
Institute of Software Technology

University of Stuttgart

Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Secure infrastructure for exchanging
rules in static code analysis tools

Timo Pohl

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Stefan Wagner

Supervisor: Sara Ghatta

Commenced: October 15, 2020

Completed: April 15, 2021

Abstract

In software engineering, static code analysis can be used to inspect code and detect security
vulnerabilities even in early stages of the development. This is done by analyzing a piece of code
against a set of rules. The aim of this work was to create a secure data exchange infrastructure
for static code analysis tools and providers of the rules being used. This enables these tools to
update their set of rules by downloading the latest rules from rule providers. First of all, a research
on alternatives for possible rule exchange infrastructures was done. During this, many existing
data exchange and update protocols were examined. Then the requirements engineering and the
search for technologies and protocols was conducted. Based on these results, the rule exchange
infrastructure was designed. During the whole process, security was of utmost importance, but also
requirements like maintainability and expandability were taken into account.

3

Contents

1 Introduction 13
1.1 Motivation . 13
1.2 Goal . 13
1.3 Task . 14
1.4 Structure of this work . 14

2 Related work 15

3 Basics 17
3.1 Standards . 17
3.2 Definition of “data security” . 17
3.3 Interface design rules . 18

4 Requirements engineering 19
4.1 Functional requirements . 19
4.2 Non-functional requirements . 23

5 Specification 27
5.1 Server component . 27
5.2 Client component . 34
5.3 Administration component . 34
5.4 Architecture . 36
5.5 Security concept . 37

6 Implementation 41
6.1 Server component . 41
6.2 Client component . 44
6.3 Administration component . 45

7 Conclusion 51

Bibliography 53

5

List of Figures

2.1 Components of criticalmate SAST [RWWM19] 16

5.1 Example for a lost update when editing entities 33
5.2 Use case diagram of administration component 35
5.3 Components and interactions of the rule exchange infrastructure 37

6.1 Spring Boot architecture of server component 42
6.2 Concept of MVVM design pattern . 45
6.3 Example for the rule page . 47
6.4 Example for the rule page with an open rule editing dialog 48
6.5 Example for the account settings page . 49

7

List of Listings

5.1 JSON HAL response . 30
5.2 User object in JSON format . 31
5.3 Example for body of the login request . 38
5.4 Example for the body received after successful authentication 39
6.1 Example of a REST endpoint inside the rule controller class 43
6.2 Example of a method to retrieve a rule inside the rule service 44
6.3 Example for a rule service . 46

9

Acronyms

AEAD Authenticated Encryption with Associated Data. 37

AES Advanced Encryption Standard. 38

AOP Aspect-oriented Programming. 43

API Application Programming Interface. 27

BSI Federal O�ce for Information Security. 13

CRUD create, read, update and delete. 14

CSS Cascading Style Sheets. 45

DHE Di�e-Hellman key exchange. 38

DNS Domain Name System. 34

FAB Floating Action Button. 48

FTP File Transfer Protocol. 28

GCM Galois/Counter Mode. 38

GUI Graphical User Interface. 14

HAL Hypertext Application Language. 29

HATEOAS Hypermedia as the Engine of Application State. 28

HMAC Keyed-Hash Message Authentication Code. 39

HTML Hypertext Markup Language. 45

HTTP Hypertext Transfer Protocol. 28

HTTPS Hypertext Transfer Protocol Secure. 37

IDE Integrated Development Environment. 15

IETF Internet Engineering Task Force. 37

IoT Internet of Things. 13

IP Internet Protocol. 34

IT Information Technology. 13

JSON JavaScript Object Notation. 20

JWT JSON Web Token. 30

11

Acronyms

MVC Model View Controller. 45

MVVM Model View ViewModel. 45

NIST National Institute of Standards and Technology. 17

ORDBMS Object-Relational Database Management System. 33

POJO Plain Old Java Object. 41

RDBMS Relational Database Management System. 33

REST Representational State Transfer. 27

RPC Remote Procedure Call. 28

SAST Static Application Security Testing. 13

SHA-384 Secure Hash Algorithm 384. 38

SQL Structured Query Language. 33

TCP Transmission Control Protocol. 28

TLS Transport Layer Security. 17

UI User Interface. 45

URI Uniform Ressource Identifier. 28

URL Unique Ressource Locator. 29

UTC Universal Time Coordinated. 30

UUID Universally Unique Identifier. 29

VCS Version Control System. 15

XML Extensible Markup Language. 20

12

1 Introduction

1.1 Motivation

Internet security is getting more and more important, not least because of the drastically growing
numbers of internet attacks. Companies all over the world are having huge amounts of monetary
damage caused by cyber crime [ICR19]. Especially in times of the Internet of Things (IoT), there is
a need to counteract this development and do whatever possible to ensure security in applications,
especially in those connected to the internet.

A central part of cyber security is cryptology. As developing cryptographic procedures by oneself
often goes wrong, they are and should be brought to applications using secure and well reviewed
libraries. These build an essential basis for security in the Information Technology (IT). But often
detailed knowledge on underlying cryptographic procedures is required [NKMB16], although one
would expect that this is abstracted by the library. This problem can not be solved by simply
updating and improving these libraries, because they always have to be compatible to existing
applications. Since there may exist big security vulnerabilities, it is of utmost importance to detect
and then repair a wrong usage of cryptographic libraries as early and as fast as possible.

This can be achieved by doing Static Application Security Testing (SAST), preferably already
in early stages of development. Therefor SAST tools statically, which means without executing,
evaluate a set of code syntactically against a set of rules. A problem with today’s tools is that these
rules are manufacturer-dependent. This means that it is not possible for a tool to analyze the code
using all existing rules.

To solve this problem, a standardized rule exchange protocol as well as a rule provider infrastructure
is needed. A SAST tool using this protocol and infrastructure would then be able to download all
existing rules. These could be retrieved from o�cial bodies like the Federal O�ce for Information
Security (BSI) as well as from commercial IT security providers. When using the set of rules from
several providers, it is possible to achieve a high vulnerability coverage and therefore it is nearly
impossible to miss a security breach.

1.2 Goal

Currently, developers of SAST tools equip them with their own rules. Since there is no standardized
rule syntax and no standardized, secure rule exchange protocol, rules created by other providers can
not be used. In addition to that, experts can not simply create and release rules, they also have to
release the analysis techniques.

13

1 Introduction

The objective of this work is the creation of a secure rule exchange infrastructure, with which SAST
tools can download and so update their set of rules from several providers. Also, rule providers
should have a Graphical User Interface (GUI) to administer the rules they created. This means, they
should be able to perform at least basic create, read, update and delete (CRUD) operations.

1.3 Task

In scope of this work, an optimal architecture for exchanging rules based on existing exchange
infrastructures should be created. This architecture has to enable a SAST tool as client to download
rules from an authorized provider. Therefor, the focus is on security. Especially the following
features are required:

• Clients have to be sure the downloaded information originates from the source (authorized
provider) they requested it from. This means, they must be able to detect whether an attacker
tampered the data while they were sent from rule provider to client.

• Only authorized sta� of a specific rule provider should be able to administer the rules created
by this provider. Unauthorized sta� as well as attackers should be unable to add, edit or delete
rules.

• The infrastructure has to be maintainable and expandable. This, for example, allows
both creators of SAST tools and rule providers to extend the basic infrastructure and add
functionality.

Regarding the conception of the architecture, value is placed on platform independence on server
side (rule provider) as well as on client side (SAST tool). Additionally, the server side should not
rely on a specific web server. This is due to rule providers should not have to revise their existing
infrastructure, what they probably would have to if a specific web server would be required.

1.4 Structure of this work

In chapter 2, the existing work of the university of stuttgart and RIGS IT GmbH regarding SAST is
presented. After that, in chapter 3 some basics are given, including important security standards, the
definition of data security and significant interface design rules. Following that, chapter 4 presents
and explains the functional as well as non-functional requirements that together form the basis of the
rule exchange infrastructure. Then, chapter 5 provides the actual specification and design decisions
for each component of the rule exchange infrastructure. The penultimate chapter presents specific
concepts and technologies that should be used when it comes to implementing the infrastructure.
Finally, chapter 7 summarizes the results of this work and provides an outlook on the next steps.

14

2 Related work

Today, static code analysis can be used to detect vulnerabilities cheaper, faster and more reliable
than manual reviews [JSMB13]. But there are also several problems with currently existing tools.
A big problem is that they are not well integrated in the development process [SAE+18], as many
tools are a standalone application and completely independent from the Integrated Development
Environment (IDE).

In addition to that, the analysis often takes a lot of time. This is problematic, because it delays the
time at which a vulnerability is detected and the later this detection takes place, the more complex it
is to repair. For instance, it could have already made its way into the Version Control System (VCS)
and thereby into other branches of the project. For this reason, from a developer’s point of view
it would be desirable to get a live feedback in the IDE, so that a vulnerability can be fixed right
away. As there are many di�erent IDEs, SAST tools and programming languages, a standardized
integration of SAST tools into IDEs is not an option.

