx

∂x
− ∂ϕy

∂y

)
,

ρh3

12
∂2ϕx

∂t2 = K

[
∂2ϕx

∂x2 + 1 − ν

2
∂2ϕx

∂y2 + 1 + ν

2
∂2ϕy

∂x∂y
+ 6κ(1 − ν)

h2

(
∂w

∂x
− ϕx

)]
,

ρh3

12
∂2ϕy

∂t2 = K

[
∂2ϕy

∂y2 + 1 − ν

2
∂2ϕy

∂x2 + 1 + ν

2
∂2ϕx

∂x∂y
+ 6κ(1 − ν)

h2

(
∂w

∂y
− ϕy

)]
,

(3.47)

with the flexural rigidity of the plate

K = Eh3

12(1 − ν2)
. (3.48)

All impulse terms, the curvatures and the shear strain terms are collected in the state
vector

xT =
[
ρh ∂w

∂t
ρh3

12
∂ϕx
∂t

ρh3

12
∂ϕy

∂t
κxx κyy κxy γxz γyz

]
. (3.49)

Together with the system Hamiltonian H = Ub + Us + T , the definition of the power
conjugate variables follows

f = −ẋ, eT =
[

∂w
∂t

∂ϕx
∂t

∂ϕy

∂t
eT

b eT
s

]
, (3.50)
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with

eb = Dbκ =
[
Mxx Myy Mxy

]T
, es = κGhγs =

[
Qx Qy

]T
. (3.51)

With the above definitions, a vectorial formulation of the Mindlin plate as Hamiltonian
system is given by

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 ∂x ∂y

0 0 0 ∂x 0 ∂y 1 0
0 0 0 0 ∂y ∂x 0 1
0 ∂x 0 0 0 0 0 0
0 0 ∂y 0 0 0 0 0
0 ∂y ∂x 0 0 0 0 0
∂x −1 0 0 0 0 0 0
∂y 0 −1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ep1

ep2

ep3

eq1

eq2

eq3

eq4

eq5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.52)

For the definition of the boundary variables, the energy flow is analyzed

Ḣ =
∫

Ω

∂

∂x
(ẇQx + ϕ̇xMxx + ϕ̇yMxy) + ∂

∂y
(ẇQy + ϕ̇yMyy + ϕ̇xMxy) dΩ

=
∮

∂Ω
ẇQn + ϕ̇nMnn + ϕ̇sMns ds.

(3.53)

Here some of the intermediate steps shown in the calculation of Ḣ in (3.40) are
skipped. The last expression results from the application of Green’s theorem. As in
case of the disk element, the normal and tangential directions in the integration along
the boundary ∂Ω are illustrated in Fig. 3.5. The port variables of the Mindlin plate
are moments and angular velocities as well as shear forces and velocities. Note the
similarity to the Timoshenko beam, also considering (3.52). The similarity is even
more striking when using a tensorial formulation as detailed in [20].
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When applying spatial discretization methods to the systems in Chapter 3 for their
numerical simulation, care must be taken to preserve the port-Hamiltonian structure,
which is why conventional approaches cannot be readily employed. A spatial dis-
cretization method is structure preserving if the resulting lumped parameter system
remains symplectic and passive. It follows that the power balance equation (2.21a)
or the bilinear form (2.22) need to be preserved in the approximation. An overview
of structure preserving discretization methods is given in Sec 4.1. The partitioned
finite element method (PFEM) is chosen from the available ones and is applied to
beam equations on a system class level in Section 4.3.1. Plate equations are approx-
imated with the same approach using quadrilateral elements in Section 4.3.2. The
approximation error for each of the systems in Chapter 3 is studied in Section 4.5.
In Section 4.4, PFEM is compared to FEM highlighting the differences between the
structure preserving approach and the conventional one. Readers that want to review
the FEM approach once again can consult the short summary in Section 4.2 and the
references provided therein.

Like Section 3.2, Secs. 4.1, 4.3.1 and 4.5.1 were originally presented in [135]. All
mentioned sections have been moderately improved compared to the original version
and adapted to the layout and style of this thesis.

4.1 On spatial discretization of distributed parameter pH systems

A wide range of methods for the numerical approximation of PDEs is available [102].
The finite element method is a common technique in structural dynamics, however, it
can not be applied in the usual way. Preserving the duality and passivity properties
of an infinite-dimensional port-Hamiltonian system can be achieved by using mixed
FEM approaches. First methods for the structure-preserving spatial discretization
of port-Hamiltonian systems were presented by Golo and Tasalia et al. in [126]
and [51]. They use differential forms for the numerical approximation of one- and
two-dimensional systems, where different approximation spaces are used for flows
and efforts. Their method was extended to allow for higher-order spatial derivatives
by Bassi et. al [13] and for its application to a class of irreversible thermodynamic
systems by Baaiu et al. [4]. For an accurate approximation, a relatively large number
of finite elements is usually required with these approaches. Moulla et al. [91] adopted
a collocation method to discretize 1D port-Hamiltonian systems. Using polynomial
bases, this results in higher accuracy for lower-order approximations. In all of the
approaches mentioned up to this point, the discretization happens in the strong form
of the balance equations. This results in rather strict compatibility conditions. Also,
an input feed-through term is present in the finite-dimensional approximation, which
potentially complicates the application of control engineering methods.

Cardoso-Ribeiro et al. [28] relax the compatibility conditions by using the method of
[91] in the weak formulation in order to apply it to model the dynamics of a beam
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excited by a piezoelectric patch. Mixed finite element discretization in the weak
form was introduced in a general way by Kotyczka et al. [74]. Their method can
be applied to systems of any spatial dimension and resolves several issues that arise
when approximating directly in the strong form. It requires an additional projection
to ensure non-degeneracy of the power product, which introduces additional degrees
of freedom that can be used to tune the discretized models. The boundary ports of
resulting models are of alternating causality, which is not always desired. A particularly
elegant and straightforward method, which circumvents the mentioned difficulties, is
PFEM, as introduced by Cardoso-Ribeiro et al. [25]. It is closely related to the mixed
Galerkin method used in [74]. Integration by parts is, however, only applied to one of
the dual balance equations. This way, the port-Hamiltonian structure is obtained in a
direct fashion and no further projection is required. Moreover, no feed-through term
is produced in the discretization process. Causality of the boundary ports depends on
which balance equation is selected for partial integration and does not alternate for
individual elements. The method was also shown to be compatible with existing FEM
software [20]. It is applicable to open systems of two conservation laws of principally
any spatial dimension. Regarding plate dynamics, the application of PFEM to the
Mindlin plate is shown in [20] and to the Kirchhoff-Love plate model in [21]. All in
all, PFEM is considered the most suitable approach for the spatial approximation of
the systems introduced in Chapter 3.

4.2 Recall on the finite element method

As PFEM is closely related to the FEM approach, the latter is briefly explained in
the following. Intention of this section is to recall the basic method and some of its
features in order to allow for a comparison to PFEM. Basic familiarity with FEM
is assumed, since a complete introduction cannot be given here. For beginners, a
thorough and comprehensive treatise of the approach can be found in e. g. [113] or
[61].

In FEM, the system to be discretized is first divided into several smaller sections,
called finite elements. If the size of the elements is sufficiently small, their behavior
can be described using simpler functions that are nonzero only within the bounds of
the respective element. The behavior of the global system can then be approximated
by piecing the segments back together.

Let qe(xe, ye, ze, t) be the generalized coordinates (displacements and rotations) of an
element in its local reference system (xe, ye, ze) ∈ R

3, as illustrated in Fig. 4.1. Then,
each qi

e is approximated using a Ritz ansatz, such that

qi
e ≈ (φi

e)Tq̂i
e, i = 1 . . . Nq, (4.1)

where Nq is the number of local generalized coordinates of the element, φi
e(xe, ye, ze) ∈

R
Nn are orthogonal basis functions and q̂i

e(t) ∈ R
Nn is the evaluation of qi

e at the

49



4 Discretization

x
y

z xe
ze

ye

Ω

qe(t)
P 0

e

re(t)

Figure 4.1: Finite element in an elastic continuum with local reference frame (xe, ye, ze)
and the displacement of a point P e

0 at time t

(boundary) nodes of the element. The number of nodes is given by Nn. Polynomials are
often chosen for φi

e and the functions are required to satisfy the essential (kinematic)
boundary conditions [113]. Merging the q̂i

e into the vector

q̂e =

⎡
⎢⎣

q̂1
e
...

q̂
Nq
e

⎤
⎥⎦ (4.2)

and combining the basis functions φi
e into a block diagonal matrix Φe ∈ R

Nq·Nn×Nq ,
(4.1) may be rewritten as

qe ≈ ΦT
e q̂e. (4.3)

Now, recall the principle of virtual work (3.8) for an isotropic, linear elastic continuum.
For the finite element considered above – assuming for the sake of simplicity that the
system is conservative – it may be expressed in the local coordinates qe as∫

Ve

δqT
e ρq̈e + δεTσ dΩ = 0, (4.4)

where Ve is the volume of the element. Substituting the approximations for the
generalized coordinates into (4.4) results in

δq̂T
e

∫
Ve

ΦeρΦT
e ¨̂qe dΩ +

∫
Ve

δεTσ dΩ = 0. (4.5)

Since the strain ε ∈ R
Nq can be expressed in terms of qe, it may be approximated as

ε(xe, ye, ze, t) ≈ BT
e (xe, ye, ze)q̂e(t). (4.6)
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4.2 Recall on the finite element method

For a linear elastic material, the stress σ = Deε is a linear function of the strain,
where De ∈ R

Nq×Nq is the element compliance matrix. Thus, the potential term in
(4.4) can also be approximated using q̂e and d’Alembert’s principle becomes

δq̂T
e

∫
Ve

ΦeρΦT
e ¨̂qe + BeDeBT

e q̂e dΩ = 0. (4.7)

Since the virtual displacements δq̂ are arbitrary, the integral has to vanish. Integration
with respect to the element volume can now be carried out, because Φe and Be do
not depend on time. With the abbreviations

M e =
∫

Ve

ΦeρΦT
e dΩ, Ke =

∫
Ve

BeDeBT
e dΩ, (4.8)

the equations of motion of the unsupported element can be written in the compact
form

M e¨̂qe + Keq̂e = 0, (4.9)

where M e ∈ R
Nq·Nn×Nq·Nn is referred to as the element mass matrix and Ke ∈

R
Nq·Nn×Nq·Nn as the element stiffness matrix.

Given that the DOFs of all the nodes of a structure approximated using finite elements
are collected in the vector q ∈ R

nDOF , the local DOFs of each element are related to q
as follows

q̂e = T eq, (4.10)

with T e a coordinate transformation matrix and nDOF the number of global DOFs. It
can then be shown that the mass and stiffness matrices of the system as a whole are
obtained as [113]

M =
Ne∑

e=1

T T
e M eT e, K =

Ne∑
e=1

T T
e KeT e, (4.11)

where Ne is the number of finite elements. This implies that the contributions of an
individual element to the mass and stiffness of each global DOF are simply added
up. The dynamics of a general linear elastic system approximated using FEM can be
written as a second order differential equation

Mq̈ + Dq̇ + Kq = f ext, (4.12)

where a damping term Dq̇ and external forces f ext ∈ R
nDOF are included. The

damping term is often approximated using a weighted sum of M and K (Rayleigh
damping), while the external forces can be obtained by including external loads
in (4.4) that are then discretized. They may also be added in discrete fashion
directly, considering them as abstract forces and moments acting on the nodes of the
approximated structure.
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4 Discretization

4.3 Applying the partitioned finite element method to elastic bodies

Spatial discretization of the elastic mechanical systems presented in Chapter 3 using
PFEM can be treated on a general level, similar to the brief recapitulation of FEM
given in the previous section. However, it is chosen to present discretization of one-
dimensional systems separately from the two-dimensional ones in the following. This
allows entering into specific details for both cases more easily, such that it becomes
clearer how to apply the method, respectively.

4.3.1 Systems of one spatial dimension

For the simulation of the dynamic response of beam elements, numerical approximation
of the infinite-dimensional port-Hamiltonian system equations derived in Section 3.2
is necessary. Here PFEM, as presented by Cardoso-Ribeiro et al. [26], is employed for
this purpose, for reasons outlined in Section 4.1. In the following, the application of
PFEM to systems of the form

ẋ = J e, with J =
N∑

i=0

[
0 Ai

(−1)i+1AT
i 0

]
∂i

∂xi
(4.13)

is presented. The entries of the matrices Ai are either zero or one, N is the maximum
order of the spatial derivative and x, e ∈ R

n. For the systems in Section 3.2, the
matrices are quadratic, but this need not be the case in general. Taking for instance
(3.27), the Timoshenko beam equations in Hamiltonian form with N = 1, the matrices
Ai are

A0 =
[

0 1
0 0

]
, A1 =

[
1 0
0 1

]
. (4.14)

The system Hamiltonian can be expressed as

H(x) = 1
2

∫
X

xTLx dx, (4.15)

where L can be a function of the state vector x on the interval X =
[
a b

]
. When

observing the infinite-dimensional port-Hamiltonian systems in Section 3.2, note that
they are all of this type with the order of the spatial derivative N ≤ 2 and L
independent of x for isotropic beams. Let the length of the system be denoted by L.
Then,

[
a b

]
is the interval

[
0 L

]
. By treating the spatial discretization process on

a system class level, explicit formulation of the process for every single load case of the
beam is avoided. At the same time, it is more evident that the method’s applicability
is not limited to truss structures and frames.

52



4.3 Applying the partitioned finite element method to elastic bodies
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Figure 4.2: Division of a beam element into five intervals with Nn = 6 nodes with
corresponding flows and efforts for numerical approximation [135]

In a first step, the energy variables x, flow variables f and effort variables e of a
system of class (4.13) are approximated using polynomial approximation bases.

xpi(x, t) ≈ φT(x)x̂pi(t), xqj(x, t) ≈ φT(x)x̂qj(t),

fpi(x, t) ≈ φT(x)f̂pi(t), fqj(x, t) ≈ φT(x)f̂qj(t),

epi(x, t) ≈ φT(x)êpi(t), eqj(x, t) ≈ φT(x)êqj(t),

(4.16)

with i = 1 . . . np and j = 1 . . . nq, where np is the number of kinetic and nq the number
of potential energy related variables (e. g. for the Timoshenko beam np = nq = 2).
Here, the basis functions φ(x) are chosen as the Lagrange polynomials of order Nn − 1,
where Nn is the number of nodes. It it possible to choose different orders of φ(x) for
kinetic and potential energy variables. However, since there is no obvious advantage in
doing so considering the systems and methods presented in this thesis, equal orders are
always chosen. The vectors x̂pi, f̂pi, êpi ∈ R

Nn and x̂qj , f̂qj , êqj ∈ R
Nn are the energy

variables, flows and efforts evaluated at uniformly distributed points in X =
[
a b

]
.

For values of Nn ≥ 2, the boundary is always included. This is illustrated for the
kinetic variables of a beam element in Fig. 4.2 where Nn = 6 nodes (i. e. a fifth order
polynomial) are used. The approximations of kinetic efforts êi

p and flows f̂ i
p are

included in the figure with the half arrow pointing in the positive reference direction
of the energy flow, respectively.

For the sake of a more compact notation, denote by xp the concatenation of the xpi

and by x̂p the concatenation of nodal variables x̂pi. The same applies to all the other
variables appearing in (4.16). Accordingly, the Lagrange bases are grouped together
in the matrices

ΦT
p (x) ∈ R

np×np·Nn , ΦT
q (x) ∈ R

nq×nq·Nn . (4.17)

In line with the Galerkin method (see e. g. [61, 111]), PFEM proceeds via the weak
form of (4.13)∫

X

Φ(x)ẋ dx =
∫

X

Φ(x)J e dx, where Φ(x) =
[

Φp(x) 0
0 Φq(x)

]
, (4.18)
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4 Discretization

using the matrix functions Φp(x) and Φq(x) as test functions. Substituting the
approximations (4.16) for energy variables, flows and efforts into (4.18), yields(∫

X

ΦpΦT
p dx

)
˙̂xp =

(
N∑

i=0

∫
X

ΦpAi
∂i

∂xi
ΦT

q dx

)
êq

(∫
X

ΦpΦT
q dx

)
˙̂xq =

(
N∑

i=0

(−1)i+1
∫

X

ΦqAT
i

∂i

∂xi
ΦT

p dx

)
êp.

(4.19)

For systems such as (4.13), structure-preserving mixed Galerkin approximation as
presented in [74] can be used. However, with PFEM, the finite-dimensional port-
Hamiltonian system can be obtained in a direct fashion without further projection.
This is achieved by applying integration by parts to only one of the equations in (4.19).
In principle, either equation can be integrated by parts. By choosing one or the other,
a different causality of the boundary ports – i. e. which variables will be the boundary
inputs and which the boundary outputs – results. When integrating the respective
dual equation by parts instead, causality of the boundary ports is reversed. For the
systems defined in Section 3.2, integrating the upper equation by parts results in forces
and torques as boundary inputs and velocities and angular velocities as boundary
outputs. Integrating the lower equation by parts instead, the role of boundary inputs
and outputs is reversed. To be consistent with the FEM approach, where forces and
torques generally act as inputs, integration by parts is applied N times to the equation
containing the kinetic flows here. Intermediate steps of this calculation are shown in
Appendix B. As a result, the following is obtained(∫

X

ΦpΦT
p dx

)
˙̂xp =

(
N∑

i=0

(−1)i

∫
X

∂i

∂xi
ΦpAiΦT

q dx

)
êq

+
N∑

i=1

i∑
j=1

(−1)j−1
[

∂j−1

∂xj−1 ΦpAi
∂i−j

∂xi−j
ΦT

q êq

]b

a

.

(4.20)

Observing the term in round brackets on the right hand side, note that it is the
negative transpose of the term in front of êp in the lower equation in (4.19). Applying
Gaussian quadrature to evaluate the integrals, a lunmped parameter approximation
of the system dynamics is obtained[

Mp 0
0 M q

]
︸ ︷︷ ︸

Mpq

˙̂x =
[

0 P
−P T 0

]
︸ ︷︷ ︸

J

ê +
[

Gp

0

]
︸ ︷︷ ︸

G

u∂ , (4.21)

with the symmetric positive definite matrices Mp ∈ R
np·Nn×np·Nn and M q ∈

R
nq·Nn×nq·Nn , the skew-symmetric interconnection matrix J with P ∈ R

np·Nn×nq·Nn ,
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4.3 Applying the partitioned finite element method to elastic bodies

the input matrix G and the boundary input variables u∂ . The latter are the efforts
ΦT

q êq and their spatial derivatives, appearing in the second term on the right hand
side in (4.20), evaluated at the boundary. According to the effort definitions in Sec-
tion 3.2 in case of the beam dynamics, the inputs are forces and bending moments.
For one-dimensional systems such as beam elements, the number of boundary inputs
amounts to nq · 2N with u∂ ∈ R

nq·2N and Gp ∈ R
np·Nn×nq·2N . With the boundary

inputs stated for the individual systems in Section 3.2, it can be easily verified that Gp

is directly obtained by evaluation of φ(x) (and ∂xφ(x) in case of the Euler-Bernoulli
beam) at the boundary. This is why they are regarded as “natural” choices for
the application of PFEM. For the systems (3.14) and (3.27), Gp = I follows when
np · Nn = nq · 2N , since φ|∂X = 1.

It is convenient to also have forces and moments acting on intermediate nodes when
np · Nn > nq · 2N . Therefore, additional inputs are introduced, such that, independent
of Nn, the rank of Gp is np · Nn. For systems with differential order N = 1 and
np = nq, this means that np additional inputs are added at each intermediate node.
In case N = 2 and nq = np, Nn ≥ 4 has to be restricted to even numbers and np

additional inputs are added – but at intermediate nodes when dividing X into Nn − 4
equally sized segments. For Nn = 6, as depicted in Fig, 4.2, np additional inputs would
be added at a node in the middle of the beam.

