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2. Mitberichter: Prof. Dr. Lars Grasedyck

Tag der mündlichen Prüfung: 22.07.2021
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Abstract

Applying a Bayesian approach to infer the electrical conductivity of a body or body

part from surface electromyographic (EMG) signals yields a non-invasive and radiation-

free imaging technique. Further, measuring the surface EMG signals that stem from

voluntary muscle contractions, there is no need to apply external electrical stimuli to the

body. The electrical conductivity provides structural information of the corresponding

tissue that is used to estimate whether the tissue has isotropic or anisotropic properties

and which is the preferred conducting direction, if applicable. Additionally, changes

in the magnitude of the electrical conductivity indicate changes in the tissue material.

Together, these properties of the electrical conductivity provide medical images of the

examined body part. This imaging process results in an inverse and mathematically ill-

posed problem. Including a stochastic model of the inevitable measurement error into

the mathematical problem description, the whole system is embedded into a probabilistic

framework. Thus, instead of estimating the structure of the examined body part, the

probability distribution of the parameters describing the tissue structure given surface

EMG measurements, the so-called posterior distribution, is estimated. This Bayesian

approach to inverse problems not only yields more information about the quantities of

interest than classical regularization approaches, but also has a regularizing effect on the

ill-posed problem. Indeed, the Bayesian inverse problem of inferring the tissue structure

from surface EMG measurements is proven to be well-posed. This yields the convergence

of the inversion algorithm and allows establishing error bounds and thus quantifying the

uncertainties in the solution of the inverse EMG problem. Numerically, Markov chain

Monte Carlo methods are used to explore the posterior distribution. Accelerations of

these sampling methods are achieved by deriving a data-sparse representation of the

discretized forward model for all conceivable discretizations of the parameters describing

the tissue structure. The resulting approach is not only mathematically well-founded,

but also faster by orders of magnitude. Finally, the proposed sampling algorithms are

applied to several use cases that are related to clinical applications.
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Zusammenfassung

Die Anwendung eines Bayes’schen Ansatzes zur Schätzung der elektrischen Leitfähigkeit

eines Körpers oder Körperteils aus elektromyographischen (EMG) Oberflächensignalen

ergibt ein nichtinvasives und strahlungsfreies Bildgebungsverfahren. Werden EMG Ober-

flächensignale gemessen, die von willkürlichen Muskelkontraktionen herrühren, ist es

zudem nicht notwendig den Körper externen elektrischen Reizen auszusetzen. Die elek-

trische Leitfähigkeit liefert strukturelle Informationen des entsprechenden Gewebes, an-

hand derer berechnet werden kann, ob das Gewebe isotrope oder anisotrope Eigenschaf-

ten hat und welches gegebenenfalls die bevorzugte elektrische Fließrichtung ist. Zudem

weisen Änderungen in der Größe der elektrischen Leitfähigkeit auf Veränderungen im

Gewebematerial hin. Zusammen liefern diese Eigenschaften der elektrischen Leitfähigkeit

medizinische Bilder des untersuchten Körperteils. Dieser Abbildungsprozess führt zu ei-

nem inversen und mathematisch schlecht gestellten Problem. Durch die Einbeziehung

eines stochastischen Modells des unvermeidlichen Messfehlers in das mathematische Mo-

del wird das gesamte System in einen stochastischen Kontext gesetzt. Anstatt die Struk-

tur des untersuchten Körperteils zu ermitteln, wird nun die Wahrscheinlichkeitsvertei-

lung der Parameter, die die Gewebestruktur bei gegebenen EMG Oberflächenmessungen

beschreiben, die sogenannte Posteriorverteilung, bestimmt. Dieser Bayes’sche Ansatz

für inverse Probleme liefert nicht nur mehr Informationen über die gesuchten Größen

als klassische Ansätze, sondern hat auch einen regularisierenden Effekt auf das inverse

Problem. Tatsächlich wird die Wohlgestelltheit des Bayes’schen inversen Problems, die

Gewebestruktur aus EMG Oberflächenmessungen zu bestimmen, bewiesen. Dies liefert

die Konvergenz des Inversionsalgorithmus und ermöglicht die Festlegung von Fehler-

schranken und damit die Quantifizierung von Unsicherheiten in der Lösung des inversen

EMG-Problems. Numerisch werden Markov-Chain-Monte-Carlo-Methoden verwendet

um die Posteriorverteilung zu untersuchen. Beschleunigungen dieser Sampling-Methoden

werden durch die Herleitung einer datenarmen Repräsentation des Vorwärtsmodells

für alle denkbaren Diskretisierungen der die Gewebestruktur beschreibenden Parame-

ter erreicht. Der resultierende Ansatz ist nicht nur mathematisch fundiert, sondern

auch um Größenordnungen schneller. Abschließend werden die vorgestellten Sampling-

Algorithmen auf mehrere Szenarien angewendet, die sich auf klinische Anwendungen

beziehen.
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1. Introduction

We aim at using a Bayesian approach to parameter estimation from surface electromyo-

graphic (EMG) signals for medical imaging. The goal of medical imaging techniques

is to provide images of the inside of a body or body part to reveal internal structures

of the body tissue and to picture the functionality of living organs within the human

body. The resulting images and insights then help diagnosing and treating diseases. By

inferring parameters from surface EMG measurements we contribute to developing a

non-invasive and radiation-free medical imaging technique. In contrast to invasive imag-

ing techniques, non-invasive methods foresee from injecting measuring devices, such as

needle electrodes or endoscopes, into the human body.

The history of medical imaging techniques began in 1895 when Wilhelm Conrad Rönt-

gen discovered the X-rays and made the first X-ray photographs of human body parts

that revealed inner structures like bones. Nowadays, X-rays are used in non-invasive

imaging techniques such as X-ray and computed tomography (CT) scans. Nevertheless,

X-ray scans apply harmful ionizing radiation, the X-rays, to the body and the dose and

exposure time should be kept as minimal as possible.

In the 1940s, ultrasound was first used to image the human body. Compared to X-ray

scans, ultrasonic imaging has the advantage of renouncing the application of ionizing

radiation to the body. The application of ultrasonic waves is considered to be harmless

within the restrictions made for clinical applications. Ultrasonic imaging is highly suited

for examining aqueous and sanguineous organs but has difficulties picturing gaseous

organs and organs that are shadowed by bones [24].

In the 1970s and 1980s, magnetic resonance imaging (MRI) was developed. Magnetic

resonance imaging uses strong magnetic fields, magnetic field gradients, and radio fre-

quency signals to generate images of the body. For obvious reasons, MRI is not suited for

patients with metal medical implants. Like ultrasonic imaging, MRI applies no ionizing

radiation to the body, but is often experienced as an unpleasant procedure as undergoing

an MRI scan means being inserted into a narrow tube and being exposed to loud noise.

Since the 1980s, also electrical impedance tomography (EIT) is used for medical imag-

1



2 1. Introduction

ing. EIT applies small alternating currents to electrodes placed on the skin surface

and measures the resulting equipotentials at the skin surface. EIT is a non-invasive,

radiation- and noise-free medical imaging technique, that infers the conductivity and

impedance of the body part under investigation.

The mathematical formulation of inferring the electrical conductivity from surface

measurements of electrical potentials, the surface EMG signals, goes back to Alberto

Pedro Calderón, see the reprint [8] of his original work. We refer to [54] for a more

detailed review of the history and developments of medical imaging.

As with the EIT, we are interested in inferring the electrical conductivity. Instead

of applying electrical currents to the body and measuring the resulting equipotentials,

we aim at using the connection between muscle contraction and surface EMG measure-

ments that we explain in Section 2.6. Roughly speaking, muscle fibers get stimulated

to contract by an electrical stimulus from the spinal cord. This electrical stimulus trav-

els through the muscle fibers and the surrounding tissue like neighboring muscle fibers,

fat, bone, tendons, or skin. The resulting fluctuations in the electrical potential of the

skin can be measured as surface EMG measurements and contain information about the

tissues that they traveled. Thus, by measuring the changes of the surface EMG signals

due to the contraction of skeletal muscles, there is no need for applying any electrical

stimulus to the body.

The remainder of this chapter is structured as follows. In Section 1.1, we model the

electrical conductivity as a mathematical function and explain how to compute medical

images from the knowledge of the electrical conductivity of a body or body part. We

present the outline of our approach for constructing a radiation-free and non-invasive

imaging method in Section 1.2. Finally, Section 1.3 gives an overview of related research

areas and aligns our work within the existing research.

1.1. Motivation and Aims

We already formulated the aim of achieving a non-invasive and radiation-free imaging

method by inferring the electrical conductivity of a body from surface EMG data. In

the following, we discuss why the electrical conductivity is a well-suited parameter for

this task and how to compute images from the electrical conductivity.

Electrical conductivity is a measure of the ability of a material to conduct electricity.

The SI unit of electrical conductivity is siemens per meter (S/m), where the unit siemens

is defined as ampere per volt, i.e., 1 S := 1A
1V

. We model the electrical conductivity of a
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three-dimensional body or body part D ⊂ R3 as a matrix-valued function σ : D → R3×3

with x 7→ σ(x). Here, each matrix entry (σ(x))jk quantifies the conductivity of the

body at location x ∈ D in the ej-ek-direction for the standard unit vectors ej ∈ R3 with

(ej)k = δjk and j, k = 1, 2, 3.

Physically, the electrical conductivity is strictly positive since an electrical conductiv-

ity of 0 would correspond to an absolutely insulating material that is so far unknown.

Similarly, the electrical conductivity is bounded above since an electrical conductivity of

infinity corresponds to a material that shows no resistance to electricity. However, even

the best known superconductor has a small but positive electrical resistance. Formalizing

our considerations about the boundedness of the conductivity yields σ ∈ L∞(D;R3×3).

When considering the electrical conductivity for medical imaging, the materials con-

sidered are biological tissues, such as muscle, fat, bone, or skin tissue. The electrical

conductivity varies significantly between different types of biological tissue, hence, the

electrical conductivity contains information about the biological tissue and its structure.

Note that the differences in the electrical conductivity of different tissues may lead to

discontinuities in σ whenever D contains more than one tissue. Thus, we cannot ex-

pect higher regularity from σ than L∞. In the following, we give some examples of the

correspondence between tissue structure and electrical conductivity.

First, we consider a domain of homogeneous, isotropic tissue, i.e., the tissue properties

are constant through the domain (homogeneity) and behave equal in each direction

(isotropy), such as fat tissue. From the homogeneity of the tissue, we deduce that the

electrical conductivity is constant in the domain, i.e., σ(x) = σ ∈ R3×3. The isotropy

of the tissue implies that the electrical conductivity is a diagonal matrix with diagonal

entries s, i.e., σ = diag(s, s, s) for some positive value s ∈ R.

Next, we consider a domain of homogeneous, anisotropic tissue, i.e., the tissue prop-

erties are constant through the body or body part D but the tissue behaves different

in different directions. Again, we have a constant conductivity σ ∈ R3×3, where the

entries of σ characterize the anisotropy of the tissue. Exemplarily, we assume that the

tissue is highly conducting in e1- and e3-direction and less conducting in e2-direction.

The electrical conductivity is then modeled by a diagonal matrix σ = diag(s′, s, s′) with

0 < s < s′ < ∞.

Note that the two above examples generalize to inhomogeneous tissue by making the

electrical conductivity space-dependent, i.e., σ(x) = diag(s(x), s(x), s(x)) in the first

example and σ(x) = diag(s′(x), s(x), s′(x)) in the second example. The most impor-

tant example of inhomogeneous tissue is a body part that consists of several different
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tissues. Even if the properties of each tissue are homogeneous, the composite will have

inhomogeneous properties. In clinical applications, changes in the tissue properties may

additionally indicate abnormal changes of the tissue, e.g., through cicatrization.

We finally consider an inhomogeneous, anisotropic tissue that has a preferred con-

ducting direction d ∈ R3, i.e., a direction in which the tissue is more conductive than in

the directions transversal to d. The electrical conductivity of such an inhomogeneous,

anisotropic tissue is described through a matrix-valued function σ(x) ∈ L∞(D;R3×3) as

discussed above. Furthermore, the preferred conducting direction d corresponds to the

eigenvector belonging to the largest eigenvalue of the conductivity at each point x ∈ D.

In this way, we are able to compute the preferred conducting direction of a tissue from

its electrical conductivity.

An example for a biological tissue that possesses a preferred conducting direction

is skeletal muscle tissue, where the preferred conducting direction coincides with the

direction of the muscle fibers. In skeletal muscle tissue, the conductivity in the di-

rections transversal to the muscle fiber direction is much smaller than in longitudinal

(muscle fiber) direction. We denote the value of the conductivity in longitudinal di-

rection by s′, the value of the conductivity in the transversal directions by s, and de-

fine the direction dF(x) of a muscle fiber in point x ∈ D through the rotation angles

α(x) = (α1(x), α2(x), α3(x)) around the e1-, e2-, and e3-axes such that

dF(x) = R1(α1(x))R2(α2(x))R3(α3(x))e1.

Here, R1(α1(x)), R2(α2(x)), and R3(α3(x)) ∈ R3×3 denote the rotation matrices in three

dimensions around the e1-, e2-, and e3-axis. The electrical conductivity of the skeletal

muscle tissue in a point x ∈ D is then given by

σ(x) = R1(α1(x))R2(α2(x))R3(α3(x)) diag(s
′, s, s)R⊤

3 (α3(x))R
⊤
2 (α2(x))R

⊤
1 (α1(x)).

From the above representation of the electrical conductivity and the strict positiv-

ity of the conductivities in the e1-, e2-, and e3-direction, we deduce that the resulting

conductivity σ(x) is a positive definite matrix for each x ∈ D. Moreover, the rotations

imply symmetry of the conductivity σ.

Summarizing, we deduce that areas of similar electrical conductivity are made of the

same tissue and that the structure of this tissue is determined by the (an)isotropy of the

electrical conductivity. In this way, the electrical conductivity yields information about

the tissue structure and is thus well-suited for medical imaging techniques.
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1.2. Outline

As discussed above, we pursue the goal of developing a medical imaging method using

the relation between the electrical conductivity of biological tissue and surface EMG

measurements. Achieving this goal involves several tasks. First, a model that describes

the behavior of EMG signals for a given electrical conductivity, the forward model, is

needed. Such a model describes the evolution and propagation of EMG signals, which

includes chemical reactions, electrical ion flows, and mechanical reactions of the tissue

due to these ion flows.

Second, an algorithm that inverts the forward model, i.e., that searches for the electri-

cal conductivity that yields computed surface EMG data “close” to the clinical measure-

ments has to be defined. Care must be taken when defining such an algorithm, since the

mentioned inversion of the forward model leads to an ill-posed problem. Special tech-

niques from the field of inverse problems are needed to regularize the ill-posed problem

and thus guarantee the existence of well-behaved solutions.

The third and probably most crucial task consists of proving the convergence of the

inversion algorithm, establishing error bounds and therewith providing tools for quan-

tifying the uncertainties in the solutions of the inverse problem, i.e., of the estimated

electrical conductivities.

The last, but not less important, step is to conduct all necessary computations in

reasonable time to provide a competitive algorithm.

We achieve our postulated goal by combining aspects from biomechanics, optimiza-

tion, especially from the theory of inverse problems, and probability and tensor theory.

Chapter 2 summarizes all relevant mathematical and electrophysiological fundamentals

from the mentioned areas. In contrast to the above description, we begin with the gen-

eral theory of inverse problems, stochastic, and tensors before specifying the forward

model that describes the evolution and propagation of surface EMG signals.

More precisely, we begin with an introduction to inverse problems and classical solu-

tion techniques in Section 2.1. The Bayesian approach that we will consider throughout

this thesis is another approach to inverse problems that builds on probability theory.

Roughly speaking, the idea consists of including a probabilistic model of the inevitable

measurement error into the forward model and regarding the whole model as probabilis-

tic. The task of finding the probability distribution of the parameters of interest given

measurements is then called the Bayesian formulation of the inverse problem. We give

an overview of the aspects of probability theory needed to apply the Bayesian approach
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for solving inverse problems in Section 2.2. For solving Bayesian inverse problems nu-

merically, sampling strategies have been developed. We focus on Markov chain Monte

Carlo sampling methods that we introduce in Section 2.3. Building on the derived the-

ory, we discuss the Bayesian approach to inverse problems in Section 2.4 and adapt the

introduced Markov chain Monte Carlo methods to sample from the probability distri-

bution of the parameters of interest, given measurements. These sampling strategies,

however, include solving the forward problem for many parameters, which is computa-

tionally demanding. In Section 2.5, we introduce low-rank tensor formats to achieve

a data-sparse and fast-to-evaluate representation of the forward problem and thus ac-

celerate the sampling process. Concluding Chapter 2, we introduce the model of the

electrophysiological behavior of biological tissue, especially skeletal muscle tissue, that

describes the evolution, propagation, and measuring of EMG data in Section 2.6.

In Chapter 3, we present our implementation of the forward surface EMG model that

is based on the KerMor software package1. We roughly sketch the structure of the

original implementation before we present our modifications and extensions that aim at

making the code flexible enough to handle arbitrary space-dependent conductivities and

thus be suited for inversion.

In Chapter 4 we state the deterministic and probabilistic forward and the Bayesian

inverse EMG problem and prove and discuss their well-posedness. We will see that the

well-posedness of the forward problems is indeed crucial for proving the well-posedness

of the Bayesian inverse EMG problem and thus worth being discussed. For defining

the Bayesian inverse problem, we model the inevitable measurement error and include

it into the forward EMG model as mentioned above. Searching for the probability

distribution of the parameters of interest given EMG measurement data then defines the

Bayesian inverse EMG problem. Recalling our discussion from Section 1.1, we establish

the electrical conductivity of the investigated body part as the parameter of interest.

Concluding Chapter 4 we deduce error bounds for the solution of the Bayesian inverse

EMG problem with respect to discretizations of the forward EMG problem and the

probabilistic conductivities from the well-posedness results.

In Chapter 5 we adapt the sampling strategies introduced in Section 2.3 to sample

from the probability distribution of the electrical conductivity given EMG measurement

data. We validate and quantify the performance of our sampling algorithm in several

parameter studies and notice that solving the forward EMG problem is computation-

ally demanding and makes up a high percentage of the runtime. Thus, solving the

1https://www.morepas.org/software/kermor/index.html

https://www.morepas.org/software/kermor/index.html
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forward EMG problem in each step of the sampling algorithm is impractical when a

high number of proposals needs to be drawn until the sampling algorithm converges.

For accelerating the sampling process, we use a low-rank tensor representation of the

parameter-dependent forward EMG problem. Doing so enables us to precompute the

solution of the forward EMG problem on a discrete parameter grid, store the solutions

in a data-sparse format, and evaluate this tensor solution in each step of the sampling

algorithm. Our parameter studies show that evaluating the precomputed tensor solution

in each step of the sampling algorithm is much faster than solving the forward EMG

problem and, nevertheless, accurate.

In Chapter 6 we apply our sampling algorithm to several use cases that are related

to clinical applications. First, we quantify the influence of an additional layer of sur-

rounding tissue on the inferability of the magnitudes of the electrical conductivity of the

underlying muscle. Second, we generalize this scenario to inferring the structure of elec-

trically active tissue and examine the suitability of our sampling algorithm for inferring

the muscle fiber direction and conductivity magnitudes simultaneously. Moreover, we

quantify the influence of a layer of surrounding tissue on the inferability of the muscle

fiber direction and conductivity magnitudes. Third, we investigate a scenario of two

muscles lying on top of each other. This scenario introduces additional model param-

eters, namely the thickness of the two muscles and the conductivity magnitudes and

rotation angle of the second muscle. Inferring these parameters, we start with inferring

only the thickness of the muscles and increase the number of parameters until inferring

all model parameters simultaneously.

Finally, we summarize our contributions in Chapter 7 and give several ideas for future

research.

1.3. State of the Art

In the following, we give a brief overview on existing work done in the areas of EMG mod-

eling, imaging methods using surface EMG measurements and the corresponding inverse

problems, sampling algorithms, and the use of low-rank tensor formats for accelerating

costly computations.
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1.3.1. EMG and Modeling

A complex multi-scale multi-physics model of the evolution and propagation of EMG

signals in skeletal muscle was developed in [48, 74, 87]. Reducing the computational

cost of these forward models, model order reduction was successfully applied in [29, 75].

Here, the key ingredients for the order reduction was Galerkin projection via proper

orthogonal decomposition and application of the discrete empirical interpolation method

to the nonlinear source term of the EMG model.

Surface EMG has various applications in medical fields such as neurophysiology, er-

gonomics and occupational medicine, proctology and obstetrics, movement and gait

analysis, musculoskeletal physical therapy, exercise physiology and sports, and for man-

machine interfacing in rehabilitation technologies [70, Chapters 12-20]. The usual task of

inverse problems arising in these fields is source localization of the electrical stimuli [10,

21, 22, 67, 71].

The imaging method that developed from the use of surface EMG measurements is

the EIT mentioned in the introduction to Chapter 1. EIT is most frequently used for

continuous assessment of the respiratory status [68]. The resulting inverse problem uses

Dirichlet-to-Neumann and Neumann-to-Dirichlet maps that represent the connection

between transmitted and received data [6]. We emphasize that the electrodes placed on

the skin surface are split into transmitting and receiving electrodes in EIT thus reducing

the number of measuring electrodes.

In contrast, we aim at measuring the surface EMG signals that result from voluntary

muscle contraction, which renders the use of transmitting electrodes redundant.

1.3.2. Regularization of Inverse Problems

Tikhonov-type regularization was used in [36, 106] to infer the electrical conductivity of

biological tissue (cardiac and skeletal muscle tissue respectively) from EMG measure-

ments. Moreover, in [106] model order reduction was used to construct a surrogate of

the EMG model and thus accelerate the inversion.

A difference to our Bayesian approach is that the regularization methods used in [36,

106] neglect the inevitable measurement error. Moreover, we forebear from using surro-

gates but rely on exact and nevertheless faster-to-evaluate representations of the EMG

model for accelerating the inversion.

Although the Bayesian approach has been used successfully in many scientific areas

such as geosciences [85], to our knowledge, there is no work applying a Bayesian ap-



1.3. State of the Art 9

proach to the inverse problem of inferring the electrical conductivity from surface EMG

measurements.

Bayes’ theorem, the fundamental ingredient of the Bayesian approach to inverse prob-

lems, was formulated in the function-space setting in [17, 99].

1.3.3. Calculating the Posterior

There has been a lot of progress in designing improved algorithms for ensuring the

applicability of the Bayesian approach to computationally demanding models. The

approaches for improving these algorithms can roughly be divided into three groups:

one group that focuses on accelerating the evaluation of computationally demanding

forward models during the sampling process, a second group that focuses on efficient

sampling, and a third group that improves Quasi-Monte Carlo and direct integration

algorithms. A brief overview can be found in [94].

Surrogates

In [50] a method based on polynomial chaos expansions was used to construct a sur-

rogate of the forward problem. Stochastic collocation methods, based on generalized

polynomial chaos, were used in [69] to construct a polynomial approximation of the

forward solution over the support of the prior distribution. This approximation then

yielded a surrogate posterior probability density that could be evaluated repeatedly at

minimal computational cost.

In [82] a Gaussian process emulator was used to construct a surrogate of the forward

problem. This surrogate was adaptively improved by iteratively selecting the training

points for the Gaussian process emulator.

In contrast to the above mentioned global surrogates, local approximations of the for-

ward model were used in Markov chain Monte Carlo methods to accelerate the sampling

process in [12]. These local approximations can be either polynomial or Gaussian pro-

cess approximations. The resulting sampling algorithm was proven to still sample from

the exact posterior distribution.

Sampling

In [40] delayed rejection [102] and adaptive sampling [39, 41] were combined and the

ergodicity of the resulting Markov chain was proven. The idea of delayed rejection is to
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retry rejected samples, while adaptive sampling updates the proposal strategy in each

iteration with the full information cumulated so far.

Another approach of improving the sampling process is to use Hamiltonian dynamics

to guide the sampling process, resulting in Hamiltonian Markov chain Monte Carlo

methods [77].

Adapting the ideas of multigrid methods to sampling algorithms, multilevel Monte

Carlo algorithms were introduced [49]. In [92] quasi Monte Carlo methods and mul-

tilevel Monte Carlo methods were used to accelerate the convergence of the sampling

algorithm. Further, in [20] a hierarchical multilevel Markov chain Monte Carlo algorithm

was developed and applied to subsurface flow in porous media.

A family of Markov chain Monte Carlo samplers that can adapt to the particular struc-

ture of a posterior distribution over functions, the dimension-independent likelihood-

informed Markov chain Monte Carlo, was introduced in [15]. This dimension-independent

likelihood-informed Markov chain Monte Carlo was combined with a multilevel Markov

chain Monte Carlo in [14].

Quantifying the convergence of Markov chain Monte Carlo methods, [105] established

dimension-independent bounds on the Monte Carlo error of Markov chain Monte Carlo

sampling for non-Gaussian prior measures.

Combining the advantages of surrogates and advanced sampling techniques, a sparse,

parametric and deterministic generalized polynomial chaos surrogate of the forward

model and a multi-level Markov chain Monte Carlo strategy, were used in [50]. Here,

the multi-level Markov chain Monte Carlo strategy utilizes sampling from a multi-level

discretization of the posterior and the forward model. Furthermore, in [84] Gaussian

process surrogates were combined with hybrid Monte Carlo methods [27] for avoiding

expensive evaluations of the underlying forward model.

Markov chain Monte Carlo methods for functions were introduced in [13, 17, 90,

99]. Especially the Metropolis-Hastings algorithm, preconditioned Crank-Nicolson, and

sequential Monte Carlo methods were generalized to infinite dimensions.

Quasi-Monte Carlo and Integration

In contrast to Markov chain Monte Carlo methods, Quasi-Monte Carlo methods use low-

discrepancy sequences for numerical integration. An overview of recent developments of

Quasi-Monte Carlo methods, i.e., equal-weight rules for the approximate evaluation of

high-dimensional integrals, is given in [19]. We give some examples in the following.

A class of adaptive, deterministic sparse tensor Smolyak quadrature schemes for the ef-
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ficient approximate numerical evaluation of expectations under the posterior is designed

and analyzed in [93]. Further, in [94] numerical sampling methods, which are robust

with respect to the size of the observational noise, based on a Laplace approximation of

the posterior were proposed. For computing infinite-dimensional integrals with respect

to the posterior distribution in the context of Bayesian inverse problems with Gaussian

priors, a Hessian-based adaptive sparse quadrature was introduced in [11].

1.3.4. Tensor Approaches

In the last few years, low-rank tensor methods were examined in the context of Bayesian

inverse problems. In [23] low-rank tensor formats were used to compute a surrogate of

the target distribution. There, the target distribution was directly approximated using

a generalization of the cross approximation.

Furthermore, low-rank tensor formats were applied in [28] to develop a sampling-

free approach to Bayesian inversion with an explicit polynomial representation of the

parameter densities, based on an affine-parametric representation of a linear forward

model.

Moreover, in [33] low-rank tensor formats were used to calculate time-marginal dis-

tributions of continuous-time Markov chains that describe the evolving genotype of a

tumor progression model.

In order to distinguish our work from the aforementioned works we, again, emphasize

that we extend the theoretical findings from [17, 99] to yield the well-posedness of

the Bayesian inverse EMG problem of inferring the electrical conductivity from surface

EMG measurements. Further, we combine an exact low-rank tensor representation of

the forward EMG model with the infinite-dimensional Metropolis-Hastings algorithm

for accelerating the sampling process.





2. Fundamentals

Generally speaking, the medical imaging methods introduced in Chapter 1 can be in-

terpreted mathematically as the task of inferring parameters p∗ ∈ J from given mea-

surements or data ϕ∗ ∈ Y , where p∗ and ϕ∗ are connected through a so-called forward

or observation operator G : J → Y that maps p 7→ ϕ with ϕ∗ = G(p∗). Further, we

call J the parameter space or space of admissible parameters and Y the measurement

space. Usually, the measurements are finite dimensional. In this case, Y = RNM , where

NM ∈ N is the number of measurements. The general problem of inferring p∗ from ϕ∗ is

called inverse problem. We give a brief introduction to inverse problems and an overview

on classical solution techniques in Section 2.1.

Beside these classical solution methods, there is the Bayesian approach to inverse

problems that is based on a stochastic formulation of inverse problems. Since we aim

at applying a Bayesian approach to the inverse problem introduced in Section 1.1, we

summarize the stochastic definitions and results that build the theoretical framework

for the Bayesian approach of solving inverse problems in Section 2.2.

For solving Bayesian inverse problems numerically, sampling strategies have been de-

veloped. We give an introduction to Markov chain Monte Carlo sampling in Section 2.3.

Building on the derived theory, we discuss the Bayesian approach to inverse problems

and a sampling algorithm adapted to the inverse problem setting in Section 2.4.

The sampling strategies introduced in Section 2.3, however, include solving the pa-

rameter-dependent forward problem of computing ϕ for given parameters p through

ϕ = G(p) for many parameters, which can be computationally demanding. In Sec-

tion 2.5, we introduce low-rank tensor formats to achieve a data-sparse and fast-to-

evaluate representation of G(p).

Finally, in Section 2.6 we introduce the model of the electrophysiological behavior of

biological tissue, especially skeletal muscle tissue, that describes the evolution, propa-

gation, and measuring of EMG data. This model defines the forward and inverse EMG

problem that we study in Chapters 4, 5, and 6.

13
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2.1. Inverse Problems

Besides the inverse EMG problem, which was motivated in Section 1.1 and will be dis-

cussed further in Section 4.3, inverse problems appear in various real-world applications

and fields of research, such as medicine, physical chemistry, geophysics, astronomy, and

material sciences. We name some applications and categories of inverse problems in the

following. For a more detailed overview, we refer to [30].

There is, for example, the wide field of medical imaging techniques. These include

established methods of computerized tomography, magnetic resonance imaging, and

ultrasound, which all aim at recovering the density of a material or body part from

method-specific measurements, here X-rays, radio frequency signals, and ultrasound.

Another wide field of inverse problems is signal and image processing, where the focus

lies, e.g., on reconstructing missing fragments of images or on deblurring of blurred parts

of images. We mention image processing in astronomy that was established after the

launch of the NASA/ESA Hubble Space Telescope in early 1990 [1]. Launched to provide

diffraction limited (high spatial resolution) images, it was quickly discovered that the

images send back to Earth were flawed due to a manufacturing error in the main mirror

of the telescope. This incident led to a high acceptance of image restoration techniques

in astronomy and thus, even after the Hubble Space Telescope was repaired in late 1993,

image processing techniques remained an important tool in astronomy [30].

An often quoted and discussed example for inverse problems in physics is heat con-

duction, where researchers are interested in determining the temperature of an object

or a specific point in space at a past time from actual measurements of the temperature

of that body or point, or even from temperature measurements in other spatial points.

Another inverse problem in heat conduction is to determine thermal parameters, such

as the thermal conductivity.

The latter inverse problem is one example for the broad field of parameter identifica-

tion or reconstruction that aims at estimating parameters, such as material parameters,

that cannot be measured directly from measurements of related quantities. The in-

verse problem of inferring the electrical conductivity from surface EMG measurements,

introduced in Section 1.1, also falls into this category of inverse problems.

2.1.1. Classical Regularization Methods

We consider the abstract inverse problem of finding a parameter or state of interest

p∗ ∈ J from data or measurements ϕ∗ ∈ Y that are connected through a forward map
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G : J → Y with G(p) = ϕ for some spaces J , Y as introduced in the beginning of

this chapter, see Page 13. From a mathematical point of view, the inverse problem of

calculating p∗ for given ϕ∗ consists of inverting the forward map G. This inverse problem
is well-posed in the sense of Hadamard [44], if the following conditions hold:

1. Existence: For each admissible ϕ ∈ Y there exists a parameter p ∈ J such that

G(p) = ϕ.

2. Uniqueness: For each admissible ϕ ∈ Y the parameter p ∈ J with G(p) = ϕ is

unique.

3. Stability: The parameters p ∈ J with G(p) = ϕ depend continuously on the data

ϕ ∈ Y .

If one of the above conditions is violated, the problem is called ill-posed. The examples of

inverse problems that we gave before are all ill-posed. In parameter reconstruction tasks,

the ill-posedness is usually caused by the underdetermined task of inferring continuous,

i.e., infinite-dimensional, parameters from finite measurements of some related quantity.

Furthermore, the forward map does not need to be injective.

For an example of the uniqueness issues that may occur when dealing with inverse

problems, imagine measuring the temperature of a pot of soup on a stove at a certain

time, where we are interested in the temperature of the soup at a past time. The mea-

sured temperature might now be achieved from heating the soup, i.e., the temperature

of the soup at the past time was lower than the measured temperature. On the other

hand, the soup might have been boiling before and cooled to the measured temperature,

i.e., the temperature of the soup at the past time was higher then the measured temper-

ature. Another possible scenario is that the temperature of the soup was kept constant

over time.

Unfortunately, most inverse problems are ill-posed. Hence, the question arises how to

ensure uniqueness of the solution and in general well-posedness of the inverse problem.

These considerations lead to regularization techniques.

The main goal of regularization methods is the restoration of stability of the solution

with respect to the data [30, Chapter 3]. The idea of classical regularization methods is

to achieve well-posedness by adding information or assumptions about the solution or

the physical system to the problem description. Over the last decades a large number of

regularization methods have been developed. We mention some classical regularization

approaches below. Good overviews can be found in [30] and [55].
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Starting our overview on classical regularization methods, we summarize the Tikhonov

regularization method, see also [103]. For an introduction to the well-posedness of

Tikhonov-regularized inverse problems we refer to [30, Chapters 5 and 10]. The Tikhonov

regularization is widely used, especially for parameter estimation problems.

The idea of the Tikhonov regularization method is to add a regularization term

∥p− p̂∥2 to the least squares formulation of the inverse problem, i.e., the aim is to

solve the optimization problem

min
p∈J

∥G(p)− ϕ∗∥2 + αR∥p− p̂∥2 (2.1)

for data ϕ∗ ∈ Y . Here p̂ describes a desired or expected state of the underlying physical

system, e.g., equilibrium. While p̂ = 0 is often used in the linear case, this choice has

no special meaning in the nonlinear case such that p̂ comprises other a-priori knowledge

about the solution. The regularization parameter αR > 0 controls the influence of the

regularization term. If αR tends to infinity, p will tend to the expected state p̂, and if

αR tends to 0, p will be mainly determined by the forward map G and the problem will

again become ill-posed.

A closer look at the regularized least-squares problem (2.1) reveals another free compo-

nent of the Tikhonov regularization method, namely the choice of a specific norm. Hence,

strategies how to choose the regularization parameter and the norm are needed. In case

G is linear there are a-posteriori parameter selection methods which minimize the error∥∥pα − p†
∥∥ between the Tikhonov-regularized solution pα := argminp∈J ∥G(p)− ϕ∗∥2 +

αR∥p− p̂∥2 and the solution p† = G†ϕ∗ with G† denoting the pseudo-inverse of G, cf. [30,
Chapter 4] and the references therein. Such parameter selection methods do also exist

for the nonlinear case but require restrictive assumptions on G.

In practice, heuristic parameter selection methods, such as the L-curve method intro-

duced in [65] and further advocated in [45], are used. We refer to the introduction in [30,

Section 4.5] and the summary in [35] for an overview on heuristic parameter selection

methods.

Two well-known specific Tikhonov regularizations are the maximum entropy regular-

ization, which solves the regularized problem

min
p∈J

∥G(p)− ϕ∗∥2 + αR

∫ t1

t0

p(t) log

(
p(t)

p̂(t)

)
dt

for a time-dependent parameter p(t) on an interval (t0, t1) and p̂ > 0 as before, and the
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total variation regularization, which solves the regularized problem

min
p∈J

∥G(p)− ϕ∗∥2 + αR

∫ t1

t0

∥∇p(t)∥2dt

again for a time-dependent parameter p(t). The latter is frequently used in image re-

construction as it enhances sharp features in p. The drawback of the total variation

regularization is that the regularization term is not differentiable due to the nondifferen-

tiability of the Euclidean norm ∥ · ∥2 at 0. Thus, derivative-free optimization algorithms

have to be used. We refer to [104, Chapter 8] for a discussion of the total variation

regularization.

A related regularization ansatz is the regularization with differential operators that

searches for the solution of the optimization problem

min
p∈J

∥G(p)− ϕ∗∥2 + αR∥Q(p)∥2

with Q denoting any differential operator. This regularization is used, for example, in

spline smoothing with Q being the second derivative operator.

Contrarily to regularization methods that add extra information to the model as de-

scribed above, there are regularization methods that regularize ill-posed problems by

leaving out information. One category of those methods is regularization by projec-

tion. The general framework was developed in 1977 [76]. The field of regularization by

projection comprises regularization through finite-dimensional approximations such as

discretization, collocation, and Ritz-Galerkin approximations.

A similar idea is to use the regularizing effect of terminating iterative processes early,

which leads to iterative regularization methods [4, 56]. These regularization methods

include the (nonlinear) Landweber iterations, which are based on fixed-point equations,

the CGNE method, which applies the Conjugate Gradient method to the Normal Equa-

tions of the ill-posed problem, and Newton-type methods like the Levenberg-Marquardt

method.

Tikhonov-type regularization methods and approximation-based regularization meth-

ods both share the presence of free regularization parameters, be it the choice of αR

in the Tikhonov-type regularizations or some discretization or truncation parameters in

the approximation-based methods. In both cases, care must be taken to balance the

accuracy of the (regularized) model and the stability of the (regularized) solution. This

is one major drawback of the classical regularization techniques. Another drawback of
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the Tikhonov-type regularization methods is the need of additional information about

the solution.

We highlight that the above formulations of classical regularization methods com-

pletely neglect any measurement error. Stochastic models of the measurement error

can nevertheless be included into the classical regularization techniques. However, a

more natural approach of incorporating measurement errors into inverse problem for-

mulations is the Bayesian approach that is introduced in Section 2.4. The necessary

stochastic knowledge to formulate Bayesian inverse problems is summarized in the next

section.

2.2. Stochastic Fundamentals

This section is dedicated to a brief overview of the stochastic definitions, theorems and

concepts needed to develop the theory of Bayesian inverse problems. In Section 2.2.1 we

start with a summary on measures and measurable spaces and continue by defining prob-

ability measures and probability spaces. Next, we introduce random variables and ran-

dom functions in Section 2.2.2, together with Bayes’ theorem. Finally, in Section 2.2.3,

we give an introduction to Markov chains, which are substantial to the sampling algo-

rithms for solving Bayesian inverse problems that we will introduce in Section 2.3.

2.2.1. Measures and Measurable Spaces

Let Y be any space or set, A be a σ-algebra of subsets of Y and µ : A → [0,∞] be a

measure on the measurable space (Y,A). A measure space (Y,A, µ) is called complete

if A is the collection of all µ-measurable subsets of Y , i.e., A = {S ⊂ Y | µ(S ′) =

µ(S ′ ∩ S) + µ(S ′ ∩ (Y \ S) for each S ′ ⊂ Y }, cf. [2, Definition 10.34]. This definition is

equivalent to A containing all µ-negligible subsets of Y , cf. [7, Definition 2.1.41].

We say that a property holds µ-almost everywhere (µ-a.e.) if there exists a set S ⊂ A
with µ(S) = 0 such that the property holds for all y ∈ Y \ S.
A measure µ on a measurable space (Y,A) is called σ-finite, if there exists a sequence

{Sj}∞j=1 ⊂ A such that µ(Sj) < ∞ for all j = 1, . . . ,∞ and
⋃∞

j=1 Sj = Y , cf. [7, Definition

2.1.32]. Further, a measure µ on a measurable space (Y,A) is of bounded variation if

sup

{
n∑

j=1

|µ(Sj)| | {S1, . . . , Sn} is a partition of Y

}
< ∞,
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where {S1, . . . , Sn} is a partition of Y for some n ∈ N if Sj are pairwise disjoint subsets

of Y and
⋃n

j=1 Sj = Y , compare [2, Section 10.10].

Let µ, µ′ be two measures on a σ-algebra A of subsets of some space Y . Then µ, µ′

are mutually singular, if there exists S ∈ A with µ(S) = 0 and µ′(Y \ S) = 0, cf. [59,

Definition 7.30]. Further, µ′ is absolutely continuous with respect to µ if µ′(S) = 0 for

all S ∈ A with µ(S) = 0, and we write µ′ ≪ µ, cf. [59, Definition 7.30]. This definition

allows us to state the Radon-Nikodym theorem as in. [2, Theorem 13.18].

Theorem 2.2.1 (Radon-Nikodym Theorem). Let (Y,A, µ) be a σ-finite complete

measure space and µ′ be a signed measure of bounded variation that is absolutely contin-

uous with respect to the measure µ. Then there exists a (µ-almost everywhere) unique

µ-integrable function f : Y → [0,∞) satisfying

µ′(S) =

∫
S

fdµ

for each S ∈ A. The function f is often called the Radon-Nikodym derivative of µ′ with

respect to µ and is then written as f = dµ′

dµ
.

Using the definition of the Radon-Nikodym derivative, we define a metric on measures

for quantifying their distance. Following [17, Chapter 4] and [50], we use the Hellinger

metric.

Definition 2.2.2 (Hellinger Metric). Let (Y,A) be a measurable space and µ, µ′

be measures on Y that are absolutely continuous with respect to a common reference

measure ν. The Hellinger metric of µ and µ′ is defined as

dHell(µ, µ
′) :=

√√√√1

2

∫
Y

(√
dµ

dν
−
√

dµ′

dν

)2

dν.

Subsequently, we will use the notion of measures to define random variables and

probability measures. For doing so, we need the definition of (strongly) measurable

functions. We call a function f : Y → Y ′ that maps from a measurable space (Y,A)

to a Banach space Y ′ strongly measurable if there exists a sequence of simple functions

fj : Y → Y ′ such that limj→∞ fj = f pointwise on Y . If Y ′ is separable, f is strongly

measurable if and only if f is measurable, cf. [53, Section 1.1].

A well-known property of measures that will help us proving measurability in Chap-

ter 4 is the following, see, e.g., [59, Theorem 1.88]:
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Lemma 2.2.3. Let (Y,A) be a Borel measurable topological space and f ∈ C0(Y ;R) for
some measure µ on (Y,A). Then f is a µ-measurable function.

Moreover, we define the (Lebesgue-)Bochner spaces according to [53, Definition 1.2.15]

as follows: Given a measure space (Y,A, µ), a Banach space (Y ′, ∥ · ∥Y ′) and a natural

number 1 ≤ q < ∞, the Lebesgue-Bochner space Lq(Y ;Y ′) is defined as the linear space

of all (equivalence classes of) strongly µ-measurable functions g : Y → Y ′ for which∫
Y
∥g∥qY ′dµ < ∞. Further, L∞(Y ;Y ′) is defined as the linear space of all (equivalence

classes of) strongly µ-measurable functions g : Y → Y ′ for which there exists a real

number r ≥ 0 such that µ{∥g∥Y ′ > r} = 0. The Lebesgue-Bochner spaces are Banach

spaces when endowed with the norms

∥g∥Lq(Y ;Y ′) :=

(∫
Y

∥g(y)∥qY ′dµ(y)

)1/q

< ∞, 1 ≤ q < ∞ or

∥g∥L∞(Y ;Y ′) := ess sup
y∈Y

∥g(y)∥Y ′ < ∞.

Having defined the basic concepts of measure theory, we proceed with the definition of

probability measures and spaces.

We call a measure space (Y,A, µ) a probability space with probability measure µ if

µ(Y ) = 1. We denote a complete probability space by (Ω,A, µ), and call Ω the sample

space and A the event space. Further, we say that a property holds µ-almost surely

(µ-a.s.) if there exists a set S ⊂ A with µ(S) = 0 such that the property holds for all

y ∈ Y \ S.
Throughout this thesis, we will be concerned with product probability measures, more

precisely we will define probability measures on infinite product spaces. The Kolmogorov

extension theorem, cf. [2, Section 15.6], [7, Theorem 5.1.7], proves the existence of such

probability measures.

For understanding the Kolmogorov extension theorem, we need the definition of the

pushforward of a measure. Let thus (Y,A) and (Y ′,A′) be measurable space, µ be a

measure on Y , and f : Y → Y ′ be a measurable map. According to [17, Section 7.2.1],

the pushforward µ′ := f#µ of µ under the map f defines a measure on Y ′ and is defined

by µ′(S) := µ(f−1(S)) for all S ∈ A′.

We now state the Kolmogorov extension theorem as in [17, Theorem 7.4]:

Theorem 2.2.4 (Kolmogorov Extension Theorem). Let Y be a Polish space, i.e.,

a separable completely metrizable topological space, and S be an arbitrary set. Assume

that, for any finite subset S ′ ⊂ S, we are given a probability measure µS′ on the finite
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product space Y S′
:=×j∈S′ Y . Assume further that the family of measures {µS′} is

consistent in the sense that if S ′′ ⊂ S ′ and prS′,S′′ : Y S′ → Y S′′
denotes the natural

projection map, then the pushforward of the measure µS′ under the natural projection

prS′,S′′ fulfills pr#S′,S′′ µS′ = µS′′.

Then there exists a unique probability measure µ on Y S endowed with the product

σ-algebra and the property that pr#S,S′ µ = µS′ for all finite S ′ ⊂ S.

As an example for the above theorem, we construct a product measure on the infinite

product space R∞ :=×∞
k=1

R. Let µ0 denote a probability measure on R and define

µS :=
⊗

j∈S µ0 for every finite set S ⊂ R∞. Then, according to Theorem 2.2.4, µ :=⊗∞
j=1 µ0 is a probability measure on R∞.

2.2.2. Random Variables

Following [59, Definition 1.102], we define a random variable as a measurable mapping

X : Ω → Y between a complete probability space (Ω,A, µ) and a measurable space

(Y,A′). Generalizing this definition, we define a random function or stochastic process

as a family of random variables {X(ω, ι)}, ι lying in some index set I such that X(ω, ι)

is a random variable defined on the sample space Ω for each fixed ι ∈ I and X(ω, ι) is

a function on the index set I for each fixed ω ∈ Ω, cf. [26, Section 2.1]. In case that

I ⊂ Rd and Y = Rn for d, n ∈ N, we call X(ω, ι) a random field, because X(ω, ι) is a

vector field for each fixed ω ∈ Ω.

We briefly outline the construction of random functions with specific properties. Pre-

cisely, we construct random functions f : Ω×D → Rn×n such that f(ω, ·) ∈ L∞(D;Rn×n)

for each ω ∈ Ω, a domain D ⊂ Rd, i.e., a connected and open subset of Rd, and n, d ∈ N.
Random functions of this class will be needed in Section 4.2.1. We follow the approach

of [17, Section 2.1] and start with a basis representation of a deterministic function

f : D → Rn×n of the form

f(x) = m(x) +
∞∑
j=1

ςjφj(x)

with coefficients ςj ∈ R, for j = 1, . . . ,∞ and we assume that the functions m,φj ∈
L∞(D;Rn×n). Further, we normalize the basis {φj}∞j=1 such that ∥φj∥L∞(D) = 1 for

all j = 1, . . . ,∞. By randomizing the coefficients ςj in the way that ςj = γjζj(ω) for
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j = 1, . . . ,∞, the deterministic function becomes probabilistic, indicated by f:

f(ω, x) = m(x) +
∞∑
j=1

γjζj(ω)φj(x)

We choose γ := {γj}∞j=1 ∈ ℓ1 and the random sequence ζ := {ζj}∞j=1 to be identically

independent distributed (i.i.d.) with ζ1 being distributed according to the uniform dis-

tribution on [−1, 1] denoted by U([−1, 1]), i.e., ζ1 ∼ U([−1, 1]). Here, ℓ1 := {{yj}∞j=1 ∈
RN |

∑∞
j=1 |yj| < ∞} denotes the space of all absolutely summable sequences in RN.

Note that scaling the random coefficients ζ to be uniformly distributed on [−1, 1] also

includes scaling the coefficients γ such that ςj = γjζj(ω) still holds for j = 1, . . . ,∞. We

further assume that there exist constants mmin,mmax, δ > 0 such that

0 < mmin ≤ ess inf
x∈D

m(x) ≤ m(x) ≤ ess sup
x∈D

m(x) ≤ mmax < ∞,

∥γ∥ℓ1 =
δ

1 + δ
mmin

and define the closure of the linear span of the functions m,φj, j = 1, . . . ,∞, with

respect to ∥ · ∥L∞(D) as Jf. Then the space (Jf, ∥ · ∥L∞(D)) is a separable Banach space [17,

Section 2.2]. Furthermore, for fNtrunc(ω, x) := m(x) +
∑N

j=1 γjζj(ω)φj(x), the sequence

{fNtrunc}∞Ntrunc=1 is Cauchy in Jf with limiting function f and

1

1 + δ
mmin ≤ f(ω, x) ≤ mmax +

δ

1 + δ
mmin a.e. and a.s.

From the above inequalities we see the boundedness of ∥f(ω, ·)∥L∞(D) for almost each

ω ∈ Ω, i.e., f ∈ L∞(D;Rn×n) almost surely. For a proof of this argument we refer to [17,

Theorem 2.1].

We interpret ζ = {ζj}∞j=1 as an element of the probability space (R∞,B(R∞), µ),

where B(R∞) denotes the Borel σ-algebra on R∞ and µ is the measure defined in the

example following Theorem 2.2.4. We further define the mapping f ′ : R∞ → Jf with

ζ 7→ f ′(ζ) := f(ω, x) = m(x) +
∑∞

j=1 γjζj(ω)φj(x). Using this definition we are able

to define a measure on Jf as the pushforward of µ under the map f ′, which means we

define ρ0 := f ′#µ. Compare the above construction of ρ0 with the Kolmogorv extension

theorem 2.2.4 and the example thereafter. The measure ρ0 is a probability measure on

Jf, i.e., ρ0(Jf) = 1. Due to the separability of Jf it is natural to use the Borel σ-algebra

to define the probability space (Jf,B(Jf), ρ0) [17, Section 2.6]. We will come back to
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this probability space in Section 4.2.1 and move on with defining properties of random

variables and functions.

The expectation of a random function X : Ω× I → R that is defined on a probability

space (Ω,A, µ) and an index set I is defined as

X̄(ι) := E(X(ω, ι)) :=
∫
Ω

X(ω, ι)dµ(ω) ∈ R for all ι ∈ I

and the covariance is given by

covX(ι, ι
′) := E

(
(X(ω, ι)− X̄(ι))(X(ω, ι′)− X̄(ι′))

)
=

∫
Ω

(X(ω, ι)− X̄(ι))(X(ω, ι′)− X̄(ι′))dµ(ω) ∈ R for all ι, ι′ ∈ I,

see, e.g., [59, Definition 5.1], [26, Section 1.3.1]. For ι = ι′, the covariance becomes the

variance

var(X)(ι) := covX(ι, ι) = E
(
(X(ω, ι)− X̄(ι))2

)
∈ R for all ι ∈ I.

Two random variables, functions or fields are called uncorrelated if their covariance

equals zero for all ι, ι′ ∈ I. Note that the covariance being equal to zero is equivalent to

E(X(ω, ι)X(ω, ι′)) = E(X(ω, ι))E(X(ω, ι′)). This equality for the expectations is implied

by a stronger property, the independence. For defining the independence we need the

concept of conditional probability.

Let (Ω,A, µ) be a probability space. Following [59, Definition 8.2], we define the

conditional probability of S ∈ A given S ′ ∈ A through

µ(S | S ′) :=


µ(S∩S′)
µ(S′)

if µ(S ′) > 0,

0 otherwise

and say that two events S, S ′ ∈ A with probabilities µ(S), µ(S ′) > 0 are independent if

µ(S | S ′) = µ(S) or equivalently µ(S ′ | S) = µ(S ′).

Further, a finite set of n ∈ N events {Sj}nj=1 is (mutually) independent, see, e.g., [7,

Definition 1.2.3], if every event is independent of any intersection of the other events,
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i.e., if and only if for every k ≤ n and for every {S ′
j}kj=1 ⊂ {Sj}nj=1

µ

(
k⋂

j=1

S ′
j

)
=

k∏
j=1

µ(S ′
i)

holds. Conditional probabilities are further characterized by the Bayes theorem that

was introduced in the second half of the 18th century by Thomas Bayes [5].

Theorem 2.2.5 (Bayes Theorem). Let (Ω,A, µ) be a probability space and S, S ′ ∈ A
with µ(S ′) > 0. Then

µ(S | S ′) =
µ(S ′ | S)µ(S)

µ(S ′)
.

2.2.3. Markov Chains

A Markov process is a stochastic process for which the state of the system at any future

time depends only on the present state.

A good first insight into Markov chains in finite dimensions is offered by Norris [79].

A more general approach to Markov processes that is based on the notion of Markov

transitions instead of Markov kernels is given by Aliprantis and Border [2, Chapters 19,

20]. For a brief introduction to Markov chains in the function space inverse problem

setting, we refer to [17, Chapter 5].

We introduce the notion of a stochastic or Markov kernel and a filtration to specify

the definition of a Markov process, cf. [59, Definition 9.9]. Let I be an index set. We

call a family (Fι)ι∈I of σ-algebras Fι a filtration if Fι′ ⊂ Fι for all ι, ι
′ ∈ I with ι′ ≤ ι.

The filtration (Fι = σ(X(·, ι′), ι′ ≤ ι))ι∈I =: σ(X), with σ(·) denoting a σ-algebra of

the indicated set, is called the natural filtration of a stochastic process X defined over

the index set I. A filtration (Fι)ι∈I represents the behavior of a stochastic process X

until time ι ∈ I and thus allows for defining the independence of the current state of a

stochastic process from its past states.

For a stochastic process X = {X(·, ι)}ι∈I with index set I and state space (Y,A, µ)

we define the probability measure µy(X ∈ S) := µ(X ∈ S | X(·, 0) = y) for each y ∈ Y

and S ∈ AI with the product σ-algebra AI :=
⊗

ι∈I A.

Further, for two measurable spaces (Y,A), (Y ′,A′) we define a stochastic or Markov

kernel to be a mapping K : Y ×A′ → [0,∞] that satisfies the following two conditions:

First, for each S ∈ A′ the mapping y 7→ K(y, S) is a measurable function and, second,

for each y ∈ Y the mapping S 7→ K(y, S) is a probability measure [59, Definition 8.25].
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The latter property implies that a Markov kernel is a mapping K : Y ×A′ → [0, 1]. The

finite dimensional equivalent of a stochastic kernel is a stochastic matrix, i.e., a matrix

R ∈ Rn×n for some n ∈ N, where the sum of each row and each column of R equals 1.

Using the above definitions, we define a Markov process following [59, Definition 17.3].

Definition 2.2.6 (Markov Process). Let I be any index set and without loss of gen-

erality 0 ∈ I, (Ω,A, µ) be a probability space, and (Y,A′) be a measurable space. A

stochastic process X = {X(·, ι)}ι∈I with filtration (Fι)ι∈I is called a Markov process in

(Ω,A) with distribution (µy)y∈Y if:

(i) For each y ∈ Y , X is a stochastic process on (Ω,A, µy) with µy(X(·, 0) = y) = 1.

(ii) The mapping K : Y ×A′I → [0, 1] with (y, S) 7→ K(y, S) := µy(X ∈ S) is a Markov

kernel.

(iii) For all S ∈ A′, y ∈ Y and ι, ι′ ∈ I with ι′ = ι+ t for some increment t the Markov

property

µy(X(·, ι′) ∈ S | Fι) = Kι′(X(·, ι), S) µy-a.s.

holds. Here, the stochastic kernel of transition probabilities of X after an incre-

ment t is defined as Kι′ : Y ×A′ → [0, 1] with Kι′(y, S) := K(y, {y′ ∈ Y I : y′(ι) ∈
S}) = µy(X(·, ι′) ∈ S) with the product space Y I :=×ι∈I Y .

We call X a Markov chain if X is a Markov process with index set I = N0. In

examples, the Markov processes and Markov chains are often indexed by time, such that

the increment t in the above Definition can be interpreted as the passing of some time

span.

A well-known example of a Markov chain is the random walk. We illustrate the one-

dimensional random walk using the example of a drunk man walking on a straight street.

The man starts his walk at time ι = 0 in position y0, i.e., X(ι = 0) = y0. With each step

the drunk takes, he decides to either go down or up the street with equal probability, i.e.,

P(X(ι = j + 1) = yj+1 | X(ι = j) = yj) = P(X(ι = j + 1) = yj−1 | X(ι = j) = yj) =
1
2
,

where P denotes the probability of the indexed event. Obviously, the position of the

drunken man at a certain time ι = j + 1 does only depend on the position of the

drunken man at the previous time ι = j. This property of Markov processes corresponds

to property (iii) in Definition 2.2.6 and is often referred to as memorylessness.
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A Markov process with kernel K on (Y × A) is said to be invariant with respect to

a nonzero signed or σ-finite measure µ if

µ(S) =

∫
Y

µ(dy)K(y, S)

for all S ∈ A, compare [18, Section 2.4]. The measure µ fulfilling the above equation is

called the invariant or stationary distribution of the Markov process. A criterion that

implies invariance and is often easier to verify is reversibility, cf. [17, Definition 5.1]. We

call a Markov process, as defined above, reversible if the measure µ ⊗ K on A ⊗ A is

symmetric, i.e., ∫
S

µ(dy)K(y, S ′) =

∫
S′
µ(dy′)K(y′, S) (2.2)

for all (S, S ′) ∈ A⊗A and integration parameters y, y′. The above equation is sometimes

also called detailed balance.

