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Abstract: Process planning in manufacturing today focuses on optimizing the conflicting targets of
cost, quality, and time. Due to increasing social awareness and subsequent governmental regulation,
environmental impact becomes a fourth major aspect. Eventually, sustainability in manufacturing
ensures future competitiveness. In this paper, a framework for the planning of sustainable manufac-
turing is proposed. It is based on the abstraction and generalization of manufacturing resources and
part descriptions, which are matched and ranked using a multi-criteria decision analysis method.
Manufacturing resources provide values for cost, quality, time and environmental impacts, which
multiply with their usage within a manufacturing task for a specific part. The framework is validated
with a detailed modeling of a laser machine as a resource revealing benefits and optimization poten-
tial of the underlying data model. Finally, the framework is applied to a use case of a flange part with
two different manufacturing strategies, i.e., laser metal-wire deposition and conventional milling.
The most influential parameters regarding the environmental impacts are the raw material input, the
manufacturing energy consumption and the machine production itself. In general, the framework
enabled the identification of non-predetermined manufacturing possibilities and the comprehensive
comparison of production resources.

Keywords: computer-aided process planning; sustainable manufacturing; life-cycle assessment; laser
metal-wire deposition

1. Introduction

The trend of personalization, growing global competition, and volatile market de-
mands require increasingly flexible and adaptable production systems [1]. To remain
competitive, service providers must balance production costs, time to delivery and product
quality. This is an immense challenge, since the three parameters often show contrary
effects. Today’s most promising approach is to handle this complexity by the digitalization
of production systems and subsequent optimization [2], e.g., by virtual commissioning
during the planning phase, automated sourcing activities during operation or numerical
simulation to predict production on the process level.

In addition to the three mentioned optimization goals, neglecting ecological aspects is
going to be an increasingly important disadvantage in the future: Satisfying the growing
ecological awareness of customers and complying with increasingly stringent environmen-
tal legislation is imperative to ensure future competitiveness [3,4]. Therefore, sustainability
in manufacturing must be included in the decision-making during process planning.
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A current and major limitation for the integration of environmental impacts is the
low comparability of ecological indicators for individual production processes, since the
system boundaries differ greatly for different manufacturing process types, part geometries
and materials [5]. Thus, to include the environmental impacts comprehensively the whole
product life-cycle needs to be covered, including the production of intermediates, con-
sumables and the power consumption on the manufacturing site. Consequently, a digital
representation of production resources and manufacturing capabilities is indispensable to
enable objective comparability as a basis for the determination and optimization of process
plans [6]. It is, therefore, required to propose solutions, which incorporate environmental
impacts as an additional measure into digital optimization tools for manufacturing [7].

In this paper, a framework is described for sustainable manufacturing to include
ecological aspects, represented by carbon dioxide equivalents (CO2-eq.), into process
planning. Modeling production resources and part descriptions enables calculating the
resulting ecological metrics in addition to monetary and time metrics for production of a
specific part. In the presented approach the required part quality is ensured by explicitly
defined constraints derived from CAD models and not used as an optimization parameter.
All information compiled in the framework are subsequently used in a multiple-criteria
decision analysis to rank the possible manufacturing solutions. As a result, not only
production resources fulfilling the part constraints, but also resources which are resource-
saving, time-optimal and cost-efficient can be identified and ranked.

2. Literature Review

The following section provides an overview of research activities on computer-aided
process planning (CAPP) and approaches to integrate environmental aspects as an addi-
tional dimension of optimization into process planning.

2.1. Computer-Aided Process Planning

The basic principle of CAPP is an abstraction and generalization of manufacturing
capabilities to match product requirements with available resources. Therefore, CAPP is
seen as a key technology to enable the shift from production-oriented manufacturing to
a service-oriented manufacturing [8,9], also known as Manufacturing-as-a-Service [10].
This means that companies offer services rather than finished products in line with the
growing demand for personalized products with individualized features. This shift de-
mands more flexibility and shorter reaction time from manufacturers, a challenge which
can be addressed with CAPP. Järvenpää et al. [10] developed an ontology to represent
the capabilities of manufacturing resources in a generalized form. This is a mandatory
feature of CAPP to automatically identify production options for short-term changing
requirements of a product. The focus of this work was on modeling resource capabilities
and matchmaking with product requirements to help system integrators and end users to
identify in short time which of their resources and resource combinations are best suited
for a manufacturing task. Ameri et al. [11] propose a manufacturing service description lan-
guage (MSDL). This ontology enables the description of supply and demand entities as the
primitive building blocks of manufacturing services. MSDL addresses virtual enterprises in
the manufacturing business to improve communication by providing a common language.
The authors show that MSDL is well suited for service description on different abstraction
levels, i.e., machine, cell or factory level, and highlight its flexibility and adaptability to
evolve with the users’ demands. The ontology is applied in a subsequent work [12] for
a web-based digital manufacturing market, where manufacturing process capacity can
be traded, creating an agile supply chain platform. The multi-agent framework connects
buyers and sellers, using MSDL as its semantic language, and includes a matchmaking
methodology to bring together supply and demand based on the similarities of needs
and capabilities. Mourtzis et al. [13] developed a service-oriented framework for dynamic
process planning. The system comprises two services. The first service is designed for an
adaptive process planning using event-driven function blocks and a genetic algorithm. The



Energies 2021, 14, 5811 3 of 27

second service is used for monitoring and data acquisition on shop-floor level. It gathers
real-time data over the status of machine tools and their availability. An information fusion
technique then processes the data and provides input for the process-planning service.
Mourtzis et al. validated their framework with a small-scale use case, which reveals how
the real-time monitoring of machine status and availability is beneficial for quick response
in process planning.

2.2. Integration of Energy Consumption into CAPP

In the following, ontologies and frameworks covering specifically energy consump-
tion are described. Newman et al. [14] present a framework to validate the introduction of
energy consumption in the objectives of process planning for CNC machining. The authors
investigated and discussed two experiments proving that the energy consumption of two
interchangeable cutting processes may differ considerably. Consequently, it is shown that
energy consumption can be added to multiple-criteria process-planning systems as a valid
objective. However, no actual process-planning tool is implemented and no additional
processes are considered. He et al. [15] introduce a green manufacturing approach by
optimizing multiple criteria as part of the planning process. The objective of the presented
software system is to reduce the raw material consumption, secondary material consump-
tion, energy consumption, and environmental impacts of production. The system was
implemented and validated into a machining tool factory. Gould et al. [16] developed a
framework for material flow assessment, which aims at finding resource efficient material
flows by adjusting the product assembly design. By changing the product design, retooling
can be avoided, contributing to an improved resource efficiency. Shojaeipour [17] presents
an automated evaluation tool, which aims at identifying and quantifying environmental
impacts to select a near-optimal, but predefined process plan from a given set. The an-
alytic hierarchy process (AHP), a multiple-criteria analysis method, is used to evaluate
the given process plans in dependence of emission, waste production, and hazardous
materials. Dai et al. [18] propose a mathematical model with the goal to find an optimal
solution between the energy consumption and the makespan of machines from job shops
by the selection of process plans and an optimized scheduling. For this purpose, a hybrid
optimization approach based on honey-bee mating and annealing processes is used. The
authors demonstrated that the selected approach outperforms conventional optimization
algorithms and can improve the total energy consumption for manufacturing parts using
conventional milling processes. Li et al. [19] present a methodology based on a genetic
algorithm for optimizing process plans and the corresponding scheduling of machining
operations. The process plans and machine scheduling are optimized in terms of energy
consumption, makespan and a balanced machine use. In this work, conventional ma-
chining processes are studied. The consideration of energy consumption in the works of
Li et al. and Dai et al. is limited to machines and the respective machine phases. Other
factors influencing the overall sustainability, such as consumables and the material itself
are not considered.