Equation (4.21) is already a valid finite-dimensional approximation of the port-Ha-
miltonian system, but it is not yet in the desired input-state-output form (2.32). To
bring it to this form, recall that f := ẋ and the energy variables are transformed as
follows

x̃ := Mpqx̂. (4.22)

For a lumped parameter port-Hamiltonian system, the effort variables are obtained
by taking the gradient of the system Hamiltonian with respect to the energy variables.
Thus, it remains to show that

ê = ∇x̃H(x̃). (4.23)

First, the system Hamiltonian needs to be written in terms of x̃, which is achieved by
substitution of the approximations (4.16) into (4.15) and application of the transfor-
mation (4.22)

H(x̃) = 1
2

x̃TM−1
pq

(∫
X

ΦLΦTdx

)
M−1

pq x̃. (4.24)

Recall that e = ∂H/∂x. After substitution of the approximations (4.16) and transfor-
mation to the weak form, this expression becomes(∫

X

ΦΦTdx

)
ê =

(∫
X

ΦLΦTdx

)
x̂. (4.25)

55



4 Discretization

ξ

(0|0) ξ

η

(-1|-1)

(-1|1) (1|1)

(1|-1)
1 2

34

xe

ye

1

2

3

4

5

67

8

9

η

Figure 4.3: Discrete quadrilateral element with mapping to the natural coordinates ξ
and η on the unit square. Four nodes (red) are required for an approxi-
mation polynomial of order one, whereas nine are necessary in case of a
second order approximation

Since the integral on the left hand side is Mpq, it is easily seen that (4.23) is true. By
defining

Q := M−1
pq

(∫
X

ΦLΦTdx

)
M−1

pq , (4.26)

the system (4.21) can be written as

˙̃x = JQx̃ + Gu∂ ,

y∂ = GTQx̃,
(4.27)

with the boundary output variables y∂ being the input-collocated velocities and
angular velocities for all systems considered in Section 3.2.

4.3.2 Elements for two-dimensional systems

While finite elements for one-dimensional systems are always line segments, taking a
second spatial dimension into account allows for many different primitive elements.
The surface of a two-dimensional continuum may in principle be approximated using
any polygon with at least three corner nodes. Elements with curved boundaries are
also possible. For both the disk and the plate equations from Section 3.3, quadrilateral
elements with straight edges are used in the following. A sample quadrilateral is
depicted on the left hand side of Fig. 4.3. It is considered both a versatile and simple
to employ element.

Both the location of nodes and the orientation can be different for each element. This
complicates e. g. integration along the coordinates xe and ye of the local reference
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4.3 Applying the partitioned finite element method to elastic bodies

frame. Therefore, the geometry of each quadrilateral is mapped to the unit square
shown on the right hand side of Fig. 4.3. Operations on the element can then be
carried out with respect to the natural coordinates ξ and η without having to mind its
individual geometry explicitly. The local coordinates can be approximately expressed
in terms of the natural coordinates as follows [61]

[
xe(ξ, η)
ye(ξ, η)

]
≈

[
φ1

g 0 φ2
g 0 φ3

g 0 φ4
g 0

0 φ1
g 0 φ2

g 0 φ3
g 0 φ4

g

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xe
1

ye
1

xe
2

ye
2

xe
3

ye
3

xe
4

ye
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.28)

where xe
i and ye

i are the local coordinates and φi
g the two-dimensional Lagrange

polynomials of order one for each corner node i. Note that the approximation is more
accurate the more the shape of the quadrilateral resembles that of the unit square.
The basis functions for the geometry approximation are explicitly given as [61]

φ1
g(ξ, η) = 1

4
(1 − ξ)(1 − η), φ2

g(ξ, η) = 1
4

(1 + ξ)(1 − η),

φ3
g(ξ, η) = 1

4
(1 + ξ)(1 + η), φ4

g(ξ, η) = 1
4

(1 − ξ)(1 + η).
(4.29)

Observe, that each φi
g evaluates to one at the i-th corner and to zero at each other

node j �= i. While other variables on the quadrilateral may be approximated using
higher order basis functions with more nodes, only four nodes are required for a
quadrilateral with straight edges. If the order of the approximation bases equals four
for both the geometry and the DOFs of the element, it is referred to as isoparametric.
Otherwise, when higher order approximations are used for the DOFs, the element is
called subparametric. In Fig. 4.3 on the left, the five additional nodes required for e. g.
the second order Lagrange polynomials are depicted in blue.

For a change of variables from (xe, ye) to (ξ, η) in equations evaluated on the quadri-
lateral, it is convenient to define the following mapping

Je
g =

[
∂xe

∂ξ
∂ye

∂ξ

∂xe

∂η
∂ye

∂η

]
, (4.30)

which is the Jacobian of (4.28). With Je
g, the derivative of a function of ξ and η with
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respect to xe or ye becomes [
∂()
∂xe

∂()
∂ye

]
= (Je

g)−1

[
∂()
∂ξ

∂()
∂η

]
. (4.31)

Similarly, integration with respect to the element volume may be carried out along ξ
and η in the following way [61]∫

Ve

. . . dΩ =
∫ 1

−1

∫ 1

−1
. . . h|Je

g| dξ dη, (4.32)

where h is the thickness of the element, as previously introduced in Section 3.3. Both
the determinant |Je

g| and the inverse of Je
g are constant if the quadrilateral is a

parallelogram. In that case, applying Gaussian quadrature to compute the integral
yields the exact solution. This closes the preliminary for the application of PFEM to
the port-Hamiltonian representations of the disk and plate elements.

Parallel to the procedure in the previous section, let us proceed by introducing a class
of systems that encompasses the ones presented in Section 3.3. Recalling the definition
of the multi-index that is employed e. g. in (2.48), Eqs. (3.39) and (3.52) for a finite
element may be written as

ẋ = J e, with J =
1∑

|α|=0

[
0 Aα

(−1)|α|+1AT
α 0

]
Dα, (4.33)

with the differential operator Dα = ∂α1
xe ∂α2

ye and the Boolean or logical matrices Aα.
The element system Hamiltonian can be expressed as

H(x) = 1
2

h

∫
Ae

xTLx dΩ, (4.34)

with L, as before, independent of the local coordinates xe and ye.

Instead of directly plugging approximations for the system variables into (4.33), a few
steps of PFEM are carried out on the infinite-dimensional system first. This is just
as valid and allows for some additional manipulation before discretization. Begin by
putting the system dynamics into weak form using arbitrary test functions cp(xe, ye)
and cq(xe, ye) ∫

Ae

cpẋp dΩ =
1∑

|α|=0

∫
Ae

cqAαDαeq dΩ

∫
Ae

cqẋq dΩ =
1∑

|α|=0

(−1)|α|+1
∫

Ae

cqAT
αDαep dΩ.

(4.35)
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Next, one of the above systems of equations is integrated by parts, which reveals the
boundary input. Again, it is chosen to integrate the equations for the kinetic flows fp

such that the boundary inputs are forces and moments∫
Ae

cpẋp dΩ =
1∑

|α|=0

(−1)|α|
∫

Ae

DαcpAαeq dΩ +
1∑

|α|=1

∮
∂Ωe

cpnαAαeq ds. (4.36)

Here, ∂Ωe denotes the element boundary and nα(s) is the component of the vector
normal to the boundary selected by α (for α = (1, 0), nα becomes nx). For an
illustration of the vector normal and its components along the boundary curve, see
Fig. 3.5.

As to the question why integration by parts is performed on the distributed parameter
system, note that the term

u∂(s, t) =
1∑

|α|=1

nα(s)Aαeq(s, t) (4.37)

under the line integral is the boundary input. It is now possible to choose a different
approximation for u∂ than for eq, which was the point of working with the infinite-
dimensional equations. Let each ui

∂(s, t) be approximated by

ui
∂(s, t) ≈ ψ(s)Tûi

∂(t), i = 1 . . . nq, (4.38)

where ψ(s) is a vector of orthogonal basis functions. It may be chosen depending on
the desired form of the input.

In the FEM approach, the inputs are usually the nodal forces and moments. In order
to be consistent with that, ψ is chosen as

ψ(s)T =
[
δ(xe(s) − xe

1, ye(s) − ye
1) . . . δ(xe(s) − xe

Nn , ye(s) − ye
Nn )

]
, (4.39)

where δ(xe, ye) denotes the Dirac delta function, (xe
i , ye

i ) are the coordinates of the
i-th node and Nn is the number of nodes. Note that Nn is not the number of nodes
used for the approximation of the quadrilateral’s geometry in (4.28) (four nodes). It
is the number of nodes used for the approximation of the energy and power variables.
Thus, when Nn > 4, the element is subparametric, as explained above. The system
variables are approximated as

xp(xe, ye, t) ≈ ΦT
p (ξ, η)x̂p(t), xq(xe, ye, t) ≈ ΦT

q (ξ, η)x̂q(t),

fp(xe, ye, t) ≈ ΦT
p (ξ, η)f̂p(t), fq(xe, ye, t) ≈ ΦT

q (ξ, η)f̂q(t),

ep(xe, ye, t) ≈ ΦT
p (ξ, η)êp(t), eq(xe, ye, t) ≈ ΦT

q (ξ, η)êq(t).

(4.40)

The notation follows that of Section 4.3.1. Except that the Lagrange polynomials
Φp ∈ R

np×np·Nn and Φq ∈ R
nq×nq·Nn are two-dimensional here and the approximation
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is carried out on the unit square with coordinates (ξ, η). With Nn nodes, the order of
the polynomial bases is

√
Nn − 1. It follows that Nn must be obtained from the square

of a natural number greater than two in case of a full-order Lagrange polynomial. The
nine nodes of the second order Lagrange polynomials are depicted on the left hand
side of Fig. 4.3. Just as in the one-dimensional case, the Nn orthogonal basis functions
that form φ(ξ, η) evaluate to one only at the node they correspond to and to zero at
all other nodes.

After inserting the approximations (4.40) and (4.38) into (4.19) and (4.36), all that
remains to arrive at a discrete representation, is to specify the test functions cp and cq.
A choice that is particularly convenient, is given by cp = Φp and cq = Φq. Then, the
integrals over the element surface and its boundary can be carried out by employing
Gaussian quadrature and (4.21) results. It may help to bring to mind, that the
derivatives of Φp and Φq with respect to xe and ye can be written in terms of ∂ξ and
∂η according to (4.31). Also, note that the Dirac delta function has the convenient
property of being premultiplied by the inverse of the Jacobian determinant |Je

g| on
change of coordinates from (xe, ye) to (ξ, η).

The discrete boundary input corresponding to Qns of the disk element is set to zero
since – for the above choice of elements and approximation bases – it can be expressed
as a linear combination of Fx and Fy at each node. For the same reason, the input
corresponding to Mns of the Mindlin-Reissner plate is eliminated. Then, it follows
that Gp in (4.21) becomes the identity matrix of size np · Nn when Nn = 4 (i. e. the
quadrilateral is isoparametric). For higher order elements, extra inputs are added at
interior nodes to ensure that Gp = I and that all nodes can be externally manipulated.
Recall, that this was also done for the one-dimensional elements in Section 4.3.1.

For the remaining steps to obtain a system in input-state-output form (2.32), the
reader is referred to the previous section. Since they are identical, it is refrained from
repeating them here.

4.4 Comparison between FEM and PFEM

In the interdisciplinary context that this work stems from, the finite element method is
a well established and well understood approach. Presenting the application of PFEM
to beam and plate equations on different occasions gave rise to some misunderstandings.
This section is dedicated to showing that the methods are actually closely related.
Important differences and their implications are also discussed.

For the following analysis, it is assumed that Φp = Φq = Φe, where Φe is the matrix
from (4.3). Strictly speaking, this excludes the two-dimensional systems. However,
the observations made in this section apply to the disk and plate systems just as well.
Showing this requires more extensive notation, but otherwise readily follows from the
subsequent.
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4.4 Comparison between FEM and PFEM

Given the mass matrix M e and the stiffness matrix Ke obtained from applying FEM,
the element dynamics (4.9) can be expressed in port-Hamiltonian form by choosing
the state vector as xT

e =
[
(M e ˙̂qe)T q̂T

e

]
∈ R

2Nq·Nn . Denote by f e
ext ∈ R

Nq·Nn the
external forces and moments acting on the element nodes. Then, a port-Hamiltonian
system in input-state-output form results as

ẋe =
[

0 −I
I 0

][
M−1

e 0
0 Ke

]
xe +

[
I
0

]
f e

ext,

ye =
[
I 0

] [M−1
e 0

0 Ke

]
xe,

(4.41)

where ye are the velocities of the element nodes. This representation is convenient for
comparison with (4.27). So far, it is not apparent how the two systems are related to
each other and whether there are any commonalities. In order to show the similarities,
first observe that for the systems presented in Chapter 3, L and Q are block diagonal
matrices

L =
[

Lp 0
0 Lq

]
, Q =

[
Qp 0
0 Qq

]
. (4.42)

Since Lp is a diagonal matrix, and recalling that Φ in (4.26) is also block diagonal,
observe that

Qp = M−1
p Lp

(∫
Ve

ΦpΦT
p dΩ

)
M−1

p = M−1
e . (4.43)

To check that the above is true, note that Lp = 1/ρ · I (for the planar systems
Lp = 1/(ρh) · I) and recall that Φe = Φp was assumed. The matrix Lq is not always
diagonal. However, the block diagonal property of Φq still allows for a reformulation
of Qq. Let Lq = De, with De from (4.7). Then it can be stated that

Qq = M−1
q

(∫
Ve

ΦqDeΦT
q dΩ

)
M−1

q = D̂eM−1
q , (4.44)

where D̂e is simply De with each entry expanded to Nn nodes such that σ̂e = D̂eε̂e

and ε̂e, σ̂e ∈ R
nq·Nn . This result can be generalized to the two-dimensional case by

including shear terms in De. Now, and realizing that u∂ = f e
ext, the upper equations

of (4.27) may be rewritten as

˙̃x =
[

0 P
−P T 0

][
M−1

e 0
0 D̂eM−1

q

]
x̃ +

[
I
0

]
f e

ext. (4.45)

Examining again (4.22) and the definitions of the energy variables for the systems in
Chapter 3, it follows that x̃T =

[
(M e ˙̂qe)T (M qε̂e)T

]
. In this representation, it is

easy to spot the common points and the differences.
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4 Discretization

With regard to the differences, it all comes down to the the fact that, in FEM, the
displacements qe instead of the strains εe are used as state variables. To come to this
insight, it is not actually necessary to analyze the respective discrete representations.
Still, it is considered important to understand how this affects the latter. In (4.45), the
matrix P can be considered a discrete differential operator that is not present in (4.41).
One consequence of the different choice of state variables in the port-Hamiltonian
formulation is that the full system may not, in general, be assembled by summing up
the transformed element matrices. This is due to the fact that the strains of individual
elements are usually not equivalent at the nodes. Especially when different types of
elements are interconnected at a node.

For a purely mechanical system, it may thus be advantageous to simply rewrite
the second order equations (4.12) of the assembled system obtained via FEM as a
port-Hamiltonian system. As already shown above, this is achieved by choosing the
state vector as xT =

[
(Mq̇)T qT

]
∈ R

2nDOF

ẋ =

([
0 −I
I 0

]
︸ ︷︷ ︸

J

−
[

D 0
0 0

]
︸ ︷︷ ︸

R

)[
M−1 0

0 K

]
︸ ︷︷ ︸

Q

x +
[

I
0

]
︸︷︷︸

G

f ext,

y = GTQx,

(4.46)

where the output y ∈ R
nDOF contains the nodal velocities or angular velocities for each

DOF. Note that the symmetric positive semi-definite matrix R yields the damping term
Dq̇ introduced in (4.12) above when multiplied by Qx. Damping on the distributed
parameter level is not discussed in this thesis.

In an energy-based formulation, the interesting part is, however, the interconnection of
mechanical systems with elements from non-mechanical or hybrid domains. Suppose,
that such elements are described by PDEs or include nonlinear relations. In those
cases, it is not clear how to obtain a port-Hamiltonian formulation of the coupled
system, given only the mechanical part (4.12). This is why a port-Hamiltonian way of
assembling linear elastic structures is presented in this thesis.

In Chapter 5, a port-based method, or rather an algorithm, for the automatic assembly
of systems composed of mechanical and non-mechanical components is introduced.
It is more in line with the energy-based philosophy (than adding up the element
matrices) and allows for another perspective on the assembly process. Together with
the discretization methods presented in this chapter, this allows for a complete and
consistent port-Hamiltonian formulation of the finite element approach. In each step –
from the infinite-dimensional equations via spatial discretization to the interconnected
lumped parameter system – the port-Hamiltonian structure is preserved. It is also
shown that, for the purely mechanical case, the resulting system representation is
identical and can be transformed to (4.46) when the same approximation bases are
used. To the best of our knowledge, such a connection has not been established before.
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4.5 Approximation error analysis

With a thorough understanding of the port-Hamiltonian way of modeling linear elastic
mechanical systems and its relation to more established FE methods, extensions are
achieved more easily and mutual understanding across disciplines is promoted.

4.5 Approximation error analysis

In this section, the accuracy of the numerical discretization methods presented in
Section 4.3 is investigated. A common way to do this, is to compute the eigenfrequencies
of the discretized system and to check whether they converge to a reference solution.
When steadily increasing the number of elements or the order of the approximation
bases, it is likewise important how quickly the error reduces. Analytical solutions are
available for some specific boundary conditions and element geometries. If this is not
the case, reverting to accurate numerical approximations from literature is another
possibility.

Approximation error analysis is done for beam elements in Section 4.5.1 and for the
disk and plate elements in Section 4.5.2. Only the most common test scenarios are
considered here. In further work, elements with irregular shapes might be addressed
in the error analysis of the two-dimensional systems (e. g. in a patch test).

4.5.1 Beam elements

For each of the systems presented in Section 3.2, a numerical analysis of the approxi-
mation error is performed for the case of a single beam with a quadratic cross section
and L/h = 50, where h is the cross sectional height. Different boundary conditions
are chosen for bending and axial loads. In case of the Timoshenko and Euler-Bernoulli
equations, the beam is simply supported and otherwise it is clamped at one end and
free at the other. A Poisson ratio of ν = 0.1 is chosen and the Timoshenko shear
coefficient is set to κ = 5/6. The beam is then approximated using an increasing
number of elements and the error in the first eigenfrequency is computed. Analytical
solutions for the eigenfrequencies of each of the considered load cases can e. g. obtained
from [111]. The results are depicted in Fig. 4.4 for all of the beam equations with the
number of elements ranging from Ne = 1 . . . 100.

In Fig. 4.4 a), Nn = 2 nodes were chosen in case of the rod and the Saint-Venant
element and Nn = 4 for both Euler-Bernoulli and Timoshenko beam. For all systems,
the error starts at a value of ≈ 10 % and decreases monotonically until Ne ≈ 40 where
it starts to oscillate around a more or less stationary value for the bending elements.
The results for the rod and Saint-Venant element are not discernible from each other.
This was to be expected as the systems only differ in terms of parameters but are
otherwise identical. A saturation of the error is not visible for the axial loads. The
oscillating behavior about an error of ≈ 1 × 10−6 % for the Euler-Bernoulli beam and
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Figure 4.4: Analysis of the approximation error of PFEM for the beam models with a
different number of elements and supporting points
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4.5 Approximation error analysis

Table 4.1: Eigenvalue analysis for a free rectangular disk (b/a = 0.5)
Mode N=10(P1) N=20(P1) N=5(P2) N=10(P2) Ref.

ω̂1 0.9961 0.9817 0.9782 0.9769 0.9830
ω̂2 1.4873 1.4821 1.4806 1.4804 1.4806
ω̂3 1.6733 1.6437 1.6384 1.6339 1.6340
ω̂4 2.4469 2.3843 2.3794 2.3644 1.8588

≈ 5 × 10−8 % for the Timoshenko beam is explained by the fact that the composite
system becomes numerically ill-conditioned for a high number of elements. The smaller
individual elements become, the more stiff their behavior. This effect can be reduced
by stabilizing the numerical methods involved in the system assembly (see Chapter 5)
and eigenfrequency calculation.