To address these problems, the university of stuttgart together with RIGS IT GmbH founded the
criticalmate project. One of the main objectives of this project is the creation and implementation of
a SAST-server as well as a uniform SAST-protocol. The criticalmate SAST-security-server is part
of a customer’s infrastructure and uses fast data flow analysis procedures to detect failures in the
code. If it detects a wrong usage of a cryptography library, it will make use of the SAST-protocol to
communicate with the IDE and inform it about this incorrect use. Based on this feedback, the IDE
then can show a detailed error message to the developer, telling him what the failure is about and
how it may be fixed. This process enables the developer to realize and fix security breaches right
away. On the bottom line, this means any SAST tool which supports this SAST-protocol is able
to communicate with any IDE which also supports the protocol. Of course this only works if the
static code analysis techniques are fast enough to provide a live feedback and at the same time do
still detect vulnerabilities reliably. For this reason, the development of fast and reliable data flow
analysis techniques is also part of the criticalmate project.

Another important objective of the project is the rule exchange infrastructure, which is the focus of
this work. Figure 2.1 shows the components involved in the criticalmate SAST and how they work
together.

In the criticalmate project, the university of stuttgart in its sub-project focuses on the decoupling of
rules and static code analysis tools. In principle, the following two things are important for this:

• a uniform, machine-readable rule notation and

• a general rule exchange infrastructure.

Additionally, the university of stuttgart wants to use artificial intelligence to automatically derive
rules and improve the IDE messages shown to the developer [RWWM19].

15

2 Related work

Figure 2.1: Components of criticalmate SAST [RWWM19]

16

3 Basics

3.1 Standards

In the following sections, the relevant standards for data security and cryptographic procedures
are presented. For the cryptographic procedures, mainly the recommendations of the BSI are
considered, but also international standards from the National Institute of Standards and Technology
(NIST) are taken into account.

BSI TR-02102-1 The technical guideline TR-02102-1 from the BSI provides guidance for the use
of cryptographic mechanisms. It contains recommendations for the algorithms and protocols
to use in cryptographic procedures and the associated secure key lengths [Inf20a].

BSI TR-02102-2 In the technical guideline TR-02102-2, the BSI provides information and recom-
mendations for using the Transport Layer Security (TLS) protocol. It contains guidance for
the selection of the protocol’s version, the securest algorithms, the cipher suites as well as the
appropriate key lengths [Inf20b].

NIST SP 800-52 The NIST Special Publication 800-52 contains guidelines for the use of the TLS
protocol. In detail, it provides guidance for the selection of version and configuration of
the TLS protocol for both client and server. Therefor, only NIST approved cryptographic
procedures and algorithms are acceptable [MC19].

3.2 Definition of “data security”

As the focus of this work is on building a secure rule exchange infrastructure, the security of
exchanged data is of utmost importance. Data security basically consists of

• authenticity,

• confidentiality and

• integrity.

In this context, authenticity means that a communication actually takes place with the desired
communication partner and not someone else who impersonates them. Data confidentiality is used
to make sure nobody except the sender and recipient is able to read the actual content of exchanged
data. As the third and last part, data integrity is about the trustworthiness of exchanged data. Data
can be considered trustworthy, if there is a way to ensure the data has not been changed on the way
to the recipient.

17

3 Basics

3.3 Interface design rules

In his book “Designing the User Interface: Strategies for E�ective Human-Computer Interaction”
from 1998 [Shn98], the computer scientist and professor Ben Shneiderman reveals 8 golden rules of
interface design, which are still valid and important today. Products of very successful companies
like Google, Amazon, Microsoft and Apple reflect these highly important rules. As they are
indispensable when attempting to build good interfaces, they will be presented and explained in the
following.

• Strive for consistency by using the same color scheme, designs and positions all over
the interface for buttons, input forms, dialogs, menus and other elements. Also the same
terminology in dialogs, feedbacks and especially in important notifications (success or error)
should be used. When doing this the correct way, users will be able to perform new actions
faster and quickly become familiar with the interface.

• Enable frequent users to use shortcuts. When providing shortcuts, experienced users can
perform actions without always switching between keyboard and mouse and thereby speed
up the completion of their tasks.

• O�er informative feedback. The user should always be informed about the state of the
interface. For every action, the user should get an informative and human-readable feedback.

• Design dialog to yield closure. After completing an action, the user should get an immediate
feedback informing him about the e�ect of this action.

• O�er simple error handling. Interfaces and systems should be designed in a way that it is
hard to make mistakes and errors are unlikely. But if an error occurs, the user should get a
comprehensible feedback about what exactly happened and how it can be resolved.

• Permit easy reversal of actions. The interface should provide easy ways for users to undo
their actions.

• Support internal locus of control. Users should always be the initiators of actions and not
just the responders. This gives users the feeling that they are in charge of the system and have
the full control.

• Reduce short-term memory load. Attention can be seen as a limited resource and humans
are only able to keep about five items at a time in the short-term memory. So, users should
not have to recall large amounts of information while performing their tasks.

18

4 Requirements engineering

Before starting with the actual requirements engineering, the rule exchange infrastructure could be
divided into the following three components:

• The rule exchange server component, which runs with each rule provider

• The rule exchange client component, which is included in a SAST tool

• The administration component, which provides a GUI that can be used by rule providers to
manage their rules

For the requirements engineering, first of all the requirements for the rule exchange server and client
were identified, as these two components form the actual rule exchange part in the infrastructure.
Some existing data exchange infrastructures and protocols were analyzed so that requirements
could be extracted. Also, some could be identified with the help of the project description of the
criticalmate project ([RWWM19]).

Then, based on the requirement that rule providers should have a GUI which enables them to
perform CRUD operations on rules, the requirements for the administration component could be
identified. As the last step, requirements from the task described in section 1.3 were included and a
brainstorming was carried out to complete the requirements for each component.

To ensure the resulting infrastructure complies with the latest security recommendations, the
guidelines described in section 3.1 were taken into account while defining the security requirements
for each component.

During this process a total of 53 functional and non-functional requirements could be identified and
defined. These resulting requirements will be presented in the following. The word “user” will be
used as synonym to “member of a rule provider organization” and an “administrator” is a special
kind of user owning more privileges.

4.1 Functional requirements

The following functional requirements specify the features and functions each component has to
provide.

19

4 Requirements engineering

4.1.1 Rule exchange server component

[R01] Rule creation

The server must o�er an interface to allow external systems to create rules.

[R02] Rule retrieval

The server must o�er an interface to allow external systems to retrieve all rules.

[R03] Rule editing

The server must o�er an interface to allow external systems to edit the content of rules.

[R04] Rule deletion

The server must o�er an interface to allow external systems to delete rules.

[R05] Authentication

The server must o�er an interface to allow external systems to authenticate.

[R06] Authorized requests

The server must ensure that requests from external systems, which require manipulation of one or
more rule(s) in the data storage ([R01], [R03] and [R04]), are authorized.

[R07] Authorization

The server must provide a way to check whether an external system is authorized or not.

[R08] Response data format

The server must o�er its information specified in [R02] to external systems in the JavaScript Object
Notation (JSON) and Extensible Markup Language (XML) format.

[R09] Successful requests

The server must inform an external system if its request could be processed successfully.

[R10] Unsuccessful requests

The server must inform an external system if its request could not be processed successfully.

[R11] Error response

The response from the server to the event specified in [R10] must provide some information to the
external system about the reason why its request could not be processed properly.

[R12] User creation

The server must o�er an interface to allow external systems to create user accounts.

20

4.1 Functional requirements

[R13] User retrieval

The server must o�er an interface to allow external systems to retrieve all existing user accounts.

[R14] User editing

The server must o�er an interface to allow external systems to edit user accounts.

[R15] User deletion

The server must o�er an interface to allow external systems to delete user accounts.

[R16] Account manipulation

The server must ensure that an external system, which requests the manipulation or retrieval of one
or more user account(s) ([R12] - [R15]), is authorized to do so. In more detail, this also means that
there must be a way to distinct users of external systems, which have the permission to perform
CRUD operations on user accounts (“administrators”) from users, which only have permission to
perform these operations on rules (“default users”).

[R17] Own account manipulation

The server must o�er an interface to allow authenticated users of external systems to edit their own
account. This means that the server has to allow authenticated users to edit at least their own name
and log in credentials.

[R18] Lost update

The server must provide a functionality to detect whether an update in data storage would overwrite
a newer update (lost update problem).

4.1.2 Rule exchange client component

[R19] Rule download

The client must o�er an interface to allow SAST tools to download rules from a specific rule provider.

[R20] Rule storage

The client must provide a way to store downloaded rules in a persistent local data storage.

[R21] Retrieve rules

The client must o�er an interface to allow SAST tools to retrieve the downloaded and locally stored
rules in an appropriate format.

21

4 Requirements engineering

4.1.3 Administration component

[R22] Log in

The administration component must o�er a functionality for users with an user account to log in
and thereby authenticate to the administration component as well as the rule exchange server.

[R23] Unauthenticated access

The administration component must prohibit the access to any functionality for users, who are not
logged in and thereby are not authenticated.

[R24] Existing rules

The administration component must o�er an overview of all existing rules for authenticated users.

[R25] Rule creation

The administration component must o�er a functionality for users to create and then add a new rule
to the rule storage.