2.3. Assessment of Environmental Impacts within Process Planning

Today, most environmental impacts from production are driven by the energy con-
sumption [5]. With increasingly decarbonized energy systems however, their impact is
going to decline, and other influencing parameters must be considered and monitored in
the future as well. To broaden the scope from energy consumption to a comprehensive
environmental assessment the entire life-cycle of a product needs to be included. Alt-
ing [20] introduced the concept of life-cycle thinking to the sector of sustainable production
in 1991 and since then the guiding principle was applied from different perspectives.
Veleva et al. [21] offer a theoretical framework on sustainable production including life-
cycle thinking, resulting in a tool to promote business sustainability based on 22 core
indicators covering all aspects of sustainability. Yet, already raising concerns regarding the
data availability. Favi et al. [22] describe a plant-based evaluation of environmental impacts
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of manufacturing processes starting from identifying and classifying the main plant fluxes.
Shortcomings of the work are the interoperability between different plants and a software
implementation. In a meta-analysis, Duflou et al. [23] describe parameters for systematic
efficiency based on the energy consumption and identify improvement measures on the
different system levels, from unit process to supply chain. The most extensive integration of
the life-cycle view into the decision-making processes in production known to the authors
was conducted by Rödger et al. [24]. The authors used manufacturing system simulation
and life-cycle assessment (LCA) to assess different manufacturing scenarios with a focus
on the machine level. The results are validated based on four different flange use cases.

Due to personalization and the linked rise of additive manufacturing technologies,
the integration of environmental impacts based on life-cycle thinking compared to a
mere focus on energy consumption is becoming even more important as the driving
parameters shift from material input to process energy [5]. Thus, the comparability of
different manufacturing paradigms can be ensured. In existing LCA studies within the field
of additive manufacturing, the goal often is to assess the environmental hot spots of the
technology itself. Examples for a non-comparative LCA study of an additive manufacturing
technology can be found in Faludi et al. [25] and Torres-Carillo et al. [26] for selective laser
melting (SLM). Peng et al. [27] conducted an assessment of a SLM process as well and
included a summary of different conducted LCAs on additive manufacturing technologies.
In addition to comprehensive LCA studies, assessments are often only based on process
energy efficiency analyses, e.g., by Catalano et al. [28] for a laser metal-wire deposition
(LMWD) process. Although stand-alone LCA studies often induce comparability by, e.g.,
assessing the same impact categories or even using similar system boundaries, they are not
meant to be used for direct comparison. Although some studies such as Wang et al. [29]
compare the environmental impacts of specific processes, i.e., SLM and conventional
manufacturing, a generic framework on the manufacturing process level is needed to
integrate environmental aspects into the process-planning process.

2.4. Integration of Environmental Impacts into Manufacturing Systems and Process Planning

For the assessment of different production options, a unified description of resources
(machines) and parts is needed. This data structure must be capable of additive as well
as conventional manufacturing processes to ensure reliability of the absolute numbers as
well as comparability. Generic and qualitative descriptions of the sustainability of manu-
facturing processes, as described by Abdulrahman [30] for the LMWD process, provide a
basis for such a data structure. Further manufacturing use cases for the synchronization
of system boundaries and methodological choices are provided. Morrow et al. [31] for
example provide a detailed comparison of the conventional manufacturing (milling) and
additive manufacturing of a tooling part. A framework for the LCA of additive manufac-
turing is proposed by Ribeiro et al. [32]. Said framework includes all life-cycle phases from
raw material extraction to end-of-life. For conventional manufacturing, the production,
including extraction of resources, is the key driver of environmental impacts. For additive
manufacturing the manufacturing process, i.e., shaping activities, itself become the main
source of environmental impacts as shown by Saade et al. [5] in a meta-analysis. The
main drivers of the environmental impacts are further specified by Cerdas et al. [33] for a
polypropylene printing process in a distributed manufacturing system. The main parame-
ters are energy efficiency, electricity type, material and process quality. In contradiction,
Rödgers et al. [24] concluded that the process energy efficiency is not a key driver for the
environmental impacts.

The field of CAPP is populated with several robust frameworks, each tailored for spe-
cific use cases and applications. Yet, a joint standard data information model or ontology
has not been agreed on. Furthermore, the integration of environmental aspects is often
limited to energy related effects and this only to certain parts of the production system,
mostly the energy consumption of material-removing machining processes. All studies
known to the authors, focus on the simulation of single manufacturing technologies and
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often are not flexible, detailed, and extendable enough to map especially non-value-adding
process steps or different parameter sets of one machine. A high-level comparison of
different manufacturing options considering environmental aspects could be done within
the existing frameworks but would be difficult and time-consuming for the end user. If it is
necessary to assess environmental impacts at an early stage, e.g., in the product develop-
ment process, the time factor is very important [34] and tools are required, which enable an
easy and fast day-to-day decision-making considering multiple indicators [35]. Therefore, a
comprehensive and flexible, but easy to use process-planning framework would be highly
beneficial to ensure the competitiveness when facing the trends of personalization, growing
global competition, and volatile markets.

3. Materials and Methods

The overall goal of the approach is to identify the combination of resource skills
needed to manufacture a part in compliance with defined constraints, which represent
the required part quality, while having the best evaluation in price, time, and emission
of CO2-equivalents. This requires the matching and evaluation of part definitions in the
form of manufacturing possibilities and digitized resources. A skill-based engineering
approach [36] is used to describe the resources that have the capability to handle or
modify a product, and the product itself (here called part). Resources and parts are the
two central models, compiling all relevant information as shown in Figure 1. The part
definition and resource information are modeled in a generic way to map all kind of possible
characteristics. To do so, an ontology is introduced in Section 3.1. These models are used by
service providers to describe available resources (e.g., machines and materials) and resource
skills that are linked with the respective resource (e.g., cutting, printing etc.). Resource
skills can be enriched with more detailed information about abilities, such as achievable
surface roughness (i.e., a metric of quality), and consumables used for the manufacturing
process (e.g., coolant). In a next step, a customer wanting to manufacture a part, defines
the required process steps in collaboration with a manufacturing expert. Hereby, different
manufacturing possibilities can be specified. For example, a part can be milled from solid
or first buildup using additive manufacturing technologies and subsequently reworked.
Constraints can be added to every part process step to detail the requirements, which must
be fulfilled by the corresponding resource skill abilities. It should be noted that in the
future these steps could also be performed by volume decomposition and feature extraction
algorithms [37] to automatically identify possible process steps. After the definition phase,
a fully automated matching (Section 3.2) and evaluation (Section 3.3) is performed by
the framework.

3.1. Ontology for the Manufacturing Framework

Models are used to organize and store information in a standardized way. In this
context, the models provide the base to implement matching and evaluation algorithms
independent of the actual data inserted in a later step. This enables an automated execution
of the application, once the necessary information is available. The meaning of the main
terms is described in the following. Figure 2 shows the relationships and dependencies of
the mentioned models.
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Figure 1. Overview of the process planning workflow.

Part: A part is the high-level object to be manufactured for a customer. A part itself is
defined by part process steps grouped into single manufacturing possibilities.
Resource: A resource is the representation of a machine, material, or other infrastructure
in a production environment. A resource is defined by its resource skills.
Requirement: A requirement is the base class for constraints and abilities. Requirements
define the name, unit, and data type. A requirement can be for example material of data
type string with no unit.
Constraint: A constraint is the specific requirement of a part process step, which must be
fulfilled by the resource skill abilities. A constraint for the exemplary requirement material
could be AlMg5. The operator determines whether the value of the ability must be greater,
less or equal to this condition. In the case of material, the values must match (operator: =).
Ability: An ability is the capability of a resource skill to fulfill constraints. An ability
can be for example AlMg5 for the requirement material and would fulfill the constraint
mentioned above.
Process Step: A process step is the generic representation of a manufacturing process
according to DIN 8580. Next to the name of the manufacturing process (e.g., separation),
the unit of the process step is defined. For example: separation in mm2 (e.g., cutting)
or separation in mm3 (e.g., milling). Note, next to manufacturing processes defined in
DIN 8580, additional process steps could be inserted in future (e.g., moving with gripper).
Part Process Step: The part process step contains the required quantity of a process step
(e.g., 50 mm3 of separation) as well as the specified constraints to create a part. Each part
process step belongs to a manufacturing possibility. Multiple possibilities to manufacture
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the part can be defined.
Skill: A skill is the abstract capability of a resource to perform a certain process step. For
example, the skill of a milling machine could be cutting.
Resource Skill: The resource skill is a specific skill of a resource. Here, the actual costs,
required time, and emitted CO2-eq. for performing one unit of the skill are defined. The
unit is given by the underlying process step.
Consumable: The consumable is the abstract representation of a medium and its unit
consumed by a resource to perform a certain resource skill (e.g., water, electricity, cutting
fluid etc.).
Resource Skill Consumable: Resource skill consumables are the representation of a
medium consumed by a specific resource to perform a resource skill. For example, cutting
consumes a defined quantity of electricity and cutting fluid per performed unit of the
resource skill. The resource skill consumables also have costs (price and CO2-eq.) for the
usage of one unit of the underlying consumable.