As the approximation error does not only depend on the number of elements, but also
on the order of the approximation polynomials, an additional analysis was conducted
with a higher order of the approximation bases. This time, Nn = 4 nodes were chosen
for the axial loads and Nn = 6 for bending. The results are shown in Fig. 4.4 b).
With only a single element, the error is now about three orders of magnitudes lower
than before for all systems. It also decreases more rapidly and is already below the
minimum value visible in Fig. 4.4 a) for Ne = 5 elements (with the exception of
the Timoshenko beam, for which a lower value results at Ne = 74). However, for
Ne > 10 the systems start to become numerically ill-conditioned, which results in a
saturation of the approximation error for the rod and Saint-Venant elements. Instead
of a saturation, an increasing trend is visible for the error of the simply supported
Timoshenko and Euler-Bernoulli beams.

The numerical analysis of the approximation error is limited by the accuracy of the
employed numerical methods and the numerical conditioning of the systems, for which
the error is calculated. A mathematical analysis of the convergence properties of
PFEM for the systems considered here would alleviate those issues, but is beyond the
scope of this work. With the results shown in Fig. 4.4, it is concluded that reasonable
accuracy can be achieved for a low number of approximating elements, especially
when using more than the minimum number of nodes required per element. However,
numerical ill-conditioning becomes a problem for a high number of elements which,
depending on the application, needs to properly addressed. Optimizing the algorithms
for system assembly that are presented in Chapter 5 on this account is to be considered
in further work.
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h
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b

Figure 4.5: Discretization meshes with different refinement N for a rectangular
disk/plate element with side lengths a and b and thickness h

4.5.2 Disk and plate elements

Approximate solutions for the primary eigenfrequencies of the free vibrations of a disk
element are e. g. available in [137]. Those are compared to the eigenfrequencies of the
discrete disk equations obtained according to the procedure presented in Section 4.3.2.
The solutions in [137] are reported for a rectangular disk with side lengths a = 2b
and all sides unsupported (free). For the approximation, a mesh with N2 elements of
identical size was used, which is illustrated in Fig. 4.5. Different numbers of elements
as well as a different number of nodes per element were tested. To allow comparison
to the values given in [137], the computed eigenfrequencies ωk are converted to the
non-dimensional quantities [124]

ω̂2
k = ω2

k
4E

ρa2(1 − ν)2 . (4.47)

Results are listed up to the fourth eigenmode in Tab. 4.1, where P1 and P2 indicate
that Lagrange polynomials of first (Nn = 4) and second order (Nn = 9) were used,
respectively. The Poisson ratio was set to ν = 0.3. Reference solutions from [137] are
given in the rightmost column. For the the first three modes, the deviation is already
below three percent for N = 10 using first order Lagrange polynomials. In the other
cases, it reduces to values below one percent. However, in all cases, the frequency
of the fourth mode does not match with the reference value. Since the values given
in [137] are also approximations, this does not necessarily indicate an error. Further
investigations are necessary to find out, where exactly the difference originates from
and which solution is more accurate.

The following analysis of the approximation error for the Mindlin-Reissner plate is
guided by the one performed by Brugnoli et al. in [20]. Reference solutions for the
free vibrations of a quadratic plate (a = b = L) are taken from [38]. Eigenfrequencies
are reported for four different boundary conditions, namely
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4.5 Approximation error analysis

Table 4.2: Eigenvalue analysis for a thick plate (h/L = 0.1)
B. C. Mode N=10(P1) N=20(P1) N=5(P2) N=10(P2) Ref.

CCCC ω̂11 1.7811 1.6401 1.6132 1.5927 1.594
CCCC ω̂21 3.4756 3.1499 3.1254 3.0454 3.046
CCCC ω̂12 3.4756 3.1499 3.1254 3.0454 3.046
CCCC ω̂22 4.7897 4.3955 4.3752 4.2712 4.285

SSSS ω̂11 1.0027 0.9487 0.9319 0.9304 0.930
SSSS ω̂21 2.4916 2.2877 2.2411 2.2209 2.219
SSSS ω̂12 2.4916 2.2877 2.2411 2.2209 2.219
SSSS ω̂22 3.7418 3.4895 3.4339 3.4077 3.406

SCSC ω̂11 1.4366 1.3352 1.3136 1.3011 1.302
SCSC ω̂21 2.6832 2.4670 2.4222 2.3961 2.398
SCSC ω̂12 3.2889 2.9870 2.9645 2.8903 2.888
SCSC ω̂22 4.2627 3.9455 3.9109 3.8446 3.852

CCCF ω̂11 1.2322 1.1201 1.0975 1.0818 1.089
CCCF ω̂21 1.9229 1.7898 1.7664 1.7452 1.758
CCCF ω̂12 3.1181 2.7746 2.7502 2.6627 2.673
CCCF ω̂22 3.6440 3.3097 3.2727 3.2015 3.216

• fully clamped (CCCC), i. e. ẇ = 0, ϕ̇n = 0 and ϕ̇s = 0;

• hard simply supported (SSSS), i. e. ẇ = 0, ϕ̇s = 0 and Mnn = 0;

• half clamped half simply supported (SCSC);

• all sides clamped except one (CCCF).

Additionally, two different thickness to length ratios are considered - a thick plate
with h/L = 0.1 and a thin plate with h/L = 0.01. Again, for comparison with the
results given in [38], the frequencies are converted to a dimensionless form

ω̂h
mn = ωh

mnL

√
2(1 + ν)ρ

E
, (4.48)

where m and n indicate the number of half waves in the mode shapes in the x- and
y-direction, respectively. Just as in [38], the Poisson ratio is set to ν = 0.3 in all
scenarios. The Timoshenko shear coefficient is set to κ = 0.8601 for CCCC and CCCF,
κ = 0.8333 for SSSS and 0.822 for SCSC. Aside from the thickness to length ratio,
these are the only parameters that influence the results. Results for h/L = 0.1 are
given in Tab. 4.2 and Tab. 4.3 list those obtained for a thin plate with h/L = 0.01.
The same combinations of N and P as previously for the disk elements were used.
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Table 4.3: Eigenvalue analysis for a thin plate (h/L = 0.01)
B. C. Mode N=10(P1) N=20(P1) N=5(P2) N=10(P2) Ref.

CCCC ω̂11 0.8727 0.4593 0.1906 0.1785 0.1754
CCCC ω̂21 1.8500 0.9550 0.4253 0.3699 0.3576
CCCC ω̂12 1.8500 0.9550 0.4253 0.3700 0.3576
CCCC ω̂22 2.4757 1.2903 0.6333 0.5458 0.5274

SSSS ω̂11 0.3832 0.2079 0.0971 0.0965 0.0963
SSSS ω̂21 1.1327 0.5917 0.2511 0.2428 0.2406
SSSS ω̂12 1.1327 0.5917 0.2512 0.2428 0.2406
SSSS ω̂22 1.5686 0.8358 0.3984 0.3875 0.3848

SCSC ω̂11 0.6611 0.3504 0.1504 0.1430 0.1411
SCSC ω̂21 1.2494 0.6551 0.2839 0.2704 0.2668
SCSC ω̂12 1.7267 0.8909 0.4017 0.3492 0.3377
SCSC ω̂22 2.0369 1.0707 0.5250 0.4720 0.4608

CCCF ω̂11 0.6232 0.3258 0.1265 0.1187 0.1171
CCCF ω̂21 0.8713 0.4649 0.2089 0.1979 0.1951
CCCF ω̂12 1.7425 0.8902 0.3742 0.3204 0.3093
CCCF ω̂22 1.8545 0.9621 0.4206 0.3831 0.3740

Satisfactory results are achieved for the thick plate with errors below one percent for
all boundary conditions when using N2 = 100 elements and second order polynomials.
Errors not higher than three percent are obtained for N = 5. Approximation quality
with first order polynomials is slightly worse (errors below four percent) in case N = 20.
Using N2 = 100 elements in the P1 case yields errors around 10–15 % in most test
scenarios.

Examining the results for the thin plate in Tab. 4.2, it is apparent that the Mindlin-
Reissner equations are intended for thick plates. When using first order polynomials
(P1), the element behavior is way too stiff even for N = 20. As already pointed out
in [20], this is most likely related to the shear locking phenomenon. Increasing the
order of the polynomials to two leads to a significant decrease in error. While errors
between 5–20 % are still obtained for N = 5 elements per side, the deviation from the
reference reduces to values below four percent for N = 10.

Brugnoli et al. use triangular elements for the discretization of the Mindlin-Reissner
plate in [20] and achieve lower deviation from the reference values – especially for
the thin plate. Therefore, one might conclude that triangular elements are superior
to quadrilaterals. However, bear in mind that this also depends on the accuracy of
the numerical algorithms employed for both discretization and system assembly from
individual elements. A professional FE software package (FEniCS) was used in [20],
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4.6 A note on time discretization

while a self-written Matlab framework performs all the steps leading to the results
presented in this section. Note that the port-based coupling procedure introduced
in Chapter 5 that is implemented in said framework involves a series of numerical
operations that potentially accumulate inaccuracies. Unless the elements are compared
using the same software package, it cannot be judged whether one of them actually
outperforms the other.

4.6 A note on time discretization

Not much will be said about time discretization in this section. First and foremost,
it is important to remark that numerical methods for time discretization of port-
Hamiltonian systems need to be structure preserving as well. This implies that not
just any solver can be used to integrate the dynamic equations of a port-Hamiltonian
system with respect to time. Only the use of symplectic numerical integration schemes
guarantees that the energy balance is preserved during the simulation [71]. A thorough
discussion of suitable integration methods is given in [71]. Among the methods
presented therein, s-stage Gauss-Legendre schemes are shown to be the only ones that
preserve the energy balance exactly.

The simplest possible choice of a structure preserving integration scheme is the
symplectic Euler method, as used e. g. in [72]. It has the advantage of being a semi-
explicit method, which can be easily implemented. However, it is not very suitable
for stiff systems, such as the ones considered in this thesis. Generally, employing a
Gauss-Legendre solver of order s = 1 led to satisfactory results when simulating the
systems presented here. For extremely stiff systems, consider reducing the time step
or increasing the order of the integration scheme.
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Figure 5.1: Interconnection of two linear elastic elements with boundary mechanical
ports of torque type ‘M’ or force type ‘F’. The orientation of the power
ports in the global reference frame is specified by the components of the
vector θi ∈ R

3, respectively [135]

As a preface to this chapter, note that it is mostly taken from [135] with minor
modifications.

With the systems defined in Chapter 3 and the numerical approximation method
described in Chapter 4, the dynamics of one- or two-dimensional structural primitives
can be obtained as the set of ordinary differential equations (ODEs) (4.27). To model
more complex structures, the interconnection and coupling of multiple basic elements
needs to be taken into account. In the following, a port-based method for the automatic
assembly of arbitrary 3D structures composed of the elements introduced in Chapter 3
is derived. Some of the methods presented in this chapter are only applicable to linear
systems. Coupling with the nonlinear systems presented in Chapter 6 or systems from
other non-mechanical domains, is briefly covered in Section 5.6.

Throughout this chapter, Fig. 5.1 is drawn on to illustrate the concepts. It depicts the
interconnection of an Euler-Bernoulli beam and a rod element, respectively labeled
system “A” and “B”. No two-dimensional elements are included in the example for
reasons of simplicity. However, the presented methods are applicable to systems
including plate and disk elements in exactly the same fashion. The system equations
of the Euler-Bernoulli beam are

˙̃xA = JAêA + GAuA
∂ ,

yA
∂ = (GA)TêA,

(5.1)

with uA
∂ ∈ R

4 the shear forces and bending moments at the boundary and yA
∂ the

corresponding collocated velocities and angular velocities. The dimension of x̃A and
êA depends on the order of the approximation polynomials φ in (4.16). Let nA

denote the number of nodes used for approximating each xA
i and eA

i . It follows that

72



5.1 System concatenation

x̃A, êA ∈ R
2nA . For the rod element, the approximated dynamics are

˙̃xB = JBêB + GBuB
∂ ,

yB
∂ = (GB)TêB,

(5.2)

where uB
∂ ∈ R

2 are the axial forces at the boundary and yB
∂ the collocated velocities.

As for system A above, x̃B, êB ∈ R
2nB , where nB is the number of nodes used for

approximating each xB
i and eB

i .

In the bottom part of Fig. 5.1 the interconnection of A and B is depicted in a mechanical
network diagram. Specific to this block diagram representation is the appearance
of a normalized orientation vector θi ∈ R

3 at each boundary port, where i denotes
the port number. A port labeled ‘M’ indicates a torque/angular velocity pair at the
boundary and ‘F’ marks ports with a force/velocity pair. Ports of the same type
with a non-zero scalar product of the orientation vectors can be coupled. Given the
information in Fig. 5.1, it is possible to write an algorithm for the automatic assembly
of the coupled system.

In the remainder of this chapter, the necessary steps such an algorithm needs to
perform are explained in detail. First, in Section 5.1, a way to concatenate the system
matrices of individual elements is shown, followed by the generation of coupling
constraints in Section 5.2. Elimination of those constraints, as presented in Section 5.3,
leads to systems that do not have full rank due to linear dependencies between states.
A way to remove redundant equations is shown in Section 5.4. The resulting system
on the constraint manifold needs to be normalized in order to obtain a description of
the dynamics in global DOFs or generalized coordinates q. This is achieved in two
steps, as presented in Section 5.5.

5.1 System concatenation

Without considering the coupling of the dynamic equations yet, there are several ways
to concatenate the system matrices of systems A and B. When performing integration
by parts on the equations involving the kinetic flows, the boundary inputs always act
on fp and never on fq. Thus, it is proposed to maintain the separation of kinetic and
potential energy on concatenation. This also facilitates notation in further steps. For
both (5.1) and (5.2), the interconnection matrix and input matrix have the following
structure

J =
[

0 Jp

Jq 0

]
, G =

[
Gp

0

]
. (5.3)
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5 Assembly of complex systems

When defining the concatenated energy variables as

x̃AB :=

⎡
⎢⎢⎣

x̃B
p

x̃A
p

x̃A
q

x̃B
q

⎤
⎥⎥⎦ , x̃AB ∈ R

2nA+2nB (5.4)

and the joint boundary input as

uAB
∂ :=

[
uA

∂

uB
∂

]
, uAB

∂ ∈ R
6, (5.5)

the resulting joint system matrices become

JAB =

⎡
⎢⎣

0 0 0 JB
p

0 0 JA
p 0

0 JA
q 0 0

JB
q 0 0 0

⎤
⎥⎦ , GAB =

⎡
⎢⎣

0 GB
p

GA
p 0

0 0
0 0

⎤
⎥⎦ . (5.6)

This way, the structural separation of energy domains is maintained.

5.2 Formulation of constraint equations

According to Newton’s second law of motion, forces and torques at each nodal point of
a structure have to sum up to zero for each degree of freedom considered. At the same
time, velocities and angular velocities with the same orientation have to be identical.
Looking again at the example in Fig. 5.1, this implies

vA
b = v2

z , vB
a = θ5

zv2
z , (5.7)

where vA
b is the right boundary velocity in z-direction of system A, vB

a the left boundary
velocity in z-direction of the rod and v2

z the velocity in z-direction of the second node.
The components of the orientation vector of the fifth port θ5 are depicted in Fig. 5.1.
Since the Euler-Bernoulli beam cannot take loads in the x-direction, θ5

x does not
appear in the formulation of constraints. For the boundary forces F A

b and F B
a it

follows
F A

b + θ5
zF B

a + F 2
z = 0, (5.8)

with the additional contribution of an external force F 2
z in z-direction.

Since the boundary outputs of the concatenated system include all boundary velocities
and angular velocities, (5.7) can be written in a more general fashion. For an arbitrary
structure, let q̇ ∈ R

nDOF denote its vector of global nodal velocities with nDOF the
total number of DOFs. It contains a velocity or angular velocity variable for each

74



5.2 Formulation of constraint equations

DOF. This way, each boundary output can be expressed as a linear combination of
entries of q̇

yi
∂ = (ci

v)Tq̇, i = 1 . . . nu, (5.9)

where nu is the total number of boundary inputs or outputs and ci
v ∈ R

nDOF maps θi

to the corresponding nodal velocity or angular velocity. From the relation between q̇
and y∂ , algebraic constraints on the state variables x̃ ∈ R

n, are obtained by eliminating
q̇. Here, n = np · Nn + nq · Nn is the system order of the concatenated, but uncoupled
system. From Section 4.3, recall that np denotes the number of potential, nq the
number of kinetic energy variables and Nn is the number of approximation nodes.
Rewriting (5.9) in matrix form, the following is obtained

y∂ = Cvq̇ ⇒ C⊥
v y∂ = 0, (5.10)

where C⊥
v denotes the left annihilator of Cv ∈ R

nu×nDOF . Substituting the output
equation of (4.27) into the above, yields algebraic constraints of the form

0 = BTQx̃. (5.11)

For statically determinate structures, the row rank of C⊥
v is nDOF and it follows that

B ∈ R
n×nc with nc = nu − nDOF.

In a similar fashion, a generalized expression for (5.8) can be obtained, which is used
to reformulate the boundary input u∂ ∈ R

nu . For each global DOF, an external force
or torque is introduced and they are collected in the vector of external forces and
torques f ext ∈ R

nDOF . Consequently, each external force or torque can be equated
with a linear combination of boundary inputs

(cj
u)Tu∂ = f j

ext, j = 1 . . . nDOF

Cuu∂ = f ext.
(5.12)

Usually, the number of DOFs is lower than the number of boundary inputs. With
nDOF input constraints, this means that free boundary inputs uf ∈ R

nc can be chosen.
This enables a reformulation of the input term Gu∂ as

Gu∂ = Gfuf + Gextf ext, (5.13)

where Gf ∈ R
n×nc is the resulting input matrix of the free inputs uf and Gext ∈

R
n×nDOF that of the external forces f ext. Assuming Gf has full row rank, its right

inverse G+
f = GT

f (GfG
T
f )−1 can be constructed and uf can be rewritten as

uf = G+
f Bλ, (5.14)

where λ ∈ R
nc are the Lagrange multipliers corresponding to the algebraic constraints

(5.11). Given (5.11), (5.13) and (5.14), the coupled structure can be written as a DAE
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system

˙̃x = JQx̃ + Gextf ext + Bλ,

q̇ = GT
extQx̃,

0 = BTQx̃,

(5.15)

where the collocated outputs to the external force inputs are the global nodal velocities
q̇ . It can be shown that the DAE system (5.15) is of index one, in case the matrix
BTQB has full rank [109], which is always the case for the systems considered here.
Refer to Section 5.6 for more details. In the next section, elimination of the algebraic
constraints in order to obtain an ODE formulation of the structural dynamics is shown.

5.3 Algebraic constraint elimination

Systems of the form (5.15) can be reduced to the constrained state space Xc with
uniquely defined dynamics. As a consequence, the algebraic constraints are eliminated.
A procedure for doing so is described in detail in e. g. [29] and [140]. The necessary
steps are repeated here, to give a complete description of the methodology used to
obtain the dynamic equations for arbitrary structure models in ODE form.

In a first step, the transformation

V =
[

B⊥

B+

]
(5.16)

is introduced. It is composed of both the left annihilator B⊥ ∈ R
n−nc×n and the left

inverse B+ ∈ R
nc×n of B. Left-multiplying the uppermost equation in (5.15) with V

and defining a new state vector z := V x̃, z ∈ R
n, yields

ż = V JQx̃ + V Gextf ext +
[

0
I

]
λ. (5.17)

To retain the port-Hamiltonian form, the term Qx̃ needs to be replaced with the
gradient of the Hamiltonian H with respect to z

∇zH =
(

∂x̃

∂z

)T
∇x̃H,

= V −TQV −1z,

= Q̃z.