[R26] Rule editing

The administration component must o�er a functionality for users to edit an existing rule.

[R27] Rule deletion

The administration component must o�er a functionality for users to delete an existing rule from
rule storage.

[R28] Search rules

The administration component must o�er a functionality for users to search for specific rules.

[R29] Sort rules

The administration component must o�er a functionality for users to sort rules according to di�erent
categories.

[R30] Existing users

The administration component must o�er an overview of all existing users for administrators.

[R31] User creation

The administration component must o�er a functionality for administrators to create and then add a
new user account to the data storage.

[R32] User editing

The administration component must o�er a functionality for administrators to edit an existing user
account.

22

4.2 Non-functional requirements

[R33] User deletion

The administration component must o�er a functionality for administrators to delete an existing
rule from rule storage.

[R34] Search users

The administration component must o�er a functionality for administrators to search for specific users.

[R35] Sort users

The administration component must o�er a functionality for administrators to sort users according
to di�erent categories.

[R36] Own account manipulation

The administration component must o�er a functionality for users to edit their own account
information.

[R37] Lost update

The administration component must not allow a user to update an entity if he thereby would
overwrite a newer update (lost update problem).

4.2 Non-functional requirements

The following non-functional requirements specify the qualities each component has to provide.

4.2.1 Rule exchange server component

[R38] Data storage

The server must store the rules and user accounts in a persistent database.

[R39] Flexibility and portability

The server component has to run with di�erent rule providers on di�erent infrastructures and
platforms. Therefor, the server must not be bound to a specific web server from a specific
manufacturer, it must be able to run with di�erent web servers. Also, for flexibility, rule providers
should be able to configure the server to use an existing database. Therefore, the server does not
have to have its own database, which would be superfluous.

[R40] Security

The server must ensure that data exchange with external systems only happens in a secure way.
In more detail, this means that the aspects of data security described in section 3.2 must be adhered to.

23

4 Requirements engineering

[R41] Expandability

The server must be expandable with reasonable e�ort. If there are new requirements the server has
to meet, it should be possible to implement them fast and without great di�culties.

[R42] Maintainability

The server must achieve a high level of maintainability. This does especially mean that the correction
of defects or their cause or the change of the environment should not be di�cult tasks. In the
end, this should lead to a high level of reliability. Amongst other things, it can be achieved by
commenting the code well and extensively.

[R43] Programming language

The server component must be implemented in the programming language Java.

4.2.2 Rule exchange client component

[R44] Portability

The client component has to be able to run on recommended versions of all common operating
systems. The systems which have to be supported necessarily are Microsoft Windows, Linux and
macOS.

[R45] Security

The client must ensure that the security goals specified in section 3.2 are adhered to. In more detail,
this means that the client must only accept a set of rules that he can be sure of it originates from the
rule provider he wants to download it from (authenticity) and it was not changed by someone else
(integrity).

[R46] Expandability

The client must be expandable with reasonable e�ort. If there are new requirements the client has
to meet or if the server o�ers new functionalities the client has to use, it should be possible to
implement them fast and without great di�culties.

[R47] Maintainability

The client must achieve a high level of maintainability. This does especially mean that the correction
of defects or their cause or the change of the environment should not be di�cult tasks. In the
end, this should lead to a high level of reliability. Amongst other things, it can be achieved by
commenting the code well and extensively.

[R48] Programming language

The client must be implemented in the programming language Java.

24

4.2 Non-functional requirements

4.2.3 Administration component

[R49] Portability

The administration component will be run by many di�erent users on di�erent platforms. To achieve
platform independence, a high level of flexibility and because no client installation is needed, this
component will have to be realized as a web application.

[R50] Web browser

The web application must be accessible on all modern web browser, especially on Google Chrome,
Opera, Safari, Mozilla Firefox and Microsoft Edge.

[R51] Usability

The administration component must provide a high level of usability. Therefor, especially the 8
golden rules for user interface design described in section 3.3 must be followed. Also, to make it
understandable for everyone, the language of the GUI must be english.

[R52] Expandability

The administration component must be expandable with reasonable e�ort. If there are new
requirements it has to meet or if the server o�ers new functionalities the client has to use, it should
be possible to implement them fast and without great di�culties.

[R53] Maintainability

The administration component must achieve a high level of maintainability. This does especially
mean that the correction of defects should not be di�cult. In the end, this should lead to a high
level of reliability. Amongst other things, it can be achieved by commenting the code well and
extensively.

25

5 Specification

In this chapter, the specification of the rule exchange infrastructure is presented. The concepts,
techniques and design decisions used in the three components are explained and justified. All of
this follows the requirements specified in chapter 4.

5.1 Server component

When reviewing the requirements for the rule exchange server, it leads to the result that the main
task for this component is to perform the CRUD operations for persistent storage. Because of this,
the right choice of data exchange pattern as well as persistent storage is crucial. A data exchange
pattern consists of the following three components [CR20]:

• an architectural pattern,

• a data format and

• a communication protocol

Years ago, mainly because of the lack of reliability and capacity, applications exchanged their data
using files. Today, the trend is towards web services using synchronous, request-response and
message-based communication [CR20].

To ensure every SAST tool supporting the rule exchange infrastructure is able to access the rules
from any rule provider over the internet, the server component will have to be a web service. This
service will o�er an Application Programming Interface (API) to enable the client as well as the
administration component to perform the CRUD operations for persistent storage. In particular,
building the server according to an API design pattern drastically increases flexibility, expandability
and maintainability. This is mainly because interfaces can be added, changed or deleted with
comparatively little e�ort and changes can be made to the backend application without the need to
also make changes to interfaces.

5.1.1 Architecture

Currently, there are three common and popular types of web services for the API pattern [CR20]:

• GraphQL

• SOAP

• Representational State Transfer (REST)

27

5 Specification

Starting with GraphQL, this technology basically is a data query and manipulation language, but
also a runtime to provide interfaces external applications can use. GraphQL o�ers added value
compared to other systems when dealing with many complex entities that reference each other.
GraphQL is able to take complex queries, collect all data needed from storage to answer the
query and return it. This makes data aggregation from multiple sources very easy for an external
system, because it only has to use one “smart” endpoint instead of many [Foua]. But looking at the
requirements, the infrastructure does not have these complex data structures needed to justify the
additional e�ort of implementing GraphQL. Here, the use of GraphQL only would make the queries
more complex without providing (notable) advantages over the remaining two other technologies.
These arguments speak against the use of GraphQL, at least for this particular case.

On the one hand, the network protocol SOAP can be used to exchange data between web systems
and on the other hand to perform a Remote Procedure Call (RPC). As data format, SOAP primarily
uses XML and it can be used with several communication protocols including Hypertext Transfer
Protocol (HTTP), Transmission Control Protocol (TCP) and File Transfer Protocol (FTP).

REST, however, is more of an architectural style than just a simple protocol. It defines many
guidelines for a flexible implementation. For example, as the name suggests, statelessness and the
use of a uniform application interface. REST can be used in combination with the communication
protocol HTTP and the data format JSON, but it is by no means restricted to these techniques.

It must now be decided whether to use a REST architecture as the web service or implement the
SOAP protocol. It is problematic if not impossible to directly compare a protocol and an architecture.
However, it is possible to weigh the general advantages and disadvantages of a REST architecture
and the ones of the SOAP protocol for the rule exchange infrastructure against each other and make
a decision based on that.

One of the main di�erences between REST and SOAP is the degree of coupling between client
and server. A SOAP client is tightly coupled to the server and there’s a strict contract between
them [ML07]. So, the client needs prior knowledge of the way the server works. A REST client
on the other hand is rather loosely coupled and, except for the entry Uniform Ressource Identifier
(URI), there’s no need to have prior knowledge, because the resources return links the client can
follow. This basic principle of REST is known as Hypermedia as the Engine of Application State
(HATEOAS). It was already described by Roy Thomas Fielding in his dissertation from 2000, in
which he proposed, among other things, this (for this time) new architectural style [Fie00].

“A REST API should be entered with no prior knowledge beyond the initial URI . . .
From that point on, all application state transitions must be driven by the client selection
of server-provided choices . . . ” - Roy Thomas Fielding, computer scientist [Fie08]

When taking the non-functional requirements flexibility, expandability and maintainability into
account, this speaks in favor of using REST for the rule exchange server.

Next, the XML data format used with SOAP is much more complex than the JSON format used
with REST. This is perfect when performing complex queries with complex data structures, but for
simple queries the transmission volume overhead is too big. Furthermore, an XML document has
to be built and validated on the client side and then validated and parsed on the server side, which
is why the computational e�ort is much greater here. In addition to that, the creation of SOAP
services from scratch is much more complex than the creation of REST services. In general, REST
APIs are lean and as a result of that, they perfectly fit in today’s modern Internet of Things. REST

28

5.1 Server component

provides a higher level of reliability as well as fault tolerance, what manly relies on the statelessness.
Because state does not matter, services can be restarted quickly and the communication between
them is very low, which is why it can be scaled horizontally very well.