The parameters price, time, and CO2-eq. of resource skills are separated into fixed
and variable metrics. The fixed variables are used to map costs, which are considered once,
when using the according resource skill. Variable costs are multiplied with the required
quantity of the part process step. The parameter quality is addressed as a prerequisite for
the different manufacturing possibilities in the Ability.

Category

name: String

Requirement

name: String

data_type: DataType

unit: Unit

category: Category

Ability

value: String

resource_skill: ResourceSkill

requirement: Requirement

ResourceSkill

fixed_co2: Float

fixed_price: Float

fixed_time: Float

variable_co2: Float

variable_price: Float

variable_time: Float

resource: Resource

skill: Skill

ResourceSkillConsumable

price: Float

co2: Float

fixed_quantity: Float

variable_quantity: Float

consumable: Consumable

resource_skill: ResourceSkill

Consumable

name: String

unit: Unit

Skill

name: String

process_step: ProcessStep

ProcessStep

manufacturing_process: String

unit: Unit

Part

part: File

Resource

name: String

manufacturer: String

Constraint

operator: Operator

optional: Boolean

value: String

part_process_step: PartProcessStep

requirement: Requirement

PartProcessStep

required_quantity: Float

manufacturing_possibility: Integer

manufacturing_sequence_number: Integer

part: Part

process_step: ProcessStep

1

1

0..*

1

10..*

0..*

0..*

1

1

0..*

1

0..*

0..*

0..*

0..*

1

1 1

0..*

0..*

0..*

1

1

<<enumeration>>
Operator

=

!=

<=

>=

<

>

<<enumeration>>
DataType

String

Boolean

Integer

Float

Unit

name: String

si_unit: String

description: String

Figure 2. Simplified class diagram for the data structure of the framework. Note: Generic fields (e.g., id, created at, updated
at, description, etc.) are not represented in the diagram for clarity.
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3.2. Solution-Finding Process

Based on the provided information in the framework, the goal of the solution-finding
process is to identify a combination of resource skills that can conduct the needed part
process steps. The chain of resource skills is defined in the manufacturing possibilities,
based on the necessary process steps defined by experts. Then, the different possibilities
are evaluated based on their ability to fulfill all required constraints to manufacture the
part. A constraint for example could be that the requirement material (name) must be
(operator: =) AlMg5 (value). Every resource skill with the ability AlMg5 (value) can fulfill
this constraint. If a single part process step cannot be carried out by any resource skill since
constraints cannot be fulfilled, the complete manufacturing possibility is discarded and not
taken further into account. By not only matching abilities and constraints individually, but
also the process step of the resource skill and part process step, the manufacturing process
of a part can be defined more accurately, and a high degree of automation can be achieved
after the definition of the possibilities. Figure 3 shows the workflow for finding all possible
resource skills for a list of given part process steps.

Part saved

Get next PartProcessStep

Get next ResourceSkill
ProcessSteps

don’t match

ProcessSteps match

No more ResourceSkills

ResourceSkill
available

List of PartProcessSteps

No more PartProcessSteps

List of ResourceSkills

PartProcessStep available

List of Constraints of the 
current PartProcessStep

Get next Constraint

Constraint available

No more Constraints

Requirements
don’t match

Ability doesn’t fulfill Constraint

Requirements
match

Ability fulfills Constraint

Get next Ability

Ability availableNo more Abilities

List of Abilities of the current 
ResourceSkill

All Constraints are fulfilled by the 
Abilities of the current ResourceSkill

Not every Constraint was fulfilled by the 
Abilities of the current ResourceSkill

List of possible ResourceSkills
for the current PartProcessStep

Add ResourceSkill to List of 
possible ResourceSkills for 

the current PartProcessStep

Figure 3. Activity diagram of the solution-finding algorithm taking into consideration Resource Skills, Part Process Steps,
and Constraints.
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Once it is determined, which part process step can be executed by which resource skill,
all possible permutations are created. A permutation is a unique combination of resource
skills to fulfill all part process steps n of a manufacturing possibility as schematically shown
in Figure 4. For every permutation, comparative factors (price, time, and CO2-eq.) are
calculated by summing up the expenses of the individual resource skills.

Part 
Process 
Step 1

Manufacturing Possibility

List of possible
Resource Skills

for each
Part Process Step

…
Part 

Process 
Step n

…

Can be executed by

Permutation 1
Resource

Skill a

…

Resource
Skill x

Resource
Skill b

…

Resource
Skill y

Resource
Skill c

Resource
Skill z

Figure 4. Visualization of a permutation in the set of possible resource skills for a manufacturing possibility.

This procedure is exemplary shown for the complete price of a permutation as follows

pricePermutation =
n

∑
i=1

priceResourceSkilli . (1)

With the price of a resource skill

priceResourceSkilli = f ixed_priceResourceSkilli + priceConsumablesi

+ required_quantityPartProcessStepi
variable_priceResourceSkilli ,

(2)

where the price for all used consumables m of a specific resource skill i is

priceConsumablesi =
m

∑
j=1

f ixed_quantityConsumablej priceConsumablej

+ required_quantityPartProcessStepi
variable_quantityConsumablej priceConsumablej . (3)

As a result, the overall price, time, CO2-eq. and consumables required by the per-
mutation are known. This information is used in the next step to rank the individual
permutations using multiple-criteria decision analysis.

3.3. Multiple-Criteria Decision Analysis

Since the set of m permutations i must be evaluated regarding a set n of multiple
criteria j (e.g., price, time, and CO2-eq.), multiple-criteria decision analysis methods are
used for decision-making. The multiple-criteria decision analysis aims at finding the
best manufacturing possibility in a set of alternatives. In this context, best means low
price, low time, and low CO2-eq. at the same time. It should be pointed out that the
criteria to be evaluated can be easily extended. In future, additional metrics, such as the
distance between customer and resource location can be considered or integrated into the
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environmental considerations based on possible transport means. For the multiple-criteria
decision analysis two different methods are described, the weighted evaluation and the
CRITIC method [38].

The first integrated method is the weighted evaluation. In the beginning, the criteria
values xij must be normalized to make the independent variables comparable. For this
purpose, we use the min-max normalization for scaling to the range [0, 1]. In this case,
0 is the best (e.g., cheapest) and 1 is the worst (e.g., most expensive) permutation. After
rescaling the value of every criterion j from every permutation i, the normalized value x′ ij
is multiplied with a user-defined weight ωj and summed up to calculate the comparative
value Di as follows

Di =
n

∑
j=1

(ωjx′ ij). (4)

The permutation with the lowest value is in this case the one with the best performance.
With the possibility of adjusting the weights, it can be directly defined, which variable is
currently most important for the user. However, finding weights can be difficult, especially
when the importance cannot be expressed in a defined value. To consider all factors, but
also find objective weights we use the so-called CRITIC method. The CRITIC method
calculates the contrast intensity and the conflicting character of the evaluation criteria for
determining meaningful weights. A detailed explanation can be found in [38]. For the
calculation of the weights according to the CRITIC method, the standard deviations σj
of the normalized criteria values are determined first. The Pearson coefficient represents
the linear correlation between two sets of data and is calculated by the covariance of two
variables, divided by the product of their standard deviations. The Pearson correlation
coefficient rjk is calculated for every combination of variables (price and time, price and
CO2-eq., time and CO2-eq.). In the next step, the amount of information Cj given as

Cj = σj

n

∑
k=1

(1− rjk )
2 (5)

is determined. Subsequently, the weight ωj can be calculated as follows

ωj =
Cj

∑n
k=1 Ck

. (6)

The determined weights can now be used to calculate the multiple-criteria score Dj in
accordance with Equation (4). Finally, the permutations can be ranked in dependence of
their respective score.