(5.18)
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5.4 Elimination of linearly dependent states

Defining J̃ := V JV T and G̃ext := V Gext and dividing z into z1 ∈ R
n−nc and

z2 ∈ R
nc , the system can be reformulated as follows[

ż1

ż2

]
=

[
J̃11 J̃12

J̃21 J̃22

][
Q̃11 Q̃12
Q̃21 Q̃22

][
z1

z2

]
+

[
G̃ext,1

G̃ext,2

]
f ext +

[
0
I

]
λ,

q̇ =
[
G̃

T
ext,1 G̃

T
ext,2

] [Q̃11 Q̃12
Q̃21 Q̃22

][
z1

z2

]
,

0 =
[
0 I

] [Q̃11 Q̃12
Q̃21 Q̃22

][
z1

z2

]
.

(5.19)

The third equation implies ∇z2 H = 0 and that z2 can be expressed as

z2 = −Q̃
−1
22 Q̃21z1. (5.20)

Therefore, the system dynamics on the constrained state space Xc are given as

ż1 = J̃11(Q̃11 − Q̃12Q̃
−1
22 Q̃21)z1 + G̃ext,1f ext,

q̇ = G̃
T
ext,1(Q̃11 − Q̃12Q̃

−1
22 Q̃21)z1.

(5.21)

Due to the separation of energy and co-energy related terms according to (5.6), the
interconnection matrix J̃11 of the ODE system now has the following structure

J̃11 =
[

0 J̃p

−J̃
T
p 0

]
, (5.22)

with J̃p ∈ R
(np·Nn−nc)×(n−nc) and (np − nc) = nDOF. Since the external forces f ext

and the constraint forces λ in (5.15) act on x̃p only, the transformation (5.16) retains
x̃q ∈ R

nq·Nn in the new state z1.

5.4 Elimination of linearly dependent states

With x̃q retained in the state vector z1, the system dynamics of the reduced order
ODE system can be formulated as follows, using zT

1 =
[
zT

p x̃T
q

]
[

żp

˙̃xq

]
=

[
0 J̃p

−J̃
T
p 0

][
Q̃p 0
0 Qq

][
zp

x̃q

]
+

[
G̃ext,p

0

]
f ext,

q̇ =
[
G̃

T
ext,p 0

] [Q̃p 0
0 Qq

][
zp

x̃q

]
.

(5.23)

In this representation, it is evident that the nq · Nn state derivatives ˙̃xq are linearly
dependent since they are computed using a reduced number of potential energy
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variables zp ∈ R
nDOF . For ease of notation, let np = nq in the following, without loss

of generality, as long as nq · Nn > np · Nn − nc. Constructing an orthonormal basis
T q of −J̃

T
p , such that

x̃q = T qzq, (5.24)

no redundant states are retained in zq ∈ R
nDOF . The effort variables ẽq ∈ R

nq·Nn are
then related to zq as follows

ẽq = ∇x̃q H(z1) = Qqx̃q = QqT qzq. (5.25)

This allows a formulation of algebraic constraints on ẽq using B∗ = ker
[
(QqT q)T

]
such that

(B∗)TQqx̃q = 0. (5.26)

The constraints defined by (5.26) are of the the same form as the constraints (5.11).
Therefore, the procedure described in the previous section can be followed once again
in order to project (5.23) to a new constrained manifold. This results in the elimination
of linearly dependent efforts or rather state variables. Afterward, the system (5.23) is
expressed in the new coordinates z̄T =

[
zT

p zT
q

]
as

˙̄z = J̄Q̄z̄ + Ḡextf ext,

q̇ = Ḡ
T
extQ̄z̄,

(5.27)

with z̄ ∈ R
2nDOF . Note that the reduced order system (5.27) is of the same order as

the second order mechanical system in ISO port-Hamiltonian form (4.46), given the
global DOFs q are identical. Since the potential energy variables zq are not uniquely
defined, the coordinates zp and zq span the same space, but their physical meaning
cannot be necessarily grasped. In the next section, it is shown how to transform (5.27)
to obtain the dynamics in global coordinates.

5.5 Transformation to global coordinates

In the following, assume that (4.46) – without the damping term – and (5.27) describe
the same system. In this case, (4.46) with R = 0 can be obtained from (5.27) by
means of two consecutive transformations. With the first transformation

T u =
[

Ḡ
+
ext

Ḡ
⊥
ext

]
, (5.28)

where Ḡ
+
ext, Ḡ

⊥
ext ∈ R

nDOF×nDOF , a normalization of (5.27) with respect to the input
f ext is achieved. It is applied as follows

T u ˙̄z = T uJ̄T T
u T −T

u Q̄T −1
u T uz̄ + T uḠextf ext. (5.29)
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5.6 Coupling with other domains

Since T uḠext =
[
I 0

]T, it follows that T u ˙̄z =
[
(Mq̈)T ˙̃zT

q

]T, which results in[
Mq̈
˙̃zq

]
=

[
0 P̄

−P̄
T 0

]
︸ ︷︷ ︸

T uJ̄T T
u

[
M−1 0

0 S̄

]
︸ ︷︷ ︸

T −T
u Q̄T −1

u

[
Mq̇
z̃q

]
+

[
I
0

]
f ext,

q̇ =
[
I 0

] [M−1 0
0 S̄

][
Mq̇
z̃q

]
,

(5.30)

with I, M , P̄ , S̄ ∈ R
nDOF×nDOF . The final step to obtain (4.46) is the construction of

a second transformation

T p =
[

I 0
0 (−P̄

T)+

]
, with T pT uJ̄T T

u T T
p =

[
0 −I
I 0

]
. (5.31)

When T p is applied to (5.30) in the same fashion as T u in (5.29), it follows that the
transformed system must be identical to (4.46) with R = 0. Note that the second
transformation (5.31) can only be applied as long as the stiffness matrix K in (4.46)
is nonsingular. In case K is singular, so is T p and it is advisable to skip the second
step in the transformation to global coordinates.

If D in (4.12) is a Rayleigh or Caughey type damping term, R can now be easily
constructed from M and K. It is also possible to add Rayleigh damping before
the system assembly process or in any stage of the process as long as the structural
separation of kinetic and potential terms is maintained. This done by converting the
system to a second-order form as e. g. explained in [23]. Other types of damping might
involve adding dissipation terms on the PDE level, but this is not considered here.

5.6 Coupling with other domains

Even though the methods in this section are intended for the assembly of mechan-
ical systems, most of them can be applied to systems from other domains as well.
Maintaining the separation of energy domains on concatenation of system matrices
can also be advantageous for non-mechanical systems. When the spatial orientation
of the ports is irrelevant, the generation of constraints simplifies, but can otherwise
be carried out in the same fashion. In that case, transformation to a set of global
coordinates is not necessary.

Constraint elimination and the elimination of linear dependent states are domain-in-
dependent procedures but require the systems to be linear. For nonlinear systems,
such as the hydraulic actuators presented in Chapter 6, constraints for the mechanical
ports can still be generated according to approach described in Section 5.2. However,
an automated procedure for their elimination cannot be formulated in the general
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5 Assembly of complex systems

case. It is still possible to obtain an explicit system of equations by solving for
the Lagrange multipliers (see e. g. [37] and [109]). Consider a nonlinear system in
input-state-output-form (2.34). Taking the derivative of (2.34c) with respect to time,
results in

0 = BT(x)∂2H

∂x2 (x)ẋ (5.32)

= BT(x)∂2H

∂x2 (x)
(

[J(x) − R(x)] ∂H

∂x
(x) + G(x)u + B(x)λ

)
. (5.33)

As long as the matrix BT(x) ∂2H
∂x2 (x)B(x) has full rank for all x ∈ Xc, where Xc denotes

the constrained state space, the above can be solved for the Lagrange multipliers

λ = −
(

BT(x)∂2H

∂x2 (x)B(x)
)−1

B(x)∂2H

∂x2 (x)
(

J(x)∂H

∂x
(x) + G(x)u

)
. (5.34)

For linear systems, ∂2H
∂x2 (x) = Q. Numerical simulation of (2.34) is possible using

explicit integration methods when the coupling forces λ can be computed according
to (5.34).
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6 Hydraulic actuators

Integration of actuators and sensors into the load-carrying structure renders it adaptive.
Not just any type of actuator can be used for this purpose since the active manipulation
of a structure requires considerable forces or certain maximum strokes. As discussed
in [138], linear direct drives and hydraulic actuators meet the requirements. Hydraulic
actuators, however, are considered more efficient. In the CRC 1244, hydraulic cylinders
therefore are the active devices of choice.

A port-Hamiltonian model of a generic hydraulic piston actuator is introduced in
the following. Some basic thermodynamics are recalled first in Section 6.1. With the
definition of the internal energy and the dynamic equations of a fluid compartment at
hand, the actuator model is derived in Section 6.2. The chapter closes with Section 6.3,
where a simulation of an adaptive frame structure equipped with hydraulic actuators
is presented.

6.1 Fundamentals of hydraulic systems

A few thermodynamic basics have to be recalled in order to arrive at port-Hamiltonian
representations of hydraulic systems. The writing of this section was mostly influenced
by [65] and [75]. See especially the first reference for a more detailed introduction to
hydraulic servo-systems in general.

The first law of thermodynamics, which can be stated as

dU = δQ − δW, (6.1)

states that the internal energy U of a closed system can be changed by a transfer
of heat Q to the system and by the system performing work W on its surroundings.
Here, δQ denotes the inexact differential (i. e. a differential 1-form) of Q. As opposed
to the exact differential dU , it is path-dependent. Let us also recall the second law

ϑdS ≥ δQ, (6.2)

with S the entropy of the system and ϑ its temperature. For a reversible process, the
above becomes δQ = ϑdS. If it is further assumed that the system performs only
work of expansion, then δW = pdV , where p is the pressure and V the volume of the
system. In this case, the first law of thermodynamics (6.1) simplifies to

dU = ϑdS − pdV. (6.3)

In the following, only adiabatic systems, i. e. systems that do not exchange heat with
the environment such that δQ = 0, will be considered. Adiabatic processes are also
always isentropic with the entropy S being constant. Introducing the specific internal
energy u = U/m and the specific volume v = V/m, where m is the mass of the
substance in the system, (6.3) becomes

du = −pdv = −pd(ρ−1) = p

ρ2 dρ, (6.4)
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for an isentropic and adiabatic system. The density of the substance is denoted by
ρ = 1/v. Now, the internal energy can be calculated by integration of the above

U = mu =
∫

ρ

p(ρ̃)
ρ̃2 dρ̃. (6.5)

To obtain a closed-form expression for u, an explicit relationship between ρ and p
needs to be established. In classical hydraulics, this is done by linearizing the bulk
modulus β of the hydraulic fluid such that, at a constant temperature T ,

ρ

(
∂p

∂ρ

)∣∣∣
T

= β. (6.6)

Integrating the above along an isentrope, p is obtained in terms of ρ as

p(ρ) = p0 + β ln
(

ρ

ρ0

)
, with p0 = p(ρ0). (6.7)

Solving this expression for ρ yields the reverse relation

ρ(p) = ρ0 exp
(

p − p0

β

)
, with ρ0 = ρ(p0). (6.8)

Subsequently, it is assumed that p0 = 0 such that ρ0 becomes the density at zero
pressure. Then, carrying out the integration in (6.5) using (6.7) results in a specific
internal energy of

u(p) = −p + β

ρ0
exp

(
−p

β

)
. (6.9)

Consequently, the internal energy U can be expressed as

U(p) = V ρ(p)u(p) = V

(
β

(
exp

(
p

β

)
− 1

)
− p

)
. (6.10)

For the dynamics of a hydraulic system, consider the mass conservation equation [65]

∑
ṁin − ∑

ṁout = d(ρV )
dt

= ρV̇ + V ρ̇, (6.11)

where ṁin denotes the flow of mass into the system and ṁout the reverse. Using
the time derivative of (6.8) and dividing the expression by ρ, results in the pressure
dynamics

ṗ = β

V

(∑
q̇in − ∑

q̇out − V̇
)

, (6.12)
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pS pT

mp

s

A1 A2

p1 p2

xv

q̇1 q̇2

L

Fext

Figure 6.1: Double-acting hydraulic piston actuator of length L connected to a three-
land four-way valve. An external force Fext acts on the piston with mass
mp and position s. The pressures p1 and p2 in the two chambers are
also influenced by the volumetric flows q̇1 and q̇2 between actuator and
hydraulic power supply.

where q̇ denotes a volume flow. If the fluidic compartment whose dynamics are
described by (6.12) is connected to a spool valve, the flow through the valve orifices
can be described by the following equation

q̇v = kvxv
√

|Δp| sign(Δp). (6.13)

Here, kv is the valve coefficient, xv with −1 ≤ xv ≤ 1 the normalized spool position
and Δp the pressure difference between the valve ports. Depending on the type of the
valve and what its outlets are connected to, more specific expressions for qv can be
stated.

6.2 Double-acting piston actuator

The writing of this section is again guided by the work of Kugi and Kemmetmüller
presented in [75, 76]. Consider the double-acting valve-controlled hydraulic piston
actuator depicted in Fig. 6.1. Its cylinder chambers are connected to a three-way
four-land valve, which in turn is connected to a hydraulic power supply that provides
the supply pressure pS and a reservoir with the tank pressure pT. Considering (6.13),
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6.2 Double-acting piston actuator

the volumetric flows into an out of the cylinder chambers can be expressed as

q̇1 = Γ1xv =
{

kv
√

pS − p1xv for xv ≥ 0
kv

√
p1 − pTxv for xv < 0

, (6.14)

q̇2 = Γ2xv =
{

kv
√

p2 − pTxv for xv ≥ 0
kv

√
pS − p2xv for xv < 0

, (6.15)

where p1 and p2 are the respective chamber pressures. For the pressure dynamics in
the two cylinder chambers, (6.12) may be used, which results in

ṗ1 = β

A1s
(− A1

mp
pp + Γ1xv), (6.16a)

ṗ2 = β

A2(L − s)
( A2

mp
pp − Γ2xv). (6.16b)

Here L denotes the cylinder length and A1 and A2 the cross-sectional area of the
chambers, respectively. The piston position is denoted by s and pp = mpṡ the
corresponding momentum, where mp is the piston mass. Recall that in the port-
Hamiltonian context, the impulse is commonly chosen over the velocity as a state
variable. The piston dynamics are obtained by considering the force balance for the
piston, which yields

ṡ = 1
mp

pp, ṗp = p1A1 − p2A2 − Fext, (6.17)

where Fext is an external force acting on the piston, as illustrated in Fig. 6.1.

To formulate (6.16) and (6.17) in port-Hamiltonian form, the system energy needs
to be taken into account. With the internal energy of each chamber given by (6.10),
respectively, the system Hamiltonian is obtained as

H = U1 + U2 + 1
2mp

p2
p. (6.18)

The kinetic energy of the fluid is assumed negligible. Everything necessary for the
formulation of the actuator dynamics as a nonlinear port-Hamiltonian system has now
been defined. Choosing the state vector as xT =

[
s pp p1 p2

]
and the input as

uT =
[
xv Fext

]
, Eqs. (6.16) and (6.17) can be rewritten as

ẋ = J(x)∂H

∂x
(x) + g(x)u,

y = gT(x)∂H

∂x
(x),

(6.19)
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where

J(x) =

⎡
⎢⎣

0 1 0 0
−1 0 β

s
− β

L−s

0 − β
s

0 0
0 β

L−s
0 0

⎤
⎥⎦ , g(x) =

⎡
⎢⎢⎣

0 0
0 −1

β
A1s

Γ1 0
− β

A2(L−s) Γ2 0

⎤
⎥⎥⎦ . (6.20)

When taking the gradient of H with respect to x, the effort variables are obtained as

∂H

∂x
= e(x) =

[
Fh(p1, p2) ṡ ΔV1(s, p1) ΔV2(s, p2)

]T
, (6.21)

where Fh denotes the hydraulic force resulting from a change in pressure only and
ΔV1, ΔV2 the change in chamber volume, respectively. The system output y1 corre-
sponding to u1 = xv is a quantity related to the differential pressure between the
chambers, while y2 = ṡ. As remarked in [76], the presented model can be used for
both single- and double-ended, as well as single- and double-acting cylinders.

6.3 Simulation of an adaptive frame structure

A prototype frame was built to validate the actuation concepts developed in the
CRC 1244 before beginning with the construction of the high-rise demonstrator. The
prototype is depicted in Fig. 6.2 in both a picture and a schematic drawing. In the
latter, the integration of the hydraulic actuators is visible with one of them installed
in the left support and the other in a diagonal bracing. Since the bracing yields to
compressive forces, its actuator can only perform a pulling action. In the following, a
simulation of the frame using the model introduced in Section 6.2 is presented.

Not only was the structure in Fig. 6.2 a successful means to evaluate the active
elements of the high-rise demonstrator before their full-scale implementation – it is
also available as an experimentation platform. In a joint publication [54] with colleagues
from the Institute of Applied Optics (ITO), their precise camera-based deformation
measurement system was tested under real-world conditions on the prototype. It
tracks the position of the emitters depicted in Fig. 6.2 a). A simplified model, in
which the hydraulic actuators are represented by force inputs, was used for estimating
the displacements of the frame using strain gauge measurements. The camera-based
measurements were in good agreement with both the model-based estimates and a
laser Doppler vibrometer (LDV) reference. The interested reader is referred to [54] for
details.

Aim of this section is to show that the model introduced in Section 6.2 can be used in
case the dynamics of the hydraulic actuators installed in the prototype frame are not
neglected. This section is basically a reproduction of the simulation presented in [135]
supplemented with additional details on the prototype frame. A slightly simplified
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emitterreflector

4.75 m

9
m

hydraulic
cylinder

strain gauge
sensor

a) b)

from pump
to reservoir

valve

Figure 6.2: Adaptive structures prototype frame in a) a schematic drawing and b) a
picture of the realization on campus [54]
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Figure 6.3: Prototype frame (see Fig. 6.2) with parallel hydraulic cylinder (red) [135]

model of the structure is considered in the following. The nonlinear behavior of the
diagonal bracings on compression is neglected. Furthermore, the actuator attached to
the diagonal that is visible in Fig. 6.2 is also not included.

With these simplifications, the mechanical part of the prototype frame can be modeled
using beam elements and rods only. A schematic illustration of the frame model is
depicted in Fig. 6.3. Vertical columns (three on each side) are modeled as beams,
all other mechanical elements as rods. A double-acting hydraulic piston actuator
according to Section 6.2 is connected in parallel to the left supports acting across
all three stories. Its parameters are listed in Tab. 6.1. Since the prototype frame
represents a part of the high-rise demonstrator, the parameters of the mechanical
structure are the same as those assumed in simulations of the full-scale building. Refer
to Section 8.2 and Tab. 8.2, where details on materials and geometry are specified.

Coupling of the frame and the cylinder is done as described in Section 5.6, which
produces system of the form (5.15). It can be converted to an explicit representation
by solving for the Lagrange multipliers λ. A simulation of the coupled multi-domain
system is shown in Fig. 6.4, where the valve displacement xv follows a sinusoidal
excitation.