The convergence or long run behavior of Markov processes is examined by ergodic the-

ory. We refer to [25, Chapter 5] and [2, Chapters 19, 20] for an introduction to ergodic

theory of Markov chains. Roughly speaking, a µ-ergodic Markov process statistically

represents the probability measure µ, i.e., the expectation and other statistical quantities

of the Markov process correspond with the respective quantities of the probability distri-

bution µ. Furthermore, a Markov process is µ-ergodic if the Markov process is invariant

with respect to µ and some additional properties hold. Precisely, [2, Theorem 19.25]

says that ergodic measures can be found as the extreme points of the set of invariant

measures and [2, Corollary 19.26] guarantees that every continuous Markov transition

on a compact metrizable space admits ergodic measures. The latter result can directly

be transferred to the notion of Markov kernels. We deduce that a Markov chain that is

invariant with respect to a measure µ is well-suited to represent the statistical behavior

of this measure µ. The Markov chain Monte Carlo methods for sampling from a given

probability distribution µ, introduced in the following section, build on this property of

invariant measures of Markov processes.

2.3. Markov Chain Monte Carlo Methods

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from

(high-dimensional) probability distributions such as the posterior distributions that arise
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in Bayesian inversion as we will see in Section 2.4. The essential ingredient of MCMC

methods is the construction of a Markov chain, see Definition 2.2.6, that is invariant

with respect to the desired probability distribution, see our discussion at the end of

Section 2.2.3. For a general introduction to finite-dimensional MCMC methods, we

refer to [79].

Monte Carlo methods or randomized simulations, as they were often called in the

beginning, were developed by Stanislaw Ulam and John von Neumann in the late 1940s

and enabled sampling from the uniform and many other standard distributions. Extend-

ing the Monte Carlo concept to more general distributions that arise, e.g., from physical

models, von Neumann introduced the acceptance-rejection sampling.

The idea of acceptance-rejection sampling is to propose a sample according to some

proposal distribution and accept the sample if it is “good enough” while rejecting it

otherwise. The fidelity of the proposed samples is measured by an acceptance strategy.

One major advantage of acceptance-rejection algorithms is their ability to sample from

distributions whose normalizing constants are unknown or intractable, which is common

in computational statistics. This simple method is, however, not well-suited for sampling

from high-dimensional distributions due to the curse of dimensionality [86].

To overcome this drawback, Markov chains were brought into play. The idea of MCMC

methods is to construct Markov chains that have the desired distribution as their sta-

tionary distribution and then sample from the Markov chain instead of sampling from

the desired distribution itself. The core problem of this idea is to find such a Markov

chain.

In 1953, Metropolis solved this problem and introduced his Metropolis algorithm to

sample from the Boltzmann distribution [72]. In 1970, Hastings generalized the Metropo-

lis algorithm to form theMetropolis-Hastings algorithm, which became the probably most

famous and simplest MCMC method [47]. Further developments of MCMC methods are,

e.g., simulated annealing that was introduced by Kirkpatrick et al. in 1983, cf. [57], and

the Gibbs sampling that was developed in 1984 by Geman and Geman [32] for digital

image reconstruction based on a Bayesian approach to estimate the maximum of the

posterior distribution. Geman and Geman also proved convergence of their approach.

Furthermore, Tierney uses Markov chains for exploring posterior distributions and also

showed some convergence results in 1994 [101] and Diaconis generalized the Metropolis

algorithm to higher-dimensional Lipschitz domains [18].

For more details about the developments of MCMCmethods, we refer to [86]. Through-

out this thesis we focus on the Metropolis-Hastings algorithm and thus introduce this
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algorithm in more detail in the following. We present the idea of the Metropolis-Hastings

algorithm in finite-dimensional state spaces following [79].

Throughout this section, we consider a stochastic process {X(ω, ι)}ι∈I on a probability

space (Ω,A, µ) and indexed by a countable index set I with X(·, ι) : Ω → Y ′ for some

state space Y ′. We interpret such a stochastic process {X(ω, ι)}ι∈I as a random variable

{X(ω, ι)}ι∈I : Ω → (Y ′)I =×ι∈I Y
′ with state space in product form. For finite index

sets I and finite sets Yι with ι ∈ I, we generalize the above idea by defining the product

form state space Y :=×ι∈I Yι. Thus, X := {X(·, ι)}ι∈I with X(·, ι) ∈ Yι for all ι ∈ I
denotes a random variable with values in the state space Y =×ι∈I Yι. Let further µ

denote the distribution of X from which we wish to draw samples.

As stated above, the basic idea of MCMC methods, and thus of the Metropolis-

Hastings algorithm, is to construct a Markov chain (Mj)j≥0 that has µ as its invariant

distribution, since simulating a Markov chain is easier than simulating µ itself. This

is due to the fact that the state space Y as defined above is in product form, i.e.,

each component M0(·, ι) is a random variable in Yι and thereby Mj+1(·, ι) is a random

variable with values in Yι according to a distribution determined by Mj. In other words,

we sample random variables in Yι instead of the much larger space Y . Under suitable

assumptions, the distribution of Mj converges to µ as j → ∞, see, e.g., [79, Sections

1.8, 3.6].

To obtain a Markov chain that has µ as its invariant distribution we construct the

transition probabilities of going from state indexed by j to state indexed by k at time

ι of the Markov chain, denoted by Pjk(ι), such that they fulfill the finite-dimensional

detailed balance equation

µjPjk(ι) = µkPkj(ι)

for all states indexed by j, k. Given any stochastic matrix R(ι), the transition matrix

P (ι) satisfies detailed balance if

µjPjk(ι) = (µjRjk(ι)) ∧ (µkRkj(ι)) for j ̸= k,

Pjj(ι) = 1−
∑
k ̸=j

Pjk(ι) ≥ 0.

Further choosing the stochastic matrix R to be symmetric, i.e., Rjk(ι) = Rkj(ι) for all
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states indexed by j, k, the formula for the transition probabilities becomes

Pjk(ι) = (
(µk

µj

)
∧ 1)Rjk(ι), for j ̸= k,

assuming µj > 0. The acceptance-rejection algorithm that uses a Markov chain with

transition probabilities determined as above is the Metropolis-Hastings algorithm, as

shown in Algorithm 2.3.1. The acceptance strategy in Algorithm 2.3.1 is a(j, k) :=

Algorithm 2.3.1 Prototypical Metropolis Hastings algorithm

Input: initial guess M0 ∈ Y , proposal distribution Kp

Output: Markov chain M with transition matrix P
1: set j = 0
2: propose Mk ∼ Kpjk

3: Mj+1 = Mk with probability a(j, k), independently of (Mj,Mk) or
Mj+1 = Mj with probability 1− a(j, k)

4: j = j + 1, return to step 2

(µk

µj
)∧ 1. In practice, a stopping criterion, such as a maximal number of proposals to be

drawn, has to be added to Algorithm 2.3.1.

2.4. The Bayesian Approach to Inverse Problems

The main idea of the Bayesian approach for solving inverse problems is to model the

measured data and parameters as stochastic quantities and examine their statistical

behavior.

As the name Bayesian approach suggests, this approach goes back to Bayes’ theorem,

as first stated in [5] in 1763, and Bayesian statistics. Even though the field of Bayesian

statistics was early seen as a generalization of the classical statistics, Bayesian statis-

tics remained highly controversial until the late 20th century. We refer to [66] for an

overview on the history of Bayesian statistics. We will see this generalization aspect

in the treatment of inverse problems when drawing a connection between the Bayesian

approach and the Tikhonov regularization.

The Bayesian approach to inverse problems was first developed in finite dimensional

spaces and it took until the 21st century that a function space, i.e., an infinite di-

mensional, approach for Bayesian inverse problems was derived [99]. Non-stationary

Bayesian inverse problems that occur, e.g., in monitoring the heart by measurements

of the magnetic fields outside the body over time, are discussed in [55]. This kind of
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problems lead to Bayesian filtering methods, such as Kalman and particle filters.

The basic ingredient for defining the Bayesian formulation of inverse problems is to

explicitly add a model of the inevitable measurement error to the forward model G(p) =
ϕ as introduced in the beginning of Chapter 2. The measurement error is, however,

usually unknown deterministically, but its stochastic properties may be known from

experiments. Therefore, the measurement error is modeled as a stochastic quantity η

on a complete probability space (Ω,A, µ), see Section 2.2.1, and is then added to the

forward model as additive noise. In the inverse setting we thus search for a parameter

p∗ ∈ J that fulfills the equation

G(p∗) + η = ϕ∗

for given data ϕ∗. Obviously, the above equation implies that the unknown parameter p∗

is a random variable too, and we write p∗ = p∗(ω) to emphasize this randomness.

A naive approach for solving the above stochastic problem is to fix ω ∈ Ω and to apply

any of the classical regularization techniques from Section 2.1.1 to solve the equation

G(p∗(ω)) + η(ω) = ϕ∗. We thus obtain one specific instance of the random variable p∗.

Clearly, knowing this single instance p∗(ω) is meaningless if we are interested in the

overall behavior of the stochastic parameter p∗.

In Section 2.4.1, we state Bayes’ theorem to compute the conditional probability

distribution of parameters p given data ϕ∗ and thus quantify the behavior of the prob-

abilistic parameter p given ϕ∗. For sampling from a general probability distribution,

we introduced the Metropolis-Hastings algorithm in Section 2.3. We adapt this sam-

pling strategy to sample from the conditioned probability distribution of p given ϕ∗ and

extend the finite-dimensional setting of Section 2.3 to the infinite-dimensional Banach

space setting in Section 2.4.2.

2.4.1. Bayes’ Theorem in the Inverse Problem Setting

For calculating the conditional probability distribution of the parameter p given data ϕ∗,

we use Bayes’ theorem. If the spaces J and Y are finite-dimensional and µ is a measure

on J , Bayes’ theorem 2.2.5 is applicable and we obtain

µ(p | ϕ∗) =
µ(ϕ∗ | p)µ(p)

µ(ϕ∗)
,
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assuming µ(ϕ∗) > 0. We call ρ0(p) := µ(p) the prior distribution or short prior. It

describes the a-priori knowledge or belief about the parameter p. Further, we call the

conditional probability L(p, ϕ∗) := µ(ϕ∗ | p) the likelihood function or short likelihood.

It describes the interrelation between the data ϕ∗ and the unknown parameter p. Fur-

thermore, we call ρϕ∗(p) := µ(p | ϕ∗) the posterior distribution or short posterior of p

given ϕ∗. It describes the behavior of the unknown parameter p dependent on the mea-

surements ϕ∗ and thus is the solution of the Bayesian inverse problem. The scaling factor

Z := µ(ϕ∗) is often intractable and treated as a proportionality constant. Applying the

above definitions we, reach the proportionality

ρϕ∗(p) ∝ L(p, ϕ∗)ρ0(p)

that describes the general Bayesian setting. This formula can be understood as go-

ing from a construction of the joint probability distribution on unknown parameters

and data, i.e., the likelihood function, to the conditional distribution of the unknown

parameters given data, i.e., the posterior [17, Section 3.1].

Bayes’ theorem in the inverse problem setting was further generalized to inverse prob-

lems in function spaces in [17, Section 3.2] and [99, Chapter 2]. Let thus J , Y be sep-

arable Banach spaces, the forward map G : J → Y be measurable, and the noise η be

independent of p with η distributed according to some distribution ρnoise, i.e., η ∼ ρnoise.

Further, let ρ0 denote the prior on J , L(p, ϕ∗) denote the measure of ϕ∗ given p, and

Φ : J × Y → R be a potential that fulfills

dL(p, ·)
dρnoise

(ϕ) = exp
(
− Φ(p, ϕ)

)
. (2.3)

Finally, the product measures ν0 and νp are defined as

ν0(dp, dϕ) := ρ0(dp)⊗ ρnoise(dϕ), (2.4)

νp(dp, dϕ) := ρϕ∗(dp)⊗ L(p, dϕ). (2.5)

Within this setting Bayes’ theorem reads as follows.

Theorem 2.4.1 (Infinite-dimensional Bayes Theorem). Assume that the potential

Φ : J × Y → R is ν0-measurable and that for measurements ϕ∗ ∈ Y

Z :=

∫
J
exp

(
− Φ(p, ϕ∗)

)
ρ0(dp) > 0 ρnoise-a.s. (2.6)



32 2. Fundamentals

Then the conditional distribution of p given ϕ∗ exists under νp, and is denoted by ρϕ∗.

Furthermore, the posterior is absolutely continuous with respect to the prior, i.e., ρϕ∗ ≪
ρ0, and for ϕ∗ ∈ Y

dρϕ∗

dρ0

(p) =
1

Z
exp

(
− Φ(p, ϕ∗)

)
νp-a.s.

For a proof see [17, Theorem 3.4].

Note that properties that hold almost surely and are build into the prior will be

inherited by the posterior due to the absolute continuity of the posterior with respect

to the prior. More precisely, almost sure properties could only be changed by data

if the data contained an infinite amount of information, which is unnatural in most

applications.

We highlight that Bayes’ theorem for separable Banach spaces as cited above also

holds for measurable spaces as long as all other assumptions are fulfilled [50].

Summarizing, we see that solving a Bayesian inverse problem comprises modeling the

prior ρ0(p), calculating the likelihood L(p, ϕ∗), and developing methods to explore the

posterior ρϕ∗(p). We briefly discuss each of these three steps, following the description

in [55, Section 3.1].

Modeling the Prior Distribution

Modeling the prior distribution is typically the most crucial step in Bayesian inversion.

Finding an appropriate prior means quantifying the expected behavior of or qualitative

knowledge about the unknown parameter and thus transferring it into the framework of

probability distributions. At the same time, care must be taken that the prior is not too

restrictive or informative if the behavior of the unknown parameter is barely known.

We forbear from discussing the subtleties of prior modeling and mention the wide class

of Gaussian priors that are based on Gaussian distributions, and the impulse priors,

such as the ℓ1 prior, the Cauchy density, the entropy density, and the lognormal density.

Further, a rich class of prior distributions can be derived from the theory of Markov

random fields, e.g., the total variation density. Furthermore, there are so-called sample-

based densities where the prior is build from huge data sets of the unknown. For an

overview on prior modeling we refer to [80] and [81, Chapter 3].
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Calculating the Likelihood Function

The likelihood function is mainly determined by the measurement error model, i.e., by

the stochastic properties of the noise η. Recall that we denoted the distribution of η

by ρnoise.

In the above introduction to Bayesian inversion we used an additive noise model, i.e.,

G(p)+ η = ϕ. If we additionally assume that η is mutually independent of the unknown

parameter p, the likelihood function emerges from shifting the density of ϕ∗ by G(p),
i.e.,

L(p, ϕ∗) = ρnoise(ϕ
∗ − G(p)).

Note that ρnoise can be any continuous probability distribution. When dropping the

assumption of mutual independence of η and p, the likelihood function is given by

L(p, ϕ∗) = ρnoise(ϕ
∗ − G(p) | p).

A more complex noise model can be achieved by using mutually independent multiplica-

tive noise, i.e., G(p)η = ϕ. This model emerges from describing incomplete knowledge

of the forward model. For an overview on more elaborate noise models we refer to [64],

and to [52, Section 1.4] for a detailed discussion on the concept of noise and error.

It is clear, that the case of additive and mutually independent noise is desirable from

a computational point of view, as the likelihood can then be computed easily.

Exploring the Posterior Distribution

We assume for the moment that the posterior distribution is known and summarize

several point, spread, and interval estimators to extract information from this posterior.

For the numerical approximation of the posterior we have introduced MCMC methods

in Section 2.3.

Point estimators aim at calculating one value that represents the posterior in an opti-

mal way. We give three examples. The maximum a posteriori or short MAP estimator

pMAP := argmax
p∈J

ρϕ∗(p)

calculates the most probable value of the unknown. The MAP estimator might be mean-

ingful whenever the distribution is narrow and unimodal, while it is less informative when
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dealing with multimodal distributions. In [17, Chapter 4.5] it is shown that searching

for the MAP estimator leads to the same optimization problem as classical Tikhonov

regularization methods with specific norms and regularization parameters. This relation

between Tikhonov regularization and finding the MAP estimator implies that calculat-

ing the MAP estimator suffers from the same problems of uniqueness as the classical

approaches, see the explanation in [99, Section 2.2].

The conditional mean estimator

pCM := E{p | ϕ∗} =

∫
J
pρϕ∗(p)dp

calculates the expected value of the posterior, compare to the definition of the expecta-

tion in Section 2.2.2, and can be used to help interpreting the MAP estimator.

The maximum likelihood or short ML estimator

pML := argmax
p∈J

L(p, ϕ∗)

searches for the value of the unknown parameter that is most likely to produce the

measured data. The ML estimator is called a non-Bayesian estimator as it is independent

of the posterior distribution. In [99, Section 2.2] it is shown that calculating the ML

estimator is equivalent to solving the classical least squares formulation of the inverse

problem without regularization.

An example for a spread estimator is the conditional covariance estimator

cov(p | ϕ∗) :=

∫
J
(p− pCM)(p− pCM)

⊤ρϕ∗(p)dp ∈ Rn×n,

compare to the definition of the covariance in Section 2.2.2, that can be used to further

improve the interpretation of the MAP and conditional mean estimators.

In contrast to point and spread estimators, interval estimators aim at calculating an

interval that contains the unknown parameter with a certain probability. An example

is the Bayesian credibility set Sp that is defined for any q ∈ (0, 100) by

P(Sp | ϕ∗) =

∫
Sp

ρϕ∗(p)dp
!
=

q

100
, ρϕ∗(p)

∣∣
p∈∂Sp

= const.

The boundary of Sp is an equiprobability hypersurface enclosing q% of the mass of the

posterior distribution.
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As suggested at the beginning of this section, we have seen that the Bayesian approach

to inverse problems yields a generalization of the classical regularization techniques in the

sense that some point estimators of the posterior distribution lead to classical regular-

ization methods. We deduce that the posterior distribution contains richer information

about the behavior of the unknown parameter than classical regularization methods

would be able to give.

2.4.2. Metropolis-Hastings Algorithm for Bayesian Inversion

We construct a Metropolis-Hastings algorithm to sample from the posterior distribution

that is the solution of the above general Bayesian inverse problem, cf. [17, Chapter

5] for more details. Therefore, we focus on Metropolis-Hastings algorithms that make

sense in infinite dimensions in order to construct algorithms that will perform well under

refinement of finite dimensional approximations.

Let J be a separable Banach space with Borel σ-algebra B(J ), and let the potential

Φ : J × Y → R with dL(p,·)
dρnoise

(ϕ∗) = exp
(
− Φ(p, ϕ∗)

)
and the scaling factor Z =∫

J exp
(
− Φ(p, ϕ∗)

)
ρ0(dp) be as above.

As in the finite dimensional case, see Section 2.3, we are looking for Markov chains

that have a desired distribution, here ρϕ∗ , as their invariant distribution. Again, we use

the detailed balance equation to construct a transition kernel K of such a ρϕ∗-invariant

Markov chain. A Markov chain on a separable Banach space J satisfies detailed balance

if

ρϕ∗(dp)K(p, dp′) = ρϕ∗(dp′)K(p′, dp) (2.7)

holds, when both sides are understood as measures on (J ×J ,B(J )⊗B(J )), compare

to the definition of symmetry of measures in Equation (2.2).

Algorithm 2.3.1 directly transfers to the infinite dimensional case with the proposal

distribution being defined through a kernelKp and the Markov kernelK, taking the place

of the transition matrix P . We see from Algorithm 2.3.1 that there are two possibilities to

control the Markov chain, namely the proposal kernel Kp and the acceptance probability

a : J × J → [0, 1]. The following theorem tells us how to choose these two quantities

in order to achieve a Markov chain with invariant distribution ρϕ∗ .

Theorem 2.4.2. Let Φ(p; ·) : J → R be bounded on bounded subsets of J and
dρϕ∗

dρ0
(p) = 1

Z
exp(−Φ(p)). If the proposal kernel Kp is reversible with respect to the

prior ρ0, i.e., if Equation (2.7) holds for Kp and ρ0, Algorithm 2.3.1 produces a Markov
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chain that is reversible with respect to ρϕ∗ if

a(p,p′) = min{1, exp(Φ(p)− Φ(p′))}.

For a proof of Theorem 2.4.2 we refer to [17, Theorem 5.8].

Note that the acceptance probability is defined through the Radon-Nikodym deriva-

tives, see Theorem 2.2.1, between the posteriors for p and p′ and the prior ρ0 in

Theorem 2.4.2. Because measures in infinite dimensions tend to be mutually singular,

most finite-dimensional Metropolis-Hastings algorithms are meaningless in the infinite-

dimensional setting.

Note further that even though Theorem 2.4.2 fully specifies the acceptance proba-

bility a, it leaves the choice of the proposal kernel Kp open as long as it is reversible

with respect to the prior. Choosing Kp to be the prior, i.e., Kp(p, dp
′) = ρ0(dp

′), prior

reversibility is obviously given. The resulting algorithm is called independence sampler

and tends to work well whenever the potential Φ only varies slightly depending on the

evaluation point. In the case that Φ changes significantly, proposals that are more local

with respect to the evaluation point are needed, such as the proposals generated by the

pCN method that is based on Gaussian priors, compare [17, Section 5.2].

Applying a sampling algorithm that is defined in infinite dimensional spaces to sample

from the posterior distribution ρϕ∗ of parameters p given data ϕ∗ yields the convergence

of the algorithm under refinement of discretizations of the parameter space and the un-

derlying forward problem G(p) = ϕ. On the other hand, Metropolis-Hastings algorithms

and especially the independence sampler show slow convergence in practice, such that

a high number of samples needs to be drawn, cf. [101, Section 2.3.3] and the numerical

experiments in Section 5.2. Drawing a new sample includes evaluating the acceptance

probability and thus the potential Φ. In most applications the evaluation of the po-

tential includes solving the forward problem for the proposed parameter, which is often

computationally expensive, compare to Chapter 5.

2.5. Low-rank Tensor Formats

In this section, we introduce low-rank tensor formats as a tool to represent parameter-

dependent linear systems and their solutions for all parameter combinations data-sparse.

Such parameter-dependent linear systems occur, e.g., when discretizing parameter-de-

pendent forward problems G : J → Y with G(p) = ϕ. For an example, see Section 3.2.4.
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We refer to [60] for a comprehensive and accessible introduction to tensors, tensor for-

mats and tensor decompositions. The following summary is based on work that has

previously been published in [88] by the author of this thesis and co-workers.

For motivating low-rank tensor formats, we consider the arbitrary linear, parameter-

dependent problem A(p)ϕ(p) = b for a linear and parameter-dependent operator A =

A(p), a parameter-independent right-hand side b, and d ∈ N parameters p = (p(1), . . . ,p(d)).

Discretizing the parameters such that each parameter p(j) is allowed to take nj different

discrete values p(j)(1), . . . ,p(j)(nj) for all j = 1, . . . , d and solving the linear, parameter-

dependent problem

A((p(1)(k1), . . . ,p
(d)(kd))ϕ((p

(1)(k1), . . . ,p
(d)(kd)) = b (2.8)

for each parameter combination, i.e., for all kj = 1, . . . , nj and j = 1, . . . , d yields
∏d

j=1 nj

solution vectors.

Obviously, if d or nj, for j = 1, . . . , d, are large, solving the parameter-dependent

linear system given by Equation (2.8) for all parameter combinations and storing the∏d
j=1 nj solution vectors is infeasible. Rewriting the linear system (2.8), we aim at using

the underlying linear structure of the system to achieve a data-sparse representation.

Exemplifying the ansatz, we set d = 1 and consider solving the scaled equation

p(k1)Aϕ(p(k1)) = b for a single parameter p taking the n1 ∈ N values p(1), . . . ,p(n1),

some operator A, and a right-hand side b. Solving the scaled problem for all p(k1) is

equivalent to solving
p(1)A 0 . . . 0

0 p(2)A
. . .

...
...

. . . . . . 0

0 . . . 0 p(n1)A




ϕ(p(1))

ϕ(p(2))
...

ϕ(p(n1))

 =


b

b
...

b

 . (2.9)

We rewrite this possibly huge system of equations using the Kronecker product and

achieve

(diag(p(1),p(2), . . . ,p(n1))⊗ A)ϕ(p(1),p(2), . . . ,p(n1)) = (1, . . . , 1)⊤ ⊗ b.

Obviously, the above representation is data-sparse compared to the representation in

Equation (2.9).
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We define the CANDECOMP/PARAFAC (CP) representation1 that is a generaliza-

tion of the above representation and was first introduced in 1970 [9, 46].

Definition 2.5.1 (CP Representation and CP Decomposition). Let Ik with |Ik| =
nk for all modes k ∈ D := {1, . . . , d} and the dimension d, and I :=×d

k=1
Ik be index

sets. A CP representation of a tensor B ∈ RI, with representation rank r ∈ N0, is

defined as

B =
r∑

j=1

d⊗
k=1

b
(k)
j with b

(k)
j ∈ RIk . (2.10)

The minimal r, such that (2.10) holds, is called the CP rank of B and in this case (2.10)

is called the CP decomposition of B. Tensors of rank 1, i.e., tensors of the form⊗d
k=1 b

(k), are called elementary tensors.

We estimate the storage cost of a tensor in the CP format, i.e., in the form (2.10), to

be O(r
∑d

k=1 |Ik|) ≈ O(rdn) with n := maxk∈D nk. Recall that the cost for storing the

full tensor is O(
∏d

k=1 |Ik|) ≈ O(nd). Thus, in case the representation rank r is small, a

tensor in CP format is immediately data-sparse.

Therefore, it is desirable to use low-rank tensor formats to represent linear, parameter-

dependent problems A(p)ϕ(p) = b. Computing the solutions of the above linear,

parameter-dependent problem when the operator A(p) and the right-hand side b are

represented in low-rank tensor formats, means solving linear systems within low-rank

tensor formats. Direct solvers that calculate the inverse of an operator with rank r > 1

are, however, unknown as illustrated by the following example.

Consider a CP operator A of dimension 1 and rank 2, i.e., A = A1+A2, with matrices

A1, A2 ∈ Rn×n for some n ∈ N. Finding a direct inverse of A in the CP format means

finding matrices Cj and Fj such that A−1 = (A1 + A2)
−1 =

∑r
j=1C

−1
j + F−1

j for some

rank r ∈ N. Since such a property is unknown even for the sum of matrices [73] it is

also unknown for the more general case of tensors.

Consequently, linear systems in the CP format are solved using iterative solvers. Un-

fortunately, the arithmetic operations performed when applying iterative solvers within

low-rank tensor formats often lead to an increase of the representation rank.

Consider, exemplarily, a CP operator A =
∑3

j=1 A
(1)
j ⊗A

(2)
j of dimension 2 and rank 3,

and a CP vector x =
∑2

k=1 x
(1)
k ⊗ x

(2)
k of dimension 2 and rank 2. Then, the application

of A to x yields Ax = (
∑3

j=1A
(1)
j ⊗ A

(2)
j )(

∑2
k=1 x

(1)
k ⊗ x

(2)
k ) =

∑3
j=1

∑2
k=1A

(1)
j x

(1)
k ⊗

1The abbreviation CANDECOMP stands for canonical decomposition and PARAFAC for parallel
factors.
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A
(2)
j x

(2)
k =

∑6
l=1 y

(1)
l ⊗ y

(2)
l with y

(i)
l := A

(i)
j x

(i)
k for l = j + 3(k − 1) and i = 1, 2. Thus,

Ax is a CP vector of representation rank 6 (= 2 · 3).
The above example shows the need of a truncation of CP tensors of a certain rank to

a lower rank, i.e., an approximation of a CP tensor of a certain rank with a CP tensor

of a lower rank. Since the set of CP tensors of rank r is not closed, the approximation

of a CP tensor of rank r is an ill-posed problem [98]. To overcome this drawback,

we use the hierarchical Tucker format for representing and computing the solution of

parameter-dependent linear systems.

The hierarchical Tucker format was first introduced in [43] and further analyzed in [37].

The general idea of the hierarchical Tucker format is to define a hierarchy among the

modes D = {1, . . . , d}, compare [37, Definition 3.1].

Definition 2.5.2 (Dimension Tree). A dimension tree T for dimension d ∈ N is a

binary tree with nodes labeled by non-empty subsets of the modes D. Its root is labeled

with D and each node w ∈ T satisfies one of the following conditions:

(i) w is a leaf of T and is labeled with a single-element subset z = {j} ⊆ D. We call

the set of all leaves L (T ).

(ii) w ∈ I (T ) := T \ L (T ) is an inner node of T and has exactly two children

w1, w2 ∈ T , for which the corresponding labels z, z1, z2 ⊆ D with z, z1, z2 ̸= ∅
fulfill z = z1 ∪̇ z2.

We will identify a node w with its label z and therefore also write z ∈ T .

Figure 2.1 shows an example of a dimension tree for d = 3. Each node w ∈ T
represents a non-empty subset z ⊆ D of the modes. Using the labeling of the dimension

trees, we define the matricization of a tensor for each node as in [37, Definition 3.3].

Definition 2.5.3 (Matricization and Vectorization). Let B ∈ RI, z ⊆ D with z ̸=
∅, and g := D \ z with Iz :=×l∈z Il and Ig :=×l∈g Il. The matricization B(z) ∈ RIz×Ig

of B corresponding to z is defined through B(z)[(jk)k∈z, (jk)k∈g] := B[j1, . . . , jd] for all

j = (jk)k∈D. In particular, B(D) ∈ R|I| and we call vec(B) := B(D) the vectorization

of B.

A matricization can be interpreted as an unfolding of the tensor along the indicated

dimensions as illustrated in Figure 2.2. Based on the concept of matricizations we define

the hierarchical Tucker rank as in [37, Definition 3.4].
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{1, 2, 3}

{1} {2, 3}

{2} {3}

Figure 2.1.: Dimension tree for dimen-
sion d = 3

Figure 2.2.: Visual representation of a
matricization

Definition 2.5.4 (Hierarchical Tucker Rank). Let B ∈ RI and T be a dimension

tree and let rz := rank(B(z)) denote the matrix rank of the matricization B(z) for all

z ∈ T . Then, the hierarchical Tucker rank of B is defined as rankT (B) := (rz)z∈T . The

set of tensors with hierarchical Tucker rank node-wise bounded by (rz)z∈T is defined as

H -Tucker(T , (rz)z∈T ) := {B ∈ RI | rank(B(z)) ≤ rz for all z ∈ T }.

By construction, the nestedness property

span{B(z)[·, j] | 1 ≤ j ≤ rz} ⊆

span{B(z1)[·, j1]⊗B(z2)[·, j2] | 1 ≤ jk ≤ rzk , k = 1, 2}
(2.11)

holds for all z ∈ I (T ) with children z1, z2 ∈ T .

Further, we call a frame tree (a family of matrices) (Uz)z∈T with frames Uz =

(Uz[·, 1]| . . . |Uz[·, rz]) ∈ RIz×rz a generator of a tensor B, if range(B(z)) ⊆ range(Uz)

holds for all z ∈ T .

The frame tree (Uz)z∈T is called nested, if Uz[·, j] ∈ span{Uz1 [·, j1]⊗Uz2 [·, j2]|1 ≤ jk ≤
rzk , k = 1, 2} holds for all z ∈ I(T ) with z1, z2 children of z and for all j ∈ {1, . . . , rz}.
If Ug is the matrix that contains column by column a basis of range(B(g)) for la-

bels g ∈ {z, z1, z2}, then there exist coefficients Bz[j, j1, j2] ∈ R such that Uz[·, j] =∑rz1
j1=1

∑rz2
j2=1 Bz[j, j1, j2](Uz1 [·, j1] ⊗ Uz2 [·, j2]). We call the corresponding tensor Bz ∈

Rrz×rz1×rz2 transfer tensor.

Thus, by providing the transfer tensors Bz for all z ∈ I(T ) and the frames Uz for all

z ∈ L (T ) we have another representation of a tensor B, cf. [37, Definition 3.6]. For

computing the matrices Uz for z ∈ T , the singular value decomposition can be applied

to the corresponding matricizations B(z).

Definition 2.5.5 (Hierarchical Tucker Format). Let B ∈ RI, T be a dimen-

sion tree, rz ∈ N for all z ∈ T with rD = 1, (Uz)z∈L(T ) be a nested generator of B

with Uz ∈ RIz×rz , and (Bz)z∈I(T ) be the corresponding transfer tensors. Then, we call
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((Uz)z∈L(T ), (Bz)z∈I(T )) a hierarchical Tucker representation of B. The vector (rz)z∈T is

called representation rank.

The memory required to store a hierarchical Tucker representation of a tensor B ∈ RI

with dimension tree T and representation rank (rz)z∈T is of order O (rdn+ r3d) for

n = maxj∈D |Ij| and r = maxz∈T rz [37, Lemma 3.7].

Recall that we introduced the hierarchical Tucker format because the truncation of

a tensor in CP format of a certain rank down to a tensor in CP format with lower

rank is an ill-posed problem. The existence of such a truncation method of a ten-

sor B ∈ H -Tucker(T , (rz)z∈T ) down to lower rank (r′z)z∈T with an arithmetic cost in

O (r2dn+ r4d) was proven in [37]. For a tensor B ∈ H -Tucker(T , (rz)z∈T ) we define

the truncation as the following operator:

truncate : H -Tucker(T , (rz)z∈T ) → H -Tucker(T , (r′z)z∈T ) with

B 7→ B′ := truncate(B)

According to [62], the resulting approximation B′ ∈ H -Tucker(T , (r′z)z∈T ) fulfills the

quasi-optimal error estimate

∥B−B′∥ ≤
√
2d− 3 inf

C∈H -Tucker(T ,(r′z)z∈T )
∥B−C∥.

For details about the practical realization of the truncation, we refer to [62] and Sec-

tion 3.2.4. Moreover, a CP representation of a tensor with CP rank r can be transferred

into a hierarchical Tucker representation with rank node-wise bounded by r [42, Theorem

11.17].

For solving parameter-dependent linear problems in the hierarchical Tucker format,

we introduce the preconditioned conjugate gradients (PCG) method in Algorithm 2.5.1,

compare to [62, Algorithm 2], and to the standard PCG algorithm for parameter-inde-

pendent linear systems [91, Algorithm 9.1]. Here, ⟨·, ·⟩2 denotes the Euclidean scalar

product and we write the iteration indices as subscripts in brackets to avoid confusion

with the matricization. Furthermore, a precondictioner M with CP rank 1 is chosen

such that the inverse M−1 can directly be calculated [60, Section 2.6].

The PCG method in Algorithm 2.5.1 approximates the solution of a parameter-

dependent linear system numerically within the hierarchical Tucker format if A is pos-

itive definite and symmetric. Furthermore, Algorithm 2.5.1 converges if the truncation

error is small enough as was proven in [38, Lemma 5].
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Algorithm 2.5.1 Preconditioned conjugate gradients method with truncation

Input: Operator A, right-hand side b, preconditioner M with CP rank 1, initial guess
ϕ(0) in the hierarchical Tucker format

Output: Approximate solution ϕ of Aϕ = b in the hierarchical Tucker format
1: R(0) = truncate

(
b−Aϕ(0)

)
2: Z(0) = M−1R(0)

3: P(0) = Z(0)

4: Q(0) = truncate
(
AP(0)

)
5: k = 0

6: while
∥R(k)∥
∥b∥ > ε and k < kmax do

7: ϕ(k+1) = truncate

(
ϕ(k) +

⟨R(k),P(k)⟩2
⟨Q(k),P(k)⟩2

P(k)

)
8: R(k+1) = truncate

(
b−Aϕ(k+1)

)
9: Z(k+1) = M−1R(k+1)

10: P(k+1) = truncate

(
Z(k+1) −

⟨Q(k),Z(k+1)⟩2
⟨Q(k),P(k)⟩2

P(k)

)
11: Q(k+1) = truncate

(
AP(k+1)

)
12: k = k + 1
13: end while

Algorithm 2.5.1 comprises additions and inner products of two tensors in the hierar-

chical Tucker format, which have an arithmetic cost in O(dnr2+dr4), the application of

an operator, which has an arithmetic cost in O(dn2r), and the evaluation of an entry of

the represented tensor, which has an arithmetic cost in O(dr3). For small rank r most

of the operations needed for the PCG method scale linearly in the dimension d and the

mode size n, thus yielding an efficient method for solving parameter-dependent linear

systems in low-rank tensor formats.

Finding conditions that guarantee the existence of a low-rank approximation for a

given tensor, such as the solution ϕ(p) of the parameter-dependent problem A(p)ϕ(p) =

b, is a research topic of its own and goes beyond the scope of this thesis. We refer to [3, 16,

63] for further details and assume that the solution of the parameter-dependent forward

problem indeed has a low-rank approximation. For the forward EMG problem that we

introduce in the next section, this claim is backed up by the numerical experiments in

Section 3.2.4.
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2.6. A Model of Surface Electromyographic Data

As stated in Section 1.1, we are interested in inferring the structure of biological tis-

sue from surface EMG measurements. Recall, that surface EMG measurements are the

changes of the electrical potential of the skin measured by electrodes placed on the skin

surface. These changes of the electrical potential of the skin result from the propaga-

tion of the electrical signals, that stimulate skeletal muscles to contract, through the

skeletal muscle and all kinds of tissue filling the space between the excitation site and

the measuring electrodes. Hence, some knowledge on the evolution and propagation of

EMG signals through biological tissue is necessary. In this section, we present a model

of the electrical behavior of skeletal muscles and the tissue that surrounds the skeletal

muscles. Note that the presented model can be extended by a model of force genera-

tion and the corresponding continuum mechanics, i.e., by a model of the contractions of

skeletal muscles. This goes beyond the scope of this thesis and we refer to [74] and the

references therein for further information.

A skeletal muscle consists of multiple fascicles, i.e., of multiple bundles of muscle

cells, see Figure 2.3. The muscle cells are usually called muscle fibers because of their

long and thin cylindrical shape. The muscle fibers are composed of so-called myofibrils

that are able to react to electrical stimuli from the spinal cord via contraction. Apart

from the grouping of muscle fibers into muscle fiber bundles, muscle fibers are grouped

functionally into motor units. Motor units are independent of the grouping of the muscle

fibers to fascicles and contain the muscle fibers that are stimulated simultaneously with

the same stimulus from the spinal cord. As depicted in Figure 2.3 each muscle fiber

bundle usually consists of muscle fibers of multiple motor units.

The electrical behavior of a muscle fiber under stimulation is modeled in Section 2.6.1.

Following the structure of skeletal muscles, we assemble a skeletal muscle from muscle

fibers in Section 2.6.2. Moreover, we introduce the bidomain model that describes the

electrical behavior of electrically active biological tissue, such as a skeletal muscle, in

Section 2.6.3. Afterwards, the focus moves to a simplification of the bidomain model

that describes the propagation of electrical signals through electrically passive tissue,

such as fat, skin, and bone tissue in Section 2.6.4. Completing the model of EMG data,

we describe the process of measuring surface EMG data and define the forward EMG

problem.
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Figure 2.3.: Sketch of a skeletal muscle,
where muscle fibers in the
same color belong to one
motor unit
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Figure 2.4.: Sketch of skeletal muscle
with muscle fibers, sur-
rounding tissue, and mea-
suring electrodes

2.6.1. Chemo-electrical Model of a Muscle Fiber

As stated above, each muscle fiber belonging to the same motor unit receives the same

electrical stimulus at the same time through the so-called motor neurons. We assume

that muscle fibers are stimulated by their motor neuron only and do not receive any

electrical signal from the surrounding muscle fibers [87]. Therefore it is realistic to use

isolated one-dimensional models to describe the electrical behavior of each single muscle

fiber DF,j, for j = 1, . . . , NMF, and NMF the number of muscle fibers, as depicted in

Figure 2.4.

An electrical stimulus from the spinal cord changes the electrical potentials of the

innervated muscle fibers. More precisely, the properties of the muscle fiber membranes

of the innervated muscle fibers change due to the electrical stimulus and allow ions to

pass the membrane. This in return leads to changes in the muscle fiber membrane

potential that describes the difference in the extracellular and intracellular potentials.

The changes of the muscle fiber membrane potential are often called (muscle fiber) action

potentials (APs).

Several established models exist to describe the chemo-electrical behavior of muscle

fibers and the propagation of APs along them. The range varies from simple heuristic

models to complex physically motivated ones. The more simple models consist of few

algebraic equations to fit the muscle fiber action potential shape while models of tens of

coupled ordinary differential equations define the other side of the complexity spectrum.

In the following, we describe the model of Rosenfalck et al. and the more complex model

developed by Hodgkin and Huxley in the 1960s. The idea of the Hodgkin-Huxley model

can further be extended to include more complex chemo-electro-mechanical relations.
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Doing so results in one of the most complex models, the model by Shorten et al. that

is explained in [97]. The above mentioned extension of our model to include muscle

contraction is based on this model by Shorten et al., compare [74] and [48, Section

4.3.1].

Rosenfalck Model

The Rosenfalck model was first published by Rosenfalck et al. in 1969 [89] and models

the characteristic shape of muscle fiber APs using the algebraic equation

vm,j(sF,j) = cR,1s
3
F,j exp(−cR,2sF,j)− cR,3, sF,j ∈ DF,j, j = 1, . . . , NMF (2.12)

for each muscle fiber DF,j, j = 1, . . . , NMF. The model parameters cR,j ∈ R, j = 1, 2, 3,

can, for example, be estimated from recordings of action potentials.

The Rosenfalck model is often used because of its explicit form that allows to evaluate

the model easily.

The modeled AP shape is shown in Figure 2.5 for several parameter sets. As reference

configuration we used the parameter combination that is implemented in the software

package KerMor, compare Chapter 3. There, cR,1 = 84 · (3.1)3 = 2502.444, cR,2 = 3.1,

and cR,3 = 80.
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Figure 2.5.: Influence of the model parameters cR,j, j = 1, 2, 3 on the AP shape in the
Rosenfalck model
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We see from Figure 2.5 that cR,3 can be interpreted as the negative minimal or resting

membrane potential while cR,1 and cR,2 influence the width and height of the peak.

Overall the modeled AP shapes resemble the shapes known from electrocardiograms.

Hodgkin-Huxley Model

In 1952 Hodgkin and Huxley published a more complex model of the electro-physiology of

muscle fibers [51]. The Hodgkin-Huxley model is based on a series of electro-physiological

experiments on the squid giant axon in the late 1940s and early 1950s. In 1963 Hodgkin

and Huxley were awarded the Nobel Prize in Physiology and Medicine for their research.

The novelty of their approach was to describe the electrical behavior of muscle fibers

by an electrically equivalent circuit. In such a substitute electrical circuit, capacitors

model the charge storage capacity of the cell membrane, resistors model the ion chan-

nels embedded in the cell membrane, and batteries model the electro-chemical potentials

established by differing intra- and extracellular ion concentrations. The substitute elec-

trical circuit used by Hodgkin and Huxley is shown in Figure 2.6. Modelling the proper-

inside of cell

Cm

κE,Na

RNa

↓ INa

RK

↓ IK

κE,K

↓ IL

RL

κE,L

Im
outside of cell

Figure 2.6.: Substitute electrical circuit of the Hodgkin-Huxley model following [51]

ties of this substitute electrical circuit leads to a system of coupled ordinary differential

equations.

We start with the law of capacitance that reads

Cm,j∂tvm,j = Im,j.

Here, Cm,j is the membrane capacitance and vm,j is the membrane potential of the jth

muscle fiber. Further, the total current flow Im,j across the muscle fiber cell membrane
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is assumed to be the difference of a stimulating current Istim,j and an ionic current Iion,j,

i.e., Im,j = Istim,j − Iion,j:

∂tvm,j =
1

Cm,j

(Istim,j − Iion,j) (2.13)

From now on, we neglect the index j of the muscle fiber on the ionic current for ease of

notation. We further subdivide the ionic current into a sodium current INa, a potassium

current IK and a leakage current IL. The leakage current represents the current flow

due to the natural permeability of the cell membrane, e.g., with respect to chloride

ions. Each ionic current Ij with j ∈ {Na,K,L} is described through the difference of

an equilibrium potential κE,j and the membrane potential weighted by the ion specific

conductance κg,j. The ionic current is thus modeled by

Iion = κg,Na(vm − κE,Na) + κg,K(vm − κE,K) + cg,L(vm − κE,L).

Note that the leakage conductance is assumed to be constant and thus denoted by cg,L.

The membrane conductance with respect to sodium and potassium ions is modeled

with the help of so called gates. These gates can either be in the permissive state,

allowing ions to pass the membrane, or in the non-permissive state. We denote the

probability of an individual gate being in the permissive state by λk and use transition

rates αk, βk to describe the likelihood of a gate to switch from a permissive to a non-

permissive state and vice versa. The transition rates change depending on the membrane

potential vm. Formalizing the above descriptions, we have

∂tλk = αk(vm)(1− λk)− βk(vm)λk, k ∈ {Na,K,L}.

As stated above, Hodgkin and Huxley considered three types of gates, namely sodium,

potassium, and leakage gates, and we denote them by Gl, l = 1, 2, 3. Their influence on

the ionic conductivities is modeled as follows:

κg,Na = cg,Na

∏
k

λk = cg,NaG
3
1G3,

κg,K = cg,K
∏
k

λk = cg,KG
4
2

Here, the factors cg,Na and cg,K are constants.

Completing the Hodgkin-Huxley model, the transition rates αk, βk are fitted using the



48 2. Fundamentals

general ansatz

ϑ(vm) =
cϑ,1 + cϑ,2vm

cϑ,3 + cϑ,4exp
(

vm+cϑ,5

cϑ,6

)
for ϑ ∈ {αk, βk} and model constants cϑ,l, for l = 1, . . . , 6.

The resulting system of equations comprises four ordinary differential equations and

eight algebraic equations for each muscle fiber. We abstain from explicitly stating this

overall system of equations and refer to [78] and the original publication [51] for further

details.

2.6.2. Assembling a Skeletal Muscle Model from Muscle Fiber

Models

In contradiction to our assumption that muscle fibers can be treated as one-dimensional

objects, muscle fibers are not one-dimensional in nature. Additionally, bundles of bun-

dles of muscle fibers form skeletal muscles and the latter should clearly be modeled

as three-dimensional objects. Hence, the questions arise how to assemble a three-

dimensional skeletal muscle from one-dimensional muscle fibers and how to transfer

the one-dimensional muscle fiber membrane potentials vm,j to a quantity, that can be

propagated through the three-dimensional muscle.

We suggest the following procedure: We start with placing each muscle fiber DF,j

into the three-dimensional space. Therefore, we assign a starting point yF,j ∈ R3 and a

direction dF,j : DM → R3 with ∥dF,j(x)∥2 = 1 for all x ∈ DM to every muscle fiber DF,j

for j = 1, . . . , NMF. The directions dF,j will in the following often be called muscle fiber

directions and may depend on the position in space as indicated above. The space-

dependence allows us to consider curved muscle fibers as illustrated in Figure 2.7. The

embedding

xF,j = yF,j + sF,jdF,j ∈ DM ⊂ R3, sF,j ∈ DF,j, j = 1, . . . , NMF

of a one-dimensional muscle fiber into the three-dimensional space is depicted in Fig-

ure 2.8. Multiplying this equation with d⊤F,j from the left yields the relation

sF,j = d⊤F,j(xF,j − yF,j), j = 1, . . . , NMF (2.14)

that allows rewriting the muscle fiber membrane potentials from Section 2.6.1 in terms of
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Figure 2.7.: Change of the muscle
fiber direction in points
x1, x2, x3 ∈ DM of a curved
muscle fiber
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Figure 2.8.: Embedding of a one-
dimensional muscle fiber
into the three-dimensional
space

the three-dimensional variables xF,j, i.e., vm,j(sF,j) = vm,j(xF,j) = vm,j(d
⊤
F,j(xF,j − yF,j)).

Our next step is to fill the space between theNMF one-dimensional muscle fibersDF,j ⊂
DM for j = 1, . . . , NMF to generate the muscle DM. We use a smoothing operator S
that blows up the muscle fibers in transversal fiber direction and thus achieve DM =

∪NMF
j=1 S(DF,j). In terms of the membrane potential, this relation translates to

Vm(x) =

NMF∑
j=1

S(vm,j)(x). (2.15)

The smoothing operator that is used throughout the numerical experiments is a com-

position of an orthogonal projection and the Gaussian smoothing kernel Kα : R3 → R
with

Kα(y) := exp
(
−α

2
∥y∥2

)
(2.16)

and a smoothing parameter α > 0. More precisely, we project a three-dimensional muscle

point x ∈ DM onto the nearest muscle fiber DF,j, calculate the membrane potential at

this point, and afterwards weight the outcome according to the distance of x to the

muscle fiber using the Gaussian smoothing kernel (2.16). We thus have

S(vm,j)(x) = vm,j(d
⊤
F,j(prj(x)− yF,j)) exp

(
−α

2

∥∥x− prj(x)
∥∥2) (2.17)
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with the orthogonal projection

prj(x) := yF,j +
(
(x− yF,j)

⊤dF,j
)
dF,j (2.18)

of a body point x ∈ DM onto a muscle fiber DF,j with starting point yF,j and muscle

fiber direction dF,j. The membrane potential in Equation (2.15) thus lives on the three-

dimensional muscle domain DM and can be propagated through the muscle tissue.

For remarks on how the muscle fiber embedding is done in practice and how to treat

space-dependent muscle fiber directions, we refer to Sections 3.2.1to 3.2.3.

2.6.3. Propagation of Electrical Signals through Skeletal Muscle

Tissue

Within this section, we model the propagation of the membrane potential Vm through

the muscle domain DM. As discussed in Section 2.6.1, the membrane potential is the

difference between the intra- and extracellular potentials. We denote the intra- and

extracellular potentials by ϕi and ϕe and thus get Vm = ϕi − ϕe.

Simplifying the geometry, we assume that every point x ∈ DM possesses both intra-

and extracellular properties. Consequently, Vm, ϕi, and ϕe are defined on the whole

muscle domain DM, i.e., there is no division into intra- and extracellular domains. This

assumption is the main ingredient of the bidomain model that was first introduced in

1969 [95] and is successfully used in cardiology to model the electrical behavior of cardiac

muscle [83, Chapter 5]. This bidomain ansatz was adapted for modeling the electrical

behavior of skeletal muscles in [87].

The bidomain equation

∇ · ((σi + σe)∇ϕe) = −∇ · (σi∇Vm) in DM (2.19)

describes the interaction between the membrane potential Vm and the extracellular

potential ϕe and thus the propagation of muscle fiber APs through the skeletal mus-

cle DM [74]. Here, σi and σe denote the conductivity of the intra- and extracellular

tissue and Vm is the membrane potential that can be calculated as described in Sec-

tion 2.6.1. Recall that we modeled the electrical conductivity as a function in L∞ in

Section 1.1. We thus have σi, σe ∈ L∞(DM;R3×3).

We see that the bidomain equation consists of two diffusion terms: one that describes

the diffusion of the extracellular potential with diffusion coefficient σi + σe on the left-
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hand side and another one that describes the diffusion of the membrane potential with

diffusion coefficient σi on the right-hand side. Recall that the membrane potential Vm

is time-dependent as described in the Rosenfalck and Hodgkin-Huxley models in Sec-

tion 2.6.1. Hence, given the conductivities σi and σe and the membrane potential, the

(time-dependent) extracellular potential ϕe is described by a simple diffusive process.

2.6.4. Propagation of Electrical Signals through Electrically Inactive

Tissue

Biological tissue that reacts passively to electrical stimuli is called electrically inactive.

In contrast to electrically active tissue like the muscle tissue discussed in the previous

section, the chemical, electrical, and mechanical properties of electrically inactive tissues

remain unchanged under electrical stimulation such that electrical stimuli simply get

propagated through the material. Examples of electrically inactive tissues are bone,

skin, fat, tendon, and other connective tissues. Usually, skeletal muscles are surrounded

by this kind of tissue. Remember that our aim is to model the changes in the electrical

potential at the skin surface and thus to model surface EMG measurements. Hence,

we need to extend the model of the propagation of electrical signals through skeletal

muscle tissue to also incorporate the propagation of electrical signals through electrically

inactive tissue.

Similar to the muscle tissue case, the propagation of the electrical potential through

the surrounding tissue DB is a diffusive process and thus described by the generalized

Laplace equation

∇ · (σ0∇ϕ0) = 0 in DB. (2.20)

Here, σ0 ∈ L∞(DB;R3×3) denotes the electrical conductivity of the tissue DB and ϕ0 its

electrical potential. In contrast to the bidomain equation, there is no source term on

the right-hand side of equation (2.20). This is due to the lack of electrical sources in the

electrically inactive tissue.

The propagation of the electrical potential is ensured by the two coupling conditions

ϕe = ϕ0 on ΓI, (2.21a)

(σe∇ϕe) · nM = −(σ0∇ϕ0) · nB on ΓI, (2.21b)

where the abbreviation ΓI := ∂DM∩∂DB is used to denote the interface between muscle
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tissue and the surrounding tissue. Moreover, we define the outer body boundary ΓB :=

∂DB \ ΓI and the outer muscle boundary ΓM := ∂DM \ ΓI. The outer normal vectors at

these boundaries are denoted by nB and nM, see Figure 2.4.

Equation (2.21a) guarantees that the extracellular potential ϕe and the potential ϕ0

in the surrounding tissue are equal on the interface ΓI, and thus models the propagation

of the electrical potential from the muscle to the surrounding tissue. Equation (2.21b)

additionally ensures the continuity of the current flow across the interface ΓI.

We complete the model of the evolution and propagation of APs through biological

tissue with the following no-flow boundary conditions:

(σi∇ϕi) · nM = 0 on ∂DM, (2.22a)

(σ0∇ϕ0) · nB = 0 on ΓB, (2.22b)

(σe∇ϕe) · nM = 0 on ΓM (2.22c)

We have Equation (2.22a) to ensure that there is no current flowing out of the intra-

cellular muscle region, modeling the insulation of the muscle fibers as discussed in Sec-

tion 2.6.1. Further, Equation (2.22b) incorporates the no-flow condition for the outer

boundary of the surrounding tissue, meaning no current can flow over the outer skin

boundary. Finally, Condition (2.22c) is posed to ensure a no-flow condition in computa-

tional scenarios where the muscle region DM is not fully covered by surrounding tissue.

This happens in numerical examples where only parts of muscles are modeled to simplify

the geometry and to limit the computational complexity, cf. Chapters 3, 5, and 6.

Obviously, imposing no-flow boundary conditions on each boundary leads to mathe-

matical ill-posedness of the model. For reaching mathematical well-posedness and solv-

ability of the forward EMG model, the zero-mean condition∫
DM

ϕe +

∫
DB

ϕ0 = 0 (2.23)

is introduced. Using the abbreviations D := DM ∪DB and

ϕ := ϕe1DM
+ ϕ01DB

(2.24)

Equation (2.23) reads
∫
D
ϕ = 0. Here, 1 denotes the characteristic function of the

indicated domain. Note that the domain D specified above is one specific example of

the arbitrary domain D considered in Section 1.1.
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2.6.5. Measuring Surface EMG Signals

Summarizing the previous sections, we find that electrical signals are evoked by a stim-

ulus from the spinal cord that influences the chemo-electrical behavior of the innervated

muscle fibers. These electrical fluctuations travel along the muscle fibers as muscle fiber

APs (Equation (2.12)), propagate through the muscle (Equation (2.19)) and surrounding

tissue (Equation (2.20)), and accumulate to the electrical signals that can be measured

at the skin surface by electrodes.

We place NM electrodes with radius rel > 0 at measuring points xm,j ∈ ∂D for j =

1, . . . , NM at the domain boundary as depicted in Figure 2.4. Note that, whenever DM is

completely surrounded by surrounding tissue DB, the domain boundary is ∂D = ∂DM.

In clinical applications this is always the case and thus ϕ(∂D) = ϕ0(∂D). However, to

reduce the computational domain or for validation of the model, body parts or even a

single skeletal muscle without surrounding tissue can be investigated. In this setting, the

measuring electrodes may be placed directly at the muscle surface, i.e., ϕ(∂D) = ϕe(∂D).

We emphasize that the latter scenario is not applicable to the clinical setting but enables

the numerical validation of the model.

We model the EMG measuring process as the integral mean of the surface poten-

tial ϕ(∂D) underneath the electrodes that are centered at the measuring points x :=

(xm,j)
NM
j=1 ∈ R3×NM :

ϕ
x
:= ϕ(x) :=

1

πr2el

(∫
Brel

(xm,j)∩∂D
ϕ(x)dx

)NM

j=1
∈ RNM (2.25)

Here, Brel(xm,j) denotes the ball in R3 with radius rel around the center xm,j.