3.4. Identification and Calculation of Environmental Impacts

The identification of price and time is a standard procedure in production planning. In
contrast, the identification and calculation of environmental impacts is more sensitive and
complex and thus explained separately in this section. The main challenge is to identify
suitable background data for the different processes within the manufacturing framework
to contribute robust results for the different sustainability indicators, i.e., CO2-eq. and its
impact on climate change. Background data describes data on environmental impacts
that are not directly occurring on site. This includes scope 2 emissions from energy
consumption and scope 3 emission from pretreated materials such as consumables or
intermediate materials, that do not occur directly on the production site. The integrated
environmental indicators are based on the methodology of life-cycle assessment (LCA)
which is regulated by the 11 standards issued in ISO/TC 207/SC 5 Subcommittee. LCA is a
tool and scientific method to assess environmental impacts (damages to ecosystem, human
health and resources), while taking into consideration all life-cycle stages of a product or
process (from raw materials, production, operation trough to use and end-of-life) [39,40]. By
quantifying all flows across the border between the life-cycle of a product (technosphere)
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and the environment (ecosphere) a comprehensive assessment is conducted [41]. The
covered flows usually include energy use and input materials as well as released emissions
and produced waste. The key advantages of LCA are the prevention of burden shifting
between the life-cycle stages and the coverage of a broad range of impact categories (e.g.,
climate change, water use, resource depletion) [41]. Despite the unlimited theoretical
scope, a LCA study is eventually defined by the limited resources for the conduction,
restricted to a certain research or study question. According to the framework’s scope
of the process planning, a cradle-to-gate approach is selected, considering the product
as far as its production, but not regarding the use or recycling. The following life-cycle
stages of the product life-cycle are included based on [32] and discussed in Section 2. In
contrast to [32] the life-cycle stages design, use, maintenance, and end-of-life are excluded
in accordance with the cradle-to-gate approach:

• Raw material extraction
• Material preparation
• Production
• Post-processing incl. production waste

Figure 5 shows the included life-cycle phases. Relevant information for the life-cycle
impacts is stored in the models for Resource Skill Consumables and Resource Skills.

Figure 5. System boundary for the assessment of production processes.

The process description in the framework fulfills the role of the foreground system
modeling in the LCA, where a comprehensive inventory of inputs and outputs (inventory
analysis) of the manufacturing processes are created. The data collection process for a
life-cycle assessment is standardized in the standards ISO14040 [39] and ISO14044 [40]
and in guidelines, such as the International Reference Life-Cycle Data System (ILCD)
handbooks [41]. In general, the goal is to quantify all elementary flows, so the flows
between the technical systems and the environment are not altered before they enter or
after they leave the technical system. It is not practical to identify every single elementary
flow for each studied product system individually and not practical to accomplish in
the process descriptions in the framework. Thus, LCA databases are used to obtain the
elementary flow, based on the technical flows described in the Resource Skill Consumables
and Resource Skills. The link between technical flows and elementary flows takes place in
the so-called background system modeling.

Based on the process of an LCA study and the pre-existing knowledge from other
literature sources, see Sections 2.3 and 2.4, the following parameters subsequently need to
be covered in the assessment framework:

• Process parameters including and focusing on energy consumption,
• Location of manufacturing resources and electricity type,
• Input material type, properties, and quantities, and
• Aspired process quality.
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Along the example of energy input, this would mean the right energy source (tech-
nology), the appropriate location, e.g., the German grid mix (geographical) and a recent
distribution between the technologies (time). For the integration into the framework the
relevant data includes direct production emission, operating material, energy consumption,
and investments for the machine production as well as material inputs (as production
material and semi-finished products). For additive technologies, the material inputs are
modeled as production material inputs and for conventional inputs as semi-finished prod-
ucts and thus as a resource. Figure 6 shows the different product flows and its position
in the information model. The different product flows are also assigned to the different
scopes based on the greenhouse gas emissions protocol [42].

Figure 6. Mapping of environmental impacts to the corresponding information in the framework
and classification according to the respective scopes.

The introduced approach is implemented using Django, a high-level Python web
framework. This enables the fast and easy setup of a working system since Django provides
an interface to interact with the underlying database content. Furthermore, the application
can be easily adjusted or extended while meeting the requirements of a future-oriented
system architecture. The web-based approach enables the sharing of the provided service
with multiple users. In this way, not only service providers can offer their resources,
but also end users can model their possible manufacturing process steps and search for
fitting solutions, fulfilling the defined requirements with respect to ecologically metrics.
Furthermore, it is possible to integrate the framework into external applications. The
models described in Section 3.1 serve as the basis for the generation of the necessary
database tables. Each model is a single table and each attribute an according database field.
In the same way, the solution-finding and evaluation algorithms are implemented.

4. Results

In this section, insights are provided into the mapping of resources using laser metal-
wire deposition (LMWD) as an exemplary process. The process was analyzed in detail
and consumables were measured. Furthermore, a use case is described for evaluation of
strengths and weaknesses of the system.

4.1. Mapping of Resources

Exemplary resource information was inserted into the Django implementation to
assess the integrity of the design and to highlight the required information for a sound
mapping. Laser metal-wire deposition (LMWD) performed on a universal laser machine
at the IFSW was chosen as an exemplary manufacturing process. LMWD is a generative
process based on laser welding with filler wire. The used welding optics CoaxPrinter from
Precitec is specifically designed to form a ring-shaped beam focus around the wire for a
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coaxial wire feed. This allows for an omnidirectional feed vector and therefore provides
the required flexibility for a generative buildup process of complex parts.

The LMWD process can be operated in a multi-dimensional range of settings and
resulting workpiece properties. In practice, a manufacturing process would be setup to
perform either a high-accuracy low-volume rate buildup or a low-accuracy high-volume
rate buildup. Both aspects are interdependent, because the highest volume rates can only
be achieved by increased feed in combination with an up-scaling in weld bead width and
height, i.e., lateral and vertical step-over. For design assessment of the framework, the
universal laser machine is modeled as a resource and a LMWD process in high-accuracy
regime as an affiliated resource skill.

Wherever possible, data from the real process was captured and used to map the
process. In all other cases, general open-access data were used and referenced. This
specifically concerns ecological information. The accurate capturing of such data for a
unique resource requires specific knowledge and expertise, which cannot be expected to
be provided by the intended user group of the framework, but can be obtained from LCA
databases (see Section 3.4).

The resource of interest is a custom-built universal laser machine at the IFSW. To
perform an LMWD process, a controlled wire feed unit and a coaxial optic is mounted
to the work head. The laser beam source is a spatially separated solid state laser, but
both laser and machine are regarded as a compound system within the given context and
created as a single resource. As described in Section 3.1, a resource skill is defined by a
general skill description, fixed and usage dependent (variable) values for time demand,
costs and environmental impact, as well as consumables and abilities. In the following,
such a definition is provided and explained in detail for the LMWD process.

To generally categorize the LMWD process, it is assigned to the process step of ’pri-
mary shaping’. The fixed time demand comprises machine setup, tool adjustment, building
platform arrangement and thermalization of beam source and cooling plate, which sums
up to half an hour. Process parameters optimized for high-accuracy yield a buildup rate of
43.2 mm*3/s. Its reciprocal value describes the variable time demand, i.e., the required time
to process one base unit (mm3). The asterisk is used hereafter to distinguish the unit of
buildup volume from other consumables. Fixed and variable parts of the production costs
for a LMWD part stem from machine depreciation (71.0 EUR and 9.13 × 10−4 EUR/mm3)
and the consumables’ costs (in sum 0.74 EUR and 3.22 × 10−4 EUR/mm3). Costs and
environmental impact of the consumables are further detailed in the following section. It
must be noted that all values are measured or otherwise determined for the operation of
the specific universal laser machine at the IFSW, which was also used for demonstration of
the LMWD process. The machine, however, was designed and custom-built for research
purposes on laser processes, making the shown data not representative for an industrial
application of an LMWD process in general.