When weighing the security of REST against SOAP, REST provides great advantages for the rule
exchange infrastructure. REST APIs consist of multiple endpoints and each of them is addressable
via a Unique Ressource Locator (URL). As a result of that, administrators can block access to
specific URLs from outside the company network using the firewall. This is important in this
case, as when looking at the requirements it is noticeable that the server and the administration
component both run with the rule provider. This could now block access from outside its network
to the URLs only used by the administration component (which are, at least by default, all except
the one to retrieve all rules), which results in a drastic increase of security.

Ultimately, all of the above reasons speak in favor of using a REST architecture and against using
the SOAP protocol. JSON is very compact, fast, readable and therefore very intuitive, and so it
will be used as data format for communication. Fielding already said that “REST does not restrict
communication to a particular protocol ...” [Fie00]. Usually the HTTP protocol is used and as
it opens the possibility to use self-describing HTTP methods (like for example the GET-method)
and answers containing HTTP status codes, it will be used as communication protocol for the rule
exchange infrastructure.

5.1.2 Interfaces

The endpoints of the REST API are the interfaces external systems can use. All interfaces needed
to provide the required functionality can be extracted from the functional requirements described in
section 4.1. Each consists of an HTTP method that must be used and a URL. In a route, the {id}
parameter must be replaced with the Universally Unique Identifier (UUID) of the resource to be
accessed. In the following, the endpoints, the expected input parameters and the responses are
specified.

To create a rule, a PUT request has to be sent to the endpoint “/rules/create”. In the HTTP body of
the request, there must be a valid JSON string containing two fields: a name field containing the
name and a content field containing the content of the rule to create. The server will answer with
the status code “200 (OK)” if the rule was successfully created. Otherwise, the status code will be
“400 (Bad Request)” to state that the rule could not be created due to a missing field.

To retrieve all rules, a GET request has to be sent to the endpoint “/rules”. As this is the main
endpoint used by SAST clients, the HATEOAS principle is supported to keep the coupling loose and
thus the server will answer with an HTTP response object containing a string in JSON Hypertext
Application Language (HAL) format. Whenever a rule provider changes the route of this endpoint,
the response of the request made to “/rules” contains the URL from which the rules can be fetched
as the all property. It should be noted that there is no need for the other endpoints to support
the HATEOAS principle, as they are only used by the administration component which runs with
the rule provider. Therefore, it is not a disadvantage that the coupling is a little tighter. Usually,
however, the response contains a list of all rules as embedded resource like shown in listing 5.1.
With the link specified for each rule in the list and by using a GET request, a single rule can be
fetched from the server.

29

5 Specification

Listing 5.1 JSON HAL response

{
"_embedded": {

"ru�eList": [{
"id":"68d70ce0-5ab4-4e5d-9bfa-33473930ffa9",
"name":"Ru�e 1",
"content":"Content of Ru�e 1...",
"version":12,
"creationDate":"18.02.2021",
"_�inks": {

"se�f": {
"href":"https://�oca�host:8443/ru�es/68d70ce0-5ab4-4e5d-9bfa-33473930ffa9"

}
}

}]
},
"_�inks": {

"se�f": {
"href":"https://�oca�host:8443/ru�es"

},
"a��": {

"href":"https://�oca�host:8443/ru�es"
}

}
}

To edit a rule, a POST request has to be sent to the endpoint “/rules/update”. In the HTTP body of
the request, there must be a valid JSON string containing three fields: an id field containing the
UUID of the rule to update, a name field containing the new name and a content field containing
the new content of the rule. The server will answer with the status code “200 (OK)” if the rule was
successfully updated. Otherwise, the status code and the error message of the response provide
information about what happened and how to solve the problem.

To delete a rule, a DELETE request has to be sent to the endpoint “/rules/delete/{id}”. The server
will answer with the status code “200 (OK)” if the rule with the UUID provided in the URL was
successfully deleted. Otherwise, the status code will be “404 (Not Found)” stating that a rule with
the given UUID could not be found in the database.

To retrieve the account information for the own account (for which the given JSON Web Token
(JWT) was issued), a GET request has to be sent to the endpoint “/account/information/get”. The
server will answer with a user object in JSON format which looks like the example provided in
listing 5.2. The fields id, firstName, lastName and email are self-explanatory. The field role contains
a string specifying the role of the user, which can either be “default” or “administrator”. The
field locked contains either 0 if the account isn’t locked or the time until the account is locked as
milliseconds since midnight, January 1, 1970 Universal Time Coordinated (UTC), as this is also
used by Unix epoch and generally easy to convert. The loginAttempts field states how many failed

30

5.1 Server component

Listing 5.2 User object in JSON format

{
"id":"6a9d47d0-6161-44ca-bdf0-61fadd895695",
"firstName":"Test",
"�astName":"User",
"ro�e":"defau�t",
"emai�":"testuser@emai�.com",
"�ocked":"0",
"�oginAttempts":"0",
"version":"2"

}

login attempts were made to this user account and the meaning of the version field is explained
in section 5.1.3. If something goes wrong, the status code and the error message of the response
provide information about what happened and how to solve the problem.

To update the own account information, a POST request has to be sent to the endpoint “/account/in-
formation/update”. The request body has to contain four fields formatted as JSON: a firstName
field containing the new first name, a lastName field containing the new surname, an email field
containing the new email address for the account and a version field containing the row version
like explained in section 5.1.3. The server responds with the status code 200 (OK) if the account
information were successfully update or with an error status code and message providing information
about what exactly went wrong.

To update the own account password, a POST request has to be sent to the endpoint “/account/pass-
word/update”. The request body has to contain two fields formatted as JSON: an oldPassword field
containing the old password from the account and a newPassword field containing the new password.
The server responds with the status code 200 (OK) if the account password was successfully update
or with an error status code and message providing information about what exactly went wrong.

To create a user account, a PUT request has to be sent to the endpoint “/admin/users/create”. In the
HTTP body of the request, there must be a valid user object in JSON format containing the fields
firstName, lastName, role, email and password. The server will answer with the status code 200
(OK) if the account was successfully created. Otherwise, the status code will be 400 (Bad Request)
to state that the user could not be created due to a missing field or the fact that a user account with
the given email address already exists.

To retrieve all users, a GET request has to be sent to the endpoint “/admin/users”. The response
contains a list of all user accounts (see listing 5.2) as JSON format. To retrieve a single user account
by its UUID, the endpoint “/admin/users/{id}” can be used by sending a GET request.

To edit a user account, a POST request has to be sent to the endpoint “/admin/users/update”. In
the HTTP body of the request, there must be a JSON user object looking like the example shown
in listing 5.2, but with an additional password field containing the new password for this account.
The server will answer with the status code 200 (OK) if the account was successfully updated.
Otherwise, the status code and the error message of the response provide information about what
happened and how to solve the problem.

31

5 Specification

To delete a user account by its UUID, a DELETE request has to be sent to the endpoint “/admin/user-
s/delete/{id}”. The server will answer with the status code 200 (OK) if the account with the UUID
provided in the URL was successfully deleted. Otherwise, the status code will be 404 (Not Found)
stating that a rule with the given UUID could not be found in the database.

Last but not least, to authenticate to the server a POST request can be sent to the endpoint “/login”.
The request body has to contain two fields: an email and a password field. The login procedure is
explained in detail in section 5.5.2.

All these endpoints are to be used by the administration component and therefore require authorization
like explained in section 5.5.3. Exceptions to this are the endpoints to retrieve rules, which should
be used by SAST tools to download rules from a specific rule provider, and the login route.

5.1.3 Lost update prevention

Like shown by the sequence diagram in figure 5.1, it can happen that several employees of a rule
provider edit the same entity (rule or user account) at the same time in the administration component.
This could work in a similar way as described below. Firstly, Client 1 downloads the newest version
of the entity which should be edited from the server (step 1 and 2). While the user edits this entity,
Client 2 downloads the newest version of the same entity from the server (step 3 and 4) and the user
starts to edit it. After the user of Client 1 is done editing the entity, the updated entity is sent back to
the server (step 5) which stores the update in the database. After that happened, also the user of
Client 2 is done editing the entity and also sends it back to the server (step 7). The server stores the
update in the database and thus overwrites the previous update made by Client 1. In the end, the
update made by Client 1 is completely lost and only the update made by Client 2 is stored in the
database. This problem is known as the lost update problem.

To prevent this, a mechanism known as Optimistic Locking is used, as it is very hard if not
impossible to implement a reliable Pessimistic Lock in a stateless client/server application. When
using Pessimistic Locking, a client needs to acquire a lock before the user can start editing an entity.
After the editing has completed, the client returns the lock to the server which can then pass it to
someone else. This ensures that only one client processes an entity at a time, but whenever a user
closes the web application while editing an entity, the lock can not be returned. This problem could
be solved by using a timeout for locks, but it would have to be large enough to give users much
time to edit an entity. In the end, it still would be possible that resources are locked without anyone
editing them. When using the Optimistic Locking approach on the other hand, each entity gets a
version attribute which is a simple numeric value. If the entity is updated in the database, the version
is incremented. That solves the lost update problem, because if two clients successively update an
entity, the version is incremented after the first update. If the second client tries to update the entity,
the server detects that the version of the entity that was received is smaller than the version of the
entity from the database. So, the second update is rejected and the client gets informed about that.
To perform the update, the first thing to do is to download the latest version of the entity. After that,
changes can be applied and it can be sent back to the server which updates the database.