We emphasize that for our theoretical investigations in Chapter 4 any bounded op-

erator that maps ϕ to ϕ
x
∈ RNM is allowed. Other approaches to model the measuring

process could be to use the maximum value of ϕ in Brel(xm,j)∩∂D to define ϕ
x
or to take

ϕ
x
:= (ϕ(xm,j))

NM

j=1. For remarks on the numerical treatment of the measuring process

we refer to Section 3.2.

Combining all the above models, we specify the deterministic forward EMG problem

through the forward map

G : (L∞(D;R3×3))3 → RNM with σ := (σi, σe, σ0) 7→ ϕ
x
, (2.26)

which maps a given triple (σi, σe, σ0) of conductivities to surface EMG measurements ϕ
x
.

Note that the conductivities σi, σe and σ0 are artificially set to zero outside their natural
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domainsDM andDB such that they are defined on the whole domainD. In the following,

we call the triple σ = (σi, σe, σ0) the global conductivity.

Compared to the general forward problem introduced in the beginning of Chapter 2,

we have specified the forward operator G to represent the forward EMG model and the

parameters p to be the global conductivity σ. Furthermore, we set the parameter space

J = (L∞(D;R3×3))3 and the space of measurements Y = RNM .



3. Implementation of the Forward

EMG Model

Our implementation of the forward EMG model introduced in Section 2.6 is based

on the forward EMG model implemented in the KerMor framework1. KerMor is a

software package implemented in Matlab. We roughly sketch the structure of the

KerMor forward EMG model in Section 3.1. Then, we present our modifications of and

extensions to the KerMor forward EMG model, in Section 3.2. In detail, we decouple

the discretization of the muscle domain DM from the number of muscle fibers NMF

and extend the model to allow for non-diagonal, space-dependent conductivity tensors.

Moreover, we use the htucker toolbox [61] to implement a low-rank tensor representation

of the forward EMG problem. Summarizing the modified KerMor package, we present

our standard settings for the forward EMG model in Section 3.3.

3.1. Status Quo

There are basically three steps to set up a forward EMGmodel in the KerMor framework:

1. A geometry that describes the computational domain needs to be defined.

2. The discretization is defined by choosing a discretization grid size.

3. A muscle fiber AP model has to be chosen.

The muscle domain DM is considered to be a cuboid, where the length of the cuboid’s

edges in cm can be specified by the user. Note that the forward EMG model is inde-

pendent of the position of the cubiod in space. The cuboid is thus assumed to have its

origin at (0, 0, 0) and its edges are assumed to be aligned with the standard unit vectors

e1, e2, and e3 ∈ R3. Within the KerMor framework, the cuboid geometry is specified as

geo=[length 1, length 2, length 3]. An additional layer of surrounding tissue of a

1https://www.morepas.org/software/kermor/index.html
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given thickness θ in cm can be added in e3-direction by adding a fourth entry to the

geometry, i.e., geo=[length 1, length 2, length 3, θ]. The edges of the domain D

then have lengths length 1 cm×length 2 cm×(length 3+θ) cm.

There are two models available for the electrophysiology of the muscle fibers, the

Rosenfalck model, see Section 2.6.1, and the model of Shorten et al. [97]. The muscle fiber

potential is computed for Nt = 101 time steps spanning the time interval [t0, t1] = [0, 100]

in milliseconds. Both the number of time steps and the time interval are hard-coded

into the KerMor framework and we thus take them as fixed parameters.

The Rosenfalck model can simply be evaluated at the discrete time steps and no

time-stepping scheme is needed. To see where the time enters the Rosenfalck model,

we rewrite Equation (2.12) using the AP velocities uj and the relation sF,j = ujt for

t ∈ [t0, t1] ⊂ R:

vm,j(t) = cR,1(ujt)
3 exp(−cR,2ujt)− cR,3, t ∈ [t0,j, t1,j], j = 1, . . . , NMF

For the discrete time steps tk = kht with a given time step size ht (in the KerMor

framework ht = 1ms) the above equation reads

(vhm,j)k = cR,1(ujtk)
3 exp(−cR,2ujtk)− cR,3, k = 0, . . . , Nt, j = 1, . . . , NMF. (3.1)

The Shorten model comprises several ODEs and is thus solved using a time stepping

scheme. The default time stepping scheme implemented in KerMor is Matlab’s ode23

solver, i.e., the explicit Runge-Kutta (2,3) pair of Bogacki and Shampine, cf. [96] and

the references therein for further information.

In the original KerMor implementation, the propagation of the electrical potential

through the muscle domain is modeled by the bidomain equation, as described in Sec-

tion 2.6.3, for the constant extracellular conductivity σe = diag(6.7, 6.7, 6.7) in mS/cm

and the constant intracellular conductivity σi = diag(8.93, 0.893, 0.893) in mS/cm. The

propagation of the electrical potential through the surrounding tissue is modeled by a

generalized Laplace equation, as described in Section 2.6.4, for a constant conductiv-

ity σ0 = diag(4.0, 4.0, 4.0) in mS/cm. Note that the above conductivity matrices are

hard-coded into the KerMor package.

The domain is discretized using central finite differences of second order with equidis-

tant grid size hx in all three spatial directions. The muscle fibers are assumed to lie on the

finite difference grid edges that are parallel to the e1-axis. Furthermore, the muscle fibers

are discretized such that the muscle fiber grid points equal the grid points of the three-
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x2
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(a) Assembly of muscle fibers (green) ac-
cording to the muscle grid (black)

x2

x3

(b) Assembly of NMF = 25 muscle fibers
(green) according to a muscle fiber grid
(black), muscle grid in gray

Figure 3.1.: Illustration of the assembly of muscle fibers that are parallel to e1

dimensional muscle domain as illustrated in Figure 3.1a. Hence, the three-dimensional

membrane potential Vm at the muscle domain grid points equals the corresponding mus-

cle fiber membrane potentials vm,j at these grid points.

In this way, the coupling between muscle fibers, their discretization, and the muscle

domain discretization simplifies the assembling process described in Section 2.6.2. On

the other hand, we see that the number of muscle fibers in the above model equals

the number of grid points in the e2-e3-plane. Note that, e.g., in the biceps brachii, the

number of muscle fibers is NMF ≈ 250 000 [58]. The described dependency between the

model, i.e., the number of muscle fibers in the muscle, and the muscle domain grid size,

is obviously undesirable and is resolved in Section 3.2.1.

The resulting discrete system of linear equations is solved using Matlab’s build-in

QR-decomposition. Finally, the surface EMG data is generated as the finite difference

solution of the discretized forward EMG problem at the surface grid points, i.e., by

extracting the corresponding values from the solution vector.

3.2. Modifications and Extensions

We extend the KerMor forward model described in Section 3.1 as follows:

First, we resolve the connection of the number of muscle fibers and the three-dimen-
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sional discretization and introduce a one-dimensional discretization of the muscle fibers

that is independent of the three-dimensional discretization in Section 3.2.1. Additionally,

we show the influence of the newly introduced parameters N MF (number of muscle fibers)

and N MFGP (number of muscle fiber grid points) on the computed surface EMG data.

Second, in Section 3.2.2, we allow the muscle fiber direction to be an arbitrary vector

dF ∈ R3 with ∥dF∥ = 1 instead of assuming dF = e1 as before. This implies a gen-

eralization of the muscle fiber assembling routine to arbitrary muscle fiber directions.

Further, we discussed already in Section 1.1 that the intracellular conductivity is a pos-

itive definite and symmetric matrix that is determined by the muscle fiber direction and

the magnitudes of the longitudinal and transversal condictivities. Thus, introducing

arbitrary muscle fiber directions means allowing arbitrary positive definite, symmetric

intracellular conductivity matrices. We emphasize, that the conductivity matrices and

muscle fiber directions are still assumed to be constant throughout their corresponding

domain.

Third, in Section 3.2.3, we allow the intracellular conductivity to be space-dependent.

This leads to a change in the discretization and includes solving a 3 × 3 eigenvalue

problem in each muscle fiber grid point to compute the muscle fiber direction.

Fourth, in Section 3.2.4, we derive an affine representation of the discrete operator

of the forward EMG problem and derive a low-rank tensor format representation of the

operator and the right-hand side of the forward EMG problem for arbitrary but fixed

muscle fiber directions. We use the htucker toolbox [61] to include this low-rank tensor

representation of the forward EMG model into the KerMor framework.

3.2.1. Muscle Fibers

For resolving the coupling of the number of muscle fibers and the discretization of the

three-dimensional muscle domain DM, we introduce two new parameters: the number

of muscle fibers N MF ∈ N2, which represents the number of muscle fibers to be put in

e2- and e3-direction, and the number of muscle fiber grid points N MFGP ∈ N.
Both quantities influence the computation of the membrane potential Vm. Before, the

muscle fiber grid points coincided with the three-dimensional muscle domain grid points,

see Figure 3.1a, such that the discrete muscle fiber action potentials were simply written

into the corresponding entries of the three-dimensional membrane potential. Having

different grids for muscle fibers and the muscle domain, as depicted in Figure 3.1b,

this practice becomes infeasible. Instead, we use the combination of smoothing and

projection introduced in Section 2.6.2 to accumulate the muscle fiber membrane potential
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Figure 3.2.: Computed surface EMG signals at time steps t = 31ms, t = 32ms, t =
33ms, t = 34ms in the setting of Section 3.2.1 for hx = 1

3

of each muscle fiber grid point to the nearest muscle domain grid point and weight the

muscle fiber membrane potential according to the distance between the corresponding

muscle fiber and muscle domain grid point. The weighting is done using the Gaussian

smoothing kernel (2.16) with smoothing parameter α = 10, such that the influence of

the muscle fiber action potential on the membrane potential is high when muscle fiber

grid point and muscle domain grid point are close and decreases rapidly with increasing

distance.

We consider the following example: For the muscle domain geo=[3,3,1] with grid

size hx = 1
3
and 100× 100 muscle fibers with 100 muscle fiber grid points, we compute

the surface EMG data from muscle fiber action potentials that are computed by the

Rosenfalck model. The computed surface EMG data at times t = 31ms, t = 32ms,

t = 33ms, and t = 34ms is shown in Figure 3.2. Since the e1-axis represents the muscle

fiber direction, we see two wave fronts, i.e., the accumulated muscle fiber APs, traveling

along the e1-axis. As the stimulus is introduced in the middle of the muscle fibers, the

wave fronts are symmetric and spread outwards from the points with x1 = 1.5. We

conduct the same experiment with spatial grid size hx = 1
12

and show the computed

surface EMG data at times t = 31ms, t = 32ms, t = 33ms, and t = 34ms in Figure 3.3.
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Figure 3.3.: Computed surface EMG signals at time steps t = 31ms, t = 32ms, t =
33ms, t = 34ms in the setting of Section 3.2.1 for hx = 1

12

We see the same quantitative behavior of the two wave fronts evolving from the points

with x1 = 1.5. Moreover, the peaks of the wave fronts appear to be narrower and to have

higher amplitudes compared to the wave fronts for hx = 1
3
in Figure 3.2. This is due to

the finer discretization that represents the wave fronts more accurate and captures the

peaks more precisely. The shapes of the peaks in Figure 3.3 correspond to the shapes of

the Rosenfalck model depicted in Figure 2.5.

In the following, we test the influence of the newly introduced quantities. Therefore,

we consider the above example and fix all parameters but the number of muscle fiber

grid points N MFGP and the number of muscle fibers N MF. We vary the number of muscle

fibers to be N MF=[j,j] for j ∈ {10, 20, 30, 40, 50, 100} and the number of muscle fiber

grid points to be N MFGP=k for k ∈ {10, 20, 30, 40, 50, 100}. Note that the actual number

of muscle fibers is thus NMF = j2.

In Table 3.1 we show the infinity norm of the difference between the computed surface

EMG data ϕ100,100
x

for 100 × 100 muscle fibers with 100 muscle fiber grid points and

the computed surface EMG data
∥∥ϕj,k

x
− ϕ100,100

x

∥∥
∞ for j, k ∈ {10, 20, 30, 40, 50, 100}.

The decay of the error in Table 3.1 with increasing number of muscle fibers implies

that the number of muscle fibers has high impact on the computed surface EMG data.
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Table 3.1.: Infinity norm of the error of computed surface EMG data for varying number
of muscle fibers N MF and number of muscle fiber grid points N MFGP in the
setting of Section 3.2.1 for hx = 1

3

N MF/N MFGP 10.00 20.00 30.00 40.00 50.00 100.00

[10, 10] 39.43 27.26 19.04 11.35 11.41 2.10
[20, 20] 39.38 26.46 19.20 10.23 10.45 0.79
[30, 30] 39.14 26.13 19.21 9.94 10.23 0.53
[40, 40] 38.94 25.73 19.24 9.49 9.99 0.26
[50, 50] 39.08 25.91 19.30 9.69 10.18 0.35
[100, 100] 38.85 25.64 19.27 9.38 9.97 0.0

Table 3.2.: Infinity norm of the error of computed surface EMG data for varying number
of muscle fibers N MF and number of muscle fiber grid points N MFGP in the
setting of Section 3.2.1 for hx = 1

12

N MF/N MFGP 10.00 20.00 30.00 40.00 50.00 100.00

[10, 10] 69.67 66.16 59.63 53.94 40.66 37.96
[20, 20] 69.61 63.73 55.75 48.75 35.51 25.28
[30, 30] 72.24 63.50 54.12 46.19 31.99 18.12
[40, 40] 71.85 61.92 51.71 43.59 29.09 0.21
[50, 50] 71.84 61.92 51.72 43.60 29.05 0.20
[100, 100] 71.78 61.87 51.67 43.57 29.02 0.0

An acceptable error below one is only achieved when the number of muscle fibers is

NMF = 100 and when using at least 20× 20 = 400 muscle fibers.

We rerun the same experiment for spatial grid size hx = 1
12

to reduce the influence of

the spatial discretization error on the results. Again, we calculate the infinity norm of the

difference between the computed surface EMG data ϕ100,100
x

for 100× 100 muscle fibers

with 100 muscle fiber grid points and the computed surface EMG data
∥∥ϕj,k

x
− ϕ100,100

x

∥∥
∞

for j, k ∈ {10, 20, 30, 40, 50, 100}. The results are shown in Table 3.2.

We see that choosing a finer spatial grid size and thus a finer resolution of the solution

increases the error. Comparing this behavior to the influence of the spatial grid size on

the computed surface EMG data, see Figures 3.2 and 3.3, this behavior is explained by

the more prominent peaks of the wave fronts. The errors shown in Table 3.2 indicate

that using 40 × 40 = 1600 muscle fibers yields a reasonable error. Further, the error

does not decrease significantly when choosing 50 × 50 = 2500 muscle fibers. Moreover,

increasing the number of muscle fibers implies evaluating the Rosenfalck model more

often. We deduce that choosing N MFGP= 100 and N MF= [40, 40] yields acceptable errors
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and reasonable computation times.

3.2.2. Muscle Fiber Direction

We extend the KerMor forward EMG model from the previous section by allowing

arbitrary muscle fiber directions, i.e., dF ∈ R with ∥dF∥ = 1 arbitrary. Note that we

still assume that all muscle fibers have the same constant direction, which means that

all muscle fibers are modeled as parallel straight lines. Nevertheless, these muscle fibers

are allowed to have a non-zero angle with the muscle surface as depicted in Figure 3.4.

Such muscle fibers that have a constant angle with respect to the muscle boundary occur

in pennate skeletal muscles such as the rectus femoris or the deltoid muscle. We refer

to [31] for a discussion on different fiber architectures and the resulting properties.

Taking into account such sloping muscle fibers, we need to rethink the distribution

of muscle fibers within the muscle domain. We explain the muscle fiber distribution

using a two-dimensional example. A sketch of this scenario is given in Figure 3.4. The

main flow direction

st
ar
t
su
rf
ac
e

dF
yF

Figure 3.4.: Assembly of rotated muscle fibers (light green) in 2d

extension to three dimensions is straight forward as indicated by the terms in brackets

in the following description. In order to equidistantly place j (in 3d: j× j) muscle fibers

with direction dF into the muscle domain DM we pursue the following four steps:

1. Determine themain flow direction being the unit vector ej that fulfills e
⊤
j dF ≥ e⊤k dF

for k = 1, 2 (in 3d: k = 1, 2, 3). In our two-dimensional example from Figure 3.4,
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the main flow direction is e1. Note that in case two directions have the same

influence on the muscle fiber direction, i.e., the muscle fiber has an angle of 45° with

the e1-axis in the one-dimensional case, the smallest index is chosen to indicate the

main flow direction. The same procedure is used in the three-dimensional setting.

2. Define the extended start surface, indicated in orange in Figure 3.4, as the one-

dimensional line (in 3d: two-dimensional surface) on which to place the muscle

fiber starting points. The start surface is perpendicular to the main flow direction

and the extension is calculated such that the whole muscle domain is covered by

muscle fibers, using simple geometric relations.

3. Place j muscle fiber starting points equidistantly on the start surface (in 3d: in

each direction of the start surface), and define the muscle fibers as the straight lines

starting in these muscle fiber starting points and having direction dF, as indicated

in dark green in Figure 3.4. Obviously, these muscle fibers are also defined outside

the muscle domain. Hence, our last step is to

4. cut the muscle fibers at their intersections with the muscle domain boundary.

The muscle fiber membrane potentials are then computed and transferred to the three-

dimensional membrane potential as described in Section 3.2.1.

We show the influence of a change in the muscle fiber direction on the computed

surface EMG data at time t = 31ms in Figure 3.5 for spatial grid size hx = 1
3
and for

hx = 1
12

in Figure 3.6 to examine the influence of the spatial grid size. The computations

are conducted in the setting of Section 3.2.1 with N MF=[100,100] and N MFGP=100.

Furthermore, we choose σ∗
i = diag(8.93, 0.893, 0.893) for the reference configuration

shown in Figures 3.5a and 3.6a.

We define the other muscle fiber directions by rotating the first unit vector e1 by the

angles α1 = (0, 0, π
2
), α2 = (0, 0, π

4
), and α3 = (π

6
, π
7
, π
8
), i.e., we have

dF(αj) = R1(αj,1)R2(αj,2)R3(αj,3)e1

with the rotation matrices

R1(α1) :=

1 0 0

0 cos(α1) − sin(α1)

0 sin(α1) cos(α1)

 ,
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R2(α2) :=

 cos(α2) 0 sin(α2)

0 1 0

− sin(α2) 0 cos(α2)

 , and

R3(α3) :=

cos(α3) − sin(α3) 0

sin(α3) cos(α3) 0

0 0 1

 . (3.2)

Following this approach, we construct the corresponding intracellular conductivities by

σi(αj) = R1(αj,1)R2(αj,2)R3(αj,3)σ
∗
i R

⊤
3 (αj,3)R

⊤
2 (αj,2)R

⊤
1 (αj,1).

Short calculation shows that dF(α1) = e2 and thus σi(α1) is a diagonal matrix where

the largest value is the second diagonal entry. The second angle yields dF(α2) =

( 1√
2
, 1√

2
, 0), meaning the muscle fibers are aligned parallel to the diagonal of the e1-e2-

plane. Finally, we construct a ‘random’ direction, corresponding to a dense, symmetric,

and positive definite intracellular conductivity matrix, using α3.

As the muscle fiber direction indicates the travel direction of the muscle fiber action

potentials, we see, in Figures 3.5 and 3.6, that the computed surface EMG data depends

strongly on the muscle fiber direction. More precisely, the AP wave fronts propagate

along the muscle fiber directions. In contrast to the other muscle fiber directions, dF(α3)

is no longer parallel to the muscle surface resulting in the asymmetric behavior of the

computed surface EMG data in Figures 3.5d and 3.6d. Again, we see that using the

spatial grid size hx = 1
3
we are able to capture the qualitative behavior of the surface

EMG data but we are unable to capture the exact height and width of the wave fronts.

3.2.3. Space-dependent Conductivities

We further generalize the KerMor model from Section 3.2.2 to allow for intracellular

conductivities that vary in space, i.e., σi = σi(x) for x ∈ DM. Recall that, according to

our discussion in Section 1.1, a space-dependent intracellular conductivity σi(x) intro-

duces a space-dependent muscle fiber direction, i.e., dF = dF(x). In terms of the muscle

fiber directions, this enables the modeling of bent muscle fibers or overlaying muscles.

We emphasize that the intracellular conductivity has to be specified in such a way that

it introduces non-intersecting muscle fibers since two physical muscle fibers cannot oc-

cupy the same spatial point at the same time. Exemplifying the space-dependence of

the conductivity, we discuss a model of two muscles lying on top of each other at the
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(a) Computed surface EMG data for σ∗
i

(b) Computed surface EMG data for
σi(α1)

(c) Computed surface EMG data for
σi(α2)

(d) Computed surface EMG data for
σi(α3)

Figure 3.5.: Influence of number of muscle fibers on the computed surface EMG data in
the setting of Section 3.2.2 and hx = 1

3
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(a) Computed surface EMG data for σ∗
i

(b) Computed surface EMG data for
σi(α1)

(c) Computed surface EMG data for
σi(α2)

(d) Computed surface EMG data for
σi(α3)

Figure 3.6.: Influence of number of muscle fibers on the computed surface EMG data in
the setting of Section 3.2.2 and hx = 1

12
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end of this section and in Section 6.3 in the inverse setting.

The assumption that the intracellular conductivity is space-dependent leads to a ‘re-

discretization’ of the problem. For simplicity and to follow the existing discretization of

the KerMor package, we assume that the spatial grid size hx is equal in each direction.

We denote the Nh := Nh,1Nh,2Nh,3 ∈ N grid points by (xj1 , xj2 , xj3) for jk = 0, . . . , Nh,k

and k = 1, 2, 3, and a conductivity σ at grid point (xj1 , xj2 , xj3) by σj1,j2,j3 . A three-

dimensional second-order consistent stencil for

Bϕ := ∇ · (σ(x)∇ϕ(x)) =
3∑

j=1

∂

∂xj

(
σ(x)

∂

∂xj

ϕ(x)

)
(3.3)

is then given by0 0 0

0
σj,j,j−1+σj,j,j

2h2
x

0

0 0 0

 in the first plane, in the second plane by


0

σj,j−1,j+σj,j,j

2h2
x

0
σj−1,j,j+σj,j,j

2h2
x

−σj−1,j,j+σj,j−1,j+σj,j,j−1+6σj,j,j+σj,j,j+1+σj,j+1,j+σj+1,j,j

2h2
x

σj,j,j+σj+1,j,j

2h2
x

0
σj,j,j+σj,j+1,j

2h2
x

0

 ,

and by

0 0 0

0
σj,j,j+σj,j,j+1

2h2
x

0

0 0 0

 in the third plane. (3.4)

This stencil easily follows from the one-dimensional second-order consistent stencil

1

h2
x

[
σj−1+σj

2
−σj−1+2σj+σj+1

2

σj+σj+1

2

]
using the Kronecker product structure of (3.3). The above one-dimensional stencil fol-

lows from Taylor’s theorem and equating the coefficients of

(Bϕ)j =

(
∂

∂x
σ(xj)

∂

∂x
ϕj + σ(xj)

∂2

∂x2
ϕj

)
and

(Bhϕh)j =
1

h2
x

(
−σ̃jϕj−1 + (σ̃j + σ̃j+1)ϕj − σ̃j+1ϕj+1

)
.

From the relation between intracellular conductivity and muscle fiber direction, it

is obvious that the muscle fiber directions dF,j = dF,j(x) are space-dependent too for
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j = 1, . . . , NMF. Thus, apart from the operator of the forward EMG model described

in Section 2.6, also the right-hand side and especially the assembling process of the

muscle fibers as described in Section 3.2.2 is affected by a spatially varying intracellular

conductivity. More precisely, in point 3 of our assembling routine, we have defined the

muscle fibers as straight lines starting in the muscle fiber starting points and pointing

in the muscle fiber direction. This procedure has to be adapted to a spatially varying

muscle fiber direction.

From an implementational point of view this means that, when assembling the mus-

cle fibers, the muscle fiber direction needs to be computed in every muscle fiber grid

point xh
F,j. Recall that the muscle fiber direction can be computed as the eigenvector

belonging to the maximal eigenvalue of the intracellular conductivity at any point xh
F,j,

as discussed in Section 1.1. A muscle fiber can thus be assembled into the muscle domain

by starting at the start surface, evaluating the intracellular conductivity at the starting

point, computing the muscle fiber direction in the starting point, doing a step with the

muscle fiber grid size in the computed direction, evaluating the intracellular conductiv-

ity at the new point and so on. Note that, in this way, we define the muscle fiber grid

points iteratively. Using such an implementation, one has to be careful to choose the

intracellular conductivity σi(x) such that the discrete muscle fibers do not intersect at

any point.

Exemplarily, we implemented the scenario of two skeletal muscles lying on top of each

other as depicted in Figure 3.7. We begin with the setting of Section 3.2.1 and assume

geo(3)-border

θ

border

geo(3)

geo(1)

geo(2)α2 =
π

4

α1 = 0
dF,1

dF2
DM,2

DM,1

DB

Figure 3.7.: Two-muscle scenario with layer of surrounding tissue of thickness θ

that the intracellular conductivity is constant in each muscle and that the muscle fibers

are aligned with the e1-e2-plane, i.e., we only allow rotations around the e3-axis. The

intracellular conductivity of such a muscle composite of two muscles can be modeled

by a conductivity of which the magnitudes and rotation angles change at the bound-
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ary between the two muscles. In the example depicted in Figure 3.7, the intracellular

conductivity is given by

σi(x) =

σi(α1) x3 > border,

σi(α2) otherwise,
(3.5)

where border denotes the height of the lower muscle. Further, the intracellular con-

ductivities σi(αj) are defined as the rotation around the e3-axis of the intracellular

conductivity σi = diag(8.93, 0.893, 0.893), i.e., σi(αj) := R3(αj)σiR
⊤
3 (αj). Furthermore,

we specify the number of muscle fibers in each muscle part to be N MF = [100,50] with

N MFGP = 100 and neglect the surrounding tissue, i.e., we set θ = 0. We discuss the

case θ > 0 in Section 6.3. The computed surface EMG data for the two muscle scenario

with angles α1 = 0 and α2 =
π
4
and border=2/3 is shown in Figure 3.8 for hx = 1

3
and

in Figure 3.9 for hx = 1
12
. Compared to the computed surface EMG data for the one

muscle setting in Figures 3.2 and 3.3, we clearly see the influence of the changed setting.

Furthermore, we observe a significant difference for the different spatial discretization

grid sizes. While the wave fronts for hx = 1
3
in Figure 3.8 still appear smooth due to the

coarse grid, we see that the surface EMG signal varies significantly for hx = 1
12

due to

the superposition of the two muscles. The two muscle scenario is further investigated

in the Bayesian inverse setting in Section 6.3.

3.2.4. Tensor Representation of the Forward EMG Problem

We derive a low-rank tensor representation of the discrete forward EMG operator using

its affine structure. This is joint work with Tim A. Werthmann and has previously

been published in [88]. The affine structure of the discrete forward operator can be

seen when discretizing Equation (3.3) using the stencil defined in Equation (3.4), see

Section 3.2.3. Using the linearity of (3.4) yields the affine representation of the discrete

forward operator B that is given by

σj,j−1,j

h2
x

Mj,j−1,j +
σj,j,j+1

h2
x

Mj,j,j+1 +
σj−1,j,j

h2
x

Mj−1,j,j

+
σj,j,j

h2
x

Mj,j,j +
σj+1,j,j

h2
x

Mj+1,j,j +
σj,j,j−1

h2
x

Mj,j,j−1 +
σj,j+1,j

h2
x

Mj,j+1,j.



70 3. Implementation of the Forward EMG Model

Figure 3.8.: Computed surface EMG data at time steps t = 31ms, t = 32ms, t =
33ms, t = 34ms as described in Section 3.2.3 for hx = 1

3

Here, the stencil in the first plane is given by

M
(:,:,1)
j,j−1,j = M

(:,:,1)
j,j,j+1 = M

(:,:,1)
j−1,j,j = M

(:,:,1)
j,j,j = M

(:,:,1)
j+1,j,j =

0 0 0

0 0 0

0 0 0

 ,

M
(:,:,1)
j,j,j−1 =

0 0 0

0 1
2

0

0 0 0

 ,M
(:,:,1)
j,j−1,j =

0 0 0

0 0 0

0 0 0

 ,

in the second plane by

M
(:,:,2)
j,j−1,j =

0
1
2

0

0 −1
2

0

0 0 0

 , M
(:,:,2)
j,j,j+1 =

0 0 0

0 −1
2

0

0 0 0

 ,

M
(:,:,2)
j−1,j,j =

0 0 0
1
2

−1
2

0

0 0 0

 , M
(:,:,2)
j,j,j =

0
1
2

0
1
2

−3 1
2

0 1
2

0

 , M
(:,:,2)
j+1,j,j =

0 0 0

0 −1
2

1
2

0 0 0

 ,



3.2. Modifications and Extensions 71

Figure 3.9.: Computed surface EMG data at time steps t = 31ms, t = 32ms, t =
33ms, t = 34ms as described in Section 3.2.3 for hx = 1

12

M
(:,:,2)
j,j,j−1 =

0 0 0

0 −1
2

0

0 0 0

 , M
(:,:,2)
j,j−1,j =

0 0 0

0 −1
2

0

0 1
2

0

 ,

and in the third plane by

M
(:,:,3)
j,j−1,j =

0 0 0

0 0 0

0 0 0

 ,M
(:,:,3)
j,j,j+1 =

0 0 0

0 1
2

0

0 0 0

 ,

M
(:,:,3)
j−1,j,j = M

(:,:,3)
j,j,j = M

(:,:,3)
j+1,j,j = M

(:,:,3)
j,j,j−1 = M

(:,:,3)
j,j−1,j =

0 0 0

0 0 0

0 0 0

 .

Let Ah
σe

denote the discrete operator given by Equation (3.4) for constant σ = σe ∈
R3×3 and let Ah

j1,j2,j3
denote the discrete operator given by the stencil Mj1,j2,j3 from

above. Then, the discrete operator Ah of the left-hand side operator A of the bidomain
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equation (2.19) with

Aϕe := ∇ · ((σi(x) + σe)∇ϕe(x)) = ∇ · (σe∇ϕe(x)) +∇ · (σi(x)∇ϕe(x))

is given by

Ah := Ah
σe
+

Nh,1∑
j1=1

Nh,2∑
j2=1

Nh,3∑
j3=1

σj1,j2,j3A
h
j1,j2,j3

.

We clearly see the difference in the discretization for the space-independent extracellular

conductivity σe and the space-dependent intracellular conductivity σi.

For deriving a CP representation of the above discrete parameter-dependent for-

ward EMG problem, we place the above considerations into the general framework of

parameter-dependent linear systems introduced in Section 2.5. Using the vectoriza-

tion, see Definition 2.5.3, we define Ah,(k) := vec(Ah
j1,j2,j3

) and the parameters p(k) :=

vec(σj1,j2,j3) for k = 1, . . . , d. Here d is the number of parameters.

For specifying the above definitions, recall that the matrix-valued intracellular con-

ductivity σi is symmetric. After spatial discretization, the matrix entries of σi in each

discrete point, i.e., of σj1,j2,j3 , remain as the free parameters. Using a row-wise num-

bering we thus have the vectorization of the space-discrete (1, 1) entry of σi as the first

parameter p(1), the vectorization of the space-discrete (1, 2) entry of σi as the second

parameter p(2), and so on. Note that we skip the entries (2, 1), (3, 1), and (3, 2) since

they are defined through the entries (1, 2), (1, 3), and (2, 3) due to the symmetry of σi.

The above procedure leads to d = 6 parameters.

We further set Ah,(0) := Ah
σe
. Together, this yields a parameter-dependent affine

structure of the form

Ah(p) := Ah,(0) +
6∑

k=1

p(k)Ah,(k)

with p = (p(1), . . . ,p(6)), and where each Ah,(k) is constant, i.e., Ah,(k) is parameter-

independent.

Next, we discretize the parameters p = (p(1), . . . ,p(6)). Thus, we allow each parameter

p(k), k = 1, . . . , 6, to take Np,k ∈ N different values ph,(k)(j) with j = 1, . . . , Np,k.

Writing the above parameter-dependent linear operator for all discrete parameters leads
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to a large block-diagonal system, compare with Equation (2.9), with the operator

A := blkdiag
(
A

(0)
1 , . . . , A

(0)
Np

)
:=


A

(0)
1 0 . . . 0

0 A
(0)
2

. . .
...

...
. . . . . . 0

0 . . . 0 A
(0)
N∗

p

 .

Here, the jth diagonal block is given by A
(0)
j = Ah,(0) +

∑6
k=1 p

h,(k)(j)Ah,(k) and N∗
p :=

maxk=1,...,6Np,k. The memory requirement to store A, however, grows exponentially in

the number Np :=
∏

k=1,...,6Np,k of parameter grid points and thus, even for a mod-

erate number of parameters such as d = 6 in our case and moderate Np,k, a classical

representation of our problem is infeasible, see our discussion in Section 2.5.

We follow the idea used to reformulate our example parameter-dependent linear system

defined in Equation (2.9) to become data-sparse in Section 2.5. Using the notation

A
(l)
j :=

∑6
k=l p

h,(k)(j)Ah,(k) for l = 1, . . . , 6, we thus obtain

A = blkdiag
(
Ah,(0) + A

(1)
1 , Ah,(0) + A

(1)
2 , . . . , Ah,(0) + A

(1)
Np

)
= blkdiag

(
Ah,(0), Ah,(0), . . . , Ah,(0)

)
+ blkdiag

(
ph,(1)(1)Ah,(1),ph,(1)(2)Ah,(1), . . . ,ph,(1)(Np,1)A

h,(1)
)

+ blkdiag
(
A

(2)
1 , A

(2)
2 , . . . , A

(2)
Np

)
= IdNp,6 ⊗ · · · ⊗ IdNp,2 ⊗ IdNp,1 ⊗A(0)

+ IdNp,6 ⊗ · · · ⊗ IdNp,2 ⊗ diag
(
ph,(1)

)
⊗ Ah,(1)

+ . . .

+ diag
(
ph,(6)

)
⊗ · · · ⊗ IdNp,2 ⊗ IdNp,1 ⊗Ah,(6).

Recalling the CP representation from Definition 2.5.1, the above considerations lead to

the data-sparse CP representation

A =
6∑

k=0

6⊗
j=0

A∗,(k) (j)
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of the parameter-dependent operator A, where

A∗,(k) (j) =


Ah,(j) if j = 6,

diag
(
ph,(j)

)
if j + k = 6 and k ̸= 0,

Idn6−k
otherwise

with discrete parameters ph,(j) = (ph,(j)(1), . . . ,ph,(j)(Np,j)). Due to the linearity of

the operator with respect to the intracellular conductivity, the above CP representation

holds for arbitrary space-dependent intracellular conductivities.

Contrarily, the right-hand side b := −∇ · (σi∇Vm) of the bidomain equation (2.19)

depends nonlinearly on spatial changes of the intracellular conductivity as these changes

correspond to changes in the muscle fiber direction and thus in the membrane potential

Vm. We will quantify this issue further in Section 5.1, see the discussion around Fig-

ure 5.2. In case the muscle fiber direction is known, e.g., through one of the imaging

techniques discussed in Chapter 1, and fixed, a CP representation b of the right-hand

side of the bidomain equation (2.19) similar to the above CP representation of the op-

erator can be achieved. This setting corresponds to fixing the rotation angles and thus

leaves the three conductivity magnitudes as free parameters.

Note that these CP representations of the operator and the right-hand side (in the

case of fixed rotation angles) are exact representations.

The question arises whether we can prove that the tensor solution ϕ(p) of the pa-

rameter-dependent forward EMG problem of finding ϕ(p) such that A(p)ϕ(p) = b(p)

has a low-rank approximation. As discussed in Section 2.5, general criterions for guar-

antying the existence of a low-rank representation of ϕ are unknown. Thus, we assume

that the solution of the parameter-dependent forward EMG problem has a low-rank

approximation.

Furthermore, we represent A(p) and b(p) using the hierarchical Tucker format, see

Definition 2.5.5, and use the preconditioned conjugate gradients method with truncation

as introduced in Algorithm 2.5.1 to approximate the solution ϕ(p) of A(p)ϕ(p) = b(p)

in the hierarchical Tucker format.

For justification of the assumption that ϕ(p) has low rank, we examine the rank of

ϕ(p) in the setting that we will use in the inverse case, see Chapters 5 and 6. We refer

to [88] for the same experiment in a different setting and highlight that both lead to

similar results.

We specify the forward EMG model by choosing the geometry geo=[3,3,1] and



3.2. Modifications and Extensions 75

setting hx = 1
3
, N MF=40, N MFGP=[100,100], and σe = diag(6.7, 6.7, 6.7). Furthermore,

we set p := (σi,11, σi,22, σi,33) and aim at calculating the EMG data for each p in the

parameter space J := [6, 10]× (0, 4]× (0, 4]. We discretize the parameter space J with

grid size hp = 0.001 and compute Ah,(0) using the conductivity at the midpoint of the

resulting grid, i.e., for p = (8, 2, 2). For handling the time-dependency in the right-hand

side, we solve the corresponding linear system for all time steps simultaneously.

We define the solution tensor as follows: We set the first dimension of the tensor

to correspond to the spatial dimension, i.e., the first dimension is (3 · 1
hx

+ 1)(3 · 1
hx

+

1)(1 · 1
hx

+ 1) = 400. The second dimension of the tensor corresponds to the time steps

and thus is 101 = Nt. The third dimension of the tensor corresponds to the longitudinal

intracellular conductivity magnitude and thus is (10−6) 1
hp
+1 = (10−6)·1000+1 = 4001,

while the fourth and fifth dimension of the tensor, which correspond to the second and

third (transversal) intracellular conductivity magnitudes, are of size (4 − hp)
1
hp

+ 1 =

4 ·1000 = 4000. This leads to a tensor solution ϕ of size 400×101×4001×4000×4000.

Note that the surface of the muscle cuboid has (3 · 3 + 1)(3 · 3 + 1) = 100 spatial nodes.

Extracting the electrical potential at the surface grid points, i.e., evaluating the tensor

solution ϕ at the surface grid points, we would thus remain with a surface EMG tensor

of size 100× 101× 4001× 4000× 4000.

Moreover, for the PCG algorithm 2.5.1, we specify the maximal number of iterations

NCG = 15 and the tolerance for the residual norm ε = 1 × 10−4. Further, we truncate

to a relative accuracy of 1 × 10−6 using the truncate routine of the htucker toolbox.

The relative accuracy guarantees that ∥B− truncate(B)∥ ≤ 1 × 10−6∥truncate(B)∥.
The actual truncation rank thus depends on the chosen relative accuracy. We refer

to [62] for a detailed description of the truncation routine. We choose the preconditioner

M := Idnd
⊗ · · · ⊗ Idn1 ⊗Ah,(0). Note that, according to [62], the choice of the low-rank

tensor preconditioner has little influence on the convergence behavior and run time of

the PCG algorithm.

Having specified all necessary parameters, we show a logarithmic-linear plot of the

relative singular values for the corresponding matricizations, see Definition 2.5.3, of the

tensor solution ϕ in Figure 3.10. The plot of the singular values was computed using

the plot sv function of the htucker toolbox [61]. We observe that the rank of the

matricization corresponding to the labels {3}, {4}, and {5}, which correspond to the

parameter space, is 5. We also see that the rank of the matricization corresponding

to the label {2} is 60. Recall that the second dimension of the tensor corresponds to

the time. The rank of the matricization corresponding to the label {1} is 330. This
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Figure 3.10.: Relative singular values of the corresponding matricization of the low-rank
solution of the forward EMG problem described in Section 3.2.4

matricization separates the spatial dimension {1} and the time dimension {2}. Recall

that the right-hand side of the bidomain equation (2.19), which is determined by the

muscle fiber membrane potential through Equations (2.12) and (2.15), changes over time,

see our discussion at the end of Section 2.6.3. Thus, each time step yields a different

right-hand side, which explains the high rank of the matricization corresponding to the

label {1}.
For further justification of the assumption that the tensor solution ϕ has low rank, we

show the rank of the matricizations of ϕ for the spatial discretization grid size hx = 1
3
and

hx = 1
12

for the three conductivities σ∗,1
i = (8.93, 0.893, 0.893), σ∗,2

i = (0.893, 8.93, 0.893),

and σ∗,3
i = (0.893, 0.893, 8.93) and α∗ = (0, 0, 0) in Table 3.3. We observe, that the rank

of the tensor solution ϕ is independent of the spatial grid size hx. We highlight, that

the rank of the matricizations with respect to the labels {3}, {4}, and {5}, i.e., with
respect to the dimensions representing the parameter space, remains low throughout all

the settings because of the observed affine structure.

Recall that storing the solutions ϕ(ph) for all parameter combinations ph is infeasible

unless using low-rank tensor representations. In the above example, using low-rank

tensor formats we reduce the theoretical storage cost of 2.07 × 1010MB for the full
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Table 3.3.: Acceptance rate κa of the SA for inferring the rotation angles for 1000 drawn
samples, noise level ξ = 0.1 and varying sampling radius rs in the setting of
Section 3.3

hx = 1
3

hx = 1
12

label σ∗,1 σ∗,2 σ∗,3 σ∗,1 σ∗,2 σ∗,3

{1} 330 330 155 330 330 155
{2} 60 60 40 60 60 40
{3} 5 5 5 5 5 5
{4} 5 5 5 5 5 5
{5} 5 5 5 5 5 5

tensor, calculated for the above 400 × 101 × 4001 × 4000 × 4000 tensor counting the

storage cost for one entry as 64 bit, to 4.77MB needed by Matlab to store the actually

calculated tensor solution ϕ.

Moreover, we discussed in Section 2.5 that the evaluation of a tensor in hierarchical

Tucker format, such as the tensor solution ϕ, is cheap in the sense that the cost is of

order O(dr3) if the hierarchical Tucker rank is node-wise bounded by r and d denotes

the dimension. In the above example, the maximum tensor rank in the dimensions 3, 4

and 5 referring to the parameter space is 5 and we have d = 3 parameters. Using the

resulting low-rank tensor representation to evaluate the forward EMG problem will lead

to a tremendous speedup of the sampling algorithms used to solve the Bayesian inverse

EMG problem in Chapter 5.

3.3. Standard Settings for the Forward EMG Model

Summarizing Sections 3.1 and 3.2, we set the following standard settings of the gener-

alized forward EMG model to be used within the inversion algorithms in Chapters 5

and 6.

We compute all experiments on the muscle cuboid defined through geo=[3,3,1], i.e.,

we neglect any surrounding tissue unless stated explicitly.

The standard spatial grid size for the muscle cuboid is hx = 1
3
. In accordance with

Tables 3.1 and 3.2 and to weight computational costs against accuracy, we choose N -

MFGP=100 and we insert N MF =[40,40] muscle fibers. We compute surface EMG data

on the time interval [t0, t1] = [0, 100]ms with time step size ht = 1ms.

We use the Rosenfalck model to describe the electrophysiology of the muscle fibers,
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since the Rosenfalck model is also investigated theoretically in Section 4.1. The Rosen-

falck parameters are chosen to be cR,1 = 84 · (3.1)3 = 2502.444, cR,2 = 3.1, and cR,3 = 80,

compare to Figure 2.5 in Section 2.6.1 for the meaning of the Rosenfalck parameters.

Finally, we set the extracellular conductivity to be a constant diagonal matrix through-

out the whole muscle cuboid with σe = diag(6.7, 6.7, 6.7). As reference values of the intra-

cellular conductivity we use the diagonal and constant matrices σ∗,1
i = (8.93, 0.893, 0.893),

σ∗,2
i = (0.893, 8.93, 0.893), and σ∗,3

i = (0.893, 0.893, 8.93) and we set the rotation angles

α∗ = (0, 0, 0). Together, we have the three reference parameters p∗,j = (σ∗,j
i , α∗) for

j = 1, 2, 3.

Using low-rank tensor representations of the parameter-dependent forward EMG prob-

lem, we use the PCG algorithm 2.5.1 with NCG = 15 and ε = 1 × 10−4. Further-

more, we truncate to a relative accuracy of 1 × 10−6 and use the preconditioner M :=

Idnd
⊗ · · · ⊗ Idn1 ⊗Ah,(0), see Section 3.2.4.
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Throughout this chapter we state the deterministic and probabilistic forward and the

Bayesian inverse EMG problem and prove and discuss their well-posedness in the sense

of Hadamard, see Section 2.1.1. We will see that the well-posedness of the forward

problems is indeed crucial for proving the well-posedness of the Bayesian inverse EMG

problem and thus worth being discussed.

In Section 4.1.1 we begin with deriving the weak formulation of the deterministic

forward EMG problem (2.26) that was introduced in Section 2.6. Based on the weak

formulation of the deterministic forward EMG problem, we will prove the well-posedness

of the deterministic forward problem in Section 4.1.2.

We continue with modeling the inevitable measurement error to formulate the proba-

bilistic forward EMG problem in Section 4.2.1 and the Bayesian inverse EMG problem

in Section 4.3.1. We recommend to compare this procedure of defining the Bayesian

inverse EMG problem to the general introduction of Bayesian inversion in Section 2.4.

The well-posedness of the probabilistic forward EMG problem is proved in Section 4.2.2.

The well-posedness of the deterministic and probabilistic forward EMG problem builds

the foundation of the proof of well-posedness of the Bayesian inverse EMG problem that

we conduct in Section 4.3.2.

Finally, in Section 4.4 we deduce error bounds for the solution of the Bayesian inverse

EMG problem with respect to a discretization of the forward EMG problem and the

probabilistic conductivities from the well-posedness results.

4.1. Deterministic Forward EMG Problem

Recall that the deterministic forward EMG problem is encapsulated in the forward

operator G as defined in Equation (2.26). It comprises the evolution of APs in the

muscle fibers according to the Rosenfalck model (2.12)

vm,j(sF,j) = cR,1s
3
F,j exp(−cR,2sF,j)− cR,3, sF,j ∈ DF,j, j = 1, . . . , NMF

79
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or according to the Hodgkin-Huxley model (2.13)

∂tvm,j =
1

Cm,j

(Istim − Iion), j = 1, . . . , NMF

=
1

Cm,j

(Istim − (κg,Na(vm,j − κE,Na) + κg,K(vm,j − κE,K) + cg,L(vm,j − κE,L))),

the application of the smoothing operator (2.15)

Vm(x) =

NMF∑
j=1

S(vm,j)(x),

the propagation of the resulting three-dimensional APs through muscle and surrounding

tissue according to Equations (2.19) and (2.20)

∇ · ((σi + σe)∇ϕe) = −∇ · (σi∇Vm) in DM

∇ · (σ0∇ϕ0) = 0 in DB,

and the evaluation of the electrical potential at the skin surface according to (2.25)

ϕ
x
= ϕ(x) =

1

πr2el

(∫
Brel

(xm,j)∩∂D
ϕ(x)dx

)NM

j=1
∈ RNM .

Additionally, the coupling, boundary, and zero-mean conditions, Equations (2.21), (2.22)

and (2.23),

ϕe = ϕ0 on ΓI,

(σe∇ϕe) · nM = −(σ0∇ϕ0) · nB on ΓI,

(σi∇Vm) · nM = −(σi∇ϕe) · nM on ∂DM,

(σ0∇ϕ0) · nB = 0 on ΓB,

(σe∇ϕe) · nM = 0 on ΓM,∫
DM

ϕe +

∫
DB

ϕ0 = 0

yield the physical and mathematical well-posedness of the problem.

We prove the mathematical well-posedness in Section 4.1.2 after deriving the weak for-

mulation of the above summarized deterministic forward EMG problem in Section 4.1.1.
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4.1.1. Weak Formulation

Completing our description of the deterministic forward EMG problem as summarized

above, we derive its weak formulation. The weak formulation forms the basis of our

theoretical framework, i.e., of the well-posedness of the Bayesian inverse EMG problem,

see Sections 4.1.2, 4.2.2, and 4.3.2.

We denote the Sobolev space of square integrable functions having square integrable

weak first derivatives by H1,2. For functions v = 1DM
ve + 1DB

v0 as in (2.24) we define

the solution space

V :=
{
v | ve ∈ H1,2(DM;R), v0 ∈ H1,2(DB;R), ve = v0 on ΓI,

∫
D

v = 0
}

as the space of all functions v = 1DM
ve + 1DB

v0 that are in H1,2(D;R), equal on the

boundary ΓI, and additionally fulfill the zero-mean condition. Note that the coupling

condition (2.21a) and the zero-mean condition (2.23) have been incorporated into the

solution space that indeed is a vector space. We will see that all other coupling and

boundary conditions can be included into the weak formulation itself.

Further, the solution space is equipped with the V -norm

∥v∥V := ∥∇ve∥L2(DM) + ∥∇v0∥L2(DB)
,

where ∥ · ∥L2 denotes the Lebesgue norm on the indicated domain. Note that the sum

of Sobolev seminorms is a proper norm on V due to the integral zero-mean and the

coupling condition. It easily follows that the V -norm fulfills the inequality

1

2
∥v∥2V ≤ ∥∇ve∥2L2(DM) + ∥∇v0∥2L2(DB)

(4.1)

for all functions v ∈ V .

Furthermore, we define the infinity norm of the global conductivity σ ∈ (L∞(D;R3×3))3

through

∥σ∥∞ := max(∥σi∥∞, ∥σe∥∞, ∥σ0∥∞)

using the infinity norm of the conductivities σi, σe and σ0 that is defined as

∥σj∥∞ := ess sup
x∈D

max
k,l=1,2,3

|(σj)kl(x)|
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for j ∈ {i, e, 0}, compare to the definition of the Lebesgue-Bochner spaces in Sec-

tion 2.2.1.

Following the standard derivation of weak formulations, namely multiplying Equa-

tions (2.19) and (2.20) by a test function v ∈ V , integrating over the domain D, shifting

derivatives using integration by parts, and inserting the corresponding coupling and

boundary conditions, we see that a weak solution ϕ ∈ V of the deterministic forward

EMG problem (2.26) must fulfill∫
DM

(
(σi + σe)∇ϕe

)
· ∇ve +

∫
DB

(σ0∇ϕ0) · ∇v0 = −
∫
DM

(σi∇Vm) · ∇ve (4.2)

for all test functions v ∈ V . Assuming that D ⊂ R3 is open with Lipschitz boundary,

the trace of the solution ϕ of Equation (4.2) exists in L2(∂D;R). Thus, the evaluation

operator (2.25) is well defined for the solution of the weak formulation (4.2). For ease

of notation, the application of the trace operator to the weak solution ϕ is not indicated

by any additional notation.

We redefine the forward operator G from Equation (2.26) to map a given global con-

ductivity σ ∈ (L∞(D;R3×3))3 to the evaluation ϕ
x
∈ RNM of the trace of the weak

solution of Equation (4.2). As it will always be clear from the context, whether the

strong or weak forward operator is meant, we do not use any additional notation. Fur-

thermore, we define the bilinear form aσ : V × V → R through

aσ(ϕ, v) :=

∫
DM

(
(σi + σe)∇ϕe

)
· ∇ve +

∫
DB

(σ0∇ϕ0) · ∇v0

and the linear form ℓσ : V → R through

ℓσ(v) := −
∫
DM

(σi∇Vm) · ∇ve

such that a solution ϕ ∈ V of equation (4.2) fulfills

aσ(ϕ, v) = ℓσ(v) for all v ∈ V.

Summarizing the above considerations, the weak deterministic forward problem reads

as follows.

Definition 4.1.1 (Weak Deterministic Forward EMG Problem). For given global

conductivity σ ∈ (L∞(D;R3×3))3 find the EMG data ϕ
x
∈ RNM at measuring points
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x ∈ R3×NM, such that ϕ ∈ V solves aσ(ϕ, v) = ℓσ(v) for all v ∈ V . Using the forward

operator notation, we compute ϕ
x
= G(σ).

4.1.2. Well-posedness

Within the setting of Section 4.1.1 we prove the well-posedness of the deterministic

forward EMG problem for both the Rosenfalck and the Hodgkin-Huxley model of the

muscle fiber AP evolution.

Lemma 4.1.2. For each given global conductivity σ ∈ (L∞(D;R3×3))3 there exists a

unique solution ϕ ∈ V fulfilling aσ(ϕ, v) = ℓσ(v) for all v ∈ V and

sup
σ∈(L∞(D,R3×3))3

∥ϕ(σ)∥V ≤ 2
∥σi∥∞
σmin

∥∇Vm∥L2(DM). (4.3)

Here, the global minimal conductivity σmin :=
(
σie,min, σ0,min

)
is defined as the minimum

of the local minimal conductivities σie,min := ess inf
x∈DM

min
k,l=1,2,3

(σi(x)+ σe(x))k,l and σ0,min :=

ess inf
x∈DB

min
k,l=1,2,3

(σ0(x))k,l.

Proof. We proceed in two steps.

1. The existence and uniqueness of a solution ϕ ∈ V to Equation (4.2) follows directly

from the Lax-Milgram theorem, i.e., from the coercivity and boundedness of the

bilinear form aσ.

For seeing the coercivity, we calculate

aσ(ϕ, ϕ) =

∫
DM

(
(σi + σe)∇ϕe

)
· ∇ϕe +

∫
DB

(σ0∇ϕ0) · ∇ϕ0

≥ σie,min

∫
DM

∇ϕe · ∇ϕe + σ0,min

∫
DB

∇ϕ0 · ∇ϕ0

= σie,min∥∇ϕe∥2L2(DM) + σ0,min∥∇ϕ0∥2L2(DM)

≥ σmin

(
∥∇ϕe∥2L2(DM) + ∥∇ϕ0∥2L2(DM)

)
(4.1)

≥ 1

2
σmin∥ϕ∥2V . (4.4)
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The boundedness of aσ follows from

|aσ(ϕ, v)| ≤
∫
DM

|
(
(σi + σe)∇ϕe

)
· ∇ve|+

∫
DB

|(σ0∇ϕ0) · ∇v0|

HI

≤ ∥σi + σe∥∞∥∇ϕe∥L2(DM)∥∇ve∥L2(DM) + ∥σ0∥∞∥∇ϕ0∥L2(DB)
∥∇v0∥L2(DB)

≤ 2max{∥σi + σe∥∞, ∥σ0∥∞}∥ϕ∥V ∥v∥V ,

where HI indicates the use of Hölder’s inequality. Having proved the coercivity

and boundedness of aϕ, Lax-Milgram’s theorem is applicable.

2. Let σ ∈ (L∞(D;R3×3))3 be arbitrary but fixed. We prove the boundedness of

ϕ(σ) by testing the weak formulation with the solution itself and using standard

estimates, such as Hölder’s inequality. For the linear form ℓσ we get

ℓσ(ϕ) = −
∫
DM

(σi∇Vm) · ∇ϕe

≤
∫
DM

|(σi∇Vm) · ∇ϕe|

HI

≤ ∥σi∥∞∥∇Vm∥L2(DM)∥∇ϕe∥L2(DM)

≤ ∥σi∥∞∥∇Vm∥L2(DM)∥ϕ∥V . (4.5)

Combining estimate (4.5) with the coercivity (4.4) and canceling out ∥ϕ∥V yields

the desired boundedness of ϕ(σ).

Note that from the Rosenfalck model (2.12) it easily follows that

∥∇Vm∥L2(DM) ≤ cR (4.6)

for some constant cR > 0. This constant is independent of the solution ϕ and the conduc-

tivity σ and depends only on the heuristically known model parameters cR,j, j = 1, 2, 3.

We thus end up with the boundedness of the solution ϕ.

A uniform bound on ∥∇Vm∥L2(DM) can also be deduced for the more complex Hodgkin-

Huxley model, introduced in Section 2.6.1, as the following lemma shows.

Lemma 4.1.3. Let Vm =
∑NMF

j=1 S(vm,j) be the membrane potential achieved by smooth-

ing and adding the muscle fiber membrane potentials vm,j that are the solutions of the

Hodgkin-Huxley differential equations (2.13) using the smoothing operator S and or-
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thogonal projection pr as defined in Equations (2.15) and (2.18). Then there exists a

constant cHH > 0 such that

∥∇Vm∥L2(DM) ≤ cHH. (4.7)

Note that even if we restricted ourselves to a specific smoothing operator, the proof

works for any bounded smoothing operator.

Proof. We first rewrite the gradient of Vm with respect to the three-dimensional spatial

variable x as

∇xVm(x) =

NMF∑
j=1

∇x

(
vm,j(prj(x)) exp

(
−α

2

∥∥x− prj(x)
∥∥2)) .