4.1.1. LMWD Consumables

To completely map the LMWD process, seven different consumables are required.
Table 1 includes all the relevant consumables, sorted by descending variable costs.
Nitrogen gas: The LMWD process is a welding process, which requires shielding gas
around the melt pool. Nitrogen gas is used in this case. The value is based on a constant
volume rate of 35 l/min used during process. The error of the control valve is estimated to
be ±10 %. Costs and CO2-eq. can vary accordingly.
Protective glass: The focusing laser optic is protected by a glass plate against physical
process emission. Contamination from weld spatter can deteriorate the beam quality and
subsequently the process result. The glass plate is therefore regularly replaced every 24 h
of production. In the case of a failure, the protective glass can wear prematurely and
require a replacement much earlier. Because the costs for this replacement part contribute
significantly to the total variable costs, this must be considered.
Aluminum wire: The buildup material is provided as AlMg5 welding wire with a diameter
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of 1 mm. During machine setup, one meter of wire is wasted for beam alignment checks
and adjustment of the wire straightener. Its variable value is precisely 1 mm3/mm3 because
the required wire volume during the process closely equals the buildup volume. Losses
due to spatter and evaporation are negligible.
Energy consumption: This value includes the total power consumption of the universal
laser machine with drives and electronics, the operator panel (constant 580 W) and the
power consumption of the laser. The energy demand of the machine and the laser was
measured during the LMWD process. As described above, machine and laser are two
spatially separated units, hence both have their own power supply lines. During the first
phase, the power input of the universal laser machine was measured over six hours of
operation. The graph in Figure 7a shows a one-minute average of the power consump-
tion. Three different levels can be distinguished, which are marked with dashed lines in
the graph. These levels match the operation modes of the machine, which are standby
(590 W), control (700 W) and process (770 W). During control all the drives are activated as
opposed to standby. Whenever the drives are moving the machine is in process mode. The
levels approximate the power consumption for all three modes with an accuracy of ±10 %
(min-max). Deviations for e.g., the process mode result from acceleration, speed and load
dependent power consumption of the drives which correlates with the complexity of the
tool path. The distinction between control and process mode is not required for an accurate
mapping of the process. In a production run, the machine would be set up in standby
mode followed immediately by the LMWD process in process mode. Hence, machine and
operator panel require 1.17 kW during setup (half an hour, which equals to 0.585 kWh) and
1.35 kW during process. Likewise, the graph in Figure 7b of the laser source shows three
levels of standby at 3000 W, active state at 6180 W and process at 9900 W. Although the
power consumption is constant during standby and active state, the graph shows a sloping
trend during the process. This is in line with the beam power demand of the LMWD
process, which decreases with buildup height to compensate for heat accumulation within
the work piece. The maximum deviation is ±4 % for this LMWD process regime. To map
the laser half an hour at 3000 W during setup and 6180 W for nine minutes of post-process
active state is used yielding 2.43 kWh fixed energy consumption. During process the mean
value of 9900 W is used. The source of the energy is a key aspect for the assessment of the
environmental impacts and is further discussed in Section 4.2. Table 1 provides price [43]
and CO2-eq. data under ’Energy consumption’ and ’Cooling’ related to German electricity
grid mix.
Wire nozzle: A copper nozzle guides the aluminum wire through the focusing lens to the
melt pool. Due to abrasion within the nozzle and subsequent loss of guiding precision,
the nozzle is replaced every 10 kg of aluminum wire throughput. The nozzle is a wearing
part and as with the protective glass, failures during the process can reduce replacement
intervals. However, costs and environmental impact of the nozzle are below the uncertainty
of other consumables.
Cooling: The building platform on the machine has internal cooling channels to drain heat
from the part. The fluid is provided by an intricate cooling system within the facility. To
map the energy demand of the cooling for this process, a reference value of 290 W based
on a stationary chiller is used.
Compressed Air: To extend the replacement period of the protective glass, a cross jet
is mounted underneath to blow away material emissions from the process. A value of
2.1 ct/m³ at standard atmosphere was used to map the costs.
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Figure 7. Power demand of (a) the universal laser machine and (b) the beam source during inter-
rupted LMWD process.

Table 1. Relevant consumables for a LMWD process performed on the universal laser machine at the IFSW. Variable values are related
to a buildup volume of one dm³ (L*) of aluminum wire. Data related to electrical energy is based on Germany’s electricity grid mix.

Consumable Unit Fixed Quantity Variable Quantity Price CO2-eq.

Nitrogen gas m³ - 13.5 m³/L* 12.3 EUR/m³ 0.108 kg/m³
Protective glass - - 0.268 /L* 355 EUR 0.113 kg
Aluminum wire mm3 785 mm3 1.00 × 106 mm3/L* 3.30 × 10−5 EUR/mm3 2.91 × 10−5 kg/mm3

Energy consumption kWh 3.02 kWh 72.3 kWh/L* 0.225 EUR/kWh 0.575 kg/kWh
Wire nozzle - - 0.266 /L* 33.64 EUR 0.217 kg

Cooling kWh 0.145 kWh 1.86 kWh/L* 0.225 EUR/kWh 0.575 kg/kWh
Compressed air m³ - 77.2 m³/L* 2.10 × 10−2 EUR/m³ 4.67 × 10−2 kg/m³

The LMWD as a generative process requires a solid base to adhere the first weld beads
to. Two different scenarios are possible. It can be used to manufacture a blank similar to a
casting process. In this case, a sacrificial building plate is used during the LMWD process
to build up the material. This building plate is removed in a subsequent process and then
reused or recycled. A continuously reused base does not contribute to the environmental
impact of the process. Its costs can be neglected over a sufficiently long lifetime. However,
for the considered LMWD system the building plate is a recycling product. Every building
plate is laser cut from sheet metal and its material is recycled after sawing it from the
blank. In such an application, every mm3 of building plate contributes with 2.59 × 10−5 kg
CO2-eq. to the environmental impact and with 2.55 × 10−4 EUR to the costs of the LMWD
process. This can be mapped by adding a building plate consumable to the LMWD resource.
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In a different scenario, LMWD could be used to add a geometrical feature to a pre-existing
semi-finished part. No separate building plate would be required in this case.

As shown, all consumables are defined by fixed values, which represent the quan-
tity required during process initialization, and variable values that scale linearly with
the usage of the skill. Such a classification is an important feature of the data model to
distinguish between costs, which occur once per process step and costs, which are gen-
erated continuously during the process. Additionally, it allows differentiating between
the electrical energy consumption during standby and during operation, as shown in the
LMWD example. Generally, this model is well suited to map all kinds of consumables,
whose usage is mainly dependent on the process regime and the process duration. In
contrast, those who depend on the part‘s geometry can only be mapped using a mean or
typical value, and therefor may cause inaccuracy of the results for a specific part. Another
source of error is the determination of the actual buildup volume. Although at first glance
it seems valid to deduce this volume from the part’s model, in practice it shows that the
required material volume can deviate from the model to a large extent. On the one hand,
lightweight parts are often produced with internal cavities to reduce mass, production time
and raw material consumption. This can be pushed to an extreme by reducing the material
placement solely to an outer hull leaving a geometry whose complexity can only be realized
with generative technologies. On the other hand, additive manufacturing and the LMWD
process in particular require additional material for process-related geometrical features,
such as structures for improved adhesion on the building platform, heat sinks, support
for overhangs, or machining allowance. The higher the complexity of the outer shape of a
part the more additional material is needed. A deep understanding of the process itself
and the requirements for the finished part are needed to determine the actual buildup
volume and in consequence enable the framework to produce valid results regarding the
best manufacturing technology for a given case.

4.1.2. LMWD Abilities

As described above, a main part of the skill model is the definition of consumables
and abilities. The consumables are used to determine costs and environmental impact
of the process. Abilities in contrast are used to assess whether the skill of a resource can
perform the intended part modification with the needed quality. Every ability is quantified
by a single scalar value to allow matching between the part modification and all available
skills. The three abilities, working space, accuracy, and material are considered for the
LMWD process. As shown below, modeling working space and accuracy with a scalar
value only, implies major limitations.

Different materials are defined as unique abilities. The user of the framework has the
freedom to define specific materials, which can be process with LMWD, but also exclude
them if they are not available as welding wire.

The working space of the universal laser machine is limited by the travel of all three
linear axes, which is 1 m, 0.8 m, and 0.5 m respectively, yielding a volume of 0.4 m³. The
order of magnitude of the volume gives a rough estimation of the capabilities of the
machine and can be easily compared to other machines and the volume of the component
to be manufactured. However, LMWD is often used for manufacturing large thin free-
form components such as rotor blades, wheel carriers, or organic-shaped support beams.
In these cases, the mere scalar value of material volume is insufficient to evaluate the
workspace needed. For such parts, at least a bounding box model should be used to assess
the manufacturability. A more sophisticated approach could be to implement algorithms
to geometrically fit the 3d model into the workspace considering requirements regarding
built orientation.