32

5.1 Server component

Figure 5.1: Example for a lost update when editing entities

5.1.4 Data storage

As persistent data storage, a relational database should be used. Because the Relational Database
Management System (RDBMS) is not directly part of the server application itself, there are many
possibilities when it comes to choosing a database. PostgreSQL and MySQL are among the best
and most popular RDBMS supporting the Structured Query Language (SQL). Since PostgreSQL is
even an Object-Relational Database Management System (ORDBMS), it perfectly harmonizes with
the object-oriented programming language Java and should be used with preference. Nevertheless,
each rule provider company can decide for itself which RDBMS it wants to use.

33

5 Specification

5.2 Client component

Taking into account the requirements for the client component, the main tasks are to download
the rules from rule providers, store them in a local persistent storage and make them accessible
for the SAST tool. To achieve a high level of portability, the REST client will be implemented
using the programming language Java, as it is platform-independent. Since expandability and
maintainability are also important requirements for the client, it will be implemented as a library
providing interfaces for the SAST tool to download, store and load rules. Therefore, the coupling
between client and SAST tool is not too tight and it is, for example, possible to change the client’s
underlying implementation without touching the interface and thus without having to adjust code of
the SAST tool.

5.2.1 Rule storage

The client has to be able to store the rules of each rule providers in a persistent way. As with the
server, a RDBMS should be used here. However, an external RDBMS would be superfluous and
because of that, a lightweight embedded in-memory database should be used. One of the best and
fastest databases that meets all requirements is the H2 RDBMS. It supports queries using SQL and
when used as in-memory database, only one database file is needed to store the data. It is embedded
in and completely managed by the client application and as a result of that, no additional application
or setup is needed to use the rule exchange client.

5.2.2 Interfaces

The client library provides several interfaces, which can be divided into the following two
categories:

• Methods for downloading rules from a rule provider specified using an Internet Protocol (IP)
or Domain Name System (DNS) address. These methods use the interfaces to retrieve rules
from the server and return the data that were received as a list of rules.

• Methods to load and store rules in a (specific) table in the local in-memory database.

5.3 Administration component

When considering the requirements, the administration component is responsible to provide a GUI
for rule providers, which enables them to perform the CRUD operations for rules. Furthermore,
there should be a distinction between default users and administrators, whereby administrators
should have the possibility to also perform CRUD operations on user accounts. The requirements
also want this component to be a web application, which has many advantages including that no
client installation is needed and that the portability is very high.

The web application provides a login functionality with which employees from a rule provider,
for whom a user account exists in the backend database, can authenticate to the server. A user
enters its email address as well as a password and, by using the login interface from the server, the

34

5.3 Administration component

Figure 5.2: Use case diagram of administration component

email/password combination is validated and the user is possibly granted access. For authenticated
users, the REST endpoints described in section 5.1.2 are used to perform CRUD operations for
rules and, if the user is an administrator, for user accounts.

5.3.1 User interface

As a first draft, the rough layout of the user interface for the administration component was drawn
as a paper prototype. Therefore, the GUI design rules from Shneiderman described in section 3.3
were followed. In addition to that, guidelines and components of Material Design developed by
Google LLC were used. Using the Material Design ecosystem for the prototype and also for the
later implementation o�ers many advantages. It provides a high level of flexibility, as often specific
decisions in the way to implement the design are left up to the designer. The main components
of the design have a card-like appearance and due to the physical depth e�ect mostly caused by
shadows, users immediately recognize important areas and things they can interact with. All in all,
Material Design is very user-friendly, intuitive and characterized by elegant minimalism.

While designing the GUI, it could be divided into the following 5 main components:

• The login page is used to authenticate a user to the server. It consists of a material card
containing input fields for an email address and a passwords as well as a button to submit the
login information.

35

5 Specification

• The account settings page enables users to edit their account information. It consists of a
material card containing input fields with which a user can edit his first name, surname and
email address. For security reasons, to change the password the new password has to be
entered twice and the old password also has to be provided to confirm the identity of the user.
To keep the user interface clear, the account settings page contains a button which opens a
dialog to handle the process of changing the password.

• The welcome page acts as landing page for the web application after login.

• The rule page basically consists of a table containing all the rules created by this rule
provider. Every row in this table contains the name and creation date of a rule as well as
buttons to edit or delete this rule. At the bottom of the page, there is a Floating Action But-
ton which, according to Material Design, opens a dialog to enable the user to create a new rule.

• The user account page is only accessible for administrators. Similar to the rule page, it
consists of a table containing all the user accounts registered for this rule provider. Every row
in this table contains the first name, surname and role of a user as well as buttons to edit or
delete the account. At the bottom of the page, there is a Floating Action Button which, accord-
ing to Material Design, opens a dialog to enable the administrator to create a new user account.

In addition to the elements just described, there are two more elements on each page except the login
page: A Toolbar and a Sidenav. The Toolbar is located at the top of the screen and extends across its
full width. It contains the name of the application and a button group to access the account settings
and to log out. The Sidenav, on the other hand, is located at the left edge of the screen and extends
across its full height. It contains buttons which enable a user to navigate between the welcome,
rule and user account page. Both of these elements are designed according to Material Design
guidelines. To provide a brief overview, the use case diagram 5.2 shows the basic functionalities of
the GUI as well as the allocation of frontend services.

5.4 Architecture

Now that all of the three main components of the rule exchange infrastructure have been described,
figure 5.3 gives a brief overview on how they interact with each other. On the infrastructure of
the rule provider, on the one hand there is the server component including the REST API, the
application logic and the database. On the other hand, there is the web application forming the
administration component. Outside the network of the rule provider company, there is the SAST
tool containing and using the rule exchange client as library. The client uses the REST endpoints
o�ered by the server to download rules required for the SAST tool to perform the analyzes.

36

5.5 Security concept

Figure 5.3: Components and interactions of the rule exchange infrastructure

5.5 Security concept

As already mentioned, security is of utmost importance for the whole infrastructure. It is therefore
essential to have a good security concept and to use a strong encryption protocol for message
exchange. The security concept and especially the encryption protocol used by the rule exchange
infrastructure is presented and explained in the following sections.

It should be noted here that the terms authentication and authorization are not synonyms, as is often
wrongly assumed. In the world of identity and access management they have di�erent meanings.
In any security process authentication is the first step and describes the process of ascertaining
that a user is who they pretend to be. In the context of the rule exchange infrastructure, a user
authenticates to the administration component and server by entering a valid email address/password
combination. Authorization, however, takes place after the successful authentication and describes
the process of granting a user permission to one or more resources. In the context of the rule
exchange infrastructure, a user is authorized to perform CRUD operations on rules after a successful
login. Administrators also are authorized to manage user accounts.

5.5.1 Encryption

The TLS protocol can be used to securely exchange data in insecure networks, where especially the
security objectives described in section 3.2 must be adhered to [Inf20b]. For the data exchange
between server and administration component as well as between server and rule exchange client
(SAST tool), the latest and most secure version 1.3 of the TLS protocol like specified by the
Internet Engineering Task Force (IETF) is used [Res18]. Therefore, the server ensures that only
Hypertext Transfer Protocol Secure (HTTPS) connections that use TLS 1.3 are allowed and that
HTTP connections are rejected.

In the TLS protocol, a so-called cipher suite defines the specific algorithms used to secure a
connection. In the case of TLS 1.3, a cipher suite consists of two components: An authenticated
encryption algorithm to ensure Authenticated Encryption with Associated Data (AEAD) and a hash

37

5 Specification

Listing 5.3 Example for body of the login request

{
"emai�":"users-emai�@address.com",
"password":"user_password"

}

algorithm for key derivation. The cipher suite TLS_AES_256_GCM_SHA384 is one of the three
cipher suites recommended for TLS 1.3 by the BSI and will be used here, as it includes the longest
key lengths [Inf20b]. This cipher suite uses the symmetric Advanced Encryption Standard (AES)
encryption algorithm with a key of the length 256 bit to encrypt and decrypt exchanged data. To
provide AEAD, the Galois/Counter Mode (GCM) is used as the mode of operation and to derive
keys Secure Hash Algorithm 384 (SHA-384) is used.

Basically, the communication between either rule exchange client and server or administration
component and server can be divided into two phases: the TLS handshake and the TLS record.
The main challenge during the TLS handshake is to agree on a shared symmetric AES key and to
make sure nobody but the client and the server knows this key. Therefore, the Di�e-Hellman key
exchange (DHE) is used, with which the two communication parties are able to securely choose and
exchange a secret session key [RDM08]. After client and server agreed on a session key, the server
sends his encrypted X.509 certificate to the client to confirm its identity and especially to rule out a
man-in-the-middle attack. After the client verified the certificate and thus the identity of the server,
the establishment of a secure HTTP connection is complete [Res18].