In Fig. 6.4 a), the x- and z-displacements of the topmost nodes of the frame are shown,
whereas Fig. 6.4 b) depicts the chamber pressures and the piston displacement Δs.
The coupling between piston displacement and the motion of the frame is immediately
visible. Comparing the z-displacement of node 7 in Fig. 6.3 a) with Δs in Fig. 6.3 b),
especially at the peaks at t = 0.5 s and t = 1.0 s, shows that they are identical. If
the frame dynamics are modeled with a regular FEM approach and the hydraulic
cylinder separately in the hydraulic domain, physical coupling of the two systems is
not as straightforward. In the port-Hamiltonian modeling approach, coupling via the
port variables is a standard procedure and can be handled without difficulties. The
example demonstrates the feasibility and elegance of the approach when applied to
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6.3 Simulation of an adaptive frame structure

Table 6.1: Hydraulic actuator parameters of the prototype frame model
Symbol Value Unit Description

L 35 cm hydraulic cylinder length
A1 133 cm2 cross sectional area 1st chamber
A2 94.2 cm2 cross sectional area 2nd chamber
mp 10 kg piston mass
β 1.3 GPa fluid bulk modulus
pT 0 bar tank pressure
pS 200 bar supply pressure
kv 2.0 l/min valve coefficient
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Figure 6.4: Structural response of the system shown in Fig. 6.3 to sinusoidal excitation
of the hydraulic cylinder
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6 Hydraulic actuators

the modeling of multi-domain systems and also that it is not limited to linear systems.
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q

q1

q2

≈ q

≈ q

q1

dynamic condensation modular approach

λ

λ q2

Figure 7.1: Two ways to decentralize a dynamic system model. Local models can
be derived from a global model by dynamic condensation, where an ap-
proximation of the global DOFs q is retained in each subsystem. Another
approach is to represent the global dynamics by interconnection of separate
modules via coupling forces λ

Decentralization is a means to break down the complexity of large systems that
are difficult to grasp in their entirety into smaller and therefore manageable parts.
Furthermore, it is perfectly in line with the modular and object-oriented energy-based
modeling principles. In this chapter, two different ways to construct model-based
decentralized observers for linear port-Hamiltonian systems are suggested. The
presented approaches focus on the decentralization of the system model. Local
observers are then designed for each subsystem. Principally, more methods for
decentralized observer design than the ones considered here are thinkable. Aim of this
chapter is to provide a basis and conceptual ideas from which more elaborate concepts
may be derived.

Generally, it makes a difference whether a model of the system to be observed in a
decentralized manner is available or unknown in advance. In the first case, information
about the global system behavior may be included in local subsystems. Otherwise,
local units are considered independent modules that may or may not share information
with other units they are connected to. In this latter case, a global system model or a
global observer can results from the interconnection of the subsystems. However, it is
also possible to partially retain the independence of each module for decentralized
operation. This is especially advantageous, if certain details of individual modules are
not to be shared between project partners due to intellectual property issues. In that
case, the exchange of information can be restricted to the interfaces. Both scenarios
are illustrated in Fig. 7.1, where some specifics of the approaches presented in the
following are already included.
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7.1 Damping injection observers

Given a global system model of a mechanical structure with DOFs q is available, a
method for its decentralization using dynamic condensation is presented in Section 7.2.
Subsystem observers operate only on local DOFs (q1 and q2 in Fig. 7.1), but retain
an approximation of the global dynamic behavior. This idea was previously presented
in [132] and further elaborated on in [136] and [133] without using any energy-based
methods and system representations. In the following, both the models and the
observers are expressed as port-Hamiltonian systems.

In contrast to this approach, decentralized observers for a modular conception of the
problem are presented in Section 7.3. Two local modules that are connected to each
other need to share information to arrive at a joint estimation of the global system
dynamics. It is assumed that both subsystems share the DOFs of the nodes, at which
their interconnection takes place. In this case, constraint equations are formulated for
q1 and q2 to ensure that shared states are identical. The coupling forces λ resulting
from these constraints may then be communicated between the local units. This is
illustrated on the right hand side of Fig. 7.1.

For both approaches, the same type of observer may be used for local state estimation,
since they primarily focus on the partitioning of the model. Probably, the simplest
possible choice is the Luenberger observer, for which a passive formulation can be
found. Before elaborating on decentralized state estimation, Luenberger observers in
port-Hamiltonian form are introduced in Section 7.1. The basic and well-established
formulation is extended to account for non-collocated outputs and for position-based
measurements. The methods presented in this chapter are applied to estimate the
state of adaptive structures in Chapter 8.

7.1 Damping injection observers

Consider a linear port-Hamiltonian system in input-state-output form (2.32), reprinted
here for convenience as

ẋ = (J − R) Qx + Gu, (7.1a)

y = GTQx, (7.1b)

with x ∈ R
n and u, y ∈ R

nu . If y is the measurement output of the system, a
Luenberger observer for the above is given by

˙̂x =
(
J − R − LGT)Qx̂ + Gu + Ly, (7.2)

ŷ = GTQx̂,

where x̂ denotes the state estimate and L ∈ R
n×nu the observer gain, which in turn

is chosen as
L = GR−1

f . (7.3)
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For any positive semi-definite symmetric matrix Rf = RT
f , Rf ≥ 0, the observer system

(7.2) is positive real. Moreover, it follows that LGT has the same properties as the
matrix R in (7.1) and can therefore be considered a damping term. This gave rise to
the notion of a damping injection observer, as employed e. g. in [72].

In a general setting, the measurement output is often not collocated to the input u.
Let yf ∈ R

nf denote the output related to nf non-collocated sensor signals with

yf = GT
f Qx. (7.4)

If this output is used instead of y, the resulting observer is not passive anymore and,
strictly speaking, also no port-Hamiltonian system. To formally retain the passivity
property, let us make use of a simple trick described e. g. by Cardoso-Ribeiro et al. [24].
Denote by uf the virtual input collocated to yf, which will not be utilized (i. e. uf = 0).
Then, a port-Hamiltonian system that includes this input is given by

ẋ = (J − R) Qx + Gu + Gfuf, (7.5a)

y = GTQx, (7.5b)

yf = GT
f Qx, (7.5c)

which is seen to be passive again. For a mechanical system, the output y or yf can
include forces and velocities or torques and angular velocities since it is composed
of the efforts e = Qx of the system. However, it is more realistic that positions
or displacements of certain points of a structure are tracked instead in a practical
application. Corresponding velocities may be obtained by taking the time-derivative
of those location-based measurements. If the derivative has to be numerically approxi-
mated, which is often the case, noise is amplified in the process. Oversampling can
potentially reduce this effect, but is not generally applicable in practice. On that
account, specifying the output by (7.4) is still somewhat restrictive. A more general
measurement output is given by

yf = Cx. (7.6)

Now, L needs to be modified accordingly such that it still produces a damping term
in a Luenberger observer with this output. This is achieved by choosing

Lf = Q−1CTR−1
f . (7.7)

Consequently, the observer equations (7.2) become

˙̂x = (J − R − LfCQ−1)Qx̂ + Gu + Q−1CTuf + Lfyf,

ŷ = GTQx̂, (7.8)
ŷf = Cx̂,

where LfCQ−1 is again positive semi-definite and symmetric. Port-Hamiltonian
observers of this type are used for the decentralized systems in the next two sections.
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7.2 Local models from a global system model

In this section, a dynamic condensation approach is applied to a general dynamical
model of a mechanical system in port-Hamiltonian form[

Mq̈
q̇

]
=

([
0 −I
I 0

]
︸ ︷︷ ︸

J

−
[

D 0
0 0

]
︸ ︷︷ ︸

R

)[
M−1 0

0 K

]
︸ ︷︷ ︸

Q

[
Mq̇

q

]
︸ ︷︷ ︸

x

+Gu, (7.9a)

y = GTQx, (7.9b)

where q ∈ R
n are the global DOFs of the structure. Compare with (4.46).

As in [132], local models are derived using a combination of two different model order
reduction techniques - the system equivalent reduction expansion process (SEREP)
and Guyan condensation. Consider this an example of a reduction method that serves
the purpose of deriving functional subsystems from the models considered in this
thesis. Many other ways of projecting from the global DOFs to local ones using some
kind of coordinate transformation are possible (see e. g. [60]). The one presented in
the following proved to be well applicable, but is not necessarily optimal. A thorough
study of suitable reduction methods and their comparison is, however, beyond the
focus of this work.

Guyan condensation is an established static condensation method. For its application,
the model’s DOFs are divided into a set of active coordinates qa(t) ∈ R

na and a set of
dependent ones qd(t) ∈ R

nd with qT
f (t) =

[
qT

a (t) qT
d (t)

]
. Mass and stiffness matrix

are rearranged accordingly

M f =
[

Maa Mad

Mda Mdd

]
, Kf =

[
Kaa Kad

Kda Kdd

]
. (7.10)

For each subsystem, its respective DOFs are retained in qa, while all other DOFs
become dependent. The full global state vector qf of the whole structure can then be
calculated using the Guyan transformation as stated in [56]

qf =
[

I
−K−1

dd Kda

]
qa = T Gqa. (7.11)

As a static technique, Guyan condensation on its own does not allow accurate re-
production of the structural dynamics, because inertia terms are neglected in the
transformation (7.11). In the application of the SEREP method, the dynamics are
expressed by a reduced set of system eigenmodes, as obtained from modal analysis.

To carry out a modal analysis for the second order system (4.12), note that its solution
without damping and input terms amounts to

q(t) = ϕie
jωit (7.12)
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with the eigenvalues ωi and the corresponding eigenvectors ϕi. Taking the second
derivative of the above with respect to time, the dynamic equations without damping
and external excitation can be reformulated as

(K − ω2
i M)ϕi = 0, i = 1, 2, . . . n. (7.13)

This equation can be solved for ωi and the eigenvectors ϕi. Since the latter are not
uniquely determined, they are normalized such that

ΦTMΦ = I, with ΦT =
[
ϕ1 ϕ2 . . . ϕn

]
. (7.14)

A reduced order model in modal coordinates is then obtained by approximating the
vector of DOFs q by a reduced number of primary eigenmodes

q(t) ≈ Φrηr. (7.15)

Here, the eigenmodes ηr ∈ R
nr with the lowest magnitude eigenvalue and therefore

lowest frequency are chosen. For the application of SEREP, the eigenvectors Φr

belonging to this reduced set of eigenmodes are again partitioned into an active and a
dependent part

qf(t) =
[

qa
qd

]
≈

[
Φa

Φd

]
︸ ︷︷ ︸

Φfr

ηr. (7.16)

A reduced order model in active DOFs qa is then obtained using a generalized inverse
of Φa

qf ≈ Φfr
[
ΦT

a Φa
]−1 ΦT

a qa = T Uqa (7.17)

according to [97], where Φa ∈ R
na×nr contains the parts of the eigenvectors mapping

to the na active DOFs. The transformations T G and T U can be combined to a single
one, as proposed in [3]

T H = T G + (T G − T U)
[
ΦaΦT

a T T
UM fT U

]
(7.18)

which is known as the SEREP-Guyan transformation. For each subsystem, a transfor-
mation T H ∈ R

n×na is obtained that projects from the local coordinates qa to the
global state. Applying it to the mass and stiffness matrix of system yields

Ma = T T
HMT H, Ka = T T

HKT H. (7.19)

It is expedient to truncate high frequency eigenmodes of the system defined by Ma

and Ka, which leads to an increase in stability. Applying modal analysis again with
Ma and Ka, the local DOFs qa can be approximated using a reduced number of
primary eigenmodes

qa ≈ Φmηm, ηm ∈ R
nm , (7.20)
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with nm the number of local module eigenmodes and Φm ∈ R
na×nm the corresponding

matrix of eigenvectors.

In order to transform (7.9), two transformations are constructed from T H and Φm of
a subsystem

T m =
[

MT HΦm 0
0 T HΦm

]
, Um =

[
T HΦm 0

0 MT HΦm

]
. (7.21)

Local system matrices can now be obtained by utilizing T m and Um

Jm = T +
mJUm, Rm = T +

mRUm, Qm = U+
mQT m, Gm = T +

mG, (7.22)

where T +
m and U+

m denote the generalized inverse of T m and Um, respectively. Finally,
a reduced order local dynamic model of the subsystem is given by

ẋm = (Jm − Rm) Qm + Gmu, (7.23a)

y = GT
mQmxm. (7.23b)

A local observer can be designed for xm ∈ R
2nm according to Section 7.1. Note that it

is possible to include sensor signals and actuator inputs from other subsystems since
each subsystem can project its local state xm to the global one and vice verse using
T m and Um. This is also a convenient property when communication between the
local observers is to be established.

7.3 Modular approach with coupling at the interfaces

Instead of deriving local models from a global one, as explained in the previous section,
the inverse approach of composing a structure from separate subsystems is considered
in this section. This has the advantage that the global model need not be known
in advance and that simple modules can be flexibly interconnected to form variants
of complex systems. For simplicity, the process is demonstrated for two modules
with DOFs q1 ∈ R

n1 and q2 ∈ R
n2 first and then generalized to Ns interconnected

subsystems.

Let M1, K1 and D1 denote the mass, stiffness and damping matrix of the first module,
respectively. Its dynamics may be expressed in port-Hamiltonian form, similar to
(4.46), as[

M1q̈1
q̇1

]
=

([
0 −I
I 0

]
︸ ︷︷ ︸

J1

−
[

D1 0
0 0

]
︸ ︷︷ ︸

R1

)[
M−1

1 0
0 K1

]
︸ ︷︷ ︸

Q1

[
M1q̇1

q1

]
︸ ︷︷ ︸

x1

+G1u1, (7.24a)

y1 = GT
1 Q1x1, (7.24b)
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where G1 is the input matrix corresponding to the input u1 ∈ R
nu1 to actuators

available in the first module. Accordingly, for the second module, the local dynamic
equations can be stated as[

M2q̈2
q̇2

]
=

([
0 −I
I 0

]
︸ ︷︷ ︸

J2

−
[

D2 0
0 0

]
︸ ︷︷ ︸

R2

)[
M−1

2 0
0 K2

]
︸ ︷︷ ︸

Q2

[
M2q̇2

q2

]
︸ ︷︷ ︸

x2

+G2u2, (7.25a)

y2 = GT
2 Q2x2, (7.25b)

where u2, y2 ∈ R
nu2 . To proceed, a composite system is formed by concatenation of

the system matrices as suggested in Section 5.1. The composite state vector is thus
chosen as

xT
c =

[
(M2q̇2)T (M1q̇1)T qT

1 qT
2

]
, xc ∈ R

2n1+2n2 (7.26)

which results in the combined, but still uncoupled system

ẋc = (Jc − Rc)Qcxc + Gcuc, (7.27a)

yc = GT
c Qcxc, (7.27b)

where uT
c =

[
uT

1 uT
2
]
. At the nodes, at which the systems are interconnected, they

share a set of DOFs. Hence, q1 and q2 can be partitioned as follows

qT
1 =

[
qT

11 qT
12

]
, qT

2 =
[
qT

21 qT
22

]
, (7.28)

where q11 ∈ R
n1−ns and q22 ∈ R

n2−ns denote the DOFs belonging exclusively to the
first and second module, respectively. The vectors q12 ∈ R

ns and q21 ∈ R
ns , on the

other hand, denote the ns shared DOFs. Coupling of the modules can be realized by
establishing constraints on the velocity level, that require the shared velocities to be
equal

BT
c Qcxc = q̇12 − q̇21 = 0. (7.29)

Recalling Section 5.6, the Lagrange multipliers belonging to these constraints are forces
and can be solved for by taking the derivative of the above with respect to time

0 = BT
c Qcẋc

= BT
c Qc [(Jc − Rc)Qcxc + Gcuc + Bcλ]

λ = (BT
c QcBc)−1BT

c Qc [(Jc − Rc)Qcxc + Gcuc] .

(7.30)

To obtain a coupled system, the constraints could be eliminated along with λ ∈
R

ns according to the procedure described in Section 5.3. However, if a modular
configuration with communicating, but otherwise independent modules is desired,
another system representation is required. Partitioning the composite system back
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into the original modules while retaining the coupling between them is possible by
observing that

λ = λ1 + λ2 = A1ẋ1 + A2ẋ2, (7.31)

i. e. the Lagrange multipliers may be computed by adding up the respective contribution
from each module. The matrices A1 ∈ R

ns×2n1 and A2 ∈ R
ns×2n2 are the columns of

(BTQcB)−1BTQc corresponding to the first and second module, respectively. In the
coupled configuration, the dynamics of each module can thus be expressed as

ẋi = (J i − Ri) Qixi + Giui + Biλ, (7.32a)

yi = GT
i Qixi, (7.32b)

with i ∈ {1, 2} and Bi ∈ R
2ni×ns the input matrix of the coupling forces in subsystem

i. Separate simulation of each module now requires communicating either the state
vector xi or the contribution to the coupling forces λi between interconnected systems.
The latter is considered advantageous, because λi is usually of smaller dimension than
xi.

In case a module i = 1 . . . Ns is coupled with N i
c > 1 others, the constraints can be

formulated for the concatenated system in the same way. The Lagrange multipliers
are also obtained by summing up all N i

c contributions

λi =
Ni

c∑
j=1

λi
j =

Ni
c∑

j=1

Ai
jẋj . (7.33)

The dynamics of module i may still be expressed using (7.32) when replacing λ with
λi. However, a different number of coupling forces λi is now required in each module
as long as the modules are not fully connected. Individual modules can still share
their contributions to the coupling forces of the others.

The observers introduced in Section 7.1 can be used for estimating the state of each
module. Note that there are several issues to consider when implementing such modular
observers in practice using numerical simulation methods and finite measurement
sample times. These are discussed in Section 7.4.

7.4 Notes regarding the numerical implementation

The observers presented in this chapter are continuous time systems. However,
measurements are available at discrete instants in time, usually with a constant sample
time in between. In the following, it is assumed that the measurement sample time Ts

matches with the macro time step of the observer. When a new measurement arrives,
the observer system is simulated from the previous time step tk−1 to the current
one tk using a single-stage Gauss-Legendre collocation method, with Ts = tk − tk−1.
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First-order hold sampling is used for the measurements such that (7.2) between tk−1
and tk becomes

˙̂x =
(
J − R − LGT)Qx̂ + Gu + L

[
yk

t − tk−1

Ts
+ yk−1

(
1 − t − tk−1

Ts

)]
, (7.34a)

ŷ = GTQx̂, (7.34b)

where yk and yk−1 are the measurements received at the current and previous macro
time step, respectively, and x̂(tk−1) = x̂k−1. For observers with non-collocated outputs
or displacement-based measurements, modify the above according to Section 7.1.

Concerning the modular approach described in Section 7.3, the question of how to
simulate the systems independently arises. Several methods were developed on this
account that are commonly referred to as co-simulation techniques or solver coupling
approaches. See e. g. the recent survey by Gomes et al. [52] for an overview of the field.
With regard to the coupling of solvers, it is discriminated between approaches where
the dynamics of each module are integrated in parallel (Jacobi type) and sequential
methods (Gauss-Seidel type). Since the former has a higher parallelization potential, it
is preferred over the latter in the context of this work. Schweizer et al. [112] introduced
several methods for co-simulation using Jacobi type integration schemes. Either
kinematic variables or forces can be exchanged at the interfaces, which allows for a
number of different variants. A multibody version of a force–force coupling approach
as presented by Wang et al. [131] is used in this thesis. For simplicity, the co-simulation
of two modules coupled by the constraints (7.29) is considered in the following.

Without direct coupling of the integrators used for the forward simulation of each
local model, one has to resort to estimates of λ ∈ R

ns between macro time steps. A
simple solution is to use the Lagrange multipliers calculated at time tk−1 with the
contribution λj,k−1 received from the other module. In the interval t ∈

[
tk−1, tk

]
,

the equations for each module thus become

ẋi = (J i − Ri) Qixi + Giui + Biλ
p
k, (7.35a)

yi = GT
i Qixi, (7.35b)

where λp
k ∈ R

ns are the predicted coupling forces calculated according to (7.30).
Higher order polynomial approximations may be used for increased accuracy [112].
Integrating the above between tk−1 and tk with the state at tk−1 as the initial condition
yields the predicted states xp

i,k. However, the constraints (7.29) are generally not
satisfied for xp

i,k. To prevent a violation of the constraints, the Lagrange multipliers
need to be corrected. This can be achieved by noting that xi,k is a function of λ and
linearizing (7.29) about λp

k

0 ≈ BT
c Qcxp

c,k + BT
c Qc

∂xc,k

∂λk

∣∣∣
λ

p
k

(λk − λp
k) . (7.36)
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The corrected coupling forces are then obtained as

λk = λp
k −

(
BT

c Qc
∂xc,k

∂λk

∣∣∣
λ

p
k

)−1

BT
c Qcxp

c,k. (7.37)

The derivative of xc,k with respect to to λk can be approximated with finite differences.
For each λj,k, the system (7.36) needs to be simulated again, but with a small
perturbation Δλj,k added to λp

j,k. Since ns is the number of constraints, j = 1 . . . ns

and
∂xc,k

∂λj,k
≈ xc,k(λp

k + Δλj,k) − xp
c,k

Δλj,k
. (7.38)

Depending on the number of constraints ns and the system dimension, repeating the
forward simulation ns times for each module can be a rather costly operation. To save
computation time, parallel processing on suitable hardware is suggested. With the
corrected Lagrange multipliers, each module is simulated one more time to obtain the
corrected states xi,k. For nonlinear systems, the corrected Lagrange multipliers may
be computed using a Newton-Raphson algorithm, as described in [131].