For the definition of the ability of the achievable accuracy of LMWD, it must be distin-
guished between areal surface roughness and geometrical accuracy on a macroscopic scale.
The roughness of LMWD parts varies across the surfaces depending on the built orientation.
On the bottom, the part adheres to the building plate, which prevents the specification of
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roughness. On the top, roughness is determined by the cross-sectional geometry of the
weld beads and their horizontal distance. Along the side walls, the vertical layer height
defines the surface characteristics. To quantify the achievable surface roughness with a
single value, the worst case must be considered. For the process regime of the described
skill, steep overhangs show a deviation of up to 1 mm from the designed shape.

The geometrical or macroscopic accuracy is primarily determined by layer height,
weld bead geometry, and thermal distortion and serves as a measure of the minimum
feature size that can be produced. Its value for the given process is ±2 mm. This kind of
geometrical error of the part is unique to generative processes and must be considered not
as an ability, but as additional allowance while determining the required buildup volume.

4.2. Determination of the LCA Background Model

Paralleling the section structure of the framework description, the determination of
the LCA background model is detailed for the resource skill described above. The selec-
tion of the LCA background data was conducted according to the approach described in
Section 3.4 based on the technical, geographical, and time representativity with a focus
on the technical representativity, due to the generic character of the framework. The map-
ping is necessary for all skill consumables (operational material and material in additive
processes) (see Table A3) and resources (material in conventional processes and machine
production) (see Tables A4 and A5). The LCA databases Gabi [44] and ecoinvent [45] were
used with the impact category Global Warming Potential based on the impact methodology
Environmental Footprint. Note: The additional resources for the use case are covered in
the tables described above as well, but more details can be found in Section 4.3.

Table A3 shows the selected background data for the operation materials on the
framework level of skill consumables. The skill consumables are implemented in a way
that they can be customized to specific locations or also supplier preferences or availability.
In this case, the used energy was varied for the LMWD process and thus, assuming two
different locations or operational energy sources/choices (see Section 4.3):

• The German electricity grid mix with a carbon footprint of 575 g CO2-eq. was assumed
for the generic LMWD process.

• A specific electricity mix based on energy from photovoltaics with a carbon footprint
of 69.6 g CO2-eq. was used for the process ’LMWD (eco)’.

On the consumables level, two specific modeling approaches for end-of-life scenarios
were implemented due to the restrictions of the framework:

• For operational materials, which are used but not consumed in the manufacturing
process, the recycling or disposal efforts are considered in combination with the
production impacts. Due to the resource and skill specific consumable level, different
particularities can be taken into consideration.

• Recyclable material (e.g., mill chippings) is modeled as a skill consumable with
negative impacts. Thus, a skill consumable with a negative value can, generally, be
considered to be an output, following the process perspective. This is in line with an
avoided-burden approach in LCA (see Section 3.4).

Skill consumables required for the specific manufacturing process (e.g., block size) are
modeled as resources. Table A4 shows the selected background data for the intermediate
materials, necessary for conventional manufacturing steps, such as milling. Table A5
shows the selected data set for the impacts from the production of the machinery resources.
The calculation assumptions are based on the calculation of the capital cost of research
machinery equipment:

• Lifetime: 3 years
• Working days per year: 220 days
• Shift system/working machine hours per day: 8 h
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4.3. Use Case

To demonstrate the modeling of an exemplary part, a flange was designed, modeled,
and evaluated. The flange is made from aluminum, with the dimensions shown in Figure 8.
The top of the flange is defined with a surface roughness of Rz = 25 µm and a hole with a
diameter of 7 mm to receive a connecting rod. It expands to an 80 mm by 80 mm mounting
plate with a pattern of M6 through holes. Four reinforcing ribs improve strength against
side loads. Figure 8b,c show the semi-finished and finished part when manufactured with
laser-based processes including LMWD.

Figure 8. Example flange part for illustrating the modeling of part process steps. (a) The main dimensions
and part constraints; (b) The part after the LMWD process; (c) The part after the post-processing.

Two possible paths for manufacturing this part were described with the framework.
Figure 9 shows the corresponding part process steps. Both arrows indicate the chronological
order of subsequent process steps, each of them is defined by a quantity value and a
corresponding unit, as well as a textual description. The first manufacturing possibility is
based on laser technology primarily, which was used to actually manufacture the part for
demonstration purposes. The base plate with through holes was separated from a 4 mm
metal sheet using laser cutting. Subsequently, the flange feature was added using LMWD
with appropriate allowance. The result is shown in Figure 8b. The top face, the bore and
the outer contour were milled to the final geometry in a post-processing step. The finished
part is shown in Figure 8c. This post-processing step has no constraints regarding the final
surface finishing. The last process step was the surface finishing to achieve the required
surface roughness on the top of the flange. The second manufacturing possibility starts with
a semi-finished aluminum cuboid. This cuboid is subsequently milled, which includes the
bores in the base plate. Finally, the upper surface of the flange is processed with the same
constraints as in manufacturing possibility 1 to achieve the required surface roughness.
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Figure 9. Screenshot of the manufacturing possibilities of the sample part and the underlying part process steps. (a) shows
the constraint of the process step for the final surface finishing.

To compare the impact of different sources for the electrical energy, a second LMWD
(eco) process was added. It is an additional skill of the universal laser machine resource,
but powered by electrical energy from renewable sources, i.e., photovoltaics. This change
raises the costs from 22.45 ct/kWh to 22.62 ct/kWh [43] and reduces the CO2-eq. from
0.575 kg/kWh to 6.96 × 10−2 kg/kWh [44].

In addition to the universal laser machine described in detail in Section 4.1, three addi-
tional resources were inserted into the framework to calculate both possibilities. These are
the required raw material, a laser cutting cell, and a milling machine with different skills.
The resources were modeled in a simplified way and do not have the same level of detail as
the LMWD process. However, the values of the resources were selected carefully to ensure
the comparability of the assessments. The values used for this purpose were compiled from
publications or estimated to the best of the authors’ knowledge. Accordingly, these are by no
means representative values. They serve exclusively to demonstrate the framework presented
here. The modeled resources and according values can be found in Appendix A.1.

After inserting the part information, the evaluation is executed within the framework
and the results are stored in a dedicated database table. During the process, every possible
permutation is identified, and the resulting values are determined using the procedure
introduced in Section 3.2. The results of the multiple-criteria decision analysis are shown in
Table 2. For this exemplary use case, the algorithm identified four permutations of available
resource skills, which are potentially able to manufacture the part. All permutations are
ranked by their score from best (1) to worst (4). The possibility column shows, on which
of the both initial possibilities the permutation is based on, i.e., ’1’, ’2’ or automatically
identified ’-’. In the center, all resource skills of the permutations are shown in subsequent
order, from top to bottom. On the right are the final values for price, time, and CO2-eq.
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Table 2. Results of the multiple-criteria decision analysis.

Rank Score Possibility Permutation: Resource Skill (Resource) Price Time CO2-eq.

1 0.969 -

Semi-finished sheet (Raw material)
Quality cut (Laser cutting cell)

Semi-finished block (Raw material)
Milling (Milling machine)

Surface milling mode (Milling machine)

15.1 EUR 1:05 h 9.81 kg

2 0.499 2
Semi-finished block (Raw material)

Milling (Milling machine)
Surface milling mode (Milling machine)

383 EUR 1:02 h 11.8 kg

3 0.398 1

Semi-finished sheet (Raw material)
Quality cut (Laser cutting cell)

LMWD eco (Universal laser machine)
Milling (Milling machine)

Surface milling mode (Milling machine)

109 EUR 1:42 h 14.8 kg

4 0.330 1

Semi-finished sheet (Raw material)
Quality cut (Laser cutting cell)

LMWD (Universal laser machine)
Milling (Milling machine)

Surface milling mode (Milling machine)

109 EUR 1:42 h 17.1 kg

5. Discussion

In the previous section, the results of a specific use case where shown. To put them
into perspective and examine the validity of the output is the goal in the following. The
best ranked (1) permutation shown in Table 2 was automatically identified by the system,
based on the available resources and resource skills. It was not manually described in
advance. The system recommends combining a semi-finished sheet and a semi-finished
block to manufacture the flange. The permutation on rank 2 is based on the predefined
possibility 2, which is manufacturing the flange from a solid block of aluminum. Both
permutations on rank 3 and 4 describe the same process of laser cutting a semi-finished
sheet and printing the remaining material using the LMWD process. Although the per-
mutation on rank 3 uses a LMWD (eco) process with electrical energy generated from
renewable sources, the permutation on rank 4 uses conventional energy sources for all
processes. The fact that a completely new permutation (rank 1) was automatically identi-
fied, based on the information available within the framework, highlights the advantages
and capabilities of the developed system. Identifying possible manufacturing sequences
and alternative manufacturing possibilities for a given part, especially for an increasing
number of resources and resource skills, is a valuable feature for users to optimize their
production. However, the automatically identified permutation is flawed, because the
required processes to join the semi-finished sheet to the block are not considered and not
considered for the calculation. The result likely does not represent the total values of price,
time, and CO2-eq. to be expected for this permutation. The permutation may be falsely
ranked best. This outcome indicates that additional constraints are required to accurately
map possible subsequent processes and therefore improve the quality of automatically
designed permutations.