To apply the product rule, we calculate the gradient of both vm,j and the exponential

term, and denote the finite AP velocity by uj :=
dsF,j

dt
:

∇x

(
vm,j(prj(x))

)
= (∇xvm,j) (prj(x))∇x prj(x) = ∇x(sF,j)

dt

dsF,j︸ ︷︷ ︸
=u−1

j

∂tvm,j(t)∇x prj(x)

= d⊤F,ju
−1
j ∂tvm,j(t)dF,jd

⊤
F,j = u−1

j ∂tvm,j(t)dF,j, j = 1, . . . , NMF

Here, we have used that the gradient of the muscle fiber coordinate, see Equation (2.14),

with respect to x simplifies to ∇xsF,j = ∇x(d
⊤
F,j(x − yF,j)) = d⊤F,j. For the exponential

term we get

∇x

(
exp

(
−α

2

∥∥x− prj(x)
∥∥2)) = −α exp

(
−α

2

∥∥x− prj(x)
∥∥2) (x− prj(x))

⊤ (Id−dF,jd
⊤
F,j

)
.

Putting both equations together and inserting the Hodgkin-Huxley ODE for ∂tvm,j into

the spatial derivative of the muscle fiber membrane potential, we end up with

∇xVm(x) =

NMF∑
j=1

u−1
j

1

Cm,j

(Istim + κg,NaκE,Na + κg,KκE,K + cg,LκE,L)dF,j

· exp
(
−α

2

∥∥x− prj(x)
∥∥2)

−
NMF∑
j=1

[
u−1
j

1

Cm,j

(κg,Na + κg,K + cg,L)dF,j exp
(
−α

2

∥∥x− prj(x)
∥∥2)
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+ α exp
(
−α

2

∥∥x− prj(x)
∥∥2) (x− prj(x))

⊤ (Id−dF,jd
⊤
F,j

)]
vm,j(prj(x)).

We define the first term in the above equation as fj(x) and look at the norm of ∇xVm(x):

∥∇xVm∥L2(DM) ≤NMF|DM| max
j=1,...,NMF

∥fj∥∞

+

NMF∑
j=1

(|cg,Na|+ |cg,K|+ |cg,L|)
∥∥∥∥u−1

j

1

Cm,j

dF,j exp
(
−α

2

∥∥x− prj(x)
∥∥2)∥∥∥∥

∞︸ ︷︷ ︸
≤c1

· ∥vm,j∥L2(DF,j)

+

NMF∑
j=1

∥∥∥α exp
(
−α

2

∥∥x− prj(x)
∥∥2) (x− prj(x))

⊤ (Id−dF,jd
⊤
F,j

)∥∥∥
∞︸ ︷︷ ︸

≤c2

· ∥vm,j∥L2(DF,j)

Here, we made use of the probabilities λk of an individual gate being in the permissive

state being lower or equal 1, such that ∥κg,k∥∞ = |cg,k|, cf. Section 2.6.1. Note further

that the exponential term is bounded on a bounded domain so that we can bound the

infinity norms in the second and third term by constants c1 and c2. This shortens

notations and we achieve

∥∇xVm∥L2(DM) ≤ NMF|DM| max
j=1,...,NMF

∥fj∥∞ + (c1 + c2)

NMF∑
j=1

∥vm,j∥L2(DF,j)
.

We see that the gradient of Vm is bounded if the muscle fiber membrane potentials vm,j

are bounded. To prove the latter, we use a corollary from Grönwall’s inequality for lin-

early bounded ordinary differential equations that yields the boundedness of the solution

of an initial value problem ∂ty = F (t, y) with y(t0) = y0 if F is continuous and there

exist continuous and integrable functions f, f ′ such that

∥F (t, y)∥ ≤ f(t) + f ′(t)∥y∥.

We emphasize that f ′ indicates a function different from f and is not to be confused

with the derivative of f that would be denoted by ∂tf . In this context we have F :

(t0, t1)× R → R with

F (t, vm,j) =
1

Cm,j

(Istim − κg,Na(vm,j − κE,Na)− κg,K(vm,j − κE,K)− cg,L(vm,j − κE,L)).
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Hence, the norm of F is bounded by

∥F (t, vm,j)∥ =

∥∥∥∥ 1

Cm,j

(Istim + κg,NaκE,Na + κg,KκE,K + cg,LκE,L − (κg,Na + κg,K + cg,L)vm,j)

∥∥∥∥
≤ 1

|Cm,j|
(∥Istim∥+ |cg,Na|∥κE,Na∥+ |cg,K|∥κE,K∥+ |cg,L|∥κE,L∥)︸ ︷︷ ︸

=:f(t)

+
1

|Cm,j|
(|cg,Na|+ |cg,K|+ |cg,L|)︸ ︷︷ ︸

=:f ′(t)

∥vm,j∥L2(DF,j)

and we get the boundedness of vm,j and thus of∇Vm from Grönwall’s inequality as stated

before.

We conclude that the L2-norm of the gradient of the membrane potential Vm is

bounded for the two models considered here. Estimates (4.6) and (4.7) are summa-

rized to read

∥∇Vm∥L2(DM) ≤ cV (4.8)

for some cV > 0.

With the help of Lemma 4.1.2 we are able to show that the solution ϕ of aσ(ϕ, v) =

ℓσ(v) is Lipschitz continuous with respect to the global conductivity σ. This Lipschitz

continuity is a desirable property for two reasons. First, it induces the well-posedness of

the forward problem. Second, the Lipschitz continuity will later be helpful to prove error

bounds for the discretized probabilistic forward EMG problem and the well-posedness

of the Bayesian inverse EMG problem.

Lemma 4.1.4. Let σ ∈ (L∞(D;R3×3))3 be given and ϕ ∈ V denote the unique electric

potential that fulfills aσ(ϕ, v) = ℓσ(v) for all v ∈ V . Then the unique solution ϕ is

Lipschitz continuous with respect to σ, i.e., for all σ,σ′ ∈ (L∞(D;R3×3))3 there exists

a constant cL,σ > 0 such that

∥ϕ(σ)− ϕ(σ′)∥V ≤ cL,σ∥σ − σ′∥∞.

Proof. The lemma is clear for σ = σ′. Let thus σ,σ′ ∈ (L∞(D;R3×3))3 with σ ̸=
σ′ be arbitrary but fixed and ϕ := ϕ(σ), ϕ′ := ϕ(σ′) be the solutions of the weak
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formulation (4.2) for σ and σ′. Hence, ϕ solves∫
DM

(
(σi + σe)∇ϕe

)
· ∇ve +

∫
DB

(σ0∇ϕ0) · ∇v0 = −
∫
DM

(σi∇Vm) · ∇ve for all v ∈ V

(4.9)

and ϕ′ solves∫
DM

(
(σ′

i + σ′
e)∇ϕ′

e

)
· ∇ve +

∫
DB

(σ′
0∇ϕ′

0) · ∇v0 = −
∫
DM

(σ′
i∇Vm) · ∇ve for all v ∈ V.

(4.10)

By subtracting Equation (4.10) from Equation (4.9) and testing the result with v = ϕ−ϕ′

we achieve∫
DM

(
(σi + σe)∇ϕe − (σ′

i + σ′
e)∇ϕ′

e

)
· (∇ϕe −∇ϕ′

e) +

∫
DB

(σ0∇ϕ0 − σ′
0∇ϕ′

0) · (∇ϕ0 −∇ϕ′
0)

= −
∫
DM

(
(σi − σ′

i)∇Vm

)
· (∇ϕe −∇ϕ′

e). (4.11)

First, we take a closer look at the right-hand side of Equation (4.11) and calculate

−
∫
DM

(
(σi − σ′

i)∇Vm

)
· (∇ϕe −∇ϕ′

e) ≤ ∥σi − σ′
i∥∞∥∇Vm∥L2(DM)∥∇ϕe −∇ϕ′

e∥L2(DM)

≤ ∥σi − σ′
i∥∞∥∇Vm∥L2(DM)∥ϕ− ϕ′∥V . (4.12)

In a next step, we modify the left-hand side of Equation (4.11) by adding ±((σ′
i +

σ′
e)∇ϕe) · (∇ϕe −∇ϕ′

e) to the first integral and ±(σ′
0∇ϕ0) · (∇ϕ0 −∇ϕ′

0) to the second

integral to obtain∫
DM

(
(σi + σe)∇ϕe − (σ′

i + σ′
e)∇ϕ′

e

)
· (∇ϕe −∇ϕ′

e)

+

∫
DB

(σ0∇ϕ0 − σ′
0∇ϕ′

0) · (∇ϕ0 −∇ϕ′
0)

=

∫
DM

((
(σi + σe)− (σ′

i + σ′
e)
)
∇ϕe

)
· (∇ϕe −∇ϕ′

e)

+

∫
DM

(
(σ′

i + σ′
e))(∇ϕe −∇ϕ′

e)
)
· (∇ϕe −∇ϕ′

e)

+

∫
DB

(
(σ0 − σ′

0)∇ϕ0

)
· (∇ϕ0 −∇ϕ′

0)



4.1. Deterministic Forward EMG Problem 89

+

∫
DB

(
σ′
0(∇ϕ0 −∇ϕ′

0)
)
· (∇ϕ0 −∇ϕ′

0)

≥
∫
DM

((
(σi + σe)− (σ′

i + σ′
e)
)
∇ϕe

)
· (∇ϕe −∇ϕ′

e)

+

∫
DB

(
(σ0 − σ′

0)∇ϕ0

)
· (∇ϕ0 −∇ϕ′

0)

+ σ′
min

(
∥∇ϕe −∇ϕ′

e∥
2
L2(DM) + ∥∇ϕ0 −∇ϕ′

0∥
2
L2(DB)

)
(4.1)

≥
∫
DM

((
(σi + σe)− (σ′

i + σ′
e)
)
∇ϕe

)
· (∇ϕe −∇ϕ′

e)

+

∫
DB

(
(σ0 − σ′

0)∇ϕ0

)
· (∇ϕ0 −∇ϕ′

0)

+
1

2
σ′
min∥ϕ− ϕ′∥2V . (4.13)

Here, the global minimal conductivity σ′
min is defined as in Lemma 4.1.2. Combining

Equations (4.12) and (4.13) yields the estimate

1

2
σ′
min∥ϕ− ϕ′∥2V ≤ ∥σi − σ′

i∥∞∥∇Vm∥L2(DM)∥ϕ− ϕ′∥V

−
∫
DM

((
(σi + σe)− (σ′

i + σ′
e)
)
∇ϕe

)
· (∇ϕe −∇ϕ′

e)

−
∫
DB

(
(σ0 − σ′

0)∇ϕ0

)
· (∇ϕ0 −∇ϕ′

0).

We continue using Hölder’s inequality and the boundedness (4.3) of the solution ϕ:

1

2
σ2
min∥ϕ− ϕ′∥2V

HI

≤ ∥σi − σ′
i∥∞∥∇Vm∥L2(DM)∥ϕ− ϕ′∥V

+ ∥(σi + σe)− (σ′
i + σ′

e)∥∞∥ϕ∥V ∥ϕ− ϕ′∥V
+ ∥σ0 − σ′

0∥∞∥ϕ∥V ∥ϕ− ϕ′∥V
(4.3)

≤ ∥σi − σ′
i∥∞∥∇Vm∥L2(DM)∥ϕ− ϕ′∥V

+ ∥(σi + σe)− (σ′
i + σ′

e)∥∞2
∥σi∥∞
σmin

∥∇Vm∥L2(DM)∥ϕ− ϕ′∥V

+ ∥σ0 − σ′
0∥∞2

∥σi∥∞
σmin

∥∇Vm∥L2(DM)∥ϕ− ϕ′∥V

By canceling out ∥ϕ− ϕ′∥V and using the triangle inequality (TI) and the boundedness
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of ∥∇Vm∥L2(DM) we see

1

2
σ′
min∥ϕ− ϕ′∥V

TI

≤ ∥σi − σ′
i∥∞∥∇Vm∥L2(DM)

+ 2
∥σi∥∞
σmin

(
∥σi − σ′

i∥∞ + ∥σe − σ′
e∥∞

)
∥∇Vm∥L2(DM)

+ 2
∥σi∥∞
σmin

∥σ0 − σ′
0∥∞∥∇Vm∥L2(DM)

(4.8)

≤
(
1 + 6

∥σi∥∞
σmin

)
cV∥σ − σ′∥∞.

Hence, ∥ϕ− ϕ′∥V ≤ cL,σ∥σ − σ′∥∞ with cL,σ := 2
σ′
min

(
1 + 6

∥σi∥∞
σmin

)
cV.

The Lipschitz continuity of the forward operator G with respect to σ easily follows

from the above lemma as shown in the following corollary.

Corollary 4.1.5. For each given global conductivity σ ∈ (L∞(D;R3×3))3 the forward

operator G : (L∞(D;R3×3))3 → RNM is Lipschitz continuous with respect to σ, i.e., for

all σ,σ′ ∈ (L∞(D;R3×3))3 there exists a constant c′L,σ > 0 such that

∥G(σ)− G(σ′)∥RNM ≤ c′L,σ∥σ − σ′∥∞.

Proof. The Lipschitz continuity is clear for σ = σ′. For σ ̸= σ′ ∈ (L∞(D;R3×3))3 we

use the definition of the evaluation operator (2.25) and estimate

∥G(σ)− G(σ′)∥2RNM =

∥∥∥∥∥∥ 1

πr2el

(∫
Brel

(xm,j)∩∂D
ϕ(x,σ)− ϕ(x,σ′)dx

)NM

j=1

∥∥∥∥∥∥
2

RNM

=

NM∑
j=1

(
1

πr2el

)2
∣∣∣∣∣
∫
Brel

(xm,j)∩∂D
ϕ(x,σ)− ϕ(x,σ′)dx

∣∣∣∣∣
2

HI

≤ NM

(
1

πr2el

)2

|D|2∥ϕ(σ)− ϕ(σ′)∥2L2(∂D)

≤ NM

(
1

πr2el

)2

|D|2∥ϕ(σ)− ϕ(σ′)∥2L2(D)

≤ NM

(
1

πr2el

)2

|D|2∥ϕ(σ)− ϕ(σ′)∥2V .

Taking the square root, applying Lemma 4.1.4 and defining c′L,σ :=
√
NM

πr2el
|D|cL,σ, we see

the desired Lipschitz continuity.
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Similar considerations prove the boundedness of the forward operator G:

Corollary 4.1.6. The forward operator G : (L∞(D;R3×3))3 → RNM is bounded, i.e.,

there exists a constant 0 < cb < ∞ such that

∥G∥ = sup
σ∈(L∞(D;R3×3))3\0

∥G(σ)∥RNM

∥σ∥∞
≤ cb < ∞.

Proof. Since the global conductivity is bounded from below and above, it is sufficient

to show the boundedness of ∥G(σ)∥RNM . Following the procedure of the proof of Corol-

lary 4.1.5 we achieve

∥G(σ)∥RNM ≤
√
NM

πr2el
|D|∥ϕ∥V

(4.3)

≤ 2

√
NM|D|∥σi∥∞
πr2elσmin

∥∇Vm∥L2(DM)

(4.8)

≤ 2

√
NM|D|∥σi∥∞
πr2elσmin

cV < ∞.

4.2. Probabilistic Forward EMG Problem

Adding a stochastic model of the inevitable measurement error to the forward EMG

problem is the basic idea of the Bayesian approach to inverse problems and leads to the

probabilistic forward EMG problem, cf. Section 2.4. We model the measurement error

and define the probabilistic forward EMG problem in Section 4.2.1. In Section 4.2.2, we

prove the well-posedness of the probabilistic forward EMG problem.

4.2.1. Modeling the Measurement Error and Problem Formulation

As stated in Section 2.4, the measurement error is not known deterministically. Thus,

we model the measurement error as a stochastic quantity η : Ω → RNM for a complete

probability space (Ω,A, µ), see Section 2.2.1 for the definition of a complete probability

space.

We assume that the measurement error is additive and normally distributed with zero

mean and covariance matrix Ξ = diag(ξ, . . . , ξ) ∈ RNM×NM , and write η ∼ N(0,Ξ). For

justification of the assumption that the measurement error is normally distributed, we

briefly summarize the argument in [100, Section 10.5]: First, the measurement error is

assumed to be caused by Nerr ∈ N independent sources, e.g., by effects of parallax or



92 4. Theoretical Results

reaction time. Further, each source is assumed to shift the measurements by the same

quantity εerr > 0, where a shift of −εerr is equally likely as a shift of +εerr. Adding

up the error sources yields a binomial distribution that is known to tend to a normal

distribution in the limiting case Nerr → ∞.

Adding the normally distributed measurement error η to the forward operator as in

Definition 4.1.1 yields the model of probabilistic EMG data

ϕ
x,p(ω) := ϕ

x
+ η(ω) = G(σ) + η(ω) ∈ RNM (4.14)

for all ω ∈ Ω and ϕ
x
denoting the evaluation of the membrane potential at measuring

points x according to (2.25). Note that ϕ
x,p = ϕ

x,p(ω) is a random variable.

Solving equation (4.14) for the global conductivity σ, as it is the case in the inverse

problem setting, shows that also σ is a random variable.

In Section 2.2, we constructed random functions that are in L∞ almost surely through

series expansions with random coefficients. We follow this approach and write the ran-

dom conductivities σi, σe and σ0 as series expansions

σj(x, ω) = mj(x) +
∞∑
k=1

γj,kTj,k(ω)φk(x) (4.15)

for the index j ∈ {i, e, 0}. Further, we choose the functions mj, φk ∈ L∞(D;R3×3) with

∥φk∥L∞ = 1 for all k = 1, . . . ,∞, the coefficients γj := {γj,k}∞k=1 ∈ ℓ1 and the random

sequences Tj := {Tj,k}∞k=1 to be i.i.d. with Tj,1 ∼ U([−1, 1]). Furthermore, we pose the

following assumption.

Assumption 4.2.1. For j ∈ {i, e, 0} there exist constants δj > 0 and mmin,j > 0

satisfying 0 < mmin,j ≤ ess infx∈D mj(x) such that

∥γj∥ℓ1 =
δj

1 + δj
mmin,j.

Note that Assumption 4.2.1 ensures the convergence of the series defined in (4.15) and

the boundedness of σj for j ∈ {i, e, 0}.
As in Section 2.2, the closure Jj of the linear span of the functions mj, φk for k =

1, . . . ,∞ with respect to the norm ∥ · ∥∞ on L∞(D;R3×3) is a separable Banach space

for j ∈ {i, e, 0} and σj ∈ L∞(D;R3×3) ρ0,j-almost surely. Here, ρ0,j is the probability

measure as constructed in Section 2.2 using the Kolmogorov extension theorem 2.2.4

and (Jj,B(Jj), ρ0,j) is a probability space. We define the global parameter space J σ :=
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Ji × Je × J0, the product Borel σ-algebra Bσ := B(Ji) ⊗ B(Je) ⊗ B(J0) of the Borel

σ-algebras B(Ji) of Ji for j ∈ {i, e, 0}, and the product measure ρ0 := ρ0,i ⊗ ρ0,e ⊗ ρ0,0

such that σ ∈ J σ and (J σ,Bσ,ρ0) is a probability space.

Note that the treatment of the randomness simplifies significantly when the conduc-

tivities are constant, see our previously published results in [88].

In the following, we collect the random sequences Tj in the sequence T := (Ti, Te, T0)

and define the product spaces J :=×∞
k=1

[−1, 1] and J T := J ×J ×J such that Tj ∈ J
for j ∈ {i, e, 0} and T ∈ J T .

We emphasize that through the relation

G(σ(ω)) = G
((

mj(x) +
∞∑
k=1

γj,kTj,k(ω)φk(x)
)
j∈{i,e,0}

)
= G(T(ω))

the forward operator can be interpreted to either map random global conductivities σ or

the random coefficients T to computed surface EMG data ϕ
x
. We thus use the general

notion of parameters p ∈ J p from now on, where p = σ or p = T. Whenever it is

relevant to distinguish between the two cases, we highlight the difference.

Following the above discussion, we redefine the forward operator to map the parame-

ters p to the probabilistic EMG data ϕ
x
, i.e.,

G : J p → RNM with p 7→ ϕ
x

(4.16)

for p = σ or p = T. The probabilistic forward problem then reads:

Definition 4.2.2 (Probabilistic Forward EMG Problem). For given parameters

p ∈ J p compute the noisy probabilistic surface EMG data

ϕ
x,p = G(p) + η. (4.17)

4.2.2. Well-posedness

The well-posedness of the probabilistic forward EMG problem 4.2.2 includes the exis-

tence of a solution ϕ ∈ V fulfilling Equation (4.2) for all parameters p as well as the

continuous dependence of G on the parameters p ∈ J p.

Lemma 4.2.3. Let Assumption 4.2.1 hold. For each given global conductivity σ ∈ J σ

there exists a unique solution ϕ ∈ V fulfilling aσ(ϕ, v) = ℓσ(v) for all v ∈ V almost
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surely. Furthermore, there exists a constant cL,σ > 0 such that for all σ,σ′ ∈ J σ

∥ϕ(σ)− ϕ(σ′)∥V ≤ cL,σ∥σ − σ′∥∞ a.s.

Proof. Assumption 4.2.1 implies the existence of positive constants mmin,j,mmax,j > 0

with mmin,j ≤ ess infx∈D mj(x) and ess supx∈D mj(x) ≤ mmax,j such that

0 <
1

1 + δj
mmin,j ≤ σj(x) ≤ mmax,j +

δj
1 + δj

mmin,j < ∞

holds almost surely for all x ∈ D, see our discussion in Section 2.2.2. Furthermore,

σ is strongly measurable as a measurable function on a separable space, as stated in

Section 2.2.1. Thus, the existence of a unique solution of aσ(ϕ, v) = ℓσ(v) follows from

Lax-Milgram’s theorem.

The Lipschitz continuity then follows directly from the Lipschitz continuity of the

solution of the deterministic forward EMG problem as proven in Lemma 4.1.4.

Similar to the deterministic case, the Lipschitz continuity of the forward operator with

respect to the global conductivity follows and we have:

Corollary 4.2.4. Let Assumption 4.2.1 hold. Then the forward operator G : J σ → RNM

is Lipschitz continuous with respect to σ almost surely, i.e., for all σ,σ′ ∈ J σ there

exists a constant c′L,σ > 0 such that

∥G(σ)− G(σ′)∥RNM ≤ c′L,σ∥σ − σ′∥∞ a.s.

The Lipschitz continuity of the forward operator can be extended to the random

coefficients T. Therefore, following the definition of the infinity norm for the global

conductivity we define the infinity norm for T ∈ J T by

∥T∥∞ := max(∥Ti∥∞, ∥Te∥∞, ∥T0∥∞),

∥Tj∥∞ := sup
m≥1

|Tj,m|, j ∈ {i, e, 0}.

We now deduce the Lipschitz continuity of the forward operator G with respect to T

from Corollaries 4.2.4 and 4.1.5 using the definition of the global conductivity through

the series expansions (4.15).

Corollary 4.2.5. Let Assumption 4.2.1 hold. Then the forward operator G : J T → RNM

is Lipschitz continuous with respect to T almost surely, i.e., for all T,T′ ∈ J T there
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exists a constant c′L,T > 0 such that

∥G(T)− G(T′)∥RNM ≤ c′L,T∥T − T′∥∞ a.s.

Proof. The result is clear for T = T′ ∈ J T . Let thus T ̸= T′ ∈ J T and define

σ := σ(T),σ′ := σ′(T′) through the series expansions (4.15).

From Corollary 4.2.4, we already have the existence of a constant c′L,σ > 0 such that

∥G(σ)− G(σ′)∥RNM ≤ c′L,σ∥σ − σ′∥∞ a.s.

Consequently the remaining task is to find a constant cL,T > 0 such that

∥σ − σ′∥∞ ≤ cL,T∥T − T′∥∞ a.s.

Subtracting the series expansions of σ′ from the series expansions of σ yields

σj − σ′
j =

∞∑
m=1

γj,m
(
Tj,m − T ′

j,m

)
φm(x)

for j ∈ {i, e, 0}. For estimating the infinity norm of the above difference we use that

∥φm∥∞ = 1 for all m ∈ N and get

∥∥σj − σ′
j

∥∥
∞ = ess sup

x∈D
max

k,l=1,2,3

∣∣ ∞∑
m=1

γj,m
(
Tj,m − T ′

j,m

)
φm(x)

∣∣
kl

≤
∣∣ ∞∑
m=1

γj,m
(
Tj,m − T ′

j,m

)∣∣
≤ sup

m≥1
|Tj,m − T ′

j,m|
∞∑

m=1

|γj,m|

Assumption

≤
4.2.1

δj
1 + δj

mmin,j sup
m≥1

|Tj,m − T ′
j,m|

=
δj

1 + δj
mmin,j

∥∥Tj,m − T ′
j,m

∥∥
∞. (4.18)

Using the definitions of the infinity norm for σ and T, we see that

∥σ − σ′∥∞ ≤ cL,T∥T − T′∥∞

with cL,T := maxj∈{i,e,0}
δj

1+δj
mmin,j. Setting c′L,T := cL,σcL,T we end up with the Lipschitz
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continuity of the forward operator G with respect to T:

∥G(T)− G(T′)∥V ≤ c′L,T∥T − T′∥∞

Summarizing this section, we deduce that the forward operator of the probabilistic

forward EMG problem as defined in Definition 4.2.2 is Lipschitz continuous with respect

to p for both, p = σ and p = T.

4.3. Bayesian Inverse EMG Problem

The definition and the proof of the well-posedness of the Bayesian inverse EMG problem

of finding the distribution of parameters p given EMG measurement data ϕEMG uses

Bayes’ theorem for the function space setting, see Theorem 2.4.1. We follow the four

steps of applying Bayes’ theorem outlined in [17, Remark 3.5]:

1. Define a suitable prior measure ρ0 and noise measure ρnoise whose independent

product forms the reference measure ν0 with ν0(dp, dϕEMG) = ρ0(dp)⊗ρnoise(dϕEMG)

as in (2.4).

2. Determine the potential Φ such that dL(p,·)
dρnoise

(ϕEMG) = exp(−Φ(p;ϕEMG)) as in (2.3).

3. Show that the potential Φ is ν0-measurable.

4. Show that the scaling factor Z =
∫
J exp

(
−Φ(p;ϕEMG)

)
ρ0(dp) > 0 almost surely

with respect to ϕEMG, see (2.6).

In Section 4.3.1 we discuss the first two steps, defining the Bayesian inverse EMG prob-

lem. Afterwards, we address the last two steps, which yield the well-posedness of the

Bayesian inverse EMG problem in Section 4.3.2.

4.3.1. Problem Formulation

Before defining a suitable prior, noise measure, or potential as mentioned above, we

define the parameters to be inferred and the spaces they live in. Remember that we

formulated the probabilistic froward EMG problem for both p = σ and p = T in

Section 4.2.2. Hence, the inverse EMG problem can either be formulated as searching

for σ ∈ J σ such that G(σ)+η = ϕEMG or as searching for T ∈ J T such that G(T)+η =

ϕEMG.
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In the forward setting, the properties of the latter formulation followed from those

of the former and the same will hold for the inverse setting, as we will see in Sec-

tion 4.3.2. We have constructed the probability space (J σ,Bσ,ρ0) for the case p = σ

in Section 4.2.1.

In case p = T we equip J = ×∞
k=1

[−1, 1] with the product σ-algebra B(J ) :=⊗∞
k=1 B([−1, 1]), where B([−1, 1]) is the Borel σ-algebra on [−1, 1]. Subsequently, the

product probability measure

ρ0,T :=
∞⊗
k=1

dµk

is defined on the measurable space (J ,B(J )) with dµk being the normalized Lebesgue

measure on [−1, 1] as in [50, 92]. Note that ρ0,T is the probability law of the random

variables Tj =
(
Tj,k

)∞
k=1

since the Tj,k(ω) are assumed to be independent and uniformly

distributed on [−1, 1].

Moreover, we equip J T := J × J × J with the product σ-algebra BT := B(J ) ⊗
B(J ) ⊗ B(J ) and finally define the prior ρ0 := ρ0,T ⊗ ρ0,T ⊗ ρ0,T that describes the

behavior of T prior to having any knowledge from measurements. As in the case p = σ,

the measure space (J T ,BT ,ρ0) is a probability space and we write (J p,Bp,ρ0) whenever

both choices of parameters are valid.

The definition of the prior ρ0 enables us to formulate the Bayesian inverse EMG

problem.

Definition 4.3.1 (Bayesian Inverse EMG Problem). For a given prior measure ρ0

and measurements ϕEMG ∈ RNM find the posterior measure ρϕEMG
of parameters p given

EMG measurements ϕEMG.

Finishing step one on our way to applying Bayes’ theorem to solve the Bayesian

inverse EMG problem 4.3.1, we recall that we modeled the measurement error η to be

normally distributed with zero mean and covariance Ξ in Section 4.2.1. Hence, ρnoise is

the measure with distribution N(0,Ξ) and we have

ν0(dp, dϕEMG) = ρ0(dp)⊗ ρnoise(dϕEMG) (4.19)

for the reference measure ν0. According to [17, Section 3.4.2], the use of other statistical

assumptions on η is a straightforward extension of the theory whenever η has a smooth

density on RNM .
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The potential Φ is defined via the likelihood L(p, ϕEMG) of EMG measurements ϕEMG

given the unknown parameters p for p = σ or p = T. Since ϕEMG = G(p) + η with

η ∼ N(0,Ξ), we deduce that

ϕEMG|p ∼ N(G(p),Ξ)

and thus L(p, ·) is the measure with distribution N(G(p),Ξ). We compute the product

measure

νp(dp, dϕEMG) = ρ0(dp)⊗ L(p, dϕEMG) (4.20)

as defined in Equation (2.5). Inserting the above findings into Equation (2.3), it easily

follows that the potential Φ : J p × RNM → R defined by

Φ(p, ϕEMG) :=
1

2
∥ϕEMG − G(p)∥2Ξ − 1

2
∥ϕEMG∥2Ξ (4.21)

satisfies

dL(p, ·)
dρnoise

(ϕEMG) = exp(−Φ(p, ϕEMG))

as required in condition (2.3). Here the Ξ-norm is defined as ∥y∥Ξ :=
∥∥Ξ−1/2y

∥∥
RNM

.

Given the potential Φ, we define the scaling factor Z according to (2.6) as

Z :=

∫
J p

exp
(
− Φ(p, ϕEMG)

)
ρ0(dp).

This completes the setup for applying Bayes’ theorem to solve the Bayesian inverse

EMG problem 4.3.1.

4.3.2. Well-posedness

Recall that (J p,Bp,ρ0) is a probability space and thus a measurable space for both

p = σ and p = T. Hence, we are allowed to apply Bayes’ theorem for measurable

spaces, as indicated in a remark following Theorem 2.4.1, to prove the existence of a

solution of the Bayesian inverse EMG problem 4.3.1.

The remaining steps are the proof of the measurability of the potential Φ, as defined

in (4.21), with respect to the reference measure ν0 and the positivity of the scaling

factor Z. The next theorem summarizes both.
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Theorem 4.3.2. Let Assumption 4.2.1 hold and Φ : J p × RNM → R be as in (4.21).

Then for p = σ or p = T

1. the scaling factor Z is positive, i.e.,

Z =

∫
J p

exp
(
− Φ(p, ϕEMG)

)
ρ0(dp) > 0 ρnoise-a.s.,

2. the potential Φ : J p × RNM → R as defined in (4.21) is ν0-measurable, and

3. the conditional distribution ρϕEMG
exists with ρϕEMG

≪ ρ0, and for ϕEMG ∈ RNM

dρϕEMG

dρ0

(p) =
1

Z
exp

(
− Φ(p, ϕEMG)

)
νp-a.s.

Here, ν0 and νp are the product measures defined in Equations (4.19) and (4.20).

Proof. Recapitulating Section 2.2 we find that part 1 and 2 of Theorem 4.3.2 are the

required assumptions of Theorem 2.4.1. From Theorem 2.4.1, part 3 follows directly

once part 1 and 2 are proven.

1. From the properties of the exponential function, it follows that the scaling factor

Z =
∫
J p

exp
(
− Φ(p, ϕEMG)

)
ρ0(dp) is strictly positive as long as the potential Φ

is bounded. Applying the triangle inequality, this corresponds to the forward

operator being bounded, which we have proved in Corollary 4.1.6.

2. We split the proof of the ν0-measurability of the potential Φ into two parts. More

precisely, we need to show that a) Φ is ρϕEMG
-measurable in p and b) ρnoise-

measurable in ϕEMG. These measurabilities follow from the Lipschitz continuity

of the corresponding mappings and we thus aim at proving that Φ is Lipschitz

continuous with respect to p and Lipschitz continuous with respect to ϕEMG. We

note that the Lipschitz continuity of Φ follows from the corresponding Lipschitz

continuity of the forward map G that we have proved in Sections 4.1.2 and 4.2.2.

In this way, we deduce properties of the inverse problem from properties of the for-

ward problem, subsequently justifying the work spent to prove the well-posedness

of the forward EMG problem.

a) Let p,p′ ∈ J p. The Lipschitz continuity is clear for p = p′. For p ̸= p′ and



100 4. Theoretical Results

the scalar product ⟨·, ·⟩Ξ := ⟨Ξ− 1
2 ·,Ξ− 1

2 ·⟩ we calculate

|Φ(p)− Φ(p′)| = 1

2

∣∣∣∥ϕEMG − G(p)∥2Ξ − ∥ϕEMG − G(p′)∥2Ξ
∣∣∣

=
1

2
|⟨G(p),G(p)⟩Ξ − ⟨G(p′),G(p′)⟩Ξ + 2⟨ϕEMG,G(p′)− G(p)⟩Ξ|

TI

≤ 1

2
(|⟨G(p),G(p)− G(p′)⟩Ξ|+ |⟨G(p)− G(p′),G(p′)⟩Ξ|)

+ |⟨ϕEMG,G(p′)− G(p)⟩Ξ|
HI

≤ 1

2
(∥G(p)∥Ξ∥G(p)− G(p′)∥Ξ + ∥G(p)− G(p′)∥Ξ∥G(p

′)∥Ξ)

+ ∥ϕEMG∥Ξ∥G(p
′)− G(p)∥Ξ

Corrolary

≤
4.1.6

c∥Ξ∥∞∥G(p′)− G(p)∥RNM

≤ ccL,p∥p− p′∥∞.

Note that the last estimate follows from Corollary 4.2.4 for p = σ and from

Corollary 4.2.5 for p = T.

b) Let ϕEMG, ϕ
′
EMG ∈ RNM . Again, the Lipschitz continuity is clear for ϕEMG =

ϕ′
EMG. For ϕEMG ̸= ϕ′

EMG we rewrite the norms in the definition of the

potential Φ as scalar products and obtain

|Φ(p, ϕEMG)− Φ(p, ϕ′
EMG)| =

1

2

∣∣∣∥ϕEMG − G(p)∥2Ξ − ∥ϕ′
EMG − G(p)∥2Ξ

∣∣∣
=

1

2
|⟨ϕEMG, ϕEMG⟩Ξ + ⟨G(p),G(p)⟩Ξ

− ⟨ϕ′
EMG, ϕ

′
EMG⟩Ξ − ⟨G(p),G(p)⟩Ξ|

− 2⟨ϕEMG,G(p)⟩Ξ + 2⟨ϕ′
EMG,G(p)⟩Ξ

= |⟨(ϕ′
EMG − ϕEMG),G(p)⟩Ξ|

HI

≤ ∥ϕ′
EMG − ϕEMG∥Ξ∥G∥

Corrolary

≤
4.1.6

cbcV∥ϕEMG − ϕ′
EMG∥Ξ

≤ cbcV∥Ξ∥∞∥ϕEMG − ϕ′
EMG∥RNM (4.22)

3. The existence of the posterior distribution ρϕEMG
of p given ϕEMG now directly

follows from Theorem 2.4.1.

Extending the Lipschitz continuity of the probabilistic forward EMG problem, we
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now aim at proving the Lipschitz continuity of the solution of the Bayesian inverse

EMG problem, i.e., of the posterior distribution ρϕEMG
. For this purpose, we choose the

Hellinger metric

dHell(µ, µ
′) =

1

2

∫ (√
dµ

dν
−
√

dµ′

dν

)2

dν

 1
2

,

as in [17, Chapter 4] and [50], that we defined in Section 2.2, see Definition 2.2.2.

Using the Hellinger metric, the posterior ρϕEMG
is Lipschitz continuous with respect

to the measurements ϕEMG if there exists a constant cL,ρϕEMG
> 0 such that

dHell(ρϕEMG
,ρ′

ϕEMG
) ≤ cL,ρϕEMG

∥ϕEMG − ϕ′
EMG∥Ξ

for ϕEMG, ϕ
′
EMG ∈ RNM and ρϕEMG

,ρ′
ϕEMG

the posterior distributions of p given ϕEMG

and ϕ′
EMG.

We use the prior ρ0 as reference measure in the definition of the Hellinger metric and

achieve

2dHell(ρϕEMG
,ρ′

ϕEMG
)2 =

∫ √dρϕEMG

dρ0

−

√
dρ′

ϕEMG

dρ0

2

dρ0

=

∫ (√
1

Z
exp (−Φ(p, ϕEMG))−

√
1

Z ′ exp (−Φ(p, ϕ′
EMG))

)2

dρ0.

Before further investigating the Hellinger metric of ρϕEMG
and ρ′

ϕEMG
, we reformulate the

product

1

Z
exp (−Φ(p, ϕEMG)) =

1

Z
exp

(
− 1

2
∥ϕEMG − G(p)∥2Ξ +

1

2
∥ϕEMG∥2Ξ

)
=

1

Z exp
(
−1

2
∥ϕEMG∥2Ξ

) exp (− 1

2
∥ϕEMG − G(p)∥2Ξ

)
. (4.23)



102 4. Theoretical Results

Using the definition of the scaling factor Z, we see that

Z exp
(
− 1

2
∥ϕEMG∥2Ξ

)
=

∫
J p

exp
(
− 1

2
∥ϕEMG − G(p)∥2Ξ

+
1

2
∥ϕEMG∥2Ξ − 1

2
∥ϕEMG∥2Ξ

)
ρ0(dp)

=

∫
J p

exp
(
− 1

2
∥ϕEMG − G(p)∥2Ξ

)
ρ0(dp).

Inserting the definitions

Φ̃(p, ϕEMG) :=
1

2
∥ϕEMG − G(p)∥2Ξ, (4.24)

Z̃ :=

∫
J p

exp
(
− Φ̃(p, ϕEMG)

)
ρ0(dp) (4.25)

into Equation (4.23) yields

1

Z
exp (−Φ(p, ϕEMG)) =

1

Z̃
exp

(
− Φ̃(p, ϕEMG)

)
.

We thus reason that the Lipschitz continuity of the posterior distribution ρϕEMG
with

respect to ϕEMG follows from the Lipschitz continuity of Z̃ and Φ̃.

Lemma 4.3.3. Let Assumption 4.2.1 hold. Then the potential Φ̃ as defined in Equa-

tion (4.24) is locally Lipschitz continuous with respect to ϕEMG, i.e., there exists a con-

stant cL,Φ̃ such that

|Φ̃(ϕEMG)− Φ̃(ϕ′
EMG)| ≤ cL,Φ̃∥ϕEMG − ϕ′

EMG∥Ξ

holds for all ϕEMG, ϕ
′
EMG ∈ RNM with max{∥ϕEMG∥Ξ, ∥ϕ′

EMG∥Ξ} < ∞.

Before proving the above lemma, we highlight that max{∥ϕEMG∥Ξ, ∥ϕ′
EMG∥Ξ} < ∞ is

always fulfilled for physically meaningful EMG measurements ϕEMG and ϕ′
EMG. From a

theoretical perspective, however, ϕEMG, ϕ
′
EMG are so far arbitrary elements of RNM and

thus bounding their norm becomes necessary.

Proof. Let ϕEMG ̸= ϕ′
EMG ∈ RNM . Using the definition of Φ̃ we calculate

|Φ̃(ϕEMG)− Φ̃(ϕ′
EMG)| =

1

2
|∥ϕEMG − G(p)∥2Ξ − ∥ϕ′

EMG − G(p)∥2Ξ|

=
1

2
|∥ϕEMG∥2Ξ − ∥ϕ′

EMG∥
2
Ξ − 2⟨ϕEMG − ϕ′

EMG,G(p)⟩|
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TI

≤
HI

1

2
|∥ϕEMG∥2Ξ − ∥ϕ′

EMG∥
2
Ξ|+ ∥ϕEMG − ϕ′

EMG∥Ξ∥G∥

= |⟨ϕEMG − ϕ′
EMG, ϕEMG⟩+ ⟨ϕ′

EMG, ϕEMG − ϕ′
EMG⟩|

+ ∥ϕEMG − ϕ′
EMG∥Ξ∥G∥

≤ max{∥ϕEMG∥Ξ, ∥ϕ
′
EMG∥Ξ}∥ϕEMG − ϕ′

EMG∥Ξ
+ ∥ϕEMG − ϕ′

EMG∥Ξ∥G∥
Corrolary

≤
4.1.6

(max{∥ϕEMG∥Ξ, ∥ϕ
′
EMG∥Ξ}+ cb)∥ϕEMG − ϕ′

EMG∥Ξ

and we deduce that Φ̃ is Lipschitz continuous for all measurement data ϕEMG, ϕ
′
EMG ∈

RNM with max{∥ϕEMG∥Ξ, ∥ϕ′
EMG∥Ξ} < ∞.

The Lipschitz continuity of the potential Φ̃ with respect to ϕEMG allows to furthermore

prove the Lipschitz continuity of the scaling factor Z̃ = Z̃(ϕEMG) .

Lemma 4.3.4. Let Assumption 4.2.1 hold. Then the scaling factor Z̃(ϕEMG) as defined

in Equation (4.25) is Lipschitz continuous with respect to ϕEMG, i.e., there exists a

constant cL,Z̃ such that

|Z̃(ϕEMG)− Z̃(ϕ′
EMG)| ≤ cL,Z̃∥ϕEMG − ϕ′

EMG∥Ξ (4.26)

for all ϕEMG, ϕ
′
EMG ∈ RNM.

Proof. For ϕEMG ̸= ϕ′
EMG ∈ RNM we estimate

|Z̃(ϕEMG)− Z̃(ϕ′
EMG)| ≤

∫
J p

∣∣∣∣exp (− 1

2
∥ϕEMG − G(p)∥2Ξ

)
− exp

(
− 1

2
∥ϕ′

EMG − G(p)∥2Ξ
)∣∣∣∣ dρ0(p)

= 2

∫
J p

∣∣∣∣exp (− 1

2
∥ϕEMG − G(p)∥2Ξ

)
− exp

(
− 1

2
∥ϕ′

EMG − G(p)∥2Ξ
)∣∣∣∣ dρ0(p)

≤
√
2 |∥ϕEMG − G(p)∥Ξ − ∥ϕ′

EMG − G(p)∥Ξ|
TI

≤
√
2∥ϕEMG − ϕ′

EMG∥Ξ.

Note that we used the Lipschitz continuity of exp(−x) for x ∈ [0,∞] with Lipschitz

constant cL,exp = 1.
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Theorem 4.3.5. Let Assumption 4.2.1 hold and ρϕEMG
denote the solution of the Bayesian

inverse EMG problem for EMG measurement data ϕEMG that is given by Theorem 4.3.2.

Then ρϕEMG
is locally Lipschitz continuous with respect to the measured data ϕEMG, i.e.,

there exists a positive constant cL,ρϕEMG
> 0 such that

dHell(ρϕEMG
,ρ′

ϕEMG
) ≤ cL,ρϕEMG

∥ϕEMG − ϕ′
EMG∥Ξ (4.27)

holds for all ϕEMG, ϕ
′
EMG ∈ RNM with max{∥ϕEMG∥Ξ, ∥ϕ′

EMG∥Ξ} < ∞.

Proof. Let ϕEMG, ϕ
′
EMG ∈ RNM . The Lipschitz continuity is obvious for ϕEMG = ϕ′

EMG.

For ϕEMG ̸= ϕ′
EMG let ρϕEMG

,ρ′
ϕEMG

denote the corresponding solutions of the Bayesian

inverse EMG problem. We use the scaling factor Z̃ and the potential Φ̃ as defined

in Equations (4.25) and (4.24). For further simplification of the notations, we define

Φ̃ := Φ̃(p, ϕEMG), Φ̃
′ := Φ̃(p, ϕ′

EMG) and Z̃ := Z̃(ϕEMG), Z̃
′ := Z̃(ϕ′

EMG).

From the above considerations on the Hellinger metric of ρϕEMG
and ρ′

ϕEMG
we thus

have

2dHell(ρϕEMG
,ρ′

ϕEMG
)2 =

∫
J p

(√
1

Z̃
exp
(
−Φ̃
)
−
√

1

Z̃ ′
exp
(
−Φ̃′

))2

dρ0(p)

=

∫
J p

(
1√
Z̃

(
exp

(
− 1

2
Φ̃
)
− exp

(
− 1

2
Φ̃′
))

+

(
1√
Z̃

− 1√
Z̃ ′

)
exp

(
− 1

2
Φ̃′
))2

dρ0(p)

=

∫
J p

1

Z̃

(
exp

(
− 1

2
Φ̃
)
− exp

(
− 1

2
Φ̃′
))2

dρ0(p)

+

∫
J p

(
1√
Z̃

− 1√
Z̃ ′

)2

exp
(
−Φ̃′

)
dρ0(p)

+ 2

∫
J p

1√
Z̃

(
exp

(
− 1

2
Φ̃
)
− exp

(
− 1

2
Φ̃′
))

·
( 1

Z̃
− 1

Z̃ ′

)
exp

(
− 1

2
Φ̃′
)
dρ0(p).
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Using Young’s inequality (YI) to solve the last integral, we achieve

2dHell(ρϕEMG
,ρ′

ϕEMG
)2

YI

≤ 2

∫
J p

1

Z̃

(
exp

(
− 1

2
Φ̃
)
− exp

(
− 1

2
Φ̃′
))2

dρ0(p)

+ 2

∫
J p

(
1√
Z̃

− 1√
Z̃ ′

)2

exp
(
−Φ̃′

)
dρ0(p)

= 2

∫
J p

1

Z̃

∣∣∣∣exp(− 1

2
Φ̃
)
− exp

(
− 1

2
Φ̃′
)∣∣∣∣2 dρ0(p)

+ 2

∫
J p

∣∣∣∣∣ 1√
Z̃

− 1√
Z̃ ′

∣∣∣∣∣
2

exp
(
−Φ̃′

)
dρ0(p).

We apply the Lipschitz continuity properties that we proved in the previous corollaries.

Additionally, we use that the square root function is Lipschitz continuous on (0,∞] with

Lipschitz constant cL,sqrt and that the reciprocal of the exponential function is Lipschitz

continuous on [0,∞] with constant cL,e = 1:

2dHell(ρϕEMG
,ρ′

ϕEMG
)2 ≤ 2

∫
J p

1

Z̃

∣∣∣Φ̃− Φ̃′
∣∣∣2 + c2L,sqrt

∣∣∣Z̃ − Z̃ ′
∣∣∣2 exp(−Φ̃′

)
dρ0(p)

Lemmas

≤
4.3.3,4.3.4

2

∫
J p

1

Z̃
c2
L,Φ̃

∥ϕ− ϕ′∥2Ξ + c2L,sqrtc
2
L,Z̃

∥ϕ− ϕ′∥2Ξ exp
(
−Φ̃′

)
dρ0(p)

= 2
(
c2
L,Φ̃

1

Z̃
+ c2L,sqrtc

2
L,Z̃

Z̃ ′)∥ϕ− ϕ′∥2Ξ

Finally, it remains to show that 0 < Z̃ < ∞. Analogously to the positivity of Z in the

proof of Theorem 4.3.2, the strict positivity of Z̃ follows from the boundedness of the

forward operator G, see Corollary 4.1.6. We deduce that 1
Z̃
≤ cZ̃ < ∞ for some constant

cZ̃ > 0. Moreover, we have

Z̃ =

∫
J p

exp

(
−1

2
∥ϕEMG − G(p)∥2

)
dρ0(p) ≤

∫
J p

1dρ0(p) = ρ0(J p) = 1 < ∞

The assertion then follows with Lipschitz constant c2L,ρϕEMG

:= cL,Φ̃cZ̃ + c2L,sqrtc
2
L,Z̃

.

We emphasize that estimate (4.27) also describes the behavior of the posterior with

respect to the discretization of the underlying equations and variables as we will show

in the following section.
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4.4. Error Bounds

Building on the Lipschitz continuity results of the last sections, we quantify the in-

fluence of discretizing the underlying probabilistic forward EMG problem, as in Defi-

nition 4.2.2, on the solution of the Bayesian inverse EMG problem, i.e., the posterior

distribution ρϕEMG
. We perform the discretization in three steps: the discretization of the

weak formulation of the probabilistic forward EMG problem aσ(ϕ, v) = ℓσ(v), as defined

in (4.2), the discretization of the random conductivity σ(x, ω), and the discretization of

the evaluation operator (2.25).

We discretize the weak formulation (4.2)∫
DM

(
(σi + σe)∇ϕe

)
· ∇ve +

∫
DB

(σ0∇ϕ0) · ∇v0 = −
∫
DM

(σi∇Vm) · ∇ve

using the finite element method (FEM). Therefore, the domain D = DM ∪ DB is dis-

cretized by a triangulation Dh = Dh
M ∪Dh

B with mesh width hx. Second, the ansatz and

test space V is discretized. We choose the same discrete space V h ⊂ V to approximate

the ansatz and test spaces, making use of the coercivity of the bilinear form aσ(·, ·) to
ease notation. Note that in general different ansatz and test spaces can be used.

Let now v1, . . . , vNh
with Nh ∈ N be a basis of V h and

ϕ ≈ ϕh :=

Nh∑
k=1

(τe,k1DM
+ τ0,k1DB

)vk ∈ V h ⊂ V

be the basis representation of the FE solution with the characteristic functions 1DM
and

1DB
of the muscle and body region. The FE discrete forward EMG problem then reads

as follows: Find ϕh ∈ V h such that

Nh∑
k=1

(∫
Dh

M

(
(σi + σe)∇ve,k

)
· ∇ve,l

)
τe,k +

Nh∑
k=1

(∫
Dh

B

(σ0∇v0,k) · ∇v0,l

)
τ0,k

= −
∫
Dh

M

(σi∇Vm) · ∇ve,l (4.28)

holds for all test functions vl with l = 1, . . . , Nh. Within the FEM, the integrals are

approximated using quadrature rules. We forebear from using additional notations to

indicate the use of quadrature rules.

As briefly discussed in Section 3.1, there is no need to use a time discretization scheme

when the Rosenfalck model is used to describe the muscle fiber APs. When using the
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Hodgkin-Huxley model or any other ODE-based model for the electrophysiology of the

muscle fibers, time stepping schemes with some time step size ht are used. We denote

the time- and space-discrete solution by ϕh.

Next, we discretize the random conductivities

σj(x, ω) = mj(x) +
∞∑
k=1

γj,kTj,k(ω)φk(x),

for j ∈ {i, e, 0}. We do so by truncating the series expansions after the first Ntrunc ∈ N
terms and thus achieve the approximations

σj(x, ω) ≈ σNtrunc
j (x, ω) := mj(x) +

Ntrunc∑
k=1

γj,kTj,k(ω)φk(x) (4.29)

of the series expansions (4.15) for j ∈ {i, e, 0}. We denote the collection of the N3
trunc

random coefficients ({Ti,k}Ntrunc
k=1 , {Te,k}Ntrunc

k=1 , {T0,k}Ntrunc
k=1 ) by TNtrunc .

Plugging the truncated series expansions into Equation (4.28), the discrete solution

ϕh,Ntrunc :=
∑Nh

k=1(τ
Ntrunc
e,k 1DM

+ τNtrunc
0,k 1DB

)vk ∈ V h ⊂ V must fulfill

Nh∑
j=1

( ∫
Dh

(
(mi(x) +me(x) +

Ntrunc∑
k=1

(γi,kTi,k(ω) + γe,kTe,k(ω))φk(x))∇ve,j
)
· ∇ve,l

)
τNtrunc
e,j

+

Nh∑
j=1

(∫
Dh

B

((
m0(x) +

Ntrunc∑
k=1

γ0,kT0,k(ω)φk(x)

)
∇v0,j

)
· ∇v0,l

)
τNtrunc
0,j

=−
∫
Dh

M

(
(mi(x) +

Ntrunc∑
k=1

γi,kTi,k(ω)φk(x))∇Vm

)
· ∇ve,l (4.30)

for all l = 1, . . . , Nh.

In case the conductivities are constant, the Bayesian inverse problem simplifies to

searching for the posterior distribution of the conductivities themselves. A description

of that case has previously been published in [88]. As the three random conductivities

then are space-independent random variables, the above discretization of σ becomes

obsolete in that case.

Finally, we insert the discrete solution ϕh,Ntrunc into the evaluation operator (2.25) and

achieve

ϕh,Ntrunc
x

=
1

πr2el

(∫
Brel

(xm,j)∩∂Dh

ϕh,Ntrunc(x)dx
)NM

j=1
∈ RNM .
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As in the FEM, we use quadrature rules to approximate the boundary integrals in the

above equation and denote the discrete computed EMG data by ϕh,Ntrunc,Q
x

∈ RNM . This

is the solution of the fully discrete probabilistic forward EMG problem.

The discretization of the solution of the Bayesian inverse EMG problem, i.e., the

discretization of the posterior distribution ρϕEMG
of p given measurement data ϕEMG, is

discussed in Chapter 5.

We compare the solution ϕh,Ntrunc,Q
x

of the fully discrete probabilistic forward EMG

problem to the exact solution ϕ∗ ∈ V that satisfies ϕ∗
x
= ϕEMG. Therefore, we denote the

error of applying a quadrature rule to numerically evaluate the evaluation operator (2.25)

by EQ, the error resulting from truncating the series expansion (4.15) by Etrunc, and the

time and space discretization error including the FE quadrature error by Eh. Using the

triangle inequality, we obtain

∥∥ϕ∗(x)− ϕh,Ntrunc,Q(x)
∥∥
Ξ
≤
∥∥ϕ∗(x)− ϕh,Ntrunc(x)

∥∥
Ξ
+ EQ

≤ c
∥∥ϕ∗(x)− ϕh,Ntrunc(x)

∥∥
V
+ EQ

≤ c
(∥∥ϕ∗ − ϕh

∥∥
V︸ ︷︷ ︸

=:Eh

+
∥∥ϕh − ϕh,Ntrunc

∥∥
V︸ ︷︷ ︸

=:Etrunc

)
+ EQ

≤ c(Eh + Etrunc + EQ).

We emphasize that Eh includes both the FEM and time discretization error EFEM and

Et, and we achieve

∥∥ϕ∗(x)− ϕh,Ntrunc,Q(x)
∥∥
Ξ
≤ c(EFEM + Et + Etrunc + EQ). (4.31)

It follows from the above calculation that the overall discretization error is dominated by

the maximum error in quadrature EQ, FE discretization EFEM, time discretization Et,

and truncation of the series expansions Etrunc. Recall that even if we did not indicate the

use of FE discretization quadrature rules explicitly, EFEM also includes this quadrature

error.

The Lipschitz continuity of the electrical potential ϕ with respect to the global con-

ductivity σ

∥ϕ(σ)− ϕ(σ′)∥V ≤ cL,σ∥σ − σ′∥∞,
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given by Lemma 4.2.3, yields a first estimate for the truncation error:

∥∥ϕ∗ − ϕN
trunc

∥∥
V

Lemma

≤
4.2.3

cL,σ′
∥∥σ∗ − σNtrunc

∥∥
∞

≤ cL,σ′ max
j∈{i,e,0}

∞∑
k=Ntrunc+1

|γj,k||Tj,k|∥φk∥

≤ cL,σ′ max
j∈{i,e,0}

∞∑
k=Ntrunc+1

|γj,k|

By Assumption 4.2.1 the ℓ1-norm of the coefficients γj is bounded and thus the truncation

error is bounded too. Moreover, we introduce the following assumptions to further

quantify the error estimate:

Assumption 4.4.1.

1. For j ∈ {i, e, 0} we assume that |γj,k| > |γj,k+1| for all k = 1, . . . ,∞ and that there

exists constants cj > 0 and otrunc > 0 such that
∑∞

k=Ntrunc+1 |γj,k| ≤ cjN
−otrunc
trunc .

2. Assume that there exist constants cFEM > 0 and oFEM > 0 such that EFEM ≤
cFEMh

oFEM
x .

3. Assume that there exist constants ct > 0 and ot > 0 such that Et ≤ cth
ot
t .

4. Assume that there exist constants cQ > 0 and oQ > 0 such that EQ ≤ cQh
oQ
x .

Note that the above assumption on the truncation error Etrunc implies that describing

σ through the series expansions and searching for the posterior distribution of the ran-

dom coefficients T is more efficient then inferring the global conductivity itself, whenever

the conductivity is space-dependent. This is due to the assumption that the random

coefficients T decay with rate otrunc such that we can assume that a moderate number of

coefficients is sufficient to describe the conductivities. On the other hand, discretizing

the space-dependent conductivities using, e.g., finite differences or FEs, and inferring

the corresponding coefficients leads to a huge number of parameters, thus rendering this

approach infeasible.