7.5 Filters to increase agreement between local estimates

In case there is no communication between observers for local systems derived by
the method described in Section 7.2, the estimates of shared DOFs are generally not
identical. The same problem arises for the modular approach (see Section 7.3), where
position drifts can occur, because the coupling forces are computed from velocity
constraints. One way to deal with this issue, is to introduce additional filters of
Luenberger type charged with the task to minimize the difference between estimates of
shared DOFs. This requires communication of the estimates of shared states between
local observers, where the data transfer can be one-way only or both ways. If all
modules that share a certain set of states are equipped with the same filter, this
results in a consensus-type operation. Otherwise, a module uses the shared state
communicated from another local subsystem as an additional weighted measurement
input, which may be regarded as a tracking operation.

Let the estimated shared displacements or, in general, state variables of module i
be given by the relation x̂si = Csix̂i. In that case, a filter gain that decreases the
difference between x̂si ∈ R

n
ij
s and the corresponding states x̂sj of module j is given by

F i = Q−1
i CT

siR
−1
si , (7.39)

where Rsi ∈ R
n

ij
s ×n

ij
s is a positive semi-definite symmetric matrix. Together with
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(7.2), the local observer for module i becomes

˙̂xi = (J i − Ri − LiG
T − F iCsiQ

−1
i )Qix̂i + Giui + Q−1

i CT
siusi + Liyi + F ix̂sj ,

ŷi = GT
i Qix̂i, (7.40)

x̂si = Csix̂i,

with usi = 0 the virtual input that is required for the system to be formally passive.
For modular decentralized formulation, the coupling forces λ need to be included in
the above. In some of the scenarios studied in the next chapter, the filters described
in this section are employed to stabilize the observers and to increase estimation
accuracy.
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Figure 8.1: Rendering of the adaptive high-rise demonstrator under construction at
the University of Stuttgart (image by courtesy of ILEK1)

As stated in the introduction, this thesis one of the results of the interdisciplinary
work within the CRC 1244 – “Adaptive skins and structures for the built environment
of tomorrow”. The unique experimental environment produced and provided by the
research center is briefly introduced in the following.

Combined research efforts over the past four years are converging in the construction
of the world’s first adaptive high-rise structure. At the time this thesis is written, this
demonstrator building is under construction on campus of the University of Stuttgart.
A rendering of the architects is depicted in Fig. 8.1, showing a vision of the operational
structure equipped with various adaptive facades. Loads acting on the structure (e. g.

1Institute for Lightweight Structures and Conceptual Design at the University of Stuttgart,
Germany
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Figure 8.2: Vertical supports of the adaptive high-rise demonstrator after installation
of hydraulic actuators (image by courtesy of IKTD2)

storms) can be actively compensated with the help of hydraulic actuators installed
in selected supports and diagonal bracings of the building. In Fig. 8.2, such adaptive
supports with mounted hydraulic actuators are shown. Actuators are connected in
parallel to the steel columns and can exert forces in the order of several hundred
kilonewton. On closer inspection of the topmost section of the building in Fig. 8.1,
diagonal bracings are visible that span three floors, respectively. Hydraulic actuators
will also be connected in series to selected bracings for a better control of e. g. torsional
deformation.

While it will be very interesting to follow the further development of the adaptive
high-rise and its impact on the field of adaptive structures, the methods presented
in this thesis cannot yet be applied to it. Smaller scale prototypes were, however,
available for conducting experiments and for comparative simulation studies. A scaled
mockup of the building was designed that can be used for testing control engineering
approaches as well as for demonstration purposes. This laboratory size test bench is
presented in detail in Section 8.1, where some of the observer concepts introduced in

2Institute for Engineering Design and Industrial Design (German: Institut für Konstruktionstechnik
und Technisches Design, IKTD) at the University of Stuttgart
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Chapter 7 are assessed using actual experimental data. Both centralized sensor fusion
as well as decentralized observers with local models derived from a global system
representation (see Section 7.2) are implemented on the experimental platform.

The alternative approach that leads to decentralized observers by coupling of separate
subsystem or modules (see Section 7.3) is investigated in Section 8.2. In a simulation
study conducted with a dynamical model of the high-rise demonstrator, its performance
is compared to both a centralized observer and local observers according to Section 7.2.
Application of the methods to the actual high-rise demonstrator is highly anticipated.

8.1 State estimation on an adaptive structures test bench

As mentioned above, a laboratory scale test bench for adaptive structures was designed
as a mockup of the adaptive high-rise constructed in scope of the CRC 1244. It
represents a scale 1:18 version of this demonstrator building and is used to validate
control engineering methods before they are applied to the actual high-rise. The
mockup was designed to have eigenfrequencies similar to the ones expected for the
demonstrator. Thus, only the dimensions were adopted to scale, while material stiffness
and truss diameters were not. Note that the scaled version represents the design of the
high-rise at an earlier stage of planning. In the final version, the demonstrator consists
of four modules instead of five but the overall height and the footprint dimensions
were conserved.

In the following, sensor fusion for the scale model using camera-based position mea-
surements and strain gauges is performed. Both the approach and the presentation
of results are closely related to the ones published in a previous contribution [134].
However, there are some major differences to the version presented in this thesis.
First of all, the system model and the observers are represented as port-Hamiltonian
systems in the following. Secondly, the decentralized observer approach introduced
in Chapter 7 is tested on the high-rise mockup. As a matter of focus and simplicity,
sensor placement and the compensation of image processing delays are omitted.

Subsequently, in Section 8.1.1, the experimental setup is explained in detail. This
includes a description of the hardware and software components that make up the
test bench as well as a brief section on the working principle of the camera-based
position tracking system. In Section 8.1.2, a port-Hamiltonian model for the high-
rise mockup is introduced. This is followed by the presentation of the centralized
and decentralized filters used for state estimation in Section 8.1.3. A parameter
tuning algorithm that makes use of the accurate camera measurements is employed
for parameter identification of both system model and filters. It is described in
Section 8.1.4. Results are presented and discussed in Section 8.1.5.
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8.1 State estimation on an adaptive structures test bench

8.1.1 Experimental setup

A full view of the scale model is shown in Fig. 8.3 a). Composed of five modules of
identical size with a footprint of 26 × 26 cm and a height of 40 cm each, it extends to
a total height of 2 m, which corresponds to 36 m in reality1. Each module represents
two stories of the demonstrator building. Intermediate floor plates were not installed
to make room for the control hardware. A module comprises 4 vertical columns, 8
diagonal bracings and a ceiling plate. Columns are connected to plates via universal
joints with two rotational DOFs about the local x- and y-axes. Rotation about the
local z-axis is blocked. Bracings are attached to the structure via a rotational joint
with one DOF at each end. The lowermost module is mounted to a controllable table
(7) that can move in a plane parallel to the ground. Using the table, excitation of the
structure as well as the simulation of earthquake primary waves is possible. Selected
columns and bracings of the scale model are actuated, where the number of active
elements differs in each module. The top module is entirely passive.

A closeup view of the 3rd module in Fig. 8.3 b) reveals how columns and bracings are
actuated. When one of the panels of a column is removed (3), two identical springs are
visible inside, which are connected in parallel. For actuated columns, the connecting
point of the two springs can be moved by a motor via a threaded bar. This generates
a force, as illustrated by the schematic drawing on the left of Fig. 8.3 c). The stiffness
of a diagonal bracing is determined by a spring which, in case of a passive bracing
(5), is tautened between corner nodes using a steel cable and a screw system. One
cable end of an active bracing (6) is attached to a guide roller, which can be rotated
using a DC-motor in combination with a worm gear. Accordingly, the spring of an
active bracing can be directly extended or relaxed. In order to minimize slackening, all
diagonal bracing springs are pretensioned. Each motor is driven by a motor controller
(4), which in turn is controlled by custom signal processing hardware (2). Details on
the test bench’s computational hardware, sensors, actuators and data processing are
given in the following.

Signal Processing and Control of Actuated Components

Fig. 8.4 depicts the interconnection of sensors, actuators and computational hardware.
A rapid prototyping device (dSpace MicroLabBox DS1202) acts as central processing
unit. It is interfaced with the host PC via Ethernet and programmed using a
Matlab/Simulink real-time interface in combination with dSpace ControlDesk.

For measuring forces, each column and bracing is equipped with two half bridge
strain gauges (Vishay EA-06-062TZ-350) mounted on opposing sides and connected

1The high-rise demonstrator shown in Fig. 8.1 consist of only four modules. The
mockup represents the building as envisioned at an earlier stage of the planning
process.
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Figure 8.3: Adaptive structures test bench. a) View of all 5 modules including the
controllable table (7) used for exciting the structure. b) Closer view of the
3rd module showing LED emitters (1), custom signal processing hardware
(2), an actuated column with dismantled cover (3), motor controllers (4)
for active elements, passive diagonal bracings (5) and actuated bracings
(6). c) Parallel force actuation of columns (left) and change of preten-
sion/elongation for bracings (right) [134]
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Figure 8.4: Interconnection of sensors, processing units and actuators for the adap-
tive structures test bench. Sensor signals from camera, vibrometer and
strain gauges are processed on the host PC, a rapid prototyping device
(MicroLabBox) and custom PCBs respectively. The MicroLabBox acts as
CPU and controls table motion via intermediary servo controllers. The
DC-motors of active truss elements are accessed by the signal processing
boards story-wise [134]
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8 Application to adaptive structures

to form a full bridge circuit. The sensors are attached to steel components with
high flexural rigidity such that forces due to bending can be neglected. Strain gauge
signals are amplified and processed on custom-built printed circuit boards (PCBs) that
communicate with the MicroLabBox via CAN bus. Each storey is equipped with one
PCB stack that is entrusted with the task of reading out local sensors and controlling
the actuated elements in the respective module. The microcontrollers on the PCBs can
also be used for decentralized preprocessing and control. Motor controllers (Faulhaber
MC5010) are accessed via local CAN buses and brushless DC-motors (Faulhaber
2264W024BP4 3692) are used for active truss elements. The x/y-motion of the table
is controlled by servo amplifiers (Metronix ARS 2105) connected to analog I/O-ports
of the MicroLabBox. Iron-free linear motors (Tecnotion UX 9N) in combination with
optical encoders (Heidenhain LC485) facilitate the table motion.

A digital camera (Ximea MC023MG-SY) attached to a tripod is located at a distance
of approximately 2 m from the test bench. It tracks the position of a total of 10
light emitting diodes (LEDs), positioned, as shown in Fig. 8.3 a) and Fig. 8.3 b) (1), in
line with the nodal points of one face of the structure. Standard green LEDs with
a diameter of 5 mm are used. They are clipped to aluminum slats parallel to the
plate edges with custom made 3D printed plastic brackets. The bracket angle can
be adjusted such that the emitters point towards the camera. An optical bandwidth
filter (ThorLabs FL05532-10) is mounted in front of the camera. Given the exposure
time is sufficiently short, it passes only the green LED light. Image data is read in via
USB and processed on the host PC. More details on how the emitter positions are
determined are provided in the following section.

Besides the strain gauges, three LDVs are connected to the MicroLabBox and provide
accurate displacement information in one axis. They are used as a reference to validate
the estimation results in Section 8.1.5.

Nodal Position Tracking

Light from the LEDs attached to the scale model is registered by charge-coupled
devices (CCDs) in the camera and is mapped to nodal positions from pixel coordinates.
Calibration of the camera and correction of lens distortion is done with the help of
a printed checkerboard pattern of known size and location. The algorithms used for
this purpose are part of the Open Source Computer Vision Library (openCV) [18].

Precise locations are usually obtained for high integration times which, however,
result in low sampling frequencies. Mounting a filter that matches with the emitter
wavelength in front of the camera lens significantly increases the signal-to-noise ratio
(SNR) and allows for shorter sampling periods. Image positions obtained for the
emitters are preprocessed on the host PC, as shown in Fig. 8.4. A simple model
comprising the expected number of points as well as their approximate location is
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Figure 8.5: Adaptive truss structure scale model [134]

used to test for measurement errors and to ensure that the information is always sent
to the MicroLabBox in a predetermined order.

In the following sections, the model used for state estimation and the corresponding
sensor fusion algorithms for the integration of camera system measurements and strain
gauge data are presented.

8.1.2 System dynamics

The dynamics of the scale model are described by a linear port-Hamiltonian system
model of the form (4.46)[

Mq̈
q̇

]
=

([
0 −I
I 0

]
︸ ︷︷ ︸

J

−
[

D 0
0 0

]
︸ ︷︷ ︸

R

)[
M−1 0

0 K

]
︸ ︷︷ ︸

Q

[
Mq̇

q

]
︸ ︷︷ ︸

x

+
[

F a

0

]
︸ ︷︷ ︸

G

u, (8.1a)

y = GTQx, (8.1b)
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with q ∈ R
nDOF , x ∈ R

2nDOF and u ∈ R
na , where na denotes the number of actuators.

Mass and stiffness matrix of the structure are assembled according to the procedure
described in Chapter 5 with element types as indicated in Fig. 8.5 a). Columns and
diagonal bracings are modeled as rods (Nn = 2 nodes), module floors and ceilings
as Mindlin plates combined with a disk element for axial loads (Nn = 9 each).
Translational DOFs for nodes one to four are eliminated. After system assembly,
the resulting structure model has nDOF = 225 DOFs. Different stiffness values are
assumed for active and passive columns due to constructional differences. In Fig. 8.5 b)
the nu = 31 actuated elements are highlighted in yellow. The actuator dynamics are
assumed negligible such that the actuators can be included in the dynamic equations
as force inputs with the input matrix F a. Accurate determination of the matrix D
is demanding, due to the complex interplay of different damping effects. A common
approximation is the assumption of Rayleigh damping with

D = α0M + α1K. (8.2)

The coefficients α0 and α1 can be determined through an experiment or by parameter
identification as in [80]. Rayleigh damping is not physically motivated, but it has
several convenient properties. For instance, it ensures that the mode shapes remain
the same as for the undamped system. This is desirable when performing a modal
analysis of (8.1).

As described in Section 8.1.1, strain gauges and a camera are used as sensors. Signals
from the strain gauges are converted to force measurements. The force F i

e acting on
each element i is related to the state as follows

F i
e (x) = ki

(∥∥dix + ei
0
∥∥

2
− Li

0
)

, i = 1 . . . nsg (8.3)

with ki the spring constant and nsg the number of strain gauges. In case of zero stress,
Li

0 denotes the element length and ei
0 the i-th element vector. Multiplying di by x

yields the displacement vector of the respective element. For the output mapping,
(8.3) is linearized with respect to the initial state x0 = 0 such that

ysg = Csgx = ∂F e

∂x

∣∣∣
x0

x. (8.4)

As the strain gauges were not calibrated for measuring absolute element forces, the
predicted forces F e cannot be directly related to the measured signals. To circumvent
this difficulty, both the measured forces ysg and the predicted forces are filtered with
a first-order Butterworth high-pass filter with a cutoff frequency of fc = 0.1 Hz. This
removes the constant offset between modeled and measured element forces. It comes,
however, at the cost of having to rely on the model for estimating the stationary element
forces. Previous calibration of each individual strain gauge sensor is recommended in
order to avoid this issue.
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8.1 State estimation on an adaptive structures test bench

The camera measures the x- and z- displacements of the nodes highlighted in green
in Fig. 8.5 b). A corresponding output mapping is easily obtained by selecting the
respective DOFs from q such that the total measurement output is given by

yf =
[

ysg
ycam

]
=

[
Csg

Ccam

]
x = Cx. (8.5)

With 10 emitters and two spatial directions, the number of camera measurements
ycam ∈ R

ncam amounts to ncam = 20. Both strain gauge signals and camera measure-
ments are obtained at a sampling frequency of Ts = 100 Hz. In the following, the
dynamic model (8.1) is used together with the output mapping (8.5) to design both
centralized and decentralized observers.

8.1.3 Centralized and decentralized sensor fusion

Decentralized observers with local models obtained by dynamic condensation are
tested on the scale model. Centralized estimation is performed for comparison. Since
the scaled high-rise consists of five structurally identical modules, these naturally offer
themselves as local subsystems for decentralized sensor fusion. A local observer is
designed according to the approach presented in Section 7.2 by selecting the local DOFs
qa of each module accordingly. Each observer is assigned the full camera measurement
output, assuming that it is communicated to all subsystems via a bus. Only the
locally available strain gauges (12 in each module) are accessed. Accordingly, the local
measurement output becomes

yf,m =
[

Csg,m

Ccam

]
xm = Cmxm, (8.6)

where m = 1 . . . 5. With the local subsystems according to (7.23), the decentralized
observers are given as

˙̂xm = (Jm − Rm − LmCmQ−1
m )Qmx̂m + Gmu + Q−1

m CT
muf,m + Lmyf,m, (8.7a)

ŷ = GT
mQmx̂m, (8.7b)

ŷf,m = Cmx̂m, (8.7c)

with uf,m = 0 the virtual input that is collocated to yf,m. The gain Lm of each local
Luenberger observer is given by (7.7) as

Lm = Q−1
m CT

mR−1
f,m. (8.8)

A diagonal matrix is chosen for Rf,m with different weights for the camera and
the strain gauge sensor signals. Regarding the strain gauge weights, it is further
differentiated between bracings and columns such that

Rf,m = diag
(
rb · bm + rc · cm, rcam · I

)
, (8.9)
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where rb, rc and rcam are the weights on strain gauges mounted on bracings, columns
and the camera measurements, respectively. The vector bm selects the module’s
bracings from the set of available strain gauge measurements, whereas cm selects its
columns. All local observers use the same weight factors.

For the centralized observer, the output equation (8.5) is used, while measurement
weights remain identical to the ones in the decentralized setting. Centralized sensor
fusion cannot be performed in real-time on the hardware described in Section 8.1.1
when using the full-order model (8.1). Thus, modal analysis, as described in Section 7.2,
is employed to truncate high-frequency eigenmodes. Selecting a reduced number of
primary eigenmodes ηr ∈ R

nr , the centralized observer can be expressed as

˙̂xc = (Jc − Rc − LcCcQ−1
c )Qcx̂c + Gcu + Q−1

c CT
c uf + Lcyf, (8.10a)

ŷ = GT
c Qcx̂c, (8.10b)

ŷf = Ccx̂c, (8.10c)

where Jc, Rc, Qc and Gc are computed according to (7.22) with T H = I and Φm = Φr

from (7.15). The state vector of the centralized observer becomes xT
c =

[
η̇T

r ηT
r

]
and the gain of the Luenberger observer is given by

Lc = Q−1
c CT

c diag
(
rb · b + rc · c, rcam · I

)−1
, (8.11)

where Cc is the transformed output matrix and b, c ∈ R
nsg are the binary bracing

and column selection vectors for the full set of strain gauges.

8.1.4 Self-tuning algorithm

With the stiffness and damping parameters initially assumed in the modeling process,
state estimation results are not satisfactory. As it is usually the case, assumed model
parameters do not reproduce the behavior of the real structure exactly. Neglecting
friction and additional mass due to motor controllers are possible reasons for the
occurrence of such mismatches. Also, table excitation is not modeled as a disturbance.