TLS record then uses the during handshake negotiated session key to encrypt the HTTP connection
using AES-256 in Galois/Counter mode to ensure confidentiality, integrity and message authentica-
tion like recommended by o�cial bodies including BSI ([Inf20b]) and NIST ([MC19]). In the end,
an attacker has no chance of knowing the secret session key and therefore cannot read or tamper the
exchanged information.

5.5.2 Authentication

To authenticate to the server, an external system (like the administration component’s web application)
sends an HTTP POST request to the /login endpoint of the server. The HTTP body of this request
has to contain an email and a password field in JSON format to provide the email address and
password of the user like in the example provided by listing 5.3.

After receiving the request, the server checks whether the email address belongs to an existing
user account and whether the given password is correct. If one of these two actions fails, the
server responds with the HTTP status code “401 Unauthorized” and a message stating that the
email/password combination is invalid. Due to security reasons, the response does never contain
information about the existence of the user account with given email address. Another security
measure is that as soon as an incorrect password is entered for an account five times in a row, the
accounts gets automatically locked for an hour.

38

5.5 Security concept

Listing 5.4 Example for the body received after successful authentication

{
"body":
{

"id":"78cfdcb8-819f-11eb-8dcd-0242ac130003",
"firstName":"Test",
"�astName":"User",
"emai�":"test@user.de",
"ro�e":"DEFAULT",
"�ocked":0,
"jwt":"..."

}
}

However, if the combination of email and password is correct, the server responds with the status
code “200 OK”. The JSON formatted body of the response contains information about the user and
a newly generated JWT needed for authorization. Listing 5.4 provides and example for the layout of
this body.

These information, especially the JWT, should be stored in a secure local storage, like the local
storage of a browser in the case of a web application.

5.5.3 Authorization

After the authentication process described in section 5.5.2, the external system is authenticated and
in possession of a JWT. Basically, JSON Web tokens consist of the following three parts separated
by dots:

• Header

• Payload

• Signature

The header is a Base64Url encoded string and contains the type of the token, in this case JWT,
and the signing algorithm that was used for the signature part, in this case Keyed-Hash Message
Authentication Code (HMAC) with a length of 512 bits. The payload is also an Base64Url encoded
string containing some additional data, called claims. The most important claims are:

• The subject, which contains the email address of the user for whom the JWT was issued.

• The expiration time, which contains the time stamp when the JWT expires and thus becomes
invalid. In the case of the rule exchange infrastructure, the default lifetime of a JWT is set to
15 minutes.

• The role, which contains the name of the role the user for whom the JWT was issued has
(“admin” or “default”).

39

5 Specification

Up to this point the JWT would be useless, as every attacker is able to issue a valid JWT and request
authorization from server. Therefore, the JWT contains the third and last part called signature. To
create the signature, the Base64Url strings of the header and payload are concatenated. A signature
is then calculated from this using a secret key that only the server knows and the signing algorithm
specified in the header (HMAC512 in this case). Thereby, only the server is able to issue valid
JWTs [JBS15].

If an external system now wants to access a protected resource, it has to prove to the server that it
is authorized to do so. This is done using the JWT. For each request that requires authorization
(which are all except the ones to retrieve rules), the requesting system has to provide its JWT in the
Authorization field of the HTTP request header according to the Bearer schema. The Authorization
header of the request has to have the following layout, with “<token>” replaced with the JWT:

Authorization: Bearer <token>

Whenever the server receives a request that requires authorization, the JWT is taken from the header
and an attempt is made to validate it. If the token is invalid (for example because of an invalid
signature or due to expiration), the server responds with the HTTP status code “403 Forbidden” to
signal that the external system is not allowed to access the requested resource. If, on the other hand,
the token is valid, the server grants access to the requested resource.

40

6 Implementation

In the following sections, specific concepts, technologies as well as implementations are presented
that can be used when implementing the rule exchange infrastructure like specified in chapter
5. More precisely, this means that for each of the three components technologies and concepts
were found that allow an implementation according to the specification and by following the
requirements.

6.1 Server component

Because of its platform independence, the programming language Java is used to implement the
server component. To built the REST architecture, the Spring Framework should be used [Sof21].
More precisely, the sub-project Spring Boot should be used as it allows the development of Spring
applications by following the software design paradigm convention over configuration [Sof]. This
reduces the complexity of configurations and forces the developer to follow the optimized design for
a REST architecture. In addition to that, Plain Old Java Objects (POJOs) containing Java annotations
are used during implementation, which makes the code less complex, easier to understand and more
readable. As persistent data storage, the ORDBMS PostgreSQL should be preferred.

6.1.1 Spring architecture

The architecture of a Spring Boot application follows a simple principle. A REST controller
contains the endpoints for the REST API. To process requests, each REST controller uses one or
more service classes, which contain the actual application logic. The services in turn use repository
interfaces for database interaction. Thereby, Dependency Injection is used to instantiate objects a
class depends on. For example, a service class gets injected into a controller class by Spring Boot
using Dependency Injection. Spring Boot also o�ers the possibility to perform database updates
in a transactional manner. Transactions have the advantage that updates happen according to the
All-or-Nothing principle and thus the database is always in a consistent state.

An example for the Spring Boot architecture the server component of the rule exchange infrastructure
should have is provided in figure 6.1. The rule controller, rule service and rule repository classes
are responsible for CRUD operations on rules. As the names suggest, the user controller, user
service and user repository classes are responsible for CRUD operations on user accounts and the
account controller and account service classes are used whenever a user wants to edit his own
account information. There’s no need to have an account repository, since the account service also
performs CRUD operations on user accounts and thus can simply use the user repository.

41

6 Implementation

Figure 6.1: Spring Boot architecture of server component

For the authentication and authorization processes described in section 5.5.2 and 5.5.3, in Spring
so-called Filters are used. In simplified terms, Spring Filters are POJOs that contain methods which
are called before an incoming request can access the actual REST endpoints. There’s a need for two
filters, an authentication and an authorization filter.

The authentication filter becomes active whenever a POST request is sent to the “/login” endpoint.
The username and password fields have to be extracted from the body of the request and checked
against the user accounts stored in the database. If the credentials match those from a user account, a
JWT has to be issued and added to the response like explained in section 5.5.2. If not, the requesting
client should receive an informative error response.

42

6.1 Server component

Listing 6.1 Example of a REST endpoint inside the rule controller class

@RestContro��er
@RequestMapping("ru�es")
pub�ic c�ass Ru�eContro��er {

@Autowired
private IRu�eService ru�eService;

@GetMapping("/{id}")
@ResponseBody
pub�ic ResponseEntity getRu�eById(@PathVariab�e UUID id) {

Ru�e ru�e = this.ru�eService.findById(id);
if (ru�e != nu��) {

return ResponseEntityBui�der.ok(ru�e);
} e�se {

return ResponseEntityBui�der.notFound("Ru�e does not exist");
}

}
}

If an external system tries to access an endpoint which requires authorization, the authorization
filter becomes active first. This filter works according to the authorization process described in
section 5.5.3. The token is extracted from the HTTP header and an attempt is made to validate it. If
the token is valid and non-expired, the role of the user is checked and if it matches the role required
to use the endpoint, access to it is granted. Otherwise, if the token is invalid or the role does not
match, the request is denied and thus the requesting client is unable to access the endpoint.

To decide whether an endpoint requires authorization or a specific role to be accessed and to
add the filters, a security configuration class can be used. This class should also configure the
internal password encoder to use the cryptological hash function bcrypt to hash user account
passwords before storing them and for security reasons, the HTTP methods that can be used to make
requests should be restricted to GET, PUT, POST and DELETE. The possibility to outsource the
authentication and authorization process to filters and the whole security configuration to a single
class is another big advantage of the Spring framework. Spring supports this principle known as
Aspect-oriented Programming (AOP) very well. It is also applied when dealing with transactions as
previously described. Because of the isolation of all of these aspects, the code from the application
logic is clean, easy to understand and readable.

To provide an example of a REST controller containing an endpoint, listing 6.1 shows an endpoint
inside a RuleController class, with which clients could download a specific rule by providing
its UUID. The RestController annotation of the RuleController class tells Spring that this class
represents a REST controller and that data returned by a method should be written to the response
body, while the @RequestMapping annotation specifies that every endpoint in this class has the
prefix “/rules”. As an attribute, the class contains an instance of the rule service interface annotated
with Autowired. This means that Spring has to instantiate the rule service using the Dependency

43

6 Implementation

Listing 6.2 Example of a method to retrieve a rule inside the rule service

@Service
pub�ic c�ass Ru�eService imp�ements IRu�eService {

@Autowired
private Ru�eRepository repository;

pub�ic Ru�e findById(UUID id) {
return repository.findById(id).orE�se(nu��);

}
}

Injection mechanism. The GetMapping annotation specifies that the method getRuleById() below it
should be called whenever a GET request is made to the route “/rules/{id}”. The ResponseBody
annotation is responsible for the serialization of the returned objects into JSON.