To further analyze the results in terms of the calculated environmental impact, Figure 10
shows CO2-eq. in kg for the two permutations on rank 2 and 3. Additionally, the information
is broken down by the subsequent resource skills from bottom to top. The conventional man-
ufacturing on rank 2 yields a total of 11.8 kg CO2-eq., while laser-based manufacturing yields
14.8 kg. This means, manufacturing the demonstration part, using the milling process strategy,
generates less CO2-eq. emissions taking all considerations into account. Within possibility 1
the LMWD process is further detailed into a part that stems from machine production and the
contributions from consumables used during the process. In this case, machine production
makes up 77% of the LMWD (eco) impact, mainly due to the assumption of machine depreca-
tion time made in Section 4.2. Consumables for the process, including the wire material to
produce the flange and allowance for subsequent milling, only contribute 1.24 kg in total. The
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environmental impact is strongly dependent on the actual energy consumption of the additive
process. Literature references for the carbon footprint of additive manufacturing can differ
based on the electricity mix by the factor 20 (process “laser machining, metal, with CO2-laser,
6000 W power” in Canada vs. Europe [45]) or by the manufacturing setup by the factor of
15 (SLM process with multiple parts vs. single part manufactured simultaneously [46]. A
reference value for LMWD is not known to the authors.

In possibility 2, the main part with 7.45 kg, is contributed by the solid block of
aluminum raw material with an initial size of 256 cm3 (80.5 by 80.5 by 39.5 mm3). The
following milling process removes 211 cm3 to finish all outer contours, except the top
surface, to size. In contrast, the milling process within possibility 1 only removes the
allowance of 3 cm3 from the previous LMWD process. However, negative CO2-eq. of
chip material, due to recycling overcompensate the longer milling time and increased
consumable demand during bulk milling in possibility 2. This leads to a CO2-eq. of 1.95 kg
compared to 2.38 kg for the short milling operation in possibility 1.

The surface milling is the same process in both possibilities and yields the same
amount of 2.39 kg of CO2-equivalents.

Figure 10. Environmental impact of permutations from rank 2 and 3 in CO2-equivalents. The LMWD
process within possibility 1 is further detailed showing the parts from machine production and the
required consumables on the right.

Considering all assumptions put into the framework and the modeling of the part, the
results shown are valid and comprehensible. Different manufacturing technologies were
evaluated producing the same part, but yielding different outcomes in terms of price, time,
and environmental impact in CO2-equivalents. It was shown that the system can propose
solutions based on the experts manufacturing plan, as well as evaluate new strategies, as
seen in the example. However, the framework can only optimize within the boundaries
given by the initially defined resources. Although this is a practical approach to optimize
manufacturing for a given part and manufacturing situation, it does not take into account
the optimization potential, which might lie in up-to-date resources and technologies.
Regarding future competitiveness of a production, it still lies in the hand of the user to add
improved capabilities to the shop floor and hence to the framework database as new skills.

6. Conclusions

With the sustainable manufacturing framework, the paper proposes an ontology for
production resources and part descriptions to realize process planning under consideration
of ecologically aspects. The introduced framework and its workflows describe the match-
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ing of resource skills, and process steps and uses methods of multiple-criteria decision
analysis to evaluate possible combinations of resources regarding resulting costs, required
time, and CO2-eq., as an indicator for sustainability for the manufacturing of a specific
part. The part quality is ensured by explicitly defined constraints and not used as an
optimization parameter. The logic of the framework is implemented into a web-based
platform, allowing service providers to offer their resources and customers to access them
directly, by externalizing the expert knowledge of process planning. The functionalities
of the framework are validated with a use case of an aluminum flange. In addition to
a LMWD process modeled in detail, a milling and laser cutting process were added to
define alternative manufacturing possibilities. The framework was not only able to identify
preferable manufacturing possibilities based on the data input of the use case, but also
propose the best production resources for the specific manufacturing steps. The framework
is intended to support an automated manufacturing decision-making, based on different
possible manufacturing resources and thus reduce the complexity of finding suitable pro-
duction resources regarding the required quality, resulting costs, required time, and CO2-eq.
for an individual part. However, no generalized and universal conclusion should be drawn
regarding the absolute environmental impacts of the different manufacturing possibilities
due to (a) the different levels of detail for the process descriptions in the framework and (b)
the simplicity of the use case.

Although the framework offers valuable insights for the studied use case, some
limitations of the framework were identified and are listed below:

• The data placement, in particular at the start of the framework implementation, relies
on the expertise of manufacturing and LCA experts.

• Consumables are not directly geometry dependent (e.g., aluminum wire ’overhead’).
• Waste flows cannot be integrated as outputs for conventional manufacturing (i.e.,

intermediates as resources).
• Link of process parameters to environmental impacts cannot be shown directly, but

must be embedded in the data filled in by experts for every resource skill.
• The scheduling of machining operations is not considered in this work. However, as

mentioned in the literature review, this could offer potentials to further improve the
overall energy efficiency and thus the environmental impacts.

The proposed framework is capable of including environmental aspects into the
decision-making process. Yet, the data structure is not capable of demonstrating the
causation between the process parameters and its impacts:

• The environmental impact is mainly influenced by the background data and cannot be
directly influenced and confirmed by the owner of the framework. Thus, the results
hold a significant uncertainty.

• The environmental assessment is currently limited to the consideration of the Global
Warming Potential (CO2-eq.). This could easily be extended to other impact categories.
Yet, due to the goal to cover a wide range of manufacturing possibilities, the used
background data would be too unspecific.

The described limitations and findings lead to multiple potentials for improvement
and research gaps. Currently, a manufacturing expert is required to model manufacturing
possibilities of a part. This step can be time-consuming and complex since a part can
possibly be manufactured in many different ways. A solution would be the implementation
of a volume decomposition and feature extraction algorithm, which suggests possible
manufacturing processes, including the required constraints. By doing so, the evaluation
could already take place during the design phase of a part and provide helpful feedback
about the manufacturability and the resulting costs, the required time, and CO2-equivalents.
As a result, direct adjustments could be made to reduce environmental impacts. Resource
properties, such as the energy consumption, could be directly gathered by connecting the
machine control and the underlying sensor systems with the platform. Furthermore, an
automated determination and mapping of CO2-eq., based on the described but manually
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conducted procedure would be time-saving. Therefore, an interface to LCA databases must
be developed and a mapping strategy for the junction of consumable information and
information from the LCA databases is needed. Finally, the validation should be scaled up
to more resources and parts to prove applicability in a real industrial setting.
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Appendix A

The Appendix A.1 includes information about additional resources used for the
demonstration of the use case and Appendix A.2 includes background data for the assess-
ment of the environmental impacts.

Appendix A.1. Additional Resources, Resource Skills and Consumables

The consumables for the milling machine were derived from [47]. The work from
Diaz et al. introduces a life-cycle energy consumption analysis for milling machines.
We used the provided data for a Mori Seiki DuraVertical 5060 machine, located in a
job shop, to calculate the consumption of energy and cutting fluid. The investigated
machine manufactured 871 parts were 157,753 mm3 of AISI 1018 steel must be removed.
The machine required 1000 kj/Part for the part production. This value is used for the
regular milling skill. The machine consumed 1960 gal/year of oil-based cutting fluid and
12,000 gal/year water-based cutting fluid when used in a job shop environment with a
yearly production of 217,750 parts (871 parts/day with 250 working days). These values
were mapped to calculate the average consumption of these consumables for removing
1 mm3 material using the milling skill.