In the following, an optimization-based method for simultaneous tuning of both
model and observer parameters is presented. The algorithm employs the centralized
observer, but resulting parameter values are adopted for the local observers as well.
While the parameters are varied, estimated displacements are compared to reference
measurements aiming to minimize the estimation error. In order for the algorithm
to be self-tuning, selected camera measurements serve as reference measurements
and are consequently not used for state estimation. Although the method presented
here cannot be used for real-time adaptation of parameters, it can be applied for
periodic model updating, given that a number of accurate measurements are available
during excitation. Considering that structural parameters are not expected to change
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significantly over longer periods of time, this is a reasonable option. Online joint
state-parameter estimation, on the other hand, leads to a considerable increase in
complexity.

In the optimization process, stiffness and damping parameters are adjusted along with
the observer weights in order to minimize the estimation error. To avoid reassembly
of the model for each parameter set, only the spring constants in (8.3) are adapted.
The vector of element spring constants is defined as follows

κ = b · kb + ca · kca + cp · kcp, (8.12)

where kb is the spring constant corresponding to diagonal bracings. The centralized
column selection vector c is split into active columns ca and passive columns cp,
since the spring constant of active columns kca differs from kcp of the passive ones.
Including the Rayleigh damping coefficients and the observer weights, the tunable
parameters are summarized in the vector

pT =
[
α0 α1 kb kca kcp rb rc

]
.

Note that the camera weight rcam is not included in the set of tunable parameters. Else,
the optimization algorithm tends to put excessive weight on the camera measurements.

For self-tuning, the table is excited with a chirp signal in x-direction. A disturbance
input is used for identification on purpose since active excitation of the structure is
not desired in a real scenario. Considering an actual building, recorded measurements
during a storm can be used. The tuning algorithm is formulated as an optimization
problem

min
p

1
nc · N

N∑
k=k0

∣∣ȳcam
k − Cx̂k

∣∣ (8.13)

subject to pl ≤ p ≤ pu,

where pl and pu define the upper and lower bounds for the parameter values. The
matrix C maps the state estimate x̂+

k at time tk to the nc camera measurements
used as references and N is the number of processed samples. To reduce errors due
to deviations of emitter locations from actual nodal positions, both ȳcam and the
estimated displacements are high-pass-filtered to obtain relative displacements for
comparison. All parameters, including bounds, are normalized to the values initially
assumed. The resulting stiffness parameters are adopted and the system matrices are
recalculated.

8.1.5 Results and discussion

In this section, results obtained for both the parameter tuning algorithm and for
centralized and decentralized state estimation are presented (in this order).
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Table 8.1: Parameter tuning results
Name Initial guess pl pu p

α1 0.5 × 10−1 0.01 100 1.17
α2 0.5 × 10−2 0.01 100 1.80
kb 18200 N/m 0.5 2 1.81
kca 19500 N/m 0.5 2 1.05
kcp 22100 N/m 0.5 2 1.20
rb 1.0 × 103 0.01 100 0.07
rc 1.0 × 103 0.01 100 2.41

Parameter tuning

Parameter tuning is performed with the centralized observer (8.10). The dynamic
model of the observer is composed of the 12 primary eigenmodes ηr with lowest
magnitude eigenvalues. Recorded signals for a table excitation in x-direction with
a chirp signal ranging from 0.1 − 6 Hz over a period of 10 s with an amplitude of
2 mm are used for parameter identification. The camera measurement weight is set to
rcam = 5 × 10−6 in all experiments, for which results are reported in the following.
Camera measurements for the x-displacements of nodes 6, 13 and 22 and the z-
displacements of nodes 5, 14 and 21 are used as references. As depicted in Fig. 8.5 a),
node numbers are assigned counter-clockwise and from bottom to top. Fig. 8.5 b)
shows which nodes are tracked by either camera, LDVs or both measurement systems.
When applying the method described in Section 8.1.4, the results shown in Tab. 8.1
are obtained. Note that pl, pu and p are normalized to the respective initial guess.
Values from the spring manufacturer’s data sheets were used as initial guesses for the
spring constants kb, kca and kcp. They are identical to the values used for assembling
the dynamic system model before tuning.

After optimization, damping coefficients are within reasonable ranges from their
respective initial guesses. For the spring constant of passive columns kcp, about
20 % deviation from the datasheet value is observed. The increase in stiffness can
be explained by friction effects that were neglected in the modeling process. There
is no straightforward explanation for the 81 % increase in diagonal bracing stiffness.
Slackening of diagonal cables represents a strong nonlinearity that is entirely neglected.
Pretension and the associated geometric stiffness, which is different in magnitude for
each individual diagonal bracing, also partially explains this result. This also explains,
why considerably more weight is put on bracing measurements as opposed to column
strain gauge signals. A more accurate nonlinear model that includes the slackening
effect of diagonal bracings is a potential remedy. However, this would lead to a
significant increase in complexity and most likely to a loss of real-time performance.
The effect is also not expected to be dominant in case of a full-scale building.
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Figure 8.6: Sample generated ground acceleration record used for XY-table excitation.
The displayed earthquake is of strong intensity with a peak ground ac-
celeration of about 0.37 g and a dominant frequency of 4 Hz. Results in
Section 8.1.5 are shown for the first 5 s (highlighted) [134]

Centralized observer

Using the model and filter parameters in Tab. 8.1, performance of the observers is eval-
uated for earthquake-like excitations of the XY-table. For high-rise buildings, strong
wind loads occur more frequently than earthquakes, but are not easily transferable
to the test bench. Therefore, it is chosen to evaluate the observer performance using
earthquake excitations.

The ground acceleration data of different earthquakes was generated using Matlab code
from [30]. Based on the work of [105] and [55], a non-stationary Kanai-Taijimi Model
is used to create artificial earthquake records. Among other parameters, the duration,
dominant frequency as well as the standard deviation in the power spectrum can be
adapted. Experiments were conducted on the test bench with various earthquakes that
were downscaled in amplitude to be consistent with the scale of the model. Scaling
of a ground motion record is also done in e. g. [34], where the earthquake is applied
to a similar structure model with a height of 1.8 m. The ground acceleration record
that is used in the following to investigate the performance of observers, is shown in
Fig. 8.6. Although several different earthquakes were applied to the structure, the
conclusions that can be drawn from the results are similar, which is why only one
representative ground motion is presented in detail here. The earthquake in Fig. 8.6
is of strong intensity with a dominant frequency of 4 Hz and a standard deviation of
4 Hz. Excitation of the test bench with the scaled earthquake was conducted in both
directions separately.

Measurement results results in both x- and y-direction for a table excitation with the
earthquake depicted in Fig. 8.6 are presented in Fig. 8.7. To enhance readability, only
the onset and the first couple of seconds of the earthquake are shown. Similar results
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Figure 8.7: Estimated relative displacements of the centralized observer (light blue)
compared to LDV measurements (dark gray) for nodes 11, 13 (x) or 16 (y)
and 23. The table is excited in both x- and y-direction with the earthquake
(to scale) shown in Fig. 8.6. The camera signal (light gray) is shown for
node 13
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are obtained for the remaining duration of the motion. A comparison between LDV
measurements and state estimation results for the displacement of nodes 11, 13 (16 for
the y-direction) and 23 is shown. Refer to Fig. 8.5 a) for the node numbering scheme.

Among the nodes tracked by LDVs, only node 13 is simultaneously tracked by the
camera system, which is why the camera measurement is also visible for this node.
Displacements are shown relative to the deformation before excitation and the table
motion is subtracted from the LDV measurement. A maximum displacement of about
2 mm is observed for the topmost measured node.

Phase and amplitude of the estimated displacements in the x-direction are generally
in good agreement with the LDV measurements. When comparing the camera
measurement for node 13 with the motion recorded by the LDV, sub-mm deviations
as well as a variable delay are visible. Owing to the strain gauge measurements, the
estimated displacement is, however, more in phase with the reference and also tracks
the amplitude more accurately. In the y-direction, the estimation accuracy is lower
with respect to the oscillation amplitude. Overshoots are observed for nodes 16 and
23 while the amplitude is underestimated for node 11. There is no visible difference in
phase tracking accuracy between the x- and y-direction. When going from the lowest
measured node to the highest, the signal-to-noise ratio (SNR) decreases noticeably.

The difference between LDV and camera measurement can be attributed to two
different factors. First, distortion is not completely eliminated by the projections
involved in the image processing algorithm. Also, even though the LEDs were carefully
positioned, their locations do not exactly match with the nodal points. Care must be
taken in a real application to determine the position of LEDs as exactly as possible, as
well as to ensure accurate camera calibration. With the current test bench setup, the
varying camera delay cannot be determined reliably. More accurate phase tracking is
expected when this information is available and employed by the observers.

A straightforward explanation for the lower estimation accuracy in the y-direction is
that the observers lack camera measurements in this direction. Parameter identification
in Section 8.1.4 was done for a motion in the x-direction, which is another reason for
the observed differences. Supplying another camera for the y-direction (or using a
stereo vision setup) potentially eliminates the differences.

Since the camera sensor is observed to be rather precise, it is concluded that the noise
on the displacement estimations results almost entirely from the strain gauge sensors,
which have a much lower SNR. The fact that the SNR decreases for higher stories is
attributed to relative impacts of nodal displacements on each other. When a node
in the first module moves, this causes relatively large displacements in the topmost
story while a deformation of the top has little effect on the first floor in terms of
displacements. Thus, noise of the strain gauges in the lower stories is amplified when
computing the displacements of higher nodes. This has to be kept in mind when using
strain gauges to estimate the building state, especially when sub-mm accuracy is to
be achieved, which is desirable for a real building.
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Figure 8.8: Estimated relative displacements from local observers compared to LDV
measurements (dark gray) for nodes 11, 13 (x) or 16 (y) and 23. The table
is excited in both x- and y-direction with the earthquake (to scale) shown
in Fig. 8.6

Decentralized observers

Local models for the decentralized observers were derived from (8.1) by dynamic
condensation (see Section 7.2) with nr = nm = 6 primary eigenmodes for the lowermost
module and nr = nm = 12 primary eigenmodes for all others. The set of active DOFs
qa of each subsystem includes all local DOFs (it is also possible to select only specific
ones). Observers do not exchange state information and operate independently.

To enable comparison with the centralized observer, results are presented for the same
earthquake record (see Fig. 8.6). In Fig. 8.8, the estimated displacements are depicted
in the same style as in Fig. 8.7. Both an excitation in the x-direction and in the
y-direction are considered. For each node tracked by an LDV, the available estimates
of modules containing the respective DOF are shown. Since no LDV measurement
is available in the first module, results are not shown for its observer. Because the
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8.1 State estimation on an adaptive structures test bench

module DOFs overlap at nodes 11, 13 and 16, two estimates are visible, respectively.
The DOFs of node 23 are only included in the model of module five.

When comparing the results for an excitation in x-direction with the centralized
observer estimates, a similar estimation accuracy is observed. At node 13, the
estimates calculated in the third module match well with those obtained in the fourth.
However, in module four, the estimated amplitude is slightly lower while the phase
delay is somewhat higher. The same can be observed for node 11 and modules two
and three, where the difference in amplitude is more pronounced.

In the y-direction, the estimation results are worse than those obtained with the
centralized observer in a variety of ways. First of all, high-frequency oscillations are
visible for the estimates of module three. While the estimated displacement is still
closely oriented at the LDV reference, the noise is considerably higher than in any
of the other estimates. The estimated y-displacement of node 23 in module 5 shows
similar oscillation frequencies and amplitudes, but is otherwise completely off the LDV
measurement. However, there is less noise on the estimate than in the centralized
case. The local observer of module four manages to track the reference approximately
but sometimes fails to follow oscillation peaks and produces a varying phase delay.
For node 11, the second module achieves an acceptable estimation accuracy that is
also comparable to that of the centralized observer.

The observation that the estimation accuracy is lower for higher modules compared
to lower ones can be explained by the fact that the SNR of the strain gauges is lower,
the higher a strain gauge is located in the high-rise mockup. Measured forces are
always highest in the lowermost module. When camera measurements are lacking
(in y-direction) and the observers have to rely on the strain gauge measurements
only, the estimation quality deteriorates. This explains the bad estimation quality for
nodes 16 and 23 in the y-direction and stresses the importance of absolute position
measurements in this sensor configuration. Since the local observers in higher modules
do not access the strain gauges of the first, the noise-amplification effect discussed
earlier does not occur in the decentralized case.

The excessive noise on the estimates of module three is due to an ill-conditioning
caused by the highest-frequency mode included in the local dynamic model. In order
to improve the estimation quality in the y-direction, two modifications are made to
the decentralized observers. Firstly, the ill-conditioned mode is removed from the
local model of the third module. To improve the tracking accuracy of the fifth module,
a filter of the type presented in Section 7.5 is added. Since all modules can project
their local estimates to the global state, information exchange between modules is
easily achieved. A connection between module four and five is established by the the
following filter gain

F 5 = Q−1
5 (T +

4 U5)TR−1
s5 , (8.14)

where Rs5 is chosen as a diagonal matrix with all diagonal entries set to 1 × 10−5 and
T 4 and U5 are the transformations from (7.21). Module five receives the full state
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Figure 8.9: Estimated displacements for an earthquake in the y-direction with modified
local observers

estimate x̂4 in each time step and treats it as an additional measurement. It is also
possible to transmit only the shared states to reduce bus or network load.

As visible in Fig. 8.9, the above modifications have the desired effects. The high-
frequency noise on the local estimates of module three vanishes entirely. Estimation
accuracy of the fifth module is also significantly higher. However, whenever module
four fails to follow the reference signal, module five now mirrors this behavior. In-
terconnecting more modules with each other or giving each module access to more
sensors would further increase both the estimation accuracy as well as the agreement
between estimates of different modules.

It was shown that the approach presented in Section 7.2 together with the filters of
Section 7.5 constitute flexible tools for designing decentralized observers for complex
structures. For stiff systems, such as the ones considered here, numerical instability
and ill-conditioned system matrices can become problematic issues. It is also important
to supply each observer with an appropriate number of good quality measurements –
either directly or by interconnection with other modules. In that case, the performance
of the decentralized observers can be almost on a par with a centralized realization.
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8.2 Decentralized observers for the high-rise demonstrator

8.2 Decentralized observers for the high-rise demonstrator

In this application example, the adaptive high-rise demonstrator of the CRC 1244
is studied in numerical simulations using a simplified dynamical model. Both of
the decentralized observer concepts introduced in Chapter 7 are implemented and
compared to each other as well as to a centralized observer in terms of performance.
As in the previous study of the scale model on the test bench in Section 8.1, strain
gauges and cameras are used as sensors.

The same structure was studied in [132], [133] and [136], where the model was, however,
not a port-Hamiltonian system. In the latter two contributions, control of the structure
is also considered, which will not be done in the following. The model used for state
estimation is briefly presented in Section 8.2.1, followed by the introduction of the
different observer variants in Section 8.2.2. Estimation results obtained with each
observer are compared and discussed in Section 8.2.3.

8.2.1 System dynamics

An illustration of the high-rise demonstrator model is shown in Fig. 8.10, together with
its decomposition into the two substructures used for decentralized state estimation.
The building is composed of four structurally identical three-story modules with a
height of 9 m each. Its dynamics can be described in port-Hamiltonian form as[

Mq̈
q̇

]
=

([
0 −I
I 0

]
︸ ︷︷ ︸

J

−
[

D 0
0 0

]
︸ ︷︷ ︸

R

)[
M−1 0

0 K

]
︸ ︷︷ ︸

Q

[
Mq̇

q

]
︸ ︷︷ ︸

x

, (8.15)

where q ∈ R
nDOF and x ∈ R

2nDOF . Since control of the structure is not considered in
the following, no actuator input is included in the model.

The system matrices M and K are obtained by assembly of simple elements according
to the procedure introduced in Chapter 5. Vertical columns are modeled as Euler-
Bernoulli beams (Nn = 4) with an additional rod and torsion bar for torsional and
axial loads (Nn = 2 each). The rest of the elements depicted in Fig. 8.10 are modeled
as rods (Nn = 2). Horizontal bars at the edges combined with two intersecting
diagonal rods are used to represent floors plates. For the remaining geometry and
material parameters of the structure, see Tab. 8.2. All translational DOFs as well
as the rotation about the z-axis are locked for the lowermost four nodes. After the
port-based assembly process, the global number of DOFs amounts to nDOF = 296.
Rayleigh damping is assumed, such that

D = α0M + α1K. (8.16)
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8 Application to adaptive structures

Table 8.2: Geometry and material parameters of the structure in Fig. 8.10
Description Formula sign Value Unit

Density ρ 7850 kg/m3

Young’s modulus E 210 × 109 N/m2

Poisson’s ratio ν 0.3
Vertical columns, square hollow profiles

Length Lv 3 m
Width wv 0.3 m

Wall thickness tv 0.01 m
Horizontal rods, rectangular hollow profiles

Length Lh 4.75 m
Width wh 0.504 m
Height hh 0.12 m

Wall thickness th 0.008 m
Horizontal diagonal rods

Length Lhd 6.72 m
Width whd 0.01 m
Height hhd 0.06 m

Diagonal rods
Length Lvd 10.18 m
Width wvd 0.15 m
Height hvd 0.012 m
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Figure 8.10: Schematic drawing of an adaptive high-rise building and its decomposition
into two modules with elements equipped with strain gauges (blue),
camera-tracked nodes (green), boundary nodes (red) and the nodes for
which the x-displacement is plotted in the results section (yellow)

It is further assumed that all diagonal bracings are equipped with a strain gauge
sensor measuring the element strain. The elements are colored in blue in Fig. 8.10.
Nodes, for which the in-plane displacements are tracked by a camera-based system,
are highlighted in green. In contrast to the test bench setup presented in Section 8.1,
it is assumed that an additional camera (or a stereo-vision system) is at hand to
measure motion in the y-z-plane. Then, the system output available to the observers
can be expressed as

yf =
[

Csg

Ccam

]
x = Cx, (8.17)

where Csg ∈ R
32×2nDOF maps the state vector to the strain of the diagonal bracings

and Ccam ∈ R
24×2nDOF maps x to the respective displacements tracked by the cameras.
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8 Application to adaptive structures

8.2.2 Observers

Main objective of this section is the comparison of the observer methods presented in
Chapter 7. For this purpose, three observers are introduced for (8.15) – a centralized
observer, decentralized observers with local models obtained by dynamic condensation
and decentralized observers using a modular formulation.

In case of the scale model in Section 8.1, modal analysis is used to obtain a reduced order
model for the centralized observer. The same is done for the high-rise demonstrator
model here, which results in the centralized observer

˙̂xc = (Jc − Rc − LcCcQ−1
c )Qcx̂c + Q−1

c CT
c uf + Lcyf, (8.18a)

ŷf = Ccx̂c, (8.18b)

where the state vector xT
c =

[
η̇T

r ηT
r

]
is composed of a reduced number nr of primary

eigenmodes and their time derivatives. Compare with (8.10). The Luenberger observer
gain Lc is determined by

Lc = Q−1
c CT

c diag
(
rsg · I, rcam · I

)−1
, (8.19)

with the strain gauge weights rsg and the camera weights rcam.

Decentralized observers with local models obtained from (8.15) are constructed just
as in Section 8.1.3. Here, the number of modules amounts to two, with the local
subsystems comprising half of the building, respectively (see Fig. 8.10). Only locally
available strain gauges are used in each module, whereas the camera measurements
are made available to both. Application of the method in Section 7.2 yields local
observers of the form (7.23) as

˙̂xm = (Jm − Rm − LmCmQ−1
m )Qmx̂m + Q−1

m CT
muf,m + Lmyf,m, (8.20a)

ŷf,m = Cmx̂m, (8.20b)

where Cm is the local output map such that only the measurements of strain gauges
in module m are included in yf,m and m ∈ {1, 2}. The local observer gain is given by

Lm = Q−1
m CT

m diag
(
rsg · I, rcam · I

)−1
, (8.21)

with a lower dimension of the identity matrix in case of the strain gauges than above.
As in case of the decentralized observer for the scale model, all local DOFs are included
in xm.