The method getRuleById() has one parameter of the type UUID annotated with PathVariable, so
that the UUID of the rule is automatically inserted from the URL into the id parameter. In the body
of the method, the first thing that happens is that the findById() method of the rule service shown in
listing 6.2 is used to retrieve the rule with the given UUID. The rule service either returns the value
null if there is no rule with the given UUID in the database or the rule object that was loaded from
the database using the rule repository. If the rule could be found, the rule variable is unequal to null
and thus packed into a response entity with the status code “200 (OK)” which is then sent back to
the client. However, if the rule could not be found, a response entity containing an appropriate error
message and the status code “404 (Not Found)” is returned.

6.2 Client component

As already mentioned in the specification, the client component must be designed as library used
by SAST tools and implemented in the Java programming language. For interaction with the rule
exchange server, the best thing would be to use the Spring REST client RestTemplate. It allows to
easily send HTTP requests to the server and returns the response that was received as ResponseEntity
object.

6.2.1 Architecture

The client should contain a class containing all the interfaces which are o�ered to the SAST
tool. There, methods to download rules from rule providers as well as methods allowing a simple
interaction with the local H2 database have to be provided. The method for downloading all rules
has to support the HATEOAS principle and must be able to handle the response from the server,
which is in JSON HAL format. Furthermore, the client should have a class containing methods
to transform a JSON String into a Java list object that contains the rule objects from the JSON
string.

44

6.3 Administration component

Figure 6.2: Concept of MVVM design pattern

The rest of the implementation, which should not be used directly by the SAST tool, should be
located in an internal package, to state that it is not intended to be used by programs outside of the
library. There, for example the model of a rule and a class handling the actual database interaction
using SQL statements should be.

6.3 Administration component

To implement the web application for the administration component, the Angular framework
developed by Google LLC should be used [LLC21]. Angular provides some major advantages,
including that it uses a Dependency Injection design pattern and it follows a Model View ViewModel
(MVVM) architecture, which is a variant of the Model View Controller (MVC) design pattern,
allowing to isolate the app logic from the User Interface (UI) layer. In addition to that, there
are libraries created by Google LLC for its Material Design making it easier to use it for the
web application. In Angular, as programming language TypeScript developed by the Microsoft
Corporation is used [Mic]. TypeScript builds on JavaScript, but it allows the use of static type
definitions. As the JavaScript runtime Node.js would be the best choice here, as it is a very
resource-e�cient cross-platform architecture and therefore ideally suited for web applications
[Foub].

6.3.1 Architecture

As already mentioned, the architecture of an Angular web application follows the MVVM design
pattern like shown in figure 6.2. The View layer consists of Hypertext Markup Language (HTML)
documents as well as of Cascading Style Sheets (CSS) files and contains all GUI elements that
should be shown to the user and also some UI logic. Dynamic content (for example rules) is loaded
by binding to the ViewModel, which contains the actual UI logic. The ViewModel receives events,
like for example a button click, triggered by the user from the View and handles them. For data
loading and event handling, it uses the models, methods and services from the Model layer. The
Model contains the whole business logic and is also responsible for data access. In Angular, both
ViewModel and Model are implemented in the TypeScript programming language.

When using Angular, functions to exchange data with the server are implemented in service classes,
which are injected in other services or classes from the ViewModel using Dependency Injection. In
combination with models for objects (that could represent rules or user accounts) and objects sent
or received by the server, they form the Model layer of the application.

45

6 Implementation

Listing 6.3 Example for a rule service

export c�ass Ru�eService {

constructor(
private http: HttpC�ient,
private authService: AuthService
) {}

pub�ic addRu�e(ru�e: Ru�e): Observab�e<any> | nu�� {
var token = this.authService.getToken();
if (!token) {

return nu��;
}

�et header = new HttpHeaders({ Authorization: �Bearer � + token });
return this.http.put(environment.baseUr� + �/ru�es/create�, ru�e, { headers: header })

;
}

pub�ic getA��Ru�es(): Observab�e<any> {
return this.http.get(environment.baseUr� + �/ru�es�);

}

pub�ic getRu�e(id: string): Observab�e<Ru�e> | nu�� {
return this.http.get<Ru�e>(environment.baseUr� + �/ru�es/� + id);

}
}

To provide an example for a service, a rule service class containing some functions to perform
CRUD operations on rules using endpoints of the server defined in section 5.1.2 is shown in listing
6.3. In the constructor an HTTP client object and the authentication service is injected. The HTTP
client is used to send requests to the server and the authentication service is responsible to handle
the authentication as well as to store and load the JWT required for authorization. The addRule()
method can be used to create new rules and loads the JWT first. If the JWT is valid and not expired,
it is placed in an HttpHeader object. After that, a PUT request is created and returned with the rule
object of the rule to create in the body and the header object containing the token in the header.

The getAllRules() method can be used to download all rules from the server while the getRule()
method can be used to download a single rule with the given UUID from the server. These two
methods do not require authorization and thus also no JWT has to be added to the request.

The rest of Angular web applications is usually split into components. A component basically
consists of three parts: A TypeScript class that represents the ViewModel layer and contains the
presentation logic of a component as well as an HTML file and a CSS file which together represent
the View layer and define the UI and also contain UI logic. This division into components makes
the application very flexible, maintainable as well as expandable. It also ensures that a component
and especially the code of it does not become too complex. The following components are required
to satisfy the requirements and build the user interface specified in section 5.3.1:

46

6.3 Administration component

Figure 6.3: Example for the rule page

• A rule component responsible for the rule page. An example for the appearance of it is shown
in figure 6.3.

• A user component responsible for the user accounts page that can be accessed by administrators
only. For consistency, its appearance should not di�er too much from the one the rule page
has.

• An account component to handle the editing of personal account information. An example
for the appearance of this component is shown in figure 6.5.

• A home component to manage the home page of the application. It acts as landing page after
the login and welcomes the user.

• A login component to handle the login page. Like previously specified, it should display a
card containing the login form in which a user can enter the login credentials.

• A toolbar component that is responsible for the design and layout of the toolbar.

• A sidenav component that is responsible for the design and layout of the sidenav.

• A footer component that creates a footer. Actually there’s no need for a footer, but the
opportunity to have one should not be denied for rule providers.

• Dialog components for important dialogs to show to the user.

• An app component, which acts like a parent component and displays the toolbar as well as
the sidenav.

• A page-not-found component that is used when an unknown URL is entered. It should display
a message that informs the user of an incorrectly entered URL.

47

6 Implementation

Figure 6.4: Example for the rule page with an open rule editing dialog

6.3.2 User interface

The user interface of the web application like described in section 5.3.1 should mainly use elements
from Material Design. In the following, the most important elements for rules and the personal
account information are presented and explained. In addition to that, some examples for the user
interface were created and are also provided here. To follow the golden user interface design rules,
especially the one regarding consistency, the user account administration page should have the
same layout as the rule page. Therefore it would be superfluous to also present the user account
administration page here.

Figure 6.3 shows the page where the CRUD operations for the rules should be performed. The main
element on this page is the table containing all of the rules from the rule provider. In each row, a
checkbox to select multiple rules, the row number, the date the rule was created, the name of the
rule and two buttons are displayed. The first button should be used to edit the rule while the second
button deletes the rule. When clicking the edit button, a dialog like the one shown in figure 6.4
should open allowing the user to edit the rule. To make it di�cult to accidentally delete a rule, a
confirmation dialog should exist and has to be shown after clicking the delete button. So, the user
has to confirm the decision to delete the rule. To create a new rule, the Floating Action Button
(FAB) in the right corner at the bottom of the page can be used. When clicking it, a dialog like the
one shown in figure 6.4 should open, but with empty fields.

Rules can be searched using the filter which is located above the table. By entering text, the rules in
the table below are automatically filtered by their name and content according to the entered text. By
clicking on the Created or Name field in the header of the table, the rules can be sorted ascending
or descending according to either the creation date or the name. As the number of rules increases,
pagination becomes more and more important. Therefore the table supports this mechanism, which

48

6.3 Administration component

Figure 6.5: Example for the account settings page

can be easily adapted to personal preferences by configuring the items per page at the bottom of the
table. With the buttons next to this configuration field, tt is possible to switch pages or jump to the
first or last page.

Last but not least, figure 6.5 provides an example for the account settings page, where the personal
user information can be edited. When accessing this page, the input field to change the email address
is disabled and has to be activated first by clicking the button next to it. This is a precautionary
measure and serves to prevent accidental changes, as this could mean that the user can no longer log
in. When a user is done editing his account information, the Save button can be used to save them.
However, if a user wants to change the personal password, the Change Password button can be used
to open a dialog. There, they have to specify the current password and twice the new password,
since this confirms the identity and helps to avoid mistakes.

49

7 Conclusion

In this work, a data exchange infrastructure for the exchange of rules used by static code analysis
tools was created. It enables rule providers to easily distribute their rules and SAST tools to
download new sets of rules or update their existing ones at any time. First, the goal was defined and
the related work of the university of stuttgart and RIGS IT GmbH was presented. After that, some
important basics including standards and the definition of data security were discussed. Following
this, the functional and non-functional requirements on which the work is based were shown and
explained. Therefore, the infrastructure was divided into a server component, a client component
as well as an administration component. Then, the actual specification, which is based on the
previously defined concepts and requirements, was explained in detail. To do this, each component
was examined and specified one after the other. In the penultimate chapter, specific concepts
and technologies that should be used for implementation of each component were presented and
explained in detail. These were selected based on the requirements and the specification of the
data exchange infrastructure. During the whole process, data security was of utmost importance.
However, care was also taken that requirements like maintainability, flexibility and expandability
are not neglected.