Applying Assumptions 4.4.1 to Estimate (4.31) we achieve the error estimate

∥∥ϕ∗
x
− ϕh,Ntrunc,Q

x

∥∥
Ξ
≤ c
(
hoFEM
x + hot

t +N−otrunc
trunc + hoQ

x

)
, (4.32)

where hx is the maximal spatial grid size of the underlying FE grid.
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Recall that following Theorem 4.3.5

dHell(ρϕEMG
,ρ′

ϕEMG
) ≤ cL,ρ0

∥ϕ− ϕ′∥Ξ

holds for all ϕ, ϕ′ ∈ RNM with max{∥ϕEMG∥Ξ, ∥ϕ′
EMG∥Ξ} < ∞. Thus, for ϕ = ϕ∗,

ϕ′ = ϕh,Ntrunc,Q, ρϕEMG
= ρ∗

ϕEMG
, and ρ′

ϕEMG
= ρh

ϕEMG
denoting the posterior distribution

of σNtrunc or TNtrunc given ϕh,Ntrunc,Q we have the following corollary.

Corollary 4.4.2. Let Assumptions 4.2.1 and 4.4.1 hold. Then there exists a constant

c > 0 such that the Hellinger metric of the true posterior ρ∗
ϕEMG

and the posterior ρh
ϕEMG

of the computed EMG data using the above discretizations of the underlying probabilistic

forward EMG problem fulfills

dHell(ρ
∗
ϕEMG

,ρh
ϕEMG

) ≤ c
(
hoFEM
x + hot

t +N−otrunc
trunc + hoQ

x

)
if max{∥ϕEMG∥Ξ,

∥∥ϕh,Ntrunc,Q
x

∥∥
Ξ
} < ∞.



5. Sampling Algorithms for Solving the

Bayesian Inverse EMG Problem

As stated in Definition 4.3.1 the Bayesian inverse EMG problem aims at finding the

posterior measure ρϕEMG
of the global conductivity σ or the coefficients T for given

surface EMG measurements ϕEMG ∈ RNM . For sampling from this posterior distribution,

we introduced the prototype Metropolis-Hastings algorithm 2.3.1 in Section 2.4.2.

In Section 5.1 we adapt this general Metropolis-Hastings algorithm to the inverse

setting used in the numerical experiments in Chapter 6. That means we assume that

the conductivities are constant throughout their respective domains. This particularly

implies that the muscle fibers are parallel to each other. The parameter of interest in

that case is the global conductivity σ itself. Additionally, we assume that σ0 and σe are

known, what leaves the intracellular conductivity σi as unknown parameter. Recalling

the construction of arbitrary intracellular conductivities in Section 3.2.2, we establish

the conductivity magnitudes and the rotation angles as the parameters of interest. The

above settings and assumptions lead to the definition of our standard Metropolis-Hastings

algorithm (SA). We validate and quantify the performance of the SA in several parameter

studies in Section 5.2 and notice that solving the forward EMG problem, as discussed

in Chapter 3, for evaluating the acceptance strategy makes up a high percentage of the

runtime. Furthermore, solving the forward EMG problem is time-consuming and thus

impractical when a high number of proposals needs to be drawn until the SA converges.

For accelerating the forward EMG problem solves we combine the low-rank tensor rep-

resentation of the parameter-dependent forward EMG problem derived in Section 3.2.4

with the SA in Section 5.3. Doing so enables us to precompute the solution of the for-

ward EMG problem on a discrete parameter grid, store the solutions in a data-sparse

format, and evaluate this tensor solution in each step of the SA. Our parameter studies

in Sections 5.3.1 and 5.3.2 show that evaluating the precomputed tensor solution in each

step of the Metropolis-Hastings algorithm is much faster than solving the forward EMG

problem and, nevertheless, accurate.

111
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5.1. Standard Metropolis-Hastings Algorithm

Recall that the Metropolis-Hastings algorithm is an acceptance-rejection algorithm that

draws a proposal from a proposal distribution and accepts it as a sample from the

posterior with a particular probability. If the proposal is rejected, the old sample is kept

and a new proposal is drawn.

In Theorem 2.4.2 we stated that the Metropolis-Hastings algorithm produces a pos-

terior-reversible Markov chain when choosing the proposal distribution to be the prior

and the acceptance probability

a(p,p′) = min{1, exp(Φ(p)− Φ(p′))}.

In the EMG setting p = σ or p = T and Φ(p) is the potential as defined in Equa-

tion (4.21). To get an intuition for the acceptance strategy a, we rewrite it inserting the

definition of the potential Φ(p):

a(p,p′) = min
{
1, exp

(
Φ(p)− Φ(p′)

)}
= min

{
1, exp

(1
2
∥ϕEMG − G(p)∥2Ξ − 1

2
∥ϕEMG − G(p′)∥2Ξ

)}
= min

{
1,

exp
(
1
2
∥ϕEMG − G(p)∥2Ξ

)
exp

(
1
2
∥ϕEMG − G(p′)∥2Ξ

)}> 1 if ∥ϕEMG − G(p′)∥2Ξ < ∥ϕEMG − G(p)∥2Ξ,

= 1 otherwise
(5.1)

Consequently, a new proposal is always accepted if it produces less error than the actual

sample and is rejected otherwise with probability 1− a, i.e., the old sample is kept with

probability 1−a. For a formal derivation of this Metropolis-Hastings algorithm and the

acceptance strategy, we again refer to [17, Chapter 5] and the literature cited therein.

Recall that after discretization of the forward EMG problem for an arbitrary space-

dependent global conductivity, the aim is to infer the N3
trunc space-independent coef-

ficients of the truncated series expansions (4.29), i.e., to sample from their posterior

distribution. In the discrete case, we thus have the N3
trunc coefficients TNtrunc as param-

eters, i.e., p = TNtrunc . Following Assumptions 4.4.1, the coefficients T decay fast, such

that a moderate number N3
trunc of random coefficients leads to a good approximation of

the global conductivity σ. In this way, the number of parameters to be inferred from

the given measurement data ϕEMG is limited.
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Nevertheless, when the global conductivity can be assumed to be constant, there is no

need to make use of the series expansions. Inferring the entries of the (then constant)

conductivity matrices σi, σe, σ0 ∈ R3×3 means inferring 3 · 6 = 18 parameters. This

is more efficient than modeling the constant matrices through series expansions and

inferring the resulting coefficients. Recall that the conductivity matrices σi, σe, σ0 are

symmetric and thus fully determined by 6 instead of 9 entries each.

In the following, we fix σ0 and σe and adapt the general Metropolis-Hastings algorithm

from Section 2.4.2 to sample from the posterior distribution of a constant conductivity

matrix σi ∈ R3×3 given measurement data ϕEMG ∈ RNM .

We construct arbitrary symmetric and positive definite conductivity matrices σi ∈
R3×3 by rotating a given positive definite diagonal matrix σ∗

i by angles α = (α1, α2, α3)

around the corresponding coordinate axes e1, e2 and e3 as defined in Section 3.2.2:

σi(α) = R1(α1)R2(α2)R3(α3)σ
∗
i R

⊤
3 (α3)R

⊤
2 (α2)R

⊤
1 (α1)

Here, Rk are the rotation matrices defined in Equation (3.2) and we call σi,jj for j = 1, 2, 3

the conductivity magnitudes. Thus, we fully describe a constant intracellular conductiv-

ity matrix by six parameters: three conductivity magnitudes plus three rotation angles.

We set p := (σi,11, σi,22, σi,33, α1, α2, α3) and define the parameter space of the diagonal

matrix entry describing the conductivity in longitudinal direction, i.e., in muscle fiber

direction, Jl := [6, 10], the parameter space of the diagonal matrix entries describing the

conductivity in transversal muscle fiber direction Jt := (0, 4], and the parameter space

of the angles αj for j = 1, 2, 3 as Jα := [0, π].

Note that we defined the parameter spaces for the conductivity magnitudes to contain

the original values of the former KerMor implementation that we chose to serve as

reference values in Section 3.3. For the rotation angles we use the fact that only the

muscle fiber direction influences the forward EMG problem while the orientation of the

muscle fiber direction has no impact, i.e., loosely speaking “G(dF) = G(−dF)”. Thus,

choosing Jα = [0, π] allows for arbitrary muscle fiber directions.

The parameter space J of p is then defined as the product of these spaces. Note that

the global parameter space depends on the physical interpretation of the conductivity

magnitudes σd,11, σd,22, and σd,33. Exemplarily, if σd,11 is the longitudinal conductivity

magnitude, we have J = Jl × Jt × Jt × Jα × Jα × Jα.

Applying the above definitions, the goal of the Bayesian inverse EMG problem is to

determine the conditional probability distribution ρϕEMG
of p ∈ J given ϕEMG. We
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Figure 5.1.: Influence of changes in conductivity magnitudes σ∗,j
i with α = (0, 0, 0) on

the potential Φ

extend the KerMor forward EMG model, described in Chapter 3, by the Metropolis-

Hastings algorithm to draw samples from this probability distribution. Our implemen-

tation provides the possibility to sample from the distribution of p, as defined above,

given measurement data ϕEMG or to fix either the magnitudes or the rotation angles.

We denote the constructed Markov chain by p.

In the above discussion of the acceptance strategy we saw that the acceptance strat-

egy of the Metropolis-Hastings algorithm is determined by the potential Φ, more pre-

cisely by the norm of the error between measured and computed surface EMG data

∥ϕEMG − G(p)∥Ξ.
For analyzing the acceptance strategy of the SA, our standard settings of the forward

problem as described in Section 3.3 serve as reference configurations. We use the refer-

ence values of the intracellular conductivity σ∗,j
i defined in Section 3.3 with d∗,jF = ej for

j = 1, 2, 3, and compute arbitrary intracellular conductivity matrices by rotating σ∗,j
i as

described above.

We show the influence of the six parameters p = (σi,11, σi,22, σi,33, α1, α2, α3) on the

error ∥ϕEMG − G(p)∥∞ in the infinity norm in Figures 5.1 and 5.2. Note that the quan-

titative behavior of the error curves is independent of the choice of the norm due to the

norm equivalence in RNM .

We obtain from Figure 5.1 that changing the conductivity magnitudes influences the
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error norm linearly when keeping the rotation angles constant, here α = (0, 0, 0). Fol-

lowing our discussion in Section 3.2.4, we expected this linear behavior from the rank

analysis in Figure 3.10. Further, we see that the influence of each conductivity magnitude

is different. This behavior is explained by the underlying physical system. Knowing that

σ∗,j
i,jj, j = 1, 2, 3, is the longitudinal intracellular conductivity, it is easy to understand

that σ∗,j
i,jj has the highest impact on the error norm for j = 1, 2.

Furthermore, for j = 1, 2 the influence of σ∗,j
i,33, i.e., the conductivity magnitude that

describes the propagation of the electrical signals perpendicular to the measuring surface,

is significantly higher than the influence of the conductivity magnitude describing the

propagation of the electrical signals parallel to the measuring surface but perpendicular

to the muscle fiber direction. This is due to the asymmetry of the geometry, i.e., the

muscle cuboid, that has length 3 cm in e1-and e2-direction but only has length 1 cm in

e3-direction.

For the third reference conductivity, we observe that even though the muscle fiber

direction is e3, σ
∗,3
i,33 has low impact on the potential while σ∗,1

i,33 and σ∗,2
i,33 have a similar

impact. We reason the low impact of the longitudinal conductivity with the geometry

used. Remember that we set geo=[3,3,1], i.e., the muscle fibers are 1 cm long when

dF = e3 and are 3 cm long when dF = e1 or dF = e2. Thus, the muscle fiber APs

only travel a short distance when dF = e3 compared to the other cases and altering



116 5. Sampling Algorithms for Solving the Bayesian Inverse EMG Problem

the longitudinal conductivity, which can be interpreted as the propagation speed of the

APs through the muscle, has lower impact than altering the perpendicular conductivity

magnitudes.

For changes in the rotation angels and fixed conductivity magnitudes σ∗,j
i as before,

we see a strongly nonlinear behavior of the error norm ∥ϕEMG − G(p)∥∞ in Figure 5.2.

Recapitulating the influence of the rotation angle and thus of the muscle fiber direction

especially on the right-hand side of the forward EMG problem shows that the nonlin-

earity of the right-hand side is directly transferred to the error norm. See Section 2.6

for the theoretical and Section 3.2 for the discretization and implementation aspects of

arbitrary muscle fiber directions and their influence on the right-hand side.

First, we see from the black lines in Figure 5.2 that rotations around the ej-axis have

no impact on the error norm ∥ϕEMG − G(p)∥∞ if the muscle fiber direction is ej, for

j = 1, 2, 3, for obvious reasons. As before, we split the discussion of our observations into

the case σ∗,j
i for j = 1, 2 and the case j = 3. For the first two reference conductivities

we again see a similar behavior when comparing the curves of α = εe2 for σ∗,1
i and

α = εe1 for σ∗,2
i , i.e., the gray straight and dashed lines, and the curves of α = εe3 for

σ∗,1
i and σ∗,2

i , i.e., the light gray straight and dashed lines. The described behavior is, as

before, explained by the symmetry of the forward EMG problem and the geometry for

the reference values σ∗,1
i and σ∗,2

i .

For σ∗,3
i , we see a different behavior that is, however, similar for the rotations around

the e1- and e2-axis, i.e., the dotted light gray and gray lines. The similarity of these two

curves reflects the symmetry of the forward EMG problem under rotation of the muscle

fiber direction dF = e3 around the e1- or e2-axis.

Summarizing the influence of the parameters p on the error norm and thus on the

acceptance strategy, we find a linear behavior for the conductivity magnitudes and a

strongly nonlinear behavior for the rotation angles. We deduce that inferring the con-

ductivity magnitudes is expected to be easier than inferring the rotation angles.

Using a local proposal distribution might improve the convergence of the Metropolis-

Hastings algorithm significantly, especially when inferring the rotation angles. We thus

introduce a sampling radius rs and draw a new proposal p′ uniformly from an interval of

width 2rs around the latest accepted sample pj intersected with the parameter space J ,

i.e., p′ ∼ U([pj − rs, pj + rs] ∩ J ). The initial proposal is drawn in the same manner

with the reference value taking the place of the last accepted sample. We highlight,

that our implementation of the Metropolis-Hastings algorithm allows choosing different

sampling radii for the conductivity magnitudes and the rotation angles to account for
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the significantly different influence of the magnitudes and angles on the potential Φ.

Merging the above results into the general Metropolis-Hastings algorithm 2.3.1 finally

leads to the SA as defined in Algorithm 5.1.1.

Algorithm 5.1.1 Standard Metropolis-Hastings algorithm (SA)

Input: Starting point p1 for the Markov chain, sampling radius rs, length of Markov
chain Ns

Output: A Markov chain p
1: for j = 1 . . . Ns − 1 do
2: propose p′ ∼ U([pj − rs, pj + rs] ∩J ) independent of pj

draw c ∼ U([0, 1])
3: if c ≤ a(pj,p

′) = min
{
1, exp

(
Φ(pj)− Φ(p′)

)}
then

4: set pj+1 = p′

5: else
6: set pj+1 = pj
7: end if
8: end for

Note that each accepted sample enters the Markov chain and that we forebear from

the practice of discarding samples as so-called burn-in. Instead, we use the knowledge

of the reference solution to obtain only valid proposals. We refer to [34, Section 11.4]

for a detailed discussion of the usage of burn-in samples.

5.2. Validation of the Standard Metropolis-Hastings

Algorithm

Within this section, our aims are to validate our implementation of the SA, quantify the

convergence of the SA, and fix the sampling radius rs for the conductivity magnitudes

and the rotation angles. Moreover, we aim at determining how large the noise level ξ can

grow before the SA diverges. Note that we compute artificial surface EMGmeasurements

by adding Gaussian noise to the noise-free computed surface EMG data described in

Chapter 3.

For validating the SA we proceed in several steps. First, we run the SA for inferring

the conductivity magnitudes for a fixed number of proposals and varying sampling ra-

dius rs and noise level ξ in Section 5.2.1. Second, we choose a Gaussian distribution

for proposing new samples to the Markov chain and compare the behavior of the SA

with Gaussian proposal distribution to the behavior of the SA with uniform proposal
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distribution in Section 5.2.2. Third, we examine the influence of the number of param-

eters to be inferred on the behavior of the SA in Section 5.2.3. Finally, we examine

the inferrability of the rotation angles in Section 5.2.4. As we have indicated above, we

expect that the rotation angles are harder to infer than the conductivity magnitudes due

to their nonlinear influence on the potential Φ and thus on the acceptance probability.

For evaluating our experiments, we denote the number of accepted proposals by Na

and the total number of proposals by Ns, and present the acceptance rate

κa :=
Na

Ns

,

the mean absolute deviation

MAD(p) :=
1

Ns

Ns∑
j=1

|pj − p̄|,

and the variance

var(p) :=
1

Ns − 1

Ns∑
j=1

(pj − p̄)2

of the constructed Markov chain p, where p̄ denotes the mean of the Markov chain p,

compare Section 2.2.

5.2.1. Conductivity Magnitudes

As before, we use the standard settings from Section 3.3 as reference configurations

and fix the rotation angles at α∗ = (0, 0, 0). We run Algorithm 5.1.1 for sampling the

conductivity magnitudes, i.e., p = (σi,11, σi,22, σi,33) ∈ R3, for rs ∈ {0.3, 0.5, 0.7, 0.9},
ξ ∈ {0.05, 0.1, 0.2, 0.4}, and Ns = 1000. The behavior of the sampled chains and the

corresponding histogram plots are shown exemplarily in Figure 5.3.

Comparing the behavior of the chains in Figure 5.3c to the behavior of the chains

in Figures 5.3a and 5.3e indicates that choosing a larger sampling radius rs or higher

noise level ξ leads to larger jumps in the chains. In the respective histogram plots, see

Figure 5.3d, these jumps are represented by a larger variation, i.e., wider histograms

with less significant peaks. Note that the blue histogram, which corresponds to the

longitudinal conductivity magnitude, is higher and narrower than the red and green

histograms that correspond to the transversal conductivity magnitudes. This behavior
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(a) Plot of sampled chains for p∗,2, rs =
0.3, ξ = 0.1
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(b) Histogram plots for p∗,2, rs = 0.3, ξ =
0.1
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(c) Plot of sampled chains for p∗,2, rs =
0.9, ξ = 0.4
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(d) Histogram plots for p∗,2, rs = 0.9, ξ =
0.4
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(e) Plot of sampled chains for p∗,3, rs =
0.5, ξ = 0.05
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(f) Histogram plots for p∗,3, rs = 0.5, ξ =
0.05

Figure 5.3.: Plots of sampled chains of the conductivity magnitudes and corresponding
histograms of the chains for different reference conductivities p∗,j, sampling
radius rs, and noise level ξ in the standard settings from Section 3.3
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Table 5.1.: Statistics of the standard algorithm for inferring the conductivity magnitudes
with 1000 drawn samples for varying noise level ξ and sampling radius rs in
the standard settings from Section 3.3 and p∗,1

rs ξ κa |p̄ − p∗,1| (%) MAD(p) (%) var(p) (%)

0.30 0.05 3.00 0.13 7.64 0.02 3.88 8.02 5.81 0.87 3.14 2.09
0.30 0.10 4.70 0.19 2.83 1.32 4.77 11.95 6.79 1.11 4.04 2.97
0.30 0.20 14.10 1.50 1.76 0.74 6.35 13.05 9.90 1.14 4.89 2.75
0.30 0.40 32.70 3.78 12.80 4.76 9.28 23.46 16.13 1.66 9.79 4.91
0.50 0.05 1.70 2.08 1.31 4.10 2.34 9.04 4.58 0.71 2.66 2.89
0.50 0.10 2.40 0.13 1.31 2.98 4.65 12.24 7.46 0.88 3.44 3.20
0.50 0.20 5.60 0.69 11.60 6.55 6.72 14.63 10.46 1.10 4.30 3.85
0.50 0.40 14.50 0.73 9.47 5.71 10.12 23.42 16.71 1.84 8.50 5.76
0.70 0.05 1.40 1.04 3.81 1.72 6.28 14.42 6.18 1.11 4.96 3.98
0.70 0.10 1.60 1.71 4.94 1.76 6.70 15.75 7.30 1.15 5.42 4.25
0.70 0.20 2.90 2.78 1.58 3.04 4.65 13.50 10.19 0.79 4.47 4.30
0.70 0.40 7.70 1.89 12.83 3.16 8.63 22.52 15.80 1.51 8.89 5.54
0.90 0.05 1.30 0.21 5.92 0.15 7.01 6.00 7.54 1.27 2.71 4.87
0.90 0.10 1.70 2.21 2.32 3.23 5.66 13.50 15.24 1.33 5.20 6.27
0.90 0.20 1.50 2.86 16.70 4.21 5.01 15.22 7.84 1.19 7.04 4.91
0.90 0.40 4.80 1.03 13.38 1.66 8.75 19.39 13.64 1.79 7.92 6.25

results from the high influence of the longitudinal conductivity on the forward EMG

problem compared to the low influence of the longitudinal conductivities, see Figure 5.1.

In Figure 5.3e, the Markov chain seems to be stuck at the values accepted in step

326. This behavior leads to a low acceptance rate, κa = 1.2 in this case, as shown in

Table 5.3. On the other hand, the value of the chain at step 326 is a point of high prob-

ability as it fulfills |p326 − p∗,3| = |(0.93916, 0.93818, 8.8451) − (0.893, 0.893, 8.930)| =
(0.04616, 0.04518, 0.0849) and we thus expect the chain to put high weight on this value.

Eventually, the chain will move to another point and continue exploring the param-

eter space. The described phenomenon of sampled Markov chains “getting stuck” at

high probability points is further described in [101, Section 2.3.3]. The corresponding

histogram plot, see Figure 5.3f, indicates that this behavior results in a very narrow

histogram, where nearly all the mass lies in one histogram bin.

In Tables 5.1 to 5.3, we present the acceptance rate κa, the distance of the mean of

the sampled chain to the reference parameters, i.e., |p̄−p∗,j| and the MAD and variance

of the constructed Markov chains for rs ∈ {0.3, 0.5, 0.7, 0.9}, ξ ∈ {0.05, 0.1, 0.2, 0.4}, and
1000 proposed samples as described before.

Analyzing the influence of the sampling radius rs and the noise level ξ, we see that
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Table 5.2.: Statistics of the standard algorithm for inferring the conductivity magnitudes
with 1000 drawn samples for varying noise level ξ and sampling radius rs in
the standard settings from Section 3.3 and p∗,2

rs ξ κa |p̄ − p∗,2| (%) MAD(p) (%) var(p) (%)

0.30 0.05 2.30 7.26 1.54 1.08 8.35 3.66 6.33 4.85 1.07 2.50
0.30 0.10 4.50 5.07 1.03 0.54 11.78 4.96 8.34 5.58 1.21 2.71
0.30 0.20 14.50 8.15 0.55 2.76 15.14 5.88 11.18 6.35 1.35 3.44
0.30 0.40 34.20 10.63 0.85 6.98 20.98 9.84 16.56 8.67 2.03 5.39
0.50 0.05 1.50 9.74 1.76 0.91 7.55 2.59 5.28 4.19 0.96 2.25
0.50 0.10 2.10 8.16 1.72 1.97 9.38 3.73 8.23 4.55 1.00 2.59
0.50 0.20 4.70 9.84 0.02 3.80 15.41 6.40 11.02 6.35 1.21 3.08
0.50 0.40 14.70 13.86 0.23 5.84 20.03 8.04 15.43 8.12 1.63 4.83
0.70 0.05 1.60 11.45 3.67 1.11 13.56 5.21 6.95 6.85 1.21 2.58
0.70 0.10 1.60 5.31 0.92 3.80 15.06 5.24 8.39 7.03 1.14 2.81
0.70 0.20 2.90 3.96 1.23 6.65 19.49 8.79 12.21 8.28 1.72 3.61
0.70 0.40 7.40 15.27 0.40 7.60 21.01 9.52 15.35 9.79 1.98 4.76
0.90 0.05 1.10 10.57 6.03 5.63 11.73 4.27 7.33 5.95 1.26 2.30
0.90 0.10 1.20 12.81 4.87 3.67 2.93 4.65 8.95 6.04 1.27 2.45
0.90 0.20 1.90 10.53 2.07 4.42 23.54 7.35 9.74 9.96 1.51 2.79
0.90 0.40 4.00 16.99 0.58 8.28 20.27 11.80 14.18 8.60 2.36 4.19

increasing the noise level leads to higher acceptance rates as we allow higher uncertainties

within the EMG data. On the other hand, increasing the sampling radius decreases the

acceptance rate as the probability of drawing a valid proposal decreases with increasing

the width of the proposal interval. Comparing the acceptance rates for the reference

parameters p∗,1, p∗,2, and p∗,3, we see that the acceptance rates behave similar for

the first two reference parameters, see Tables 5.1, 5.2, while the acceptance rates are

significantly lower for the third reference parameter, see Table 5.3. Note that we already

expected the similarity of the chains for p∗,1 and p∗,2 from the analysis of the influence

of the conductivity magnitudes on the potential, see Figure 5.1.

Aiming at a high acceptance rate thus implies choosing a small sampling radius and

allowing for high noise levels, where the highest acceptance rates are reached for rs = 0.3

and ξ = 0.4. We emphasize that a high acceptance rate tells nothing about the quality

of the accepted samples.

To quantify the quality of the sampled chains, we also discuss the distance of the mean

of the chain to the reference parameters, the MAD, and the variance of the constructed

Markov chains as shown in Tables 5.1 to 5.3. For the MAD and variance we again

see the similarity of the sampled chains for p∗,1 and p∗,2 when exchanging the roles of
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Table 5.3.: Statistics of the standard algorithm for inferring the conductivity magnitudes
with 1000 drawn samples for varying noise level ξ and sampling radius rs in
the standard settings from Section 3.3 and p∗,3

rs ξ κa |p̄ − p∗,3| (%) MAD(p) (%) var(p) (%)

0.30 0.05 1.70 4.29 0.28 1.99 4.75 3.22 4.57 1.44 0.79 1.33
0.30 0.10 2.50 3.38 0.94 2.40 5.67 5.22 5.53 1.63 0.90 1.45
0.30 0.20 6.70 1.04 0.47 0.84 7.54 6.18 9.90 1.86 1.05 2.19
0.30 0.40 21.10 1.01 4.82 4.17 11.49 10.30 13.81 2.72 1.96 3.48
0.50 0.05 1.20 4.79 2.87 9.29 3.92 3.77 2.67 1.09 0.52 0.51
0.50 0.10 1.40 6.39 1.29 0.18 4.63 3.81 5.67 0.98 0.59 0.94
0.50 0.20 2.10 2.69 3.13 0.50 6.19 4.98 7.04 1.27 0.67 1.14
0.50 0.40 6.70 0.69 4.28 3.80 10.27 9.95 15.97 2.07 1.61 3.52
0.70 0.05 0.60 0.17 7.89 10.51 6.21 5.33 4.53 0.86 0.46 0.65
0.70 0.10 0.70 0.54 8.13 10.25 5.67 5.29 4.95 0.82 0.46 0.70
0.70 0.20 0.80 0.09 5.10 9.46 6.40 6.79 5.66 0.86 0.63 0.75
0.70 0.40 3.60 0.73 3.71 7.00 9.60 9.21 14.68 1.47 1.43 3.00
0.90 0.05 0.70 7.22 4.59 9.19 10.46 8.00 6.44 1.84 1.32 0.93
0.90 0.10 0.70 7.22 4.59 9.19 10.46 8.00 6.44 1.84 1.32 0.93
0.90 0.20 0.70 7.22 4.59 9.19 10.46 8.00 6.44 1.84 1.32 0.93
0.90 0.40 1.90 2.68 11.96 5.00 6.52 12.50 12.67 0.94 2.10 2.30

MAD(p(1)) and MAD(p(2)), and var(p(1)) and var(p(2)). The third reference parameter

again shows a different behavior as expected from the discussion of Figure 5.1.

For minimizing the MAD and variance of the sampled chains, Tables 5.1 to 5.3 suggest

choosing a small sampling radius together with a moderate noise level. Together with the

aim of maximizing the acceptance rate, we deduce a preferred combination of rs = 0.3

and ξ = 0.1. Note that choosing the sampling radius to be 0.3 means that the proposal

distribution samples from 15% of the admissible intervals of width 4.

5.2.2. Gaussian Proposal Distribution

We redo the above parameter study and choose a Gaussian proposal distribution with

the latest accepted sample as mean and the sampling radius rs taking the place of the

covariance. As the normal distribution is globally defined, we introduce the bounds

of the parameter spaces by discarding the proposal whenever the proposed sample lies

outside the admissible parameter space or the acceptance strategy suggests discarding

the proposed sample. We run the Gaussian SA for rs ∈ {0.1, 0.3} and ξ ∈ {0.05, 0.1, 0.2}.
The acceptance rates κa, the distance of the mean of the sampled chains to the reference
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Table 5.4.: Statistics of the standard algorithm for inferring the conductivity magnitudes
with 1000 drawn samples for varying noise level ξ, sampling radius rs, and
Gaussian proposal distribution in the standard settings from Section 3.3

p∗,j rs ξ κa |p̄ − p∗,j| (%) MAD(p) (%) var(p) (%)

1 0.1 0.05 8.90 3.36 5.03 5.37 6.38 13.08 9.14 1.73 5.75 3.84
1 0.1 0.1 19.80 3.44 4.25 2.94 7.14 15.48 9.24 1.88 6.83 4.00
1 0.1 0.2 37.20 4.11 1.59 0.83 8.43 20.19 13.69 2.04 8.87 5.26
1 0.3 0.05 1.70 0.46 7.82 0.13 4.53 7.21 7.43 0.97 4.04 3.64
1 0.3 0.1 2.80 0.53 0.10 1.21 4.43 10.99 6.51 0.87 4.65 3.04
1 0.3 0.2 7.40 1.69 4.27 1.54 7.54 17.61 10.76 1.26 6.83 3.73

2 0.1 0.05 7.60 5.26 1.67 2.05 8.88 3.81 5.81 4.28 0.94 2.44
2 0.1 0.1 20.30 6.63 2.54 1.75 11.00 4.73 7.90 4.54 1.00 2.70
2 0.1 0.2 39.00 6.89 0.63 1.68 14.55 7.02 10.36 5.52 1.33 3.32
2 0.3 0.05 1.40 6.41 2.52 1.94 8.31 3.52 5.44 4.08 0.79 1.71
2 0.3 0.1 2.40 11.52 1.70 1.19 8.69 5.91 7.74 3.88 0.92 1.86
2 0.3 0.2 6.80 10.11 0.14 1.99 18.07 7.32 10.07 6.89 1.19 2.33

3 0.1 0.05 4.90 2.47 2.57 3.06 6.73 4.24 7.75 3.04 1.28 2.42
3 0.1 0.1 10.60 2.35 1.74 2.62 7.01 5.13 8.41 3.08 1.36 2.57
3 0.1 0.2 26.60 2.69 0.25 1.78 8.81 7.47 10.83 3.26 1.72 3.03
3 0.3 0.05 1.30 3.44 1.16 3.16 3.83 2.79 4.06 1.03 0.72 0.68
3 0.3 0.1 1.70 3.35 1.75 4.93 3.85 3.62 4.93 1.06 0.74 0.80
3 0.3 0.2 3.10 1.58 0.30 1.33 6.47 7.15 7.81 1.32 1.14 1.15

parameters, i.e., |p̄−p∗,j|, and the MAD and variance of the constructed Markov chains

are shown in Table 5.4.

As for the uniform proposal distribution, we see that increasing the sampling radius

reduces the acceptance rate while increasing the noise level increases the acceptance rate.

Again, we see a similarity of the acceptance rates for the first two reference parameters

p∗,1 and p∗,2 and significantly lower acceptance rates for the third reference parame-

ter p∗,3. Further comparing the acceptance rates to the uniform case in Tables 5.1 to 5.3

shows that the acceptance rates for rs = 0.1 with the Gaussian proposal distribution are

similar to the uniform case with rs = 0.3.

The MAD and variance of the sampled chains presented in Table 5.4 show that the

symmetry of the chains for the first two parameters is less present than in the uniform

case. For all reference parameters, we again achieve lowest MAD and variance for low

sampling radius and noise level.

Summarizing the above observations, we deduce that the chains behave similar for
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Table 5.5.: Acceptance rate for 1000 drawn samples, noise level ξ = 0.1, sampling radius
rs = 0.3, and varying number of unknown parameters

unknown parameter(s) p(1) p(1),p(2) p(1),p(2),p(3)

p∗,1 18.70 11.10 4.70
p∗,2 43.20 11.90 4.50
p∗,3 19.90 3.70 2.50

uniform and Gaussian proposal distributions. In the following, we continue with uniform

proposal distributions since the realization of the parameter bounds is more intuitive and

since it represents our lack of knowledge about the unknown parameters p.

5.2.3. Number of Parameters

For a uniform proposal distribution we fix the noise level ξ = 0.1 and the sampling

radius rs = 0.3. We then run the SA for inferring p(1), p(1) and p(2), or p(1),p(2) and

p(3) for all three reference conductivities. Our aim is to investigate the influence of the

number d of unknown parameters on the acceptance rate that we present in Table 5.5.

Again, we observe the symmetry of the forward EMG problem for the first two refer-

ence values from the similar acceptance rates when sampling the first two and all three

magnitudes. Moreover, for p∗,1 and p∗,2 we clearly see the influence of the longitudinal

conductivity magnitude, which reduces the acceptance rate drastically. For the first

reference parameter this behavior shows in the low acceptance rate when inferring only

the first (longitudinal) conductivity. For the second reference parameter the influence of

the longitudinal conductivity shows in the significant reduction of the acceptance rate

from 43.2% to 11.9%. In comparison, the influence of adding a transversal conductivity

to the unknown parameters is low.

The difference in the behavior of the SA that we saw so far for the third reference

parameter is obviously also present in this experiment. We see the high impact of p(1)

and p(2) in the reduction of the acceptance rate from 19.9% to 3.7%, while additionally

inferring p(3) leads to a reduction of less than 50% of the acceptance rate down to 2.5%.

We again refer to Figure 5.1 for an illustration of the influence of the parameters on the

forward EMG problem.

We conclude that increasing the number d of parameters in general leads to a reduction

of the acceptance rate and that the magnitude of this reduction depends on the influence

that the new parameter has on the forward model.
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5.2.4. Rotation Angles

We rerun the parameter study shown in Tables 5.1 to 5.3 for validating the SA for infer-

ring the rotation angles while fixing the conductivity magnitudes. Therefore, we choose

the reference conductivity magnitudes σ∗,j
i for j = 1, 2, 3 as defined in Section 3.3, and the

reference rotation angles α∗,1 = (0, 0, π
3
), α∗,2 = (0, π

3
, 0), and α∗,3 = (π

3
, 0, 0). We vary

the sampling radius rs ∈ {0.1, 0.3, 0.5} and the noise level ξ ∈ {0.01, 0.05, 0.1, 0.2}, keep
the conductivity magnitudes fixed, and infer the rotation angles, i.e., p = (α1, α2, α3).

Before presenting and discussing the results of the described parameter study, we

define the chain of sampled muscle fiber directions d as the Markov chain resulting from

calculating the muscle fiber direction from the sampled rotation angles and we define

the reference muscle fiber directions d∗,jF as the muscle fiber direction calculated from the

reference rotation angles α∗,j for j = 1, 2, 3. Remember that our overall goal is to detect

the structure of the muscle tissue, not the rotation angles, compare our motivation in

Section 1.1. For further explaining our interest in the chain of muscle fiber directions

we plot the sampled chains of the rotation angles for σ∗,2
i , α∗,2, rs = 0.5, and ξ = 0.01

(Figure 5.4a) next to the corresponding chains of the sampled muscle fiber directions

(Figure 5.4b) and the respective muscle fiber directions (Figure 5.4c) in Figure 5.4.

Comparing the chain of the sampled angles in Figure 5.4a to the chain of the sampled

muscle fiber directions in Figure 5.4b we see that, e.g., the chain of the second rotation

angle (plotted in blue) is far from the desired value represented by the blue dashed line.

On the other hand, the chains of the entries of the muscle fiber directions clearly seem to

converge to the desired reference direction. Figure 5.4c illustrates this convergence and

also shows that the last accepted direction, which is plotted in black and nearly shadowed

by the red reference direction, is close to the reference direction. This direction thus

represents a point of high probability and hence explains the phenomenon of getting

stuck that we already discussed in Section 5.2.1. We deduce that similar muscle fiber

directions can be generated by largely differing rotation angles.

For calculating the mean, MAD, and variance of the sampled chains of the muscle

fiber directions, we turn the accepted muscle fiber directions to be oriented in positive

direction. We present the acceptance rates κa and statistics of the Markov chain d

produced by the SA for inferring the rotation angles for varying sampling radius and

noise level in Table 5.6 for the reference rotation angle α∗,1.

We observe that the noise level has nearly no influence on the behavior of the sampled

chains. The only exception is the configuration σ∗,1
i , α∗,1, rs = 0.3, and ξ = 0.2, where the

acceptance rate is slightly higher and, as a result, the chain varies more. For the reference
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Figure 5.4.: Plots of sampled chains and accepted directions for the SA for inferring the
rotation angles for σ∗,2

i , α∗,2, rs = 0.5, and ξ = 0.01 in Section 5.2.4
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Table 5.6.: Statistics of the standard algorithm for inferring the rotation angles with
1000 drawn samples for varying noise level ξ and sampling radius rs in the
standard settings from Section 3.3 and α∗,1

σ∗,j
i rs ξ κa |d̄− d∗F| (%) MAD(d) (%) var(d) (%)

1.00 0.10 0.01 0.40 0.27 0.16 0.84 0.41 0.23 0.27 0.00 0.00 0.00
1.00 0.10 0.05 0.40 0.27 0.16 0.84 0.41 0.23 0.27 0.00 0.00 0.00
1.00 0.10 0.10 0.40 0.27 0.16 0.84 0.41 0.23 0.27 0.00 0.00 0.00
1.00 0.10 0.20 0.40 0.27 0.16 0.84 0.41 0.23 0.27 0.00 0.00 0.00
1.00 0.30 0.01 1.00 0.42 0.29 0.77 1.12 0.64 1.30 0.04 0.01 0.02
1.00 0.30 0.05 1.00 0.42 0.29 0.77 1.12 0.64 1.30 0.04 0.01 0.02
1.00 0.30 0.10 1.00 0.42 0.29 0.77 1.12 0.64 1.30 0.04 0.01 0.02
1.00 0.30 0.20 1.20 0.53 0.25 0.99 1.61 0.89 0.51 0.05 0.01 0.01
1.00 0.50 0.01 0.70 0.07 0.14 1.01 1.24 0.62 1.55 0.11 0.02 0.04
1.00 0.50 0.05 0.70 0.07 0.14 1.01 1.24 0.62 1.55 0.11 0.02 0.04
1.00 0.50 0.10 0.70 0.07 0.14 1.01 1.24 0.62 1.55 0.11 0.02 0.04
1.00 0.50 0.20 0.70 0.07 0.14 1.01 1.24 0.62 1.55 0.11 0.02 0.04

2.00 0.10 0.01 0.50 0.31 0.57 0.98 0.20 0.34 0.12 0.00 0.01 0.00
2.00 0.10 0.05 0.50 0.31 0.57 0.98 0.20 0.34 0.12 0.00 0.01 0.00
2.00 0.10 0.10 0.50 0.31 0.57 0.98 0.20 0.34 0.12 0.00 0.01 0.00
2.00 0.10 0.20 0.50 0.31 0.57 0.98 0.20 0.34 0.12 0.00 0.01 0.00
2.00 0.30 0.01 0.80 1.74 3.44 2.64 0.92 2.02 0.85 0.03 0.17 0.01
2.00 0.30 0.05 0.80 1.74 3.44 2.64 0.92 2.02 0.85 0.03 0.17 0.01
2.00 0.30 0.10 0.80 1.74 3.44 2.64 0.92 2.02 0.85 0.03 0.17 0.01
2.00 0.30 0.20 0.80 1.74 3.44 2.64 0.92 2.02 0.85 0.03 0.17 0.01
2.00 0.50 0.01 0.70 4.44 5.53 3.05 2.30 5.57 0.59 0.20 1.34 0.02
2.00 0.50 0.05 0.70 4.44 5.53 3.05 2.30 5.57 0.59 0.20 1.34 0.02
2.00 0.50 0.10 0.70 4.44 5.53 3.05 2.30 5.57 0.59 0.20 1.34 0.02
2.00 0.50 0.20 0.70 4.44 5.53 3.05 2.30 5.57 0.59 0.20 1.34 0.02

3.00 0.10 0.01 0.60 0.30 0.28 0.00 0.24 0.12 0.00 0.00 0.00 0.00
3.00 0.10 0.05 0.60 0.30 0.28 0.00 0.24 0.12 0.00 0.00 0.00 0.00
3.00 0.10 0.10 0.60 0.30 0.28 0.00 0.24 0.12 0.00 0.00 0.00 0.00
3.00 0.10 0.20 0.60 0.30 0.28 0.00 0.24 0.12 0.00 0.00 0.00 0.00
3.00 0.30 0.01 0.40 0.91 0.73 0.01 0.72 0.17 0.01 0.01 0.00 0.00
3.00 0.30 0.05 0.40 0.91 0.73 0.01 0.72 0.17 0.01 0.01 0.00 0.00
3.00 0.30 0.10 0.40 0.91 0.73 0.01 0.72 0.17 0.01 0.01 0.00 0.00
3.00 0.30 0.20 0.40 0.91 0.73 0.01 0.72 0.17 0.01 0.01 0.00 0.00
3.00 0.50 0.01 0.30 2.86 1.18 0.06 0.51 0.28 0.04 0.01 0.01 0.00
3.00 0.50 0.05 0.30 2.86 1.18 0.06 0.51 0.28 0.04 0.01 0.01 0.00
3.00 0.50 0.10 0.30 2.86 1.18 0.06 0.51 0.28 0.04 0.01 0.01 0.00
3.00 0.50 0.20 0.30 2.86 1.18 0.06 0.51 0.28 0.04 0.01 0.01 0.00
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Table 5.7.: Statistics of the standard algorithm for inferring the rotation angles with
1000 drawn samples for varying noise level ξ and sampling radius rs in the
standard settings from Section 3.3 and α∗,2

σ∗,j
i rs κa |d̄− d∗F| (%) MAD(d) (%) var(d) (%)

1.00 0.10 0.60 4.66 0.56 2.91 1.59 0.81 1.10 0.05 0.01 0.02
1.00 0.30 0.50 4.40 1.56 3.11 4.68 2.25 3.60 0.36 0.10 0.21
1.00 0.50 1.10 5.18 12.98 29.78 33.08 25.00 30.30 18.82 11.67 15.49

2.00 0.10 0.80 0.61 0.01 1.10 0.34 0.02 0.62 0.00 0.00 0.01
2.00 0.30 0.70 1.00 0.07 1.06 1.48 0.11 1.50 0.04 0.00 0.08
2.00 0.50 0.80 2.27 0.22 1.07 3.41 0.36 1.40 0.26 0.01 0.12

3.00 0.10 1.00 0.10 2.42 0.24 0.04 0.39 0.06 0.00 0.01 0.00
3.00 0.30 0.90 3.27 17.69 0.82 4.09 17.04 0.60 0.17 3.06 0.01
3.00 0.50 0.50 0.29 3.04 0.10 0.68 2.94 0.12 0.03 0.46 0.01

angles α∗,2 and α∗,3, the Markov chains are completely independent of the examined noise

levels and we thus present the statistics for α∗,2 and α∗,3 without mentioning the noise

level in Tables 5.7 and 5.8.

From Tables 5.6 to 5.8 we immediately see that the acceptance rates are significantly

lower compared to the acceptance rates of inferring the conductivity magnitudes in

Tables 5.1 to 5.3. Recall that we expected such a behavior from the discussion of

Figure 5.2 in the beginning of Section 5.1.

In contrast to the case of inferring the conductivity magnitudes, see Section 5.2.1,

there is no obvious dependency of the acceptance rate on the sampling radius. The

MAD and variance, however, have a tendency to be lowest for the smallest sampling

radius, i.e., for rs = 0.1.

Since we have seen that the noise level has no influence on the sampled Markov chain

of rotation angles, we set ξ = 0.1 as in the case of sampling the conductivity magnitudes.

Furthermore, we specify the sampling radius for the rotation angles to be rs = 0.1, i.e.,

smaller than in the case of sampling the conductivity magnitudes, and thus account for

the highly nonlinear dependence of the forward EMG problem on the rotation angles.

Moreover, the low acceptance rates indicate that a high number of samples needs to

be drawn to explore the complete parameter space. Recall that drawing new samples in-

cludes evaluating the acceptance strategy to decide whether the proposed sample should

become part of the Markov chain.

Motivated by the need of evaluating the acceptance strategy, which includes solving
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Table 5.8.: Statistics of the standard algorithm for inferring the rotation angles with
1000 drawn samples for varying noise level ξ and sampling radius rs in the
standard settings from Section 3.3 and α∗,3

σ∗,j
i rs κa |d̄− d∗F| (%) MAD(d) (%) var(d) (%)

1.00 0.10 0.90 0.02 1.24 0.17 0.03 0.98 0.55 0.00 0.03 0.00
1.00 0.30 1.00 0.20 3.51 0.18 0.26 4.08 1.29 0.00 0.24 0.03
1.00 0.50 1.60 4.70 45.26 3.16 40.19 42.95 4.26 17.22 19.34 0.24

2.00 0.10 0.90 0.56 0.48 0.27 0.22 0.39 0.23 0.00 0.00 0.00
2.00 0.30 0.50 0.84 0.34 0.18 0.37 0.74 0.43 0.00 0.01 0.00
2.00 0.50 0.50 2.83 6.22 3.21 0.51 1.24 0.69 0.01 0.07 0.02

3.00 0.10 0.90 3.35 0.09 0.24 3.70 0.13 0.40 0.27 0.00 0.00
3.00 0.30 0.80 7.03 0.15 0.55 4.32 0.24 0.55 0.30 0.00 0.01
3.00 0.50 0.70 5.94 0.95 1.13 4.08 1.99 1.36 0.77 1.06 0.58

the forward EMG problem, for a large number of samples, we look at the computation

time. Running the SA for 100 000 proposals takes approximately 7.14 h. More signif-

icantly, evaluating the acceptance strategy makes up 97.47% of the computing time.

Obviously, we need a way to accelerate the evaluation of the acceptance strategy to

achieve a competitive algorithm.

5.3. Tensorized Metropolis-Hastings Algorithm

In Section 3.2.4 we derived a low-rank tensor representation of the parameter-dependent

forward EMG problem and mentioned that using this tensor representation could accel-

erate the sampling process of the SA. The reason for this consideration is that once the

tensor solution ϕ is computed for all parameters ph on a discrete parameter grid J h,

the evaluation of the tensor solution, and thus the forward EMG problem, for a spe-

cific parameter ph ∈ J h is cheap, compare Section 2.5. Combining the low-rank tensor

representation and the SA, we proceed as follows.

We discretize the parameter space J with grid size hp and precompute the solution

of the parameter-dependent forward EMG problem for all ph ∈ J h using our standard

settings from Section 3.3. Recall, that storing the parameter-dependent solution for

all parameters ph ∈ J h is infeasible unless using low-rank tensor formats, such as the

hierarchical Tucker format.

Having precomputed the parameter-dependent tensor solution ϕ for all parameters
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ph ∈ J h enables us to evaluate the precomputed tensor solution with arithmetic cost

in O(dr3), where d is the number of parameters and r the representation rank of the

tensor, see Section 2.5. Thus, we accelerate the evaluation of the acceptance strategy by

evaluating the tensor solution ϕ for a proposed parameter ph ∈ J h instead of solving the

forward EMG problem. Note that, due to the discretization of the parameter space, we

restrict the proposal distribution to J h intersected with an interval of radius rs around

the last accepted sample. Inserting the above changes into the SA yields the algorithm

that we call the tensorized algorithm (TA) presented in Algorithm 5.3.1. This is joint

work with Tim A. Werthmann and has similarly been published previously in [88].

Algorithm 5.3.1 Tensorized Metropolis-Hastings algorithm (TA)

Input: Starting point p1 for the Markov chain, sampling radius rs, parameter grid
size hp, length of Markov chain Ns

Output: A Markov chain p
1: Precompute G(ph) for all ph ∈ J h using tensor formats and Algorithm 2.5.1
2: for j = 1 . . . Ns − 1 do
3: propose p′ ∼ U([pj − rs, pj + rs] ∩J h) independent of pj

draw c ∼ U([0, 1])
4: if c ≤ a(pj,p

′) = a(G(pj),G(p′)) then
5: set pj+1 = p′

6: else
7: set pj+1 = pj
8: end if
9: end for

We emphasize that we exactly represent the operator and the right-hand side of the

forward EMG problem for all discrete parameter combinations within the hierarchical

Tucker format. Additionally, we compute the tensor solution using Algorithm 2.5.1

with specified truncation accuracy, resulting in an error-controlled approximation of the

solution tensor. Moreover, the fast decay of the singular values in Figure 3.10 justifies

the use of low-rank tensor formats to represent the tensor solution. Summarizing, we

thus expect that the Markov chains constructed by the SA and TA behave similarly

despite the additional discretization of the parameter space.

5.3.1. Validation of the Tensorized Metropolis-Hastings Algorithm

We validate the TA against the SA within the standard setting from Section 3.3 with

noise level ξ = 0.1 and sampling radius rs = 0.3. We draw the initial proposal uniformly

from the interval with radius rs around the midpoint of the parameter grid.
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Table 5.9.: Comparison of the tensorized algorithm (upper half) and the standard algo-
rithm (lower half) with 1000 drawn samples, Gaussian noise with ξ = 0.1
and sampling radius rs = 0.3 in the standard settings of Section 3.3

p∗,j κa |p̄ − p∗,j| (%) MAD(p) (%) var(p) (%)

1 5.70 1.67 4.54 1.30 5.69 11.06 7.40 1.16 3.61 3.05
2 4.40 4.33 1.53 0.30 11.67 4.82 8.65 5.62 1.17 2.73
3 2.20 4.62 0.58 3.41 4.43 5.22 4.85 1.46 0.90 1.31

1 4.70 0.19 2.83 1.32 4.77 11.95 6.79 1.11 4.04 2.97
2 4.50 5.07 1.03 0.54 11.78 4.96 8.34 5.58 1.21 2.71
3 2.50 3.38 0.94 2.40 5.67 5.22 5.53 1.63 0.90 1.45

As in Section 3.2.4 we compute the tensor solution on a conductivity grid with grid

size hp = 0.001 and Ah,(0) using the conductivity at the midpoint of the corresponding

grid. Note that by using hp = 0.001 we introduce an additional error in the third decimal

place.

We run both algorithms proposing 1000 samples. We present the acceptance rate κa,

the distance of the mean of the sampled chains to the reference parameters, and the

MAD and variance of the sampled chains in Table 5.9. We observe that both methods

have similar acceptance rates and that the chains produced using the TA also show

the symmetric behavior for the reference conductivity magnitudes p∗,1 and p∗,2. We

further notice that the MAD and variance of the SA and TA agree at least in the

order of magnitude and we expect these values to approach further when drawing more

samples. We draw this conclusion from the fact that we potentially choose different

initial proposals for the Markov chain in the SA and the TA.

For validation of this claim we rerun the above experiment but this time draw 5000

samples. We present the results in Table 5.10. We observe, that the acceptance rates,

the distance of the mean of the sampled chains to the reference parameters, the MAD,

and the variance of the chains sampled using the TA are closer to the values generated

using the SA for 5000 samples than for 1000 samples. Moreover, most differences are in

the third or fourth decimal place. Recall that we choose the parameter grid size to be

hp = 0.001 such that we cannot expect the TA to have higher accuracy.

We conclude that the sampling process of both algorithms is similar and that our

tensor approach is therefore a promising ansatz for accelerating the SA.
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Table 5.10.: Comparison of the tensorized algorithm (upper half) and the standard al-
gorithm (lower half) with 5000 drawn samples, Gaussian noise with ξ = 0.1,
sampling radius rs = 0.3, and truncation accuracy 1 × 10−6 in the setting
of Section 3.3

p∗,j κa |p̄ − p∗,j| (%) MAD(p) (%) var(p) (%)

1 3.18 0.06 0.59 0.34 3.57 7.04 4.70 0.34 1.20 0.79
2 4.60 0.44 0.86 2.03 7.91 3.46 5.02 1.75 0.35 0.75
3 0.90 1.25 1.24 2.82 3.79 3.08 3.93 0.43 0.26 0.45

1 2.84 0.70 3.01 0.09 3.19 6.98 4.91 0.27 1.18 0.67
2 4.78 0.55 0.67 0.41 10.26 3.82 5.42 2.17 0.38 0.81
3 1.00 1.18 0.37 2.47 3.51 2.68 3.25 0.41 0.23 0.40

5.3.2. Speedup Tests

As indicated at the end of Section 5.2, the cost of drawing one sample from the posterior

distribution approximately equals the solution time Ts of the discretized forward EMG

problem for the SA and thus approximately equals the evaluation time Te of the pre-

computed tensor solution for the TA. Therefore, the runtime of the SA is Ttot,SA = NsTs,

while the runtime of the tensorized algorithm equals the sum of the precomputation time

Tp and the evaluation times, i.e., Ttot,TA = Tp + NsTe. We notice that asymptotically

the speedup NsTs

Tp+NsTe
is limited by the quotient Ts

Te
for Ns → ∞.

We run two experiments to quantify the (absolute) speedup runtime SA
runtime TA

of the TA com-

pared to the SA using the standard settings from Section 3.3. In the first test, we vary

the number of samples while keeping all other parameters fixed. We thus run both algo-

rithms in the standard setting from Section 3.3 for 125 samples and double the number

of samples until reaching 128 000 samples. We present the speedup of the TA compared

to the SA in Figure 5.5a. Moreover, we plot the limit T̄s

T̄e
= 156.80 of the speedup for the

average solution and evaluation time in red. We observe that the speedup curve grows

steadily and flattens as the number of samples increases. For the last plotted data point

we see a slight decrease in the speedup curve towards the computed average limit T̄s

T̄e
.

This decrease in the speedup is caused by slight fluctuations in the average sampling and

tensor evaluation times throughout the test runs. Even if the speedup slowly decreases

for the last shown data point, the acceleration by using the tensor representation makes

a difference of running the SA for multiple hours (10.07 h for 128 000 samples) or the

TA for several minutes (8.89min for 128 000 samples).

Second, we run both algorithms in the standard settings for spatial grid sizes hx =
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Figure 5.5.: Speedup of the tensorized algorithm compared to the standard algorithm in
the setting of Section 3.3

1
3
, 1
6
, 1
9
, 1
12
. Furthermore, we reduce the number of samples to 100 and extrapolate the

measured sampling times to 100 000 samples to reduce the overall computation time.

For the interpolation we use the above formulas Ttot,SA = NsTs for the SA and Ttot,TA =

Tp +NsTe for the TA inserting the average sampling and evaluation times. Figure 5.5b

shows the speedup resulting from this extrapolation.

As expected, we observe that the speedup in Figure 5.5b grows steadily and is un-

bounded in contrast to the speedup for fixed grid size and increasing number of sam-

ples in Figure 5.5a. For hx = 1
12

we observe a speedup of 774.37 which corresponds

to an estimated runtime of 2.78 h for the TA compared to an estimated runtime of

2150.90 h(≈ 89.62 d) for the SA. These numbers explain our need for extrapolation of

the above numbers.

We conclude that using the TA enables us to solve problems in reasonable time that are

infeasible to solve using the SA. More precisely, inferring the conductivity magnitudes

for geometries with a high spatial resolution becomes feasible using the tensor approach.

5.3.3. Limitations of the Tensorized Algorithm

When deriving the tensor representation of the right-hand side of the forward EMG

problem in Section 3.2.4, we already discussed that our approach only holds for known

muscle fiber directions, i.e., known rotation angles. We saw that the dependence of the

right-hand side on the rotation angles is highly nonlinear and, to our knowledge, there
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Figure 5.6.: Relative singular values of the corresponding matricization of the tensor
solution of the forward EMG problem described in Section 3.2.4 for varying
rotation angles

exists no algorithm to exactly represent this behavior using low-rank tensor formats.

Furthermore, the tensor solution of the rotation angle-dependent forward EMG prob-

lem has full rank as shown in Figure 5.6. For generating the singular value plot in

Figure 5.6 we solve the parameter-dependent forward EMG problem with the rotation

angles being the free parameters, i.e., p = α ∈ [0, π] × [0, π] × [0, π], on a parameter

grid with grid size hp = 0.1π. For plotting the singular values of the resulting solution

tensor, which then is of size 400×101×11×11×11, we use the plot sv function of the

htucker toolbox [61], compare Section 3.2.4. We read from Figure 5.6 that the solution

tensor has full rank, i.e., rank 11, in the parameter dimensions 3, 4 and 5. Moreover,

the matricizations combining the parameters, i.e., the matricizations indexed by {4, 5}
and {3, 4, 5}, also have full rank. Further, the rank of the matricizations of the solution

tensor with respect to the spatial and time dimension, i.e., dimensions 1 and 2, is 400

and 89 and thus full compared to the dimension of the solution tensor.