So far, the conceptually reverse approach to construct decentralized observers has not
been investigated. Suppose that a model of the global system is not available in advance
or not desired in the first place because certain details are not to be communicated.
Further assume that dynamical models for the two subsystems depicted in Fig. 8.10 are
available, respectively. In this case, decentralized observers may be designed according
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8.2 Decentralized observers for the high-rise demonstrator

to the approach explained in Section 7.3. For the implementation here, the system
matrices of the two modules are assembled independently with the element types as
described in the previous section.

Since the lowermost nodes of the second module are completely unsupported, the
transformation to global coordinates (5.31) is singular. To cope with this issue, elastic
bearings with a small stiffness are introduced for the translational DOFs and the
rotation about the z-axis at each of the bottom nodes. The stiffness kh of these “helper”
bearings is set to a value that is negligible in comparison to that of the elements
of the structure. This allows to carry out the transformation to global coordinates
completely, without altering the dynamics to any significant extent.

Constraints between the two local systems are formulated according to (7.29). A local
Luenberger observer is introduced for both modules with the gain

Li = Q−1
i CT

i diag
(
rsg · I, rcam · I

)−1
, (8.22)

where i ∈ {1, 2}. With the dynamics of the coupled systems according to (7.32), the
observer for the first module becomes

˙̂x1 = (J1 − R1 − L1C1Q−1
1 )Q1x̂1 + L1yf,1 + B1λ,

ŷf,1 = C1x̂1, (8.23)

x̂s1 = Cs1x̂1,

with x1 ∈ R
304, xs1 ∈ R

24 the interface DOFs shared with the upper module and
λ ∈ R

24 the coupling forces. Note that the virtual input collocated to yf,1 has been
omitted in the above for the sake of a more compact notation.

The coupling forces “punish”, or rather, prevent differences in (angular) velocity at
the interface, but not in absolute displacement and rotation angle. This is especially
problematic for the second module, which is only minimally supported with the “helper”
bearings. The filters introduced in Section 7.5 are designed to resolve this issue. Thus,
an additional Luenberger-type filter is added to the observer of the second module
with the gain

F 2 = Q−1
2 CT

s2R−1
s2 , (8.24)

where Cs2 maps the state vector x2 ∈ R
336 of the second module to the shared

interface DOFs and Rs2 = rs · I. Effectively, this filter will make the local observer of
the second module track the positions (angles) of the first. Accordingly, the observer
of the upper subsystem is given as

˙̂x2 = [J2 − R2 − (L2C2 + F 2Cs2)Q−1
2 ]Q2x̂2 + L2yf,2 + F 2x̂s1 + B2λ,

ŷf,2 = C2x̂2, (8.25)

x̂s2 = Cs2x̂2,

where the virtual inputs collocated to xs2 and yf2 were again left out. For details on
the numerical implementation of the observers, refer to Section 7.4.
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8.2.3 Results and discussion

As test scenario for the different observers, an initial displacement of the structure in
the x-direction caused by a strong stationary wind load is considered. Gaussian noise
is superimposed on the system output (8.17) to get the virtual measurements. The
variance is set to σsg = 5.0×10−9 m2 for the strain gauges and to σcam = 3.0×10−7 m2

for the camera. A sample time of Ts = 0.01 s is used, which is also taken to be the
time step of the observers. Damping coefficients of the structure are set to α0 = 0.03
and α1 = 0.003.

In the centralized observer’s dynamic model, nr = 12 primary eigenmodes with the
lowest magnitude eigenvalues are retained. The measurement weights are set to
rsg = 1.0 × 10−10 and rcam = 1.0 × 10−7 for all observers. When deriving local
observers from (8.15), nr = 12 primary eigenmodes are used for SEREP and again
nm = 12 eigenmodes with lowest magnitude eigenvalues for modal truncation. For the
additional filter F 2 of the second substructure’s modular observer, rs = 1.0 × 10−5 is
chosen.

In Fig. 8.11, the estimates of the centralized observer (blue) are shown in comparison
to the reference values (dark gray) for the first two seconds of the motion induced by
the initial displacement. In this figure and in the ones that follow, the x-displacement
qx is shown on the left hand side and the velocity in x-direction, vx, on the right hand
side. Results are shown for the nodes highlighted in yellow in Fig. 8.10 from top to
bottom. With zero initial displacement, the centralized observer requires a few time
steps until it is in agreement with the reference. The onset takes almost 0.5 s for the
velocity estimates and slight overshoots are visible. Afterward, no noticeable deviation
from the reference values is visible.

In the same test scenario and with the parameters specified above, the decentralized
observers with local models obtained from (8.15) produce the results shown in Fig. 8.12.
Here, estimates that belong to the upper module (m = 2) are displayed in red, while
estimates of the lower module (m = 1) are displayed in blue. Since the middle node
belongs to the interface, estimates of both observers are available for it. Compared to
the centralized observer, the decentralized observers have more noise on their estimates
– especially considering vx of the lowermost node. However, the decentralized observers
has a significantly lower settling time. At the interface, good agreement between
the estimated displacement is maintained, although minor differences can be spotted.
Slightly higher deviations are visible from time to time in case of the velocities at
the interface. Note that slight disagreement emerges between the reference and the
estimate for vx of the uppermost node around t = 1.5 s.

Virtually all of the unfavorable effects observed for the decentralized observers can be
ascribed to numerical ill-conditioning of the local dynamic systems. In the previous
study with the scale model conducted in Section 8.1, an ill-conditioned eigenmode had
significant impact on the estimation quality. While the effects are less pronounced
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Figure 8.11: Estimated displacements qx and velocities vx of the centralized observer
for an initial displacement shown for the nodes highlighted in yellow in
Fig. 8.10 from top to bottom
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Figure 8.12: Estimated displacements qx and velocities vx of decentralized observers
derived from (8.15) according to the method in Section 7.2
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Figure 8.13: Estimated displacements qx and velocities vx of modular observers con-
structed according to the method in Section 7.3

here, it still shows that the dynamic condensation method combined with modal
truncation has to be employed with caution. It is prone to reduce the prediction
quality of the local models and potentially also destabilizes them. SEREP-Guyan
reduction is, however, just one out of many possible ways to arrive at local models
from a global one. While it is easily applicable and mostly produces acceptable results,
other reduction approaches such as e. g. Krylov subspace methods need to be studied
for finding even more suitable projection candidates for this purpose.

The results obtained with the modular observers are depicted in Fig. 8.13. On first
sight, not much of a difference in performance is visible with respect to the centralized
observer. Settling time and tracking capability are almost identical. A closer look
on the onset of the simulation reveals that there is a slight difference between the
estimates of qx and vx at the interface. In case of the velocities, this deviation is
effectively reduced to zero after not more than two time steps. The displacements do
not match perfectly over the whole two second interval, although this is hardly visible
in Fig. 8.13.

For a less qualitative comparison between the observers, the root mean square (RMS)
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Table 8.3: RMS errors of the observer estimates (t = 0 . . . 5 s)
Obs. Mod. Eq in mm Eϕ in mrad Ev in mm/s Eω in mrad/s
CO 1 1.28 0.120 18.8 2.39
CO 2 3.61 0.158 52.3 4.38

DO 1 1.39 0.296 60.0 19.1
DO 2 3.90 0.223 76.4 17.1

MO 1 1.34 0.135 24.5 5.47
MO 2 3.29 0.157 65.5 6.56

error is calculated for the displacements q, the rotation angles ϕ, the velocities v
and the angular velocities ω in the interval t = 0 . . . 5 s. The RMS errors Eq, Eϕ, Ev

and Eω are listed per module in Tab. 8.3. Note that “CO” stands for “centralized
observer”, “DO” for “decentralized observer” and “MO” for “modular observers”.

The error analysis shows that the modular observers perform slightly worse than the
centralized observer in all categories. This was to be expected, since the local observers
do not have access to all the measurements. The performance of the decentralized
observers is comparatively poor, but still acceptable. This is filed as the trade-off that
comes with the easy implementation and flexibility of the approach. In case an even
more suitable reduction method is found, the negative side effects can be reduced.

The attentive reader might have noticed that the high-rise depicted in Fig. 8.10
perfectly offers itself for a decomposition into four, instead of two substructures.
The reason why the two-module case is studied here, is – beside simplicity – that
implementing the modular approach with four local modules led to an unstable
system. The higher stiffness and the additional difficulty of having to couple virtually
unsupported modules with each other cannot be handled for this high-rise building
in a straightforward manner. Especially the latter issue is of unpleasant nature and
requires further investigation. This problem does not arise for e. g. bridges with a wide
span, where individual modules are always supported on the ground if they are of
adequate size. The approaches presented in this thesis provide a good starting point
for the development of more involved methods adapted to specific applications.
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Adaptive structures constitute a viable means to reduce the negative ecological impact
of the construction sector, which is of utmost importance for a more sustainable
society. Technological development in this field enables ultra-lightweight construction
with a significantly lower embodied energy. At the same time, taller, wider and
more slender structures can be realized due to the ability of an adaptive structure
to manipulate its configuration or the internal stress distribution when faced with
changing loads. Research on and practical implementation of adaptive structures
is currently very limited. Yet, technological challenges that need to be solved for a
broader acceptance of the concepts are numerous. This thesis has been concerned
with two of them – suitable modeling of these complex and heterogeneous systems, as
well as state estimation for active structural control.

Energy-based approaches, in particular port-Hamiltonian systems, are considered
especially fitting for describing the dynamics of adaptive structures. Natural incorpo-
ration of systems from other physical domains with mechanical structures and the
preservation of convenient properties on manipulation and interconnection are among
the most notable advantages. The port-based modeling approach is intrinsically tied
to a modular system conception, which makes it suitable for decentralizing methods
for state estimation and control. With the complexity and size of adaptive structures
in mind, methods for decentralized state estimation have been proposed in this work.
This leads to locally reduced complexity and enhances redundancy, reusability and
exchangeability.

Port-Hamiltonian models to capture the dynamic behavior of adaptive structures have
been introduced. This includes linear elastic components, such as rods, beams and
also elements for plane load-bearing structures. The dynamics of elastic elements
are described by PDEs that need to be spatially discretized to perform numerical
simulations. This has to be done in a way that the symplectic structure of the systems
is preserved. Amongst the available structure-preserving methods, PFEM has been
considered a suitable choice and its application to the class of systems presented in
this thesis has been demonstrated. Analysis of the method’s approximation error
has been conducted in a variety of test scenarios for each system of equations. In
a comparison to FEM, the common points and the differences of the approaches
have been highlighted to make the energy-based approach more accessible for readers
associated with the “classical” disciplines.

Coupling individual elements to form complex systems the way it is e. g. done for FE
models is not in line with the port-based philosophy of the energy-based approach. On
this account, a straightforward and automatic way to couple subsystem at their ports
using algebraic constraints has been proposed. Also, it has been demonstrated that
the resulting systems can be transformed until it is revealed that they match with a
port-Hamiltonian reformulation of the second-order equations of motion obtained via
FEM. This yields valuable insights and promotes the understanding of the energy-
based concepts across disciplines. Hydraulic actuators have served as an example
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of non-mechanical subsystems that can be seamlessly coupled with the mechanical
structure within the port-Hamiltonian framework. Even though the proposed coupling
procedure can only be fully carried out for linear systems, it can still be used to
generate coupling constraints for the nonlinear hydraulic components. These can then
be solved for to obtain an explicit system representation.

With the models assembled according to the procedure that has been introduced in
this thesis, state observers for adaptive structures can be constructed. It is possible
to design Luenberger-type observers in a way that they constitute port-Hamiltonian
systems themselves. Decentralization of these observers can be carried out on the
level of the system model. Two different approaches have been proposed to obtain
local dynamic models. Either, one projects from the state space of a global system
model to local DOFs, or a decentralized setup is obtained by interconnection of
individual modules – without prior knowledge of the global model. In the former case,
the SEREP-Guyan transformation has been suggested for deriving local subsystems.
In the latter, coupling constraints are formulated at the interface of interconnected
modules. Separate simulation of the modules then requires the use of co-simulation
techniques to prevent violation of the constraints between discrete simulation steps.

Various simulation models of adaptive structures from the CRC 1244 have served for
evaluating the performance of the methods presented in this work. Actual experiments
have been conducted on a laboratory scale mockup of the demonstrator, for which
decentralized sensor fusion has been carried out using strain gauge signals and camera-
based displacement measurements. It has been observed that the mockup exhibits
nonlinear behavior due to the slackening of diagonal bracings and friction, which
impairs the accuracy of the linear system model. However, performance of both
centralized and decentralized observers has been satisfactory, as long as measurements
of the absolute node positions are available in the directions of interest. In the test
bench study, as well as in simulations with the full scale demonstrator model, it has
been noticed that local models obtained via the SEREP-Guyan method suffer from
numerical ill-conditioning. This motivates the investigation of alternative approaches
for projecting from global to local DOFs and a thorough study with a greater variety
of test scenarios. While being more involved regarding its implementation, modular
observers interconnected using algebraic constraints have shown superior performance.

Work on the topics addressed in this thesis is far from being complete. Consider this
an attempt to make energy-based methods accessible for the application to adaptive
structures, which turned out a solid foundation for further research. Developing
methods for decentralized control is perceived a logical continuation. Studying different
types of adaptive structures, e. g. plane load-bearing ones but also larger and more
complex ones, another. Investigating different actuation principles also suggests itself.
The author hopes that readers, with the help of this document, are encouraged to give
the port-Hamiltonian approach a try – not only in the context of adaptive structures.
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A From virtual work to the equations of motion

A.1 The principle of virtual work

Suppose that the location r of a point P varies along a trajectory that complies with
the laws of mechanics at all times. Let t1 and t2 be two instants in time with t2 > t1.
Between t1 and t2, consider an arbitrary alternate trajectory r∗(t) that does not
necessarily comply with the laws of mechanics. Then, the virtual displacement and
the virtual velocity are defined as

δr = r∗ − r and δṙ = ṙ∗ − ṙ. (A.1)

This is illustrated in Fig. A.1. Note that both trajectories overlap at t1 and t2, such
that

δr(t1) = δr(t2) = 0. (A.2)

A virtual displacement δr takes place immediately in time δt = 0 and is compatible
with the system constraints [113]. Note that the varied trajectory r∗(t) is only
compatible with the constraints in case they are holonomic.

Given the force balance for a point with mass m is multiplied by the virtual displace-
ment δr, the principle of d’Alembert for this point results as

(mr̈ − F )δr = 0, (A.3)

where F are the applied forces. It states that the virtual work performed by the forces
acting on the mass particle for a virtual displacement δr is equal to zero [49]. This

r∗(t)
z

y

x

t1

t2

r(t)

δr

Figure A.1: Motion of a point along separate trajectories r(t) and r∗(t) with the
virtual displacement δr(t)
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can be generalized to the case of continuous systems. Consider again the isotropic
elastic continuum in Fig. 3.2 with boundary ∂Ω. Then, the principle of d’Alembert for
this body is obtained by integrating over all points in the body [113]∫

Ω
δrT(k − ρr̈) − δεTσ dV +

∫
∂Ω

δrTp dA = 0, (A.4)

which is the same as (3.8). This can be written in compact form as

δWi + δW = 0, (A.5)

where Wi denotes the virtual work performed by inertial forces given by

δWi =
∫

Ω
δrTr̈ρ dV. (A.6)

The virtual work Wint produced by the internal forces and the virtual work Wext

associated with the external forces are summarized in δW = δWint + δWext, with

δWint = −δU = −
∫

Ω
δεTσ dV, (A.7)

where U denotes a potential from which the forces are derived. The work performed
by external forces is obtained as

δWext =
∫

Ω
δrTk dV +

∫
∂Ω

δrTp dA. (A.8)

Subsequently, using the definitions of this section, the equations of motion for an
elastic body are derived from Hamilton’s principle.

A.2 Equations of motion

For the derivation of the equations of motion from the principle of virtual work, the
following definition of the variation of a functional is required. Consider a functional
Φ(q, q̇, t) evaluated e. g. on the trajectory r(t). The difference between the values of Φ
on r∗(t) and the real trajectory can be expressed as

Φ(q + δq, q̇ + δq̇, t) − Φ(q, q̇, t). (A.9)

When the first term in the above equation is expanded into its first order Taylor
approximation, the resulting linear approximation

δΦ =
n∑

i=1

∂Φ
∂qi

δqi + ∂Φ
∂q̇i

δq̇i (A.10)

138



A.2 Equations of motion

is referred to as the variation of the functional Φ [113].

The kinetic energy of a system is defined as

T = 1
2

∫
Ω

ṙTṙρ dV. (A.11)

After a series of transformations (see e. g. [113] or [49]), it can be shown that the term
δWi belonging to the inertial forces in (A.5) can be replaced with the variation of
T . Integrating the result with respect to time between t1 and t2 yields a generalized
version of Hamilton’s principle ∫ t2

t1

δT + δW = 0. (A.12)

For conservative systems, external forces are required to result from a potential, such
that (A.12) can be rewritten as [113]

δ

∫ t2

t1

T (q, q̇, t) − U(q, t) dt = 0, (A.13)

where (3.7) was used and the variation was pulled out of the integral. With (A.10),
the variations of T and U are obtained as

δT = ∂T

∂q
δq + ∂T

∂q̇
δq̇, and δU = ∂U

∂q
δq. (A.14)

After partial integration of the second term of δT in (A.13) with respect to time
and taking into account that the virtual work is zero at the integration bounds, the
following form results ∫ t2

t1

[
− d

dt

∂T

∂q̇
+ ∂T

∂q
− ∂U

∂q

]
δq dt = 0. (A.15)

Now, since the virtual displacements δq are arbitrary, the term in brackets has to
vanish over the entire time interval. This finally yields

− d
dt

∂T

∂q̇
+ ∂T

∂q
− ∂U

∂q
= 0, (A.16)

which are referred to as the Euler-Lagrange equations of motion.
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B Intermediate steps in discretization

Since it is not immediately clear how to obtain (4.20) from (4.19) using integration
by parts, some intermediate steps are shown here to enhance comprehensibility. Let
us begin with the term including the first order spatial derivative∫

X

ΦpA1
∂

∂x
ΦT

q êq dx = −
∫

X

∂

∂x
ΦpA1ΦT

q êq dx +
[
ΦpA1ΦT

q êq

]b

a
. (B.1)

No further steps are required in case the system has no higher-order spatial derivatives.
For the second order spatial derivative, integration by parts needs to be applied twice.
The term ∫

X

ΦpA2
∂2

∂x2 ΦT
q êq dx (B.2)

is omitted on the left hand side in the following due to limited space and it is proceeded
with

. . . = −
∫

X

∂

∂x
ΦpA2

∂

∂x
ΦT

q êq dx +
[
ΦpA2

∂

∂x
ΦT

q êq

]b

a

=
∫

X

∂2

∂x2 ΦpA2ΦT
q êq dx +

[
ΦpA2

∂

∂x
ΦT

q êq

]b

a
−

[
∂

∂x
ΦpA2ΦT

q êq

]b

a
.

(B.3)

Accordingly, integration by parts needs to be applied N times to∫
X

ΦpAN
∂N

∂xN
ΦT

q êq dx, (B.4)

which yields

· · · = −
∫

Z

∂

∂x
ΦpAN

∂N−1

∂xN−1 ΦT
q êq dx +

[
ΦpAN

∂N−1

∂xN−1 ΦT
q êq

]b

a

= . . .

=(−1)N

∫
Z

∂N

∂xN
ΦpAN ΦT

q êq dx +
[

ΦpAN
∂N−1

∂xN−1 ΦT
q êq

]b

a

− . . .

+ (−1)N−1
[

∂N−1

∂xN−1 ΦpAN ΦT
q êq

]b

a

.

(B.5)

Merging (B.1), (B.3) and (B.5) and combining the bracketed integrals in sums respec-
tively, it can be seen that the result of applying integration by parts N times is indeed
given by (4.20).
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