Outlook

The next logical step is to implement and publish each of the three components of the rule exchange
infrastructure. Therefore, the server and administration components together should be made
available for rule providers and the client component should be made available for creators of SAST
tools. Because of the flexibility of the administration component, each rule provider company
is then able to adjust the design of the web application according to their corporate identity and
corporate design.

In our digitized world technology evolves very quickly, especially when it comes to quantum
computing. With quantum computers, it could one day be possible to bypass cryptographic
processes that are considered secure today. Nowadays, there are already quantum security analyzes
for cryptographic algorithms such as AES used to encrypt exchanged data in the rule exchange
infrastructure [BNS19]. It is believed that the security of the AES algorithm with a 256 bit key
can be reduced to about the security of AES with a 128 bit key by using quantum computers in
combination with Grover’s algorithm [GLRS15]. Although this can still be considered secure, it
may no longer be the case in a few years, when there might be new cryptanalytic methods or even
working quantum computers [Inf20a]. Because of these reasons, o�cial bodies have limited the
validity of their statements and guidelines, for example up to the end of the year 2025 in the case
of the BSI [Inf20a]. So, the development of this process should always be kept in mind and new
recommendations should be responded to immediately. Without such drastic and unpredictable
changes in the field of cryptography or quantum computing, the cryptographic methods used here

51

7 Conclusion

will be valid until at least 2026 [Inf20b]. However, ideally by the year 2027 at the latest, the security
concepts of the rule exchange infrastructure should be re-evaluated on the basis of the state of the
art and, if necessary, adjusted.

52

Bibliography

[BNS19] X. Bonnetain, M. Naya-Plasencia, A. Schrottenloher. “Quantum Security Analysis of
AES”. In: IACR Transactions on Symmetric Cryptology 2019.2 (June 2019), pp. 55–
93. ���: 10.13154/tosc.v2019.i2.55-93. ���: https://ha�.inria.fr/ha�-02397049
(cit. on p. 51).

[CR20] G. Charest, M. Rogers. Data Exchange Methods and Considerations. 2020. ���:
https://enterprisearchitecture.harvard.edu/fi�es/enterprise/fi�es/data_

exchange_advisory_v1_fina�.pdf?m=1581437469 (cit. on p. 27).

[Fie00] R. T. Fielding. “Architectural Styles and the Design of Network-based Software
Architectures”. Doctoral dissertation. University of California, Irvine, 2000. Chap. 5.
���: https://www.ics.uci.edu/~fie�ding/pubs/dissertation/top.htm (cit. on
pp. 28, 29).

[Fie08] R. T. Fielding. REST APIs must be hypertext-driven. 2008. ���: https://roy.gbiv.
com/untang�ed/2008/rest-apis-must-be-hypertext-driven (cit. on p. 28).

[Foua] G. Foundation. GraphQL - A query language for your API. ���: https://graphq�.
org/ (cit. on p. 28).

[Foub] O. Foundation. Node.js website. ���: https://nodejs.org/en/ (cit. on p. 45).

[GLRS15] M. Grassl, B. Langenberg, M. Roetteler, R. Steinwandt. Applying Grover’s algorithm
to AES: quantum resource estimates. 2015. arXiv: 1512.04965 [quant-ph] (cit. on
p. 51).

[ICR19] FBI. Internet Crime Complaint Center 2019 Internet Crime Report. 2019. ���:
https://pdf.ic3.gov/2019_IC3Report.pdf (cit. on p. 13).

[Inf20a] F. O. for Information Security. Cryptographic Mechanisms: Recommenations and
Key Lengths. 2020. ���: https://www.bsi.bund.de/SharedDocs/Down�oads/EN/BSI/
Pub�ications/TechGuide�ines/TG02102/BSI-TR-02102-1.htm� (cit. on pp. 17, 51).

[Inf20b] F. O. for Information Security. Cryptographic Mechanisms: Recommenations and Key
Lengths: Use of Transport Layer Security (TLS). 2020. ���: https://www.bsi.bund.
de/SharedDocs/Down�oads/EN/BSI/Pub�ications/TechGuide�ines/TG02102/BSI-

TR-02102-1.htm� (cit. on pp. 17, 37, 38, 52).

[JBS15] M. Jones, J. Bradley, N. Sakimura. JSON Web Token (JWT). RFC 7519. IETF, May
2015. ���: https://too�s.ietf.org/htm�/rfc7519 (cit. on p. 40).

[JSMB13] B. Johnson, Y. Song, E. Murphy-Hill, R. Bowdidge. “Why don’t software developers
use static analysis tools to find bugs?” In: 2013 35th International Conference on
Software Engineering (ICSE). 2013, pp. 672–681. ���: 10.1109/ICSE.2013.6606613
(cit. on p. 15).

[LLC21] G. LLC. Angular website. 2016-2021. ���: https://angu�ar.io/ (cit. on p. 45).

53

https://doi.org/10.13154/tosc.v2019.i2.55-93
https://hal.inria.fr/hal-02397049
https://enterprisearchitecture.harvard.edu/files/enterprise/files/data_exchange_advisory_v1_final.pdf?m=1581437469
https://enterprisearchitecture.harvard.edu/files/enterprise/files/data_exchange_advisory_v1_final.pdf?m=1581437469
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://graphql.org/
https://graphql.org/
https://nodejs.org/en/
https://arxiv.org/abs/1512.04965
https://pdf.ic3.gov/2019_IC3Report.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://tools.ietf.org/html/rfc7519
https://doi.org/10.1109/ICSE.2013.6606613
https://angular.io/

[MC19] K. McKay, D. Cooper. Guidelines for the Selection, Configuration, and Use of
Transport Layer Security (TLS) Implementations. 2019. ���: 10.6028/NIST.SP.800-
52r2. ���: https://nv�pubs.nist.gov/nistpubs/Specia�Pub�ications/NIST.SP.
800-52r2.pdf (cit. on pp. 17, 38).

[Mic] Microsoft. TypeScript website. ���: https://www.typescript�ang.org/ (cit. on
p. 45).

[ML07] N. Mitra, Y. Lafon. SOAP Version 1.2 Part 0: Primer (Second Edition). W3C
Recommendation. https://www.w3.org/TR/soap12-part0/. W3C, Apr. 2007 (cit. on
p. 28).

[NKMB16] S. Nadi, S. Krüger, M. Mezini, E. Bodden. ““Jumping Through Hoops”: Why do
Java Developers Struggle With Cryptography APIs?” In: 38th IEEE International
Conference on Software Engineering (2016) (cit. on p. 13).

[RDM08] A. Roy, A. Datta, J. Mitchell. “Formal Proofs of Cryptographic Security of Di�e-
Hellman-Based Protocols”. In: vol. 4912. Mar. 2008, pp. 312–329. ���: 10.1007/978-
3-540-78663-4_21 (cit. on p. 38).

[Res18] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446.
IETF, Aug. 2018. ���: https://too�s.ietf.org/htm�/rfc8446 (cit. on pp. 37, 38).

[RWWM19] H. Rust, N. Wenzel, S. Wagner, K. Mindermann. CRITICALMATE Vorhabens-
beschreibung. 2019 (cit. on pp. 15, 16, 19).

[SAE+18] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, C. Jaspan. “Lessons from
building static analysis tools at Google”. In: Communications of the ACM 61.4
(2018), pp. 58–66. ���: 10.1145/3188720 (cit. on p. 15).

[Shn98] B. Shneiderman. Designing the User Interface: Strategies for E�ective Human-
Computer Interaction. 3rd. USA: Addison-Wesley Longman Publishing Co., Inc.,
1998. ����: 0201694972 (cit. on p. 18).

[Sof] P. Software. Spring Boot website. ���: https://spring.io/projects/spring-boot
(cit. on p. 41).

[Sof21] P. Software. Spring website. 2002-2021. ���: https://spring.io/ (cit. on p. 41).

All links were last followed on April 14, 2021.

https://doi.org/10.6028/NIST.SP.800-52r2
https://doi.org/10.6028/NIST.SP.800-52r2
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf
https://www.typescriptlang.org/
https://doi.org/10.1007/978-3-540-78663-4_21
https://doi.org/10.1007/978-3-540-78663-4_21
https://tools.ietf.org/html/rfc8446
https://doi.org/10.1145/3188720
https://spring.io/projects/spring-boot
https://spring.io/

	1 Introduction
	1.1 Motivation
	1.2 Goal
	1.3 Task
	1.4 Structure of this work

	2 Related work
	3 Basics
	3.1 Standards
	3.2 Definition of ``data security''
	3.3 Interface design rules

	4 Requirements engineering
	4.1 Functional requirements
	4.2 Non-functional requirements

	5 Specification
	5.1 Server component
	5.2 Client component
	5.3 Administration component
	5.4 Architecture
	5.5 Security concept

	6 Implementation
	6.1 Server component
	6.2 Client component
	6.3 Administration component

	7 Conclusion
	Bibliography