Consequently, the geometry must be known for applying the TA. Therefore, the TA

is not suitable for the development of a radiation free imaging technique and different

techniques are needed to accelerate the sampling process in the SA, see the outlook
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in Chapter 7. We emphasize that the TA, nevertheless, enables us to infer material

parameters, here the conductivity magnitudes, that are not directly measurable in living

patients. The knowledge of patient specific parameters is crucial, e.g., in personalized

treatment.

5.4. Standard Settings for Sampling

Summarizing the parameter studies of the last two sections, we define the following

standard settings for the sampling algorithms in addition to the settings in Section 3.3.

We allow additive Gaussian measurement errors with noise level ξ = 0.1 and set the

sampling radius for the conductivity magnitudes to rs = 0.3. For inferring the rotation

angles, we choose the sampling radius to be rs = 0.1. We use the parameter space of the

diagonal matrix entry describing the conductivity in longitudinal direction Jl := [6, 10],

the parameter space of the diagonal matrix entries describing the conductivities in the

transversal muscle fiber directions Jt := (0, 4], and the parameter space of the rotation

angles Jα := [0, π].





6. Use Cases

Throughout this chapter we apply the SA and TA derived and validated in Chapter 5

to several use cases that are related to clinical applications. Therefore, we modify the

muscle cuboid setting described in Section 3.3.

In Section 6.1, we apply the TA for quantifying the influence of a layer of surrounding

tissue on the inferability of the conductivity magnitudes. Here, we assume that the

muscle fiber directions or rotation angles are known by an imaging technique such as

CT scans.

We generalize the scenario from Section 6.1 to inferring the structure of electrically

active tissue in Section 6.2. Here, we examine the suitability of the SA for inferring

the muscle fiber direction and conductivity magnitudes simultaneously. Moreover, we

quantify the influence of a layer of surrounding tissue on the inferability of the muscle

fiber direction and conductivity magnitudes.

In Section 6.3, we investigate the inversion of the two muscle scenario introduced

in Section 3.2.3. This scenario introduces additional model parameters, namely the

thickness of the two muscles and the conductivity magnitudes and rotation angle of the

second muscle. Estimating these parameters, we start with inferring only the thickness

of the muscles in Section 6.3.1 and increase the number of parameters until inferring all

nine model parameters in Section 6.3.5.

6.1. Use Case 1: Inferring the Magnitude of the

Electrical Conductivity

Within this section we investigate the parameter identification problem of inferring the

conductivity magnitudes from surface EMG measurements. More precisely, we look

at the muscle cuboid described in Section 5.4 and add a layer of surrounding tissue

DB of thickness θ on top, i.e., in e3-direction, of the muscle tissue cuboid as depicted

in Figure 2.4. We then place the measuring electrodes at the skin surface, i.e., the top

boundary of the layer of surrounding tissue. The muscle cuboid can be interpreted as the

137
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idealized geometry of the muscle part lying under a rectangular (here square) electrode

grid. Our interest now is to infer the conductivity magnitudes and to investigate the

influence of the thickness θ of the surrounding tissue.

Transferring the above assumptions to a clinical setup, imagine that the structure of

a body region of interest is known through an imaging technique like a CT or MRI scan,

see Chapter 1. The muscle fiber directions of the underlying muscle tissue as well as the

boundaries between different types of tissue can be extracted from the results of those

imaging techniques. The electrical conductivity of the regarded tissue is, however, still

unknown and we apply the TA introduced in Section 5.3 for inferring the conductivity

values of the muscle tissue.

We thus fix the rotation angles at α∗ = (0, 0, 0) such that the conductivity magni-

tudes remain as the free parameters, i.e., p = (σi,11, σi,22, σi,33). Furthermore, we chose

p∗,1 = (8.93, 0.893, 0.893) as reference values for the conductivity magnitudes and oth-

erwise use the standard settings defined in Sections 3.3 and 5.4. For investigating the

influence of the thickness θ of the layer of surrounding tissue on the quality of the esti-

mated parameters, we vary θ ∈ {0, 1
6
, 1
3
, 1
2
, 2
3
, 5
6
, 1}. We remark that the thickness of the

surrounding tissue must be a multiple of the spatial grid size hx in the original KerMor

implementation of the geometry and we thus set hx = 1
6
. Note further that θ = 0 cm

corresponds to the setting of Section 5.2.1.

We present the acceptance rates and statistical data of the sampled chains for varying

thickness θ of the layer of surrounding tissue in Table 6.1. The values for θ = 0 cm, i.e.,

the case of no surrounding tissue, serve as reference values.

Table 6.1.: Statistics of the chains of the conductivity magnitudes for different thick-
nesses of the surrounding tissue layer θ with reference conductivity p∗,1

θ κa |p̄ − p∗,1| (%) MAD(p) (%) var(p) (%)

0 3.18 0.06 0.59 0.34 3.57 7.04 4.70 0.34 1.20 0.79
1/6 4.90 1.78 13.35 2.21 4.12 20.16 5.53 0.76 9.22 2.41
1/3 6.00 0.12 6.88 2.53 4.27 21.20 5.42 0.84 9.82 2.41
1/2 7.90 1.84 5.18 0.27 5.02 24.03 5.79 1.07 11.75 2.11
2/3 10.60 0.63 8.76 0.25 6.68 26.50 6.39 1.23 12.53 2.18
5/6 14.40 2.03 2.39 0.80 9.42 30.20 5.85 1.93 12.72 1.44
1 19.80 4.06 3.74 1.01 12.52 24.52 6.42 3.02 9.08 1.48

From Table 6.1 we observe that the acceptance rate κa grows steadily with increasing

thickness θ of the surrounding tissue. For the MAD and variance of the sampled chain

we observe a similar behavior and deduce that adding surrounding tissue on top of the
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muscle cuboid introduces uncertainty to the algorithm. This additional uncertainty is

caused by the smoothing effect of the Laplace equation that is solved in the additional

surrounding tissue layer, see Section 2.6.4.

Examples of the sampled chains and corresponding histogram plots for θ = 1
6
cm,

θ = 1
2
cm, and θ = 5

6
cm are shown in Figure 6.1. Figures 6.1a, 6.1c, and 6.1e show that

the sampled chains of the conductivity magnitudes vary more with growing thickness of

the layer of surrounding tissue. This behavior results in the growing MAD and variance

that we observed from Table 6.1. Figures 6.1b, 6.1d, and 6.1f show the respective

histogram plots, where the increasing uncertainty of the TA shows in a widening and

shrinking of the histograms, especially in the red histograms that correspond to the

longitudinal conductivity magnitude.

We deduce that the conductivity magnitudes of the muscle can be inferred, but, as

expected, uncertainty grows with increasing thickness of the layer of surrounding tissue.

Since the drawn samples of the posterior probability distribution of the conductivity

magnitudes include knowledge of these uncertainties, the algorithm has high potential

to not only estimate the conductivity magnitudes but also quantify the uncertainties in-

cluded in these estimates. Hence, the TA is a powerful tool for inferring the conductivity

magnitudes of the biological tissue.

6.2. Use Case 2: Inferring the Structure of Electrically

Active Tissue

For further approaching our overall goal of contributing to a new radiation-free and non-

invasive imaging technique as described in Section 1.1 we also need to infer the structure

of the body part of interest. In a first step, we thus extend the scenario described in

Section 6.1 by also inferring the muscle fiber directions represented by the rotation angles

such that the free parameter also includes the rotation angles, i.e., p ∈ R6.

Note that we need to use the SA in the described scenario as the muscle fiber direction

is no longer fixed, compare our discussion in Section 5.3.3. Apart from changing the

sampling algorithm to be the SA, we stay in the setting described in Section 6.1 with

p∗,1 = (8.93, 0.893, 0.893, 0, 0, 0). As discussed in Section 5.2.4, we use the muscle fiber

directions computed from the sampled rotation angles to quantify the quality of the

sampled rotation angles.

We present the statistics of the sampled chains of the conductivity magnitudes in

Table 6.2 and the statistics of the sampled chains of the muscle fiber directions in
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(a) Plot of sampled chains for θ = 1
6 cm
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(b) Histogram plots for θ = 1
6 cm
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(c) Plot of sampled chains for θ = 1
2 cm
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(d) Histogram plots for θ = 1
2 cm
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(e) Plot of sampled chains for θ = 5
6 cm
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(f) Histogram plots for θ = 5
6 cm

Figure 6.1.: Plots of sampled chains of the conductivity magnitudes and corresponding
histograms for different thicknesses of the surrounding tissue layer θ with
reference conductivity p∗,1
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Table 6.2.: Statistics of the chains of the conductivity magnitudes for different thick-
nesses of the surrounding tissue layer θ with reference parameter p∗,1

θ κa |p̄(1 : 3)− p∗(1 : 3)| (%) MAD(p(1 : 3)) (%) var(p(1 : 3)) (%)

0 0.90 183.75 172.23 177.24 5.96 8.52 10.85 1.04 1.75 2.38
1/6 1.50 190.15 139.37 184.58 7.48 15.40 12.57 1.09 6.46 1.78
1/3 1.10 202.35 75.27 195.76 11.48 11.00 8.03 2.76 1.53 1.01
1/2 1.30 242.70 120.20 121.00 7.29 7.94 7.91 2.77 1.09 1.57
2/3 1.60 257.19 146.00 112.74 17.27 12.76 13.04 6.94 2.44 3.36
5/6 1.00 206.50 65.35 178.04 8.40 1.63 9.48 1.94 0.27 1.72
1 1.00 206.50 65.35 178.04 8.40 1.63 9.48 1.94 0.27 1.72

Table 6.3.: Statistics of the sampled chains of the muscle fiber directions for different
thicknesses of the surrounding tissue layer θ for reference parameter p∗,1

θ κa |d̄− d∗F| (%) MAD(d) (%) var(d) (%)

0 0.90 0.32 3.35 0.17 0.54 4.45 0.47 0.01 0.49 0.02
1/6 1.50 0.42 6.31 0.43 0.51 3.46 0.76 0.02 0.40 0.01
1/3 1.10 0.73 8.06 1.06 0.85 5.91 0.74 0.04 0.74 0.01
1/2 1.30 0.33 4.45 0.60 0.45 3.72 0.82 0.02 0.43 0.02
2/3 1.60 0.44 5.93 0.37 0.59 3.37 0.85 0.03 0.48 0.02
5/6 1.00 0.85 7.74 1.79 1.09 7.97 0.44 0.05 1.00 0.01
1 1.00 0.85 7.74 1.79 1.09 7.97 0.44 0.05 1.00 0.01

Table 6.3.

Again, the values for θ = 0 cm play the role of reference values. Comparing the statis-

tics of the conductivity magnitudes for θ = 0 cm from Table 6.2 to the corresponding

values from Table 5.1 we see that the acceptance rate κa is significantly lower when infer-

ring all six parameters instead of inferring the conductivity magnitudes only. Moreover,

we observe that the MAD and variance are comparable in both tables while the absolute

distance between the mean of the sampled conductivity magnitudes and the reference

solution is tremendously higher when inferring all six parameters. We later come back

to the latter phenomenon.

Comparing the statistics of the muscle fiber directions for θ = 0 cm from Table 6.3

to the corresponding values from Tables 5.6 to 5.8 we see that the acceptance rates κa

are in the same range. Further, we observe that the MAD and variance are a bit higher

in Table 6.3 than in Tables 5.6 to 5.8 while the absolute distance between the mean

of the sampled muscle fiber directions and the reference solution is comparable in both

settings.
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The plots of the sampled chains of the conductivity magnitudes and muscle fiber direc-

tions together with the respective histogram plots for θ = 0 cm are shown in Figure 6.2.

Comparing the acceptance rates κa for θ = 0 cm with the values for θ > 0 from Ta-

bles 6.2 and 6.3 we see no clear tendency of the acceptance rate to increase or decrease

with increasing thickness θ of the layer of surrounding tissue. We already saw a similar

behavior in Tables 5.6 to 5.8 in Section 5.2.4 during the validation of the SA for inferring

only the rotation angles when increasing the sampling radius.

Looking at the statistical data in Table 6.3, we observe that the muscle fiber direction

is inferred with low absolute distance of the mean d̄ to the true muscle fiber direction d∗F
and with low MAD and variance. Contrarily, the statistical values of the conductivity

magnitudes in Table 6.2 are significantly higher independent of the thickness of the

surrounding tissue including the case θ = 0 cm.

Moreover, we see from Table 6.3 that the MAD and variance of the chains of the

muscle fiber directions tend to increase with increasing thickness θ of the on top layer of

surrounding tissue similar to use case 1 in Section 6.1. We suppose that, when sampling

the conductivity magnitudes and the rotation angles, the muscle fiber direction takes

the “leading” role of the conductivity magnitudes when only sampling the conductivity

magnitudes.

For justification of this idea, recall our discussion on the influence of the rotation

angles and conductivity magnitudes on the forward EMG model in Section 5.1. There,

we observed from Figures 5.1 and 5.2 that the rotation angles have a significantly higher

influence on the solution of the forward EMG problem than the conductivity magnitudes.

This explains why the acceptance strategy seems to pay more attention to inferring

meaningful muscle fiber directions than to the conductivity magnitudes.

For illustrating this behavior, we look at the plot of the sampled chains and histogram

plots for θ = 1
6
cm, θ = 1

2
cm, and θ = 5

6
cm in Figures 6.3 and 6.4.

From the histogram plots we observe that the histograms are similarly narrow with

high peaks for both conductivity magnitudes and rotation angles. Looking at the corre-

sponding plots of the sampled chains we see that the chains “get stuck”, which explains

the narrow and high peaks in the histogram plots. The similarity of the histogram

plots for the conductivity magnitudes and the muscle fiber directions is a result of the

simultaneous sampling of the conductivity magnitudes and the rotation angles.

Summarizing, we deduce that the conductivity magnitudes are barely inferable when

sampling the conductivity magnitudes and the rotation angles simultaneously, compared

to inferring only the magnitudes for fixed muscle fiber directions. Moreover, the addi-
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(a) Plot of sampled chains of conductivity
magnitudes
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(b) Histogram plots of conductivity mag-
nitudes
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(c) Plot of sampled chains of muscle fiber
directions
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Figure 6.2.: Plots of sampled chains of the conductivity magnitudes and rotation angles
and corresponding histograms without surrounding tissue for reference pa-
rameter p∗,1
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(a) Plot of sampled chains for θ = 1
6 cm
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(b) Histogram plots for θ = 1
6 cm
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(c) Plot of sampled chains for θ = 1
2 cm

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
p(1)
p(2)
p(3)
p̄(1)
p̄(2)
p̄(3)
p∗(1)
p∗(2)
p∗(3)

(d) Histogram plots for θ = 1
2 cm
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(e) Plot of sampled chains for θ = 5
6 cm
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(f) Histogram plots for θ = 5
6 cm

Figure 6.3.: Plots of sampled chains of the conductivity magnitudes and corresponding
histograms for different thickness of the surrounding tissue layer θ with
reference conductivity p∗,1
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(a) Plot of sampled chains for θ = 1
6 cm
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(b) Histogram plots for θ = 1
6 cm
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(c) Plot of sampled chains for θ = 1
2 cm
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(d) Histogram plots for θ = 1
2 cm

100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Ns

d′F(1)
d′F(2)
d′F(3)
d(1)
d(2)
d(3)
d̄(1)
d̄(2)
d̄(3)
d∗F(1)
d∗F(2)
d∗F(3)

(e) Plot of sampled chains for θ = 5
6 cm
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(f) Histogram plots for θ = 5
6 cm

Figure 6.4.: Plots of sampled chains of the rotation angles and corresponding histograms
for different thickness of the surrounding tissue layer θ with reference pa-
rameter p∗,1
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tional layer of surrounding tissue, again, leads to growing uncertainties, i.e., growing

MAD and variance, in the sampled chains. Following our discussion at the end of Sec-

tion 6.1, the SA has the potential to not only infer the muscle fiber direction from surface

EMG measurements but additionally quantify the uncertainties within these estimates.

6.3. Use Case 3: Inferring the Structure of a Muscle

Composite

Further approaching a clinical scenario, we now investigate the setting of two muscles

lying on top of each other that we introduced in Section 3.2.3. In clinical applications

it is common that one muscle shadows the other, for example when examining agonists

and antagonists. For building a reliable medical imaging method, it is crucial to tell

such overlapping muscles apart.

In the following parameter studies, we use the standard settings established in Sec-

tions 3.3 and 5.4 with hx = 1
6
. We further set the conductivity magnitudes in both

muscles to be equal, namely σ∗
i,1 = σ∗

i,2 = diag(8.91, 0.891, 0.891), where index 1 in-

dicates that the property belongs to the upper muscle and index 2 indicates that the

property belongs to the lower muscle, as depicted in Figure 3.7.

Note that, by choosing the same conductivity magnitudes for both muscles, we assume

that the corresponding muscle fibers show the same conductive behavior. The change of

the intracellular conductivity that indicates the border between the two muscles is thus

only introduced by the rotation angles of the corresponding muscle fibers.

The rotation angle of the upper muscle is fixed at α∗
1 = 0, i.e., the muscle fibers of the

upper muscle are aligned with the e1-axis, while the rotation angle of the lower muscle

α∗
2 is left variable, see the settings below.

Recall, that the two-muscle scenario is determined by 9 parameters, namely the 3+3 =

6 conductivity magnitudes σi,1 and σi,2, the 1+1 = 2 rotation angles α1 and α2, and the

height of the lower muscle θb. We additionally examine the influence of the thickness of

a layer of surrounding tissue θ.

Our investigations are structured as follows: In Section 6.3.1, we aim at inferring

the thickness of the lower muscle, while assuming all other parameters to be known.

Afterwards, we aim at inferring the conductivity magnitudes of the lower muscle in

Section 6.3.2, while, again, assuming all other parameters to be known. Extending the

latter scenario, we add the rotation angle of the lower muscle α2 to the unknown pa-

rameters in Section 6.3.3 and the thickness of the lower muscle in Section 6.3.4. Further



6.3. Use Case 3: Inferring the Structure of a Muscle Composite 147

adding the conductivity magnitudes and the rotation angle of the upper muscle to the

unknown parameters in Section 6.3.5 leads to inferring all nine parameters describing

the two-muscle scenario.

In each setting, we vary the rotation angle of the lower muscle α2 ∈ {0, π
4
, π
2
, 3π

4
}, the

thickness of the lower muscle θb ∈ {0.1, 0, 3, 0.5, 0.7, 0.9}, and the thickness of the layer

of surrounding tissue θ ∈ {0, 1
6
, 1
3
, 1
2
, 2
3
, 5
6
, 1}. Due to the high amount of data generated

by these parameter studies, we exemplarily present the results for α∗
2 = π

2
, i.e., when

the muscle fibers of the upper and lower muscle are perpendicular to each other, in the

respective sections and show the results for the rotation angles α2 ∈ {0, π
4
, 3π

4
} in the

Appendices A–E.

We emphasize that choosing the rotation angle of the lower muscle α2 = 0 plays a

special role in the described setting, since the muscle fibers of both muscles are then

aligned in the same direction and additionally possess the same conductivity magnitudes.

The resulting intracellular conductivity σi = σi,11DM,1
+σi,21DM,2

is thus continuous, while

it shows discontinuities at the border between the two muscles whenever α2 ∈ (0, π).

6.3.1. 1 Parameter Case

The only parameter that we wish to infer in this section is the thickness of the lower

muscle, i.e., we set p = θb. We choose the sampling radius for θb to be 0.1, similar to

the sampling radius for the rotation angles.

The acceptance rate κa, the absolute distance of the mean of the sampled chains to the

reference value |p̄−p∗|, and the MAD and variance of the sampled chains are presented

in Table 6.4 for α2 = π
2
and in Appendix A for α2 ∈ {0, π

4
, 3π

4
} for varying reference

thicknesses of the lower muscle p∗ and thicknesses θ of the surrounding tissue.

For all four rotation angles α2 ∈ {0, π
4
, π
2
, 3π

4
} we observe that the statistical values

increase rapidly with increasing thickness of the lower muscle p∗ and there is no clearly

visible influence of the thickness θ of the layer of surrounding tissue. Further, the ac-

ceptance rate increases drastically with increasing thickness of the lower muscle until

it reaches κa = 100% for p∗ = 0.9. In other words, the sampling algorithm accepts

each proposed sample, what also explains the high statistical values. We deduce that

the thickness of the lower muscle θb is weakly inferable in this setting. Another possible

reason for the low ability of the algorithm to infer θb is the finite difference discretiza-

tion. As discussed before, the two-muscle scenario introduces a discontinuity into the

intracellular conductivity σi = σi,11DM,1
+ σi,21DM,2

. Since the applied finite differences

of second order require C4-continuity to guarantee convergence, we cannot generally ex-



148 6. Use Cases

pect low discretization errors. In the following sections we will, however, see that some

parameters are still inferable.

Table 6.4.: Statistics of p using the standard algorithm for the 1 parameter case with
1000 drawn samples for varying height of the lower muscle p∗ and thickness of
the surrounding tissue layer θ in the settings from Section 6.3.1 with α2 =

π
2

p∗ = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 10.00 10.90 10.90 10.00 10.00 10.70 8.40
|p̄ − p∗| (%) 11.22 11.09 11.09 11.22 11.22 11.11 0.58
MAD(p) (%) 0.58 0.66 0.66 0.58 0.58 0.64 0.27
var(p) (%) 0.01 0.01 0.01 0.01 0.01 0.01 0.00

p∗ = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 9.00 9.00 9.10 9.50 8.10 51.00 85.60
|p̄ − p∗| (%) 10.49 10.49 10.66 10.57 1.99 3.26 8.41
MAD(p) (%) 0.48 0.48 0.47 0.48 0.42 5.69 4.80
var(p) (%) 0.01 0.01 0.01 0.01 0.00 0.43 0.32

p∗ = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 92.70 92.70 92.70 92.70 92.70 92.70 92.70
|p̄ − p∗| (%) 17.46 17.46 17.46 17.46 17.46 17.46 17.46
MAD(p) (%) 9.57 9.57 9.57 9.57 9.57 9.57 9.57
var(p) (%) 1.24 1.24 1.24 1.24 1.24 1.24 1.24

p∗ = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 94.50 94.50 94.50 94.50 94.50 94.50 94.50
|p̄ − p∗| (%) 27.58 27.58 27.58 27.58 27.58 27.58 27.58
MAD(p) (%) 13.88 13.88 13.88 13.88 13.88 13.88 13.88
var(p) (%) 2.72 2.72 2.72 2.72 2.72 2.72 2.72

p∗ = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 100.00 100.00 100.00 100.00 100.00 100.00 100.00
|p̄ − p∗| (%) 37.83 37.83 37.83 37.83 37.83 37.83 37.83
MAD(p) (%) 18.43 18.43 18.43 18.43 18.43 18.43 18.43
var(p) (%) 4.69 4.69 4.69 4.69 4.69 4.69 4.69
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6.3.2. 3 Parameter Case

The three parameters that we wish to infer in this section are the three conductivity

magnitudes of the lower muscle, i.e., we set p = ((σi,2)11, (σi,2)22, (σi,2)33).

The acceptance rate κa, the absolute distance of the mean of the sampled chains to the

reference value |p̄−p∗|, and the MAD and variance of the sampled chains are presented

in Table 6.5 for α2 =
π
2
and in Appendix B for α2 ∈ {0, π

4
, 3π

4
} for varying thicknesses of

the lower muscle θb and thicknesses of the surrounding tissue θ.

While there is, again, no clearly visible dependency of the statistical values on θ, the

statistical values tend to decrease with increasing thickness of the lower muscle θb.

The only exception is the case α2 = 0, presented in Table B.1. Here, we see that

the statistical values of the conductivity magnitudes are clearly smaller, indicating good

inferability of the conductivity magnitudes, see our discussion on the choice α2 = 0 in

the introduction to Section 6.3. Moreover, we see no clear dependency of the statistical

values on θ or θb. Recalling our short discussion on the finite difference discretization

in Section 6.3.1, we blame the lack of inferability of the conductivity magnitudes for

α2 ̸= 0 on the discretization error arising from the use of finite differences to discretize

the discontinuous intracellular conductivity.
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Table 6.5.: Statistics of p using the standard algorithm for the 3 parameter case with
1000 drawn samples for varying height of the lower muscle θb and thickness of
the surrounding tissue layer θ in the settings from Section 6.3.2 with α2 =

π
2

θb θ κa |p̄ − p∗| (%) MAD(p) (%) var(p) (%)

0.10 0 2.50 107.47 300.98 18.73 5.79 16.97 1.99 1.03 14.99 0.52
0.10 1

6
2.20 67.88 302.98 20.84 4.90 14.37 4.44 0.40 12.56 0.91

0.10 1
3

2.40 83.81 302.10 17.07 4.09 15.73 4.08 0.23 13.97 0.79
0.10 1

2
2.60 112.84 301.84 16.31 6.57 15.87 4.00 0.93 14.03 0.73

0.10 2
3

2.30 123.74 301.66 11.40 6.79 16.21 4.06 1.06 14.36 0.81
0.10 5

6
2.40 92.58 299.77 7.45 6.21 19.49 3.82 0.72 18.29 0.82

0.10 1 2.60 152.68 299.16 4.14 10.90 20.19 2.61 4.78 18.79 0.79
0.30 0 2.10 117.24 300.05 8.26 5.39 18.60 2.28 0.79 16.46 0.70
0.30 1

6
2.10 150.53 301.50 21.98 7.12 16.12 2.08 2.02 14.61 0.58

0.30 1
3

2.70 118.77 300.19 14.89 7.32 18.87 3.91 1.93 17.71 0.71
0.30 1

2
2.50 207.54 299.48 8.72 15.84 19.66 2.25 10.02 18.39 0.74

0.30 2
3

2.70 150.46 297.34 5.19 13.07 21.88 3.04 4.50 20.26 0.81
0.30 5

6
2.80 153.19 294.75 2.00 15.52 25.85 3.07 5.13 23.47 0.87

0.30 1 2.80 82.82 285.53 2.19 17.71 35.18 2.56 4.48 27.98 0.84
0.50 0 3.10 58.97 293.42 7.53 15.17 26.07 2.51 3.86 22.27 0.72
0.50 1

6
2.50 142.05 299.77 10.88 9.00 19.40 2.17 3.59 18.34 0.66

0.50 1
3

2.30 192.96 299.17 7.89 14.06 20.27 2.24 7.94 19.41 0.71
0.50 1

2
2.70 150.46 297.34 5.19 13.07 21.88 3.04 4.50 20.26 0.81

0.50 2
3

3.00 137.90 297.23 3.92 12.49 21.86 3.18 3.80 20.25 0.83
0.50 5

6
2.70 177.09 295.70 3.32 16.18 24.03 3.08 7.65 21.13 0.82

0.50 1 2.40 140.12 289.38 2.96 12.28 34.31 2.25 3.82 28.40 0.81
0.70 0 3.00 59.45 274.12 4.84 35.18 44.89 2.20 16.24 35.43 0.77
0.70 1

6
2.80 107.17 294.67 7.05 7.52 25.45 2.62 1.71 22.26 0.73

0.70 1
3

2.50 122.11 296.28 6.01 8.25 23.69 2.38 1.90 21.43 0.75
0.70 1

2
2.60 121.06 294.44 4.70 7.33 25.36 2.63 1.96 22.18 0.78

0.70 2
3

2.40 123.25 288.43 3.90 6.79 35.23 2.33 1.84 29.90 0.79
0.70 5

6
2.20 135.60 286.55 3.32 11.51 38.78 2.23 3.18 32.09 0.80

0.70 1 3.30 28.99 263.35 2.12 23.36 57.45 2.49 7.03 54.43 0.84
0.90 0 3.00 34.14 187.17 2.69 32.82 44.30 2.36 13.27 29.88 0.81
0.90 1

6
2.40 84.58 275.20 4.96 10.83 38.28 2.16 2.36 30.12 0.76

0.90 1
3

2.20 131.54 276.24 4.42 12.88 39.63 2.18 3.40 31.13 0.77
0.90 1

2
3.30 11.34 251.74 3.64 23.53 51.33 2.30 7.27 45.20 0.81

0.90 2
3

3.00 11.52 248.11 3.07 38.31 48.75 2.33 17.14 42.49 0.82
0.90 5

6
3.30 91.16 245.08 2.67 26.71 71.35 2.37 8.86 69.98 0.82

0.90 1 3.20 8.62 225.86 1.95 38.22 79.05 2.47 18.47 76.59 0.83
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6.3.3. 4 Parameter Case

Within this section, we add the rotation angle α2 of the lower muscle to the parameters

of interest defined in the last section, i.e., we set p = ((σi,2)11, (σi,2)22, (σi,2)33, α2).

The acceptance rate κa, the absolute distance of the mean of the sampled chains to the

reference value |p̄−p∗|, and the MAD and variance of the sampled chains are presented

in Table 6.6 for the conductivity magnitudes p(1 : 3) and in Table 6.7 for the rotation

angle p(4) for p∗(4) = π
2
and varying thicknesses of the lower muscle θb and thicknesses

of the surrounding tissue θ. The statistical values for p∗(4) ∈ {0, π
4
, 3π

4
} are shown in

Appendix C, more precisely in Tables C.1 to C.3 for p(1 : 3) and in Tables C.4 to C.6

for p(4). Note that we present the acceptance rate only in the tables for p(4) since the

acceptance rates are the same for all entries of the parameter.

Comparing the results in Tables 6.6 and C.1 to C.3 to the numbers in Tables 6.5

and B.1 to B.3, we clearly see the influence of additionally inferring the rotation angles

of the lower muscle. Most significantly, the case α2 = 0 seems to lose its special role.

Recall, however, that even in the one-muscle case, inferring the conductivity magnitudes

and the rotation angles simultaneously, led to an increase in the statistical values for the

conductivity magnitudes, see Section 6.2. More precisely, we lost the inferability of the

conductivity magnitudes when also inferring the rotation angles.

Looking at Tables 6.7 and C.4 to C.6, we observe that the statistical values decrease

with increasing thickness of the lower muscle θb. In other words, the thicker the lower

muscle, the better the inferability of the rotation angle of the muscle fibers of this muscle.
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Table 6.6.: Statistics of p(1 : 3) using the standard algorithm for the 4 parameter case
with 1000 drawn samples for varying height of the lower muscle θb and thick-
ness of the surrounding tissue layer θ in the settings from Section 6.3.3 with
p∗(4) = π

2

θb θ |p̄(1 : 3)− p∗(1 : 3)| (%) MAD(p(1 : 3)) (%) var(p(1 : 3)) (%)

0.10 0 27.70 40.05 1.94 30.27 58.81 5.14 13.63 67.84 1.33
0.10 1

6
22.12 142.92 1.59 29.31 55.44 3.98 21.02 44.81 1.00

0.10 1
3

28.29 155.36 1.42 27.57 49.78 3.70 19.10 39.65 0.96
0.10 1

2
27.46 161.85 1.19 24.39 44.56 3.29 13.26 32.01 0.95

0.10 2
3

39.57 169.51 1.15 28.02 43.65 3.11 18.11 31.24 0.93
0.10 5

6
85.81 231.43 1.11 46.16 68.35 3.94 24.61 53.60 0.97

0.10 1 115.33 236.59 1.16 57.42 65.55 3.61 45.54 50.89 0.95
0.30 0 47.24 76.63 1.35 33.46 45.55 4.19 21.49 47.32 1.01
0.30 1

6
73.76 258.61 0.51 70.14 30.86 4.04 70.62 16.62 1.00

0.30 1
3

138.44 249.48 0.53 68.46 44.69 3.33 57.66 27.50 0.95
0.30 1

2
188.00 294.74 1.21 50.25 20.90 3.82 28.29 18.22 0.93

0.30 2
3

158.31 296.37 1.79 19.25 21.73 3.58 6.79 20.04 0.91
0.30 5

6
93.54 294.62 0.67 9.19 25.83 3.07 1.34 23.43 0.91

0.30 1 77.82 285.13 1.60 9.55 35.03 2.68 1.48 27.79 0.85
0.50 0 36.09 104.86 5.87 38.52 19.34 2.47 22.51 8.47 0.79
0.50 1

6
28.91 107.35 4.99 31.01 20.57 2.46 14.31 7.55 0.82

0.50 1
3

12.74 126.15 4.42 18.96 13.36 2.58 8.47 3.25 0.82
0.50 1

2
34.26 278.95 3.39 26.58 24.28 2.84 10.60 18.61 0.83

0.50 2
3

63.31 263.48 2.72 40.59 30.71 2.74 19.76 20.14 0.84
0.50 5

6
88.17 284.73 1.15 27.92 25.33 3.23 11.55 19.82 0.88

0.50 1 34.83 277.74 2.27 26.04 36.51 2.73 9.97 29.25 0.84
0.70 0 121.72 218.81 6.45 11.10 29.43 2.42 2.50 16.24 0.76
0.70 1

6
72.80 226.48 6.21 15.36 22.34 2.19 3.59 12.99 0.75

0.70 1
3

115.61 262.35 5.00 18.64 21.02 2.36 5.07 15.86 0.79
0.70 1

2
107.41 278.10 4.06 16.72 23.57 2.49 3.67 19.48 0.80

0.70 2
3

100.15 273.99 2.65 18.10 33.32 2.67 4.89 26.77 0.83
0.70 5

6
64.46 265.39 2.45 13.12 37.74 2.41 3.23 27.36 0.83

0.70 1 107.01 248.42 1.99 21.30 46.03 2.57 6.41 30.32 0.84
0.90 0 85.27 127.06 5.17 8.41 11.30 2.17 1.12 2.73 0.76
0.90 1

6
57.34 178.23 5.10 9.97 16.52 2.18 2.63 6.07 0.76

0.90 1
3

65.99 101.58 3.68 6.66 9.26 2.30 1.72 2.31 0.80
0.90 1

2
70.88 121.51 3.00 8.34 9.49 2.33 1.88 3.40 0.81

0.90 2
3

201.32 169.57 3.06 36.98 39.32 2.33 19.21 23.33 0.81
0.90 5

6
166.01 203.31 2.86 25.85 54.86 2.35 9.56 41.64 0.80

0.90 1 173.27 189.67 1.95 32.30 52.03 2.47 14.01 35.52 0.83
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Table 6.7.: Statistics of p(4) using the standard algorithm for the 4 parameter case with
1000 drawn samples for varying height of the lower muscle θb and thickness
of the surrounding tissue layer θ in the settings from Section 6.3.3 with
p∗(4) = π

2

θb = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 5.60 5.20 5.10 4.60 5.00 6.60 6.70
|p̄(4)− p∗(4)| (%) 145.40 145.96 145.87 145.00 144.60 107.99 102.17
MAD(p(4)) (%) 17.73 17.74 16.86 17.16 17.06 54.31 55.37
var(p(4)) (%) 10.72 10.55 10.09 10.20 10.14 33.66 33.87

θb = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 6.20 6.10 6.30 4.00 3.10 2.70 3.00
|p̄(4)− p∗(4)| (%) 145.65 136.61 119.42 59.62 22.17 21.71 15.63
MAD(p(4)) (%) 17.32 27.49 39.08 16.62 16.71 9.72 3.94
var(p(4)) (%) 10.27 13.96 19.19 4.17 3.29 1.26 0.24

θb = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 5.00 4.30 4.00 5.40 5.20 5.20 4.50
|p̄(4)− p∗(4)| (%) 140.26 135.27 131.54 123.05 97.60 85.57 42.71
MAD(p(4)) (%) 19.66 20.20 21.12 35.75 49.83 51.80 32.04
var(p(4)) (%) 10.74 10.55 11.41 20.69 29.20 31.85 13.92

θb = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 5.00 3.70 4.70 4.80 4.80 4.50 4.50
|p̄(4)− p∗(4)| (%) 114.62 104.28 103.49 84.12 50.54 49.46 65.51
MAD(p(4)) (%) 33.07 25.57 35.52 41.45 39.47 37.76 39.96
var(p(4)) (%) 17.68 11.84 18.24 20.92 20.43 17.88 20.44

θb = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.10 2.40 2.40 2.50 2.70 2.80 2.80
|p̄(4)− p∗(4)| (%) 55.55 48.24 61.57 59.45 54.13 35.75 44.37
MAD(p(4)) (%) 10.45 8.95 5.29 7.96 11.01 10.36 14.18
var(p(4)) (%) 2.47 1.74 1.35 1.68 1.91 1.52 2.57



154 6. Use Cases

6.3.4. 5 Parameter Case

Within this section, we add the thickness of the lower muscle θb to the parameters of

interest defined in the last section, i.e., we set p = ((σi,2)11, (σi,2)22, (σi,2)33, α2, θb).

The acceptance rate κa, the absolute distance of the mean of the sampled chains

to the reference value |p̄ − p∗|, and the MAD and variance of the sampled chains are

presented in Table 6.8 for the conductivity magnitudes p(1 : 3), in Table 6.9 for the

rotation angle p(4), and in Table 6.10 for the thickness of the lower muscle p(5) for

p∗(4) = π
2
and varying reference thicknesses of the lower muscle p∗(5) and thicknesses

of the surrounding tissue θ. The statistical values for p∗(4) ∈ {0, π
4
, 3π

4
} are shown in

Appendix D, more precisely in Tables D.1 to D.3 for p(1 : 3), in Tables D.4 to D.6 for

p(4), and in Tables D.7 to D.9 for p(5).

Again, we see that the conductivity magnitudes p(1 : 3) are not inferable, but the

statistical values show a slight tendency to decrease with increasing thickness of the

lower muscle p∗(5). This indicates that the conductivity magnitudes of the lower muscle

are better inferable with growing thickness of the lower muscle.

The statistical values for p(4) show a similar behavior but are in general smaller than

the values for p(1 : 3). This behavior is in accordance with our previous findings on the

influence of the rotation angles and conductivity magnitudes, see Sections 5.1 and 6.2.

Further, the thickness of the lower muscle p(5) shows the lowest statistical values

compared to the first four parameters. In contrast to the rotation angle, p(5) seems to

be less inferable with increasing p∗(5), showing in the growing statistical values.

All in all, p(5) shows the smallest statistical values and we deduce that the thickness of

the lower muscle has higher influence on the forward model than the material parameters

p(1 : 4) of the lower muscle. Recalling the high acceptance rates when only inferring the

thickness of the lower muscle, as done in Section 6.3.1, we clearly see that additionally

inferring the material parameters p(1 : 4) reduces the acceptance rates.
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Table 6.8.: Statistics of p(1 : 3) using the standard algorithm for the 5 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(5) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.4
with p∗(4) = π

2

p∗(5) θ |p̄(1 : 3)− p∗(1 : 3)| (%) MAD(p(1 : 3)) (%) var(p(1 : 3)) (%)

0.10 0 202.18 301.29 20.02 6.14 14.40 3.97 2.45 12.08 1.17
0.10 1

6
166.26 300.37 18.70 3.13 16.07 3.96 0.81 12.43 1.18

0.10 1
3

161.13 294.75 14.77 8.21 19.59 7.12 2.10 13.18 1.73
0.10 1

2
156.59 296.71 9.00 15.29 18.67 5.78 3.60 13.16 1.76

0.10 2
3

153.90 213.66 3.42 41.66 46.24 7.29 21.95 27.38 1.82
0.10 5

6
207.42 298.64 0.19 11.17 18.34 6.31 4.53 13.56 1.77

0.10 1 160.78 292.99 8.13 15.38 19.34 6.84 3.24 14.25 1.99
0.30 0 103.80 257.64 6.80 10.60 34.61 11.76 2.12 17.03 3.86
0.30 1

6
194.87 287.04 8.08 32.12 24.24 4.89 12.92 16.83 1.33

0.30 1
3

69.75 293.78 10.61 13.72 26.29 5.21 2.81 20.03 1.22
0.30 1

2
95.33 296.11 1.28 8.29 18.04 6.27 1.27 14.71 1.41

0.30 2
3

87.35 280.86 17.14 1.89 15.68 2.15 0.32 12.20 0.87
0.30 5

6
97.73 281.47 3.72 18.71 34.08 2.93 4.66 28.51 1.11

0.30 1 140.19 203.93 0.87 11.32 22.37 3.71 2.27 12.98 1.22
0.50 0 78.23 216.55 35.67 5.55 8.34 7.12 1.09 4.48 2.24
0.50 1

6
31.78 270.24 56.36 25.66 29.38 6.35 8.21 18.40 1.39

0.50 1
3

85.54 295.99 54.43 14.08 19.49 7.36 3.55 15.21 1.50
0.50 1

2
57.51 288.82 52.51 11.70 26.72 4.61 2.38 20.86 1.23

0.50 2
3

105.71 285.25 54.03 4.72 35.65 3.69 0.70 28.86 1.14
0.50 5

6
119.42 199.69 55.89 8.60 24.72 4.58 1.04 10.31 1.16

0.50 1 93.00 128.70 54.67 12.86 16.77 3.63 1.86 4.02 1.09
0.70 0 44.00 214.90 5.54 13.66 22.19 8.70 5.66 9.31 2.61
0.70 1

6
135.05 138.38 34.01 5.49 23.89 4.33 0.71 7.87 0.55

0.70 1
3

136.04 131.48 69.02 2.98 28.71 1.89 0.21 9.70 0.11
0.70 1

2
100.89 120.11 113.87 0.65 2.13 0.95 0.03 0.19 0.07

0.70 2
3

124.38 168.46 163.21 5.44 16.65 6.21 0.81 5.55 1.44
0.70 5

6
158.16 207.42 4.31 7.34 31.96 2.82 1.33 20.40 1.24

0.70 1 103.89 212.13 3.70 18.14 37.74 3.43 5.06 18.07 1.63
0.90 0 55.98 140.38 0.94 5.22 6.32 2.53 1.27 1.78 1.00
0.90 1

6
55.98 140.38 0.94 5.22 6.32 2.53 1.27 1.78 1.00

0.90 1
3

55.98 140.38 0.94 5.22 6.32 2.53 1.27 1.78 1.00
0.90 1

2
21.92 158.35 1.20 15.53 12.13 2.89 6.09 4.20 1.07

0.90 2
3

72.01 158.40 0.38 10.16 42.33 2.91 1.44 20.89 1.04
0.90 5

6
78.77 126.09 1.08 6.25 23.24 2.67 0.82 6.73 1.01

0.90 1 86.30 102.60 1.24 5.97 5.05 2.66 1.11 0.55 1.00
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Table 6.9.: Statistics of p(4) using the standard algorithm for the 5 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(5) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.4
with p∗(4) = π

2

p∗(5) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.00 2.20 4.60 3.90 5.20 2.50 1.90
|p̄(4)− p∗(4)| (%) 6.57 12.43 41.92 35.68 120.94 30.82 44.99
MAD(p(4)) (%) 0.87 2.54 24.25 13.85 35.80 4.08 6.76
var(p(4)) (%) 0.05 0.23 10.80 4.12 19.23 0.56 1.09

p∗(5) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.80 4.60 2.50 2.50 1.60 2.60 2.10
|p̄(4)− p∗(4)| (%) 106.53 92.68 24.68 28.26 8.71 10.89 10.22
MAD(p(4)) (%) 35.05 37.44 5.80 7.73 0.93 4.14 4.86
var(p(4)) (%) 16.05 17.60 0.79 1.01 0.07 0.31 0.32

p∗(5) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.50 3.30 2.20 2.60 1.80 1.70 1.20
|p̄(4)− p∗(4)| (%) 73.30 83.59 18.46 28.58 10.23 27.43 0.79
MAD(p(4)) (%) 9.86 34.67 8.34 4.44 2.47 11.14 5.90
var(p(4)) (%) 3.24 15.13 1.08 0.79 0.22 1.94 0.45

p∗(5) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.00 1.30 0.70 0.60 1.40 2.30 1.70
|p̄(4)− p∗(4)| (%) 80.57 12.83 12.12 0.19 3.56 30.20 23.09
MAD(p(4)) (%) 25.09 2.97 3.90 0.15 1.63 3.87 7.40
var(p(4)) (%) 8.94 0.11 0.16 0.00 0.05 0.51 1.02

p∗(5) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.50 1.50 1.50 1.70 2.10 1.90 1.60
|p̄(4)− p∗(4)| (%) 18.74 18.74 18.74 14.32 4.32 1.67 0.59
MAD(p(4)) (%) 0.88 0.88 0.88 2.22 9.24 7.34 5.01
var(p(4)) (%) 0.05 0.05 0.05 0.15 0.99 0.72 0.40
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Table 6.10.: Statistics of p(5) using the standard algorithm for the 5 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(5) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.4
with p∗(4) = π

2

p∗(5) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.00 2.20 4.60 3.90 5.20 2.50 1.90
|p̄(5)− p∗(5)| (%) 11.99 9.84 8.42 9.83 5.70 11.97 7.22
MAD(p(5)) (%) 0.66 0.54 1.97 1.15 2.53 2.58 3.23
var(p(5)) (%) 0.03 0.02 0.07 0.04 0.09 0.11 0.13

p∗(5) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.80 4.60 2.50 2.50 1.60 2.60 2.10
|p̄(5)− p∗(5)| (%) 10.95 6.47 3.28 14.99 8.94 0.36 2.37
MAD(p(5)) (%) 4.66 6.57 4.13 6.74 1.09 3.25 4.58
var(p(5)) (%) 0.34 0.58 0.26 0.69 0.08 0.21 0.27

p∗(5) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.50 3.30 2.20 2.60 1.80 1.70 1.20
|p̄(5)− p∗(5)| (%) 33.41 16.82 34.34 12.92 28.86 19.49 14.48
MAD(p(5)) (%) 3.36 5.60 5.92 5.29 4.99 2.53 3.27
var(p(5)) (%) 0.34 0.37 0.53 0.44 0.38 0.10 0.14

p∗(5) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.00 1.30 0.70 0.60 1.40 2.30 1.70
|p̄(5)− p∗(5)| (%) 19.95 18.69 15.12 13.17 19.28 0.13 4.81
MAD(p(5)) (%) 7.36 1.20 3.38 1.36 0.99 2.51 3.11
var(p(5)) (%) 0.94 0.06 0.15 0.08 0.09 0.12 0.19

p∗(5) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.50 1.50 1.50 1.70 2.10 1.90 1.60
|p̄(5)− p∗(5)| (%) 13.18 13.18 13.18 12.37 7.71 4.51 7.69
MAD(p(5)) (%) 0.34 0.34 0.34 0.39 3.00 1.27 3.72
var(p(5)) (%) 0.02 0.02 0.02 0.02 0.12 0.05 0.17
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6.3.5. 9 Parameter Case

For this final parameter study, we also add the material parameters of the upper muscle

to the parameters of interest, i.e., we set

p = ((σi,2)11, (σi,2)22, (σi,2)33, α2, (σi,1)11, (σi,1)22, (σi,1)33, α1, θb).

Note that we put the material parameters, i.e., the conductivity magnitudes and rotation

angles of both muscles, in front of the thickness of the lower muscle.

The acceptance rate κa, the absolute distance of the mean of the sampled chains

to the reference value |p̄ − p∗|, and the MAD and variance of the sampled chains are

presented in Table 6.11 for the conductivity magnitudes of the lower muscle p(1 : 3),

in Table 6.12 for the rotation angle of the lower muscle p(4), in Table 6.13 for the

conductivity magnitudes of the upper muscle p(5 : 7), in Table 6.14 for the rotation

angle of the upper muscle p(8), and in Table 6.15 for the thickness of the lower muscle

p(9) for p∗(4) = π
2
and varying reference thicknesses of the lower muscle p∗(9) and

thicknesses of the surrounding tissue θ. The statistical values for p∗(4) ∈ {0, π
4
, 3π

4
} are

shown in Appendix E, more precisely in Tables E.1 to E.3 for p(1 : 3), in Tables E.4 to

E.6 for p(4), in Tables E.7 to E.9 for p(5 : 7), in Tables E.10 to E.12 for p(8), and in

Tables E.13 to E.15 for p(9).

Again, the high statistical values for the conductivity magnitudes of the lower muscle

p(1 : 3) indicate that these parameters are not inferable within the given setting. The

rotation angle of the lower muscle p(4) seems to be better inferable than p(1 : 3) but still

shows high statistical values that do not show any clear dependency on θ or p∗(9). As in

Section 6.3.2, we see that p(4)∗ = 0 plays a special role due to the lack of discontinuities

in the resulting intracellular conductivity. Precisely, the statistical values of p(4) are

clearly smaller for p∗(4) = 0, see Table E.4, than for the other reference values p∗(4).

For the upper muscle, we see that the conductivity magnitudes p(5 : 7) are not

inferable in the given setting, similar to p(1 : 3). Moreover, we observe that the statistical

values increase with increasing thickness of the lower muscle, i.e., the thinner the upper

muscle gets the worse the statistical values.

In accordance with our previous discussions on the influence of the rotation angles, we

observe small statistical values for the rotation angle of the upper muscle p(8). Similar

to the corresponding conductivity magnitudes, the statistical values of p(8) increase

with decreasing influence of the upper muscle, i.e., with increasing thickness of the lower

muscle.
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The statistical values of the thickness of the lower muscle p(9) show a comparable

behavior but are slightly worse.

6.3.6. Summary

From the parameter studies conducted in Sections 6.3.1 to 6.3.5, we deduce that the

angles dominate the magnitudes (as observed before in the one-muscle case) and that

the parameters of the upper muscle have a higher influence on the resulting EMG signals

than the parameters of the lower muscle. These observations are in accordance with

our observation that the rotation angle of the upper muscle seems to have the highest

influence on the resulting EMG signals and is thus best inferable. Moreover, the thickness

of the lower muscle seems to have similar influence as the rotation angles.

Furthermore, we see that the used finite difference discretization yields well-explainable

results, especially for the 9 parameter case, even if the resulting intracellular conductiv-

ity σi = σi,11DM,1
+σi,21DM,2

is discontinuous. For further investigations we, nevertheless,

suggest to use better suited discretizations that can resolve these discontinuities.
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Table 6.11.: Statistics of p(1 : 3) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = π

2

p∗(9) θ |p̄(1 : 3)− p∗(1 : 3)| (%) MAD(p(1 : 3)) (%) var(p(1 : 3)) (%)

0.10 0 133.27 182.72 12.59 29.20 36.24 24.64 11.13 20.20 8.44
0.10 1

6
160.50 238.48 11.71 26.65 51.54 15.95 9.61 39.48 4.56

0.10 1
3

38.19 196.28 0.72 54.69 66.89 12.08 38.26 58.94 3.54
0.10 1

2
131.48 134.16 2.62 26.35 28.21 10.93 11.57 13.02 3.25

0.10 2
3

129.18 241.46 3.86 44.11 51.91 9.89 25.67 49.69 3.07
0.10 5

6
96.39 244.94 12.56 19.44 78.02 11.23 5.45 84.86 3.31

0.10 1 149.70 172.45 4.81 26.82 61.02 6.86 10.04 47.70 2.34
0.30 0 83.15 229.87 6.13 17.00 87.28 14.83 3.74 91.03 4.30
0.30 1

6
126.82 201.95 8.91 21.23 58.57 11.15 7.84 43.68 3.46

0.30 1
3

169.69 149.85 17.35 35.45 18.95 7.79 19.88 8.32 3.28
0.30 1

2
87.66 186.45 10.48 10.33 44.59 7.34 2.09 50.66 2.58

0.30 2
3

104.16 172.91 5.59 9.47 47.33 6.21 2.83 32.76 2.43
0.30 5

6
101.15 124.45 2.74 5.64 38.26 7.58 0.91 23.66 2.65

0.30 1 145.93 76.68 2.51 10.09 14.14 5.15 1.77 3.50 2.47
0.50 0 220.22 147.74 7.81 29.56 31.74 11.17 16.26 17.21 2.35
0.50 1

6
113.34 166.21 101.90 7.69 12.15 6.95 0.84 2.35 0.75

0.50 1
3

129.51 38.88 160.09 8.36 3.55 6.03 1.34 0.46 0.81
0.50 1

2
172.35 85.16 255.37 7.19 10.23 7.54 1.95 2.16 3.18

0.50 2
3

104.39 142.10 61.20 19.85 37.79 2.50 5.06 20.46 0.49
0.50 5

6
137.95 133.66 56.58 5.55 31.39 2.93 0.72 15.26 0.53

0.50 1 136.83 68.22 55.43 9.06 15.29 3.00 1.49 3.44 0.60
0.70 0 203.11 173.78 23.29 27.37 40.22 8.13 13.15 26.34 1.36
0.70 1

6
115.94 98.95 45.36 6.59 2.94 1.11 0.77 0.29 0.28

0.70 1
3

104.83 157.51 69.37 6.74 3.18 0.92 0.75 0.82 0.10
0.70 1

2
111.97 142.92 107.91 11.05 10.88 5.37 1.34 1.37 0.32

0.70 2
3

71.06 23.39 163.91 13.50 5.87 3.01 2.37 0.69 0.22
0.70 5

6
49.45 0.18 238.78 12.74 14.07 8.78 2.57 3.15 2.36

0.70 1 127.78 96.88 301.70 1.90 5.68 10.90 0.42 1.42 7.53
0.90 0 102.42 154.78 22.50 2.56 5.03 3.36 0.26 1.40 1.07
0.90 1

6
113.81 143.25 0.96 15.50 8.92 6.04 3.29 2.12 1.55

0.90 1
3

135.55 150.91 2.85 6.76 19.77 5.77 1.85 6.92 1.43
0.90 1

2
177.23 149.67 6.21 15.20 14.36 7.29 4.53 5.04 1.55

0.90 2
3

160.62 62.11 25.49 8.45 8.34 2.12 1.87 1.38 0.57
0.90 5

6
135.73 70.34 20.56 1.30 1.46 2.11 0.35 0.18 0.64

0.90 1 135.73 70.34 20.56 1.30 1.46 2.11 0.35 0.18 0.64
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Table 6.12.: Statistics of p(4) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = π

2

p∗(9) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 4.10 4.10 3.90 4.60 4.80 2.70 3.40
|p̄(4)− p∗(4)| (%) 92.75 97.06 108.54 112.44 58.44 63.84 39.63
MAD(p(4)) (%) 42.28 42.16 32.15 36.46 28.72 20.06 16.49
var(p(4)) (%) 24.25 23.71 16.08 18.11 11.74 5.60 3.70

p∗(9) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.50 1.90 2.30 2.50 2.60 2.20 1.60
|p̄(4)− p∗(4)| (%) 68.62 51.31 34.43 2.47 0.11 16.59 14.49
MAD(p(4)) (%) 28.64 11.17 7.30 3.53 2.61 5.78 2.48
var(p(4)) (%) 10.86 2.28 1.24 0.23 0.10 0.54 0.18

p∗(9) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.90 0.80 1.30 1.60 2.40 1.90 1.70
|p̄(4)− p∗(4)| (%) 33.23 10.56 4.42 10.64 32.08 1.98 16.04
MAD(p(4)) (%) 7.02 2.70 1.40 2.41 9.54 2.86 4.39
var(p(4)) (%) 1.13 0.10 0.03 0.15 1.50 0.12 0.29

p∗(9) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.70 1.10 1.00 0.60 0.70 1.80 1.90
|p̄(4)− p∗(4)| (%) 17.17 0.33 3.50 8.25 10.21 14.45 3.16
MAD(p(4)) (%) 4.55 0.80 0.86 1.70 3.70 7.81 3.31
var(p(4)) (%) 0.54 0.02 0.02 0.10 0.14 0.80 0.15

p∗(9) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.80 2.50 2.80 2.30 1.80 1.40 1.40
|p̄(4)− p∗(4)| (%) 2.96 54.56 60.99 44.98 32.56 32.32 32.32
MAD(p(4)) (%) 0.89 11.59 10.74 7.68 2.51 1.39 1.39
var(p(4)) (%) 0.06 2.29 2.38 1.15 0.21 0.15 0.15
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Table 6.13.: Statistics of p(5 : 7) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = π

2

p∗(9) θ |p̄(5 : 7)− p∗(5 : 7)| (%) MAD(p(5 : 7)) (%) var(p(5 : 7)) (%)

0.10 0 119.42 60.87 138.65 24.66 18.09 25.47 9.12 5.26 8.98
0.10 1

6
199.18 12.42 195.81 38.77 29.13 70.78 19.56 16.15 62.66

0.10 1
3

110.81 31.17 62.21 35.43 24.21 17.99 15.50 9.53 6.29
0.10 1

2
83.16 1.41 190.46 27.92 51.68 75.92 10.41 35.40 72.55

0.10 2
3

103.55 129.12 63.90 41.61 18.60 27.03 24.39 4.96 10.67
0.10 5

6
165.85 62.15 54.04 13.22 22.90 41.72 5.77 7.04 21.09

0.10 1 150.09 31.00 104.30 44.13 34.52 33.55 22.76 20.45 14.01
0.30 0 140.08 129.02 215.27 6.50 21.59 77.78 1.03 7.66 75.09
0.30 1

6
113.29 108.76 201.96 3.88 7.46 43.56 0.56 1.85 27.69

0.30 1
3

118.29 164.23 82.49 11.46 13.28 6.76 3.71 2.69 1.26
0.30 1

2
166.51 180.99 112.07 18.19 17.75 13.09 5.10 4.23 3.32

0.30 2
3

165.94 224.86 99.83 14.09 18.16 18.31 3.91 6.11 5.05
0.30 5

6
241.86 155.85 65.57 17.48 11.40 6.73 8.62 2.21 1.27

0.30 1 190.55 134.04 27.03 15.63 10.99 4.76 5.12 3.37 1.01
0.50 0 116.08 118.95 126.93 11.42 8.18 13.62 3.39 1.10 2.92
0.50 1

6
81.36 140.90 111.05 7.93 15.57 13.63 1.04 2.96 2.53

0.50 1
3

26.61 102.74 52.28 17.14 18.85 10.00 5.44 5.37 1.82
0.50 1

2
116.28 264.62 62.81 2.43 13.36 8.73 0.41 5.81 1.29

0.50 2
3

164.01 154.92 83.42 29.08 8.47 6.85 13.82 2.29 0.73
0.50 5

6
146.54 123.73 90.11 17.82 9.65 3.66 7.42 3.56 0.58

0.50 1 69.49 157.95 113.99 7.36 10.35 11.32 0.94 1.99 2.53
0.70 0 103.69 82.50 64.08 13.53 20.00 27.73 2.38 6.24 10.47
0.70 1

6
149.16 95.35 80.28 1.70 6.25 7.54 0.37 0.70 0.96

0.70 1
3

123.99 98.71 67.19 1.57 6.35 7.52 0.13 0.69 1.00
0.70 1

2
125.61 105.30 100.49 12.95 7.51 5.91 1.70 0.58 0.48

0.70 2
3

136.35 146.78 131.58 12.38 9.03 19.27 1.59 1.48 4.49
0.70 5

6
149.47 144.93 93.38 13.40 9.02 14.05 2.42 1.44 3.33

0.70 1 134.44 260.56 80.81 13.65 8.16 5.84 2.40 4.21 0.69
0.90 0 62.54 194.21 145.46 8.12 7.59 10.69 2.16 2.33 3.97
0.90 1

6
92.15 183.14 117.07 23.10 9.19 14.50 6.90 3.09 5.26

0.90 1
3

119.71 11.71 128.71 18.19 38.34 17.97 5.43 29.42 6.81
0.90 1

2
87.80 61.32 195.27 9.69 21.46 35.32 2.21 9.28 24.41

0.90 2
3

8.47 166.90 136.97 17.06 5.01 16.89 7.14 1.56 5.76
0.90 5

6
78.69 152.95 102.99 1.43 1.76 4.13 0.25 0.47 0.97

0.90 1 78.69 152.95 102.99 1.43 1.76 4.13 0.25 0.47 0.97
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Table 6.14.: Statistics of p(8) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = π

2

p∗(9) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 4.10 4.10 3.90 4.60 4.80 2.70 3.40
|p̄(8)− p∗(8)| (%) 1.02 1.94 1.69 1.55 2.34 1.29 1.92
MAD(p(8)) (%) 0.82 0.58 0.77 0.93 1.87 1.39 1.40
var(p(8)) (%) 0.01 0.01 0.02 0.02 0.12 0.04 0.05

p∗(9) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.50 1.90 2.30 2.50 2.60 2.20 1.60
|p̄(8)− p∗(8)| (%) 2.22 2.91 2.34 1.33 3.08 3.77 4.40
MAD(p(8)) (%) 1.04 0.43 1.54 1.61 1.28 1.60 3.58
var(p(8)) (%) 0.02 0.02 0.06 0.07 0.08 0.09 0.32

p∗(9) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.90 0.80 1.30 1.60 2.40 1.90 1.70
|p̄(8)− p∗(8)| (%) 1.33 1.47 8.07 34.16 2.49 3.49 3.74
MAD(p(8)) (%) 1.59 0.62 3.22 2.56 1.88 1.62 3.13
var(p(8)) (%) 0.10 0.01 0.19 0.17 0.13 0.11 0.18

p∗(9) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.70 1.10 1.00 0.60 0.70 1.80 1.90
|p̄(8)− p∗(8)| (%) 1.10 1.75 1.81 6.08 16.52 21.08 25.12
MAD(p(8)) (%) 1.17 1.44 1.52 1.65 4.03 5.18 1.43
var(p(8)) (%) 0.08 0.04 0.04 0.03 0.19 0.41 0.06

p∗(9) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.80 2.50 2.80 2.30 1.80 1.40 1.40
|p̄(8)− p∗(8)| (%) 2.84 3.06 7.86 10.47 16.71 36.39 36.39
MAD(p(8)) (%) 1.44 2.29 6.54 5.37 4.37 1.16 1.16
var(p(8)) (%) 0.10 0.18 0.76 0.61 0.39 0.12 0.12
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Table 6.15.: Statistics of p(9) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = π

2

p∗(9) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 4.10 4.10 3.90 4.60 4.80 2.70 3.40
|p̄(9)− p∗(9)| (%) 6.43 7.26 7.18 5.88 7.31 6.73 5.51
MAD(p(9)) (%) 3.21 2.86 4.07 2.87 4.52 1.32 3.08
var(p(9)) (%) 0.13 0.11 0.20 0.12 0.24 0.03 0.13

p∗(9) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.50 1.90 2.30 2.50 2.60 2.20 1.60
|p̄(9)− p∗(9)| (%) 7.50 10.70 10.34 3.65 13.73 13.26 13.26
MAD(p(9)) (%) 9.34 10.80 7.64 4.16 6.69 6.66 6.65
var(p(9)) (%) 1.10 1.38 0.83 0.25 0.64 0.65 0.59

p∗(9) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.90 0.80 1.30 1.60 2.40 1.90 1.70
|p̄(9)− p∗(9)| (%) 1.35 20.54 23.36 21.42 33.11 29.87 29.90
MAD(p(9)) (%) 6.21 1.97 1.48 1.28 8.44 7.81 7.79
var(p(9)) (%) 0.63 0.10 0.09 0.09 1.04 0.83 0.84

p∗(9) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.70 1.10 1.00 0.60 0.70 1.80 1.90
|p̄(9)− p∗(9)| (%) 24.71 18.03 18.11 19.12 19.30 19.38 19.32
MAD(p(9)) (%) 9.10 1.61 1.52 0.52 0.26 0.46 0.46
var(p(9)) (%) 1.27 0.06 0.05 0.01 0.01 0.03 0.02

p∗(9) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.80 2.50 2.80 2.30 1.80 1.40 1.40
|p̄(9)− p∗(9)| (%) 29.04 11.87 24.06 18.75 35.88 42.95 42.95
MAD(p(9)) (%) 1.72 3.64 4.65 3.30 2.31 1.97 1.97
var(p(9)) (%) 0.13 0.31 0.35 0.29 0.19 0.25 0.25



7. Summary, Conclusion and Outlook

Within this thesis, we contributed crucial steps towards an imaging method based on

surface EMG measurements. More precisely, we discussed how to gain structural infor-

mation from the electrical conductivity of the respective tissue.