For the price of the raw material of AlMgSi0.5 we assumed 9.40 EUR/kg. For a sheet
with the thickness of 4 mm, this corresponds to a price of 1.02 × 10−4 EUR/mm2, where
2.7× 10−6 kg/mm3 is the density of AlMgSi0.5. For a block, the costs are 2.54× 10−5 EUR/mm3.
For the price of recyclable AlMgSi0.5 we assumed an average price of 0.7 EUR/kg, which
is 3.46 × 10−11 EUR/mm3.

https://github.com/iswunistuttgart/plafosus
https://github.com/iswunistuttgart/plafosus
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For determining the variable costs of the milling processes, we compared estimated
costs of online platforms offering on-demand manufacturing capabilities. For this purpose,
we removed the assumed material costs of 6.33 EUR for a block of 80 × 80 × 39 mm of
AlMgSi0.5 from the offered price. The average price for the manufacturing of the described
sample part was 383.58 EUR . Consequently, for processing the average milling process,
the estimated price is 1.78 × 10−3 EUR/mm3. For the surface milling mode, we assumed a
10% higher price.

The variable time for an average milling process is estimated with a removal rate of
120 cm3/min based on [48]. For the surface milling mode, we estimate the variable time
with 100 cm2/min [48]. To map the machine preparation time (CAM, part fixing, tool
changing, material removal etc.), we add a fixed time of 30 min per process.

Table A1 shows the information for the resource skills for the additional resources and
Table A2 the information on the consumables for the additional resource skills.

Table A1. Additional resources and their resource skills.

Resource Resource Skill Unit Fixed Price
in [EUR]

Fixed Time
in [s]

Fixed
CO2-eq. [kg] Variable Price Variable Time Variable

CO2-eq.

Milling
machine Milling mm3 0 1800 2.390 1.78 ×

10−3 EUR/mm3
4.16 ×
10−4 s/mm3

6 ×
10−7 kg/mm3

Milling
machine

Surface milling
mode mm2 0 1800 2.391 1.96 ×

10−3 EUR/mm2 6 × 10−3 s/mm2 7 ×
10−7 kg/mm2

Laser cutting
cell Quality cut mm 7.11 300 1.275 3.55 ×

10−4 EUR/mm 1.5 × 10−2 s/mm 3.03 ×
10−5 kg/mm

Raw material Semi-finished sheet
(4 mm) mm2 0 0 0 1.02 ×

10−4 EUR/mm2 0 s/mm2 1.164 ×
10−4 kg/mm2

Raw material Semi-finished
block mm3 0 0 0 2.54 ×

10−5 EUR/mm3 0 s/mm3 2.91 ×
10−5 kg/mm3

Universal laser
machine LMWD mm3 71.01 1800 9.13 × 10−4 9.13 ×

10−4 EUR/mm3
2.31 ×
10−2 s/mm3

4.67 ×
10−5 kg/mm3

Universal laser
machine LMWD eco mm3 71.01 1800 9.13 × 10−4 9.13 ×

10−4 EUR/mm3
2.31 ×
10−2 s/mm3

4.67 ×
10−5 kg/mm3

Table A2. Resource skills and their consumables.

Resource Skill Consumable Unit Fixed Quantity Variable Quantity Price CO2-eq.

Milling Energy consumption kWh 0 kWh 1.76 ×
10−9 kWh/mm3 0.2245 EUR/kWh 0.575 kg/kWh

Surface milling
mode Energy consumption kWh 0 kWh 1.58 ×

10−9 kWh/mm2 0.2245 EUR/kWh 0.575 kg/kWh

Quality cut Energy consumption kWh 4.17 kWh 2.08 ×
10−4 kWh/mm 0.2245 EUR/kWh 0.575 kg/kWh

Quality cut Nitrogen m³ 0 m³ 5 × 10−6 m³/mm 12.3 EUR/m³ 0.108 kg/m³
Milling Cutting fluid (water) L 0 L 1.322 × 10−6 L/mm3 0.002 EUR/L 9.275 × 10−5 kg/L
Milling Cutting fluid (oil) L 0 L 2.16 × 10−7 L/mm3 4 EUR/L 1.807 kg/L

Milling Recyclable AlMgSi0.5 mm3 0 mm3 1 mm3/mm3 −3.46 ×
10−11 EUR/mm3 −3.2 × 10−6 kg/mm3

Appendix A.2. Background Data for the Assessment of the Environmental Impacts

Tables A3–A5 list the information on the selected LCA background data sets for the
skill consumables and resources. The used LCA databases are the GaBi database by Sphera
with its service pack version 40 [44] and the ecoinvent database with its version 3.7.1 [44].
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Table A3. LCA background data for the skill consumables—operation material.

Resource Skill Skill Consumable LCA Process Geo Scope Source Comment

Universal laser
maschine LMWD + LMWD (eco) Nitrogen Nitrogen (gaseous) DE Sphera, GaBi DB

SP40
Universal laser
maschine LMWD + LMWD (eco) Protective glass Borosilicate glass

production EU Sphera, GaBi DB
SP40

Universal laser
maschine LMWD + LMWD (eco) Wire material Aluminum sheet

(AlMg4.5) EU Sphera, GaBi DB
SP40

AlMg4.5 as a
proxy for AlMg5

Universal laser
maschine LMWD + LMWD (eco) Wire nozzle Copper nozzle DE Sphera, GaBi DB

SP40

The used dataset
is a modeled
manufactured
copper part.

Universal laser
maschine LMWD + LMWD (eco) Compressed air Compressed air EU Sphera, GaBi DB

SP40

Universal laser
maschine LMWD

Energy
consumption
(building plate
chiller)

Electricity grid mix DE Sphera, GaBi DB
SP40

Universal laser
maschine LMWD (eco)

Energy
consumption
(building plate
chiller)

Electricity from
photovoltaic DE Sphera, GaBi DB

SP40

Universal laser
maschine LMWD

Energy
consumption (total
energy demand for
laser)

Electricity grid mix DE Sphera, GaBi DB
SP40

Universal laser
maschine LMWD (eco)

Energy
consumption (total
energy demand for
laser)

Electricity from
photovoltaic DE Sphera, GaBi DB

SP40

Laser cutting
cell Quality cut Nitrogen Nitrogen (gaseous) DE Sphera, GaBi DB

SP40
Laser cutting
cell Quality cut Electical energy Electricity grid mix DE Sphera, GaBi DB

SP40
Milling
machine ISW Milling level 1 Cutting fluid

(water)
Tap water from
groundwater DE Sphera, GaBi DB

SP40

Milling
machine ISW Milling level 1 Cutting fluid (oil) Lubricants at

refinery + Used oil DE Sphera, GaBi DB
SP40

The modeled oil
includes the
end-of life
treatment.

Milling
machine ISW Milling level 1 Recycable

AlMgSi0,5
Recycling potential
aluminum sheet DE Sphera, GaBi DB

SP40
Milling
machine ISW Milling level 1 Energy

Consumption Electricity grid mix DE Sphera, GaBi DB
SP40

Milling
machine ISW Surface milling mode Energy

Consumption Electricity grid mix DE Sphera, GaBi DB
SP40

Table A4. LCA background data for the skill consumables - intermediates.

Resource Skill Skill Consumable LCA Process Geo Scope Source Comment

Semi-finished raw
material Semi-finished block AlMgSi0,5 Aluminum ingot

(AlMgSi0.5) DE Sphera, GaBi DB
SP40

Semi-finished raw
material Semi-finished sheet AlMgSi0,5

Aluminum
extrusion profile
(AlMgSi0.5)

DE Sphera, GaBi DB
SP40

Extrusion profile
as a proxy for a
sheet.

Table A5. LCA background data for resources.

Resource Skill Machine Weight Weight Source LCA Process Source Comment

Universal laser
machine LMWD 6200 kg + 1400 kg

Laser unit IFSW
Metal working
machine,
unspecified

Ecoinvent DB 3.7
Allocation based
on machine
weight

Laser cutting cell Quality cut 16,000 kg Estimation based
on machinio.de

Metal working
machine,
unspecified

Ecoinvent DB 3.7
Allocation based
on machine
weight

Milling machine Milling level 1 5000 kg Estimation based
on machinio.de

Metal working
machine,
unspecified

Ecoinvent DB 3.7
Allocation based
on machine
weight
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