Furthermore, we applied a Bayesian approach to the inverse EMG problem of infer-

ring the electrical conductivity from surface EMG measurements and proved the well-

posedness of the resulting Bayesian inverse EMG problem. Running a function space

Metropolis-Hastings algorithm, we sampled from the posterior distribution of the electri-

cal conductivity given surface EMG measurements. We observed low acceptance rates,

especially when inferring the muscle fiber direction, and high runtimes that arise from

solving the forward EMG problem in each step of the Metropolis-Hastings algorithm.

We achieved tremendous speedups using an exact low-rank tensor representation of the

forward EMG model when inferring only the conductivity magnitudes.

Finally, we applied the Metropolis-Hastings algorithm for inferring the electrical con-

ductivity of a composite of two muscles and a layer of surrounding tissue. Future work

resulting from the limitations discovered during this thesis is discussed below.

Sampling

Our observations in Chapters 5 and 6 clearly indicate that more elaborate techniques for

accelerating the sampling process and evaluating the forward EMG model are needed to

achieve a competitive imaging method that can be applied in real clinical scenarios.

From the experiments in Section 6.2 we saw that the structure of muscle tissue, i.e.,

the rotation angles, gets inferred with high accuracy even if the conductivity magnitudes

show huge errors. We thus suggest, to run the SA for inferring the rotation angles with

an initial guess on the conductivity magnitudes that is backed up by experiments or

the literature and afterwards run the much faster TA for inferring the conductivity

magnitudes for the previously inferred rotation angles.

Sampling the rotation angles may further be accelerated by generalizing the low-rank

representation of the right-hand side of the forward EMG model to arbitrary muscle fiber
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directions. This may possibly only lead to a surrogate of the right-hand side when using

a cross approximation of which the approximation accuracy can, however, be prescribed

under certain assumptions [42]. This generalization could enable the computation of

realistic problems in medical applications and lead to a non-invasive and radiation-free

imaging method.

Another promising approach for speeding up the expensive evaluations of the forward

EMG model that is supported by mathematical theory was introduced in [12]. Here,

the authors proved that although using local approximations of the forward model in

MCMCmethods, the sampling methods still sample from the exact posterior distribution

asymptotically. Adopting this approach to the Bayesian inverse EMG problem therefore

offers an alternative to using a global low-rank tensor representation surrogate.

Further algorithms that use surrogates or highly sophisticated sampling strategies

were already introduced in Section 1.3. When applying these techniques in the future,

care must be taken in order not to lose the mathematically guaranteed convergence of

the Metropolis-Hastings algorithm.

Modeling and Theory

Combining the developed sampling algorithms with the model of force generation intro-

duced in [48, Chapter 7] will result in a non-invasive and radiation-free imaging technique

that infers medical images from voluntary muscle contractions and the resulting surface

EMG signals.

For guaranteeing the well-posedness of the resulting inverse imaging problem, the

well-posedness theory has to be extended to the Shorten model of the chemo-electrical

behavior of muscle fibers [97]. The difficulty here is that the right-hand side of the model

equations depends nonlinearly on the electrical conductivities so that properties like the

boundedness of the forward EMG problem become more difficult to show.

Integration of continuum mechanics, i.e., of non-isometric muscle contractions, is com-

putationally even more demanding, see the discussion in [48, Section 7.3.2], and thus

infeasible unless accelerating the sampling process significantly. For this task surrogate

models resulting from model order reduction, Gaussian process regression, or machine

learning are likely to play an important role.



A. Appendix - 1 Parameter Case in
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Table A.1.: Statistics of p using the standard algorithm for the 1 parameter case with
1000 drawn samples for varying height of the lower muscle p∗ and thickness
of the surrounding tissue layer θ in the settings from Section 6.3.1 with
α2 = 0

p∗ = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 8.40 8.40 8.40 8.40 8.40 8.40 8.40
|p̄ − p∗| (%) 0.58 0.58 0.58 0.58 0.58 0.58 0.58
MAD(p) (%) 0.27 0.27 0.27 0.27 0.27 0.27 0.27
var(p) (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p∗ = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 85.60 85.60 85.60 85.60 85.60 85.60 85.60
|p̄ − p∗| (%) 8.41 8.41 8.41 8.41 8.41 8.41 8.41
MAD(p) (%) 0.48 0.48 0.47 0.48 0.42 5.69 4.80
var(p) (%) 4.80 4.80 4.80 4.80 4.80 4.80 4.80

p∗ = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 92.70 92.70 92.70 92.70 92.70 92.70 92.70
|p̄ − p∗| (%) 17.46 17.46 17.46 17.46 17.46 17.46 17.46
MAD(p) (%) 9.57 9.57 9.57 9.57 9.57 9.57 9.57
var(p) (%) 1.24 1.24 1.24 1.24 1.24 1.24 1.24

p∗ = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 94.50 94.50 94.50 94.50 94.50 94.50 94.50
|p̄ − p∗| (%) 27.58 27.58 27.58 27.58 27.58 27.58 27.58
MAD(p) (%) 13.88 13.88 13.88 13.88 13.88 13.88 13.88
var(p) (%) 2.72 2.72 2.72 2.72 2.72 2.72 2.72

p∗ = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 100.00 100.00 100.00 100.00 100.00 100.00 100.00
|p̄ − p∗| (%) 37.83 37.83 37.83 37.83 37.83 37.83 37.83
MAD(p) (%) 18.43 18.43 18.43 18.43 18.43 18.43 18.43
var(p) (%) 4.69 4.69 4.69 4.69 4.69 4.69 4.69
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Table A.2.: Statistics of p using the standard algorithm for the 1 parameter case with
1000 drawn samples for varying height of the lower muscle p∗ and thickness
of the surrounding tissue layer θ in the settings from Section 6.3.1 with
α2 =

π
4

p∗ = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 8.40 8.40 8.40 8.40 8.40 8.40 8.40
|p̄ − p∗| (%) 0.58 0.58 0.58 0.58 0.58 0.58 0.58
MAD(p) (%) 0.27 0.27 0.27 0.27 0.27 0.27 0.27
var(p) (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p∗ = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 8.60 9.40 9.70 9.70 85.60 85.60 85.60
|p̄ − p∗| (%) 7.11 3.66 3.56 3.56 8.41 8.41 8.41
MAD(p) (%) 0.47 0.47 0.53 0.53 4.80 4.80 4.80
var(p) (%) 0.01 0.01 0.01 0.01 0.32 0.32 0.32

p∗ = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 6.90 6.90 6.90 6.90 6.90 6.70 6.70
|p̄ − p∗| (%) 5.24 5.24 5.24 5.24 4.00 3.94 3.94
MAD(p) (%) 0.41 0.41 0.41 0.41 0.33 0.37 0.37
var(p) (%) 0.01 0.01 0.01 0.01 0.01 0.01 0.01

p∗ = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.90 3.90 3.90 3.90 4.10 3.90 3.90
|p̄ − p∗| (%) 3.40 3.40 3.40 3.40 2.76 1.35 1.35
MAD(p) (%) 0.29 0.29 0.29 0.29 0.25 0.16 0.16
var(p) (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p∗ = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 100.00 100.00 100.00 100.00 100.00 100.00 100.00
|p̄ − p∗| (%) 37.83 37.83 37.83 37.83 37.83 37.83 37.83
MAD(p) (%) 18.43 18.43 18.43 18.43 18.43 18.43 18.43
var(p) (%) 4.69 4.69 4.69 4.69 4.69 4.69 4.69
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Table A.3.: Statistics of p using the standard algorithm for the 1 parameter case with
1000 drawn samples for varying height of the lower muscle p∗ and thickness
of the surrounding tissue layer θ in the settings from Section 6.3.1 with
α2 =

3π
4

p∗ = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 10.00 10.00 10.00 10.00 10.00 10.00 10.00
|p̄ − p∗| (%) 11.22 11.22 11.22 11.22 11.22 11.22 11.22
MAD(p) (%) 0.58 0.58 0.58 0.58 0.58 0.58 0.58
var(p) (%) 0.01 0.01 0.01 0.01 0.01 0.01 0.01

p∗ = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 9.10 9.80 9.70 85.60 85.60 85.60 85.60
|p̄ − p∗| (%) 7.15 7.09 3.56 8.41 8.41 8.41 8.41
MAD(p) (%) 0.47 0.54 0.53 4.80 4.80 4.80 4.80
var(p) (%) 0.01 0.01 0.01 0.32 0.32 0.32 0.32

p∗ = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 6.90 6.90 6.90 6.90 6.90 6.90 6.90
|p̄ − p∗| (%) 5.24 5.24 5.24 5.24 5.24 5.24 5.24
MAD(p) (%) 0.41 0.41 0.41 0.41 0.41 0.41 0.41
var(p) (%) 0.01 0.01 0.01 0.01 0.01 0.01 0.01

p∗ = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.90 3.90 3.90 3.90 3.90 3.90 5.20
|p̄ − p∗| (%) 3.40 3.40 3.40 3.40 3.40 3.40 2.86
MAD(p) (%) 0.29 0.29 0.29 0.29 0.29 0.29 0.32
var(p) (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p∗ = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 100.00 100.00 100.00 100.00 100.00 100.00 100.00
|p̄ − p∗| (%) 37.83 37.83 37.83 37.83 37.83 37.83 37.83
MAD(p) (%) 18.43 18.43 18.43 18.43 18.43 18.43 18.43
var(p) (%) 4.69 4.69 4.69 4.69 4.69 4.69 4.69
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Table B.1.: Statistics of p using the standard algorithm for the 3 parameter case with
1000 drawn samples for varying height of the lower muscle θb and thickness of
the surrounding tissue layer θ in the settings from Section 6.3.2 with α2 = 0

θb θ κa |p̄ − p∗| (%) MAD(p) (%) var(p) (%)

0.10 0 2.50 11.75 4.60 1.24 19.07 9.67 2.54 7.06 2.77 0.86
0.10 1

6
2.10 1.64 8.04 1.28 11.13 15.97 2.46 3.02 4.05 0.84

0.10 1
3

2.00 0.56 7.67 1.01 11.40 23.60 2.49 3.20 7.86 0.85
0.10 1

2
2.50 0.17 1.71 1.05 11.26 22.61 2.48 3.18 7.69 0.85

0.10 2
3

2.70 0.93 13.02 1.25 12.98 17.10 2.47 3.59 4.77 0.84
0.10 5

6
3.60 3.91 12.24 1.60 17.38 20.03 2.44 5.54 5.84 0.83

0.10 1 4.40 4.84 20.37 1.41 24.77 33.68 2.32 9.87 15.15 0.83
0.30 0 2.00 6.58 9.52 0.90 8.00 10.07 2.49 2.25 2.82 0.85
0.30 1

6
2.30 14.44 55.75 0.85 14.67 14.30 2.36 3.82 3.39 0.84

0.30 1
3

2.10 14.50 61.18 1.22 15.25 7.47 2.33 4.13 1.42 0.83
0.30 1

2
2.30 10.87 40.98 1.20 22.25 23.08 2.33 6.92 6.98 0.83

0.30 2
3

2.00 13.98 43.54 1.13 18.95 21.21 2.33 5.16 5.79 0.83
0.30 5

6
1.80 25.54 57.14 1.12 12.46 18.49 2.33 2.61 4.06 0.83

0.30 1 1.80 25.54 57.14 1.12 12.46 18.49 2.33 2.61 4.06 0.83
0.50 0 1.70 0.03 1.25 1.22 11.01 17.75 2.47 3.06 4.97 0.84
0.50 1

6
1.80 10.85 16.15 1.21 6.86 18.59 2.47 2.06 4.63 0.84

0.50 1
3

10.15 17.45 1.24 7.77 20.86 2.47 2.32 5.47 0.84
0.50 1

2
2.30 1.00 1.92 1.18 12.70 29.04 2.47 3.60 10.56 0.84

0.50 2
3

2.30 4.54 8.18 1.27 14.69 23.87 2.47 4.59 8.27 0.84
0.50 5

6
2.30 13.11 8.47 1.19 19.78 23.95 2.47 6.52 7.59 0.84

0.50 1 2.60 22.45 0.87 1.24 26.87 31.85 2.47 10.56 12.74 0.84
0.70 0 1.90 5.30 8.63 1.18 17.26 14.85 2.47 4.27 3.82 0.84
0.70 1

6
1.60 9.24 27.58 1.20 8.67 14.98 2.47 2.20 3.05 0.84

0.70 1
3

1.90 9.16 5.35 1.22 9.09 30.47 2.47 2.31 11.29 0.84
0.70 1

2
1.90 9.16 5.35 1.22 9.09 30.47 2.47 2.31 11.29 0.84

0.70 2
3

2.00 3.79 13.89 1.17 14.27 21.42 2.47 4.11 5.90 0.84
0.70 5

6
2.00 3.79 13.89 1.17 14.27 21.42 2.47 4.11 5.90 0.84

0.70 1 2.20 12.63 7.30 1.12 19.42 24.84 2.48 6.36 8.00 0.84
0.90 0 1.80 10.85 16.15 1.21 6.86 18.59 2.47 2.06 4.63 0.84
0.90 1

6
1.90 9.16 5.35 1.22 9.09 30.47 2.47 2.31 11.29 0.84

0.90 1
3

1.90 9.16 5.35 1.22 9.09 30.47 2.47 2.31 11.29 0.84
0.90 1

2
1.90 9.16 5.35 1.22 9.09 30.47 2.47 2.31 11.29 0.84

0.90 2
3

1.90 9.16 5.35 1.22 9.09 30.47 2.47 2.31 11.29 0.84
0.90 5

6
1.90 9.16 5.35 1.22 9.09 30.47 2.47 2.31 11.29 0.84

0.90 1 1.90 9.16 5.35 1.22 9.09 30.47 2.47 2.31 11.29 0.84
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Table B.2.: Statistics of p using the standard algorithm for the 3 parameter case with
1000 drawn samples for varying height of the lower muscle θb and thickness of
the surrounding tissue layer θ in the settings from Section 6.3.2 with α2 =

π
4

θb θ κa |p̄ − p∗| (%) MAD(p) (%) var(p) (%)

0.10 0 1.80 87.59 158.57 14.03 3.87 5.64 2.31 0.26 1.70 0.61
0.10 1

6
2.90 2.76 301.53 7.85 27.85 15.64 5.17 14.58 14.03 0.97

0.10 1
3

3.10 48.97 301.10 7.01 26.02 16.14 5.52 11.33 14.26 1.00
0.10 1

2
3.10 86.94 299.14 5.48 16.95 19.90 4.98 7.58 18.71 1.07

0.10 2
3

2.40 148.22 300.15 2.76 8.44 18.67 2.53 3.12 17.62 0.86
0.10 5

6
2.80 178.47 299.78 0.73 17.98 19.16 2.68 8.38 18.07 0.89

0.10 1 2.40 246.57 298.91 0.17 18.46 20.73 2.59 14.47 19.69 0.88
0.30 0 1.40 77.77 154.16 1.06 2.79 5.22 2.38 0.25 1.39 0.85
0.30 1

6
3.60 102.84 298.39 0.07 30.08 18.80 6.53 14.44 16.47 1.29

0.30 1
3

3.20 131.94 296.59 1.25 34.19 22.65 4.90 19.15 20.59 1.05
0.30 1

2
2.50 144.95 295.27 0.91 13.05 26.66 3.79 4.39 24.59 0.92

0.30 2
3

2.70 164.51 279.51 0.76 22.53 43.88 2.64 11.19 35.37 0.87
0.30 5

6
2.80 202.29 278.11 0.69 32.43 43.40 2.48 20.41 34.76 0.86

0.30 1 2.30 187.11 251.21 1.17 55.75 60.42 2.51 37.89 47.57 0.85
0.50 0 2.10 12.37 86.91 4.71 22.97 5.72 2.17 9.64 1.00 0.76
0.50 1

6
3.40 39.22 293.59 5.06 74.37 24.58 2.59 66.62 20.95 0.79

0.50 1
3

3.70 23.44 293.37 3.67 67.69 24.62 2.83 54.76 20.95 0.82
0.50 1

2
3.30 31.47 292.56 3.00 58.82 26.32 2.86 41.97 23.20 0.83

0.50 2
3

2.90 39.55 289.75 1.72 41.01 30.61 3.41 22.15 26.43 0.88
0.50 5

6
2.50 116.34 289.02 1.57 11.33 34.18 2.58 2.16 28.26 0.84

0.50 1 2.60 81.61 283.12 0.83 13.27 38.88 2.66 2.82 31.48 0.86
0.70 0 2.20 39.07 58.64 2.84 22.76 6.07 2.35 10.14 0.80 0.80
0.70 1

6
3.80 7.61 288.45 3.38 52.06 29.41 2.66 33.33 25.86 0.81

0.70 1
3

3.40 0.49 287.19 2.97 60.74 33.46 2.46 43.73 27.52 0.83
0.70 1

2
3.10 40.13 283.23 2.37 44.94 37.62 2.79 24.49 30.67 0.85

0.70 2
3

2.60 52.90 282.90 1.84 24.98 38.80 2.67 8.36 31.36 0.85
0.70 5

6
2.90 43.22 279.38 1.57 32.62 40.42 2.46 13.37 31.91 0.84

0.70 1 2.50 119.39 259.85 1.70 20.49 58.32 2.46 5.68 47.23 0.83
0.90 0 2.10 32.71 66.48 1.26 29.22 9.83 2.47 12.51 1.45 0.84
0.90 1

6
3.00 11.59 196.61 3.13 40.38 50.98 2.32 19.82 35.17 0.81

0.90 1
3

3.00 16.68 205.59 2.77 40.53 57.13 2.35 20.90 44.47 0.81
0.90 1

2
2.20 40.81 221.26 2.25 29.46 38.18 2.28 11.34 22.31 0.81

0.90 2
3

2.40 67.04 234.36 2.26 11.63 51.49 2.28 2.65 37.50 0.81
0.90 5

6
2.60 69.23 223.60 1.87 27.61 43.97 2.30 11.27 30.80 0.82

0.90 1 2.30 49.80 197.93 1.29 24.01 44.90 2.32 7.97 26.97 0.83
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Table B.3.: Statistics of p using the standard algorithm for the 3 parameter case with
1000 drawn samples for varying height of the lower muscle θb and thickness of
the surrounding tissue layer θ in the settings from Section 6.3.2 with α2 =

3π
4

θb θ κa |p̄ − p∗| (%) MAD(p) (%) var(p) (%)

0.10 0 2.40 122.89 301.73 25.01 13.43 16.09 3.93 2.90 14.64 0.64
0.10 1

6
3.00 2.39 301.08 14.22 38.12 16.15 4.49 20.92 14.26 0.79

0.10 1
3

2.90 44.73 301.28 11.35 32.43 15.85 4.20 13.03 13.95 0.80
0.10 1

2
2.90 110.11 300.09 11.17 12.11 18.64 4.81 3.90 17.60 0.90

0.10 2
3

2.20 163.59 299.91 8.46 9.77 19.01 2.35 4.34 17.83 0.77
0.10 5

6
2.80 204.30 299.19 6.69 14.86 20.12 2.75 9.44 18.47 0.79

0.10 1 2.90 233.40 299.35 6.97 33.01 19.64 3.18 20.86 18.37 0.82
0.30 0 2.60 189.55 301.36 18.26 13.91 16.29 2.10 7.40 14.41 0.55
0.30 1

6
3.40 120.70 300.05 2.74 31.24 17.96 6.34 13.63 15.91 1.18

0.30 1
3

3.10 146.37 296.89 2.00 31.81 22.60 5.47 17.64 20.63 1.05
0.30 1

2
3.50 172.13 292.54 1.11 25.74 28.49 3.03 10.82 24.78 0.88

0.30 2
3

2.50 195.28 291.72 1.76 24.38 30.95 3.63 13.57 26.53 0.89
0.30 5

6
3.00 227.14 277.91 1.84 43.62 43.26 3.03 33.73 34.50 0.85

0.30 1 2.80 223.92 274.85 0.90 54.11 43.24 2.52 41.09 33.95 0.85
0.50 0 3.00 90.10 294.93 10.35 16.39 23.82 2.57 4.25 21.96 0.68
0.50 1

6
3.30 3.71 293.45 5.17 47.49 24.55 2.88 28.37 20.92 0.79

0.50 1
3

3.50 23.54 294.00 4.67 35.82 4.67 2.62 16.83 21.08 0.80
0.50 1

2
3.40 49.66 293.54 3.94 42.74 25.33 2.70 22.62 21.19 0.82

0.50 2
3

2.90 118.72 293.06 3.50 16.80 26.45 2.54 3.91 23.34 0.81
0.50 5

6
2.20 135.60 286.55 3.32 11.51 38.78 2.23 3.18 32.09 0.80

0.50 1 2.80 171.95 283.58 2.12 48.32 37.75 2.51 26.23 30.78 0.83
0.70 0 2.80 105.05 293.10 6.91 14.61 26.04 2.36 3.02 22.40 0.73
0.70 1

6
2.90 42.20 288.78 4.24 16.54 32.85 2.30 5.22 28.96 0.79

0.70 1
3

2.70 45.42 285.90 3.25 28.34 36.70 2.28 10.08 30.72 0.81
0.70 1

2
2.30 131.58 286.24 3.49 12.14 38.67 2.23 3.04 31.95 0.80

0.70 2
3

3.20 66.51 267.78 2.63 11.48 52.67 2.42 2.75 48.54 0.83
0.70 5

6
3.30 54.01 263.14 2.65 12.26 57.31 2.36 2.68 54.37 0.83

0.70 1 3.40 79.02 262.06 2.54 12.43 58.32 2.38 2.87 54.75 0.83
0.90 0 2.10 135.56 273.83 4.26 11.00 38.70 2.19 3.34 29.72 0.77
0.90 1

6
2.90 51.80 246.42 3.28 25.90 54.35 2.31 8.83 48.69 0.80

0.90 1
3

2.80 55.83 238.97 3.12 22.94 49.68 2.33 6.93 41.45 0.80
0.90 1

2
2.70 63.56 206.16 2.95 9.91 56.86 2.34 2.26 44.10 0.80

0.90 2
3

2.70 44.60 192.99 2.30 10.99 56.41 2.40 3.20 41.18 0.82
0.90 5

6
2.30 69.15 186.07 2.09 12.84 48.83 2.40 2.45 34.88 0.82

0.90 1 2.80 55.32 187.37 1.77 12.18 49.64 2.43 2.18 35.74 0.83
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Table C.1.: Statistics of p(1 : 3) using the standard algorithm for the 4 parameter case
with 1000 drawn samples for varying height of the lower muscle θb and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.3
with p∗(4) = 0

θb θ |p̄(1 : 3)− p∗(1 : 3)| (%) MAD(p(1 : 3)) (%) var(p(1 : 3)) (%)

0.10 0 29.70 8.81 2.04 12.51 15.33 2.50 4.19 4.93 0.83
0.10 1

6
23.29 56.10 0.70 16.45 10.96 2.62 6.53 2.77 0.87

0.10 1
3

23.29 56.10 0.70 16.45 10.96 2.62 6.53 2.77 0.87
0.10 1

2
31.23 38.25 1.19 14.83 8.96 2.74 5.55 1.58 0.86

0.10 2
3

31.96 21.11 1.25 21.45 10.35 2.58 9.81 2.60 0.85
0.10 5

6
42.73 50.56 1.40 21.27 4.83 2.58 10.22 0.76 0.84

0.10 1 55.97 45.17 0.95 20.28 5.16 2.62 8.33 0.92 0.85
0.30 0 41.27 22.33 0.67 12.56 9.59 2.91 3.60 2.19 0.87
0.30 1

6
60.24 111.92 1.50 13.80 5.14 2.86 4.65 0.71 0.91

0.30 1
3

64.50 82.61 0.98 10.80 15.78 2.42 2.88 3.02 0.84
0.30 1

2
69.98 73.19 0.94 8.84 7.61 2.37 1.58 1.26 0.84

0.30 2
3

69.98 73.19 0.94 8.84 7.61 2.37 1.58 1.26 0.84
0.30 5

6
85.21 68.98 0.57 8.48 9.19 2.44 1.05 1.60 0.85

0.30 1 91.64 80.89 1.66 4.32 5.46 2.31 0.48 0.67 0.82
0.50 0 41.56 19.91 1.57 31.03 15.14 2.52 13.25 4.31 0.84
0.50 1

6
48.12 69.61 0.94 24.47 8.01 2.59 9.77 1.11 0.85

0.50 1
3

54.64 80.01 0.86 17.58 9.16 2.60 7.08 1.07 0.85
0.50 1

2
71.99 53.61 0.93 19.78 15.10 2.50 6.04 3.81 0.85

0.50 2
3

82.13 29.42 0.79 14.08 11.43 2.50 3.50 2.08 0.85
0.50 5

6
89.27 3.57 1.71 12.50 19.94 2.43 2.50 7.70 0.83

0.50 1 103.96 43.68 0.92 11.93 8.79 2.49 1.70 1.11 0.85
0.70 0 74.75 27.92 1.26 15.82 11.64 2.47 4.76 2.21 0.84
0.70 1

6
72.19 48.49 1.20 19.74 8.55 2.49 5.85 1.19 0.85

0.70 1
3

74.53 55.94 1.36 16.92 11.79 2.46 4.55 1.88 0.84
0.70 1

2
70.50 43.67 1.26 25.93 15.04 2.47 9.75 2.80 0.84

0.70 2
3

103.96 43.68 0.92 11.93 8.79 2.49 1.70 1.11 0.85
0.70 5

6
109.86 28.25 1.52 9.57 15.03 2.45 1.15 3.51 0.83

0.70 1 92.74 32.92 1.26 12.39 9.74 2.47 2.37 1.96 0.84
0.90 0 74.75 27.92 1.26 15.82 11.64 2.47 4.76 2.21 0.84
0.90 1

6
74.75 27.92 1.26 15.82 11.64 2.47 4.76 2.21 0.84

0.90 1
3

70.50 43.67 1.26 25.93 15.04 2.47 9.75 2.80 0.84
0.90 1

2
103.96 43.68 0.92 11.93 8.79 2.49 1.70 1.11 0.85

0.90 2
3

109.86 28.25 1.52 9.57 15.03 2.45 1.15 3.51 0.83
0.90 5

6
92.74 32.92 1.26 12.39 9.74 2.47 2.37 1.96 0.84

0.90 1 92.74 32.92 1.26 12.39 9.74 2.47 2.37 1.96 0.84
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Table C.2.: Statistics of p(1 : 3) using the standard algorithm for the 4 parameter case
with 1000 drawn samples for varying height of the lower muscle θb and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.3
with p∗(4) = π

4

θb θ |p̄(1 : 3)− p∗(1 : 3)| (%) MAD(p(1 : 3)) (%) var(p(1 : 3)) (%)

0.10 0 22.75 2.57 1.12 21.81 21.07 2.92 11.41 10.18 0.89
0.10 1

6
9.65 94.00 0.38 24.40 18.58 3.18 12.09 4.94 0.90

0.10 1
3

7.07 96.94 0.90 25.32 17.15 2.82 14.00 4.26 0.87
0.10 1

2
30.98 87.01 0.94 23.48 9.02 2.63 10.32 2.21 0.86

0.10 2
3

52.25 82.01 1.03 24.23 9.12 2.62 11.74 1.97 0.87
0.10 5

6
58.13 17.83 1.27 31.39 16.02 2.97 14.87 6.02 0.87

0.10 1 52.07 8.29 1.60 12.27 15.76 2.51 3.59 4.81 0.84
0.30 0 78.15 47.97 1.22 20.13 27.89 3.63 5.84 8.91 0.91
0.30 1

6
77.10 256.67 0.87 39.57 34.77 3.62 25.40 27.24 0.94

0.30 1
3

77.52 170.58 2.16 14.19 17.40 2.43 3.56 4.88 0.84
0.30 1

2
28.54 120.24 1.12 12.73 24.33 2.55 5.02 8.57 0.85

0.30 2
3

57.82 93.96 1.47 9.93 11.90 2.64 2.36 2.74 0.84
0.30 5

6
58.95 177.75 1.00 8.54 11.78 2.51 2.13 4.68 0.84

0.30 1 122.55 81.38 1.73 14.91 6.78 2.31 3.23 0.97 0.82
0.50 0 31.98 26.06 3.43 53.35 32.97 2.46 38.93 13.15 0.80
0.50 1

6
34.64 84.16 2.84 41.91 11.83 2.67 30.36 2.17 0.82

0.50 1
3

8.74 133.81 2.00 31.48 22.96 2.65 18.69 8.19 0.85
0.50 1

2
31.25 95.20 1.16 33.12 19.39 2.67 15.68 4.74 0.86

0.50 2
3

78.00 19.65 0.80 22.76 14.93 2.57 6.41 3.95 0.85
0.50 5

6
53.49 133.99 1.41 15.90 11.50 2.38 3.64 2.45 0.84

0.50 1 25.96 167.21 0.99 18.77 12.88 2.43 7.77 3.88 0.84
0.70 0 80.15 26.39 4.52 11.87 24.55 2.22 1.99 7.25 0.77
0.70 1

6
80.27 26.90 3.93 14.17 8.78 2.27 2.88 2.21 0.79

0.70 1
3

59.34 99.47 3.16 15.80 9.20 2.32 5.02 1.61 0.81
0.70 1

2
22.92 134.52 3.24 17.40 9.54 2.23 8.32 2.16 0.80

0.70 2
3

42.31 113.25 2.61 16.71 15.34 2.26 4.88 4.30 0.81
0.70 5

6
69.41 91.11 2.38 14.82 7.54 2.27 3.12 1.31 0.81

0.70 1 77.26 128.16 1.42 16.31 9.44 2.39 3.20 1.51 0.83
0.90 0 145.16 43.28 3.34 10.89 16.97 2.31 2.20 3.45 0.80
0.90 1

6
118.72 36.46 3.22 3.91 23.35 2.32 0.36 6.30 0.79

0.90 1
3

116.49 52.09 3.15 2.78 11.74 2.32 0.25 1.72 0.80
0.90 1

2
109.58 69.01 2.97 3.35 1.41 2.34 0.25 0.19 0.80

0.90 2
3

119.65 77.29 2.29 6.08 12.56 2.28 0.63 1.90 0.81
0.90 5

6
114.75 58.86 2.06 9.12 26.74 2.29 1.16 8.24 0.81

0.90 1 130.01 66.96 1.40 14.07 19.74 2.32 2.60 5.04 0.83
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Table C.3.: Statistics of p(1 : 3) using the standard algorithm for the 4 parameter case
with 1000 drawn samples for varying height of the lower muscle θb and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.3
with p∗(4) = 3π

4

θb θ |p̄(1 : 3)− p∗(1 : 3)| (%) MAD(p(1 : 3)) (%) var(p(1 : 3)) (%)

0.10 0 31.11 19.84 2.68 16.14 13.55 3.15 6.44 3.71 0.96
0.10 1

6
27.78 79.64 1.54 16.65 17.65 3.49 7.58 4.74 1.01

0.10 1
3

25.17 89.26 2.14 28.18 32.12 3.31 14.30 13.32 0.96
0.10 1

2
42.09 99.75 1.53 39.48 33.75 3.57 24.75 15.19 0.97

0.10 2
3

37.84 108.42 1.72 38.14 25.02 2.88 24.22 10.08 0.87
0.10 5

6
62.59 103.28 0.75 27.20 21.55 2.90 10.23 7.87 0.89

0.10 1 105.64 143.57 1.79 32.39 32.72 3.33 17.49 14.20 0.91
0.30 0 88.10 100.73 1.71 40.40 43.93 3.68 21.62 27.83 0.96
0.30 1

6
52.83 222.75 2.24 38.20 27.57 3.01 22.24 14.10 0.90

0.30 1
3

77.60 227.78 1.92 60.99 33.69 3.19 56.42 19.93 0.90
0.30 1

2
121.62 264.07 1.58 32.48 29.67 2.61 14.34 18.03 0.85

0.30 2
3

127.39 258.32 1.62 17.22 26.60 2.62 4.59 18.21 0.85
0.30 5

6
147.36 170.04 1.23 25.14 29.10 2.57 9.14 12.85 0.85

0.30 1 179.99 266.52 1.34 36.99 46.18 2.40 19.01 34.85 0.84
0.50 0 14.37 85.82 4.58 58.86 19.98 2.36 52.28 5.80 0.81
0.50 1

6
2.93 140.35 3.55 53.87 17.94 2.66 42.45 4.65 0.81

0.50 1
3

5.19 170.92 3.20 38.19 29.02 2.59 27.03 10.48 0.82
0.50 1

2
48.34 203.12 2.34 55.89 25.26 2.74 42.54 10.76 0.84

0.50 2
3

43.29 236.92 2.01 23.21 20.36 2.67 12.13 11.70 0.83
0.50 5

6
29.83 175.57 1.44 12.18 13.21 2.50 4.07 4.66 0.84

0.50 1 67.53 165.33 1.62 10.79 16.00 2.46 1.66 6.16 0.83
0.70 0 99.04 153.28 4.48 16.44 52.18 2.30 3.64 34.08 0.78
0.70 1

6
59.35 179.16 4.08 14.21 32.25 2.32 4.10 15.02 0.79

0.70 1
3

47.64 154.42 3.67 11.74 18.92 2.30 2.56 5.18 0.79
0.70 1

2
0.13 147.21 3.00 21.20 14.21 2.35 10.62 3.53 0.80

0.70 2
3

30.82 116.18 2.82 23.55 17.28 2.32 8.52 4.15 0.80
0.70 5

6
34.52 168.99 2.39 32.60 17.97 2.32 18.72 5.19 0.81

0.70 1 110.87 140.44 1.46 14.83 25.50 2.77 3.35 10.79 0.85
0.90 0 104.96 144.16 3.17 10.50 19.99 2.25 1.93 6.29 0.79
0.90 1

6
138.20 175.28 3.21 11.07 12.99 2.23 2.28 4.72 0.79

0.90 1
3

104.26 94.46 2.96 8.74 10.25 2.34 1.44 1.66 0.80
0.90 1

2
128.73 128.82 2.46 3.84 15.07 2.44 0.67 4.77 0.83

0.90 2
3

92.60 139.41 2.34 9.29 13.19 2.38 1.49 4.84 0.82
0.90 5

6
117.39 91.55 2.25 7.27 15.00 2.41 0.94 3.33 0.82

0.90 1 121.38 103.72 1.97 10.08 17.56 2.47 1.31 3.68 0.83
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Table C.4.: Statistics of p(4) using the standard algorithm for the 4 parameter case with
1000 drawn samples for varying height of the lower muscle θb and thickness
of the surrounding tissue layer θ in the settings from Section 6.3.3 with
p∗(4) = 0

θb = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.80 2.00 2.00 1.80 2.70 2.10 2.20
|p̄(4)− p∗(4)| (%) 0.97 1.65 1.65 1.14 1.57 1.83 1.77
MAD(p(4)) (%) 0.55 1.12 1.12 0.60 0.83 1.26 1.18
var(p(4)) (%) 0.02 0.03 0.03 0.02 0.03 0.04 0.04

θb = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.70 1.80 1.50 1.30 1.30 1.50 1.30
|p̄(4)− p∗(4)| (%) 0.95 1.03 1.05 0.96 0.96 1.05 0.99
MAD(p(4)) (%) 0.45 0.53 0.69 0.52 0.52 0.56 0.54
var(p(4)) (%) 0.02 0.02 0.03 0.02 0.02 0.02 0.02

θb = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.50 2.30 2.30 1.90 1.70 1.70 1.60
|p̄(4)− p∗(4)| (%) 2.81 5.00 4.28 3.44 2.98 2.02 3.49
MAD(p(4)) (%) 1.34 1.67 2.19 1.30 1.26 1.48 0.97
var(p(4)) (%) 0.04 0.05 0.06 0.04 0.04 0.05 0.03

θb = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.80 2.00 2.10 2.10 1.60 1.70 1.50
|p̄(4)− p∗(4)| (%) 4.68 3.09 3.40 6.00 3.49 4.98 2.37
MAD(p(4)) (%) 1.67 1.47 1.54 1.53 0.97 1.52 1.45
var(p(4)) (%) 0.05 0.06 0.06 0.04 0.03 0.05 0.05

θb = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.80 1.80 2.10 1.60 1.70 1.50 1.50
|p̄(4)− p∗(4)| (%) 4.68 4.68 6.00 3.49 4.98 2.37 2.37
MAD(p(4)) (%) 1.67 1.67 1.53 0.97 1.52 1.45 1.45
var(p(4)) (%) 0.05 0.05 0.04 0.03 0.05 0.05 0.05



180 C. Appendix - 4 Parameter Case in Use Case 3

Table C.5.: Statistics of p(4) using the standard algorithm for the 4 parameter case with
1000 drawn samples for varying height of the lower muscle θb and thickness
of the surrounding tissue layer θ in the settings from Section 6.3.3 with
p∗(4) = π

4

θb = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.10 3.00 2.70 3.10 3.40 3.60 2.40
|p̄(4)− p∗(4)| (%) 74.89 74.65 74.86 74.66 74.39 73.63 74.72
MAD(p(4)) (%) 4.74 4.78 4.82 4.86 5.41 5.09 5.52
var(p(4)) (%) 1.54 1.53 1.54 1.60 1.69 1.63 1.79

θb = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.40 3.20 2.80 2.30 2.20 2.20 1.90
|p̄(4)− p∗(4)| (%) 68.15 60.78 62.98 65.23 65.42 59.72 58.69
MAD(p(4)) (%) 3.98 6.58 6.59 5.42 6.00 10.52 13.98
var(p(4)) (%) 1.23 1.71 1.63 1.49 1.57 2.62 3.34

θb = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.60 3.20 2.90 2.60 2.20 2.70 2.50
|p̄(4)− p∗(4)| (%) 65.69 63.22 64.06 65.26 66.68 59.46 55.50
MAD(p(4)) (%) 5.07 5.85 5.92 6.09 6.52 11.85 10.52
var(p(4)) (%) 1.41 1.49 1.53 1.59 1.69 2.92 2.37

θb = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.40 2.40 2.40 2.20 2.60 2.30 2.30
|p̄(4)− p∗(4)| (%) 62.18 61.73 56.53 52.56 53.62 55.52 52.98
MAD(p(4)) (%) 5.59 5.34 6.81 9.27 9.59 11.93 11.18
var(p(4)) (%) 1.41 1.35 1.41 1.97 2.12 2.73 2.42

θb = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.80 1.70 1.60 1.50 1.40 1.60 1.70
|p̄(4)− p∗(4)| (%) 34.62 32.15 33.31 30.17 30.51 29.11 28.19
MAD(p(4)) (%) 3.47 2.09 2.39 1.61 4.78 3.86 3.25
var(p(4)) (%) 0.40 0.30 0.33 0.27 0.49 0.41 0.35
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Table C.6.: Statistics of p(4) using the standard algorithm for the 4 parameter case with
1000 drawn samples for varying height of the lower muscle θb and thickness
of the surrounding tissue layer θ in the settings from Section 6.3.3 with
p∗(4) = 3π

4

θb = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.20 3.50 4.00 4.30 4.40 3.50 4.60
|p̄(4)− p∗(4)| (%) 76.79 76.20 76.51 76.27 77.10 76.73 73.67
MAD(p(4)) (%) 6.96 7.02 6.75 7.38 6.82 6.93 10.54
var(p(4)) (%) 2.21 2.20 2.10 2.37 2.10 2.21 3.18

θb = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 4.60 3.90 4.10 3.30 3.60 3.30 3.10
|p̄(4)− p∗(4)| (%) 65.69 59.22 58.21 53.57 48.08 48.09 4.70
MAD(p(4)) (%) 6.19 7.82 10.49 15.48 21.12 23.38 6.02
var(p(4)) (%) 1.80 2.22 2.90 4.76 6.74 7.45 0.50

θb = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.80 3.70 3.50 3.50 3.00 3.10 2.70
|p̄(4)− p∗(4)| (%) 65.71 60.86 59.32 60.46 58.32 55.68 53.62
MAD(p(4)) (%) 6.86 10.74 10.43 11.88 11.35 13.01 11.55
var(p(4)) (%) 1.99 2.93 2.79 3.46 3.21 3.49 2.95

θb = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.80 3.10 2.90 2.70 2.90 2.90 4.00
|p̄(4)− p∗(4)| (%) 60.31 52.50 50.45 49.64 51.01 43.79 30.26
MAD(p(4)) (%) 12.38 11.50 11.11 9.83 11.89 13.48 27.84
var(p(4)) (%) 3.66 2.87 2.72 2.40 3.04 3.31 10.20

θb = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.20 2.20 2.40 3.00 2.70 2.60 2.90
|p̄(4)− p∗(4)| (%) 20.25 21.29 20.34 16.42 9.20 13.56 10.72
MAD(p(4)) (%) 6.74 5.73 10.81 12.89 11.78 15.25 13.30
var(p(4)) (%) 1.01 0.71 2.31 3.07 2.52 3.49 2.85
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Table D.1.: Statistics of p(1 : 3) using the standard algorithm for the 5 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(5) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.4
with p∗(4) = 0

p∗(5) θ |p̄(1 : 3)− p∗(1 : 3)| (%) MAD(p(1 : 3)) (%) var(p(1 : 3)) (%)

0.10 0 157.66 84.36 6.06 7.95 8.38 7.55 0.89 1.27 2.01
0.10 1

6
55.77 174.24 3.83 28.43 9.94 4.41 13.84 2.47 1.44

0.10 1
3

67.96 167.41 3.16 21.05 13.71 3.51 8.04 2.77 1.41
0.10 1

2
88.53 220.25 3.53 17.69 30.49 6.34 5.89 14.41 1.59

0.10 2
3

131.03 122.63 5.82 11.95 10.13 4.54 3.06 1.35 1.38
0.10 5

6
163.14 106.02 5.24 8.20 11.71 5.11 1.25 1.54 1.42

0.10 1 175.96 147.45 1.97 13.63 8.24 6.94 2.71 1.41 1.68
0.30 0 124.33 70.69 3.51 5.56 19.05 5.06 0.80 6.05 2.88
0.30 1

6
81.57 191.96 2.44 12.83 17.13 3.98 1.90 5.78 1.30

0.30 1
3

104.40 129.39 1.05 19.51 19.18 3.12 4.21 6.37 1.19
0.30 1

2
140.22 133.71 1.58 12.04 6.03 3.27 2.31 0.95 1.25

0.30 2
3

160.75 96.09 1.08 11.00 11.22 2.75 2.04 1.45 1.16
0.30 5

6
164.85 104.83 1.71 8.80 3.24 2.73 2.06 0.57 1.14

0.30 1 166.23 103.62 1.81 6.84 1.93 2.73 1.79 0.27 1.13
0.50 0 130.01 41.51 50.18 11.40 38.12 3.47 2.52 23.03 1.21
0.50 1

6
99.56 96.50 54.48 0.77 0.64 2.82 0.06 0.06 1.06

0.50 1
3

95.32 94.43 54.60 7.50 3.59 2.81 0.96 0.30 1.06
0.50 1

2
91.76 85.99 54.85 7.78 8.02 2.80 0.72 0.76 1.05

0.50 2
3

91.76 85.99 54.85 7.78 8.02 2.80 0.72 0.76 1.05
0.50 5

6
92.02 87.90 57.60 2.21 5.15 2.69 0.24 0.46 0.99

0.50 1 92.02 87.90 57.60 2.21 5.15 2.69 0.24 0.46 0.99
0.70 0 87.15 153.84 2.15 14.03 11.17 3.88 2.61 1.80 1.68
0.70 1

6
181.35 63.10 7.63 9.56 17.32 12.15 2.33 3.66 2.63

0.70 1
3

143.23 76.39 59.84 3.69 2.11 1.75 0.51 0.14 0.17
0.70 1

2
107.14 110.12 106.94 2.34 3.51 3.24 0.15 0.20 0.19

0.70 2
3

124.38 168.46 163.21 5.44 16.65 6.21 0.81 5.55 1.44
0.70 5

6
141.86 94.00 2.25 1.96 2.44 2.96 0.51 0.35 1.28

0.70 1 101.65 164.56 2.20 22.59 20.87 3.39 5.98 5.67 1.66
0.90 0 132.88 101.60 2.34 2.46 2.73 2.52 0.90 0.39 1.11
0.90 1

6
147.66 94.70 1.37 2.94 2.49 2.48 1.27 0.38 1.09

0.90 1
3

140.19 72.86 2.09 2.55 1.64 2.32 0.90 0.23 0.98
0.90 1

2
147.77 7.43 0.09 8.70 7.95 2.62 1.67 2.22 1.04

0.90 2
3

96.77 97.49 1.00 9.06 9.10 4.55 1.04 0.98 1.14
0.90 5

6
96.77 97.49 1.00 9.06 9.10 4.55 1.04 0.98 1.14

0.90 1 72.32 95.40 0.78 3.08 1.89 2.40 0.32 0.14 1.00
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Table D.2.: Statistics of p(1 : 3) using the standard algorithm for the 5 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(5) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.4
with p∗(4) = π

2

p∗(5) θ |p̄(1 : 3)− p∗(1 : 3)| (%) MAD(p(1 : 3)) (%) var(p(1 : 3)) (%)

0.10 0 110.30 65.50 2.62 27.41 23.76 4.29 12.02 6.78 1.62
0.10 1

6
114.92 105.52 1.67 30.72 22.00 7.88 14.44 7.27 1.95

0.10 1
3

128.76 142.29 0.49 24.92 18.86 7.66 9.37 5.51 1.86
0.10 1

2
120.51 251.70 2.40 24.36 24.01 6.16 10.24 15.82 1.67

0.10 2
3

140.34 239.51 2.52 17.39 30.21 5.94 4.01 18.88 1.64
0.10 5

6
180.66 259.74 0.94 21.40 22.84 4.60 6.65 14.78 1.62

0.10 1 153.98 232.37 0.94 10.82 20.37 4.85 2.08 10.27 1.60
0.30 0 63.25 109.61 3.70 27.04 23.56 6.00 8.89 9.70 2.95
0.30 1

6
146.90 230.96 8.50 5.56 17.76 3.98 1.16 9.83 1.50

0.30 1
3

136.48 193.77 3.09 23.43 25.58 5.19 7.73 9.70 1.29
0.30 1

2
168.77 204.67 3.17 12.61 11.55 3.81 3.19 5.76 1.16

0.30 2
3

189.34 155.32 3.59 25.42 19.35 5.33 8.92 4.96 1.29
0.30 5

6
189.78 173.90 1.39 28.69 37.70 3.61 12.38 16.61 1.20

0.30 1 222.81 165.24 1.77 26.57 32.00 3.86 11.91 13.04 1.19
0.50 0 149.56 51.53 53.39 6.23 19.65 3.50 1.91 6.03 1.17
0.50 1

6
158.98 99.20 52.73 15.58 7.60 4.34 4.67 1.10 1.24

0.50 1
3

134.13 171.31 55.03 14.17 16.25 3.28 3.39 4.75 1.09
0.50 1

2
116.94 170.62 52.62 14.53 16.38 4.14 2.69 4.83 1.19

0.50 2
3

75.54 164.18 55.11 4.81 15.02 3.17 0.57 4.18 1.06
0.50 5

6
106.20 162.78 55.51 13.13 19.63 3.01 2.26 5.63 1.06

0.50 1 82.18 104.28 56.77 8.09 3.09 3.43 0.86 0.28 1.03
0.70 0 83.76 205.79 1.96 12.75 12.13 3.66 2.65 3.60 1.70
0.70 1

6
50.44 173.54 0.15 11.55 18.77 3.44 2.19 6.40 1.09

0.70 1
3

144.07 282.20 60.35 37.90 32.13 2.71 18.52 23.97 0.22
0.70 1

2
130.92 259.48 104.22 20.37 37.79 1.77 5.44 20.71 0.11

0.70 2
3

206.69 89.67 161.82 15.21 2.39 4.31 4.70 0.25 1.19
0.70 5

6
190.06 124.62 3.05 5.88 10.22 2.87 1.27 1.31 1.24

0.70 1 101.06 196.07 3.82 5.61 14.55 3.33 0.73 3.46 1.62
0.90 0 163.50 58.05 1.18 13.68 6.73 2.70 3.10 1.33 1.03
0.90 1

6
89.86 58.77 1.87 13.58 4.50 3.57 2.49 0.73 1.12

0.90 1
3

111.11 33.45 0.46 8.78 10.98 2.88 1.34 2.17 1.03
0.90 1

2
96.28 128.66 0.18 5.22 7.09 2.99 0.82 1.70 1.05

0.90 2
3

100.79 86.40 0.01 4.37 6.22 2.91 0.49 0.86 1.05
0.90 5

6
76.35 95.35 0.38 6.90 1.88 2.42 0.54 0.14 1.01

0.90 1 76.35 95.35 0.38 6.90 1.88 2.42 0.54 0.14 1.01
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Table D.3.: Statistics of p(1 : 3) using the standard algorithm for the 5 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(5) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.4
with p∗(4) = 3π

4

p∗(5) θ |p̄(1 : 3)− p∗(1 : 3)| (%) MAD(p(1 : 3)) (%) var(p(1 : 3)) (%)

0.10 0 169.64 152.49 0.71 18.64 13.10 5.47 7.07 3.80 1.66
0.10 1

6
110.51 135.50 0.51 55.70 18.50 6.69 42.63 4.96 1.78

0.10 1
3

88.07 239.13 1.49 27.94 43.99 5.48 16.98 26.06 2.01
0.10 1

2
127.35 237.41 1.11 20.83 38.60 5.17 7.96 27.75 1.86

0.10 2
3

178.73 215.76 2.50 33.00 40.09 5.19 14.87 19.96 1.61
0.10 5

6
149.73 252.35 2.83 15.94 39.33 3.73 5.41 22.90 1.52

0.10 1 201.19 198.69 0.00 17.79 40.95 7.10 6.31 22.99 1.93
0.30 0 90.69 108.77 3.65 26.14 40.11 8.00 9.14 20.95 3.19
0.30 1

6
84.46 222.53 2.38 40.01 28.59 3.88 19.37 15.63 1.26

0.30 1
3

91.42 276.99 2.18 43.82 29.95 6.26 21.95 23.44 1.48
0.30 1

2
128.86 177.23 0.89 14.11 16.70 3.18 2.68 6.69 1.19

0.30 2
3

174.31 83.99 1.11 17.62 16.64 3.13 4.60 5.09 1.19
0.30 5

6
171.53 119.89 1.30 6.50 6.94 3.20 2.15 1.03 1.17

0.30 1 166.70 74.00 0.67 12.82 7.77 3.29 2.72 1.16 1.22
0.50 0 39.88 106.01 50.68 13.76 7.32 5.52 2.79 0.83 1.38
0.50 1

6
113.51 91.41 54.47 2.36 6.41 3.32 0.55 1.40 1.10

0.50 1
3

83.02 77.41 54.98 10.70 4.31 3.53 1.59 0.70 1.10
0.50 1

2
126.95 97.25 52.92 19.47 5.82 3.43 7.32 0.64 1.15

0.50 2
3

53.44 169.93 54.47 5.47 9.57 3.32 0.92 2.89 1.08
0.50 5

6
27.25 158.73 55.33 19.32 16.09 3.22 6.08 5.23 1.06

0.50 1 72.73 107.97 53.21 5.46 0.71 2.87 0.57 0.04 1.10
0.70 0 99.42 185.52 1.21 15.49 12.80 5.07 2.94 2.73 1.79
0.70 1

6
94.72 144.53 0.61 9.42 6.28 2.45 1.16 1.19 1.02

0.70 1
3

77.67 131.38 64.14 12.77 18.37 1.32 2.66 4.55 0.14
0.70 1

2
84.73 238.69 102.39 4.48 15.91 1.59 0.50 8.53 0.11

0.70 2
3

177.71 134.41 162.01 8.82 12.02 7.13 2.57 2.92 1.42
0.70 5

6
153.30 169.62 0.96 3.90 4.66 2.93 0.50 0.93 1.30

0.70 1 128.80 194.31 2.83 16.16 21.62 4.06 3.28 5.70 1.67
0.90 0 149.21 59.95 2.32 5.29 1.96 2.31 1.43 0.31 0.97
0.90 1

6
149.21 59.95 2.32 5.29 1.96 2.31 1.43 0.31 0.97

0.90 1
3

132.95 30.27 0.61 9.10 2.85 2.46 1.33 0.96 1.04
0.90 1

2
92.10 89.47 2.63 1.50 0.67 2.95 0.20 0.06 1.10

0.90 2
3

96.77 97.49 1.00 9.06 9.10 4.55 1.04 0.98 1.14
0.90 5

6
63.21 94.48 0.49 7.91 1.75 2.41 1.16 0.13 1.01

0.90 1 63.21 94.48 0.49 7.91 1.75 2.41 1.16 0.13 1.01
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Table D.4.: Statistics of p(4) using the standard algorithm for the 5 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(5) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.4
with p∗(4) = 0

p∗(5) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.40 1.60 1.50 1.50 1.30 1.20 1.20
|p̄(4)− p∗(4)| (%) 4.56 6.91 5.59 11.74 6.83 6.27 8.61
MAD(p(4)) (%) 1.15 2.78 4.28 2.94 4.23 4.12 4.23
var(p(4)) (%) 0.03 0.10 0.19 0.14 0.22 0.19 0.22

p∗(5) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.90 1.70 1.80 1.50 1.50 1.50 1.40
|p̄(4)− p∗(4)| (%) 2.07 2.75 3.79 7.17 5.55 7.31 7.30
MAD(p(4)) (%) 2.34 1.37 2.44 1.31 2.92 1.48 1.48
var(p(4)) (%) 0.10 0.08 0.13 0.06 0.16 0.07 0.07

p∗(5) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.80 0.70 0.80 0.90 0.90 0.90 0.90
|p̄(4)− p∗(4)| (%) 3.37 11.40 10.16 11.52 11.52 17.29 17.29
MAD(p(4)) (%) 2.08 0.19 2.12 0.51 0.51 2.00 2.00
var(p(4)) (%) 0.10 0.01 0.09 0.01 0.01 0.07 0.07

p∗(5) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.50 1.80 1.00 0.80 1.40 1.50 1.70
|p̄(4)− p∗(4)| (%) 2.70 8.09 4.18 4.58 14.03 3.30 4.94
MAD(p(4)) (%) 1.92 4.68 1.53 1.45 1.84 0.67 2.35
var(p(4)) (%) 0.05 0.27 0.07 0.04 0.06 0.04 0.09

p∗(5) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.50 1.60 1.50 1.70 1.30 1.30 1.20
|p̄(4)− p∗(4)| (%) 23.26 20.10 7.02 24.75 18.58 18.58 17.44
MAD(p(4)) (%) 1.02 1.01 1.55 2.37 0.49 0.49 1.13
var(p(4)) (%) 0.07 0.07 0.12 0.12 0.04 0.04 0.06
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Table D.5.: Statistics of p(4) using the standard algorithm for the 5 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(5) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.4
with p∗(4) = π

4

p∗(5) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.00 2.90 2.80 3.00 2.90 3.10 2.50
|p̄(4)− p∗(4)| (%) 66.01 69.57 66.64 55.96 57.56 55.65 48.08
MAD(p(4)) (%) 8.74 7.58 8.19 14.67 14.87 18.30 21.06
var(p(4)) (%) 2.38 2.24 2.24 4.11 4.33 5.37 6.18

p∗(5) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.70 2.10 3.20 2.30 2.50 2.60 2.10
|p̄(4)− p∗(4)| (%) 63.23 27.76 56.79 37.77 35.85 24.91 5.84
MAD(p(4)) (%) 8.37 5.17 13.20 12.32 15.41 17.89 4.39
var(p(4)) (%) 2.17 0.77 3.75 2.17 3.47 3.93 0.25

p∗(5) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.00 2.50 1.90 1.70 1.60 1.50 1.00
|p̄(4)− p∗(4)| (%) 69.30 54.19 42.77 29.58 19.31 10.72 3.15
MAD(p(4)) (%) 10.41 11.34 11.11 7.41 4.90 5.99 5.69
var(p(4)) (%) 3.39 2.75 2.36 1.21 0.56 0.51 0.39

p∗(5) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.80 1.90 3.10 2.00 1.60 1.40 1.40
|p̄(4)− p∗(4)| (%) 32.72 30.75 41.19 40.63 41.30 18.27 23.90
MAD(p(4)) (%) 5.72 16.03 15.29 5.27 5.90 4.77 3.29
var(p(4)) (%) 0.84 3.59 2.90 0.89 0.93 0.38 0.25

p∗(5) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.00 2.00 2.20 2.10 2.00 1.30 1.30
|p̄(4)− p∗(4)| (%) 15.02 0.42 20.17 11.02 3.29 8.91 8.91
MAD(p(4)) (%) 9.32 9.50 12.37 8.84 5.04 1.16 1.16
var(p(4)) (%) 1.18 1.24 1.99 1.11 0.37 0.06 0.06
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Table D.6.: Statistics of p(4) using the standard algorithm for the 5 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(5) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.4
with p∗(4) = π

2

p∗(5) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.80 3.30 3.30 2.70 3.00 2.60 2.60
|p̄(4)− p∗(4)| (%) 75.72 75.06 72.84 72.53 74.39 71.19 48.22
MAD(p(4)) (%) 9.97 11.12 18.29 18.64 21.74 20.37 24.71
var(p(4)) (%) 2.31 2.71 5.61 5.68 7.11 5.94 7.65

p∗(5) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.10 3.70 3.50 2.90 2.60 2.10 1.70
|p̄(4)− p∗(4)| (%) 63.10 57.30 49.17 49.44 49.78 36.86 37.50
MAD(p(4)) (%) 6.74 9.18 15.91 17.31 18.08 13.32 12.42
var(p(4)) (%) 1.48 1.83 3.97 4.35 4.81 2.38 2.09

p∗(5) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.70 1.50 1.50 1.90 1.10 1.10 0.80
|p̄(4)− p∗(4)| (%) 57.71 53.54 52.29 44.42 29.77 20.20 19.48
MAD(p(4)) (%) 13.25 5.65 6.18 10.22 3.53 4.69 2.48
var(p(4)) (%) 2.52 0.94 0.97 1.84 0.34 0.28 0.14

p∗(5) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.00 1.50 2.30 1.70 2.00 1.10 1.40
|p̄(4)− p∗(4)| (%) 26.82 33.28 75.60 42.13 46.85 5.75 18.33
MAD(p(4)) (%) 10.69 7.08 10.64 5.71 6.78 1.00 2.45
var(p(4)) (%) 2.11 0.76 2.42 0.90 1.32 0.05 0.12

p∗(5) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.60 1.60 1.60 1.30 1.30 1.40 1.40
|p̄(4)− p∗(4)| (%) 11.69 11.69 16.66 15.81 10.27 17.27 17.27
MAD(p(4)) (%) 2.03 2.03 5.77 0.60 0.49 1.49 1.49
var(p(4)) (%) 0.12 0.12 0.44 0.03 0.03 0.08 0.08
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Table D.7.: Statistics of p(5) using the standard algorithm for the 5 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(5) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.4
with p∗(4) = 0

p∗(5) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.40 1.60 1.50 1.50 1.30 1.20 1.20
|p̄(5)− p∗(5)| (%) 11.94 4.73 5.61 4.51 4.06 4.87 4.67
MAD(p(5)) (%) 0.91 2.25 1.38 2.28 0.55 1.17 2.08
var(p(5)) (%) 0.04 0.07 0.04 0.06 0.02 0.02 0.06

p∗(5) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.90 1.70 1.80 1.50 1.50 1.50 1.40
|p̄(5)− p∗(5)| (%) 5.08 0.35 3.90 13.48 1.50 0.92 0.44
MAD(p(5)) (%) 2.91 2.29 2.14 7.09 1.71 1.07 0.52
var(p(5)) (%) 0.15 0.08 0.08 0.62 0.05 0.07 0.02

p∗(5) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.80 0.70 0.80 0.90 0.90 0.90 0.90
|p̄(5)− p∗(5)| (%) 22.32 18.77 17.79 23.23 23.23 20.83 20.83
MAD(p(5)) (%) 6.20 0.34 1.91 3.41 3.41 0.92 0.92
var(p(5)) (%) 0.46 0.02 0.07 0.16 0.16 0.03 0.03

p∗(5) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.50 1.80 1.00 0.80 1.40 1.50 1.70
|p̄(5)− p∗(5)| (%) 0.99 6.37 19.31 18.15 19.28 3.54 4.88
MAD(p(5)) (%) 1.09 7.23 0.77 2.71 0.99 0.86 1.83
var(p(5)) (%) 0.05 0.65 0.05 0.19 0.09 0.03 0.05

p∗(5) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.50 1.60 1.50 1.70 1.30 1.30 1.20
|p̄(5)− p∗(5)| (%) 13.52 11.25 2.75 2.90 21.01 21.01 4.44
MAD(p(5)) (%) 0.37 0.38 0.31 0.52 4.01 4.01 0.94
var(p(5)) (%) 0.02 0.02 0.01 0.02 0.20 0.20 0.03
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Table D.8.: Statistics of p(5) using the standard algorithm for the 5 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(5) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.4
with p∗(4) = π

4

p∗(5) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.00 2.90 2.80 3.00 2.90 3.10 2.50
|p̄(5)− p∗(5)| (%) 11.71 9.94 9.42 6.09 5.09 5.42 4.54
MAD(p(5)) (%) 2.40 2.81 3.24 2.25 3.62 1.86 2.43
var(p(5)) (%) 0.11 0.10 0.12 0.07 0.17 0.06 0.09

p∗(5) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.70 2.10 3.20 2.30 2.50 2.60 2.10
|p̄(5)− p∗(5)| (%) 3.19 15.20 7.26 10.01 0.93 4.23 0.17
MAD(p(5)) (%) 4.62 3.43 7.58 8.22 7.06 4.35 5.50
var(p(5)) (%) 0.34 0.34 0.80 0.87 0.61 0.32 0.35

p∗(5) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.00 2.50 1.90 1.70 1.60 1.50 1.00
|p̄(5)− p∗(5)| (%) 28.44 16.66 20.62 19.50 20.70 20.67 20.47
MAD(p(5)) (%) 5.77 4.59 1.35 3.48 1.26 1.91 0.96
var(p(5)) (%) 0.46 0.29 0.07 0.15 0.05 0.08 0.03

p∗(5) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.80 1.90 3.10 2.00 1.60 1.40 1.40
|p̄(5)− p∗(5)| (%) 3.64 0.86 17.72 18.70 18.71 0.74 1.72
MAD(p(5)) (%) 5.57 2.54 1.04 1.20 0.93 3.44 3.10
var(p(5)) (%) 0.43 0.14 0.05 0.10 0.09 0.15 0.13

p∗(5) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.00 2.00 2.20 2.10 2.00 1.30 1.30
|p̄(5)− p∗(5)| (%) 6.99 10.54 8.00 8.18 9.11 7.45 7.45
MAD(p(5)) (%) 3.15 3.87 5.25 3.69 3.27 4.25 4.25
var(p(5)) (%) 0.11 0.18 0.34 0.16 0.14 0.20 0.20
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Table D.9.: Statistics of p(5) using the standard algorithm for the 5 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(5) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.4
with p∗(4) = 3π

4

p∗(5) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.80 3.30 3.30 2.70 3.00 2.60 2.60
|p̄(5)− p∗(5)| (%) 11.82 5.43 5.40 4.34 4.72 1.95 4.80
MAD(p(5)) (%) 3.22 2.87 1.87 2.06 2.48 2.26 3.18
var(p(5)) (%) 0.17 0.10 0.07 0.08 0.09 0.07 0.14

p∗(5) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.10 3.70 3.50 2.90 2.60 2.10 1.70
|p̄(5)− p∗(5)| (%) 4.90 7.65 3.19 7.97 4.50 10.14 7.44
MAD(p(5)) (%) 5.83 3.82 4.56 7.45 4.66 7.47 7.57
var(p(5)) (%) 0.39 0.25 0.37 0.75 0.34 0.69 0.79

p∗(5) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.70 1.50 1.50 1.90 1.10 1.10 0.80
|p̄(5)− p∗(5)| (%) 31.31 18.72 19.62 15.21 14.32 15.67 27.41
MAD(p(5)) (%) 2.79 0.55 0.96 3.48 3.49 2.68 1.21
var(p(5)) (%) 0.19 0.03 0.04 0.14 0.19 0.16 0.09

p∗(5) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.00 1.50 2.30 1.70 2.00 1.10 1.40
|p̄(5)− p∗(5)| (%) 5.37 17.83 18.00 19.07 19.25 1.84 7.40
MAD(p(5)) (%) 4.82 3.90 1.16 1.15 1.12 3.84 7.20
var(p(5)) (%) 0.30 0.30 0.06 0.10 0.10 0.23 0.62

p∗(5) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.60 1.60 1.60 1.30 1.30 1.40 1.40
|p̄(5)− p∗(5)| (%) 7.68 7.68 11.13 20.84 21.01 8.89 8.89
MAD(p(5)) (%) 1.21 1.21 3.32 1.10 4.01 0.81 0.81
var(p(5)) (%) 0.05 0.05 0.14 0.06 0.20 0.04 0.04
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Table E.1.: Statistics of p(1 : 3) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = 0

p∗(9) θ |p̄(1 : 3)− p∗(1 : 3)| (%) MAD(p(1 : 3)) (%) var(p(1 : 3)) (%)

0.10 0 144.82 71.70 1.06 7.04 7.82 12.77 1.26 1.47 3.31
0.10 1

6
63.08 9.20 2.84 20.56 11.64 6.07 7.23 3.90 2.03

0.10 1
3

87.14 13.00 1.04 15.51 12.37 6.66 3.87 3.75 2.08
0.10 1

2
60.89 24.05 3.29 42.55 20.17 5.54 22.50 7.19 1.94

0.10 2
3

113.97 14.85 0.36 13.01 11.93 5.56 2.63 3.66 1.94
0.10 5

6
127.96 14.87 3.67 11.58 9.94 6.89 2.16 3.01 2.11

0.10 1 130.79 49.10 3.59 8.20 11.77 4.43 1.29 1.91 1.86
0.30 0 143.44 6.29 8.55 7.48 7.26 7.38 1.95 2.11 2.98
0.30 1

6
22.13 64.11 4.85 22.52 8.35 10.71 7.64 1.20 4.81

0.30 1
3

36.35 111.16 8.07 9.81 6.30 8.36 2.86 1.14 3.63
0.30 1

2
90.36 47.11 6.17 4.91 12.31 4.97 0.74 5.69 2.29

0.30 2
3

149.46 19.79 1.64 8.86 8.02 5.26 1.26 1.49 2.52
0.30 5

6
142.66 49.17 2.42 11.61 14.36 5.23 1.99 3.41 2.48

0.30 1 161.22 46.33 2.81 8.28 16.11 5.13 2.64 3.37 2.46
0.50 0 260.03 62.23 5.94 23.89 10.46 3.73 11.68 3.30 1.39
0.50 1

6
99.05 131.85 102.16 5.71 4.97 1.73 0.77 0.45 0.05

0.50 1
3

120.69 42.23 170.05 3.26 8.31 3.64 0.27 1.04 0.41
0.50 1

2
152.62 80.16 292.32 1.96 4.34 10.06 0.45 0.91 6.08

0.50 2
3

223.31 62.53 54.28 10.50 11.75 4.20 2.91 1.80 0.71
0.50 5

6
182.81 5.52 55.48 14.51 13.18 2.04 3.05 2.90 0.54

0.50 1 182.27 0.37 53.70 2.32 4.48 2.12 0.89 1.38 0.56
0.70 0 109.74 11.58 8.02 10.41 34.24 18.50 1.75 14.99 4.57
0.70 1

6
110.56 115.80 35.87 3.34 7.39 2.46 0.26 0.80 0.48

0.70 1
3

137.48 65.23 64.29 3.24 1.57 2.76 0.48 0.16 0.28
0.70 1

2
76.42 59.18 106.17 7.88 12.20 4.90 1.07 1.91 0.31

0.70 2
3

62.27 32.04 167.85 22.30 7.38 2.98 5.92 0.81 0.28
0.70 5

6
64.45 23.66 243.75 10.77 4.22 7.43 2.19 0.69 2.56

0.70 1 132.27 92.88 301.13 1.59 5.88 10.82 0.41 1.25 7.48
0.90 0 125.28 93.24 21.33 0.74 0.80 2.82 0.14 0.06 0.70
0.90 1

6
149.86 82.72 32.92 7.52 9.96 9.02 0.94 1.06 1.17

0.90 1
3

125.28 93.24 21.33 0.74 0.80 2.82 0.14 0.06 0.70
0.90 1

2
200.34 119.33 21.97 15.49 14.24 7.55 4.45 2.91 1.56

0.90 2
3

152.18 76.18 24.85 7.35 12.77 2.08 0.95 1.77 0.59
0.90 5

6
180.52 151.13 7.29 13.24 19.27 9.36 3.43 7.79 1.79

0.90 1 145.84 100.48 24.86 2.31 4.15 2.36 0.44 0.89 0.57
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Table E.2.: Statistics of p(1 : 3) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = π

4

p∗(9) θ |p̄(1 : 3)− p∗(1 : 3)| (%) MAD(p(1 : 3)) (%) var(p(1 : 3)) (%)

0.10 0 168.17 49.78 6.40 10.80 12.42 7.69 2.01 3.03 2.56
0.10 1

6
48.62 89.90 0.56 38.08 21.73 10.19 18.16 7.24 2.77

0.10 1
3

85.59 103.67 1.74 31.79 22.04 7.80 12.80 6.85 2.43
0.10 1

2
102.06 107.69 0.90 42.02 33.16 7.85 23.12 17.67 2.45

0.10 2
3

86.17 58.11 2.67 36.71 21.39 9.01 16.88 9.90 2.87
0.10 5

6
177.22 62.34 1.49 23.99 15.90 8.34 9.65 6.95 2.82

0.10 1 105.27 52.55 1.86 34.30 13.17 6.08 14.50 5.08 2.45
0.30 0 119.33 55.43 10.30 16.28 19.50 10.84 4.40 5.56 2.87
0.30 1

6
93.87 262.41 8.06 12.77 60.77 9.42 4.18 53.77 4.18

0.30 1
3

65.33 132.47 1.95 7.31 44.36 9.37 1.59 24.58 4.18
0.30 1

2
105.43 45.37 0.78 12.82 13.57 6.77 2.01 2.83 2.67

0.30 2
3

122.76 128.28 5.51 6.03 30.75 5.03 0.97 16.65 2.34
0.30 5

6
173.88 54.02 3.26 20.71 9.90 5.24 6.01 2.40 2.47

0.30 1 185.75 29.91 5.02 20.27 17.24 4.98 6.59 3.79 2.36
0.50 0 218.50 39.76 3.60 29.81 46.59 8.90 10.60 26.03 1.88
0.50 1

6
144.64 248.58 103.77 9.82 16.62 3.95 1.94 6.88 0.30

0.50 1
3

241.80 111.33 174.11 15.09 6.55 6.27 6.87 0.97 1.20
0.50 1

2
204.46 115.91 263.17 9.73 9.05 9.42 2.69 1.69 3.58

0.50 2
3

173.12 55.85 57.61 8.21 6.70 3.14 1.57 1.00 0.66
0.50 5

6
175.29 42.73 52.75 12.25 16.15 6.87 2.24 6.52 0.98

0.50 1 182.78 73.04 51.17 15.49 20.40 5.43 3.70 5.08 0.83
0.70 0 149.32 75.02 1.76 26.11 16.23 6.00 8.44 2.88 1.37
0.70 1

6
151.28 8.28 3.61 11.06 17.01 3.87 1.88 5.33 1.16

0.70 1
3

189.54 281.61 64.63 6.09 27.21 1.46 2.61 17.58 0.14
0.70 1

2
112.83 178.23 109.13 12.21 15.61 3.97 2.11 3.62 0.22

0.70 2
3

154.04 76.61 170.27 26.33 16.37 2.85 8.58 3.90 0.40
0.70 5

6
150.30 49.93 244.20 5.44 11.24 11.11 1.35 1.75 2.87

0.70 1 129.45 1.28 297.06 10.76 8.85 11.82 1.47 1.61 7.74
0.90 0 121.23 69.38 8.99 4.12 11.61 8.49 0.27 1.52 1.63
0.90 1

6
124.08 173.60 1.57 4.50 17.63 3.66 0.66 5.04 1.23

0.90 1
3

127.81 161.43 6.30 6.97 23.10 10.97 0.89 9.31 2.06
0.90 1

2
164.25 111.78 14.83 2.83 2.84 2.91 0.80 0.57 0.83

0.90 2
3

205.57 54.46 5.30 19.25 6.96 9.82 7.19 0.99 1.95
0.90 5

6
172.33 120.25 3.45 10.20 17.06 9.41 1.96 4.97 1.98

0.90 1 152.81 115.25 24.18 7.65 15.95 2.57 0.98 3.39 0.59
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Table E.3.: Statistics of p(1 : 3) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = 3π

4

p∗(9) θ |p̄(1 : 3)− p∗(1 : 3)| (%) MAD(p(1 : 3)) (%) var(p(1 : 3)) (%)

0.10 0 156.76 107.27 16.69 12.76 10.93 13.66 4.96 2.18 3.58
0.10 1

6
154.75 162.95 6.22 18.31 41.78 14.42 5.84 24.55 3.61

0.10 1
3

57.76 86.61 1.78 67.51 17.96 12.36 51.12 4.79 3.37
0.10 1

2
76.70 117.97 5.68 40.88 25.57 7.89 19.88 11.41 2.23

0.10 2
3

96.59 136.93 9.05 48.19 49.03 8.83 27.80 35.77 2.38
0.10 5

6
128.69 55.95 7.82 14.02 18.41 7.83 2.65 5.74 2.23

0.10 1 194.20 104.15 7.02 18.61 26.39 10.65 4.84 8.01 2.63
0.30 0 161.79 36.27 3.48 33.58 16.67 12.90 12.84 3.49 3.98
0.30 1

6
115.03 86.64 8.82 15.48 18.68 7.87 4.21 4.39 3.71

0.30 1
3

116.64 122.29 7.20 14.32 12.52 8.11 3.87 3.06 3.83
0.30 1

2
67.19 126.06 4.28 15.35 24.43 8.27 4.27 8.21 3.89

0.30 2
3

152.72 61.15 2.39 16.33 15.95 5.53 5.61 3.45 2.55
0.30 5

6
208.26 55.95 1.24 26.90 14.64 5.28 11.20 2.63 2.53

0.30 1 194.86 81.36 1.69 20.40 21.35 5.78 8.63 8.00 2.55
0.50 0 151.19 47.54 15.55 13.13 26.62 14.46 3.55 11.84 3.74
0.50 1

6
202.66 270.79 104.20 24.62 27.15 4.01 10.01 15.42 0.42

0.50 1
3

155.42 45.95 191.95 1.55 1.08 2.37 0.33 0.18 0.69
0.50 1

2
151.98 146.55 257.07 10.63 31.64 9.08 1.56 17.52 3.30

0.50 2
3

127.11 27.35 61.87 10.35 13.75 6.24 1.44 2.29 0.78
0.50 5

6
84.44 27.59 58.13 14.59 10.11 2.98 4.05 2.36 0.54

0.50 1 45.91 83.64 57.45 23.71 12.94 7.29 8.92 1.89 0.93
0.70 0 114.44 53.47 31.96 9.02 11.69 2.65 1.66 6.48 0.59
0.70 1

6
124.48 74.44 33.82 8.29 10.56 7.02 1.66 1.55 1.54

0.70 1
3

257.63 262.58 62.91 20.11 23.08 3.89 8.94 13.58 0.32
0.70 1

2
118.10 105.17 106.13 11.42 24.72 4.32 1.91 9.40 0.25

0.70 2
3

127.49 184.90 163.85 26.07 17.76 3.92 9.07 11.08 0.41
0.70 5

6
101.30 61.86 236.30 18.13 9.76 6.71 4.02 1.33 2.65

0.70 1 145.72 77.81 301.47 2.18 5.79 10.53 0.60 1.03 7.50
0.90 0 123.77 68.98 0.72 0.95 2.10 3.79 0.22 0.24 1.27
0.90 1

6
97.09 80.85 2.25 1.69 0.67 3.87 0.25 0.06 1.23

0.90 1
3

104.59 84.73 12.16 12.97 22.34 11.59 1.90 5.29 2.41
0.90 1

2
165.49 68.13 13.78 2.87 1.78 2.78 0.90 0.22 0.83

0.90 2
3

147.41 101.42 23.47 6.67 4.27 5.79 0.82 0.95 0.87
0.90 5

6
173.03 129.37 24.52 9.19 12.11 2.37 2.08 3.59 0.58

0.90 1 178.35 98.49 5.40 9.20 13.69 8.49 2.02 3.17 1.67
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Table E.4.: Statistics of p(4) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = 0

p∗(9) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.40 1.80 1.90 2.40 1.70 2.00 1.50
|p̄(4)− p∗(4)| (%) 4.82 5.54 5.31 6.76 4.65 4.58 8.03
MAD(p(4)) (%) 2.65 2.94 3.02 3.97 2.99 1.99 3.77
var(p(4)) (%) 0.08 0.14 0.17 0.24 0.11 0.08 0.20

p∗(9) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.50 1.60 1.40 1.20 1.30 1.40 1.30
|p̄(4)− p∗(4)| (%) 5.08 5.23 7.37 5.41 5.06 8.05 13.54
MAD(p(4)) (%) 1.57 1.48 2.70 1.30 2.83 3.35 1.61
var(p(4)) (%) 0.06 0.05 0.20 0.05 0.10 0.13 0.06

p∗(9) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.40 0.40 1.00 1.50 1.40 1.10 0.90
|p̄(4)− p∗(4)| (%) 14.33 1.16 7.68 16.56 23.73 12.58 13.64
MAD(p(4)) (%) 3.09 0.79 3.74 0.73 6.10 2.52 0.19
var(p(4)) (%) 0.27 0.01 0.16 0.03 0.79 0.12 0.01

p∗(9) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.20 1.00 1.00 0.50 0.80 1.90 1.80
|p̄(4)− p∗(4)| (%) 21.68 3.57 4.30 11.12 14.51 14.98 7.17
MAD(p(4)) (%) 3.69 1.46 0.46 3.81 3.43 3.19 3.65
var(p(4)) (%) 0.20 0.03 0.01 0.17 0.12 0.17 0.15

p∗(9) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.10 1.20 1.10 2.60 1.40 1.90 1.40
|p̄(4)− p∗(4)| (%) 21.98 18.40 21.98 51.69 30.13 32.99 23.59
MAD(p(4)) (%) 0.39 1.05 0.39 8.47 3.58 3.17 0.41
var(p(4)) (%) 0.02 0.02 0.02 1.10 0.16 0.20 0.03
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Table E.5.: Statistics of p(4) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = π

4

p∗(9) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.10 2.50 2.50 2.70 3.10 3.20 2.40
|p̄(4)− p∗(4)| (%) 46.28 61.45 59.76 57.47 50.79 17.53 2.27
MAD(p(4)) (%) 8.68 15.96 14.59 14.41 18.68 13.94 5.03
var(p(4)) (%) 1.41 3.45 3.20 3.28 4.55 3.11 0.32

p∗(9) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.80 2.30 1.70 1.90 2.20 1.50 1.60
|p̄(4)− p∗(4)| (%) 45.00 13.40 16.58 10.17 17.52 5.46 12.51
MAD(p(4)) (%) 15.32 9.20 4.51 5.86 6.80 5.33 5.67
var(p(4)) (%) 3.23 1.04 0.34 0.58 0.62 0.39 0.41

p∗(9) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.30 1.70 1.90 1.60 1.50 1.50 1.50
|p̄(4)− p∗(4)| (%) 46.70 37.57 38.96 14.03 7.33 2.78 8.63
MAD(p(4)) (%) 22.58 11.00 8.60 2.77 0.37 2.74 2.94
var(p(4)) (%) 5.75 1.93 1.48 0.13 0.01 0.11 0.11

p∗(9) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.30 2.00 2.10 1.70 1.60 1.60 2.10
|p̄(4)− p∗(4)| (%) 19.76 25.96 5.02 53.32 47.62 25.76 6.44
MAD(p(4)) (%) 12.61 7.51 3.39 11.08 11.25 3.99 2.00
var(p(4)) (%) 1.82 0.74 0.25 1.68 1.72 0.56 0.12

p∗(9) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.60 2.30 2.40 1.40 2.40 2.10 1.50
|p̄(4)− p∗(4)| (%) 6.29 0.31 26.07 30.64 22.20 18.78 20.17
MAD(p(4)) (%) 0.61 2.38 7.04 1.37 1.77 3.00 3.38
var(p(4)) (%) 0.02 0.12 0.68 0.13 0.12 0.15 0.14
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Table E.6.: Statistics of p(4) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = 3π

4

p∗(9) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.80 3.60 3.00 3.10 3.40 2.90 2.70
|p̄(4)− p∗(4)| (%) 33.23 37.95 47.64 41.23 23.65 25.21 17.89
MAD(p(4)) (%) 18.38 24.60 21.19 23.11 30.86 28.11 7.58
var(p(4)) (%) 4.38 7.90 5.03 6.11 11.09 8.71 0.78

p∗(9) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.30 2.20 1.80 1.90 2.50 1.80 1.60
|p̄(4)− p∗(4)| (%) 35.92 60.74 59.15 43.05 52.88 40.76 23.13
MAD(p(4)) (%) 12.30 9.70 9.22 12.76 13.93 12.50 4.76
var(p(4)) (%) 2.33 2.26 2.13 2.34 3.29 2.48 0.52

p∗(9) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.10 1.80 0.50 1.80 1.50 1.70 2.00
|p̄(4)− p∗(4)| (%) 45.92 18.86 13.99 19.22 0.57 42.10 37.64
MAD(p(4)) (%) 12.02 5.67 0.28 5.85 3.14 5.34 5.38
var(p(4)) (%) 2.47 0.59 0.01 0.44 0.13 0.61 0.55

p∗(9) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.80 2.30 2.80 1.50 2.20 2.10 1.70
|p̄(4)− p∗(4)| (%) 29.90 27.72 0.26 63.93 22.44 39.88 16.00
MAD(p(4)) (%) 8.90 6.67 8.17 10.22 5.58 10.76 4.46
var(p(4)) (%) 1.00 0.93 1.19 1.78 0.61 1.85 0.29

p∗(9) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.60 1.50 1.70 1.50 1.40 1.70 1.50
|p̄(4)− p∗(4)| (%) 20.12 6.75 5.47 29.29 16.55 10.39 21.87
MAD(p(4)) (%) 0.82 0.40 1.21 1.24 0.74 2.01 1.36
var(p(4)) (%) 0.05 0.02 0.06 0.11 0.03 0.09 0.06
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Table E.7.: Statistics of p(5 : 7) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = 0

p∗(9) θ |p̄(5 : 7)− p∗(5 : 7)| (%) MAD(p(5 : 7)) (%) var(p(5 : 7)) (%)

0.10 0 63.73 49.55 92.45 16.63 17.56 14.60 4.09 4.51 2.85
0.10 1

6
148.82 75.16 46.10 9.50 9.87 14.94 3.00 1.48 2.48

0.10 1
3

157.34 68.39 36.52 22.86 12.50 10.18 7.28 2.36 1.46
0.10 1

2
175.17 113.90 22.93 29.35 7.01 18.02 11.20 0.93 4.18

0.10 2
3

113.03 97.72 32.35 10.90 16.59 10.57 1.49 3.57 1.99
0.10 5

6
152.70 36.44 53.85 28.83 11.22 28.64 9.46 2.45 9.47

0.10 1 172.84 83.04 3.40 16.16 7.20 10.68 4.78 0.88 2.14
0.30 0 132.45 105.72 120.65 4.78 7.14 25.85 0.86 1.13 8.98
0.30 1

6
76.98 225.98 66.79 10.78 20.76 9.61 1.57 9.88 2.00

0.30 1
3

66.18 132.90 109.62 5.49 8.86 7.57 1.39 2.07 1.24
0.30 1

2
194.26 160.18 22.21 6.93 4.04 3.26 2.27 0.52 1.01

0.30 2
3

172.49 169.56 68.82 10.68 11.18 8.46 2.27 1.98 1.15
0.30 5

6
219.79 126.04 34.56 12.50 21.21 11.03 4.54 6.87 2.19

0.30 1 213.34 163.74 22.58 10.56 9.15 11.08 3.79 1.56 3.96
0.50 0 218.65 205.96 70.27 27.33 8.40 10.95 15.10 3.31 1.88
0.50 1

6
84.94 142.15 94.84 3.11 8.86 0.69 0.21 1.16 0.03

0.50 1
3

102.91 170.47 5.24 7.97 3.38 17.16 0.78 0.76 5.37
0.50 1

2
99.09 168.76 19.84 2.61 2.87 3.45 0.37 0.85 0.74

0.50 2
3

62.73 130.47 99.59 13.68 6.82 11.38 3.25 0.72 2.28
0.50 5

6
59.15 132.50 81.84 7.99 16.48 5.71 0.95 3.29 0.75

0.50 1 90.08 103.43 82.00 1.39 1.21 1.63 0.11 0.12 0.17
0.70 0 134.75 200.93 147.69 24.76 30.01 28.60 7.20 10.20 11.00
0.70 1

6
121.37 119.01 122.32 3.99 1.87 5.48 0.59 0.12 0.66

0.70 1
3

81.28 167.53 137.10 4.83 8.84 4.43 0.47 1.39 0.93
0.70 1

2
132.72 103.16 113.91 3.00 4.76 6.38 0.28 0.41 0.70

0.70 2
3

125.82 153.01 127.21 22.76 15.27 14.89 5.81 3.20 3.10
0.70 5

6
140.68 237.18 90.72 14.28 8.83 11.54 2.43 3.43 1.83

0.70 1 153.43 253.48 74.24 11.75 7.24 6.62 1.79 3.74 0.84
0.90 0 47.49 155.64 50.30 3.12 2.99 1.22 0.69 0.61 0.22
0.90 1

6
83.40 159.89 78.11 9.99 6.24 6.14 1.09 0.85 0.48

0.90 1
3

47.49 155.64 50.30 3.12 2.99 1.22 0.69 0.61 0.22
0.90 1

2
45.98 158.79 109.92 12.30 8.61 11.36 2.52 1.52 3.32

0.90 2
3

59.42 163.18 76.08 4.69 3.87 13.35 0.75 0.77 2.05
0.90 5

6
98.20 65.61 90.56 6.36 21.56 17.51 0.88 8.79 6.58

0.90 1 96.97 115.36 42.75 8.05 7.04 7.11 1.09 1.05 1.28
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Table E.8.: Statistics of p(5 : 7) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = π

4

p∗(9) θ |p̄(5 : 7)− p∗(5 : 7)| (%) MAD(p(5 : 7)) (%) var(p(5 : 7)) (%)

0.10 0 115.86 29.28 62.18 15.26 9.65 8.42 5.28 2.47 1.28
0.10 1

6
185.17 20.14 105.83 35.32 39.10 42.63 15.39 20.25 22.60

0.10 1
3

112.52 50.20 44.21 12.89 35.80 31.98 2.87 15.78 14.62
0.10 1

2
165.34 42.42 62.00 16.68 15.49 11.45 3.98 3.52 1.99

0.10 2
3

172.24 24.99 94.35 32.22 13.79 46.58 13.11 3.67 25.83
0.10 5

6
230.26 55.35 48.18 36.33 31.62 13.40 24.77 16.68 2.64

0.10 1 142.91 122.92 94.75 12.56 6.33 31.58 2.83 0.98 12.34
0.30 0 71.24 186.15 79.65 32.55 13.43 15.67 15.94 3.02 4.02
0.30 1

6
153.07 116.97 143.88 16.44 14.83 43.86 3.60 3.07 23.29

0.30 1
3

160.14 161.44 94.04 10.85 8.32 9.82 2.93 2.01 1.79
0.30 1

2
204.40 257.52 36.78 8.98 20.61 13.22 3.01 8.83 2.34

0.30 2
3

232.27 109.18 128.34 19.59 18.63 17.28 7.91 6.06 7.27
0.30 5

6
180.21 180.83 45.97 18.27 8.24 6.45 5.49 1.41 0.88

0.30 1 175.40 99.33 47.73 10.31 28.74 27.45 2.93 12.78 12.06
0.50 0 71.37 163.35 167.59 34.36 15.56 46.14 13.24 2.94 23.25
0.50 1

6
149.26 154.35 89.82 21.54 16.17 8.88 5.95 3.40 1.10

0.50 1
3

148.31 285.46 53.00 15.76 13.60 9.33 3.33 7.50 2.20
0.50 1

2
163.05 243.38 65.60 7.36 7.99 4.36 1.92 3.89 0.73

0.50 2
3

100.52 132.59 96.48 6.33 11.39 4.24 0.78 1.89 0.49
0.50 5

6
119.65 122.38 105.77 8.53 8.72 20.45 1.28 1.04 5.17

0.50 1 153.95 163.31 130.02 33.11 9.69 14.90 13.24 2.24 3.55
0.70 0 86.78 106.72 120.23 21.64 17.58 11.45 5.69 4.06 2.17
0.70 1

6
162.38 136.61 140.09 32.24 13.55 3.65 13.19 4.03 0.50

0.70 1
3

86.30 109.30 124.86 8.07 11.80 4.97 2.04 3.02 0.72
0.70 1

2
133.53 91.24 137.24 12.32 14.42 14.81 2.15 3.65 4.27

0.70 2
3

165.67 113.08 181.21 10.56 8.83 18.67 1.86 1.29 7.63
0.70 5

6
184.17 240.87 90.34 6.31 18.04 5.58 1.22 5.61 0.74

0.70 1 65.76 269.79 103.38 16.09 17.76 18.89 3.62 6.62 4.70
0.90 0 70.85 178.69 103.63 7.41 3.68 5.14 0.81 1.16 1.00
0.90 1

6
74.16 140.11 121.40 7.69 11.33 11.31 2.26 2.36 3.77

0.90 1
3

93.77 164.67 68.15 4.08 23.00 5.68 0.57 6.95 1.02
0.90 1

2
75.59 191.74 60.98 1.27 4.85 1.10 0.17 1.70 0.22

0.90 2
3

40.82 171.32 108.47 15.97 23.11 10.42 3.95 7.72 3.76
0.90 5

6
114.44 167.77 181.80 11.13 15.40 28.00 3.55 3.46 16.63

0.90 1 98.12 117.06 27.36 8.50 6.39 13.18 1.22 0.93 2.25



202 E. Appendix - 9 Parameter Case in Use Case 3

Table E.9.: Statistics of p(5 : 7) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = 3π

4

p∗(9) θ |p̄(5 : 7)− p∗(5 : 7)| (%) MAD(p(5 : 7)) (%) var(p(5 : 7)) (%)

0.10 0 235.36 103.69 137.24 34.50 13.13 53.37 16.97 2.86 35.93
0.10 1

6
200.46 7.77 129.83 36.24 47.76 70.36 18.00 28.58 60.19

0.10 1
3

174.35 116.81 12.59 55.48 23.57 17.63 33.90 7.75 4.01
0.10 1

2
118.57 133.41 132.71 40.69 19.45 55.81 20.95 5.54 45.87

0.10 2
3

134.01 29.74 116.03 31.83 22.31 48.92 14.03 6.67 33.53
0.10 5

6
149.12 47.26 27.90 45.58 17.51 13.40 23.26 4.18 2.83

0.10 1 125.98 34.85 15.60 14.73 36.34 12.14 3.54 18.01 2.74
0.30 0 213.48 212.42 128.05 28.86 13.10 23.68 12.63 3.90 9.07
0.30 1

6
196.45 208.43 202.96 37.58 24.51 39.48 19.62 8.75 23.01

0.30 1
3

127.91 171.34 130.10 13.70 12.48 16.13 2.55 2.81 3.89
0.30 1

2
17.04 111.80 111.43 38.30 18.13 12.06 20.86 4.01 2.69

0.30 2
3

257.75 107.00 153.64 28.87 21.16 36.89 14.69 8.65 21.47
0.30 5

6
206.51 85.67 92.88 7.38 28.72 21.46 3.28 14.46 8.87

0.30 1 209.06 130.27 79.71 16.67 12.87 17.28 5.76 4.25 5.61
0.50 0 173.21 199.08 145.98 22.98 33.84 37.23 8.80 13.80 16.75
0.50 1

6
116.26 79.14 133.92 9.49 24.70 9.35 1.82 10.90 1.39

0.50 1
3

112.95 157.06 77.36 1.06 1.23 1.49 0.13 0.19 0.32
0.50 1

2
115.47 186.85 26.71 11.00 11.63 9.24 2.14 2.13 1.75

0.50 2
3

26.59 115.11 83.43 15.20 4.79 15.51 3.08 0.49 2.79
0.50 5

6
201.91 139.09 44.89 19.44 13.25 3.73 7.88 2.40 0.58

0.50 1 81.22 207.57 74.59 11.27 36.99 6.75 1.41 16.34 0.95
0.70 0 87.40 267.53 147.65 22.89 29.05 11.31 7.60 13.46 3.18
0.70 1

6
180.71 165.95 130.58 31.42 18.44 8.25 18.55 4.97 1.69

0.70 1
3

81.58 37.75 194.67 7.74 29.02 11.37 1.59 16.05 3.84
0.70 1

2
96.88 96.79 91.64 6.17 12.32 7.81 0.72 2.49 0.96

0.70 2
3

173.42 196.81 135.28 15.99 43.13 16.65 3.64 22.91 3.80
0.70 5

6
173.98 213.54 154.57 20.12 11.40 13.60 4.87 2.52 2.88

0.70 1 157.67 228.85 61.21 12.12 5.90 7.11 2.06 2.23 0.98

0.90 0 68.74 161.87 118.66 1.44 2.39 5.12 0.32 0.72 1.44
0.90 1

6
30.93 195.04 80.96 4.81 4.72 1.55 1.48 1.82 0.24

0.90 1
3

136.02 171.33 61.98 9.15 8.76 9.10 1.64 2.01 0.99
0.90 1

2
86.77 145.14 93.71 1.22 1.41 3.76 0.17 0.38 0.85

0.90 2
3

85.03 130.55 17.35 11.53 4.08 5.10 1.53 0.43 1.35
0.90 5

6
104.43 94.97 49.65 9.48 12.59 7.81 1.58 3.11 1.46

0.90 1 73.97 173.84 68.82 5.73 6.76 4.05 0.73 1.31 0.52
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Table E.10.: Statistics of p(8) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = 0

p∗(9) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.40 1.80 1.90 2.40 1.70 2.00 1.50
|p̄(8)− p∗(8)| (%) 0.51 1.34 1.94 2.36 1.74 1.64 2.03
MAD(p(8)) (%) 0.49 1.07 1.18 0.85 1.10 0.78 1.16
var(p(8)) (%) 0.01 0.02 0.02 0.02 0.03 0.02 0.02

p∗(9) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.50 1.60 1.40 1.20 1.30 1.40 1.30
|p̄(8)− p∗(8)| (%) 0.71 2.06 4.87 6.03 4.96 5.80 7.43
MAD(p(8)) (%) 0.62 1.40 1.11 1.27 1.88 3.86 4.45
var(p(8)) (%) 0.02 0.05 0.04 0.06 0.10 0.34 0.34

p∗(9) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.40 0.40 1.00 1.50 1.40 1.10 0.90
|p̄(8)− p∗(8)| (%) 2.22 5.03 9.61 8.86 4.42 13.51 22.90
MAD(p(8)) (%) 1.89 1.07 4.62 0.39 4.80 2.32 0.81
var(p(8)) (%) 0.18 0.02 0.23 0.02 0.45 0.08 0.04

p∗(9) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.20 1.00 1.00 0.50 0.80 1.90 1.80
|p̄(8)− p∗(8)| (%) 2.00 0.70 1.88 6.46 14.45 34.74 30.64
MAD(p(8)) (%) 1.35 0.82 1.82 2.47 2.74 3.39 0.65
var(p(8)) (%) 0.08 0.02 0.07 0.10 0.13 0.25 0.02

p∗(9) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.10 1.20 1.10 2.60 1.40 1.90 1.40
|p̄(8)− p∗(8)| (%) 22.50 31.13 22.50 11.70 22.37 24.05 37.00
MAD(p(8)) (%) 0.34 4.12 0.34 9.19 5.06 3.76 1.17
var(p(8)) (%) 0.03 0.22 0.03 1.37 0.30 0.36 0.14
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Table E.11.: Statistics of p(8) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = π

4

p∗(9) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.10 2.50 2.50 2.70 3.10 3.20 2.40
|p̄(8)− p∗(8)| (%) 0.60 1.08 1.12 1.59 1.43 1.42 1.27
MAD(p(8)) (%) 0.59 0.95 0.97 0.93 0.92 1.59 1.64
var(p(8)) (%) 0.01 0.02 0.02 0.02 0.02 0.09 0.10

p∗(9) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.80 2.30 1.70 1.90 2.20 1.50 1.60
|p̄(8)− p∗(8)| (%) 1.48 2.17 2.54 3.42 3.40 4.95 3.65
MAD(p(8)) (%) 0.82 0.74 0.93 1.09 2.38 3.61 4.93
var(p(8)) (%) 0.02 0.02 0.03 0.06 0.13 0.28 0.48

p∗(9) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.30 1.70 1.90 1.60 1.50 1.50 1.50
|p̄(8)− p∗(8)| (%) 1.49 2.63 4.13 13.01 1.79 2.48 4.75
MAD(p(8)) (%) 0.88 2.32 3.75 1.19 1.04 0.97 4.67
var(p(8)) (%) 0.06 0.09 0.22 0.03 0.04 0.06 0.29

p∗(9) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.30 2.00 2.10 1.70 1.60 1.60 2.10
|p̄(8)− p∗(8)| (%) 1.35 2.38 6.33 4.59 9.09 33.05 38.86
MAD(p(8)) (%) 1.05 1.12 2.28 1.71 2.62 4.53 2.62
var(p(8)) (%) 0.07 0.04 0.14 0.06 0.13 0.32 0.13

p∗(9) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.60 2.30 2.40 1.40 2.40 2.10 1.50
|p̄(8)− p∗(8)| (%) 4.90 4.51 5.41 27.83 8.46 10.41 32.11
MAD(p(8)) (%) 2.26 3.83 2.99 0.56 7.31 7.62 5.17
var(p(8)) (%) 0.12 0.32 0.20 0.05 0.93 1.01 0.34
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Table E.12.: Statistics of p(8) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = 3π

4

p∗(9) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.80 3.60 3.00 3.10 3.40 2.90 2.70
|p̄(8)− p∗(8)| (%) 0.72 1.41 2.58 2.09 1.93 2.13 3.93
MAD(p(8)) (%) 0.68 0.78 1.31 1.26 1.21 1.16 3.82
var(p(8)) (%) 0.01 0.02 0.09 0.07 0.07 0.06 0.26

p∗(9) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.30 2.20 1.80 1.90 2.50 1.80 1.60
|p̄(8)− p∗(8)| (%) 0.81 2.24 2.40 5.69 5.71 3.69 4.26
MAD(p(8)) (%) 0.90 1.56 1.52 6.71 6.05 4.68 4.22
var(p(8)) (%) 0.02 0.08 0.08 0.69 0.57 0.43 0.39

p∗(9) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.10 1.80 0.50 1.80 1.50 1.70 2.00
|p̄(8)− p∗(8)| (%) 1.71 6.22 15.23 8.37 1.79 2.78 4.75
MAD(p(8)) (%) 1.38 0.84 0.12 2.11 1.36 1.38 4.25
var(p(8)) (%) 0.10 0.04 0.01 0.07 0.06 0.10 0.28

p∗(9) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.80 2.30 2.80 1.50 2.20 2.10 1.70
|p̄(8)− p∗(8)| (%) 2.50 3.26 7.67 16.02 9.35 48.80 41.70
MAD(p(8)) (%) 1.29 2.44 4.24 2.45 3.62 5.41 1.38
var(p(8)) (%) 0.11 0.17 0.48 0.11 0.19 0.60 0.11

p∗(9) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.60 1.50 1.70 1.50 1.40 1.70 1.50
|p̄(8)− p∗(8)| (%) 26.47 7.91 10.38 39.08 37.15 33.31 31.77
MAD(p(8)) (%) 0.83 0.90 5.77 1.39 4.59 1.67 2.83
var(p(8)) (%) 0.05 0.06 0.37 0.15 0.30 0.14 0.22
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Table E.13.: Statistics of p(9) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = 0

p∗(9) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.40 1.80 1.90 2.40 1.70 2.00 1.50
|p̄(9)− p∗(9)| (%) 11.41 3.00 3.78 4.46 2.90 2.93 2.68
MAD(p(9)) (%) 3.65 1.72 2.39 1.39 1.77 1.58 1.67
var(p(9)) (%) 0.18 0.05 0.07 0.03 0.05 0.06 0.05

p∗(9) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.50 1.60 1.40 1.20 1.30 1.40 1.30
|p̄(9)− p∗(9)| (%) 3.72 1.86 12.80 13.50 10.47 0.69 9.16
MAD(p(9)) (%) 3.75 4.83 4.73 3.52 4.88 1.05 3.01
var(p(9)) (%) 0.25 0.41 0.47 0.27 0.31 0.03 0.18

p∗(9) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.40 0.40 1.00 1.50 1.40 1.10 0.90
|p̄(9)− p∗(9)| (%) 12.17 20.65 21.40 19.25 12.60 14.42 33.18
MAD(p(9)) (%) 4.46 1.98 0.97 1.58 4.26 3.90 2.02
var(p(9)) (%) 0.38 0.11 0.07 0.10 0.40 0.25 0.26

p∗(9) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.20 1.00 1.00 0.50 0.80 1.90 1.80
|p̄(9)− p∗(9)| (%) 0.16 16.97 18.93 19.43 19.40 19.33 19.20
MAD(p(9)) (%) 5.79 1.40 0.65 0.62 0.34 0.36 0.47
var(p(9)) (%) 0.40 0.05 0.03 0.01 0.01 0.02 0.02

p∗(9) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.10 1.20 1.10 2.60 1.40 1.90 1.40
|p̄(9)− p∗(9)| (%) 32.53 32.21 32.53 21.14 39.64 27.14 37.66
MAD(p(9)) (%) 1.04 2.82 1.04 3.00 1.55 1.76 2.34
var(p(9)) (%) 0.11 0.16 0.11 0.19 0.18 0.16 0.19
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Table E.14.: Statistics of p(9) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = π

4

p∗(9) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.10 2.50 2.50 2.70 3.10 3.20 2.40
|p̄(9)− p∗(9)| (%) 8.89 6.68 5.64 5.44 4.15 6.51 4.88
MAD(p(9)) (%) 3.68 2.45 4.04 1.96 3.21 4.62 1.38
var(p(9)) (%) 0.19 0.12 0.20 0.06 0.12 0.28 0.03

p∗(9) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.80 2.30 1.70 1.90 2.20 1.50 1.60
|p̄(9)− p∗(9)| (%) 5.96 11.35 14.60 0.39 0.83 4.27 10.83
MAD(p(9)) (%) 6.99 10.74 6.56 3.28 2.61 4.33 3.84
var(p(9)) (%) 0.69 1.37 0.70 0.13 0.15 0.30 0.26

p∗(9) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.30 1.70 1.90 1.60 1.50 1.50 1.50
|p̄(9)− p∗(9)| (%) 11.11 22.29 21.57 22.73 28.95 14.53 28.15
MAD(p(9)) (%) 10.17 0.92 1.58 1.45 3.36 3.35 10.07
var(p(9)) (%) 1.24 0.04 0.09 0.09 0.26 0.17 1.24

p∗(9) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.30 2.00 2.10 1.70 1.60 1.60 2.10
|p̄(9)− p∗(9)| (%) 11.33 5.56 18.24 19.14 18.23 18.78 19.39
MAD(p(9)) (%) 6.86 6.73 1.34 0.74 2.67 0.71 0.51
var(p(9)) (%) 0.63 0.64 0.06 0.04 0.18 0.03 0.02

p∗(9) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.60 2.30 2.40 1.40 2.40 2.10 1.50
|p̄(9)− p∗(9)| (%) 27.44 14.45 16.35 42.65 17.99 20.75 38.26
MAD(p(9)) (%) 1.57 3.23 3.06 1.59 6.08 3.48 2.58
var(p(9)) (%) 0.09 0.16 0.20 0.22 0.74 0.35 0.21
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Table E.15.: Statistics of p(9) using the standard algorithm for the 9 parameter case
with 1000 drawn samples for varying height of the lower muscle p∗(9) and
thickness of the surrounding tissue layer θ in the settings from Section 6.3.5
with p∗(4) = 3π

4

p∗(9) = 0.1

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.80 3.60 3.00 3.10 3.40 2.90 2.70
|p̄(9)− p∗(9)| (%) 8.02 8.51 5.17 4.53 4.57 6.15 7.66
MAD(p(9)) (%) 3.22 3.54 4.43 3.31 2.82 3.07 2.30
var(p(9)) (%) 0.12 0.16 0.24 0.16 0.11 0.13 0.07

p∗(9) = 0.3

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.30 2.20 1.80 1.90 2.50 1.80 1.60
|p̄(9)− p∗(9)| (%) 4.51 5.49 4.53 12.63 4.70 9.13 0.85
MAD(p(9)) (%) 5.19 3.83 5.12 9.24 5.00 5.09 3.20
var(p(9)) (%) 0.44 0.25 0.31 1.21 0.37 0.40 0.15

p∗(9) = 0.5

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 3.10 1.80 0.50 1.80 1.50 1.70 2.00
|p̄(9)− p∗(9)| (%) 10.62 20.88 2.65 22.63 33.26 30.92 31.76
MAD(p(9)) (%) 3.39 0.77 0.51 1.38 2.23 5.60 3.94
var(p(9)) (%) 0.39 0.04 0.03 0.08 0.24 0.51 0.32

p∗(9) = 0.7

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 2.80 2.30 2.80 1.50 2.20 2.10 1.70
|p̄(9)− p∗(9)| (%) 21.87 29.37 17.63 18.49 18.48 19.20 19.12
MAD(p(9)) (%) 3.76 8.40 2.79 1.89 1.79 0.69 0.58
var(p(9)) (%) 0.35 1.20 0.16 0.11 0.12 0.01 0.02

p∗(9) = 0.9

θ 0 1
6

1
3

1
2

2
3

5
6

1

κa 1.60 1.50 1.70 1.50 1.40 1.70 1.50
|p̄(9)− p∗(9)| (%) 25.36 21.15 27.81 41.99 35.61 34.63 26.02
MAD(p(9)) (%) 1.11 0.53 3.36 1.85 3.02 1.55 1.36
var(p(9)) (%) 0.08 0.04 0.18 0.23 0.22 0.14 0.12
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